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ABSTRACT

Construction performance diagnosis (CPD), the process of finding and explaining
performance problems, is a vital part of the project control process. Generally in
construction, a diagnostic problem arises if there is a discrepancy between the actual
performance of resource(s) and the planned performance. The diagnostic task is to
determine the cause(s) of this discrepancy. Understanding what caused an event to occur
enables the construction manager to predict, to plan for, to prevent, and to explain the
occurrence of the event. Automating the performance diagnosis process to detect,
diagnose, and report results within a time frame that permits prompt field response can

significantly enhance the project control process.

This thesis investigates the advantages of introducing computational
intelligence tools to develop automated performance diagnostic models to explain
construction performance. The integrated diagnostic system has advantages of both
fuzzy systems (e.g., the use of expert knowledge representation and the ability of
explaining generated decisions) and neural-network systems (e.g., ability of learning,
adaptation, optimization, and high fault tolerance). Additionally, the powerful global-
optimization technique of genetic algorithms effectively optimizes the network structure

to provide the best solution.

In this thesis, several key issues and challenges of developing robust
performance diagnostic models for construction-related problems are discussed. The
essential features of the model are described in detail. The efficiency and effectiveness
of the techniques and methods developed in this thesis are tested in the domain of
industrial construction labor productivity and implemented in a computer system called

XCOPE.
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The main contributions of this work are twofold. One contribution is the
development of a unified integrated computationally intelligent framework to diagnose
construction performance. Another contribution is in the acquisition and representation
of a construction expert’s knowledge. Several different techniques, such as Nominal
Group Technique (NGT), Semantic Differential (SD) Approach, and Fuzzy Membership
Functions, are explored to select the most suitable knowledge acquisition and

representation techniques for construction performance modeling.
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CHAPTER ONE

1. INTRODUCTION

1.1 BACKGROUND AND PROBLEM STATEMENT

Performance monitoring and analysis are integral parts of planning and controlling
construction projects. During the course of project execution, performance is measured
using different indices and reviewed periodically (e.g., daily, weekly, or monthly).
Generally, a diagnostic problem arises if there is a discrepancy between the actual
behaviour (of a resource, e.g., production rate of a welder) and the planned behavior; in
other words, when the expected behavior does not correspond with reality. The diagnostic
task is to determine the best explanation of observed abnormal behavior of a system
under study, to decide on appropriate interventions and facilitate rapid response. Figure

1-1 presents a graphical illustration of diagnostic process as an interaction of observation

and prediction.
Estimate On-Site
{model) construction process
Estimation/Prediction Observation/Measurement
iﬁ?{;ﬁgiﬁ | Behavioral Observed behavior
(Planned) d»screfancy (Actual)
Cause
identification &
ranking

Figure 1-1. Diagnosis as the interaction of observation and prediction

Typically, the construction manager uses his or her intuition and expert causal
knowledge combined with relevant data (if available) to find explanations for
performance failures. Finding a reliable explanation depends on factors such as the
complexity of the issue at hand, the expert’s experience and knowledge, the nature of the
project, and the quality of available data. It is crucial that the construction manager(s)

analyze performance to determine possible causes of performance deviations in a timely
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manner. Due to the increasing complexity and fast nature of the construction process, in
most cases, by the time the construction manager obtains the necessary information to
improve performance, the task may have already been completed (Maloney 1990).
Generally, since management’s extremely limited time resources are often allocated to
future tasks rather than to past completed tasks, managers do not get a chance to review
and analyze performance-related information generated. '

Additionally, research related to construction performance management (e.g.,
(Fayek et al. 2004; Kagioglou et al. 2001; Tang and Ogunlana 2003; Ward et al. 1991))
emphasized that traditional performance parameters measured on projects, namely costs,
schedule, and quality, are not appropriate for continuous improvement because they are
not effective in identifying causes of performance failures. These parameters do not
provide satisfactory revelation of the potential for improvement, and the information
obtained usually arrives too late to take corrective actions.

Construction-related problems are mostly unstructured in nature, which makes it
difficult to apply algorithmic methods based on mathematical models to the process of
performance analysis and reasoning. The relentless pressures of shorter project life cycles
and increased design complexity place construction contractors in an exigent position.
Complexity due to non-linearity and subjectivity are two main challenges of construction
performance modeling.

In light of the above observations, this thesis assumes that determining in a
scientific manner, the impact and the contributing effect of each cause to the performance
indicators should assist in improving performance management in the construction

industry.

1.2 RESEARCH OBJECTIVES

The objective of this study is to develop a unified framework and approach to find the
best explanation for the observed abnormal behavior of key performance indicators at
different levels of abstraction.

This thesis addresses three problems. The first is the construction performance
diagnosis problem, in particular the problem of efficiently identifying multiple root
causes of performance deviations. The second is the knowledge acquisition problem,
particularly the problem of acquiring (1) causal domain knowledge from a group of
construction experts, and (2) obtaining subjective assessments of (daily) working

conditions that potentially impact construction performance. The third is the problem of
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representing such domain knowledge in a manner that can be used as inputs for a
diagnostic model.

The methods described in this thesis seek to achieve robust construction
performance diagnosis by simultaneously considering the importance and interrelation of
all three problems. The goal is to make the solution of the complex construction

performance diagnostic problem more robust and efficient.

1.3 RESEARCH SCOPE

The efficiency and effectiveness of the techniques and methods developed in this thesis
are tested in the domain of industrial construction labour productivity, more specifically,
pipe module fabrication, and are implemented a computer system called XCOPE
(eXplaining COnstruction PErformance). Construction workforce performance, as
measured in terms of labour productivity is chosen as a test domain for the following
reasons:

1. Since construction is a labour-intensive process, manpower (workforce) is the
key productive resource in construction (Lauter and Jenkins 1982); therefore,
construction performance greatly depends upon labour productivity;

2. Labour productivity is commonly accepted as a key performance indicator (Cox
et al. 2003);

3. Multiple root causes are common in labour productivity related issues;

4. The presence of a comparatively high number of qualitative (subjective)
variables (i.e., causal factors) affect labour productivity;

5. Labour productivity is directly related to cost and schedule performance, i.e., a
major contributor to other performance variations.

The proposed methodologies and developed systems are intended to be used by
construction managers who work for general contracting firms, construction management

firms, and owners.

1.4 THESIS ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides an overview on
performance diagnostic models, describes previous research related to the work described
in this thesis, and discusses the key issues and challenges of developing robust
construction performance diagnostic models. Chapter 3 introduces the concept of

computational intelligence and defines its key components: Fuzzy Set Theory, Artificial
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Neural Networks, and Genetic Algorithms. A comparative study is made on the
computational characteristics of key components of CI for performance diagnosis models
and relates them to the issues identified in Chapter 2. Chapter 4 presents a construction
performance modeling framework that is based on AND-OR fuzzy neural networks.
Experiments conducted using data collected from an industrial construction project are
also presented along with results. Having identified several limitations of the AND-OR
neuron model for construction performance modeling, Chapter 5 proposes an alternative
performance diagnostic modeling framework that is based on a Generalized Neural
Network. The learning and inference modes of the network are discussed and the results
are compared with the model presented in Chapter4.  In an effort to augment the
capabilities of the Generalized Regression Neural Network model (presented in Chapter
5), Chapter 6 investigates membership function determination techniques and proposes
more suitable membership function determination techniques for construction
performance modeling. Chapter 6 also proposes a novel approach for representing and
acquiring expert knowledge to construct membership functions. The results of
experiments conducted to test the effectiveness of the proposed membership function

determination, knowledge acquisition, and representation techniques are also presented. |
Chapter 7 illustrates the integrated computationally intelligent framework for
construction performance diagnosis along with the software system (XCOPE) developed
based on the concepts proposed in this thesis. Chapter 8 summarizes this thesis, drawing
conclusions based on the results of this work, highlighting the contributions made, and

suggesting prospective new research directions.
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CHAPTER TWO

2. PERFORMANCE DIAGNOSTIC MODELS: ISSUES AND
CHALLENGES

The purpose of this chapter is two-fold: (1) to review system diagnosis research, and to
examine its application, particularly in the area of construction performance diagnosis,
and (2) to identify the issues and challenges to be addressed to develop robust

construction performance diagnostic models.

2.1 INTRODUCTION TO PERFORMANCE DIAGNOSTICS

A decision support system that makes it possible to diagnose root causes of performance
deviations in a timely manner is an attractive way to improve project performance in
order to meet or exceed project performance goals. The diagnostic context investigated in
this thesis is construction performance reasoning. Performance deviations are detected
when one or more key performance indicators (KPI) (e.g., labour productivity factor, cost
variance, rework index) go outside a given range or change significantly from their
planned values. Performance diagnosis aims to isolate the cause(s) of a performance
deviation by collecting and analyzing information on performance indicators using field
measurements, subjective judgments, and other information sources (e.g., time-cards,
weather data, etc.). A construction manager often performs diagnosis. A decision support
system that makes it possible to diagnose root causes of performance deviations in a
timely manner is an attractive way to improve project performance in order to meet or
exceed project performance goals. A few sample construction performance diagnostic
problem scenarios are given below:

[1] Poor productivity: “Today’s labour productivity performance

(measured as earned vs. actual man-hours) of structural steel erection is

low (e.g., 0.65).” Why?

[2] Schedule delay: “Activity duration of pipe-fabrication for module #
PM 324 is extended by two days.” Why?

[3] Cost overrun: “This week’s labour cost of hydro-testing is 12 percent

higher than the budgeted value.” Why?
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Identifying relevant causes to such a performance deviation in a timely manner is a
key task in construction project control. However, due to the complex dynamic nature of
construction projects, the diagnosis of construction performance has become a
complicated undertaking. An early attempt on identifying causes of labour productivity is
reported by Chang and Borcherding (1986) using a technique called Craftsmen
Questionnaire Sampling (CQS). The administrator of CQS walks around the site,
randomly selects craftsmen, and collect data from them regarding sources of delay and
amount of rework. CQS’s time consuming nature, disruption to workflow,
inconsistencies caused due to random selection of time, place and crew, unstructured
responses via open ended questions, and inability to rank causes where multiple causes
exists hinder the usability of the CQS technique as an effective way to identify causes of
performance deviations. Maloney (1990) reported that it is crucial to respond promptly
to evidence of poor performance and take corrective actions to eliminate its causes.
According to Maloney (1990), there are two key factors that hinder construction
managers (CM) from taking actions in a timely manner: (1) the CM’s extremely
demanding schedule of routine work, and (2) the short duration of activities and/or
construction projects. Maloney proposed a performance analysis framework that guides
an individual through a flowchart, which analyzes causes of unacceptable performance.
Unfortunately, his framework does not provide a quick response; instead, it requires an
individual to go through the entire process, repetitively, and it also does not facilitate
identifying the root causes of the problem. In a comprehensive review of construction
performance models, Li et al. (2005) identified that there is no “definitive model for
either predicting or explaining performance; most of the models described are more
research than practice oriented; and, strong consensus as to the most important factors to
use, what their definition should be, how best to express outcomes for them, or what the
relationship amongst factors is, if any”.

A number of different approaches to diagnosis have been explored over the years
by other research communities, mainly in the chemical and power industries (e.g., Corea
et al. 1992; Milne and Trave-Massuyes 1995; Patton et al. 1994; Sugeno and Yasukawa
1993; Vinson and Ungar 1995), where definitive process models comprised of physical
and readily measurable variables exist. It is useful to establish the appropriate
circumstances for their use, and specifically to identify suitable approaches for

construction performance diagnosis.
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The remainder of this chapter is- organized into three sections. The following
section reviews a range of diagnosis techniques to identify a suitable model/s that can be
applied to the construction management domain for performance diagnostic reasoning. It
will be followed by a discussion on key issues and challenges of construction
performance modeling. A summary providing a match between the issues identified and
techniques that can be used to solve these issues, in order to develop a robust diagnostic

model for reasoning about construction performance, concludes the chapter.

2.2 DIAGNOSIS TECHNIQUES: A REVIEW

Over the last two decades, diagnosis has been an active research area in which the larger
part of the work has been concerned with the diagnosis of man-made artifacts such as
electronic devices, or medical diagnosis. A comprehensive review of the literature
suggests that different diagnosis techniques can be categorized into four approaches: (1)
control theory approach, (2) Artificial Intelligence approach, (3) Computational
intelligence approach, and (4) Hybrid approach. Figure 2-1 graphically illustrates the

taxonomy of diagnosis techniques.

{ Artificial Intelligence .
(Comarrs )

‘Rule-based ) Mode’l#ased (Fuzzy togic ) @nmc:a: Neural Network) (( Genetic Algorithms )

Faultamodels suuz:mmliaebavlbr mndsls Causal models

(Causa»eﬂect‘&agraris) @lgndagmph;) (aaya;tan Net)

Figure 2-1: Taxonomy of diagnosis techniques

In control theory, the diagﬁostic model is numerical, generally represented as a
set of differential algebraic equations. Anomaly detection and cause identification is
conducted using a specification of the different failure modes (problem scenarios) of the
system along with a description of how these problems are manifest within the behavior

of the system (Clancy 1998). A strictly numerical representation of the construction
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performance problem is not possible due to the nature of the construction work in a
dynamic, uncontrolled, and labour-intensive manner with numerous interacting
qualitative and quantitative variables. Furthermore, due to the dynamic nature (i.e.,
changing state of the measurable parameters at every step of time) of performance factors,
specifying all of the possible problem scenarios that may be encountered becomes
impractical.

In contrast, an artificial intelligence (AI) approach considers diagndsis as a
reasoning process and tries to reproduce human reasoning (Gentil et al. 2004). Several Al
diagnostic techniques are available, such as rule-based reasoning (e.g., Chou et al. 1994;
McDonald et al. 1997), case-based reasoning (e.g., Derere 2000; Breese and Heckerman
1996; Sharma and Sleeman 1993), and model-based reasoning (e.g., Clancy 1998;
Druzovec and Sostar 1998; Shen and Leitch 1992).

In rule-based systems, the empirical information and experience is encoded in
rules that generally take the form “IF symptom(s) THEN diagnose(s).” Overall, rule-
based diagnosis is only feasible for problems for which any and all knowledge in the
problem area can be written in the form of if-then rules, and for which the problem area is
not large. Depending on the problem, it may require hundreds, or even thousands of rules.
If there are too many rules, the system can become difficult to maintain. Furthermore, the
difficulty of acquiring the knowledge to build the rule-base — known as the knowledge
acquisition bottleneck — is the main limitation of this approach.

Case-based reasoning (CBR) is a powerful approach when much experimental
data describing faults/deviations are available. A case-based reasoner works by matching
new problems to "cases" from a historical database and then adapting successful solutions
from the past to current situations. The most challenging part of implementing a CBR
model is the capturing of historical information to form the cases. In other words, CBR
also suffers from the impact of the knowledge acquisition bottleneck. In construction,
however, historical information related to construction performance indicators and other
variables are available. If a systematic methodology to collect data in the form of input-
output pairs is employed, the CBR approach can be a viable approach to assist
construction performance modeling.

Model-based diagnosis, also referred to as consistency-based diagnosis (Reiter
1987), provides an alternative “implicit behavioral approach” to system modeling. They
are appropriate when an abstraction of the quantitative modeling is sought in order to

facilitate interaction with a human reasoner. Poole (1992) identifies two extremes of the
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model-based diagnostic problem: (1) the consistency-based approach in which normal-
operation-oriented diagnosis is carried out based on the knowledge about how
components are structured and work normally, and (2) the adductive approach in which
abnormal-operation-oriented diagnosis is carried out using knowledge about how the
components are affected by specific faults.

Fault models (or fault dictionaries) anticipate the type of faults that may occur,
and only model these. Model simulation provides a list of fault/symptom pairs, which
produce the fault dictionary. According to Fenton (2001a), this method has primarily
been applied to the diagnosis of digital circuits. In contrast, models based on structure
and behaviour (e.g., Dague 1994; Davis 1984) model correct behaviour. “The structure
representation lists all the components and interconnections within the modeled system.
The behaviour representation describes the correct behaviour pattern for each component.
Both representations are often created using logical formulae, such as first order predicate
calculus” (Fenton et al. 2001b).

Causal modeling (e.g. Montmain and Gentil 2000; Peng and Cheng 2000; Gentil
et al. 2004) is another AI diagnostic approach that focuses on representing qualitative
knowledge. As cited in (Rasmussen 1993), “ diagnostic judgment implies the perception
of a causal relation between a state, an action, and the ultimate effect, as related to the
current objective”. Causal reasoning is an important approach in the diagnostic task.
Causal graph-based diagnosis is appropriate where it is usually difficult and costly to
develop precise mathematical models. Cause-effect diagrams (Ishikawa 1985), influence
graphs (e.g., Linkens and Wang 1994; Gentil et al. 2004; Xia et al. 2004), and Bayesian
networks (e.g., Kirsch 1993) are a few categories of causal models that found
applications in diagnosis. Moselhi et al. (2004) proposed a construction performance
diagnostic method based on predefined causal models; the use of the causal model
concept, however, is limited to showing the relationship between quantitative
performance indicators.

Cause-effect diagrams, otherwise known as fishbone diagrams, are very useful in
analyzing and describing cause and effect relations in a qualitative way. In a pilot study
to identify and classify causes of construction field rework, Fayek et al. (2004) used
cause-effect diagrams as the framework for diagnosing causes of field rework with the
assistance of field construction personnel’s input. The required extent of manual user
input and the subjective nature of assessments restrict the feasibility of this approach for

daily performance diagnosis on large-scale projects.

10
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Influence graphs are another type of causal approach for reasoning about the way
in which normal or abnormal changes propagate. The graph nodes represent the system
variables; the directed arcs symbolize the relaﬁons among variables. Relations can be
quantitative or qualitative. The simplest influence graph is the signed diagraph (SGD)
where relations are represented by signs: “+” or “-”. Iri et al. (1980) used SGD as the
basic data structure for diagnosis. According to Gentil et al. (2004), over the years, this
approach has been considerably enhanced. For example, Yu and Lee (1991) symbolized
the variables as fuzzy sets to incorporate the continuous nature of the variables.

In Bayesian networks, entities are defined probabilistically, using prior
knowledge and statistical data, in acyclic graphs where nodes are random variables and
the relationships between them are represented by arcs. Even though the concepts (or
variables) can be represented with greater ease than by using rules, the knowledge
acquisition bottleneck is a primary shortcoming. McCabe et al. (2001) used Bayesian
networks to assess productivity of construction operations; however, in most of the real-
life problem scenarios, uncertainties encountered cannot be described exclusively by
statistical means.

Diagnostic systems based on Computational Intelligence (CI) tools such as fuzzy
sets (Zadeh 1965), artificial neural networks (ANN) (Meireles et al. 2003), and genetic
algorithms (GA) (Holland 1975) are emerging as more realistic approaches due to their
unique characteristics. Fuzzy set theory-based diagnostic systems provide a good
alternative for reasoning under uncertainty (e.g., Dexter 1995; Dexter and Benouarets
1997; Miyata et al. 1995; Sauter et al. 1994; Sugeno and Yasukawa 1993; Ulieru and
Isermann 1993; Ulieru 1996). These systems are becoming popular because they provide
human-like and intuitive ways of representing and reasoning with incomplete and
imprecise information. However, fuzzy logic-based systems do not have the ability to
learn from experience (previous cases). In contrast, diagnostic systems based on Artificial
Neural Networks (e.g., Bernieri et al. 1994; Bernieri et al. 1995; Maki and Loparo 1997;
Marcu and Mirea 1997; Penedo et al. 1998; Sorsa et al. 1991; Vemuri and Polycarpou
1997) exploit self-learning capabilities using historical data. Additionally, ANN-based
systems provide a mathematical tool for modeling dynamic nonlinear relationships. The
primary shortcoming of ANN systems is that they need a significant amount of historical
quantitative data for their training.

As described above, each individual technique has its own advantages and

disadvantages. Hybrid solutions can significantly enhance the robustness of a diagnostic

11
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system by capitalizing on the advantages of combining supplementary techniques. For
example, Breese et al. (1996) combined case-based reasoning and Bayesian networks for
diagnosis and troubleshooting applications, while Ariton et al. (1999) used a fuzzy-neuro
architecture for modular fault isolation in complex systems. Liu and Yan (1997)
combined fuzzy logic, neural networks and case-based reasoning to develop a system for
diagnosing symptoms in electronic systems.

The selecﬁon of the appropriate technique or a hybrid combination of several
techniques depends primarily on the diagnostic problem at hand. Each problem domain
has its distinctiveness, for example, in terms of availability of data, problem complexity,
and dynamic nature. Hence, the following section provides a detailed discussion on the
issues and challenges of developing robust construction performance models with the
intention of assisting in the selection of an appropriate diagnostic technique(s) for

explaining construction performance.

2.3 ISSUES AND CHALLENGES

This section describes a list of key issues that need to be addressed in order to develop
robust construction performance diagnostic models. These issues are categorized into
four different areas: (1) data and information related issues, (2) knowledge acquisition
and representational issues, (3) modeling issues, and (4) reasoning issues. Key challenges
are identified, as are prerequisites and desired properties of a diagnostic model. Table 2-1
provides a summary of the issues and their challenges. Each issue is detailed further in
this section.

2.3.1 Data and information-related issues

Establishing practical and economical data collection procedures have a significant
impact on the successful implementation of a diagnostic model. A contractor should be
able to collect (daily) data on the values of the variables at the individual project/activity
level, either in quantitative or qualitative form. Current information management systems
available to contractors .are limited to storing quantitative information compared to
qualitative information (e.g., the complexity of a task, the level of site congestion). This
is mainly due to a lack (or absence) of systematic procedures to collect, process, and store
qualitative data. However, both qualitative and categorical variables play a major role in
construction performance. Hence, any robust diagnostic tool should be able to utilize both

quantitative and qualitative information.

12
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Achieving planned pérformance depends on establishing planned conditions of
factors that affect performance. A formal procedure is required in order to derive planned
values from different sources such as the master schedule, manpower estimates, past

project records, and industry standards (handbooks).

Table 2-1. Issues and Challenges of Construction Performance Diagnostic Models

ISSUES

CHALLENGES

PROPERTIES/PREREQUISITES OF
A DIAGNOSTIC MODEL

Data and information
related issues

Field data collection and
reporting

Practical and economical data collection
procedures to capture both quantitative
and qualitative data.

Establishing normal

A formal procedure needs to be

functional parameters established to derive planned values
(performance baselines) from different sources.
Uncertainty in data Ability to compute with incomplete,

qualitative, and subjective data.

Knowledge
acquisition and
representational
issues

Non-verifiability of critical
causal factors

Ability to use expert (causal) knowledge

Incompleteness in the
relation between key
performance indicators and
related causes

Ability to determine the strength of
causal factors using historical data

Modeling issues

Complex non-linear

Non-linear modeling capability

system
Capturing dynamics Adaptability via learning from past data
Model transparency Explanation capability of the model

Reasoning issues

Identification of multiple
root causes

Identifying the significance of each
causal factor in cases where multiple
factors contributed to the performance
deviation.

Identifying contributing
vs. counteracting factors

Identifying whether a certain causal
factor is contributing towards or
counteracting performance.

Different levels of
abstraction

Reasoning at multiple levels of
abstraction.

The vast majority of the information related to construction performance
modeling is characterized by uncertainty. Identifying the nature of uncertainty is crucial
in selecting appropriate methods to manage it effectively and even to use it profitably.
Two kinds of uncertainty are encountered in construction performance modeling:
ambiguity and vagueness. Ambiguity can be caused by the presence of random variables
or approximate estimates. Vagueness arises from “a lack of precision (whose boundaries
are not sharply defined) or a lack of understanding of an event, a proposition, a value, or
a system (Ayyub 1991)”. Vagueness can result from (1) qualitative (instead of

quantitative) information, (2) incomplete or vague expert knowledge, and (3) subjectivity
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in the information obtained from an expert. As an example, the suitability of a particular
crane to hoist a pipe spool can be assessed by a crane operator as “fairly good”. A robust
diagnostic system should be able to represent and manipulate vagueness and statistical
uncertainties.

Additionally, it is noteworthy to highlight the fact that obtaining a dataset with
reasonable accuracy is challenging in construction. Incomplete and imprecise data due to
measurement uncertainties and approximation are common. Thus it is always preferable

to have a less data-hungry approach for diagnostic modeling in construction.

2.3.2 Knowledge Acquisition and Representation Issues

Due to the absence of explicit mathematical relationships between performance factors,
expert (domain) knowledge has to be exploited to identify the possible causes of
performance deviations in construction. In other words, experts’ mental models (causal
maps) of the problem scenarios have to be used as the first step in identifying possible
causal relationships. Based on the construction manager’s expertise, a representation of
the behavior of the performance indicator in causal terms is very effective in describing
complex phenomena, such as construction labour productivity deviation. In addition,
since the majority of variables are qualitative, subjective measurement of each variable in

predefined time intervals (e.g., daily) is also required for effective diagnosis.

Complex relationships between performance factors frequently exceed the
construction manager’s ability to identify conceptually causal relationships amongst
them. Normally, there can be more than a handful of factors that can cause a given
observation of deviation (e.g., low productivity). Judging the degree of relatedness
(contribution) of each factor is always challenging, especially due to the dynamic nature
of construction projects.

Hence, domain expert knowledge (from those who have had years of experience
working in construction) has to be acquired and presented in a way that enables a system
to utilize the knowledge for its reasoning tasks. In construction, frontline supervisors (i.e.,
foremen) usually have a comprehensive knowledge of the activities that they supervise;
accordingly, eliciting the knowledge from frontline supervisors to identify plausible
causes of performance deviations related to the activities they supervise is a viable
option. One expert or a number of experts can be utilized as the primary source of
domain expertise. McGraw and Warbison-Briggs (1989) identified four primary

problems with knowledge acquisition from a single expert: (1) difficulty in allocating
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adequate time by an “already-busy” individual; (2) problems caused by different biases of
human experts; (3) limitation to a single line of reasoning; and (4) incomplete domain
expertise (the available knowledge in many practical situations is often incomplete and
imprecise). In contrast, even though multiple experts can create a synergy, the
involvement of multiple experts increases the complexity of the knowledge acquisition
process. This is mainly due to the difficulty of merging each individual expert's
knowledge structures into one group knowledge structure. A systematic procedure is
therefore required to combine multiple experts’ knowledge in order to make the

diagnostic process efficient.
2.3.3 Modeling Issues

Successful diagnostic modeling requires a close match between the diagnostic model and
the true underlying problem scenario associated with the model. In construction,
obtaining a quality dataset that can be used for input-output mapping is limited; hence,
the diagnostic models should have the capability to model with limited amounts of data.
Additionally, the following key modeling issues need to be addressed. Identifying the
underlying dynamics of construction performance is extremely challenging due to
complex nonlinear behavior of the causal relationships among variables. As shown in
Figure 2, most of the construction performance indicators and related factors display the
characteristics of a nonlinear system. Thus modeling for construction performance
requires a methodology that is capable of mapping these complex nonlinear systems.
Note that in the Figure 2, the variation is calculated by taking the difference between

daily value and average value.
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Figure 2-2. Example of non-linear behavior of performance variables (temperature,
precipitation, and the number of modules in progress variation)
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2.3.4 Reasoning Issues

In addition to the above issues, construction performance diagnosis reasoning attempts to

address a number of the following reasoning issues:

1. Identification of multiple root causes: The most likely cause of a deviation cannot be
determined by looking at its immediate cause in isolation, since it generally depends
on the relative strength of multiple causes that occur simultaneously. Most
construction performance diagnostic problems have several root causes; hence,
identifying the significance (i.c., relative contribution) of each cause is important, so
that corrective actions can be prioritized accordingly. Complex interrelationships
between factors make it difficult to identify their individual impact on performance.

2. Identifying contributing vs. counteracting factors: Diagnostic models should have the
ability to differentiate and identify contributing vs. counteracting factors during the
course of inference. For example, low hydro-testing productivity may occur mainly
because of {lack of supervision, high precipitation} despite {below average
workload, average pipe-fitters availability, and no rework hours}. It is also
noteworthy to highlight the fact that the same cause can act as both a contributing as
well as a counteracting cause, depending on its activation status. For example, both
low and high temperature variation can possibly impact labour productivity
negatively, while an average temperature can make the process efficient.

3. Issues related to different levels of abstraction: Another important issue of diagnostic
modeling is the selection of an appropriate level of abstraction based on user
requirements. - Different stakeholders (e.g., client, construction managers,
superintendents, and foremen) demand different perspectives (such as project level,
work package, or activity) on the same issue. Hence data must be clustered into
multiple groups to represent the hierarchical structure of a problem scenario. One of
the key challenges here is how to aggregate information (both objective and
subjective). A robust diagnostic model, therefore, should not only possess capabilities
to process subjective information, but also aggregate subjective data to provide

meaningful representation at different levels of abstraction.

2.4 DISCUSSION

These issues all suggest that implementing a performance diagnostic reasoning system is

non-trivial. In an attempt to deal with the above key diagnostic modeling issues,
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characteristic properties of different techniques discussed above are compared, as shown
in Table 2-2.

Based on the summary given in Table 2-2, it can be concluded that a single
technique does not solve all of the issues identified in the construction performance
diagnosis. Fuzzy set theory can be used to compute incomplete, approximate, and
qualitative data; to manage uncertainty caused by vagueness; and to identify contributing
vs. counteracting causes. Causal models can be used to represent expert knowledge while
Artificial Neural Networks can be used to capture the nonlinearity and to identify the
significance of multiple root causes. Case-based reasoning approaches and Artificial
Neural Networks can be used to learn from previous data.

