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ABSTRACT

Construction performance diagnosis (CPD), the process of finding and explaining 

performance problems, is a vital part of the project control process. Generally in 

construction, a diagnostic problem arises if there is a discrepancy between the actual 

performance of resource(s) and the planned performance. The diagnostic task is to 

determine the cause(s) of this discrepancy. Understanding what caused an event to occur 

enables the construction manager to predict, to plan for, to prevent, and to explain the 

occurrence of the event. Automating the performance diagnosis process to detect, 

diagnose, and report results within a time frame that permits prompt field response can 

significantly enhance the project control process.

This thesis investigates the advantages of introducing computational 

intelligence tools to develop automated performance diagnostic models to explain 

construction performance. The integrated diagnostic system has advantages of both 

fuzzy systems (e.g., the use of expert knowledge representation and the ability of 

explaining generated decisions) and neural-network systems (e.g., ability of learning, 

adaptation, optimization, and high fault tolerance). Additionally, the powerful global- 

optimization technique of genetic algorithms effectively optimizes the network structure 

to provide the best solution.

In this thesis, several key issues and challenges of developing robust 

performance diagnostic models for construction-related problems are discussed. The 

essential features of the model are described in detail. The efficiency and effectiveness 

of the techniques and methods developed in this thesis are tested in the domain of 

industrial construction labor productivity and implemented in a computer system called 

XCOPE.
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The main contributions of this work are twofold. One contribution is the 

development of a unified integrated computationally intelligent framework to diagnose 

construction performance. Another contribution is in the acquisition and representation 

of a construction expert’s knowledge. Several different techniques, such as Nominal 

Group Technique (NGT), Semantic Differential (SD) Approach, and Fuzzy Membership 

Functions, are explored to select the most suitable knowledge acquisition and 

representation techniques for construction performance modeling.
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CHAPTER ONE
1. INTRODUCTION

1.1 BACKGROUND AND PROBLEM STATEMENT

Performance monitoring and analysis are integral parts of planning and controlling 

construction projects. During the course of project execution, performance is measured 

using different indices and reviewed periodically (e.g., daily, weekly, or monthly). 

Generally, a diagnostic problem arises if there is a discrepancy between the actual 

behaviour (of a resource, e.g., production rate of a welder) and the planned behavior; in 

other words, when the expected behavior does not correspond with reality. The diagnostic 

task is to determine the best explanation of observed abnormal behavior of a system 

under study, to decide on appropriate interventions and facilitate rapid response. Figure 

1-1 presents a graphical illustration of diagnostic process as an interaction of observation 

and prediction.

Estimate
(model)

On-Site 
construction process

i  Estimation/Prediction Observation/Measurement

Predicted r...... ....... ..................
Observed behaviorbehavior ^  Behavioral *4----- ---

(Planned) discrepancy (Actual)

Cause 
identification & 

ranking

Figure 1-1. Diagnosis as the interaction of observation and prediction

Typically, the construction manager uses his or her intuition and expert causal 

knowledge combined with relevant data (if available) to find explanations for 

performance failures. Finding a reliable explanation depends on factors such as the 

complexity of the issue at hand, the expert’s experience and knowledge, the nature of the 

project, and the quality of available data. It is crucial that the construction manager(s) 

analyze performance to determine possible causes of performance deviations in a timely

1
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manner. Due to the increasing complexity and fast nature of the construction process, in 

most cases, by the time the construction manager obtains the necessary information to 

improve performance, the task may have already been completed (Maloney 1990). 

Generally, since management’s extremely limited time resources are often allocated to 

future tasks rather than to past completed tasks, managers do not get a chance to review 

and analyze performance-related information generated.

Additionally, research related to construction performance management (e.g., 

(Fayek et al. 2004; Kagioglou et al. 2001; Tang and Ogunlana 2003; Ward et al. 1991)) 

emphasized that traditional performance parameters measured on projects, namely costs, 

schedule, and quality, are not appropriate for continuous improvement because they are 

not effective in identifying causes of performance failures. These parameters do not 

provide satisfactory revelation of the potential for improvement, and the information 

obtained usually arrives too late to take corrective actions.

Construction-related problems are mostly unstructured in nature, which makes it 

difficult to apply algorithmic methods based on mathematical models to the process of 

performance analysis and reasoning. The relentless pressures of shorter project life cycles 

and increased design complexity place construction contractors in an exigent position. 

Complexity due to non-linearity and subjectivity are two main challenges of construction 

performance modeling.

In light of the above observations, this thesis assumes that determining in a 

scientific manner, the impact and the contributing effect of each cause to the performance 

indicators should assist in improving performance management in the construction 

industry.

1.2 RESEARCH OBJECTIVES

The objective of this study is to develop a unified framework and approach to find the 

best explanation for the observed abnormal behavior of key performance indicators at 

different levels of abstraction.

This thesis addresses three problems. The first is the construction performance 

diagnosis problem, in particular the problem of efficiently identifying multiple root 

causes of performance deviations. The second is the knowledge acquisition problem, 

particularly the problem of acquiring (1) causal domain knowledge from a group of 

construction experts, and (2) obtaining subjective assessments of (daily) working 

conditions that potentially impact construction performance. The third is the problem of
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representing such domain knowledge in a manner that can be used as inputs for a 

diagnostic model.

The methods described in this thesis seek to achieve robust construction 

performance diagnosis by simultaneously considering the importance and interrelation of 

all three problems. The goal is to make the solution of the complex construction 

performance diagnostic problem more robust and efficient.

1.3 RESEARCH SCOPE

The efficiency and effectiveness of the techniques and methods developed in this thesis 

are tested in the domain of industrial construction labour productivity, more specifically, 

pipe module fabrication, and are implemented a computer system called XCOPE 

(explaining Construction PErformance). Construction workforce performance, as 

measured in terms of labour productivity is chosen as a test domain for the following 

reasons:

1. Since construction is a labour-intensive process, manpower (workforce) is the 

key productive resource in construction (Lauter and Jenkins 1982); therefore, 

construction performance greatly depends upon labour productivity;

2. Labour productivity is commonly accepted as a key performance indicator (Cox 

et al. 2003);

3. Multiple root causes are common in labour productivity related issues;

4. The presence of a comparatively high number of qualitative (subjective) 

variables (i.e., causal factors) affect labour productivity;

5. Labour productivity is directly related to cost and schedule performance, i.e., a 

major contributor to other performance variations.

The proposed methodologies and developed systems are intended to be used by 

construction managers who work for general contracting firms, construction management 

firms, and owners.

1.4 THESIS ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides an overview on 

performance diagnostic models, describes previous research related to the work described 

in this thesis, and discusses the key issues and challenges of developing robust 

construction performance diagnostic models. Chapter 3 introduces the concept of 

computational intelligence and defines its key components: Fuzzy Set Theory, Artificial
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Neural Networks, and Genetic Algorithms. A comparative study is made on the 

computational characteristics of key components of Cl for performance diagnosis models 

and relates them to the issues identified in Chapter 2. Chapter 4 presents a construction 

performance modeling framework that is based on AND-OR fuzzy neural networks. 

Experiments conducted using data collected from an industrial construction project are 

also presented along with results. Having identified several limitations of the AND-OR 

neuron model for construction performance modeling, Chapter 5 proposes an alternative 

performance diagnostic modeling framework that is based on a Generalized Neural 

Network. The learning and inference modes of the network are discussed and the results 

are compared with the model presented in Chapter 4. In an effort to augment the 

capabilities of the Generalized Regression Neural Network model (presented in Chapter 

5), Chapter 6 investigates membership function determination techniques and proposes 

more suitable membership function determination techniques for construction 

performance modeling. Chapter 6 also proposes a novel approach for representing and 

acquiring expert knowledge to construct membership functions. The results of 

experiments conducted to test the effectiveness of the proposed membership function 

determination, knowledge acquisition, and representation techniques are also presented. 

Chapter 7 illustrates the integrated computationally intelligent framework for 

construction performance diagnosis along with the software system (XCOPE) developed 

based on the concepts proposed in this thesis. Chapter 8 summarizes this thesis, drawing 

conclusions based on the results of this work, highlighting the contributions made, and 

suggesting prospective new research directions.
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CHAPTER TWO
2. PERFORM ANCE DIAGNOSTIC M ODELS: ISSUES AND  

CHALLENGES

The purpose of this chapter is two-fold: (1) to review system diagnosis research, and to 

examine its application, particularly in the area of construction performance diagnosis, 

and (2) to identify the issues and challenges to be addressed to develop robust 

construction performance diagnostic models.

2.1 INTRODUCTION TO PERFORMANCE DIAGNOSTICS

A decision support system that makes it possible to diagnose root causes of performance 

deviations in a timely manner is an attractive way to improve project performance in 

order to meet or exceed project performance goals. The diagnostic context investigated in 

this thesis is construction performance reasoning. Performance deviations are detected 

when one or more key performance indicators (KPI) (e.g., labour productivity factor, cost 

variance, rework index) go outside a given range or change significantly from their 

planned values. Performance diagnosis aims to isolate the cause(s) of a performance 

deviation by collecting and analyzing information on performance indicators using field 

measurements, subjective judgments, and other information sources (e.g., time-cards, 

weather data, etc.). A construction manager often performs diagnosis. A decision support 

system that makes it possible to diagnose root causes of performance deviations in a 

timely manner is an attractive way to improve project performance in order to meet or 

exceed project performance goals. A few sample construction performance diagnostic 

problem scenarios are given below:

[1] Poor productivity: “Today’s labour productivity performance 

(measured as earned vs. actual man-hours) o f structural steel erection is 

low (e.g., 0.65).” Why?

[2] Schedule delay: ‘‘Activity duration o f pipe-fabrication for module #

PM 324 is extended by two days. ” Why?

[3] Cost overrun: “This week’s labour cost o f hydro-testing is 12 percent 

higher than the budgeted value. ” Why?
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Identifying relevant causes to such a performance deviation in a timely manner is a 

key task in construction project control. However, due to the complex dynamic nature of 

construction projects, the diagnosis of construction performance has become a 

complicated undertaking. An early attempt on identifying causes of labour productivity is 

reported by Chang and Borcherding (1986) using a technique called Craftsmen 

Questionnaire Sampling (CQS). The administrator of CQS walks around the site, 

randomly selects craftsmen, and collect data from them regarding sources of delay and 

amount of rework. CQS’s time consuming nature, disruption to workflow, 

inconsistencies caused due to random selection of time, place and crew, unstructured 

responses via open ended questions, and inability to rank causes where multiple causes 

exists hinder the usability of the CQS technique as an effective way to identify causes of 

performance deviations. Maloney (1990) reported that it is crucial to respond promptly 

to evidence of poor performance and take corrective actions to eliminate its causes. 

According to Maloney (1990), there are two key factors that hinder construction 

managers (CM) from taking actions in a timely manner: (1) the CM’s extremely 

demanding schedule of routine work, and (2) the short duration of activities and/or 

construction projects. Maloney proposed a performance analysis framework that guides 

an individual through a flowchart, which analyzes causes of unacceptable performance. 

Unfortunately, his framework does not provide a quick response; instead, it requires an 

individual to go through the entire process, repetitively, and it also does not facilitate 

identifying the root causes of the problem. In a comprehensive review of construction 

performance models, Li et al. (2005) identified that there is no “definitive model for 

either predicting or explaining performance; most of the models described are more 

research than practice oriented; and, strong consensus as to the most important factors to 

use, what their definition should be, how best to express outcomes for them, or what the 

relationship amongst factors is, if any”.

A number of different approaches to diagnosis have been explored over the years 

by other research communities, mainly in the chemical and power industries (e.g., Corea 

et al. 1992; Milne and Trave-Massuyes 1995; Patton et al. 1994; Sugeno and Yasukawa 

1993; Vinson and Ungar 1995), where definitive process models comprised of physical 

and readily measurable variables exist. It is useful to establish the appropriate 

circumstances for their use, and specifically to identify suitable approaches for 

construction performance diagnosis.
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The remainder of this chapter is organized into three sections. The following 

section reviews a range of diagnosis techniques to identify a suitable model/s that can be 

applied to the construction management domain for performance diagnostic reasoning. It 

will be followed by a discussion on key issues and challenges of construction 

performance modeling. A summary providing a match between the issues identified and 

techniques that can be used to solve these issues, in order to develop a robust diagnostic 

model for reasoning about construction performance, concludes the chapter.

2.2 DIAGNOSIS TECHNIQUES: A REVIEW

Over the last two decades, diagnosis has been an active research area in which the larger 

part of the work has been concerned with the diagnosis of man-made artifacts such as 

electronic devices, or medical diagnosis. A comprehensive review of the literature 

suggests that different diagnosis techniques can be categorized into four approaches: (1) 

control theory approach, (2) Artificial Intelligence approach, (3) Computational 

intelligence approach, and (4) Hybrid approach. Figure 2-1 graphically illustrates the 

taxonomy of diagnosis techniques.

Diagnosis
Techniques

Control theory 
approach

Computational 
Intelligence Approach Hybrid Approach

^  Rule-based )  (C « e -b a * e d ) ^ to d e fia se * ^  (Vuazy logic^) (Artificial Neural Network) ( Genelic Algorithms

j^Fault-models ^ (Struclural/Bahaviw mortals) (Causal rnodelsj

(^Cause-effect diagrams^) ( Slgn-dlagraphs)  ^Bayesian

Figure 2-1: Taxonomy of diagnosis techniques

In control theory, the diagnostic model is numerical, generally represented as a 

set of differential algebraic equations. Anomaly detection and cause identification is 

conducted using a specification of the different failure modes (problem scenarios) of the 

system along with a description of how these problems are manifest within the behavior 

of the system (Clancy 1998). A strictly numerical representation of the construction
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performance problem is not possible due to the nature of the construction work in a 

dynamic, uncontrolled, and labour-intensive manner with numerous interacting 

qualitative and quantitative variables. Furthermore, due to the dynamic nature (i.e., 

changing state of the measurable parameters at every step of time) of performance factors, 

specifying all of the possible problem scenarios that may be encountered becomes 

impractical.

In contrast, an artificial intelligence (Al) approach considers diagnosis as a 

reasoning process and tries to reproduce human reasoning (Gentil et al. 2004). Several Al 

diagnostic techniques are available, such as rule-based reasoning (e.g., Chou et al. 1994; 

McDonald et al. 1997), case-based reasoning (e.g., Derere 2000; Breese and Heckerman 

1996; Sharma and Sleeman 1993), and model-based reasoning (e.g., Clancy 1998; 

Druzovec and Sostar 1998; Shen and Leitch 1992).

In rule-based systems, the empirical information and experience is encoded in 

rules that generally take the form “IF symptom(s) TFIEN diagnose(s).” Overall, rule- 

based diagnosis is only feasible for problems for which any and all knowledge in the 

problem area can be written in the form of if-then rules, and for which the problem area is 

not large. Depending on the problem, it may require hundreds, or even thousands of rules. 

If there are too many rules, the system can become difficult to maintain. Furthermore, the 

difficulty of acquiring the knowledge to build the rule-base -  known as the knowledge 

acquisition bottleneck -  is the main limitation of this approach.

Case-based reasoning (CBR) is a powerful approach when much experimental 

data describing faults/deviations are available. A case-based reasoner works by matching 

new problems to "cases" from a historical database and then adapting successful solutions 

from the past to current situations. The most challenging part of implementing a CBR 

model is the capturing of historical information to form the cases. In other words, CBR 

also suffers from the impact of the knowledge acquisition bottleneck. In construction, 

however, historical information related to construction performance indicators and other 

variables are available. If  a systematic methodology to collect data in the form of input- 

output pairs is employed, the CBR approach can be a viable approach to assist 

construction performance modeling.

Model-based diagnosis, also referred to as consistency-based diagnosis (Reiter 

1987), provides an alternative “implicit behavioral approach” to system modeling. They 

are appropriate when an abstraction of the quantitative modeling is sought in order to 

facilitate interaction with a human reasoner. Poole (1992) identifies two extremes of the

9

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



model-based diagnostic problem: (1) the consistency-based approach in which normal- 

operation-oriented diagnosis is carried out based on the knowledge about how 

components are structured and work normally, and (2) the adductive approach in which 

abnormal-operation-oriented diagnosis is carried out using knowledge about how the 

components are affected by specific faults.

Fault models (or fault dictionaries) anticipate the type of faults that may occur, 

and only model these. Model simulation provides a list of fault/symptom pairs, which 

produce the fault dictionary. According to Fenton (2001a), this method has primarily 

been applied to the diagnosis of digital circuits. In contrast, models based on structure 

and behaviour (e.g., Dague 1994; Davis 1984) model correct behaviour. “The structure 

representation lists all the components and interconnections within the modeled system. 

The behaviour representation describes the correct behaviour pattern for each component. 

Both representations are often created using logical formulae, such as first order predicate 

calculus” (Fenton et al. 2001b).

Causal modeling (e.g. Montmain and Gentil 2000; Peng and Cheng 2000; Gentil 

et al. 2004) is another AI diagnostic approach that focuses on representing qualitative 

knowledge. As cited in (Rasmussen 1993), “ diagnostic judgment implies the perception 

of a causal relation between a state, an action, and the ultimate effect, as related to the 

current objective”. Causal reasoning is an important approach in the diagnostic task. 

Causal graph-based diagnosis is appropriate where it is usually difficult and costly to 

develop precise mathematical models. Cause-effect diagrams (Ishikawa 1985), influence 

graphs (e.g., Linkens and Wang 1994; Gentil et al. 2004; Xia et al. 2004), and Bayesian 

networks (e.g., Kirsch 1993) are a few categories of causal models that found 

applications in diagnosis. Moselhi et al. (2004) proposed a construction performance 

diagnostic method based on predefined causal models; the use of the causal model 

concept, however, is limited to showing the relationship between quantitative 

performance indicators.

Cause-effect diagrams, otherwise known as fishbone diagrams, are very useful in 

analyzing and describing cause and effect relations in a qualitative way. In a pilot study 

to identify and classify causes of construction field rework, Fayek et al. (2004) used 

cause-effect diagrams as the framework for diagnosing causes of field rework with the 

assistance of field construction personnel’s input. The required extent of manual user 

input and the subjective nature of assessments restrict the feasibility of this approach for 

daily performance diagnosis on large-scale projects.
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Influence graphs are another type of causal approach for reasoning about the way 

in which normal or abnormal changes propagate. The graph nodes represent the system 

variables; the directed arcs symbolize the relations among variables. Relations can be 

quantitative or qualitative. The simplest influence graph is the signed diagraph (SGD) 

where relations are represented by signs: “+” or Iri et al. (1980) used SGD as the 

basic data structure for diagnosis. According to Gentil et al. (2004), over the years, this 

approach has been considerably enhanced. For example, Yu and Lee (1991) symbolized 

the variables as fuzzy sets to incorporate the continuous nature of the variables.

In Bayesian networks, entities are defined probabilistically, using prior 

knowledge and statistical data, in acyclic graphs where nodes are random variables and 

the relationships between them are represented by arcs. Even though the concepts (or 

variables) can be represented with greater ease than by using rules, the knowledge 

acquisition bottleneck is a primary shortcoming. McCabe et al. (2001) used Bayesian 

networks to assess productivity of construction operations; however, in most of the real- 

life problem scenarios, uncertainties encountered cannot be described exclusively by 

statistical means.

Diagnostic systems based on Computational Intelligence (Cl) tools such as fuzzy 

sets (Zadeh 1965), artificial neural networks (ANN) (Meireles et al. 2003), and genetic 

algorithms (GA) (Holland 1975) are emerging as more realistic approaches due to their 

unique characteristics. Fuzzy set theory-based diagnostic systems provide a good 

alternative for reasoning under uncertainty (e.g., Dexter 1995; Dexter and Benouarets 

1997; Miyata et al. 1995; Sauter et al. 1994; Sugeno and Yasukawa 1993; Ulieru and 

Isermann 1993; Ulieru 1996). These systems are becoming popular because they provide 

human-like and intuitive ways of representing and reasoning with incomplete and 

imprecise information. However, fuzzy logic-based systems do not have the ability to 

learn from experience (previous cases). In contrast, diagnostic systems based on Artificial 

Neural Networks (e.g., Bemieri et al. 1994; Bemieri et al. 1995; Maki and Loparo 1997; 

Marcu and Mirea 1997; Penedo et al. 1998; Sorsa et al. 1991; Vemuri and Polycarpou 

1997) exploit self-learning capabilities using historical data. Additionally, ANN-based 

systems provide a mathematical tool for modeling dynamic nonlinear relationships. The 

primary shortcoming of ANN systems is that they need a significant amount of historical 

quantitative data for their training.

As described above, each individual technique has its own advantages and 

disadvantages. Hybrid solutions can significantly enhance the robustness of a diagnostic
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system by capitalizing on the advantages of combining supplementary techniques. For 

example, Breese et al. (1996) combined case-based reasoning and Bayesian networks for 

diagnosis and troubleshooting applications, while Ariton et al. (1999) used a fuzzy-neuro 

architecture for modular fault isolation in complex systems. Liu and Yan (1997) 

combined fuzzy logic, neural networks and case-based reasoning to develop a system for 

diagnosing symptoms in electronic systems.

The selection of the appropriate technique or a hybrid combination of several 

techniques depends primarily on the diagnostic problem at hand. Each problem domain 

has its distinctiveness, for example, in terms of availability of data, problem complexity, 

and dynamic nature. Hence, the following section provides a detailed discussion on the 

issues and challenges of developing robust construction performance models with the 

intention of assisting in the selection of an appropriate diagnostic technique(s) for 

explaining construction performance.

2.3 ISSUES AND CHALLENGES

This section describes a list of key issues that need to be addressed in order to develop 

robust construction performance diagnostic models. These issues are categorized into 

four different areas: (1) data and information related issues, (2) knowledge acquisition 

and representational issues, (3) modeling issues, and (4) reasoning issues. Key challenges 

are identified, as are prerequisites and desired properties of a diagnostic model. Table 2-1 

provides a summary of the issues and their challenges. Each issue is detailed further in 

this section.

2.3.1 Data and information-related issues

Establishing practical and economical data collection procedures have a significant 

impact on the successful implementation of a diagnostic model. A contractor should be 

able to collect (daily) data on the values of the variables at the individual project/activity 

level, either in quantitative or qualitative form. Current information management systems 

available to contractors are limited to storing quantitative information compared to 

qualitative information (e.g., the complexity of a task, the level of site congestion). This 

is mainly due to a lack (or absence) of systematic procedures to collect, process, and store 

qualitative data. However, both qualitative and categorical variables play a major role in 

construction performance. Hence, any robust diagnostic tool should be able to utilize both 

quantitative and qualitative information.
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Achieving planned performance depends on establishing planned conditions of 

factors that affect performance. A formal procedure is required in order to derive planned 

values from different sources such as the master schedule, manpower estimates, past 

project records, and industry standards (handbooks).

Table 2-1. Issues and Challenges of Construction Performance Diagnostic Models

ISSUES CHALLENGES PROPERTIES/PREREQUISITES OF 
A DIAGNOSTIC MODEL

Data and information 
related issues

Field data collection and 
reporting

Practical and economical data collection 
procedures to capture both quantitative 
and qualitative data.

Establishing normal 
functional parameters 
(performance baselines)

A formal procedure needs to be 
established to derive planned values 
from different sources.

Uncertainty in data Ability to compute with incomplete, 
qualitative, and subjective data.

Knowledge 
acquisition and 
representational 
issues

Non-verifiability of critical 
causal factors

Ability to use expert (causal) knowledge

Incompleteness in the 
relation between key 
performance indicators and 
related causes

Ability to determine the strength of 
causal factors using historical data

Modeling issues Complex non-linear 
system

Non-linear modeling capability

Capturing dynamics Adaptability via learning from past data
Model transparency Explanation capability of the model

Reasoning issues Identification of multiple 
root causes

Identifying the significance of each 
causal factor in cases where multiple 
factors contributed to the performance 
deviation.

Identifying contributing 
vs. counteracting factors

Identifying whether a certain causal 
factor is contributing towards or 
counteracting performance.

Different levels of 
abstraction

Reasoning at multiple levels of 
abstraction.

The vast majority of the information related to construction performance 

modeling is characterized by uncertainty. Identifying the nature of uncertainty is crucial 

in selecting appropriate methods to manage it effectively and even to use it profitably. 

Two kinds of uncertainty are encountered in construction performance modeling: 

ambiguity and vagueness. Ambiguity can be caused by the presence of random variables 

or approximate estimates. Vagueness arises from “a lack of precision (whose boundaries 

are not sharply defined) or a lack of understanding of an event, a proposition, a value, or 

a system (Ayyub 1991)”. Vagueness can result from (1) qualitative (instead of 

quantitative) information, (2) incomplete or vague expert knowledge, and (3) subjectivity
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in the information obtained from an expert. As an example, the suitability of a particular 

crane to hoist a pipe spool can be assessed by a crane operator as “fairly good”. A robust 

diagnostic system should be able to represent and manipulate vagueness and statistical 

uncertainties.

Additionally, it is noteworthy to highlight the fact that obtaining a dataset with 

reasonable accuracy is challenging in construction. Incomplete and imprecise data due to 

measurement uncertainties and approximation are common. Thus it is always preferable 

to have a less data-hungry approach for diagnostic modeling in construction.

2.3.2 Knowledge Acquisition and Representation Issues

Due to the absence of explicit mathematical relationships between performance factors, 

expert (domain) knowledge has to be exploited to identify the possible causes of 

performance deviations in construction. In other words, experts’ mental models (causal 

maps) of the problem scenarios have to be used as the first step in identifying possible 

causal relationships. Based on the construction manager’s expertise, a representation of 

the behavior of the performance indicator in causal terms is very effective in describing 

complex phenomena, such as construction labour productivity deviation. In addition, 

since the majority of variables are qualitative, subjective measurement of each variable in 

predefined time intervals (e.g., daily) is also required for effective diagnosis.

Complex relationships between performance factors frequently exceed the 

construction manager’s ability to identify conceptually causal relationships amongst 

them. Normally, there can be more than a handful of factors that can cause a given 

observation of deviation (e.g., low productivity). Judging the degree of relatedness 

(contribution) of each factor is always challenging, especially due to the dynamic nature 

of construction projects.

Hence, domain expert knowledge (from those who have had years of experience 

working in construction) has to be acquired and presented in a way that enables a system 

to utilize the knowledge for its reasoning tasks. In construction, frontline supervisors (i.e., 

foremen) usually have a comprehensive knowledge of the activities that they supervise; 

accordingly, eliciting the knowledge from frontline supervisors to identify plausible 

causes of performance deviations related to the activities they supervise is a viable 

option. One expert or a number of experts can be utilized as the primary source of 

domain expertise. McGraw and Warbison-Briggs (1989) identified four primary 

problems with knowledge acquisition from a single expert: (1) difficulty in allocating
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adequate time by an “already-busy” individual; (2) problems caused by different biases of 

human experts; (3) limitation to a single line of reasoning; and (4) incomplete domain 

expertise (the available knowledge in many practical situations is often incomplete and 

imprecise). In contrast, even though multiple experts can create a synergy, the 

involvement of multiple experts increases the complexity of the knowledge acquisition 

process. This is mainly due to the difficulty of merging each individual expert's 

knowledge structures into one group knowledge structure. A systematic procedure is 

therefore required to combine multiple experts’ knowledge in order to make the 

diagnostic process efficient.

2.3.3 Modeling Issues

Successful diagnostic modeling requires a close match between the diagnostic model and 

the true underlying problem scenario associated with the model. In construction, 

obtaining a quality dataset that can be used for input-output mapping is limited; hence, 

the diagnostic models should have the capability to model with limited amounts of data. 

Additionally, the following key modeling issues need to be addressed. Identifying the 

underlying dynamics of construction performance is extremely challenging due to 

complex nonlinear behavior of the causal relationships among variables. As shown in 

Figure 2, most of the construction performance indicators and related factors display the 

characteristics of a nonlinear system. Thus modeling for construction performance 

requires a methodology that is capable of mapping these complex nonlinear systems. 

Note that in the Figure 2, the variation is calculated by taking the difference between 

daily value and average value.
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Figure 2-2. Example of non-linear behavior of performance variables (temperature, 
precipitation, and the number of modules in progress variation)
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2.3.4 Reasoning Issues

In addition to the above issues, construction performance diagnosis reasoning attempts to

address a number of the following reasoning issues:

1. Identification of multiple root causes: The most likely cause of a deviation cannot be 

determined by looking at its immediate cause in isolation, since it generally depends 

on the relative strength of multiple causes that occur simultaneously. Most 

construction performance diagnostic problems have several root causes; hence, 

identifying the significance (i.e., relative contribution) of each cause is important, so 

that corrective actions can be prioritized accordingly. Complex interrelationships 

between factors make it difficult to identify their individual impact on performance.

2. Identifying contributing vs. counteracting factors: Diagnostic models should have the 

ability to differentiate and identify contributing vs. counteracting factors during the 

course of inference. For example, low hydro-testing productivity may occur mainly 

because of {lack of supervision, high precipitation} despite {below average 

workload, average pipe-fitters availability, and no rework hours}. It is also 

noteworthy to highlight the fact that the same cause can act as both a contributing as 

well as a counteracting cause, depending on its activation status. For example, both 

low and high temperature variation can possibly impact labour productivity 

negatively, while an average temperature can make the process efficient.

3. Issues related to different levels of abstraction: Another important issue of diagnostic 

modeling is the selection of an appropriate level of abstraction based on user 

requirements. Different stakeholders (e.g., client, construction managers, 

superintendents, and foremen) demand different perspectives (such as project level, 

work package, or activity) on the same issue. Hence data must be clustered into 

multiple groups to represent the hierarchical structure of a problem scenario. One of 

the key challenges here is how to aggregate information (both objective and 

subjective). A robust diagnostic model, therefore, should not only possess capabilities 

to process subjective information, but also aggregate subjective data to provide 

meaningful representation at different levels of abstraction.

2.4 DISCUSSION

These issues all suggest that implementing a performance diagnostic reasoning system is

non-trivial. In an attempt to deal with the above key diagnostic modeling issues,
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characteristic properties of different techniques discussed above are compared, as shown 

in Table 2-2.

Based on the summary given in Table 2-2, it can be concluded that a single 

technique does not solve all of the issues identified in the construction performance 

diagnosis. Fuzzy set theory can be used to compute incomplete, approximate, and 

qualitative data; to manage uncertainty caused by vagueness; and to identify contributing 

vs. counteracting causes. Causal models can be used to represent expert knowledge while 

Artificial Neural Networks can be used to capture the nonlinearity and to identify the 

significance of multiple root causes. Case-based reasoning approaches and Artificial 

Neural Networks can be used to leam from previous data.

