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Abstract 

 

 

Good process control is often critical for the economic viability of large-scale production 

of several commercial products. In this work, the production of biodiesel from 

microalgae is investigated.  Successful implementation of a model-based control strategy 

requires the identification of a model that properly captures the biochemical dynamics of 

microalgae, yet is simple enough to allow its implementation for controller design. For 

this purpose, two model reparameterization algorithms are proposed that partition the 

parameter space into estimable and inestimable subspaces. Both algorithms are applied 

using a first principles ODE model of a microalgal bioreactor, containing 6 states and 12 

unknown parameters. Based on initial simulations, the non-linear algorithm achieved 

better degree of output prediction when compared to the linear one at a greatly decreased 

computational cost. Using the parameter estimates obtained through implementation of 

the non-linear algorithm on experimental data from a fed-batch bioreactor, the possible 

improvement in volumetric productivity was recognized.  
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1 
Introduction 

Modeling is the practice of approximating physical reality using an acceptable 

mathematical form.  A model is a mathematical representation that, in essence, gives a 

relation between system inputs and outputs. There are usually two types of models: 

empirical and physical models. Empirical models are based on the black-box concept 

while the physical models are based on an understanding of the internal system dynamics 

and the interactions between the system and the surroundings (Elnashaie and Garhyan 

2003). Models obtained from mass, energy and momentum balance equations are good 

examples of physical models. In this work a first-principles based microalgal bioreactor 

model is used. 

 

Modeling a chemical or biochemical system significantly depends on the a priori 

knowledge of the physical and chemical laws that govern the processes that take place 

within the boundaries of the system (Elnashaie and Garhyan 2003). Mass, heat and 

momentum transfer rates, reaction rates, adsorption-desorption rates, thermodynamic 

limitations are some of the variables that one has to take into account while modeling a 

chemical or biochemical system. Consequently, physicochemical parameters need to be 

identified in order to obtain a model output for a certain input. In reality, one may not be 

certain of these parameter values; therefore, before using the model for control and 

optimization, one must validate the model against the real system.   

 

In this work, the production of biodiesel using microalgae is investigated. Worldwide 

interest in biofuels has been increasing in recent times due to issues such as climate 

change and security of energy supply (Peters and Thielmann 2008). The US 

Environmental Protection Agency (USEPA) found that there is 67% reduction of green 

house gases emissions when biodiesel is used as an alternative to traditional fossil fuels 
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(USEPA 2002). Moreover, the use of biodiesel decreases tailpipe particulate matter (-

10.1%), unburned hydrocarbon (-21.1%) and carbon monoxide (-11%) emissions when 

compared to emissions from regular diesel fuel (USEPA 2002). Biodiesel being 

biodegradable and non-toxic further increases its suitability of being used as an 

alternative fuel. A major obstacle for biodiesel to replace current energy demand is 

limited acreage availability (Christi 2007). Producing biodiesel from crops such as corn 

and soybeans uses land that has traditionally been used for food production (Peters and 

Thielmann 2008).  

 

Microalgae are a feasible alternative to crops for the production of biodiesel. They are 

highly efficient biological organisms with higher biomass production and faster growth 

rate compared to other energy crops ( (Minowa, et al. 1995), (Miao and Wu 2006)). 

Microalgae produce and store high amounts of oil, which can be used as either a 

precursor to biodiesel (Li, Xu and Wu 2007) or as single cell oils (Chen and Chen 2006). 

Oil content in microalgae ranges from 11% to 77% (Christi 2007) with variations 

occurring due to strain genetics and culture conditions. Moreover, microalgae can be 

produced in desertic areas or intensively in bioreactors and therefore do not require the 

use of land that would otherwise be used for food crops.  

 

Currently, biodiesel production using microalgae is not economically competitive 

compared to production from conventional sources. Increasing the algal growth rate and 

oil accumulation rate will significantly improve the economic competitiveness of algal-

based biodiesel production. Optimal model-based control strategy is a promising option 

in controlling culture conditions in order to achieve good algal growth and oil production 

rates. A reliable model of a microalgal bioreactor system needs to be obtained to 

successfully implement a model-based control strategy, as microalgal systems are highly 

non-linear in nature. Parameters of microalgal models cannot be directly obtained from 

measurement (Audoly, et al. 2001); therefore, estimating these parameters requires model 

reparameterization and well designed experiments. 

 

A major limitation in obtaining a reliable model is parameter inestimability. If the data 

collected for parameter identification and model validation is not adequate to accurately 

estimate every parameter, then the corresponding mathematical model is considered to be 

inestimable. Inestimability implies that several parameter values will lead to statistically 
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indistinguishable predictions (Ben-Zvi 2008). Significant amount of literature is present 

on identifying and dealing with inestimable parameters ( (Yao, et al. 2003); (Ben-Zvi, 

McAuley and McLellan 2004); (Sidoli, Mantalaris and Asprey 2005)). There are two 

options available if a model is inestimable: obtain additional data and fix inestimable 

parameters at some nominal value. Investing in obtaining additional data is not always 

cost effective as the degree of improvement in model predictions might not be enough to 

justify the additional cost. Therefore, one is often interested in estimating only a subset of 

the unknown model parameters. 

 

Parameter estimability of a first-principles based microalgal bioreactor model consisting 

of six ordinary differential equations and 12 unknown parameters is studied in this work. 

It is seen that, even when using an optimal experimental design, many of the model 

parameters are inestimable. Two model reparameterizing algorithms are proposed in 

order to reduce the number of parameters that must be estimated for accurate predictions. 

Both the algorithms partition the parameter space into estimable and inestimable 

subspaces. For the linear reparameterization, singular value decomposition of the 

parameter covariance matrix is used to identify a set of four directions in the twelve 

dimensional parameter space along which significant change in the output occurs. In the 

nonlinear reparameterization algorithm, the three system rate functions are utilized as 

pseudo-outputs in order to perform a nonlinear transformation which reduces the 

dimension of the parameter space from twelve to three. Based on initial simulations, both 

algorithms greatly decrease computational time while achieving a good degree of output 

prediction and significantly reduce computational complexity. Therefore, due to its lower 

Weighted Sum of Squared Error, WSSE, and lower computational cost, the non-linear 

algorithm is better than its linear counterpart.  

 

In order to verify the potential of the proposed non-linear model reparameterization 

algorithm, it was implemented using actual bioreactor data. The experiment was 

performed using input profiles designed using the D-optimality criterion with respect to 

the three pseudo-parameters in the non-linear algorithm. Total algal oil stored in cells, 

external nitrogen source concentration, external carbon source concentration, and total 

biomass concentration were measured as experimental data. The algorithm had to be 

modified by introducing an iterative step, in order to achieve a good degree of output 

prediction. This iterative step allowed for updating the non-linear transformation of the 
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parameter space, as improved parameter estimates became available. The iterative non-

linear algorithm is able to greatly decrease computational time while achieving a high 

degree of prediction accuracy. 
 

 

1.1 Objectives and contributions 

The main goal of this work is to develop an algorithm that can be used to reparameterize 

non-linear differential equation models while maintaining their prediction capability. The 

proposed algorithm is applied to a microalgal bioreactor system. The proposed algorithm 

should achieve a good degree of output prediction while considerably decreasing 

computational cost and time when compared to the case where all model parameters are 

estimated. The following are the stage-wise objectives of the work: 

1. Design an input profile that is optimal with respect to the 12 model 

parameters. 

2. Employ a perturbation-based test to investigate which parameters have 

negligible effect on model predictions. 

3. Develop a model reparameterization algorithm that is based on identifying 

directions in the parameter space along which there is significant change in 

model predictions.  

4. Use the transformation-based approach for reparameterizing inestimable 

systems proposed by Ben-Zvi (2008) to develop a non-linear model 

reparameterization algorithm. 

5. Utilize simulations, based on the designed optimal input profiles, to 

compare the performance of the two proposed model reparameterization 

algorithms. 

6. Develop an experimental design scheme to obtain an input profile that is 

optimal with respect to the three pseudo-parameters in the non-linear 

algorithm. 

7. Perform an experiment by implementing the designed input profile 

(objective 6) on an actual fed-batch microalgal bioreactor. 

8. Collect and analyze samples in order to obtain measured values. 

9. Apply non-linear model reparameterization algorithm using the measured 

bioreactor data. 
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The following are the significant contributions of the work:  

1. Collaborated with co-authors to develop a novel model for a microalgal 

bioreactor system. 

2. Performed an estimability study of the model, leading to the conclusion that 

there exist directions in the parameter space along which minimal change in 

the output occurs. 

3. Developed a method to obtain a linear transformation that partitions the 

parameter space into estimable and inestimable subspaces. 

4. Extended the approach proposed by Ben-Zvi (2008) to cases where one 

cannot analytically integrate the pseudo-parameters. This was done by using 

Taylor series approximation and numerical integration. This led to the non-

linear model reparameterization algorithm. 

5. Compared the linear and non-linear model reparameterization algorithms 

through simulations. The non-linear algorithm achieved a higher degree of 

output prediction while greatly decreasing computational cost. 

6. Improved on the non-linear algorithm by introducing an iterative step where 

the non-linear transformation is updated as better parameter estimates 

become available. 

7.  Validated the model with experimental data and provided parameter 

estimates. 

8. Developed an approach for the optimal experimental design with the 

objective of obtaining optimal estimates for only the estimable parameter 

combinations. 
 

1.2 Thesis outline 

In this thesis, a model reparameterization algorithm is proposed for the purpose of output 

prediction for a microalgal fed-batch bioreactor. Chapter 2 contains the background 

information on the topics that are closely related to this work. Topics such as models used 

for a microalgal bioreactor and motivation for model reparameterization. Chapter 3, 

Paper 1, contains the derivation and comparison between the two proposed model 

reparameterization algorithms. Chapter 4, Paper 2, shows the results of applying the 

non-linear model reparameterization algorithm on measured data from an actual 

microalgal fed-batch bioreactor. Chapter 5 summarizes all the results of this work and 
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presents directions for future work. Appendix A contains all the MATLAB® and 

MAPLE™ code pertaining to the non-linear model reparameterization algorithm. 

Appendix B contains the experimental data. Note that there is overlap between several 

chapters as this thesis is compiled according to the paper-format guidelines given by the 

Faculty of Graduate Studies and Research (FGSR) at the University of Alberta. 
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2 
Background 

 

2.1 Chapter overview 

This chapter contains the relevant background information pertaining to this thesis. 

Section 2.2 discusses the production of biodiesel from microalgae. Section 2.3 introduces 

different models and kinetic rate functions used to model bioreactors. In Section 2.4, the 

concepts of identifiability and estimability are presented and the motivation for model 

reparameterization is discussed. In Section 2.5, other topics, such as singular value 

decomposition, that are utilized in this work are presented. 

 

 

2.2 Modeling of a bioreactor 
A key variable in evaluating the dynamics of a microalgal bioreactor is biomass 

concentration (X). In order to control biomass concentration, one can manipulate the 

nutrient concentration in the media (S). Over the years, many models, that relate nutrient 

concentration to biomass concentration, have been proposed.  
 

2.2.1 Classic growth models 

The Monod model is one of the classic models used to model growth rate in a bioreactor. 

Monod model is an empirical equation that simulates the cell growth rate in terms of the 

external concentration of the limiting substrate. The equation is a generalization of the 

Michaelis-Menten kinetic expression for enzymatic systems. If there is a causal 

relationship between nutrient exhaustion and end of growth then the nutrient is said to be 
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limiting (Lobry, et al. 1992). An important characteristic of the Monod behaviour is that 

there is an upper limit to growth rate when the nutrient is in great excess and there is no 

growth when the nutrient concentration is zero. Using the Monod model, the biomass 

growth rate, µ, is given as follows (Monod 1949): 

 

ߤ ൌ ߤ ൬
ܵ

௦ܭ  ܵ
൰ (2.1) 

  

where ߤ is the maximum growth rate and ܭ௦ is the nutrient concentration that supports 

half the maximum growth rate. Note that using Monod model; the growth rate is 

dependent on nutrient concentration in the media and not the concentration inside the 

cell.  

 

The Haldane model is similar to the Monod model but with the addition of nutrient 

inhibition. Therefore, unlike Monod behaviour where there is a maximum growth rate at 

excess nutrient concentration, the growth rate decreases after a certain nutrient 

concentration. This implies that there is an optimal nutrient concentration at which the 

maximum growth occurs. Based on the Haldane model, it can be concluded that running 

the bioreactor in excess nutrient does not achieve the best performance with respect to 

biomass growth. Using the Haldane kinetics the biomass growth rate, µ, is given as 

follows (Wang, Krstic and Bastin 1999): 

 

ߤ ൌ ߤ ൮
ܵ

ܵ  ௦ܭ  ܵଶ

ூܭ

൲ (2.2) 

 

where ܭூ is the inhibition constant. Even in the Haldane kinetics, the growth rate is 

dependent on extracellular nutrient concentration. 
 

 

2.2.2 Cell-quota models 

The Monod and Haldane models have been widely used to model bacterial bioreactors; 

however, there is a clear difference in the dynamics of bacterial and algal systems. 

Microalgae exhibit a phenomenon called “luxury consumption” that is the initial uptake 
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rates of a nutrient are far in excess of the organism’s growth rate (Droop 1973). This is 

evident for nutrients such as phosphorus and nitrogen. In order to model this behaviour, 

the intracellular nutrient quota (Q) is introduced as an intermediate state variable, in order 

to distinguish between nutrient uptake rate, ρ, and nutrient-controlled growth rate.   

Droop model is the first proposed quota model and it is different from Monod model 

because it takes into account the notion of an internal nutrient pool. The growth and 

nutrient uptake rates using the Droop model are given below (Droop 1973): 

 

ߤ ൌ ߤ
ᇱ ൬1 െ

݇ொ

ܳ
൰ (2.3) 

  

ߩ ൌ ߩ ൬
ܵ

݇௦  ܵ
൰ (2.4) 

 

where ߤ
ᇱ  differs from ߤ in Equation 2.1, as it is the maximum growth rate based on 

intracellular nutrient quota (Q) and not the nutrient concentration in the media (S). ߩ is 

the maximum uptake rate, ݇௦ is the nutrient concentration that supports half the 

maximum uptake rate, and ݇ொ is the subsistence quota.  

 

Another quota model was proposed by Caperon (1972). The Caperon model introduces 

concept of minimum quota required for growth and minimum extracellular nutrient 

concentration for nutrient uptake. The growth and nutrient uptake rates using the Caperon 

model are given below (Caperon and Meyer 1972):  

 

ߤ ൌ ߤ
ᇱ ቆ

ܳ െ ܳ

ܭ  ሺܳ െ ܳሻቇ (2.5) 

  

ߩ ൌ ߩ ቆ
ܵ െ ܵ

ௌܭ
ᇱ  ሺܵ െ ܵሻቇ (2.6) 

 

where Q is the minimum nutrient quota at zero growth rate and K୯ is the half saturation 

constant of nutrient quota for growth. ܵ is the nutrient concentration at which uptake rate 

is zero and ܭௌ
ᇱ is the half saturation constant of extracellular nutrient concentration for 
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nutrient uptake. The behaviour of cell-quota models is investigated in detail by Tett 

(1988). 
 

 

2.2.3 Model selection 

Algal growth models are often classified based on the number of compartments they 

contain, i.e. the number of different nutrients the model considers. There is a cost 

associated with considering more compartments as each rate determining step for each 

nutrient must contain at least two parameters and all of these parameters need to be 

estimated for the model to have any practical applications (Tett and Droop 1988). The 

number of nutrients is usually decided based on a compromise between model accuracy 

and robustness. Typically, a model is considered sufficiently accurate if it is satisfactorily 

able to predict a particular set of outputs trajectories and robust if it is able to predict a 

different set of output without significant loss of accuracy. The concepts of model 

accuracy and robustness naturally conflict and a compromise must be based on what are 

the objectives of the work or the purpose of the model (Tett and Droop 1988). 
 

 

2.3 Motivation of model reparameterization 

In this work, a first principles microalgal bioreactor model containing six states, three 

inputs, four outputs, and twelve parameters is considered. Since, there are a significant 

number of model parameters in this highly non-linear model, parameter identifiability 

and estimability must be considered before proceeding with parameter estimation. 

 
 

2.3.1 Identifiability 

Good estimates of model parameters are required before the model can be used for 

practical purposes, such as design, scale-up, control, and optimization. If the same input-

output set can be explained by different sets of parameter values, applying the model for 

design and control may be challenging. Therefore, model identifiability must be checked 

a priori as the cause for model unidentifiability is a flaw in the model structure 

formulation (Ben-Zvi 2008) and even a large number of experiments will not lead to 

unique parameter estimates.  
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A model is identifiable if and only if there is a unique input-output set for each parameter 

set. Several tests for identifiability of non-linear models have been presented in the 

literature. The generating series approach (Walter and Pronzato 1996) and the 

linearization approach (Ben-Zvi, McLellan and McAuley 2006) are a few examples. In 

this work, the linearization approach was used and the proposed bioreactor model was 

determined to be locally identifiable. This implies that unique parameter estimates can be 

obtained under idealized conditions such as no noise in the system, no plant-model 

mismatch, and desired inputs can be perfectly actuated for performing as many 

experiments as are required (Ben-Zvi, McAuley and McLellan 2004). These are 

conditions that rarely occur in real-life; therefore, after performing the identifiability test, 

it is beneficial to investigate parameter estimability.  Estimability is more related to 

whether each parameter can be accurately estimated from a data set obtained from real-

life noisy experimental conditions (Yao, et al. 2003).   
 

 

2.3.2 Inestimability 

Model estimability is the measure of whether parameters can be computed accurately 

from a given data set and experimental conditions (Yao, et al. 2003). Model 

identifiability is a necessary condition for model estimability; however, it is not 

sufficient. Identifiability of model parameters means certain experimental sets exist from 

which the parameters can be estimated uniquely. On the other hand, some other 

experimental sets might result in data from which estimating unique parameter values 

may be challenging or even impossible. Another perspective on model estimability is 

whether a certain input profile has enough excitation to result in a rich enough date set to 

uniquely estimate parameters. 

 

If model parameters are inestimable, then different parameter values lead to statistically 

identical predictions (Ben-Zvi 2008). The problem of inestimability has been well 

documented in the literature. For example, model inestimability is encountered in the 

fields of copolymerization with multi-site catalysts (Yao, et al. 2003), ecological systems 

(Marsili-Libelli, Guerrizio and Checchi 2003), and membrane fuel cells (Corrêa, et al. 

2005). Parameter estimates from inestimable systems cannot be used for design, scale-up, 

control and optimization as they are usually inaccurate. In practice, model inestimability 
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is usually dealt with by obtaining additional data or modifying the model. Investing in 

obtaining additional data may not be practical if the improvement in model predictions 

might not be enough to justify the additional cost of doing more experiments. Therefore, 

it is more feasible to modify the model by reducing the number of parameters. Model 

reparameterization is an efficient approach for model reduction. 
 

 

2.3.3 Model reparameterization 

The main objective for model modification, to deal with inestimability, is to simplify the 

model to the point where each parameter (or parameter combination) has a noticeable 

effect on model predictions. Model modification of inestimable systems is an active area 

of research and the following are a few approaches proposed in literature: 

 

1. Parameters that are determined a priori to have negligible effect on model 

predictions can be fixed at a certain nominal value (Chakravarti, Ray and 

Zhang 2001). 

2. Parameter values can be fixed at their nominal values sequentially based on 

correlation information (Matos, Mattos Neto and Pinto 2001).  

3. Use a sensitivity-based approach to identify parameters resulting in 

negligible or no effect on model behaviour and lump, discard or fix them at 

their nominal value (Yao, et al. 2003). This method can also be used to 

construct confidence regions for parameters (Marsili-Libelli, Guerrizio and 

Checchi 2003). 

4. Estimate different parameter subsets at different times using a Bayes 

theorem-based scheme (Preisig 2007). A similar scheme based on Monte-

Carlo-based approach has also been investigated (Corrêa, et al. 2005). 

5.  Manually adjust parameter values until an acceptable fit is obtained (Khare, 

Seavey and Liu 2002). 

 

The above mentioned approaches are based on identifying a subset of parameters that are 

inestimable. However, the work done by Ben-Zvi (2008) shows that the parameter 

combinations are inestimable rather than a subset of parameters. In addition, the 

inestimability of these parameter combinations is strongly related to experimental 

conditions. Therefore, dealing with parameter inestimability by reparameterizing the 
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model using a transformation that partitions the parameter space into estimable and 

inestimable subspaces is a promising approach.  

 

Partitioning non-linear systems using transformation has been well documented in the 

literature (Isidori 1989). Non-linear transformations have traditionally been used to 

partition non-linear systems into controllable/uncontrollable or observable/unobservable 

subsystems. However, they have been rarely used to partition the system into 

estimable/inestimable subsystems. An approach that applies differential geometry to 

develop a non-linear transformation that partitions the parameter space into estimable and 

inestimable parts is proposed by Ben-Zvi (2008). This method is used in this work to 

develop the non-linear model reparameterization algorithm. 
 

 

2.4 Other topics 

 
2.4.1 Singular value decomposition 

Singular value decomposition (SVD) is a widely used technique for matrix 

decomposition of rectangular real or complex matrices. It is used for computing the 

pseudo-inverse, matrix approximation, determining rank and null space of a matrix.  Let 

A be a ݉ ൈ ݊ matrix, and the singular value decomposition of A is given below: 

 

ܣ ൌ ்ܷܸܵ (2.6) 

  

where U is a ݉ ൈ ݉ unitary matrix, ்ܸ is the conjugate transpose of a ݊ ൈ ݊ unitary 

vector, V, and S is a  ݉ ൈ ݊ diagonal matrix with nonnegative real numbers on the 

diagonal. The columns of V are the eigenvectors of ܣ்ܣ and form a set of orthonormal 

basis vector directions for A. Similarly, the columns of U are the eigenvectors of ்ܣܣ 

(Chan 1982). In this work, SVD was performed using MATLAB. 
 

 

2.4.2 Experimental design 

It is difficult to determine a priori which parameters have the greatest effect on the model 

predictions and hence can be estimated. Therefore, to maximize the number of estimable 
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parameters, one can implement an optimal experimental design. The general objective of 

optimal experimental design is to obtain an input profile, which results in data with the 

maximum amount of information for subsequent parameter estimation.  

 

For a model containing several parameters, the mean of the parameter estimations is a 

vector and their variance is a matrix. The reciprocal of the variance-matrix is called the 

information matrix. Generally, minimizing variance means maximizing information; 

however, since the variance of the estimated parameters is a matrix, minimizing the 

variance is not straightforward. Several optimality criterions focus on minimizing the 

variance of the information matrix; however, they differ in the objective function that is 

minimized. For example, the A-optimality criterion minimizes the trace of the 

information matrix (Horesh, Haber and Tenorio 2008) implying the average variance is 

minimized. The E-optimality criterion is based on minimizing the lowest eigenvalue of 

the information matrix (Horesh, Haber and Tenorio 2008); this corresponds to a minimax 

approach. The D-optimality criterion minimizes the determinant of the information 

matrix, hence reducing the volume of the uncertainty ellipsoid of parameter estimates 

(Horesh, Haber and Tenorio 2008). In this work, the D-optimality criterion was chosen in 

order to design an input profile as it puts emphasis on the quality of parameter estimates. 
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3 
Model Reparameterization and Output Prediction 

for a Bioreactor system1 

 

Abstract 

Microalgal bioprocesses are of increasing interest due to the possibility of producing fine 

chemicals, pharmaceuticals and biofuels. In this work, the parameter estimability of a 

first principles ODE model of a microalgal bioreactor, containing 6 states and 12 

unknown parameters, is investigated. For this purpose, the system input trajectories are 

computed using the D-optimality criterion. Even using a D-optimal input, not all 

parameters were found to have a significant effect on model predictions. Linear and 

nonlinear transformations are used to partition the parameter space into estimable and 

inestimable subspaces. For the linear reparameterization, a set of four directions in the 

twelve dimensional parameter space, along which a significant change in the output 

occurs, are identified using singular value decomposition of the parameter covariance 

matrix. The nonlinear reparameterization utilizes the three system rate functions as 

pseudo-outputs in order to perform a nonlinear transformation which reduces the 

dimension of the parameter space from twelve to three. Both proposed 

reparameterization methods achieve a good degree of output prediction at a greatly 

decreased computational cost. 
 

