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A b str a c t

Symmetry is one of the most im portant guiding principles in the formulation of 

modern physical theories and it also plays a major role in determining and constraining 

the dynamics of such theories. This is particularly true in the context of quantum field 

theory and string theory. In this thesis, symmetry aspects of two of the most important 

aspects of these theories are studied, namely black holes and D-branes.

Part I of the thesis focuses on several black hole solutions in four and higher dimen­

sions. Specifically, the Kerr-(A)-de Sitter and the Myers-Perry metrics in all dimensions, 

some charged rotating supergravity black hole solutions in four and five dimensions, and 

a class of NUT charged black holes in several dimensions are studied. The separability 

of the Hamilton-Jacobi equation describing the propagation of classical particles and the 

Klein-Gordon equation describing the propagation of scalar fields in these spacetimes is 

analyzed. This analysis provides information regarding the spacetime symmetry group, 

and in many cases, non-trivial Killing tensors are found, whose existence is directly 

responsible for enhancement of symmetry that permits separation.

Part II of the thesis focuses on D-branes. In recent years, it has been realized that 

D-brane dynamics are heavily dominated by their charges. The macroscopic approach to 

D-brane charges involving K-theory and cohomology only calculates the charge groups, 

but not the explicit charges of the D-branes. Conformal field theory techniques can 

be used in a microscopic approach to determine D-brane charges. This calculation is 

explicitly carried out for a class of Wess-Zumino-Witten models describing string theory 

011 Lie groups. Specifically, the D-brane charges of the group D4 twisted by triality and 

the group E q twisted by charge conjugation are calculated explicitly. Along the way a 

number of non-trivial and surprising Lie theoretic identities are established and proved. 

The charges are also determined for the D-branes of the non-simply connected group 

E q/Z s twisted by charge conjugation.
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C hapter 1

The Grand Scheme of Things

The concept of symmetry has become the fundamental guiding principle in the formula­
tion and study of most aspects of theoretical physics, and particularly so in high energy 
physics and in theories of gravity. The importance of symmetry was essentially first ap­
preciated in quantum  field theory, where the so-called Landau-Ginzburg approach com­
pletely formulates the theory through symmetry demands on the fields of interest [1 ,2]. 
The lessons learned in quantum field theory have made the study of symmetries one of 
the most powerful tools in both the formulation and the dynamical structure of string 
theory.

Another lesson learned from quantum field theory is the extent to which the dynamics 
of the theory is dominated by solitonic. structures when they are present. In quantum field 
theory, these are usually in the form of vortices, instantons, monopoles, domain walls, etc. 
[1.3,4]. In fact important phenomena like vacuum tunneling, and the Dirac, quantization 
condition on charge are direct consequences of solitonic physics. In recent years, it has 
been learned that string theory formulations are incomplete without accommodating for 
solitons. In fact, it has been shown that string theories are completely inconsistent, 
inaccurate, and unpredictive if the solitonic sectors of the theory are ignored [5]. It has 
also been realized that solitonic structures are even more im portant than string dynamics 
itself in the large string tension limits of the theory [6.7]. The two most important 
classes of solitons in string theory are black holes and D-branes. This thesis examines 
the symmetry structure and the resulting dynamical constraints for many important 
black holes and D-branes occurring in various limits of string theory.

The first part of this thesis deals with the study of several classical black holes in four 
and higher dimensions. The classical Hamilton-Jacobi equation describing the motion of 
massive and massless particles in these backgrounds is studied and is shown to be sepa­
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C H A P TE R  1. THE GRAND SCHEME OF THINGS 2

rable in several important situations. In addition, the Klcin-Gordon equation describing 
the propagation of massive and massless scalar fields in these backgrounds is also stud­
ied, and separability is established for the same situations. In the process, expressions 
are obtained for Killing vectors that generate the various spacetime symmetries of these 
backgrounds, thereby obtaining information regarding the spacetime symmetry groups. 
In addition, non-trivial second-rank Killing tensors are found for many of these space­
times, which provide the analogue of the Carter constant and permit separation of both 
equations. Killing tensors are “symmetries” 011 phase space which are conjectured to be 
very interesting quantities in string theory, particularly in the context of the so-callccl 
A dS/C FT correspondence.