Table 2-2. Key Modeling Issues and Possible Solutions

KEY MODELING ISSUES POSSIBLE SOLUTION(S)

1 | Computing with incomplete, approximate and Fuzzy set theory
qualitative data

2 | Uncertainty modeling caused by vagueness Fuzzy set theory
3 | Expert knowledge representation Rule-based approach,
Causal models
4 | Non-linear and dynamic system modeling Artificial Neural Networks (ANN)
capability '
5 | Learning from previous data/ Case-based reasoning approach
adaptive capability (CBR)

Artificial Neural Networks (ANN)
6 | Identification of multiple root cause and relative | Artificial Neural Networks (ANN)
significance of each cause
7 | Identifying contributing vs. counteracting Fuzzy sets (membership functions)
causes :

25 SUMMARY

This chapter identifies the issues and challenges that need to be addressed in terms of
developing a robust diagnostic model for reasoning about construction performance. Key
issues are categorized into four different aspects: (1) data and information related issues,
(2) knowledge acquisition and representational issues, (3) input-output mapping issues,
and (4) reasoning issues. This chapter concludes with a summary providing a match
between issues identified and techniques that can possibly be used to solve the issues by
developing a robust diagnostic model for reasoning about construction performance.

The next chapter presents a detailed discussion on supplementary techniques that
can be used to develop a unified-hybrid framework for creating robust construction
performance diagnostic model(s). It is assumed that the development of a technique

capable of diagnosing a nonlinear dynamic system, which will address the above-
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mentioned issues, will be a significant contribution to the state-of-the-art in establishing

robust performance diagnostic models.
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CHAPTER THREE

3. COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR
CONSTRUCTION PERFORMANCE DIAGNOSIS

3.1 INTRODUCTION TO COMPUTATIONAL INTELLIGENCE

The term “Computational Intelligence” (CI) (Bezdek 1994; Pedrycz 1997), encompasses
three key technological components: (1) artificial neural networks, (2) methods of
granular information processing (in particular, fuzzy sets and fuzzy logic), and (3)
methods of evolutionary computations (in particular, genetic algorithms). The key
difference between traditional Artificial Intelligence (AI) systems and CI is that Al
systems adopt symbolic processing as their main paradigm while CI systems use sub-
symbolic representation. Al systems are designed to deal with problems characterized by
exact and complete knowledge representation. In contrast, CI systems are designed to
deal with problems characterized by imprecise, uncertain, and incomplete data, and by
information which significantly contributes to the description of real-world problems
(Gorzalczany 2002).

Furthermore, CI methods are intended to mimic the approximate problem solving
capacities of living systems, algorithmically. Adaptability, fault tolerance, loW error rates,
and high performance are some common properties among CI methods. CI methods can
be successfully applied in cases where conventional Al concepts fail or where exact
solutions that might be gained with particular methods are by far too expensive and
where approximate solutions are acceptable. In other words, CI methods provide robust

solutions at low cost for problems that would be intractable with traditional Al systems.

3.1.1 Computational Intelligence Tools for Construction Performance Diagnosis

As shown in Figure 3-1, CI methods possess several information processing capabilities
that are vital to construction performance diagnosis. As identified previously (Section 2.3
of Chapter 2), construction performance-related data and knowledge are imprecise,
incomplete, and uncertain; granular information processing and fault tolerance are
therefore some key capabilities of a robust diagnostic system. The complex (e.g.,
nonlinear and dynamic) nature of the diagnostic problem also demands learning,
generalization, and adaptation capabilities. Parametric and structural optimization of the

diagnostic model can augment the robustness of the model.
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Figure 3-1. Information processing capabilities and properties of CI metheds.

3.1.2 Hybrid Systems

Each CI method has its own advantages and disadvantages. Neural networks approach
the modeling representation by using numerical inputs and outputs that are used to “train”
a network so that it can formulate a good approximation of the complex nonlinear
relationship between inputs and outputs. Precise numerical input-output pairs, however,
are limited. In contrast, fuzzy systems address the imprecision of the input and output
variables directly by defining them as fuzzy sets expressed in linguistic terms. The
domain knowledge is coded in an explicit manner; the explanation capabilities of the
resulting system are therefore excellent. Unfortunately, a lack of training and learning
ability makes the fuzzy system unable to automatically acquire knowledge and to
automatically build its representation as it is in neural systems. An appropriate synergistic
combination of these methodologies could lead to robust diagnostic solutions. Their
combination within one system significantly reduces their shortcomings and amplifies
their merits.

In a synergistic combination of CI methods (as shown in Figure 3-2), a fuzzy
system can contribute by: (1) accommodating imprecise, ambiguous, common sense
knowledge, (2) employing human-like reasoning mechanisms, (3) implementing
universal approximation techniques, and (4) retaining a low cost of development and

maintenance.
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Fuzzy Sets

Figure 3-2. Synergistic combination of CI methods

Neural networks can contribute by: (1) extracting knowledge and learning from
data, (2) making good generalizations, (3) implementing methods for data analysis, (4)
coordinating massive parallelism, and (5) ensuring fault tolerance and robustness.
Genetic algorithms can contribute by optimizing network parameters, such as weight
values, using parallel techniques that include the ability to search the entire space versus
a localized search in the weight space via a gradient decent technique.

Commonly, such hybridization is typically done in a sequential manner (method
A as a pre-processing step of method B) (Gorzalczany 2002). For example, in a
diagnostic reasoning system, input data pre-processing can be handled via fuzzy sets, and
learning from input-output data can be done using artificial neural networks. Also, the

network parameter (and structure) can be optimized using genetic algorithms, as shown

in Figure 3-3.
Diagnostic
knowledge' Parametric Structural
representation learning learning
Fuzzy sets Neural Network  Genetic Algorithms

Figure 3-3. Sequential hybridization of CI methods for performance diagnostic
reasoning
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The following sections elaborate on the main conceptual and fundamental
components of CI that will be used to develop a unified framework for construction

performance modeling.

3.2 FUZZY SET THEORY
The notion of the fuzzy set was introduced by Zadeh (1965) as a means of handling
linguistic uncertainty.

The traditional way of representing elements of X of a set 4 is through a

characteristic function:

X, (x)={1forxeA

0 forxe 4
That is, the characteristic function maps the element of X to elements of the set {0, 1}.

In fuzzy sets an element can belong partially to a set. The degree of
belongingness (i.e., membership degree) is defined through a generalized characteristic
function called the membership function (u), and the set defined by it a “fuzzy set”. It
can be expressed as:

w1y X —[0,1]

Fuzzy sets are uniquely specified by their membership functions.

3.2.1 Linguistic Variables

Linguistic variables are variables whose values are not numbers but words or sentences in
natural language (Zadeh 1975). Linguistic variable can be characterized by a quintuple
(x,r(x ),U ,G,M) in which X is the name of the variable, T(X ) is the term set of
X (i.e., the values of the linguistic variable X ), U is the universe of discourse which is
associated with base variable, G is a syntactic rule for generating the term set 7' (X ) , and

M is the semantic rule for associating meaning with the linguistic values of X .

For example, consider a composite linguistic variable such as “daily site working
condition”. As shown in Figure 3-4, working condition can be represented by linguistic
variables (X ) such as crew-size, task complexity, and temperature. Values of “crew-

size”, that is the term set of linguistic variable crew-size, can be represented as

T(Crewsize)=small + average + large
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The universe of discourse could be U = [2,12] where the minimum size the crew is 2-

person and the maximum is 12-person.

| DAILY WORKING CONDITION (C,)

Crew Size | Task Complexity | Temperature

SMLL STANDARD LOW ~4—————— Linguistic valus

Figure 3-4. Assignment of linguistic values to attributes of “daily working
condition”.

This can also be written as follows:
Crew-Size (C;) = Small
Task-Complexity (C;) = Standard
Temperature (C;)= Low
Figure 3-5 shows the hierarchical structure of the relation between the linguistic
variable “temperature”, its linguistic values (i.e., term set), and the base variable
temperature, which is measured in degrees Celsius. Each of the basic linguistic terms is
assigned a “fuzzy number” by a semantic rule, whose membership functions have the

usual trapezoidal shapes on the interval [-15, 30], the range of the base variable.

Linguistic varlable

Values of linguistic < TEMF’ERAYHQE w

variable-temperature

-15 -1 5 g +5 +10 +15 +20 +25 +30

 E— Tamperaturg {Degeses-Calsius)
Base varlable

Figure 3-5. Hierarchical structure of linguistic variable-temperature.
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The membership degrees associated with each value represented in the universe
of discourse is subjective as well as context dependent. For example, a tradesperson
working in the field may assess the temperature differently compared to a tradesperson
working in the shop. The assessment also varies across different seasons, countries, and

climates.

Another important issue is that some linguistic variables (e.g., temperature, crew
size) have well-defined base variables (e.g., degrees Celsius, and number of tradesmen,
respectively) while variables such as task complexity, equipment suitability, and ground
condition do not have well-defined bases variables. In latter case, obtaining the grade of
membership is challenging compared to the cases where some physical measurements are
available. Choosing a surrogate-physical measure (e.g., number of bends representing
“task complexity” of pipe module fabrication) or selecting a scale (e.g., 0-10, zero being
the low extreme and 10 being the high extreme) are commonly used to address this

challenge.

3.2.2 Membership Function Development Techniques

The construction of a fuzzy set depends on two things (Gorzalczany 2002): (1) the
identification of a suitable universe of discourse and (2) the specification of appropriate
membership functions. How best to determine the membership functions is one of the
main questions that have to be tackled. The determination of membership functions can
be categorized as either being manual or automatic.

Manual methods utilize expert opinion to design and develop membership
functions. Some examples are: (1) the horizontal method, which is the use of frequencies
by measuring the percentage of experts in a group who answer yes to a question about
whether an object belongs to a particular set; (2) direct estimation by asking experts to
grade an event on a scale; (3) the vertical method, which involves interviewing expert to
identify plausible intervals; and (4) through pairwise comparison (rank ordering), which
consists of identifying an experts level of preference of objects(Pedrycz 1995). Generally,
all these manual methods suffer from knowledge acquisition problems.

Several automatic methods of membership generation are found in literature: (1)
training examples (Hong and Lee 1996; Pedrycz and Vukovich 2002), (2) artificial neural
networks (Takagi and Hayashi 1991; Wang 1994), and (3) genetic algorithms (Karr and
Gentry 1993). What makes the automatic MBF construction methods differ from manual

methods is the fact that experts are totally or partially eliminated from the elicitation
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process. Hong (1996) uses a method that eliminated experts totally from the process
while Pedrycz (2002) proposes an expert-initiated process of MBF elicitation.

Section 2 of Chapter 6 discusses suitable alternative methodologies in detail for
developing a practically feasible (compared to theoretically possible) approach for

designing membership functions for construction performance modeling.

3.3 ARTIFICIAL NEURAL NETWORKS

Artificial Neural networks are biologically inspired, massively parallel, distributed
information processing systems. They are characterized by a computational power, fault
tolerance, as well as learning and generalization capabilities.

An artificial neuron is the basic building block of a Neural Network. As shown in
Figure 3-6, a neuron is a processing element that consists of two parts: (1) summation and
(2) activation function. As shown in Figure 3.6, the input variables are represented by

input vector X = x4, Xy, X5 ey X, . Bach of these inputs is modified by a weight (w; ). The
first part of the neuron simply aggregates (sums) the weighted inputs (w;.x;) results in

quantity / . The second part is an activation (squashing) function that transforms 7 into a
value between the two asymptotes, keeping the output of the neuron within a reasonable

dynamic range.

Xy

Figure 3-6. The Artificial Neuren

Neural Networks are made of interconnected neurons, usually organized in a
sequence of layers with full or random connections between layers. Figure 3-7 illustrates
a network that is fully connected. These multilayer networks have been proven to have

capabilities to map any complex nonlinear systems.
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The input layer represents input variables that a network uses to make a
prediction (or classification). The output layer represents the values(s) of the network
predict. Layers in between input and output layers are called hidden layers. Both hidden
and output layers are made of groups of neurons. The input layer is not a neuron-
computing layer; it merely presents the example data to the network. Neurons in the
hidden layer process the sum of weighted values, usually using a nonlinear transfer
function, then the hidden layer passes the values to the output layer in the same fashion
and the output layer produces the desired results. Typically, the network constitutes a
model that represents the relationship between input and output variables. The network
“learns” by adjusting the interconnection weights between layers during training process.
Training algorithms are generally categorized as supervised and unsupervised

(Wasserman 1989).

Output layer

Figure 3-7. Multilayer Artificial Neural Network

In supervised learning, the network is trained over a number of training pairs (i.e.,
input vector with a target vector representing the desired output). An input vector is
applied, the output of the network is calculated and compared to the corresponding target
vector, and the difference (error) is fed back through the network. Weights are then
changed according to an algorithm (e.g., Hebbian learning), which tends to minimize the

error. Back-propagation multilayer neural networks, Probabilistic Neural Networks
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(PNN) (Specht 1990) and generalized regression neural networks (GRNN) (Specht
1991) are -supervised network types. Supervised learning can be employed for
construction performance modeling as follows: construction performance variables can
be represented as an input vector at the input layer, and key performance indicator(s) in
question can be represented at the output layer, representing the desired output. The
difference between the actual value of key performance indicator and network output
constitutes an error, which is used to adjust the connection weights. Even though back-
propagation networks are commonly used, they suffer from “local minima” problem, i.c.,
the training process easily trapped in a local minimum solution instead a global solution.
Both multi-layer back propagation networks and GRNNs are generally used for
predicting, evaluating, and generalization while PNN provides a general technique for
pattern classification problems.

In contrast, unsupervised learning requires no target vector for the outputs; the
training set consists solely of input vectors. It classifies a set of training input data into a
predefined number of categories. Kohonen networks (Kohonen 1984) are unsupervised.

According to Bailey and Thompson (Bailey and Thompson 1990), neural network
solutions are appropriate when;

= A problem requires complex quantitative (or qualitative) reasoning and an

approximate solution is sufficient,

» Parameters are highly interdependent (multiple interactions) and have no precise

quantification, or '

» Data are available from specific examples, and some of the data may be

€rroneous or missing.

To apply neural networks in construction performance diagnostic reasoning, the
appropriate choice of the type of neural network paradigm is crucial. Creating a
multilayer neural network model that provides the most accurate, consistent, and robust
model possible requires iterative building, training, and testing to refine the neural
network. The selection of the size of the network (i.e., number of layers and number of
neurons in each layer) and the neuron activation functions (e.g., linear, step, hyperbolic
tangent) are to be carried out in trial-and-error fashion; it can be a tedious, and time-
consuming task.

Additionally, in an analysis to explain a particular event (or effect) such as “low
(labour) productivity”, the nature of causal reasoning will require backtracking to critical

causes. However, the distributed character of the computations (i.e., acquire knowledge

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from a family of learning patterns and distribute it along the connections in the structure
during the learning process) make it almost impossible to reasonably interpret the overall
structure of the network and to explain the results generated by the network in the form of
transparent, logical constructs (such as conditional rules and frames) (Gorzalczany 2002).
In construction performance modeling, more often than not, backtracking can lead to
multiple causes, thus identifying the order-of-magnitude (i.e., the relative significance) of

each factor is a necessity.

3.4 GENETIC ALGORITHMS (GA)

The underlying principles of genetic algorithms (GA) were first formulated by Holland
(Holland 1975). Genetic algorithms have been very effective at function optimization,
efficiently searching large and complex spaces to find nearly global optima. The
advantages of using genetic algorithms include the ability to search the entire smoothing
factor space, rather than a localized search via a gradient descent technique such as
backpropagation (Tsoukalas and Uhrig 1997).

In this study, a GA’s optimization capabilities are utilized as an important
supportive tool in parameter (e.g., weights) learning of network processing module. The
major components of GA are presented below (on the basis of (Gorzalczany 2002; Jain
and De Wilde 2001; Tsoukalas and Uhrig 1997)). As identified in Konar and Jain (2001),

GA operates through a simple cycle of stages, as shown below in Figure 3-8.
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Figure 3-8. The cycle of genetic algorithm (Konar and Jain 2001)

In the first phase, an initial population of “individuals” is created to initiate the

search process. Each individual (named as chromosomes) represents a potential solution
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to the problem at hand. A chromosome can be represented using both binary and real-
value encodings with binary being the more prevalent method. The performance of the
chromosome, often called the “fitness value”, is then evaluated using a fitness function.
This function must be established for each specific problem. In a network parameter
learning problem, for example, the fitness function (®) can be represented as follows.
Given N training data [x, y,.] (i=1,...,N), the learning algorithm’s target is to find best

parameters values to keep the difference between predicted value 3, and the real output y;

as small as possible. In other words, the target is to find the best network parameters to

keep the network performance index Q defined in Equation 3-1 as small as possible.
2
=3 0.~
G-1)
Where p, is a predicted value with input vector X, . Accordingly, the fitness function can

be defined as in Equation 3-2.
e= !
1+Q

The fitness value Q is the quantity that guides the reproduction process for creating the

(3-2)

next generation. Chromosomes with higher fitness values tend to reproduce more often
than those with lower fitness values. Several alternative selection mechanisms are
reported in the literature, among the roulette-wheel parent selection, which is commonty
applied. Once the selection of the population is over, the resulting new population is
subject to the two main mechanisms of genetic algorithms such as cross-over (in general,
a recombination) and a mutation.

The crossover operation generates new chromosomes that possibly retain good
features from previous generations. Once the chromosomes are selected from the pool for
the crossover operation, the selected chromosomes are mated randomly, and for each pair

of coupled chromosomes (parents) a random integer number pos from the set

{1,2,...,1 - 1}( [ is the total length of a chromosome) is chosen. The number pos indicates

the position of the crossover point. Two chromosomes representing network weights, for

example, can be represented as:
< wpos Wpos+l W

Wi Wy eeaW o W s 1 Wy ) and <v1v2 vV 505V posi ...v,> (3-3)
After the crossover, a pair of their offspring can be represented as
<w1 Wy oW sV posil ...v1> and (vlv2 vV pos W posa ...w,> (3-4)
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In equation 3-3 and 3-4, the crossover operation is one point since one crossover position
is chosen. In general, n-point crossover can be identified.

The second genetic operation is mutation, where the single components of the
chromosomes (called bit strings) at one or more randomly selected positions are altered.
Mutation represents an abrupt change in the nature of the chromosome. After selection,
crossover and mutation, the currently worst chromosomes are replaced with the best
chromosomes and the new population is formed for a new evaluation. The rest of the
evolution process is just a cyclic repetition of the above steps until a stopping criterion is
satisfied. The best chromosome, for example, provides the optimal weights of network

connections.

3.5 HYBRID SYSTEMS FOR CONSTRUCTION PERFORMANCE
MODELING

Two hybrid system architectures have been considered in this thesis that combines fuzzy
set theory as possible solutions to assist construction performance diagnosis: neural
networks and genetic algorithms, in a sequential manner, as previously shown in Figure
3.3. The selection of these two frameworks was based on several properties of a

diagnostic system, as shown in Table 3-1.
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Table 3-1. A rough comparative analysis of alternative computational intelligence systems.

REQUIRED PROPERTIES OF ARTIFICIAL RULE-BASED GENETIC NEURO FUZZY | FUZZY NEURAL GENETIC
PERFORMANCE DIAGNOSTIC NEURAL FUZZY ALGORITHMS SYSTEMS: NETWORKS: ADAPTIVE-
SYSTEMS NETWORKS SYSTEMS RULE-BASED | AND-OR (+ GA) | GRNN (+ FUZZY
(+GA) NEURONS)

Transparency (Explanation ability) Very Low Very High Very Low High Very High High
Learning ability Very High None High Very High High Very High
Generalization capability Very High High High Very High High Very High
Using Experts’ knowledge None Very High None Very High Medium Medium
Using numerical data sets Very High Very Low High Very High Very High Very High
Using qualitative linguistic None Very High Very Low Very High Very High Very High
information
Fault tolerance Very High High High Very High Very High Very High
Limited data Low Very High Very High High Low High
Knowledge representation Unstructured Structured Unstructured Structured Unstructured Unstructured
Type of Inference Approximate Approximate Approximate Approximate Approximate Approximate

Adapted from (Gorzalczany 2002; Holland 1975; Pedrycz 1995; Specht 1991; Specht and Romsdahl 1994)




From a diagnostic reasoning perspective, fransparency is a paramount feature
desired in any diagnostic system. In general, transparency means the ability to trace the
process of inferring a solution. While most fuzzy systems have transparent structures
(based on if-then rules), massively parallel inference systems such as neural networks
have a very limited ability to explain the inference process. In construction performance
diagnostic reasoning applications, an explanation ability is expected to be at least at the
level that can identify the relative significance of each variable that can possibly impact
the performance indicator(s) in question. Both fuzzy neural networks based on AND/OR
neurons and Generalized Regression Neural Networks possess the characteristics that
facilitate interpretation of connection weights. Chapters Four and Five provide detailed
descriptions of these two networks, respectively.

Learning ability is another key attribute that a diagnostic system should posses. It
is the process of knowledge acquisition that results in adaptation to the complex dynamic
nature of the problem. While neural networks have excellent ability to learn from data
samples, fuzzy systems do not posses a learning ability.

Generalization capability is what makes a diagnostic system respond correctly to
a new situation. In other words, it is the process of inferring a solution based on
previously unknown data to the system (network). Both neural networks and fuzzy
systems have a good generalization capability.

Both fuzzy systems and neuro-fuzzy systems use structured knowledge
representation such as conditional rules of the IF-THEN type, while neural networks and
fuzzy neural networks use unstructured knowledge representation (e.g., input-output data
pairs) to transform the available problem knowledge in order to process it by standard
knowledge engineering methods. For construction performance diagnostic systems,
unstructured knowledge representation in the form of input-output data pairs is more
appropriate, mainly due to well-known knowledge acquisition problems, especially in the
form of rules from multiple experts. The/remaining properties of performance diagnostic
systems, as shown in Table 3-1, are self-explanatory.

The first approach presented in this thesis is based on Pedrycz’s OR/AND neuron
model (Pedrycz 1995) of fuzzy neural networks. It can be considered as a tightly coupled
fuzzy-neural system, as the basic clements in the network have the composite
characteristics of both neural nets and fuzzy sets (Konar and Jain 2001). The second
approach (i.e., Generalized Regression Neural Networks (GRNN)-based processing

module) can be considered as a weakly coupled fuzzy-neural system. This model
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preserves the basic properties and general architecture of Specht’s GRNN (Specht 1991),
while introducing fuzzy input neurons for comprehensive improvement of the
performance of the network in terms of accuracy and knowledge representation. A
schematic description of the general configuration of both approaches (i.e., AND-OR

neuron model and GRNN-based model) is illustrated in Figure 3-9.
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Figure 3-9. Configuration of the System Architecture.

At the front end, a user interface allows the user to represent input variables (i.e.,
causal factors) and linguistic values to represent the selected variables. Each linguistic
value is represented as a fuzzy set. The input interface transforms input information into
membership values. The network processing module (i.e., inference engine) represents
both AND/OR neuron model and the GRNN-based model. The membership values of
input learning data are used as input to the inference engine. The inference engine is
trained using different learning algorithms (e.g., gradient decent, genetic algorithms) to

reveal and quantify logical relationships between input and output variables.

Both approaches are used to model the normal functional structure of selected
key performance indicators (KPI). Both models characterize the possible performance of
the construction process using quantitative numerical data as well as qualitative linguistic

information that reflect actual behaviour.

3.6 SUMMARY

This chapter provides a brief introduction to Computational Intelligence (CI) and

describes the main constituents of CI. The advantages of synergistic links between key
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constituents are identified. Two potential CI systems based on Fuzzy-neural systems are
identified and a system architecture is proposed to exploit the benefits of CI systems to
assist construction performance diagnostic reasoning. Detailed descriptions and empirical
analysis of AND/OR neuron processing module and GRNN based processing module are

given in Chapter 4 and Chapter 5, respectively.
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CHAPTER FOUR

4. FUZZY NEURAL NETWORKS: AND/OR NEURON MODEL

41 INTRODUCTION

This‘chapter presents a network processing module based on Pedrycz’s AND-OR neuron
model (Pedrycz 1993; Pedrycz 1995). This fuzzy set-based neuron model incorporates
fuzzy logic elements into the neural network. The resulting topology can perform
diagnostic inference functions by analyzing the values of the connection weights. The
logic operations of the AND-OR neuron model are discussed and a learning algorithm is
presented. To assess the effectiveness of the proposed fuzzy neural network in
construction performance modeling, experiments are conducted using data collected from
an industrial construction project; these results are also presented.

This chapter contains some of the results of the author’s prior research

(Dissanayake et al. 2004), recast in light of later developments.

4.2 FUZZY NEURAL NETWORKS

The underlying topology of the proposed schema is based on fuzzy neural networks.
Fuzzy neural networks are processing structures with an explicit form of knowledge
representation due to the well-defined semantics of its neurons (Pedrycz and Gomide
1998). Liu and Yan (1997) demonstrated that fuzzy neural network based on AND/OR
neurons can be interpreted by revealing the connection weights; furthermore, the network
size can be optimized by pruning out those connections with weak (insignificant)
weights. Several successful implementations of the AND/OR neuron-based models can
be found in the literature (e.g., Gobi and Pedrycz 2004; Myung-Geun Chun et al. 1997),
in which both gradient decent learning and GA-based learning are employed. In this
section, an OR/AND neuron model of fuzzy neural networks (FNNs) with fuzzy input

variables is presented, and a learning algorithm is discussed.
4.2.1 OR/AND Fuzzy Neurons

The key functional element forming a core of the proposed fuzzy neural network is
Pedrycz’s OR/AND fuzzy neuron (Pedrycz 1995). As shown in Figure 4-1, the proposed

network has four layers, namely:
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Figure 4-1. Topology for the Fuzzy Neural Network based on AND-OR Neurons

(1) Input layer: represents the input variables and simply channels the values of input

variables (x;, i=1,2,...,n.) to the next layer. n is the total number of input variables.

(2) Membership function layer: represents the membership functions of each input
variable and transforms input values to the corresponding membership values my;
=1,2,....,n, j=1,2,...k where k equals the total number of terms (i.e., linguistic values)

that belong to each input variable.

The membership values, my;, are combined into a vector of single input
u=[my, ...,Myp oo, Mif, oo, Mgy oo, My, ., My =[u;, Uy, ...u,] where the total dimension of # is

p=n*k.
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?3) AND-OR neuron layer: represents the AND neuron (z;) and the OR neuron (z,). This
layer transforms membership values, m; , AND-wise (i.e., by the AND neuron) and OR-
wise (i.e., by the OR neuron) into two separate computing channels, and sends them to

the output layer.

(4) Output layer: represents the output OR-neuron, which merges the inputs from the

previous layer and produces the output y.

The connections of the neurons (weights) distributed in the unit hypercube are denoted by
w, v. More specifically, the AND neuron is described as z; = AND(u;w;), which, using

the notation of triangular norm (t-norm), is expressed as:

5= Tusw), @-1)

Where wj; summarizes a collection of the AND neuron’s connections (w;). The OR
neuron 18 produced using the expression z, = OR(u;w;), which, using the notation of

triangular norm (s-norm), is expressed as:
P
Z = fgl(uitWZi)‘ 4-2)

The role of the OR neuron (output layer) is to combine the results of AND and OR
aggregation. Depending on the values of the connections (v, and v,), the overall OR/AND
neuron exhibits mixed characteristics of both these two logic operations. This aggregation
is expressed as:

y = OR/AND(u; w,v), (4-3)
which using the t and s norms, is expressed as:

y=(z;tv)8(z,tv,) . 4-4)
In boundary cases, If v;=1 v,=0, the OR/AND neuron operates as a pure OR neuron; if
v1=0 and w,=1, the structure functions as a pure AND neuron. For example, if the above t

and s norms are realized by product and probabilistic sum operators using the following

expressions:
atb=ab; a, b<[0,1] (4-5)
asb=1-(l—-a)1-by=a+b-ab;a,bE[0,1] (4-6)
the input-output mapping will be:
V=2V + 5V, —ZVZ,Y,, 4-7
Where z, = ﬁ(u,. +w, —uw,), z, = l—ﬁ(l —uwy,). (4-8)
i i
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If the above t and s norms are realized by the min and max operators that follow:
atb = min(a,b); a, be [0,1] (4-9)
asb = max(a,b); a, be [0,1] (4-10)

the input-output mapping will be:

y = max(min(z,,v,), min(z,,v,)) , where z, = mzn(max(ui L)), Zy = m%x(min(u,. wy,))  (4-11)

4.2.2 Learning/Optimization Mode of the AND-OR Neuron Model

The learning and optimization processes of the AND-OR neuron model consist in finding
the connection weights (w, v) from the input-output training pairs. Results of the learning
mode also determine the network topology by eliminating insignificant connections. The
resulting network topology provides a logical construct that illustrates the logical causal
relétionship between the input causal factors and output variable(s) (i.c., key performance
indicators). The two main elements of any supervised training exercise comprise a
network performance index () and the learning scheme. The learning algorithm adjusts

the weights w, v so that the performance index (Q) is optimized.
4.2.2.1 Network Performance Index (Q)

Assume that we have T datasets for learning; [u (r),...,u,(r),y,] r=1,....T; y, as target

and , as the FNN’s output with respect to its inputs [«,(r),...,u,(r)] .

Accordingly, the performance index (Q) is expressed as:

T 2
v, -3,) (4-12)

~| =

Q - .

