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ABSTRACT 
This paper presents a method for obtaining airfield capacity estimates, using historical data from 
the Federal Aviation Administration’s Aviation Systems Performance Metrics (ASPM) database. 
The process first involves merging individual flights and quarter-hour airport runway operations 
datasets from ASPM to create a new dataset. Data for Newark International Airport and San 
Diego International Airport from 2006 to 2011 was used. Secondly, filters for meteorological 
condition, runway configuration, called rates, and fleet mix were applied to the two airport 
datasets. The filtered datasets were then used in a censored regression model of capacity that 
includes queue length (number of aircraft waiting to arrive/depart) and arrival/departure 
throughput count splits as independent variables. These attributes were found to impact airfield 
capacity at statistically significant levels, and parameters had expected signs and magnitudes. 
Additionally, capacities under ideal conditions were found to be reasonably close to other sources. 
The model also confirmed that average capacities at EWR during hours when a Ground Delay 
Program (GDP) was running were lower than when there was no GDP in effect. The method 
described in this paper can be used to more precisely quantify airfield capacities in specific 
conditions of particular interest to air traffic controllers and airport operators, to better facilitate 
decisions that rely heavily on a good understanding of capacity in these conditions. The data 
exploration and preparation undertaken as part of the study reveals some of the finer points of the 
ASPM data and how it can be used in a more meaningful way for airfield capacity estimation. 
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INTRODUCTION 
Reliable airfield capacity estimates are critical for effective planning and operations in a capacity-
constrained aviation system. As a result, airfield, and individual runway, capacity estimation has 
received much attention in both the research and practice since the early 1970s (1). Techniques 
for airfield capacity estimation include analytic modeling (2, 3), statistical estimation (4, 5), and 
various types of simulation modeling (e.g., SIMMOD, runwaySimulator). Statistical models are 
particularly useful for facilitating comparisons and validation of capacity estimates from the other 
two approaches. Because they are based on actual data from airports under specific weather and 
operational (and other) conditions, the results can be used to assess how well analytic and 
simulation models perform under particular conditions at a subject airport (6). In addition, 
analytic models account for the main factors that affect capacity at all airports (such as 
configuration, weather, etc.) in the same manner, and do not tailor their treatment of these factors 
at each particular airport. Statistical models such as the one presented in this paper are able to do 
so.  

The objective of this paper is to present an empirical method for obtaining airfield 
capacity estimates, using historical data from the Federal Aviation Administration’s (FAA) 
Aviation Systems Performance Metrics (ASPM) database. The process involves 1) merging 
datasets of individual flights and quarter-hour airport runway operations from ASPM to create a 
new dataset, 2) applying filters to the data, and 3) applying a new econometric model 
specification. The econometric model was originally developed by Hansen (4) to assess the 
impacts of a new runway at Detroit-Wayne County Airport. It has since been used to compare 
capacity estimates from the runwaySimulator model and the Airfield Capacity Model (ACM) (6), 
as well as assess estimates from runwaySimulator (7). The model employs censored regression in 
order to capture some critical features of airport runway capacity. Firstly, capacity can vary 
significantly from one time period to the next due to many influencing factors. We attempt to 
control for the most significant factors (8) through data filtering and specification of an 
econometric model. Secondly, capacity cannot always be directly observed from airfield 
throughput count data, because there are low demand periods of the day when available capacity 
is underutilized. The modeling procedure developed here is a refinement of the procedure 
developed as part of ACRP Project 03-17 (7). Refinements include modification to the regression 
model specification, and changes to the process of preparing, filtering, inputting data to the 
regression model. 

ASPM data for Newark Liberty International Airport (EWR) and San Diego International 
Airport (SAN) were obtained for this study. The following section provides a description of the 
analysis that was undertaken to understand the information in the datasets, in preparation for the 
filtering process and the censored regression model. After filtering for meteorological condition, 
runway configuration, called rates, and fleet mix, it was found that arrival/departure throughput 
count splits and queue lengths had statistically significant impacts on airfield capacity. Please note 
that by “queue length” we mean the total number of aircraft that are ready and waiting to use a 
runway for arrival or departure. As such, by “queue” we refer to a virtual rather than a physical 
queue, although an arrival queue may certainly include those aircraft queued at a runway. 

