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 Schedule

[Home] Dates: every Tuesday and Thursday : May 2, 2002 through June 27, 2002
[Members] Time: 10:00am -- 11:20am

[Schedule] Place: Computing Science Centre, room B-43

[Overview]

[Sponsors]

[Archive/Links] The slides are here

[Contact]

The notes are here.
Please report all inaccuracies, comments, and observations to the author. Thanks!

Date Topics Presenter Problems
Chapter 1 : Introduction and )
May 2nd . Dave Fortin
overview
May 7th | Chapter 2 : Linear Algebra Angela Antoniu Ex. 2.11,2.24, 2,17, 2.25,

2.18,2.19,2.27,2.42, 2.48

Chapter 2 : Postulates of Quantum Angela Antoni Ex. 2.51, 2.52, 2.53, 2.58,
Mechanics ngeta Antonit ', 59,2 66

May 9th

Mav 14th Chapter 2 : Applications: super- D Eorti e 260,270
8y dense coding, EPR ave rFortin X. 2.69, 2.

Chapter 3 : Introduction to Computer

May 16th | _ . . Vadim Bulitko |Ex. 3.7
Science, complexity classes

May 21st | Chapter 3 : Reversible circuits Vadim Bulitko |Ex. 3.32

Ex. 4.3;4.4;4.6; 4.7, 4.8; 4.10;
412; 4.13; 4.15; 4.16; 4.18;
4.20; 4.21; 4.22; 4.23; 4.24;
4.25: 4.28; 4.31

May 23rd | Chapter 4 : Quantum circuits, part 1 |Vahid Rezania

Ex. 4.32; 4.34, 4.35; 4.37;

May 28th | Chapter 4 : Quantum circuits, part 2 |Vahid Rezania 4.38: 4.39: 4.40: 4.41: 4.44

May 30th | Chapter 4 : Quantum circuits, part 3 |Vahid Rezania |Ex. 4.46; 4.47; 4.49; 4.50; 4.51

Chapter 5 : Quantum Fourier .
June 4th Arzu Sardarli Ex.5.3,5.8,5.9,5.18
transform, part 1
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June 6th

Chapter 4 : review and discussion;
Chapter 5 : Quantum Fourier
transform, part 2

Vadim Bulitko

Ex. 5.28,5.3

June 13th

Chapter 6 : Quantum Search
algorithm

Vahid Rezania

Ex.6.1,6.2,6.3,6.7, 6.12,
6.17

June 18th

Chapter 7 : Quantum Computers:

physical realization, part 1

Arzu Sardarli

June 20th

Chapter 7 : Quantum Computers:

physical realization, part 2

Arzu Sardarli

June 25th

Chapter 7 : Quantum Computers :

physical realization, part 3

Arzu Sardarli

June 27th

Quantum Computing for Artificial

Intelligence

llya Levner
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QUANTUM COMPUTING
SUMMER SCHOOL

Llecture | :

lntroduction

INTRODUCTION

% Short-Terim Objectives
Introduce Quantum Computing Basics to interested
parties in and around the University of Alberta

% |ong-llerm Objectives

Engage into Al/CS/Math Research projects
benefiting from Quantum Computing

% Format
- Seminar-type meetings of 80 minute duration
- Twice per week

% Prerequisite

- No linear algebra or quantum mechanics assumed
- A math or CS background would be beneficial




INTRODUCTION

#= Schiool Schiedule (PDays, Tme and Flace)

Dates: Tuesdays and Thursdays :
May 2, 2002 to June 27, 2002

Time: 10:00am -- 11:20am

Place: Computing Science Centre,
Room B-43

INTRODUCTION

= School Tlext

Quantum Computation &
Quantum Information

Michael A. Nielsen
Isaac L. Chuang

ISBN: 0521 63503 9 Paperback
ISBN: 0521 63235 8 Hardback

Cost:  $48.00 New Paperback
$35.45 Used Paperback
(http://www.amazon.com)




INTRODUCTION

= lentative Seieaule (Week by Week)

Introduction and overview Dave Fortin
Linear Algebra Angela Antoniu
Postulates of Quantum Mechanics Angela Antoniu
Applications: super-dense coding, EPR Dave Fortin
Intro to Computer Science, complexity classes Vadim Bulitko
Reversible circuits Vadim Bulitko
Quantum circuits, part 1 } Vahid Rezania /
Quantum circuits, part 2

Quantum circuits, part 3 Angela Antoniu

INTRODUCTION

Zlentative Sehieaule (Week by Week)

June 4 Quantum Fourier transform Arzu Sardarli
June 6 Quantum Fourier transform : Shor's algorithm Vadim Bulitko
June 11 Quantum Search algorithm, part 1 Vahid Rezania
June 13 Quantum Search algorithm, part 2 Vahid Rezania
June 18 Quantum Computers : physical realization, part 1}Arzu Sardarli /
June 20 Quantum Computers : physical realization, part 2

June 25 Quantum Computers : physical realization, part 3

June 27 Review and discussion Vadim Bulitko

Dave Fortin




INTRODUCTION

= Fresenters

Angela Antoniu {-
a.antoniu@ieee.org ;'

Vadim Bulitko
bulitko@ualberta.ca !

David Fortin
dcfortin@ualberta.ca

Vahid Rezania
vrezania@phys.ualberta.ca

Arzu Sardarli
sardarli@ee.ualberta.ca

Research Associate

| Electrical & Computer Engineering
. Department

Professor
Department of Computing Science

Administrator,

":; The Centre for Nanoscale Physics

Postdoctoral Fellow
Department of Physics

Research Associate/Sessional
Lecturer

W% Electrical & Computer Engineering
. Department

INTRODUCTION

@ Resources: Web-Fages, Links, etc.

- [nfermation about the course canm be found at:

Quantum Computing Summer School
http://www.cs.ualberta.ca/~bulitko/qc/

The Centre for Nanoscale Physics
http://nanoscale.phys.ualberta.ca

- Links to other sites may also be obtained from above




1 Qubit -> Bloch Sphere,
2 Qubits -> Bell States,
n Qubits
Quantu Gates: Single Qubit, Arbitrary Single Qubit -> Universal
c tat Quantum Gates, Multiple Qubit Gates -> CNOT
omputa Other Computational Bases
Qubit Swap Circuit
Qubit Copying Circuit
Bell State Circuit -> Quantum Teleportation
Toffoli Gate -> Quantum Parallelism -> Hadamard Transform
m Deutsch's Algorithm, Deutsch-Josa Algorithm
s Other Algorithms
- Fourier Transform, Quantum Search, Quantum Simulation

Quantum
Information Stern-Gerlach, Optical Techniques, Traps, NMR, Quantum Dots

Processing

HISTORICAL VANTAGE POINT

Quantum Study of information
Computation processing tasks that can
& be accomplished using
Quantum quantum mechanical

Information systems

Cryptography

Quantum
Mechanics Computer
Science

Information
Theory




WHAT’S A QUBIT?

% A qubit has two possible states |0)or|l)
w4 Unlike bits, a2 quibit can be In 2 state other than
[0)or|1)
< We can form! linear combinations of states
[v)=a|0)+B 1)
= A quibit 15 a vector In a 2D complex vector

space

QUBITS

QuUbits are computational basis states
— ortienermal basis

<i|j>:8{/ 0, =

O0fori=j
| fori=j

- We cannot examine a bit to determine its
Juantum state




How CAN A QUBIT BE REALIZED?

g \Wo) polarizations of &l photon

& Allgrment of al auclear spini inl a uniform
magnetic tield

& lwo states off anl electron orbiting a single
atom (ground or excited state)

QuUBITS CONT'D

“ We may rewrite v)=a|0)+B[1) as...
0 0 We can ignore ei®

_ o i e as it has no

‘W> o (COSE‘ O> Te s E‘ 1>j observable

effect

) = cos{0)-+¢*sin |

% [From 2l single measurement one obtains
only a single bit of information about the

state of the qubit
@ THere 15 "hidden" guantum information and
this info grows exponentially




BLOCH SPHERE

Z
0>

How ABOUT 2 QUBITS?

# Classically, there are 4 possible states

#= Quaneum Vechanically: there are 4
COMPEUNATIONAL BASIS STATES
00),]01),[10),[11)
- 3 pair of qubits can also exist in a

sUperpositions of these states where the
amplitUces are complex numbers




How ABOUT 2 QUBITS?

& He mezsurement result x eoccurs with a
probability’ ||

= With the state of the qubits after the
measurement being |x)

= Which must sum to one

ie: normalization condition

2
,» |OL - 1
Z.xe{o,l}-“ ‘ x

How ABOUT 2 QUBITS?

We couldl mezsire Just 2 subset of the qubits
- Vezsuring) the 115 one alone gives |0) with probability.

2 2
|on0| +|ocm| leaving the post measurement state.

‘\V '> > 0c00|00>+oc01 |01>
‘O‘oo i +‘Oc0]‘2

...whichi stilll satisfies the normalization condition.




How ABOUT 2 QUBITS?

he "Bell State” or "EFiR Pair"
IS 2l Important qubit state.

100) +|11)

J2

Quantum Teleportation

Superdense Coding

How ABOUT 2 QUBITS?

e Bellf State s thie property that upon
Measuriig)| the = gqubit one obtains two
possible results.

- Olwithil probability V2 leaving the post measurement state

[47)=]00)

- | withl probability V2 leaving the post measurement state
[0 =11)

- he measurement of the 279 gubit always gives the same
result a5 the measurement of the |°F qubit.

- &: The measurements are CORRELATED

10



How ABOUT 2 QUBITS?

Johin BeEllfState proved an amazing result:

The measurement correlations in
the Belll State are STRONGER.
than could ever exist between

classical systems

implies that quantum mechanics allows information processing

beyond that of classical information processing

How ABOUT N QUBITS?

# Computarionzl Basis States. ..

XX Xs ... X > ;. 2" amplitudes

n

i =500
200 5 more than the number of atoms In the universe

Lets see a classical computer store that many numbers!!

11



QUANTUM COMPUTATION

Chznges to) 2 quantum state can be described using the
language of guantum computation

¢ Single Qubit Gates

Classicall Not Gate - Truth table
0—>1and 150

Quantum Not Gate - Truth table

|0) —>[1) and |1} —|0)

QUANTUM COMPUTATION

SuUperposition of statess

Not without further knowledge of the properties of
AUZRtUm gares

e quantum NOIT gate acts LINEARLY...
a|0)+B|1) > all)+B|0)

Linear behaviour s ai general property of guantum mechanics
Nor-linear betaviour can lead to apparent paradoxes

- lime Travel

- [Faster than light communication

- Violates the 279 Law of Thermodynamics

12



QUANTUM COMPUTATION

NOIF gate representation

for any. a|0>+B|1>E{%}

L s

to summarize. .. OL|O>+B|1>—)OL|1>+B|O>

QUANTUM COMPUTATION

Are there any: constraints on what matrices may. be used as
guantumi gatese Of coursel

We reqpire the normalization condition
‘oc‘z +‘B‘2 =1 for ‘\y>:a‘0>+ § ‘1>

and the result |y )=a'l0)+p|1) after the gate has acted

llie appropriate condition for this (of course) s that the
mavrix representing the gate s UNITARY

U TU = [ where U is the adjoint of U

That's (el Anything else 1s a valid guantum gate.

13



QUANTUM COMPUTATION

\Wormore lmportant gates. . .

|:1 0 :| leaves |O> unchanged

= flips the sign of |1> to —‘ 1>

il Z gate

0 -1
% Hadamard Gate

o {1 1} turns |0) into (|0 +[1))/+2

= _2 1 -1 turns |1) into (‘0)-‘1»/\/5

Note: Applying [ twice to a state does nothing to it.
He= T

QUANTUM COMPUTATION

iNadamerd Gate: A most usetul gate indeed!

ifH:i(X+z) and |y )=a|0)+B|1) then

N

i e (4 Y e
for #|0) a=1,8=0 H|0)=—(|0)+|1))

for H[1) o=0,=1 H|l)=—(]0)-|1))

14



QUANTUM COMPUTATION

iNadamard Gater Bloch Sphere Representation

QUANTUM COMPUTATION
% Reviews |mportant single-qubit gates

o |0)+B|1)
|0)+B 1)

o |0)+B|1)

15



QUANTUM COMPUTATION
# Arbitrany, Single Qubit Quantumi Gate

- complete set from properties of 2 much smaller set

ot i

COS— —SIn—

sin il COS r
2

2
i e ——+

Global Rotation Rotation Scaling
Phase about z Constant
Factor

o,B,y and & are all real valued

QUANTUM COMPUTATION

2l Clgssical Universall Gates (example)
- iie NAND: gate 15 a classical Universal Gate. Why?

NOT gate using NAND  AND gate using NAND OR gate using NAND

» PR U

& Universal Quantum Gates

- An arbitrary quantum Computation on n qubits can be
generated by a finite set of gates that are UNIVERSAL
for quantum computation

*

Need to introduce some multiple quibit guantum gates

16



MULTIPLE QUBIT GATES
Controlled-NOIF (CNOT) Gate

—  twolinput qubits: comtroll and target

|4) |4)

|B) B 4)

if controlis 0 target left alone |00) —|00) or [01) — |01)

else controlis 1target qubit is flipped [10) —|11) or [11) —|10)

- [0 General |A,B> —)‘A,B@A>

CNOT QUANTUM GATE

|4)
I |B(—BA>

i [ 4)=0) then

A =
1

o

M o o o o™

4, =
if |4)=|1) then J' _? we get

a4 =

>~

Any multiple gubit logic gate may be composed from
CNOT and Single Qubit Gates

17



OTHER COMPUTATIONAL BASES

# \Vleasurements

- In terms of |+)= 0 5 :(‘O>_‘l>) basis states

N

v)=alo)s pli-al LDy gl e By a8y

- Generally: any basis state can represent an arbitrary

|w)=ala)+ B|b)

Jubit state

- [f orthonormal then we cani perform a measurement in
keeping with probability interpretation

QUANTUM CIRCUITS

# [Elements of a Quantum Circuit

- egclil lineim af clrcuit represents a - ‘wire"
© passage of time
© photon moving, from one location to another
gesime the state input s a computational basis state
input 15 usually the state consisting of all |0)s
norloops allowed e acyclic
No FANIN(not reversible therefore not Unitary)

FANOUT (can't copy a qubit)

18



QUANTUM CIRCUITS

# Quantum Qubit Swap Circuit

a,b>—> a,a@b>
—>‘a®(a®b),a®b>: b,a@b>
—|b.(a ®b)®b) =|b,a)

|a) ? D
‘a,a @b> ‘b, a G—)b>

)

QUANTUM CIRCUITS

= Conrolled-U Gate

- A Controlled-U Gate has one controll qubit and n
target qubits

- where Uis 2y britary: matrix acting on n gubits

19



QUANTUM CIRCUITS

# Vieasurement Operation

- Converts a siigle qubit state into ai probabilistic

classical bit M

) M

QUANTUM CIRCUITS

= Canl we make 2l Qubit Copying Circuits
- Copying) a classical bit can be done with the

Classicall CNOT gate

bit to be original
copied _— bit
\ x ’

X

0 X
scratch-pad / \ copied

initialized to zero bit

20



QUANTUM CIRCUITS

#= Can we make 2l Qubit Copying| Circuit?

- [ow 2bout copying) a qubit I an unknown state using a
controlled-CNOI gates |1//>:a|0>+b|1>

bit to be

copied \\

Output State
a0)+b|1) Za
a|00)+510) { I al00)+b|11)
0)

scratch-pad /

initialized to zero

QUANTUM CIRCUITS

& Can we make 21 Qubit Copying| Circuit?
- Does |y)|w)=al00)+b|11) ?

|w)|w) =(a|0)+b|1))(a|0)+b|1))=a*|00)+ab|01)+ab|10)+b*|11)

- Unless: ab=0this does not copy the quantum state

InpUE
¢ a*|00)+ab|01)+ab|10) +b* [11) # a|00) +b|11)

- [t 15 Impossible to make a copy of the unknown quantum

State

- NO CLONING THEOREM -

21



QUANTUM CIRCUITS

# Belll Staves, EPR States, EFR Pairs
00)+|11 01)+[10
) <5,y I00 )

100)—|11) 01)+[10)

‘ﬂ10>: 2 ‘ﬂ11>: 2

QUANTUM CIRCUITS

= Belll States, EFR States, EFR Fairs

(101)+]10))/¥2 =| 3,

[0)+]1

| Joo) ) Joo)-]ry

0 | E




QUANTUM CIRCUITS

# Quantum lleleportation
- technigue for moving quantum states around
- Alice & Bob generate an EFR pair together

_[00)+[t1)

|,B00>— \/5
Fachi takes one gubit of the EPR pair

Alice must deliver a qubit to Bob but does not know
the state of that gqubit

lw) =a|0)+ B|1) where a, 3 are unknown

Alice can only send classical information to Bob

QUANTUM CIRCUITS

= Quantum lieleportation Circuit

23



QUANTUM CIRCUITS

& Quantum lleleportation Calculations

|1//0>=|t//)|,800)=%[a|0)(|00>+|11))+ﬁ(|00)+|11)ﬂ

|%>%|%>=%[Ofl Y0 +[19)+ BI(10)+[07)]

QUANTUM CIRCUITS

= Quantum lleleportation Measurements

- Depernding| onl Alice’s measurement ovtcome, Bob's
Aubit will endl up i one of these 4 possible states.

00 |y, (00)) = x|0) + 3]1)
01 |y (01)) = a|1)- S| 0)
10 - |y, (10)) = «|0) - B|1)

v, (11))=a|1)- B|0)

- Bob must know the results of Alice's measurement to
know: whichi state the information 1S In.

24



QUANTUM CIRCUITS

& Quarcum Teleportation KResults

- Ornce Bob knows Alice's measurements he can discover
the state by applyiig the appropriate guantum gate

If 00 then Bob doesn't need to do anything

If 01 then Bob needs to apply the X gate

If 10 then Bob needs to apply the Z gate

If 11 then Bob needs to apply the X gate then the Z gate

QUANTUM CIRCUITS

# Quantum! leleportation Questions. . .

- Does quantum teleportation allow: one to: transmit
4uantum states faster tham light?

No. Alice must send Bob her measurements over
classicall communication lines

- Does guantum teleportation violate the no-cloning
theorem?

No. Only target qubit 1s in that state

the original data qubit ends up In one of the
computational basis states depending on the
measurement results of the first gqubit

25



QUANTUM ALGORITHMS

# Classical Computations on a Quantum
Computer

Many: classical gates are irreversible while all guantum
gate are unitary amnd therefore reversible

Any. classical eircult can be replaced by an equivalent
circuit containing only reversible . elements

This 15 accomplished vsing the TOFFOLI GATE. ..

QUANTUM ALGORITHMS

= llofoll Gate (Reversible Classical Gate)

- twol controll bits one target bit

- target it tlipped only It both control bits are set to one
a a

b b
C c®ab

- [he Toffoll gate is it's own inverse since...

(a,b,c) — (a,b,c @ ab) — (a,b,c)

26



QUANTUM ALGORITHMS

“ Quentum lFoffoll Gate

- Actsiin same Way: 25 classicall toffoll gate
110) —>|111)
% Classical Simulation oni at Quantum Computer

- Can simulate irreversible classical logic gates

- Can performi any calculation a classical deterministic
CompUrer cam.

- Cani simulate a classical non-deterministic (probabilistic)
computer

i v ||0) with probability 1/2
‘0> V2 <‘O> +‘1>) {m with probability 1/2

QUANTUM ALGORITHMS

= Quancum Farallelism

- Fundamental feature off mamy guantum algorithms
- Simplerlierms: it allows 2 quantum computer to
evaluate a function fi(x) for many: ditferent values of x

simultaneously

7 X5 A tWOo-4UbIt quantum computer

- Suppose f(X) 15 a function with a one-bit domain and
range

f(x):{0,1} - {0,1}

27



QUANTUM ALGORITHMS

Initial State ‘x, y> =% ‘x, y &) f(\’)> Final State

Target Register

_[o.0e 7 (0)+[L0® (1) _0.7(0))+[L1 (1)
P . 2

QUANTUM ALGORITHMS

Eurekallll = Bothi values of the function
Show: Up I the final state solution.

s can be generalized to functions on

arbitrary number of bits using the...

HADAMARD TRANSFORM
or
WALSH-HADAMARD TRANSFORM

28



QUANTUM ALGORITHMS

% Iladamard liranstormi Example

= =2 with gubits initially prepared asi|0)

- H%denotes the parallel action of two Hadamard gates

2

QUANTUM ALGORITHMS

% [Hladamard Transiorm

- 11 hi2damard gaves acting) in parallel onl ml qubits

29



QUANTUM ALGORITHMS

% IHladamard liranstorm

il Wadamare gates acting in parallel on n gubits
prepare i+ I gubit states

0”0)

Apply Iladamard transtorm to the first n gubits
Use this as the x-input to the guantum circuit Us

) == Sl (<)

BUI in previous example can only get info about [0.£(0))
or |L£(1) not both. How can this be done?

Deutsch's Algorithm

QUANTUM ALGORITHMS

@ Deutsciis Algorithm Circuit

- Combines guantum parallelism and interference
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QUANTUM ALGORITHMS

= Deursciis Algerithm: Calculations

- Compiiies aquentunm parallelisml andl interference

[va) =[0D)

‘W0>_)‘WI>ZPO>\/_J;‘1> \0231 }

A0 i

(
0)-! } if £(0

0 - /(1)

|
{

)
i) = w.) =
) > v ‘0>_1>} Ve £(1)

QUANTUM ALGORITHMS

@ Deursciis Algorithm Conclusion

W2>_)‘l//3>:

measuring the 15t qubit gives /(0)® /(1)

31



QUANTUM ALGORITHMS

= Deursciis Algonithm Results
- [He guantumi circuit has given us the ability to
determine a GLOBAL FROFERTY of f(x)namely. £(0)@ £ (1)
usirg)| enly: ONE evaluation of f(x)

- A classical computer would require at least two
evaluations!

- Ditference between quantum parallelism and classical
randomized algorithms

* One might think the state \0>‘f(0)>+\1>‘)‘(1)> corresponds to
probabilistic classical computer that evaluates f(0)with probability 1/2
or f(l)thh probability V2. These are classically mutually exclusive.

* Quantum mechanically these two alternatives can INTERFERE to yield
some global property of the function f and by using a Hadamard gate
can recombine the different alternatives

QUANTUM ALGORITHMS

& Devrscii-Joszl Algorithm
- A slmple case of al more general algorithm
- Application 5 called PDeutschi's Froblem
X is a number n bits each time
7

from O to 2n-1 4

>
<=

J Constant for all values of x

Bob

“(x
. ( lBalanced: 1 for 1/2 the values of x or 0 otherwise

- Classically Alice can only send one value of x each time
- Best classical algorithm requires up to 2"/2+1 queries

2" /2 0's and one 1= Balanced

32



QUANTUM ALGORITHMS

@ Deutscii-Josal Algorithim

- [ Bob ana Alice were able to exchiange gubits instead
off classical bits and it Bobl calevlated: 7)) using a unitary
tramstorm U, then Alice could determine the function in

one dguery.

lwy) — Aliceihias an n qubit register and a single qubit register
wihichi she gves to Bob

lwy) - Frepares guery and answer register in a superposition
state

1//2> - Bob evaluates f(x) and puts result into answer register

lws) - Alice mterferes the states in the superposition using a
hadamard transform onl the query register

QUANTUM ALGORITHMS

@ Deutscii-Josal Algorithm Circult

Bob's function
evaluation is
stored in the
amplitude
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QUANTUM ALGORITHMS

@ PDeutsch-Josal Algorithim - detour

Hadamard transform: helps to calculate effect on a state |x)
By checking the cases x=0 and x=1 separately for a single qubit

A= 2

X2+ X, 2, ‘Z s Z >
thus H®" xl,,,_,xn>zz (=) Eiel

Z] 5o n 21]

where y ¢ ~ is the bitwise inner product of x and z, modulo

QUANTUM ALGORITHMS

@ Deutscii-Josal Algorithm Circult

S s
%/_/

query register

(—l)f(”
- amplitude for |0>®” ZT

Case |+ [t s constant the amplitude for |O>®"|5 + 1 or -

depending) on the constant value f(x) takes. Since |v,)

1S unit length then all other amplitudes must be zero

- An observation will yield Os for all gubits in the register
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QUANTUM ALGORITHMS

= Deurscii-Josal Algorittm Circult

Czee 24 i1 5 balanced then the positive and negative
contributions to) the amplitude tor |0>®” cancel, leaving an
amplitude of O

- A measurement must yield a result other than O on at
least one qubit

Summary
- [ Alice measures all zeros then the function 15 constant
- Otherwise the function 15 balanced.