 

 

 

                                                           
1 A version of this chapter has been submitted to the Chemical Engineering Science journal. 
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3.1 Introduction 

Global warming and depletion of fossil fuels has increased the need for cleaner and 

sustainable energy production. Biodiesel, a proven alternative fuel, provides a 67% 

reduction of green house gases emissions when compared to fossil fuels (USEPA 2002). 

Microalgae have the ability to produce large amounts of oil that can be directly used as 

high value single-cell oils (Chen and Chen 2006), or be converted into biodiesel (Li, Xu 

and Wu 2007). 

 

Good control of culture conditions is critical for the economic viability of large-scale 

production of microalgae. Model-based control strategies have been successfully applied 

to biochemical reaction systems to improve their economic performance (Bastin and 

Dochain 1990). In order to implement a model-based control strategy, one must identify a 

model that properly captures the biochemical dynamics of microalgae, yet is simple 

enough to allow its implementation for controller design. Biochemical systems are highly 

non-linear, and models of such systems typically contain parameters that are not directly 

accessible to measurement (Audoly, et al. 2001). Therefore, the use of a model to develop 

a controller for microalgal processes requires the estimation of the model parameters 

using well designed experiments. 

 

A mathematical model is not estimable if the data collected for parameter identification 

and model validation is not sufficient for the accurate estimation of every parameter in 

the model.  Inestimability implies that several parameter values will lead to statistically 

indistinguishable predictions (Ben-Zvi 2008).   A large amount of literature has been 

devoted to identifying and dealing with inestimable parameters ( (Yao, et al. 2003); (Ben-

Zvi, McAuley and McLellan 2004); (Sidoli, Mantalaris and Asprey 2005)). If model 

parameters cannot be estimated from available data, the experimenter may invest in 

obtaining additional data or, alternatively, the inestimable parameters can be removed 

from the model or be fixed at some nominal value.  Even if one is able to obtain 

additional data, the additional expense may not be justified if the new information does 

not significantly alter the model predictions in the region of interest.  As a result, one is 

often interested in estimating only a subset of the unknown model parameters.   
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In this work, a first-principles based microalgal bioreactor model consisting of six 

ordinary differential equations and 12 unknown parameters is studied for estimability.  It 

is shown that even under an optimal experimental design many of the process parameters 

do not have statistically significant effect on model predictions.  Two model 

reparameterizing algorithms are proposed in order to reduce the number of parameters 

that must be estimated for accurate predictions. The first algorithm is based in a linear 

transformation of the parameter space while the second algorithm is based on a non-

linear one. Both algorithms greatly decrease computational time while achieving a good 

degree of output prediction and significantly reducing computational complexity. The 

non-linear algorithm is superior to the linear one because it provides predictions which 

have a lower weighted sum of squared residuals and lower computational cost. 
 

 

3.2 Microalgal bioreactor model 

In an algal bioreactor system with an intracellular product, the two key states are the 

biomass (X) and intracellular product concentration (Ip). The intracellular product is algal 

oil which typically contains high-value substances such as very long chain 

polyunsaturated fatty acids (Drapcho, Nhuan and Walker 2008). The key nutrients 

controlling biomass production (growth rate) are carbon (C) and nitrogen (N). The 

biomass growth rate, ߤ, can be expressed as (Davidson and Cunningham 1996):  

 

ߤ ൌ ߤ ଵ݂ሺܰሻ ଶ݂ሺܥሻ (3.1) 

 

where f1 and f2 are functions of nitrogen and carbon respectively, and ߤ is the maximum 

growth rate. It has been shown that while the external carbon source concentration (S2) 

can be directly related with the growth rate, this same assumption is not valid for nitrogen 

and other nutrients for algal systems (Tett and Droop 1988). Instead, the growth rate 

depends on the intracellular nitrogen concentration, or nitrogen quota (q) (Mailleret, 

Gouzé and Bernard 2005). In addition, there is a minimum cell quota (qm) below which 

no growth is observed. Assuming general hyperbolic functions ( (Davidson and 

Cunningham 1996); (Davidson 1996)) for the growth rate dependence on both S2 and q, 

Equation 3.1 can be written as: 
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ߤ ൌ ߤ ቆ
ݍ െ ݍ

ܭ  ݍ
ቇ ൬

ܵଶ

௦ܭ  ܵଶ
൰ (3.2) 

 

where ܭ is the half saturation constant of nitrogen quota for growth and ܭ௦ is the half 

saturation constant of carbon source for growth. The cell quota is related to the external 

nutrient concentration by the rate at which cells can assimilate such nutrients. Several 

expressions have been proposed to model the uptake rate of nutrients by algae ( (Caperon 

and Meyer 1972); (Tett and Droop 1988)). A simplified version of the Caperon and 

Meyer equation is used in this work, as it fits well the experimental data, and is 

computationally simpler: 

 

ߩ ൌ ߩ ൬1 െ
ܵ

ଵܵ
൰

ଵାఌ
 (3.3) 

 

where ߩ is the nitrogen uptake rate, S1 is external nitrogen source concentration, ߩ is the 

minimum cell quota for supporting growth, and S0 can be interpreted as the concentration 

of nitrogen source at which the net uptake equals zero ( (Passarge and Huisman 2002); 

(Caperon and Meyer 1972)). In Equation 3.3, ε is a small known perturbation factor 

introduced to remove the discontinuity in the first derivative of the expression. This 

perturbation factor does not significantly affect model predictions; however, it facilitates 

the solution of the differential equation system. Regression algorithms require the 

evaluation of the total prediction error at several points in the parameter space, which 

implies the solution of the system of differential equations. Therefore, the introduction of 

ε improve the performance of the of the parameter estimation, as there is a reduction in 

the required time to solve the system of differential equations. 

 

Algal oil production, even if triggered by nitrogen deficiency conditions, is assumed to 

only depend on the carbon source concentration. In this case, a Michaelis-Menten 

relationship is assumed, with an additional saturation term that takes into account the 

decrease in algal oil production as cells become saturated with oil. The oil production 

rate, π, is given as follows: 

 

ߨ ൌ ߨ
ܵଶ

గܭ  ܵଶ
൬1 െ

ܫ

ܺ
൰ (3.4) 
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where ߨ is maximum oil production rate and ܭగ is the half saturation constant for oil 

production. As oil is an intracellular product, and nitrogen can be stored without being 

converted into biomass, the total biomass can be expressed as the sum of three different 

compartments: oil storage ሺܫሻ, intracellular nutrient, and active biomass. The measurable 

biomass concentration (X) is therefore:  

 

ܺ ൌ ݔ  ܫ  ܳ (3.5) 

 

where, x is the concentration of metabolically active biomass, and Q is the total 

concentration of intracellular nutrient in the reactor ሺܳ ൌ  ሻ. The dynamics of theܺݍ

bioreactor are therefore described by a set of six differential equations shown in Table 

3.1. Equations f1-f6 are first-order ODEs with the following six states:  

1) x: functionally active biomass concentration [g/mL] 

2) S1:  Nitrogen source concentration in culture media [g/mL] 

3) S2: Carbon source concentration in culture media [g/mL] 

4) Q: Total nitrogen cellular quota [g/mL] 

 : Total algal oil stored in cells [g/mL]ܫ (5

6) V: Total reaction volume [mL] 

 
The process outputs are the total biomass concentration (X), the nitrogen source and 

carbon source concentration in culture media (S1 and S2, respectively), and the mass 

fraction of algal oil in the cell (
ூ


). 

 

In this work, the bioreactor behaviour was investigated in fed-batch-mode (fo = 0). To 

illustrate the numerical implementation of the proposed algorithm, nominal (i.e. “true”) 

values of the system parameters were selected to lie within the range reported in 

literature, as shown in Table 3.2. Note that the proposed model reparameterization 

algorithms can be implemented for a different choice of nominal parameter values. 

 

 

 

 

 



23 
 

Table 3.1. Continuous bioreactor model 
ݔ݀ 

ݐ݀ ൌ ݔߤ െ ݔ ݂

ܸ െ ሺݔ ଵ݂
  ଶ݂

 െ ݂ሻ
1
ܸ (f1) 

 ݀ ଵܵ

ݐ݀ ൌ െݔߩ  ଵܵ
 ଵ݂



ܸ െ ଵܵ
݂

ܸ െ ଵܵሺ ଵ݂
  ଶ݂

 െ ݂ሻ
1
ܸ (f2) 

 ݀ܵଶ

ݐ݀ ൌ െ
1
௫ܻ௦

ݔߤ  ܵଶ
 ଶ݂



ܸ െ ܵଶ
݂

ܸ െ ݇ݔ െ
1
ܻ௦

ݔߨ െ ܵଶሺ ଵ݂
  ଶ݂

 െ ݂ሻ
1
ܸ (f3) 

 ݀ܳ
ݐ݀ ൌ ݔߩ െ

1
௫ܻ

ݔߤ െ ܳ ݂

ܸ െ ܳሺ ଵ݂
  ଶ݂

 െ ݂ሻ
1
ܸ (f4) 

ܫ݀ 

ݐ݀ ൌ ݔߨ െ ܫ
݂

ܸ െ ሺܫ ଵ݂
  ଶ݂

 െ ݂ሻ
1
ܸ (f5) 

 ܸ݀
ݐ݀ ൌ ଵ݂

  ଶ݂
 െ ݂ (f6) 

System outputs 
 

ሻݐሺݕ ൌ  ܺ     ଵܵ     ܵଶ      
ܫ

ܺ ൨
்

 (y) 

 
 
The initial guesses for parameter values differ by ten percent from the nominal values and 

are given in Table 3.3. The initial guesses are used in the experimental design and model 

reparameterization algorithms. The initial state conditions and other known quantities are 

also given in Table 3.3. 
 

 

Table 3.2. Nominal parameter values 
Parameter Range Nomin

al value 
Unit References 

µm 0.01 – 0.23 0.15 1 / h ( (Mendes, et al. 2007), (Droop 1974)) 

qm 0.00275 –  0.032 0.027 g / g ( (Gotham and Rhee 1981), (Caperon and 
Meyer 1972)) 

Kq –  0.5 a g / g  

ρm 0.0009 – 0.102 0.08 1 / h ( (Davidson and Cunningham 1996), (Gotham 
and Rhee 1981)) 

Ks 0.0032 – 0.060 0.014 g / mL ( (Wu, Shi and Shi 2007), (Shi, Zhang and 
Chen 2000)) 

so 0 – 3.5e-4 1.8e-5 g / mL (Berland, et al. 1979) 
Yxs 0.12 – 0.68 0.56 g / g (Patino, Janssen and von Stockar 2007) 

km 0 – 0.005 0  g / g h ( (Lee, Erickson and Yang 1985), (Shi, Zhang 
and Chen 2000)) 

Yps –  0.4 a g / g  
πm –  0.05 a 1 / h  
Kπ –  0.01 a g / mL  

Yxq 7.07 – 36.1 33.3 g / g ( (Patino, Janssen and von Stockar 2007), 
(Chen and Johns 1991)) 

Notes:  a. Parameter values were estimated from preliminary experimental data. 
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Table 3.3. Initial guess for parameter values, initial conditions and known quantities 
Parameters 

Number Parameter Name Initial guess Unit 
P1 µm Maximum growth rate 0.135 1 / h 
P2 qm Minimum cell quota for supporting growth 0.0243 g / g 
P3 Kq Half saturation constant of nitrogen quota for growth 0.55 g / g 
P4 ρm Maximum uptake rate 0.072 1 / h 
P5 Ks Half saturation constant of carbon source for growth 0.0154 g / mL 
P6 so Threshold substrate concentration 1.98e-5 g / mL 
P7 1/Yxs Inverse of Biomass to substrate yield 1.98 g / g 
P8 km Maintenance constant 0 g / g h 
P9 1/Yps Inverse of product to substrate yield 2.25 g / g 
P10 πm Maximum oil production rate 0.045 1 / h 
P11 Kπ Half saturation constant for oil production 0.009 g / mL 
P12 1/Yxq Inverse of biomass to substrate quota yield 0.033 g / g 

Initial conditions  
 Initial biomass concentration 4.275e-4 g / mL ݔ 1
2 ଵܵ Initial nitrogen source concentration 5e-4 g / mL 
3 ܵଶ Initial carbon source concentration 0.04 g / mL 
4 ܳ Initial nitrogen cellular quota 2.25e-5 g / mL 
  Initial algal oil stored in cells 3e-4 g / mLܫ 5
6 ܸ Initial reaction volume 1060 mL 

Known quantities 
1 ଵܵ

  Nitrogen source concentration in inlet feed 1 0.01 g / mL 
2 ܵଶ

  Carbon source concentration in inlet feed 2 0.2 g / mL 
 

 

3.3 Experimental design 

It is difficult to determine a priori which parameters have the greatest effect on the model 

predictions and hence can be estimated. For the purpose of this work, D-optimality 

criterion (Yao, et al. 2003) was chosen for input signal design. 

 

Consider the following matrix whose entries are the partial derivatives of the state 

variables with respect to the parameters at specific times: 
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 (3.6) 

 

where the entry ப௭
பೕ

ฬ
௧ೖ

 denotes the partial derivative of the ith state (z) variable with 

respect to the jth parameter at sample time tk. The sampling time for this work was 

assumed to be one hour, as this is a realistic period for sampling and analysis.  

 

The entries in the matrix ෨ܼ were computed integrating the sensitivity equations (Bard 

1974) given by: 

 

d  
dt

൬
∂z
∂P

൰ ൌ
∂݂
∂z

כ
ݖ∂
∂P


∂݂
∂P

 (3.7) 

 

where f is the vector values function whose entries are listed in Table 3.1. Equation 3.7 

was integrating forward in time along with the model equations, given in Table 3.1, and 

computed at discrete intervals in order to obtain the entries of ෨ܼ. 

 

The matrix ෨ܼ describes the effect of parameter values on the system states at specific time 

instances t א{t1…tf}. To determine the effect of parameters values on process outputs, 

which are measured quantities, the following relation is used: 

 
∂y
∂P

ൌ
∂h
∂P


∂h
∂z

∂z
∂P

 (3.8) 

 

By computing the value of ப୷
பP

 for t א{t1…tf} the output sensitivity matrix, Z, is defined 

as: 
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 (3.9) 

 

 The matrix Z describes the effect of parameter values on the measured outputs. 

 

The optimal input was defined as one which maximizes the determinant of ൫ܼTܼ൯. 

Mathematically, the optimal input, כݑ, is computed as: 

 

כݑ ൌ arg max
௨ א 

ห ෨ܼT ෨ܼห (3.10)

 

where U is the set of permissible inputs for the system. This class of permissible inputs 

was chosen as a set of piece-wise constant functions ݑ: ݐ հ ܴଶdefined on  ݐ א ሾ48,360ሿ 

(time units of hours), with a switch time of 12 hours. Note that the input was held at zero 

for the first 48 hours in order to accumulate an experimentally practical concentration of 

biomass in the reactor. The switch frequency of the input was chosen as 12 hours in order 

to maintain a balance between computational efficiency and process excitation. The total 

number of input changes (i.e. optimization variables) was 52. The final input 

specifications were chosen based on a computational time of 7 days. The total flow into 

the bioreactor is limited by the total reactor volume of 2.5L. This is taken into account by 

implementing a non-linear constraint in the optimization problem given on Equation 

3.10. The input design was done using MATLAB® R2006b on an Intel Core2 Duo CPU 

with 2.39 GHz and 1 Gigabyte of RAM. The problem was setup as an optimization 

problem and solved using “Pattern search tool” available in MATLAB®. The designed 

input signals are shown in Figure 3.1. 
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(a) (b) 
Figure 3.1. Designed input signals. (a) Flowrate of nitrogen rich feed. (b) Flowrate of 
carbon rich feed.  
 
 

3.4 Parameter sensitivity analysis 

Even under the D-optimal experimental design computed in the previous section, not all 

parameters can be uniquely estimated using noisy measurements. More generally, it is 

often the case that not all model parameters have a strong effect on the model predictions 

(Yao, et al. 2003).  To determine which parameters have a negligible effect on the model 

predictions, a perturbation-based test was performed to check for parameter estimability. 

Using the nominal parameter values, a nominal response was computed.  Next, each of 

the system parameters was perturbed pair-wise.  The model contains 12 parameters, and, 

as a result, a total of 66 graphs are computed. Laboratory measurements of ܺ, ଵܵ, ܵଶand 

 ூ


 were assumed to have a measurement noise covariance of 1%, 1%, 1% and 5% 

respectively. Therefore, the weighing matrix, W, was chosen as: 

 

ܹ ൌ  ൦

10000 0 0 0
0 10000 0 0
0 0 10000 0
0 0 0 400

൪ (3.11)

 

whose diagonal entries are proportional to the inverse of the noise covariance of each 

output.  

 

Contour plots of the weighted sum of squared error, WSSE, were obtained for each 

scenario. Two examples of these plots are shown in Figure 3.2.  Figures 3.2a and 3.2b 
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shows the WSSE as a function of Parameters 12 (1/Yxq) and 7 (1/Yxs) and Parameters 3 

(Kq) and 1 (µm), respectively.  For ease of visualization the axis of the plots in Figure 3.2 

were scaled by the nominal parameter values. Figure 3.2a shows that parameters 7 and 12 

are estimable as there is significant change in WSSE in all directions. However, as shown 

in Figure 3.2b, the effects of some parameters on the model predictions are correlated. 

For example, consider points A, B and C in Figure 3.2b. The WSSE at points A and C is 

approximately equal whereas the WSSE is significantly different at points C and B. This 

suggests that there is a negligible change in WSSE along the directional vector, D1, 

whereas it changes significantly along D2. This implies that, in this case, neither 

Parameter 3 nor Parameter 1 is estimable.  Rather, one linear combination of the two 

parameters is estimable. More generally, in the parameter space, there exist directions 

along which there is minimal change in the output predictions (e.g. the line D1 in Figure 

3.2b). Conversely, there are directions along which the output prediction changes 

significantly (e.g. the line D2 in Figure 3.2b). Identification of these directions and 

subsequent reparameterization of the model can greatly reduce the computational time 

and complexity of parameter estimation and output prediction algorithms. 
 

(a) (b) 
Figure 3.2. Contour plots of the WSSE. (a) 1/Yxs and 1/Yxq  (b) µm and Kq 
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3.5 Model reparameterization / Output Prediction 
3.5.1 Linear algorithm 

As shown in Figure 3.2b, there are linear combinations of parameters along which the 

WSSE will not change significantly.  Ideally, one should estimate linear combinations of 

parameters that are estimable and fix inestimable parameter combinations at their 

nominal value. For parameter estimation, in the case of Figure 3.2b, the 

reparameterization could be achieved by defining a transformation on Թଶ from the basis 

{P1, P3} to a new basis {D1, D2}. After the transformation, only one variable, D2, needs 

to be estimated while the second variable, D1, can be fixed at its nominal value. In this 

way, the number of parameters to be estimated is reduced by one. For a system 

containing n parameters, one may define a transformation matrix, H, and a new set of 

parameters, K, given by: 

 

ܭ ൌ ܪ כ ܲ (3.12)

 

where ܪ א  Թכ, ܲ א  Թ and ܭ א  Թ. The rows vectors in the H matrix transform the 

true parameter vector, P, to a pseudo-parameter vector, K. The main idea for model 

reparameterization is to choose H such that K1 to Kd are estimable while Kd+1 to Kn are 

inestimable, where d א {2 ,1,…, n}. In order to identify the important directions (vectors) 

in the parameter space, the sensitivity matrix, ܼ, is used. To see how this is, define a 

parameter perturbation vector h = (P-P0) which lies in the null-space of Z.  Consider the 

matrix Y containing all measured values given by: 

 

ܻ ൌ ଵ|௧భݕൣ ଶ|௧భݕ … ସ|௧భݕ ଵ|௧మݕ … ସ|௧మݕ … ଵ|௧ݕ … ସ|௧൧ (3.13)ݕ

 

about the nominal parameter value, Po. Note that, by definition, ܼ ൌ డ
డ

ቚ
బ

. The Taylor 

series expansion of Y about Po is given by:  

 

ܻሺܲሻ ൌ ܻሺ ܲሻ 
߲ܻ
߲ܲ

ฬ
బ

כ ݄ 
1
2

்݄ כ
߲ଶܻ
߲ܲଶቤ

బ

כ ݄  ∆ሺ݄ሻ 

(3.14)

ൌ ܻሺ ܲሻ  ܼ כ ݄ 
1
2

்݄ כ
߲ଶܻ
߲ܲଶቤ

బ

כ ݄  ∆ሺ݄ሻ 
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where Δ(h) represents the third and higher order terms in the Taylor series expansion. If h 

represents a sufficiently small perturbation (i.e. has a sufficiently small norm) then 

Equation 3.14 can be approximated by:  

 

ܻሺܲሻ ൌ ܻሺ ܲሻ  ܼ כ ݄ (3.15)

 

If, furthermore, the vector h belongs to the null-space of ܼ then Equation 3.15 reduces to 

ܻሺܲሻ ൌ ܻሺ ܲሻ implying that no change has been observed in the measured values despite 

the perturbation in the parameters. Similarly, if h is such that the norm of ܼ כ ݄ is small 

then the perturbation h = (P-P0) will have a small effect on measured values. 

 

To compute the subspace of the parameter space which contains perturbation vectors with 

small effect on the measured variables, one can perform singular-value decomposition 

(SVD) (Chan 1982) on ܼ and identify its singular vectors which correspond to small 

singular values. This is because perturbing parameters along the direction given by a 

singular vector with a low corresponding singular value has little effect on the measured 

variables. To see how this is, consider si to be the singular value corresponding to the 

singular vector, hi. 

 

lim
௦՜

ሺܼ כ ݄ሻ ൌ lim
௦՜

ሺݏ כ ݄ሻ ൌ 0 (3.16)

 

If si is small then so is the norm of ܼ כ ݄ and according to Equation 3.15 this implies that 

a perturbation along h will have only a small effect on the measured variables. 

 

Similarly, varying parameters along the direction given by a singular vector 

corresponding to a high singular value will have a large effect on the model predictions. 

This property can be used to partition the parameter space into orthogonal linear 

subspaces corresponding to estimable and inestimable parameter combinations. 

Therefore, the actual parameter space can be transformed into a pseudo-parameter space 

using Equation 3.12 and a matrix H whose rows are the singular vectors of Z. The rows 

(i.e. singular vectors) in H are arranged in descending order of the corresponding singular 

values. Therefore, vector h1 in Equation 3.15 has a corresponding singular value s1. 

Similarly, h2 corresponds to s2 and so on with  ݏଵ  ଶݏ  ଷݏ  ڮ    .ଵଶݏ
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݄ ൌ ሾ݄ଵ ݄ଶ ڮ ݄ଵଶሿ ݏ ൌ ൦

ଵݏ 0 ڮ 0
0 ଶݏ ڮ 0
ڭ ڭ ڰ 0
0 0 0 ଵଶݏ

൪ (3.17)

 

Under the proposed formulation only a subset of the elements of the transformed (or 

pseudo-) parameters K should be estimated.  Specifically, the elements of K 

corresponding to low singular values can be fixed at a nominal value because they have 

little effect on the measured variables and therefore little effect on the model WSSE (a 

measure of the output prediction). Conversely, the elements of K corresponding to large 

singular values are optimization variables in the output prediction algorithm. Note that 

the transformation in Equation 3.12 is linear, and, as a result, it is expected to be valid 

locally about initial guess parameter values used in experimental design. For the 

bioreactor model, the first four K values (i.e. {ܭଵ …  ସ}) were chosen after visualܭ

comparison of the predicted output and a nominal response based on nominal parameter 

values (in Table 3.3). Four was the minimum number of parameter which could be used 

to match the nominal model predictions.  