This study adds to the body of literature on airfield capacity estimation with two 
contributions. Firstly, the procedure can be used to more precisely quantify airfield capacities in 
specific conditions of particular interest to air traffic controllers and airport operators, to better 
facilitate decisions that rely heavily on a good understanding of capacity in these conditions. 
Secondly, the data exploration and preparation undertaken as part of the study highlights some of 
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the finer points of the ASPM data, and how it can be used in a more meaningful way for airfield 
capacity estimation.  

It will be noted here that “throughput count” refers to the number of aircraft operations 
(arrivals + departures, unless otherwise stated) that were accommodated by the airfield over a 
period of time. From this point forward, aircraft “throughput count” will simply be called “count”. 

DATA PREPARATION 
The Aviation System Performance Metrics (ASPM) database is part of the FAA Operations and 
Performance Data system, available at https://aspm.faa.gov/. ASPM contains extensive 
operational data for 77 major US airports. Two datasets from the “Download/Airport” section of 
the database, which can be accessed with permission from the FAA, were used in this work. The 
first dataset consists of quarter-hourly aircraft arrival and departure counts, demands, called rates, 
delay metrics, meteorological conditions information, runway configurations, and other airport 
data. The second dataset consists of detailed operational information for individual flights. Data 
files for Newark Liberty International Airport (EWR) and San Diego International Airport (SAN) 
for August 1, 2006 through July 31, 2011 were obtained. EWR was chosen for analysis because it 
is one of the busiest airports in the U.S., where demand is at or near capacity during peak hours; 
however, it can also have periods that are less busy. EWR has two parallel runways that are 
intersected by a third runway, and includes aircraft taxiing across runways. SAN is also a very 
busy airport, partly due to the fact that it only has one runway. SAN further differs from EWR in 
that Ground Delay Programs (GDPs) are rarely instituted there, whereas at EWR they are a more 
common occurrence, particularly in the summer months. 

We constructed a final quarter-hourly dataset (herein referred to as “final dataset”) by 
combining information from these two ASPM files. This final dataset includes the following 
information for each quarter-hour interval: 

 
1. Date and time (characterized by year, month, date, hour and quarter) 
2. Aircraft counts, for both arrivals and departures 
3. “New” demands, arrivals and departures 
4. Total (“new” plus queued) demands, arrivals and departures 
5. Called rates – Airport Arrival Rate (AAR) and Airport Departure Rate (ADR) 
6. Aircraft fleet mix (Small, Large, B757, Heavy), arrivals and departures  
7. Ceiling and visibility  
8. Meteorological condition (determined from ceiling and visibility data) 
9. Wind angle and wind speed 
10. Runway configuration 
 

The quarter-hour ASPM file contains fields for all the above except aircraft fleet mix. As a result, 
for the final dataset, arrival and departure fleet mixes for each quarter-hour were calculated from 
the individual flights file, based on the actual quarter-hour in which an aircraft was recorded to 
have arrived or departed the subject airport. Eventually, aircraft count and demands (items 2-4) 
were also sourced from the individual flights file, in order to ensure that these metrics are as close 
a reflection of actual operations as possible. Count and demands in the quarter-hour ASPM file 
are enumerated for the purposes of accounting and reporting delay statistics, and may not quite 
reflect the information we require for our modeling purposes. 

https://aspm.faa.gov/
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For counts, we originally used the arrival and departure count for efficiency computation 
(“EffArr” and “EffDep” fields) from the quarter-hour file. These were replaced with the “Actual 
Wheels On” and “Actual Wheels Off” fields from the individual flights file, respectively. When 
the two sets of counts were compared for EWR from August through December 2006, it was 
found that 69% and 76% quarter-hours had perfect matches for arrivals and departures, 
respectively (and about 95-98% of quarter-hours matching within ±1 count).  