Table 2-2. Key Modeling Issues and Possible Solutions

KEY MODELING ISSUES POSSIBLE SOLUTION(S)

1 Computing with incomplete, approximate and 
qualitative data

Fuzzy set theory

2 Uncertainty modeling caused by vagueness Fuzzy set theory
3 Expert knowledge representation Rule-based approach, 

Causal models
4 Non-linear and dynamic system modeling 

capability
Artificial Neural Networks (ANN)

5 Learning from previous data/ 
adaptive capability

Case-based reasoning approach 
(CBR)
Artificial Neural Networks (ANN)

6 Identification of multiple root cause and relative 
significance of each cause

Artificial Neural Networks (ANN)

7 Identifying contributing vs. counteracting 
causes

Fuzzy sets (membership functions)

2.5 SUMMARY

This chapter identifies the issues and challenges that need to be addressed in terms of 

developing a robust diagnostic model for reasoning about construction performance. Key 

issues are categorized into four different aspects: (1) data and information related issues, 

(2) knowledge acquisition and representational issues, (3) input-output mapping issues, 

and (4) reasoning issues. This chapter concludes with a summary providing a match 

between issues identified and techniques that can possibly be used to solve the issues by 

developing a robust diagnostic model for reasoning about construction performance.

The next chapter presents a detailed discussion on supplementary techniques that 

can be used to develop a unified-hybrid framework for creating robust construction 

performance diagnostic model(s). It is assumed that the development of a technique 

capable of diagnosing a nonlinear dynamic system, which will address the above-
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mentioned issues, will be a significant contribution to the state-of-the-art in establishing

robust performance diagnostic models.
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CHAPTER THREE
3. COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR  

CONSTRUCTION PERFORM ANCE DIAGNOSIS

3.1 INTRODUCTION TO COMPUTATIONAL INTELLIGENCE

The term “Computational Intelligence” (Cl) (Bezdek 1994; Pedrycz 1997), encompasses 

three key technological components: (1) artificial neural networks, (2) methods of 

granular information processing (in particular, fuzzy sets and fuzzy logic), and (3) 

methods of evolutionary computations (in particular, genetic algorithms). The key 

difference between traditional Artificial Intelligence (Al) systems and Cl is that Al 

systems adopt symbolic processing as their main paradigm while Cl systems use sub- 

symbolic representation. Al systems are designed to deal with problems characterized by 

exact and complete knowledge representation. In contrast, Cl systems are designed to 

deal with problems characterized by imprecise, uncertain, and incomplete data, and by 

information which significantly contributes to the description of real-world problems 

(Gorzalczany 2002).

Furthermore, Cl methods are intended to mimic the approximate problem solving 

capacities of living systems, algorithmically. Adaptability, fault tolerance, low error rates, 

and high performance are some common properties among Cl methods. Cl methods can 

be successfully applied in cases where conventional Al concepts fail or where exact 

solutions that might be gained with particular methods are by far too expensive and 

where approximate solutions are acceptable. In other words, Cl methods provide robust 

solutions at low cost for problems that would be intractable with traditional Al systems.

3.1.1 Computational Intelligence Tools for Construction Performance Diagnosis

As shown in Figure 3-1, Cl methods possess several information processing capabilities 

that are vital to construction performance diagnosis. As identified previously (Section 2.3 

of Chapter 2), construction performance-related data and knowledge are imprecise, 

incomplete, and uncertain; granular information processing and fault tolerance are 

therefore some key capabilities of a robust diagnostic system. The complex (e.g., 

nonlinear and dynamic) nature of the diagnostic problem also demands learning, 

generalization, and adaptation capabilities. Parametric and structural optimization of the 

diagnostic model can augment the robustness of the model.
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INFORMATION 
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fuzzy logic

Parallel and distributed 
information processing

Learning
generalization Artificial Neural 

Networksadaptation
Fault tolerance

Evolutionary computations Param eter and 
structure optimization

Genetic Algorithms

Figure 3-1. Information processing capabilities and properties of Cl methods.

3.1.2 Hybrid Systems

Each Cl method has its own advantages and disadvantages. Neural networks approach 

the modeling representation by using numerical inputs and outputs that are used to “train” 

a network so that it can formulate a good approximation of the complex nonlinear 

relationship between inputs and outputs. Precise numerical input-output pairs, however, 

are limited. In contrast, fuzzy systems address the imprecision of the input and output 

variables directly by defining them as fuzzy sets expressed in linguistic terms. The 

domain knowledge is coded in an explicit manner; the explanation capabilities of the 

resulting system are therefore excellent. Unfortunately, a lack of training and learning 

ability makes the fuzzy system unable to automatically acquire knowledge and to 

automatically build its representation as it is in neural systems. An appropriate synergistic 

combination of these methodologies could lead to robust diagnostic solutions. Their 

combination within one system significantly reduces their shortcomings and amplifies 

their merits.

In a synergistic combination of Cl methods (as shown in Figure 3-2), a fuzzy 

system can contribute by: (1) accommodating imprecise, ambiguous, common sense 

knowledge, (2) employing human-like reasoning mechanisms, (3) implementing 

universal approximation techniques, and (4) retaining a low cost of development and 

maintenance.
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Figure 3-2. Synergistic combination of Cl methods

Neural networks can contribute by: (1) extracting knowledge and learning from 

data, (2) making good generalizations, (3) implementing methods for data analysis, (4) 

coordinating massive parallelism, and (5) ensuring fault tolerance and robustness. 

Genetic algorithms can contribute by optimizing network parameters, such as weight 

values, using parallel techniques that include the ability to search the entire space versus 

a localized search in the weight space via a gradient decent technique.

Commonly, such hybridization is typically done in a sequential manner (method 

A as a pre-processing step of method B) (Gorzalczany 2002). For example, in a 

diagnostic reasoning system, input data pre-processing can be handled via fuzzy sets, and 

learning from input-output data can be done using artificial neural networks. Also, the 

network parameter (and structure) can be optimized using genetic algorithms, as shown 

in Figure 3-3.

Diagnostic
knowledge Parametric Structural
representation learning learning

Fuzzy sets Neural Network Genetic Algorithms

Figure 3-3. Sequential hybridization of Cl methods for performance diagnostic
reasoning
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The following sections elaborate on the main conceptual and fundamental 

components of Cl that will be used to develop a unified framework for construction 

performance modeling.

3.2 FUZZY SET THEORY

The notion of the fuzzy set was introduced by Zadeh (1965) as a means of handling 

linguistic uncertainty.

The traditional way of representing elements of X  of a set A is through a 

characteristic function:

/ x  fl f o r x & A
* , M =  /

[0 for x&A

That is, the characteristic function maps the element of X  to elements of the set {o, l}.

In fuzzy sets an element can belong partially to a set. The degree of 

belongingness (i.e., membership degree) is defined through a generalized characteristic 

function called the membership function ip), and the set defined by it a “fuzzy set”. It 

can be expressed as:

p A :X  —» [0,l]

Fuzzy sets are uniquely specified by their membership functions.

3.2.1 Linguistic Variables

Linguistic variables are variables whose values are not numbers but words or sentences in 

natural language (Zadeh 1975). Linguistic variable can be characterized by a quintuple 

( x , t ( x ) , U , G , m )  in which X  is the name of the variable, T{x)  is the term set of 

X  (i.e., the values of the linguistic variable X) ,  U is the universe of discourse which is 

associated with base variable, G is a syntactic rule for generating the term set T ( x ), and 

M  is the semantic rule for associating meaning with the linguistic values of X .

For example, consider a composite linguistic variable such as “daily site working 

condition”. As shown in Figure 3-4, working condition can be represented by linguistic 

variables { X )  such as crew-size, task complexity, and temperature. Values of “crew- 

size”, that is the term set of linguistic variable crew-size, can be represented as

f{Crewsize) -  small + average + large
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The universe of discourse could be U = [2,12] where the minimum size the crew is 2- 

person and the maximum is 12-person.

DAILY WORKING CONDITION (Ct)

D ew  Size TaskComplexity Temperature

t
SMALL

t
STANDARD

t
LOW — — ———  Linguistic value

Figure 3-4. Assignment of linguistic values to attributes of “daily working
condition”.

This can also be written as follows:

Crew-Size (Ct) = Small 
Task-Complexity (Ct) = Standard 

Temperature (Ct)= Low

Figure 3-5 shows the hierarchical structure of the relation between the linguistic 

variable “temperature”, its linguistic values (i.e., term set), and the base variable 

temperature, which is measured in degrees Celsius. Each of the basic linguistic terms is 

assigned a “fuzzy number” by a semantic rule, whose membership functions have the 

usual trapezoidal shapes on the interval [-15, 30], the range of the base variable.

Ungutefte variable

Values of linguistic 
variable-temperature TEMPERATURE

averagelow

- I S -1 0 ■5 +50 +20 +30

T e m p e r a t u r e  ( D e g r e e s - C e t e l u s )
ftase variable

Figure 3-5. Hierarchical structure of linguistic variable-temperature.
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The membership degrees associated with each value represented in the universe 

of discourse is subjective as well as context dependent. For example, a tradesperson 

working in the field may assess the temperature differently compared to a tradesperson 

working in the shop. The assessment also varies across different seasons, countries, and 

climates.

Another important issue is that some linguistic variables (e.g., temperature, crew 

size) have well-defined base variables (e.g., degrees Celsius, and number of tradesmen, 

respectively) while variables such as task complexity, equipment suitability, and ground 

condition do not have well-defined bases variables. In latter case, obtaining the grade of 

membership is challenging compared to the cases where some physical measurements are 

available. Choosing a surrogate-physical measure (e.g., number of bends representing 

“task complexity” of pipe module fabrication) or selecting a scale (e.g., 0-10, zero being 

the low extreme and 10 being the high extreme) are commonly used to address this 

challenge.

3.2.2 Membership Function Development Techniques

The construction of a fuzzy set depends on two things (Gorzalczany 2002): (1) the 

identification of a suitable universe of discourse and (2) the specification of appropriate 

membership functions. How best to determine the membership functions is one of the 

main questions that have to be tackled. The determination of membership functions can 

be categorized as either being manual or automatic.

Manual methods utilize expert opinion to design and develop membership 

functions. Some examples are: (1) the horizontal method, which is the use of frequencies 

by measuring the percentage of experts in a group who answer yes to a question about 

whether an object belongs to a particular set; (2) direct estimation by asking experts to 

grade an event on a scale; (3) the vertical method, which involves interviewing expert to 

identify plausible intervals; and (4) through pairwise comparison (rank ordering), which 

consists of identifying an experts level of preference of objects(Pedrycz 1995). Generally, 

all these manual methods suffer from knowledge acquisition problems.

Several automatic methods of membership generation are found in literature: (1) 

training examples (Hong and Lee 1996; Pedrycz and Vukovich 2002), (2) artificial neural 

networks (Takagi and Hayashi 1991; Wang 1994), and (3) genetic algorithms (Karr and 

Gentry 1993). What makes the automatic MBF construction methods differ from manual 

methods is the fact that experts are totally or partially eliminated from the elicitation
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process. Hong (1996) uses a method that eliminated experts totally from the process 

while Pedrycz (2002) proposes an expert-initiated process of MBF elicitation.

Section 2 of Chapter 6 discusses suitable alternative methodologies in detail for 

developing a practically feasible (compared to theoretically possible) approach for 

designing membership functions for construction performance modeling.

3.3 ARTIFICIAL NEURAL NETWORKS

Artificial Neural networks are biologically inspired, massively parallel, distributed 

information processing systems. They are characterized by a computational power, fault 

tolerance, as well as learning and generalization capabilities.

An artificial neuron is the basic building block of a Neural Network. As shown in 

Figure 3-6, a neuron is a processing element that consists of two parts: (1) summation and 

(2) activation function. As shown in Figure 3.6, the input variables are represented by 

input vector x = x0, x ,, x2,..., xn. Each of these inputs is modified by a weight ( wtj). The

first part of the neuron simply aggregates (sums) the weighted inputs ( wt-,xi ) results in

quantity / . The second part is an activation (squashing) function that transforms I  into a 

value between the two asymptotes, keeping the output of the neuron within a reasonable 

dynamic range.

A e ta ta  JuneiQB

i-1
Output

Inputs

Figure 3-6. The Artificial Neuron

Neural Networks are made of interconnected neurons, usually organized in a 

sequence of layers with full or random connections between layers. Figure 3-7 illustrates 

a network that is fully connected. These multilayer networks have been proven to have 

capabilities to map any complex nonlinear systems.
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The input layer represents input variables that a network uses to make a 

prediction (or classification). The output layer represents the values(s) of the network 

predict. Layers in between input and output layers are called hidden layers. Both hidden 

and output layers are made of groups of neurons. The input layer is not a neuron- 

computing layer; it merely presents the example data to the network. Neurons in the 

hidden layer process the sum of weighted values, usually using a nonlinear transfer 

function, then the hidden layer passes the values to the output layer in the same fashion 

and the output layer produces the desired results. Typically, the network constitutes a 

model that represents the relationship between input and output variables. The network 

“learns” by adjusting the interconnection weights between layers during training process. 

Training algorithms are generally categorized as supervised and unsupervised 

(Wasserman 1989).

In supervised learning, the network is trained over a number of training pairs (i.e., 

input vector with a target vector representing the desired output). An input vector is 

applied, the output of the network is calculated and compared to the corresponding target 

vector, and the difference (error) is fed back through the network. Weights are then 

changed according to an algorithm (e.g., Hebbian learning), which tends to minimize the 

error. Back-propagation multilayer neural networks, Probabilistic Neural Networks

Output neuron

Hidden layerHidden neuron

Input layer

Output layer

Figure 3-7. Multilayer Artificial Neural Network
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(PNN) (Specht 1990) and generalized regression neural networks (GRNN) (Specht 

1991) are supervised network types. Supervised learning can be employed for 

construction performance modeling as follows: construction performance variables can 

be represented as an input vector at the input layer, and key performance indicator(s) in 

question can be represented at the output layer, representing the desired output. The 

difference between the actual value of key performance indicator and network output 

constitutes an error, which is used to adjust the connection weights. Even though back- 

propagation networks are commonly used, they suffer from “local minima” problem, i.e., 

the training process easily trapped in a local minimum solution instead a global solution. 

Both multi-layer back propagation networks and GRNNs are generally used for 

predicting, evaluating, and generalization while PNN provides a general technique for 

pattern classification problems.

In contrast, unsupervised learning requires no target vector for the outputs; the 

training set consists solely of input vectors. It classifies a set of training input data into a 

predefined number of categories. Kohonen networks (Kohonen 1984) are unsupervised.

According to Bailey and Thompson (Bailey and Thompson 1990), neural network 

solutions are appropriate when;

■ A problem requires complex quantitative (or qualitative) reasoning and an 

approximate solution is sufficient,

* Parameters are highly interdependent (multiple interactions) and have no precise 

quantification, or

■ Data are available from specific examples, and some of the data may be 

erroneous or missing.

To apply neural networks in construction performance diagnostic reasoning, the 

appropriate choice of the type of neural network paradigm is crucial. Creating a 

multilayer neural network model that provides the most accurate, consistent, and robust 

model possible requires iterative building, training, and testing to refine the neural 

network. The selection of the size of the network (i.e., number of layers and number of 

neurons in each layer) and the neuron activation functions (e.g., linear, step, hyperbolic 

tangent) are to be carried out in trial-and-error fashion; it can be a tedious, and time- 

consuming task.

Additionally, in an analysis to explain a particular event (or effect) such as “low 

(labour) productivity”, the nature of causal reasoning will require backtracking to critical 

causes. However, the distributed character of the computations (i.e., acquire knowledge
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from a family of learning patterns and distribute it along the connections in the structure 

during the learning process) make it almost impossible to reasonably interpret the overall 

structure of the network and to explain the results generated by the network in the form of 

transparent, logical constructs (such as conditional rules and frames) (Gorzalczany 2002). 

In construction performance modeling, more often than not, backtracking can lead to 

multiple causes, thus identifying the order-of-magnitude (i.e., the relative significance) of 

each factor is a necessity.

3.4 GENETIC ALGORITHMS (GA)

The underlying principles of genetic algorithms (GA) were first formulated by Holland 

(Holland 1975). Genetic algorithms have been very effective at function optimization, 

efficiently searching large and complex spaces to find nearly global optima. The 

advantages of using genetic algorithms include the ability to search the entire smoothing 

factor space, rather than a localized search via a gradient descent technique such as 

backpropagation (Tsoukalas and Uhrig 1997).

In this study, a GA’s optimization capabilities are utilized as an important 

supportive tool in parameter (e.g., weights) learning of network processing module. The 

major components of GA are presented below (on the basis of (Gorzalczany 2002; Jain 

and De Wilde 2001; Tsoukalas and Uhrig 1997)). As identified in Konar and Jain (2001), 

GA operates through a simple cycle of stages, as shown below in Figure 3-8.

Population
(CHROMOSOMES)

Figure 3-8. The cycle of genetic algorithm (Konar and Jain 2001)

In the first phase, an initial population of “individuals” is created to initiate the 

search process. Each individual (named as chromosomes) represents a potential solution
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to the problem at hand. A chromosome can be represented using both binary and real- 

value encodings with binary being the more prevalent method. The performance of the 

chromosome, often called the “fitness value”, is then evaluated using a fitness function. 

This function must be established for each specific problem. In a network parameter 

learning problem, for example, the fitness function ( 0  ) can be represented as follows. 

Given N  training data [x ,y j (i= l,... JV), the learning algorithm’s target is to find best 

parameters values to keep the difference between predicted value y. and the real output y,-

as small as possible. In other words, the target is to find the best network parameters to 

keep the network performance index Q defined in Equation 3-1 as small as possible.

Where yj is a predicted value with input vector x ; . Accordingly, the fitness function can 

be defined as in Equation 3-2.

The fitness value Q is the quantity that guides the reproduction process for creating the 

next generation. Chromosomes with higher fitness values tend to reproduce more often 

than those with lower fitness values. Several alternative selection mechanisms are 

reported in the literature, among the roulette-wheel parent selection, which is commonly 

applied. Once the selection of the population is over, the resulting new population is 

subject to the two main mechanisms of genetic algorithms such as cross-over (in general, 

a recombination) and a mutation.

The crossover operation generates new chromosomes that possibly retain good 

features from previous generations. Once the chromosomes are selected from the pool for 

the crossover operation, the selected chromosomes are mated randomly, and for each pair 

of coupled chromosomes (parents) a random integer number pos from the set

{1,2,..., 7- l} (7  is the total length of a chromosome) is chosen. The number pos indicates 

the position o f  the crossover point. Two chromosomes representing network weights, for 

example, can be represented as:

(3-1)

(wyWj... ^  and ^ (3-3)

After the crossover, a pair of their offspring can be represented as

(wxw1...WpOSvpos+A...vl ) and ( ) (3-4)
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In equation 3-3 and 3-4, the crossover operation is one point since one crossover position 

is chosen. In general, n-point crossover can be identified.

The second genetic operation is mutation, where the single components of the 

chromosomes (called bit strings) at one or more randomly selected positions are altered. 

Mutation represents an abrupt change in the nature of the chromosome. After selection, 

crossover and mutation, the currently worst chromosomes are replaced with the best 

chromosomes and the new population is formed for a new evaluation. The rest of the 

evolution process is just a cyclic repetition of the above steps until a stopping criterion is 

satisfied. The best chromosome, for example, provides the optimal weights of network 

connections.

3.5 HYBRID SYSTEMS FOR CONSTRUCTION PERFORMANCE 

MODELING

Two hybrid system architectures have been considered in this thesis that combines fuzzy 

set theory as possible solutions to assist construction performance diagnosis: neural 

networks and genetic algorithms, in a sequential manner, as previously shown in Figure 

3.3. The selection of these two frameworks was based on several properties of a 

diagnostic system, as shown in Table 3-1.

33

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 3-1. A rough comparative analysis of alternative computational intelligence systems.

REQUIRED PROPERTIES OF 
PERFORMANCE DIAGNOSTIC 

SYSTEMS

ARTIFICIAL
NEURAL

NETWORKS

RULE-BASED
FUZZY

SYSTEMS

GENETIC
ALGORITHMS

NEURO FUZZY 
SYSTEMS: 

RULE-BASED 
(+GA)

FUZZYNEURAL 
NETWORKS: 

AND-OR (+ GA)

GENETIC 
ADAPTIVE- 

G RNN(+FUZZY  
NEURONS)

Transparency (Explanation ability) Very Low Very High Very Low High Very High High

Learning ability Very High None High Very High High Very High

Generalization capability Very High High High Very High High Very High

Using Experts’ knowledge None Very High None Very High Medium Medium

Using numerical data sets Very High Very Low High Very High Very High Very High

Using qualitative linguistic 
information

None Very High Very Low Very High Very High Very High

Fault tolerance Very High High High Very High Very High Very High

Limited data Low Very High Very High High Low High

Knowledge representation Unstructured Structured Unstructured Structured Unstructured Unstructured

Type of Inference Approximate Approximate Approximate Approximate Approximate Approximate

Adapted from (Gorzalczany 2002; Holland 1975; Pedrycz 1995; Specht 1991; Specht and Romsdahl 1994)



From a diagnostic reasoning perspective, transparency is a paramount feature 

desired in any diagnostic system. In general, transparency means the ability to trace the 

process of inferring a solution. While most fuzzy systems have transparent structures 

(based on if-then rules), massively parallel inference systems such as neural networks 

have a very limited ability to explain the inference process. In construction performance 

diagnostic reasoning applications, an explanation ability is expected to be at least at the 

level that can identify the relative significance of each variable that can possibly impact 

the performance indicator(s) in question. Both fuzzy neural networks based on AND/OR 

neurons and Generalized Regression Neural Networks possess the characteristics that

facilitate interpretation of connection weights. Chapters Four and Five provide detailed

descriptions of these two networks, respectively.

Learning ability is another key attribute that a diagnostic system should posses. It 

is the process of knowledge acquisition that results in adaptation to the complex dynamic 

nature of the problem. While neural networks have excellent ability to learn from data

samples, fuzzy systems do not posses a learning ability.

Generalization capability is what makes a diagnostic system respond correctly to 

a new situation. In other words, it is the process of inferring a solution based on 

previously unknown data to the system (network). Both neural networks and fuzzy 

systems have a good generalization capability.

Both fuzzy systems and neuro-fuzzy systems use structured knowledge 

representation such as conditional rules of the IF-THEN type, while neural networks and 

fuzzy neural networks use unstructured knowledge representation (e.g., input-output data 

pairs) to transform the available problem knowledge in order to process it by standard 

knowledge engineering methods. For construction performance diagnostic systems, 

unstructured knowledge representation in the form of input-output data pairs is more 

appropriate, mainly due to well-known knowledge acquisition problems, especially in the 

form of rules from multiple experts. The remaining properties of performance diagnostic 

systems, as shown in Table 3-1, are self-explanatory.

The first approach presented in this thesis is based on Pedrycz’s OR/AND neuron 

model (Pedrycz 1995) of fuzzy neural networks. It can be considered as a tightly coupled 

fuzzy-neural system, as the basic elements in the network have the composite 

characteristics of both neural nets and fuzzy sets (Konar and Jain 2001). The second 

approach (i.e., Generalized Regression Neural Networks (GRNN)-based processing 

module) can be considered as a weakly coupled fuzzy-neural system. This model
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preserves the basic properties and general architecture of Specht’s GRNN (Specht 1991), 

while introducing fuzzy input neurons for comprehensive improvement of the 

performance of the network in terms of accuracy and knowledge representation. A 

schematic description of the general configuration of both approaches (i.e., AND-OR 

neuron model and GRNN-based model) is illustrated in Figure 3-9.

Site working
condition data

Actual system 
(KPI)

At the front end, a user interface allows the user to represent input variables (i.e., 

causal factors) and linguistic values to represent the selected variables. Each linguistic 

value is represented as a fuzzy set. The input interface transforms input information into 

membership values. The network processing module (i.e., inference engine) represents 

both AND/OR neuron model and the GRNN-based model. The membership values of 

input learning data are used as input to the inference engine. The inference engine is 

trained using different learning algorithms (e.g., gradient decent, genetic algorithms) to 

reveal and quantify logical relationships between input and output variables.

Both approaches are used to model the normal functional structure of selected 

key performance indicators (KPI). Both models characterize the possible performance of 

the construction process using quantitative numerical data as well as qualitative linguistic 

information that reflect actual behaviour.

3.6 SUMMARY

This chapter provides a brief introduction to Computational Intelligence (Cl) and 

describes the main constituents of CL The advantages of synergistic links between key

N etw ork
Processing

Module

Learning
Algorithm

Figure 3-9. Configuration of the System Architecture.
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constituents are identified. Two potential Cl systems based on Fuzzy-neural systems are 

identified and a system architecture is proposed to exploit the benefits of Cl systems to 

assist construction performance diagnostic reasoning. Detailed descriptions and empirical 

analysis of AND/OR neuron processing module and GRNN based processing module are 

given in Chapter 4 and Chapter 5, respectively.
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CHAPTER FOUR
4. FUZZY NEURAL NETW ORKS: AND/OR NEURON M ODEL

4.1 INTRODUCTION

This chapter presents a network processing module based on Pedrycz’s AND-OR neuron 

model (Pedrycz 1993; Pedrycz 1995). This fuzzy set-based neuron model incorporates 

fuzzy logic elements into the neural network. The resulting topology can perform 

diagnostic inference functions by analyzing the values of the connection weights. The 

logic operations of the AND-OR neuron model are discussed and a learning algorithm is 

presented. To assess the effectiveness of the proposed fuzzy neural network in 

construction performance modeling, experiments are conducted using data collected from 

an industrial construction project; these results are also presented.

This chapter contains some of the results of the author’s prior research 

(Dissanayake et al. 2004), recast in light of later developments.

4.2 FUZZY NEURAL NETWORKS

The underlying topology of the proposed schema is based on fuzzy neural networks. 

Fuzzy neural networks are processing structures with an explicit form of knowledge 

representation due to the well-defined semantics of its neurons (Pedrycz and Gomide 

1998). Liu and Yan (1997) demonstrated that fuzzy neural network based on AND/OR 

neurons can be interpreted by revealing the connection weights; furthermore, the network 

size can be optimized by pruning out those connections with weak (insignificant) 

weights. Several successful implementations of the AND/OR neuron-based models can 

be found in the literature (e.g., Gobi and Pedrycz 2004; Myung-Geun Chun et al. 1997), 

in which both gradient decent learning and GA-based learning are employed. In this 

section, an OR/AND neuron model of fuzzy neural networks (FNNs) with fuzzy input 

variables is presented, and a learning algorithm is discussed.

4.2.1 OR/AND Fuzzy Neurons

The key functional element forming a core of the proposed fuzzy neural network is 

Pedrycz’s OR/AND fuzzy neuron (Pedrycz 1995). As shown in Figure 4-1, the proposed 

network has four layers, namely:
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x x,n

Figure 4-1. Topology for the Fuzzy Neural Network based on AND-OR Neurons

(1) Input layer: represents the input variables and simply channels the values of input 

variables (x,, z'=l,2,...,n.) to the next layer, n is the total number of input variables.

(2) Membership function layer: represents the membership functions of each input 

variable and transforms input values to the corresponding membership values mv, 

z=l,2,...,n, /= l,2,...,k  where k equals the total number of terms (i.e., linguistic values) 

that belong to each input variable.

The membership values, m,y, are combined into a vector of single input

u=[miI,...,m\i0...,mu,...,mik,...,mnh—,mik\=[u), U2, up\ where the total dimension of u is

p=n*k.
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(3) AND-OR neuron layer: represents the AND neuron (zi) and the OR neuron (z2). This 

layer transforms membership values, mi}, AND-wise (i.e., by the AND neuron) and OR- 

wise (i.e., by the OR neuron) into two separate computing channels, and sends them to 

the output layer.

(4) Output layer: represents the output OR-neuron, which merges the inputs from the 

previous layer and produces the output y.

The connections of the neurons (weights) distributed in the unit hypercube are denoted by 

w, v. More specifically, the AND neuron is described as z\ = AND(m;wi), which, using 

the notation of triangular norm (t-norm), is expressed as:

z, = T(u,swu) , (4-1)

Where wu summarizes a collection of the AND neuron’s connections (wj). The OR 

neuron is produced using the expression z2 = OR(m;w2), which, using the notation of 

triangular norm (s-norm), is expressed as:

z2 = S(Uftw2l) . (4-2)
i=l

The role of the OR neuron (output layer) is to combine the results of AND and OR 

aggregation. Depending on the values of the connections (vi and v2), the overall OR/AND 

neuron exhibits mixed characteristics of both these two logic operations. This aggregation 

is expressed as:

y  = OR/AND(m; w , v ), (4-3)

which using the t and s norms, is expressed as:

y  = (zx tv,)s(z2tv2). (4-4)

In boundary cases, If  vt=l v2=0, the OR/AND neuron operates as a pure OR neuron; if 

V]=0 and v2= l, the structure functions as a pure AND neuron. For example, if the above t 

and s norms are realized by product and probabilistic sum operators using the following 

expressions:

atb = ab ; a, b £  [0,1] (4-5)

asb = 1 -  (1 -  a)( 1 -b ) = a + b -a b ;a  ,b<E[ 0,1] (4-6)

the input-output mapping will be:

y  = z,v, + z2v2 -  z,v,z2v2, (4-7)

Where z, = Y \iu, + wu-u iwu) , z2 = 1-_Q(1-w,iv2i) . (4-8)

42

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



If the above t and s norms are realized by the min and max operators that follow:

atb = m in(a,6); a, be  [0,1] (4-9)

asb = max(a,Z>); a, be  [0,1] (4-10)

the input-output mapping will be:

P P

y  = max(min(z,, v,), min(z2, v2)), where z, = min(max(w,, wh)), z2 = max(min(w,, w2i)) (4-11)/=1 i=l

4.2.2 Learning/Optimization Mode of the AND-OR Neuron Model

The learning and optimization processes of the AND-OR neuron model consist in finding 

the connection weights (w, v) from the input-output training pairs. Results of the learning 

mode also determine the network topology by eliminating insignificant connections. The 

resulting network topology provides a logical construct that illustrates the logical causal 

relationship between the input causal factors and output variable(s) (i.e., key performance

indicators). The two main elements of any supervised training exercise comprise a

network performance index (Q) and the learning scheme. The learning algorithm adjusts 

the weights w, v so that the performance index (Q) is optimized.

4.2.2.1 Network Performance Index (Q)

Assume that we have T datasets for learning; [ux(r),...,up{r),yr] r=l,...,T ; y r as target 

and yr as the FNN’s output with respect to its inputs [ut(r),...,up(r)].

Accordingly, the performance index ( 0  is expressed as:

which is the mean square error of the prediction. The objective is to minimize the 

performance index (Q) with regard to the structure of the model and its parameters.