- Deutsch's problem on a guantum computer can be
solved in one evaluatiorn.

QUANTUM ALGORITHMS

= Ottier Quantum Algorithms

- Generally: there are three classes

“ Discrete Fourier Tramsiorm Algorithms
~Deutschi-Jozsa Algorithm
~Shor's Algorithm for Factoring
~Shor's Piscrete Logarithm Algorithm
Quantum Search Algorithms
Quantum Simulation Algorithms

~Quantum Computer IS used to
simulate guantum systems
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Abstract

This evolving document serves as a repository for quantum computing related notes and thoughts.
As it features summary of and solutions to the exercises found in (Nielsen et al. 2000), it doubles
as a foundation for the author’s forthcoming class on Quantum Computing and Al.
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1. (Nielsen et al. 2000) Summary

The purpose of this section is to provide a highly compressed collection of facts presented in
(Nielsen et al. 2000). This is helpful when refreshing material in the past sections.

1.1 NC Section 2.1: Hilbert Spaces

Complex numbers are specified by the real and imaginary parts: a + ib where a,b € R and
2
¢ = —1.

Polar representation: ue? = u(cosf + isinf) where 6,u € R and u is called the modulus of the

complex number.

Complex conjugate: (a +ib)* = a — ib.

Vectors are represented by columns: |v) = [ Zl ]
2

Dual vectors are represented by rows: [v)' = (v| = [v7 ,v3].
Matrix multiplication: each element of the new matrix is a sum of products of the first factor’s

row and the second factor’s column rotated to be superimposed on top of the row: [ Zl @2 ] X

3 04
x| | a1x+agy
y | |artay |’
Linear dependence: non-zero vectors |v1),...,|v,) are linearly dependent iff at least one of them
is expressible through the others: |v;) =", a; |v;) where a,, € C.

The Pauli matrices: are given as:

'UOZI:{(l) (1)]7

oalzaw:X:{

[ ] 0’2:0'y:Y:

| — |
SO = o

S =

.O’g—O’z—Z—|: 1

Properties:

1. unitary: (o})7oy, = I for all k;
2. Hermitian: (oy)" = oy, for all k;
3. eigen-decomposition:

(a) oo =1 = (1) (1) has the following eigenvectors: |0) with the eigenvalue of 1 and

|1) with the eigenvalue of 1. Thus:
1 0
I = { 01 } (1.1.1)
= 1-]0)(0[+1-[1) (1] (1.1.2)
= |0) (O] + [1) (1],
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0
1 0

of 1 and % with the eigenvalue of —1. Thus:

o]

(b) o1 =0, = X = o)+11)

X

0+ 1) 0]+ 1 0~ 11 0 {1
YTs v YT s
— 11)(0]+10) 1]

(c) oo =0y =Y = [ ? _OZ ] has the following eigenvectors: w

value of 1 and % with the eigenvalue of —1. Thus:

0 —2

v = [0V
im0y =il o)+ i
Y S B S RV, R

= i[1) (0] —i[0) (1].

1 0
(d) o3 =0,=27= 0 1

1 and |1) with the eigenvalue of —1. Thus:

b 5]

0 -1

1-10) (O] + (=1) - [1) (1]
= |0) (0] = [1) (1],

Z

Inner Product: (|v1),|ve)) € C. Properties:
1. matriz product representation: ([ U1 ] , [ . ]) = (Jv), lw)) = (v] x |w)
(%) wo
[v] , 03] x { Z; ] = vfw; + viws.
V]v) [R 3 (v |v) > 0], furthermore: (v |v) =0 = |v) =0;
(v ] aw) = (v [w) = a(v|w);
(vlz+y) =(|z)+{v]y);
(lv) s Jw)) = (Jw), [v))* = (lw)", [v)");

the Cauchy-Schwartz inequality: | (v | w)|*> < (v | v) (w | w).

SR A

Vector norm: || [v) || = /([v),[v)) = /(v | v). Unit vectors: | [v) || = 1.
Orthogonality: |v) # 0 and |w) # 0 are orthogonal iff (v | w) = 0.

} has the following eigenvectors: Vi with the eigenvalue

(1.1.4)

(1.1.5)
(1.1.6)

with the eigen-

(1.1.7)

(1.1.8)
(1.1.9)

has the following eigenvectors: |0) with the eigenvalue of

(1.1.10)

(1.1.11)
(1.1.12)

Orthonormality: (v; | v;) = 0;; where the Dirac’s delta is: J;; =1 if ¢ = j and 0 otherwise.

Gram-Schmidt procedure: given a linearly-independent vector set {|v;)} we can create an or-
thonormal set that (i) spans the same subspace and (ii) the first vector is the normalized first

vector of the original set: |w;) = ﬁ
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Outer product: |[v) (w| is a linear operator A such that Alu) = |v)(w||u) = |v){w]|u) =
(w | u) [v). Here (w|u) € C. It is easily understood in terms of matrices as |v) (w] is an
N x N matrix and does, therefore, represent a linear operator. Properties:

1. completeness relation: for any orthonormal basis {[j)}: >, [7) (j| = I.

2. projectors: if {|i)} is a set of orthonormal vectors (i.e., (i | j) = J;;) then the projection
operator (or projector) |i) (i| projects any vector |v) onto the axis of |i): [i) (i] |v) =

) (il 2k vk [R)) = v [4).

Eigenvalues and eigenvectors: linear operator A has ); as its i'" eigenvalue and |v;) as the
corresponding eigenvector iff A |v;) = \; |v;). Properties:

1. eigenspace corresponding to eigenvalue A is the set of eigenvectors corresponding to A:
{|w) |A |w) = X |w)}. Eigenspace is degenerate when its dimension is above 1 (i.e., it has
two linearly independent eigenvectors). Non-degenerate eigenspaces are of the form: « |v)
where a € C.

2. eigenvectors corresponding to different eigenvalues are linearly-independent. Therefore,
one can speak of an orthonormal set of eigenvectors for an operator. Gram-Schmidt
procedure can be used to generate one.

3. computing eigenvalues and eigenvectors: eigenvalues are [complex] roots to the charac-
teristic equation of A’s matrix: ¢(\) = det |[A — AI| = 0. Here det is the determinant*.
Once {\;} are computed we can solve the system of linear equations: Alv) = A; |v) or
A vy — NI =0 for [v) and it will be the eigenvector |v;).

4. spectral decomposition: A is normal (i.e., ATA = AAT) iff (i) its eigenvectors are orthogo-
nal and (ii) their normalized (i.e., orthonormal) versions {|w;)} can be used to diagonalize

the operator:
A= N ws) (w]

A0 0

The matrix of this operator is diagonal: 0 X O |. In terms of matrix product
0 0 A,

this can be represented as A = UDUT where D is a diagonal matrix and U is a unitary

operator.

Adjoint /Hermitian and Normal operators: linear operator A' is adjoint to A iff for any
[v), |w) the following holds: (|v), A |w)) = (AT |v),|w)). Alternatively: (v | Aw) = (vAT | w).

Properties:
1. by definition: (|v))T = (v|;
2. (AB)! = Bt Af;
3. (Aj) = ( | AT but not A|v) = (v| AT;
4. (ANT =
5. (aA+ BB)T =a* At + 3*Bf;
x. Determinant of a 2 X 2 matrix is defined as det { Z Z } ’ = ad — bc. Determinants of larger matrices can be

decomposed into determinants of 2 X 2 matrices. For example: det = a - det

{;l f”Jrcdet{Z ZH

a b ¢
d e f
g h 1

£ 4]

det




10.
11.

12.
13.

14.
15.

Unitary

7.

S e w =
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6. AT = (A*)T;
7.
8
9

Normal operators: AAT = AT A;

. Self-adjoint or Hermitian: A = AT;

. Hermitian = normal;

A is normal then A is Hermitian iff A has real eigenvalues;

any operator A can be represented as A = B+ iC where B, C are Hermitian (C =01is A
is Hermitian itself);

Hermitian operators have orthogonal eigenvectors?;

for any unitary |v) (i.e., of modulus 1), V = |[v) (v| is Hermitian (V1 = V') and, further-
more, V2 =V;

if H is Hermitian then for any |v) (|v), H |v)) € R;

positive operators: Hermitian (and therefore normal) A is positive iff for any |v) R >
(v | Av) = (vA | v) > 0. Positive operators have non-negative real eigenvalues.

operators: U is unitary iff UTU = I. Properties:

unitary normal;

_
unitary = allows for spectral decomposition;

unitary == allows for reversal: UT(U |v)) = I |[v) = |v);

unitary = preserves inner product: (U |[v),U |w)) = (Jv), |w));
unitary = preserves norm: ||U |v) || = || |v) ||;

if {|v;)} is an orthonormal basis set then {U |v;)} = {w;} is also an orthonormal basis
and U = ), |w;) (vil;

unitary = has modulus 1 eigenvalues (i.e., \; = €%).

Relationship between the operator classes is presented in Figure 1.

Normal

Unitary

Hermitian

[ Positive

Figure 1: Relationship between the operators

Tensor products: If {|i)} is a basis for V and {|j)} is a basis for W then {]i) ® |j)} is a basis for
V @ W. Properties:

1.

notation: [i) @ [j) = [i) |7) = [i,4) = |ij);
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. linearity:
z(Jv,w)) = |zv, w) = |v, zw) (1.1.13)
|v1 + vo, w) = |v1,w) + |va, w) (1.1.14)
|v, wi + we) = |v,w1) + |v, wa) (1.1.15)

3. non-commutative: [vw) # |wv);

if A, B are linear operators then A ® B(Jow)) = A |v) ® A |w);

) _ a b Ty _ aB bB _
. Kronecker product: A ® B = {cd}(@{v w} = |:CB dB} =
ar ay bx by
av aw bv bw |
cx cy dxr dy |’
cw cw dv dw
. inner product: (jow),[v'w’)) = (Jv),[v)) - (Jw),|w)) or simply: (vw |v'w) =
(v [0) (w | w');
. notation: [0)®* = (|v) ® -+ @ |[v))k times. This is left associative: [0)®" = [0)®* ! @ |v) ?

8. (A® B)* = A* @ B*;
9. (A B)T = AT ® BT;

10.
11.
12.
13.
14.
15.

(A® B)I = AT @ BY;

consequently: |ab)’ = |a)"|b) = (a| (b] = (ab];

if N1, N are normal then N; ® N5 is normal;

if Hy, Hy are Hermitian then H; ® Hs is Hermitian;
if Uy, Us are unitary then U; ® Us is unitary;

if Py, Py are positive then P; ® P, is positive;

Operator functions: if A is a normal operator and A =3 a|a) (a| is its spectral decomposition
then f(A) =3, f(a)la) {al.

Matrix traces: if A is a matrix then tr(A) = >, A;; (sum of diagonal elements). Properties:

A A

tr(AB) = tr(BA);

tr(A + B) = tr(A) + tr(B);

tr(zA) = ztr(A);

similarity transformation: if U is unitary then tr(UAUT) = tr(A);

if |u) is a unitary (i.e., modulus of 1) vector then tr(A |u) (u]) = (u| A |u);

consequently for any unitary vector |v), tr(|v) (v]) = tr(|v) (v||v) (v]) = (v| (Jv) (v]) |v) =
(v]v)]v)=1v)[* =1

Anti-commutator: {A, B} = AB + BA, A anti-commutes with B iff {A, B} = 0.

Commutator: [A, B] = AB — BA, A commutes with B iff [A, B] = 0. Properties:

1.

Simultaneous diagonalization theorem: suppose Hy, Hy are Hermitian. Then [Hy, Ha] = 0
iff there exists an orthonormal set of eigenvectors for Hy, Ha such that: Hy =, A} |7) (i
and Hy =3, A/ [2) (il;
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2. AB = ABI(AD),
3. [A, B]f = [Bf, Af];

4. [A,B] = —[B, AJ;

5. i[Hy, Hp] is Hermitian for any Hermitian H;, Ho;

Polar decomposition: for any linear operator A it can be represented as A = UV ATA = VAATU
where U is a unitary operator (unique (and equal to A?) if A is invertible).

Singular value decomposition: for any linear operator A of the same input and output dimen-
sions (i.e., with a square matrix) there exists unitary Uy, U and a diagonal matrix D with real
non-negative elements such that:

A =U,DUs.

Properties:

1. Proof: by the polar decomposition theorem: A = UV At A, by spectral decomposition for
positive (and, thus, normal) operators v ATA = U'DU’T where D is diagonal with real
non-negative elements (since VAT A is positive). Therefore, A = UVATA = UU'DU"T =
(UUD(U'T) = U, DU,.
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1.2 NC Section 2.2: The Postulates of Quantum Mechanics

Postulate 1. Any isolated quantum system can be completely described by a state vector which is
a unit vector in a Hilbert space. Notes:

1. figuring out the specific Hilbert space and the state vector are non-trivial tasks;

2. the smallest system of interest is a qubit. Its state space is C? and its state vector is
a unit |v) € C. We often fix an orthonormal basis such as |0) and |1). The a qubit
can be described as |v) = «|0) + 3|1) where «, 3 € C are called amplitudes. Quantum
mechanically we say that the system is in a superposition of states |0) and |1).

Postulate 2. Evolution of an isolated quantum system can be expressed as:
[v(t2)) = Ult1,t2) [o(ta))
where t1,ts are moments of time and U (¢1,t2) is a unitary operator. Notes:

1. U may vary with time. Hence, the corresponding segment of time explicitly specified:

Ulty, t2);
2. the process is in a sense Markovian (history doesn’t matter) and reversible (since
UTU [v) = |v);

Postulate 2’. We can also re-write this with a stationary operator (Schridinger Equation):

L d]v)
h—+t=H
th— |v)
where H is a fized (for a closed/isolated system) Hermitian operator (called Hamiltonian of

the system) and h is Planck’s constant. Notes:

1. since H is Hermitian it is also normal and therefore allows for the following spectral
decomposition:

H=> E|E)(E|

where eigenvalues F are real-valued and correspond the energy levels of stationary states
expressed by normalized eigenvalues |E). The stationary state with the lowest energy is
called the ground-state;

2. example: suppose a single qubit system can be described by the following Hamiltonian:

H = hwX where X is one of the Pauli matrices: X = o7 = { (1) (1)

physical parameter. Then the eigenvalues (the energy levels) are hiw and —fw and the
corresponding normalized eigenvectors (the stationary states) are (|0)-+[1))/+/2 and (|0) —
|1))/+/2 (with the latter being the ground state).

3. Postulate 2 — Postulate 2: a solution to the Schrodinger Equation can be given as:

]andwisa

—1

U(t17t2) = exp |: h

(ts — tl)H]

and, in fact, any unitary operator U = exp(i¢H) for some Hermitian H;

4. most practically occurring quantum systems are not isolated as they interact with a larger
system they are a part of. It turns out, however, that the non-isolated system can be
described by a different Hamiltonian as if it were isolated. The ”trick” is that the new
Hamiltonian (called atomic Hamiltonian) is not constant but changes with time. In fact,
in physical experiments we can often control the changes in such an atomic Hamiltonian.
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5. for any commuting (i.e., AB = BA or [A, B] = 0) Hermitian operators A, B the following
holds: exp(A) exp(B) = exp(A + B);
6. for any unitary U, H = —ilog(U) is Hermitian.
Postulate 3. Quantum measurements are described by a set of linear operators {M,,,},1 <m <n
where n is the number of possible outcomes. For the system in state |v) the probability of
outcome m is given by p(m) = (M, [v), M, [v)) = ||[M,, |v) ||?. If the outcome is indeed m

then the state of the system collapses to H]\J\/éiml\ Notes:

L p(m) = (M, v}, My |v)) = (0] M, My, [v);
2. probabilities have to add up to one:

1= "p(m) = (M [v), My |v))

which is equivalent (since for every |v)) to Y., M} M,, = I;

3. example: if |0) and |1) form an orthonormal basis for a qubit |v) then we can define
My = |0) (0], My = |1) (1]. Since |v) = a|0) +b|1), My |v) = a|0) and M; |v) = b|1).
Thus, p(0) = (a|0),a|0)) = (0] a*a|0) = |a|>. Likewise, p(1) = |b|?>. The outcomes are
[0y xor & [1);

4. open question: measurement is nothing but an interaction of the measured quantum
system with the measuring tools (i.e., another quantum system). Two of them together
form a single [larger] closed system that can be described with Postulate 2/2’. The
question is: can we derive postulate 3 from postulate 2/2°7

5. indistinguishability of non-orthogonal quantum states: no quantum measurement can re-
liably distinguish between |v1) and |vse) if they are not orthogonal (i.e., (v | v2) # 0.

Projective measurements: if we have a system of orthonormal {|m)} then each P,, = |m) (m|
is Hermitian and M = ), mP,, is Hermitian as well (m’s are the eigenvalues of M) . M is
called an observable and each projector P,, projects onto the axis of |m). Clearly, Pl = P,
and P,, P,, = P,, and thus the probability of outcome m measured with the observable M is

p(m) = (P |v), P [v)) = (v] Py [v)
and if the outcome m does occur then the system will end up in the state

P, |v) .
p(m)

Clearly, p(m) = |a,,|? where [v) = > ay, |m). Notes:

1. Clearly: PZPJ = 6ijP7,' = (Sijpj;

2. Define the expected/average value of observable M on vector |[v) as: (M) = E[M] =
2ommp(m) =3, m (o] P |v) = (0] 32, mPm |v) = (v] M |v).

3. Standard deviation of observable M on vector |v) is defined as: A(M) = (M?) — ((M))2.

4. The Heisenberg uncertainty principle: if C, D are two observables then for any vector |v):
A(C)A(D) > |<U|[C»2D]|v>|_

5. If we are measuring with observable M = )" m|m) (m| or (postulate 3) with operators
M., = |m) (m| then we are also said to be measuring in a basis {|m)}.
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Repeatability: if we measure with an observable M and get an outcome m then another
measurement with M will gives us m again. This is not true with many physical mea-
surements indicating that they are not projective. This is also not true with general M,,
(postulate 3) since in general: M, # M,, and M;M; # 6;; M.

POVM measurements: given a general (postulate 3) system of measurement operators M,, we
can define POVM elements as E,, = M} M,,. Properties/notes:

. the resulting state (in the case of outcome m) is

1.3, En =1 (follows from Y M} M,, = I);
2. p(m) = (v| Em |v);

3.
4

FE,, are positive operators;

M, |v)

[ Mo [0) ]
with E,,. So POVM elements are used when the resulting states are not important;

which is not easily expressible

. given a set of positive operators { E,, } that satisfy the completeness relation (3}, Em, =1

we can define the general measurement operators as M,, = \/E,, (therefore M) M,, =
E.).

6. projectors P, = |m) (m| comprise a special case of POVMs: E,, = P, would do.

. phase: suppose we have a basis {|i)}. Then any vector |v) has an amplitude «; when

represented in the basis: [v) = Y. «; |i). We can associate phase factors 0; € R with each
|i). Then:

(a) relative phase difference: two states |v) and |w) differ by a relative phase {#;} in a
basis {|j)} iff each |v)’s amplitude «; differs by a relative phase §; from each |w)’s
amplitude 3;: a; = €% 3;. The differences between |v) and |w) can be detected with
appropriate measurement operators.

(b) global phase difference: occurs when all all amplitudes are shifted by e (i.e., when
all 0; are equal to ¢). This cannot be detected by any measurement operator M,
since (v] e M} M,,e' |v) = (v| M M, |v).

(¢c) note: For any two orthonormal bases ({|v;)}, {|w;)}) the operator converting between
them (U |v;) = |w;)) is indeed unitary and can be encoded as: U = > |v;) (w;].
HOWEVER, the difference between a vector expressed in one basis and in the other
vector can be a relative phase shift and not necessarily a global phase shift.
Example: suppose we are converting from basis {|0),|1)} to {|0),— |1)}. The unitary
operator is simply U = |0) (0] — |1) (1|. So if we take an arbitrary vector |v) =

«a|0) + B]1) then U |v) = «|0) — G|1). Thus, the vector [ g ] in basis {]|0),]1)}

and the vector [ @

B
{e' €™ }. In other words, there is no single 6 such that « [0)+3 [1) = € (a|0)—31)).

} in basis {|0),—|1)} are related through a relative phase shift

Postulate 4: Composite Systems: if a composite quantum system consists of n subsystem each
evolving in its Hilbert space V; then the state of the entire system evolves in ), V;. Further-
more, if each subsystem is in a particular state |v;) then the state of the entire system is ), v;.
Notes:

1.

motivation: assume super-position principle: if |v) and |w) are possible states of a system
then for any «, 3 € C such that |a|? + |3]? = 1 the linear combination « |v) + 3 |w) is also
a possible state. Then we can derive postulate 4 using the properties of tensor products.

10
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2. Bell/EPR states. Define:

boo) = |00>j§|11> (1.2.1)
bor) = |00>\;§|11> (1.2.2)
b1o) = |10>}2|01> (1.2.3)
b11) = 10D ~ 10) (1.2.4)

V2

It turns out that they form an orthonormal basis for two qubits. Furthermore, for any
single qubit linear operator V' the value of (b;;| V @I |b;;) = consty for all 4, j. Therefore,
it is impossible to distinguish between Bell states by measuring only the first qubitt.
It is, however, possible to distinguish between the Bell states reliably since they are
orthonormal. Indeed, all one needs to do is to use a set of projective measurement
operators: P;; = |b;;) (bij].

3. Super-dense coding: if Alice has the first qubit of |bgg) she can apply I, Z, X,iY to it.
This is equivalent to applying I®I,Z® I, X @ I,iY ® I to the entire Bell state |bgg) and
results in |boo) , [bo1) , |b10) , |b11) correspondingly. Therefore, we can encode two classical
bits (i.e., 4 choices) in just one qubit (hence the name).

This is, however, hardly surprising since a single qubit is really a pair of arbitrary complex
numbers (with the normality condition on top) and thus we can encode not just 4 choices
(2 bits) but the whole irrational 77 number in it! The trick is, of course, to be able to read
this off easily on the receiving end as well as to use simple transformations (such as the
Pauli matrices) to do so. See below for a proposed method for transmitting 2™ bits with
a single qubit...
Also note, that in the example with Alice and Bob above, Alice changes the single qubit
she has (i.e., the first qubit of the entangled pair %). However, since the first qubit
is present in both |0) and |1) states in the original entangled state, her operators have to
produce meaningful results in both cases:

op1 | |0) | op1]0)
op1 | |1) | op1|1)

opn | 10) | opn[0)
opn | 1) | opn|1)

or specifically:

I 110y | 110)=]0)
I )| I1)=[1
Z 10y | Z|0)=]0)
Z || Z]1)=—1)
X 10y | X[0)=11)
X )| X[1)=10)
Y 0) v o) =— 1)
v | ) | Y1) = o)

A question: can we transmit more than 2 classical bits with a single qubit? Proposed
QUESTION

1. how about the second qubit?

11
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method: to transmit 2™ classical bits prepare an entangled state of m qubits. Give the
last m —1 of them (|gz ... ¢n)) to Bob and the first one (|¢1)) to Alice. Then Alice applies
one of her 2™ linear operators (the one with the index 1 <14 < 2™ where i is the classical
message she is transmitting) on |¢;) and sends the result to Bob. This is equivalent to
applying op; ® I ® --- ® I on the initial entangled state. Let’s call the resulting m-qubit
state |b;) (1 <4 < 2™). The only requirement is that {|b1),...,|bam)} are orthonormal

and therefore can be reliably distinguished (e.g., with the observable M = Z?:l i|b;) (bi]).
Entanglement, correlation, and anti-correlation:

(a) Bell states in H? have components (for each qubit) that project both on |0) and |1).
Therefore, measuring either qubit in the basis {|0), |1)} gives |0) with the probability
1/2 and |1) with the probability 1/2. In other words:

(1.2.5)

(bij[10) (O[ ]bi)

(bij| 11) (1] 1bi5) (1.2.6)

DN = N =

So, if we measure the first qubit of any |b;;) with say the observable M = «|0) (0| +
B11) (1] then we get a in half cases and 3 in half cases (i.e., p(a) = p(8) = 1). Sup-

pose, we make a measurement and get . Then if the original Bell state was w

then the resulting state collapses to |0z) (the % is removed by the normalization).