5

which is the mean square error of the prediction. The objective is to minimize the

performance index (Q) with regard to the structure of the model and its parameters.
4.2.2.2 Learning Algorithm -Gradient Descent Learning

The learning algorithm will update w, v through gradient-based learning as follows:

1 1
Wy =W, = 5@%, Wy, =W, — EO‘% (4-13)
1 1
v =v— —a%%, v, =V, — —a% (4-14)
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Where a € [0,1] is the learning rate.
The updating process is stopped when there is no further improvement in the output error

for a certain consecutive number of training epochs (user-defined, e.g., 1000).
4.2.3 Interpretation of the Network via Connection Weights

Pedrycz (1995) identified that, because of the triangular norm’s boundary conditions, the
values for the connections in the OR neuron ensure that the corresponding input exerts a
stronger influence on the neuron’s output. By contrast, the opposite weighting effect
takes place in the case of the AND neuron: the values of connections closer to 1 make the

influence of corresponding input almost negligible.

Initial values of the connections of the network can be assigned randomly or based on
expert judgment. Once the network is trained using (4-13) and (4-14), the values of v are
compared. Since aggregative AND and OR neurons are connected via the OR neuron, the
corresponding neuron with the highest value of v has the strongest influence on network
output. For example, if v;=0.35 and v,=0.80, the values of connections leading to OR
neuron to derive explanations can be analyzed.

In an OR neuron, those connections with weights close to zero (or below a certain
threshold) can be eliminated. Conversely, in an AND neuron, those connections with

weights close to one or above a certain threshold can be eliminated.
43 EMPIRICAL VALIDATION OF THE AND-OR NEURON MODEL

To assess the effectiveness of the model, several experiments were conducted. A
description of the experimental data is given, followed by a description and the results of

four different cases conducted to assess the validity of the proposed FNN.
43.1 Description of Case Data

A dataset from the industrial construction sector was chosen to demonstrate how the
proposed system could be used for reasoning about construction performance.t
Specifically, the “labour productivity in hydrotesting (HT)” of pipe fabrication in a pipe

module fabrication yard was considered. The PF is calculated as follows:

PF = Earned manhours _ quantity installed * (Estimated Manhours / unit quantily)

" Actual manhours Actual manhours

The daily values of key performance indicators are considered as outputs and the daily

values of possible causes that affect the KPI as inputs to the network.
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Table 4-1 shows the identified plausible causal factors of “low HT productivity” by a
group of experté who manage the job. A total of seven causal factors were identified.
Once possible causes were identified, relevant (daily) data were extracted from the
contractor’s Information Management System (IMS) for a period of 169 working days
covering the period of April 2003 to February 2004. Figure 4-2 graphically illustrates the
variation of the key performance indicator (KPI) studied, i.e., the pipe hydrotesting
productivity, over the duration of the study.

Table 4-1. Causal factors that impact labour productivity in Pipe Hydro-testing

Causal Factor Description
1 WKL | Work Load No. of pipe modules in progress
2 | EQA | Equipment availability’ No. of cranes available
3 | MAV | Manpower availability No. of pipefitters available
4 | TEM | Mean Temperature The mean temperature of the air in
' degrees Celsius.
5 {PRE Total precipitation The sum of the total rainfall and the water
equivalent of the total snowfall
6 | RWK | Rework Pipe fabrication rework (work force hours
spent on repairs)
7 | QAC | Quality Assurance/ Quality Number of hours spent on QA/QC work.
\ Control input

Hydro-Testing Labor Productivty Factor {PF) Variation
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Figure 4-2. Variation of pipe hydrotesting productivity
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One of the main objectives of this study is to develop a reliable model that can map the
type of non-linearity shown in Figure 4-3. Interviewing a group of experts has identified
linguistic measures of each cause. Accordingly, membership functions were developed
using the expert knowledge of the same group by the heuristic method (see section
6.2.4.1 of Chapter 6 for further details of heuristic method). The parameters of the
membership functions are given in Figure 4-3.

The construction of the fuzzy neural network model is completed using 100 data

points treated as a training set. The rest of the data (i.e., 69 data points) are retained for

testing purposes.
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46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.2 Case 1: AND-OR Neuron Model

In this case, the model is trained with gradient decent learning algorithm (Equation 4-13
and 4-14). The learning rate () is experimentally adjusted and set to 0.01. Initial values
of the connections of the network (w) were assigned using two methods: (1) using
random weights, and (2) using a normalized principal eigenvector, i.e., a vector of
priorities. An AHP comparison of causal factors made by the construction manager is
shown in Table 4-2. The initial connections of the aggregation operation (v) were

assigned randomly.

4.3.2.1 Initial Weight Assignment by AHP Method

The AHP organizes and quantifies those relative measurements concerned with deriving
dominance priorities from paired comparisons of homogeneous elements (or variables)
with respect to a common criterion (Saaty 1980.). The process consists mainly of two
phases: the first phase involves setting priorities based on subjective judgment using

pairwise comparison, and the second phase checks for the consistency of the comparison.

Pairwise Comparison: The method of deriving the vector of priorities from a pairwise
comparison matrix is as follows:
Assume the vector of priorities a=[a;,as,...,a,]" , and let A be the positive pairwise

comparison matrix with respect to #z criteria.

ay Ay ey oy,
Yo S N A Ny

A=|. (4-15)
I ey

* element over j” clement. 4 is

Where a; represents the relative importance of the i
usually referred to as a reciprocal matrix. Note that:
(1) All diagonal elements of 4 are equal to unity, a;=1;
(2) A satisfies the property of reciprocity, since a;.a;=1;
(3) 4 is transitive in the sense that a;.(ay)=a;

Multiplying 4 by the vector of priorities a=[a;,a,,...,a,]", one obtains 4a=na, namely
(A-nDa=0 where I is the identity matrix; » denotes the largest Eigenvalue of 4 (Saaty
1980.). Thus the vector of priorities is simply equal to the corresponding normalized

eigenvector associated with 4.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Consistency Measure: In general, the user subjectively provides the value of a;; hence
the transitivity property cannot always be strictly enforced. A consistency index (CI) has
been introduced (Saaty 1980.) to estimate the departure from consistency

by C.I.=(A-n)/(n-1), where A is the maximal eigenvalue, and » is the number of

elements (variables) being compared.

For each matrix of size n, random matrices were generated (Saaty 1980.) and their
mean CI value, called the random index (RI), was computed. Using these values, the
consistency ratio (CR) is defined as the ratio of the CI to the RI; it concluded that a
consistent reciprocal matrix should have a CR < 0.1 [10]. When the CR>0.1, it is
recommended that the user revisit his or her pairwise comparison.

The priority vector for identified variables obtained by AHP comparison, as made by
the construction manager, is as follows:

w=[0.062 0.462 0.164 0.162 0.172 1.000 0.816] (4-16)

According to Equation 4-16, the construction manager’s opinion is that RWK, QAC
and EQA have the highest impact on the issue concerned, while WKL, MPA, TEM, and
PRE have a minimal impact. Two distinct operators for t-norms and s-norms are used to
build two separate models. Model-A uses product and probabilistic sum as t and s norms,
respectively; in the case of Model-B, min and max terms are used as t and s norms,

respectively.

The value of the normalized performance index (Q) (i.e., average value of Q per

data point) of the optimal structure of Model A is equal to 0.02 and the value of Model B
is equal to 0.03. Model A is therefore considered for further analysis.

The values of the normalized performance index vis-a-vis successive learning epochs
for Model A are shown in Figure 4-4. The dashed lines represent five experiments
initialized with random weights, and the solid lines represent the AHP-based initial
weight assignment. Figure 4-4 shows that the AHP-based initialization always converges
to a sub-optimal solution while random initialization converges away from a sub-optimal

solution in certain instances.
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Figure 4-4. Normalized performance index in successive learning epochs

The above findings highlight that when expert causal knowledge is available with
respect to an observed event, we can use the Analytic Hierarchy Process to capture the
causal knowledge and the intuition of the expert so that a simple yet efficient fuzzy logic

model can be developed to identify plausible explanations.
4.3.2.2 Interpretation of AND-OR Neuron Model Results

After optimization, the final value of the connection between the AND neuron and the
OR neuron (v)) is equal to 0.42, and the final value of the connection between the OR and
the OR neuron (v,) is equal to 1, making OR-wise connection of inputs to the network

more significant.

Table 4-2 shows the comparison of initial and final weights of the connections of
the AND and the OR neurons. Initial weight of the OR neuron (w;) is assigned using a

normalized eigenvector, and the initial weight of the AND neuron is calculated as:

wy, =1-w,, (4-17)

Since the OR neuron became significant in this particular instance, we analyze

the final weights derived from the OR-wise connection (see highlighted column in Table
4-2). For OR neurons, the higher values for the connections emphasize that the
corresponding inputs exert a stronger influence on the neuron’s output. Accordingly, Low
QAC, High RWK, and Low EAV were identified as significant contributors, compared to

the seven variables identified that impact on labour productivity in HT. The comparison
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of the initial and final values of connections provides insight regarding how the

optimization process changes the initial perception of the expert.

Table 4-2. Weight comparison of causal factors

OR NEURON AND NEURON
AHP- Initial Initial Final
priority | Weight Weight | Weight
WKL |Low 00618 |_0:0618 0.9382 | 1.0000
High 09382 | 0.9391
gAv | Low 0.4616 0.5384 | 1.0000
High 0.5384 | 1.0000

Low
0.8363 | 1.0000
MAV edom | 21637 0.8363 | 1.0000
High 0.8363 | 0.0000

Low
0.8377 | 1.0000
TEM ocgom | 0163 0.8377 | 0.0000
High 0.8377 | 0.5455
prg | LOW 0.1714 0.8287 | 0.0000
High 0.8287 | 1.0000
rRwK | LoV 1.0000 0.0000 | 0.1850
High 0.0000 | 1.0000
Qac | oV 0.8162 0.1838 | 1.0000
High 0.1838 | 0.0000

Interestingly, this finding largely agrees with the expert’s judgment given as a vector
of priorities (Equation 4-16). The FNN model has the further advantage of identifying the
significant linguistic terms, e.g., whether the Jow QAC or the Aigh QAC has the greater

impact on labour productivity of HT.
4.3.2.3 Accuracy of the AND-OR Neuron Model

Figure 4-4 illustrates graphically the FNN’s output vs. target output. Figure 4-5 shows the
corresponding network performance index over successive learning epochs. Both graphs
indicate that the FNN network does not have sufficient non-linear modeling capabilities.
Accordingly, several augmentations were made to the FNN model, and discussed in the

following sections.
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Figure 4-6. Network performance index in successive learning epochs.
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4.3.3 Case 2: Using a Nonlinear Transfer Function
To improve the neurons’ approximation capability, while keeping the characteristics of
the AND-OR neuron model, a monotonic sigmoidal transfer function is applied at the

output of the AND-OR neuron, as shown below in Figure 4-6.

Sigmoid 0

AND/OR

Figure 4-7. AND-OR neuron model augmented with sigmoidal transfer function

As a result, the new network output can be represented as follows:

1
r = l+exp{—(y—m)*0']

(4-18)

Where y' is the output of the network (with sigmoidal function), m and o are tunable
parameters of the sigmoidal transfer function and y is the output of the AND-OR neuron

model.
4.3.3.1 Learning/Optimization with Gradient Descending
Accordingly the performance index (4-12) is modified as follows:

T 2

Q=%Z(y, -y) (4-19)

i=1

Where the y, is target and y' as augmented FNN’s output based on Equation (4-18) with
respect to inputs [u (7),...,u,(r)] . The parameters of Sigmoid function are adjusted as

follows:

1 &

m=m- —a—=, O=0— l05 4% where a € [0,1] is the learning rate. (4-20)
2 om 2 do
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4.3.3.2 Accuracy of the AND-OR Neuron Model with Sigmoeidal Transfer

Function

The network is trained and tested with the same data set. As shown in Figure 4-7, the
resulting network (with Sigmoidal transfer function) still does not possess the ability to

model the nonlinear characteristics of the problem at hand.
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Figure 4-8. Target vs. AND-OR neuron model augmented with Sigmoidal transfer
function

4.3.4 Case 3: Genetic Adaptive Learning

In this case, gradient descent learning is replaced by genetic algorithms, and the model
discussed in Case 2 is optimized using genetic algorithms, as described in Section 3.4 of
Chapter 3. The tunable parameters of the network are represented in a chromosome coded

with a real vector, as shown in Figure 4-8,
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Figure 4-9. Chromosome representation

The network is trained with the most widely used genetic operators such as
roulette-based selection, one point crossover and uniform mutation. The fitness function
is defined as follows:

©= +l 0
Where the Q is the performance index defined in Equation 4-19. The Probability of

(4-20)

Crossover is set to 0.9; the probability of mutation is set to 0.01; and the initial size of the
population is set to 50.

The network performance index in successive generations is shown in Figure 4-9.
Albeit the training performance is better if compared to Case 1, the training performance
is still not acceptable. The average and best fitness value of individuals is shown in
Figure 4-10. As shown in Figure 4.11, the input-output mapping capability of the network
has significantly improved with learning based on genetic algorithms, especially with the

training dataset (final test Q=5.915x107).
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Figure 4-10. The values of network performance index (Q) in successive generations.
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Figure 4-12. Target output vs. network output (trained using genetic algorithm)

4.3.5 Case 4: Genetic Adaptive Learning with Cumulative Impact Values

In this case, an assumption is made that there can be a cumulative impact of the input
causal factor. For example, today’s productivity is low not only because it rained today,
but also due to the rain yesterday and the day before. To capture this cumulative impact,

instead of using the input value at time ¢, a weighted average value is used as follows:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i=(x, +a*x, +b*x, +otk*x, A+ atb+..+k) @-21)
If a three day period is considered to assess the cumulative impact, and the corresponding
weights for three days can be represented as a=0.8, b=0.6, ¢c=0.4, the corresponding
membership values can be represented as:
L =W,@)+0.8%u,(t-D)+0.6*u (t—2)+0.4*u,(t-3))/2.8 4-21)
Accordingly, the most recent value (at time t) of @he mput causal factor gets a higher
weight. While keeping the rest of the model characteristics the same as in Case 3, the
FNN is trained and tested using the same dataset. As shown in Figure 4-11, the network
performance is slightly improved (final test Q=5.334x10%); however, as illustrated in

Figure 4-12, the network still does not demonstrate good generalization capabilities.
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Figure 4-13. Network performance index on successive learning epochs (with
cumulative input values)
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44 AN ADDITIONAL TEST FOR NONLINEARITY

Having identified the limitations of the model in terms of generalization, to discover the
underlying complexity of the problem, several high-order polynomial regression models
were created, and the results are illustrated in Figure 4-13. It is clearly evident from the
plots that the higher the order of the polynomial model, the higher the generalization
capability. These high order polynomial regression models, however, have too many
parameters to be easily determined; hence, the interpretation of the model becomes
practically impossible. At the same time, it involves the predefined specification of the
form of the regression equation. In construction performance modeling, the specification

of the form of the regression equation is infeasible.
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45 SUMMARY

This chapter describes a logical modeling framework based on AND-OR fuzzy neural
networks. The simple yet efficient structure of the AND-OR neuron model provides the
flexibility to identify the significance of input causal factors on key performance
indicators in construction performance modeling. Based on four experimental cases, as
shown in a summary Table 4-3, it can be concluded that the AND-OR Neuron model
based on genetic adaptive learning with cumulative input values has, comparatively, the
highest generalization, i.e., input-output mapping capability. The explanation capability
of each model remains the same; however, the generalization capability of the model is
fairly low (compared to a 6™ order polynomial regression model). All four AND-OR
neuron models display considerable scatter and inconsistency between the target and the
network output (see Figures 4-4, 4-7, 4-10, and 4-12). This can be considered an
exemplary case of dichotomy between the generalization and explanation of a model.

The dataset used to test the AND-OR neuron model can be considered a
representative sample of the construction performance data. Based on the experiments
described above, it can be concluded that the underlying problem has a complex
nonlinear character. Thus, to get a reasonably accurate input matting capability, a model
that has greater generalization capabilities is required.

The next chapter presents an alternative network architecture that focuses on
mapping the complex non-linear problem at hand at a greater level of accuracy. The main
objective of the alternative system architecture is to enhance the generalization capability
while maintaining the explanation capability that is available with the AND-OR neuron

model in terms of interpreting connection weights.
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Table 4-3. Summary results of AND-OR Neuron models

AND

Basic Model

with Sigmoidal function | with GA | with Dynamic data | Basic Model| with Sigmoidal function| with GA Jwith Dynamic data
Membership | AHP Weight
Tnitial v1 1 1 1 1 1
Initial v2 __1 1 1 1 1
Final vi 0.999999 oo 1) 0.99765 ...0.99842] 0.999999f - - - =] 0
Final v2 -0.408605 - 0.952967) . 0.94072| 5+ 0.729341..0,408605) .-~ 0952967 0O :
Low 0.061844 0.93815 0.938197] 0.99934 0.99838 0 0.72065
Work load Medium | 0.061844 0.938152 0.938203} 0.99772 0.99993 0 0.262776f 0.9876 8.82E-04
High 0.061844 0.938166 0.938183] 0.0009528 0.48303 0 0} 0.15246 0.00047505
Equipment Low 0.46156 0.538429 0.538529] 0.99865 0.99048| 0.617717 0.50906f 0.12547 0.99938
availability Medium 0.46156 0.538434 0.538519] - 0.15781 0.34948 0 0| 0.000264 0.0003907
High 0.46156 0.538447 -~ 0.538442] 0.99986 0.99976 0 0l 0.59353 0.0010322
Manpovwer Low 0.163688 0.83631 0.836362] 0.99863 0.99944 0 0] 0.8474 0.0020526
availability Medium | 0.163688 0.836317 0.836331] 0.99975 0.42225 0 0| 0.10747 0.80279
High 0.163688 0.836312 0.836374] 9.61E-05 0.8317 0.35765 0.29063| 0.63813 0.75058
Mean Low 0.16227 0.83773 0.837794] 0.99905 0.99935 1 1] 0.95932 0.21315
tempereture Medium 0.16227 0.83773 0.837764] 0.0011585 0.52217] 0.450552 0.744908| 0.92895 1.35E-06
High 0.16227 0.83773 0.837756] 0.99956 0.99968 1 1] 0.56065 0.00010123
Total Low 0.171348 0.828652 0.828652] 0.97459 0.0022023 0 0.378654] 0.37025 0.00050449
Precipitation Medium | 0.171348 0.828652 0.828717]  0.99967 0.99775 0 0{ 0.084054 0.00027176
High 0.171348 0.828652 0.828717f 0.99861 0.99959 0 0] 0.99947 0.59473
Low 1 0 0] 0.99369 0.054153 0 0| 0.64198 0.00090474
Rework Medium 1 7.89E-06 0] 0.17794 0.99989 0 0.00339298] 0.71803 0.002056
High 1 0 0.0103447] 0.99881 0.9996 0.19438 0.371263] 0.002645 0.65103
Low 0.81617 0.183837 0.183888 0.10401 0.67953 0 0] 0.009764 0.46068
QA/QC Medium 0.81617 0.183733 0.183656] 0.99686 0.9995| 0.466896 0.532425] 0.74245 0.00051952
High 0.81617 0.183852 0.184178 0.9996 0.99754 0 0| 0.15187 0.70547
Final Q- .
Training (100 ’
data points) 0.0177551 0.0167294{ 0.009638 0.015693{ 0.0177551 0.0167294] 0.009638 0.015693
Final Q- Testing 0.067774 0.0715309] 0.059147 0.053343| 0.067774 0.0715309] 0.059147 0.053343
m X 1]  0.92067 0.76864 X 11 0.92067 0.76864
sigma X 6.03942 -74.899 10.679 X 6.03942] -74.899 10.679




4.6 REFERENCES

Dissanayake, M., Chen, L., Pedrycz, W., Fayek, A. R., and Russell, A. D. (2004). "Fuzzy
logic modeling of causal relationships-case study: reasoning about construction
performance.” Fuzzy Information, 2004.Processing NAFIPS '04.IEEE Annual
Meeting of the, 605-610.

Gobi, A. F., and Pedrycz, W. (2004). "Hardware design issues of fuzzy neural networks."
587-592 Vol.2.

Myung-Geun Chun, Sam-Sun Ma, and Myung-Soo Lee. (1997). "Qualitative and
quantitative modeling of steam generator in a nuclear power plant using logic
processor." 1061-1066.

Pedrycz, W. (1995). Fuzzy Sets Engineering. CRC Press, Boca Raton, FL.

Pedrycz, W., and Gomide, F. (1998). An introduction to Fuzzy Sets: Analysis and Design.
MIT Press, Cambridge.

Pedrycz, W. (1993). "Fuzzy neural networks and neurocomputations.”" Fuzzy Sets Syst.,
56(1), 1-28.

Saaty, T. L. (1980.). The analytic hierarchy process. McGraw-Hill, Inc., New York,.

Zhi-Qiang Liu, and Yan, F. (1997). "Fuzzy neural network in case-based diagnostic
system." Fuzzy Systems, IEEFE Transactions on, 5(2), 209-222.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER FIVE

5. FUZZY ADAPTIVE GENERALIZED REGRESSION NEURAL
NETWORK (FA-GRNN)

5.1 INTRODUCTION

This chapter demonstrates the utility of applying an alternative network processing
module based on a synergistic combination of neural networks (specifically, Generalized
Regression Neural Networks), Fuzzy Sets, and Genetic Algorithms (GA). Fuzzy neurons
are introduced to the classical GRNN architecture as a means of handling granulated
information. The learning and inference modes of the network are discussed and its
application to construction performance modeling is presented. This chapter contains
many of the author’s earlier results (Dissanayake et al. 2005), recast in light of later

developments.

5.2 GENERALIZED REGRESSION NEURAL NETWORKS (GRNN)

A generalized regression neural network (Specht 1991; Specht and Romsdahl 1994) is a
memory-based network capable of fitting multidimensional surfaces through data via a
one-pass learning algorithm; it provides estimates of its variables and converges with an
underlying linear or nonlinear regression surface. Since Specht’s (1991) work on GRNN,
the methodology has been successfully applied in several cases (Kiefa 1998; Seng et al.
1999). The incentives to using a GRNN model in construction performance modeling,
relative to other nonlinear modeling techniques, are as follows:

* The network instantly defines a very reasonable regression surface, even with
sparse data in a multidimensional measurement space, that is, in a real-time
environment (Specht 1991; Seng et al. 1999);

* The network can be used to rank input variables using (local) smoothing factors
(Specht and Romsdahl 1994) ;

* Since the network is not based on the gradient descent algorithm, it does not face
the local minima problems, which results in rapid training;

» The network provides a mechanism for updating new knowledge (data) to the
network and forgetting old data (Specht 1991; Seng et al. 1999);

» The network can be optimized/calibrated easily using genetic algorithms (Ward

Systems Group, Inc. 2003).
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53 FUZZY ADAPTIVE GENERALIZED REGRESSION NEURAL NETWORK
(FA-GRNN)

This section presents the proposed network architecture. It differs from Sprecht’s
classical GRNN (Specht 1991) in three ways. First, an additional layer of (fuzzy) neurons
is introduced to capture and represent expert knowledge on causal factors. Additionally,
since fuzzy neurons transform input values to a unit interval, this additional layer also
facilitates as the input scaling step. Secondly, both the transparency and the accuracy of
the classical GRNN are enhanced by adapting separate smoothing parameters, or “local
smoothing factors”, as suggested by Specht and Romsdahl (1994). Thirdly, the network is
trained using real-coded genetic algorithms, making the network optimization procedure
more efficient and accurate. The pertinent details of the proposed fuzzy adaptive
generalized regression neural network (FA-GRNN) are presented below.

The proposed FA-GRNN architecture is illustrated in Figure 5-1. It consists of

five layers, namely: input, fuzzy neurons, pattern, summation, and output.

input units

Fuzzy (input)
Neurons

Pattern
units

Summation
units

Output units

A

¥(u)

Figure 5-1, Fuzzy Adaptive Generalized Regression Neural Network Architecture
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The input layer consists of input units that represent causal factors (of KPIs).
Input units are merely distribution units. Input units channel the values of causal factors,
x (i.e., input variables), to the fuzzy neurons in the second layer. The fuzzy input neuron
layer represents the respective linguistic values as fuzzy sets of each input causal factor.
Fuzzy neurons calculate the corresponding membership values and transfer them to the
pattern layer.

The pattern layer consists of pattern units representing each data pattern (one
exemplar, i.e., values of input vector u in day ) by one pattern unit. Hence the number of
pattern units of a FA-GRNN model is equal to the number of observed data patterns (i.e.,
total number of days, 7, represented in training dataset). Pattern units sum the squared
values of the difference between the new and stored data patterns and feed this
information into a nonlinear activation function (e.g., exponential). The pattern unit
outputs are then passed to the summation units. The summation unit that generates fu)K
sums the outputs from the pattern units weighted by the number of observations each
cluster center represents. (K is a data-dependant constant). The summation unit that
generates Yf(u)K multiplies each value from a pattern unit by the sum of sample Y,
which is associated with cluster-centre X. The function of the output neuron consists in a
simple division of YAu)K by Au)K. In general, the direct mapping between inputs and

output of the system is given in Equation 5-1:

y=— o2 (5-1)
; exp{ >o? }
P
Where D* = ch(u, —u, )2 (5-2)
1=l
X; Input variable, i.e., causes (e.g., crew skill level, temperature)
y Output variable, i.e., Key Performance Indicator (KPI) (e.g. Labour Productivity)
¥ Network output (e.g. predicted Performance Factor)
n Number of factors
T Number of data patterns
m Membership functions of input variable x;
u Input vector
k Number of membership functions of each input variable
p Total number of input membership functions
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c Center of the sigmoidal transfer function

s Sigmoid
(0] Global smoothing factor
o, Individual (local) smoothing factor

i, j,t,l Index

The interested reader is referred to the further research of Specht (1991) for a

more detailed methodology and for the process of implementing this formula.
5.3.1 Smoothing Factors

As shown in Equation 5-1 and Equation 5-2, the only parameters of the FA-GRNN are

| the global smoothing factor () and the local (individual) smoothing factors 5, . Both ©

and o, are automatically calculated using the genetic algorithm (GA)-based optimization

procedure, which is described in Section 5.3.2. The global smoothing factor determines
how tightly the network matches its prediction to the training data patterns. A higher

global smoothing factor causes more relaxed surface fits through data. The local

smoothing factor G, is a positive value representing the relative significance of the ™
mput variable to the distance measurement D (e.g., city block distance, Euclidean
distance).

5.3.2 Learning and Optimization Mode of the FA-GRNN Model

The learning and optimization of the FA-GRNN network is the process of finding the
smoothing factors (o ,0,) through supervised learning. The results of the learning can
also be used to prune the network and finally determine the best network topology. The
learning mode of the proposed FA-GRNN architecture is presented in Figure 5-2.
Consider a multi-input and a single-output (MISO) scenario, with » inputs
X; 53Xy peees X, (x,. eX,,i=12 ,...,n) and the single output y. The learning data, which are

the basis for the construction of a fuzzy neural network, have the form of 7 input-output

pairs, as given below:

T
L = {x; ’yr },:] (5‘3)
The learning data set L consists in finding the mapping M: X — y, provided its

restrictions on learning data L. In general, the learning data set (5-3) may contain purely
quantitative numerical data samples or mixed qualitative and quantitative samples of

data.
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data == learning
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Learning
Algorithm {GA)

Figure 5-2. Learning mode of the FA-GRNN

Accordingly, to characterize the mix of quantitative and qualitative data, we
represent each input factor using fuzzy membership functions, as shown below:

My (i = 1,200,115 j =1,25000,k) (5-4)

ij’
Where m;; is membership functions of input variable x;, n is the number of input

factors and k is the number of membership functions for each factor. Vector u

represents the combined membership grades (72, ) in a single input vector in Equation (5-

5) below:

W= [ 1y pevey Py 5 Mg s Mgy ey Py yoney Ty 5 Ty ey P = lul sl ey j (5-5)
Where total dimension of #is p =n.k . Thus the learning dataset is a comprehensive

representation of the data and knowledge describing the behaviour of complex systems.

When the desired output (i.e., key performance indicator) is best represented by
quantitative measures, such as labour performance factors, target output values can be
represented as in Equation 5-6.

1

G TEwr Py

(5-6)
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5.3.3 Parametric Optimization via Genetic Algorithms

To avoid getting trapped in a local optimal solution, the genetic algorithm’s robust

optimization capabilities are utilized to calibrate the proposed FA-GRNN model.
5.3.3.1 Network Performance Index

The learning algorithm’s target is to find the best parameter values for retaining the
smallest possible difference between the predicted value 9, and the real output y,. In

other words, the goal is to find the best smoothing factors to keep the network
performance index(Q), i.e., mean squared errors, defined in Equation 5-7, as small as

possible.

0= bi-5) | (5-7)

Where y, is a predicted value computed using Equation (5-3) with input vector x.

Additionally, the coefficient of a multiple determination (R?) provides an estimate of the

accuracy of the model. R” is calculated as follows:

Z(Yt _)A’t)
R*=1- , 5-8
Z(yt'_)_}) ( )

Where y is the mean of y; ’s values. According to Equation 5-8, a very good fit would

result in an R? value of near 1 and a very poor fit less than 0.
5.3.3.2 Learning Based on Genetic Algorithm

To minimize the performance index (Q), a real coded genetic algorithm is applied, as
described in Section 3.4 of Chapter 3. The tunable parameters of the FA-GRNN network
are represented in a chromosome coded with a real vector. The first n real number

represents the n local smoothing factors o, (j=1,..., n), and the (n+1)™ real number
represents the global smoothing factor o .
The network is trained with the most widely used genetic operators, such as

roulette-based selections, one-point crossover, and uniform mutation. The fitness function

1s defined as follows:

(5-9)
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Where Q is the performance index as defined in Equation (5-7). The Probability of
Crossover is set to 0.9; the probability of mutation is set to 0.01; and the initial size of the

population is set to 50.
5.3.4 Interpretation of the Network via Smoothing Factors

According to Equation 5-1, the larger the value of the individual (local) smoothing

factor 6, , the higher the impact the input variable ; will have on the distance

measurement and on the final output ¥ . In other words, when sample data points for one
variable have a greater smoothing factor than sample data points for a second variable,
the first variable is said to be more important in predicting an outcome than the second
variable. An examination of the relative ranking of individual smoothing values o,
reveals which input variables are most important in determining the output. This property

is used to identify the strength between causal factors and related key performance

indicators in construction performance modeling.
54 EMPIRICAL VALIDATION OF THE FA-GRNN MODEL
5.4.1 Description of Data

The same dataset described in Chapter 4 (Section 4.3.1) is used to conduct the
experiments to train and validate the FA-GRNN model. For the reader’s convenience,
Table 4-1, which described the causal factors studied, is here reproduced as Table 5-1. A
simple, cluster-based approach (Hong and Lee 1996) is used for designing membership

functions for input fuzzy neurons based on the sample data.