 

The optimization problem was formulated as follows: 

 

ሾܭଵ … ସሿܭ ൌ argmin
భ…ర

ሺݕ௧ െ ௧ሻଶݕ

௧

௧ୀଵ

 (3.18)

 

where  ݕ is the predicted output based on ܭଵ …   .ସand tf is the final timeܭ

 

To highlight the ability of the simplified model (containing only four free parameters) to 

match the predictions of the 12 parameter model the following procedure was 

implemented. First, a simulation was performed using the nominal set of parameters (in 

Table 3.3) to obtain a set of observations. Next, Gaussian noise with covariance of 1%, 

1%, 1% and 5% for outputs ܺ, ଵܵ, ܵଶ and 
ூ


, respectively, was added to the observations. 

Using these noise corrupted observations the pseudo-parameter ܭଵ …  .ସ were estimatedܭ

Finally, the model predictions based on the estimated values for ܭଵ …  ସ were comparedܭ

to the noise corrupted observations. Note that the input signal used to generate the data 
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was the D-optimal signal, shown in Figure 3.1 and that 360 total observations were used 

for parameter estimation.  

 

The results of parameter estimation from the four-parameter model as well as the output 

prediction are shown in Table 3.4 and Figure 3.3 respectively.  As shown in Figure 3.3, 

the predictions obtained by using the simplified (four-parameter) model follow the 

general trend of the outputs given by the true model.  As shown in Table 3.4, however, 

this does not imply that all of the original parameters (i.e. P) were accurately estimated.  

Indeed, as expected, many of the system parameters are inestimable even using data from 

an optimal experiment design.  The benefits of using the four-parameter model are three-

fold.  First, the inestimable parameters are computed and known explicitly as opposed to 

being selected implicitly by the optimizer.  Secondly, estimating only four parameters is 

far more computationally efficient than estimating twelve parameters. Finally, the method 

is able to achieve good output prediction even under an input which is optimally designed 

to identify all twelve original parameters. 

 
 

Table 3.4. Results of parameter estimation (linear algorithm) 
# Parameter Actual 

value 
Estimated 

value 
Error 
(%) # Parameter Actual 

value 
Estimated 

value 
Error 
(%) 

1 µm 0.15 0.1347 10.2 7 1/Yxs 1.8 1.8076 0.42 
2 qm 0.027 0.0249 7.6 8 km 0 0 0 
3 Kq 0.5 0.5507 10.1 9 1/Yps 2.5 2.4952 0.19 
4 ρm 0.08 0.0713 10.9 10 πm 0.05 0.0642 28.3 
5 Ks 0.014 0.0099 29.6 11 Kπ 0.01 0.0079 20.7 
6 so 1.8e-5 1.798e-5 0.08 12 1/Yxq 0.03 0.0296 1.3 
 
 
 

(a) (b) 
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(c) (d) 
Figure 3.3. Comparison of predicted and actual outputs (linear algorithm). (a) y1 = X (b) y2 

= S1 (c) y3 = S2 (d) y4 =  
ூ


  

 
 
 

3.5.2 Non-linear algorithm  

The transformation in Equation 3.12 is linear and is expected to be valid locally about 

initial guess parameter values used to derive the linear transformation in the parameter 

space. In order to obtain a transformation that is valid over a wider range in the parameter 

space, a transformation-based approach for reparameterizing unidentifiable or 

inestimable systems is investigated (Ben-Zvi 2008). This approach applies differential 

geometry and a priori knowledge of the model structure in the parameter estimation. The 

method reparameterizes the non-linear ODE system by indentifying process quantities 

(such as reaction rates) that have a significant impact on model behaviour. The central 

idea in this algorithm is to accurately estimate these process quantities, labelled pseudo-

outputs, even if each specific model parameter is not accurately estimable. Choosing of 

the pseudo-outputs partitions the parameter space into estimable and inestimable 

subspaces. This approach is not sensitive to experimental conditions and does not require 

sensitivity information.  The method proposed in (Ben-Zvi 2008) is implemented in this 

work with some necessary modifications.  

 

The pseudo-outputs are usually non-linear combinations of parameters or states. For this 

study, the pseudo-outputs are chosen to be the three reaction rates (µ, ρ and π) given in 

Table 3.1. ߶ାሺܲሻ is the set of pseudo-outputs and is given in Equation 3.19. 
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߶ାሺܲሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ߤ כ

ܳ
ܺ െ ݍ

ܭ  ܳ
ܺ

כ
ܵଶ

௦ܭ  ܵଶ

ܣ

ߩ ൬1 െ
ܵ

ଵܵ
൰

ଵ.ଵ

ܣ

ߨ
ܵଶ

గܭ  ܵଶ
൬1 െ

ܫ

ܺ൰ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ተ

ተ

ተ

௫ୀ௫బ,ௌభసௌభబ,ௌమసௌమబ,ொୀொబ,ூୀூబ,ୀబ

 (3.19) 

 

where ݔ, ଵܵ, ܵଶ, ܳ, ܫ
 and V0 are initial conditions of the system states, given on 

Table 3.3. Once ߶ାሺܲሻ is chosen, a set of parameter combinations ߶ିሺܲሻ must be found 

such that the mapping Φ ൌ ሾ ߶ାሺܲሻ, ߶ିሺܲሻሿ is a local diffeomorphism, “on an open and 

dense subset of the parameter space” (Ben-Zvi 2008), and satisfies the following 

Equation 3.20.  

 

ۃ
߲߶

ା

߲ܲ
,
߲߶

ି

߲ܲ
ۄ ൌ 0 

(3.20)

 

for all i ߳ {1,2,…d1} and j ߳ {1,2,…d-d1}, where d and d1 are the total number of system 

parameters and pseudo-outputs respectively. In this case, d is twelve and d1 is three. Let 

M and N be differentiable spaces. A function, ݂  ܯ ՜ ܰ is a local diffeomorphism, if 

every point m in M, there exists an open set W containing m, such that ݂ሺܹሻ is open in N 

and ݂|ௐ  ܹ ՜ ݂ሺܹሻ is a diffeomorphism. A diffeomorphism is an invertible and 

differentiable function that maps one differentiable space to another. 

 

Equation 3.20 ensures ߶ାand ߶ି are independent, that is, the estimates for ߶ାare 

independent of the fixed values used for ߶ି. This is critical as values obtained for ߶ା are 

not implicit functions of the values of ߶ି (Ben-Zvi 2008). The calculation of ߶ିሺܲሻ 

becomes complicated for systems with more than a few parameters. However, the method 

of characteristics (John 1971) can be used to find a set of coordinates, ߶ିሺܲሻ, that are 

orthogonal to a known set of coordinates, ߶ାሺܲሻ. Under this method, finding ߶ିሺܲሻ 

amounts to finding functions, ߶ଵ
ି, ߶ଶ

ି, …, ߶ௗିௗభ
ି , such that for each function ߶

ି with j ߳ 

{1,2,…,d-d1}, and all i ߳ {1,2,…,d1}, Equation 3.20 holds. Evaluating Equation 3.20 over 

all i ߳ {1,2,…,d1} implies that the following equations hold for all j ߳ {1,2,…,d-d1}: 
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 ݂
ଵ

ௗ

ୀଵ

ሺܲሻ
߲߶

ି

߲ ܲ
ൌ 0 

 ݂
ଶ

ௗ

ୀଵ

ሺܲሻ
߲߶

ି

߲ ܲ
ൌ 0 

. . . 

 ݂
ௗభ

ௗ

ୀଵ

ሺܲሻ
߲߶

ି

߲ ܲ
ൌ 0 

(3.21) 

 

where ݂
ሺܲሻ ൌ డథ

శ

డ
ሺܲሻ. Equation 3.21 is a set of linear partial differential equations. The 

gradient ݂
ሺܲሻ for the bioreactor system, with ߶ାሺܲሻ as given in Equation 3.19, is given 

in Table 3.5.  
 

 

Table 3.5. ݂
ሺܲሻ functions 

  l 
  1 2 3 4 5 6 7 8 9 10 11 12

i 

1 
ሺܳ െ ܲ2ሻ כ ܵଶ

ሺܲ3  ܳ െ ܲ2ሻሺ1  ܵଶሻ െ
ܲ1 כ ܵଶ כ ܲ3

ሺܲ3  ܳ െ ܲ2ሻଶሺ1  ܵଶሻ െ
ܲ1 כ ሺܳ െ ܲ2ሻ כ ܵଶ

ሺܲ3  ܳ െ ܲ2ሻଶሺ1  ܵଶሻ
0 0 0 0 0 0 0 0 0 

2 0 0 0 ଵܵ െ ܲ6
ܲ5  ଵܵ െ ܲ6

ܲ4 כ ሺܲ6 െ ܵଵሻ
ሺܲ5  ଵܵ െ ܲ6ሻଶ

ܲ4 כ ܲ5
ሺܲ5  ଵܵ െ ܲ6ሻଶ 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 
ܵଶ

ܲ11  ܵଶ
 

െܲ10 כ ܵଶ

ሺܲ11  ܵଶሻଶ 0 

 

 

In order to solve Equation 3.21 using the method of characteristics a set of nonlinear 

ODEs given by ߦሶ ൌ డథశ

డ
ቚ

ୀక
 must be analytically solved. In general, a set of non-linear 

ODEs do not have an analytical solution (John 1971). Using MAPLE™ 11.0, no 

analytical solution was obtained. As a result, the method proposed by Dr. Ben-Zvi (2008) 

was modified by approximating ߶ାሺܲሻ by a second-order Taylor series expansion, about 

the initial guesses for parameters, given by: 
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߶෨ାሺܲሻ ൌ ߶ାሺ ܲሻ 
߲߶ା

߲ܲ
ቤ

బ

כ ሺܲ െ ܲሻ 
1
2

ሺܲ െ ܲሻ் כ
߲ଶ߶ା

߲ܲଶ ቤ
బ

כ ሺܲ െ ܲሻ (3.22)

 

where  ߶෨ାሺܲሻ is the approximation of ߶ାሺ ܲሻ.  

 

The advantage of using a second-order Taylor series approximation for ߶ାሺ ܲሻ is that the 

gradient given by: 

 

ሚ݂ሺܲሻ ൌ
߲߶෨

ା

߲ܲ
ሺܲሻ (3.23)

 

is linear and therefore the differential equation: 

 

ሶߦ ൌ
߲߶෨ା

߲ܲ
ቤ

ୀక
 (3.24)

 

is a set of linear time-invariant ordinary differential equations (LTI ODE) which has an 

analytic solution given by the variation of parameters formulation (Kohler and Johnson 

2006). For the bioreactor system with the ሚ݂ሺܲሻ ൌ ሾ ሚ݂ଵሺܲሻ … ሚ݂ଵଶ
 ሺܲሻሿ as defined in 

Equation 3.23, the values of ሚ݂ሺܲሻ for ݈ ൌ  1,2, … ,12 are given by:  

 
ሚ݂ሺܲሻ ൌ ܣ  ܤ כ ܲ (3.25)

 

The Ai vectors and Bi matrices are given by: 
 

ଵܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.00177
െ0.0103
0.000456

0
0
0
0
0
0
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 
ଵୀܤ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0 െ0.0765 0.00338 0 0 0 0 0 0 0 0 0
െ0.0765 െ0.0393 0.0205 0 0 0 0 0 0 0 0 0
0.00338 0.0205 െ 0.00173 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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ଶܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0
0
0

0.06080
െ0.271
െ4.120

0
0
0
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 
ଶୀܤ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 െ1.904 െ61.067 0 0 0 0 0 0
0 0 0 െ1.904 17.267 268.2425 0 0 0 0 0 0
0 0 0 െ61.067 268.242 –  553.752 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

ଷܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0
0
0
0
0
0
0
0
0

0.966
െ0.275

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 
ଷୀܤ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 െ 16.660 0
0 0 0 0 0 0 0 0 0 െ 16.660 30.599 0
0 0 0 0 0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Following the procedure outline in (Ben-Zvi 2008), nine independent vectors (v1, v2, …, 

v9) are chosen such that the span{ ሚ݂ଵ, ሚ݂ଶ, ሚ݂ଷ, v1, v2,…, v9}ൌ ܴଵଶ. The following v1, 

v2,…,v9 are chosen in this case: 
 

1ݒ ൌ ሾ1 0 0 0 0 0 0 0 0 0 0 0ሿ 

2ݒ ൌ ሾ0 1 0 0 0 0 0 0 0 0 0 0ሿ 

3ݒ ൌ ሾ0 0 0    1 0 0    0 0 0    0 0 0ሿ 

4ݒ ൌ ሾ0 0 0    0 1 0    0 0 0    0 0 0ሿ 

5ݒ ൌ ሾ0 0 0    0 0 0    1 0 0    0 0 0ሿ 

6ݒ ൌ ሾ0 0 0    0 0 0    0 1 0    0 0 0ሿ 

7ݒ ൌ ሾ0 0 0    0 0 0    0 0 1    0 0 0ሿ 

8ݒ ൌ ሾ0 0 0    0 0 0    0 0 0    0 1 0ሿ 

9ݒ ൌ ሾ0 0 0 0 0 0 0 0 0 0 0 1ሿ 

(3.26) 

 

The next step involves computing the solution of the differential equations specified by 

ሶߦ ൌ ሚ݂ଵ, ߦሶ ൌ ሚ݂ଶ and ߦሶ ൌ ሚ݂ଷ , as a function of a time-like variable τ1, τ2 and τ3 respectively 

(Ben-Zvi 2008). The mathematical expressions of these solutions are very long and 

complex and therefore are not shown here. Similarly, the solutions of the differential 
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equations given by ߦሶ ൌ ሶߦ ,1ݒ ൌ ሶߦ ,… ,2ݒ ൌ  ,… ,are computed as a function of τ4, τ5 9ݒ

τ12 respectively. The solutions are shown below. 
 

ሺ߬ସሻߦ ൌ

ۏ
ێ
ێ
ێ
ଵሺ0ሻߦۍ  ߬ସ

ଶሺ0ሻߦ
ଷሺ0ሻߦ

ڭ
ଵଶሺ0ሻߦ ے

ۑ
ۑ
ۑ
ې

ሺ߬ହሻߦ  ൌ

ۏ
ێ
ێ
ێ
ۍ ଵሺ0ሻߦ
ଶሺ0ሻߦ  ߬ହ

ଷሺ0ሻߦ
ڭ

ଵଶሺ0ሻߦ ے
ۑ
ۑ
ۑ
ې

ሺ߬ሻߦ  ൌ
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A mapping M is defined as a compositions of all the solutions ξ(τ1) to ξ(τ12): 
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ൌ ሺ߬ଵሻ oߦ ڮ o ߦሺ߬ଵଶሻ (3.27) 

 

evaluated at ߦଵሺ0ሻ ൌ ଶሺ0ሻߦ ൌ ڮ ൌ ଵଶሺ0ሻߦ ൌ 0. The partial derivatives, ቂ డ
డభ

,

డ
డమ

, డ
డయ

, … , డ
డభమ

ቃ, are the basis with respect to which the coordinates ߦ are defined. 

Therefore, the substitutions ߦଵ ՜ ܲ1, ଶߦ ՜ ܲ2, … , ଵଶߦ ՜ ܲ12 can be made which results 

in the following equation: 

 

ܲ ൌ ሺ߬ሻ (3.28)ܯ

 

where the mapping M is given by: 
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(3.29) 

 

Equation 3.28, gives a transformation from the pseudo-parameter vector, τ, to the actual 

parameter vector, P. The computation of the pseudo-parameter vector ߬ ൌ  ଵሺܲሻ couldିܯ

not be done analytically. It was therefore computed numerically for specific values of P. 

Note that the inverse transformation needs to be solved only once in order to obtain the 

nominal values of ߬ corresponding to the initial guesses for P, given in Table 3.3. Once 

the nominal values of ߬ are obtained, [τ4, τ5,…, τ12] can be fixed at their nominal values, 

while [τ1, τ2, τ3] become the optimization variables for output prediction. Thus, reducing 

the number of optimization variables from 12 to 3. A summary of the output prediction 

algorithm using the non-linear transformation is given in the flowchart in Figure 3.4.  
 

 
Figure 3.4. A flowchart of the parameter estimation algorithm using the non-linear 

transformation. 
 

Figure 3.4 contains both dashed and solid lines. The dashed lines denote the steps that are 

only done once in the beginning of the algorithm. The solid lines in Figure 3.4 denote 

steps which are done iteratively. Note that both the numerical inversion of M and 

integration of Equation 3.24 (used to obtain M) need only be done once. 

Optimizer: 
τ 1, τ 2 and τ 3 

Non-linear 
transformation, M

Actual  
parameters, P Simulation 

Predicted output, 
)(ˆ)(ˆ 3601 tyty …  

True output, 
)()( 3601 tyty …‐/+

Constant: 
τ  4, …, τ 12 

Nominal  
parameter values 

Numerical inverse, 
M-1 

Pseudo-
parameters, τ 
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To test the ability of the simplified three-parameter model to match the full-model 

predictions, the procedure used to evaluate the four-parameter (linear reparameterization 

based) model proposed in Section 5.1 was repeated. First, a simulation was performed 

using the nominal set of parameters (in Table 3.3) to obtain a set of observations. Next, 

Gaussian noise with covariance of 1%, 1%, 1% and 5% for outputs ܺ, ଵܵ, ܵଶ and ூ


, 

respectively, was added to the observations. Using these noise corrupted observations the 

pseudo-parameter ߬ଵ … ߬ଷ were estimated. Model predictions based on the estimated 

values for ߬ଵ … ߬ଷ were compared to the noise corrupted observations. As before, the 

input signal used to generate the data was the D-optimal signal shown in Figure 3.1, and 

360 total observations were used for parameter estimation. 

 

The results of parameter estimation from the three-parameter model as well as the output 

prediction are shown in Table 3.6 and Figure 3.5 respectively. As shown in Figure 3.5, 

the predictions obtained by using the simplified (three-parameter) model match the 

predictions made by the full model. However, this does not imply that all parameters are 

accurately estimated, as seen on Table 3.6.  Similar to the linear case, several system 

parameters are inestimable. There are two key advantages of using the non-linear 

algorithm when compare to its linear counterpart. The variables required to optimize for 

output prediction are reduced from 4 to 3. The reduction in the number of parameters, 

combined with the non-linear transformation, resulted in the reduction in the 

computational time of 49%. The computation time and WSSE for both the linear and 

non-linear algorithms are shown in Table 3.7. A second advantage of the non-linear 

algorithm is that it achieved better output predictions that the linear algorithm especially 

for carbon source concentration (S2) and mass fraction of algal oil in the cell ቀூ


ቁ.  

 

Table 3.6. Results of parameter estimation (non-linear algorithm) 
Number Parameter Actual 

value 
Estimated 

value 
Error 
(%) Number Parameter Actual 

value 
Estimated 

value 
Error 
(%) 

1 µm 0.15 0.1678 11.9 7 Ysx 1.8 1.98 10 
2 qm 0.027 0.029 7.4 8 km 0 0 0 
3 Kq 0.5 0.5305 6.1 9 Ysp 2.5 2.25 10 
4 ρm 0.08 0.0744 7.0 10 πm 0.05 0.0497 0.6545
5 Ks 0.014 0.011 21.1 11 Kπ 0.01 0.0082 18.3 
6 so 1.8e-5 2.17e-5 20.6 12 Yqx 0.03 0.033 10 
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(a) (b) 

Figure 3.5. Comparison of predicted and actual outputs (non-linear algorithm). (a) y1 = X (b) 
y2 = S1 (c) y3 = S2 (d) y4 = 

ூ


  

 

 

3.5.3 Comparison of the linear and non-linear algorithm 

One way to compare the two algorithms is by examining their resulting weighted sum of 

squared error, WSSE. For the sake of comparing the linear and non-linear algorithms, the 

WSSE is calculated for four different scenarios. In Scenario 1, the WSSE is calculated 

using the nominal (“true”) parameter values, to predict output. This gives a measure of 

noise-level present in the system. In Scenario 2, output prediction is done by estimating 

all 12 parameter of the bioreactor model given in Table 3.1. The nominal parameter 

values are used as initial guesses for parameter estimation. This gives an idea of the best 

level of output prediction that is possible. The four-parameter model, obtained from using 

the linear algorithm for model reparameterization, is used in Scenario 3. Subsequently, 

Scenario 4 utilizes the three-parameter model obtained using the non-linear 

reparameterization algorithm. Table 3.7 contains the WSSE values and computational 

time for each of the four scenarios. From Table 3.7 it can be seen that the non-linear 
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algorithm’s WSSE is significantly lower that the linear one, as a result it is better for 

output prediction. Furthermore, the WSSE of the three-parameter model is comparable to 

the WSSE of the 12-parameter model, which is computationally more complex and takes 

more time to converge even when the nominal parameter values are given as initial 

guesses. This implies that the nine parameter combinations not estimated in the non-

linear algorithm are indeed inestimable. Furthermore, if the nominal parameter values 

were not used as the initial guesses, then output prediction using 12-parameter model 

faces two major obstacles. Firstly, the time for the algorithm to converge significantly 

increases. Secondly, the result obtained could be a local minimum. In this aspect, the 

chances of a result from the non-linear algorithm being an only local minimum are lower, 

as it only utilizes three variables in its optimizer.  

 

Table 3.7. Weighted sum of squared error, WSSE, for the four scenarios 

Scenario Description WSSE Computational time 

1 Nominal parameters values 108.1  - 

2 12 parameter model 107.9  19 hours and 32 minutes

3 Four-parameter model (linear algorithm) 227.9  2 hours and 46 minutes

4 Three-parameter model (non-linear algorithm) 112.4  1 hours and 06 minutes

 

 

3.6 Experimental design based on pseudo-parameters 

The D-optimal experimental design in Section 3 is based on maximizing the determinant 

of ൫ܼTܼ൯ which is optimal for the estimation of all twelve original parameters (P). This 

design is not optimal with respect to identifying the three pseudo-parameters (τ1, τ2 and 

τ3) in the non-linear parameter estimation algorithm. As a practical matter, one would like 

to identify only the estimable parameters. As a result, it is necessary to compute an input 

that is optimal for the estimation of the three pseudo-parameters. Therefore, the objective 

function of the D-optimal design may be modified to maximize the determinant of 

൫ መ்ܼ መܼ൯, where መܼ ൌ డ
డఛ

ቚ
ఛୀெషభሺሻ

and ߬̃ ൌ ሾ߬ଵ, ߬ଶ, ߬ଷሿ. መܼ can be calculated as follows:  

 

መܼ ൌ
߲ܻ
߲߬̃

ฬ
ఛୀெషభሺሻ

ൌ Z כ
ܯ߲
߲߬̃

ฬ
ఛୀெషభሺሻ

 (3.30)
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where డெ
డఛ

 can be calculated using Equation 3.28. As with the 12 parameter experimental 

design, the function space over which the input is optimized is the set of piecewise inputs 

with a switch frequency of 12 hours. The signal is design for an experiment of 15 days 

with the first two days being zero input. The designed input signals are shown in Figure 

3.6. The input signal shown in Figure 3.6 can be used to obtain estimates of ߬̃ by 

implementing the design using a bioreactor system. 
 

(a) (b) 
Figure 3.6. Designed input signals (optimal with respect to pseudo-parameters). (a) 

Flowrate of nitrogen rich feed. (b) Flowrate of carbon rich feed. 
 