Therefore, now if we measure the second qubit we are bound to see |x). So if |x) hap-
pens to be |0) we will get correlation (the second qubit measurement is bound to give
the same result as the first qubit measurement) or (if |x) = |1)) anti-correlation (the
second qubit measurement is bound to be opposite to the first qubit measurement).
(b) Generally speaking, we want two properties here:
i. the first measurement (of any qubit) can give us either |0) or |1) equally likely;
ii. the second measurement (of the other qubit) gives us the result deterministically
dependant on the first measurement (i.e., correlation or anti-correlation).
Hypothesis: this cannot be accomplished with a non-entangled state. Example: sup-
pose we have non-entangled |v) = (a|0) 4+ b|1))(¢|0) + d|1)). Then depending on
a, b, c,d we will get two cases:
i. one of the qubits in |v) is the same (e.g., |v) = (|0) +|1))]0) = |00) + |10) and
the measurement on the 2nd qubit always gives |0));
ii. there are elements in the sum that start/end with the same qubit but end/start
with different ones (e.g., |[v) = (|0)+|1))? = |00) +|01) +[10) +|11) and no matter
what we measure first the second measurement will be non-deterministic).

Bell inequalities. Suppose we have two particles: one in the possession of Alice and one in
the possession of Bob. Suppose Alice and Bob take measurements (outside of the null cone
so that one doesn’t affect the other) of two quantities each: Q@ = £1,R = £1; 5 =+1,T =
+1. Counsider, the quantity: QS+ RS+ RT—QT = (Q+R)S+(R—Q)T = +2. Suppose,
there is a state of the system and it is Q = ¢, R =1, S = s,T =t with the probability of
p(q,r, s,t) before the measurement. The expected value is: E(QS+ RS+ RT —QT) < 2.
On the other hand, E(QS + RS + RT — QT) = E(QS) + E(RS) + E(RT) — E(QT).
Thus, the Bell inequality is E(QS) + E(RS) + E(RT) — E(QT) < 2.

uantum mechanically, however, we can take |by;) = “~~— and measure the following
Q hanically, h ke |b |01>¢_%10> d he followi

observables: Q = Z;,R = X;,5 = _Zf/%XQ,T = ZQ\;iXQ. On the entangled state |b11)
their expected values are: (QS) = \%,(RS} = %,(RT) = %,(QT) = —% and,

12



ON QuANTUM COMPUTING AND AT MarcH 10, 2002

therefore, the expected value of the entire quantity is: (QS) + (RS) + (RT) — (QT) =
2v2 > 2!

Experiments show that Nature follows the second way and the measured value of the
observables is greater than 2. This means that at least one of the following assumptions
doesn’t hold:

(a) realism: Q, R, S, T have values independent of observation;
(b) locality: Alice’s measurement doesn’t affect Bob’s measurement.
Note that the same trick doesn’t work with a non-entangled state such as |00) which

results in (QS) = f%, (RS) = 0,(RT) = 0,(QT) = % and, therefore, the expected

value of the entire quantity is: (QS) + (RS) + (RT) — (QT) = —v/2 < 2.

1.3 NC 3.1.2: Circuits

Universality: the following gates seem to be needed:

1. Auxilary gates: wires + ancilla bits + fanout + crossover;
2. NAND / AND+NOT / XOR;

1.4 NC 3.2: Computational Complexity

Complexity classes can be defined as follows:

L (logarithmic space) is the class of languages that can be decided by a deterministic TM
running in O(log(n)) space (the restriction applies to the working tape only);

P (polynomial time) is the class of languages that can be decided by a deterministic TM
running in O(n*) time;

NP (non-deterministic polynomial time) is the class of languages that can be verified by
a deterministic TM running O(n*) time. More technically: L € NP if IM3kVL[(¢ €
L = 3JwM{,w)=1in0(F) & (€L = YwM{,w)=0in O(|{|*))]. In
other words, we require a witness w for each positive (i.e., £ € L) instance. Example:
L = {¢ € N|{ is not prime} € NP .

coNP s the class of languages where we require a witness for every negative (i.e., £ ¢ L)

instance. Clearly, VL[L € NP <= L € coNP |. Example: L = {¢ € N|{ is prime} €
coNP .

NP -complete is the class of languages from NP such that for any language L from NP L
can be polynomially reduced to that NP -complete language;

NPI (NP intermediate) is the class of languages that are NP but not NP -complete;

PSPACE (polynomial space) is the class of languages that can be decided in polynomial
space by a deterministic TM;

EXP (exponential time) is the class of languages that can be decided by a deterministic TM
running in O(Z”k) time;

Notes:

. TIME(f(n)) C TIME(f(n)log?(f(n))) (the time hierarchy theorem);

. SPACE(f(n)) C SPACE(f(n)log(f(n))) (the space hierarchy theorem);
. P CEXP;

. L Cc PSPACE ;

=W N =
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5. L CP CNP CPSPACE C EXP ;
6. factoring is not proven to be NP -complete and is suspected to be NPT ;
7. graph isomorphism is not proven to be NP -complete and is suspected to be NPT ;

Quantum computational power is currently believed (but not proven) to be higher than that
of conventional computing devices insomuch as:

1. Polynomial quantum algorithms are known to be in PSPACE ;

2. QC are believed to be able to do NPI problems in polynomial time but not NP -complete
tasks.

1.5 NC 3.2.5: Energy and reversibility

Landauer’s principle: any time a bit of information is erased an amount of energy dissipated into
the environment is lower bounded by kg7 In2. Alternatively, the entropy goes up by at least
kpT In2. Notes:

1. T think the intuition here is that erasing information makes things more uniform (since it
reduces a certain [unknown/chaotic] state to a known brand-new erased state. Therefore,
the amount of order increases raising the entropy.

2. Reversible computations can be theoretically carried out with no energy used! However,
in practice, noise correction requires keeping track of errors, and, therefore, erasing these
temporary working records. Thus, in practice one needs to dissipate energy while com-
puting.

Fredkin Gate is a universal reversible gate. It has two data (A, B) and one control (C) input and
outputs (A’ B’,C"). In other words, F(A,B,C) = (A’,B’,C"). The control always passes
through unchanged: ¢’ = C while the gate swaps A, B if C = 1 and passes them straight
otherwise. Notes:

1. F(0,y,z) = (zy, Ty, z) (and);

2. F(1,0,z) = (T, z,x) (not, fanout);
3. F(z,y,1) = (y,z,1) (cross-over);
4

. any classical [irreversible] function f() can be computed with Fredkin’s gates and ancilla
bits: (x,a) — (f(x),g(z)). The problem lies with the ”garbage” bits that depend on z
(i.e., g(z)). The following is a trick to get rid of them — or rather produce them in a more

ZXQHY standard way.
gb?t?age 5. Use a CNOT-gate (CNOT (c,t) = (¢, c@t)*) to prepare all ancilla 1’s. Thus, only ancilla
bad? 0’s are needed and

(z,a) — (f(2),9())
becomes
(2,0) — (f(z), 9(z)).

Also notice that CNOT(0,z) = (z,x). Thus, we can use it to propagate a copy of z all
along

(2,0,0) = (z, f(x), g(x)).

i. herea®b=a+b mod 2.

14
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6. We now add a forth register that starts in a random state y: (2,0,0,y). We compute
f(x) using Fredkin’s gates and add it modulo 2 with the y:

U U.
(2,0,0,y) = (z, f(2), 9(x),y) = (2, f(2),9(x),y @ f()).
Since Uj is reversible and didn’t touch y we can undo it (called uncomputation):

(2, F(2), 9(0),y ® f(2)) 2L (,0,0,y @ F(x)).
Dropping 0’s we get
(2,9) = (2,5 © f()).

This is reversible and there are no garbage bits depending on x.
777

7. The overhead of making a computation reversible is a constant factor and thus P and @f(z)?77?
NP classes don’t change.

Toffoli gate is defined as T(A, B,C) = (A, B,C @& AB). Notes:

Crossover?

T(x,y,1) = (z,y,7y) (nand);
T(2,y,0) = (z,y,2y) (and);
T(x,1,0) = (

T(1,1,2) = (1,1,) (not);

Toffoli — Fredkin: 9 Fredkin gates are enough to simulate a Toffoli gate. Is this the
minimum?

x,1,z) (fanout);

A

6. Fredkin — Toffoli: 15 Toffoli gates are enough to simulate a Fredkin gate. Is this the
minimum?

15
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INTRODUCTION TO QUANTUM
MECHANICS

« Chapter objective (lectures 2,3.4):
[o/ntrodvee dll of the fundamental principles of
Quantum mechanics

~ Quantum mechanics
[fie most reglistic known description. of the world

[tie Pasis tor quantunm computing and. quantum
IAtormaLtion

~« Why Linear Algebra?

LA Js the prerequisite for vnderstanding Quantum
Mecthianics

~ What 15 Linear Algebra?
.. 15 the studly of vector spaces... and of
linear operations on those vector spaces /]




LINEAR ALGEBRA -LECTURE
OBJECTIVES

< Review: basic concepts from Linear Algebra:
Complex numpers
VVector Spaces and Vector Svbspaces
Linear lnderendence and Bases Vectors
Linear Operators
2] Imatrices
Inner (dot) product, outer product, tensor product
Figenvalves, eigenvectors, Singular Valve Decomposition (SV D)
= Describe the standard notations (the Dirac
notations) adopted for these concepts in the
study of Quantum mechanics

= ... which, in the next lecture, will allow vs to
study the main topic of the Chapter: the
postulates of quantum mechanics

COMPLEX NUMBERS

< A complex number 2, € C |5 of the form
z =a +ib where a,b €R and i*=-1

IFolar representation
z =ue’,whereu ,0 €R
7 \/W the moa})/u/gﬁ or maghnitude
And the phase 0, = arctan( S/

~ [rigonometric representation
z =u (cosf +isinf)

~ Complex conjugate
z =(a,+ib) =a —ib,




VECTORS

< Characteristics:
< Vedblvs (or maghitvae)

~ Orjertation

< Matrix representation of a vector

(a column), and its dual

z] (row vector)

VECTOR SPACE, DEFINITION:

< A vector space (of dimension n) 1S a set of n
vectors satistying) the following axioms (rules):
Addition: add any two vectors ‘V and ‘V pertaining
to a vector space, say (', obtan a vector,

Z,+ 2,
‘VE*‘F‘V'} = : the sum, with the properties :

=« Commutative: ﬁ ’

~ Associative: (v)+|v') b= [v)+(v)+]v)

5 Any‘v“;} has a zer or (called the origin): \V}+0:

=~ To every |v) in C" corresponds a unique vector -|v) such as
[v)+(=|v))=0

Scalar multiplication: = next slide




VECTOR SPACE (CONT)

“Sealar multiplieation: for any scalar

zeCand vector|v) e C" thereis a vector
74

zlv)=| i | thescalar product, in such way that
zz,

“Multiplication by scalars 1S Associative: z(z' V}): (zz")v)
1v)=|v)
“Distnbutive with respect to vector addition:
Z(v)+|v))= 2| v)+ 2| v')
Multiplication by vectors is

Distributive with respect to scalar addition: (z+2')v)=z|v)+z'|v)

A VVector 5U|95|9306 In an n-dimensional vector

Space Is a non-empty subset of vectors satisfying the same
axioms

BASIS VECTORS

£0r SPANNING SET for C": any set of n vectors
such that any vector in the vector space C" can be
written using the n base vectors
£Example for C? (n=2):
1

|0} corresponds to [0]

0
1%} corresponds to [1]

%|0)+a|T) corresponds to ! +a, O)_(%
0 1 o
which 15 a linear combination of the 2 dimensional

basis vectors  and 0) 1)




Bases and Linear
Independence

|
Spanning set: a set of vectors such that any vector in the

space can be written as a linear combination
of vectors in the set

{ vl>,..., 1)’1)} — v):iaj vj> for any v)

/=1

Linear independence: a set of vectors is linearly independent

if there is no linear combination of them which
gdds to zero non-trivially

Zaj vj>:0 iff every¢, =0
=

Basis: a linearly independent spanning set

guan’rum Notation
z Complex conjugate of z
‘W) Vector (a ket) -- this will represent a possible state
of the discrete quantum system

(w| Vector dual to [} (abra)

(ty\qo) Inner product of two vectors

\W) ®\(p> Tensor product of two vectors

A A matrix -- this will represent an operator which

can modify a quantum state
(w|A|@) Inner product of ¥)and Al@)




Linear OBer'a’ror's

Physical operations on quantum states are represented by
linear operators which act on the states

Linear operator: An operator which maps one vector space
into another that is linear in its arguments

ALi”f“f)J:iaqu"f))

= =

Basis for V Basis for W

Linear operators+—matrices 4
(matrix elements determined Alv))= Y A wj)
j

by specifying action on a basis)

Pauli Matrices
]

A useful set of matrices which acts on a 2-dimensional
vector space are the Pauli matrices:

1 0 0 1
0'02120 1 01: X:X21 0

0 —i 1 0
Gz:Gv:Y: . ()'3:0'2:2:
. i 0 0 -1

#Properties: Unitary (6,)0, =1, Vk

and Hermitian (Gk)r =0,




Inner Products

Inner Product: A method for combining two vectors which
yields a complex number (v).|¢))=(w|p)C
that obeys the foliowing rules

+(,) is linear in its 2nd argument

(19 Zas) |- o))

Example: C"

©vseow, )z, D=z 1wz,

More on Inner Products

Hilbert Space: the inner product space of a quantum system

Orthogondlity: [%) and [} are orthogonai if (vjw)=0

Norm: [[v}|=yirl) unit: % is the unit vector parallel to |v)

Orthonormal basis: a basis set {\11) J[v,) } where (u]v;}=8,

Gram-Schmidt Orthogonalization: an algorithmic procedure
for finding an orthonormal basis |} from a given basis

M=Lol)
\w>:;;wJ-\f>

(inher product of 2 vectors
_ * is equal to inner product
— (v‘w) ZV, Wi of the matrix reps of
/ the 2 vectors)




Quter Products

Let [w) be avector in the vector space W
Let |v} be avector in the vector space V

Outer product: |w)(v| is the outer product of |w}and |
It is a linear map from V into W defined by

)l )=l wiv] v

Completeness relation: Let |j) be a basis for V. It is easy to
show that A s
JRI=T
¥

i.e.;|j><j|q v)):‘v) for every‘v)

Eigenvalues and Eigenvectors
. |

Eigenvalue abtain by finding all
A‘ 1;) =1, ‘ v) = v‘ v) roots to the eqn
Figenvector -7 det (A - ;LI) =0

Diagonalizable: A matrix A is diagonalizable if it can be
writtenas 4 _ Z” M|

2=/, O |-l

orthonormal basis

Degeneracy: when two {(or more) eigenvaiues are equal
In this case the eigenspace is larger than one dimension




Hermitian Operators

Adjoint: A”is the adjoint of A if (A7v).|w))={().alw)) fordll
vectors |v},[wiin the vector space V
Properties: A=A" (A‘)t =A (ABY =B"A"
v =0
Hermiticity: A is Hermitian if A=A

k ) . L
eq. P:;m(ﬂ :L‘g‘ts;z’::seany vector into a k-dim'i

Normal: A is Normal if A"A =AAT

can show: Normal +— Diagonalizable (spectral decomposition)

Unitary and Positive
Operators

Unitary: U is unitary if UTU=1I

canwrite: U=Y'| 7% j| where|j}and |j)are any two
Z,:‘ J>(]‘ distinct orthonormal bases for
the vector space V, such that
Note: Um:‘j)
(U‘ v), U‘ w>)= (]»“UTU‘ w) = (v‘ w) = Qv),‘ w)) (pre.;?:;zi;;mer
Positive: B is positive if (v),B|v))=0for every |v) inV
(nc negative eigenvalues!}
If (v),B[v))>0 for every |} in V = B is positive definite
{all positive eigenvalues!}




Tensor Products
|
A tensor product is a larger vector space formed from two
smaller ones simply by combining elements from each in all
possible ways that preserve both linearity and scalar
multiplication

If V is a vector space of dimension n )

& W is a vector space of dimension m W)

then VeW is a vector space of dimension mn ) ®|w)
eg

0)®|0)=[00) [1)®[1)=[11) are elements of VeV

and so is \00) + ‘ 1 1) =) qualitatively new feature:
entangled states!

More on Tensor Products

(v ®[wh)=(zvi@|w))={v)®w)) scalar multiplication
">®qwl>+|w2>): v>®|wl>+ v>®|w2>
linearity
(v + v, )@ lw) =], ) ®w)+|v, ) ®|w)
Azcison|v)  Bactson|w) } tensor product of operators

(A@B)v)®|w))=A|v) ©B|w)

1sY 0QeY

[0 1 0
e_g_ 7|:1 0} ‘ X®Y=|:0.Y IOY}:

[0 ]

10



Functions of Operators

Can define the function of an operator from its power series:

f@)=Y ux=f@A)=) aA"

n n

_ 1 ) 1 7
e.g. explox)=1+6x +5(9X) +§(BX) RES

_ri Lo +---+[6+i93+---]x
2! 3

=1cosf+ X sin@

For normal operators, can go beyond this using their
spectral decomposition:

A=Y A/ i]= A=Y £, ) X

Trace and Commutator

Trace: II(A)= Z A, {sum over the diagonal elements)

tr(AB)= tr(BA) tr(zA +B)= ztr(A )+ tr(B)

Commutator: [A,B|=AB-BA
Anti-commutator: {A,B}=AB+BA
Simultaneous Diagonalization: Two Hermitian operators A and

B are diagonalizable in the same basis if and
only if [A,B]=0

11



Polar Decomposition

For any linear operator acting on a vector space
we can write
A=UvA"A (left polar decomposition)

wherelU is a unitary matrix -- it is unique if A has an inverse

Alternativel
vely A=+VAATT {right polar decomposition)

Singular-value decomposition:
For all square matrices, can write A =UDU
where D is a diagonal matrix
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QUANTUM COMPUTING
SUMMER SCHOOL

Lecture 3: FPostulates of

Quantum Mechanics,

Angela Antoniu

Department of Electrical and
Computing Engineering

May 9, 2002

POSTULATES OF QUANTUM MECHANICS
LECTURE OBJECTIVES

< Why: are postulates important?

- ... LHey Provide the Connections betweer the
Phyelcal, redl, world drid. the quantun
MECHANICS MAathematics Used. to: model these

SySLElis
Lecture Objectives
« Pescription of connections
“ /Atrodice. the pPostulates
< [eary ow to Use theri
. ...dnd Whern to Use ther




CONNECTIONS

lsolated physical

Postulate |
system

Postulate 2 Evolution of a physical
system

Measurements of a

Postulate 3
physical system

Composite physical

Postulate 4
system

AV AV AV AV

Hilbert Space

Unitary:
transformation

Measurement
operators

Tensor
procduct of
COMponents

POSTULATE 1: STATE SPACE

[Fostujatel] defines the setting: in which Quantum
Mechanics take place, which Is the fHilbert space
(Inner product space which satisty the condition of

completeness).

Fostulate | :Any: Isolated! physical space 15
gesoclated With 2 complex vector space with
iAner proauct called the State Space of the

system.

Ihe system. s completely described by a state
vector, a unit vector, pertaining to. the state space.,

lhe state space describes il possible states the

system can be .

< Fostulate | does NOT tell vs either what the state

SpPAcE or state vector |s.




A Qubit: The Simplest

State Space
D ——

The simplest quantum system is a state space with
2 dimensions -- there are two possible states the

inl .
system can be inl W) :a0‘0}+a1‘1> m—p q qubit
Recall: state vector is a unit vector, so

(lr’/ ‘y/) == ‘ao‘z + ‘al‘z =1 {normalization condition)

A linear combination of states is called a superposition
of statesmspqualitatively new feature: a qubit can be
a mixture of two classical bits!

POSTULATE 2: EVOLUTION

~« Evolution of anli1solated system can be expressed
as: | |
‘V(tZ) > U(tI? t:) ‘V(tl )

where £, t; are moments in time and U(t,, t,) 1S

2 URitary operavor.
Urmay vary with time. fience, the corresponding segment of
tme 1S explicitly specified:
U, t5)
the process i In 4 sense Markovian (history doesn’'t
matter) and reversible, since

U'U|v)=|v)




Postulate 2:

Evolution of States

|
The evolution of a closed system is described by a unitary
transformation. Heisenberg

‘W(t2)>=U(f2’f11W(tl)> picture
— U(r‘,fJ:exp|i—%H(f—tJj|

— ih%"y(")} = H‘W(")) Schroedinger

picture
Planck's constant Hamiltonian (must be input
{set fo unity) from physical considerations)
H® =H ==» Hamiltonian has a spectral decomposition
= H=YHENE = [5)=e 8
E

Energy eignvalues —— Stationary states

Example: Hadamard Gate

-]

{ih this case the unitary matrix # has trivial time dependence)




POSTULATE 3:
QUANTUM MEASUREMENT

The measurement of a closed system is described by a
collection of operators M _ which act on the state space
such that J bes th babil X

_ . escribes the probability the
1) plm)= @I ‘M"’M""lﬂ measurement outcome # occurred

2) M”"w) is the state of the system after

v ) ) \/ (!,tf \M;Mm \w) measurement outcome moccurred

3)ZM;MM =l< Z p(m)=1 Completeness relation

Notes: Measurement is an external observation of a
system and so disturbs its unitary evolution

Qubit Measurement

There are two possible outcomes in the measurement of a
qubit: ‘0) and ‘1)
m==p M, =|0)0| M, =|1){]] (M, +M, =I)

So the probability that|y)=,|0)+«|1) is in the state|0) is
p(0)=(w MM, ) = lrg 0]+ (1 0)(0[ {00 ero|0) +e4 1))
=leo|"|{0/ 0} =]

And the state vector changes: |W} —>1|Z,[°|W) = %
(8]




Distinguishability
.- |
Only orthogonal states can be distinguished in a measurement!

Why? Suppose|w,)and|v.} are not orthogonal, but can be
distinguished by two measurement operators, E; and E,
where E, +E, =1 ,and E,=MM, We must have

(Uﬁ ‘E1‘W1):l and (Wz ‘Ez‘lf&):l
since by assumption the states can be distinguished. However
we can also write [v.)=aly )+ Bl¢) where (¥|0}=0 and
o +[8] =1
Since E, +E, =1we have (i, |E.|w.)=0 . But then
{(Unless =0 in

(Wz ‘Ez“l’z> =‘ﬁ‘2 (?‘Ez‘QD) < ‘5‘2 <l ® which case states

are orthogonal)

Projective Measurements

Observabie: A Hermitian operator on the state space.
Canwrite: M=) mP, = p(m)=(y [P, P, |y)=(¥[P,|¥)
" (each measurement operator is a projector!)
Average value of a measurement:
EM)=Y mp(m) =Y mly B, |y) ={y [} mP,|v) =y Mly)

{expectation value}
Standard deviation of a measurement:

A= (M- (M)F) = J(M?)—(M)*  where (M)={y|Mlw)




Uncertainty Principle

(vllp.aly)

2

Alp)a(a)=

oty a%ly M 18w ) 2 B =L [A,BHA,BW

i a.Blv) +ffa. Bﬂw\) i [a.Blyy
Set A=p—(p},B=q—(q) and the result follows!

Measurement errors are not arbitrarily reducible!

Positive Operator-Valued
Measurements (POVM)

"

POVM: Any complete set{E, Jof positive operators {ZEM —1]

Recall |w.} and |vw.)=clw )+ Ble} . Write
If you observe
E, ~|o)9| E, then you know
(B |w) | o)) Blw |- elo)) the state is|v.) .
= of +|5 If you observe E,
then you know the
state is [w) . If you
observe E, then you
POVMs: don't know the state
Advantage:  can never mis-identify a state
Disadvantage: sometimes you get no information




Phase

Global Phase: °|w) is physically indistinguishable from |y}
(le "MIM, e y) = (W MOM, |y)
Relative Phase: |v)=|x)+|¢) can be physically distinguished
from |v)=[x)+e*|o)

=) o basis-dependent concept

Local Phase: If the phase is a function of position and/or time
we say that it is local

6 =6(%,1) {not relevant (yg‘r) for
quantum computing)

Postulate 4:
Composite Systems

The state space of a composite system is the tensor product
of the state spaces of its components.