It was determined that the demand counts in the ASPM quarter-hour file (“ArrDemand” 
and “DepDemand”) are constructed such that delays due to GDP are accounted for and attributed 
to the airport at which the GDP was called. It is described in the FAA’s ASPM Airport Quarter 
Hour Data Dictionary as the “number of aircraft intending to depart (arrive) for the period”. To 
illustrate, in the quarter-hour ASPM dataset, arrival demands at an airport are constructed as 
follows: the start of arrival demand for a flight is calculated by adding its filed en-route time to its 
wheels-off time at the departure airport, and subtracting ground delay time imposed on this flight 
at the departure airport due to a GDP or ground stop at the (arrival) airport. Therefore, that flight’s 
contribution to arrival demand begins before it actually arrives in the terminal airspace, in order to 
properly attribute GDP delays to the airport where the GDP is taking place. The start of departure 
demand for a flight is calculated by adding a flight’s unimpeded taxi-out time and any ground 
delay time to its filed gate-out time. The departure demand is adjusted such that ground delay 
imposed on a departing flight (due to problems at the destination airport) is not attributed to the 
departure airport.  

To summarize, a flight will contribute to demand starting in the time interval it was first 
filed to arrive/depart, until the time interval it actually does, adjusting for ground delay 
appropriately. Clearly this does not reflect the “actual” operational aircraft demand that 
controllers are working to safely accommodate on the runways, which we require for capacity 
analysis. As a result, for this research we also constructed demand metrics from the individual 
flights file, which better reflect actual operational demand. Arrival demands were constructed by 
adding flight plan estimated en-route time (“FPETE”) to actual take off time at the origin airport 
(“ActOffSec”). A shortcoming of this demand calculation is that en route delays incurred due to 
TMIs (Traffic Management Initiatives) are not adjusted for. Departure demands were calculated 
by adding actual gate out time (“ActOutSec”) to unimpeded taxi out time (“NomTO”).  

Note that the demand metrics constructed above are what we term “new” demands – from 
the above information alone, we can determine the first quarter-hour in which a flight requested 
service. However, the total demand in each quarter-hour can include flights queued (unserved and 
waiting) from previous quarter-hour periods in addition to the flights first requesting service in the 
present quarter-hour. Total demand can be calculated from the “new” demands and counts. In 
addition, if a flight arrives or departs earlier than the quarter-hour period it was expected to have 
demanded service, the flight is recorded as demand only in the quarter-hour in which it was 
served. Our calculated demand is equivalent to “ArrDemand” and “DepDemand” in the ASPM 
quarter-hour file, insofar as they reflect “queued” + “new” demands. 

METHODOLOGY 
The section describes the data filtering steps and the capacity model development.  

Data Filtering 
The constructed quarter-hour dataset was further aggregated into hours and filtered by 
meteorological condition, runway configuration, called rates and fleet mix. The purpose of 
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filtering is to explicitly control for factors that are well understood to affect capacity. The filtering 
steps are described below, and the process is illustrated using EWR as an example. 

Meteorological Condition 
The hourly data was first sorted by meteorological condition – Visual Meteorological Condition 
(VMC), Marginal VMC (MVMC), or Instrument Meteorological Condition (IMC). The entire 
hour must have operated under the designated condition to be included in the filter. 
Meteorological condition is among the most significant factors to impact airfield capacity both 
directly and indirectly (8). It impacts capacity directly through aircraft separation requirements 
and pilots’ use of instruments. Indirectly, it dictates which runway configuration is to be used. 

Runway Configuration 
Runway configurations also have a significant impact on airfield capacity; the capacities 
associated with different runway configurations at an airport can vary considerably (8). Each 
dataset was further filtered to only include hours where the prevailing runway configuration for a 
given meteorological condition was in use. At EWR, the prevailing configurations were found to 
be 22L|22R (22L for arrivals and 22R for departures) in VMC, and 4R|4L in IMC.  