4.2.2.2 Learning Algorithm -Gradient Descent Learning

The learning algorithm will update w, v through gradient-based learning as follows:

(4-12)

(4-13)

v, =v, -  • (4-14)
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Where a  e [0,1] is the learning rate.

The updating process is stopped when there is no further improvement in the output error 

for a certain consecutive number o f training epochs (user-defined, e.g., 1000).

4.2.3 Interpretation of the Network via Connection Weights

Pedrycz (1995) identified that, because of the triangular norm’s boundary conditions, the 

values for the connections in the OR neuron ensure that the corresponding input exerts a 

stronger influence on the neuron’s output. By contrast, the opposite weighting effect 

takes place in the case of the AND neuron: the values of connections closer to 1 make the 

influence of corresponding input almost negligible.

Initial values of the connections of the network can be assigned randomly or based on 

expert judgment. Once the network is trained using (4-13) and (4-14), the values of v are 

compared. Since aggregative AND and OR neurons are connected via the OR neuron, the 

corresponding neuron with the highest value of v has the strongest influence on network 

output. For example, if Vi=0.35 and v2=0.80, the values of connections leading to OR 

neuron to derive explanations can be analyzed.

In an OR neuron, those connections with weights close to zero (or below a certain 

threshold) can be eliminated. Conversely, in an AND neuron, those connections with 

weights close to one or above a certain threshold can be eliminated.

4.3 EMPIRICAL VALIDATION OF THE AND-OR NEURON MODEL

To assess the effectiveness of the model, several experiments were conducted. A 

description of the experimental data is given, followed by a description and the results of 

four different cases conducted to assess the validity of the proposed FNN.

4.3.1 Description of Case Data

A dataset from the industrial construction sector was chosen to demonstrate how the 

proposed system could be used for reasoning about construction performance. 

Specifically, the “labour productivity in hydrotesting (HT)” of pipe fabrication in a pipe 

module fabrication yard was considered. The PF is calculated as follows:

p  _ Earned manhours _ quantity installed * (Estimated Manhours /  unit quantity) 
Actual manhours Actual manhours

The daily values of key performance indicators are considered as outputs and the daily 

values of possible causes that affect the KPI as inputs to the network.
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Table 4-1 shows the identified plausible causal factors of “low HT productivity” by a 

group of experts who manage the job. A total of seven causal factors were identified. 

Once possible causes were identified, relevant (daily) data were extracted from the 

contractor’s Information Management System (IMS) for a period of 169 working days 

covering the period of April 2003 to February 2004. Figure 4-2 graphically illustrates the 

variation of the key performance indicator (KPI) studied, i.e., the pipe hydrotesting 

productivity, over the duration of the study.

Table 4-1. Causal factors that impact labour productivity in Pipe Hydro-testing

Causal Factor Description

1 WKL Work Load No. of pipe modules in progress
2 EQA Equipment availability No. of cranes available
3 MAV Manpower availability No. of pipefitters available
4 TEM Mean Temperature The mean temperature of the air in 

degrees Celsius.
5 PRE Total precipitation The sum of the total rainfall and the water 

equivalent of the total snowfall

6 RWK Rework Pipe fabrication rework (work force hours 
spent on repairs)

7 QAC Quality Assurance/ Quality 
Control input

Number of hours spent on QA/QC work.

Hydro-Tesling labor Productivity Factor (PF) Variation
3,—,------—------ 1-------—i—----- r"-------i--------1-------- r

2 .5 -

_>L_______ U  ...-J_________i......... - ..... i........... ..... i_________ !_________L-... ...........1_________
0 20 40 60 80 100 120 140 160 180

Day

Figure 4-2. Variation of pipe hydrotesting productivity
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One of the main objectives of this study is to develop a reliable model that can map the 

type of non-linearity shown in Figure 4-3. Interviewing a group of experts has identified 

linguistic measures of each cause. Accordingly, membership functions were developed 

using the expert knowledge of the same group by the heuristic method (see section

6.2.4.1 of Chapter 6 for further details of heuristic method). The parameters of the 

membership functions are given in Figure 4-3.

The construction of the fuzzy neural network model is completed using 100 data 

points treated as a training set. The rest of the data (i.e., 69 data points) are retained for 

testing purposes.
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Figure 4-3. Membership functions
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4.3.2 Case 1: AND-OR Neuron Model

In this case, the model is trained with gradient decent learning algorithm (Equation 4-13 

and 4-14). The learning rate ( a )  is experimentally adjusted and set to 0.01. Initial values 

of the connections of the network (w) were assigned using two methods: (1) using 

random weights, and (2) using a normalized principal eigenvector, i.e., a vector of 

priorities. An AHP comparison of causal factors made by the construction manager is 

shown in Table 4-2. The initial connections of the aggregation operation (v) were 

assigned randomly.

4.3.2.1 Initial Weight Assignment by AHP Method

The AHP organizes and quantifies those relative measurements concerned with deriving 

dominance priorities from paired comparisons of homogeneous elements (or variables) 

with respect to a common criterion (Saaty 1980.). The process consists mainly of two 

phases: the first phase involves setting priorities based on subjective judgment using 

pairwise comparison, and the second phase checks for the consistency of the comparison.

Pairwise Comparison: The method of deriving the vector of priorities from a pairwise 

comparison matrix is as follows:

Assume the vector of priorities a=[aj,a2,...,an]T , and let A be the positive pairwise 

comparison matrix with respect to n criteria.

(4-15)

Where ay represents the relative importance of the i‘h element over j ,h element. A is 

usually referred to as a reciprocal matrix. Note that:

(1) All diagonal elements of A are equal to unity, aif= 1;

(2) A satisfies the property o f  reciprocity, since ay. an=  1;

(3) A is transitive in the sense that a,k.(akj)='dV)

Multiplying^ by the vector of priorities a=[a],a2,...,anf , one obtains Aa=na, namely 

(A-nI)a=0 where I  is the identity matrix; n denotes the largest Eigenvalue o f A (Saaty 

1980.). Thus the vector of priorities is simply equal to the corresponding normalized 

eigenvector associated with A.
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Consistency Measure: In general, the user subjectively provides the value of ai;; hence 

the transitivity property cannot always be strictly enforced. A consistency index (Cl) has 

been introduced (Saaty 1980.) to estimate the departure from consistency 

by C.I. = ( A-n) / (n- l ) , where A is the maximal eigenvalue, and n is the number of 

elements (variables) being compared.

For each matrix of size n, random matrices were generated (Saaty 1980.) and their 

mean Cl value, called the random index (RI), was computed. Using these values, the 

consistency ratio (CR) is defined as the ratio of the Cl to the RI; it concluded that a 

consistent reciprocal matrix should have a CR < 0.1 [10]. When the CR>0.1, it is 

recommended that the user revisit his or her pairwise comparison.

The priority vector for identified variables obtained by AHP comparison, as made by 

the construction manager, is as follows:

w=[0.062 0.462 0.164 0.162 0.172 1.000 0.816] (4-16)

According to Equation 4-16, the construction manager’s opinion is that RWK, QAC 

and EQA have the highest impact on the issue concerned, while WKL, MPA, TEM, and 

PRE have a minimal impact. Two distinct operators for t-norms and s-norms are used to 

build two separate models. Model-A uses product and probabilistic sum as t and s norms, 

respectively; in the case of Model-B, min and max terms are used as t and s norms, 

respectively.

The value of the normalized performance index ( Q ) (i.e., average value of Q per 

data point) of the optimal structure of Model A is equal to 0.02 and the value of Model B 

is equal to 0.03. Model A is therefore considered for further analysis.

The values of the normalized performance index vis-a-vis successive learning epochs 

for Model A are shown in Figure 4-4. The dashed lines represent five experiments 

initialized with random weights, and the solid lines represent the AHP-based initial 

weight assignment. Figure 4-4 shows that the AHP-based initialization always converges 

to a sub-optimal solution while random initialization converges away from a sub-optimal 

solution in certain instances.

48

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



0,04

o.m

0.036

0.034

8c

2

0 026

Figure 4-4. Normalized performance index in successive learning epochs

The above findings highlight that when expert causal knowledge is available with 

respect to an observed event, we can use the Analytic Hierarchy Process to capture the 

causal knowledge and the intuition of the expert so that a simple yet efficient fuzzy logic 

model can be developed to identify plausible explanations.

4.3.2.2 Interpretation of AND-OR Neuron Model Results

After optimization, the final value of the connection between the AND neuron and the 

OR neuron (vj) is equal to 0.42, and the final value of the connection between the OR and 

the OR neuron (v2) is equal to 1, making OR-wise connection of inputs to the network 

more significant.

Table 4-2 shows the comparison of initial and final weights of the connections of 

the AND and the OR neurons. Initial weight of the OR neuron (w2) is assigned using a 

normalized eigenvector, and the initial weight of the AND neuron is calculated as:

Wu = \ - w 2i (4-17)

Since the OR neuron became significant in this particular instance, we analyze 

the final weights derived from the OR-wise connection (see highlighted column in Table 

4-2). For OR neurons, the higher values for the connections emphasize that the 

corresponding inputs exert a stronger influence on the neuron’s output. Accordingly, Low 

QAC, High RWK, and Low EAV were identified as significant contributors, compared to 

the seven variables identified that impact on labour productivity in HT. The comparison
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of the initial and final values of connections provides insight regarding how the 

optimization process changes the initial perception of the expert.

Table 4-2. Weight comparison of causal factors

OR NEURON AND NEURON

AHP-
priority

Initial
Weight

Final - 
Weight*

Initial
Weight

Final
Weight

WKL Low 0.0618 0.0618 0 2441 1 0.9382 1.0000
High 0.0618 (jihhuiI 0.9382 0.9391

EAV Low 0.4616 0.4616 0.5627 0.5384 1.0000
High 0.4616 0 0000 0.5384 1.0000

MAV
Low

0.1637 0.1637 0.0000 0.8363 1.0000
Medium 0.1637 iiiiiiim 0.8363 1.0000
High 0.1637 0.0000 0.8363 0.0000

TEM
Low

0.1623 0.1623 0.3092 0.8377 1.0000
Medium 0.1623 0 0000 0.8377 0.0000
High 0.1623 0.4194 | 0.8377 0.5455

PRE LOW 0.1714 0.1714 0 0000 0.8287 0.0000
High 0.1714 0 0000 0.8287 1.0000

RWK Low 1.0000 1.0000 0.0000 0.0000 0.1850
High 1.0000 0.7513 1 0.0000 1.0000

QAC Low 0.8162 0.8162 1.0000 0.1838 1.0000
High 0.8162 0.4" 13 | 0.1838 0.0000

Interestingly, this finding largely agrees with the expert’s judgment given as a vector 

of priorities (Equation 4-16). The FNN model has the further advantage of identifying the 

significant linguistic terms, e.g., whether the low QAC or the high QAC has the greater 

impact on labour productivity of HT.

4.3.2.3 Accuracy of the AND-OR Neuron Model

Figure 4-4 illustrates graphically the FNN’s output vs. target output. Figure 4-5 shows the 

corresponding network performance index over successive learning epochs. Both graphs 

indicate that the FNN network does not have sufficient non-linear modeling capabilities. 

Accordingly, several augmentations were made to the FNN model, and discussed in the 

following sections.
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Figure 4-5. Plot of FNN output vs. target
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Figure 4-6. Network performance index in successive learning epochs.
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4.3.3 Case 2: Using a Nonlinear Transfer Function

To improve the neurons’ approximation capability, while keeping the characteristics of 

the AND-OR neuron model, a monotonic sigmoidal transfer function is applied at the 

output of the AND-OR neuron, as shown below in Figure 4-6.

-y ►{ S ig m o id
AND/OR

Figure 4-7. AND-OR neuron model augmented with sigmoidal transfer function

As a result, the new network output can be represented as follows:

7  “ l + e x p H y - m)*<r| <4' ‘8)

Where y  is the output of the network (with sigmoidal function), m and cr are tunable 

parameters of the sigmoidal transfer function and y  is the output of the AND-OR neuron 

model.

4.3.3.1 Learning/Optimization with Gradient Descending

Accordingly the performance index (4-12) is modified as follows:

2

Where the y r is target and y  as augmented FNN’s output based on Equation (4-18) with 

respect to inputs [w,(r),...,up(r) ] . The parameters of Sigmoid function are adjusted as 

follows:

m=m- - a — , cr = a  - —a  where a e [0,1 ] is the learning rate. (4-20)
2 dm 2 da
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4.3.3.2 Accuracy of the AND-OR Neuron Model with Sigmoidal Transfer 

Function

The network is trained and tested with the same data set. As shown in Figure 4-7, the 

resulting network (with Sigmoidal transfer function) still does not possess the ability to 

model the nonlinear characteristics of the problem at hand.

*  Train 
O Test

0.9

,000.6

0.4

0.3

0.2

0.2 0.3 0.4 0,7 0.90,5 
NN outputs

Figure 4-8. Target vs. AND-OR neuron model augmented with Sigmoidal transfer
function

4.3.4 Case 3: Genetic Adaptive Learning

In this case, gradient descent learning is replaced by genetic algorithms, and the model 

discussed in Case 2 is optimized using genetic algorithms, as described in Section 3.4 of 

Chapter 3. The tunable parameters of the network are represented in a chromosome coded 

with a real vector, as shown in Figure 4-8.
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Chromosome

W,J W12 W1P w2! W22 W2P V1 V2 m sigma

Wj w2 V m, sigma

Figure 4-9. Chromosome representation

The network is trained with the most widely used genetic operators such as 

roulette-based selection, one point crossover and uniform mutation. The fitness function 

is defined as follows:

1
0 :

1 + fi
(4-20)

Where the Q is the performance index defined in Equation 4-19. The Probability of 

Crossover is set to 0.9; the probability of mutation is set to 0.01; and the initial size of the 

population is set to 50.

The network performance index in successive generations is shown in Figure 4-9. 

Albeit the training performance is better if compared to Case 1, the training performance 

is still not acceptable. The average and best fitness value of individuals is shown in 

Figure 4-10. As shown in Figure 4.11, the input-output mapping capability of the network 

has significantly improved with learning based on genetic algorithms, especially with the 

training dataset (final test Q=5.915xl0~2).

Final tost Q: 0.059147
0.07

0.06

0.05

0.04

a
0.03

0.02

0.01

—  train 
 test

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Generations

Figure 4-10. The values of network performance index (Q) in successive generations.
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Figure 4-11. The average and best fitness value of individuals in successive
generations.
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Figure 4-12. Target output vs. network output (trained using genetic algorithm)

4.3.5 Case 4: Genetic Adaptive Learning with Cumulative Impact Values

In this case, an assumption is made that there can be a cumulative impact of the input 

causal factor. For example, today’s productivity is low not only because it rained today, 

but also due to the rain yesterday and the day before. To capture this cumulative impact, 

instead of using the input value at time t, a weighted average value is used as follows:
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x -  (x, + a * x(_, + b * Xj_2 + ••• + k * xd )/(1 + a + 6 +... + A:) (4-21)

If a three day period is considered to assess the cumulative impact, and the corresponding 

weights for three days can be represented as a=0.8, b=0.6, c=0.4, the corresponding 

membership values can be represented as:

u. (?) = (w, (t) + 0.8 * u, (/ -1) + 0.6 (t -  2) + 0.4 * itj (t -  3)) / 2.8 (4-21)

Accordingly, the most recent value (at time t) of the input causal factor gets a higher 

weight. While keeping the rest of the model characteristics the same as in Case 3, the 

FNN is trained and tested using the same dataset. As shown in Figure 4-11, the network 

performance is slightly improved (final test Q=5.334xl0'2); however, as illustrated in 

Figure 4-12, the network still does not demonstrate good generalization capabilities.

Final test Q: 0.053343
0.08

0.055

0.045

Q.04
a

0.035

0.03

0.025

0.02
train 

 test
0.015

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Generations

Figure 4-13. Network performance index on successive learning epochs (with 
cumulative input values)
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Figure 4-14.Target vs. Network Output (with cumulative input values)

4.4 AN ADDITIONAL TEST FOR NONLINEARITY

Having identified the limitations of the model in terms of generalization, to discover the 

underlying complexity of the problem, several high-order polynomial regression models 

were created, and the results are illustrated in Figure 4-13. It is clearly evident from the 

plots that the higher the order of the polynomial model, the higher the generalization 

capability. These high order polynomial regression models, however, have too many 

parameters to be easily determined; hence, the interpretation of the model becomes 

practically impossible. At the same time, it involves the predefined specification of the 

form of the regression equation. In construction performance modeling, the specification 

of the form of the regression equation is infeasible.
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Figure 4-15. Target vs. high-order polynomial regression model output.
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4 .5  S U M M A R Y

This chapter describes a logical modeling framework based on AND-OR fuzzy neural 

networks. The simple yet efficient structure of the AND-OR neuron model provides the 

flexibility to identify the significance of input causal factors on key performance 

indicators in construction performance modeling. Based on four experimental cases, as 

shown in a summary Table 4-3, it can be concluded that the AND-OR Neuron model 

based on genetic adaptive learning with cumulative input values has, comparatively, the 

highest generalization, i.e., input-output mapping capability. The explanation capability 

of each model remains the same; however, the generalization capability of the model is 

fairly low (compared to a 6th order polynomial regression model). All four AND-OR 

neuron models display considerable scatter and inconsistency between the target and the 

network output (see Figures 4-4, 4-7, 4-10, and 4-12). This can be considered an 

exemplary case of dichotomy between the generalization and explanation of a model.

The dataset used to test the AND-OR neuron model can be considered a 

representative sample of the construction performance data. Based on the experiments 

described above, it can be concluded that the underlying problem has a complex 

nonlinear character. Thus, to get a reasonably accurate input matting capability, a model 

that has greater generalization capabilities is required.

The next chapter presents an alternative network architecture that focuses on 

mapping the complex non-linear problem at hand at a greater level of accuracy. The main 

objective of the alternative system architecture is to enhance the generalization capability 

while maintaining the explanation capability that is available with the AND-OR neuron 

model in terms of interpreting connection weights.
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ONO

AND
Basic Model with Sigmoidal function with GA with Dynamic data Basic Model with Sigmoidal function with GA with Dynamic data

Membership AHP Weight
Initial vl 1 1 1 1 1 1 1 1
Initial v2 1 1 1 1 1 1 1 1
Final vl 0.999999 1 0.99765 0.99842 0.999999 Y. Y.:;Y:1; 0.99765 0.99842
Final v2 0.408605 0.952967 0.94072 0.72934 0.408605 0.952967 0.94072 0.72934

Work load
Low 0.061844 0.93815 0.938197 0.99934 0.99838 0 0 0.15128 0.72065

Medium 0.061844 0.938152 0.938203 0.99772 0.99993 0 0.262776 0.9876 8.82E-04
High 0.061844 0.938166 0.938183 0.0009528 0.48303 0 0 0.15246 0.00047505

Equipment
availability

Low 0.46156 0.538429 0.538529 0.99865 0.99048 0.617717 0.50906 0.12547 0.99938
Medium 0.46156 0.538434 0.538519 0.15781 0.34948 0 0 0.000264 0.0003907

High 0.46156 0.538447 0.538442 0.99986 0.99976 0 0 0.59353 0.0010322

Manpower
availability

Low 0.163688 0.83631 0.836362 0.99863 0.99944 0 0 0.8474 0.0020526
Medium 0.163688 0.836317 0.836331 0.99975 0.42225 0 0 0.10747 0.80279

High 0.163688 0.836312 0.836374 9.61 E-05 0.8317 0.35765 0.29063 0.63813 0.75058

Mean
temperature

Low 0.16227 0.83773 0.837794 0.99905 0.99935 1 1 0.95932 0.21315
Medium 0.16227 0.83773 0.837764 0.0011585 0.52217 0.450552 0.744908 0.92895 1.35E-06

High 0.16227 0.83773 0.837756 0.99956 0.99968 1 1 0.56065 0.00010123
Total

Precipitation
Low 0.171348 0.828652 0.828652 0.97459 0.0022023 0 0.378654 0.37025 0.00050449

Medium 0.171348 0.828652 0.828717 0.99967 0.99775 0 0 0.084054 0.00027176
High 0.171348 0.828652 0.828717 0.99861 0.99959 0 0 0.99947 0.59473

Rework
Low 1 0 0 0.99369 0.054153 0 0 0.64198 0.00090474

Medium 1 7.89E-06 0 0.17794 0.99989 0 0.00339298 0.71803 0.002056
High 1 0 0.0103447 0.99881 0.9996 0.19438 0.371263 0.002645 0.65103

QA/QC
Low 0.81617 0.183837 0.183888 0.10401 0.67953 0 0 0.009764 0.46068

Medium 0.81617 0.183733 0.183656 0.99686 0.9995 0.466896 0.532425 0.74245 0.00051952
High 0.81617 0.183852 0.184178 0.9996 0.99754 0 0 0.15187 0.70547

Final Q- 
Training (100 
data points) 0.0177551 0.0167294 0.009638 0.015693 0.0177551 0.0167294 0.009638 0.015693

Final Q- Testing 0.067774 0.0715309 0.059147 0.053343 0.067774 0.0715309 0.059147 0.053343
m X 1 0.92067 0.76864 X 1 0.92067 0.76864

sigma X 6.03942 -74.899 10.679 X 6.03942 -74.899 10.679
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CHAPTER FIVE
5. FUZZY ADAPTIVE GENERALIZED REGRESSION NEURAL  

NETW ORK (FA-GRNN)

5.1 INTRODUCTION

This chapter demonstrates the utility of applying an alternative network processing 

module based on a synergistic combination of neural networks (specifically, Generalized 

Regression Neural Networks), Fuzzy Sets, and Genetic Algorithms (GA). Fuzzy neurons 

are introduced to the classical GRNN architecture as a means of handling granulated 

information. The learning and inference modes of the network are discussed and its 

application to construction performance modeling is presented. This chapter contains 

many of the author’s earlier results (Dissanayake et al. 2005), recast in light of later 

developments.

5.2 GENERALIZED REGRESSION NEURAL NETWORKS (GRNN)

A generalized regression neural network (Specht 1991; Specht and Romsdahl 1994) is a 

memory-based network capable of fitting multidimensional surfaces through data via a 

one-pass learning algorithm; it provides estimates of its variables and converges with an 

underlying linear or nonlinear regression surface. Since Specht’s (1991) work on GRNN, 

the methodology has been successfully applied in several cases (Kiefa 1998; Seng et al. 

1999). The incentives to using a GRNN model in construction performance modeling, 

relative to other nonlinear modeling techniques, are as follows:

■ The network instantly defines a very reasonable regression surface, even with 

sparse data in a multidimensional measurement space, that is, in a real-time 

environment (Specht 1991; Seng et al. 1999);

■ The network can be used to rank input variables using (local) smoothing factors 

(Specht and Romsdahl 1994);

■ Since the network is not based on the gradient descent algorithm, it does not face 

the local minima problems, which results in rapid training;

* The network provides a mechanism for updating new knowledge (data) to the 

network and forgetting old data (Specht 1991; Seng et al. 1999);

■ The network can be optimized/calibrated easily using genetic algorithms (Ward 

Systems Group, Inc. 2003).
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5.3 FUZZY ADAPTIVE GENERALIZED REGRESSION NEURAL NETWORK 

(FA-GRNN)

This section presents the proposed network architecture. It differs from Sprecht’s 

classical GRNN (Specht 1991) in three ways. First, an additional layer of (fuzzy) neurons 

is introduced to capture and represent expert knowledge on causal factors. Additionally, 

since fuzzy neurons transform input values to a unit interval, this additional layer also 

facilitates as the input scaling step. Secondly, both the transparency and the accuracy of 

the classical GRNN are enhanced by adapting separate smoothing parameters, or “local 

smoothing factors”, as suggested by Specht and Romsdahl (1994). Thirdly, the network is 

trained using real-coded genetic algorithms, making the network optimization procedure 

more efficient and accurate. The pertinent details of the proposed fuzzy adaptive 

generalized regression neural network (FA-GRNN) are presented below.

The proposed FA-GRNN architecture is illustrated in Figure 5-1. It consists of 

five layers, namely: input, fuzzy neurons, pattern, summation, and output.

Input units

Fuzzy (input)
Neurons

Pattern
units

Summation
units

Output units
* ' \ 

Y { u )

Figure 5-1. Fuzzy Adaptive Generalized Regression Neural Network Architecture
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The input layer consists of input units that represent causal factors (of KPIs). 

Input units are merely distribution units. Input units channel the values of causal factors, 

x (i.e., input variables), to the fuzzy neurons in the second layer. The fuzzy input neuron 

layer represents the respective linguistic values as fuzzy sets of each input causal factor. 

Fuzzy neurons calculate the corresponding membership values and transfer them to the 

pattern layer.

The pattern layer consists of pattern units representing each data pattern (one 

exemplar, i.e., values of input vector u in day t) by one pattern unit. Hence the number of 

pattern units of a FA-GRNN model is equal to the number of observed data patterns (i.e., 

total number of days, T, represented in training dataset). Pattern units sum the squared 

values of the difference between the new and stored data patterns and feed this 

information into a nonlinear activation function (e.g., exponential). The pattern unit 

outputs are then passed to the summation units. The summation unit that generates XU)K 

sums the outputs from the pattern units weighted by the number of observations each 

cluster center represents. (K is a data-dependant constant). The summation unit that 

generates Y/(u)K multiplies each value from a pattern unit by the sum of sample Y, 

which is associated with cluster-centre X. The function of the output neuron consists in a 

simple division of Y/(u)K by ,/(u)K. In general, the direct mapping between inputs and 

output of the system is given in Equation 5-1:

y  = (5-1)

Where (5-2)
i=i

xt Input variable, i.e., causes (e.g., crew skill level, temperature)
y  Output variable, i.e., Key Performance Indicator (KPI) (e.g. Labour Productivity)
y  Network output (e.g. predicted Performance Factor)
n Number of factors
T  Number of data patterns
rtty Membership functions of input variable x,
u Input vector
k  Number of membership functions of each input variable
p  Total number of input membership functions

u
k
P
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c Center of the sigmoidal transfer function
0 s Sigmoid
a  Global smoothing factor
Gj Individual (local) smoothing factor

i ,  j  , t  , / Index

The interested reader is referred to the further research of Specht (1991) for a 

more detailed methodology and for the process of implementing this formula.

5.3.1 Smoothing Factors

As shown in Equation 5-1 and Equation 5-2, the only parameters of the FA-GRNN are 

the global smoothing factor ( a  ) and the local (individual) smoothing factors G; . Both a

and Gi are automatically calculated using the genetic algorithm (GA)-based optimization

procedure, which is described in Section 5.3.2. The global smoothing factor determines 

how tightly the network matches its prediction to the training data patterns. A higher 

global smoothing factor causes more relaxed surface fits through data. The local 

smoothing factor g ; is a positive value representing the relative significance of the Ith

input variable to the distance measurement D (e.g., city block distance, Euclidean 

distance).

5.3.2 Learning and Optimization Mode of the FA-GRNN Model

The learning and optimization of the FA-GRNN network is the process of finding the 

smoothing factors ( o  , o , )  through supervised learning. The results of the learning can

also be used to prune the network and finally determine the best network topology. The 

learning mode of the proposed FA-GRNN architecture is presented in Figure 5-2.

Consider a multi-input and a single-output (MISO) scenario, with n inputs 

x, ,x 2,...,xn (xi e  X t , i = 1,2,...,n) and the single output y. The learning data, which are

the basis for the construction of a fuzzy neural network, have the form of T input-output 

pairs, as given below:

The learning data set L consists in finding the mapping M : X  —> y  , provided its 

restrictions on learning data L. In general, the learning data set (5-3) may contain purely 

quantitative numerical data samples or mixed qualitative and quantitative samples of 

data.

(5-3)
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Input
learning

data
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f  learning

data

*

Learning 
Algorithm (GA)

Figure 5-2. Learning mode of the FA-GRNN

Accordingly, to characterize the mix of quantitative and qualitative data, we 

represent each input factor using fuzzy membership functions, as shown below:

Where is membership functions of input variable jc. , n is the number of input 

factors and k is the number of membership functions for each factor. Vector u 

represents the combined membership grades ( my ) in a single input vector in Equation (5- 

5) below:

Where total dimension of u is p  = n.k . Thus the learning dataset is a comprehensive 

representation of the data and knowledge describing the behaviour of complex systems.

When the desired output (i.e., key performance indicator) is best represented by 

quantitative measures, such as labour performance factors, target output values can be 

represented as in Equation 5-6.

(5-4)

(5-5)

(5-6)
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5.3.3 Parametric Optimization via Genetic Algorithms

To avoid getting trapped in a local optimal solution, the genetic algorithm’s robust 

optimization capabilities are utilized to calibrate the proposed FA-GRNN model.

5.3.3.1 Network Performance Index

The learning algorithm’s target is to find the best parameter values for retaining the 

smallest possible difference between the predicted value y t and the real output y t . In 

other words, the goal is to find the best smoothing factors to keep the network 

performance index(0, i.e., mean squared errors, defined in Equation 5-7, as small as 

possible.

Where y t is a predicted value computed using Equation (5-3) with input vector x. 

Additionally, the coefficient of a multiple determination (R2) provides an estimate of the

accuracy of the model. R2 is calculated as follows:

result in an R2 value of near 1 and a very poor fit less than 0.

5.3.3.2 Learning Based on Genetic Algorithm

To minimize the performance index (Q), a real coded genetic algorithm is applied, as 

described in Section 3.4 of Chapter 3. The tunable parameters of the FA-GRNN network 

are represented in a chromosome coded with a real vector. The first n real number 

represents the n local smoothing factors cx; (/'= 1,..., n), and the (n+l)th real number

represents the global smoothing factor a  .

The network is trained with the most widely used genetic operators, such as 

roulette-based selections, one-point crossover, and uniform mutation. The fitness function 

is defined as follows:

(5-7)

(5-8)

Where y  is the mean of y,  ’s values. According to Equation 5-8, a very good fit would

(5-9)
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Where Q is the performance index as defined in Equation (5-7). The Probability of 

Crossover is set to 0.9; the probability of mutation is set to 0.01; and the initial size of the 

population is set to 50.

5.3.4 Interpretation of the Network via Smoothing Factors

According to Equation 5-1, the larger the value of the individual (local) smoothing 

factor ai  , the higher the impact the input variable j  will have on the distance 

measurement and on the final output y . In other words, when sample data points for one 

variable have a greater smoothing factor than sample data points for a second variable, 

the first variable is said to be more important in predicting an outcome than the second 

variable. An examination of the relative ranking of individual smoothing values a ,

reveals which input variables are most important in determining the output. This property 

is used to identity the strength between causal factors and related key performance 

indicators in construction performance modeling.