System A: |Z)
System B: |¢)

} System AB: |2/}

Common usage:
x8le)

Physical system ™ Ancilla system (corresponds
itV to measurement outcomes
{call it V} -
-- call it M)

Unitary Dynamics + Projective Measurements
= General Measurement




General Measurements

Let U:VOM - VR®M be defined so that

Uw)0)=) M, [w)m)
for a fixed state |0) in M and a general state(¥)in V
= (U)o} (Uly)0))={p {O[UTly}{0) = ¥ (oMM, [y} )

mum'

= E(@ MM, [w) = {p|w) = U can be defined on
m entire space V ® M

Now set P, =1, ®|m>(m‘
e 00 0P 0 = I o M o, Sl M o)

m”

=Y w|M%M,_ |v)== General Measurement!

m

Superdense Coding

Idea: exploit entanglement to send more information from
point A to point B that would classically be allowed

Problem: Alice has 2 classical bits of information she wants
to send to Bob, but is only allowed to send Bob a single qubit.

Can she do it?

Solution: Yes! Put Alice's qubit in an entangled state with
Bob's! Alice acts on her qubit and then sends it to Bob -- this
allows Bob to uniquely deduce Alice's 2 classical bits!
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SUPER DENSE CODING

¢ Alice & Bob have the long distance feeling

¢ Goal: to transmit some CLASSICAL information
from Alice to Bob.

¢ Alice is in possession of two classical bits of
information which she wishes to send to Bob but
can only send one qubit to Bob.

¢ Can she achieve her goal?

SUPER DENSE CODING

# Super Dense Coding says YES!

- They both initially share a pair of qubits in the entangled
state.

_|00)+|11)

|v) = NG

- Alice initially has the first qubit and Bob has the second
qubit.
- Note the qubit is prepared ahead of time by a third party
who then sends one to Alice and one to Bob

- By sending a single qubit to Bob, Alice can communicate
two bits of classical information




SUPER DENSE CODING

/

1 qubit 1 qubit

00:1 01:Z7
10: X 11aY

SUPER DENSE CODING

¢ Procedure:
- If Alice wants to send...

()[0] She does nothing

()08 She applies the phase flip Z to her qubit
Ill] She applies quantum NOT gate X

IB] She applies the iY gate

¢ Then Bob applies an appropriate measurement operator




SUPER DENSE CODING

¢ Four Resulting States

> Bell States

SUPER DENSE CODING
¢ Notice that the Bell States...

Form an orthonormal basis

- [EETErm

:%(<00|00>+<00|11>+<11|00>+<11|11>)

:%(2)21

...therefore can be distinguished by an appropriate quantum

measurement. Example:

P;; = |bij) (bij]




MORE ON THE MEASUREMENT

¥ So what is the measurement operator Bob
should use?

¢ Switch to the white board...

SUMNER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 9

ENTANGLEMENT &
CORRELATION

Bell states in H? have components (for each qubit) that project both on |0) and |[1).
Therefore, measuring either qubit in the basis {]0), |1)} gives |0) with the probability
1/2 and |1) with the probability 1/2. In other words:

1
(bi; [10) O] [bi;) = 5 (1.2.5)
] ] 1 1 ¢ 3
il 1) (A i) = 5 (1.2.6)

So, if we measure the first qubit of any |b;;) with say the observable A = a |0} (0] +
311} (1] then we get « in half cases and 3 in half cases (i.e., p(a) = p(B) = %) Sup-

pose, we make a measurement and get o. Then if the original Bell state was

then the resulting state collapses to |0x) (the % is removed by the normalization).
. N A

Therefore, now if we measure the second qubit we are bound to see |x). So if |x) hap-

[0x)+|1y)
V2

pens to be |0) we will get correlation (the second qubit measurement is bound to give
the same result as the first qubit measurement) or (if |x) = |1)) anti-correlation (the
second qubit measurement is bound to be opposite to the first qubit measurement).

SUMMER 2002 VADIN BULITKG * QUANTUR CONPUTING SURNER SCHOOL * UOFA 10




EPR “PARADOX”

¥ Suppose we have 2 particles: one with Alice
and one with Bob

£ Suppose Alice and Bob measure 2
properties of their particle each:

1 particle 1 particle

SUMMER 2002 VARDIN BULITKO * QUANTUM CONPUTING SUNMER SCHOOL * UOFA n

CLASSICAL VIEW

¢ Suppose the system has a state:
#Q=q
£R=r
£S=s
£ T=t
with probability p(q,r,s,t)
¢ Then E[QS +RS+RT-QT] < 2

# Thus E[QS +RS +RT-QT] =
E[QS] + E[RS] + E[RTI-E[QT] < 2 (Bell ineq.)

SUMMER 2002 VADIM BULITKG * QUANTUR CONPUTING SUNMER SCHOOL * UOFA e




QUANTUM VIEW

Quantum mechanically, however, we can take |b11) = % and measure the following
observables: Q = Z;,R = X;,S = ’Z‘:’[’ZX3,T = 22 \’EA . On the entangled state |byy1)
their expected values are: (QS) = %(RS) = % (RT) = 12,<QT) = f% and,

therefore, the expected value of the entire quantity is: (QS) + (RS) + (RT) — (QT) =
2v2 > 2!

So what is the truth?

E[QS] + E[RS] + E[RT]-E[QT] £ 2
Or

E[QS] +E[RS] + E[RT]-E[QT] > 2

SUMMER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 13

NATURE’S RESPONSE

¢ The Mother Nature says:
E[QS] + E[RS] + E[RT]-E[QT] >

£ Assumptions of the classical view:

< P,Q,R,S,T have definite values independent of
observation (realism)

# Alice’s measurement doesn’t affect Bob’s
measurement if they are causally disconnected
(locality)

£ So the verdict?
¢ Nature is NOT locally realistic

SUMMER 2002 VADIM BULITKG * QUANTUR CONPUTING SURNER SCHOOL * UOFA M




DOES THE REALITY EXIST?

« | recall that during one
walk Einstein suddenly
stopped, turned to me
and asked whether |
really believed that the
moon exists only when |
look at it.

Abraham Pais

SUMNER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 5

COMPUTER SCIENCE

¢ Goal: Brush up on CS aspects relevant to QC
¢ Models of computation:
¢ Turing machines
¢ Circuits
¢ Computation problems
¢ Description
¢ Algorithms
¢ Complexity : asymptotic notation
¢ Complexity : classes
¢ Energy & computation : reversibility

SUMNER 2002 VADIN BULITKG * QUANTUN CONPUTING SUANER SCHOOL * UOFA 6




MODELS OF COMPUTATION

£ Why do we need a model of computation?

£ When someone says “This function is
incomputable” or “f(x) is computable but
intractable”, etc. what does it really mean?

¢ What if | say “I can compute this” or “I have an
algorithm for this” ?

¢ Intuition?
¢ Well, David Hilbert felt that any true formula can
be proven by a mechanical procedure.

¢ ...Need a formalization

SUMMER 2002 VRDIM BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA n

TURING MACHINES

¢ Need a formalization of what it
means to have an algorithm for (or
to be able to compute)

LCMs can do anything that could be described as
‘rule of thumb’ or ‘purely mechanical’.

Alan Mathison Turing (1948)

¢ So what is LCM (or as it’s now
known Turing Machine) ?

SUMMER 2002 VADIN BULITKG * QUANTUR CONPUTING SURNER SCHOOL * UOFA 8




TURING MACHINES

O0dori

oori
0,R

f\ /'\.

SUMMER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 19

DEMOS

¢ Classical implementation
http://www.warthman.com/ex-turing.htm

# Conway’s Game of Life implementation
http://www.rendell.uk.co/gol/tmdetails.htm

SUMNER 2002 VADIM BULITKG * QUANTUN CONPUTING SURNER SCHOOL * UOFA 20




CIRCUITS

-
Z
=]

¢ Circuit : wires + oy ¢as [0 00
gates o Lo
¢ Gates : function S
a = |0 0 1

{0,1}> {0, 1} Ao T
11 0

¢ No loops ox
. . A B Q

# Elementary circuits > A
oR. 1 01

# AND, OR, NOT, L
NAND, NOR, XOR e

# Fanout Ehe I

+# Crossover -~
NOT
. . Q-3 A Q

¢ Work (ancilla) bits P o v

PUTTING CIRCUITS TOGETHER

¢ Here is a half-adder (half because doesn’t
take carry as in an input):

input A EXOR gate
input B —— SUM digit

:Q— "1 ¢ Here is a full-adder then:

AND gate
A
I‘;g C out
al T OR
gp— Half
adder Sum out
Cin

SUMNER 2002 VADIN BULITKG * QUANTUR CONPUTING SURNER SCHOOL * UOFA 22




UNIVERSALITY
£ Any function {0,1}< 2 {0,1}™ can be computed
with:
< Wires
¢ Work (ancilla) bits prepared in some fixed state
¢ Fanout operation
¢ Crossover
< AND, XOR gates (or just NAND)
£ How is crossover different from crossed wires?

¢ Why cannot we do crossover with XOR?

SUMMER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA a3

FAMILIES OF CIRCUITS

£ A single function {0,1}* = {0,1}™ is merely
a 2¢ row look-up table.

¢ Obviously, any such function is
computable. Furthermore, it doesn’t
correspond to our notion of algorithm
which can be defined for arbitrarily large
numbers (e.g., f(n)=n?)

¢ What do we do?
¢ Families of circuits...

SUMNER 2002 VADIN BULITKG * QUANTUR CONPUTING SURNER SCHOOL * UOFA 24




FAMILIES OF CIRCUITS

¢ Thus, define a uniform circuit family as:
£ a set {C_} of circuits

¢ C, handles inputs of size up to n
¢ Forall m>n forall x C_(x)=C_,(x)

# There is a Turing machine T such that T(n)
produces description of circuit C,

« Then {C,} computes function C() iff for all x
C(X)=C|X|(X)

SUMMER 2002 VRDIM BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA a5

TURING-CHURCH THESIS
¢ Anything that can be computed
mechanically/algorithmically can be
computed on a Turing machine

# Corollary: anything that can be computed
mechanically/algorithmically can be
computed with a uniform family of circuits

¢ Proof?

< “computed mechanically/algorithmically” is
too fuzzy to use in a proof...

SUMNER 2002 VADIN BULITKG * QUANTUN CONPUTING SURNER SCHOOL * UOFA 26




WHY A FORMALIZATION?
¢ Allows us to answer several questions:
¢ What is a computational problem?
¢ Is there an algorithm to solve it?

¢ What are the resources to solve a problem?

SUMMER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA a1

MAsSsS PROBLEMS

¢ Consider this problem:
“Is X entailed by a set of axioms?”

¢ The answer is ‘yes’ or ‘no’ as X is just a single
constant expression

¢ Therefore, there exists a program which takes X
and outputs ‘yes’ or ‘no’ (it will just contain one
print statement (e.g., print(‘yes’)))

£ We might not know how to write that program but
it trivially exists

SUMNER 2002 VADIM BULITKG * QUANTUN CONPUTING SURNER SCHOOL * UOFA 28




MASS PROBLEMS

¢ This doesn’t capture the fact that the problem of
proving a given FOPC statement is undecidable

¢ Thus, need a mass problem:

“Is there a computable function f(X) such that f(X)="yes” iff X
is a FOPC statement entailed by a given set of axioms and
f(x)="'no” iff X isn’t.”

¢ Undecidable — no such computable function
exists

SUMMER 2002 VRDIM BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 23

DECISION PROBLEMS
¢ The answers are:

¢ What is a computational problem?
< Here : a mass problem with ‘yes’/'no” answer

¢ Example: “Function f(n) such that f(n) =yes iff n is
prime and f(n) =no iff n is not prime”

SUMNER 2002 VADIM BULITKG * QUANTUN CONPUTING SURNER SCHOOL * UOFA 30




ANOTHER EXAMPLE
¥ Mass problem :

“Given a Turing machine number m, can we
algorithmically determine if T, will halt on the
empty input?”

¢ Known as the Halting Problem
£ Undecidable

SUMMER 2002 VRDIN BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA El

¢ Decidability = = computability of the
corresponding decision mass problem

¢ Is there an algorithm to solve it?
¢ Not always

SUMNER 2002 VADIM BULITKG * QUANTUN CONPUTING SURNER SCHOOL * UOFA E
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MORE CHEERFUL EXAMPLES

¢ Fortunately, some tasks are more doable

¢ Examples:

“For any given 3 numbers a,b,c return ‘yes’ if a=bc
and ‘no’ otherwise”

“For any given number n return its prime factors”
¢ Both are computable
¢ But the complexity is different
¢ So need finer distinctions

SUMMER 2002 VRDIM BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 33

COMPLEXITY

£ On to the last bullet:

|

¢ What are the resources to solve a problem?
¢ Coarse division : tractable / intractable
¢ Finer division : asymptotic notation

SUMNER 2002 VADIM BULITKG * QUANTUN CONPUTING SURNER SCHOOL * UOFA 34




ASYMPTOTIC NOTATION

# Big O : f=0(g) iff there exists a constant ¢
that starting from some x, holds f(x) < cg(x)
(i.e., g upper-bounds f)

i = O(n?)

¢ Good for worst-case performance analysis

£ Example: sum._, .

¢ Example: linear search is O(n)

SUMMER 2002 VRDIM BULITKO * QUANTUR CONPUTING SUMNER SCHOOL * UDFA 35

ASYMPTOTIC NOTATION

¢ Big Omega : f=Q(g) iff there exists a
constant c=0 that starting from some x,
holds f(x) >cg(x) (i.e., g lower-bounds f)

¥ Sometimes used for the best case analysis

< Example: any binary-comparison based
sorting is Q(n logn)

SUMNER 2002 VADIN BULITKG * QUANTUR CONPUTING SURNER SCHOOL * UOFA 36




QCSS

“Quantum Computing

Summer Schoo

II/

DA

Prof. Vadim Bulitko
University of Alberta

NAY 21, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO

Today

e Computability
— Turing-Church thesis
— Turing machines
— Circuits

e Computational complexity
— Computable/non-computable
— Asymptotic notation

— P, NP, etc. classes

e Reversibility

NAY 1, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO




Outline

e What does it mean if a function is
computable?

e What device is to be used?
® Does it matter?

e Turing machines can compute anything
computable — thereby formalizing the
definition of computability

NAY 21, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO

Turing Machines
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Circuits
e Circuit : wires +
gates "
e Gates : function
{0,1}> {0, 1} Ao
e No loops

¢ Elementary circuits >

— AND, OR, NOT,
NAND, NOR, XOR

— Fanout A >
— Crossover
— Work (ancilla) bits RN

Q=A+EB

-
Z
=]

== o o
= ool
o ool

=z
o
2
o

oo
—o ol
o= =D

=]
o

o o
ool
——— o)

2
(=}
=

SRS
ool
o oo =D

g
§

=N
o o

Putting Circuits Together

® Here is a half-adder (half because doesn’t

take carry as in an input):

. ExCR gate
input & 7
input B ——— SUM digit

AMD gate

%mwn e Here is a full-adder then:

Half
adder

adder

—

OR.

C out

Sum out

Cin
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Circuit Universality

e Any function {0,1} = {0,1}™ can be
computed with:
— Wires

— Work (ancilla) bits prepared in some fixed
state

— Fanout operation
— Crossover
— AND, XOR gates (or just NAND)

e Need crossover to keep things planar
e Why cannot we do crossover with XOR?

NAY 21, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO

Inputs of arbitrary lengths

e A single function {0,1} 2> {0,1}™ is
merely a 2k row look-up table.

e Obviously, any such function is
computable. Furthermore, it doesn’t
correspond to our notion of algorithm
which can be defined for arbitrarily large
numbers (e.g., f(n)=n?)

¢ What do we do?
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Families Of Circuits

e Thus, define a uniform circuit family as:
— aset {C,} of circuits
— C,, handles inputs of size up to n
— Forallm>n forall x C_(x)=C,(x)
— There is a Turing machine T such that T(n)
produces description of circuit C,
e Then {C,} computes function C() iff for all x
C(x) =C|x|(X)

e Uniform circuit families are equivalent to
Turing machines and therefore can compute
anything computable
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Turing Machine Countability

e All Turing machines / circuits can be
algorithmically enumerated

¢ \What it means is:

— Every possible Turing machine/circuit can be
assigned a unique integer ID number

— There is a Turing machine/circuit that given
index j produces the full description of
Turing machine/circuit #j
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Why A Formalization?

e Allows us to answer several questions:
— What is a computational problem?
— Is there an algorithm to solve it?

— What are the resources to solve a problem?
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Computability / Decidability

e A problem is computationally solvable
(or computable) if there exists a program
that computes the answer

e If the answer is of the Yes/No type then
the problem is called a decision problem

e If such a problem is computable we say it
is decidable
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Single Instance Problems

e [t is not interesting to pose a single instance
problem

e For example: is the problem of answering “Can
machines think?” computationally decidable?

e Sure — there exists a program that prints out
“Yes” and there exists a program that prints out
IlNO/I

¢ By our definition on the previous slide the
problem is decidable
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Mass Problems

¢ To make computability/decidability definitions
meaningful we can use mass problems

e A mass problem consists of inputs and desired
outputs (e.g., n=>n?)

® Mass Yes/No problems =» mass decision
problems

e We say that a mass problem is
computable/decidable iff there exists an
algorithm for finding the desired answer for any
valid input
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Computability / Decidability

e Decidability problems are often
described by languages:
— the input are members of a larger set

— the output is Yes/No on whether the input
belongs to a given language (set) L

e Examples: decidable
—L={n|nis a prime number}
— L={n]|nis an index of Turing machine that

halts on input O
P }ﬁ undecidable
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Asymptotic Notation

e Upper bound

e Big O : f=0(g) iff there exists a constant
c that starting from some x,, holds
f(x) <cg(x) (i.e., g upper-bounds f)

® Example: sum._, . i = O(n?)

e Example: linear search is O(n)
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Asymptotic Notation

e Lower bound

e Big Omega : f=CQ(g) iff there exists a
constant c#0 that starting from some x,
holds f(x) >cg(x) (i.e., g lower-bounds f)

e Example: any binary-comparison based
sorting is (n logn)
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Coarse Division : Tractable/Intractable

e Often we want to make a statement if an algorithm is
tractable/feasible or intractable/infeasible

e The crude formalization is this:

If the worst case running time is polynomial (i.e., O(n¥) where k is a
constant) then the algorithm is tractable in running time

e Here n is the input size in a reasonable (e.g., binary)
representation

¢ The running time measured on a deterministic Turing
machine
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Slightly finer division

e Class P — time to solve: O(poly(|input|))

e Class NP — time to verify : O(poly(|input|))

e Class NP-complete — any other NP problem is
reducible to it

e Class NPI — NP but not NP-complete

e Class PSPACE -- space to solve:
O(poly(|input]|))
® Class EXP — space to solve : O(2poly(linput]))
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P

Class P

® Thus can define:

(polynomial time) is the class of languages that can be decided by a deterministic TM

rumning in O(n*) time;
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Class P

e Examples:
—Search: n < n'
— Sorting: nlogn < n?
— Etc.

e Counter examples:

— Sure, take a number n, idle for 2" time ticks,
output ‘yes’. This algorithm is exponential
but the function it represents is O(1)
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Class NP

e Some problems appear harder

e Example: “Is a given number composite
(i.e., not prime)?”. No polynomial
algorithm is known.

e Define:

NP (non-deterministic polynomial time) is the class of languages that can be verified by
a deterministic TM running O(n*) time. More technically: L € NP if AMIkVE[(¢ €
L = JwM{w)=1mO(F) & (£ ¢&L = YwM{w) = 0inO(())]. In
other words, we require a witness w for each positive (l.e., £ € L) instance. Example:

L = {¢ € N|¢ is not prime} € NP .
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A Corollary

* Given an input x of size |x| =n and an
appropriate witness w there must be a
polynomial time algorithm to check if x
belongs to L

e This means that |w| =O(poly(]|x))

e Why?
e Otherwise, the Turing Machine won't be
even able to read in w
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Class Co-NP

e What about “Is n prime?”

® Can easily check if n is not a prime if
given a witness (e.g., a factor of n)

e Define:

coNP is the class of languages where we require a witness for every negative (i.e., £ ¢ L)

instance. Clearly, VL[L € NP <+= L € coNP |. Example: L = {¢ € N|{ is prime} €
coNP .
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Class NP-Complete

e Some NP-problem are especially hard
insomuch as any other NP problem can be
reduced to any of them

e Reduction : if | have a NP decision problem L
(i.e.,  am asking a question “Is x in L?”) and an
NP-complete problem M then for any x it takes
polynomial time to produce y such that y is in
M iff x isin L

¢ |n other words, the time complexity of L is
O(poly(t)) where t is the time complexity of M

NAY 1, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO 25

Class NP-Complete

e Formally:

NP -complete is the class of languages from NP such that for any language L from NP L

can be polynomially reduced to that NP -complete language;

e Examples:

— CSAT : given a Boolean circuit of AND and
NOT gates, is there an assignment of its
inputs such that the entire circuit produces 1
(true)?
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13



HC

e Hamiltonian cycle is an ordering of all
graph vertices such that no vertices are
repeated except the starting vertex. The
cycle has to have the edges present in the
graph.

e Decision-problem : does a given graph
have a Hamiltonian cycle?
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EC

e Euler cycle is an ordering of all edges of a
graph such that:
— every edge is visited exactly once

— any two consecutive edges in the sequence
share a vertex

— the sequence forms a cycle

e Decision-problem : does a given graph
have an Euler cycle?
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HC vs. EC

e Hamiltonian cycle is NP-complete

® ECis in P (can be solved in O(|input|?))
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Class NPI

e How about problems that are in NP but
not NP-complete?

e They would belong to NPI (NP
Intermediate)

¢ Do they exist?
e Unknown but suspected that:

— Factoring is in NPI
— Graph isomorphism is in NPI
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Classes PSPACE & EXP

e PSPACE: Problems that can be decided in
space O(poly(|input|))

e EXP: Problems that can be decided in
space O(2proly(finput]))
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Class Inclusion

¢ What do we know?
— P = NP < PSPACE c EXP
— NP-complete ¢ NP
— NPl < NP
— PcEXP

e What don’t we know but really believe that it is
true?
— PcNP?
— NPl #Q?
— P < SPACE ?

NAY 1, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO 32
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What is in all this for us?

e Well, we know that:

— Polynomial quantum algorithms are in
PSPACE

® |t’s believed:

— Polynomial quantum algorithms can do
MORE than polynomial classical algorithms

— Specifically: they can do NPI but NOT all
NP (i.e., not NP-complete)
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Energy & Computation

¢ Erasing information =» increase in entropy =
will dissipate some energy

e Reversible computations can go without
erasing information and can be done with NO
energy dissipated at all!

e How much: at least kzTIn2 joules per 1
classical bit (Landauer’s principle)

e Can we erase a qubit? Not without storing this
information somewhere else. Why? Because
otherwise it won’t be reversible (i.e., no unitary
transformation)
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Reversibility of Computation

e Can we make any computation
reversible?

®* Yes

¢ Hand-waving argument :

— the laws of physics are reversible (given a
closed system we can compute its previous
states given the current state)

e Quantum computation is reversible (can
undo the unitary operator)
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Questions For Discussion...