Table 5-1. Causal factors that impact labour productivity in Pipe Hydro-testing

Causal Factor Description

F1 | WKL Work Load No. of pipe modules in progress

F2 | EQA Equipment availability No. of cranes available

F3 | MAV Manpower availability No. of pipefitters available

F4 | TEM Mean Temperature The mean temperature of the air in
degrees Celsius.

F5 | PRE Total precipitation The sum of the total rainfall and the water
equivalent of the total snowfall

F6 | RWK Rework Pipe fabrication rework (work force hours
spent on repairs)

F7 | QAC Quality Assurance/ Quality No. of hours spent on QA/QC work.

Control input
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Figure 5-3 shows the membership function for Factors F1-F3 and F5-F7. Data
for Factor F4 (i.e., temperature) are categorized into four respective seasons (due to a

highly seasonal dependant nature) and membership functions are derived accordingly

(see Figure 5-4).

F1: Workload F2: Equipment availability F3: Manpower availdbility[l
1 - 1
i S i
A i i H
0.8 0.8 L 0.8
1
0.6 0.6 ! 0.6
=
0.4 0.4 0.4
0.2 0.2 0.2
0 . 0 0 o
0 20 40 60 0 5 10 15 4
Number of modules Number of equip. Pipefitters:module ratio
F5: Total precipitation F6: Rework F2: Equipment availability
4 1
0 5 10 15 100 6
Rework hours Number of equip.

Precipitation-mm

Figure 5-3. Membership functiens.
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Figure 5-4. Membership functions for temperature (cold, average and warm).
5.4.2 Case 1: FA-GRNN Model Validation using Full Data Set

In this case, the proposed FA-GRNN architecture is realized using genetic algorithms,
beginning with 132 training data patterns and tested with 32 data patterns. Figure 5-5
shows the performance of the network in terms of a comparison between the actual (i.e.,
target) and network outputs, both in the training and testing data sets. The Mean Squared
Error (MSE), i.e., Q of the FA-GRNN network is 0.002, may be compared to the best
performance of the AND-OR neuron model (i.e., 0.0533), as presented in Chapter 4. The
coefficient of determination (R?) of the FA-GRNN network is equal to 0.67. This is a
comparatively significant improvement, and based on the visual analysis of the scatter
plot shown in Figure 5-5a, one can conclude that this preliminary investigation into
possible applications of the FA-GRNN model in modeling the complexity and the
dynamics of the construction performance proves very promising. Figure 5-6 shows the
corresponding test-error elapsed over several generations, which shows that the FA-
GRNN model converges to an acceptable error smoothly. Appendix C presents a
summary of the actual output (i.e., measured labour productivity factor) and the results
predicted by the FA-GRNN model for all 164 records included in both the training and
the testing datasets.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ac_:tual and Network Output thru Patterns
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Figure 5-5. FA-GRNN Network performance (based on full dataset): (a)
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Figure 5-6. FA-GRNN test error in successive generations.

For comparison purposes, the same data set is fed into a multilayer back

propagation artificial neural network (ANN). The test error (Q) in successive learning

epochs is shown in Figure 5-7, which shows that the average error level is somewhat

similar to the FA-GRNN network, but it is highly unstable.
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Figure 5-7. Traditional ANN test error in successive generations.

Comparison of Figure 5-6 and Figure 5-7 indicates that FA-GRNN model
outperforms not only the AND~OR neuron model, but also the traditional ANNs,

5.4.2.1 Interpretation of FA-GRNN Results

During the training phase, the FA-GRNN model is trained adaptively with 132 data
patterns, and the network’s robustness is tested with 32 data patterns. The resulting FA-
GRNN network has the following local smoothing factors, as shown in Table 5-2.
Accordingly, it can conclude that low manpower availability, low workload, and medium
to high rework have the highest impact on pipe hydro-testing productivity for the time
period represented by the dataset.

The above model was trained and tested with 169 data patterns representing 169
working days. To exploit GRNN’s capability of modeling with sparse data, the following
changes were made to the data pattern set: first, the patterns were categorized according
to their respective months and 11 models were trained and tested; second, the patterns

were categorized into respective (four) seasons, and 4 models were trained and tested.

The rationale in developing models using data sets representing months and
seasons is that most of the possible causal factors of construction performance indicators
will change dynamically as the construction project unfolds. For example, from season to
season, changes in weather parameters can be observed; manpower and equipment

availability will change based on the scope of the work scheduled; and more fabrication
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rework can be expected at the early and latter stages of the project due to the learning-
curve effect and compressed schedules, respectively. Both monthly and seasonal data
pattern sets can be considered as natural clusters of data for construction performance

modeling.

Table 5-2. Local smoothing factors and rankings from FA-GRNN model

CAUSAL FACTOR | FUZZY INPUT SMOOTHING RANK
FACTOR
F1 | Workload Low 2.96 2
Average 0.14 . 19
High 0.21 ' 17
F2 | Equipment Low 2.48 9
availability Medium 2.39 10
High 0.15 18
F3 | Manpower Low 2.99 1
availability | Low-Medium 2.62 8
Medium-High ~0.00 24
High 0.01 22
F4 | Mean Temperature Low 1.73 13
Average 0.01 23
High 2.65 5
F5 | Total precipitation Low 0.35 16 .
Medium 2.15 11
High 2.06 12
F6 | Rework Low 2.64 7
Low-Medium 2.85 3
| Medium-High 2.73 4
High 2.65 5
F7 | Quality Assurance/ Low 1.24 15
Quality Control input | Low-Medium 0.08 21
Medium-High 0.08 20
High 1.28 14

5.4.3 Case2: FA-GRNN Models Trained with Monthly Data Pattern Sets
To validate the proposed FA-GRNN model described above for sparse data, the model
was trained and tested with eleven (11) data pattern sets, which were created by
categorizing the original dataset (162 patterns) according to respective months.
Summarized in Table 5-3 are the performance results of the model based on 11 data
pattern sets. Comparisons between the actual output and FA-GRNN model outputs are
shown in Figure 5-8.

As shown in Table 5-3, the number of training data patterns for each new data set
varies from § to 16. Even though a significant reduction in the number of training data

patterns (i.e., 132->16) were made, in 54% of the cases (6 out of 11), the accuracy of the
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model (based on both Q and R?) is greater than the FA-GRNN model trained with the fuli
dataset. In both cases, however, where ‘training data patterns were less than 10, the
accuracy of the model decreases, indicating insufficient pattern data. Conversely, in cases
where numbers of training data patterns were higher than 15, model accuracy was
increased by 43%. A possible explanation may be that with sufficient data patterns
representing similar clusters of data, the proposed FA-GRNN model can produce better
results, even with sparse datasets. As shown in Figure 5-9, the mean squared error of all

11 different models converged smoothly to an acceptable error level.

Table 5-3. Summary statistics of FA-GRNN model trained with monthly datasets.

NUMBER OF NUMBER OF R’ MEAN CORRELATION
PATTERNS | PATTERNS BRRoRQ | oo
Al 132 32| 0.667 0.002 0.829
April 16 3| 0.962 0.000 0.981
May 3 2| 0257 0.004 0.705
Tune 12 2| 1000 0000 1.000
Tuly 15 3| 0.722 0.001 0.853
August 12 3] 0947 0.000 0.978
September 13 31 0.577 0.001 0.825
October 16 3] 0.969 0.000 0.986
November 12 2| 0.660 0.001 0.862
December 8 21 0.59 0.004 0.792
Tamuary 10 2| 0976 0.000 0.991
February 12 3| 0446 0.003 0.687
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Figure 5-8. a. Actual vs. network output comparison for April 2003 through August
2003.
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5.4.3.1 Smoothing facter analysis

Table 5-4 presents the normalized (local) smoothing factors for each dataset (representing
11 different months) from April 2003 to February 2004. The highlighted values in Table
5-4 indicate the most significant causal factors for each dataset. An analysis of smoothing
factors reveals that the significance of each causal factor to the prediction of KPI (labour
performance) varies across datasets; however, several causal factors appear prominently
across the data sets. For example, manpower availability is a significant causal factor in
73% of (8 out of 11) cases. Both rework and workload are also significant causal factors.
These results are consistent with the results obtained from the FA-GRNN model trained

with the full dataset (169 data patterns), described in Section 5.4.2.1.
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Table 5-4. Normalized smoothing factors representing the significance of causal factors in monthly datasets.

CAUSAL | FUZZY INDIVIDUAL SMOOTHING FACTOR (NORMALIZED)
FACTOR INPUT April | May | June [ July .| Aug | Sept | Oct Nov [ Dec [ Jan Feb
Workload | Low 008 053 [001 J0.00 {059 [073 [049 [0.27 [0.87 [0.13 [0.67
Average 0.76 [0.00 |1.00 [0.00 [1.00 [0.00 |0.06 |044 |0.54 |0.87 | 1.00
High 045 1015 050 ]0.61 [022 [0.00 [002 016 [042 [0.76 [0.47
Equipment | Low 012 000 [0.06 ]0.99 1000 [085 [053 [0.02 [064 [0.65 [0.29
availability [ Medium 059 1029 1062 1072 [008 [044 |0.06 |0.38 [063 [0.50 |0.54
High 0.17 1000 009 (000 [000 [087 [0.00 |0.07 [060 [0.28 [0.53
Manpower Low 0.73 098 096 (034 |0.59 093 |004 |0.10 | 0.89 | 0.04 | 0.90
availability | Low-Medium |0.98 [0.00 [0.02 |000 [0.02 {08 029 [1.00 {081 |1.00 {050
Medium-High [0.60 [040 [0.86 [001 [063 [0.97 |049 |0.91 |0.60 | 040 [0.37
High 011 }1.00 032 [0.19 [o0.12 {041 011 0.03 {038 |0.87 |0.56
Mean Low 032 000 Jo0.01 084 [015 065 {068 |0.01 |0.04 062 |0.07
Temperature | Average 0.70 (032 ]0.03 [001 [087 [049 [1.00 [1.00 [0.85 |047 |0.50
High 006 {010 |040 [0.69 [0.00 {000 [086 [0.26 {1.00 [051 007
Total Low 033 [0.00 071 ]0.08 [000 [009 [033 [057 [063 [0.12 [055
precipitation | Medium 086 009 (099 [0.17 [001 [074 094 |0.33 [074 080 [0.76
High 078 (081 1028 069 {021 [093 [0.00 {041 [069 {039 [0.60
Rework Low 097 056 [054 1000 [0.00 [000 {021 [024 [0.69 |0.76 |0.28
Low-Medium | 098 | 049 [0.15 [1.00 | 0.00 |0.13 [0.56 [0.00 |0.99 |0.83 |0.65
Medium-High | 0.18 ]0.02 |[0.11 [098 ]0.64 |0.11 |0.73 ]0.72 | 0.64 | 0.27 | 0.63
High 037 [026 |0.63 ]085 [0.85 [030 [054 [0.13 [021 [030 [0.19
Quality Low 083 [000 [025 J054 [002 [1.00 J0.12 044 [085 [036 [0.39
Assurance/ | Low-Medium | 1.00 [0.00 }0.00 [0.00 ]0.34 {000 |023 [0.04 [043 |[0.83 |0.83
Quality Medium-High [ 0.84 [0.88 [0.00 [085 004 |0.00 [0.10 |0.00 [0.98 |0.06 |0.22
Conttrol High 084 [016 018 [090 [0.80 [053 [025 [0.02 [096 [070 [o0.15
inpu




5.4.4 Case 3: FA-GRNN Models Trained with Seasonal Data

In this case, four datasets were formed by grouping the full dataset into respective
seasons (spring, summer, fall and winter), hypothesizing that data grouped into respective
seasons have similar and unique characteristics that can possibly impact the labour
performance. Summarized in Table 5-5 is a comparison of the performances of FA-
GRNNs trained using four datasets based on seasonal data. Figure 5-10 illustrates the

comparison of actual vs. network prediction.

Table 5-5. Summary statistics of FA-GRNN model trained with seasonal datasets.

NUMBER | NuMBER - MEAN
TRAINING | OF TESTING R? SQUARED
PATTERNS PATTERNS ERROR:Q
All 132 32 0.667 0.002
Spring 24 5 0.8879 0.0005
Summer 38 9 0.9444 0.000
Fall 40 9 0.9334 0.0002
Winter 32 7 0.8061 0.001
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Figure 5-10. Actual vs. network output comparison for seasonal data categories
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Based on the results shown in Table 5-5 and on the visual analysis of Figure 5-
10, one can conclude that the models trained with seasonal data sets have a better overall
performance. Table 5-5 shows that all four seasonal dataset-based models outperformed
the original model trained with the full dataset. As shown in Figure 5-10, mean squared

error in test data sets smoothly converged into a very reasonable state.
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Figure 5-11. Mean squared error (MSE) of test data patters of seasonal data

5.4.4.1 Smoothing Factor Analysis for Seasonal Datasets
Summarized in Table 5-6 are the normalized individual (local) smoothing factors
representing the significance of each causal factor in the four datasets formed based on

particular construction seasons. The highlighted figures indicate the most significant
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causal factors in each dataset. An analysis of the smoothing factors reveals that results are

consistent with Case 1 as well as Case 2.

Table 5-6. Normalized individual smoothing factors representing significance of

5.5

causal factors in seasonal datasets.

INDIVIDUAL SMOOTHING
FACTOR (NORMALIZED)
CAUSAL FUZZY INPUT spring | summer | fall winter
FACTOR )
Workload Low 0.69 0.20 0.57 0.96
Average 0.07 0.53 1.00 0.82
High 0.00 0.34 0.00 1.00
Equipment Low 0.95 0.04 0.72 0.56
availability Medium 0.01 0.62 0.21 0.24
High 0.00 091 0.80 0.82
Manpower Low 0.92 0.57 0.14 0.78
availability Low-Medium 0.22 0.08 0.00 0.04
Medium-High 0.76 0.45 0.71 0.00
High 0.33 0.05 0.26 0.91
Mean Temperature | Low 0.31 0.09 0.06 0.86
Average 1.00 0.96 0.00 0.72
High 0.01 0.24 0.23 0.10
Total precipitation | Low 0.98 0.96 0.22 0.73
Medium 0.41 0.98 0.72 0.47
High 0.93 0.58 0.57 0.19
Rework Low 0.98 0.42 0.54 0.24
Low-Medium 0.98 1.00 0.02 0.05
Medium-High 0.89 0.71 0.55 0.55
High 0.79 0.24 0.80 0.55
Quality Assurance/ | Low 0.09 0.01 0.00 0.97
Quality Control Low-Medium 0.08 | 0.06 | 0.03 0.23
input Medium-High 0.89 0.38 0.96 0.86
High 0.51 0.85 0.00 0.47
SUMMARY

This chapter introduced a novel fuzzy neural network, the Fuzzy Adaptive Generalized

Regression Neural Network (FA-GRNN), for mapping input-output data with greater

accuracy (as compared to the model presented in Chapter 4) for construction performance

modeling. The proposed FA-GRNN automatically extracts the underlying nonlinear

regression surface from available sample data. FA-GRNN is a nonlinear and

nonparametric method (i.e., no assumptions are made regarding the distribution of the

data in the model). Prediction (input output mapping) accuracy of the model is tested
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with 16 data sets; it was shown that the model provides better overall performance when
it is trained with data representing seasonal characteristics.

The proposed FA-GRNN model introduced fuzzy neurons to the classical GRNN
architecture. By doing so, the user of the model (i.e., construction managers) is provided
with a mechanism for incorporating linguistic values as causal factors. This added level
of information granularity enables better capturing and representation of the qualitative
knowledge of the system user.

By introducing local smoothing factors to the classical GRNN, the transparency
of the proposed FA-GRNN model is enhanced up to a level that the model can be used to
identify the relative significance of each input causal factor. This important feature of the
FA-GRNN model is later used as the foundation of performance diagnostic inference,
which is described in Chapter 7.

It is noted at this stage that significant improvements can be made to the accuracy
of the FA-GRNN model, through further development of: (1) the input causal factor
selection using expert knowledge, (2) the qualitative data collection from construction
projects on daily basis, and (3) the efficient and practical membership function estimation
using quantitative and qualitative data collected from the field (i.e., from experts). In
view of this, Chapter 6 presents the efforts made to enhance the proposed FA-GRNN
model using several knowledge representation and acquisition techniques to condition the

input causal factors.
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CHAPTER SIX

6. DATA-DRIVEN MEMBERSHIP FUNCTION ESTIMATION

“A very widespread question about fuzzy set theory is: from what kind of data and how can
membership functions actually be derived? Answering this question is very important for practical
applications” Dubios and Prade 1980

6.1 INTRODUCTION

To ensure the efficient performance of a diagnostic reasoning system, the acquisition and
representation of knowledge from domain experts become the most essential tasks in the
development process. Construction projects are managed by a group of experts, ranging
from frontline supervisors, representing each trade, to the construction manager who
oversees the entire project operations. Each individual possesses a certain amount of
causal knowledge regarding the task they supervise based on his or her on-the-job
experience, previous experience on similar jobs, and the training and education he or she
has received. This study is designed to reason about construction productivity from the
construction activity-level and upwards. Thus knowledge acquisition is carried out at the
front-line supervision level, in two stages:

(i) Causal knowledge representation to identify possible causal factors of key
performance indicators (1.e., finding out what is likely to be causing performance
deviations); and

(il) Daily quantitative and qualitative (subjective) judgments about the causal factors.

This study uses fuzzy set theory, more specifically membership functions, to process
knowledge elicited from (a group of) experts. The representation of causal knowledge
and of developing membership functions is a very under-researched area, but is
nevertheless a vital aspect if fuzzy sets are to be used in construction performance
modeling.

This chapter first reviews membership function determination techniques, and then
suggests suitable development techniques for construction performance modeling. A
pragmatic approach to causal knowledge acquisition (i.e., to identify the causal factors)
using a modified version of the nominal group technique is presented. Next, a
parsimonious approach to collect and analyze both objective and fuzzy-linguistic
assessments on the causal factors is presented along with validation using data collected

from an actual construction project. Subsequently, a systematic procedure is presented to
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transform linguistic values into numerical values that are ultimately used for developing
membership functions, thereby developing a fuzzy-logic-based construction performance

diagnostic reasoning system.

6.2 MEMBERSHIP FUNCTIONS
A membership function ( z, (x)) is a function that defines the degree of an element’s (x)

membership in a fuzzy set 4. The degree of membership to a concept is indicated by a

number in the interval {0,1]. A membership function maps every element of the universe

of discourse X to the interval [0,1]. This can be formally represented as:
,uA(x):X—>[O,1]

Figure 6-1 shows sample membership functions defined for three fuzzy sets,
named Cold, Average, and Warm, of the linguistic variable ‘temperature’. The
construction of the membership function is fundamental work in real-world applications
of fuzzy set theory. There is, however, no unified form of membership function(s)
available that can be readily applied in practical applications, due to the context-
dependent nature of fuzzy sets. Piecewise-linear (e.g., triangular or trapezoidal)
membership functions are commonly used due to factors such as mathematical simplicity,
good interpretability, and a minimal amount of domain knowledge requirement.
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Figure 6-1. Sample Membership functions
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6.2.1 Properties of Membership Functions
Although there is little consensus among membership function development techniques,
the majority of the membership functions used in practical applications have the
following properties:
(1) Membership functions map u[a, b] to [0,1] or to [1,0] on an arbitrary interval [a, b].
(i) Continuous and monotonic: All membership functions are continuously increasing
or decreasing functions or can be divided into a monotonically increasing or
decreasing part. |
(iii) Boundary condition: Membership functions satisfy boundary conditions p(a)=0 and
w(b)=1 (for increasing functions), or x(a)=1 and u(b)=0 (for decreasing functions),
simply put, membership functions are bounded in [0,1].
(iv) Fuzzy convexity: Typically membership functions are convex (with a convex
curve).
(v) Normal: At least one member has a membership degree of 1.

Some of these membership function properties are shown in Figure 6-2.
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Figure 6-2. Properties of membership functions: (a) normal vs. subnormal, (b)
convex vs. nonconvex.

6.2.2 Desirable Characteristics of Generation of Membership Functions
In construction performance modeling, the following characteristics are desirable for an

efficient membership function generation mechanism:
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(i) Accurate: The representing membership function should reflect the multiple
records of expert knowledge (where available) contained in the sample data points
in the most accurate way possible.

(i) Easy to collect necessary data: The type of data required should be easy to collect
without disrupting the already-busy frontline supervisor’s schedule. In other words,
the methodology should require only a limited set of training samples.

(1) Flexible: The methodology should provide a broad family of membership

| functions, both linear and non-linear, to represent simple and complex causal
factors, respectively. The number of parameters in the functional representation
should be as small as possible. A free functional form that preserves the shape of
the sample data would be a better choice.

(iv) Dynamic: The methodology should be able to capture and represent the time
variant nature of the causal factors. For example, the parameters of the membership
function should be easily adjusted to represent the different stages of construction
and or seasonal impacts where applicable, i.c., changing contexts.

(v) Computationally inexpensive: The methodology should be easy and inexpensive

to implement.

6.2.3 Interpretation of Membership Functions
Several different interpretations of the meaning of membership functions (i.e., what does
graded membership mean?) can be found in the current literature. Consider the vague
predicate “Today’s temperature (x) is Cold (C).”
What does it mean to say pa(x) = 0.8?
Pedrycz and Vukovich (2002) categorized the interpretations into three main views as
follow:
(1) Likelihood view: 80% of a given population of experts declared that today’s
temperature is cold. This corresponds to the frequency-driven statistical methods
(e.g., Yes/No experiments) and implicitly assumes that there is a pool of experts
available.

(i) Random set view: 80% of a given population of experts described “cold” as an
interval containing today’s temperature. This corresponds to the interval estimation
and implicitly assumes that there is a pool of experts available.

(iii) Typicality view: Today’s temperature is away from the “seasonal average” (i.e.,

prototypical object/value) by a degree of 0.8 (a normalized distance).
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Each view is associated with different membership function elicitation methods. For
example, the likelihood view is associated with a horizontal approach to membership
estimation while the random set view is associated with vertical method and interval
estimation. Hence, the interpretation that membership functions shall have in construction
performance modeling must first be decided, and only then can an elicitation method be
implemented. As identified in Zadeh’s (1965; 1975) original work on fuzzy sets,
membership functions are subjective and context dependent. Fuzziness arises mainly due
to subjectivity based on the context, and not because of errors and inconsistencies of
measurement. Hence, neither the likelihood nor random set views are qualified for the
practical problem under study. In this study, the fuzzy membership was elicited by
adopting the typicality/similarity view. Related membership function elicitation methods

are reviewed and suitable methods are proposed and tested in the subsequent sections.

6.2.4 A Review of Membership Function Determination Techniques
The membership function determination techniques are developed to answer the practical
need of designing membership functions. As Bilgic identified (Bilgic and Turksen 1997),
each elicitation method is developed with a “specific (sometimes implicit) interpretation
of the membership function in mind.” It is crucial to identify an appropriate elicitation
method that matches with the requisite interpretation, i.e., similarity view in this study.
This section reviews membership function determination techniques, which
depend upon sample data points. (The review is mainly based on (Medasani et al. 1998;
Ross 1995; Sancho and Verdegay 1999; Turksen 1991).)
Figure 6-3 illustrates different membership function elicitation techniques,
categorized into four groups: (1) heuristic methods, (2) statistical methods, (3) clustering-
based methods, and (4) exemplification methods (i.e., experimental acquisition of

membership values).
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6.2.4.1 Heuristic Methods

The heuristically based membership function development consists of selecting shapes
and parameters of membership functions in accordance with previous experience, rules-
of-thumb and often-used shapes. This can be considered a purely subjective technique.

In this case, the general approach is to first select the shape of the membership
function from a list of families, and then to fine-tune the values of the parameters of the
function. The most frequently used shapes for membership functions are: (1) Piecewise
linear functions (e.g., triangular and trapezoidal shapes), and (2) Piecewise monotonic
functions (e.g., the S-functions, exp) (Dombi 1990; Hisdal 1988; Medasani et al. 1998).
Due to its simplicity, the heuristic method is commonly applied in construction
management applications (e.g., (Ayyub and Halder 1984; Fayek and Oduba 2005; Liu
and Ling 2005; Singh and Tiong 2005)). Unfortunately, the disadvantages of this method
are several. For example, a lack of understanding about the complex nature of some
variables limits the proper selection of shapes, the parameters associated with the
membership functions must therefore be provided by experts and, for a large number of
input variables, it is impractical to estimate the parameters with a reasonable accuracy
level. Applications of this method to membership function determination in a poorly
understood phenomenon such as construction performance modeling can lead to

inaccurate models (via inaccurate values of various parameters).

6.2.4.2 Pairwise Comparison

As explained in (Pedrycz and Gomide 1998), membership functions can be estimated by
the pairwise comparison method proposed by Saaty (1980). This procedure involves a
series of pairwise comparisons (using a ratio scale, usually involves 7 quantization levels)
of the elements pertaining to the description of fuzzy set 4 in a finite universe of
discourse.

The membership values at sample elements ( x;,x,,...,%;,...,x, ,x€X ) from a

n 2

pairwise comparison matrix are obtained in two steps, as described below. First, select a

pair of elements (x;, x,) and choose the level of preference of x, over x, satisfying the

concept 4. Prioritize the preference of x; over x ., and prioritize the numerical value

j?

-associated with this pair ( 4;). The results of the pairwise comparison process are

arranged in a matrix form P. The eigenvector ( (ul,uz,...,pn)T ) associated with the

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



largest eigenvalue is the desired vector of membership values. The elements of matrix P
satisfy

1
by >0, Py =" Lj=12,.,n
p

Ji

Additionally, all diagonal elements of 4 are equal to unity, p;=1; furthermore, 4 satisfies

the property of reciprocality since p;.p;=1; A is also transitive in the scene that p;.(py)=p;
Consistency Measure

In general, user subjectively has the value of a;. Hence the transitivity property cannot
always be strictly enforced. A consistency index (CI) has been introduced (Saaty 1980) to
estimate the departure from consistency by C.I.=(A-n)/(n-1), where 1 is the maximal
eigenvalue, and » is the number of elements (variables) being compared.

For each matrix of size n, random matrices were generated (Saaty 1980) and their
mean CI value, called the random index (RI), was computed. Using these values, the
consistency ratio (CR) is defined as the ratio of the CI to the RI. It was concluded that a
consistent reciprocal matrix should have the CR <0.1 (Saaty 1980). When the CR>0.1,

the user is requested to review his or her pairwise comparison.
Weighted Least-Square Method

Chu et al. (1979) proposed an alternative method to eigenvalue problem to estimate
membership values using pairwise comparison, using a weighted least-square method. It

aims to determine the membership values p; , such that, given p; ~p;/u; . The
membership values can be obtained by solving the constrained optimization problem

Minimize z”: i (Pinj - )2

=l j=l
n
Subject to constraint Z p; =1
i=1
A normalized fuzzy set can be obtained by normalizing p; . The reader is referred
to the work of Chu et al. (1979) for the mathematical details of solving the above

nonlinear problem. Compared to the eigenvector method, the weighted least-square

method 1s much easier to understand.
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The main disadvantage of these methods of membérship value estimation via
pairwise comparison is that when the number of elements of the universe of discourse is
large (e.g., more than 10), the pairwise comparison procedure becomes cumbersome,
thereby dampening the consistency of comparison. However, these methods can be used

in cases where a slightly low amount of sample elements represent the context.

6.2.4.3 Statistical Methods

Statistical methods based on probability theory are used to determine membership
functions for fuzzy sets when the elements have a defining feature with a known
probability density function (Civanlar and Trussell 1986). Statistical based methods of
membership determination involve two steps: (1) the determination of probabilit}; density
function, and (2) the transformation of probability distributions into possibility
distributions. Generally, histograms of elements provide information regarding the
distribution of the input (and output) values and probability distributions are modeled by
a mixture of parameterized functions such as Gaussian and exponential. The problems in
converting probability distributions to possibility distributions have been examined by
several authors (e.g., Civanlar and Trussell 1986; Devi and Sharma 1985; Dubois and
Prade 1986). In a construction management-related application, Oliveros and Fayek
(2005) used the statistical based method proposed by Dubois (Dubois and Prade 1986) to
determine the membership function of construction activity duration fof activity delay
analysis. However, statistical based methods can be applied only when sufficient data is
available to substantiate such distributions by statistical analysis. Furthermore,
membership functions derived based on probabilistic distributions theoretically represent
the frequency of occurrence instead of subjective opinion(s) based on different contexts.
This technique is suitable to determine membership functions when experts are not
available to provide subjective assessments and sufficiently large number of experimental

data is available to derive probability-possibility distributions.