5.4 EMPIRICAL VALIDATION OF THE FA-GRNN MODEL

5.4.1 Description of Data

The same dataset described in Chapter 4 (Section 4.3.1) is used to conduct the 

experiments to train and validate the FA-GRNN model. For the reader’s convenience, 

Table 4-1, which described the causal factors studied, is here reproduced as Table 5-1. A 

simple, cluster-based approach (Hong and Lee 1996) is used for designing membership 

functions for input fuzzy neurons based on the sample data.

Table 5-1. Causal factors that impact labour productivity in Pipe Hydro-testing

Causal Factor Description
FI WKL Work Load No. of pipe modules in progress
F2 EQA Equipment availability No. of cranes available
F3 MAV Manpower availability No. of pipefitters available
F4 TEM Mean Temperature The mean temperature of the air in 

degrees Celsius.
F5 PRE Total precipitation The sum of the total rainfall and the water 

equivalent of the total snowfall

F6 RWK Rework Pipe fabrication rework (work force hours 
spent on repairs)

F7 QAC Quality Assurance/ Quality 
Control input

No. of hours spent on QA/QC work.
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Figure 5-3 shows the membership function for Factors F1-F3 and F5-F7. Data 

for Factor F4 (i.e., temperature) are categorized into four respective seasons (due to a 

highly seasonal dependant nature) and membership functions are derived accordingly 

(see Figure 5-4).

F1: Workload F2: Equipment availability F3: Manpower availability^
1

Low I0.8 0.8

0.6 0.6
iMedii0.4 0.4 0.4 LM

0.2 0.2 0.2

00 20
Number of modules

40 60 15
Number of equip. Pipefitters:module ratio

F5: Total precipitation F6: Rework F2: Equipment availability
1

0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

00 10 15 1005
Precipitation-mm Rework hours Number of equip.

Figure 5-3. Membership functions.
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Figure 5-4. Membership functions for temperature (cold, average and warm).

5.4.2 Case 1: FA-GRNN Model Validation using Full Data Set

In this case, the proposed FA-GRNN architecture is realized using genetic algorithms, 

beginning with 132 training data patterns and tested with 32 data patterns. Figure 5-5 

shows the performance of the network in terms of a comparison between the actual (i.e., 

target) and network outputs, both in the training and testing data sets. The Mean Squared 

Error (MSE), i.e., Q of the FA-GRNN network is 0.002, may be compared to the best 

performance of the AND-OR neuron model (i.e., 0.0533), as presented in Chapter 4. The 

coefficient of determination (R2) of the FA-GRNN network is equal to 0.67. This is a 

comparatively significant improvement, and based on the visual analysis of the scatter 

plot shown in Figure 5-5a, one can conclude that this preliminary investigation into 

possible applications of the FA-GRNN model in modeling the complexity and the 

dynamics of the construction performance proves very promising. Figure 5-6 shows the 

corresponding test-error elapsed over several generations, which shows that the FA- 

GRNN model converges to an acceptable error smoothly. Appendix C presents a 

summary of the actual output (i.e., measured labour productivity factor) and the results 

predicted by the FA-GRNN model for all 164 records included in both the training and 

the testing datasets.

70

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



0.9 i
—— Actual

0.8
Network;

Actual and Network Output thru Patterns

±*0.7

100 
Item number

Actual vs. Network Output0.9

0.8

-i* 0.7

00 o  o0.6

0.5
0.5 0.55 0.6 0.65 0.7

Actual Output
0.75; 0.85

Figure 5-5. FA-GRNN Network performance (based on full dataset): (a) 
comparison of actual and network output through patterns, (b) Comparison of 
actual vs. network output.

Error
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Generations Elapsed

Figure 5-6. FA-GRNN test error in successive generations.

For comparison purposes, the same data set is fed into a multilayer back 

propagation artificial neural network (ANN). The test error (Q) in successive learning 

epochs is shown in Figure 5-7, which shows that the average error level is somewhat 

similar to the FA-GRNN network, but it is highly unstable.
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Figure 5-7. Traditional ANN test error in successive generations.

Comparison of Figure 5-6 and Figure 5-7 indicates that FA-GRNN model 

outperforms not only the AND-OR neuron model, but also the traditional ANNs.

5.4.2.1 Interpretation of FA-GRNN Results

During the training phase, the FA-GRNN model is trained adaptively with 132 data 

patterns, and the network’s robustness is tested with 32 data patterns. The resulting FA- 

GRNN network has the following local smoothing factors, as shown in Table 5-2. 

Accordingly, it can conclude that low manpower availability, low workload, and medium 

to high rework have the highest impact on pipe hydro-testing productivity for the time 

period represented by the dataset.

The above model was trained and tested with 169 data patterns representing 169 

working days. To exploit GRNN’s capability of modeling with sparse data, the following 

changes were made to the data pattern set: first, the patterns were categorized according 

to their respective months and 11 models were trained and tested; second, the patterns 

were categorized into respective (four) seasons, and 4 models were trained and tested.

The rationale in developing models using data sets representing months and 

seasons is that most of the possible causal factors of construction performance indicators 

will change dynamically as the construction project unfolds. For example, from season to 

season, changes in weather parameters can be observed; manpower and equipment 

availability will change based on the scope of the work scheduled; and more fabrication
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rework can be expected at the early and latter stages of the project due to the leaming- 

curve effect and compressed schedules, respectively. Both monthly and seasonal data 

pattern sets can be considered as natural clusters of data for construction performance 

modeling.

Table 5-2. Local smoothing factors and rankings from FA-GRNN model

CAUSAL FACTOR FUZZY INPUT SMOOTHING

FACTOR

RANK

FI Workload Low 2.96 2
Average 0.14 19
High 0.21 17

F2 Equipment Low 2.48 9
availability Medium 2.39 10

High 0.15 18
F3 Manpower Low 2.99 1

availability Low-Medium 2.62 8
Medium-High 0.00 24
High 0.01 22

F4 Mean Temperature Low 1.73 13
Average 0.01 23
High 2.65 5

F5 Total precipitation Low 0.35 16
Medium 2.15 11
High 2.06 12

F6 Rework Low 2.64 7
Low-Medium 2.85 3
Medium-High 2.73 4
High 2.65 5

F7 Quality Assurance/ Low 1.24 15
Quality Control input Low-Medium 0.08 21

Medium-High 0.08 20
High 1.28 14

5.4.3 Case 2: FA-GRNN Models Trained with Monthly Data Pattern Sets

To validate the proposed FA-GRNN model described above for sparse data, the model 

was trained and tested with eleven (11) data pattern sets, which were created by 

categorizing the original dataset (162 patterns) according to respective months. 

Summarized in Table 5-3 are the performance results of the model based on 11 data 

pattern sets. Comparisons between the actual output and FA-GRNN model outputs are 

shown in Figure 5-8.

As shown in Table 5-3, the number of training data patterns for each new data set 

varies from 8 to 16. Even though a significant reduction in the number of training data 

patterns (i.e., 132-M6) were made, in 54% of the cases (6 out of 11), the accuracy of the
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model (based on both Q and R2) is greater than the FA-GRNN model trained with the full 

dataset. In both cases, however, where training data patterns were less than 10, the 

accuracy of the model decreases, indicating insufficient pattern data. Conversely, in cases 

where numbers of training data patterns were higher than 15, model accuracy was 

increased by 43%. A possible explanation may be that with sufficient data patterns 

representing similar clusters of data, the proposed FA-GRNN model can produce better 

results, even with sparse datasets. As shown in Figure 5-9, the mean squared error of all 

11 different models converged smoothly to an acceptable error level.

Table 5-3. Summary statistics of FA-GRNN model trained with monthly datasets.

NUMBER OF 
TRAINING 
PATTERNS

NUMBER OF 
TEST 

PATTERNS

R2 MEAN
SQUARED
ERROR:Q

CORRELATION 
COEFFICIENT r:

All 132 32 0.667 0.002 0.829

April 16 3 0.962 0.000 0.981

May 8 2 0.257 0.004 0.705

June 12 2 1.000 0.000 1.000

July 15 3 0.722 0.001 0.853

August , 12 3 0.947 0.000 0.978

September 13 3 0.577 0.001 0.825

October 16 3 0.969 0.000 0.986

November 12 2 0.660 0.001 0.862

December 8 2 0.596 0.004 0.792

January 10 2 0.976 0.000 0.991

February 14 3 0.446 0.003 0.687
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Figure 5-8. a. Actual vs. network output comparison for April 2003 through August
2003.
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5.4.3.1 Smoothing factor analysis

Table 5-4 presents the normalized (local) smoothing factors for each dataset (representing 

11 different months) from April 2003 to February 2004. The highlighted values in Table 

5-4 indicate the most significant causal factors for each dataset. An analysis of smoothing 

factors reveals that the significance of each causal factor to the prediction of KPI (labour 

performance) varies across datasets; however, several causal factors appear prominently 

across the data sets. For example, manpower availability is a significant causal factor in 

73% of (8 out of 11) cases. Both rework and workload are also significant causal factors. 

These results are consistent with the results obtained from the FA-GRNN model trained 

with the full dataset (169 data patterns), described in Section 5.4.2.1.
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Table 5-4. Normalized smoothing factors representing the significance of causal factors in monthly datasets.

CAUSAL
FACTOR

FUZZY
INPUT

INDIVIDUAL SMOOTHING FACTOR (NORMALIZED)
April May June July Aug Sept Oct Nov Dec Jan Feb

Workload Low 0.08 0.53 0.01 0.00 0.59 0.73 0.49 0.27 0.87 0.13 0.67
Average 0.76 0.00 1.00 0.00 1.00 0.00 0.06 0.44 0.54 0.87 1.00
High 0.45 0.15 0.50 0.61 0.22 0.00 0.02 0.16 0.42 0.76 0.47

Equipment
availability

Low 0.12 0.00 0.06 0.99 0.00 0.85 0.53 0.02 0.64 0.65 0.29
Medium 0.59 0.29 0.62 0.72 0.08 0.44 0.06 0.38 0.63 0.50 0.54
High 0.17 0.00 0.09 0.00 0.00 0.87 0.00 0.07 0.60 0.28 0.53

Manpower
availability

Low 0.73 0.98 0.96 0.34 0.59 0.93 0.04 0.10 0.89 0.04 0.90
Low-Medium 0.98 0.00 0.02 0.00 0.02 0.89 0.29 1.00 0.81 1.00 0.50
Medium-High 0.60 0.40 0.86 0.01 0.63 0.97 0.49 0.91 0.60 0.40 0.37
High 0.11 1.00 0.32 0.19 0.12 0.41 0.11 0.03 0.38 0.87 0.56

Mean
Temperature

Low 0.32 0.00 0.01 0.84 0.15 0.65 0.68 0.01 0.04 0.62 0.07
Average 0.70 0.32 0.03 0.01 0.87 0.49 1.00 1.00 0.85 0.47 0.50
High 0.06 0.10 0.40 0.69 0.00 0.00 0.86 0.26 1.00 0.51 0.07

Total
precipitation

Low 0.33 0.00 0.71 0.08 0.00 0.09 0.33 0.57 0.63 0.12 0.55
Medium 0.86 0.09 0.99 0.17 0.01 0.74 0.94 0.33 0.74 0.80 0.76
High 0.78 0.81 0.28 0.69 0.21 0.93 0.00 0.41 0.69 0.39 0.60

Rework Low 0.97 0.56 0.54 0.00 0.00 0.00 0.21 0.24 0.69 0.76 0.28
Low-Medium 0.98 0.49 0.15 1.00 0.00 0.13 0.56 0.00 0.99 0.83 0.65
Medium-High 0.18 0.02 0.11 0.98 0.64 0.11 0.73 0.72 0.64 0.27 0.63
High 0.37 0.26 0.63 0.85 0.85 0.30 0.54 0.13 0.21 0.30 0.19

Quality
Assurance/
Quality
Control
input

Low 0.83 0.00 0.25 0.54 0.02 1.00 0.12 0.44 0.85 0.36 0.39
Low-Medium 1.00 0.00 0.00 0.00 0.34 0.00 0.23 0.04 0.43 0.83 0.83
Medium-High 0.84 0.88 0.00 0.85 0.04 0.00 0.10 0.00 0.98 0.06 0.22
High 0.84 0.16 0.18 0.90 0.80 0.53 0.25 0.02 0.96 0.70 0.15



5.4.4 Case 3: FA-GRNN Models Trained with Seasonal Data

In this case, four datasets were formed by grouping the full dataset into respective 

seasons (spring, summer, fall and winter), hypothesizing that data grouped into respective 

seasons have similar and unique characteristics that can possibly impact the labour 

performance. Summarized in Table 5-5 is a comparison of the performances of FA- 

GRNNs trained using four datasets based on seasonal data. Figure 5-10 illustrates the 

comparison of actual vs. network prediction.

Table 5-5. Summary statistics of FA-GRNN model trained with seasonal datasets.

NUMBER
OF

TRAINING
PATTERNS

NUMBER 
OF TESTING 
PATTERNS

R2
MEAN

SQUARED
ERROR:Q

All 132 32 0.667 0.002
Spring 24 5 0.8879 0.0005
Summer 38 9 0.9444 0.000
Fall 40 9 0.9334 0.0002
Winter 32 7 0.8061 0.001

Actual and Network Output thru Patterns Actual vs. Network output

ts  0.6
Actual
Network 29 patterns

<? 0.8

£-0.6
Summe r 47 patterns

49 patterns

®  0.8

£ 0.6
Winte 39 patterns

20 30
Pattern number

0.6 0.8 
Actual output

Figure 5-10. Actual vs. network output comparison for seasonal data categories
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Based on the results shown in Table 5-5 and on the visual analysis of Figure 5- 

10, one can conclude that the models trained with seasonal data sets have a better overall 

performance. Table 5-5 shows that all four seasonal dataset-based models outperformed 

the original model trained with the full dataset. As shown in Figure 5-10, mean squared 

error in test data sets smoothly converged into a very reasonable state.

Error

Generations Elapsed

Error °»*
1 __

G enerations E lapsed

Error

Generations Elapsed

Error oaz>

Generations Elapsed

Figure 5-11. Mean squared error (MSE) of test data patters of seasonal data 

5.4.4.1 Smoothing Factor Analysis for Seasonal Datasets

Summarized in Table 5-6 are the normalized individual (local) smoothing factors 

representing the significance of each causal factor in the four datasets formed based on 

particular construction seasons. The highlighted figures indicate the most significant
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causal factors in each dataset. An analysis of the smoothing factors reveals that results are 

consistent with Case 1 as well as Case 2.

Table 5-6. Normalized individual smoothing factors representing significance of 

causal factors in seasonal datasets.

INDIVIDUAL SMOOTHING 
FACTOR (NORMALIZED)

CAUSAL
FACTOR

FUZZY INPUT spring summer fall winter

Workload Low 0.69 0.20 0.57 0.96
Average 0.07 0.53 1.00 0.82
High 0.00 0.34 0.00 1.00

Equipment
availability

Low 0.95 0.04 0.72 0.56
Medium 0.01 0.62 0.21 0.24
High 0.00 0.91 0.80 0.82

Manpower
availability

Low 0.92 0.57 0.14 0.78
Low-Medium 0.22 0.08 0.00 0.04
Medium-High 0.76 0.45 0.71 0.00
High 0.33 0.05 0.26 0.91

Mean Temperature Low 0.31 0.09 0.06 0.86
Average 1.00 0.96 0.00 0.72
High 0.01 0.24 0.23 0.10

Total precipitation Low 0.98 0.96 0.22 0.73
Medium 0.41 0.98 0.72 0.47
High 0.93 0.58 0.57 0.19

Rework Low 0.98 0.42 0.54 0.24
Low-Medium 0.98 1.00 0.02 0.05
Medium-High 0.89 0.71 0.55 0.55
High 0.79 0.24 0.80 0.55

Quality Assurance/ 
Quality Control 
input

Low 0.09 0.01 0.00 0.97
Low-Medium 0.08 0.06 0.03 0.23
Medium-High 0.89 0.38 0.96 0.86
High 0.51 0.85 0.00 0.47

5.5 SUMMARY

This chapter introduced a novel fuzzy neural network, the Fuzzy Adaptive Generalized 

Regression Neural Network (FA-GRNN), for mapping input-output data with greater 

accuracy (as compared to the model presented in Chapter 4) for construction performance 

modeling. The proposed FA-GRNN automatically extracts the underlying nonlinear 

regression surface from available sample data. FA-GRNN is a nonlinear and 

nonparametric method (i.e., no assumptions are made regarding the distribution of the 

data in the model). Prediction (input output mapping) accuracy of the model is tested
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with 16 data sets; it was shown that the model provides better overall performance when 

it is trained with data representing seasonal characteristics.

The proposed FA-GRNN model introduced fuzzy neurons to the classical GRNN 

architecture. By doing so, the user of the model (i.e., construction managers) is provided 

with a mechanism for incorporating linguistic values as causal factors. This added level 

of information granularity enables better capturing and representation of the qualitative 

knowledge of the system user.

By introducing local smoothing factors to the classical GRNN, the transparency 

of the proposed FA-GRNN model is enhanced up to a level that the model can be used to 

identify the relative significance of each input causal factor. This important feature of the 

FA-GRNN model is later used as the foundation of performance diagnostic inference, 

which is described in Chapter 7.

It is noted at this stage that significant improvements can be made to the accuracy 

of the FA-GRNN model, through further development of: (1) the input causal factor 

selection using expert knowledge, (2) the qualitative data collection from construction 

projects on daily basis, and (3) the efficient and practical membership function estimation 

using quantitative and qualitative data collected from the field (i.e., from experts). In 

view of this, Chapter 6 presents the efforts made to enhance the proposed FA-GRNN 

model using several knowledge representation and acquisition techniques to condition the 

input causal factors.
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CHAPTER SIX
6. DATA-DRIVEN MEMBERSHIP FUNCTION ESTIMATION

“A very widespread question about fuzzy set theory is: from what kind o f  data and how can 
membership functions actually be derived? Answering this question is very important fo r  practical

applications” Dubios andPrade 1980

6.1 INTRODUCTION

To ensure the efficient performance of a diagnostic reasoning system, the acquisition and 

representation of knowledge from domain experts become the most essential tasks in the 

development process. Construction projects are managed by a group of experts, ranging 

from frontline supervisors, representing each trade, to the construction manager who 

oversees the entire project operations. Each individual possesses a certain amount of 

causal knowledge regarding the task they supervise based on his or her on-the-job 

experience, previous experience on similar jobs, and the training and education he or she 

has received. This study is designed to reason about construction productivity from the 

construction activity-level and upwards. Thus knowledge acquisition is carried out at the 

front-line supervision level, in two stages:

(i) Causal knowledge representation to identify possible causal factors of key 

performance indicators (i.e., finding out what is likely to be causing performance 

deviations); and

(ii) Daily quantitative and qualitative (subjective) judgments about the causal factors. 

This study uses fuzzy set theory, more specifically membership functions, to process

knowledge elicited from (a group of) experts. The representation of causal knowledge 

and of developing membership functions is a very under-researched area, but is 

nevertheless a vital aspect if fuzzy sets are to be used in construction performance 

modeling.

This chapter first reviews membership function determination techniques, and then 

suggests suitable development techniques for construction performance modeling. A 

pragmatic approach to causal knowledge acquisition (i.e., to identify the causal factors) 

using a modified version of the nominal group technique is presented. Next, a 

parsimonious approach to collect and analyze both objective and fuzzy-linguistic 

assessments on the causal factors is presented along with validation using data collected 

from an actual construction project. Subsequently, a systematic procedure is presented to
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transform linguistic values into numerical values that are ultimately used for developing 

membership functions, thereby developing a fuzzy-logic-based construction performance 

diagnostic reasoning system.

6.2 MEMBERSHIP FUNCTIONS

A membership function ( juA (x)) is a function that defines the degree of an element’s (x) 

membership in a fuzzy set A. The degree of membership to a concept is indicated by a 

number in the interval [0,1]. A membership function maps every element of the universe 

of discourse X to the interval [0,1]. This can be formally represented as:

juA{ x ) : X ^ [ 0,1]

Figure 6-1 shows sample membership functions defined for three fuzzy sets, 

named Cold, Average, and Warm, of the linguistic variable ‘temperature’. The 

construction of the membership function is fundamental work in real-world applications 

of fuzzy set theory. There is, however, no unified form of membership function(s) 

available that can be readily applied in practical applications, due to the context- 

dependent nature of fuzzy sets. Piecewise-linear (e.g., triangular or trapezoidal) 

membership functions are commonly used due to factors such as mathematical simplicity, 

good interpretability, and a minimal amount of domain knowledge requirement.

Temperature: Cold,Average and Warm

0.9

0.8

0.7

cold average ’ warm
0.5

0.3

0.2

100
Degrees-F

Figure 6-1. Sample Membership functions
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6.2.1 Properties of Membership Functions

Although there is little consensus among membership function development techniques,

the majority of the membership functions used in practical applications have the

following properties:

(i) Membership functions map /t[a, b] to [0,1] or to [1,0] on an arbitrary interval [a, b].

(ii) Continuous and monotonic: All membership functions are continuously increasing 

or decreasing functions or can be divided into a monotonically increasing or 

decreasing part.

(iii) Boundary condition: Membership functions satisfy boundary conditions fi{a)=0 and 

//(b)=l (for increasing functions), or //(a)= 1 and //(b)=0 (for decreasing functions), 

simply put, membership functions are bounded in [0,1].

(iv) Fuzzy convexity: Typically membership functions are convex (with a convex 

curve).

(v) Normal: At least one member has a membership degree of 1.

Some of these membership function properties are shown in Figure 6-2.

Normal and sub-normal Convex and non-convex
membership functions membership functions

0.9

0.8

0.7

CD
0.6

CD
T3
Q_

i  °-5
CD

f  0.4 
£ Normal

0.3
Sub-normal

0,2

x

1

0.9

0.B

0.7

0,6 convex

0.5

0.4

0.3

0.2

0.1

0

Figure 6-2. Properties of membership functions: (a) normal vs. subnormal, (b)
convex vs. nonconvex.

6.2.2 Desirable Characteristics of Generation of Membership Functions

In construction performance modeling, the following characteristics are desirable for an 

efficient membership function generation mechanism:
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(i) Accurate: The representing membership function should reflect the multiple 

records of expert knowledge (where available) contained in the sample data points 

in the most accurate way possible.

(ii) Easy to collect necessary data: The type of data required should be easy to collect 

without disrupting the already-busy frontline supervisor’s schedule. In other words, 

the methodology should require only a limited set of training samples.

(iii) Flexible: The methodology should provide a broad family of membership 

functions, both linear and non-linear, to represent simple and complex causal 

factors, respectively. The number of parameters in the functional representation 

should be as small as possible. A free functional form that preserves the shape of 

the sample data would be a better choice.

(iv) Dynamic: The methodology should be able to capture and represent the time 

variant nature of the causal factors. For example, the parameters of the membership 

function should be easily adjusted to represent the different stages of construction 

and or seasonal impacts where applicable, i.e., changing contexts.

(v) Computationally inexpensive: The methodology should be easy and inexpensive 

to implement.

6.2.3 Interpretation of Membership Functions

Several different interpretations of the meaning of membership functions (i.e., what does

graded membership mean?) can be found in the current literature. Consider the vague

predicate “Today’s temperature (x) is Cold (C).”

What does it mean to say ̂ a(x) = 0.8?

Pedrycz and Vukovich (2002) categorized the interpretations into three main views as

follow:

(i) Likelihood view: 80% of a given population of experts declared that today’s 

temperature is cold. This corresponds to the frequency-driven statistical methods 

(e.g., Yes/No experiments) and implicitly assumes that there is a pool of experts 

available.

(ii) Random set view: 80% of a given population of experts described “cold” as an 

interval containing today’s temperature. This corresponds to the interval estimation 

and implicitly assumes that there is a pool of experts available.

(iii) Typicality view: Today’s temperature is away from the “seasonal average” (i.e., 

prototypical object/value) by a degree of 0.8 (a normalized distance).
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Each view is associated with different membership function elicitation methods. For 

example, the likelihood view is associated with a horizontal approach to membership 

estimation while the random set view is associated with vertical method and interval 

estimation. Hence, the interpretation that membership functions shall have in construction 

performance modeling must first be decided, and only then can an elicitation method be 

implemented. As identified in Zadeh’s (1965; 1975) original work on fuzzy sets, 

membership functions are subjective and context dependent. Fuzziness arises mainly due 

to subjectivity based on the context, and not because of errors and inconsistencies of 

measurement. Hence, neither the likelihood nor random set views are qualified for the 

practical problem under study. In this study, the fuzzy membership was elicited by 

adopting the typicality/similarity view. Related membership function elicitation methods 

are reviewed and suitable methods are proposed and tested in the subsequent sections.

6.2.4 A Review of Membership Function Determination Techniques

The membership function determination techniques are developed to answer the practical 

need of designing membership functions. As Bilgic identified (Bilgic and Turksen 1997), 

each elicitation method is developed with a “specific (sometimes implicit) interpretation 

of the membership function in mind.” It is crucial to identify an appropriate elicitation 

method that matches with the requisite interpretation, i.e., similarity view in this study.

This section reviews membership function determination techniques, which 

depend upon sample data points. (The review is mainly based on (Medasani et al. 1998; 

Ross 1995; Sancho and Verdegay 1999; Turksen 1991).)

Figure 6-3 illustrates different membership function elicitation techniques, 

categorized into four groups: (1) heuristic methods, (2) statistical methods, (3) clustering- 

based methods, and (4) exemplification methods (i.e., experimental acquisition of 

membership values).
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6.2.4.1 Heuristic Methods

The heuristically based membership function development consists of selecting shapes 

and parameters of membership functions in accordance with previous experience, rules- 

of-thumb and often-used shapes. This can be considered a purely subjective technique.

In this case, the general approach is to first select the shape of the membership 

function from a list of families, and then to fine-tune the values of the parameters of the 

function. The most frequently used shapes for membership functions are: (1) Piecewise 

linear functions (e.g., triangular and trapezoidal shapes), and (2) Piecewise monotonic 

functions (e.g., the ^-functions, exp) (Dombi 1990; Hisdal 1988; Medasani et al. 1998). 

Due to its simplicity, the heuristic method is commonly applied in construction 

management applications (e.g., (Ayyub and Haider 1984; Fayek and Oduba 2005; Liu 

and Ling 2005; Singh and Tiong 2005)). Unfortunately, the disadvantages of this method 

are several. For example, a lack of understanding about the complex nature of some 

variables limits the proper selection of shapes, the parameters associated with the 

membership functions must therefore be provided by experts and, for a large number of 

input variables, it is impractical to estimate the parameters with a reasonable accuracy 

level. Applications of this method to membership function determination in a poorly 

understood phenomenon such as construction performance modeling can lead to 

inaccurate models (via inaccurate values of various parameters).

6.2.4.2 Pairwise Comparison

As explained in (Pedrycz and Gomide 1998), membership functions can be estimated by 

the pairwise comparison method proposed by Saaty (1980). This procedure involves a 

series of pairwise comparisons (using a ratio scale, usually involves 7 quantization levels) 

of the elements pertaining to the description of fuzzy set A in a finite universe of 

discourse.

The membership values at sample elements ( x1,x2,...,xi,...,xn , i e l  ) from a 

pairwise comparison matrix are obtained in two steps, as described below. First, select a 

pair of elements ( x; , x f) and choose the level of preference of xt over xy satisfying the

concept A. Prioritize the preference of x, over xy, and prioritize the numerical value

associated with this pair ( jUj). The results of the pairwise comparison process are

arranged in a matrix form P. The eigenvector ( (p ,,p2»—>M„)r ) associated with the
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largest eigenvalue is the desired vector of membership values. The elements of matrix P 

satisfy

Py>°> P9 = —  , i.j = l,2,...,n
P j i

Additionally, all diagonal elements of A are equal to unity, py= 1; furthermore, A satisfies 

the property of reciprocality sincepy.pjf=l;A is also transitive in the scene thatPik-(Pkj)=Pij

Consistency Measure

In general, user subjectively has the value of ay. Hence the transitivity property cannot 

always be strictly enforced. A consistency index (Cl) has been introduced (Saaty 1980) to 

estimate the departure from consistency by C.7. = (X-n)/(n -1 ), where X is the maximal 

eigenvalue, and n is the number of elements (variables) being compared.

For each matrix of size n, random matrices were generated (Saaty 1980) and their 

mean Cl value, called the random index (RI), was computed. Using these values, the 

consistency ratio (CR) is defined as the ratio of the Cl to the RI. It was concluded that a 

consistent reciprocal matrix should have the CR <0.1 (Saaty 1980). When the CR>0.1, 

the user is requested to review his or her pairwise comparison.

Weighted Least-Square Method

Chu et al. (1979) proposed an alternative method to eigenvalue problem to estimate 

membership values using pairwise comparison, using a weighted least-square method. It 

aims to determine the membership values q, , such that, given py » q;/q 7 . The

membership values can be obtained by solving the constrained optimization problem

n n

Minimize
;=1 j =1

n
Subject to constraint ^ q ; = 1

;=i

A normalized fuzzy set can be obtained by normalizing q , . The reader is referred 

to the work of Chu et al. (1979) for the mathematical details of solving the above 

nonlinear problem. Compared to the eigenvector method, the weighted least-square 

method is much easier to understand.
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The main disadvantage of these methods of membership value estimation via 

pairwise comparison is that when the number of elements of the universe of discourse is 

large (e.g., more than 10), the pairwise comparison procedure becomes cumbersome, 

thereby dampening the consistency of comparison. However, these methods can be used 

in cases where a slightly low amount of sample elements represent the context.

6.2.4.3 Statistical Methods

Statistical methods based on probability theory are used to determine membership 

functions for fuzzy sets when the elements have a defining feature with a known 

probability density function (Civanlar and Trussell 1986). Statistical based methods of 

membership determination involve two steps: (1) the determination of probability density 

function, and (2) the transformation of probability distributions into possibility 

distributions. Generally, histograms of elements provide information regarding the 

distribution of the input (and output) values and probability distributions are modeled by 

a mixture of parameterized functions such as Gaussian and exponential. The problems in 

converting probability distributions to possibility distributions have been examined by 

several authors (e.g., Civanlar and Trussed 1986; Devi and Sharma 1985; Dubois and 

Prade 1986). In a construction management-related application, Oliveros and Fayek 

(2005) used the statistical based method proposed by Dubois (Dubois and Prade 1986) to 

determine the membership function of construction activity duration for activity delay 

analysis. However, statistical based methods can be applied only when sufficient data is 

available to substantiate such distributions by statistical analysis. Furthermore, 

membership functions derived based on probabilistic distributions theoretically represent 

the frequency of occurrence instead of subjective opinion(s) based on different contexts. 