¢ So what happens to two bits of
information when | apply an AND gate
and get one bit out?

e Using an AND gate | erased some info,
yet the underlying physical processes
must be reversible. So where did that
information go to? How do | reverse the
AND gate?

e Comments???
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Reversible Gates

e Classical computation can be made
reversible so that no information is lost

e How!?

e Instead of using AND, OR, etc. we will
gates that are:

— universal (e.g., allow us to implement any
circuit)

— explicitly reversible

e The gates: Fredkin & Toffoli
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Fredkin Gate

The first reversible universal
gate

Invented by a former US Air
Force pilot Ed Fredkin in
1974, Caltech

Has 3 inputs (a,b,c), 3 outputs
(a',b',C')
Swaps a and b when c=1 Prafesor Ed Fedhin

http://digitalphilosophy.org
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Fredkin Gate Universality

® Wires still need them

¢ Ancilla bits
prepared in some

fixed state still need them
¢ Fanout, NOT F(1,0,x)=(not(x),x,X)
¢ Crossover F(x,y,1)=(y,x,1)
e AND F(0,y,x)=(x&y,not(x)&y,X)
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Toffoli Gate

e Another universal
reversible gate

e Has 3 inputs (a,b,c) and 3
outputs (a’,b’,c’):
—a’'=a
—-b'=b
—c’=c XOR (@ AND b)

— (the target bit c is flipped http://pm1.bu.edu/~tt
when both a and b are set)
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Toffoli Gate Universality

® \Wires

e Ancilla bits
prepared in some
fixed state

® Fanout operation
e Crossover
e NAND

still need them

still need them
T(x,1,0)=(x,1,x)

77 a quick way ??
T(x,y,1)=(x,y,nand(x,y))
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Fredkin & Toffoli

back

Toffoli gate

Fredkin gate

Exercise 3.32 : simulate Fredkin by Toffoli and

9 Fredkin gates appear enough to simulate a

15 Toffoli gates seem to be able to simulate a

Challenge: can anyone do better?
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Garbage Bits

e Suppose we have a classical
computation: x =2 f(x)

e With ancilla bits a and reversible gates
we can simulate it as : (x,a)=2>(f(x),g(x))

e Garbage bits g(x) depend on x -— not
good... Why?

e Need to produce garbage bits in some
standard state independent of x

Uncomputation - 1

e Here is the trick...

e Define CNOT(c,t)=(c,c XOR 1)
[reversible]

e Use CNOTs to prepare ancilla 1's
¢ Thus:

(x,a) = (f(x),g(x)
® Becomes

(x,0) > (f(x),g(x))

22



Uncomputation - 2

e Notice that CNOT(0,x) = (x,x) (fanout)
e Use it to drag x along:

(x,0,0) = (x,f(x),8(x)
e Add another input in a random state y:

(x,0,0,y) 2 (x,f(x),8(x),y)
e Add another input in a random state y:

(x,0,0,y) 2 (x,f(x),8(x),y)

NAY 1, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO

Uncomputation - 3

e So far just dragging x and y along:
(x,0,0,y) —U> (x,f(x),g(x),y)
e Now, CNOT f(x) and y:
(x,£(x),8(x),y) = (x,f(x),g(x),y XOR f(x))
e U was reversible — undo it (i.e., apply U"):
(x,f(x),g(x), y XOR f(x)) = (x,0,0,y XOR f(x))
e Thus, by applying U, CNOT, U-" we s
(x,0,0,y) =2 (x,0,0,y XOR f(x)
® Drop Os:

* Reversible

(x,y) 2 (x,y XOR f(x))

hierarchy
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+ No garbage bits
dependent on x

* The uncomputation
overhead doesn’t
change the class

496
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Check - point

e Done with Part | of the book :
— Chapter 1 : Intro
— Chapter 2 : Linear Algebra + postulates
— Chapter 3 : Computer Science

e Now on to Part Il and specifically:
— Chapter 4 : Quantum Circuits
— Chapter 5 : Quantum Fourier Transform
— Chapter 6 : Quantum Search
— Chapter 7 : Physical Realization of QMs
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Chapter 1
QUANTUM

C

CUITS

Part I

Lecture 7

Vahid Rezania
May-June 2002

Motivation

* Quantum circuit model :
fundamental model for quantum

computing

* Universal Gates:

any quantum computation can be
expressed by these gates




* Quantum Algorithms
Single qubit operations

Controlled operations (Multi-qubits
operations)

Measurement
Universal quantum gates

-Why quantum computer?

many problems are impossible to solve by
classical computers (astronomical
resources required)




-Two quantum algorithms:
(a) Shor’s quantum Fourier transformation
- factoring, discrete logarithmic problems

- exponential speed up

(b) Grover’s quantum search algorithm
- quadratic speed up

- Why two?
- finding an efficient and optimal algorithm
is very difficult

- should more efficient than classical one




A gate is a function from m bits (qubits) to n
Bits (qubits):

To compute a Boolean function, ‘ glue’
different gates =——> Circuits

Properties of quantum circuits:
- time proceeds from left to right
- wires represent qubits




- A single qubit vector is shown2 as
> =al0>+ Db 1> with |a| + |b] = 1.

- Operations must preserve the norm.
- 2 X 2 unitary matrices.

* The Pauli matrices

1 0 0 1

0 —i 1 0




H = (1/ Jz) T 71 Hadamard gate
1 -1
0
S= _ phase gate
0 |
T= 1 0 n/8 gate
0 exp(in/4)

- qubit represented by a point (6,0) on a
sphere — Bloch sphere

- Bloch vector :
(cos ¢ sin 6, sin ¢sin 6, cos 6)
A
0 /)
|

AS)




- Rotation operators:
about x-direction:
Rx(0) = exp(-i0 X /2) = cos(6/2) I—i sin(6/2) X

about y-direction:
Ry (6) = exp(-i6 Y /2) = cos(6/2) I-isin(6/2) Y

about z-direction:
R: (6) = exp(-i60 Z /2) = cos(6/2) I— isin(6/2) Z

Note: exp(iAx)=cos(x)I+ isin(x) A if A =Iandxisa
real number

- for any unit vector n = (nx, ny, nz) the
rotation operator is defined by :

Rn (6) = exp(-i@ n.c /2)
= 003(9/2) I—1i Sin(9/2)(nx0'x +nyoy+ nzd'z)

RnJr(H) = Rn(-0)=exp(iOn.c /2)




- Why rotation operators?

any arbitrary unitary operator on a single
qubit can written as a combination of
rotations and global phase shift.

U=exp(i@)Rn (6)
Example:
for =0, 6=—n/2: U=H
fora=n/4, O0=n/2: U=S

Theorem 4.1: Z-Y decomposition

Let U is a unitary operation. There is real
numbers a, 8, y, and ¢ such that

U = exp(ia) Rz(8) Ry(») Rz(0)

i (@=B/2-6/2) i (@=B/2+6/2)
e cos(y/2) -e sin(y/2)
U —| i(a+p/2-6/2) i (@+B/2+6/2)

e sin(y/2) e cos(y/2)




In general for two non-parallel unit vectors
m and n, one can decompose an arbitrary
Single qubit unitary U as

U= exp(la) Rn(ﬂl) Rm()/]) Rn(é)Z) Rm(}/Z)...

for appropriate choice of @ and Sk, y«.

Corollary 4.2: Let U is a unitary gate on a
single qubit. There exist operators A, B,
and C on single qubit such that ABC=/
and

U=exp(ie) AXBXC
where « is a phase.

proof: Set A =R:(6) Ry(7/2),

B =Ry (=/2) Re(—-(048)/2), C =R:((0-5)/2)

Example:
H=exp(iz7Z2) AXBXC
for A=Ry(z/4), B= Ry (-7/4)R:(-7/2), C=R:(7/2)




Circuit identities

» To simplify a circuit one can use following
identities:

HXH=Z
HYH=-Y
HZH=X

H T H = Ru(7/4)

Single qubit gates:

Pauli— X |a> — X |1-a >
a
Pauli— Y |a> — Y (-1)i|1-a >
a
Pauli- Z |la> — Z — (-1) |a>

10



Hadamard |a> —| H |— [0>+(-1)" |1>

Phase |a> — S | exp(iar/2) |a>

/8 |a> — T — exp(iar/4) |a>

! f

> = |a> |b> o> = (U |@>)|b>




if “A’istruethen do‘B’

- controlled qubit: |c>
- target qubit : |t>

* C—NOT (9f1e>=17> then flip 12> ):

- et operation ——» |C> [t®C>

10 0 0o
010 0|1
000 1|9
001 O0ffd
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* C—NOT (9f1c>=10> then fiip |¢>):

- |c>|t>

|t> D

operation —* |C> |t ©C>

0

B][8] [8]
o_\

o -~ O O
- O O O

N
—_

O O O -~

1
0
0

|c>

|teac>

The Controlled-U

* is a two qubits operation as

lc>|t> = |c>U°|t>

o>

t>

o>

—e

U Uit

13



Example

* C-NOT is a controlled-Z gate:

— H 4 H

See Ex. 4.17 and 4.18

C-NOT

* The role of ‘control’ and ‘target’ qubits
depends on the chosen basis:

the role of control and target qubits is
completely interchanged in the basis

[+>=(0>+[1>)/ 2  [->=(0>-[1>) 2
|0>|0>@>|0>|0> |+>|+>@>|+>|+>
[0>]1> — |0 > [1> [->|+>—|-> | +>
[1>1]0> — |1 >[1> [+>]->——]|->|->
[1>1]1> — |1>|0> [->|->——|+>]|->

Blue = control qubit Red = target qubit
See Exe. 4.20
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The Controlled-U

« Can we express the controlled-U in terms
of single qubit operations and CNOT gate?

yes

U=exp(lie) AXBXC

The Controlled-U

- We can simulate the controlled-U gate by using
the CNOT and any single qubit gates:

15



The Controlled-U

In general for n+k qubits and U is a k qubit
unitary operator :

C n(U)|X1X2..xn>/;/> =|x1X2...xn>U X o | >

n=4, k=3 _— U I

C’(U):
we can express C °(U) by using any unitary
operator V such that Vi=U
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¢’ ()

b

|a,b,x> — [a>[b>V [x> (V)
b
_,|la>|bPa> V |x> (C-NOT)
Tb Da b T
— la>bda> (V') Vx> (V')
bDa b

. |a>b®ada> (V1) Vx>  (C-NOT)

b D
— b VIV T Ve (V)

b D b 2
TRYA VL L VA VAT

One and two qubit reversible gates are sufficient
to simulate C?(U)

This decomposition is valid in quantum
computing only.

In classical computation you cannot build a
circuit using only one and two bit reversible logic
gates, see problem 3.5

We can simulate Toffoli gate by using one and
two qubit unitary operations
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The Toffoli gate

|a> |a>
|b> |b>
|c® ab>

|c>

ab
|a>|b>|c> — |a>|b> X |c>

Toffoli Gate: C (X)

V=(1-i)(+iX)/2, V * =X

18



c"w)

* How we can implement C n(U) for an unitary
operator U by using our known gates?

« simplest way:
- n control qubits
- n-1 working qubits (all start and end
in the state |0>)
- target qubit

CoU)

|ci> j t
|Cz>

|Cs> @ ®
|C4> T ®
|CS> \ @
|O> AN 09 cic. AN
|O> ;0@‘(0@0‘102)03 é W
0> W %o&(oea(oea 6:C)Ga)Cs L W
08 (0B(0B(0® 6.G:)cs)c.)cs A W
|0> N N

|t> U




5
C (U) = matrix operations

|c....Cs; 0,0,0,0;t> —»

cc. (0®cic)cs (0D (0 Dcicz)cs)cs (09(0® (0 @ cic)Cs)cs)es

X X X X
0 (0D (0 ® (0 ®cicz)cs)cs)cs
U
(0®(0® (0 ©® cic:)cs)ci)cs (09 (0 D cic:)cs)cs (Oécc)es cice
X X X X

|C1...C5; 0,0,0,0; t > = |c....Cs; 0,0,0,0; t&[ 0BOS(0® (09 c.c:)cs)c)c:]>

Exercises:

e Ex.4.3;4.4:4.7:4.8;4.10;4.12; 4.13;
4.15;:4.16; 4.18; 4.20; 4.21; 4.22; 4.23;
4.24: 4.25; 4.28; 4.31
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» Deferred and implicit measurements

* Universality




- final element in a circuit

- |y> i/f\ denotes a projective
measurement in the computational basis

- general measurement can always
represented by unitary transforms with
ancilla qubits followed by projective
measurement, see sect. 2.2.6

- the role of measurements in quantum
circuits is considered as an interface
between quantum and classical worlds

- measurement is an irreversible operation,
destroying quantum information and
replacing with classical information (except
teleportation and quantum error correction,

see chap. 10) /7‘\




Deferred Measurement

- Principle of deferred measurement:

- Consider we have an algorithm that
performs some quantum operations,
measures, and then applies more
quantum operations (depending on the
outcome of the quantum measurement).

—-H 1l

Deferred Measurement

- We can simulate this entire algorithm by a
completely quantum algorithm with only
one final measurement

|

- How?




Deferred Measurement

- Replace classically controlled operations
with controlled quantum operations,

see figure 1.13

el S

Measurement commutes with controlled operation

- Suppose we use a qubit to control a quantum
operation U, and then we measure the qubit.

- We could equivalently first measure the control
qubit, and then use the measurement result to
classically control the application of U

f/% _ %1

U — U [—




Implicit Measurement

- Principle of implicit measurement:

If some qubits in a computation are never
used again, you can assume that they
have been measured (and the result
ignored)

) The reduced density matrix is not
affected by the measurement, see Ex. 4.32

The kicked-back trick
Consider the following circuit
H T H — 7

|lﬁin> U |lﬁout>

0>

if U|wn>=A|¢mw> A1=+1,-1 (U Hermitian-unitary)
|lou> = |O> |n> for A=+1
|lou> = |1> |m> for A=-1

— result indicate one its eigenvalues

— U is measured




generally if U |¢n> = ei ‘P];ﬁm>

0> H T H — 7/
|lﬁin> U |lﬁout>

0> Jym> > (|0>+ [1>) [yn> (H)
(0> + e 1> ) > (C-U)

— [(1+eH) 10>+ (1-e ) [1> T[> (H)
= e“?[ cos(p/2) |0> + sin(@/2) |1> ] |yn>
= |ywn>is not altered (auxiliary state)
=) e'?is kicked-back

* In classical computation any classical function
can be computed by a small set of gates like
AND, OR, XOR, NOT, NAND ==> Universal
gates

* What is universal gate in quantum computing?

a set of gates is called universal for quantum
computation, if any unitary operation may be
approximated to arbitrary accuracy € >0 by a
quantum circuit involving universal gates, for
example:

{ Hadamard, CNOT, phase, 7/8 }




An arbitrary unitary operator
may be expressed exactly as a
product of unitary operators that
each acts non-trivially only on a
subspace spanned by two

computational basis states .

An arbitrary unitary operator (2-dim)
may be expressed exactly using

singli qubit gates and CNOT gate

Single qubit operation may be
approximated to arbitrary accuracy
using Hadamard, phase, and /8

How many gates must be composed to create a
given unitary operation?

- Depends on initial qubits
- There exist unitary operations which require
exponentially many gates to approximate.




First construction:
Two-level unitary gates
Two-level matrix:
Consider 3x3 matrix (in A=
3-dimensions vector space ) as

o 0 o
O O T
- O O

Its operation changes the first two components of a
vector (x, y, z) only:
ab 0 X ax+by
0| [y| = |cx+dy ) Ais a two-level
1

c d
00 z Z

First construction:
Two-level unitary gates

Note:
All following 3x3 matrices are two-level matrices:

o 0 o
o Q T
- O O
O O o
o -~ O
O O T
o O -
O 00 O
O T O




First construction:
Two-level unitary gates

Suppose we have a unitary matrix (dxd) U as

an adiz... a1d
Us a2 d2... d2d
dad1 Aw ... Add
We can find two-level matrices U;,... , U such that

the matrix Us1 Us2 ... U2U+U has a one in the top
left hand corner, and all zero elsewhere in the first
row and column :

First construction:
Two-level unitary gates

1 0... 0
Ust Usz ... U-UU = 0 b1, .. b1d-1
6 -bd-12 t.)d-1 d-1

We then repeat this procedure for the d-71 by d-1
unitary submatrix, and so on, with the end result
that

U=V:...Vk

where the matrices Vi are two-level unitary matrices
with K = d(d-1)/2




First construction:
Two-level unitary gates

Example:

For d = 3 we can find two-level matrices U, U- and
Us such that

Usu.u.u=1

or
L
U =U/U:Us

Second construction:
Single qubit and CNOT gates are universal

Consider a two-level unitary matrix U as

O O O O O o 9w
O O O = O O O
O O == O O O o
O = O O O O o
- O O O O o o

O O O O O O = O
o O O O O = O O
0 O O O O o o o0

b
U non-trivially acts on the states |000> and [111>:
U |000> =a |000> + b |111>
U [111>=¢|000>+d [111>
U |x>=|x> for [x> # [000> and |[111>

0 0 0 O

10



Second construction:
Single qubit and CNOT gates are universal

We wish to implement U by using CNOT and a
single qubit operation U (submatrix of U) as

~

U=|2 ¢

b d

Let set |s> =|000> and |[t> = [111>. We can find a
sequence between |s> and |t> such that adjacent
members of the list differ in exactly one bit (Gray
code) :

Second construction:
Single qubit and CNOT gates are universal

lg> 0 0 0
lg:> 0 0 1
lgs> 0 1 1
lg> 1 1 1

where |g:> to |g.> are Gray sequence. In general
we can find m sequences between |s>= |g.>
and |t> = |g~>.

11



Second construction:
Single qubit and CNOT gates are universal

To express U as a product of CNOT and single
qubit operation U gates:

Step 1: apply the permutation (by CNOT gates) on
the first m-1 sequences (|g:>, ..., |g~+>) such
that (swap operation)

lg:> — Igm>
19:> — [g:>
9> — [g:>

Second construction:
Single qubit and CNOT gates are universal

Step 2: suppose |g-+> and |g~> differ in the j-th bit.
Apply a controlled-U operation with j-th bit as

target, conditional on the other qubits having the
same values as appear in both |g~«> and |gn>.

Step 3: Undo the swap operations (inverse
permutation): swap |gn1> with |gn2>, then |gn2>
with |g=s>, ..., and then |g.> with |g:>.

12



Second construction:
Single qubit and CNOT gates are universal

Back to our example we need to swap

|g+> with |gs>,

|9:> with |g:>,

9> with |g.>,
then apply controlled-U on a different bit of |gs>
and |g.> (the first bit on each) as target, and finally
unswap. So one can build the following circuit:

Second construction:
Single qubit and CNOT gates are universal

13



Second construction:
Single qubit and CNOT gates are universal

« CNOT and Single qubit unitary gates
together form a Universal set for quantum
computation.

Third construction:
Approximating unitary operators

- Although CNOT and single qubit gates form a
universal set, no method is known to implement
all these gates in a fashion which is resistant to
errors (see chap. 10).

- There is a discrete set to perform universal
quantum computation.

14



Third construction:
Approximating unitary operators

- Why approximate?

- The set of unitary operations is continuous.
(U = exp(ia) Rz(B) Ry(y) Rz(9) )

=) A discrete set cannot exactly implement an
arbitrary unitary operation.

Third construction:
Approximating unitary operators

We define the error when V is implemented
instead of U by

E(UV) = max I (U-V)ly> ||

where maximum is over all normalized quantum
state |y>.

15



Third construction:
Approximating unitary operators

This definition has a reasonable interpretation that
if E(U,V) < ¢, then the probability P of any
outcome after measuring U|y> is within 2 € of the
probability of obtaining the same outcome after

measuring V|y>. More precisely
|P - P |=2E(UV)=2¢€
U Vv

for any POVM operator M.

Third construction:
Approximating unitary operators

- Further, if we have a sequence of gates V..., V,
intended to approximate some other sequence of

gates Uy,..., Um, then the errors add at most
linearly:

™M 3

E(Un Um-1... U,VmVma... V1) < E(U,V))

=1

—
1

so it suffices to have E(U;,V,) = €/(2m)

16



Third construction:
Approximating unitary operators

Now we need to show that the following set of
gates is universal:

{ Hadamard, CNOT, phase, n/8 }

Remember (Ex. 4.4 and 4.11): up to global phase
T =R (n /4)
HTH = R(n/4)

Third construction:
Approximating unitary operators

- The operation
THTH = R ()
n = ( cos(r /8), sin(r /8), cos(x /8) )
cos(#) = cos {x /8)
- As it clear with H and T gates we can construct
R (6)
- 6 is irrational multiple of 2x

17



Third construction:
Approximating unitary operators

- Repeated iteration of R, (6) can be used to
approximate to arbitrary accuracy any rotation
operation R ().

Proof: Define 6ksuch that 6k &[0, 27) and 6k= (k 8) mod 2,
for k=1,..., N (integer N > 1/desired accuracy). So the
pigeonhole principle implies that there are distinct j and k
(k > j) such that | 6«— 6| < 27/N.

—) This means that 0<|6k-j| <2x/N.

Third construction:
Approximating unitary operators

=) it follows that the sequence 6k-j, O2x-j),03k=-j), -
fills up the interval [0, 27) and form a ‘ net’ of
width §<2x/N

= it follows that for any e >0 there exists an k such

that
k

E(Ra(a), Rn(6) ) < /3

18



Third construction:
Approximating unitary operators

Since
H Rn(a) H= Rm(a)
m = ( cos(x /8), - sin(r /8), cos(x /8) )
we can write also
E(Rm(a), Rm(0) ) < ¢/3

Third construction:
Approximating unitary operators

And finally from U = exp(ia@) Rn(8) Rm(y) Rn(0)
we find 3 . .

E(U, Ra(f) H Rn(f) HRn(0) ) <€
For suitable positive integers ki1, kz2, and ks

—>This means that any single qubit unitary operator
U can be approximated up to given value € >0 by
a circuit composed of Hadamard and /8 gates
only.

19



Third construction:
Approximating unitary operators

%Combining with result of the second step, one
may approximate a given circuit with m gates,
using Hadamard, CNOT and n/8 gates.

Third construction:
Approximating unitary operators

How efficient is it?

Solovay and Kitaev showed that to approximate an
arbitrary single qubit gate up to an accuracy e,
one needs to use O (log°(1/ €)) gates from the
discrete set, where ¢ ~ 2 (Solovay-Kitaev
theorem).

—) to approximate a circuit with m gates, we needs
O (m log®(m/ €))
which is poly-logarithmic increase over the original
circuit.

20



Approximating unitary gates is generically hard

Is it always possible to build up an arbitrary
unitary operator efficiently?

or for given U on n qubits, does there always
exist a circuit of size polynomial in n
approximating U?

NO

How many gates does need to generate an
arbitrary state of n qubits?

Requires exponentially many operators:
22" "log(1/€)/log n )

Approximating unitary gates is generically hard

To within a polynomial factor the construction for
universality is optimal

But it does not address the problem of
determining which families of unitary operators
can be computed efficiently in the quantum

circuit model.

21



« Ex.4.32;4.34;4.35;4.37; 4.38; 4.39; 4.40; 4.41,

4.44

Exercises
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* Quantum computational complexity

« Simulation of quantum circuit




» Classical classification of resources:
- Class P - time to solve: O(poly(|input|))
- Class NP - time to verify: O(poly(]input|))

- Class NP-complete - any other NP problem is
reducible to it

- Class NPI - NP but not NP-complete

- Class PSPACE - space to solve:
O(poly(|input|)) oly(finput])
- class EXP - space to solve: O(2IO yAmne )

Quantum Computation Complexity
PSAPCE - class

- Class PSPACE

class of decision problems

can be solved on a Turing machine

using space polynomial in the problem size
using an arbitrary amount of time.




Quantum Computation Complexity
BQP - class

- Class BQP
- an essentially quantum complexity class

- contains decision problems that can be solved
with bounded probability of error

- using a polynomial size quantum circuit.

Quantum Computation Complexity
BPP - class

Class BPP
- classical complexity class

- contains decision problems that can be solved
with bounded probability of error

- using polynomial time on a classical Turing
machine

- ltis clear that BPP C BQP




Quantum Computation Complexity

PSPACE

Quantum Computation Complexity
BQP in PSAPCE

- We wish to show that BQP € PSAPCE, ie. any
language L for which a quantum algorithm can
decide with bounded error in polynomial size
quantum circuit, can be decided by a classical
machine using only space polynomial,

L €EBPQ = L €PSPACE




Quantum Computation Complexity
BQP in PSAPCE

Suppose we have an n qubits quantum computer
with p(n) gates, where p(n) is some polynomial
in n:

jju Uz,.-., Up(n):

and let the quantum circuit starts in the state |0>

Quantum Computation Complexity
BQP in PSAPCE

The probability that it ends up in the state |y> is
<y| Upy ... U2U1]0>

= <Y|Upm)|Xpmn)-1>< Xp(n)-1|Up(n)-
X1, .., Xp(n) -
1.7 Uz2|x1><x1|U1]0>

(inserting ‘ |x><x| = 1)




Quantum Computation Complexity
BQP in PSAPCE

- Each individual unitary gates are operations such
as Hadamard gate, CNOT, etc.