6.2.44 Methods Based on Clustering

According to Pedrycz (1995), “fuzzy clustering forms another important avenue of
methods of membership function estimation. The primary objective of fuzzy clustering is
to partition a set of numerical data into a series of overlapping clusters whose degrees of

belongings are treated as membership functions. The method is concerned with a fuzzy
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partition (a family of fuzzy sets) of the universe of discourse rather than a single
membership function.”
As Medasani et al. (1998) states, the Fuzzy C-Means (FCM) (Bezdek 1981)
algorithm is one of the most popular fuzzy clustering algorithms. The FCM algorithm
partitions a collection of n vectors (X={x1, x2, ..., xn}) into ¢ fuzzy groups such that the
weighted within groups sum of squared error objective function is minimized. The
interested reader is referred to (Bezdek 1981) for detail description of the algorithms. As
identified in various literature (Chen and Wang 1999; Medasani et al. 1998), the FCM
algorithm must have the following features:
= The number of classes must be provided to run the algorithm. There is no standard
procedure to determine the optimal number of clusters.

= The membership values generated do not typically represent degrees of belonging,
but rather “degrees of sharing”.

= The memberships cannot distinguish between a moderate outlier and an extreme
outlier. That makes the algorithm sensitive to outliers.

Another important factor in the FCM algorithm is the fuzzy exponent m. The
parameter m is selected according to the problem under consideration. When m—>1, the
fuzzy c-means converges classical c-means. When m=> infinity, all cluster centers tend
towards the centroid of the dataset. Currently, there is no theoretical basis for an optimal
choice for the value m.

Several alternative clustering-based techniques to determine membership
functions and fuzzy rules (as a joint exercise) from numerical data (training samples) can
be found in the literature (e.g., Hong and Chen 1999; Hong and Chen 2000; Hong and
Lee 1996; Wu and Chen 1999). Hong and Lee (1996) proposed an approach based on
fuzzy. clustering and decision tables. After identifying its compﬁtational limitations in
cases where the numbers of variables become larger (hence the complexity of the
decision table), Hong and Chen (1999; 2000) proposed some augmentations to Hong and
Lee’s (1996) method, namely the “merging-decision-table-first” method and the
“merging-membership-functions-first” method. However, all three methods (Hong and
Chen 1999; Hong and Chen 2000; Hong and Lee 1996) need to predefine the
membership functions of the input linguistic variables. Having identified the limitations
of Hong and Lee’s (1996) work, Wu and Chen (1999) proposed an alternative method to
construct membership functions and fuzzy rules through training examples using o -cuts

of fuzzy equivalence relations and o -cuts of fuzzy sets. Results were compared with
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Hong and Lee’s (1996) work and highlighted the main advantages as (1) better average
accuracy, (2) fewer rules, and (2) no need to predefine membership functions or partition
the input/output space.

The clustering-based membership function determination techniques discussed
above have few common characteristics such as (1) algorithmic nature, (2) depends on a
large amount of numerical data (training samples), and (3) computational complexity,

which makes them less candidates for construction performance modeling applications.
6.2.4.5 Exemplification

As described in Zadeh (1972), exemplification is a method of membership degree
estimation with partial information about the concept using finite number of samples in
the universe of discourse. Dubois explains (Dubois and Prade 1980) that in order to build
a membership function, A= “Cold” temperature, we may ask the frontline supervisor
whether today’s temperature is “Cold”. To answer, the frontline supervisor has to use one
among several possible linguistic truth-values, e.g., true, more or less true, borderline,
more or less false, false. The simplest method is then to translate these linguistic levels
into numerical ones: respectively, 1, 0.75, 0.5, 0.25, and 0. A discrete representation of
the membership function is thus obtained by repeating the query for several temperature
values. The result is given as a set of discrete data points on a plane. Two key methods to
determine continuous membership functions using acquired sample membership values
are (Klir and Yuan 1995): (1) interpolation, and (2) curve fitting. Discussions on selected

curve fitting and interpolation techniques are given in subsequent sections.

From the above review, it can be concluded that to use exemplification for any
practical application, both the sample membership value estimation and membership
function determination method should be tailored to suit the application. This study
exploits membership function exemplification as a means of obtaining sample
membership values. A detail discussion on a novel approach to elicit membership values

from a group of construction experts is presented in Section 6.4 of this chapter.
6.2.5 Curve Fitting Techniques

The intent of curve fitting is to find a mathematical function that fits the sample data
points, which are collected from expert opinion. Generally, selecting the function of a
certain form (e.g., Gaussian) is based on theoretical reasons. The curve fit finds the

specific coefficients (parameters) that make that function match the data as closely as
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possible. The process of finding the coefficients for the fitting function is called curve
fitting. The curve with a minimal deviation from all data points is obtained by the method

of least squares.

In construction performance modeling, however, the behavior of causal factors
does not necessarily follow a particular functional form, or a family of known functional
forms; hence the applicability of curve fitting for the problem under review is less
appropriate. In contrast, the interpolation methods (i.e., the process of estimating the

outcomes in between sampled data points) become a practical solution to the problem.
6.2.6 Interpolation Techniques

In contrast to the curve fitting approach, the aim of interpolation is to find a polynomial
that goes exactly through the sample data points. Klir and Yuan (1995) proposed using
Lagrange (polynomial) interpolation for constructing membership functions from sample
data. Klir and Yuan also identified that the complexity of the function increases with the
number of data points and the risk of over fitting data. Farin (1990) noted that although
“Lagrange interpolation is simple, unique, and has a nice geometric interpretation,
nobody uses it in a design situation” because it exhibits “wild wiggles that are not
inherent in the data”. This problem is called as “Runge phenomenon.” This problem is
commonly resolved using piecewise polynomtial curves, ak.a. splines (Farin 1990).
Nevertheless, Chen and Otto (1995) argued that neither of these least-squares or spline
methods satisfy the constraints of membership functions, i.e., mainly the monotonic and
convex property and the condition that membership functions are bounded in [0,1]. For
example, using a sample dataset presented in (Chen and Otto 1995), Figure 6-4 illustrates
the Runge phenomenon and also shows why unconstrained interpolation cannot be used
for membership function determination (unnecessary “wiggles” that make the function

overshoot beyond the [0,1] range).
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Figure 6-4. Unconstrained interpeolation of sample data

There is therefore a need for algorithms that preserve the monotonicity or
convexity properties of the data, to determine membership functions from interpolation
methods. Two noteworthy competitive methods that preserve the monotonicity or

convexity properties of the data type are as follows:

1. The monotone piecewise cubic interpolation method, developed by Fritsch and

Carlson (1980), and

2. Quadratic Bernstein polynomial interpolation method developed by McAllister

and Roulier (1981):

It is noteworthy to mention that these two constrained interpolation methods
demand monotonic data assumed to be sufficiently accurate to warrant interpolation, not
approximation, i.e., curve fitting. These methods do not work for scattered data points.
The methodology proposed in Section 6.4, using a semantic differential approach to
obtain sample membership values guarantees monotone datasets. A description of each

algorithm is given below.
6.2.6.1 The monotone piecewise cubic interpolation

The monotone piecewise cubic interpolation method developed by Fritsch and Carlson
(1980) or its improved version by Fritsch and Butland (1984) claims that it preserves the

properties, such as monotonocity and convexity, that are presented in the data.
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The algorithm for constructing a piecewise cubic interpolant p(x) to

{(x,., i;):i=12,..., n} can be represented as follows:

p(x):[di +d;; *ZAi](x"xiY +[—~2d,~ —ZM +3Al}(x_xi)2 +di(x“xi)+ﬂi

whered, =P’(xj)>j=i,i+l§ A; =ty = by =X — X,

The conditions necessary for the above cubic interpolant to be monotone in a

subinterval / =[x.,x,. .1 ] are given in (1980). The slopes at x, are chosen in such a way

H

that p(x) is shape preserving. This means that on intervals where the data is monotonic,

sois p(x). At points where the data have a local extremum, so does p(x).

6.2.6.2 McAllister and Roulier Algorithm

Chen and Otto (1995) proposed to use a constrained interpolation technique based on the
McAllister and Roulier algorithm (Mcallister and Roulier 1981) to determine
membership functions. Chen and Otto’s method produces a monotonocity and convexity
preserving the quadratic Bernstein polynomial, which qualifies as a membership function.

The method is fast and efficient to implement.

Because of the algorithm’s importance as one of the most suitable techniques for
determining membership functions from sample membership values, a detailed
description of the algorithm is presented below.
6.2.6.3 Bernstein Polynomial
The Bemstein polynomial, defined explicitly by

B:<x):[’j’)xf(1_xy~f

I

Where the binomial coefficients are given by
1
n) | if0<i<n
={it(n—i)
i
0 else
As shown in Figure 6-5, the Bernstein polynomial B, 4(x) has the following useful
properties that make it an ideal candidate for membership function determination:
(i) Normalization between 0 and 1,
(i1) Single unique local maximum at x=i/n, and

(i) Positive (i.e., y values greater than zero always).
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Figure 6-5. Bernstein polynomials: the quadratic case

6.2.6.4 McAllister and Roulier Algorithm
The shape-preserving piecewise interpolation algorithm proposed by McAllister and

Roulier (1981) is constructed based on quadratic Bernstein polynomials.

Let 570 =(xq, 4, ) and 31 =(x,,4, ) be two non-decreasing data points ( x, < x, ).
Let & =(a,b) be an arbitrary data point with a=(x, +x )/ 2. Let g be the first-degree
spline passing through the points JO , c?l , ando , with a single knot at a.

Let B, (g) be the second-degree Bernstein polynomial of g on [a,b]

B, {JO’O’dl}: B, (g)(x)

(o —x0) e ) P+ 26— Yo - )t gl P}

d a

Figure 6-6. Second degree Bernstein polynomial
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The interpolation algorithm has two key steps: (1) slope calculation and (2) knot
point insertion.

STEP 1. Slope Calculation: The first step is to calculate the slopes (m;) at each known

data point c—ii Lo 1Y o - To maintain the condition that the slope at the end-points of the
membership function (i.e., when y(x) =0orl) equals zero, we set m; =0 wheni= {0, n} .
Otherwise, for non-decreasing data points (i.e., p; <p;,; ), to calculate m; at each
intermediate data points, first define s, = (u; —p,_; )/(x; —x,;) for 1<i<N . Note that a
similar algorithm can be used for non-increasing data points.
(). Ifs;-s;,; <0, set m; =0 to guarantee that local extrema of data (i.e., height of the

membership function) has a zero slope. This also segments the data into

monotonically increasing and monotonically decreasing (or vise versa) subsets.

(ii). Otherwise, if [si|>|sml, extend the line through 31‘ of slope s, until it intersects
the horizontal line through 3”1 at the point b = (x,, 22;., ) Refer to Figure 6-7.
Then define
Xe = (xi+1 +x,)/2 (6.2)
Which is the abscissa of point ¢ shown in Figure 6-7. The slope m;, at (xi , ,u,.) is defined

as

m; = (Hm —Mi)/(xc _xi) (6.3)

X; +X;
Note that c, >—’——2—’+—1—

(iii). If, on the other hand, lsl.| < lsi+l| , the above procedure is reversed by extending the

line through 3,. of slope s,,, until it intersects the horizontal line through c_i,._l.

Then set
X = (i +x,))2 (6.4)
and
m; = (Hi —Hig )/(xi _xc) (6.5)
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d.
1 : :
Figure 6-7. Determination of slope m;

STEP 2. Calculate Knot Points: Insert a point in between each point c_ii and c_i,. 41> and

then fit a quadratic Bernstein polynomial to the 2n-1 data points.

Let R, be the rectangle determined by the points c?,. (x;,1;) and 6?41 (%15 1t; +1)

I
and let the midpoint segment of it be a line segment that bisects R; vertically and is

bounded within each R;. Refer to the Figure 6-8. Let L; be the line that passes through

c?i (x;,1;) with slope m,. There are two distinct cases related to the neighboring slope

lines L, and L, , depending on whether the knots change the local convexity of the

i+1
spline or not. Even though the knot point calculation procedure described in (Chen and
Otto 1995) is a general method for all the knot points, there are nevertheless slight
modifications that have been made to the algorithm for the first and last knot (i.e., end
knot) points. They are described below.

(i). Knot point calculation (general case)

Case 1. L,and L,,, intersect at a point Z =(x,,p, ) in R, . Refer to Figure 6-8a. Note that

this case happens when s; <s;,;.
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o N s i o

i :
Figure 6-8.a. Knot point determination- Case 1

Accordingly in this general case,

_ Mg X X YL~ By (6. 6)
: m;,, —m;
Let
5o X; +Xx, 1 X, +x, ©.7)
2 2
e xz + xi+ xz + xi
WZ( 2 1 ’Li+l( 2 4 jj (6 8)

Let L be the line joining ¥ and # and define 7i = L(x, ). Let &, = (x_, /i) be the knot

point

a,-=<xz,L(xz»=[xz,yv+(“w‘”v)(xz )j 6.9

xW _'xv

Thus, the interpolation function #(x) can be defined on [x,. ,xm] as follows:

,u(x)z{Bz [c—z’*i,ﬁi,%kx) on[xi,xz]

B, [5i’wi’di+l kx) on [xz’xi+l]

Case 2. L;and L,,, do not intersect at a point z =(x,,u, ) in R, . Refer to Figure 6-8b.
Note that this case happens when s; >s,,,. The knot ¢ is determined similarly as in case

1, but in this case

_ Xg +Xl
xz—(——z ] (6.10)

All equations (6.7- 6.9) remain valid for points v, wando .
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i v
Figure 6.8.b. Knot point determination- Case 2

Both first and last knot point calculations follow the same algorithm described above,

but can be simplified, as shown below, to include the zero slope conditions.

(i1). First Knot Point Calculation
First knot point is in between ‘?o and d, where my =0.
Case 1. L;and L,,, intersect at a point z = (x,,p, ) in R, . Refer to Figure 6-9a. Note that

this case happens when s; <s;,,. Accordingly,

x,=x -t 6.11)
my

Let

L [ xg+x, X t+Xx, Xg+x,

- L - , 6.12

v[zo(z)j(zuo) (6.12)

. [x,+x X, +x X, +x 3x; - x,
W=[ 5 I)Ll( > I]Jz( > 1:“1""1( ]2 )J (6.13)

Let L be the line joining ¥andw and define 7 = L(x, ). Let 8, =(x,, Zi) be the knot

point

(2, = 1, Y, —xv)):[xz, s (22, = 5 Nx, _XV)j(6-14)

x, =X, X, —X

6, e o) 5

4
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Figure 6-9.a. First knot point determination - Case 1

Case 2. L;and L,,, do not intersect at a point Z = (xz ,it,) in R;. Refer to the Figure 6-9b.
Note that this case happens when s; > s,,;. The knot o is determined similarly as in case

1, but in this case

, :(_’fo__z’ﬁ) ' | (6.15)

All equations (6.12- 6.14) remain valid for points v ,wando .

v . LD
Figure 6-9.b. First knot point determination — Case 2.
(iii).. Last knot point calculation

Last knot point is in between d vy and d, where my =0.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Casel. L, ,and L, intersect at a point z =(x,,u,) in R;, refer to Figure 6-10. In this

case,
x, =y + AN (6.16)
My 4
Let
[ xyytx, Xy +X, Xy +X, X, — Xy
V=( X 12 ,LN~1( ~ 12 D:( X 12 s My +mN—1('—2L)\] (6.17)
- [ x, +xy X, + Xy X, + Xy
= ,L =2 "X 6.18
w[zN(ZD(zﬂN] 6.19)
and
5; =(xz,L(xz))=[xz, My + ety = 11, Yo, _x”)){xz, My + Ly 0 o, _XV)J(6.19)
Xy — X, Xy — X,
LN . z dN@

Figure 6-10. Last knot point determination — Case 1.
Case 2. In the case where L,_ and L, do not intersect at a point z =(x,,u,) in R;, as

shown in Figure 6-11,

X, = (5&’—1;—“’) (6.20)

All equations (6.17- 6.19) remain valid for points v, wando .
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dN-‘l@

Figure 6-11. Last knot point determination — Case 2.

6.2.6.5 Comparison of “Fritsch and Carlson Algorithm” and “McAllister and
Roulier Algorithm”

The ability of the above shape-preserving quadratic interpolation algorithm is
demonstrated using three different data sets. The first dataset, used in Figure 6-8, is a

monotonically decreasing dataset from (Chen and Otto 1995), namely:

Maximum Stress (MPa) (x) lzoo Izm '225 |230 [250
Membership degree (1) ll |0.95 |0.5 {0.1 !o

As shown in Figure 6-12 (b), an unconstrained cubic spline interpolation
introduces unwanted oscillations that make the curve overshoot beyond boundary
conditions, i.e., [0,1]. However, as shown in Figure 6-12 (c) and (d), both a monotone
piecewise cubic interpolant and a quadratic Bernstein interpolant maintain the shape
implicit in the data set and also satisfy the constraints imposed by membership functions.
Also note that the results produced by the two selected constrained interpolation

algorithms are almost identical for this particular dataset.
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Figure 6-12. Results on monotonically decreasing dataset from (Chen and Otto 1995).

The second dataset, used in Figure 6-13, the membership values of which are

monotonically increasing and then monotonically decreasing, for increasing values of

(b) Cubic spline interpolant
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elements of the set, is from ((Klir and Yuan 1995), p290), namely:

x]o

250

Membership degree (1t) I 1.0
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{2) Linear interpolant
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{c) Quadratic Bernstein interpolant
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Figure 6-13. Results on monotonically increasing and then monotonically

decreasing dataset from (Klir and Yuan 1995).

Results shown in Figure 6-13 also indicate that both constrained interpolation methods

produce acceptable results while an unconstrained cubic spline shows excessive

undulations.

Thirdly, a more ‘complex’ dataset, used in Figure 6-14, is a representative of a

real-life construction data. These are actual data obtained from the causal factor,

“medium temperature”.

Temperature—xl6 |9 |13 |14 I17 [20 |24 lzs |30

Membership degree () | 0 | 0.33 l 0.77 l 1 | 0.83 ! 0.77 ] 0.43 l 0.33 l 0
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Figure 6-14. Results on monotonically increasing and then monotonically decreasing
dataset for causal factor “medium temperature”.

Figure 6-14 also demonstrates results similar to previous datasets, proving that
both algorithms can preserve the monotonocity and convexity of the sample data. It can
therefore be concluded that both the monotone piecewise cubic interpolation method
proposed by Fritsch and Carlson and Chen and Otto’s method, which is based on
quadratic Bernstein polynomial method, are suitable constrained interpolation methods to

determine membership functions from sample membership values.

6.3 INTRODUCTION TO THE FIELD STUDY

The field study presented in this section is designed and conducted to obtain subjective
opinions on daily working condition(s), and subsequently transforming them into sample
membership values in a structured manner in order to construct membership functions to
use in reasoning about construction performance (with fuzzy-neural networks).

This field study is carried out at a pipe module fabrication yard located in
Edmonton, Alberta. A total number of fifteen (15) frontline supervisors representing five
trades (i.e., iron workers, pipe fitters, equipment operators, electricians, and carpenters)
and nine different activities (i.e., steel erection, pipe fitting and installation, welding,

hydrotesting,  glycol  tracing, material  handling, equipment  operation,
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carpentry/scaffolding, and electrical) completed the study over a sixty (60) workday
period, during summer 2005. Figure 6-15 illustrates the pipe module fabrication process.
Graphical illustration of the pipe fabrication process is given in Appendix A. The
experience of the group of experts (frontline supervisors, otherwise known as foremen)

ranges from 6 to 32 years in trade, averaging 20 years.

Steel/Pipe
Offioad and
shakeout

v Gar iy

Steel erection ' Pipe handling,
fitting and welding
Y ¥
Bolt and Torque Hydro-testing

v

Heat tracing
Y
insulation » Pipe install Cable tray instalt
4
Ship pipe module

Figure 6-15. Activities in pipe module fabrication process

6.4 CAUSAL KNOWLEDGE REPRESENTATION

" Knowledge acquisition from construction experts, taking place in a systematic manner,
remains one of the challenges of using fuzzy set theory effectively. This section presents
a systematic methodology to elicit and represent qualitative construction performance
knowledge from a group of construction experts.

The most common techniques used to identify the causes (factors) in construction
literature is based on a review of past studies, postal questionnaire surveys, and face-to-
face interviews, or a combination of these techniques (e.g., (Liu and Ling 2005)). Low
response rate, out-dated information, and the validity of the responses and disagreements

are common criticisms of the above techniques.
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Additionally, both the Nominal Group Technique (NGT) and the Delphi
technique provide a structured format that helps to increase the quantity and quality of
participant responses. Rowe etal. (1991) concluded that the Delphi technique is generally
inferior to the NGT, but state that the degree of inferiority is small, arising more from
practical than from theoretical difficulties. Singh (2005) used the fuzzy Delphi technique
to achieve group consensus in defining decision criteria in the assessment of contractors’
performance for the selection of contractors. However, Singh and Tiong (2005) identified
that the fuzzy Delphi technique is very time-consuming.

This study proposes a causal knowledge acquisition method based on the NGT to
find a more representative causal factor, and to establish a pair of polar adjectives for

each causal factor. A brief description and a review of the NGT is given below.
6.4.1 Nominal Group Technique

The Nominal Group Technique (NGT) was first introduced by Delbecq et al. (1975) as a
method for structuring group meetings which would allow individual judgments to be
pooled effectively while providing opportunities for all participants to contribute equally.
This is a proven technique that is helpful in identifying problems, establishing priorities,
and exploring solutions in many areas such as medicine, health care, education,
engineering, information systems, and management. NGT also found several applications
related to project management (e.g., Garbarini 1984; Kolano 1991; Yiu et al. 2005)). Yiu
et al. (2005) used NGT in identifying the decision criteria for consultant selection;
Kolano (1991) applied NGT in a value engineering‘project, assisting a group in selecting
among many ideas and ranking ideas in order of importance; Garbarini (1984) used NGT

to identify productivity improvement opportunities in construction projects.

NGT typically includes four steps: (1) silent generation of ideas in writing; (2) round-
robin feedback session to record concisely each idea; (3) serial discussion of the list of
ideas to obtain clarification and evaluation; and (4) voting on ideas. This procedure is
known to produce balanced participation across members, to generate more creative ideas
within a limited meeting time, and results in greater satisfaction for participants. The two
key limitations noted commonly in literature are (1) extensive advance preparation,
which means that it cannot be a spontaneous technique, and (2) tends to be limited to a
single-purpose, single-topic meeting; it is difficult to change topics in the middle of the

meeting.
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The procedure can be adapted and has been used in different formats. For example,
Hegedus and Rasmussen (1986) proposed a modified version of the NGT, avoiding the
last step of standard NGT, i.e., the voting on ideas, to encourage participants to arrive at a
consensus by means of group decision; Trickey et al. (1998) conducted the idea
generation via a series of reviews of recent literature, semi-structured interviews, and

questionnaire survey (conducted by post).
6.4.2 Modified NGT Protocol to Identify Causal Factors

A modified version of the standard NGT is used in this study as the formal consensus
development method for identifying causal factors of selected key performance indicators
by a group of experts in construction project supervision and management. The objective
is to identify a minimum number of causal factors that can measure reliably and
sufficiently the multidimensional semantic space. The overall process of identifying

causal factors and arriving at a consensus is shown in Figure 6-16,

Broadly speaking, the process starts by identifying the key performance indicators
(KPIs). Once KPIs are identified, a detailed literature review is conducted to identify a
list of causal factors that can possibly impact on selected construction activities. The
expert panel should then be selected to represent the expertise in those construction
activities sclected for diagnosis. It is assumed that the frontline supervisors possess the
required expertise. Additionally, frontline supervisors are selected because they will be
the individuals most suitable to collect and report daily working conditions (along with
work progress) based on the causal factors identified. Once the teams of experts are
identified, the session can be arranged at a suitable convenient location (e.g., site office
meeting room) minimizing the interruption to the routine work schedule. The estimated
timeline for the actual session is approximately one and a half hours. As noted in (Potter
et al.), generally, a standard NGT session can range between 45 minutes and 2 hours.

Table 6-1 outlines the protocol used in identifying the causal factors via a modified NGT.
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Figure 6-16. Causal factor identification and consensus development process.
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Table 6-1. The modified NGT protocol for identifying causal factors of construction

performance.

1. - Review of literature: Conduct a detailed review of literature as background material for
the topic under discussion.

2. Setup the meeting: Inform selected participants about (1) the purpose of the session, (2)
venue, and (3) time, at least a day in advance.

3. Introduction: Welcome the participants, and reiterate the purpose of the session. Explain
the procedure.

4. Silent idea generation: provide each participant with a sheet of paper (see Appendix-
C(a)) that can be used to write down their pertinent related personal details (e.g., trade,
activity supervised, experience in number of years) and ask them to write down all
causal factors that come to mind with respect to the activity they supervise. During this
phase, participants are not supposed to consult or discuss their ideas with others.

5. List augmentation: the session organizer to present the results of review of literature and
ask to augment (if necessary) the list of causal factors identified in above step.

6. Listing and discussion of ideas: The session organizer list all the casual factors
generated by each member of each group in a flip chart (or white board) and discuss each
factor to clarify and elaborate.

7. Ranking of ideas:  Each member of the group chose the 10 {or less) causal factors that
they consider most important based on the list (Step 5) and the discussion at Step 6.
Factors are ranked in order of priority, giving 10 points to the most important factor and
1 point for the least important factor.

8. Discussion of rankings: The group’s top 10 factors were listed on a new flip chart by the
session organizer and provide a discussion about the content of the selected factors,
together with details about the items included and excluded. This is to initiate and
facilitate a discussion about each member’s concern on factors included/excluded from
the list, providing them a chance to defend or dispute the factors and, arrive at a
consensus. The number of causal factors selected for the model can be higher or lower
than 10, based on this final discussion.

9. Selecting objective and subjective measures: For each factor identified in the above
step, an objective and subjective (where applicable) measure is identified, so that relevant
values can be collected on regular time intervals (e.g., daily, weekly). Subjective
measures are selected using bipolar terms that are most familiar yet most representative.

Note that the ranking (discussed in the NGT protocol) is used solely for selecting
a suitable number of causal factors for the model. Unless the findings can be tested
against the observed data, we can never be sure that the NGT session has produced the
“correct list” of causal factors. Nonetheless, this study uses a computational intelligence

approach, as described in Chapter 5, to model the diagnostic problem scenario and by
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pi’uning the network (by analyzing the trained networks connection weights),

insignificant causal factors can be removed from the model.
6.4.3 Results of the NGT Session

A summary of the results of the session conducted at the pipe module fabrication facility
1s shown in Table 6-2. Graphical illustrations of the factors that affect pipe module
fabrication crew productivity are shown in Figure 6-17. This figure highlights a key issue,

i.e., multi-levels of factors, which is worthy of further discussion.

Causal factors can be represented as (1) root causes (e.g., task complexity,
equipment condition), (2) intermediate causes (e.g., crew size, equipmenf breakdown),
and (3) composite causes (e.g., precipitation, wind-chill). For example, consider the
following chain of cause-effect relationships:

Equipment condition 2 equipment breakdown = equipment availability Pcrew productivity

The above relationship can be interpreted as follows: poor equipment condition
may cause equipment breakdown that may lead to equipment unavailability, which
results in low crew productivity due to idle time. The group has to decide up to what level
of detail information is required for diagnosing construction performance. In the above
case, for example, the group has to decide whether they need to know why equipment
was unavailable, or do they need to know why equipment would break down. If the group
merely wants to know whether crew productivity is low due to equipment unavailability,
it is not required to include “equipment breakdown” and “equipment condition” as causal
factors for the reasoning process. Additionally, the above causal chain does not
necessarily indicate that equipment breakdown can be caused only by poor equipment
condition. For example, equipment can breakdown due to misuse. In that case, “misuse of
the equipment” has to be included in the list of factors.

Another important point to notice in Figure 6-17 is when labour productivity is
considered as the hub, the reasoning process can easily be extend to other performance

indicators such as cost and schedule.
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Table 6-2. Summary results of the session based on the modified Nominal Group Technique

£ § g %0 ) éb 5 2=
s | £5|3% |8 |£ 8| &% B PROPOSED PROPOSED
PERFORMANCE FACTOR 2 1/E€8| 2 |3 |2 |=|.&| 5| 2| PHYSICALMEASURE | BIPOLAR SCALE
22|32 |2 |B|5|E|S =
» | AT T |0 = | H
Crew size N y No of workers/crew Small, Large
Absenteeism \ V N N No of workers absent Low, High
Crew experience N No of years in the trade Low, High
Rework N N v v Rework hours Low, High
Incomplete/unclear drawings N v v | No of RFIs Low, High
Temperature (day time average) \ v v \ N | Celsius degrees Cold, Warm
Total Precipitation N N v v | Millimetres Low, High
Wind speed (day time average) N y v | knv/hr Low, High
Manpower availability v No of workers/trade Low, High
Equipment availability N N N N v | Total number of key Poor, Good
equipment
Equipment suitability N N R v | Equipment capacity Improper, , Ideal
Tools condition \ v vy Poor, Good
Consumables availability vV y Poor, Good
Material availability N V \ v N Poor, Good
Congestion on work location y N N N v | Men/Area Low, High
Access to work location v ~ N v » Restricted, Excellent
Time to await inspections N No of hours Low, High
Waiting for other trades v N v v | No of hours Low, High
Task complexity N Below normal, Above N
Safety equipment availability N Low, High
Right tool availability N Low, High
Crew attitude/morale v Poor, Good




Activity
durariion

Toulf

equipment
avallabifity

W

Equipment
breakdown |

eq_npman’ t
,Tow suitability Rework
egupmant
sondition

Material/
Consumables
availability

Task
complexity

Figure 6-17. Causal factors that affect pipe module fabrication crew productivity.