The input signal shown in Figure 3.6 was used to examine the estimability of the pseudo-

parameters using the perturbation-based approach discussed in Section 4. There are three 

pseudo-parameters; as a result, three contour plots of the WSSE, as a function of the 

pseudo-parameter values, were obtained and plotted in Figure 3.7.  For ease of 

comparison, the axes of the plots in Figure 3.7 were scaled to the nominal value of the 

pseudo-parameters. Figure 3.7 shows that pseudo-parameters 1, 2 and 3 are estimable 

because the WSSE exhibits a local minimum at the true pseudo-parameter values. The 

existence of this local minimum is visualized as closed contours around the minimum in 

Figure 3.7.  It is important to note that other local minima are observed in Figures 7a and 

7b. Therefore, during the parameter estimation algorithm, a global optimizer should be 

used to obtain the best parameter estimates.   
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 (a)  

 
 (b)  

 
 (c)  

Figure 3.7. Contour plots of the WSSE (for the pseudo-parameters). (a) Pseudo-parameter 1 and 2  (b) Pseudo-
parameter 1 and 3  (c) Pseudo-parameter 2 and 3   
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3.7 Conclusions 

Microalgae are efficient biological systems with a higher biomass production and faster 

growth rate than other energy crops ( (Minowa, et al. 1995); (Miao and Wu 2006)). 

Moreover, production of microalgae does not require the use of crop area, as it can be 

grown in desertic areas or intensively in bioreactors. Microalgae have the ability to 

produce and store up to 80% of their dry weight as oil that can be used for the production 

of biodiesel (Drapcho, Nhuan and Walker 2008). 

 

An ODE model for a microalgal bioreactor system is proposed. This first-principles 

based model contains twelve unknown parameters and six states. The model considers 

biomass, two substrates, intracellular nitrogen concentrations, as well as intracellular 

product. Estimability of the reactor model is investigated in this work. To determine 

which parameters have a negligible effect on the model predictions, a nominal output 

response was computed and compared to an output obtained by perturbing each of the 

system parameters pair-wise. It was found that not all parameters had unique 

contributions to model predictions. This conclusion was true even when a D-optimal 

input signal was used to excite the system. 

 

A set of eight linear combinations of parameters were identified, along which minimal 

change in output occurs, using singular value decomposition of the parameter covariance 

matrix. Using this fact, the linear model reparameterization was used to partition the 

parameter space into estimable and inestimable linear subspaces. As a result, the number 

of free unknown quantities (i.e. pseudo-parameters) in the model was reduced from 

twelve to four. The linear model reparameterization algorithm greatly decreased the 

computational expense of the parameter estimation problem while achieving a good 

degree of output prediction.  

 

A non-linear algorithm was also used for model reparameterization. In this case, the three 

system rate functions were chosen as pseudo-outputs. Method of characteristics was used 

to determine the inestimable parameter combinations. A non-linear transformation was 

used to partition the parameter space into estimable and inestimable subspaces. In the 

non-linear case, only three pseudo-parameters needed to be estimated in order to match 

the output predictions of the nominal model. This non-linear algorithm differs from the 
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previously proposed approaches is several ways. First, a second-order Taylor 

approximations of the pseudo-outputs were used to obtain an analytical solution. Second, 

the transformation from the parameter space to the pseudo-parameter space was non-

linear and the inverse transformation was obtained numerically. Finally, an explicit 

equation for computing the sensitivity of the output with respect to the pseudo-parameters 

at specific sampling times was obtained. 

 

A detailed comparison of the performance of the linear and non-linear algorithms was 

done by evaluating their WSSE, a measure of output prediction, and computational time, 

a measure of computational complexity.  The non-linear algorithm gives lower WSSE 

even with a shorter computational time. Finally, the sensitivity of the outputs with respect 

to the pseudo-parameters was used to develop a D-optimal experimental design which 

can be used to estimate each of the three pseudo-parameters. The three pseudo-

parameters were found to produce a unique local minimum for the WSSE, however, the 

WSSE was found to have several local minima. This implies that a global optimization 

procedure should be used in order to compute a global minimum. 
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4 
Robust Modeling of a Microalgal Heterotrophic 

Fed-batch Bioreactor.2 

 

Abstract 

Microalgal feedstock has shown potential for the production of biofuels and fine 

chemicals. Recently, an optimal experimental input profile for the identification of 

parameters of a microalgal bioreactor, containing 6 states and 12 unknown parameters 

has been proposed. In this work, the proposed design is implemented and parameters are 

estimated. It was found that the parameter estimation procedure can be made more 

computational efficient by the use of a novel iterative non-linear model 

reparameterization algorithm. By applying the proposed algorithm to experimental data, 

a good degree of output prediction was achieved along with bounds on the parameter 

values. The final, validated, model can be used for optimal control and process 

simulation. 

 

 

4.1 Introduction 

Recently, there has been increasing worldwide interest in biofuels due to concerns related 

to climate change and security of energy supply (Peters and Thielmann 2008). Biodiesel, 

a proven biofuel, provides a cleaner alternative for sustainable energy production when 

compared to traditional fossil fuels, as it may provide for a 67% reduction of green house 

                                                           
2 A version of this chapter has been submitted to the Chemical Engineering Science journal. 
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gases emissions (USEPA 2002) over conventional oil. The use of biodiesel considerably 

decreases tailpipe particulate matter (-10.1%), unburned hydrocarbon (-21.1%) and 

carbon monoxide (-11%) emissions when compared to emissions from regular diesel fuel 

(USEPA 2002). Furthermore, biodiesel is biodegradable and non-toxic. However, land 

availability is a major limitation for the production of biodiesel from crops such as corn 

and soybeans which naturally conflicts with food production (Peters and Thielmann 

2008). Therefore, limited crop area availability make it infeasible for biodiesel (produced 

from crops) to meet existing energy demand (Christi 2007).  

 

One viable alternative to crops for the production of biodiesel is microalgae, which are 

efficient biological systems with a higher biomass production and faster growth rate than 

other energy crops ( (Minowa, et al. 1995), (Miao and Wu 2006)). Moreover, production 

of microalgae does not require the use of crop area, as it can be grown in desertic areas or 

intensively in bioreactors. Microalgae have the ability to produce and store high amount 

of oil that can be used for the production of biodiesel (Li, Xu and Wu 2007) or as single 

cell oils (Chen and Chen 2006). Oil content in microalgae ranges from 11% to 77% 

(Christi 2007) with variations due to strain genetics and culture conditions. Currently, 

biodiesel from algae is not economically competitive with biodiesel produced from 

conventional sources.  The economic competitiveness of algal-based biodiesel production 

can be improved by increasing the rate at which algae grow and accumulate oil.  One 

approach to improving biodiesel productivity is to implement an optimal model-based 

control strategy. To successfully implement a model-based control strategy, one must 

obtain a reliable model of a microalgal bioreactor system. However, microalgal systems 

are highly non-linear and many of the parameters of bioreactor models cannot be directly 

obtained from measurement (Audoly, et al. 2001). Therefore, estimating these parameters 

requires model reparameterization and well designed experiments. 

 

In order to describe bioreactor systems more than 50 different models have been 

proposed in literature (Bastin and Dochain 1990). However, most control applications 

have focused on the use of Monod and Haldane models (Wang, Krstic and Bastin 1999). 

For algal systems, Monod-like models are considered unsuitable because the assumption 

of growth rate being directly related to extracellular nutrient concentration is not valid for 

nitrogen and other nutrients (Tett and Droop 1988). Instead, the growth rate depends on 

the intracellular concentration, or quota (q) (Mailleret, Gouze´ and Bernard 2005). Cell-
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quota models, such as Droop (1973) and Caperon-Meyer (1972), have been used to 

describe the dynamics of algal growth. The Caperon-Meyer model improves on the 

Droop model by introducing the concept of minimum extracellular nutrient concentration 

for nutrient uptake (Caperon and Meyer 1972). In the model proposed by Surisetty et. al. 

(Submitted to Chemical Engineering Science), the Caperon-Meyer growth rate kinetic 

equation was modified in order to account for the simultaneous effect of carbon and 

nitrogen concentration. Furthermore, the Caperon-Meyer uptake rate expression was 

modified to reduce the computational requirements while preserving the prediction 

capability of the kinetic equation. In this work, parameters in the model proposed by 

Surisetty et. al. (Submitted to Chemical Engineering Science) are estimated using 

experimental data. 

 

In order for a given mathematical model to have any practical applications, the model 

parameters need to be estimated. Parameter inestimability is a significant obstacle to 

parameter identification in large non-linear systems and has been well investigated in 

several fields of research, such as copolymerization with multi-site catalysts (Yao, et al. 

2003), ecological systems (Marsili-Libelli, Guerrizio and Checchi 2003), and membrane 

fuel cells (Corrêa, et al. 2005). Furthermore, in order to gain the maximum amount of 

information from an experiment, one can implement an optimal experimental design. 

This results in the number of estimable parameters being maximized. Methods for the 

optimal experimental design for biological systems have been proposed by Wu (2008) 

and Balsa-Canto (2008). 

 

In a previous work, a first principles-based microalgal bioreactor ODE model, containing 

6 states and 12 unknown parameters was been proposed (Surisetty, et al. Submitted to 

Chemical Engineering Science). A sensitivity-based approach was used in order to 

identify parameters which have a minimal effect on model behaviour. No single 

parameter was seen to have negligible effect on output prediction; however, directions in 

the parameter space along which there is minimal change in the output predictions were 

observed. Furthermore, a non-linear transformation based model reparameterization 

algorithm was proposed in order to reduce the dimension of the parameter space to 

facilitate the use of a first principles ODE model for online control and optimization 

(Surisetty, et al. Submitted to Chemical Engineering Science). Implementing the non-

linear algorithm, via simulations, showed that it produced good output prediction 
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capability at a drastically lower computational cost. This was achieved by reducing the 

number of estimated parameters from twelve original parameters to the three pseudo-

parameters. Finally, a D-optimal experimental input profile for the identification of the 

three pseudo-parameters was proposed.  

 

In this work, the experiment design proposed by Surisetty et. al. (Submitted to Chemical 

Engineering Science) was implemented and used to estimate parameters in the microalgal 

bioreactor model. Experimental data on total biomass concentration, external nitrogen 

source concentration, external carbon source concentration, and total algal oil stored in 

cells was collected and analyzed. In order to achieve a good degree of output prediction, 

the algorithm had to be modified by introducing an iterative step. The iterative non-linear 

algorithm was able to greatly decrease computational time while achieving a good degree 

of matching between model predictions and experimental data. 
 

 

4.2 Microalgal bioreactor model 

A first principles ODE model of an algal bioreactor system with an intracellular product 

is considered in this work (Surisetty, et al. Submitted to Chemical Engineering Science). 

This model contains three system inputs, 12 unknown parameters and the following 6 

system states: 

7) x: Functionally active biomass concentration [g/mL] 

8) S1:  Nitrogen source concentration in culture media [g/mL] 

9) S2: Carbon source concentration in culture media [g/mL] 

10) Q: Total nitrogen cellular quota [g/mL] 

 : Total algal oil stored in cells [g/mL]ܫ (11

12) V: Total reaction volume [mL] 

 

The dynamics of the bioreactor are described by a set of 6 differential equations shown in 

Table 4.1. The measured quantities are external carbon source concentration (S2), 

external nitrogen source concentration (S1), measurable biomass concentration (X), and 

mass fraction of oil stored in cells ቀூ


ቁ. The measurable biomass concentration (X) is 

defined as follows: 
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ܺ ൌ ݔ  ܫ  ܳ (4.1) 

 

The three system inputs are flowrates of the nitrogen and carbon rich feeds (denoted by 

ଵ݂
 and  ଶ݂

 respectively) and the outflow from the reactor, ݂. For the fed-batch reactor 

system considered in this work, ݂ profile was not used in the experimental design; rather, 

it is used to account for the change in reactor volume due to sampling. The governing 

system rates are biomass growth rate (ߤ), nitrogen uptake rate (ߩ), and oil production rate 

ݍ are given in Equation 4.2, where ߨ and ߩ ,ߤ The formulations of .(ߨ) ൌ ܳ/ܺ. The 

definitions of the parameters in Equation 4.2 are given in Table 4.2. The initial guesses 

for parameter values used in the output prediction algorithms are also given in Table 4.2. 

A detailed derivation of this model is available in Surisetty et. al. (Submitted to Chemical 

Engineering Science). 
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Table 4.1. Continuous bioreactor model 
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Table 4.2. Definitions and initial guesses for parameters 

Number Parameter Name Initial 
guess 

Lower 
Limit 

Upper 
Limit Unit 

P1 µm Maximum growth rate 0.15 0.005 (2) 0.46 (2) 1 / h 

P2 qm 
Minimum cell quota for supporting 

growth 0.027 0 (3) 0.064 (2) g / g 

P3 Kq 
Half saturation constant of nitrogen 

quota for growth 0.5 0.001 (3) 0.6 (3) g / g 

P4 ρm Maximum uptake rate 0.08 0.00045 (2) 0.204 (2) 1 / h 

P5 Ks 
Half saturation constant of carbon 

source for growth 0.014 0.001 (3) 0.12 (2) g / mL 

P6 so Threshold substrate concentration 0 0 (1) 0.0007 (2) g / mL 
P7 1/Yxs Inverse of Biomass to substrate yield 1.8 1.5 (1) 16.7 (2) g / g 
P8 km Maintenance constant 0 0 (2) 0.02 (3) g / g h 
P9 1/Yps Inverse of product to substrate yield 2.5 1.9 (1) 10 (3) g / g 

P10 πm Maximum oil production rate 0.05 0.001 (3) 0.1 (3) 1 / h 

P11 Kπ 
Half saturation constant for oil 

production 0.01 0.001 (3) 0.1 (3) g / mL 

P12 1/Yxq 
Inverse of biomass to substrate quota 

yield 0.03 0.0138 (2) 0.282 (2) g / g 

 (1). Case 1. Picked based on stoichiometric relationships. 

 (2). Case 2. Limits are chosen based in 50% of the literature minimum or 200% of the literature maximum. 

 (3). Case 3. Initially picked based on Case 1; however, bounds were relaxed as they were hit during optimization. 
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In order to implement the parameter estimation algorithm, it is necessary to define the 

range of feasible parameter values. The feasible ranges for parameter estimates can be 

restricted by examining the physical interpretation of the parameters. The lower and 

upper limits used for estimation are given in Table 4.2. These limits were chosen using 

three different criteria (labeled Case 1, 2, and 3). In all cases, parameters must be non-

negative; parameters representing molar or mass fraction (qm and Kq) are bounded from 0 

to 1. In Case 1, the yields (Yxs and Yps) are constrained by stoichiometric relationships. 

Such physical restrictions introduce hard limits in the upper and lower bounds of the 

parameter values. To further reduce the feasible parameter set, soft constraints were 

introduced (Case 2). For example, parameters representing maximum reaction rates or 

saturation constants do not have a theoretical maximum value, but usually their feasible 

maximum values are known literature (Surisetty, et al. Submitted to Chemical 

Engineering Science). In Case 2, the bounds were conservatively picked to be half the 

minimum (lower bound) and twice the maximum (upper bound) values reported in 

literature. To ensure that the parameter estimates remained in the interior of the feasible 

region, the limits obtained from Case 2 were loosened if a soft constraint was violated. In 

such a situation, the new parameter limits were relaxed sufficiently so that none of the 

soft limits were violated (the new relaxed limits are labelled Case 3 in Table 4.2). 

 

The stoichiometric relationship used to constraint the parameters in Case 1 were obtained 

as follows. For 1/Yps, it is assumed that all the oil in the cells is tri-palmitoyl-glycerol 

(C51H98O6), which represents a high percentage of the oil in algal cells. Assuming a 100% 

conversion of the carbon present in glucose (C6H12O6 ) to oil we have a maximum mass 

yield equal to 0.526, inverse of which is 1.9. In the case of 1/ Yxs, consider that the 

utilization of glucose, as the energy source of the cell, requires the conversion of glucose 

to pyruvate and further processing to acetyl-CoA. The free-energy released in these 

transformations is stored as ATP and NADH, which will further be used as the energy 

carriers for all the metabolic processes in the cell. In the conversion from glucose to 

acetyl-CoA, two molecules of CO2 are produced per molecule of glucose being 

converted, therefore the maximum carbon yield in molar basis is 0.667. Here a minimum 

carbon content in the cells equals to 0.4 (w/w, dry basis) is considered, as typical carbon 

content in microalgae ranges from 0.47 to 0.61 (w/w, dry basis) (El-Sarraf and El-



57 
 

Shaarawy 1994). Therefore, the maximum glucose to biomass yield in mass basis is 

0.667. 
 

 

4.3 Materials and methods 
4.3.1 Organism and medium 

The fresh-water green microalgae Auxenochlorella protothecoides, UTEX 25 (UTEX 

Culture Collection of Algae, Texas), were cultivated axenically under heterotrophic 

conditions. A. protothecoides cultures were maintained on agar plates with agar medium 

ATCC 5. Cells from agar plates were suspended in 200 mL seed medium, and incubated 

at 25°C and 100 rpm. After 96 h of incubation, 10 mL of algal suspension was transfer to 

inoculation medium, and incubation procedure repeated.  

 

The seed and inoculation media contained: KH2PO4 (2.8 g/L), K2HPO4 (1.2 g/L), 

MgSO4⋅7H2O (1.2 g/L), FeSO4⋅7H2O (48 mg/L), H3BO3 (11.6 mg/L), CaCl2⋅2H2O (10 

mg/L), MnCl2⋅4H2O (7.2 mg/L), ZnSO4⋅7H2O (0.88 mg/L), CuSO4⋅5H2O (0.32 mg/L), 

MoO3 (72 μg/L), thiamine hydrochloride (40 μg/L), glucose (40 g/L, Sigma Aldrich), and 

glycine (0.5 g/L). All reagents were of analytical grade obtained from Fisher Scientific 

Co, except where noted. Solutions were prepared using deionized water (Milli-Q, 

Millipore). 
 

4.3.2 Bioreactor equipment and conditions 

Experiments were conducted in a 3L stirred-tank bioreactor (Sartorious Biostat A plus, 

working volume 2L), using 10% inoculum. Start-up medium had the same composition 

as the inoculation medium. For the fed-batch operation, two feeds were added at 

predefined times as calculated from the D-optimal algorithm. Feed 1, ଵ݂
, contained only 

glycine, which was the sole nitrogen source, at a concentration of 10 g/L. Feed 2, ଶ݂
, 

contained glucose and the same minerals present in the start-up medium, except KH2PO4 

and K2HPO4, at a concentration equal to five times that of the start-up medium.  

 

Bioreactor temperature was kept at 25°C using an electrical heating blanket; pH was 

controlled at 6.2 by supplementing KH2PO4 (acid) and K2HPO4 (base) as required; and 
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agitation rate was kept constant at 300 rpm, while varying aeration rate to control 

dissolved oxygen at around 30% of the saturation value.  

 

Feed streams were pumped into the bioreactor using a set of peristaltic pumps (Sartorious 

BBI and 101 U/R Watson Marlow). Feed flow-rates were varied every hour according to 

an optimal input signal as described by Surisetty et. al. (Submitted to Chemical 

Engineering Science). Flowrate set points were sent from MATLAB® to the bioreactor 

control unit (MFCS/win, Sartorius BBI) using an in-House OPC client (OLE for Process 

Control). Figure 4.1 shows the implemented input profiles. 
 

 
(a) (b) 

Figure 4.1. Input profiles. (a) Flow rate of nitrogen rich feed (b) Flow rate of 
carbon rich feed 

 

An automatic sampler system was set-up in order to withdraw 5.5mL of culture broth 

every four hours, and store it in a fridge at 4°C for further analysis. A process schematic 

of the experimental setup is given in Figure 4.2. 
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Figure 4.2. Process schematic of the experimental setup.  
 

 

4.3.3 Analytical methods 

Biomass concentration was determined as total suspended solids (TSS) by centrifuging 

1.4 mL of cell suspension at 10000 rpm for 10 minutes. Pellets were washed twice with a 

saline phosphate buffer solution (pH 6.2) and recentrifuged. Final precipitate was vacuum 

dried at 50°C and 0.1 bar until constant weight. These measurements were checked 

against vacuum filtration of 10 mL of the culture broth with a 0.22 μm filter paper 

(Whatman #5). The average difference among duplicates in dry biomass measurements 

was below 2.4%. 

 

The clear supernatant from the centrifugation was filtered using a 0.22 μm syringe filter 

in order to remove any residual cells. Glucose concentration in this filtered supernatant 

was measured by high performance liquid chromatography (Agilent 1200 Series HPLC), 

with a SupelcoGel Pb carbohydrate column at 70°C (Internal diameter 7.8mm, length 

30cm) and a guard column. Sample injection volume was 10 μL; eluent was deionized, 

sterile water (Milli-Q, Millipore); elution flow-rate was set at 0.5 mL/min, and a 

refractive index detector (RID) at 35°C was used. Glucose solution standards with 

concentration ranging from 0.1 g/L to 100 g/L were prepared and analyzed by HPLC, 

based on which a calibration curve was defined. The average error in HPLC 

measurements was 0.5%. 
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Total nitrogen in the filtered supernatant was determined by pyro-chemiluminescence 

using an Antek 9000NS nitrogen analyzer. Sample injection volume was 20μL; furnace 

was set up at 1050°C; gas flowrates were helium 140 mL/min, and oxygen 450 mL/min. 

Glycine was used as standard for calibration. The relative standard deviation of the 

measurements was 2%.  

 

Oil content in the cells was determined by flurospectrometry of cells stained with Nile 

Red (Chen, et al. 2009). In this method, fluorescence intensity is linearly correlated to the 

total neutral lipid content of the cells. A 10μL aliquot of a 10μg/L Nile Red solution in 

ethanol was added to the individual wells of a 96-microplate containing 10μL samples of 

10 g/L algal cells. Volume in each well was completed to 200 μL by adding a 30% (v/v) 

ethanol solution in water. Samples were incubated at 40°C for 10 min, and fluorescence 

emissions were recorded with a multiplate reader spectrophotometer (Fluoroskan 

Ascent ). Excitation and emission wavelength were selected at 536 nm and 604 nm, 

respectively. 
 

 

4.4 Parameter estimation 
4.4.1 Model reparameterization  

The non-linear algorithm for model reparameterization for the purpose of output 

prediction is based on a transformation approach proposed by Ben-Zvi (2008) for 

reparameterizing unidentifiable or inestimable systems. In the non-linear algorithm, the 

parameter space is partitioned into estimable and inestimable spaces using a non-linear 

transformation, which utilizes differential geometry and a priori knowledge of the 

process quantities having a significant effect on model behavior. In the work done by 

Surisetty et. al. (Submitted to Chemical Engineering Science), it was shown that 

choosing the set of pseudo-parameters (denoted by ߶ାሺܲሻ) as non-linear functions of the 

three system rate functions (ߩ ,ߤ and ߨ) provides for accurate model predictions at a 

reduced computational cost.  

 

Under the parameter estimation framework proposed by Surisetty et. al. (Submitted to 

Chemical Engineering Science),  ߶ାሺܲሻ represents the estimable part of the parameter 

space. After choosing ߶ାሺܲሻ, a set of coordinates ߶ିሺܲሻ must be computed such that 
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they form a basis for the inestimable part of the parameter space. Calculating ߶ିሺܲሻ 

quickly increases in complexity with more parameters, as it requires solving a set of 

linear partial differential equations of size ݀ כ ݀ଵ, where d and d1 are the total number of 

system parameters and pseudo-outputs respectively. In the case where the method of 

characteristics (John 1971) is used to solve the set of linear partial differential equations, 

a set of non-linear ODEs need to be solved analytically, which could not be obtained 

using MAPLE™ 11.0. Therefore, a second-order Taylor series approximation, about 

certain parameter values (point of approximation), of ߶ାሺܲሻ is used to calculate ߶ିሺܲሻ. 

The end result is a non-linear transformation, M, which transforms the actual parameter 

space, P, to a pseudo-parameter space, ߬, is ܲ ൌ  ሺ߬ሻ. A detailed description of thisܯ

approach is available in Surisetty et. al. (Submitted to Chemical Engineering Science). 