- So each term can be calculated to high accuracy
using only polynomial space on a classical
computer

—»> the whole can be calculated using polynomial
space

> BQP C PSAPCE

Quantum Computation Complexity

- Any arbitrary quantum computation can be
simulated on a classical computer, no matter the
length of the quantum computation

- The class of problems solvable on a quantum
computer with unlimited time and space
resources is no larger than the class of problems
solvable on a classical computer




Quantum Computation Complexity

—) quantum computers do not violate the
Church-Turing thesis:

any algorithmic process can be simulated using a
Turing machine

- Classical resources

- A suitable state space: [x1,...,X >
2"-dimensional complex Hilbert space

- Ability to prepare states in computational basis

any computational basis |xi ,...,X. > can be
prepared in n steps




- Ability to perform quantum gates
- gates can be applied to any subset of qubits

- universal gates

- Ability to perform measurements in the
computational basis

- Finding solution of integro-differential equations of
a dynamical system which is governed by physics

laws

-Approximating the state

-Discretizing the diff. Eq.

|:> in space and time -

-iterative procedure from
initial state to final state

- The error is bounded
- Not all dynamical systems can be simulated
efficiently




- Simulation of quantum systems by classical
computers is possible, but very inefficiently

- The exponential of number of differential
equations

Sy =H >

- For nqubits — 2 " equations

4.7.2 Quantum simulation algorithm
time-independent Hamiltonian

A system starting in |(0)>

A time-independent Hamiltonian operator H,
operates on the state over a period of time t

-iHt
|

System evolves to |y(t)> =e
The first order approximation

[p(t + At)> = (7 - iH AD[y(t)>

¥(0)>




4.7.2 Quantum simulation algorithm
time-independent Hamiltonian

Example:

the Hamiltonian of a spin - % particle in a
uniform magnetic field along the z-axis is

c O
0 -c

H=cZ=

Then after a time t
|O> o, e--lct |O>

c = (eB/mC)

4.7.2 Quantum simulation algorithm
time-independent Hamiltonian

Example (continue):

1 .
for two non-interacting spin - > particles in a

uniform magnetic field along the z-axis will be

Ci+C2
0
0
0

H=cZR I +tc. I ®Z=

0
Ci-C2
0
0

0

0
-C1+ C2

0

0

0

0
-C1- C2

10



4.7.2 Quantum simulation algorithm
time-independent Hamiltonian

Example (continue): :
but for two interacting spin - > particles in a
uniform magnetic field along the z-axis we have

H=cZ®I +GI®Z+jnZ®Z =

Ci+ Cz+j12 0 0 0
0 Ci- Cz-j12 0 0
0 0 -C1+ Cz—j12 0
0 0 0 -C1- C2+ 12

4.7.2 Quantum simulation algorithm
time-independent Hamiltonian

- Generally in most physical systems, the
Hamiltonian can be written as a sum over many
local interactions (subsystems)

L
H=@ H
k=1

where Hkacts on small number of subsystems and
L is a polynomial of number of subsystems

11



4.7.2 Quantum simulation algorithm
time-independent Hamiltonian

- We can choose the subsystems such that each
e would be easy to simulate

- But in general we have [Hx,Hj] #0 then

-iHt -iHkt
e *= ; e

- How can construct e ™ from e 2

4.7.2 Quantum simulation algorithm
approximating Hamiltonian

, -iHt
- We can approximate e

- Theorem 4.3: Let A and B be Hermitian
operators. Then for any real t,

_ iAt/n iBt/n D i(A+B)t
lim (e e = e

n—» 00

(Trotter formula)

12



4.7.2 Quantum simulation algorithm
approximating Hamiltonian

Example:

i(A+B)At - -
el( JAt elAAt oiBAt +O(At2)

(A+B)At _  jAAt2 iBAt iAAt2
g ATBIAL _ JAstz JBAL + O(At?)

time-independent Hamiltonian
Simulation algorithm

- Inputs:

- H=@®. H acting on N-dimensional
system, where each Hkacts on small subsystem
of size independent of N

- initial state [yo> of the system at t=0

- a positive, non-zero accuracy 6 > 0

- a final time tr at which the evolved state is
desired

13



time-independent Hamiltonian
Simulation algorithm

- Outputs:
A state |¢Z(tf)> such that

-iHts 2
o> 1215

| <y (tr)| e

- Runtime:

O(poly( 1/6, L, tr)) operations

time-independent Hamiltonian
Simulation algorithm

- Procedure:

- choose a representation |¢~> of n=poly(log N)
qubits to approximate the system

- choose At such that the expected error is

acceptable and mAt = tr for integer m

- approximate each €Mt with accuracy O(6/m)

with efficient quantum circuit

- construct the corresponding quantum circuit U,
for the iterative steps ( see Ex. 4.50)

14



time-independent Hamiltonian
Simulation algorithm

- Procedure (continue):

do:
1- |§5€)> «— |¥o>; j=0 initial state
2-  —— > =Uxy |l%> iterative update
3- —— j=j+1;goto 2 untilej > m loop
4-  — |yt >= |l751‘> final state

time-independent Hamiltonian

- Actually these methods do not require the H«be
local

- Hkcan be tensor products of local Hamiltonian

eg.
H=Z1® 2,8 ... .& Z,

which acts on an n qubit system.

15



time-independent Hamiltonian

-iHAt

For n=3 we can simulate the e~ by following
quantum circuit
® L
® L 4
0> ——D wiz o2 QL bH—— 0>
H=21® Z>® Z3

time-independent Hamiltonian
Pauli matrices

- We can simulate arbitrary products of the Pauli
matrices by using Hadamard gate H

Example: | |
X=HZH— e =He“H
SO
LiZO X® Xt [iz®7 ®7 ¢
e =/OHX®H . e A HR®H
(proveit!)

16



Ex. 4.46; 4.47; 4.49; 4.50; 4.51
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The quantum Fourier transform

and 1ts application
(Chapter 5)

5.1 The quantum Fourier transform
5.2 Phase estimation
5.2.1 Performance and requirements
5.3 Applications: order-finding and factoring

5.3.1 Application: order-finding
5.3.2. Application: factoring

Natural Fourier Transformer




5.1 The quantum Fourier
transform

y 4 -
4 “Small”
“Big” problems
Problem = T A with known
solutions
W

Discrete and quantum Fourier
transforms

* Discrete Fourier transform
_ L $xe

Yk - \/N el

* Quantum Fourier transform

L $xe

1
= N

» Equivalency

N-1
2.,
S

2 7ijk/N

2 7ijk/N

k)

NEIRAY




Product Representation

For N = 2" and the basis

State |J) using the binary representation:
0),..., 2'—1)

I=0s e dn =327 2 L+ 20

Product representation:

i0-j,

(0)+e”

1)(0)+e "
2n/2

1)---(0)+e™"" 1)

Jireend,) >

Efficient circuit for the quantum
Fourier transform

‘J1> 112 F “Rxl HEn l ‘0> + eZ”io.j‘mj”‘1>
‘J2>—"7 {E‘» R.}.z }{:1_1 - ‘0> n ezmo-j,..jn‘l>
‘jn—l > ‘.@7 ‘ 0> n ezmo»j‘,,_..j” ‘ 1>
‘Jn> @ ‘0>+ezmo»jw‘1>

1 0 Applying the 1 o
27i/2t Hadamard 7(‘ O> +¢ o ‘1>)‘J .] >
e 2" T
gate




Three qubit quantum
Fourier transform

HIS T
H T

- [s]

H

Recall that S and T are the phase and /8 gates

Matrix representation of the
quantum Fourier transform

S 8 & —~8 8 8 ~
S 8 & 8 8 8 8 ~
S — 8 — 8 —~ 8 ~
S 8 8 & 8 8 8 ~—

ol
8 8 8 8 8 8 g ~—

8 8 R —~ 8 8 8 ~

T 8 8 8 8 8 8 ~—




5.2 Phase estimation

Suppose a unitary operator U has an eigenvector \u>
with eigenvalue ¢

The goal of the phase estimation algorithm is to
estimate ¢

Phase estimation is performed in two stages:

— Circuit representation by applying a Hadamard
transform

— Inverse quantum Fourier transform application

Phase estimation. First stage

o) {a} 0} + 2oy
First register B
t qubits 10) e — [0) + e2mi2o)1)
10} —@ e 0) + 62"'(2]“”{1)
IG) 3 R R J0> + szul}w”])

oz Elu)

Second register { Ju)

2% (\OP + etrit 'w“)) (Fﬂ) +ezm‘z"’v|1>) . (|0) + (22112“'#!1))
1 Pl |

= ﬁ z elwnxpk|k> )




Phase estimation. Second stage

Elz (10) + €20 1)) (j0) + 20 P)) - (10) + emiomerenyy)

0>+IT-% A
Ju) il |u)

=

1 2t i )
57 2 €77 1i)u) — (8} )

3=0

5.2.1 Performance and
requirements

-1
k
2milp—(b+1)/2°)
2 (e )
k=0

2 -1

l —Imikl .

7 E e_ﬂ"—ezm“"ki{} ap =
k=0

B 1 | — 2mil e =(b+l)) _ 1 |- ezm'fz‘a-—n
@ = 2t \ 1 = eZrilp—(b+0)/29) 2t | | = ezmio—1/2%)

plm=bl>e= 3 Jaf+ Y |l

—2t-1<I<—(e+]) etl<i<at—!

oo 3]

2| —

t=n+




Algorithm: Quantum phase
estimation

Inputs: (1) A black box wich performs a controlled-U/? operation, for integer
(2) an eigenstate |u) of U with eigenvalue e2™* and (3) t = n + [log (2 + -21?
qubits initialized to |0).

Qutputs: An n-bit approximation ,, to .

Runtime: O(t?) operations and one call to controlled-U7 black box. Succeed:
with probability at least 1 — e.

Procedure:
1. 0} ) initial state
21
L2
2 — -‘/-—ZT 7)) create superposition
3=0
=
3 e ﬁ Y07 ) apply black box
=0
=
= €29 ) |u) result of black box
i=0
4. — [P ) apply inverse Fourier transform
5. — Pu measure first register

5.3 Applications: order-finding
and factoring

¢ The fast quantum algorithm for order-finding and
factoring are interesting for at least three reasons.

» They provide evidence for the idea that quantum
computers may be inherently more powerful than
classical computers, and provide a credible challenge to
the strong Church-Turing thesis.

» Both problems are of sufficient intrinsic worth to justify
interest in any novel algorithm, be it classical or
quantum.

« Efficient algorithms for order-finding and factoring can
be used to break the RSA public-key cryptosystem.




5.3.1 Application: order-finding
U\y> = ‘Xy(mod N)> y € {O,I}L N<y<2 -1

U only acts non- trivially when 0<y<N-I

2misk
|’U,S — Z exp Ii mLSs

for integer 0 < s < r — 1 are eigenstates of U, since

|:1:jlc mod V)

—2misk
Ulus ——Zexp{ s }| 1 mod N)

= exp | 772 fua)

Quantum circuit for the order-
finding algorithm

Register 1 / 15 7
t qubits |0) H I FTt N

Register 2 .
L qubits I1) /27 mod N}’———‘




Algorithm: Quantum order-finding

Algorithm: Quantum order-finding

Inputs: (1) A black box U, which performs the transformation

[7)|k) = |5)|=7k mod N), for x co-prime to the L-bit number N, (2)
t=2L+1+ [log (2 + )] qubits initialized to |0), and (3) L qubits initialized
to the state |1).

Outputs: The least integer r > 0 such that 2" = 1 (mod N).

Runtime: O(L") operations, Succeeds with probability O(1).

Procedure:
1. [0)[1) initial state
-1
2 - 7= Z [3)11) create superposition
vz =0
:
=
3. - 75 37 15)2* mod N) apply U v
=0
r—120-1
- \/] 3 e )
T2t S
s=0 3=0
15 ly inverse Fourier transform to first
4. - Z |5/} | app); : erse Fourier tr: S
ﬁ poert registe:
5. — 371' measure first register
6. = apply continued fractions

algorithm

5.3.2 Application: factoring

Theorem 5.2: Suppose N is an L bit composite number, and 1 is a non-trivial solution
to the equation * = 1(mod N) in the range 1 < z < N, that is, neither
r = I(mod N) norz = N — 1 = —1(mod N). Then at least one of
ged(z — [, N) and ged(z + 1, N) is a non-trivial factor of N that can be
computed using O(L*) operations.

Theorem 5.3: Suppose N = p{" ... p%m is the prime factorization of an odd composite
positive integer. Let 2 be an integer chosen uniformly at random, subject to the
requirements that 1 <z < N — 1 and z is co-prime to N. Let r be the order of
x modulo N. Then

p(ris even and /% £ — I(mod N)) > 1 — 2_11;




Algorithm: Reduction of
factoring to order-finding

Algorithm: Reduction of factoring to order-finding

Inputs: A composite number N

Qutputs: A non-trivial factor of N.

Runtime: O((log N)*) operations. Succeeds with probability O(1).

Procedure:
1. If N is even, return the factor 2.
2. Determine whether N = a® for integers a > 1and b > 2, and if so
return the factor a (uses the classical algorithm of Exercise 5.17).
3. Randomly choose x in the range 1 to N — 1. If ged(z, N) > 1 then return
the factor ged(x, V).
4. Use the order-finding subroutine to find the order r of = modulo N.
5. If r is even and 72 # — 1(mod N)) then compute ged(z™/2 — 1, N) and

ged(z™2 + 1, N), and test to see if one of these is a non-trivial factor,
returning that factor if so. Otherwise, the algorithm fails.
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Today

Summary of Chapter 4
CS questions on QC

Fourier transform re-cap

Fourier transform applications
— Period-finding

— Discrete logarithms

— The hidden subgroup problem

e Discussion

Peter Shor
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Chapter 4 Refresher

e Universality : any unitary operation on n
qubits can be done exactly with single
qubit gates and C-NOTs

e Discrete set universality : can
approximate any single qubit unitary
operator with Hadamard, C-NOT, pi/8

e The number of these universal gates can
be exponential in the number of qubits
for some “tricky” unitary gates

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO 3

Chapter 4 Refresher

e Recall : BPP -- polynomial time on a non-
deterministic Turing machine to get a bounded
error solution

¢ Define : BQP -- polynomial circuit size of a
quantum circuit to get a bounded error solution
(a finite universal gate set is used)

e BQP < PSPACE (Turing machines with
polynomial space requirements)

— Possibly exponential time of the simulation

e BPP c BQP c— PSPACE

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIM BULITKO




Chapter 4 Refresher

¢ No violation of Church-Turing thesis:
— Anything a quantum machine can do we can
approximate on a Turing machine
e A possible violation of the strong Church-
Turing thesis:
— any computable process can be done efficiently
(with at most a polynomial increase in the number

of operations) on a non-deterministic Turing
machine (p. 140)

— Possible counter-example : factoring : polynomial
on QC and exponential (?) on classical machines

— Quantum search is not a counter-example : the
speed up is quadratic and, therefore, polynomial

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO

Chapter 4 : The Model

¢ |n the book ‘quantum computer’ = ‘quantum
circuit model’
— What is ‘quantum circuit model’?
— Classical part (for convinience)
— 2" dimensional Hilbert space

— Ability to prepare basis states in at most n steps
(each). We always start with the basis states

— Ability to apply quanum gates to subsets

— Universal discrete gate set: e.g., Hadamard, phase,
CNOT, pi/8

— Ability to perform measurements on any qubits

e Cannot prepare arbitrary quantum states
easily....

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIM BULITKO




Chapter 4 : Extensions?

e Qutrits (3-level basic elements)?
e Infinite Hilbert spaces?

e Non-basis starting states?

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO

Some CS questions on QC

e Why are Quantum Computers faster?
— Are they : PSCAPE = BPP = BQP = BPP?
— Grover’s algorithm?
— Quantum parallelism?

e Simulation of QC on classical machines?
— Approximation of irrational numbers?

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIM BULITKO




Quantum Parallelism : The Hol

y Grail

Ideally, we would like to take complex
numbers {x;} as the inputs 2" of them

A computable function f: C > C

And compute {f(x;)} on all of them in parallel
on a poly(n)-gate quantum circuit

Read the results back: f(x,),...,f(x,,)

Similar to : analog (non-digital) electronic
machines where currents/frequencies/etc. can
be used to represent real-valued numbers (as
opposed to their n-bit digital approximations)

Problem : noise

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * © VADIA BULITKO g

Quantum Parallelism : Naive

* Have 2" complex numbers x; to run f on
® Prepare the input: 2N 1

jin) = > x; 1)
j=0

e Run our function f (expressed as Uy on
|in>, get:

oV 1 2N 1
lout) = Ug( Z zjlj)) = Z x;Ug(17))
j=0 =0

* Well, U;didn’t touch x; at all... ®

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIN BULITKO 0




Quantum Parallelism : Less Naive

e Suppose have a Boolean function with one
input f:{0,1} > {0,1}
Create a unitary circuit for computing f: U;

Figure 1.17, p. 31

Prepare input in superposition of |0> and
1>

Output is a superposition of f(0) and f(1)
Can do the same for n bits

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO n

Quantum Parallelism : Less Naive

e A problem : one measurement gives us
just one integer number back (the index
of the measurement operator in the
observable)

¢ The state then collapses and no more
information can be gathered

e Good-bye to the rest of {f(x)}

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIN BULITKO 2




What can we do?

e Well, we can measure some global properties
of f fast...

e Example #1 : Deutsch’s algorithm (p. 33): can
measure f(0) XOR f(1) with a single U circuit
run.

e Example #2 : Deutsch-Jozsa’s algorithm : can
determine if f is balanced/constant in poly(n)
steps where as need O(exp(n)) evaluations of f
in the classical case (p. 34)

® Problems --- Eric?

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO 3

Quantum Parallelism : Question

* We seem unable to use amplitudes of the basis
vectors (even normalized) to encode inputs {x;}

® ...because any quantum gate is linear and will
simply pass them through

* The solution suggested was to encode {x;} in
binary (n bits) and use basis vectors (for n
qubits) to represent all of them.

e Here is a question : Can we use phases of
vectors to encode {x;} ¢
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Fourier Tranform Recap (5.1)

e Classical (discrete) Fourier transform:
— Input : {X,,...,Xn.1} complex numbers
— Output: {y,,.-.,Yn.1} complex numbers

2 7ijk /N

1 N-I
=——) XC€C
=N

e Intuitive meaning — spectral analysis —
find “basic” frequencies of sine/cosine
waves in a complex waveform

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO

Fourier Transform : lllustration

1

Wyay eform

-1 -0.5 a 0.5 1

Magnitude

-8 - -4 -2 a 2 4 G g
Frequency (Hertz)
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Fourier Transform : lllustration

e Suppose we have a
square wave

* Can still approximate it =AY B
with sine/cosine waves: ¢,/ \ /
. N4

Fourier Tranform Recap

e Quantum Fourier transform is a linear operator
over orthonormal basis {|0>,...,|N-1>}
(N=2"— thus n qubits):

R
j—o>—xe

INET

* Here amplitudes x; are the original imputs and
y, are the outputs:

RIS DIRE

2 7ijk/N

k)

k)
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Fourier Tranform Recap
e If the input |j> =|j;...j,> then QFT is:

(0)+e ™ [1)(0) +e™ (1) -+ (0)+e 1)

Jeeesd,) >
e Complexity:
— Quantum: O(n?) gates
— Classical: O(2") operations
e Problems: ZX‘J>_>ZY‘1<>

— Cannot measure outputs y;
— Cannot efficiently prepare the input state |j>

JUNE 6, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO

Phase Estimation Recap (5.2)

e Suppose | have a unitary operator U
* U has an eigenvector |u>:

U

u) =Au) , Ae€C

e Since U is unitary, its eigenvalue A is a
complex scalar of modulus 1:

\ — ez.é' _ 6271'2.@,%9 cR

e What is the phase ¢? Sl
characteristic equation?

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIN BULITKO 20
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Phase Estimation Recap

10)

H FTt H&]

|u)

2% (|0> + etz 'vm) (fﬂ) + elﬂill_zﬁl’l[)) .. (10) + eznz"ﬁl))

1

p =001 0

57z (10)+ ST (10) + e 1)) (j0) + i )

—juil

Step 1z

2002 [ URDIA BULITKD

|w)
Step 2:
[P1- )

Application : Order Finding

® Find min r>0 such that x" =
e How is it related to Fourier transform?

1T (mod N)

x=5

N=21

60000000

r |x*r

x*r mod N

1

50000000

5

25

125

625

3125

15625

78125

390625

1953125

9765625

=|o|lo|o|N|o|o|~|wIN]|=|O

ala

48828125

1
5
4

20

16

17
1
5]
4

20

16

17

40000000
30000000

20000000

10000000 j
0
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Order-finding

So, we will just form a unitary operator:

U‘ y> = ‘xy(mod N)>

Its eigenvectors are (but of course!)

—2misk

lug) = \—};gexp[ " ]Irk mod V)

The eigenvalues then are:

2w

e — eZ?sz

And therefore the period is:

w |6

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO 23

Problems & Solutions...

® So, yes, it seems like we will just do
phase-estimation for ¢, compute r, and
happily go home...

e Well, maybe not quite: = 35 5[50 o ot
— How do we prepare |u,> eigenvectors?
— Need to know r... Hmm...
— What if s and r have a common factor?

e Have efficient workarounds for all three
(see pp. 227-230 in the book).

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIN BULITKO 24
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Application : Factoring

e Given a positive composite number N,
find a non-trivial factor of it

e Why bother?
— Don’t we all do it before going to sleep?

— Breaking RSA-like encryption systems —
credit card number encoding, PGP, etc.,
etc., etc.

e Best classical methods : O(exp(N))
e Can reduce to order-finding : O((log N)3)

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO 25

Factoring 2 Order-finding

e The reduction is based on this
observation:

Theorem 5.2: Suppose N is an L bit composite number, and z is a non-trivial solution
to the equation 2> = 1(mod N) in the range 1 < z < N, that is, neither
z = 1l{mod N) norz = N —1= —I1(mod N). Then at least one of
ged(z — 1, N) and ged(z + 1, N) is a non-trivial factor of N that can be
computed using O(L?) operations.

Theorem 5.3: Suppose N = pi" ...p%m is the prime factorization of an odd composite
positive integer. Let 2 be an integer chosen uniformly at random, subject to the

requirements that 1 <z < N — 1 and z is co-prime to N. Let r be the order of
x modulo N. Then

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIN BULITKO 26
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Period-finding

So, we will just form a unitary operator:

U‘ y> = ‘xy(mod N)>

e [ts eigenvectors are (but of coursel)
. This finds a period of
I —2misk] | | function f(k) = xk mod N.
lus) = \_/7,_- Z_: exp [ r ] |z Can we do it for a general
k=0 periodic function? Sure
¢ The eigenvalues then are: (pp. 236-237)
€27r-z'<p _ e?ﬂ'i‘%
¢ And therefore the period is: 0
S
JUNE 6, 2002 UNIVERSITY OF ALBERTA * LSS * SUMMER 2002 * @ VADIN BULITKO a7

Fast Quantum Algorithms

e Hidden subgroup formulation (section 5.4.3):
-f:G>X
— X is finite
— G is a group
— K'is a subgroup of G
— fis constant on gK and distinct for different g’s

— Have a quantum box for U|g> |h> =
|g> | h®f(g) > where @ is a specific binary
operation on X

— Task: find a generating set for K

¢ Can be done fast on quantum machines for
Abelian (commutative) groups G

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIN BULITKO 28
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The Power of QC

e Again : What makes QC appear faster
than classical machines?

— Parallelism?

— Promise (e.g., existence of generating subset

for K)

e Question: why do we need a promise?