Once the causal factors are identified, the next step is to collect the objective and
subjective values of the selected variables on predefined time intervals (e.g., on a daily
basis). As described in Section 3.2.2, since there are variables that do not have well

defined objective measures, a structured approach is required to obtain subjective
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assessments (i.e., soft estimates) of daily working conditions from multiple experts.
Furthermore, this approach should facilitate the aggregation of subjective assessments

across multiple experts and across different time intervals as well.

Generally, in most studies, a unipolar scale (e.g., zero to 10, zero being the
lowest and 10 being the highest) is selected to represent the individual judgment. This
study exploits a measurement technique based on bipolar scales, i.e., semantic differential,
for structuring the subjective assessment of construction performance variables. The
rationale in selecting a bipolar scale, rather than a traditional unipolar scale, is presented

in the next section.
6.4.4 Semantic Differential Analysis

The method of Semantic Differential Analysis (Osgood et al. 1957) offers a simple,
reliable, and widely used method to measure the connotative meaning of objects, events,
and concepts. It is a type of rating scale defined using bipolar adjectives (e.g., cold-warm,
light-heavy, etc.). The adjectives are usually scaled in seven steps, represented by seven

linguistic hedges, as shown in Figure 6-18.

(concept)

polar term X L—_l D D D D D I:I polar term Y
1.2 3 4 5 6 7

. extremely X

. quite X

. slightly X

. heither X nor Y; equally X and Y
. slightly Y

. Quite Y

. extremely Y

NO OB WN -

Figure 6-18. Bipolar scale.

The subject’s placement of the concept on the adjectival scale indicates the
connotative meaning of the concept. Studies carried out by Osgood et al. (Osgood et al.
1957) on a large number of different subjects in many different experiments, found that
“with seven alternatives all of them tend to be used and with roughly, if not exactly, equal
frequencies. When nine alternatives were used, where “quite” is broken into
“considerably” and “somewhat” on both sides of the neutral position, it was found that all

three discriminative positions on each side had much lower frequencies.” This finding is
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consistent with Saaty’s (1980) seven-point scale. To each of the seven positions on the

bipolar scales, a digit is assigned arbitrarily. These digits may be either 1,2,3,4,5,6,7 or -

3,-2,-1,0,1,2,3. For mathematical descriptions (described later), the choice makes no

difference. In a 1 to 7 scale, as shown in Figure 1, 4 corresponds to the neutral point, in -3

to +3 scale, 0 represents the neutral point.

The choice of bipolar scales to represent the experts’ evaluation (i.e., fuzzy linguistic
estimates) has several advantages:

1. Intensity and Direction: Bipolar scales represent intensity as well as the direction of
the fuzzy estimate while a traditional unipolar only provides the intensity.

2. Multidimensionality: If we use a unipolar scale, we presume that the factor in
question can be represented as unidimensional. In other words, the best reason to use
unidimensional scaling is because we believe the concgpt we are measuring really is
unidimensional in reality. Factors such as site congestion, for example, can be
represented by both manpower density and equipment mobility. In such situations,
we can use bipolar scales to capture the multidimensionality of such factors.

3. Planned conditions: In some cases, the neutral values of the bipolar scale (i.e.,
number 4) represent the planned conditions of the causal factors (e.g., temperature,
wind), which can be used to identify implicit planned working conditions. This
information can be useful in conducting variance analysis using fuzzy linguistic

estimates.

6.5 DAILY WORKING CONDITION ASSESSMENT

This section provides a well-defined methodology for construction managers to assess
(daily) working condition using fuzzy linguistic estimates based on semantic differentials.
Figure 6-19 shows a sample daily working condition report. “Steel erection” is

selected as the activity, R, for illustration. This working condition report, C;, represents

the multidimensional space of the concept: the daily working conditions for steel
erection. The list of causal factors (Ly, k=1 to m, where m is the total number of causal
factors in CR) represent the dimensions of the semantic space. Each dimension (i.e., each
causal factor) is represented using a bipolar scale assumed to represent a straight line
function that passes through the origin of the space. A sample of such scales then

represents a multidimensional space. Raw data obtained from a “daily working condition

report” are a collection of checkmarks against bipolar scales, S* where

p 2
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pe{l,2,3,4,5,6,7}. As shown in Figure 6-19, the scale values are labeled using seven

linguistic hedges to help experts make adequate distinctions amongst them.

Activity: STEEL ERECTION
~ GF/Foreman: - Date:
DAILY WORKING CONDITION REPORT
Extreinaly - Quits - Slightly ’i}’f:’ Sightly  Quita Extonly
% Today's Crew Productivity Low [5] High
1. Crow size (ro ot workerserom) ( ) Small Large
2. Absenteeism () Low j : High
(no:of crew members absent) 3
3. Rework (Rewor hours (‘_m) Low High
4. Temperature Cold Warm
5. Total precipitation CLow High
6. Wind speed Low v High
7. Equipment availabiliy () Poor =] Good
8, Equipment suitability Improper , Ideal
9. Tools condition : Paor . Good
10. Consumables availability Poor Good
11. Material availabifity Poor [ 1] Good
12. Congestion on work location Low E] ’ High
13. Access to work location Restricted U_”c"te;‘“
Example
Crew Size {Average 10, Today 8)
{No. of crew members)
- [ ¥ E -
1. extremely Small J 5. slightly Large ‘
2. quite Small / 8. quite Large
:3 stightly Small»~" 7. extremely Large
======"4 Neither Small nor High, equally Small and Large

Figure 6-19. Sample working condition report.

Assume that » frontline supervisors representing C, reported their objective
(where applicable) and linguistic estimates on L, (k=1 to m, where m is total number of

causal factors) on day ¢. This results in a set of pairs <x L ,S > where x; represents
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the corresponding objective measure of the causal factor L, during the period concerned

(e.g., daily). S* represents the fuzzy linguistic estimate provided by expert i on variable
L.,(pe {1,2,3,4,5,6,7} , fuzzy linguistic estimate).

As illustrated in Figure 6-20, for a given activity on a certain day, the working

condition report C, provides a n*m matrix of data points. An alternative representation

of the n*m matrix is shown in Figure 6-21.

Each of the fifteen experts were asked to record their subjective judgment of the
(daily) working conditions based on selected causal factors in activity specific working
condition reports, at the end of each workday. The pn:mary objective here is to obtain a
fairly accurate assessment of the daily working condition from group of experts who

were exposed to different working condition during a defined shift.

n-Expert m-Causal Factors n*m Evaluation
Ll L1 L1
L1 > {Sl’p,Sz,p,...,Sn,p}
F.1
L2 L2 L2
— l7 L2 > {Slyp,Sz,p,...,Sn,p}
Activity R F2 ;
L : : :
1 1 ]
1 1 t
+ 1 1
Fn ' '
'
»~ Lm Lm Lm
Lm {Sl,p ’SZ,p"“’Sn,p}

Figure 6-20. Multiple fuzzy linguistic estimates from daily working condition
report.

Expert

2
S%p

S'ip

L, L,.. L
Scale (causal factor)

Figure 6-21. Matrix representation of multiple fuzzy linguistic estimates.
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When the fuzzy linguistic estimates are obtained over a period of time, T, the

resulting matrix of data (n*m*T) can be represented as shown in Figure 6-22.

§

2 TR

Figure 6-22. Rectangular solid of data representing experts’ assessment over a

period of T.

Each cell in this matrix of data represents the judgment of a particular causal
factor by a particular expert on day #; each of the » slices represents the complete
judgment of a single expert (i.e., one daily working condition report. Each of the m slices

represents the assessment of a particular causal factor over the duration T.

6.5.1 Aggregation of Data
There are three possible scenarios that may require an aggregation of estimates:
Mean response of group of experts: This is a case where the group estimate is required.

Assume that we have » number of experts providing fuzzy linguistic estimates on causal

factor L, .
1 n
Let S% =;Zs,§; | (6.15)
i=1

S i represents the mean response of the group of experts. It may be viewed as a

probabilistic interpretation of the (mean) bipolar score. Consider that 3 steel-erection
foremen (n=3) were asked evaluate “today’s equipment availability” (L;). Assume that

their responses were as follows:
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Foreman Today’s equipment

availability
1 Slightly poor 3
2 Neither poor/good 4
3 Quite good 6

The mean response of the group can be calculated as Sf, =§(3+4+ 6)=4.33 , which

indicates that the assessment of today’s equipment availability for steel erection lies in
between “slightly good” and “neither good or poor”.
Equation 6.15 can be generalized by allowing one to distinguish degrees of competence,

c;, of the individual experts {{939 Klir, G.J. 1995; }}. This results in the formula

SE=Yc,-Sk (6.16)
i=1
Where Zc,. =1

i=l

For example, assume that the competency of each foremen is estimated as follows;

Foreman Competency
1 0.5
2 0.3
3 0.2

Accordingly, the mean response of the group can be calculated as

Sﬁ =[3x0.5)+(4x0.3)+(6x0.2)]=3.9~ 4.0 , indicating that the assessment of today’s

equipment availability for steel erection lies close to “neither good or poor”.

Weekly (or monthly) averages: This is a case where data need to be aggregated across

time (e.g., in the case where weekly average is obtained by daily values). In this case,
P 1o
SPZFZSP ‘ (6.17)
j=]

Where T is total number of days across the time period concerned.
For example, consider that it is required to obtain weekly (7=5) assessment of equipment
availability. Assume that the daily assessment of equipment availability as given in the

table below.
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Foreman | Competency Equipment availability

Day 1 Day2 | Day3 | Day4 [ Day5
1 0.5 3 4 6 3 7
2 0.3 4 3 5 2 6
3 0.2 6 2 4 5 2
Mean 39 3.3 5.3 3.1 57

The mean response shown in the above table is calculated using Equation 6-16. based on

the Equation 6-17, the weekly average assessment of equipment availability for the steel

erection can be calculated as S = %(3.9 +3.3+5.3+3.1+5.7)= 4.26,, indicating the

equipment availability of that week for steel erection was close to ““neither good or
poor”.

Composite causal factor scores: In cases where hierarchical representations are required
and composite factors are identified, to obtain composite causal factor scores, the (root)
causal factor scores are summed and averaged over the scales. The composite causal

factor score is
k 3 k
Sp=Yc,-Sk (6.18)
Where c, represent the significance of each (sub) causal factor.

Consider that it is required to represent three weather related causal factors (i.e.,
precipitation, wind speed and temperature” as a single causal factor: “weather”. Also
assume that among those three causal factors, precipitation has a higher influence

compared to other two, and significance of each causal factor is as follows:

Causal Significance Mean Response of week
Factor (using Eq.6-17)
Precipitation 0.6 5.8

Wind speed 0.2 4.5
Temperature 0.2 3.9

In such a case, the composite causal factor score can be calculated as follows:
S ,’f =[(0.6x3.9)+ (0.2x4.5)+(0.2x5.8)] = 5.16 , indicating that the weekly wearher condition

was close to “slightly good”.

The above equations provide a strategy to aggregate linguistic assessments when
necessary.
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Notation

Cr = working condition report of Activity R.

i = expert;

L, = causal factor

m = total number of causal factors

n total number of experts

pe {1,2,3,4,5,6,7 }: values that represent the linguistic hedges of bipolar scale S.
q = total number of sub causal factors consists in the composite factor
R activity

S = bipolar scale

S :,, = linguistic assessment of causal factor L, by expert i

Sﬁ = composite causal factor score

X, = objective measurement of causal factor L,

6.5.2 Interim Analysis of Fuzzy Linguistic Estimates
To determine the effectiveness of the proposed semantic differential scales to obtain
fuzzy linguistic estimates, an interim analysis was carried out on selected causal factors.
The purpose of this analysis was as follows:

¢ To identify the limits of the base variable, where applicable;

e To identify the factors that have variability, in order to limit the number of input

variables;
e To identify threshold values; and
e To assist in selecting the appropriate number of fuzzy sets (linguistic variables)

to represent each factor.
6.5.2.1 Causal Factor: Daytime Average Temperature

Results related to the causal factor “temperature” are discussed in this section. Figure 6-
23 shows how daytime average temperature varied over the period of study. Weather-
related data such as temperature, wind speed, precipitation, and humidity were collected
at the site by setting up a professional wireless mini-weather station (Model: WS-2315AL
by La Crosse Technology).
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Figure 6-23. Daytime average temperature (degrees Celsius).

Figure 6-24 shows the average fuzzy estimates aggregate from all experts
(assuming equal competency levels) against the daytime average temperature. Note that
multiple dots for the same x-axis values (i.e., degreeé Celsius) indicate that (i) the same
daytime average temperature was recorded on multiple days, and (ii) different aggregated
expert evaluations were obtained for the same value of temperature (on different days of

the month/season) , during the period studied.

. Mean responses from all: experts for the variable "Day time temperature”.
Extremely warm T T T T T T T T T T T T + T T T T T T T T T T

Quite warm

Slightly warm

Neither coldAwarm

T
[ S——
|

Slightty cold
Quite cold |- Note: Temperature values are round-off
to zero decimals for clarity. .
Extremely cold L) bl Lt 1 | Loty by Eo 1 1 1 1 I [ (I I L
5 B 7 8 9 1 1 12,13 14 15 161718 19 2021 2 .23 24 25 2% X 28 29 0

Temperature (Deg. Celsius)

Figure 6-24. Mean estimated values for temperature.

However, as shown in Figure 6-24, in most cases, the variation of the fuzzy estimates
is low and remained in between two linguistic values. For example, the value of 18

degrees Celstus is recorded 5 times during the study period. The mean value of fuzzy
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linguistic estimates for all five days remained in between “neither cold/warm” and
“slightly warm”. Similar results were observed for the temperature values, 12, 13, 14, 15,
17, 21, and 24. This indicates that, for the period studied (i.e., summer 2005), the mean
estimates (of the group) are nearly consistent,

A sample activity level analysis (for structural steel erection) for the same causal
factor (i.e., temperature) is shown in Figure 6-25. The subjectivity of the individual
assessments is clearly visible in the Figure 6-25. Nonetheless, the assessments are still in
between two linguistic values in 85% (18 out of 25) of the cases. Similar results related to

the pipefitting and fabrication activities are shown in Figure 6-26.

Eﬂ'emelywa'mnillrxllirlTixlsllrrr‘lllrrll
Quite'warm |- ¢} © —

Stightly wafrn = & TT 54 : o T _
Neither eoldiwarm Lo-p @bl g...g.’ ........... Q,’ ............ T RS NN U...DG.IB,QA ..... AOEE plaligm.ee [ -
Slightly cold - 10 l ol o il
Quite Cold |-

Activity: Striietural Steel Erection
Factor: Temperature
No. of Experis: 4
SN SN SNV 0" SN WETAPN W SUCNN NN SRS SN WS FLNS COPLAR RN NNLEN DU WS SN IS SMICIN P GO I N M Bhic1 WS}
0 2 4 &8 101214 16 1820 2224 26 28 30 32 .34.36 38 4D 42 44 46 48 50 52 54 5558 60
Work.day. {sample from summer 2005)

E ¥ cold

Figure 6-25. Individual estimated values for temperature by steel erection experts.
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Factor: Temperature

No.of Expents: 7
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-

£ ly cold

Figure 6-26. Individual estimated values for temperature by pipefitting and

fabrication experts.
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It is also noteworthy to highlight the fact that assessments of the variables such as
temperature and precipitation (rain and snow) can vary significantly from season to
season. These time-varying (i.e., temporal) dynamics of such causal factors can be
captured using time-dependent membership functions. This study addresses this issue by
constructing membership functions for each season for such causal factors by

categorizing data into respective seasons.

6.5.2.2 Causal Factor: Daytime-Average Wind Speed

Figure 6-27 shows how daytime average wind-speed (km/hr) varies over the period of
study. Figure 6'-28 shows the average estimated values for daytime average wind speed
(km/hr) by ironworkers (assuming equal competency levels). Estimates of the same data

obtained from pipefitting experts are shown in Figure 6-29.
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Figure 6-27. Daytime average wind speed (km/hr).
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Wind speed: Mean response:lron Workers
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Figure 6-28.Mean estimated values for daytime average wind speed (kmn/hr) by
' ironworkers.

Wind speed: Mean response from Pipefitters

E Iy high T i T T T &
Quite high [~ a8 : -
Slightly high |- n B -
Neither lowfhigh |-+ -5+ n_ﬁ. ....... BB e BB e st e D B 4
S TR
Slightly low | : Bo@m B -] -
: B3
Quiite low |- 6 i ] i -
Extremely lowt——— g lgp g L £ L . ; L
0 5 10 15 20 25 30 35

Wind speed {(km/hr)
Figure 6-29. Mean estimated values for daytime average wind speed (km/hr) by
pipefitters.

A few key observations can be made from Figures 6-28 and 6-29. First, it is clear
that linguistic assessments can be divided into two groups as follows: when the wind
speed is less than 13-15km/hr, the average estimated values by both ironworkers and
pipe-fitters belong to “low” part of the bipolar scale. When the average wind speed is
greater than 13-15km/hr, average estimates remained in the “high” side of the bipolar
scale. This assessment helps to identify threshold values (of wind speed), which can be
effectively used in performance diagnostic reasoning. The analysis also helps to identify

the boundaries of the variable that can be used to define the universe of discourse of the
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variable. Additionally, when compared with the causal factor discussed in the previous
section, i.e., temperature, the causal factor wind speed behaves different. In the case of
temperature, both extreme polar conditions (i.e., extremely/quite-cold and -warm) can
have a negative impact on project performance while in the case of wind speed, only one
polar condition, i.e., high, can have the negative impact. It can be argued that if the wind
speed is below the threshold value, there will not be impact of wind speed on activity

performance.
6.5.2.3 Causal Factor: Crew Size

Compared to the causal factors discussed before, the “crew size”, measured as the
number of workers per crew, has its unique characteristics. For example, both
“temperature” and “wind speed” are factors that change continuously, while crew size
changes intermittently due to factors such as absenteeism, turnover, and crew reallocation,
or splits due to changes in scope of work. It is a common practice in construction that
multiple crews are assigned to the same activity. In most of the cases, each individual
crew carries out a sub-activity. For example, in the “steel erection” activity, there can be
two crews working simultancously on two sub-activities, such as “steel handling” and
“bolt-and-torque” of steel members. Thus the linguistic assessments made for same crew
size by different crew supervisors can vary considerably. Figure 6-30 shows assessments

made by five experts on different crew sizes.

Structural Steel Erection: Bipdlar assesment of crew size
Exremely large T T T T T T T

T

B Crew1
Quite large —& Crew2| |

=< Crew 3

<4 Crew 4
Slightly large |- o} —A Crews| <

Neither small/large ; T T
Slightly small - |
Quite small Kzl t |
Extremely small 7+4— L ! | ! I |
2 3 5 6 7 8 9 10 1 12

Crew size: No.of men/crew

Figure 6-30. Linguistic assessments of crew size.
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As shown in Figure 6-30, the size of Crew #3 has taken the values {5, 6, 7, 10,
12}. The linguistic assessments also vary considerably, for example, in the case where
the crew size is 7, linguistic assessments relevant to Crew #3 vary from quite small to
slightly large. Further analysis of this issue has indicated that the same crew has been
assigned for different sub-activities of steel erection (e.g., steel handling, bolt-and-torque
steel members), which contributes to the varied assessment. For example, in the case of
handling steel, a crew size of 7 will be “slightly small” while for bolt-and-torque, it will
be “slightly large”.

However, since the main focus of this study is to explain construction
performance at activity level (instead sub-activity level), linguistic assessments made by
each crew supervisor (at sub-activity level) should be aggregated to represent the
assessment of crew-size at the activity level. The linguistic assessment at the activity

level can be obtained using the following aggregation operation:
m %"
Sk =(Zx,f *s,.k,p] (6.19)
k=1
Where m' is the total number of sub-activities, x; is the size of crew, and S,.’i;, is the
linguistic assessment of crew size of sub-activity k' . For example, consider that activity
D has 3 sub-activities: A, B, and C that are carried out by Crew A, Crew B and Crew C,

respectively. Following table shows the size of each crew and respective bipolar

assessment of each crew size:

Crew A B C
Size (no.of workers) 6 8 10
Bipolar assessment Neither small/ large (4) Quite large (6) Slightly large (5)

Accordingly, the aggregated value of the linguistic assessments at activity level,
D, can be calculated as follows: S7 =[(6x4)+(8x6)+(10x 5)]% =4.96.

A graphical illustration of the variability of the linguistic assessments across
different crew sizes over the study period is shown in Figure 6-31. In general, the crew
size of 5 to 7 is considered as average (i.e., neither small or large) while a crew size

above 10 is considered as quite large. Certain crew sizes have not changed over the

period (e.g., Crew #2) while certain crew sizes vary considerably (e.g., Crew #3).
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Crew1
Crew2
Crew3
Crewd
Crew5

Extremely large

Quite targe

Slightly targe .|

Neither small/targe -
Slightly smal! .|

Quite smali

Extremely smal} ...
12

Figure 6-31. Linguistic assessments of crew size over the study period.

This high variability of the size of the same crew over the project duration is
mainly due to change of scope of activity. This insight leads to the conclusion that the
measure for crew size may need to modify in future studies, to reflect scope of activity.
Additionally, Figure 6-31 also illustrates the usability of linguistic assessments to model
the appropriateness of the créw size, in an explicit way, in contrast to the current practice

of implicit modeling with multiplication factor(s).
6.5.2.4 Causal Factor: Field Rework

As shown in Figure 6-32, generally any amount of field rework hours are estimated at the
“high” side of the bipolar scale. If the amount of rework hours spent on a particular day
by the crew is greater than 10 hours, it is estimated as “extremely high” while rework
hours ranging from 2-10 are estimated in between “slightly high” to “quite high”. Similar
to the factor “wind speed”, this analysis also helps to identify threshold values and

boundaries of the causal factor “field rework™.
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Figure 6-32. Linguistic assessments of rework hours.

6.5.2.5 Causal Factor: Equipment Availability

Compared to variables such as temperature, wind speed, or field rework, the variability of
the equipment availability (measured as the number of cranes available for pipe handling,
for example) is very low, thus the linguistic assessments do not vary much over a period.
One main reason for this lack of variability is that compared to most of the other causal
factors, equipment availability is a cost-significant factor thus closely monitored and
controlled. The number of equipment needed for construction is planned ahead and a
change to the equipment fleet occurs only if there is a significant change to the scope of
the work. With respect to defining membership functions using sample membership
values across the limited universe of discourse (e.g., number of cranes, ranges from 3-5)
is inappropriate for causal factors such as equipment availability. In such cases, a
pairwise comparison method is a more suitable approach to construct membership

functions.

Similar to equipment availability, considerably less variability in linguistic
estimates is observed for variables such as equipment suitability, tool condition,

consumables availability, and materials availability.

6.5.3 Summary and Discussion on Interim Analysis

In addition to the causal factors described above, linguistic assessments made on the 21
causal factors shown in Table 6-2 across four different activities are analyzed. The
consistency (measured in terms of variation of linguistic assessments on bipolar scale) of

the experts’ linguistic assessments was above 72 percent in all cases, which indicates that
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the proposed methodology is a practical tool for acquiring and representing subjective
assessments from a group of individuals for construction performance diagnosis. The
approximate time taken to complete the daily assessment ranged from 1 to 2 minutes,
depending on the number of causal factors listed under the activity concemned. The
accuracy of the linguistic estimates on working condition can be considered fairly
accurate compared to any interview-based technique, since the expert is exposed to the
particular working condition all day and the proposed methodology is considerably

structured compared to the alternative approaches.

Additionally, the above analysis also helps to set the directions on how to select a
particular type of membership function determination technique for each variable. As
shown in Figure 6-33, when the variable have a well-defined base variable (i.c., objective
measure for x-axis), if it is practically and economically possible to collect relevant
objective measurements, and if there are more than a handful of different measurements
to be obtained, the method of constrained interpolation can be used as a means to define

membership functions.

Causal Factors
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felt d&ﬁmd Yes : y Yes Discreet sample
trase-ve > possible and or - vaiues of bisse
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transformaion transformation transfonmation
. * Pairwiss comparison +
Exemplification N
{rapresentative vales) l Leas! sqmmeghmd L Exemplification I
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Figure 6-33. Protocol to select suitable techniques to determine linguistic

assessments and membership function.
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Causal factors such as temperature, wind speed, precipitation, manpower availability,
and rework hours, belong to this category. In cases where there are no more than 7
sample objective measurements that can be taken (e.g., crew size, absenteeism,
equipment availability), the user can opt for a pairwise comparison method to elicit
sample membership values, instead of the semantic differential method, and subsequently
determine the membership function using constrained interpolation methods. Conversely,
when well-defined objective measures are not available (é,g., access to work location,
equipment suitability, tools condition, crew attitude), or if it is practically and
economically impossible to collect objective measurements (e.g., congestion on work
location, task complexity, incomplete/unclear drawings), the user can opt for the
membership function exemplification method.

As presented in the above discussions, these fuzzy linguistic assessments can be
used directly for a number of purposes. For example, (1) to identify and evaluate implicit
planned working conditions, and (2) to identify the causal factors that vary most
considerably. The causal factors that do not show variability across a time period can be
excluded from the inputs to the diagnostic model, making the reasoning process more
efficient. Most importantly, these linguistic assessments can be transformed into
membership values so that they can be used as inputs to the fuzzy logic based diagnostic
systems. The next section describes a methodology to transform the linguistic
assessments obtained via a semantic differential approach to numerical membership
values.

6.6 LINGUISTIC TO NUMERICAL TRANSFORMATION

Once the fuzzy linguistic estimates are obtained using bipolar scales, the next step is to
translate these linguistic values into numerical ones. Through this translation, a discrete
representation of the membership function can be obtained. This process involves two
key steps: first, a set of terms has to be selected (i.c., level of information granularity),
and, second, the predefined representative values for the selected fuzzy linguistic terms

should be defined.
6.6.1 Information Granulation

The proposed methodology enables the user to select the level of information granularity
to suit the problem under consideration. At the highest level of granularity, the user can
select the seven linguistic hedges that represent the bipolar scale as the term set. For

example, for the causal factor temperature, the corresponding term set can be represented
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as < extremely cold, quite cold, slightly cold, neither cold nor warm, slightly warm, quite
warm, extremely warm>. However, for practical purposes, the user may want to limit the
granularity to fewer terms (e.g., 5, 3, or 2). For example, the causal factor, “temperature”,
may need to be represented by three term sets, such as <cold, average, warm>. Once the
term set is selected, the next step is to predefine representative values for the chosen level

of granularity.

6.6.2 Predefined Representative Values and Functions

As suggested in (Dubois and Prade 1980), a simple yet meaningful method to translate
selected linguistic hedges to numerical values is to select representative values for
selected linguistic hedges. This method works similar to a look-up table. Table 6-3 shows
a set of sample representative values for three terms <low, medium, high>. Likewise, for

each level of granularity, a different look-up table can be created.

Table 6-3. Representative values for bipolar scale X-Y.

EXTREM | QUITE | SLIGHT | BOTH- | SLIGHT | QUITE | EXTREM

ELY X@ Ly X&Y (4) | LY Y () |ELY

X (1) X (3) Y (5) Y (7)
Low 1 0.6667 | 03333 |0 0 0 0
Medium | 0 0.3333 | 0.6667 |1 0.6667 | 03333 |0
High 0 0 0 0 03333 | 0.6667 | 1

However, it should be noted that these look-up tables can be used only for those
sample values identified in the Table, i.e., for the values 1,2,3,4,5,6,7 in Table 6.3.
Intermediate values (e.g., 2.5, 5.85) can also be obtained, for example, in cases where
multiple fuzzy linguistic estimates are aggregated to represent group judgments. To
obtain the representative values for such intermediate values, a set of continuous
(transfer) functions, instead of a set of discrete representative values, need to be defined
to represent the selected term set. One of the simplest methods for obtaining a continuous
transfer function is to interpolate linearly the discrete representatives. Figure 6-34 shows
the piecewise linear transfer function generated by the linear interpolation of the

representative values shown in Table 6-3 for three term sets.
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Figure 6-34. Predefined piecewise linear transfer functions based on linear
interpolation of representative membership values.

Alternatively, as illustrated in Figure 6-35, the user can choose nonlinear

representative transfer functions to transform fuzzy linguistic estimates into sample

(numerical) membership values, at different granularity levels. It is noteworthy to

mention here that these representative functions are not specific to any causal factor,

instead they are specific to the level of granularity.
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Figure 6-35. Predefined representative transfer functions to transform linguistic
assessments to sample membership values.
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Once the transfer functions are identified for the selected term sets, these
functions can be used to obtain membership values for fuzzy linguistic assessments. This

procedure of linguistic estimates for numerical (membership value) transformation is
graphically illustrated in Figure 6-36.

Corresponding e Sample data pairs
linguistic
assessments

-

(X 1y {x, )} Sample data pairs

to construct

membership
functions for the

PRI

{rasleh > selected terms

(A, B.....M), using

constrained
interpotation

{robaelee)) techniques

Bt e I

Numerical figld
measurements

—————— ———

Representative
trangfer functions

Figure 6-36. The procedure of obtaining sample membership values from
representative function.