This technique is suitable to determine membership functions when experts are not 

available to provide subjective assessments and sufficiently large number of experimental 

data is available to derive probability-possibility distributions.

6.2.4.4 Methods Based on Clustering

According to Pedrycz (1995), “fuzzy clustering forms another important avenue of 

methods of membership function estimation. The primary objective of fuzzy clustering is 

to partition a set of numerical data into a series of overlapping clusters whose degrees of 

belongings are treated as membership functions. The method is concerned with a fuzzy
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partition (a family of fuzzy sets) of the universe of discourse rather than a single 

membership function.”

As Medasani et al. (1998) states, the Fuzzy C-Means (FCM) (Bezdek 1981) 

algorithm is one of the most popular fuzzy clustering algorithms. The FCM algorithm 

partitions a collection of n vectors (X={xl, x2, ..., xn}) into c fuzzy groups such that the 

weighted within groups sum of squared error objective function is minimized. The 

interested reader is referred to (Bezdek 1981) for detail description of the algorithms. As 

identified in various literature (Chen and Wang 1999; Medasani et al. 1998), the FCM 

algorithm must have the following features:

■ The number o f classes must be provided to run the algorithm. There is no standard 

procedure to determine the optimal number of clusters.

■ The membership values generated do not typically represent degrees of belonging, 

but rather “degrees of sharing”.

■ The memberships cannot distinguish between a moderate outlier and an extreme 

outlier. That makes the algorithm sensitive to outliers.

Another important factor in the FCM algorithm is the fuzzy exponent m. The 

parameter m is selected according to the problem under consideration. When m-M , the 

fuzzy c-means converges classical c-means. When m-> infinity, all cluster centers tend 

towards the centroid of the dataset. Currently, there is no theoretical basis for an optimal 

choice for the value m.

Several alternative clustering-based techniques to determine membership 

functions and fuzzy rules (as a joint exercise) from numerical data (training samples) can 

be found in the literature (e.g., Hong and Chen 1999; Hong and Chen 2000; Hong and 

Lee 1996; Wu and Chen 1999). Hong and Lee (1996) proposed an approach based on 

fuzzy clustering and decision tables. After identifying its computational limitations in 

cases where the numbers of variables become larger (hence the complexity of the 

decision table), Hong and Chen (1999; 2000) proposed some augmentations to Hong and 

Lee’s (1996) method, namely the “merging-decision-table-first” method and the 

“merging-membership-functions-first” method. However, all three methods (Hong and 

Chen 1999; Hong and Chen 2000; Hong and Lee 1996) need to predefine the 

membership functions of the input linguistic variables. Having identified the limitations 

of Hong and Lee’s (1996) work, Wu and Chen (1999) proposed an alternative method to 

construct membership functions and fuzzy rules through training examples using a -cuts 

of fuzzy equivalence relations and a  -cuts of fuzzy sets. Results were compared with
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Hong and Lee’s (1996) work and highlighted the main advantages as (1) better average 

accuracy, (2) fewer rules, and (2) no need to predefine membership functions or partition 

the input/output space.

The clustering-based membership function determination techniques discussed 

above have few common characteristics such as (1) algorithmic nature, (2) depends on a 

large amount of numerical data (training samples), and (3) computational complexity, 

which makes them less candidates for construction performance modeling applications.

6.2.4.5 Exemplification

As described in Zadeh (1972), exemplification is a method of membership degree 

estimation with partial information about the concept using finite number of samples in 

the universe of discourse. Dubois explains (Dubois and Prade 1980) that in order to build 

a membership function, A= “Cold” temperature, we may ask the frontline supervisor 

whether today’s temperature is “Cold”. To answer, the frontline supervisor has to use one 

among several possible linguistic truth-values, e.g., true, more or less true, borderline, 

more or less false, false. The simplest method is then to translate these linguistic levels 

into numerical ones: respectively, 1, 0.75, 0.5, 0.25, and 0. A discrete representation of 

the membership function is thus obtained by repeating the query for several temperature 

values. The result is given as a set of discrete data points on a plane. Two key methods to 

determine continuous membership functions using acquired sample membership values 

are (Klir and Yuan 1995): (1) interpolation, and (2) curve fitting. Discussions on selected 

curve fitting and interpolation techniques are given in subsequent sections.

From the above review, it can be concluded that to use exemplification for any 

practical application, both the sample membership value estimation and membership 

function determination method should be tailored to suit the application. This study 

exploits membership function exemplification as a means of obtaining sample 

membership values. A detail discussion on a novel approach to elicit membership values 

from a group of construction experts is presented in Section 6.4 of this chapter.

6.2.5 Curve Fitting Techniques

The intent of curve fitting is to find a mathematical function that fits the sample data 

points, which are collected from expert opinion. Generally, selecting the function of a 

certain form (e.g., Gaussian) is based on theoretical reasons. The curve fit finds the 

specific coefficients (parameters) that make that function match the data as closely as
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possible. The process of finding the coefficients for the fitting function is called curve 

fitting. The curve with a minimal deviation from all data points is obtained by the method 

of least squares.

In construction performance modeling, however, the behavior of causal factors 

does not necessarily follow a particular functional form, or a family of known functional 

forms; hence the applicability of curve fitting for the problem under review is less 

appropriate. In contrast, the interpolation methods (i.e., the process of estimating the 

outcomes in between sampled data points) become a practical solution to the problem.

6.2.6 Interpolation Techniques

In contrast to the curve fitting approach, the aim of interpolation is to find a polynomial 

that goes exactly through the sample data points. Klir and Yuan (1995) proposed using 

Lagrange (polynomial) interpolation for constructing membership functions from sample 

data. Klir and Yuan also identified that the complexity of the function increases with the 

number of data points and the risk of over fitting data. Farin (1990) noted that although 

“Lagrange interpolation is simple, unique, and has a nice geometric interpretation, 

nobody uses it in a design situation” because it exhibits “wild wiggles that are not 

inherent in the data”. This problem is called as “Runge phenomenon.” This problem is 

commonly resolved using piecewise polynomial curves, a.k.a. splines (Farin 1990). 

Nevertheless, Chen and Otto (1995) argued that neither of these least-squares or spline 

methods satisfy the constraints of membership functions, i.e., mainly the monotonic and 

convex property and the condition that membership functions are bounded in [0,1]. For 

example, using a sample dataset presented in (Chen and Otto 1995), Figure 6-4 illustrates 

the Runge phenomenon and also shows why unconstrained interpolation cannot be used 

for membership function determination (unnecessary “wiggles” that make the function 

overshoot beyond the [0,1] range).
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Figure 6-4. Unconstrained interpolation of sample data

There is therefore a need for algorithms that preserve the monotonicity or 

convexity properties of the data, to determine membership functions from interpolation 

methods. Two noteworthy competitive methods that preserve the monotonicity or 

convexity properties of the data type are as follows:

1. The monotone piecewise cubic interpolation method, developed by Fritsch and 

Carlson (1980), and

2. Quadratic Bernstein polynomial interpolation method developed by McAllister 

and Roulier (1981):

It is noteworthy to mention that these two constrained interpolation methods 

demand monotonic data assumed to be sufficiently accurate to warrant interpolation, not 

approximation, i.e., curve fitting. These methods do not work for scattered data points. 

The methodology proposed in Section 6.4, using a semantic differential approach to 

obtain sample membership values guarantees monotone datasets. A description of each 

algorithm is given below.

6.2.6.1 The monotone piecewise cubic interpolation

The monotone piecewise cubic interpolation method developed by Fritsch and Carlson 

(1980) or its improved version by Fritsch and Butland (1984) claims that it preserves the 

properties, such as monotonocity and convexity, that are presented in the data.
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The algorithm for constructing a piecewise cubic interpolant p(x) to 

{(x,,/^):/ = 1,2,...,«} can be represented as follows:

p(x) = d, + d t+1 -  2A, 
h?

(x -x ,.)3 +
•2J(. -  dM + 3A(-

h;
( x - x ; )2 + d l(x ~ x l )+ p ,

■x.whered j  = p ' f a ) j  = i,i + l ; A ,  = / / (+l - / / , ; A, = xm

The conditions necessary for the above cubic interpolant to be monotone in a 

subinterval /  = [x;,x1+l] are given in (1980). The slopes at x; are chosen in such a way

that p(x) is shape preserving. This means that on intervals where the data is monotonic,

so is p(x) . At points where the data have a local extremum, so does p{x).

6.2.6.2 McAllister and Roulier Algorithm

Chen and Otto (1995) proposed to use a constrained interpolation technique based on the 

McAllister and Roulier algorithm (Mcallister and Roulier 1981) to determine 

membership functions. Chen and Otto’s method produces a monotonocity and convexity 

preserving the quadratic Bernstein polynomial, which qualifies as a membership function. 

The method is fast and efficient to implement.

Because of the algorithm’s importance as one of the most suitable techniques for 

determining membership functions from sample membership values, a detailed 

description of the algorithm is presented below.

6.2.6.3 Bernstein Polynomial

The Bernstein polynomial, defined explicitly by

B" (x) = x' (l -  x)" '
o ;

Where the binomial coefficients are given by

n\/  \n _< ifO < i < n
i l (n - i )
0 else

As shown in Figure 6-5, the Bernstein polynomial B;, n(x) has the following useful 

properties that make it an ideal candidate for membership function determination:

(i) Normalization between 0 and 1,

(ii) Single unique local maximum at x=i/n, and

(iii) Positive (i.e., y  values greater than zero always).
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Figure 6-5. Bernstein polynomials: the quadratic case

6.2.6.4 McAllister and Roulier Algorithm

The shape-preserving piecewise interpolation algorithm proposed by McAllister and 

Roulier (1981) is constructed based on quadratic Bernstein polynomials.

Let d0 =  (x0 , ju0) and d x = (x ,, /q ) be two non-decreasing data points (x 0 < x ,).

Let o = (a,b) be an arbitrary data point with a = (x0 + x, ) /2 . Let g  be the first-degree

spline passing through the points d0, dx, ando , with a single knot at a.

Let B2(g) be the second-degree Bernstein polynomial of g on [a,b]

B2{d0,o,dl } = B2{g \x)

= (x, - x 0) 2{g(x0Xx, - x ) 2 + 2b(x- x0Xxj -x )+ g (x ,X x -x 0)2}

'1

-»■

Figure 6-6. Second degree Bernstein polynomial
%  3

(6.1)
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The interpolation algorithm has two key steps: (1) slope calculation and (2) knot 

point insertion.

STEP 1. Slope Calculation: The first step is to calculate the slopes (w;) at each known 

data point dt {(x; ,p, )}^0 . To maintain the condition that the slope at the end-points of the 

membership function (i.e., when fj.{x) = 0 or 1) equals zero, we set mi = 0 when i = {o, n\ .

Otherwise, for non-decreasing data points (i.e., p ; < p,+1), to calculate mi at each 

intermediate data points, first define st =(p, - p M)/(x, - x;1 ) for 1 < z < TV . Note that a 

similar algorithm can be used for non-increasing data points.

(i). If s, ■ sM < 0 , set ml = 0 to guarantee that local extrema of data (i.e., height of the 

membership function) has a zero slope. This also segments the data into 

monotonically increasing and monotonically decreasing (or vise versa) subsets.

(ii). Otherwise, if [.s’; |> |.v(-lt[, extend the line through d t of slope st until it intersects

the horizontal line through dj+l at the point b -  (xh, jui+l). Refer to Figure 6-7.

Then define

=(*M-1+*i)/2 (6.2)

Which is the abscissa of point c shown in Figure 6-7. The slope mi at (x; , /r(.) is defined 

as

m, =(Fnl -Vi )l{xc - x, ) (6.3)

Note that c > X’ +X,+1 .
2

(iii). If, on the other hand, |sf | < |.vi+1 j , the above procedure is reversed by extending the

line through c/, of slope sj+t until it intersects the horizontal line through <7;_,.
Then set

xc =(xi_i +xb)/2 (6.4)
and

= (p; -  H, I )/(x; -  xc) (6.5)
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Figure 6-7. Determination of slope m■,

STEP 2. Calculate Knot Points: Insert a point in between each point d i and dM , and 

then fit a quadratic Bernstein polynomial to the 2n-l data points.

Let Rt be the rectangle determined by the points di (x ;,p ,)  and d M (x/+, ,p /+1) 

and let the midpoint segment of it be a line segment that bisects R, vertically and is 

bounded within each Iit . Refer to the Figure 6-8. Let L; be the line that passes through 

dj (x,,p ,)  with slope mi . There are two distinct cases related to the neighboring slope 

lines Lj and Lt ., depending on whether the knots change the local convexity of the 

spline or not. Even though the knot point calculation procedure described in (Chen and 

Otto 1995) is a general method for all the knot points, there are nevertheless slight 

modifications that have been made to the algorithm for the first and last knot (i.e., end 

knot) points. They are described below.

(i). Knot point calculation (general case)

Case 1. Lj and Li+l intersect at a point z = (xz , pz) in Rl . Refer to Figure 6-8a. Note that 

this case happens when .v, < .s-(+l.
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Figure 6-8.a. Knot point determination- Case 1 

Accordingly in this general case,

m M x M  ~ m i x i + M i  ~  M m
Xz

Let

v =

w-

X ,  +  X ,

mM -  mi

f
->L,

x , 4- x. W

JJ

X z + X M  r  
~ ’ ;+l

xz + xM W

(6 . 6)

(6.7)

(6 . 8)
J J

Let L be the line joining v and w and define ju = L(xz). Let o, = (xz,/r) be the knot 

point

(Mw ~MvXxz ~ Xy)
° i  = ( x z , L (x J ) z X z > My  + -

X W ~ X V J
(6. 9)

Thus, the interpolation function //(x) can be defined on [x; ,x i+1 ] as follows:

m {x )~-
\ b 2 ^ d X x )  on[xi ,xz ]

?i>^i>dM \x) on[xz ,xM ]

Case 2. L t and L M  do not intersect at a point z = (xz , p z ) in R t . Refer to Figure 6-8b. 

Note that this case happens when st > sj+i. The knot o is determined similarly as in case 

1, but in this case

x, =
r x0 + X , ^

(6 .10)

All equations (6.7- 6.9) remain valid for points v , w ando.
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Figure 6.8.b. Knot point determination- Case 2

Both first and last knot point calculations follow the same algorithm described above, 

but can be simplified, as shown below, to include the zero slope conditions.

(ii). First Knot Point Calculation

First knot point is in between d 0 and d x where m0 = 0 .

Case 1. Lj and Li+i intersect at a point z = (xz , \iz) in Rt . Refer to Figure 6-9a. Note that 

this case happens when sl < s:l,. Accordingly,

Mi ~  Mo

Let

x 0 + x z
>L0

r . w x 0 + x z x 0 + x z

(6 .11)

(6.12)

- > L X
x z + x x ^3x, - x  ^

-,P] -W] (6.13)
J J

Let L be the line joining v and w and define ji — L(xz). Let dl = (xz , jj.) be the knot 

point

o, = (xz, L(xz)) = L .  Mv +
(mw ~ Mv X X z - * v ) {Mw~MoXXz ~ Xv) (6.14)
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Figure 6-9.a. First knot point determination - Case 1

Case 2. Ll and Ll+l do not intersect at a point z = {xz ,\xz ) in Rt . Refer to the Figure 6-9b. 

Note that this case happens when s, > sM . The knot o is determined similarly as in case 

1, but in this case

(6.15)

All equations (6.12- 6.14) remain valid for points v , wand o .

Figure 6-9.b. First knot point determination -  Case 2. 
(iii). Last knot point calculation

Last knot point is in between d N , and d N where m0 = 0 .
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Case 1. Ln_x and LN intersect at a point z = (xz , p z) in Rj} refer to Figure 6-10. In this

case,

Mn  ~  Mn -i
* z  =  X N - 1 + ■

Let

mN -  1

+  X z ,L'N- 1
X N - l  +  X z

J J

X N - \  +  X z
’ Mn -  1 +  m  N-l

f  \ \x - xv z  A N - \

(6.16)

(6.17)
JJ

w-
xz + x N

,L f x z + XN^
•N

X z  +  X N
Mi v

and

oi =(xz ,L(xz)) =

(6.18)

* z >  Mv  + •
{m w -  M v X X z - X v ) ' \ _ ( „  „  A V n - M v X X z - X v )

X w ~ X v J
X z -  Mv  + -

x w ~ x v y
(6.19)

N-1i

Figure 6-10. Last knot point determination -  Case 1.
Case 2. In the case where LN_X and LN do not intersect at a point z = {xz,\xz ) in Rt , as

shown in Figure 6-11,

x, =
f x + x  AxN_i ~rxN

(6 .20)

All equations (6.17- 6.19) remain valid for points v , wand o .
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Figure 6-11. Last knot point determination -  Case 2.

6.2.6.S Comparison of “Fritsch and Carlson Algorithm” and “McAllister and 

Roulier Algorithm”

The ability of the above shape-preserving quadratic interpolation algorithm is 

demonstrated using three different data sets. The first dataset, used in Figure 6-8, is a 

monotonically decreasing dataset from (Chen and Otto 1995), namely:

Maximum Stress (MPa) (x) 200 210 225 230 250

Membership degree (p) 1 0.95 0.5 0.1 0

As shown in Figure 6-12 (b), an unconstrained cubic spline interpolation 

introduces unwanted oscillations that make the curve overshoot beyond boundary 

conditions, i.e., [0,1]. However, as shown in Figure 6-12 (c) and (d), both a monotone 

piecewise cubic interpolant and a quadratic Bernstein interpolant maintain the shape 

implicit in the data set and also satisfy the constraints imposed by membership functions. 

Also note that the results produced by the two selected constrained interpolation 

algorithms are almost identical for this particular dataset.
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Figure 6-12. Results on monotonically decreasing dataset from (Chen and Otto 1995).

The second dataset, used in Figure 6-13, the membership values of which are 

monotonically increasing and then monotonically decreasing, for increasing values of 

elements of the set, is from ((Klir and Yuan 1995), p290), namely:

X 0 0.5 0 . 8 1.0 1.2 1.5 0

Membership degree (p) 1.0 0.2 0.9 1.0 0.9 0.2 0
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(a) Linear interpolant (b) Cubic spline interpolant
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Figure 6-13. Results on monotonically increasing and then monotonically 

decreasing dataset from (Klir and Yuan 1995).

Results shown in Figure 6-13 also indicate that both constrained interpolation methods 

produce acceptable results while an unconstrained cubic spline shows excessive 

undulations.

Thirdly, a more ‘complex’ dataset, used in Figure 6-14, is a representative of a 

real-life construction data. These are actual data obtained from the causal factor, 

“medium temperature”.

Temperature-x 6 9 13 14 17 20 24 26 30

Membership degree (p) 0 0.33 0.77 1 0.83 0.77 0.43 0.33 0
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Figure 6-14. Results on monotonically increasing and then monotonically decreasing 
dataset for causal factor “medium temperature”.

Figure 6-14 also demonstrates results similar to previous datasets, proving that 

both algorithms can preserve the monotonocity and convexity of the sample data. It can 

therefore be concluded that both the monotone piecewise cubic interpolation method 

proposed by Fritsch and Carlson and Chen and Otto’s method, which is based on 

quadratic Bernstein polynomial method, are suitable constrained interpolation methods to 

determine membership functions from sample membership values.

6.3 INTRODUCTION TO THE FIELD STUDY

The field study presented in this section is designed and conducted to obtain subjective 

opinions on daily working condition(s), and subsequently transforming them into sample 

membership values in a structured manner in order to construct membership functions to 

use in reasoning about construction performance (with fuzzy-neural networks).

This field study is carried out at a pipe module fabrication yard located in 

Edmonton, Alberta. A total number of fifteen (15) frontline supervisors representing five 

trades (i.e., iron workers, pipe fitters, equipment operators, electricians, and carpenters) 

and nine different activities (i.e., steel erection, pipe fitting and installation, welding, 

hydrotesting, glycol tracing, material handling, equipment operation,
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carpentry/scaffolding, and electrical) completed the study over a sixty (60) workday 

period, during summer 2005. Figure 6-15 illustrates the pipe module fabrication process. 

Graphical illustration of the pipe fabrication process is given in Appendix A. The 

experience of the group of experts (frontline supervisors, otherwise known as foremen) 

ranges from 6 to 32 years in trade, averaging 20 years.

£
Steel erection

I

Steel/Pipe 
Offload and 

shakeout

Bolt and Torque

I '

i

Heat tracing

Insulation j
  t ___

► Pipe install

Pipe handling,
! fitting and welding

~
Hydro-testing

► Cable tray install

i Ship pipe module i

Figure 6-15. Activities in pipe module fabrication process

6.4 CAUSAL KNOWLEDGE REPRESENTATION

Knowledge acquisition from construction experts, taking place in a systematic manner, 

remains one of the challenges of using fuzzy set theory effectively. This section presents 

a systematic methodology to elicit and represent qualitative construction performance 

knowledge from a group of construction experts.

The most common techniques used to identify the causes (factors) in construction 

literature is based on a review of past studies, postal questionnaire surveys, and face-to- 

face interviews, or a combination of these techniques (e.g., (Liu and Ling 2005)). Low 

response rate, out-dated information, and the validity of the responses and disagreements 

are common criticisms of the above techniques.
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Additionally, both the Nominal Group Technique (NGT) and the Delphi 

technique provide a structured format that helps to increase the quantity and quality of 

participant responses. Rowe et al. (1991) concluded that the Delphi technique is generally 

inferior to the NGT, but state that the degree of inferiority is small, arising more from 

practical than from theoretical difficulties. Singh (2005) used the fuzzy Delphi technique 

to achieve group consensus in defining decision criteria in the assessment of contractors’ 

performance for the selection of contractors. However, Singh and Tiong (2005) identified 

that the fuzzy Delphi technique is very time-consuming.

This study proposes a causal knowledge acquisition method based on the NGT to 

find a more representative causal factor, and to establish a pair of polar adjectives for 

each causal factor. A brief description and a review of the NGT is given below.

6.4.1 Nominal Group Technique

The Nominal Group Technique (NGT) was first introduced by Delbecq et al. (1975) as a 

method for structuring group meetings which would allow individual judgments to be 

pooled effectively while providing opportunities for all participants to contribute equally. 

This is a proven technique that is helpful in identifying problems, establishing priorities, 

and exploring solutions in many areas such as medicine, health care, education, 

engineering, information systems, and management. NGT also found several applications 

related to project management (e.g., Garbarini 1984; Kolano 1991; Yiu et al. 2005)). Yiu 

et al. (2005) used NGT in identifying the decision criteria for consultant selection; 

Kolano (1991) applied NGT in a value engineering project, assisting a group in selecting 

among many ideas and ranking ideas in order of importance; Garbarini (1984) used NGT 

to identify productivity improvement opportunities in construction projects.

NGT typically includes four steps: (1) silent generation of ideas in writing; (2) round- 

robin feedback session to record concisely each idea; (3) serial discussion of the list of 

ideas to obtain clarification and evaluation; and (4) voting on ideas. This procedure is 

known to produce balanced participation across members, to generate more creative ideas 

within a limited meeting time, and results in greater satisfaction for participants. The two 

key limitations noted commonly in literature are (1) extensive advance preparation, 

which means that it cannot be a spontaneous technique, and (2) tends to be limited to a 

single-purpose, single-topic meeting; it is difficult to change topics in the middle of the 

meeting.

112

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The procedure can be adapted and has been used in different formats. For example, 

Hegedus and Rasmussen (1986) proposed a modified version of the NGT, avoiding the 

last step of standard NGT, i.e., the voting on ideas, to encourage participants to arrive at a 

consensus by means of group decision; Trickey et al. (1998) conducted the idea 

generation via a series of reviews of recent literature, semi-structured interviews, and 

questionnaire survey (conducted by post).

6.4.2 Modified NGT Protocol to Identify Causal Factors

A modified version of the standard NGT is used in this study as the formal consensus 

development method for identifying causal factors of selected key performance indicators 

by a group of experts in construction project supervision and management. The objective 

is to identify a minimum number of causal factors that can measure reliably and 

sufficiently the multidimensional semantic space. The overall process of identifying 

causal factors and arriving at a consensus is shown in Figure 6-16.

Broadly speaking, the process starts by identifying the key performance indicators 

(KPIs). Once KPIs are identified, a detailed literature review is conducted to identify a 

list of causal factors that can possibly impact on selected construction activities. The 

expert panel should then be selected to represent the expertise in those construction 

activities selected for diagnosis. It is assumed that the frontline supervisors possess the 

required expertise. Additionally, frontline supervisors are selected because they will be 

the individuals most suitable to collect and report daily working conditions (along with 

work progress) based on the causal factors identified. Once the teams of experts are 

identified, the session can be arranged at a suitable convenient location (e.g., site office 

meeting room) minimizing the interruption to the routine work schedule. The estimated 

timeline for the actual session is approximately one and a half hours. As noted in (Potter 

et al.), generally, a standard NGT session can range between 45 minutes and 2 hours. 

Table 6-1 outlines the protocol used in identifying the causal factors via a modified NGT.
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Figure 6-16. Causal factor identification and consensus development process.
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Table 6-1. The modified NGT protocol for identifying causal factors of construction 

performance.

1. Review of literature: Conduct a detailed review of literature as background material for 
the topic under discussion.

2. Setup the meeting: Inform selected participants about (1) the purpose of the session, (2) 
venue, and (3) time, at least a day in advance.

3. Introduction: Welcome the participants, and reiterate the purpose of the session. Explain 
the procedure.

4. Silent idea generation: provide each participant with a sheet of paper (see Appendix- 
C(a)) that can be used to write down their pertinent related personal details (e.g., trade, 
activity supervised, experience in number of years) and ask them to write down all 
causal factors that come to mind with respect to the activity they supervise. During this 
phase, participants are not supposed to consult or discuss their ideas with others.

5. List augmentation: the session organizer to present the results of review of literature and 
ask to augment (if necessary) the list of causal factors identified in above step.

6. Listing and discussion of ideas: The session organizer list all the casual factors 
generated by each member of each group in a flip chart (or white board) and discuss each 
factor to clarify and elaborate.

7. Ranking of ideas: Each member of the group chose the 10 (or less) causal factors that 
they consider most important based on the list (Step 5) and the discussion at Step 6. 
Factors are ranked in order of priority, giving 10 points to the most important factor and 
1 point for the least important factor.

8. Discussion of rankings: The group’s top 10 factors were listed on a new flip chart by the 
session organizer and provide a discussion about the content of the selected factors, 
together with details about the items included and excluded. This is to initiate and 
facilitate a discussion about each member’s concern on factors included/excluded from 
the list, providing them a chance to defend or dispute the factors and, arrive at a 
consensus. The number of causal factors selected for the model can be higher or lower 
than 10, based on this final discussion.

9. Selecting objective and subjective measures: For each factor identified in the above 
step, an objective and subjective (where applicable) measure is identified, so that relevant 
values can be collected on regular time intervals (e.g., daily, weekly). Subjective 
measures are selected using bipolar terms that are most familiar yet most representative.

Note that the ranking (discussed in the NGT protocol) is used solely for selecting 

a suitable number of causal factors for the model. Unless the findings can be tested 

against the observed data, we can never be sure that the NGT session has produced the 

“correct list” of causal factors. Nonetheless, this study uses a computational intelligence 

approach, as described in Chapter 5, to model the diagnostic problem scenario and by
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pruning the network (by analyzing the trained networks connection weights), 

insignificant causal factors can be removed from the model.

6.4.3 Results of the NGT Session

A summary of the results of the session conducted at the pipe module fabrication facility 

is shown in Table 6-2. Graphical illustrations of the factors that affect pipe module 

fabrication crew productivity are shown in Figure 6-17. This figure highlights a key issue,

i.e., multi-levels of factors, which is worthy of further discussion.

Causal factors can be represented as (1) root causes (e.g., task complexity, 

equipment condition), (2) intermediate causes (e.g., crew size, equipment breakdown), 

and (3) composite causes (e.g., precipitation, wind-chill). For example, consider the 

following chain of cause-effect relationships:

Equipment condition equipment breakdown equipment availability crew productivity

The above relationship can be interpreted as follows: poor equipment condition 

may cause equipment breakdown that may lead to equipment unavailability, which 

results in low crew productivity due to idle time. The group has to decide up to what level 

of detail information is required for diagnosing construction performance. In the above 

case, for example, the group has to decide whether they need to know why equipment 

was unavailable, or do they need to know why equipment would break down. If  the group 

merely wants to know whether crew productivity is low due to equipment unavailability, 

it is not required to include “equipment breakdown” and “equipment condition” as causal 

factors for the reasoning process. Additionally, the above causal chain does not 

necessarily indicate that equipment breakdown can be caused only by poor equipment 

condition. For example, equipment can breakdown due to misuse. In that case, “misuse of 

the equipment” has to be included in the list of factors.

Another important point to notice in Figure 6-17 is when labour productivity is 

considered as the hub, the reasoning process can easily be extend to other performance 

indicators such as cost and schedule.
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Table 6-2. Summary results of the session based on the modified Nominal Group Technique
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PROPOSED 
BIPOLAR SCALE

Crew size No of workers/crew Small, Large
Absenteeism V V V No of workers absent Low, High
Crew experience ■V No of years in the trade Low, High
Rework V V ■V Rework hours Low, High
Incomplete/unclear drawings V V NoofRFIs Low, High
Temperature (day time average) V V V yl yl Celsius degrees Cold, Warm
Total Precipitation V V V V Millimetres Low, High
Wind speed (day time average) V V V km/hr Low, High
Manpower availability V No of workers/trade Low, High
Equipment availability V V V V V V Total number of key Poor, Good

equipment
Equipment suitability V V V V Equipment capacity Improper,, Ideal
Tools condition V V V Poor, Good
Consumables availability V V Poor, Good
Material availability V V V V V Poor, Good
Congestion on work location V V V V V Men/Area Low, High
Access to work location V a/ V V Restricted, Excellent
Time to await inspections V No of hours Low, High
Waiting for other trades V V V V No of hours Low, High
Task complexity V Below normal, Above N
Safety equipment availability V Low, High
Right tool availability V Low, High
Crew attitude/morale Poor, Good



Total

Time to

Task
complexity

Figure 6-17. Causal factors that affect pipe module fabrication crew productivity.

Once the causal factors are identified, the next step is to collect the objective and 

subjective values of the selected variables on predefined time intervals (e.g., on a daily 

basis). As described in Section 3.2.2, since there are variables that do not have well 

defined objective measures, a structured approach is required to obtain subjective
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assessments (i.e., soft estimates) of daily working conditions from multiple experts. 

Furthermore, this approach should facilitate the aggregation of subjective assessments 

across multiple experts and across different time intervals as well.