JUNE &, 2002 UNIVERSITY OF RLBERTA * QLSS * SUANER 2002 * @ VADIM BULITKO
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Check - point

e Done with these :
— Chapter 1 : Intro
— Chapter 2 : Linear Algebra + postulates
— Chapter 3 : Computer Science
— Chapter 4 : Quantum Circuits
— Chapter 5 : Quantum Fourier Transform

® Now on to:
— Chapter 6 : Quantum Search
— Chapter 7 : Physical Realization of QMs

JUNE &, 2002 UNIVERSITY OF ALBERTA * QLS5 * SUMMER 2002 * @ VADIM BULITKO
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Chapter 0

QUANTUM SEARCH
ALGORITHM

Lecture 12

Vahid Rezania
May-June 2002

* The algorithm
* Quantum counting

» Search as quantum simulation




6.1 The quantum search algorithm

« N=2"—¢elements

* 1< M < N solutions

- x€{0, N -1}
f: {0,1}"— {0,1}
f(x) =1 — xis solution
f(x) =0 — xis not solution

The quantum search algorithm
Oracle qubit

» Suppose we have a quantum oracle with ability
to recognize solutions to the search problem, ie.
an unitary operator O which acts as

> Jg>
f(x)=1 qisflipped — x is a solution
f(x) =0 qis unchanged

Example: |x> |0>

Ix>1g @f(x)>




The quantum search algorithm
Oracle qubit

« Usually the state (|0> - [1>)//2 is considered as
oracle qubit, so

x> (j0> - 11)2 O (1) x> (j0> - 115 )2

f(x) =1 initial states are interchanged
f(x) = 0 initial states are unchanged

O f(x)

E— |x>
—S O(/N /M) for M solutions

The quantum search algorithm
the oracle

* What is the oracle?

+ Consider the classical factoring problem:
m=p.q (p<qgandare prime). To find p we
need to search all numbers from 2 to JE

- In quantum case, the action of the oracle
depends on input state |[x> : divide m by x, and
check if the division is exact # flipping the oracle

qubit. (xe {0, m-1})




The quantum search algorithm
the oracle

* How to implement the oracle efficiently?
* Note if x divides m — f(x) =1, otherwise f(x)=0

so we need to compute f(x) : Sec. 3.2.5 : reversible
classical circuit

(x,0,0,0) > (x,f(x),g9(x),q) = (x,f(x),9(x).q® f(x)) —
— (x,0,0,9 @ f(x))

- Without knowing the prime factors of m, we can construct
an oracle which recognize a solution to the search
problem when it sees one — O(m"*) oracle calls

The quantum search algorithm
the procedure

The search algorithm operates as:

n — - — — -
quits 1 = 1O £ — — —
G G G
oracle —L— — ] —
workspace =~ ——— ——— E E E
1
\/
1 N-1
o=, Z b O(N)




The quantum search algorithm
the procedure

where the Grover iteration circuit, G is

log(N,
ogny Q08N g
operations gates operations
T Phase: T
® n |O> — |O> ® n
n | ] || L] L
qubits — oracle 0 H x> x>0 H —
] m — forx>0 1 —
oracle x> - (-1) f(X)|)(> l
workspace  —| )
\4
U=2|0><0|-7

&®nN ®n
Notethat: H~ (2|0><0|-7)H =2 |y><y|-1
=) G=(2y><y|-1)0

the Grover operator
is a rotation operator

- G=(2y><y|-1)0
- let we have M solutions, we define ortho-normalized basis

1 1
|a> = 2 |x> B>= ——= 2 |x>
’N_M X ,’ M X
(sum over all x which are not solution) (sum over all x which are solution)
therefore

2 [ e [

ly> = cos(0/2) |a> + sin(6/2) |B> cos(@2) = N=MyN




the Grover iteration
is a rotation operator

o G |y> = cos(36/2) |a> + sin(306/2) |8>

» after k iteration :

G* |y > = cos((2k+1)812) o> + sin((2k+1)6/2) 6>

4>|ﬁ>

the Grover iteration

« How many Grover iteration?

- note 0 =2 arcsin( /M/N ) so the number of iterations
is

R=cl(2 arcs;‘“ WY o <aa

where CI(x) = integer closet to x, CI(3.5)=3, CI(3.6)=4

- note: R depends on knowing M




the Grover iteration

- For M < N/2:
R < [n/26], but 6/2 =sin(6/2) = /M/N
then we have

R=< [(71/4)/N/M = R=0(fn/m)

- Classically — O(N/M)
- ForM 2 N/2:
from 6= arcsin (2 /u(Nn-m) /N )

so as M gets closer to N, 6 gets smaller

> the iteration increases with M !l

the Grover iteration

- ForM > NiI2:

-if M is known, just pick up a solution and check it
using the oracle. The success probability is 2 and
requires one consultation with oracle only.

-if M is unknown, adds N extra items which you know
that they are not solution. As aresult, M S N/2. So

(1) add a single qubit |g> to the search index
(2) double the number of items to be searched to 2N

New augmented oracle needs R = xl4 J2N/M  calls (at
most).




6.3 Quantum counting

- Up to now we assumed that the number of solutions is determined in
advance - if not: how fast we can find it?

- Classical: ©(N) consultations with oracle

- Quantum: Grover iteration + the phase estimation technique
(faster)

——> possible finding a solution after first counting

> existence of soluton —— NP-complete problems

Quantum counting
eigenvalue estimation

|y> = cos(6/2) |a> + sin(6/2) |3>
- G |y> =cos(36/2) |a> + sin(36/2) |3> (rotated by angle 6)

- What if 6is unspecified?
- Estimating the eigenvalues of the Grover iteration - G is rotation
operator in two dimensions, using the phase estimation technique:
cos(d) - sin(6)
G = [sin6) cos) — A=e ,

lo+> = (la> +i |8>)/2 Glu+>=e" y+>
U—> = (ja> - 1 |8>)/2 Gly—>=e" ly—>




Quantum counting
eigenvalue estimation

0| H qgwf =2 =

|¢/+> ] G

|y+>

ZIZ

~ sin?(6/2)

Quantum counting
eigenvalue estimation

0> H %wf — N M

|y—>

Z|Z

~ sin?((2n-0)/2)




Register 1

Register 2

Quantum counting
the circuit

|O> — —®— + —
t ol H®! . FTH
qubits 10> T -

|0> — — — - —
. 1] — —
n+ [0> — ®n+1 0 A 1 Aot
qubits 10> — H G 1G> 4G
|0> — — — - —

|0> — — — — . E—

estimate 6to m bits of accuracy, with a probability of success 1 — €
t=m +[log(2+1/2¢)]

|ag < 2™

The quantum search algorithm

Input: (1) a black box oracle O which perform O|x>|g>=|x>|q & f(x)>
where f(x)=0 for all 0 <x < 2" except xo, f(xo)=1.
(2) n +1 qubits in the state |0>

Output: xo

Runtime: O( 2™?) operations.

Procedure:

1. 1052710, 1

2. (1R7%)% x> (10> - [15)2"°=[s>  apply H 1o first n, HX to last

qubit
®R 12 ,
3. [2lg=><y|- )O] ™" |s> ~ |xo> (]0> - |1>)/2 apply G, R times

4. — Xo measure the first n qubits




6.2 Search as simulation

Simulation (re-cap):
- initial state |y>
- Hamiltonian H
- final state |x> after some prescribed time

Search :
- we need a H which solves the search problem ie. if x is a
solution of search problem then
exp(-iHt)jy> — |x>
What kind of H will do this job?
[x><x| , [¥><y]
[x><y|, |¥><x|

6.2 Search as simulation

- The simple way is
Hy = peo<x| +lu><yl
Hy = [x><y]| + |y><x|

both of them works for the search algorithm

- Find |y> s.t [x> and |y> are orthonormal (Gram-Schmidt procedure)
- Expand |y>=alx>+Bly>, a2+p %=1

- — Hy= I+taX+a2)

- exp(-iH ;1) > = exp(-it) [cos(at) > - i sin(at)[x>]

- So aftert = n/(2a) we get [x> with probability one !
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6.2 Search as simulation

- but time tdepends on the a,the component of |¢> in the direction
of |x>.
- choose |y> be a uniform superposition of all [x>, so «is constant
and
ly> = (1IN"?) £ |x>
- the time willbe aN"?/2

easy to simulate, but
- to achieve accuracy O(At), number of oracle calls O(N)
- for better accuracy O(At"), number of oracle calls O(N"2(1))

- only for large r, we get the same efficiency as search algorithm.

6.2 Search as simulation

- using g (ATBIAL - g IAAL o BAL 4 O(At?) we can construct

- U(At) = exp(-ijy><y|At) exp(-i|x><x|At)
- U(At) is a rotation on Bloch sphere about an axis
r = cos(At/2) (y+2z)/2 + sin(At/2) (Y x z)/2

with angle
cos(6/2) =1 -2 sin2(At/2) I N

12



6.2 Search as simulation

choose At=n, —cos(6/2)=1-2/N

for large N : 0~4IN"

No. of oracle calls to find |x> :

O(N1/2) 1

A

Note:
exp(-ily><y| 7) = I- 2 [y><y| ly> = (208,00 - B §
z=(0,0,1)
exp(-ijx><x| r) = 7- 2 |x><x|

6.2 Search as simulation

In summary

- specify the problem, including the desired input and output
- guess a Hamiltonian (rather than quantum circuit)

- simulate the Hamiltonian

- analyze the costs
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Hamiltonian Cycle

- Classical algorithm: requires O( p(n) 209 1) operations to
determine existence of Hamiltonian cycle.
The success probability is 1.
- Quantum algorithm: requires O( p(n) 2n[log n /2 ) operations to
determine existence of Hamiltonian cycle (using search algorithm).
The probability of error is constant, say 1/6, which may reduced to
1/6" by rrepetitions of algorithm.

- Asymptotically the quantum algorithm needs the square root of the
number of operations the classical algorithm requires.

Search algorithm

The algorithm is essentially optimal: no quantum algorithm can
perform searching using fewer than Q(N”2 ).

- No further improvement is possible.

- NP-complete problems can not be solved efficiently on quantum
computers using search-based method.

- BQP does not contain NP-complete ?

14



Search algorithm

- Polynomial speedup for problems which are involved with evaluation
of Boolean functions

- D(F): minimum number of oracle calls that a classical computer must
perform to compute a function F with certainty.

- Q2(F): minimum number of oracle calls that a quantum computer must
perform to produce an output which equals F with probability at
least 2/3.

Example: for F=0R

Q,(F)> [D(F)13824]"°

Exercises

- Ex.: 6.1,6.2,6.3,6.7,6.12,6.17
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7. Quantum computers: physical realization

To be or not to be. That’s a question...
William Shakespeare
The “classic” answers: “fo be” or “not to be”
The “quantum” answers:
“to be”, “not to be” or a x (to be) +b x (not to be)

7. Quantum computers: physical realization
(Outline

Section 7.1: An overview of the tradeoffs in selecting a
physical realization of a quantum computer

Section 7.2: Physical conditions for quantum computation
Section 7.3: Harmonic oscillator quantum computer
Section 7.4: Optical photon quantum computer

Section 7.5: Optical cavity quantum electrodynamics
Section 7.6: Ion traps

Section 7.7: Nuclear magnetic resonance (NMR)

Section 7.8: Other implementation schemes




7.1 Guiding principles

The elementary units of the theory are quantum bits —
two-level quantum systems.

» What are the experimental requirements for
building a quantum computer?
» Robustly represent quantum information
» Perform a universal family of unitary transformation
* Prepare a fiducial initial state
* Measure the output result

The challenge of experimental realization is that these
basic requirements can often only be partially met.

Crude estimates for typical times and maximum number of

operations
System O Top Top = A7
Nuclear spin 10-2 —10° | 1073 —107° | 10° — 10"
Electron spin 103 1077 10
Ton trap (In*) 10~ 10— 10%
Electron — Au 0% 10~ 10°
Electron — GaAs | 10710 101 10°
Quantum dot 10-° 10-° 103
Optical cavity 10~° 0" 107
Microwave cavity | 10° 10-* 10*

Ty = decoherence time (quantum noise)
T,p, = Operation time

n, = A =14/1,,




7.2.1 Representation of quantum information

* Quantum computation is based on transformation of

quantum states

* Quantum bits are two-level quantum systems

Example spin-1/2 particle as a quantum bit

‘T> and‘¢>

Example spin-3/2 particle as two qubits

m=+1/2),

m=+3/2),

m= —1/2> and ‘m = —3/2>

7.2.1 Representation of quantum information

m;
+3/2
—— | ne
Ip ———e =3/2
1/2
3p1:z """ < t1j:‘z
(a) (b) (c)
s
s
J
L LN |2
j=32 =% i= g
(@) () (@ O]

Figure 44-8 (a) J for a py. state; this is sometimes called the
“stretch mode. (k) J for a py, state; this is sometimes called the
“jack-knife’” mode. (¢) The four values of J, for the py. state. (d)
The two values of J, for the p . state.




7.2.2 Performance of unitary transformations

* Closed quantum systems evolve unitarily as determined by
their Hamiltonians

* To perform quantum computation one must be able to
control the Hamiltonian to effect an arbitrary selection
from a universal family of unitary transformations (See
section 4.5)

Example Single spin might evolve under the Hamiltonian
H=POX+P@®)Y

P, ., = classically controllable parameters

{xy}

By manipulating P, and P, appropriately, one can perform arbitrary single spin
rotations.

7.2.3 Preparation of fiducial initial states

What can be used if numbers cannot be input?

In classical machines one merely sets some switches in the
desired configuration and that defines the input state.

It is only necessary to be able to (repeatedly) produce one
specific quantum state with high fidelity, since a unitary
transform can turn it into any other desired input state.

These quantum states are determined by suitable
measurable physical parameters (spin, energy, frequency,
etc.).




7.2.4 Measurement of output result

* The output from a good quantum algorithm is a
superposition state which gives a useful answer with high
probability when measured.

Example
A cubit state a‘ 0> + b‘ 1>
— Represented by the ground and excited states of a two-level atom

— Might be measured by pumping the excited state and looking for
fluorescence

— If an electrometer indicates that fluorescence had been detected by
a suitable device, then the qubit would collapse into the |1> state
(this would happen with probability |b[?)

— Otherwise the device would detect no charge, and the qubit would
collapse into the |0> state

7.3 Harmonic oscillator computer

* A simple harmonic oscillator is a particle in a parabolic
potential well

V(x) = ma’x?/2

The set of discrete energy eigenstates of a simple harmonic
oscillator can be labeled as [n>

n=0,1,...,0

 The relationship to quantum computation comes by taking
a finite subset of these states to represent qubits. These
qubits will have lifetimes determined by physicala
parameters

* Unitary transforms can be applied by simply allowing the
system to evolve in time.




7.3.2 The Hamiltonian

The Hamiltonian for a particle in a one-dimensional parabolic
potential :

H = P +-ma’'x’
2m 2

The solution using Schrodinger equation
ndwy(x) 1 2
W”f ) oty (0= Ev ()
2m  dx 2
Ha'ly) = ([H, a1+ a'H) [¢) = (hw + E)als)
1 v
Vs (e )
1

(s

7.3.3 Quantum computation

100), — ]00),
01}, — [01),
110y, — [11);
1), — [10),
00), = 10)

)

o = 12)

10), = (|4>+|1>)/\/i
o = (4 —1(1)/V2




Harmonic oscillator quantum computer
(Summary)

Harmonic oscillator quantum computer

o Qubit representation: Energy levels |0), [1), ..., 2"} of a single quantum
oscillator give n qubits.

o Unitary evolution: Arbitrary transforms U are realized by matching their
eigenvalue spectrums to that given by the Hamiltonian H=dla.

o Initial state preparation: Not considered.

o Readout: Not considered.

o Drawbacks: Not a digital representation! Also, matching eigenvalues to realize
transformations is not feasible for arbitrary U/, which generally have unknown
eigenvalues.




7.4 Optical photon quantum computer

The energy in an electromagnetic cavity is quantized in

units of A®. Each such quantum is called a photon.

Photons are chargeless particles, and do not interact very

strongly with each other and most matter.

In principle, photons can be made to interact with each

other,using nonlinear optical media mediate interactions.

Photons exhibit signature quantum phenomena, such as the

interference produced in two-slit experiments.

Thus a photon can be used to represent a quantum bit.

7.4.1. Physical apparatus

* How can photons represent qubits?

Let’s consider two cavities, whose total energy is hm

Take the two states of a qubit as being whether the photon is in one
cavity (J01>) or other (|]10>).

The physical state of a superposition: ¢,|01> + ¢,|10> (dual-rail

representation)

Cobherent laser output:

©

;MH>

—al/2
a)=e

|n> is an n-photon energy eigenstate

Mean energy: <an|o> = |of?




Parametric down-conversion scheme for
generation of single photons

N "
| <:
Laser o Crysta

)

h J

Optical beamsplitter

vo)
o
|
®
oy
X
©
+
o

L
+
o
Q
|
o

a,,=a, cos@+b,, sin0

b,,=-a;, sin6+b,, cosd




7.4.2 Quantum computation

 Arbitrary unitary transforms can be applied to quantum
information, encoded with single photons in the ¢,|01> + ¢,[10>
dual-rail representation, using phase shifters, beamsplitters, and
nonlinear optical Kerr media.
» Cuantum mechanically modeled electromagnetic radiation
— Vacuum state: |0>
— Single photon state: |[1> = at|0>

tn

a
— n - photon state: ‘n> = 7‘0>

Jan

Phase shifter

» A phase shifter P acts just like normal time evolution, but at a
different rate, and localized to only the modes going through it.

» The action of P on the vacuum state is to do nothing: P|0> = |0>,
but on a single photon state, one obtains P|1> = el4|1>
A =(n-ny)L/c, is the difference between propagation times of light in
vacuum and medium
|¢mu) = [ C:)W ? ] WJin} Ll

if we take the top wire to represent the |01) mode, and [10) the bottom mode,
and the boxed 7 to represent a phase shift by 7

wm} |l'yuul>




Beamsplitter

Beamsplitter acts on two modes, which can be described
by the creation (annihilation) operators a(a’) and b(b")

The Hamiltonian
H,s =0 (ab' — a'b)

Unitary operation
B =exp|[0 (aTb - abt)]

Transformations effected by B on a and b

BaB' = acosf + bsin and BbB' = —asinf + bcos 8

Nonlinear Kerr media

The most important effect of Kerr medium is the cross
phase modulation it provides between two modes of light

Hamiltonian:  Hp,, = —-XaT ab’h
. — _ivlL t b‘l‘ b
Unitary transform: K =eXm2 @

A controlled-NOT gate constructed for single photon states
using Kerr media and beamsplitter combination

K00) = |00)
K|01) = |o1)
K|10) = |10)

K|11) = e*E|11)




Optical photon quantum computer
(Summary)

o Qubit representation: Location of single photon between two modes, |01) and
|10}, or polarization.

¢ Unitary evolution: Arbitrary transforms are constructed from phase shifters (R,
rotations), beamsplitters (R, rotations), and nonlinear Kerr media, which allow
two single photons to cross phase modulate, performing exp [ixL{11)(11]].

¢ Initial state preparation: Create single photon states (e.g. by attenuating laser
light).

o Readout: Detect single photons (e.g. using a photomultipler tube).

¢ Drawbacks: Nonlinear Kerr media with large ratio of cross phase modulation
strength to absorption loss are difficult to realize.

7.5 Optical cavity quantum electrodynamics

 Cavity quantum electrodynamics (QED) is a field of study
which accesses an important regime involving coupling of
single atoms to only a few optical modes.

» Experimentally, this is made possible by placing single
atoms within optical cavities of very high Q (Quality
factor); because only one or two electromagnetic modes
exist within the the cavity, and each of these has a very
high electric field strength, the dipole coupling between the
atom and the field is very high

» Because of the high Q, photons within the cavity have an

opportunity to interact many times with the atoms before
escaping.




7.5.1 Physical apparatus

* The two main experimental components of a cavity QED
system are the electromagnetic cavity and the atom.

* The main interaction involved in cavity QED is the dipolar
interaction between an electric dipole moment and an
electric field. One of the most important tools for realizing
a very large electric field in a narrow band of frequencies
and in a small volume of space, is the Fabry-Perot cavity.

» The electronic energy eigenstates of an atom as having
only two states is an excellent approximation. This two-
level atom approximation can be valid because we shall be
concerned with the interaction with monochromatic light
and, in this case the only relevant energy levels are those
satisfying two conditions: their energy difference matches
the energy of the incident photons, and symmetries
(“selection rules™) do not inhibit the transition.

The Fabry-Perot cavity (schematic view)

!

|
2N+ 1)

L transmission frequencies
transmitted related to cavity length
intensity

Multiple-beam
mterference




The Fabry-Perot cavity

* A basic component of a Fabry-Perot cavity is a partially
silvered mirror, of which incident light Ea and Eb partially
reflect and partially transmit, producing the output fields E,.
and E,.. These are related by the unitary transform

[Eaf]: vR  V1-R [E]
Ey vI-R —-VR E,

R is the reflectivity of the mirror, and the location of the

6 »

sign is a convention chosen as given for convenience.

The Fabry-Perot cavity

Ry R>
R Ein U
Eg —~+—— Ep "
; Eout

A @

Ereﬂ -

ECBV

V91— REq,

Ea=Y E.=Y—
; T l+eeVRE,

where Ey = /1 — R|Ey, and E;, = —e*\/R,R,E_,. Similarly, we find E,, =
ei“’/zm, and Ereﬂ = \/R—lEjn + \/ITRT\/Eei(pEcaw




The Fabry-Perot cavity

* One of the most important characteristics of a Fabry-Perot
cavity is the power in the cavity internal field as a function
of the input power and field frequency

f_ 1 - R,

|]. + eiv v/ R[R;}_F

¢ = wd/ec, where d is the mirror separation.

Fav _
P,

Eqy
E;

7.5.2 The Hamiltonian

» The total Hamiltonian of the atomxelectric field system in
the cavity

H= Hﬂtum + Hﬁcld + HI

hw
Hamm = TD

where hw, is the difference of the energies of the two
levels, since the two states are energy eigenstates

H; = gloy — o_)a —a')




7.5.2 The Hamiltonian

* Final solution for the total Hamiltonian

)

H = Z+ hwala + g(a'o_ + aos)

a’ and a are raising and lowering operators on the single mode
field, wis the frequency of the field, @, is the frequency of the
atom, g is the coupling constant for the interaction between atom
and field, o, and o are the Pauli raising and lowering operators

 ForN=ala+Z/2, 5= (w,— @)/2 (detuning) and [H,N] = 0

H = hwN +6Z + g(a'o_ + aoy)

7.5.3 Single-photon single-atom absorption and refraction

» For single-photon single-atom interaction and

6 0 0

H=—10 6 g ]

0 g -4

« Since the basis states are |00>, |01>, [10>, for U = e"H time
evolution (A =1)
U = e 0[00) (00)
+ (cos Qt + i% sin Q£)|01) (01 |

+ (cos Ut — :'l!% sin Q2)[10) (10|

- z'% sin Q¢ (101 (10] + 110(01])

0= (g’ + #)? Rabi frequency




Three level atom

ag. b g,
0

Figure 7.4. Three level atom (with levels 0, 1, and 2} interacting with two orthogonal polarizations of light,
described by the operators a and b. The atom—photon couplings are respectively gq and g,. The energy
differences between 0 and 1, and between 0 and 2 are assumed 1o be nearly equal.

Three level atom (Hamiltonian)

0 0 =40 g
L0 0 go O
-4 Ga Gb
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Three level atom (Kerr effect)

-10

-20

-2 T 0 1 2
Detuning delta

Kerr relative phase shift [deg]

Figure 7.5. Kerr phase shift x; in degrees, for t = 0.98 and ga = gy, = 1, plotted as a function of the detuning §,

computed from (7.82) for single photons interacting with a single three-level atom.