Called Rates 
The data was further filtered based on the criteria that the sum of the Airport Arrival Rate (AAR) 
and Airport Departure Rate (ADR) was within the normal range observed over the dataset 
(August 2006 – July 2011). This filter eliminates observations for atypical circumstances to which 
air traffic controllers responded by raising or lowering the AAR and ADR to unusually high or 
low values. These circumstances could include non-functioning navigational aids, adverse 
terminal area weather, configuration transition periods, reduced staffing in the control tower, and 
others. Because these circumstances will not be accounted for as independent variables in the 
capacity model, we eliminate their impacts on capacity through this filter. 

Figure 1 shows a histogram of the total called rate (AAR+ADR) per quarter-hour period at 
EWR, operating under VMC and runway configuration 22L|22R. About 98% of the total called 
rates were between 18 and 24 operations per quarter-hour. As such, only quarter-hours with rates 
between 18 and 24 are included. 

Fleet Mix 
Minimum separations are required between consecutive aircraft on the runway and in the terminal 
airspace, and these separations are dictated by the size category each aircraft falls into (Small, 
Large, B757, and Heavy) and the sequence of aircraft. In addition, fleet mixes at a major airport 
can vary widely although there is daily consistency due to established airline schedules. Although 
we do not control for aircraft arrival and departure sequences, we do aim to obtain a subset of data 
with a relatively consistent fleet mix profile, using cluster analysis.  

Cluster analysis is used to identify similar groups within a larger set of observations. 
Members of a group should be highly similar to one another, with respect to certain selected 
characteristics of interest, in comparison to members of another. Ward’s minimum variance 
method was chosen among the candidate hierarchical clustering methods that could be employed 
for this analysis. Each observation starts as its own cluster, and is then paired up with another that 
is most similar such that they are combined into a single cluster. This combining of clusters 
continues, by minimizing the within-cluster sum of squares at each step. 
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We determine the appropriate number of fleet mix profile clusters that should be obtained 
using the pseudo-F statistic and the cubic clustering criterion (CCC). The appropriate number of 
clusters is that for which the pseudo-F statistic and the CCC are maximized; however, in cases 
where a local maximum is not observed for either criterion, judgment should be exercised in 
choosing the number of clusters. The data in the cluster with the highest number of observations is 
then chosen for input to the capacity model.  

For EWR operating in VMC, with runway configuration 22L|22R and total called rate 
(AAR+ADR) between 18-24 ops per quarter hour, the appropriate number of clusters was found 
to be 5 (see Table 1). Of these 5 clusters, the first set was chosen as it had the highest number of 
observations and group members were visually observed to exhibit relatively smaller variances in 
their attributes. The observations in this subset were used as inputs to the capacity model. 

Capacity model 
A censored regression model was used to estimate airfield capacity from the prepared datasets. 
The model was constructed to capture some critical features of capacity. Firstly, capacity is a 
random variable that can vary significantly from one time period to the next, due to the many 
factors that can influence it (the most important of which we explicitly controlled for through the 
filtering process). Secondly, we assume that capacity can increase with queue lengths, up to a 
maximum value that is reached only when queues for service are very large. Thirdly, we assume 
that capacity is largest when arrival and departure aircraft are served with equal priority, 
decreasing as one movement type takes priority over the other (7). Finally, an observed count 
reflects the smaller of demand or capacity. When demands exceed capacity, the count reflects 
capacity. However, when capacity exceeds demand, the count reflects demand rather than 
capacity. A censored regression model assumes that the dependent variable (capacity) is a latent 
variable – censored, as it cannot be observed beyond a maximum threshold value (demand) (9). 
Censored regression estimates how (observable) independent variables impact capacity rather 
than throughput count.  

As described above, we observe that two situations can arise (4): 

𝑄𝑄𝑡𝑡 = �𝐶𝐶𝑡𝑡 , 𝑖𝑖𝑖𝑖 0 < 𝐶𝐶𝑡𝑡 < 𝐷𝐷𝑡𝑡
𝐷𝐷𝑡𝑡, 𝑖𝑖𝑖𝑖 𝐶𝐶𝑡𝑡 ≥ 𝐷𝐷𝑡𝑡

  (1) 

Where  
𝑄𝑄𝑡𝑡 is aircraft count, or “observed” capacity in hour 𝑡𝑡, 
𝐶𝐶𝑡𝑡 is capacity in 𝑡𝑡, and  
𝐷𝐷𝑡𝑡 is demand (or upper bound of observable capacity) in 𝑡𝑡. 