Note that the values of ߬ used in this approach had to be constrained so that the resulting 

parameters ܲ ൌ  .ሺ߬ሻ were within the bounds given in Table 4.4ܯ

 

In order to increase the rate at which the algorithm converges, a modification was 

introduced. Under this modification, the second order Taylor series approximation for 

߶ାሺܲሻ was recomputed as improved parameter estimates became available. Figure 4.3 

contains a flowchart describing the procedure of the iterative non-linear algorithm. The 

optimization problem in each iteration step is formulated as follows: 

 

ሾ߬ଵ … ߬ଷሿ ൌ argmin
ఛభ…ఛయ

ሺݕ௧ െ ௧ሻଶݕ

௧

௧ୀଵ

 (4.3) 

 

where  ݕ is the predicted output based on  the pseudo-parameters ߬ଵ ൌ ߶ଵ
ାሺܲሻ, ߬ଶ ൌ

߶ଶ
ାሺܲሻ and ߬ଷ ൌ ߶ଷ

ାሺܲሻ, ݕ௧ is the experimental output and tf is the final time. The 

iteration loop is stopped when the difference between the current iteration Weighted Sum 

of Squared Error (WSSE), and the previous iteration WSSE is less than a pre-specified 

threshold (a threshold value of 0.05 was used in this work).  
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Figure 4.3. A flowchart of the iterative non-linear algorithm. 

 

In order to equivalently weigh the error in different outputs, the diagonal entries of the 

weighing matrix, W, were chosen to be proportional to the inverse of the average value of 

the output in the WSSE calculation.  

 

ܹ ൌ  ൦

55.71 0 0 0
0 9037.28 0 0
0 0 20.01 0
0 0 0 2.27

൪ (4.4) 

 

The results of output prediction from the iterative non-linear algorithm are shown in 

Figure 4.4 and Table 4.3. As shown in Figure 4.4, the predictions obtained by using this 

algorithm are able to capture the trends exhibited by the experimental bioreactor system. 

The computational time of the iterative non-linear algorithm was 1 hour and 29 minutes 

on a system with a AMD Athlon(tm) 64 FX-51 Processor with 2.2 GHz with 2 GB RAM.  

 

In order to validate the proposed reparameterization approach, parameter estimates for 

the full twelve parameter model were obtained and compared to the model predications 

and parameter estimates using the iterative non-linear reparameterization algorithm. 

Using the parameter values given in Table 4.2 as the initial guess, for estimating all 

twelve parameters, it was not possible to obtain accurate model predictions in less than 
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60 hours of computation time. While the twelve parameter model could not be used to 

obtain a global optimum, it is possible that this model could be used to improve, locally, 

on the estimates obtained from the iterative non-linear algorithm. To test whether this is 

the case, the parameter estimates from the iterative non-linear algorithm were used as an 

initial guess for the identification of the full model. Optimizing over all twelve 

parameters locally improved the WSSE from 5.1990 to 5.1840, a difference of 0.3%. The 

WSSE and the computational time of the two scenarios are given in Table 4.3. Note that 

the improvement in WSSE was less that the stopping threshold using in the iterative 

algorithm. In addition optimizing over all twelve parameters required an additional 

computational time of 49 hours and 12 minutes as compared to the 1 hour and 29 minutes 

of computational time for the iterative non-linear algorithm. Therefore, the slight 

improvement in WSSE obtained by estimating all twelve parameters is unlikely to be 

offset by the additional computational burden. 
 

 

Table 4.3. Weighted sum of squared error, WSSE, of proposed algorithms 

Scenario Description WSSE Computational time 

1 Estimating all 12 parameters 5.1840 49 hours and 12 minutes 

2 Iterative non-linear algorithm 5.1990 1 hour and 29 minutes 

 

 

 
(a) (b) 
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(c) (d) 

Figure 4.4. Comparison of experimental and predicted outputs (iterative non-linear 
algorithm). (a) y1 = X (b) y2 = S1 (c) y3 = S2 (d) y4 =  

ூ


 

 
 

The parameter estimates were achieved by varying only the key parameters ߬ଵ…߬ଷ and 

keeping ߬ସ…߬ଵଶ constant. In order to investigate whether any of ߬ସ…߬ଵଶ do have a 

strong effect on model predictions, each parameter was varied, in turn, over the range 

ሾ0 2߬ሿ for i א  ሼ1,2, … ,12ሽ. The minimum WSSE for each ߬ is given in Table 4.4 

along with the percent change between the estimated and the optimal value of ߬ (denoted 

by Δ߬ in Table 4.4). Note that, by definition, Δ߬ଵ ൌ Δ߬ଶ ൌ Δ߬ଷ ൌ 0. 

 

 

 

 

It can be seen from Table 4.4 that the minimum WSSE achievable by varying values of 

߬ସ…߬ଵଶ is very close to the WSSE of the iterative non-linear algorithm (Table 4.3). As a 

result, the improvement in the WSSE may not be significant enough to offset the increase 

Table 4.4. Effect of each ߬ on WSSE 

߬ Δ߬ (%) Minimum 
WSSE 

1 0 5.199 
2 0 5.199 
3 0 5.199 
4 0.2 5.199 
5 0.1 5.199 
6 0 5.199 
7 -17.1 5.1894 
8 1.4 5.195 
9 1.9 5.1971 

10 0.2 5.199 
11 -5.2 5.1861 
12 0.1 5.199 
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in computational cost resulting from estimating additional pseudo-parameters. These 

results reinforces the conclusion, obtained by attempting to estimate all 12 model 

parameters, that attempting to estimate additional parameters will not significantly 

improve model predictions.  
 

 

4.4.2 Model parameters  

In the iterative non-linear algorithm, the pseudo-parameters are chosen as non-linear 

functions of the three system rate functions. As a result, using this algorithm, one can 

only be sure of the estimated rate functions and not the values of the specific model 

parameters. The rate functions depend on both system states and parameters, as a result, 

the values of the rate functions given in Table 4.5 are based on estimated parameter 

values and the nominal state conditions given in Table 4.5. These nominal state values 

are evaluated using the average observed output values. The rate functions at different 

state values can be calculated by using Equation 4.2. 

 

Table 4.5. Estimated values of the kinetic rate functions at the nominal state values 

Rate Description Value Unit 

 Biomass growth rate 0.0065 1 / h ߤ

 Nitrogen uptake rate 0.0040 1 / h ߩ

 Oil production rate 0.0088 1 / h ߨ
     

State Description Nominal value Unit 

 ݔ Functionally active biomass concentration 0.00457 g/mL 

ଵܵ  Nitrogen source concentration in culture media 1.106e-4 g/mL 

ܵଶ  Carbon source concentration in culture media 0.050 g/mL 

ܳ  Total nitrogen cellular quota 0.00546 g/mL 

 ܫ Total algal oil stored in cells 0.00792 g/mL 

ܸ  Total reaction volume 1790 mL 

 

 

In Table 4.6, the estimated parameter values are given. In order to assess the uncertainty 

associated with these estimates, a perturbation-based test was used. Note that 

approximate 95% confidence intervals for the system parameters based on a Gaussian 

distribution (e.g. a t-test to determine 95% confidence intervals) could not be used 
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because of the non-linearity of the model equations. For example, the 95% confidence 

interval for parameter 1 was (-1.897, 2.538) which is not correct because parameter 1 

must be positive. 

 

A simple approach to assess the degree of uncertainty in each parameter is to obtain a 

change in each parameter that is necessary to cause a 10% deviation in the WSSE. The 

range for each parameter value, using this approach, is given in Table 4.6. Also given in 

Table 4.6 is the percent change from estimated parameter value at the high and low 

bounds of the uncertainty region for each parameter. Note that, a value of zero was used 

constraint the lower bound of the parameter uncertainty region. Also, if doubling of a 

parameter value did not result in a 10% change in the WSSE, the upper bound for 

uncertainty region was not estimated. In this case, the parameter was deemed inestimable 

using the available data set.  

 

 Table 4.6. Estimated actual parameter values 

Number Parameter Estimated value 

Range 

Lower Upper 

Value % change Value % change 

P1 µm 0.3204 0.2675 -16.5 0.405 26.4 
P2 qm    1.672e-4 0 -100 - - 
P3 Kq    0.2450 0.1915 -23.4 0.307 22.8 
P4 ρm    0.01219 0.011 -9.6 0.0136 11.4 
P5 Ks    0.0010 0 -100 - - 
P6 so    7.402e-5 6.5365e-5 -11.7 8.179e-5 10.5 
P7 1/Yxs    1.5002 1.1447 -23.7 1.9278 28.5 
P8 km    0.01385 0.0112 -19.5 0.017 22.5 
P9 1/Yps    2.2802 1.9656 -13.8 2.6702 17.1 

P10 πm    0.01640 0.0146 -11.1 0.0193 17.4 
P11 Kπ    0.001792 0 -100 - - 
P12 1/Yxq    0.07370 0.0688 -6.6 0.0772 4.8 

 

 

4.5 Improvements in optimization 

To quantify the possible benefits of modeling the microalgal bioreactor, the oil yield in 

the following two scenarios was compared. In Scenario 1, the parameter values that are 

given in Table 4.2 (initial guess) were used to compute the input profile which maximizes 

volumetric oil productivity. In Scenario 2, estimated parameters in Table 4.6 were used to 

compute the optimal input profile. The optimized input profiles from both scenarios were 
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simulated on the same system based on the estimated parameter values listed in Table 

4.6. Figure 4.5 shows that the simulated oil concentration for Scenario 2 is 51% higher 

than that of first scenario after 150 hours. Therefore, if one assumes that the estimated 

parameters in Table 4.6 explain the dynamics of the microalgal bioreactor system, then 

effort taken to identify these parameters would yield a 51% increase in volumetric 

productivity. 
 

  
Figure 4.5. Simulated oil profiles based on optimal inputs calculated using estimated 

and initial (guess) parameter values. 
 

 

4.6 Conclusions 

Biodiesel is an alternative to traditional fossil fuels. Production of biodiesel from crops is 

greatly limited by acreage availability. Microalgae can be grown, in high concentrations, 

intensively in bioreactors. As a reuslt, microalgae can be grown without displacing crop 

land. Furthermore, when compared to other feedstock for biodiesel, microalgae have 

higher biomass production and faster growth rate (Minowa, et al. 1995). 
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Previously, a microalgal bioreactor model was proposed (Surisetty, et al. Submitted to 

Chemical Engineering Science). This first principles-based ODE model contains 6 states 

and 12 unknown parameters. Using a sensitivity-based approach, it was determined that 

there are directions in the parameter space along which minimal change in the output 

predictions were observed. Using this insight, a non-linear transformation based model 

reparameterization algorithm was proposed in order to reduce the number of estimated 

variables from twelve parameters to three pseudo-parameters. This algorithm was shown 

to significantly decreasing computational time while not degrading the prediction 

capability of the model. A feed profile which is D-optimal with respect to the three 

pseudo-parameters from the non-linear algorithm was proposed. 

 

In this work, the D-optimal feed profile computed by Surisetty et. al. (Submitted to 

Chemical Engineering Science) was implemented in a lab-scale microalgal bioreactor 

system. Experimental data for external carbon source concentration, external nitrogen 

source concentration, measurable biomass concentration, and mass fraction of oil stored 

in cells were collected every four hours and analyzed.  

 

In order to achieve satisfactory model predictions, the algorithm was modified such that 

at each iteration the point of approximation is updated as improved parameter estimates 

become available. This iterative non-linear algorithm was able to achieve an adequate 

degree of output prediction; a set of estimated parameter values is reported.  

 

In order to validate the proposed reparameterization approach, the WSSE of the iterative 

non-linear algorithms was compared to the WSSE obtained by estimating all twelve 

parameters. Accurate model predictions could not obtained when the parameter values 

given in Table 4.2 were used as an initial guess for estimating all twelve parameters. 

Furthermore, even when the parameter estimates obtained using the iterative algorithm 

were used as an initial guess for estimating all twelve parameters, the improvement in 

WSSE was negligible. Furthermore, a perturbation-based test was used to show that 

reducing the number of estimated variable from twelve to three did not significantly 

degrade model predictions. The possible benefits of obtained an accurate model for algal 

growth are quantified in terms of increased volumetric productivity of oil under optimal 

control. 
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5 
Conclusions and Future work 

5.1 Conclusions 

Biodiesel is a viable alternative to traditional fossil fuels due to characteristics such as 

non-toxicity and biodegradability. Microalgae have great potential for the production of 

biodiesel as a result of their higher biomass production at a faster growth rate when 

compared to traditional feedstocks such as corn and soybean (Minowa, Yokoyama, et al., 

Oil Production from Algal Cells of Dunaliella tertiolecta by Direct Thermochemical 

Liquefaction 1995). Furthermore, production of biodiesel from microalgae is not limited 

by acreage availability as microalgae are highly efficient biological organisms that can be 

grown intensively in bioreactors. 

 

An ODE microalgal bioreactor model containing six states, three inputs and twelve 

unknown parameters is proposed. The model was developed based in first-principle 

conservation equations comprising of three rate functions: biomass growth rate, uptake 

rate and oil production rate. The model considers biomass, two substrates, intracellular 

nitrogen concentrations, as well as intracellular product. A sensitivity-based test was used 

to check for parameter estimability. The parameters were perturbed pair-wise and the 

resulting output was compared to a nominal output response. The simulations in the 

sensitivity-based test were based on an input profile that was designed based on the D-

optimality criterion. Not all parameters were found to have unique contributions to model 

behaviour, i.e. some parameters are correlated.  

 

An algorithm based on singular value decomposition of the parameter covariance matrix 

is proposed to identify directions on the parameter space along which minimal change in 

model output occurs. A set of eight linear combinations of parameters was recognized. 
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Using this information, the parameter space was partitioned into estimable and 

inestimable linear subspaces, as a result of which the number of quantities required to be 

estimated decreased from twelve to four. Based on initial simulations, it can be seen that 

the linear model reparameterization algorithm greatly decreased the computational 

expense while achieving a good degree of output prediction. 

 

From the work done be Ben-Zvi (2008) where reparameterizing the parameter space 

using a non-linear transformation is proposed, the non-linear algorithm was derived. This 

method utilizes differential geometry and a priori knowledge of the system behaviour to 

develop the transformation. In this work, the three system rate functions were chosen as 

pseudo-outputs. In the non-linear algorithm, the method of characteristics is used to 

determine the inestimable parameter combinations in order to partition the parameter 

space into estimable and inestimable subspaces. Since only the pseudo-outputs need to be 

estimated, the quantities required to be estimated decreased from twelve to three. The 

three pseudo-parameters were found to produce a unique local minimum for the WSSE, 

however, the WSSE was found to have several local minima, implying that a global 

optimization procedure should be used in order to compute a global minimum. Similar to 

the linear algorithm, based on initial simulations, it can be seen that the non-linear model 

reparameterization algorithm, while achieving a good degree of output prediction, also 

greatly decreased the computational expense.  

 

There are significant differences between the non-linear algorithm proposed in this work 

and the one proposed by Ben-Zvi (2008). First, in order to obtain an analytical solution, 

second-order Taylor approximations of the pseudo-outputs were used. Second, the 

transformation from the parameter space to the pseudo-parameter space was non-linear 

and the inverse transformation was obtained numerically. Finally, an explicit equation for 

computing the sensitivity of the output with respect to the pseudo-parameters at specific 

sampling times was realized. 

 

Using simulations, a detailed comparison between the proposed linear and non-linear 

algorithms resulted in the non-linear algorithm having better performance, as it resulted 

in lower WSSE even with a shorter computational time.  
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Using the sensitivity of the system outputs with respect to the three pseudo-parameters, a 

D-optimal input profile was designed. This feed profile was implemented on an actual 

bioreactor system. Experimental data pertaining to the four system outputs were collected 

and analyzed. Implementation of the non-linear model reparameterization algorithm did 

not result in adequate degree of output prediction.  

 

The non-linear model reparameterization algorithm was modified by introducing an 

iteration loop such that for every consequent iteration, the point of approximation is 

updated based on parameter estimates obtained in the previous iteration. This iterative 

non-linear algorithm is able to achieve a good degree of output prediction. When 

compared to the scenario where all twelve parameters were estimated, the iterative non-

linear algorithm has a slightly (0.3%) higher WSSE; however, its computational time is 

97% lower. Hence, the iterative non-linear algorithm can be part of a model-based 

strategies used for the purpose of control and optimization. 
 

 

5.2 Future work 

There is significant potential and scope in the field of modeling and control of a 

microalgal bioreactor. In order to better understand the dynamics of the microalgal 

bioreactor and improve the economic competiveness of producing biodiesel using 

microalgae, the following objectives for future work are suggested: 

 

1. The algorithm proposed led to good output prediction; however, due to 

parameter correlations, the parameter estimated may not be entirely 

accurate. Therefore, there is still work to be done with regards to parameter 

estimation. Obtain additional measurements to improve the accuracy of 

parameter estimates. 

 

2. Optimal experimental design can be used to find out the most suitable media 

formulation for oil productivity.  

 

3. The microalgal bioreactor model should be modified so that it is more able 

to capture the transient dynamics of the reactor over a wide range of state 

values, should be investigated.  
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4. A model-based predictive control algorithm should be designed and 

implemented to take advantage of the model obtained in this work. 
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A 
MATLAB® and MAPLE™ codes for the 

iterative non-linear algorithm 

This appendix contains the MATLAB® and MAPLE™ codes for the iterative non-linear 

model reparameterization algorithm proposed in Chapter 5. 
 

A.1 Main m-file 
%========================================================================== 
% File: RunningThreePrediction.m 
% Description: This is the main file for the iterative non-linear 
%               algorithm. 
  
%========================================================================== 
  
%-------------------------------------------------------------------------- 
%% Start with a clear memory 
%-------------------------------------------------------------------------- 
clear 
close all 
clc 
  
%-------------------------------------------------------------------------- 
%% Initialize the stopping condition 
%-------------------------------------------------------------------------- 
CurrErr = 1000; 
PreErr = 100000; 
save('PreError.mat','PreErr') 
  
%-------------------------------------------------------------------------- 
%% Load initial guess for tao (pseudo-parameters) and K (real parameters) 
%-------------------------------------------------------------------------- 
load Taoold1.mat                        % Contains tao 
load Kinitialguess.mat                  % Contains kold 
  
Kold = Kguess; 
save('Kold.mat','Kold'); 
  
load PatternSearchOptions.mat            
% Contains psoptions3 and psoptions1 - Pattern search options 
  
%-------------------------------------------------------------------------- 
%% Initialize counter and start timer 
%-------------------------------------------------------------------------- 
z = 0; 
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tic 
  
%-------------------------------------------------------------------------- 
%% A while loop to continue iterations until stopping condition is satisfied 
%-------------------------------------------------------------------------- 
while CurrErr >= 0.005 
    z = z+1 
  
%-------------------------------------------------------------------------- 
%% Numerically solving for tao at each iteration 
%-------------------------------------------------------------------------- 
    tao = patternsearch(@gettingTao,tao,[],[],[],[],[],[],[],psoptions3); 
    save('Taoold.mat','tao'); 
  
%--------------------------------------------------------------------------    
%% Solving for pseudo-parameters 
%-------------------------------------------------------------------------- 
    t3 = tao(1:3,1); 
    t3new = 
patternsearch(@PredictionError,t3,[],[],[],[],[],[],[],psoptions1); 
    save('CurrentTao3','t3new'); 
  
%--------------------------------------------------------------------------    
%% Calculating Error and new real parameter values 
%-------------------------------------------------------------------------- 
    Error = PredictionError(t3new); 
    Kold = gettingK(t3new); 
    save('Kold.mat','Kold'); 
  
%--------------------------------------------------------------------------    
%% Calculating stopping condition 
%-------------------------------------------------------------------------- 
    load PreError.mat 
    CurrErr = abs(PreErr - Error); 
    save('PreError.mat','PreErr') 
     
%--------------------------------------------------------------------------    
%% Saving all the results of the iteration 
%-------------------------------------------------------------------------- 
    save('CurrentIteration.mat','tao','Kold','t3new','Error') 
     
end 
toc 
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A.2 Numerically solving for ߬ 
%========================================================================== 
% File: gettingTao.m 
% Description: Numerically sovling for tao. This function is used by the 
%               optimizer to find tao for a set of K. 
  
%========================================================================== 
function Error = gettingTao(tao) 
  
load Kold.mat 
load State1.mat 
%-------------------------------------------------------------------------- 
%% Assigning States 
%-------------------------------------------------------------------------- 
xnorm = State(1,1); 
s1norm = State(2,1); 
s2norm = State(3,1); 
qnorm = State(4,1); 
pnorm = State(5,1); 
Vnorm = State(6,1); 
  
%-------------------------------------------------------------------------- 
%% Assigning real parameters 
%-------------------------------------------------------------------------- 
P1norm = Kold(1,1); 
P2norm = Kold(2,1); 
P3norm = Kold(3,1); 
P4norm = Kold(4,1); 
P5norm = Kold(5,1); 
P6norm = Kold(6,1); 
P7norm = Kold(7,1); 
P8norm = Kold(8,1); 
P9norm = Kold(9,1); 
P10norm = Kold(10,1); 
P11norm = Kold(11,1); 
P12norm = Kold(12,1); 
  
%-------------------------------------------------------------------------- 
%% Assigning Pseudo-parameters 
%-------------------------------------------------------------------------- 
t1 = tao(1,1); 
t2 = tao(2,1); 
t3 = tao(3,1); 
t4 = tao(4,1); 
t5 = tao(5,1); 
t6 = tao(6,1); 
t7 = tao(7,1); 
t8 = tao(8,1); 
t9 = tao(9,1); 
t10 = tao(10,1); 
t11 = tao(11,1); 
t12 = tao(12,1); 
  
%-------------------------------------------------------------------------- 
%% Transformation 
%-------------------------------------------------------------------------- 
Knew = .... The non-linear transformation is too long to be in the thesis. 
% The non-linear transformation is acquired from the MAPLE™ code  
  
%-------------------------------------------------------------------------- 
%% Calculating Error 
%-------------------------------------------------------------------------- 
Error = (Knew-Kold)'*(Knew-Kold); 
return; 
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A.3 Calculating real parameter values from pseudo-parameters 
%========================================================================== 
% File: gettingK.m 
% Description: Calculating real parameter values from the three .... 
%               pseudo-parameters from the non-linear algorithm, t3 
%========================================================================== 
function Knew = gettingK(t3) 
  
load Taoold.mat 
load Kold.mat 
  
t = tao; 
for i = 1:length(t3) 
    t(i,1) = t3(i,1); 
end 
  
Knew = transformation(t); 
  
return; 
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A.4 Calculating prediction error 
%========================================================================== 
% File: PredictionError.m 
% Description: Calculates the prediction error based on the three 
%               pseudo-parameters from the non-linear algorithm, t3. 
  