7.5.4 Quantum computation

* QED can be used to perform quantum computation in a
number of different ways, two of which are the following:

— Quantum information can be represented by photon states, using
cavities with atoms to provide nonlinear interactions between
photons

— Quantum information can be represented using atoms, using
photons to communicate between the atoms

 Unitary transform (A = 16°, single photons)

1 0 0 0
0 e¥ 0 0
0 0 eivr 0
0 0 0 ellvatentd)
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7.5.4 Quantum computation

* Input state
) + Ja)
V2

 For approximation |a> = |0> + of 1>

|1f'£’1n} = Eﬁ+)

i) = [10%) + BI19)] [10%) + al1*) +[07) + af17)]

[tout) = [0%) [10%) +ae™+|1%) +07) +al17)]
+ e B17) [[0) + ae @ D[1%) +07) + al17)]
~ (0%, 0a/2) + € BI1Y) |, (pa + A)/2),

7.5.4 Quantum computation

Heterodyne

Local

Probe (2, oscillator

[I A2 PBS

Optical pumping

Cs beam

Figure 7.6. Schematic of an experimental apparatus used to demonstrate the possibility of using a single atom to
provide cross phase modulation between single photons, as an elementary quantum logic gate. A linearly polarized
weak probe beam of light Q4, and a stronger circularly polarized pump beam €2, are prepared and shone on an
optical cavity with high reflectivity mirrors M| and M. Cesium atoms prepared in the electronic state

651y, F' = 4, m = 4 by optical pumping fall (the figure shows the atoms upside down) such that the average
number of atoms in the cavity is around one. The light traverses the cavity, interacting with the atom; o+ polarized
light causes strong transitions to the 6P;/;, F* = 5, = 5 state, and the orthogonal o polarized light causes
weak transitions to the 6P;;, F' =5, m" = 3 state. The polarization of the output light is then measured, using a
half wave plate, a polarizing beamsplitter (PBS), and a sensitive balanced heterodyne detector (which selectively
detects light at a specific frequency, as determined by the local oscillator). Figure courtesy of (. Turchette.
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Optical cavity quantum electrodynamics (Summary)

Optical cavity quantum electrodynamics

Qubit representation: Location of single photon between two modes, |01} and
|10}, or polarization.

Unitary evolution: Arbitrary transforms are constructed from phase shifters (R,

rotations), beamsplitters (R, rotations), and a cavity QED system, comprised of a
Fabry-Perot cavity containing a few atoms, to which the optical field is coupled.
Initial state preparation: Create single photon states (e.g. by attenuating laser
light).

e Readout: Detect single photons (e.g. using a photomultipler tube).

e Drawbacks: The coupling of two photons is mediated by an atom, and thus it is

desirable to increase the atom—field coupling. However, coupling the photon into
and out of the cavity then becomes difficult, and limits cascadibility.

13



7.6 Ion traps

* As we saw in previous sections spins provide potentially good
representations for qubits. But energy difference between
different spin states is typically very small compared with other
energy scales (such as the kinetic energy of typical atoms at
room temperature).

no spin - electron spin ' electron + nuclear spin

Ion traps

* However it’s possible to increase the accuracy by
insulating and trapping small numbers of charged atoms in
electromagnetic traps, then cooling the atoms until their
kinetic energy is much lower than the spin energy
contribution.

Exercise 7.24
The energy of a nuclear in a magnetic field B =10 Tesla: = 5 x 10-26J
Thermal energy of one particle at room temperature: ~ 2 x 10-31J




Trap geometry and lasers

Hamiltonian governing the motion of the N ions in the trap

H_N‘w 1z+12+22+1ﬁw11 +iz i
=g\ el T )20
i=1 j>i

i=1

Laser H Modulators ! L f
z

0 © 0 o)

Vo cos Qpt + Uy

Photodetectors

Figure 7.7. Schematic drawing (not to scale) of an ion trap quantum computer, depicting four ions trapped in the
center of a potential created by four cylindrical electrodes. The apparatus is typically contained in a high vacuum
(7 10~* Pa), and the ions are loaded from a nearby oven. Modulated laser light incident on the ions through
windows in vacuum chamber perform operations on and are used to readout the atomic states.

Sideband cooling method

1,0y LIy L2y 1,3y |14y ...

LLLTOITLTT

0,0y (0,1} 10,2} [03) [0.4) ...

Figure 7.8. Sideband cooling method, showing transitions between |0, n2) and |1, m}, where 0 and 1 are two
electronic levels, and r and m are phonon levels representing motional states of the ion. Laser light is tuned to
have energy one phonon less than the electronic transition, such that, for example, the |0, 3} state transitions to the
|1,2) state, as shown. The atom then spontaneously decays into the lower energy 0 state (wiggly lines), randomly
going to either [0, 1}, [0,2), or |0, 3} (with nearly equal probabilities). Note that the laser light actually causes all
possible transitions between |0, n} and |1, 7 — 1}, since these all have the same energy. However, this process does
not touch the \0‘ 0) state, and eventually that is the state in which the atom will be left




Atomic structure

* There are numerous possible sources of angular momenta in atom:
orbital, electron spin, and nuclear spin. Consequently total angular
momentum becomes a uniquely defined property of the state.

Example: Two spin-1/2 spins.

The computational basis for this two qubit space is |00>, 01>, [10>, |[11>

Using eigenstates of the total momentum operator, defined by j,. = (X; + X,)/2,
=+ Y)2,j = (Z,+Z)/2, and P =j 2+ 2 +)?

The states [j, m>J are eigenstates of J? with eigenvalue j(j + 1), and

simultaneously eigenstates og j,, with eigenvalue m;.

0.0, = D0
1, —1); = |00)
= 10D + J10)
I1,0)s = =7
|1, 1) 7 =|11).

7.6.2 The Hamiltonian

Hy=—ji-B
o :
N F— ~ilp—wt)
[ s
A . o
+ |5 {Swa+ S ol +Sial + S a} (e B""””)] VAVAV.. <<$>>

Figure 7.9. Toy model of a trapped io:  single particle in a harmon
interacting with electromagnetic radiation

I T
110

Red Blue W,
(V3BT A — J,
|00) : v O

Figure 7.10. Energy levels of the toy model trapped ion showing the red and blue motional sideband transitions,

which correspond to creation or annihilation of a single phonon. There is an infinite ladder of additional motional
states, which are usually not involved. The states are labeled as |n, 'm} where n represents the spin state, and m
the number of phonons.




7.6.2 The Hamiltonian

N)m——mmm g
10

Red Blue W,
[01)——— Xl . J_
|00} J v Oz

Figure 7.10. Energy levels of the toy model trapped jon showing the red and blue motional sideband transitions,

which correspond to creation or annihilation of a single phonon. There is an infinite ladder of additional motional
states, which are usually not involved. The states are labeled as |re, m) where n represents the spin state, and m

the number of phonons.

Hy = huwoS, + hw.a'a

S+(t} = "5+CMDt S_(t) =5 g it
a*(t) = gleiwst a(t) = ae et
i (S,ale™” — S_ae™™) w=wptws
Hp={ "2
I ;
e N A W= Wy — W

Single qubit operations

* Applying an electromagnetic field tuned to frequency ,
turns on the internal Hamiltonian term

H,jmemal = (hQ/2)(S, e + S e-iv)

* By choosing ¢ and the duration of the interaction
appropriately, this allows us to perform operations R (6) =
exp(-i0S,) and R (0) = exp(-if S ), which by Theorem 4.1
thereby allow us to perform any single qubit operation on
the spin state.

— Theorem 4.1: Suppose U is a unitary operation on a single qubit.
Then there exist real numbers a, b, g and d such that

U= R (AR, (MRS




Controlled phase-flip gate

» If one qubit is stored in the atom’s internal spin state, and
another qubit is stored using the |0> and |1> phonon states,
it a controlled phase-flip gate can be perform with the
unitary transform

1 00 0
010 0
001 0
0 0 0 —1]

Controlled phase-flip gate

* For an atom that has a third energy level and laser tuning
to the frequency o,,, + ®,, to cause transitions between the
|20> and |11> states:

H,,, =1(nhQ'/2)(S e + S e¢)

FE ) F———
w% t
|
|

ﬁ)ﬂ
———.|21)
120
[01) = = = = Y -
w
100) 3 @
Figure 7.11. Energy levels of a three-level atom in an ion trap, with two phonen states each. The labels [n, )

indicate the atom’s state 1 and the phonon state m. The [20) « |11} transition is used to perform 2 controlled
phase-flip gate.




Swap gate

Swapping qubits between the atom’s internal spin state and
the phonon state can be done by tuning a laser to the
frequency w0 — wz, and arranging the unitary transform

1 0
0 O
0 -1
0 0 0 1

If the initial state is a|00> + b|10> (that is, the phonon is
initially |0>), then the state after the swap is a|00> + b|01>,
so this accomplishes the desired swap operation.

S = O
oS O O

7.6.4 Experiment and summary

~[Prep}{Ryl/2) Ry(—n/2) HA

Figure 7.14. Quantum circuit modeling the ion trap controlled-NOT experiment. The top wire represents the
phonon state, and the bottom, the ion’s internal hyperfine state.

Ion trap quantum computer

* Qubit representation: Hyperfine (nuclear spin) state of an atom, and lowest
level vibrational modes (phonons) of trapped atoms.

e Unitary evolution: Arbitrary transforms are constructed from application of
laser pulses which externally manipulate the atomic state, via the
Jaynes-Cummings interaction. Qubits interact via a shared phonon stare.

¢ Initial state preparation: Cool the atoms (by trapping and using optical
pumping) into their motional ground state, and hyperfine ground state.

¢ Readout: Measure population of hyperfine states.

¢ Drawbacks: Phonon lifetimes are short, and ions are difficult to prepare in their
motional ground states.




Nuclear magnetic resonance (NMR)

* NMR is a phenomenon which occurs when the nuclei of
certain atoms are immersed in a static magnetic field and
exposed to a second oscillating magnetic field.
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Figure 7.16. Schematic diagram of an NMR apparatus.

Single spin dynamics
* The Hamiltonian
H = (0y/2)Z + g(Xcoswt + Ysinot)

* Schrdédinger equation

i x(£)) = H|x(1))

e Solution

2

* A single qubit rotation about the axis

FR e
g —

1+ (325)°

n=

By an angle

o) = L7




Decoherence
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Figure 7.17. Carbon spectrum of »3C labeled trichloroethylene. The four lines on the left come from the carbon
nucleus directly bound to the proton; four lines appear because of couplings to the proton and 10 the second carbon
nucleus, whose own signal gives the closely spaced four lines on the right. The second carbon nucleus is further
away from the proton than the first, and thus has a much smaller coupling to it.

+ For a single qubit state, these effects may be phenomenologically
characterized with a density matrix transformation model

a b [ ta—ee M +ay be /M
b* l1—a b e~ t/212 (ag — @)e™T +1—q

Multiple spin Hamiltonian

» For an n spin coupled system:
H=3 wZe+ Y H o+ HY + 5 HY, + H
k Jk ik
* Simple two spin Hamiltonian
H = Hsys + NRF

H»s=aZ,+bZ,+cZ,Z,

e—i.’!"‘r/ﬁRile—iH‘-"UﬁRil = e—llez!jh

+ Realization of a controlled-NOT gate is simple using refocusing
pulses and single qubit pulses. Unitary transform:

100 0
o1 o0 o
Uez=19 0 1 o

00 0 -1

Vi Bl iZin [{=iZim/4 =[],




7.7.4 Experiment

e—iH/2hJ

o—iH/2R

Figure 7.19. Quantum circuits implemented with NMR and the real part of the experimentally measured output
deviation density matrices. In rhese circuits, R and R, denote single qubit gates which perform 90° rotations
about & and 7, implemented with RF pulses about 10 microseconds long, and the two qubit box with e~ /2R i
a free evolution period of time 1/2.J 7= 2.3 milliseconds. (1op) Controlled-~ 0T circuit, and the output measured
for a thermal state input, showing the exchange of the |10} and |11} diagonal elements, as expected from the
classical truth table for the cNOT gate. (bottom) Circuit for creating the Bell state (|00) — |11))/v/2, and its
output, when a [00) effective pure state is prepared as an input,

Quantum algorithm

* Three required operators for a problem size of four
elements (n=2 qubits):
— oracle operator O (which performs a phase flip based on the f(x)
* x={0,1,2,3}; f(x) = 0 except at one value x,, where f(x,) = 1

0
0
0

(=R ]
=R = =]

1
0
0
0 -1
— the Hadamard operator on two qubits H®?
— the conditional phase shift operator P

Lo 0 0
0 -1 0 0
F=1o0 0 -1 0
00 0 -1




NMR quantum computer (Summary)

NMR quantum computer

Qubit representation: Spin of an atomic nucleus.

Unitary evolution: Arbitrary transforms are constructed from magnetic field
pulses applied to spins in a strong magnetic field. Couplings between spins are
provided by chemical bonds between neighboring atoms.

Initial state preparation: Polarize the spins by placing them in a strong
magnetic field, then use ‘effective pure state’ preparation techniques.
Readout: Measure voltage signal induced by precessing magnetic moment.
Drawbacks: Effective pure state preparation schemes reduce the signal

exponentially in the number of qubits, unless the initial polarization is sufficiently
high.

10



Quantum-Computational
Intelligence

Outline

® Qverview

® Quantum search (revisited)

e Extensions:

e Search over arbitrary initial
amplitude distributions

e Quantum Associative Memory (QuAM)

® Beyond Phase Amplification
e QUAM - Upgraded
e Competitive Learning

® Conclusions




Quantum Computational
Intelligence

Computational intelligence

e Seeks to produce algorithms.that solve
problems which are intractable using
traditional methods of computation.

Quantum Computational intelligence

e Extension of the field into the domain of
quantum computing.

Current Research

® Quantum Artificial Neural Networks
@ Structured Search
® Quantum inspired Genetic Algorithm

@ Decision Tree evaluation using quantum
computation.

® Quantum algorithm for learning DNF formulas
@ Quantum Bayesian Networks




Quantum Artificial Neural
Networks

® Quantum Associative Memory
@& /Competitive Learning

€ ANN implementation using quantum
dots

‘Classical’ problems with
ANNs




Quantum Based ANN’s

® Pros:
e Exponential Memory Capacity
e Fast (Linear/Polynomial) training times
e Closer resemblance to human cognitive
processing (?7?7?)
® Cons

e Input collapses the quantum wave function

e l.e.. The superposition of stored patterns is collapsed to
a single pattern.

e So the QUANN needs to be retrained constantly

Grover’s Search Revisited

G |o> = cos(3012) |a> + sin(3612) 6>

[, = the identity matrix except for ¢ = —1




Notation

= 0[000) +0[001)+0|010) -+0[011) +0[100) + 1/101) +0[110) +0[111)

= (0,0,0,0,0,1,(

Example




Example (cont)

@ |teration 1

@ |teration 2

® Measure

Arbitrary Initial distribution
Example




Arbitrary Initial distribution
(cont)
® Need to create a new operator which

synchronizes the phase of non-solution
states.

® Define an operator which performs a
phase shift on set P containing all states
with non-zero amplitudes.

Example 3




Associative Memory (AM)

® Performs pattern completion

e Learning a set (P) of complete prototypical
patterns
e Output a complete pattern upon presentation of an

incomplete or noisy input pattern

Quantum Associative
Memory

@ |nitial pattern\memorization / Learning
(not covered)
@ Can be performed in O(nm) number of

steps using 2n+1 qubits where

e N — pattern length
e m — number of patterns




Quantum Associative
Memory (I)

@ Pattern completion

e Can be done using the modified search
algorithm presented previously.

Z'I> = éf PC\:IA Z‘>

e Repeat T times (T==VN)

Example 4

o1 ,
) = 5(1,0,0,1,1,1,0,0)

but now the pattern we search for is 7 = |00?7). Then:
[) —"7 ) = 1(—1.(_)._0._1,1.1._0, 0)

' S " _]_ i}
[ ) =G | ) = 1(3.1.1.—1.—1.—1.1.1)

1

[ Y TP ) = i(—3._—1._1,1.1._1,1.1)

P
)= 5(7.3,~1, -1, -1, -1, -1,-1)

Thus the probability of obtaining the correct answer is (i)2 =T76.6%




QuAM summary

® Need to create a pattern DB'represented as a
superposition of states

& At the same time need to create the operator

® To query the system need to create the
operator I# , where [ ) is(are) the target
pattern(s)

Classical vs Quantum
Associative Memory

® Classical Case (Hopfield Network)

e Can store approx. 0.15n patterns, where n is
the number of nodes

& QuAM

e Stores 2”n patterns, where n is the number of

qubits.
e Quantum search is quite slow for pattern recall.




Beyond Phase
Amplification

@ Question:

Yes

e To create a coherent superposition of basis
states reversible operators must be used.

NO

e The superposition is collapsed anyways

Non-Unitary Operators

® EXx: Observation of a system'is not unitary nor
evolutionary

& Since pattern recall requires decoherance
and collapse of the quantum system into one
basis state, pattern recall is a non-

evolutionnary and non-unitary operation.




Non-Unitary Operators

® Given a string g over the alphabet { 0,7,7 }, define a
new (non-unitary) operator
1 if¢g=yandh(d,q)>1
Toy = -1 ith(¢,q)>h(x,q)=1
|0 otherwise
e Where h(a,b) is the hamming distance

e The ‘1’s entries allow states with non-zero hamming
disnace the possibility of being chosen.

e The -1’ perform destructictive interference to allow the
state with maximal hamming distance to be chosen.

Example 5a

@ Consider a 2'qubit system

[y) =1/v2]0D)+1/~2]11)
@ And a query stringq ="11°




Example 5b

® Consider a 2 qubit system

® /And a query |1//> = 1/ﬂ|00>+1/\6|10>

Ry = |10)

InputPattern

Figure 1. Classical Hamming net storing two
patterns




Conclusions

® QuAM offers exponential/increase instorage
capasity

& Using phase ampliphication offers
polynomial(quadratic) speedup in pattern
retreval over 1-nearest neighbour alg.

® Using non-unitary operators offers an
exponential speedup for pattern retreval.

Conclusions

® QuAM is the most practical application of
Quantum Computing

e A 30 qubit system can store over a billion patterns

e Shor’s factoring technique will only be practical if
we can factor very large numbers (> 512 bits)
requiring a large number of qubits.
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® hilp://www.cic.unb.bidocentes/weigangfgc/aci.html

® /'http://www.cs.ualberta.ca/~ilya/gourses/c605-QC/Refs.pdf

Final Thoughts

® Prof. Sham: Well, we\factored number'15 Tato 3 times 5. It was a
thorny problem, but, by Jove, we did it. We started building our NMR
computer in 1997 with a $-million-déllar grantfrom DARPA. So it
took 5 years, a few million dollars,/and much hard work to build our
room sized computer. But just think how powerful it is! And according
to theory, NMR computers have tremendous growth potential. They
can have as many as 10 qubits!

Reporter: Could you please tell us something about your future plans?

Prof. Sham: Well. I plan to continue publishing in Nature Magazine.
Another exciting development is that I plan to add one more qubit to
NMR computers in the next few years. We've won another 3-million-
dollar grant from DARPA to continue our work. Isn't our government
just great! We can't wait to start factoring number 18.
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May 13, 2002
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QC Seminar (Winter'01) materials are still available here:
http://www.cs.ualberta.ca/~bulitko/qc/qc2001

University of Waterloo QC slides for the textbook are here:
http://cacr.math.uwaterloo.ca/~mmosca/quantumcoursef00.htm

Here is a link for the Quantum Computation and Quantum
Information book:

http://squint.org/Zqci/

The website contains: Errata, Sample from Chapter 1, and
Changes from 1st to 2nd printing

The following is a link to a page containing a quantum computer
emulator:
http://rugth30.phys.rug.nl/compphys0/agce.htm

in case someone is interested.

Quantum mechanics postulate 3 (p. 84 of the text) discussion is
here.

UofT Summer School in Quantum Information Processing (May
14-18, 2001) :
http://www.fields.utoronto.caZprograms/scientific/00-
01/quantum_computing/abstracts.html

From Vahid Rezania on the garbage bits: | think the problem is
raised because the

function g(x) remains unknown. If there is no information about
g(x) and

you cannot erase it, probably you cannot reverse the process.
Further in

quantum case this qubit will interfer with output qubit, and again
since

there is no information about g(x), you cannot get the exact result.
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May 22, 2002 From Dan Tzur on why garbage bits are bad : Well, | don't know
yet, but | found this webpage that could lead to an answer:

http://arxiv.org/PS cache/quant-ph/pdf/9806/9806084.pdf

and this:

http://qgso.lanl.gov/~zalka/QC/QC.html
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Summer School Title

Short-term objectives

Long-term objectives

Format

Prerequisitives

Target audiences

Textbook

Introduction to Quantum Computing (the
Computing Science Perspective)

Introduce Quantum Computing basics to the
interested parties around UofA

Engage into Al/CS/Math research projects
benefiting from Quantum Computing

Seminar-type meetings, tentatively 1-1.5 hours
twice a week

No background in quantum mechanics or linear
algebra is required. General computing
science/math background would be beneficial

CS/Math/Physics grad students & faculty but
open to all interested parties

Nielsen, M., Chuang, L., (2000). Quantum
Computation and Quantum Information. Cambridge
University Press.

(the numbers correspond to the sections in the
text -- as a summer school/seminar we will have
a certain flexibility in the topic selection and will
be able to take audience feedback into account):

1 Introduction and overview 1

1.1 Global perspectives 1

1.1.1 History of quantum computation and
guantum information 2

1.1.2 Future directions 12

1.2 Quantum bits 13

1.2.1 Multiple qubits 16

1.3 Quantum computation 17

1.3.1 Single qubit gates 17

1.3.2 Multiple qubit gates 20

1.3.3 Measurements in bases other than the
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http://www.cs.ualberta.ca/~bulitko/qc/sponsors/index.html
http://www.amazon.com/exec/obidos/ASIN/0521635039/qid=986512928/sr=1-1/ref=sc_b_2/102-6915135-6968969
http://www.amazon.com/exec/obidos/ASIN/0521635039/qid=986512928/sr=1-1/ref=sc_b_2/102-6915135-6968969

Overview

Tentative topics

computational basis 22

1.3.4 Quantum circuits 22

1.3.5 Qubit copying circuit? 24

1.3.6 Example: Bell states 25

1.3.7 Example: quantum teleportation 26

1.4 Quantum algorithms 28

1.4.1 Classical computations on a quantum
computer 29

1.4.2 Quantum parallelism 30

1.4.3 Deutsch's algorithm 32

1.4.4 The Deutsch--Jozsa algorithm 34

1.4.5 Quantum algorithms summarized 36
1.5 Experimental quantum information
processing 42

1.5.1 The Stern--Gerlach experiment 43

1.5.2 Prospects for practical quantum information
processing 46

1.6 Quantum information 50

1.6.1 Quantum information theory: example
problems 52

1.6.2 Quantum information in a wider context 58

2 Introduction to quantum mechanics 60

2.1 Linear algebra 61

2.2 The postulates of qguantum mechanics 80
2.3 Application: superdense coding 97

2.4 The density operator 98

2.4.1 Ensembles of qguantum states 99

2.4.2 General properties of the density operator
101

2.4.3 The reduced density operator 105

2.5 The Schmidt decomposition and purifications
109

2.6 EPR and the Bell inequality 111

3 Introduction to computer science 120

3.1 Models for computation 122

3.2 The analysis of computational problems 135
3.3 Perspectives on computer science 161

4 Quantum circuits 171

4.1 Quantum algorithms 172
4.2 Single qubit operations 174
4.3 Controlled operations 177
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Overview

4.4 Measurement 185

4.5 Universal quantum gates 188

4.6 Summary of the quantum circuit model of
computation 202

4.7 Simulation of quantum systems 204

5 The quantum Fourier transform and its
applications 216

5.1 The quantum Fourier transform 217

5.2 Phase estimation 221

5.3 Applications: order-finding and factoring 226
5.4 General applications of the quantum Fourier
transform 234

6 Quantum search algorithms 248

6.1 The quantum search algorithm 248

6.2 Quantum search as a quantum simulation 255
6.3 Quantum counting 261

6.4 Speeding up the solution of NP-complete
problems 263

6.5 Quantum search of an unstructured database
265

6.6 Optimality of the search algorithm 269

6.7 Black box algorithm limits 271

7 Quantum computers: physical realization 277
7.1 Guiding principles 277

7.2 Conditions for quantum computation 279
7.2.1 Representation of quantum information 279
7.2.2 Performance of unitary transformations 281
7.2.3 Preparation of fiducial initial states 281
7.2.4 Measurement of output result 282

7.3 Harmonic oscillator quantum computer 283
7.3.1 Physical apparatus 283

Presenters Prof. Vadim Bulitko & TBA

Tentative time-line May - June 2002

Due to the volume of the material and limited
lecture time an active off-line reading of the text

Class participation and working through the exercises will be
necessary for the participants. Guest
presentations will be welcome.
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Registration

No official UofA registration is required. Simply e-
mail to the school chair if you are [seriously]
interested in attending and/or
presenting/teaching.
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