Generally, in most studies, a unipolar scale (e.g., zero to 10, zero being the 

lowest and 10 being the highest) is selected to represent the individual judgment. This 

study exploits a measurement technique based on bipolar scales, i.e., semantic differential, 

for structuring the subjective assessment of construction performance variables. The 

rationale in selecting a bipolar scale, rather than a traditional unipolar scale, is presented 

in the next section.

6.4.4 Semantic Differential Analysis

The method of Semantic Differential Analysis (Osgood et al. 1957) offers a simple, 

reliable, and widely used method to measure the connotative meaning of objects, events, 

and concepts. It is a type of rating scale defined using bipolar adjectives (e.g., cold-warm, 

light-heavy, etc.). The adjectives are usually scaled in seven steps, represented by seven 

linguistic hedges, as shown in Figure 6-18.

(concept)

polar term X □ □ □ □ □ □ □  polar term Y 

1 2 3 4 5 6 7

1. extremely X
2. quite X
3. slightly X
4. neither X nor Y; equally X and Y
5. slightly Y
6. quite Y
7. extremely Y

Figure 6-18. Bipolar scale.

The subject’s placement of the concept on the adjectival scale indicates the 

connotative meaning of the concept. Studies carried out by Osgood et al. (Osgood et al. 

1957) on a large number of different subjects in many different experiments, found that 

“with seven alternatives all of them tend to be used and with roughly, if not exactly, equal 

frequencies. When nine alternatives were used, where “quite” is broken into 

“considerably” and “somewhat” on both sides of the neutral position, it was found that all 

three discriminative positions on each side had much lower frequencies.” This finding is
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consistent with Saaty’s (1980) seven-point scale. To each of the seven positions on the 

bipolar scales, a digit is assigned arbitrarily. These digits may be either 1,2,3,4,5,6,7 or - 

3,-2,-1,0,1,2,3. For mathematical descriptions (described later), the choice makes no 

difference. In a 1 to 7 scale, as shown in Figure 1,4 corresponds to the neutral point, in -3 

to +3 scale, 0 represents the neutral point.

The choice of bipolar scales to represent the experts’ evaluation (i.e., fuzzy linguistic 

estimates) has several advantages:

1. Intensity and Direction: Bipolar scales represent intensity as well as the direction of 

the fuzzy estimate while a traditional unipolar only provides the intensity.

2. Multidimensionality: If  we use a unipolar scale, we presume that the factor in 

question can be represented as unidimensional. In other words, the best reason to use 

unidimensional scaling is because we believe the concept we are measuring really is 

unidimensional in reality. Factors such as site congestion, for example, can be 

represented by both manpower density and equipment mobility. In such situations, 

we can use bipolar scales to capture the multidimensionality of such factors.

3. Planned conditions: In some cases, the neutral values of the bipolar scale (i.e., 

number 4) represent the planned conditions of the causal factors (e.g., temperature, 

wind), which can be used to identify implicit planned working conditions. This 

information can be useful in conducting variance analysis using fuzzy linguistic 

estimates.

6.5 DAILY WORKING CONDITION ASSESSMENT

This section provides a well-defined methodology for construction managers to assess 

(daily) working condition using fuzzy linguistic estimates based on semantic differentials.

Figure 6-19 shows a sample daily working condition report. “Steel erection” is 

selected as the activity, R, for illustration. This working condition report, CR, represents 

the multidimensional space of the concept: the daily working conditions for steel 

erection. The list of causal factors (Zk, k=l to m, where m is the total number of causal 

factors in CR) represent the dimensions of the semantic space. Each dimension (i.e., each 

causal factor) is represented using a bipolar scale assumed to represent a straight line 

function that passes through the origin of the space. A sample of such scales then 

represents a multidimensional space. Raw data obtained from a “daily working condition 

report” are a collection of checkmarks against bipolar scales, S kp , where
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p  e  {l,2,3,4,5,6,7}. As shown in Figure 6-19, the scale values are labeled using seven 

linguistic hedges to help experts make adequate distinctions amongst them.

Activity: STEEL ERECTION 

GF/Foreman: Date:

DAILY WORKING CONDITION REPORT

Extmmty mm MghMjr B©OV
NA WBbitr iwt# ExBwtMlf:

T oday’s  Crew  Productivity Low 0 :: 0 0 : 0 : 0 0 0 High

1. Crew  size  (no. ofworkersitrew) ( ) Small
□ 0 M - 0 0 ' ■ 7 . Large

2. A bsenteeism  ( ) Low
(no. ofarew members absent) □ 0 : 0 ED. 0: 0 0 High

3. Rework (Rework hours) ( ) LOW a: 0 0 m 0 0 0 High

4. T em perature  Cold □ 0 0 0 0 0 0 W arm

5. Total precipitation Low □ 0 0 0 ■ m . 0 0 High

6. W ind sp e e d  Low □ 0 0 :;0 : 0 0 0 High

7, Equipm ent availability ( ) Poor
(no. of cranes available) □ 0 0 0 0 0 0 G ood

8. Equipm ent suitability Im proper □ 0 0 0 0 0 0 Ideal

9. Tools condition Poor □ 0 0 0 0 0 0 G ood

10. C onsum ab les availability Poor □ 0 0 0 0 0 0 G ood

11. M aterial availability Poor □ 0 0 0 0 0 0 G ood

12. C ongestion on  work location Low 1 3 0 0 0 0 0 High

13. A cce ss to work location R estricted 1 ? 0 0 0 0 0
Unrestri

-cted

Exam ple 
Crew Size (Average 10. Today 9) 

(No. o f crew members)

Small Large

1. extremely Sm all > 5. slightly large
jL g u ite S in sH  /  6 . quite Large

C ^3. slightly SmaS)—  7. extremely Large
-  jye iifter  sm all nor High: equally Small an d  Large

Figure 6-19. Sample working condition report.

Assume that n frontline supervisors representing CR reported their objective 

(where applicable) and linguistic estimates on Lk (k= 1 to m, where m is total number of 

causal factors) on day t. This results in a set of pairs (xLt, Sfp 'j, where x,k represents
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the corresponding objective measure of the causal factor Lk during the period concerned 

(e.g., daily). S k represents the fuzzy linguistic estimate provided by expert i on variable
hP

Lk, ( p e {l,2,3,4,5,6,7}, fuzzy linguistic estimate).

As illustrated in Figure 6-20, for a given activity on a certain day, the working 

condition report CR provides a n*m matrix of data points. An alternative representation 

of the n*m matrix is shown in Figure 6-21.

Each of the fifteen experts were asked to record their subjective judgment of the 

(daily) working conditions based on selected causal factors in activity specific working 

condition reports, at the end of each workday. The primary objective here is to obtain a 

fairly accurate assessment of the daily working condition from group of experts who 

were exposed to different working condition during a defined shift.

n-Expert m-Causal Factors n*m Evaluation

L.l

/ /F.l

, L2
2L.2

Activity R F.2

F.n

' Lm
2 , p  >“ •>

L.m

Figure 6-20. Multiple fuzzy linguistic estimates from daily working condition
report.

Sn
m,p

Li L2 ... L m

Scale (causal factor)

Figure 6-21. Matrix representation of multiple fuzzy linguistic estimates.

S" in

' 2.p

SY

L, L2 ...

Scale (causal factor)
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When the fuzzy linguistic estimates are obtained over a period of time, T, the 

resulting matrix o f data (n*m*T) can be represented as shown in Figure 6-22.

Figure 6-22. Rectangular solid of data representing experts’ assessment over a

Each cell in this matrix of data represents the judgment of a particular causal 

factor by a particular expert on day /; each of the n slices represents the complete 

judgment of a single expert (i.e., one daily working condition report. Each of the m slices 

represents the assessment of a particular causal factor over the duration T.

6.5.1 Aggregation of Data

There are three possible scenarios that may require an aggregation of estimates:

Mean response of group of experts: This is a case where the group estimate is required. 

Assume that we have n number of experts providing fuzzy linguistic estimates on causal 

factor Lk.

S kp represents the mean response of the group of experts. It may be viewed as a

probabilistic interpretation of the (mean) bipolar score. Consider that 3 steel-erection 

foremen (n=3) were asked evaluate “today’s equipment availability” (Lk). Assume that 

their responses were as follows:

period of T.

(6.15)
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Foreman Today’s equipment 

availability

1 Slightly poor 3

2 Neither poor/good 4

3 Quite good 6

The mean response of the group can be calculated as Sp =^-(3 +4 +6) = 4.33 , which

indicates that the assessment of today’s equipment availability for steel erection lies in 

between “slightly good” and “neither good or poor".

Equation 6.15 can be generalized by allowing one to distinguish degrees of competence, 

c„ of the individual experts {{939 Klir, G.J. 1995; }}. This results in the formula

S kp = £ e r S kp (6.16)
i=l

Where ^  c, = 1
<=i

For example, assume that the competency of each foremen is estimated as follows;

Foreman Competency

1 0.5

2 0.3

3 0.2

Accordingly, the mean response of the group can be calculated as 

Sp =[(3x0.5)+(4x0.3)+(6x0.2)] = 3.9«4.0 , indicating that the assessment of today’s 

equipment availability for steel erection lies close to “neither good or poor".

Weekly (or monthly) averages: This is a case where data need to be aggregated across 

time (e.g., in the case where weekly average is obtained by daily values). In this case,

(6.17)
/=i

Where T is total number of days across the time period concerned.

For example, consider that it is required to obtain weekly (T= 5) assessment of equipment 

availability. Assume that the daily assessment of equipment availability as given in the 

table below.
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Foreman Competency Equipment availability
Day 1 Day 2 Day 3 Day 4 Day5

1 0.5 3 4 6 3 7
2 0.3 4 3 5 2 6
3 0.2 6 2 4 5 2

Mean 3.9 3.3 5.3 3.1 5.7

The mean response shown in the above table is calculated using Equation 6-16. based on 

the Equation 6-17, the weekly average assessment of equipment availability for the steel

erection can be calculated as Sk =-^(3.9 + 3.3 + 5.3 + 3.1 + 5.7) = 4.26, indicating the

equipment availability of that week for steel erection was close to ““neither good or 

poof'.

Composite causal factor scores: In cases where hierarchical representations are required 

and composite factors are identified, to obtain composite causal factor scores, the (root) 

causal factor scores are summed and averaged over the scales. The composite causal 

factor score is

s l = Y , c q .Skp (6.18)
;=i

Where cq represent the significance of each (sub) causal factor.

Consider that it is required to represent three weather related causal factors (i.e., 

precipitation, wind speed and temperature” as a single causal factor: “weather”. Also 

assume that among those three causal factors, precipitation has a higher influence 

compared to other two, and significance of each causal factor is as follows:

Causal Significance Mean Response o f week
Factor (using Eq. 6-17)
Precipitation 0.6 5.8
Wind speed 0.2 4.5
Temperature 0.2 3.9

In such a case, the composite causal factor score can be calculated as follows:

Sk = [(o. 6 x 3.9)+ (o.2 x 4.5 )+ (o.2 x 5.8)] = 5.16, indicating that the weekly weather condition 

was close to “slightly good\

The above equations provide a strategy to aggregate linguistic assessments when 
necessary.
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Notation

Cr = working condition report of Activity R.
i = expert;
Lk = causal factor
m = total number of causal factors
n = total number of experts
p  e {1,2,3,'4,5,6,7}= values that represent the linguistic hedges of bipolar scale S.
q total number of sub causal factors consists in the composite factor
R activity
S bipolar scale
S k‘>p linguistic assessment of causal factor Lk by expert i

s i  - composite causal factor score

XL = lk objective measurement of causal factor Lk

6.5.2 Interim Analysis of Fuzzy Linguistic Estimates

To determine the effectiveness of the proposed semantic differential scales to obtain 

fuzzy linguistic estimates, an interim analysis was carried out on selected causal factors. 

The purpose of this analysis was as follows:

• To identify the limits of the base variable, where applicable;

• To identify the factors that have variability, in order to limit the number of input 

variables;

• To identify threshold values; and

• To assist in selecting the appropriate number of fuzzy sets (linguistic variables)

to represent each factor.

6.5.2.1 Causal Factor: Daytime Average Temperature

Results related to the causal factor “temperature” are discussed in this section. Figure 6-

23 shows how daytime average temperature varied over the period of study. Weather- 

related data such as temperature, wind speed, precipitation, and humidity were collected 

at the site by setting up a professional wireless mini-weather station (Model: WS-2315AL 

by La Crosse Technology).
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Daytime Temperature

,5  20

Work Day (Snapshot from summer 2005)

Figure 6-23. Daytime average temperature (degrees Celsius).

Figure 6-24 shows the average fuzzy estimates aggregate from all experts 

(assuming equal competency levels) against the daytime average temperature. Note that 

multiple dots for the same x-axis values (i.e., degrees Celsius) indicate that (i) the same 

daytime average temperature was recorded on multiple days, and (ii) different aggregated 

expert evaluations were obtained for the same value of temperature (on different days of 

the month/season), during the period studied.

Extremely warm

Quite warm

Slightly warm

Neither cold/warm

Slightly cold

Extremely cold

Mean responses from all experts for the variable "Day time temperature" 
1 1 1 1 1 1 1

Note: Temperature values are round-ofl 
to zero decimals for clarity..

i i i i
■ 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T e m p e ra tu re  (D eg. C e ls iu s )

Figure 6-24. Mean estimated values for temperature.

However, as shown in Figure 6-24, in most cases, the variation of the fuzzy estimates 

is low and remained in between two linguistic values. For example, the value of 18 

degrees Celsius is recorded 5 times during the study period. The mean value of fuzzy
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linguistic estimates for all five days remained in between “neither cold/warm” and 

“slightly warm”. Similar results were observed for the temperature values, 12, 13, 14, 15, 

17, 21, and 24. This indicates that, for the period studied (i.e., summer 2005), the mean 

estimates (of the group) are nearly consistent.

A sample activity level analysis (for structural steel erection) for the same causal 

factor (i.e., temperature) is shown in Figure 6-25. The subjectivity of the individual 

assessments is clearly visible in the Figure 6-25. Nonetheless, the assessments are still in 

between two linguistic values in 85% (18 out of 25) of the cases. Similar results related to 

the pipefitting and fabrication activities are shown in Figure 6-26.

Extremely warm i— \— i---- n—r—i— i— —r— i—i — i— i □□ i "■r -~r~—e— r~~r— T T —I—~i I— I f "" I—r— f

Slightly w arm

Neither cold/warm

Slightly cold

E xtrem ely  cold

cp da <>od £

O0 d

□ • • • s  0 - 6  □ •© ..........E3D B e  O  ■ B  0 B

Activity: S tructural S tee l E rection 
Factor: Tem perature  
No. of E xperts: 4

I I I I T
0  2  4  6  8  tO  12 14  16 18  2 0  2 2  2 4  2 6  2 8  3 0  3 2  34  3 6  3 8  4 0  42 44  46  4 8  5 0  5 2  6 4  5 6  5 8  60

W ork day (sam ple  from su m m er 2005)

Figure 6-25. Individual estimated values for temperature by steel erection experts.

E xtrem ely  w arm  r j -  1--------\------ -j------- \------- 1------ d “i 1-----1— i 9 t 1-----1-----1---- 1-----1-----1-----1-----1-----1-----1-----r ~

il0 m do

Slightly w arm  -  © n  ■  *  ■ *  □

N either cold/w arm  — — ©- ©- O-

Slightly cold -  ©

— o _

Activity: P ip e  fitting & fabrication
Factor: Tem perature  
No. of E xperts : 7

E xtrem ely  c o ld »------- ‘------- >--------*--------1------- '--------'--------»--------1--------1--------»------- 1--------1-------1--------»------- 1------- J------- 1------- 1--------1------- 1-------L _ J --------1--------L .
}  0  2  4 6  8  10 12 14 16  18 20 2 2  24  26  2 8  X  3 2  3 4  3 6  3 8  4 0  4 2  44 4 6  4 8  50

W ork day

Figure 6-26. Individual estimated values for temperature by pipefitting and

fabrication experts.

128

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



It is also noteworthy to highlight the fact that assessments of the variables such as 

temperature and precipitation (rain and snow) can vary significantly from season to 

season. These time-varying (i.e., temporal) dynamics of such causal factors can be 

captured using time-dependent membership functions. This study addresses this issue by 

constructing membership functions for each season for such causal factors by 

categorizing data into respective seasons.

6.5.2.2 Causal Factor: Daytime-Average Wind Speed

Figure 6-27 shows how daytime average wind-speed (km/hr) varies over the period of 

study. Figure 6-28 shows the average estimated values for daytime average wind speed 

(km/hr) by ironworkers (assuming equal competency levels). Estimates of the same data 

obtained from pipefitting experts are shown in Figure 6-29.

w ork  d ay

Figure 6-27. Daytime average wind speed (km/hr).
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: Extremely high | ; j

Quite high

Wind speed; Mean response Iron Workers

Slightly high

Neither low/high

Slightly low

Quite low

Extremely low

i ”'[ ":;i ; i i i—i—r~i—r: i i : i

d a n y

-I I -pL. y L_ I a t-l 1

I I I | I i —f—i i I—i—r—r—i—r

I I t -1 t-1 ■ 1 I I I I I
0 1 2 3 4 5 6 7 8 9 10: 11 12 13T 14 1 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Wind speed (km/hr)

Figure 6-28.Mean estimated values for daytime average wind speed (km/hr) by
ironworkers.

Extremely high -
Wind speed: Mean response from Pipefitters

Quite high •

Slightly high -

Neither low/high - •

Slightly low -

Quite low - y

. g . .. g . . .. — , §g..

u u y

Extremely low0 15 20
Wmd speed (km/hr)

Figure 6-29. Mean estimated values for daytime average wind speed (km/hr) by

pipefitters.

A few key observations can be made from Figures 6-28 and 6-29. First, it is clear 

that linguistic assessments can be divided into two groups as follows: when the wind 

speed is less than 13-15km/hr, the average estimated values by both ironworkers and 

pipe-fitters belong to “low” part of the bipolar scale. When the average wind speed is 

greater than 13-15km/hr, average estimates remained in the “high” side of the bipolar 

scale. This assessment helps to identify threshold values (of wind speed), which can be 

effectively used in performance diagnostic reasoning. The analysis also helps to identify 

the boundaries of the variable that can be used to define the universe of discourse of the
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variable. Additionally, when compared with the causal factor discussed in the previous 

section, i.e., temperature, the causal factor wind speed behaves different. In the case of 

temperature, both extreme polar conditions (i.e., extremely/quite-cold and -warm) can 

have a negative impact on project performance while in the case of wind speed, only one 

polar condition, i.e., high, can have the negative impact. It can be argued that if the wind 

speed is below the threshold value, there will not be impact of wind speed on activity 

performance.

6.5.2.3 Causal Factor: Crew Size

Compared to the causal factors discussed before, the “crew size”, measured as the 

number of workers per crew, has its unique characteristics. For example, both 

“temperature” and “wind speed” are factors that change continuously, while crew size 

changes intermittently due to factors such as absenteeism, turnover, and crew reallocation, 

or splits due to changes in scope of work. It is a common practice in construction that 

multiple crews are assigned to the same activity. In most of the cases, each individual 

crew carries out a sub-activity. For example, in the “steel erection” activity, there can be 

two crews working simultaneously on two sub-activities, such as “steel handling” and 

“bolt-and-torque ” of steel members. Thus the linguistic assessments made for same crew 

size by different crew supervisors can vary considerably. Figure 6-30 shows assessments 

made by five experts on different crew sizes.

Extremely smallL

Structural Steel Erection: Bipolar assesment of crew size
Exremely large 

Quite large - 

Slightly large

Neither small/large®---------- gj----------

Slightly small

Quite small® Q /K <j> <J> 0

-O-
5 6 7 8

Crew size: No.of men/crew

- - ■ Crew 1
— e Crew 2 _

— -0 Crew 3
-  < Crew 4
-----A Crew 5 \>

10 11

Figure 6-30. Linguistic assessments of crew size.

12
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As shown in Figure 6-30, the size of Crew #3 has taken the values {5, 6, 7, 10, 

12}. The linguistic assessments also vary considerably, for example, in the case where 

the crew size is 7, linguistic assessments relevant to Crew #3 vary from quite small to 

slightly large. Further analysis of this issue has indicated that the same crew has been 

assigned for different sub-activities of steel erection (e.g., steel handling, bolt-and-torque 

steel members), which contributes to the varied assessment. For example, in the case of 

handling steel, a crew size of 7 will be “slightly small” while for bolt-and-torque, it will 

be “slightly large”.

However, since the main focus of this study is to explain construction 

performance at activity level (instead sub-activity level), linguistic assessments made by 

each crew supervisor (at sub-activity level) should be aggregated to represent the 

assessment of crew-size at the activity level. The linguistic assessment at the activity 

level can be obtained using the following aggregation operation:

Where m' is the total number of sub-activities, x\ is the size of crew, and S* is the

linguistic assessment of crew size of sub-activity k ' .  For example, consider that activity 

D has 3 sub-activities: A, B, and C that are carried out by Crew A, Crew B and Crew C, 

respectively. Following table shows the size of each crew and respective bipolar 

assessment of each crew size:

Crew A B C
Size (no.of workers) 6 8 10
Bipolar assessment Neither small/ large (4) Quite large (6) Slightly large (5)

Accordingly, the aggregated value of the linguistic assessments at activity level, 

D, can be calculated as follows: Sf = [(6x 4)+ (8x 6)+ (lOx 5 )]X = 4 .9 6 .

A graphical illustration of the variability of the linguistic assessments across 

different crew sizes over the study period is shown in Figure 6-31. In general, the crew 

size of 5 to 7 is considered as average (i.e., neither small or large) while a crew size 

above 10 is considered as quite large. Certain crew sizes have not changed over the 

period (e.g., Crew #2) while certain crew sizes vary considerably (e.g., Crew #3).

(6.19)
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Extremely large

Quite large

Slightly large

Neither small/large

Slightly small

Quite small

Extremely small 
12

...... ♦ Crewl
----- fH Crew2
_ _ o Crew3

Crew4
......▼ Crew5

Figure 6-31. Linguistic assessments of crew size over the study period.

This high variability of the size of the same crew over the project duration is 

mainly due to change of scope of activity. This insight leads to the conclusion that the 

measure for crew size may need to modify in future studies, to reflect scope of activity. 

Additionally, Figure 6-31 also illustrates the usability of linguistic assessments to model 

the appropriateness of the crew size, in an explicit way, in contrast to the current practice 

of implicit modeling with multiplication factor(s).

6.5.2.4 Causal Factor: Field Rework

As shown in Figure 6-32, generally any amount of field rework hours are estimated at the 

“high” side of the bipolar scale. If the amount of rework hours spent on a particular day 

by the crew is greater than 10 hours, it is estimated as “extremely high” while rework 

hours ranging from 2-10 are estimated in between “slightly high” to “quite high”. Similar 

to the factor “wind speed”, this analysis also helps to identify threshold values and 

boundaries of the causal factor “field rework”.
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Extremely: high * ' TV ■ ■' r . ■ .1 I —~"T—:—~T— :——r

Quite high - 

Slightly high - 

Neither low/high

: Slightly low -

Quite low -

Extrerrtely low L
12 14

Rework mhrs

. .  @ Expert 1
Expert 2

..■ Expert 3
...e Expert 4 -

Expert 5

22 24 25

Figure 6-32. Linguistic assessments of rework hours.

6.5.2.5 Causal Factor: Equipment Availability

Compared to variables such as temperature, wind speed, or field rework, the variability of 

the equipment availability (measured as the number of cranes available for pipe handling, 

for example) is very low, thus the linguistic assessments do not vary much over a period. 

One main reason for this lack of variability is that compared to most of the other causal 

factors, equipment availability is a cost-significant factor thus closely monitored and 

controlled. The number of equipment needed for construction is planned ahead and a 

change to the equipment fleet occurs only if there is a significant change to the scope of 

the work. With respect to defining membership functions using sample membership 

values across the limited universe of discourse (e.g., number of cranes, ranges from 3-5) 

is inappropriate for causal factors such as equipment availability. In such cases, a 

pairwise comparison method is a more suitable approach to construct membership 

functions.

Similar to equipment availability, considerably less variability in linguistic 

estimates is observed for variables such as equipment suitability, tool condition, 

consumables availability, and materials availability.

6.5.3 Summary and Discussion on Interim Analysis

In addition to the causal factors described above, linguistic assessments made on the 21 

causal factors shown in Table 6-2 across four different activities are analyzed. The 

consistency (measured in terms of variation of linguistic assessments on bipolar scale) of 

the experts’ linguistic assessments was above 72 percent in all cases, which indicates that
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the proposed methodology is a practical tool for acquiring and representing subjective 

assessments from a group of individuals for construction performance diagnosis. The 

approximate time taken to complete the daily assessment ranged from 1 to 2 minutes, 

depending on the number of causal factors listed under the activity concerned. The 

accuracy of the linguistic estimates on working condition can be considered fairly 

accurate compared to any interview-based technique, since the expert is exposed to the 

particular working condition all day and the proposed methodology is considerably 

structured compared to the alternative approaches.

Additionally, the above analysis also helps to set the directions on how to select a 

particular type of membership function determination technique for each variable. As 

shown in Figure 6-33, when the variable have a well-defined base variable (i.e., objective 

measure for x-axis), if  it is practically and economically possible to collect relevant 

objective measurements, and if there are more than a handful of different measurements 

to be obtained, the method of constrained interpolation can be used as a means to define 

membership functions.

Causal Factors

Yes Yes Yespossible and or ^  
nomicafly feasible to, 
sjtoltect

NoNo No

Semantic
Differential
Anafyiiis

Semantic
Differential
Analysis

/Linguistic to numerical^ 
transformation

""Linguistic to numerical'' 
transformation

Linguistic to numerical 
transformation

Pairwise comparison +

(representative values)

r  Membership function A 
determination

A Membership function 
determination

^Membership function ^  
determination

Linear or nonfirear 
interpolation of 

representative values

Constrained Q u ad raticHeuristic method

Figure 6-33. Protocol to select suitable techniques to determine linguistic 

assessments and membership function.
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Causal factors such as temperature, wind speed, precipitation, manpower availability, 

and rework hours, belong to this category. In cases where there are no more than 7 

sample objective measurements that can be taken (e.g., crew size, absenteeism, 

equipment availability), the user can opt for a pairwise comparison method to elicit 

sample membership values, instead of the semantic differential method, and subsequently 

determine the membership function using constrained interpolation methods. Conversely, 

when well-defined objective measures are not available (e.g., access to work location, 

equipment suitability, tools condition, crew attitude), or if it is practically and 

economically impossible to collect objective measurements (e.g., congestion on work 

location, task complexity, incomplete/unclear drawings), the user can opt for the 

membership function exemplification method.

As presented in the above discussions, these fuzzy linguistic assessments can be 

used directly for a number of purposes. For example, (1) to identify and evaluate implicit 

planned working conditions, and (2) to identify the causal factors that vary most 

considerably. The causal factors that do not show variability across a time period can be 

excluded from the inputs to the diagnostic model, making the reasoning process more 

efficient. Most importantly, these linguistic assessments can be transformed into 

membership values so that they can be used as inputs to the fuzzy logic based diagnostic 

systems. The next section describes a methodology to transform the linguistic 

assessments obtained via a semantic differential approach to numerical membership 

values.

6.6 LINGUISTIC TO NUMERICAL TRANSFORMATION

Once the fuzzy linguistic estimates are obtained using bipolar scales, the next step is to 

translate these linguistic values into numerical ones. Through this translation, a discrete 

representation of the membership function can be obtained. This process involves two 

key steps: first, a set of terms has to be selected (i.e., level of information granularity), 

and, second, the predefined representative values for the selected fuzzy linguistic terms 

should be defined.

6.6.1 Information Granulation

The proposed methodology enables the user to select the level of information granularity 

to suit the problem under consideration. At the highest level of granularity, the user can 

select the seven linguistic hedges that represent the bipolar scale as the term set. For 

example, for the causal factor temperature, the corresponding term set can be represented

136

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



as < extremely cold, quite cold, slightly cold, neither cold nor warm, slightly warm, quite 

warm, extremely warm>. However, for practical purposes, the user may want to limit the 

granularity to fewer terms (e.g., 5, 3, or 2). For example, the causal factor, “temperature”, 

may need to be represented by three term sets, such as <cold, average, warm>. Once the 

term set is selected, the next step is to predefine representative values for the chosen level 

of granularity.

6.6.2 Predefined Representative Values and Functions

As suggested in (Dubois and Prade 1980), a simple yet meaningful method to translate 

selected linguistic hedges to numerical values is to select representative values for 

selected linguistic hedges. This method works similar to a look-up table. Table 6-3 shows 

a set of sample representative values for three terms <low, medium, high>. Likewise, for 

each level of granularity, a different look-up table can be created.

Table 6-3. Representative values for bipolar scale X-Y.

EXTREM 

ELY 

X (1)

QUITE 

X (2)

SLIGHT

LY

X (3)

BOTH- 
X&Y (4)

SLIGHT

LY

Y (5)

QUITE
Y (6)

EXTREM 
ELY 

Y (7)
Low 1 0.6667 0.3333 0 0 0 0

Medium 0 0.3333 0.6667 1 0.6667 0.3333 0

High 0 0 0 0 0.3333 0.6667 1

However, it should be noted that these look-up tables can be used only for those 

sample values identified in the Table, i.e., for the values 1,2,3,4,5,6,7 in Table 6.3. 

Intermediate values (e.g., 2.5, 5.85) can also be obtained, for example, in cases where 

multiple fuzzy linguistic estimates are aggregated to represent group judgments. To 

obtain the representative values for such intermediate values, a set of continuous 

(transfer) functions, instead of a set of discrete representative values, need to be defined 

to represent the selected term set. One of the simplest methods for obtaining a continuous 

transfer function is to interpolate linearly the discrete representatives. Figure 6-34 shows 

the piecewise linear transfer function generated by the linear interpolation of the 

representative values shown in Table 6-3 for three term sets.
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Figure 6-34. Predefined piecewise linear transfer functions based on linear 
interpolation of representative membership values.

Alternatively, as illustrated in Figure 6-35, the user can choose nonlinear 

representative transfer functions to transform fuzzy linguistic estimates into sample 

(numerical) membership values, at different granularity levels. It is noteworthy to 

mention here that these representative functions are not specific to any causal factor, 

instead they are specific to the level of granularity.

(a) Seven Term Sets

0.8
0.6
0.4
0.2

a.