%========================================================================== 
  
function Err = PredictionError(t3) 
  
%-------------------------------------------------------------------------- 
%% Structuring tao  
%-------------------------------------------------------------------------- 
load Taoold.mat                 
% Load tao that was acquired from numerically solving for tao based on ... 
% real parameter values from previous iteration 
  
t = tao; 
for i = 1:length(t3) 
    t(i,1) = t3(i,1); 
end 
% t(1:3,1) are three pseudo-parameter values that are estimated while ... 
% t(4:12,1) are three pseudo-parameter values that are not estimated 
  
%-------------------------------------------------------------------------- 
%% Calculating real parameter values  
%-------------------------------------------------------------------------- 
Knew = transformation(t,Kold);       
% Calculating real parameter values based in each guess of the three ... 
% pseudo-parameters from the non-linear algorithm 
  
%-------------------------------------------------------------------------- 
%% Constraining tao based on real parameter constraints   
%-------------------------------------------------------------------------- 
load HectorKvalues1.mat   
% Contains upper (H) and lower (L) limits for the real parameters (K) 
  
for i = 1:length(Knew) 
    if Knew(i,1) >= L(i,1) & Knew(i,1) <= H(i,1) 
        A(i,1) = 1; 
    else 
        A(i,1) = -1; 
    end 
end 
  
B = sum(A); 
  
%-------------------------------------------------------------------------- 
%% Calculating prediciton error   
%-------------------------------------------------------------------------- 
if B == 12 
  
    load GlycineFlowRate.mat        % Loading experimental data  
    load glucoseFlowRate.mat        % Loading experimental data  
    load FlowOut.mat                % Loading experimental data  
    load Yavg.mat                   % Loading average output values 
  
  
    X0 = [3.374e-4;4.3e-4;4.149e-2;2.25e-5;4.97e-4;1060]; %Initial state 
conditions 
    [T,X1] = simulateReactor2(f1,f2,f0,X0,Knew); 
    y1 = X1(:,1) + X1(:,4) + X1(:,5); 
    y2 = X1(:,2); 
    y3 = X1(:,3); 
    y4 = X1(:,5)./y1; 
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    Ypred = [y1 y2 y3 y4]; 
    
    Y1 = Ypred(:,1)/Y1avg;         % Weighing be inverse of the average value 
    Y2 = Ypred(:,2)/Y2avg;         % Weighing be inverse of the average value 
    Y3 = Ypred(:,3)/Y3avg;         % Weighing be inverse of the average value 
    Y4 = Ypred(:,4)/Y4avg;         % Weighing be inverse of the average value 
  
    load BiomassOuput.mat           % Loading experimental data  
    load GlycineOutput.mat          % Loading experimental data  
    load GlucoseOutput.mat          % Loading experimental data  
    load OilOuput.mat               % Loading experimental data  
  
    Y1exp(:,2) = Y1exp(:,2)/Y1avg; % Weighing be inverse of the average value 
    Y2exp(:,2) = Y2exp(:,2)/Y2avg; % Weighing be inverse of the average value 
    Y3exp(:,2) = Y3exp(:,2)/Y3avg; % Weighing be inverse of the average value 
    Y4exp(:,2) = Y4exp(:,2)/Y4avg; % Weighing be inverse of the average value 
  
    Y1pred = zeros(length(Y1exp),1); 
    Y2pred = zeros(length(Y2exp),1); 
    Y3pred = zeros(length(Y3exp),1); 
    Y4pred = zeros(length(Y4exp),1); 
  
 % Since samples are not taken every hour, the predicted output needs to... 
 % be samples to match the timing of the experimental data. 
     
    % Biomass 
    a = length(Y1exp); 
    for i = 1:a 
        Tb = Y1exp(i,1); 
        Y1pred(i,1) = Y1(Y1exp(i,1),1); 
    end 
  
    % Glycine 
    a = length(Y2exp); 
    for i = 1:a 
        Tb = Y2exp(i,1); 
        Y2pred(i,1) = Y2(Y2exp(i,1),1); 
    end 
  
    % Glucose 
    a = length(Y3exp); 
    for i = 1:a 
        Tb = Y3exp(i,1); 
        Y3pred(i,1) = Y3(Y3exp(i,1),1); 
    end 
  
    % Oil 
    a = length(Y4exp); 
    for i = 1:a 
        Tb = Y4exp(i,1); 
        Y4pred(i,1) = Y4(Y4exp(i,1),1); 
    end 
  
    WE1 = (Y1pred-Y1exp(:,2))'*(Y1pred-Y1exp(:,2)); 
    WE2 = (Y2pred-Y2exp(:,2))'*(Y2pred-Y2exp(:,2)); 
    WE3 = (Y3pred-Y3exp(:,2))'*(Y3pred-Y3exp(:,2)); 
    WE4 = (Y4pred-Y4exp(:,2))'*(Y4pred-Y4exp(:,2)); 
  
    WError = WE1+WE2+WE3+WE4; 
    Err = WError; 
   
else 
   % if the real parameter constraints are violated, the error is assigned... 
   % a very large value     
    Err = 10000; 
end 
 return; 
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A.5 Non-linear transformation 
%========================================================================== 
% File: transformation.m 
% Description: Converts pseudo-parameters to real parameters 
  
%========================================================================== 
  
function Knew = transformation(tao) 
  
load State1.mat 
load Kold.mat 
  
%-------------------------------------------------------------------------- 
%% Assigning States 
%-------------------------------------------------------------------------- 
xnorm = State(1,1); 
s1norm = State(2,1); 
s2norm = State(3,1); 
qnorm = State(4,1); 
pnorm = State(5,1); 
Vnorm = State(6,1); 
  
  
%-------------------------------------------------------------------------- 
%% Assigning real parameters 
%-------------------------------------------------------------------------- 
P1norm = Kold(1,1); 
P2norm = Kold(2,1); 
P3norm = Kold(3,1); 
P4norm = Kold(4,1); 
P5norm = Kold(5,1); 
P6norm = Kold(6,1); 
P7norm = Kold(7,1); 
P8norm = Kold(8,1); 
P9norm = Kold(9,1); 
P10norm = Kold(10,1); 
P11norm = Kold(11,1); 
P12norm = Kold(12,1); 
  
  
%-------------------------------------------------------------------------- 
%% Assigning Pseudo-parameters 
%-------------------------------------------------------------------------- 
t1 = tao(1,1); 
t2 = tao(2,1); 
t3 = tao(3,1); 
t4 = tao(4,1); 
t5 = tao(5,1); 
t6 = tao(6,1); 
t7 = tao(7,1); 
t8 = tao(8,1); 
t9 = tao(9,1); 
t10 = tao(10,1); 
t11 = tao(11,1); 
t12 = tao(12,1); 
  
%-------------------------------------------------------------------------- 
%% Transformation 
%-------------------------------------------------------------------------- 
Knew = .... The non-linear transformation is too long to be in the thesis. 
% The non-linear transformation is acquired from the MAPLE™ code  
  
return; 
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A.6 Simulating the bioreactor model 
%========================================================================== 
% File: simulateReactor2.m 
% Description: Simulating the bio-reactor model 
% Inputs: f1 = Flowrate of nitrogen rich feed 
%         f2 = flowrate of carbon rich feed 
%         f0 = Outlet flowrate 
%         X0 = Initial state conditions 
%         K  = Model parameter values 
  
% Outputs: T  = Time vector 
%          X1 = State trajectories 
  
%========================================================================== 
  
function [T,X1] = simulateReactor2(f1,f2,f0,X0,K) 
  
% Initialize state values 
x1k(1,1) = X0(1,1); 
x2k(1,1) = X0(2,1); 
x3k(1,1) = X0(3,1); 
x4k(1,1) = X0(4,1); 
x5k(1,1) = X0(5,1); 
x6k(1,1) = X0(6,1); 
t(1,1) = 0; 
  
  
for i=1:length(f1) 
  
x1(i,1) = x1k(length(x1k),1); 
x2(i,1) = x2k(length(x2k),1); 
x3(i,1) = x3k(length(x3k),1); 
x4(i,1) = x4k(length(x4k),1); 
x5(i,1) = x5k(length(x5k),1); 
x6(i,1) = x6k(length(x6k),1); 
T2(i,1) = t(length(t),1); 
   
  
   x1i=x1k(length(x1k),1); 
   x2i=x2k(length(x2k),1); 
   x3i=x3k(length(x3k),1); 
   x4i=x4k(length(x4k),1); 
   x5i=x5k(length(x5k),1); 
   x6i=x6k(length(x6k),1); 
   xi = [x1i;x2i;x3i;x4i;x5i;x6i]; 
    
  [T1,W]=ode45(@(t,W) biomNewModel(t,W,f1(i,1),f2(i,1),f0(i,1),K),i-
1:1:i,xi); 
    
  
   t=[t;T1]; 
   x1k=[x1;W(:,1)]; 
   x2k=[x2;W(:,2)]; 
   x3k=[x3;W(:,3)]; 
   x4k=[x4;W(:,4)]; 
   x5k=[x5;W(:,5)]; 
   x6k=[x6;W(:,6)]; 
    
end 
  
X1 = [x1 x2 x3 x4 x5 x6]; 
T = T2; 
  
return; 
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A.7 Bioreactor model 
%========================================================================== 
% File: biomNewModel.m 
% Description: Bioreactor model 
% Inputs: f1 = Flowrate of nitrogen rich feed 
%         f2 = Flowrate of carbon rich feed 
%         f0 = Outlet flowrate 
%         W = State trajectories 
%         t  = Time vector 
  
% Outputs: R  = State trajectories      
%========================================================================== 
function R = biomNewModel(t,W,f1,f2,f0,K) 
  
% States 
x = W(1,1); 
s1 = W(2,1); 
s2 = W(3,1); 
q = W(4,1); 
p = W(5,1); 
V = W(6,1); 
  
% Inputs 
fi1 = f1; 
fi2 = f2; 
fo = f0; 
  
% Feed concentrations 
s1i = 0.01; 
s2i = 0.2; 
  
R = zeros(6,1); 
  
% Parameter values 
P1 = K(1,1); 
P2 = K(2,1); 
P3 = K(3,1); 
P4 = K(4,1); 
P5 = K(5,1); 
P6 = K(6,1); 
P7 = K(7,1); 
P8 = K(8,1); 
P9 = K(9,1); 
P10 = K(10,1); 
P11 = K(11,1); 
P12 = K(12,1); 
  
e = 0.001; 
  
% Rates functions 
qr = q/(x+q+p); 
pr = p/(x+q+p); 
  
if s2 == 0 
    mu = 0; 
else 
    mu = max(0,P1 * (qr-P2)/(P3+qr) * s2/(P5+s2)); 
end 
  
if s1>P6 
rho = P4 * (1-(P6/s1))^(1+e); 
else 
    rho = 0; 
end 
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pik = P10 * s2/(P11+s2) * (1-pr); 
  
  
  
% Steady state equations 
R(1,1) = (mu*x)-(x*fo/V)-(x*(fi1+fi2-fo)/V); 
R(2,1) = -rho*x+s1i*fi1/V-s1*fo/V-s1*(fi1+fi2-fo)/V; 
R(3,1) = -P7*mu*x+s2i*fi2/V-s2*fo/V-P8*x-P9*pik*x-s2*(fi1+fi2-fo)/V; 
R(4,1) = rho*x-P12*mu*x-q*fo/V-q*(fi1+fi2-fo)/V; 
R(5,1) = pik*x-p*fo/V-p*(fi1+fi2-fo)/V; 
R(6,1) = fi1+fi2-fo; 
  