Consider the causal factor, daytime average temperature, as an example. If one
assumes that on day ¢, the daytime average temperature at site was 12 degrees Celsius and

three experts provided their assessments of day #’s temperature condition using the
bipolar scale Cold-Warm, as follows:

Daytime average temperatura =12 degrees Celsius

Extromely . Quite  SHahtly 8lighl!y Giuite Extramely

Expert1 > Cod [1] (5] [7] wam
Expert2 = Cold . . E . u . . Warm
Expert3 —» kCold Warm

The mean value of above judgments can be obtained using Equation 6.15, as follows:

=—ZS 2+3+2) 2.33
i=l1

Now, to obtain the respective membership values of each term A, B,....K
representative functions have to be evaluated at S . Assume, for example, three terms are

selected (i.e., cold, average, and warm) to represent the causal factor, daytime average

temperature. Corresponding representative functions are shown in Figure 6-35 (d). The
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procedure of obtaining corresponding membership values for the mean linguistic

assessment S is shown in Figure 6-37.
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Figure 6-37. Example of obtaining sample membership values from representative
functions of three terms.
The membership values for the temperature value of 12 degrees Celsius, as

shown in Figure 6-36, are as follows:

| Cold | Average | Warm
Membership degree | 0.6 | 0233 | 0.0

These membership values can also be represented as sample data pairs, as
follows: Cold <12, 0.6>, Average <12, 0.23>, Warm <12, 0>.

As presented above, in cases where there is a corresponding numerical
measurement (e.g., 12 degrees Celsius) is available for the causal factor under
consideration, membership values that obtained from the procedure described above can
be associated with the numerical measurement, x, to represent sample data pairs

<x,,4,4(x,)>. Once a set of discrete data pairs are obtained for several elements of the

universe of discourse, they can be used to construct membership functions using
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interpolation methods described in Section 6.2.6. Once the membership functions are
constructed, it is only necessary to collect numerical measurements of the causal factors,
on a daily basis.

Conversely, for causal factors that do not have a well-defined base variable (i.e.,
a numerical measurement), membership values are obtained directly from evaluating the
respective representative transfer function at S . For example, consider the causal factor,
access to work location, which does not have a well-defined numerical measure.
Linguistic assessments of daily condition of access to work location can be obtained
using bipolar scale: unrestricted-restricted. Assume that a mean linguistic assessment of
S is obtained for day ¢. Figure 6-38 graphically illustrates the procedure to be followed to

obtain the respective membership values.

Corresponding
Tesmn Sel membership values
T T
{a)
These
membership
(LL B } values are directly
I 7 sentto the GRNN
! madel as input
Linguistic : values
assessments i
: (NM }

Representative
fransfer functions

Figure 6-38. Procedure to transform linguistic assessments of causal factors (that do
not have a well defined numerical measurement) to membership values.

If “restricted” and “unrestricted” are selected as two terms to represent the causal
factor, access to work location, membership values related to S can be obtained, as shown
in Figure 6-39. It is worthy to mention that, in cases where there are no well-defined

numerical measurements, fuzzy linguistic assessments need to be collected on a daily

basis.
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Figure 6-39. Example of obtaining sample membership values from representative
transfer functions for causal factor: access to work location.

In summary, two distinctive types of causal factors are identified. The first type
has well-defined numerical (objective) measures‘, and the second type does not have well-
defined numerical measures. Two different approaches to obtaining membership values
for each type are discussed above. Figure 6-40 illustrates how membership values are
obtained and transformed as inputs to the proposed Generalized Regression Neural

Network model (presented in Chapter 5).
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Figure 6-40. Illustration of how different types of inputs are transformed to the

proposed GRNN model.

6.6.3 Experimental Results

The procedures described above to determine membership functions are further

illustrated in this section with real data, for several causal factors that have well-defined

numerical measurements. Table 6-4 shows the factors selected to demonstrate the

membership function determination techniques proposed above.

Table 6-4. Selected causal factors to demonstrate membership function

determination via proposed techniques.

CAUSAL NUMERICAL COMMENT

FACTOR MEASURE

Daytime average Degrees Celsius Represent a causal factor that has a site
temperature wide impact

Daytime average

Kilometers per hour | Represent a causal factor that has

wind speed activity specific impact

Crew size Number of crew Represent a causal factor that has sub-
members activity specific impact

Absenteeism Number of crew Another causal factor that has sub-
members absent activity specific impact

Rework hours man-hours Represent a causal factor that has

activity specific impact
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6.6.3.1 Causal Factor: Day time average temperature
Table 6-5 shows the group judgment (mean S) about the causal factor, daytime average
temperature, over a period of 54 working days by a group of 19 experts representing 7

activities related to pipe module fabrication.

Table 6-5. Linguistic assessments and representative membership values for day
time average temperature.

Temperature Mean- Term Set

(Degrees Celsius) S Cold Average | Warm
9 3102222 0.6065 0
12 3.35 | 0.0939 0.8096 0
13 3.65 | 0.0272 0.9406 0
14 3.85 | 0.0050 0.9888 0
15 420 0.9802 0.0089
16 4410 0.9231 0.0356
17 44710 0.8954 0.0491
18 45810 0.8452 0.0748
19 468 10 0.7936 0.1028
20 496 |0 0.6308 0.2048
21 498 {0 0.6187 0.2134
23 510 0.6065 0.2222
24 5110 0.5461 0.2689
25 53510 0.4020 0.4050
26 5610 0.2780 0.5644
30 58810 0.1708 0.7212

The membership values are obtained for three terms (cold, average, and warm),
as shown in Table 6-5, using the representative function shown in Figure 6-35 (d). Figure
6-41 shows the corresponding membership functions constructed using the quadratic
Bernstein polynomial interpolation algorithm using sample membership values of each

term.
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Figure 6-41. Membership function for Cold, Average and Warm daytime average
temperature.

6.6.3.2 Causal Factor: Daytime average wind speed

The effect of wind speed can be considered activity-specific as some activities have a
minimal impact from wind (e.g., hydrotesting) while activities such as pipe handling and
erection of structural steel members can be affected significantly by the wind. The mean
values of the linguistic assessments about daytime average wind speed provided by 4
structural steel erection experts are shown in Table 6-6. Assessments made by 5
pipefitting and fabrication experts on the same causal factor are shown in Table 6-7. The
corresponding membership functions for three terms (low, medium and high wind speed)

are shown in Figure 6-42.
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Table 6-6. Linguistic assessments by structural steel erection experts and
representative membership values for day time average wind speed.

Wind Mean-B Term Set
Speed Low Medium High
1 1.00 } 1.0000 0.0111 0
5 2.50 | 0.5000 0.3247 0
9 3.30 | 0.1089 0.7827 0
11 43010 0.9560 0.0200
14 50010 0.6065 0.2222
20 55010 0.3247 0.5000
23 6.00 |0 0.1353 0.7778
31 65010 0.0439 0.9444

Table 6-7. Linguistic assessments by pipefitting and fabrication experts and
representative membership values for day time average wind speed.

Wind Mean-B Term Set
Speed Low Medium High
1 1.00 | 1.0000 | 0.0111 0
3 2.38 | 0.5768 | 0.2692 0
5 2.50 | 0.5000 | 0.3247 0
6 2.56 | 0.4608 | 0.3546 0
10 3.00 | 0.2222 | 0.6065 0
11 3301 0.1089 | 0.7827 0
14 4001 0 1.0000 0
20 45010 0.8825 0.0556
22 5.00 (0 0.6065 0.2222
23 6.00 {0 0.1353 0.7778
31 7.00 {0 0.0111 1.0000
(a) (b)
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Figure 6-42. Membership functions of Low-, Medium- and High- wind speed: (a) for
structural steel erection activity, (b) pipe fitting and fabrication activity.
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6.6.3.3 Causal Factor: Crew Size (number of members in the crew)
The following table shows the crew size (CS) and corresponding linguistic assessments

provided by structural steel erection expert, over a period of 21 workdays.

day | 112 {314 [5]617|81910]11 1121314151617 |18[19]20]21

CS |6112|6[12]616|5]3|5]|5 |5 |5 |6 {7 (121212112} 10

W

S 215 (315 1343131212} 2 12 {12 13 {3 |51|51]5 14 1|3 1 4
CS=crew size, S=bipolar assessment

This table indicates that the crew size has taken the following g values: 3,5,6,7,10,
and 12 over a period of 21 days. Linguistic assessments indicate that the crew size was
never considered as quite- or extremely- large, in any of the days. It indicates that usually
oversize crews were not used in the project. Table 6-8 shows the crew sizes,
corresponding mean linguistic assessments, and representative membership values for

three terms (i.e., small, average and large crew).

Table 6-8. Linguistic assessments (by a structural steel erection expert) and
representative membership values for Crew Size.

CS | MEANS TERM SET
Small | Average | Large
3 120 0.7778 | 0.1353 0
5 2125 0.7188 | 0.1724 0
6 | 2.857 0.2903 | 0.5204 0
7 13.71 0.0187 | 0.9588 0
10 | 4.0 0 1.0000 0
12 1 5.0 0 0.6065 0.2222
1 I I
5 : ; |
0.9 < smalaew | T TN T
al b A
o8 N[ e
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Figure 6-43. Membership functions of Small and Average crew sizes.
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6.6.3.4 Causal Factor: Absenteeism of crew member(s)
Linguistic assessments obtained for the causal factor: absenteeism of crew members are
shown below.

Number of crew l 0 l 1 12 l 3

members absent
S I1 14 |6 |7

It is quite obvious from the above assessments that experts believe that on any given day,
the absenteeism of one crew member is expected. Any number of absentees more than
one is considered as quite or extremely high. As shown in the above assessment, this
causal factor does have a very limited amount of representative values (i.e., 1, 2 or 3
absentees); an interpolation method is therefore not suitable for constructing membership
functions. Representation of membership values in a tabular form is sufficient in these
cases. A sample representation of membership values for two term sets (Low and High

absenteeism) is shown in Table 6-9.

Table 6-9. Example of membership function representation in tabular form.

NUMBER OF TERM SET
ABSENTEES IN A Low | High
CREW

0 1.0 0

1 0.6 0.2

2 0.2 0.6

3 0 1.0
4 0 1.0

6.6.3.5 Causal Factor: Rework Hours
Representative values of rework hours and corresponding linguistic assessments on

bipolar scale, low-high, made by a group of experts are shown below:

1 |2 |3 |5 |6 |10 |21
4 s [5 15 |6 |

| 7

Rework hours I
Mean-S |

)

Similar to the causal factor, absenteeism of crew members, rework hours also has very
limited representative values. The corresponding linguistic assessments indicates that any
amount of rework hours that are higher than 1 are considered as a variation of high, i.e.,
either slightly high, quite high or extremely high. When the rework hours are greater than
10 (which represent a day’s worth of work by an individual crew member), it is

+

considered as extremely high.
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Since almost all the linguistic assessments are concentrated on one side of the
bipolar scale, the method of representative transfer functions is not suitable to obtain
membership values for the causal factor, crew size. However, the above linguistic
assessments indicate that a simple heuristic-based method of membership function
construction is sufficient in this case. Sample membership functions for two terms (low

and high) are shown in Figure 6-44.
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Figure 6-44. Membership functions of low and high rework.

Based on the above discussion and the protocol presented in Figure 6-33, suitable
membership function development techniques are identified for the variables listed in

Table 6-2. The results are shown in Table 6-10.

6.7 DISCUSSION AND SUMMARY

In this chapter, the membership function determinations techniques that are based on
sample membership values are first reviewed and methods most suitable for applications
in construction performance modeling are identified. Constrained interpolation methods
that are identified as potential membership function determination techniques are tested
using illustrative examples. A pragmatic approach is then proposed for qualitative
knowledge acquisition and representation. The proposed causal knowledge representation
methodology was a combination of the nominal group technique (NGT) and semantic
differential (SD) approach. The proposed methods are tested and validated using an

actual dataset collected from an industrial construction project.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6-10. Suitable membership function determination techniques for the causal

factors identified in this study.

Pairwise comparison

CAUSAL FACTOR SAMPLE MEMBERSHIP MEMBERSHIP
VALUE DETERMINATION | FUNCTION
TECHNIQUE(S) DEVELOPMENT
TECHNIQUE(S)
Crew size Semantic Differential Approach | Constrained interpolation
Absenteeism Semantic Differential Approach/ | Tabular form/

Heuristic method

Crew experience

Semantic Differential Approach

Heuristic method

Rework

Pairwise comparison/
Semantic Differential Approach

Constrained interpolation

Incomplete/unclear drawings

Semantic Differential Approach

Membership values from
transfer functions

Temperature (day time Semantic Differential Approach | Constrained interpolation

average)

Total Precipitation { Semantic Differential Approach | Constrained interpolation

Wind speed (day time Semantic Differential Approach | Constrained interpolation

average)

Manpower availability Semantic Differential Approach | Membership values from
transfer functions

Equipment availability Semantic Differential Approach | Membership values from
transfer functions

Equipment suitability Semantic Differential Approach | Membership values from
transfer functions

Tools condition

Semantic Differential Approach

Membership values from
transfer functions

Consumables availability

Semantic Differential Approach

Membership values from

transfer functions

Material availability Semantic Differential Approach | Membership values from
transfer functions

Congestion on work location Semantic Differential Approach | Membership values from
transfer functions

Access to work location Semantic Differential Approach | Membership values from
: transfer functions

Time to await inspections Semantic Differential Approach | Membership values from
transfer functions

Waiting for other trades Semantic Differential Approach | Membership values from
transfer functions

Task complexity Semantic Differential Approach | Membership values from

transfer functions

Safety equipment availability

Semantic Differential Approach

Membership values from
transfer functions

Right tool availability

Semantic Differential Approach

Membership values from
transfer functions

Crew attitude/morale

Semantic Differential Approach

Membership values from
transfer functions

The results indicate that the proposed methodology for representing experts’
knowledge is effectual and generates fairly accurate results. Finally, a linguistic-to-

numerical transformation process is proposed. These numerical values represent the
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sample membership values, [0,1]. They can be used to define membership functions or
can be used as direct inputs to the FA-GRNN model described in Chapter 5.

Chapter 7 describes the overall diagnostic reasoning development strategy,
combining the knowledge representation and acquisition methods presented in this
chapter and the FA-GRNN model proposed in Chapter 5. It also presents the software
(XCOPE, explaining construction performance) developed based on the principles
discussed in this thesis. Chapter 8 will draw conclusions based on the research and

identify the future research directions.
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CHAPTER SEVEN

7. INTEGRATED CONSTRUCTION PERFORMANCE DIAGNOSTIC
FRAMEWORK

7.1 INTRODUCTION

This chapter presents an overall description of an integrated construction performance
diagnostic framework capable of predicting construction performance and diagnosing
performance deviations based on a combination of expert opinion and daily measures of
performance-related factors. The proposed integrated system has the advantage of neural
network systems (e.g., learning, fault tolerance, generalization, and adaptation abilities),
fuzzy systems (capturing the subjectivity of expert assessments, processing linguistic
information at different levels of granularity) and genetic algorithms (parametric and
structural optimization of the system). The integrated framework is implemented in a
Microsoft® Visual Studio® platform in order to validate the effectiveness of the
proposed system.

The following sections provide an overview about the proposed integrated
framework and identify its key modules. A descriptive, step-by-step guide for developing
each module is presented. It is followed by a discussion on the framework validation
strategies used. Finally, an example case is presented validating the overall framework to

obtain high degree of confidence of the proposed framework.

7.2  PROPOSED INTEGRATED FRAMEWORK FOR DIAGNOSING
CONSTRICTION PERFORMANCE

The proposed framework consists with two key modules: the prognostic module and the
diagnostic module, as illustrated in Figure 7-1. In its functional form (i.e., after the model
is designed, trained, and tested), inputs to the model are daily values of causal factors that
represent the working condition of an activity. The model has three key outputs. In its
predictive form, the model allows the user to estimate construction performance based on
different conditions/states of causal factors. This estimation provides the user an efficient
methodology to execute a what-if analysis, so that construction managers can identify the
expected performance of construction activities based on different scenarios. Additionally,
as an output of the prognostic module, the model identifies the relative-significance of

each input causal factor (in terms of smoothing factors). This characteristic of the
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proposed network provides the construction manager an effective way to keep focus on
the most important and significant factors to control the performance of the activity. In its
diagnostic form, the model let the construction manager to identify the root causes of

performance deviation(s).
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Figure 7-1. Proposed integrated framework

A summary description of each module along with a step-by-step guide to develop the

framework is presented in the following sections.
7.2.1 The Prognostic Module

The prognostic module comprises a user interface and the fuzzy adaptive generalized
regression neural network (FA-GRNN) model. The user interface facilitates the
knowledge representation and data preprocessing, which is designed using the concepts
presented in Chapter 6. The FA-GRNN model provides the nonlinear-dynamic input-
output mapping capabilities, which are described in detail in Chapter 5. This module is
designed to perform several key tasks. A description of each task along with a step-by-

step guide to implement each task is described below.

(a). Allows the user to define project performance goals and related key performance
indicators (KPIs), and to represent causal knowledge about the KPI. The following steps

can be performed at this stage:
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1. Identify key performance indicators (KPIs) for activity performance.

2. Identify a list of causal factors for each KPI (via modified nominal group
technique). This list of factors serves as input variables (x; € X,i =1,2,...,n) to

the proposed model, where n equals total number of causal factors associated
with the selected KPI. The output variable is the KPI, which is represented by y.
Since, generally, the KPI is a numerical measure such as the productivity factor,

the proposed model is designed as a Multi-Input-Single-Output (MISO) system.

3. Identify numerical measures and subjective measures (i.c., bipolar scales) for

causal factors identified in the above step.

4. Identify planned values (i.e., baseline parameters) of each input variable x;
(i.e., x,) for each KPI. These planned values are used to calculate the

performance deviation, later in the diagnostic reasoning process.

5. Select linguistic values (i.e., term sets) for each causal factor identified. This
allows experts to represent the level of information granularity that they expect in

the reasoning process.

(b). Allow experts to assess and report qualitative and quantitative assessments on daily
working conditions (represented by list of causal factors). A methodology is proposed in
Section 6.5 of the Chapter 6 for assessing working condition using linguistic estimates.

Steps for determining this are as follows:

1. Collect daily values x; (i.e., numerical measurements and or linguistic
assessments) of causal factors and respective key performance indicators (y;) over
a time period (or extract data from the project database for previous similar

project/s).

2. For cases in which multiple expert assessments are available, assessments need

to be aggregated, using procedures described in Section 6.5.1 of the Chapter 6.

3. Categorize collected daily values, if necessary, into different groups based on
user requirements (e.g., seasonal data, work package, etc). Models specific to
each data category must be developed.

These daily values form the learning data of the model: 7=, ,y,}_ .

(c) Input Fuzzification. This facilitates transforming qualitative and quantitative input

data into membership degrees of selected linguistic values of input causal factors. Input
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Fuzzification can also be considered as an input preprocessing process. This process not
only enables one to capture the subjectivity of an individual expert’s assessment of daily
‘working conditions but also allows one to transform the input values to a form (i.e.,
between 0 and 1) that can be used as a direct input to a neural network model. Input
Fuzzification is carried out in two different ways, based on the characteristic of the causal
factors. For causal factors that do not have well-defined numerical measures,
representative transfer functions are used (as described in Section 6.6.2) to obtain
membership values that are directly used as input to the FAGRNN model. For causal
factors that have well-defined numerical measures, membership functions are constructed
by interpolating sample membership values (as described in Section 6.2.6). Once the
membership functions are developed for those causal factors, corresponding membership
values of daily assessments can be obtained by sending the quantitative measurement
through the membership function. It is recommended that once the membership functions
are constructed that they are crosschecked with the construction management team to
make sure that the shapes of the functions constructed are meaningful. A step-by-step
guide for input fuzzification is as follows:

1. Select representative transfer functions for each linguistic value (refer to

Section 6.6.2 for detail description).

2. Construct membership functions (for factors that have numerical measures)
using sample data by a constrained interpolation technique (refer to Section 6.2.6
for a detailed description).

3. Combine the membership functions (and representative transfer functions for
factors that do not have numerical measurements), m;, into a vector of a single
input

vector, u= [m” 31142 yueey T3 s g gy 0 gevuy Mgt yerey 0 5 T, geeey P ]: [u] s U ooy Uy j
‘where the total dimension of u is p=n*k, where #z is the number of factors and £ is

the number of membership functions (or transfer functions) for each factor (i.e.,

input vector of the model).

(d). Training and testing FA-GRNN model. This phase focuses on training and testing
the FA-GRNN model (presented in Chapter 5) that is capable in mapping complex
phenomena, such as construction labour productivity. Once an accurate predictive model

is developed, as described in the following phase III, the model can be used for
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diagnostic inference, with further extensions to the same network. Necessary steps for

training and testing the FA-GRNN model are described below:

1. Obtain sample training input-output data pairs, (x;, 1), which represent the

values of causal factors and the corresponding KPI values, respectively.

2. Transform sample values of causal factors (x;) into membership degrees (u;) by

sending X, through vector u.

3. To obtain the corresponding output values, y; which are numerical
measurements, a nonlinear transfer function (e.g., sigmoidal function) can be
used to transform actual daily output, y, (i.e., KPI) values into a unit interval, i.e.,

[0,1], to feed into the FA-GRNN model.

4. Combine sample input (u,) and output (y';) data to create the learning data set
(input and output data pairs) that can be represented as L = {u, Y }tT:I , where T
is total number of days.

5. Divide the sample dataset L into two sets (for training and testing).

5. Train the FA-GRNN model with training data patterns using genetic

algorithms.

6. Analyze the individual (local) smoothing factors, and crosscheck with

construction management team.
7. Test and validate the model using testing data.

8. Feed the planned values (X,) into the FA-GRNN model, and obtain the planned
(output) KPI estimate (y'p), thereby establishing a baseline estimate of the KPIL
By applying the planned values (x,) to the network, we can obtain the normal
Jfunctional state of the system under study. This will be considered as the baseline

for diagnostic inference, which is presented in Section 7.2.2.
7.2.2 The Diagnostic Module

Once the learning phase is successfully completed, the FA-GRNN model can be
employed as an approximate inference and forecasting engine. Essentially, the diagnostic
process can be defined as a root cause identification using information collected from

daily working condition reports, established baseline parameters, and values of key
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performance indicators. The sequence that should be followed to perform a diagnosis can
be summarized as follows:

1. Diagnostic inference starts with selecting a new data pattern, and then comparing

the observed (field measurement) KPI value, y, with planned KPI value, y” . If

y is equal or similar to y”  one can presume that the planned conditions of

factors have prevailed during that particular day, making the diagnosis not
required.
2. Otherwise, feed the new data pattern (x,) into the network and get the network

output (7). Compare y and p. If the prognostic model is accurate, y should
be equal or similar to J . Otherwise, the prognostic model is inappropriate for

diagnostic reasoning. This conflict can be caused by: (1) measurement errors in
the actual KPI (e.g., hours were incorrectly charged to calculate productivity
factor) and/or (2) incomplete or inaccurate model. A simple protocol to identify

and evaluate an incorrect model is shown in Figure 7-2.
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Figure 7-2. A protocol for identifying and evaluating inaccurate models.

3. If y is equal or similar to p (or within an acceptable range), then calculate
difference between u, and u, (Ap,); a critical cause for abnormal behavior of
KPI comes from an unexpected variation of a performance factor, the difference
between the actual and planned condition (Ap,) of each linguistic values of
causal factors is thereby calculated.

4. Multiply Ap, by smoothing factor 6, , S =Ap, xc,. The inference should be

based on multiplication of degree of membership of cause variance and
associated weight. In order to become the most significant cause of an effect,
both the variation should be high and the weight should be comparatively high.

In cases where the weight 1s comparatively high but if the vanation is low, the
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impact will not be significant. Hence both the cause variance and the associated
weight should be considered while making the inference.

5. Rank S and identify critical factors of performance variation.

7.2.3 Example of a Performance Diagnostic Inference

This section presents an example to further explain the diagnostic inference process
discussed above. A FA-GRNN model was developed for reasoning hydro-testing activity.
A data pattern (represenﬁng the day of June 12, 2003) that has not been seen by the FA-
GRNN model (developed based on summer 2003 data; see Section 5.4.4 for model
details) was selected for diagnostic reasoning. The actual output value (PF) for the day of
June 12, 2003 was 0.4380. The objective here is to identify the causes of low productivity
of hydrotesting on that day. The absolute error of the network output for the same data
pattern was 0.006. The model was therefore considered pertinent for diagnostic inference.
Summary results of the diagnostic inference for that particular data pattern are shown in

Table 7-1.

Column 1 shows factors that identified by the construction management team and
possible causes of low hydro-testing productivity. Membership functions for each factor,

which were derived from collected daily data, are shown in column 2. Respective
individual smoothing factors (o, ) that represent the relative importance of individual
factors to the selected network output is given in column 3. Membership values of the
planned (estimated) value of each factor are shown in column 4. Membership values of
actual daily value of each factor are given in column 5. The variance (Ap, = pu; —pf ) of
membership values (of actual and planned values) of the selected day is shown in column
6. Column 7 shows the multiplication of individual smoothing factor and the variance
(S =Ap,; xo,). The value S indicates the significance of the particular linguistic term
(e.g., low work load, high manpower availability) as a combination of variance of the
particular day and the relative importance of the particular term in the network. For
example, as shown in Table 7-1, on June 12, 2003, among the seven factors identified,
the mean-temperature had the largest variation. Based on linguistic terms, “medium”

mean-temperature had a negative variation of 1.0 and “high” mean-temperature had a

positive variation of 1.0 indicating that on the particular summer day, the mean-

temperature was higher than the average value. The respective ©, value of “medium” and
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“high” temperatures are 2.882 and 0, respectively. 718 indicate that a “medium” mean-
temperature has a higher influence, compared to a “high” temperature, in the selected
network. As shown in the column 8, the summation of S values indicates the overall
significance of mean-temperature, compared to other factors on the particular day. In this
case, the corresponding negative sign indicates that mean-temperature has a contributing
impact on productivity deviation. Similar types of analysis have been carried out for the
rest of the factors and ranked accordingly, based on the summation of S values, as shown

in column 9.
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Table 7-1. Diagnostic inference for low hydro-testing productivity on June 12, 2003*.

(O] )] 3 “ % © (3)X(6) (M ® ® (10)
Factor Membership Smoothing Planned  Actual Variance § = Ap, %0, Z S Contributing = C+ Comment
function  pactor.s,  values  Value  A(Act- ! cH Rank
(for (for (for  Planned) Counteracting
summer) Summer) 12June (C-) Neutral
03) )
Work Load Low 0.588 0.500 0.500 029 Actual
Medium 1.576 0.909 -0.909 -1.43 work load
High 1.024 -1.14 C- was less
than
planned on
this day
Equipment Low 0.106 Equipment
availability Medium 1.847 0.500  0.500 availability
was as
planned.
High 2.741 N
Manpower Low 1.718 Manpower
availability Med-Low 0.235 0.770 0.770 0.18 availability
(ratio) Med-High 1.341 0.893 -0.893 -1.20 was less
High 0.165 -1.02 Cc+ than
2 planned.
Mean Low 0.259 Mean
temperature Medium 2.882 1.000 -1.000 -2.88 temperature
High 0.718 1.000 1.000 072 -2.16 C+ was higher
than
1 planned,
Total Low 2.871 0342 1,000 0.658 1.89
precipitation Medium 2.953 0.772 -0.772 -2.28
High 1.753 -0.39 C+ 3
Rework Low 1.247 1.000 1.000 Zero
(hours) rework.,
Med-Low 3.000
Med-High 2:118
High 0.729 N
QC hours Low 0.035 Actual QC
(ratio) Med-Low 0.176 0263  0.096 -0.167 -0.03 input is less
Med-High 1.129 than
High 2.565 -0.03 C+ 4 planned.

*Cells with zero values were left blank to increase the brevity.



7.2.4 Visual Representation of Diagnostic Inference

Results shown in the Table 7-1 are transformed into a visual form, using the tree-map
approach (Johnsén and Shneiderman 1991) enabling the construction manager to observe,
browse, and understand the comparison of significance between different factors of each
KPIL Technically, the tree-map is used to convert numerical and symbolic results into a
graphical representation. As shown in Figures 7-3 and 7-4, the tree-map presents
diagnostic information at several levels of detail, making extensive data comparisons
coherent. It helps to answer basic questions that a construction manager has about his

project performance.

3 ixt - Treemap 4.1 Datd File' leaded af.19%:0

Figure 7-3. Size based on Smoothing facter and the color based on contributing
(red) and counteracting (green) causes.
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Figure 7-4.Size based on significance of significance of factor and color based on
contributing (red) and counteracting (green) causes.