When the demand exceeds count, capacity is equated to the count. When count equals demand, 
capacity will equal or exceed demand due to the censoring effect. 

The regression model is specified as follows: 
 

log(𝑄𝑄𝑡𝑡) = min[log(𝐶𝐶𝑡𝑡) , log(𝐷𝐷𝑡𝑡)]  (2) 

log(𝐶𝐶𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽 �1 − min(𝑥𝑥𝑡𝑡,𝑥𝑥∗)
𝑥𝑥∗

 � + 𝛾𝛾1 max[0,𝑀𝑀𝑡𝑡 − 0.5] + 𝛾𝛾2 max[0,0.5 −𝑀𝑀𝑡𝑡] + 𝜀𝜀 (3) 

Where 
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𝛼𝛼,𝛽𝛽, 𝛾𝛾1, γ2 and 𝜎𝜎2 are estimated parameters, 
𝑥𝑥𝑡𝑡 is the total number of aircraft in both the arrival and departure queues in hour 𝑡𝑡, 
𝑥𝑥∗ is the 95th percentile value of 𝑥𝑥𝑡𝑡, 
𝑀𝑀t is the arrival count divided by total count in 𝑡𝑡, and  
𝜀𝜀 is an independent and identically distributed error term, normally distributed with mean 0 
and variance 𝜎𝜎2. 

Recall that this model is applied to data that has been filtered by meteorological condition, 
runway configuration, commonly observed called rates, and fleet mix.   

It is expected that under ideal conditions – when the second, third, and fourth terms of 
Equation (3) are zero – 𝛼𝛼 reflects a maximum capacity such that 𝐶𝐶𝑡𝑡 = 𝑒𝑒𝛼𝛼  . The parameter 𝛽𝛽 
captures the impact of queue lengths on capacity; Figure 2 shows the relationship between queue 
length and count for the filtered EWR VMC dataset. It can be observed that as queues increase, 
average count increases up to a maximum value (represented by black bubbles). The size of each 
black bubble indicates the number of data represented by the one point. The red s-curve represents 
percentiles; it can be observed that the 95th percentile queue is about 87 ops/hr. As queues reach 
87 ops/hr, average count values have flattened out, and we say that maximum capacity is reached 
at this point, hence the choice of 𝑥𝑥∗. When 𝑥𝑥 < 𝑥𝑥∗, maximum capacity may not be obtained. As a 
result, the parameter 𝛽𝛽 is expected to be negative. 

Parameters 𝛾𝛾1 and 𝛾𝛾2 capture how arrival/departure count splits impact capacity. Capacity 
is typically largest when the aircraft count mix is approximately even (7); this is confirmed in 
Figure 3 for the EWR VMC filtered dataset. Aircraft count (noting that it is a censored 
representation of capacity) is highest when arrival/departure splits are even (𝑀𝑀𝑡𝑡 = 0.5). Given the 
general trends of the arrival, departure and total count data observed in the figure, parameters 𝛾𝛾1 
and 𝛾𝛾2 are expected to be negative, as they capture capacity losses due to counts becoming either 
arrivals or departures heavy. 

Model parameters are estimated using maximum likelihood estimation (MLE). 

RESULTS 
Data from August 1, 2006 through July 31, 2011 at EWR and SAN were run through the filtering 
process described in the previous section, to result in the following four cases: 

The centroids of the predominant fleet mix cluster are similar in VMC and IMC at both 
EWR and SAN. It can be observed that there are far more observations at SAN in VMC. SAN is 
very often operating in VMC conditions, such that arrivals and departures are both accommodated 
on runway 27 and the quarter hour AAR+ADR is 12. 