return; 
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A.8 MAPLE™ code for getting the non-linear transformation 
> restart: 
> with(linalg): 
>  
> with(Matlab): 
> with(inttrans): 
>  
> mu:=P1*(q-P2)*s2/((P3+q-P2)*(1+s2)): 
> rho:=P4*s1*(1-P6/s1)/(P5+s1-P6): 
> pi:=P10*s2/(P11+s2): 
>  
> P_1_plus:=mu: 
> P_2_plus:=rho: 
> P_3_plus:=pi: 
> params := [P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12]: 
>  
> Para_set := {P1=P1norm, 
P2=P2norm,P3=P3norm,P4=P4norm,P5=P5norm,P6=P6norm,P7=P7norm,P8=P8norm,P9=P9norm,P1
0=P10norm,P11=P11norm,P12=P12norm}: 
>  
> Para_nom := 
[P1norm,P2norm,P3norm,P4norm,P5norm,P6norm,P7norm,P8norm,P9norm,P10norm,P11norm,P1
2norm]: 
> P_sub := params-Para_nom: 
>  
> State_set:= {x=xnorm,s1=s1norm,s2=s2norm,q=qnorm,p=pnorm,V=Vnorm}: 
>  
> P_1:= [P_1_plus, P_2_plus,P_3_plus]: 
> P:=subs(State_set, evalm(P_1)): 
> d_phi :=jacobian(P,params): 
>  
> d_phi_1_1k:=d_phi[1,1]: 
> f_1_1k:=subs(Para_set, evalm(d_phi_1_1k)): 
> dfdp_1_1k:=grad(d_phi_1_1k,params): 
> dfdp_1_1k:=subs(Para_set,evalm(dfdp_1_1k)): 
> sim_dfdp_1_1k:=evalm(evalm(dfdp_1_1k).P_sub)+f_1_1k: 
> B_1_1k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_1k, P1, 
1)),evalm(coeff(sim_dfdp_1_1k, P2, 1)),evalm(coeff(sim_dfdp_1_1k, P3, 
1)),evalm(coeff(sim_dfdp_1_1k, P4, 1)),evalm(coeff(sim_dfdp_1_1k, P5, 
1)),evalm(coeff(sim_dfdp_1_1k, P6, 1)),evalm(coeff(sim_dfdp_1_1k, P7, 
1)),evalm(coeff(sim_dfdp_1_1k, P8, 1)),evalm(coeff(sim_dfdp_1_1k, P9, 
1)),evalm(coeff(sim_dfdp_1_1k, P10, 1)),evalm(coeff(sim_dfdp_1_1k, P11, 
1)),evalm(coeff(sim_dfdp_1_1k, P12, 1))]): 
> tem:= evalm(B_1_1k.params): 
> A_1_1k:=matrix(1,1,[evalm(sim_dfdp_1_1k-tem)]): 
>  
> d_phi_1_2k:=d_phi[1,2]: 
> f_1_2k:=subs(Para_set, evalm(d_phi_1_2k)): 
> dfdp_1_2k:=grad(d_phi_1_2k,params): 
> dfdp_1_2k:=subs(Para_set,evalm(dfdp_1_2k)): 
> sim_dfdp_1_2k:=evalm(evalm(dfdp_1_2k).P_sub)+f_1_2k: 
> B_1_2k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_2k, P1, 
1)),evalm(coeff(sim_dfdp_1_2k, P2, 1)),evalm(coeff(sim_dfdp_1_2k, P3, 
1)),evalm(coeff(sim_dfdp_1_2k, P4, 1)),evalm(coeff(sim_dfdp_1_2k, P5, 
1)),evalm(coeff(sim_dfdp_1_2k, P6, 1)),evalm(coeff(sim_dfdp_1_2k, P7, 
1)),evalm(coeff(sim_dfdp_1_2k, P8, 1)),evalm(coeff(sim_dfdp_1_2k, P9, 
1)),evalm(coeff(sim_dfdp_1_2k, P10, 1)),evalm(coeff(sim_dfdp_1_2k, P11, 
1)),evalm(coeff(sim_dfdp_1_2k, P12, 1))]): 
> tem:= evalm(B_1_2k.params): 
> A_1_2k:=matrix(1,1,[evalm(sim_dfdp_1_2k-tem)]): 
>  
> d_phi_1_3k:=d_phi[1,3]: 
> f_1_3k:=subs(Para_set, evalm(d_phi_1_3k)): 
> dfdp_1_3k:=grad(d_phi_1_3k,params): 
> dfdp_1_3k:=subs(Para_set,evalm(dfdp_1_3k)): 
> sim_dfdp_1_3k:=evalm(evalm(dfdp_1_3k).P_sub)+f_1_3k: 
> B_1_3k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_3k, P1, 
1)),evalm(coeff(sim_dfdp_1_3k, P2, 1)),evalm(coeff(sim_dfdp_1_3k, P3, 
1)),evalm(coeff(sim_dfdp_1_3k, P4, 1)),evalm(coeff(sim_dfdp_1_3k, P5, 
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1)),evalm(coeff(sim_dfdp_1_3k, P6, 1)),evalm(coeff(sim_dfdp_1_3k, P7, 
1)),evalm(coeff(sim_dfdp_1_3k, P8, 1)),evalm(coeff(sim_dfdp_1_3k, P9, 
1)),evalm(coeff(sim_dfdp_1_3k, P10, 1)),evalm(coeff(sim_dfdp_1_3k, P11, 
1)),evalm(coeff(sim_dfdp_1_3k, P12, 1))]): 
> tem:= evalm(B_1_3k.params): 
> A_1_3k:=matrix(1,1,[evalm(sim_dfdp_1_3k-tem)]): 
>  
> d_phi_1_4k:=d_phi[1,4]: 
> f_1_4k:=subs(Para_set, evalm(d_phi_1_4k)): 
> dfdp_1_4k:=grad(d_phi_1_4k,params): 
> dfdp_1_4k:=subs(Para_set,evalm(dfdp_1_4k)): 
> sim_dfdp_1_4k:=evalm(evalm(dfdp_1_4k).P_sub)+f_1_4k: 
> B_1_4k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_4k, P1, 
1)),evalm(coeff(sim_dfdp_1_4k, P2, 1)),evalm(coeff(sim_dfdp_1_4k, P3, 
1)),evalm(coeff(sim_dfdp_1_4k, P4, 1)),evalm(coeff(sim_dfdp_1_4k, P5, 
1)),evalm(coeff(sim_dfdp_1_4k, P6, 1)),evalm(coeff(sim_dfdp_1_4k, P7, 
1)),evalm(coeff(sim_dfdp_1_4k, P8, 1)),evalm(coeff(sim_dfdp_1_4k, P9, 
1)),evalm(coeff(sim_dfdp_1_4k, P10, 1)),evalm(coeff(sim_dfdp_1_4k, P11, 
1)),evalm(coeff(sim_dfdp_1_4k, P12, 1))]): 
> tem:= evalm(B_1_4k.params): 
> A_1_4k:=matrix(1,1,[evalm(sim_dfdp_1_4k-tem)]): 
>  
> d_phi_1_5k:=d_phi[1,5]: 
> f_1_5k:=subs(Para_set, evalm(d_phi_1_5k)): 
> dfdp_1_5k:=grad(d_phi_1_5k,params): 
> dfdp_1_5k:=subs(Para_set,evalm(dfdp_1_5k)): 
> sim_dfdp_1_5k:=evalm(evalm(dfdp_1_5k).P_sub)+f_1_5k: 
> B_1_5k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_5k, P1, 
1)),evalm(coeff(sim_dfdp_1_5k, P2, 1)),evalm(coeff(sim_dfdp_1_5k, P3, 
1)),evalm(coeff(sim_dfdp_1_5k, P4, 1)),evalm(coeff(sim_dfdp_1_5k, P5, 
1)),evalm(coeff(sim_dfdp_1_5k, P6, 1)),evalm(coeff(sim_dfdp_1_5k, P7, 
1)),evalm(coeff(sim_dfdp_1_5k, P8, 1)),evalm(coeff(sim_dfdp_1_5k, P9, 
1)),evalm(coeff(sim_dfdp_1_5k, P10, 1)),evalm(coeff(sim_dfdp_1_5k, P11, 
1)),evalm(coeff(sim_dfdp_1_5k, P12, 1))]): 
> tem:= evalm(B_1_5k.params): 
> A_1_5k:=matrix(1,1,[evalm(sim_dfdp_1_5k-tem)]): 
>  
> d_phi_1_6k:=d_phi[1,6]: 
> f_1_6k:=subs(Para_set, evalm(d_phi_1_6k)): 
> dfdp_1_6k:=grad(d_phi_1_6k,params): 
> dfdp_1_6k:=subs(Para_set,evalm(dfdp_1_6k)): 
> sim_dfdp_1_6k:=evalm(evalm(dfdp_1_6k).P_sub)+f_1_6k: 
> B_1_6k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_6k, P1, 
1)),evalm(coeff(sim_dfdp_1_6k, P2, 1)),evalm(coeff(sim_dfdp_1_6k, P3, 
1)),evalm(coeff(sim_dfdp_1_6k, P4, 1)),evalm(coeff(sim_dfdp_1_6k, P5, 
1)),evalm(coeff(sim_dfdp_1_6k, P6, 1)),evalm(coeff(sim_dfdp_1_6k, P7, 
1)),evalm(coeff(sim_dfdp_1_6k, P8, 1)),evalm(coeff(sim_dfdp_1_6k, P9, 
1)),evalm(coeff(sim_dfdp_1_6k, P10, 1)),evalm(coeff(sim_dfdp_1_6k, P11, 
1)),evalm(coeff(sim_dfdp_1_6k, P12, 1))]): 
> tem:= evalm(B_1_6k.params): 
> A_1_6k:=matrix(1,1,[evalm(sim_dfdp_1_6k-tem)]): 
>  
> d_phi_1_7k:=d_phi[1,7]: 
> f_1_7k:=subs(Para_set, evalm(d_phi_1_7k)): 
> dfdp_1_7k:=grad(d_phi_1_7k,params): 
> dfdp_1_7k:=subs(Para_set,evalm(dfdp_1_7k)): 
> sim_dfdp_1_7k:=evalm(evalm(dfdp_1_7k).P_sub)+f_1_7k: 
> B_1_7k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_7k, P1, 
1)),evalm(coeff(sim_dfdp_1_7k, P2, 1)),evalm(coeff(sim_dfdp_1_7k, P3, 
1)),evalm(coeff(sim_dfdp_1_7k, P4, 1)),evalm(coeff(sim_dfdp_1_7k, P5, 
1)),evalm(coeff(sim_dfdp_1_7k, P6, 1)),evalm(coeff(sim_dfdp_1_7k, P7, 
1)),evalm(coeff(sim_dfdp_1_7k, P8, 1)),evalm(coeff(sim_dfdp_1_7k, P9, 
1)),evalm(coeff(sim_dfdp_1_7k, P10, 1)),evalm(coeff(sim_dfdp_1_7k, P11, 
1)),evalm(coeff(sim_dfdp_1_7k, P12, 1))]): 
> tem:= evalm(B_1_7k.params): 
> A_1_7k:=matrix(1,1,[evalm(sim_dfdp_1_7k-tem)]): 
>  
> d_phi_1_8k:=d_phi[1,8]: 
> f_1_8k:=subs(Para_set, evalm(d_phi_1_8k)): 
> dfdp_1_8k:=grad(d_phi_1_8k,params): 
> dfdp_1_8k:=subs(Para_set,evalm(dfdp_1_8k)): 
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> sim_dfdp_1_8k:=evalm(evalm(dfdp_1_8k).P_sub)+f_1_8k:
> B_1_8k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_8k, P1, 
1)),evalm(coeff(sim_dfdp_1_8k, P2, 1)),evalm(coeff(sim_dfdp_1_8k, P3, 
1)),evalm(coeff(sim_dfdp_1_8k, P4, 1)),evalm(coeff(sim_dfdp_1_8k, P5, 
1)),evalm(coeff(sim_dfdp_1_8k, P6, 1)),evalm(coeff(sim_dfdp_1_8k, P7, 
1)),evalm(coeff(sim_dfdp_1_8k, P8, 1)),evalm(coeff(sim_dfdp_1_8k, P9, 
1)),evalm(coeff(sim_dfdp_1_8k, P10, 1)),evalm(coeff(sim_dfdp_1_8k, P11, 
1)),evalm(coeff(sim_dfdp_1_8k, P12, 1))]): 
> tem:= evalm(B_1_8k.params): 
> A_1_8k:=matrix(1,1,[evalm(sim_dfdp_1_8k-tem)]): 
>  
> d_phi_1_9k:=d_phi[1,9]: 
> f_1_9k:=subs(Para_set, evalm(d_phi_1_9k)): 
> dfdp_1_9k:=grad(d_phi_1_9k,params): 
> dfdp_1_9k:=subs(Para_set,evalm(dfdp_1_9k)): 
> sim_dfdp_1_9k:=evalm(evalm(dfdp_1_9k).P_sub)+f_1_9k: 
> B_1_9k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_9k, P1, 
1)),evalm(coeff(sim_dfdp_1_9k, P2, 1)),evalm(coeff(sim_dfdp_1_9k, P3, 
1)),evalm(coeff(sim_dfdp_1_9k, P4, 1)),evalm(coeff(sim_dfdp_1_9k, P5, 
1)),evalm(coeff(sim_dfdp_1_9k, P6, 1)),evalm(coeff(sim_dfdp_1_9k, P7, 
1)),evalm(coeff(sim_dfdp_1_9k, P8, 1)),evalm(coeff(sim_dfdp_1_9k, P9, 
1)),evalm(coeff(sim_dfdp_1_9k, P10, 1)),evalm(coeff(sim_dfdp_1_9k, P11, 
1)),evalm(coeff(sim_dfdp_1_9k, P12, 1))]): 
> tem:= evalm(B_1_9k.params): 
> A_1_9k:=matrix(1,1,[evalm(sim_dfdp_1_9k-tem)]): 
>  
> d_phi_1_10k:=d_phi[1,10]: 
> f_1_10k:=subs(Para_set, evalm(d_phi_1_10k)): 
> dfdp_1_10k:=grad(d_phi_1_10k,params): 
> dfdp_1_10k:=subs(Para_set,evalm(dfdp_1_10k)): 
> sim_dfdp_1_10k:=evalm(evalm(dfdp_1_10k).P_sub)+f_1_10k: 
> B_1_10k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_10k, P1, 
1)),evalm(coeff(sim_dfdp_1_10k, P2, 1)),evalm(coeff(sim_dfdp_1_10k, P3, 
1)),evalm(coeff(sim_dfdp_1_10k, P4, 1)),evalm(coeff(sim_dfdp_1_10k, P5, 
1)),evalm(coeff(sim_dfdp_1_10k, P6, 1)),evalm(coeff(sim_dfdp_1_10k, P7, 
1)),evalm(coeff(sim_dfdp_1_10k, P8, 1)),evalm(coeff(sim_dfdp_1_10k, P9, 
1)),evalm(coeff(sim_dfdp_1_10k, P10, 1)),evalm(coeff(sim_dfdp_1_10k, P11, 
1)),evalm(coeff(sim_dfdp_1_10k, P12, 1))]): 
> tem:= evalm(B_1_10k.params): 
> A_1_10k:=matrix(1,1,[evalm(sim_dfdp_1_10k-tem)]): 
>  
> d_phi_1_11k:=d_phi[1,11]: 
> f_1_11k:=subs(Para_set, evalm(d_phi_1_11k)): 
> dfdp_1_11k:=grad(d_phi_1_11k,params): 
> dfdp_1_11k:=subs(Para_set,evalm(dfdp_1_11k)): 
> sim_dfdp_1_11k:=evalm(evalm(dfdp_1_11k).P_sub)+f_1_11k: 
> B_1_11k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_11k, P1, 
1)),evalm(coeff(sim_dfdp_1_11k, P2, 1)),evalm(coeff(sim_dfdp_1_11k, P3, 
1)),evalm(coeff(sim_dfdp_1_11k, P4, 1)),evalm(coeff(sim_dfdp_1_11k, P5, 
1)),evalm(coeff(sim_dfdp_1_11k, P6, 1)),evalm(coeff(sim_dfdp_1_11k, P7, 
1)),evalm(coeff(sim_dfdp_1_11k, P8, 1)),evalm(coeff(sim_dfdp_1_11k, P9, 
1)),evalm(coeff(sim_dfdp_1_11k, P10, 1)),evalm(coeff(sim_dfdp_1_11k, P11, 
1)),evalm(coeff(sim_dfdp_1_11k, P12, 1))]): 
> tem:= evalm(B_1_11k.params): 
> A_1_11k:=matrix(1,1,[evalm(sim_dfdp_1_11k-tem)]): 
>  
> d_phi_1_12k:=d_phi[1,12]: 
> f_1_12k:=subs(Para_set, evalm(d_phi_1_12k)): 
> dfdp_1_12k:=grad(d_phi_1_12k,params): 
> dfdp_1_12k:=subs(Para_set,evalm(dfdp_1_12k)): 
> sim_dfdp_1_12k:=evalm(evalm(dfdp_1_12k).P_sub)+f_1_12k: 
> B_1_12k:=matrix(1,12,[evalm(coeff(sim_dfdp_1_12k, P1, 
1)),evalm(coeff(sim_dfdp_1_12k, P2, 1)),evalm(coeff(sim_dfdp_1_12k, P3, 
1)),evalm(coeff(sim_dfdp_1_12k, P4, 1)),evalm(coeff(sim_dfdp_1_12k, P5, 
1)),evalm(coeff(sim_dfdp_1_12k, P6, 1)),evalm(coeff(sim_dfdp_1_12k, P7, 
1)),evalm(coeff(sim_dfdp_1_12k, P8, 1)),evalm(coeff(sim_dfdp_1_12k, P9, 
1)),evalm(coeff(sim_dfdp_1_12k, P10, 1)),evalm(coeff(sim_dfdp_1_12k, P11, 
1)),evalm(coeff(sim_dfdp_1_12k, P12, 1))]): 
> tem:= evalm(B_1_12k.params): 
> A_1_12k:=matrix(1,1,[evalm(sim_dfdp_1_12k-tem)]): 
>  
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> 
A1:=stackmatrix(A_1_1k,A_1_2k,A_1_3k,A_1_4k,A_1_5k,A_1_6k,A_1_7k,A_1_8k,A_1_9k,A_1
_10k,A_1_11k,A_1_12k): 
> 
B1:=stackmatrix(B_1_1k,B_1_2k,B_1_3k,B_1_4k,B_1_5k,B_1_6k,B_1_7k,B_1_8k,B_1_9k,B_1
_10k,B_1_11k,B_1_12k): 
> P_nom:=matrix(12,1,Para_nom): 
> As1:=evalm(evalm(A1/s)-P_nom): 
> T1:=evalm((diag(s,s,s,s,s,s,s,s,s,s,s,s)-B1)): 
> Tinv1:=evalm(inverse(T1)): 
> PL1:=evalm(Tinv1&*As1): 
> pT1:=map(invlaplace,evalm(PL1),s,t1): 
>  
> d_phi_2_1k:=d_phi[2,1]: 
> f_2_1k:=subs(Para_set, evalm(d_phi_2_1k)): 
> dfdp_2_1k:=grad(d_phi_2_1k,params): 
> dfdp_2_1k:=subs(Para_set,evalm(dfdp_2_1k)): 
> sim_dfdp_2_1k:=evalm(evalm(dfdp_2_1k).P_sub)+f_2_1k: 
> B_2_1k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_1k, P1, 
1)),evalm(coeff(sim_dfdp_2_1k, P2, 1)),evalm(coeff(sim_dfdp_2_1k, P3, 
1)),evalm(coeff(sim_dfdp_2_1k, P4, 1)),evalm(coeff(sim_dfdp_2_1k, P5, 
1)),evalm(coeff(sim_dfdp_2_1k, P6, 1)),evalm(coeff(sim_dfdp_2_1k, P7, 
1)),evalm(coeff(sim_dfdp_2_1k, P8, 1)),evalm(coeff(sim_dfdp_2_1k, P9, 
1)),evalm(coeff(sim_dfdp_2_1k, P10, 1)),evalm(coeff(sim_dfdp_2_1k, P11, 
1)),evalm(coeff(sim_dfdp_2_1k, P12, 1))]): 
> tem:= evalm(B_2_1k.params): 
> A_2_1k:=matrix(1,1,[evalm(sim_dfdp_2_1k-tem)]): 
>  
> d_phi_2_2k:=d_phi[2,2]: 
> f_2_2k:=subs(Para_set, evalm(d_phi_2_2k)): 
> dfdp_2_2k:=grad(d_phi_2_2k,params): 
> dfdp_2_2k:=subs(Para_set,evalm(dfdp_2_2k)): 
> sim_dfdp_2_2k:=evalm(evalm(dfdp_2_2k).P_sub)+f_2_2k: 
> B_2_2k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_2k, P1, 
1)),evalm(coeff(sim_dfdp_2_2k, P2, 1)),evalm(coeff(sim_dfdp_2_2k, P3, 
1)),evalm(coeff(sim_dfdp_2_2k, P4, 1)),evalm(coeff(sim_dfdp_2_2k, P5, 
1)),evalm(coeff(sim_dfdp_2_2k, P6, 1)),evalm(coeff(sim_dfdp_2_2k, P7, 
1)),evalm(coeff(sim_dfdp_2_2k, P8, 1)),evalm(coeff(sim_dfdp_2_2k, P9, 
1)),evalm(coeff(sim_dfdp_2_2k, P10, 1)),evalm(coeff(sim_dfdp_2_2k, P11, 
1)),evalm(coeff(sim_dfdp_2_2k, P12, 1))]): 
> tem:= evalm(B_2_2k.params): 
> A_2_2k:=matrix(1,1,[evalm(sim_dfdp_2_2k-tem)]): 
>  
> d_phi_2_3k:=d_phi[2,3]: 
> f_2_3k:=subs(Para_set, evalm(d_phi_2_3k)): 
> dfdp_2_3k:=grad(d_phi_2_3k,params): 
> dfdp_2_3k:=subs(Para_set,evalm(dfdp_2_3k)): 
> sim_dfdp_2_3k:=evalm(evalm(dfdp_2_3k).P_sub)+f_2_3k: 
> B_2_3k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_3k, P1, 
1)),evalm(coeff(sim_dfdp_2_3k, P2, 1)),evalm(coeff(sim_dfdp_2_3k, P3, 
1)),evalm(coeff(sim_dfdp_2_3k, P4, 1)),evalm(coeff(sim_dfdp_2_3k, P5, 
1)),evalm(coeff(sim_dfdp_2_3k, P6, 1)),evalm(coeff(sim_dfdp_2_3k, P7, 
1)),evalm(coeff(sim_dfdp_2_3k, P8, 1)),evalm(coeff(sim_dfdp_2_3k, P9, 
1)),evalm(coeff(sim_dfdp_2_3k, P10, 1)),evalm(coeff(sim_dfdp_2_3k, P11, 
1)),evalm(coeff(sim_dfdp_2_3k, P12, 1))]): 
> tem:= evalm(B_2_3k.params): 
> A_2_3k:=matrix(1,1,[evalm(sim_dfdp_2_3k-tem)]): 
>  
> d_phi_2_4k:=d_phi[2,4]: 
> f_2_4k:=subs(Para_set, evalm(d_phi_2_4k)): 
> dfdp_2_4k:=grad(d_phi_2_4k,params): 
> dfdp_2_4k:=subs(Para_set,evalm(dfdp_2_4k)): 
> sim_dfdp_2_4k:=evalm(evalm(dfdp_2_4k).P_sub)+f_2_4k: 
> B_2_4k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_4k, P1, 
1)),evalm(coeff(sim_dfdp_2_4k, P2, 1)),evalm(coeff(sim_dfdp_2_4k, P3, 
1)),evalm(coeff(sim_dfdp_2_4k, P4, 1)),evalm(coeff(sim_dfdp_2_4k, P5, 
1)),evalm(coeff(sim_dfdp_2_4k, P6, 1)),evalm(coeff(sim_dfdp_2_4k, P7, 
1)),evalm(coeff(sim_dfdp_2_4k, P8, 1)),evalm(coeff(sim_dfdp_2_4k, P9, 
1)),evalm(coeff(sim_dfdp_2_4k, P10, 1)),evalm(coeff(sim_dfdp_2_4k, P11, 
1)),evalm(coeff(sim_dfdp_2_4k, P12, 1))]): 
> tem:= evalm(B_2_4k.params): 
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> A_2_4k:=matrix(1,1,[evalm(sim_dfdp_2_4k-tem)]):
>  
> d_phi_2_5k:=d_phi[2,5]: 
> f_2_5k:=subs(Para_set, evalm(d_phi_2_5k)): 
> dfdp_2_5k:=grad(d_phi_2_5k,params): 
> dfdp_2_5k:=subs(Para_set,evalm(dfdp_2_5k)): 
> sim_dfdp_2_5k:=evalm(evalm(dfdp_2_5k).P_sub)+f_2_5k: 
> B_2_5k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_5k, P1, 
1)),evalm(coeff(sim_dfdp_2_5k, P2, 1)),evalm(coeff(sim_dfdp_2_5k, P3, 
1)),evalm(coeff(sim_dfdp_2_5k, P4, 1)),evalm(coeff(sim_dfdp_2_5k, P5, 
1)),evalm(coeff(sim_dfdp_2_5k, P6, 1)),evalm(coeff(sim_dfdp_2_5k, P7, 
1)),evalm(coeff(sim_dfdp_2_5k, P8, 1)),evalm(coeff(sim_dfdp_2_5k, P9, 
1)),evalm(coeff(sim_dfdp_2_5k, P10, 1)),evalm(coeff(sim_dfdp_2_5k, P11, 
1)),evalm(coeff(sim_dfdp_2_5k, P12, 1))]): 
> tem:= evalm(B_2_5k.params): 
> A_2_5k:=matrix(1,1,[evalm(sim_dfdp_2_5k-tem)]): 
>  
> d_phi_2_6k:=d_phi[2,6]: 
> f_2_6k:=subs(Para_set, evalm(d_phi_2_6k)): 
> dfdp_2_6k:=grad(d_phi_2_6k,params): 
> dfdp_2_6k:=subs(Para_set,evalm(dfdp_2_6k)): 
> sim_dfdp_2_6k:=evalm(evalm(dfdp_2_6k).P_sub)+f_2_6k: 
> B_2_6k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_6k, P1, 
1)),evalm(coeff(sim_dfdp_2_6k, P2, 1)),evalm(coeff(sim_dfdp_2_6k, P3, 
1)),evalm(coeff(sim_dfdp_2_6k, P4, 1)),evalm(coeff(sim_dfdp_2_6k, P5, 
1)),evalm(coeff(sim_dfdp_2_6k, P6, 1)),evalm(coeff(sim_dfdp_2_6k, P7, 
1)),evalm(coeff(sim_dfdp_2_6k, P8, 1)),evalm(coeff(sim_dfdp_2_6k, P9, 
1)),evalm(coeff(sim_dfdp_2_6k, P10, 1)),evalm(coeff(sim_dfdp_2_6k, P11, 
1)),evalm(coeff(sim_dfdp_2_6k, P12, 1))]): 
> tem:= evalm(B_2_6k.params): 
> A_2_6k:=matrix(1,1,[evalm(sim_dfdp_2_6k-tem)]): 
>  
> d_phi_2_7k:=d_phi[2,7]: 
> f_2_7k:=subs(Para_set, evalm(d_phi_2_7k)): 
> dfdp_2_7k:=grad(d_phi_2_7k,params): 
> dfdp_2_7k:=subs(Para_set,evalm(dfdp_2_7k)): 
> sim_dfdp_2_7k:=evalm(evalm(dfdp_2_7k).P_sub)+f_2_7k: 
> B_2_7k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_7k, P1, 
1)),evalm(coeff(sim_dfdp_2_7k, P2, 1)),evalm(coeff(sim_dfdp_2_7k, P3, 
1)),evalm(coeff(sim_dfdp_2_7k, P4, 1)),evalm(coeff(sim_dfdp_2_7k, P5, 
1)),evalm(coeff(sim_dfdp_2_7k, P6, 1)),evalm(coeff(sim_dfdp_2_7k, P7, 
1)),evalm(coeff(sim_dfdp_2_7k, P8, 1)),evalm(coeff(sim_dfdp_2_7k, P9, 
1)),evalm(coeff(sim_dfdp_2_7k, P10, 1)),evalm(coeff(sim_dfdp_2_7k, P11, 
1)),evalm(coeff(sim_dfdp_2_7k, P12, 1))]): 
> tem:= evalm(B_2_7k.params): 
> A_2_7k:=matrix(1,1,[evalm(sim_dfdp_2_7k-tem)]): 
>  
> d_phi_2_8k:=d_phi[2,8]: 
> f_2_8k:=subs(Para_set, evalm(d_phi_2_8k)): 
> dfdp_2_8k:=grad(d_phi_2_8k,params): 
> dfdp_2_8k:=subs(Para_set,evalm(dfdp_2_8k)): 
> sim_dfdp_2_8k:=evalm(evalm(dfdp_2_8k).P_sub)+f_2_8k: 
> B_2_8k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_8k, P1, 
1)),evalm(coeff(sim_dfdp_2_8k, P2, 1)),evalm(coeff(sim_dfdp_2_8k, P3, 
1)),evalm(coeff(sim_dfdp_2_8k, P4, 1)),evalm(coeff(sim_dfdp_2_8k, P5, 
1)),evalm(coeff(sim_dfdp_2_8k, P6, 1)),evalm(coeff(sim_dfdp_2_8k, P7, 
1)),evalm(coeff(sim_dfdp_2_8k, P8, 1)),evalm(coeff(sim_dfdp_2_8k, P9, 
1)),evalm(coeff(sim_dfdp_2_8k, P10, 1)),evalm(coeff(sim_dfdp_2_8k, P11, 
1)),evalm(coeff(sim_dfdp_2_8k, P12, 1))]): 
> tem:= evalm(B_2_8k.params): 
> A_2_8k:=matrix(1,1,[evalm(sim_dfdp_2_8k-tem)]): 
>  
> d_phi_2_9k:=d_phi[2,9]: 
> f_2_9k:=subs(Para_set, evalm(d_phi_2_9k)): 
> dfdp_2_9k:=grad(d_phi_2_9k,params): 
> dfdp_2_9k:=subs(Para_set,evalm(dfdp_2_9k)): 
> sim_dfdp_2_9k:=evalm(evalm(dfdp_2_9k).P_sub)+f_2_9k: 
> B_2_9k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_9k, P1, 
1)),evalm(coeff(sim_dfdp_2_9k, P2, 1)),evalm(coeff(sim_dfdp_2_9k, P3, 
1)),evalm(coeff(sim_dfdp_2_9k, P4, 1)),evalm(coeff(sim_dfdp_2_9k, P5, 
1)),evalm(coeff(sim_dfdp_2_9k, P6, 1)),evalm(coeff(sim_dfdp_2_9k, P7, 
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1)),evalm(coeff(sim_dfdp_2_9k, P8, 1)),evalm(coeff(sim_dfdp_2_9k, P9, 
1)),evalm(coeff(sim_dfdp_2_9k, P10, 1)),evalm(coeff(sim_dfdp_2_9k, P11, 
1)),evalm(coeff(sim_dfdp_2_9k, P12, 1))]): 
> tem:= evalm(B_2_9k.params): 
> A_2_9k:=matrix(1,1,[evalm(sim_dfdp_2_9k-tem)]): 
>  
> d_phi_2_10k:=d_phi[2,10]: 
> f_2_10k:=subs(Para_set, evalm(d_phi_2_10k)): 
> dfdp_2_10k:=grad(d_phi_2_10k,params): 
> dfdp_2_10k:=subs(Para_set,evalm(dfdp_2_10k)): 
> sim_dfdp_2_10k:=evalm(evalm(dfdp_2_10k).P_sub)+f_2_10k: 
> B_2_10k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_10k, P1, 
1)),evalm(coeff(sim_dfdp_2_10k, P2, 1)),evalm(coeff(sim_dfdp_2_10k, P3, 
1)),evalm(coeff(sim_dfdp_2_10k, P4, 1)),evalm(coeff(sim_dfdp_2_10k, P5, 
1)),evalm(coeff(sim_dfdp_2_10k, P6, 1)),evalm(coeff(sim_dfdp_2_10k, P7, 
1)),evalm(coeff(sim_dfdp_2_10k, P8, 1)),evalm(coeff(sim_dfdp_2_10k, P9, 
1)),evalm(coeff(sim_dfdp_2_10k, P10, 1)),evalm(coeff(sim_dfdp_2_10k, P11, 
1)),evalm(coeff(sim_dfdp_2_10k, P12, 1))]): 
> tem:= evalm(B_2_10k.params): 
> A_2_10k:=matrix(1,1,[evalm(sim_dfdp_2_10k-tem)]): 
>  
> d_phi_2_11k:=d_phi[2,11]: 
> f_2_11k:=subs(Para_set, evalm(d_phi_2_11k)): 
> dfdp_2_11k:=grad(d_phi_2_11k,params): 
> dfdp_2_11k:=subs(Para_set,evalm(dfdp_2_11k)): 
> sim_dfdp_2_11k:=evalm(evalm(dfdp_2_11k).P_sub)+f_2_11k: 
> B_2_11k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_11k, P1, 
1)),evalm(coeff(sim_dfdp_2_11k, P2, 1)),evalm(coeff(sim_dfdp_2_11k, P3, 
1)),evalm(coeff(sim_dfdp_2_11k, P4, 1)),evalm(coeff(sim_dfdp_2_11k, P5, 
1)),evalm(coeff(sim_dfdp_2_11k, P6, 1)),evalm(coeff(sim_dfdp_2_11k, P7, 
1)),evalm(coeff(sim_dfdp_2_11k, P8, 1)),evalm(coeff(sim_dfdp_2_11k, P9, 
1)),evalm(coeff(sim_dfdp_2_11k, P10, 1)),evalm(coeff(sim_dfdp_2_11k, P11, 
1)),evalm(coeff(sim_dfdp_2_11k, P12, 1))]): 
> tem:= evalm(B_2_11k.params): 
> A_2_11k:=matrix(1,1,[evalm(sim_dfdp_2_11k-tem)]): 
>  
> d_phi_2_12k:=d_phi[2,12]: 
> f_2_12k:=subs(Para_set, evalm(d_phi_2_12k)): 
> dfdp_2_12k:=grad(d_phi_2_12k,params): 
> dfdp_2_12k:=subs(Para_set,evalm(dfdp_2_12k)): 
> sim_dfdp_2_12k:=evalm(evalm(dfdp_2_12k).P_sub)+f_2_12k: 
> B_2_12k:=matrix(1,12,[evalm(coeff(sim_dfdp_2_12k, P1, 
1)),evalm(coeff(sim_dfdp_2_12k, P2, 1)),evalm(coeff(sim_dfdp_2_12k, P3, 
1)),evalm(coeff(sim_dfdp_2_12k, P4, 1)),evalm(coeff(sim_dfdp_2_12k, P5, 
1)),evalm(coeff(sim_dfdp_2_12k, P6, 1)),evalm(coeff(sim_dfdp_2_12k, P7, 
1)),evalm(coeff(sim_dfdp_2_12k, P8, 1)),evalm(coeff(sim_dfdp_2_12k, P9, 
1)),evalm(coeff(sim_dfdp_2_12k, P10, 1)),evalm(coeff(sim_dfdp_2_12k, P11, 
1)),evalm(coeff(sim_dfdp_2_12k, P12, 1))]): 
> tem:= evalm(B_2_12k.params): 
> A_2_12k:=matrix(1,1,[evalm(sim_dfdp_2_12k-tem)]): 
>  
> 
A2:=stackmatrix(A_2_1k,A_2_2k,A_2_3k,A_2_4k,A_2_5k,A_2_6k,A_2_7k,A_2_8k,A_2_9k,A_2
_10k,A_2_11k,A_2_12k): 
> 
B2:=stackmatrix(B_2_1k,B_2_2k,B_2_3k,B_2_4k,B_2_5k,B_2_6k,B_2_7k,B_2_8k,B_2_9k,B_2
_10k,B_2_11k,B_2_12k): 
> P_nom:=matrix(12,1,Para_nom): 
> As2:=evalm(evalm(A2/s)-P_nom): 
> T2:=evalm((diag(s,s,s,s,s,s,s,s,s,s,s,s)-B2)): 
> Tinv2:=evalm(inverse(T2)): 
> PL2:=evalm(Tinv2&*As2): 
> pT2:=map(invlaplace,evalm(PL2),s,t2): 
>  
>  
> d_phi_3_1k:=d_phi[3,1]: 
> f_3_1k:=subs(Para_set, evalm(d_phi_3_1k)): 
> dfdp_3_1k:=grad(d_phi_3_1k,params): 
> dfdp_3_1k:=subs(Para_set,evalm(dfdp_3_1k)): 
> sim_dfdp_3_1k:=evalm(evalm(dfdp_3_1k).P_sub)+f_3_1k: 
> B_3_1k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_1k, P1, 
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1)),evalm(coeff(sim_dfdp_3_1k, P2, 1)),evalm(coeff(sim_dfdp_3_1k, P3, 
1)),evalm(coeff(sim_dfdp_3_1k, P4, 1)),evalm(coeff(sim_dfdp_3_1k, P5, 
1)),evalm(coeff(sim_dfdp_3_1k, P6, 1)),evalm(coeff(sim_dfdp_3_1k, P7, 
1)),evalm(coeff(sim_dfdp_3_1k, P8, 1)),evalm(coeff(sim_dfdp_3_1k, P9, 
1)),evalm(coeff(sim_dfdp_3_1k, P10, 1)),evalm(coeff(sim_dfdp_3_1k, P11, 
1)),evalm(coeff(sim_dfdp_3_1k, P12, 1))]): 
> tem:= evalm(B_3_1k.params): 
> A_3_1k:=matrix(1,1,[evalm(sim_dfdp_3_1k-tem)]): 
>  
> d_phi_3_2k:=d_phi[3,2]: 
> f_3_2k:=subs(Para_set, evalm(d_phi_3_2k)): 
> dfdp_3_2k:=grad(d_phi_3_2k,params): 
> dfdp_3_2k:=subs(Para_set,evalm(dfdp_3_2k)): 
> sim_dfdp_3_2k:=evalm(evalm(dfdp_3_2k).P_sub)+f_3_2k: 
> B_3_2k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_2k, P1, 
1)),evalm(coeff(sim_dfdp_3_2k, P2, 1)),evalm(coeff(sim_dfdp_3_2k, P3, 
1)),evalm(coeff(sim_dfdp_3_2k, P4, 1)),evalm(coeff(sim_dfdp_3_2k, P5, 
1)),evalm(coeff(sim_dfdp_3_2k, P6, 1)),evalm(coeff(sim_dfdp_3_2k, P7, 
1)),evalm(coeff(sim_dfdp_3_2k, P8, 1)),evalm(coeff(sim_dfdp_3_2k, P9, 
1)),evalm(coeff(sim_dfdp_3_2k, P10, 1)),evalm(coeff(sim_dfdp_3_2k, P11, 
1)),evalm(coeff(sim_dfdp_3_2k, P12, 1))]): 
> tem:= evalm(B_3_2k.params): 
> A_3_2k:=matrix(1,1,[evalm(sim_dfdp_3_2k-tem)]): 
>  
> d_phi_3_3k:=d_phi[3,3]: 
> f_3_3k:=subs(Para_set, evalm(d_phi_3_3k)): 
> dfdp_3_3k:=grad(d_phi_3_3k,params): 
> dfdp_3_3k:=subs(Para_set,evalm(dfdp_3_3k)): 
> sim_dfdp_3_3k:=evalm(evalm(dfdp_3_3k).P_sub)+f_3_3k: 
> B_3_3k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_3k, P1, 
1)),evalm(coeff(sim_dfdp_3_3k, P2, 1)),evalm(coeff(sim_dfdp_3_3k, P3, 
1)),evalm(coeff(sim_dfdp_3_3k, P4, 1)),evalm(coeff(sim_dfdp_3_3k, P5, 
1)),evalm(coeff(sim_dfdp_3_3k, P6, 1)),evalm(coeff(sim_dfdp_3_3k, P7, 
1)),evalm(coeff(sim_dfdp_3_3k, P8, 1)),evalm(coeff(sim_dfdp_3_3k, P9, 
1)),evalm(coeff(sim_dfdp_3_3k, P10, 1)),evalm(coeff(sim_dfdp_3_3k, P11, 
1)),evalm(coeff(sim_dfdp_3_3k, P12, 1))]): 
> tem:= evalm(B_3_3k.params): 
> A_3_3k:=matrix(1,1,[evalm(sim_dfdp_3_3k-tem)]): 
>  
> d_phi_3_4k:=d_phi[3,4]: 
> f_3_4k:=subs(Para_set, evalm(d_phi_3_4k)): 
> dfdp_3_4k:=grad(d_phi_3_4k,params): 
> dfdp_3_4k:=subs(Para_set,evalm(dfdp_3_4k)): 
> sim_dfdp_3_4k:=evalm(evalm(dfdp_3_4k).P_sub)+f_3_4k: 
> B_3_4k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_4k, P1, 
1)),evalm(coeff(sim_dfdp_3_4k, P2, 1)),evalm(coeff(sim_dfdp_3_4k, P3, 
1)),evalm(coeff(sim_dfdp_3_4k, P4, 1)),evalm(coeff(sim_dfdp_3_4k, P5, 
1)),evalm(coeff(sim_dfdp_3_4k, P6, 1)),evalm(coeff(sim_dfdp_3_4k, P7, 
1)),evalm(coeff(sim_dfdp_3_4k, P8, 1)),evalm(coeff(sim_dfdp_3_4k, P9, 
1)),evalm(coeff(sim_dfdp_3_4k, P10, 1)),evalm(coeff(sim_dfdp_3_4k, P11, 
1)),evalm(coeff(sim_dfdp_3_4k, P12, 1))]): 
> tem:= evalm(B_3_4k.params): 
> A_3_4k:=matrix(1,1,[evalm(sim_dfdp_3_4k-tem)]): 
>  
> d_phi_3_5k:=d_phi[3,5]: 
> f_3_5k:=subs(Para_set, evalm(d_phi_3_5k)): 
> dfdp_3_5k:=grad(d_phi_3_5k,params): 
> dfdp_3_5k:=subs(Para_set,evalm(dfdp_3_5k)): 
> sim_dfdp_3_5k:=evalm(evalm(dfdp_3_5k).P_sub)+f_3_5k: 
> B_3_5k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_5k, P1, 
1)),evalm(coeff(sim_dfdp_3_5k, P2, 1)),evalm(coeff(sim_dfdp_3_5k, P3, 
1)),evalm(coeff(sim_dfdp_3_5k, P4, 1)),evalm(coeff(sim_dfdp_3_5k, P5, 
1)),evalm(coeff(sim_dfdp_3_5k, P6, 1)),evalm(coeff(sim_dfdp_3_5k, P7, 
1)),evalm(coeff(sim_dfdp_3_5k, P8, 1)),evalm(coeff(sim_dfdp_3_5k, P9, 
1)),evalm(coeff(sim_dfdp_3_5k, P10, 1)),evalm(coeff(sim_dfdp_3_5k, P11, 
1)),evalm(coeff(sim_dfdp_3_5k, P12, 1))]): 
> tem:= evalm(B_3_5k.params): 
> A_3_5k:=matrix(1,1,[evalm(sim_dfdp_3_5k-tem)]): 
>  
> d_phi_3_6k:=d_phi[3,6]: 
> f_3_6k:=subs(Para_set, evalm(d_phi_3_6k)): 
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> dfdp_3_6k:=grad(d_phi_3_6k,params):
> dfdp_3_6k:=subs(Para_set,evalm(dfdp_3_6k)): 
> sim_dfdp_3_6k:=evalm(evalm(dfdp_3_6k).P_sub)+f_3_6k: 
> B_3_6k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_6k, P1, 
1)),evalm(coeff(sim_dfdp_3_6k, P2, 1)),evalm(coeff(sim_dfdp_3_6k, P3, 
1)),evalm(coeff(sim_dfdp_3_6k, P4, 1)),evalm(coeff(sim_dfdp_3_6k, P5, 
1)),evalm(coeff(sim_dfdp_3_6k, P6, 1)),evalm(coeff(sim_dfdp_3_6k, P7, 
1)),evalm(coeff(sim_dfdp_3_6k, P8, 1)),evalm(coeff(sim_dfdp_3_6k, P9, 
1)),evalm(coeff(sim_dfdp_3_6k, P10, 1)),evalm(coeff(sim_dfdp_3_6k, P11, 
1)),evalm(coeff(sim_dfdp_3_6k, P12, 1))]): 
> tem:= evalm(B_3_6k.params): 
> A_3_6k:=matrix(1,1,[evalm(sim_dfdp_3_6k-tem)]): 
>  
> d_phi_3_7k:=d_phi[3,7]: 
> f_3_7k:=subs(Para_set, evalm(d_phi_3_7k)): 
> dfdp_3_7k:=grad(d_phi_3_7k,params): 
> dfdp_3_7k:=subs(Para_set,evalm(dfdp_3_7k)): 
> sim_dfdp_3_7k:=evalm(evalm(dfdp_3_7k).P_sub)+f_3_7k: 
> B_3_7k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_7k, P1, 
1)),evalm(coeff(sim_dfdp_3_7k, P2, 1)),evalm(coeff(sim_dfdp_3_7k, P3, 
1)),evalm(coeff(sim_dfdp_3_7k, P4, 1)),evalm(coeff(sim_dfdp_3_7k, P5, 
1)),evalm(coeff(sim_dfdp_3_7k, P6, 1)),evalm(coeff(sim_dfdp_3_7k, P7, 
1)),evalm(coeff(sim_dfdp_3_7k, P8, 1)),evalm(coeff(sim_dfdp_3_7k, P9, 
1)),evalm(coeff(sim_dfdp_3_7k, P10, 1)),evalm(coeff(sim_dfdp_3_7k, P11, 
1)),evalm(coeff(sim_dfdp_3_7k, P12, 1))]): 
> tem:= evalm(B_3_7k.params): 
> A_3_7k:=matrix(1,1,[evalm(sim_dfdp_3_7k-tem)]): 
>  
> d_phi_3_8k:=d_phi[3,8]: 
> f_3_8k:=subs(Para_set, evalm(d_phi_3_8k)): 
> dfdp_3_8k:=grad(d_phi_3_8k,params): 
> dfdp_3_8k:=subs(Para_set,evalm(dfdp_3_8k)): 
> sim_dfdp_3_8k:=evalm(evalm(dfdp_3_8k).P_sub)+f_3_8k: 
> B_3_8k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_8k, P1, 
1)),evalm(coeff(sim_dfdp_3_8k, P2, 1)),evalm(coeff(sim_dfdp_3_8k, P3, 
1)),evalm(coeff(sim_dfdp_3_8k, P4, 1)),evalm(coeff(sim_dfdp_3_8k, P5, 
1)),evalm(coeff(sim_dfdp_3_8k, P6, 1)),evalm(coeff(sim_dfdp_3_8k, P7, 
1)),evalm(coeff(sim_dfdp_3_8k, P8, 1)),evalm(coeff(sim_dfdp_3_8k, P9, 
1)),evalm(coeff(sim_dfdp_3_8k, P10, 1)),evalm(coeff(sim_dfdp_3_8k, P11, 
1)),evalm(coeff(sim_dfdp_3_8k, P12, 1))]): 
> tem:= evalm(B_3_8k.params): 
> A_3_8k:=matrix(1,1,[evalm(sim_dfdp_3_8k-tem)]): 
>  
> d_phi_3_9k:=d_phi[3,9]: 
> f_3_9k:=subs(Para_set, evalm(d_phi_3_9k)): 
> dfdp_3_9k:=grad(d_phi_3_9k,params): 
> dfdp_3_9k:=subs(Para_set,evalm(dfdp_3_9k)): 
> sim_dfdp_3_9k:=evalm(evalm(dfdp_3_9k).P_sub)+f_3_9k: 
> B_3_9k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_9k, P1, 
1)),evalm(coeff(sim_dfdp_3_9k, P2, 1)),evalm(coeff(sim_dfdp_3_9k, P3, 
1)),evalm(coeff(sim_dfdp_3_9k, P4, 1)),evalm(coeff(sim_dfdp_3_9k, P5, 
1)),evalm(coeff(sim_dfdp_3_9k, P6, 1)),evalm(coeff(sim_dfdp_3_9k, P7, 
1)),evalm(coeff(sim_dfdp_3_9k, P8, 1)),evalm(coeff(sim_dfdp_3_9k, P9, 
1)),evalm(coeff(sim_dfdp_3_9k, P10, 1)),evalm(coeff(sim_dfdp_3_9k, P11, 
1)),evalm(coeff(sim_dfdp_3_9k, P12, 1))]): 
> tem:= evalm(B_3_9k.params): 
> A_3_9k:=matrix(1,1,[evalm(sim_dfdp_3_9k-tem)]): 
>  
> d_phi_3_10k:=d_phi[3,10]: 
> f_3_10k:=subs(Para_set, evalm(d_phi_3_10k)): 
> dfdp_3_10k:=grad(d_phi_3_10k,params): 
> dfdp_3_10k:=subs(Para_set,evalm(dfdp_3_10k)): 
> sim_dfdp_3_10k:=evalm(evalm(dfdp_3_10k).P_sub)+f_3_10k: 
> B_3_10k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_10k, P1, 
1)),evalm(coeff(sim_dfdp_3_10k, P2, 1)),evalm(coeff(sim_dfdp_3_10k, P3, 
1)),evalm(coeff(sim_dfdp_3_10k, P4, 1)),evalm(coeff(sim_dfdp_3_10k, P5, 
1)),evalm(coeff(sim_dfdp_3_10k, P6, 1)),evalm(coeff(sim_dfdp_3_10k, P7, 
1)),evalm(coeff(sim_dfdp_3_10k, P8, 1)),evalm(coeff(sim_dfdp_3_10k, P9, 
1)),evalm(coeff(sim_dfdp_3_10k, P10, 1)),evalm(coeff(sim_dfdp_3_10k, P11, 
1)),evalm(coeff(sim_dfdp_3_10k, P12, 1))]): 
> tem:= evalm(B_3_10k.params): 
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> A_3_10k:=matrix(1,1,[evalm(sim_dfdp_3_10k-tem)]):
>  
> d_phi_3_11k:=d_phi[3,11]: 
> f_3_11k:=subs(Para_set, evalm(d_phi_3_11k)): 
> dfdp_3_11k:=grad(d_phi_3_11k,params): 
> dfdp_3_11k:=subs(Para_set,evalm(dfdp_3_11k)): 
> sim_dfdp_3_11k:=evalm(evalm(dfdp_3_11k).P_sub)+f_3_11k: 
> B_3_11k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_11k, P1, 
1)),evalm(coeff(sim_dfdp_3_11k, P2, 1)),evalm(coeff(sim_dfdp_3_11k, P3, 
1)),evalm(coeff(sim_dfdp_3_11k, P4, 1)),evalm(coeff(sim_dfdp_3_11k, P5, 
1)),evalm(coeff(sim_dfdp_3_11k, P6, 1)),evalm(coeff(sim_dfdp_3_11k, P7, 
1)),evalm(coeff(sim_dfdp_3_11k, P8, 1)),evalm(coeff(sim_dfdp_3_11k, P9, 
1)),evalm(coeff(sim_dfdp_3_11k, P10, 1)),evalm(coeff(sim_dfdp_3_11k, P11, 
1)),evalm(coeff(sim_dfdp_3_11k, P12, 1))]): 
> tem:= evalm(B_3_11k.params): 
> A_3_11k:=matrix(1,1,[evalm(sim_dfdp_3_11k-tem)]): 
>  
> d_phi_3_12k:=d_phi[3,12]: 
> f_3_12k:=subs(Para_set, evalm(d_phi_3_12k)): 
> dfdp_3_12k:=grad(d_phi_3_12k,params): 
> dfdp_3_12k:=subs(Para_set,evalm(dfdp_3_12k)): 
> sim_dfdp_3_12k:=evalm(evalm(dfdp_3_12k).P_sub)+f_3_12k: 
> B_3_12k:=matrix(1,12,[evalm(coeff(sim_dfdp_3_12k, P1, 
1)),evalm(coeff(sim_dfdp_3_12k, P2, 1)),evalm(coeff(sim_dfdp_3_12k, P3, 
1)),evalm(coeff(sim_dfdp_3_12k, P4, 1)),evalm(coeff(sim_dfdp_3_12k, P5, 
1)),evalm(coeff(sim_dfdp_3_12k, P6, 1)),evalm(coeff(sim_dfdp_3_12k, P7, 
1)),evalm(coeff(sim_dfdp_3_12k, P8, 1)),evalm(coeff(sim_dfdp_3_12k, P9, 
1)),evalm(coeff(sim_dfdp_3_12k, P10, 1)),evalm(coeff(sim_dfdp_3_12k, P11, 
1)),evalm(coeff(sim_dfdp_3_12k, P12, 1))]): 
> tem:= evalm(B_3_12k.params): 
> A_3_12k:=matrix(1,1,[evalm(sim_dfdp_3_12k-tem)]): 
>  
> 
A3:=stackmatrix(A_3_1k,A_3_2k,A_3_3k,A_3_4k,A_3_5k,A_3_6k,A_3_7k,A_3_8k,A_3_9k,A_3
_10k,A_3_11k,A_3_12k): 
> 
B3:=stackmatrix(B_3_1k,B_3_2k,B_3_3k,B_3_4k,B_3_5k,B_3_6k,B_3_7k,B_3_8k,B_3_9k,B_3
_10k,B_3_11k,B_3_12k): 
> P_nom:=matrix(12,1,Para_nom): 
> As3:=evalm(evalm(A3/s)-P_nom): 
> T3:=evalm((diag(s,s,s,s,s,s,s,s,s,s,s,s)-B3)): 
> Tinv3:=evalm(inverse(T3)): 
> PL3:=evalm(Tinv3&*As3): 
> pT3:=map(invlaplace,evalm(PL3),s,t3): 
>  
>  