(b) Five Term Sets (c) Four Term Sets

0.8
0.6
0.4
0.2

t

(e) Two Term Sets

0.8 
0.6 

A 0.4
0.2

it -  r  -
- t -  -

(d) Three Term Sets

0.6
0.4
0.2

Bipolar assesm ent

0.8

0.4
0.2

Bipolar assesm ent

Figure 6-35. Predefined representative transfer functions to transform linguistic 
assessments to sample membership values.
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Once the transfer functions are identified for the selected term sets, these 

functions can be used to obtain membership values for fuzzy linguistic assessments. This 

procedure of linguistic estimates for numerical (membership value) transformation is 

graphically illustrated in Figure 6-36.

Term Set

Numerical field 
m easu rem en ts

Sam ple data  pairs 

fen itt))

S am ple  d a ta  pairs 
to construct 
m em bership  
functions for the  

> se lec ted  term s 
(A, using
constrained 
Interpolation 
techn iques

R epresen tative 
transfer functions

Figure 6-36. The procedure of obtaining sample membership values from
representative function.

Consider the causal factor, daytime average temperature, as an example. If one 

assumes that on day t, the daytime average temperature at site was 12 degrees Celsius and 

three experts provided their assessments of day f’s temperature condition using the 

bipolar scale Cold-Warm, as follows:

Daytime average temperature = 12 degrees Celsius

Extremely Quite Slightly Slightly Quite Extremely

Expert 1 *  Cold 0  @  0  0  0  0  0  Warm

Expert 2 -» Cold 0  0  0  0  0  0  Warm

Expert 3 -> Cold 0  0  0  0  0  0  0  Warm

The mean value of above judgments can be obtained using Equation 6.15, as follows:
, 3 .

S = - ] > > * = - ( 2  + 3 + 2)=2.33
;=i

Now, to obtain the respective membership values of each term A, B,...,K, 

representative functions have to be evaluated at S . Assume, for example, three terms are 

selected (i.e., cold, average, and warm) to represent the causal factor, daytime average 

temperature. Corresponding representative functions are shown in Figure 6-35 (d). The
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procedure of obtaining corresponding membership values for the mean linguistic 

assessment S is shown in Figure 6-37.

0.9 — v —

0.8 — v

0.7 r

— —!x > i\
1 1 \I --i0.5

Cold

■ Average
■ Warm

0.4

0.3 -V j

0.1

i
s Bipolar assesment

Figure 6-37. Example of obtaining sample membership values from representative
functions of three terms.

The membership values for the temperature value of 12 degrees Celsius, as 

shown in Figure 6-36, are as follows:

Cold Average Warm
Membership degree 0.6 0.233 0.0

These membership values can also be represented as sample data pairs, as 

follows: Cold <12, 0.6>, Average <12, 0.23>, Warm <12, 0>.

As presented above, in cases where there is a corresponding numerical 

measurement (e.g., 12 degrees Celsius) is available for the causal factor under 

consideration, membership values that obtained from the procedure described above can 

be associated with the numerical measurement, xh to represent sample data pairs 

,juA(xl )>. Once a set of discrete data pairs are obtained for several elements of the 

universe of discourse, they can be used to construct membership functions using
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interpolation methods described in Section 6.2.6. Once the membership functions are 

constructed, it is only necessary to collect numerical measurements of the causal factors, 

on a daily basis.

Conversely, for causal factors that do not have a well-defined base variable (i.e., 

a numerical measurement), membership values are obtained directly from evaluating the 

respective representative transfer function at S . For example, consider the causal factor, 

access to work location, which does not have a well-defined numerical measure. 

Linguistic assessments of daily condition of access to work location can be obtained 

using bipolar scale: unrestricted-restricted. Assume that a mean linguistic assessment of 

S is obtained for day t. Figure 6-38 graphically illustrates the procedure to be followed to 

obtain the respective membership values.

Representative
transfer functions

Figure 6-38. Procedure to transform linguistic assessments of causal factors (that do 
not have a well defined numerical measurement) to membership values.

If “restricted” and “unrestricted” are selected as two terms to represent the causal 

factor, access to work location, membership values related to S can be obtained, as shown 

in Figure 6-39. It is worthy to mention that, in cases where there are no well-defined 

numerical measurements, fuzzy linguistic assessments need to be collected on a daily 

basis.

Term Set
Corresponding 

membership values

Linguistic
assessments

► sent to the GRNN
model as Input 
values

These 
membership 
values, a re directly
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Figure 6-39. Example of obtaining sample membership values from representative 
transfer functions for causal factor: access to work location.

In summary, two distinctive types of causal factors are identified. The first type 

has well-defined numerical (objective) measures, and the second type does not have well- 

defined numerical measures. Two different approaches to obtaining membership values 

for each type are discussed above. Figure 6-40 illustrates how membership values are 

obtained and transformed as inputs to the proposed Generalized Regression Neural 

Network model (presented in Chapter 5).
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Representative
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Figure 6-40. Illustration of how different types of inputs are transformed to the
proposed GRNN model.

6.6.3 Experimental Results

The procedures described above to determine membership functions are further 

illustrated in this section with real data, for several causal factors that have well-defined 

numerical measurements. Table 6-4 shows the factors selected to demonstrate the 

membership function determination techniques proposed above.

Table 6-4. Selected causal factors to demonstrate membership function

determination via proposed techniques.

CAUSAL
FACTOR

NUMERICAL
MEASURE

COMMENT

Daytime average 
temperature

Degrees Celsius Represent a causal factor that has a site 
wide impact

Daytime average 
wind speed

Kilometers per hour Represent a causal factor that has 
activity specific impact

Crew size Number of crew 
members

Represent a causal factor that has sub­
activity specific impact

Absenteeism Number of crew 
members absent

Another causal factor that has sub­
activity specific impact

Rework hours man-hours Represent a causal factor that has 
activity specific impact
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6.6.3.1 Causal Factor: Day time average temperature

Table 6-5 shows the group judgment (mean S) about the causal factor, daytime average 

temperature, over a period of 54 working days by a group of 19 experts representing 7 

activities related to pipe module fabrication.

Table 6-5. Linguistic assessments and representative membership values for day
time average temperature.

Temperature 
(Degrees Celsius)

Mean-
S

Term Set
Cold Average Warm

9 3 0.2222 0.6065 0
12 3.35 0.0939 0.8096 0
13 3.65 0.0272 0.9406 0
14 3.85 0.0050 0.9888 0
15 4.2 0 0.9802 0.0089
16 4.4 0 0.9231 0.0356
17 4.47 0 0.8954 0.0491
18 4.58 0 0.8452 0.0748
19 4.68 0 0.7936 0.1028
20 4.96 0 0.6308 0.2048
21 4.98 0 0.6187 0.2134
23 5 0 0.6065 0.2222
24 5.1 0 0.5461 0.2689
25 5.35 0 0.4020 0.4050
26 5.6 0 0.2780 0.5644
30 5.88 0 0.1708 0.7212

The membership values are obtained for three terms (cold, average, and warm), 

as shown in Table 6-5, using the representative function shown in Figure 6-35 (d). Figure 

6-41 shows the corresponding membership functions constructed using the quadratic 

Bernstein polynomial interpolation algorithm using sample membership values of each 

term.
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Figure 6-41. Membership function for Cold, Average and Warm daytime average
temperature.

6.6.3.2 Causal Factor: Daytime average wind speed

The effect of wind speed can be considered activity-specific as some activities have a 

minimal impact from wind (e.g., hydrotesting) while activities such as pipe handling and 

erection of structural steel members can be affected significantly by the wind. The mean 

values of the linguistic assessments about daytime average wind speed provided by 4 

structural steel erection experts are shown in Table 6-6. Assessments made by 5 

pipefitting and fabrication experts on the same causal factor are shown in Table 6-7. The 

corresponding membership functions for three terms (low, medium and high wind speed) 

are shown in Figure 6-42.
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Table 6-6. Linguistic assessments by structural steel erection experts and 
representative membership values for day time average wind speed.

Wind
Speed

Mean-B Term Set
Low Medium High

1 1.00 1.0000 0.0111 0
5 2.50 0.5000 0.3247 0
9 3.30 0.1089 0.7827 0

11 4.30 0 0.9560 0.0200
14 5.00 0 0.6065 0.2222
20 5.50 0 0.3247 0.5000
23 6.00 0 0.1353 0.7778
31 6.50 0 0.0439 0.9444

Table 6-7. Linguistic assessments by pipefitting and fabrication experts and 
representative membership values for day time average wind speed.

Wind
Speed

Mean-B Term Set
Low Medium High

1 1.00 1.0000 0.0111 0
3 2.38 0.5768 0.2692 0
5 2.50 0.5000 0.3247 0
6 2.56 0.4608 0.3546 0

10 3.00 0.2222 0.6065 0
11 3.30 0.1089 0.7827 0
14 4.00 0 1.0000 0
20 4.50 0 0.8825 0.0556
22 5.00 0 0.6065 0.2222
23 6.00 0 0.1353 0.7778
31 7.00 0 0.0111 1.0000

(a) (b)

0.8 Low
Medium
High

0.7

0.6

a. 0.5

0.4

0.3

0.2

0.1

0 20  
W ind S p e ed  (km/h)

30 40

0.9

0.7

0.6

a. 0.5

0.4

0.3

0.2

0.1

10 20
W ind S p eed  (km/h)

30 40

Figure 6-42. Membership functions of Low-, Medium- and High- wind speed: (a) for 
structural steel erection activity, (b) pipe fitting and fabrication activity.
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6.6.3.3 Causal Factor: Crew Size (number of members in the crew)

The following table shows the crew size (CS) and corresponding linguistic assessments 

provided by structural steel erection expert, over a period of 21 workdays.

day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
CS 6 12 6 12 6 6 5 3 5 5 5 5 6 7 12 12 12 12 10 6 5
S 2 5 3 5 3 3 3 2 2 2 2 2 3 3 5 5 5 4 3 1 4
CS=crew size, S=bipolar assessment

This table indicates that the crew size has taken the following g values: 3,5,6,7,10, 

and 12 over a period of 21 days. Linguistic assessments indicate that the crew size was 

never considered as quite- or extremely- large, in any of the days. It indicates that usually 

oversize crews were not used in the project. Table 6-8 shows the crew sizes, 

corresponding mean linguistic assessments, and representative membership values for 

three terms (i.e., small, average and large crew).

Table 6-8. Linguistic assessments (by a structural steel erection expert) and 
representative membership values for Crew Size.

CS MEANS TERM SET
Small Average Large

3 2.0 0.7778 0.1353 0
5 2.125 0.7188 0.1724 0
6 2.857 0.2903 0.5204 0
7 3.71 0.0187 0.9588 0
10 4.0 0 1.0000 0
12 5.0 0 0.6065 0.2222

1

0.9 

0.8 

0.7 

0.6 

i  0.5 

0.4 

0.3 

0.2 

0.1 

0
2 4 6 8 10 12 14

Crew s ize

Figure 6-43. Membership functions of Small and Average crew sizes.
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6.6.3A Causal Factor: Absenteeism of crew member(s)

Linguistic assessments obtained for the causal factor: absenteeism of crew members are 

shown below.

Number of crew 
members absent

0 1 2 3

S 1 4 6 7

It is quite obvious from the above assessments that experts believe that on any given day, 

the absenteeism of one crew member is expected. Any number of absentees more than 

one is considered as quite or extremely high. As shown in the above assessment, this 

causal factor does have a very limited amount of representative values (i.e., 1, 2 or 3 

absentees); an interpolation method is therefore not suitable for constructing membership 

functions. Representation of membership values in a tabular form is sufficient in these 

cases. A sample representation of membership values for two term sets (Low and High 

absenteeism) is shown in Table 6-9.

Table 6-9. Example of membership function representation in tabular form.

NUMBER OF 
ABSENTEES IN A 
CREW

TERM SET
Low High

0 1.0 0
1 0.6 0.2
2 0.2 0.6
3 0 1.0
4 0 1.0

6.6.3.5 Causal Factor: Rework Hours

Representative values of rework hours and corresponding linguistic assessments on 

bipolar scale, low-high, made by a group of experts are shown below:

Rework hours 1 2 3 5 6 10 21
Mean-S 4 5 5 5 6 7 7

Similar to the causal factor, absenteeism of crew members, rework hours also has very 

limited representative values. The corresponding linguistic assessments indicates that any 

amount of rework hours that are higher than 1 are considered as a variation of high, i.e., 

either slightly high, quite high or extremely high. When the rework hours are greater than 

10 (which represent a day’s worth of work by an individual crew member), it is 

considered as extremely high.
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Since almost all the linguistic assessments are concentrated on one side of the 

bipolar scale, the method of representative transfer functions is not suitable to obtain 

membership values for the causal factor, crew size. However, the above linguistic 

assessments indicate that a simple heuristic-based method of membership function 

construction is sufficient in this case. Sample membership functions for two terms (low 

and high) are shown in Figure 6-44.
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Figure 6-44. Membership functions of low and high rework.

Based on the above discussion and the protocol presented in Figure 6-33, suitable 

membership function development techniques are identified for the variables listed in 

Table 6-2. The results are shown in Table 6-10.

6.7 DISCUSSION AND SUMMARY

In this chapter, the membership function determinations techniques that are based on 

sample membership values are first reviewed and methods most suitable for applications 

in construction performance modeling are identified. Constrained interpolation methods 

that are identified as potential membership function determination techniques are tested 

using illustrative examples. A pragmatic approach is then proposed for qualitative 

knowledge acquisition and representation. The proposed causal knowledge representation 

methodology was a combination of the nominal group technique (NGT) and semantic 

differential (SD) approach. The proposed methods are tested and validated using an 

actual dataset collected from an industrial construction project.
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Table 6-10. Suitable membership function determination techniques for the causal
factors identified in this study.

CAUSAL FACTOR SAMPLE MEMBERSHIP 
VALUE DETERMINATION 
TECHNIQUE(S)

MEMBERSHIP
FUNCTION
DEVELOPMENT
TECHNIQUE(S)

Crew size Semantic Differential Approach Constrained interpolation
Absenteeism Semantic Differential Approach/ 

Pairwise comparison
Tabular form/ 
Heuristic method

Crew experience Semantic Differential Approach Heuristic method
Rework Pairwise comparison/

Semantic Differential Approach
Constrained interpolation

Incomplete/unclear drawings Semantic Differential Approach Membership values from 
transfer functions

Temperature (day time 
average)

Semantic Differential Approach Constrained interpolation

Total Precipitation Semantic Differential Approach Constrained interpolation
Wind speed (day time 
average)

Semantic Differential Approach Constrained interpolation

Manpower availability Semantic Differential Approach Membership values from 
transfer functions

Equipment availability Semantic Differential Approach Membership values from 
transfer functions

Equipment suitability Semantic Differential Approach Membership values from 
transfer functions

Tools condition Semantic Differential Approach Membership values from 
transfer functions

Consumables availability Semantic Differential Approach Membership values from 
transfer functions

Material availability Semantic Differential Approach Membership values from 
transfer functions

Congestion on work location Semantic Differential Approach Membership values from 
transfer functions

Access to work location Semantic Differential Approach Membership values from 
transfer functions

Time to await inspections Semantic Differential Approach Membership values from 
transfer functions

Waiting for other trades Semantic Differential Approach Membership values from 
transfer functions

Task complexity Semantic Differential Approach Membership values from 
transfer functions

Safety equipment availability Semantic Differential Approach Membership values from 
transfer functions

Right tool availability Semantic Differential Approach Membership values from 
tran sfe r functions

Crew attitude/morale Semantic Differential Approach Membership values from 
transfer functions

The results indicate that the proposed methodology for representing experts’ 

knowledge is effectual and generates fairly accurate results. Finally, a linguistic-to- 

numerical transformation process is proposed. These numerical values represent the
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sample membership values, [0,1]. They can be used to define membership functions or 

can be used as direct inputs to the FA-GRNN model described in Chapter 5.

Chapter 7 describes the overall diagnostic reasoning development strategy, 

combining the knowledge representation and acquisition methods presented in this 

chapter and the FA-GRNN model proposed in Chapter 5. It also presents the software 

(XCOPE, explaining construction performance) developed based on the principles 

discussed in this thesis. Chapter 8 will draw conclusions based on the research and 

identify the future research directions.
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CHAPTER SEVEN
7. INTEGRATED CONSTRUCTION PERFORMANCE DIAGNOSTIC 

FRAMEWORK

7.1 INTRODUCTION

This chapter presents an overall description of an integrated construction performance 

diagnostic framework capable of predicting construction performance and diagnosing 

performance deviations based on a combination of expert opinion and daily measures of 

performance-related factors. The proposed integrated system has the advantage of neural 

network systems (e.g., learning, fault tolerance, generalization, and adaptation abilities), 

fuzzy systems (capturing the subjectivity of expert assessments, processing linguistic 

information at different levels of granularity) and genetic algorithms (parametric and 

structural optimization of the system). The integrated framework is implemented in a 

Microsoft® Visual Studio® platform in order to validate the effectiveness of the 

proposed system.

The following sections provide an overview about the proposed integrated 

framework and identify its key modules. A descriptive, step-by-step guide for developing 

each module is presented. It is followed by a discussion on the framework validation 

strategies used. Finally, an example case is presented validating the overall framework to 

obtain high degree of confidence of the proposed framework.

7.2 PROPOSED INTEGRATED FRAMEWORK FOR DIAGNOSING 

CONSTRICTION PERFORMANCE

The proposed framework consists with two key modules: the prognostic module and the 

diagnostic module, as illustrated in Figure 7-1. In its functional form (i.e., after the model 

is designed, trained, and tested), inputs to the model are daily values of causal factors that 

represent the working condition of an activity. The model has three key outputs. In its 

predictive form, the model allows the user to estimate construction performance based on 

different conditions/states of causal factors. This estimation provides the user an efficient 

methodology to execute a what-if analysis, so that constmction managers can identify the 

expected performance of construction activities based on different scenarios. Additionally, 

as an output of the prognostic module, the model identifies the relative-significance of 

each input causal factor (in terms of smoothing factors). This characteristic of the
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proposed network provides the construction manager an effective way to keep focus on 

the most important and significant factors to control the performance of the activity. In its 

diagnostic form, the model let the construction manager to identify the root causes of 

performance deviation(s).

(I) Prognostic Module

pattern

Fuzzy_GRNN
Model

Terminate
In ferenceDaily Values 

(Actual) Similar? >

/  A c tua l 
/  O u tp u t /

Identify  a n d  R ank 
C ritical C a u s e s
,S' =  i ) i , x a

til) Diagnostic Module

Figure 7-1. Proposed integrated framework

A summary description of each module along with a step-by-step guide to develop the 

framework is presented in the following sections.

7.2.1 The Prognostic Module

The prognostic module comprises a user interface and the fuzzy adaptive generalized 

regression neural network (FA-GRNN) model. The user interface facilitates the 

knowledge representation and data preprocessing, which is designed using the concepts 

presented in Chapter 6. The FA-GRNN model provides the nonlinear-dynamic input- 

output mapping capabilities, which are described in detail in Chapter 5. This module is 

designed to perform several key tasks. A description of each task along with a step-by- 

step guide to implement each task is described below.

(a). Allows the user to define project performance goals and related key performance 

indicators (KPIs), and to represent causal knowledge about the KPI. The following steps 

can be performed at this stage:
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1. Identify key performance indicators (KPIs) for activity performance.

2. Identify a list of causal factors for each KPI (via modified nominal group 

technique). This list of factors serves as input variables ( e  X , i  = 1,2 to 

the proposed model, where n equals total number of causal factors associated 

with the selected KPI. The output variable is the KPI, which is represented by y. 

Since, generally, the KPI is a numerical measure such as the productivity factor, 

the proposed model is designed as a Multi-Input-Single-Output (MISO) system.

3. Identify numerical measures and subjective measures (i.e., bipolar scales) for 

causal factors identified in the above step.

4. Identify planned values (i.e., baseline parameters) of each input variable x-t 

(i.e., xp) for each KPI. These planned values are used to calculate the 

performance deviation, later in the diagnostic reasoning process.

5. Select linguistic values (i.e., term sets) for each causal factor identified. This 

allows experts to represent the level of information granularity that they expect in 

the reasoning process.

(b). Allow experts to assess and report qualitative and quantitative assessments on daily 

working conditions (represented by list of causal factors). A methodology is proposed in 

Section 6.5 of the Chapter 6 for assessing working condition using linguistic estimates. 

Steps for determining this are as follows:

1. Collect daily values jct (i.e., numerical measurements and or linguistic 

assessments) of causal factors and respective key performance indicators (yt) over 

a time period (or extract data from the project database for previous similar 

project/s).

2. For cases in which multiple expert assessments are available, assessments need 

to be aggregated, using procedures described in Section 6.5.1 of the Chapter 6.

3. Categorize collected daily values, if necessary, into different groups based on 

user requirements (e.g., seasonal data, work package, etc). Models specific to 

each data category must be developed.

These daily values form the learning data of the model: l  = {x, ,y, .

(c) Input Fuzzification. This facilitates transforming qualitative and quantitative input 

data into membership degrees of selected linguistic values of input causal factors. Input
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Fuzzification can also be considered as an input preprocessing process. This process not 

only enables one to capture the subjectivity of an individual expert’s assessment of daily 

working conditions but also allows one to transform the input values to a form (i.e., 

between 0 and 1) that can be used as a direct input to a neural network model. Input 

Fuzzification is carried out in two different ways, based on the characteristic of the causal 

factors. For causal factors that do not have well-defined numerical measures, 

representative transfer functions are used (as described in Section 6.6.2) to obtain 

membership values that are directly used as input to the FAGRNN model. For causal 

factors that have well-defined numerical measures, membership functions are constructed 

by interpolating sample membership values (as described in Section 6.2.6). Once the 

membership functions are developed for those causal factors, corresponding membership 

values of daily assessments can be obtained by sending the quantitative measurement 

through the membership function. It is recommended that once the membership functions 

are constructed that they are crosschecked with the construction management team to 

make sure that the shapes of the functions constructed are meaningful. A step-by-step 

guide for input fuzzification is as follows:

1. Select representative transfer functions for each linguistic value (refer to 

Section 6.6.2 for detail description).

2. Construct membership functions (for factors that have numerical measures) 

using sample data by a constrained interpolation technique (refer to Section 6.2.6 

for a detailed description).

3. Combine the membership functions (and representative transfer functions for 

factors that do not have numerical measurements), mg, into a vector of a single 

input

vector, u = [mu ,mn mxk ,m2l, m2 2 m2 k mnX, mn 2 mnk ] = [w,, u2 up J

where the total dimension of u is p=n*k, where n is the number of factors and k is 

the number of membership functions (or transfer functions) for each factor (i.e., 

input vector of the model).

(d). Training and testing FA-GRNN model. This phase focuses on training and testing 

the FA-GRNN model (presented in Chapter 5) that is capable in mapping complex 

phenomena, such as construction labour productivity. Once an accurate predictive model 

is developed, as described in the following phase III, the model can be used for
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diagnostic inference, with further extensions to the same network. Necessary steps for 

training and testing the FA-GRNN model are described below:

1. Obtain sample training input-output data pairs, (xt, y t), which represent the 

values of causal factors and the corresponding KPI values, respectively.

2. Transform sample values of causal factors (xt) into membership degrees (ut) by 

sending xt through vector u.

3. To obtain the corresponding output values, y \ which are numerical 

measurements, a nonlinear transfer function (e.g., sigmoidal function) can be 

used to transform actual daily output, y t (i.e., KPI) values into a unit interval, i.e., 

[0,1], to feed into the FA-GRNN model.

4. Combine sample input (ut) and output (y't) data to create the learning data set 

(input and output data pairs) that can be represented as L = ju ( ,y't }(=|, where T 

is total number of days.

5. Divide the sample dataset L into two sets (for training and testing).

5. Train the FA-GRNN model with training data patterns using genetic 

algorithms.

6. Analyze the individual (local) smoothing factors, and crosscheck with 

construction management team.

7. Test and validate the model using testing data.

8. Feed the planned values (xp) into the FA-GRNN model, and obtain the planned 

{output) KPI estimate (y'p), thereby establishing a baseline estimate of the KPI. 

By applying the planned values (xp) to the network, we can obtain the normal 

functional state o f the system under study. This will be considered as the baseline 

for diagnostic inference, which is presented in Section 7.2.2.

7.2.2 The Diagnostic M odule

Once the learning phase is successfully completed, the FA-GRNN model can be 

employed as an approximate inference and forecasting engine. Essentially, the diagnostic 

process can be defined as a root cause identification using information collected from 

daily working condition reports, established baseline parameters, and values of key
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performance indicators. The sequence that should be followed to perform a diagnosis can 

be summarized as follows:

1. Diagnostic inference starts with selecting a new data pattern, and then comparing 

the observed (field measurement) KPI value, y , with planned KPI value, y p . If 

y  is equal or similar to y p ; one can presume that the planned conditions of 

factors have prevailed during that particular day, making the diagnosis not 

required.

2. Otherwise, feed the new data pattern (xa) into the network and get the network 

output ( y ) .  Compare y  and y . If the prognostic model is accurate, y  should 

be equal or similar to y . Otherwise, the prognostic model is inappropriate for 

diagnostic reasoning. This conflict can be caused by: (1) measurement errors in 

the actual KPI (e.g., hours were incorrectly charged to calculate productivity 

factor) and/or (2) incomplete or inaccurate model. A simple protocol to identify 

and evaluate an incorrect model is shown in Figure 7-2.
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Figure 7-2. A protocol for identifying and evaluating inaccurate models.

3. If y  is equal or similar to y  (or within an acceptable range), then calculate 

difference between ua and up (A p,); a critical cause for abnormal behavior of 

KPI comes from an unexpected variation of a performance factor, the difference 

between the actual and planned condition (A p , )  of each linguistic values of 

causal factors is thereby calculated.

4. Multiply A p; by smoothing factor a , , S = Apj. x a , . The inference should be

based on multiplication of degree of membership of cause variance and 

associated weight. In order to become the most significant cause of an effect, 

both the variation should be high and the weight should be comparatively high. 

In cases where the weight is comparatively high but if the variation is low, the
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impact will not be significant. Hence both the cause variance and the associated 

weight should be considered while making the inference.

5. Rank S and identify critical factors of performance variation.

7.2.3 Example of a Performance Diagnostic Inference

This section presents an example to further explain the diagnostic inference process 

discussed above. A FA-GRNN model was developed for reasoning hydro-testing activity. 

A data pattern (representing the day of June 12, 2003) that has not been seen by the FA- 

GRNN model (developed based on summer 2003 data; see Section 5.4.4 for model 

details) was selected for diagnostic reasoning. The actual output value (PF) for the day of 

June 12, 2003 was 0.4380. The objective here is to identify the causes of low productivity 

of hydrotesting on that day. The absolute error of the network output for the same data 

pattern was 0.006. The model was therefore considered pertinent for diagnostic inference. 

Summary results of the diagnostic inference for that particular data pattern are shown in 

Table 7-1.

Column 1 shows factors that identified by the construction management team and 

possible causes of low hydro-testing productivity. Membership functions for each factor, 

which were derived from collected daily data, are shown in column 2. Respective 

individual smoothing factors ( ct; ) that represent the relative importance of individual

factors to the selected network output is given in column 3. Membership values of the 

planned (estimated) value of each factor are shown in column 4. Membership values of

actual daily value of each factor are given in column 5. The variance ( Ap; = \i° — |xf) of

membership values (of actual and planned values) of the selected day is shown in column

6. Column 7 shows the multiplication of individual smoothing factor and the variance 

( S  = Ajj.; xo, ) .  The value S indicates the significance of the particular linguistic term

(e.g., low work load, high manpower availability) as a combination of variance of the 

particular day and the relative importance of the particular term in the network. For 

example, as shown in Table 7-1, on June 12, 2003, among the seven factors identified, 

the mean-temperature had the largest variation. Based on linguistic terms, “medium” 

mean-temperature had a negative variation of 1.0 and “high” mean-temperature had a 

positive variation of 1.0 indicating that on the particular summer day, the mean- 

temperature was higher than the average value. The respective a , value of “medium” and
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“high” temperatures are 2.882 and 0, respectively. 718 indicate that a “medium” mean- 

temperature has a higher influence, compared to a “high” temperature, in the selected 

network. As shown in the column 8, the summation of S values indicates the overall 

significance of mean-temperature, compared to other factors on the particular day. In this 

case, the corresponding negative sign indicates that mean-temperature has a contributing 

impact on productivity deviation. Similar types of analysis have been carried out for the 

rest of the factors and ranked accordingly, based on the summation of S values, as shown 

in column 9.
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Table 7-1. Diagnostic inference for low hydro-testing productivity on June 12, 2003*.

(1)
Factor

(2) (3) (4) (5) (6) (3)X(6) (7) (8) (9) (10)
Membership Smoothing Planned Actual Variance £  =  A |i  x  a  'S' S  Contributing C+ Comment

function Factor- a  values Value A (Act- ' (C+) Rank
(for (for Planned) Counteracting

' or Summer) 12June (C-) Neutral 
summer) Q3) ^

Work Load Low 0.588 0.500 0.500 0,29 Actual 
Medium 1.576 0.909 -0.909 -1.43 w orkload  

High 1.024 -1.14 C- was less
than
planned on 
this day

Equipment
availability

Low 0.106 Equipment 
Medium 1.847 0.500 0.500 availability

was as 
planned.

High 2.741 N
Manpower
availability

(ratio)

Low 1.718 Manpower 
Med-Low 0.235 0.770 0.770 0.18 availability 
Med-High 1.341 0.893 -0.893 -1.20 was less 

High 0.165 -1.02 C+ than
2 planned.

Mean
temperature

Low 0.259 Mean 
Medium 2.882 1.000 -1.000 -2.88 temperature 

High 0.718 1.000 1.000 0.72 -2.16 C+ was higher
than 

1 planned.
Total

precipitation
Low 2.871 0.342 1,000 0.658 1.89 

Medium 2.953 0.772 -0.772 -2.28
High 1.753 -0.39 C+ 3

Rework
(hours)

Low 1.247 1.000 1.000 Zero
rework.

Med-Low 3.000 
Med-High 2.118

High 0.729 N
QC hours 

(ratio)
Low 0.035 Actual QC 

Med-Low 0.176 0.263 0.096 -0.167 -0.03 input is less 
Med-High 1.129 than 

High 2.565 -0.03 C+ 4 planned.

*Cells with zero values were left blank to increase the brevity.



7.2.4 Visual Representation of Diagnostic Inference

Results shown in the Table 7-1 are transformed into a visual form, using the tree-map 

approach (Johnson and Shneiderman 1991) enabling the construction manager to observe, 

browse, and understand the comparison of significance between different factors of each 

KPI. Technically, the tree-map is used to convert numerical and symbolic results into a 

graphical representation. As shown in Figures 7-3 and 7-4, the tree-map presents 

diagnostic information at several levels of detail, making extensive data comparisons 

coherent. It helps to answer basic questions that a construction manager has about his 

project performance.