Estimation results for each of the four scenarios shown in Table 2 are contained in Table 
3. All parameters have expected signs, and the t-statistics indicate that they are highly significant. 
The values of 𝛼𝛼 indicate capacity when all other terms are 0; for instance, 𝛼𝛼 = 4.49 for EWR in 
VMC indicates that capacity is 89 ops/hour when all other terms are 0. A negative 𝛽𝛽 value 
indicates that as queue lengths increase towards the threshold queue length (𝑥𝑥∗), so does capacity. 
In scenarios with a more negative (smaller) value of 𝛽𝛽, queue lengths have a greater impact on 
capacity. In other words, it indicates that shorter queue lengths (compared to the 95th percentile 
queue, or 𝑥𝑥∗) will cause larger capacity reductions compared to situations where 𝛽𝛽 are larger 
(closer to zero). It is observed that VMC capacities at both airports are more sensitive to queue 
lengths than IMC capacities.  
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Both 𝛾𝛾1 and 𝛾𝛾2 are negative in all cases, indicating that capacity decreases as 
arrival/departure count split becomes more uneven. At EWR under VMC, when the 
arrival/departure split becomes heavily favored towards departures (such that 𝑀𝑀𝑡𝑡 → 0), the 
capacity reduces at a higher rate compared to when the split is heavily favored towards arrivals 
(𝑀𝑀𝑡𝑡 → 1). At EWR under IMC, the capacity decrease at similar rates whether arrivals or 
departures are being favored. Under both VMC and IMC at SAN, capacity reduces at a higher rate 
as the split favors arrivals. The differences between EWR and SAN may be due to the runway 
configurations predominantly used at each airport. 

The last column reports capacities under “ideal” conditions – that is, when all terms in 
Equation (3) other than the first (𝛼𝛼) are zero. Under these conditions, the queue length has 
reached the threshold queue length 𝑥𝑥∗ and arrival/departure split is even. Therefore, as mentioned 
above, 𝐶𝐶𝑡𝑡 = 𝑒𝑒𝛼𝛼. Capacities at both EWR and SAN are greater in VMC conditions, and appear to 
be fairly reasonable when compared to those found in ACRP Report 79 (7) and the 2004 Airport 
Capacity Benchmark Report (10). As an additional point of comparison, peak hour caps at EWR 
were set to 83 operations/hour in 2008. 

Additional data indicating the hours when GDPs were in effect at EWR in 2006 was also 
available for this study. As a result, we tested the inclusion of a dummy variable in the capacity 
model (Equation 3), which took a value of 1 during the hours that a GDP was in effect, and 0 
otherwise. This model was applied to a subset of the original ASPM quarter-hour dataset. It 
should be noted that the predominant runway configurations in use at EWR during IMC in 2006 
were 11,22L|22R and 22L|22R. All model parameters, including the GDP dummy variable, were 
found to be statistically significant. 

The results confirm that hourly airfield capacity is lower when a GDP is in effect. It also 
appears that a GDP has a greater impact on VMC capacities. In 2006, a GDP may have been in 
place at EWR for any number of reasons, including adverse terminal weather (in which case, the 
runways would likely operate in IMC), adverse conditions en route to the airport (summer 
thunderstorms in the airspace over the Midwest, or congestion in the New York airspace, for 
instance), and other situations that would cause controllers to foresee a drop in capacity. 
Therefore, the airport may have been operating under a GDP even during times when there were 
no capacity issues at the airport itself. Because the GDP capacities include all the above instances, 
this could explain why GDP capacities in Table 4 are not significantly lower than the non-GDP 
capacities. In addition, it can be observed that IMC capacities are comparable to VMC capacities 
when the same configuration is in use. Although not shown above, IMC capacities are lower 
when 4R|4L is in use. 

DISCUSSION 
This paper has described an empirical method for obtaining airfield capacity estimates, using 
historical data from the FAA’s Aviation Systems Performance Metrics (ASPM) dataset. It is a 
refinement of the procedure developed as part of ACRP Project 03-17 (7). This method can be 
used to more precisely quantify airfield capacities in specific conditions of particular interest to air 
traffic controllers and airport operators, to better facilitate decisions that rely heavily on a good 
understanding of capacity in these conditions. In addition, the data exploration and preparation 
undertaken as part of the study highlights some of the finer points of the ASPM data, and how it 
can be used in a more meaningful way for airfield capacity estimation. 