 
> pT4:=matrix(12,1,[t4,0,0,0,0,0,0,0,0,0,0,0]): 
> pT5:=matrix(12,1,[0,t5,0,0,0,0,0,0,0,0,0,0]): 
> pT6:=matrix(12,1,[0,0,0,t6,0,0,0,0,0,0,0,0]): 
> pT7:=matrix(12,1,[0,0,0,0,t7,0,0,0,0,0,0,0]): 
> pT8:=matrix(12,1,[0,0,0,0,0,0,t8,0,0,0,0,0]): 
> pT9:=matrix(12,1,[0,0,0,0,0,0,0,t9,0,0,0,0]): 
> pT10:=matrix(12,1,[0,0,0,0,0,0,0,0,t10,0,0,0]): 
> pT11:=matrix(12,1,[0,0,0,0,0,0,0,0,0,0,t11,0]): 
> pT12:=matrix(12,1,[0,0,0,0,0,0,0,0,0,0,0,t12]): 
>  
> F:=evalm(pT1+pT2+pT3+pT4+pT5+pT6+pT7+pT8+pT9+pT10+pT11+pT12): 
>  
> tim := [t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12]: 
> tim_set:={t1=1, t2=1, t3=1, t4=1, t5=1, t6=1, t7=1, t8=1, t9=1, t10=1, t11=1, 
t12=1}: 
> d_F_1:=grad(F[1,1],tim): 
> d_F_2:=grad(F[2,1],tim): 
> d_F_3:=grad(F[3,1],tim): 
> d_F_4:=grad(F[4,1],tim): 
> d_F_5:=grad(F[5,1],tim): 
> d_F_6:=grad(F[6,1],tim): 
> d_F_7:=grad(F[7,1],tim): 
> d_F_8:=grad(F[8,1],tim): 
> d_F_9:=grad(F[9,1],tim): 
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> d_F_10:=grad(F[10,1],tim): 
> d_F_11:=grad(F[11,1],tim): 
> d_F_12:=grad(F[12,1],tim): 
> DF1 
:=stackmatrix(d_F_1,d_F_2,d_F_3,d_F_4,d_F_5,d_F_6,d_F_7,d_F_8,d_F_9,d_F_10,d_F_11,
d_F_12): 
> DF:=evalf(subs(tim_set,evalm(DF1))): 
>  
> with(CodeGeneration): 
> Matlab(F): 
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B 
Experimental data 

This appendix contains the experimental data from the implementation of the D-optimal 

input profile on a bioreactor system. 
 

Table B.1 Measured data 

Time (hours 
from start) 

Measurable 
biomass 

concentration (X) 

External nitrogen 
source 

concentration (S1) 

External carbon 
source 

concentration 
(S2) 

Mass fraction of 
algal oil stored in 

cells ቀூ


ቁ 

 (g/mL) (g/mL) (g/mL)  
0 0.000857 0.00045 41.4914 0.580 
4 0.000857 0.000416 0.040844 0.509 
8 0.000786 0.000404 0.040857 0.583 

12 0.000857 0.000414 0.040703 0.597 
16 0.00075 0.000416 0.040496 0.508 
20 0.000857 0.000409 0.04077 0.456 
24 0.001143 0.000365 0.040754 0.392 
28 0.001036 0.000316 0.040704 0.444 
32 0.001143 0.000251 0.040558 0.270 
36 0.001071 0.000182 0.040125 0.355 
40 0.001607 6.52E-05 0.039878 0.224 
44 0.00175 6.26E-05 0.03969 0.180 
48 0.002036 5.09E-05 0.039126 0.143 
52 0.002286 5.43E-05 0.038423 0.150 
56 0.002429 5.48E-05 0.037285 0.156 
68 0.004821 5.89E-05 0.032107 0.216 
72 0.005179 7.21E-05 0.045365 0.235 
76 0.005607 6.45E-05 0.06625 0.230 
80 0.005429 7.41E-05 0.081869 0.252 
84 0.005525 8.22E-05 0.091911 0.282 
88 0.0055 8.9E-05 0.096808 0.274 
92 0.005679 8.49E-05 0.100676 0.266 
96 0.005857 8.41E-05 0.101893 0.341 

100 0.006179 5.27E-05 0.101557 0.399 
104 0.006494 5.18E-05 0.100441 0.408 
108 0.006673 5.24E-05 0.09891 0.392 
112 0.007179 4.35E-05 0.098409 0.385 
116 0.007643 7.18E-05 0.097243 0.454 
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120 0.007964 8.56E-05 0.096991 0.486 
124 0.008643 7.46E-05 0.095054 0.477 
128 0.00858 8.13E-05 0.092885 0.389 
132 0.009179 5.42E-05 0.091017 0.399 
136 0.009893 5.49E-05 0.089653 0.413 
140 0.010571 4.53E-05 0.087814 0.350 
148 0.013714 6.04E-05 0.087706 0.391 
164 0.012893 0.000105 0.07983 0.410 
168 0.013286 7.03E-05 0.076217 0.437 
176 0.014464 7.35E-05 0.073618 0.473 
180 0.015286 7.29E-05 0.071009 0.426 
184 0.016419 7.92E-05 0.06904 0.433 
188 0.017107 7.08E-05 0.067683 0.470 
192 0.017357 7.69E-05 0.06629 0.473 
196 0.018036 7.97E-05 0.064663 0.554 
200 0.018304 7.78E-05 0.06143 0.477 
204 0.018967 7.88E-05 0.060409 0.513 
208 0.018643 7.97E-05 0.058652 0.432 
212 0.021464 8.21E-05 0.056796 0.412 
216 0.022321 8.42E-05 0.054916 0.372 
220 0.022179 8.33E-05 0.053182 0.432 
224 0.022974 8.2E-05 0.052098 0.432 
228 0.023415 8.1E-05 0.050573 0.498 
232 0.023357 7.8E-05 0.048532 0.472 
236 0.025607 8.57E-05 0.046809 0.492 
240 0.025393 7.68E-05 0.044029 0.451 
244 0.025536 9.37E-05 0.040607 0.512 
248 0.029512 8.97E-05 0.040998 0.524 
260 0.02875 8.65E-05 0.034833 0.508 
264 0.029929 8.2E-05 0.032701 0.460 
268 0.030143 9.39E-05 0.031534 0.463 
272 0.031565 0.000102 0.029629 0.441 
276 0.0325 9.45E-05 0.028113 0.417 
280 0.032333 9.02E-05 0.026599 0.508 
284 0.034821 9.13E-05 0.024665 0.575 
288 0.034679 6.41E-05 0.022899 0.545 
292 0.035846 8.45E-05 0.021662 0.610 
308 0.035821 0.000103 0.015355 0.562 
312 0.036143 0.0001 0.013536 0.608 
316 0.033893 9.61E-05 0.013138 0.561 
320 0.03574 9.69E-05 0.012461 0.543 
324 0.035385 9.82E-05 0.011779 0.558 
328 0.036571 9.46E-05 0.009776 0.532 
332 0.03675 9.32E-05 0.007653 0.583 
336 0.03725 0.000108 0.005553 0.582 
340 0.039143 9.9E-05 0.003387 0.615 
344 0.03875 9.7E-05 0.001139 0.651 
348 0.039357 8.69E-05 1.67E-05 0.551 
352 0.039 9E-05 1.29E-05 0.583 
356 0.039 9.22E-05 5.74E-06 0.632 
360 0.039214 8.74E-05 1.55E-05 0.627 

 

 