7.3 FRAMEWORK VALIDATION

The proposed framework, which is capable of predicting and diagnosing construction
performance, integrates several concepts that are designed and developed in this thesis. A
bottom-up approach of framework validation, i.e., validating the sub-modules first and
then the overall framework, is used. As described in Section 7.2, the proposed framework
has two key sub-modules: the prognostic module and diagnostic module. Several
objectives as well as subjective model validation techniques have been used to ensure
that the proposed framework possesses a satisfactory range of accuracy for predicting and
diagnosing construction performance. This section summarize the efforts put forth to

substantiate the accuracy of the proposed framework.
7.3.1 Conceptual Model Validation

In the proposed framework, designing the conceptual model is limited to identifying the
most representative causal factors of key performance indicators by a group of experts
and constructing membership functions using the membership values obtained from the

expert judgment of representative values of causal factors. (Note that the strength of
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input-output relationship is calculated via neural network training by providing input-
output sample data of the network). The process of causal knowledge representation
depends on the experience and knowledge of a group of construction personnel. A
structured methodology based on a modified version of the Nominal Group Technique
(NGT) is proposed (see Section 6.4.2) to guide the group of experts to identify an
appropriate and “reasonable” list of causal factors that can affect the performance
indicator. Membership functions constructed based on sample membership values are
validated using face-validation, i.e., by asking construction experts about the membership
function and whether they are reasonably able to represent the selected linguistic

concepts.
7.3.2 Validity of Working Condition Assessment Data

Proposed framework utilizes both quantitative and qualitative working condition
assessment data for three purposes: training the FA-GRNN model, testing the FA-GRNN
model, and for performing prognostic and diagnostic experiments with the validated
model. Data is collected in terms of input-output pairs (x,y) representing daily values of
selected causal factors (as input, x) and the corresponding measurements of the key
performance indicator (y). The input vector, X, consists of both quantitative and
qualitative measurements while output values are represented as a quantitative value. A
structured procedure is proposed (in Section 6.4.4) that is based on a semantic differential
approach to achieve a reasonable accuracy in qualitative expert assessments on
qualitative variables. Internal consistency checks were carried out, as described in
Section 6.5.2, to determine whether the individual expert judgments were within a
reasonable accuracy level. The quantitative measurements on working condition are
automated where possible (e.g., weather data is collected by setting up a mini-wireless
weather station at site) to collect accurate field measurements. Additionally, data
transformation procedure is also structured (see Section 6.5.1) by developing data
aggregation procedures to combine expert qualitative assessments and/or to combine
assessments in order to represent data in a different time scale. Furthermore, a database is
designed, developed and maintained to collect and store both quantitative and qualitative

data.
7.3.3 Prognostic Validation

The operational validity of the proposed framework is determined in Section 5.4 by

comparing the actual system behaviour with the model’s behaviour. In the prognostic
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module, the model is used to predict the construction performance based on input
working conditions. Comparisons are then made between the actual output (i.e., daily
actual KPI value) and the model’s estimate to determine if they are same (or within
reasonable level of accuracy, e.g., 10%). A statistical technique and a graph-based
comparison approach are used to validate the prognostic model. The coefficient of
multiple determinations, R, (see Equation 5.4) is used as a means of statistical validation,
to determine the FA-GRNN model’s accuracy. Additionally, scatter plots (see Figures 5-
5, 5-8, and 5-10) and error graphs (See Figures 5-6, 5-9, and 5-11) are used to visualize
the comparison of the actual vs. FA-GRNN model behaviour. Sixteen experiments were
conducted (in Section 5. 4) using datasets that represent different time intervals (e.g.,
months, seasons) and found that models trained using seasonal data have the highest

accuracy levels.
7.3.4 Diagnestic Validation

The purpose of the diagnostic module is to explain construction performance deviations
by identifying the relative significance of causal factors. The operational validity of the
diagnostic module is determined before each time the diagnostic inference is conducted.
As described in Section 7.2.2, diagnostic inference is carried out only if the FA-GRNN
prognostic model has the reasonable accuracy to predict the actual performance level of
the activity based on the actual working conditions of a particular day. In other words, the
FA-GRNN model is the foundation of the diagnostic inference. Additionally, the user
always has the option to crosscheck the accuracy of the diagnostic inference by analyzing
the variance of identified root causes of performance deviations manually. A protocol is
also developed (in Section 7.2.2) to identify the accuracy of the model or diagnostic

inference.

74 CASE EXAMPLE OF REASONING INDUSTRIAL CONSTRUCTION
LABOUR PRODUCTIVITY

To obtain a high degree of confidence in the proposed framework, a set of actual data
(collected using the proposed data collection methods) is used in this section to validate
and verify the overall framework. For project related details, the reader is referred to the
Section 6.3 of Chapter 6. This section presents the results of the experiments conducted
on industrial construction activity: pipe handling and fabrication (hereinafter referred as

pipe fabrication), to demonstrate the validity of the overall framework.
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The labour productivity factor (PF) of the pipe fabrication activity was selected
as the performance indicator, representing the output variable y. Causal factors that
represent the daily working condition of pipe fabrication is identified by 4 frontline-
supervisors who belong to the pipe-fitter trade. The average experience of this group of

experts was 22 years in the same trade.

7.4.1 Causal knowledge representation and daily working cendition assessments

The list of causal factors identified (using the proposed modified nominal group
technique) to represent the daily working conditions of the pipe fabrication, their
numerical and or bipolar measures, and selected linguistic values of each causal factor is

shown in Table 7-2.

Table 7-2. Causal factors of pipe fabrication, their measures, and selected linguistic

values.
FACTORS NUMERICAL BIPOLAR SELECTED LINGUISTIC
MEASURE MEASURE VALUES (TERM SET FOR
_ REASONING)

Crew size CSZ | Number of ' Small - Large Small Average Large

crew members
Absenteeism ABS | Number of Low - High Low High

crew members

absent
Rework RWK | Workforce Low - High Low High

hours
Temperature TEM | Degrees Cold - Warm Cold Average Warm
(day time Celsius
average)
Total PRE | mm Low — Heavy Low Heavy
Precipitation
Wind speed (day | WSD | kmv/hr Low - High Low Medium High
time average)
Equipment EQA - Low - High Low High
availability
Equipment EQS - Improper - Ideal | Improper | Ideal
suitability
Material MTA - Poor - Good Poor Good
availability '
Access to work AWL - Restricted - Restricted | Unrestricted
location unrestricted
Waiting for other | WOT - Short- long Short Long
trades
Incomplete/Uncl | TUD - Few -many Few Many
ear Drawings
Right tool RTA - Low - High Low High
availability
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Once the causal factors and their quantitative and/or qualitative measures were
identified, daily assessments of each causal factor are obtained by the same group of
experts over the period from 6™ June 2005 to 28" August 2005. The reader is referred to
the Appendix A for complete details of the assessment data for the above causal factors.
Figure 7-5 and Figure 7-6 show the screen captures of the XCOPE, the system developed

to facilitate the above knowledge representation and collection of expert assessments.

Pipe Fabrication

I [El-Factors Library (
¥ oL Crew size ‘ i=)--Labour Productivity

=2 Bbsenteeism : - - LiCrew size

-3 Rework : - 2 Bbsentesism

4 Temperature (day-time average} - 3’ Rework

-5 Total Precipitation " i 4 Temperature {day time average)
- &°'Wihd speed (day time average) 5 Total Precipitation

- 7 Equipment availabilicy : 6 Wind speed-(day time average)
-« § Equipment suitability . -7 Equipment availability

-+ 9 Tools condition - 8 Equipment suitability

<18 Consumables availability - - . - 11 Material availability

-+ 11 Material availability 13 Access towork location

-+ 12 Congestion on work location ; 14" Waiting For other trades

- 13 Access to work location : 15 Incomplete unclear drawings

< 14 Waiting for other trades . - 16 Right tool awvailability

15 Incomplete unclear drawings
-~ 16 Right tool availability

17 Task complexity

< 18 Crew experience

o

Figure 7-5. XCOPE representation of causal factors that affect steel erection
productivity
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Labour Productivity

Figure 7-6. XCOPE representation of daily expert assessments

The variability of the labour productivity (PF) of pipe fabrication during the
period concerned is illustrated in Figure 7-7. Technically, one of the proposed
framework’s key objectives is to map the complex variability of performance that is

based on related working conditions.

Pipe Fabrication Productivity Factor

L | | | 1
0.8 ' \ ; 1

Productivity Factor

Workday
Figure 7-7. Productivity factor variation of structural steel erection
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Figure 7-8 shows the average crew size and the number of crew members absent

over the period concerned. Figure 7-9 shows the numerical measurements of the weather-

related causal factors for the same period concerned.

Pipe Fabrication: Average Crew size and Absenteesm
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Figure 7-10 shows the aggregated expert assessments (obtained via the semantic
differential approach) about the causal factors that do not have well-defined numerical

measures. An equal competence level is assumed among all four experts.

(a) Equipment Avaitahility

{b) Equipment Suitability -
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Figure 7-10. Aggregated pipe fabrication expert assessments about daily working
condition
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7.4.2 Input Fuzzification

The input fuzzification is carried out based on the proposed protocol (described in
Section 6.5.3) for selecting suitable techniques to determine membership functions. The
Figure 7-11 shows the selected nonlinear representative transfer functions to obtain
(sample) membership values for the list of causal factors. By following the procedure
described in Section 6.6.3, membership functions are constructed for causal factors {CSZ,
TEM, PRE, and WSD} by a constrained interpolation of sample membership values

obtained from the proposed linguistic-to-numerical transformation procedure (see Figures

7-12 to 7-15).
{a) Two Term Sets (b} Three Term: Sets
1 - T T T T T 1 T T Y T T 7
; ' ! b Loty L
: : ; CAry v
08}t N gl g X s
: ; P : . P hr A
+ i3 +. ‘_‘;'. 1 13 T Ii:: ¥ ':.l il
' ' R ! ! i LR
DB Fremch oot e bt DB }----- i i ol AL
b NS vAA s R
2o : R ! : e ; LY
) ' S ' " ' M § g e
D.4f-=e=x beoesh R e bommm D4 f=--n- S e
: R : : : : AT
: v : : : : o
o2b-i R L PR, W Lounid 02 - oy MR B B
: e ' ' : : N IR L
» d E T T ' A ] ,,’(l »,
R ! : : R N
0 L < : ! H } 0 o 2t v M,
1 2 3 4 5 B 7 1 2 3 4 5 B 7

Figure 7-11. Selected representative transfer functions: (a) Twe terms sets for
causal factors {ABS, RWK, PRE, EQA, EQS, MTA, AWL, WOT, IUD, RTA}, and
(b) Three term sets for causal factors {CSZ, TEM, WSD}. ,

Pipe Fabrication Crew Size
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Figure 7-12. Membership functions of pipe fabrication crew size (small, average and
large)
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Figure 7-13. Membership functions of daytime average temperature (cold, average
and warm)

Precipitation

l‘i T T T 1 T
) : : i : ;
LIt 1 ! atl ) )
i 1y ] . 3o 3 v
[ 4 ty 1 ] ot 1 )
] ] [} i ] 3 ]
"' Il L ] ; 1] ) ’
DB . -.'!.-:.+----: ...... .:---dl--.: ....... : ....... = pa
1 t " a1 v ‘f‘ v I :
V
Lowd © LAvetage - High :
i i £ 1 ',»’% ] ] ]
0B ST KO S 3 : :
. =~ I T R S e S S SR =
R : : : :
t (% ' b ' )
¥ ¥ L} 1] ] ]
= HE : ; : :
] > e ) b ] 1)
] & 3 L] E ) L
L -~ gy R R i S o N g —
0.4 p-qlmr- g 1 : 2
¥ ' i ] N 3 » :
L W : .
N P : ;
3 S N : :
Uz Sl At e aiaiaabal Rtttk Faleal Tafatty T T T T oI TTT YOI T I
: o ] 1 1\ 3 [ ]
i i : : 1;: , .
l I: 1] L) \l L} L)
M 3 v v »
"" ¥ ] ] ] 3
&i 3 1} I'& ] ¥
D i A A i st 3 i

0 5 10 15 20 25
Total Precipitation {mm)
Figure 7-14.Membership functions of total precipitation (low, average and high)

&)
o

35

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~ Wind Speed
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Figure 7-15. Membership functions of daytime average wind speed (low, average,
high)

Due to the simplicity and limited number of discrete sample values, membership
functions for causal factors {ABS and RWK} are constructed using heuristic method, as
shown in Figure 7-16 and Figure 7-17, respectively. Membership values for causal
factors { EQA, EQS, MTA, AWL, WOT, TUD, RTA } are obtained directly from

respective transfer functions.
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Figure 7-16. Membership function of field rework (low, high)
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Figure 7-17. Membership function of Absenteeism (low and high)

7.4.3 Training and testing the FA-GRNN model

The dataset collected over the period of the summer 2005 (graphically shown in Figures
7-8 to 7-10) consists of 29 data patterns that could be used for training and testing the
proposed FA-GRNN model for modeling structural steel erection productivity
performance. Two data patterns were set aside for diagnostic reasoning. The remaining
27 data patterns were divided into two sets. 22 data patterns (i.e., 80%) were assigned for
training the FA-GRNN model while the remaining five data patterns (i.e., 20%) are used
for testing the model. The model is trained and optimized adaptively using a genetic
algorithm, as described in Section 5.3.3. The adaptive training and optimization step of
the FA-GRNN model is automatically stopped when there have been 20 successive
reproductions of the whole population, but none has produced an individual that
improved the mean squared error by at least 1 percent. The accuracy of the trained

network is tested using several statistical and graph-based techniques.

The coefficient of multiple determinations, R%, of the trained model was equal to
0.958 while the mean squared error (MSE) is equal to 0.001. Figure 7-18 shows the test
error over generations elapsed while Figure 7-19 illustrates a comparison of actual output

vs. FA-GRNN model output of training and testing data.
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Figure 7-18. Test error of the FA-GRNN model over generations elapsed.
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Based on the analysis of statistical results and a visual inspection of Figures 7-18
and 7-19, one can conclude that the FA-GRNN model developed for reasoning structural

steel erection productivity has a high level of accuracy in mapping input-output data.

To identify the sensitivity of the shape of representative transfer functions (in
Figure 7-11) on FA-GRNN model accuracy, the experiment is repeated using linear
representative transfer functions (see Figure 6-35). The corresponding value of the
coefficient of multiple determinations, R2, is 0.960 and the mean squared error (MSE)

remains the same. The comparison of actual vs. FA-GRNN network output is shown in
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Figure 7-20. Accordingly, one can conclude that the shape of the representative transfer

function has a very minimal impact on FA-GRNN model accuracy.
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Figure 7-20. Actual vs. FA-GRNN network output comparison: Linear transfer
functions
Table 7-3 shows the individual smoothing factors produced as an output of the

above FA-GRNN model, which represent the relative significance of each fuzzy input

ncuron.

Table 7-3. Normalized individual smoothing factors representing significance of
causal factors of pipe fabrication productivity.

INPUT LINGUISTIC | INDIVIDUAL | INPUT LINGUISTIC | INDIVIDUAL
NAME VALUE SMOOTHING | NAME VALUE SMOOTHING
FACTOR FACTOR
CSz small 0.70 | EQA low 0.76
average 1.00 high 0.62
ABS low 0.40 | EQS improper 1.00
high 0.21 ideal 0.92
RWK low 0.00 | MTA poor 0.04
high 0.64 good 0.63
TEM cold 0.52 | AWL restricted 0.75
average 0.97 unrestricted 0.43
warm 0.53 | WOT short 0.19
PRE low 0.03 long 0.61
average 0.02 | TUD few 0.99
WSD low 0.97 many 0.04
average 0.12 | RTA low 0.00
high 0.05 high 0.15
179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Smoothing factor results shown in Table 7-3 indicates that among 13 causal
factors listed, CSZ, TEM, WSD, EQS and IUD have the highest impact on pipe
fabrication labour productivity for the period concerned. Moreover, one can also
conclude (at a different level of detail) that any change to average CSZ, average TEM,
low WSD, improper- and ideal- EQS or few IUD may have considerable impact on pipe

fabrication productivity.
7.4.4 The Diagnostic Inference

A data pattern that represents the day of July 28th, 2005 is used for diagnostic inference
purpose. The labour productivity factor of pipe fabrication on that particular day was
0.589, which is considered as quite low productivity. The objective of the diagnostic
inference is to identify the root cause(s) of low pipe fabrication productivity. As
suggested in Section 7.2.2, the FA-GRNN model is realized by the data that represent
actual working condition assessment. The absolute error of the FA-GRNN model for the
particular data pattern was 0.002, thus the model is considered as accurate for diagnostic

reasoning.

As shown in Table 7-4, planned conditions related to that day are identified. The
size of the crews are assigned generally during a 1-week look ahead planning stage and
generally no absenteeism is expected. Similarly, zero amount of field rework is expected.
Planned values of weather-related causal factors are obtained by weekly weather
forecasts. Planned values for the remaining causal factors shown in Table 7-4 are implied

(assumed) conditions.

Table 7-4. Planned values (numerical and bipolar assessments)

CAUSAL | PLANNED VALUE

FACTOR
CSZ 6
ABS Zero
RWK Zero
TEM 16 degrees Celsius
PRE 2 mm
WSD Calm

EQA Quite high

EQS Quite sutable
MTA Quite good
AWL Quite unrestricted
WOT Quite short

IUD Extremely few
RTA Extremely High
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The Table 7-5 shows the diagnostic inference identifying the root causes (as well
as their relative significance) of the low labour productivity for pipe fabrication on July
28, 2005. Results indicate that a high amount of rework hours, unclear drawings, and
long waiting time for other trades contributed for the low labour productivity on the given

day.

7.5 SUMMARY

This chapter presented an overall description of a proposed integrated computationally
intelligent framework for predicting and diagnosing construction performance. Detailed
descriptions about each key module of the system are given along with a step-by-step
guide to implement each module. The functionally of the proposed framework is tested
using a real-life industrial construction dataset. Results indicate that the proposed
framework has greater capabilities in mapping complex relationships between causal

factors and related construction performance indicator.
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Table 7-5. Diagnostic inference for pipe fabrication productivity on July 28, 2005.

D) @ ® @ ®) © BX(6) ©) ® ©) (10)
Factor | Membership | Smoothing | Planned | Actual | Variance Contributing
function Factor- value Value A (CH Comment
5, (for 28 S=Au,xo, Z S Counteracting | Rank
July-05) (Act- (C-) Neutral
(for Planned) (N)
summer)
CSZ small 0.70 0.14 0.17 0.03 0.02 Actual average crew size was
average 1.00 0.74 0.68 -0.05 -0.05 -0.03 C+ slightly less than the planned
crew size
ABS low 0.40 1.00 0.80 -0.20 -0.08 1 crew member was absent
high 021 0.00 0.20 0.20 0.04 -0.04 C+
RWK low 0.00 1.00 0.00 -1.00 0.00 10 hours of field rework
high 0.54 0.00 1.00 1.00 0.54 0.54 C+ 1
TEM cold 0.52 0.00 0.00 0.00 0.00
average 0.97 0.92 0.81 -0.11 -0.10
warm 0.53 0.04 0.09 0.05 0.03 -0.08 C+
PRE low 0.03 0.92 0.15 -0.77 -0.02 v
average 0.02 0.04 0.50 0.46 0.01 -0.01 C-
WSD low 0.97 1.00 0.52 -0.48 -0.47
average 0.12 0.00 0.31 0.31 0.04
high 0.05 0.00 0.00 0.00 0.00 -0.43 C-
EQA low 0.76 0.17 0.33 0.17 0.13
high 0.62 0.83 0.67 -0.17 -0.10 0.02 C-
EQS improper 1.00 0.17 0.17 0.00 0.00
ideal 0.92 0.83 0.83 0.00 0.00 0.00 N
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Table 7.5. Contd.
ey 2 3) 4 ) © (3)X(6) @) ¥ ® (10)
Factor | Membership | Smoothing Planned Actual Value Variance Contributi
function Factor- value (for 28 July 05) A ng (C+) | Rank | Comment
G, S =Ap %o, ZS C_ounterac
(for (Act- ting (C-)
summer) Planned) Neutral
™)
MTA poor 0.04 0.17 0.50 0.33 0.01
good 0.63 0.83 0.50 -0.33 -021 | -0.20 C+ 4
AWL restricted 0.75 0.17 0.67 0.50 0.37
unrestricted 0.43 0.83 0.33 -0.50 -0.21 0.16 C+ 5
WOT short 0.19 1.00 0.17 -0.83 -0.16
long 0.61 0.00 0.83 0.83 0.51 0.35 C+ 3
IUD few 0.99 1.00 0.50 -0.50 -0.50
‘many 0.04 0.00 0.50 0.50 0.02 | -0.48 C+ 2
RTA low 0.00 0.00 0.00 0.00 0.00
high 0.15 1.00 1.00 0.00 0.00 0.00 N
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CHAPTER EIGHT

8. CONCLUSION

In this chapter, the details of the research discussed in the previous chapters are

summarized, and recommendations for future research are given.
8.1 SUMMARY OF WORK

Continuous performance improvement is vital for construction contractors to be
competitive in the marketplace. Identifying root causes of performance deviations, and
quantifying them in a systematic manner both play a major role in continuous
performance improvement. It is vital to identify causes of construction performance
deviations, the results of which are to increase profit, and to meet schedule, quality, and
safety requirements. Therefore it is important to consider how project performance is

measured and how plausible explanations for performance deviations can be generated.

Performance deviations are detected when one or more key performance indicators
go outside a given range or change significantly from their normal values. Performance
diagnosis is to isolate the cause(s) of a performance deviation by collecting and analyzing
information on performance indicators using field measurements, subjective judgments,
and other information sources. Often, it is performed by the construction manager; it is an
important function of construction project control. A decision support system that makes
it possible to diagnose the root causes of performance deviations, in a timely manner,
would be an attractive way to improve project performance and meet or exceed project

performance goals.

Currently, there is no standard system to reason about construction performance. This
is mainly because construction-related problems are mostly unstructured in nature, which
makes it difficult to apply algorithmic methods based on mathematical models to the
process of performance analysis and diagnostic reasoning. The process of diagnostic
reasoning makes this application more difficult due to modeling requirements, such as a
capability in computing with incomplete, approximate, and qualitative data; non-linear
and dynamic system modeling capability; and the identification of multiple root causes

and the relative significance of each cause.
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This research is an effort to address most of the above-mentioned issues in the
proposed construction performance diagnostic framework. The proposed methodology is
a step towards developing an application of computational intelligence tools in predicting
and diagnosing construction performance. This research provides an integrated
framework for predicting and reasoning construction performance during the construction
process using three key computational intelligence (CI) tools: Fuzzy Sets, Generalized
Regression Neural Network (GRNN), and Genetic Algorithms. The advantages of
synergistic links between key constituents are identified. Two potential CI systems based
on fuzzy-neural systems are identified (i.e., of AND/OR neuron processing module and
GRNN based processing module) and a system architecture is proposed to exploit the

benefits of CI systems to assist construction performance diagnostic reasoning.

First, a logic modeling framework based on AND/OR fuzzy neural networks is
explored. The transparent structure of the AND/OR neuron model provides the flexibility
needed to identify the significance of input causal factors. Irrespective of the high
explanatory capabilities of the model, the results of the experiments carried out using a
representative sample of construction performance data collected from a industrial
construction project showed that the generalization capability of the AND/OR network is
inadequate. Experimental results indicated that the underlying problem has a complex

nonlinear character.

Having identified the limitations and importance of accurate mapping capabilities
for construction performance diagnostic reasoning, an alternative fuzzy neural network
architecture (i.e., fuzzy adaptive generalized regression neural network, FA-GRNN) is
designed, developed, and tested with the same dataset that was used to test the AND/OR
neuron model. The objective of the FA-GRNN model was to map the complex non-linear
problem at hand at a greater level of accuracy, while maintaining the explanation
capability that is available with AND-OR neuron model in terms of interpreting
connection weights. FA-GRNN is a nonlinear and nonparametric method, i.e., no
assumptions are made about the distribution of the data in the model. This nonparametric
nature of the model suits the construction performance reasoning application well
because of its inability to identify an a priori distribution function due to the complex
nature of the problem. The FA-GRNN model’s accuracy is tested with 16 data (sub) sets

and the results indicate that the model has a greater accuracy level. Experimentation
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results also demonstrate that the model provides better overall performance when it is

trained with data representing seasonal characteristics.

In an effort to further enhance the modeling capabilities of the proposed model, a
pragmatic-structured approach is developed to acquire and represent construction
experts’ knowledge on daily working conditions. The proposed causal knowledge
representation methodology was a combination of a nominal group technique (NGT) and

a semantic differential (SD) approach.

A practically possible approach (compared to theoretically feasible) for determining
membership functions based on sample membership values is explored. Constrained
interpolation methods that are identified as potential membership function determination
techniques are tested with data collected from detailed case studies that were carried out

at an industrial construction project.

Finally, the description of the overall diagnostic reasoning development strategy,
combining the knowledge representation and acquisition methods and proposed FA-
GRNN architecture is given. The outcome of the research assists construction managers
identifying possible causes of construction performance deviations, on a daily basis. It
prioritizes the causes so that construction managers can take suitable corrective actions,
in a timely manner. In addition to using the model to identify root causes of daily
performance deviations, the same model can be used as a prognostic model to predict
construction performance (e.g., predict labour productivity). A computer system named
XCOPE (eXplaining COnstruction PErformance) is developed based on the concepts and

methodologies developed in this research.
8.2 RESEARCH CONTRIBUTIONS

Developing a technique capable of diagnosing a nonlinear dynamic system is a
significant contribution to the state-of-the-art in establishing robust performance
diagnostic models. After identifying the key issues and challenges in developing
construction performance diagnostic models, this study proposed a novel approach that
includes techniques developed to acquire and represent the comstruction experts’
knowledge and the diagnostic schema based on computational intelligence techniques.

Described below are the three key contributions made by this study.

(1). Integrated reasoning framework: The major outcome of this research is the

integrated computationally intelligent framework that is capable of predicting and
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diagnosing construction performance. The proposed framework is based on three key
computationally intelligent tools: fuzzy sets, generalized regression neural networks, and
genetic algorithms. This hybrid architecture is named the Fuzzy Adaptive Generalized
Regression Neural Network (FA-GRNN). The application of fuzzy set theory, more
specifically, membership functions, as the input interface facilitates computing with
linguistic terms, which represent subjective knowledge of construction experts. The
proposed FA-GRNN model introduced fuzzy neurons to the classical GRNN architecture.
By doing so, the user of the model (i.e., construction managers) is provided with a
mechanism to incorporate linguistic values for causal factors. This added level of
information granularity allows for the capturing and representing qualitative knowledge
of the system user. This fuzzy neurons allows explicit modeling of each causal factor
impacting construction performance, where in current practice, from tradition unit-rate
estimating to construction simulation models, this function is handled implicitly using a
multiplication factor to suite to the context. The proposed methodology also allows the
user to modify the individual causal factors and assess the sensitivity of the impact on

construction performance.

Generalized Neural Networks provides the vehicle for complex input-output
mapping, and genetic algorithms are used to optimize the proposed network. By
introducing local smoothing factors to the classical GRNN, the transparency of the
proposed FA-GRNN model is enhanced up to a level that the model can be used to
identify the relative significance of each input causal factor (i.e., identification of
multiple root causes). This important feature of the FA-GRNN model is used as the
foundation of performance diagnostic inference. Additionally, FA-GRNN model also
capable in identifying whether a certain causal factor is contributing towards or

counteracting performance.

The FA-GRNN is the only integrated framework currently exists that has both
prediction and diagnosis capabilities whilst utilizing quantitative and qualitative data.
Based on a series of experiments carried out using real dafa, it is proved that the FA-
GRNN model is capable in highly accurate predictions and diagnosis of construction

performance with sparse data.

(2) Expert knowledge acquisition and representation method: The special feature of the
model is that it allows for capturing the expertise of construction managers and utilizing

it in the diagnostic reasoning process. This is the first ever effort in construction
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management domain to acquire construction experts’ qualitative knowledge (along with
quantitative data) in a systematic and -economical manner. A unique methodology is
proposed, using a semantic differential technique to represent the construction expert’s
qualitative knowledge on daily working conditions. Additionally, a novel approach 1s
proposed to aggregate expert qualitative assessments to represent multiple expert opinion
on causal factors across different time intervals (e.g., weekly, monthly), and across
different levels of abstractions (e.g., sub-activity level , activity level, work package
level) for the purpose of reasoning performance at multiple levels of abstractions.
Furthermore, a fast and efficient mechanism (a group consensus methodology) for
identifying lists of potential causal factors of construction performance deviations, in a
structured manner, is proposed using a modified nominal group technique. This list forms

the basis of diagnostic model, i.e., identifies input and outputs of the diagnostic model.

(3). Membership function development technique(s): Another major contribution of this
research is the identification and development of appropriate techniques to obtain
membership values and to develop membership functions, for causal factors. The main
objective here was to identify a practically possible membership function determination
technique, compared to a theoretically feasible technique. It has been discovered that
each causal factor has its unique characteristics and there is no one single membership
function construction technique that can apply for all causal factors. A protocol is
developed to guide the users to identify suitable membership function development
techniques depending on factors and conditions. The proposed membership function
development technique using constrained interpolation of sample membership values
preserve the need of the context dependent nature of membership functions while making
it easy to reproduce when the context changes (e.g., in different projects, locations,
climates). This proposed vmembership function development technique can be applied in
any other domain where sample qualitative assessments can be obtained from multiple

experts.

8.3 RECOMMENDATIONS FOR FUTURE RESEARCH
An opportunity exists to enhance significantly the potential for a greater adoption of

computational intelligence techniques by the construction industry, because of the novel
approach proposed as compared to previous performance modeling approaches in the
construction domain. The methodology and findings of this research have opened up

certain issues that need to be investigated further to build upon the findings of this
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research. They are summarized below and may serve to guide future research related to

the construction performance diagnosis.

1. This proposed framework is tested and validated for modeling construction
productivity in industrial construction domain at activity level (and then aggregating up
to the trade level). To generalize the applicability, the framework should be tested for
different key performance indicators, in various other industries (e.g., commercial, civil

construction) for different activities and trades.

2. This study focused on assisting construction managers to identify root causes of daily
performance deviations. One can exploit the possibilities of using the proposed
framework at more abstract level so that the output can be used for top-level decision

making.

3. The proposed system can be significantly benefited by building a supplement to the
output interface to suggest corrective actions based on identified causes. Developing a

rule-based fuzzy expert system would be an appropriate choice.

4. The efﬁéiency of the proposed system can be greatly enhanced by automating the
daily working condition reporting process using constantly developing wireless

technology.

5. One can experiment with automated membership function construction techniques so
that the expert knowledge-based membership functions developed in this study can be
validated.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX- A

Pipe Module Fabrication Process
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(b). Steel erection

(c). Pipe handling (c). Cable tray installation

(d). Pipe hydro-testing (e). Pipe welding

(f). Pipe insulation (g). Shipping pipe module
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