The process requires merging of individual flights and quarter-hour airport runway 
operations datasets from ASPM to create a new dataset, applying filters to this dataset, and 
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applying a censored regression model. After filtering for meteorological condition, runway 
configuration, called rates, and fleet mix, two independent variables – arrival/departure count split 
and queue lengths – were included in the censored regression model. Data for Newark 
International Airport (EWR) and San Diego International Airport (SAN) was used. The resulting 
parameters for the four scenarios tested had expected signs and reasonable magnitudes, and were 
statistically significant. Additionally, the capacity for each scenario under ideal conditions (where 
arrival/departure split is about even and queue lengths equal or exceed a threshold value) were 
also found to be reasonable. This paper also presented a preliminary analysis of how GDPs 
impacted capacities at EWR; in future work it is recommended that further attention be given to 
model specification, as well as investigating which ASPM data would provide the most 
meaningful results. Also, given that it is unclear from the data how and when any TMI impacts 
flights and therefore, operational demand, the anomalous delays method developed in Hansen (4) 
could be applied to explore this. Finally, the data analysis method outlined in this paper should be 
applied to other airports in the NAS to better assess its quality. 
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TABLE 1 Fleet Mix Clusters, EWR VMC 22L | 22R 

Cluster Frequency S L B757 H 

1 2043 0.01 0.74 0.14 0.11 
2 1659 0.01 0.81 0.10 0.08 
3 1438 0.00 0.89 0.07 0.04 
4 220 0.09 0.49 0.14 0.28 
5 503 0.02 0.64 0.17 0.17 
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TABLE 2 Modeled Scenarios 

 
Filters 

Number of 
Observations MC Runway 

Configuration 
Called Rates 
(ops/qtr-hr) 

Fleet Mix (centroid) 
S, L, B757, H 

EWR VMC 22L | 22R 18-24 0.01, 0.74, 0.14, 0.11 2043 
 IMC 4R | 4L 16-20 0.01, 0.79, 0.12, 0.08 862 
SAN VMC 27 | 27 12 0.07, 0.85, 0.07, 0.01 7241 
 IMC 27 | 27 12 0.06, 0.79, 0.09, 0.06 164 
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TABLE 3 Estimation Results 

Airport MC  Parameter Capacity 
(ops/hr)*    𝜶𝜶 𝜷𝜷 𝜸𝜸𝟏𝟏 𝜸𝜸𝟐𝟐 

EWR VMC Parameter 4.49 -0.34 -2.32 -2.61 89 
  t-statistic 469.35 -22.66 -32.51 -34.12  
 IMC Parameter 4.23 -0.16 -1.90 -1.85 68 
  t-statistic 289.16 -7.2 -13.65 -18.9  
SAN VMC Parameter 3.87 -0.47 -2.12 -1.46 48 
  t-statistic 499.54 -43.28 -67.7 -53.73  
 IMC Parameter 3.57 -0.37 -2.07 -1.11 35 
  t-statistic 56 -3.63 -6.9 -6.39  

* Capacity estimate with ≥ 95𝑡𝑡ℎ  percentile queue length, 50/50 arrival/departure split  
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TABLE 4 EWR Capacity Results with GDP Dummy, August-December 2006 

MC Configuration Capacity (ops/hr)* 
  GDP No GDP 
VMC 22L|22R 82 89 
IMC 22L|22R 85 88 
* Capacity estimate with ≥ 95𝑡𝑡ℎ  percentile queue length, 50/50 arrival/departure split  
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FIGURE1 Histogram of Total Called Rate per Quarter-Hour, EWR VMC 22L|22R 
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FIGURE 2 Total Count versus Queue Lengths, EWR VMC 22L | 22R 
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FIGURE 3 Aircraft Count (per Quarter-Hour) versus Arrival/Departure Split, EWR (All 
MCs) 
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