1 fr-abel) .
1 (Number of nodes)

  Factor (for.su...
Planned values (for Sum... 

I Actual Value (for 12June 0.

Figure 7-3. Size based on Smoothing factor and the color based on contributing 
(red) and counteracting (green) causes.
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Figure 7-4.Size based on significance of significance of factor and color based on 
contributing (red) and counteracting (green) causes.

7.3 FRAMEWORK VALIDATION

The proposed framework, which is capable of predicting and diagnosing construction 

performance, integrates several concepts that are designed and developed in this thesis. A 

bottom-up approach of framework validation, i.e., validating the sub-modules first and 

then the overall framework, is used. As described in Section 7.2, the proposed framework 

has two key sub-modules: the prognostic module and diagnostic module. Several 

objectives as well as subjective model validation techniques have been used to ensure 

that the proposed framework possesses a satisfactory range of accuracy for predicting and 

diagnosing construction performance. This section summarize the efforts put forth to 

substantiate the accuracy of the proposed framework.

7.3.1 Conceptual Model Validation

In the proposed framework, designing the conceptual model is limited to identifying the 

most representative causal factors of key performance indicators by a group of experts 

and constructing membership functions using the membership values obtained from the 

expert judgment of representative values of causal factors. (Note that the strength of
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input-output relationship is calculated via neural network training by providing input- 

output sample data of the network). The process of causal knowledge representation 

depends on the experience and knowledge of a group of construction personnel. A 

structured methodology based on a modified version of the Nominal Group Technique 

(NGT) is proposed (see Section 6.4.2) to guide the group of experts to identify an 

appropriate and “reasonable” list of causal factors that can affect the performance 

indicator. Membership functions constructed based on sample membership values are 

validated using face-validation, i.e., by asking construction experts about the membership 

function and whether they are reasonably able to represent the selected linguistic 

concepts.

7.3.2 Validity of Working Condition Assessment Data

Proposed framework utilizes both quantitative and qualitative working condition 

assessment data for three purposes: training the FA-GRNN model, testing the FA-GRNN 

model, and for performing prognostic and diagnostic experiments with the validated 

model. Data is collected in terms of input-output pairs (x,y) representing daily values of 

selected causal factors (as input, x) and the corresponding measurements of the key 

performance indicator (y). The input vector, x, consists of both quantitative and 

qualitative measurements while output values are represented as a quantitative value. A 

structured procedure is proposed (in Section 6.4.4) that is based on a semantic differential 

approach to achieve a reasonable accuracy in qualitative expert assessments on 

qualitative variables. Internal consistency checks were carried out, as described in 

Section 6.5.2, to determine whether the individual expert judgments were within a 

reasonable accuracy level. The quantitative measurements on working condition are 

automated where possible (e.g., weather data is collected by setting up a mini-wireless 

weather station at site) to collect accurate field measurements. Additionally, data 

transformation procedure is also structured (see Section 6.5.1) by developing data 

aggregation procedures to combine expert qualitative assessments and/or to combine 

assessments in order to represent data in a different time scale. Furthermore, a database is 

designed, developed and maintained to collect and store both quantitative and qualitative 

data.

7.3.3 Prognostic Validation

The operational validity of the proposed framework is determined in Section 5.4 by 

comparing the actual system behaviour with the model’s behaviour. In the prognostic
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module, the model is used to predict the construction performance based on input 

working conditions. Comparisons are then made between the actual output (i.e., daily 

actual KPI value) and the model’s estimate to determine if  they are same (or within 

reasonable level of accuracy, e.g., 10%). A statistical technique and a graph-based 

comparison approach are used to validate the prognostic model. The coefficient of 

multiple determinations, R2, (see Equation 5.4) is used as a means of statistical validation, 

to determine the FA-GRNN model’s accuracy. Additionally, scatter plots (see Figures 5- 

5, 5-8, and 5-10) and error graphs (See Figures 5-6, 5-9, and 5-11) are used to visualize 

the comparison of the actual vs. FA-GRNN model behaviour. Sixteen experiments were 

conducted (in Section 5. 4) using datasets that represent different time intervals (e.g., 

months, seasons) and found that models trained using seasonal data have the highest 

accuracy levels.

7.3.4 Diagnostic Validation

The purpose of the diagnostic module is to explain construction performance deviations 

by identifying the relative significance of causal factors. The operational validity of the 

diagnostic module is determined before each time the diagnostic inference is conducted. 

As described in Section 7.2.2, diagnostic inference is carried out only if the FA-GRNN 

prognostic model has the reasonable accuracy to predict the actual performance level of 

the activity based on the actual working conditions of a particular day. In other words, the 

FA-GRNN model is the foundation of the diagnostic inference. Additionally, the user 

always has the option to crosscheck the accuracy of the diagnostic inference by analyzing 

the variance of identified root causes of performance deviations manually. A protocol is 

also developed (in Section 7.2.2) to identify the accuracy of the model or diagnostic 

inference.

7.4 CASE EXAMPLE OF REASONING INDUSTRIAL CONSTRUCTION 

LABOUR PRODUCTIVITY

To obtain a high degree of confidence in the proposed framework, a set of actual data 

(collected using the proposed data collection methods) is used in this section to validate 

and verify the overall framework. For project related details, the reader is referred to the 

Section 6.3 of Chapter 6. This section presents the results of the experiments conducted 

on industrial construction activity: pipe handling and fabrication (hereinafter referred as 

pipe fabrication), to demonstrate the validity of the overall framework.
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The labour productivity factor (PF) of the pipe fabrication activity was selected 

as the performance indicator, representing the output variable y. Causal factors that 

represent the daily working condition of pipe fabrication is identified by 4 frontline- 

supervisors who belong to the pipe-fitter trade. The average experience of this group of 

experts was 22 years in the same trade.

7.4.1 Causal knowledge representation and daily working condition assessments

The list of causal factors identified (using the proposed modified nominal group 

technique) to represent the daily working conditions of the pipe fabrication, their 

numerical and or bipolar measures, and selected linguistic values of each causal factor is 

shown in Table 7-2.

Table 7-2. Causal factors of pipe fabrication, their measures, and selected linguistic

values.

FACTORS NUMERICAL
MEASURE

BIPOLAR
MEASURE

SELECTED LINGUISTIC 
VALUES (TERM SET FOR 

REASONING)
Crew size CSZ Number o f ' 

crew members
Small - Large Small Average Large

Absenteeism ABS Number of 
crew members 
absent

Low - High Low High

Rework RWK Workforce
hours

Low - High Low High

Temperature 
(day time 
average)

TEM Degrees
Celsius

Cold - Warm Cold Average Warm

Total
Precipitation

PRE mm Low-Heavy Low Heavy

Wind speed (day 
time average)

WSD km/hr Low - High Low Medium High

Equipment
availability

EQA - Low - High Low High

Equipment
suitability

EQS - Improper - Ideal Improper Ideal

Material
availability

MTA - Poor - Good Poor Good

Access to work 
location

AWL - Restricted - 
unrestricted

Restricted Unrestricted

Waiting for other 
trades

WOT - Short- long Short Long

Incomplete/Uncl 
ear Drawings

IUD - Few -many Few Many

Right tool 
availability

RTA Low - High Low High
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Once the causal factors and their quantitative and/or qualitative measures were 

identified, daily assessments of each causal factor are obtained by the same group of 

experts over the period from 6th June 2005 to 28th August 2005. The reader is referred to 

the Appendix A for complete details of the assessment data for the above causal factors. 

Figure 7-5 and Figure 7-6 show the screen captures of the XCOPE, the system developed 

to facilitate the above knowledge representation and collection of expert assessments.

1 File View Database Help

■Pipe F a b r ic a tio n  ▼ [L abou r P r o d u c t iv ity  ■*■[

+ 1 A /\ V ¥

El- Factors Library a .

i ■ 1 Crew size 13- Labour Productivity
2 Absenteeism 1 Crew size
3 Rework j— 2 Absenteeism
4 Temperature (day time average) 3 Rework

i» 5 Total Precipitation ; 4 Temperature (day time average)
i 6 Wind speed (day time average) 5 Total Precipitation
i -  7 Equipment availability 6 Wind speed (day time average)
: 8 Equipment suitability :■■■■ 7 Equipment availability

9 Tools condition 8 Equipment suitability
r 10 Consumables availability s 11 Material availability
i 11 Material availability 13 Access to work location
i 12 Congestion on work location h  14 Waiting for other trades

13 Access to work location j— 15 Incomplete unclear drawings
;■■■• 14 Waiting for other trades 16 Right tool availability
; 15 Incomplete unclear drawings
| 16 Right tool availability - -

17 Task complexity
: 18 Crew experience ^

Ready Current Issue: Labour Productivity ^

Figure 7-5. XCOPE representation of causal factors that affect steel erection
productivity
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S t r r l  FrKCtimi

+ -  « < > »
Labour Productiv ity  * j

Date: I 6 /21 /2005 User: | mW “ 3

Factor Rating

2'
. s

5a
Ci'ew size jT“ Small Large Humber of members in crew

Absenteeism fT“ Low y High Humber of crew members

Rework pr- Low -— High Amount of rework hours

Temperature (day pr- Cold --------- _. t__
/  ,

Warm Degrees Celsius

Total Precipitation l _ Low ---- -— _} T........ High -

Wind speed(day p— Low . r- High km/h

Equipment r~ Low
. h

-------
Equipment !... Improper _ — Ideal

Tools condition ! Poor ..........
- y

Good

Consumables ! Poor :SSr Good

Ready Current Issue: Labour Productivity

Figure 7-6. XCOPE representation of daily expert assessments

The variability of the labour productivity (PF) of pipe fabrication during the 

period concerned is illustrated in Figure 7-7. Technically, one of the proposed 

framework’s key objectives is to map the complex variability of performance that is 

based on related working conditions.

Pipe Fabrication Productivity Factor

y 0.4

0 5 10 15
Workday

Figure 7-7. Productivity factor variation of structural steel erection
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Figure 7-8 shows the average crew size and the number of crew members absent 

over the period concerned. Figure 7-9 shows the numerical measurements of the weather- 

related causal factors for the same period concerned.
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Figure 7-8.The average crew size and numbers of absent crew members
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Figure 7-10 shows the aggregated expert assessments (obtained via the semantic 

differential approach) about the causal factors that do not have well-defined numerical 

measures. An equal competence level is assumed among all four experts.
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7.4.2 Input Fuzzification

The input fuzzification is carried out based on the proposed protocol (described in 

Section 6.5.3) for selecting suitable techniques to determine membership functions. The 

Figure 7-11 shows the selected nonlinear representative transfer functions to obtain 

(sample) membership values for the list of causal factors. By following the procedure 

described in Section 6.6.3, membership functions are constructed for causal factors {CSZ, 

TEM, PRE, and WSD} by a constrained interpolation of sample membership values 

obtained from the proposed linguistic-to-numerical transformation procedure (see Figures 

7-12 to 7-15).
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Figure 7-11. Selected representative transfer functions: (a) Two terms sets for 
causal factors {ABS, RWK, PRE, EQA, EQS, MTA, AWL, WOT, IUD, RTA}, and 

(b) Three term sets for causal factors {CSZ, TEM, WSD}.
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Figure 7-12. Membership functions of pipe fabrication crew size (small, average and
large)
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Due to the simplicity and limited number of discrete sample values, membership 

functions for causal factors (ABS and RWK} are constructed using heuristic method, as 

shown in Figure 7-16 and Figure 7-17, respectively. Membership values for causal 

factors { EQA, EQS, MTA, AWL, WOT, IUD, RTA } are obtained directly from 

respective transfer functions.
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Figure 7-16. Membership function of field rework (low, high)
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Figure 7-17. Membership function of Absenteeism (low and high)

7.4.3 Training and testing the FA-GRNN model

The dataset collected over the period of the summer 2005 (graphically shown in Figures 

7-8 to 7-10) consists of 29 data patterns that could be used for training and testing the 

proposed FA-GRNN model for modeling structural steel erection productivity 

performance. Two data patterns were set aside for diagnostic reasoning. The remaining 

27 data patterns were divided into two sets. 22 data patterns (i.e., 80%) were assigned for 

training the FA-GRNN model while the remaining five data patterns (i.e., 20%) are used 

for testing the model. The model is trained and optimized adaptively using a genetic 

algorithm, as described in Section 5.3.3. The adaptive training and optimization step of 

the FA-GRNN model is automatically stopped when there have been 20 successive 

reproductions of the whole population, but none has produced an individual that 

improved the mean squared error by at least 1 percent. The accuracy of the trained 

network is tested using several statistical and graph-based techniques.

The coefficient of multiple determinations, R2, of the trained model was equal to 

0.958 while the mean squared error (MSE) is equal to 0.001. Figure 7-18 shows the test 

error over generations elapsed while Figure 7-19 illustrates a comparison of actual output 

vs. FA-GRNN model output of training and testing data.
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Figure 7-18. Test error of the FA-GRNN model over generations elapsed.
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Figure 7-19. Actual vs. FA-GRNN network output comparison

Based on the analysis of statistical results and a visual inspection of Figures 7-18 

and 7-19, one can conclude that the FA-GRNN model developed for reasoning structural 

steel erection productivity has a high level of accuracy in mapping input-output data.

To identify the sensitivity of the shape of representative transfer functions (in 

Figure 7-11) on FA-GRNN model accuracy, the experiment is repeated using linear 

representative transfer functions (see Figure 6-35). The corresponding value of the 

coefficient of multiple determinations, R2, is 0.960 and the mean squared error (MSE) 

remains the same. The comparison of actual vs. FA-GRNN network output is shown in
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Figure 7-20. Accordingly, one can conclude that the shape of the representative transfer 

function has a very minimal impact on FA-GRNN model accuracy.
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Figure 7-20. Actual vs. FA-GRNN network output comparison: Linear transfer 
functions

Table 7-3 shows the individual smoothing factors produced as an output of the 

above FA-GRNN model, which represent the relative significance of each fuzzy input 

neuron.

Table 7-3. Normalized individual smoothing factors representing significance of 
causal factors of pipe fabrication productivity.

INPUT LINGUISTIC INDIVIDUAL INPUT LINGUISTIC INDIVIDUAL
NAME VALUE SMOOTHING

FACTOR
NAME VALUE SMOOTHING

FACTOR
CSZ small 0.70 EQA low 0.76

average 1.00 high 0.62
ABS low 0.40 EQS improper 1.00

high 0.21 ideal 0.92
RWK low 0.00 MTA poor 0.04

high 0.64 good 0.63
TEM cold 0.52 AWL restricted 0.75

average 0.97 unrestricted 0.43
warm 0.53 WOT short 0.19

PRE low 0.03 long 0.61
average 0.02 IUD few 0.99

WSD low 0.97 many 0.04
average 0.12 RTA low 0.00
high 0.05 high 0.15
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Smoothing factor results shown in Table 7-3 indicates that among 13 causal 

factors listed, CSZ, TEM, WSD, EQS and IUD have the highest impact on pipe 

fabrication labour productivity for the period concerned. Moreover, one can also 

conclude (at a different level of detail) that any change to average CSZ, average TEM, 

low WSD, improper- and ideal- EQS or few  IUD may have considerable impact on pipe 

fabrication productivity.

7.4.4 The Diagnostic Inference

A data pattern that represents the day of July 28th, 2005 is used for diagnostic inference 

purpose. The labour productivity factor of pipe fabrication on that particular day was

0.589, which is considered as quite low productivity. The objective of the diagnostic 

inference is to identify the root cause(s) of low pipe fabrication productivity. As 

suggested in Section 7.2.2, the FA-GRNN model is realized by the data that represent 

actual working condition assessment. The absolute error of the FA-GRNN model for the 

particular data pattern was 0.002, thus the model is considered as accurate for diagnostic 

reasoning.

As shown in Table 7-4, planned conditions related to that day are identified. The 

size of the crews are assigned generally during a 1-week look ahead planning stage and 

generally no absenteeism is expected. Similarly, zero amount of field rework is expected. 

Planned values of weather-related causal factors are obtained by weekly weather 

forecasts. Planned values for the remaining causal factors shown in Table 7-4 are implied 

(assumed) conditions.

Table 7-4. Planned values (numerical and bipolar assessments)

CAUSAL PLANNED VALUE
FACTOR

CSZ 6
ABS Zero
RWK Zero
TEM 16 degrees Celsius
PRE 2 mm
WSD Calm
EQA Quite high
EQS Quite sutable
MTA Quite good
AWL Quite unrestricted
WOT Quite short
IUD Extremely few
RTA Extremely High
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The Table 7-5 shows the diagnostic inference identifying the root causes (as well 

as their relative significance) of the low labour productivity for pipe fabrication on July 

28, 2005. Results indicate that a high amount of rework hours, unclear drawings, and 

long waiting time for other trades contributed for the low labour productivity on the given 

day.

7.5 SUMMARY

This chapter presented an overall description of a proposed integrated computationally 

intelligent framework for predicting and diagnosing construction performance. Detailed 

descriptions about each key module of the system are given along with a step-by-step 

guide to implement each module. The functionally of the proposed framework is tested 

using a real-life industrial construction dataset. Results indicate that the proposed 

framework has greater capabilities in mapping complex relationships between causal 

factors and related construction performance indicator.
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Table 7-5. Diagnostic inference for pipe fabrication productivity on July 28, 2005.

(1)
Factor

(2)
Membership

function

(3)
Smoothing

Factor-

<*/
(for

summer)

(4)
Planned

value

(5) 
Actual 
Value 
(for 28 

July 05)

(6)
Variance

A

(Act-
Planned)

(3)X(6)

S  = A/r, x a .

(7)

X*
(8)

Contributing 
(C+) 

Counteracting 
(C-) Neutral 

(N)

(9)

Rank

(10)

Comment

CSZ small 0.70 0.14 0.17 0.03 0.02 Actual average crew size was 
slightly less than the planned 
crew size

average 1.00 0.74 0.68 -0.05 -0.05 -0.03 C+

ABS low 0.40 1.00 0.80 -0.20 -0.08 1 crew member was absent
high 0.21 0.00 0.20 0.20 0.04 -0.04 c+

RWK low 0.00 1.00 0.00 -1.00 0.00 10 hours of field rework
high 0.54 0.00 1.00 1.00 0.54 0.54 c+ 1

TEM cold 0.52 0.00 0.00 0.00 0.00
average 0.97 0.92 0.81 -0.11 -0.10
warm 0.53 0.04 0.09 0.05 0,03 -0.08 c+

PRE low 0.03 0.92 0.15 -0.77 -0.02
average 0.02 0.04 0.50 0.46 0.01 -0.01 c-

WSD low 0.97 1.00 0.52 -0.48 -0.47
average 0.12 0.00 0.31 0.31 0.04
high 0.05 0.00 0.00 0.00 0.00 -0.43 c-

EQA low 0.76 0.17 0.33 0.17 0.13
high 0.62 0.83 0.67 -0.17 -0.10 0.02 c-

EQS improper 1.00 0.17 0.17 0.00 0.00
ideal 0.92 0.83 0.83 0.00 0.00 0.00 N
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Table 7.5. Contd.

(1)
Factor

(2)
Membership

function

(3)
Smoothing

Factor-
° i
(for

summer)

(4)
Planned

value

(5)
Actual Value 

(for 28 July 05)

(6)
Variance

A

(Act-
Planned)

(3)X(6)

S = A/Jj x cr,

(7)

X *

(8) 
Contributi 
ng (C+) 

Counterac 
ting (C-) 
Neutral 

(N)

(9)

Rank

(10)

Comment

MTA poor 0.04 0.17 0.50 0.33 0.01
good 0.63 0.83 0.50 -0.33 -0.21 -0.20 C+ 4

AWL restricted 0.75 0.17 0.67 0.50 0.37
unrestricted 0.43 0.83 0.33 -0.50 -0.21 0.16 c+ 5

WOT short 0.19 1.00 0.17 -0.83 -0.16
long 0.61 0.00 0.83 0.83 0.51 0.35 c+ 3

IUD few 0.99 1.00 0.50 -0.50 -0.50
many 0.04 0.00 0.50 0.50 0.02 -0.48 c+ 2

RTA low 0.00 0.00 0.00 0.00 0.00
high 0.15 1.00 1.00 0.00 0.00 0.00 N
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CHAPTER EIGHT
8. CONCLUSION

In this chapter, the details of the research discussed in the previous chapters are 

summarized, and recommendations for future research are given.

8.1 SUMMARY OF WORK

Continuous performance improvement is vital for construction contractors to be 

competitive in the marketplace. Identifying root causes of performance deviations, and 

quantifying them in a systematic manner both play a major role in continuous 

performance improvement. It is vital to identify causes of construction performance 

deviations, the results of which are to increase profit, and to meet schedule, quality, and 

safety requirements. Therefore it is important to consider how project performance is 

measured and how plausible explanations for performance deviations can be generated.

Performance deviations are detected when one or more key performance indicators 

go outside a given range or change significantly from their normal values. Performance 

diagnosis is to isolate the cause(s) of a performance deviation by collecting and analyzing 

information on performance indicators using field measurements, subjective judgments, 

and other information sources. Often, it is performed by the construction manager; it is an 

important function of construction project control. A decision support system that makes 

it possible to diagnose the root causes of performance deviations, in a timely manner, 

would be an attractive way to improve project performance and meet or exceed project 

performance goals.

Currently, there is no standard system to reason about construction performance. This 

is mainly because construction-related problems are mostly unstructured in nature, which 

makes it difficult to apply algorithmic methods based on mathematical models to the 

process of performance analysis and diagnostic reasoning. The process of diagnostic 

reasoning makes this application more difficult due to modeling requirements, such as a 

capability in computing with incomplete, approximate, and qualitative data; non-linear 

and dynamic system modeling capability; and the identification of multiple root causes 

and the relative significance of each cause.
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This research is an effort to address most of the above-mentioned issues in the 

proposed construction performance diagnostic framework. The proposed methodology is 

a step towards developing an application of computational intelligence tools in predicting 

and diagnosing construction performance. This research provides an integrated 

framework for predicting and reasoning construction performance during the construction 

process using three key computational intelligence (Cl) tools: Fuzzy Sets, Generalized 

Regression Neural Network (GRNN), and Genetic Algorithms. The advantages of 

synergistic links between key constituents are identified. Two potential Cl systems based 

on fuzzy-neural systems are identified (i.e., of AND/OR neuron processing module and 

GRNN based processing module) and a system architecture is proposed to exploit the 

benefits of Cl systems to assist construction performance diagnostic reasoning.

First, a logic modeling framework based on AND/OR fuzzy neural networks is 

explored. The transparent structure of the AND/OR neuron model provides the flexibility 

needed to identify the significance of input causal factors. Irrespective of the high 

explanatory capabilities of the model, the results of the experiments carried out using a 

representative sample of construction performance data collected from a industrial 

construction project showed that the generalization capability of the AND/OR network is 

inadequate. Experimental results indicated that the underlying problem has a complex 

nonlinear character.

Having identified the limitations and importance of accurate mapping capabilities 

for construction performance diagnostic reasoning, an alternative fuzzy neural network 

architecture (i.e., fuzzy adaptive generalized regression neural network, FA-GRNN) is 

designed, developed, and tested with the same dataset that was used to test the AND/OR 

neuron model. The objective of the FA-GRNN model was to map the complex non-linear 

problem at hand at a greater level of accuracy, while maintaining the explanation 

capability that is available with AND-OR neuron model in terms of interpreting 

connection weights. FA-GRNN is a nonlinear and nonparametric method, i.e., no 

assumptions are made about the distribution of the data in the model. This nonparametric 

nature of the model suits the construction performance reasoning application well 

because of its inability to identify an a priori distribution function due to the complex 

nature of the problem. The FA-GRNN model’s accuracy is tested with 16 data (sub) sets 

and the results indicate that the model has a greater accuracy level. Experimentation
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results also demonstrate that the model provides better overall performance when it is 

trained with data representing seasonal characteristics.

In an effort to further enhance the modeling capabilities of the proposed model, a 

pragmatic-structured approach is developed to acquire and represent construction 

experts’ knowledge on daily working conditions. The proposed causal knowledge 

representation methodology was a combination of a nominal group technique (NGT) and 

a semantic differential (SD) approach.

A practically possible approach (compared to theoretically feasible) for determining 

membership functions based on sample membership values is explored. Constrained 

interpolation methods that are identified as potential membership function determination 

techniques are tested with data collected from detailed case studies that were carried out 

at an industrial construction project.

Finally, the description of the overall diagnostic reasoning development strategy, 

combining the knowledge representation and acquisition methods and proposed FA- 

GRNN architecture is given. The outcome of the research assists construction managers 

identifying possible causes of constmction performance deviations, on a daily basis. It 

prioritizes the causes so that construction managers can take suitable corrective actions, 

in a timely manner. In addition to using the model to identify root causes of daily 

performance deviations, the same model can be used as a prognostic model to predict 

construction performance (e.g., predict labour productivity). A computer system named 

XCOPE (explaining Construction PErformance) is developed based on the concepts and 

methodologies developed in this research.

8.2 RESEARCH CONTRIBUTIONS

Developing a technique capable of diagnosing a nonlinear dynamic system is a 

significant contribution to the state-of-the-art in establishing robust performance 

diagnostic models. After identifying the key issues and challenges in developing 

construction performance diagnostic models, this study proposed a novel approach that 

includes techniques developed to acquire and represent the constmction experts’ 

knowledge and the diagnostic schema based on computational intelligence techniques. 

Described below are the three key contributions made by this study.

(1). Integrated reasoning framework: The major outcome of this research is the 

integrated computationally intelligent framework that is capable of predicting and
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diagnosing constmction performance. The proposed framework is based on three key 

computationally intelligent tools: fuzzy sets, generalized regression neural networks, and 

genetic algorithms. This hybrid architecture is named the Fuzzy Adaptive Generalized 

Regression Neural Network (FA-GRNN). The application of fuzzy set theory, more 

specifically, membership functions, as the input interface facilitates computing with 

linguistic terms, which represent subjective knowledge of constmction experts. The 

proposed FA-GRNN model introduced fuzzy neurons to the classical GRNN architecture. 

By doing so, the user of the model (i.e., constmction managers) is provided with a 

mechanism to incorporate linguistic values for causal factors. This added level of 

information granularity allows for the capturing and representing qualitative knowledge 

of the system user. This fuzzy neurons allows explicit modeling of each causal factor 

impacting constmction performance, where in current practice, from tradition unit-rate 

estimating to constmction simulation models, this function is handled implicitly using a 

multiplication factor to suite to the context. The proposed methodology also allows the 

user to modify the individual causal factors and assess the sensitivity of the impact on 

constmction performance.

Generalized Neural Networks provides the vehicle for complex input-output 

mapping, and genetic algorithms are used to optimize the proposed network. By 

introducing local smoothing factors to the classical GRNN, the transparency of the 

proposed FA-GRNN model is enhanced up to a level that the model can be used to 

identify the relative significance of each input causal factor (i.e., identification of 

multiple root causes). This important feature of the FA-GRNN model is used as the 

foundation of performance diagnostic inference. Additionally, FA-GRNN model also 

capable in identifying whether a certain causal factor is contributing towards or 

counteracting performance.

The FA-GRNN is the only integrated framework currently exists that has both 

prediction and diagnosis capabilities whilst utilizing quantitative and qualitative data. 

Based on a series of experiments carried out using real data, it is proved that the FA- 

GRNN model is capable in highly accurate predictions and diagnosis of constmction 

performance with sparse data.

(2) Expert knowledge acquisition and representation method: The special feature of the 

model is that it allows for capturing the expertise of constmction managers and utilizing 

it in the diagnostic reasoning process. This is the first ever effort in constmction
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management domain to acquire construction experts’ qualitative knowledge (along with 

quantitative data) in a systematic and economical manner. A unique methodology is 

proposed, using a semantic differential technique to represent the construction expert’s 

qualitative knowledge on daily working conditions. Additionally, a novel approach is 

proposed to aggregate expert qualitative assessments to represent multiple expert opinion 

on causal factors across different time intervals (e.g., weekly, monthly), and across 

different levels of abstractions (e.g., sub-activity level , activity level, work package 

level) for the purpose of reasoning performance at multiple levels of abstractions. 

Furthermore, a fast and efficient mechanism (a group consensus methodology) for 

identifying lists o f potential causal factors of construction performance deviations, in a 

structured manner, is proposed using a modified nominal group technique. This list forms 

the basis of diagnostic model, i.e., identifies input and outputs of the diagnostic model.

(3). Membership function development technique(s): Another major contribution of this 

research is the identification and development of appropriate techniques to obtain 

membership values and to develop membership functions, for causal factors. The main 

objective here was to identify a practically possible membership function determination 

technique, compared to a theoretically feasible technique. It has been discovered that 

each causal factor has its unique characteristics and there is no one single membership 

function construction technique that can apply for all causal factors. A protocol is 

developed to guide the users to identify suitable membership function development 

techniques depending on factors and conditions. The proposed membership function 

development technique using constrained interpolation of sample membership values 

preserve the need of the context dependent nature of membership functions while making 

it easy to reproduce when the context changes (e.g., in different projects, locations, 

climates). This proposed membership function development technique can be applied in 

any other domain where sample qualitative assessments can be obtained from multiple 

experts.

8.3 RECOMMENDATIONS FOR FUTURE RESEARCH
An opportunity exists to enhance significantly the potential for a greater adoption of 

computational intelligence techniques by the construction industry, because of the novel 

approach proposed as compared to previous performance modeling approaches in the 

construction domain. The methodology and findings of this research have opened up 

certain issues that need to be investigated further to build upon the findings of this
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research. They are summarized below and may serve to guide future research related to 

the construction performance diagnosis.

1. This proposed framework is tested and validated for modeling construction 

productivity in industrial construction domain at activity level (and then aggregating up 

to the trade level). To generalize the applicability, the framework should be tested for 

different key performance indicators, in various other industries (e.g., commercial, civil 

construction) for different activities and trades.

2. This study focused on assisting construction managers to identify root causes of daily 

performance deviations. One can exploit the possibilities of using the proposed 

framework at more abstract level so that the output can be used for top-level decision 

making.

3. The proposed system can be significantly benefited by building a supplement to the 

output interface to suggest corrective actions based on identified causes. Developing a 

rule-based fuzzy expert system would be an appropriate choice.

4. The efficiency of the proposed system can be greatly enhanced by automating the 

daily working condition reporting process using constantly developing wireless 

technology.

5. One can experiment with automated membership function construction techniques so 

that the expert knowledge-based membership functions developed in this study can be 

validated.
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APPENDIX- A 

Pipe Module Fabrication Process
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(b). Steel erection

(c). Pipe handling (c). Cable tray installation

(d). Pipe hydro-testing (e). Pipe welding

(f). Pipe insulation (g). Shipping pipe module
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