The second part of the thesis deals with the study of D-brane charges of Wess-Zumino- 
W itten (WZW) models. WZW models describe string theory on a group manifold, and 
are of great current interest, as they are exactly solvable as Conformal Field Theories 
(CFT) [8]. In addition, some WZW models are exactly dual to string theory models of 
phenomenological interest. The dynamics of D-brancs are constrained heavily by their 
conserved charges. The study of D-brane charges was initially investigated using the 
powerful geometric tools of K-theory, whereby it was realized that D-brane charges can 
be interpreted as instantons on the D-branes [9]. However, K-theoretic calculations turn 
out to provide information regarding the charge groups of the D-branes only, but not 
the actual charges of the D-branes specifically. A more “microscopic” and complete ap­
proach is to use a Boundary Conformal Field Theory (BCFT) calculation of the D-brane 
charges. This calculation is carried out in detail and the charges are determined for the 
charge conjugation twisted E 6  branes, and triality twisted D 4  branes, which completes 
an important previously missing section of the D-brane charge research literature. In 
addition, several non-trivial results regarding simple current symmetries of the affine 
Lie algebras in the context of WZW models are established. The charge calculations 
for D-branes on the non-simply connected group twisted by charge conjugation
are also presented. This part also begins with a self-contained introduction to affine Lie 
algebras, WZW models and their fusion rules, and BCFT D-brane charge calculations. 
A short introduction to some methods of conformal field theory is also presented in an 
appendix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

Bibliography

[1] A. Zee, Quantum field theory in a nutshell, Princeton University Press, Princeton, 
2003.

[2] M.E. Peskin and D.V. Schroeder, A n introduction to quantum field theory, Perseus 
Books, Cambridge, 1995.

[3] S. Weinberg, Quantum theory of fields: volume I, Cambridge University Press, Cam­
bridge, 1995.

[4] S. Weinberg, Quantum theory of fields: volume II, Cambridge University Press, 
Cambridge. 1996.

[5] M.S. Nanton. Topological solitons. Cambridge University Press, Cambridge, 2004.

[6] J. Polchinski. String theory: volume I, Cambridge University Press, Cambridge, 
1998.

[7] J. Polchinski, String theory: volume II, Cambridge University Press, Cambridge, 
1998.

[8] P. di Francesco, P. Mathieu and D. Senechal, Conform,al Field Theory, Springer- 
Verlag Inc.. New York. 1997.

[9] J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane instantons and K-theory 
charges, JHEP 0111 (2001) 062, hcp-tli/0108100.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

P art I

Sym m etries of Higher 
Dim ensional Black Hole 

Spacetim es

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

C hapter 2 

Introduction

Solutions of the vacuum Einstein equations describing rotating black hole spacetimes in 
higher dimensions are of great current interest due to many recent developments in high 
energy physics and gravity. Models of spacetimes with large extra dimensions that have 
been proposed to deal with several questions arising in modern particle phenomenology 
(e.g. the hierarchy problem) naturally include such higher dimensional black hole solu­
tions [1-3]. These models are also of interest in the context of mini-black hole production 
in high energy particle colliders, which would provide a window into non-perturbative 
gravitational physics [4,5],

Higher dimensional black hole solutions also find a natural description in superstring 
and M-theory due to their 10 or 11 dimensional ambient spacetimes. Branes present in 
these theories can also support black holes, thereby making black hole solutions in an 
intermediate number of dimensions physically interesting as well. Solitonic objects in 
superstring theory frequently find a natural description in terms of higher dimensional 
black holes. In fact the black hole entropy calculation in string theory makes use of 
such a description where black holes are related to collections of D-branes. They provide 
important keys to understanding strongly coupled non-perturbative phenomena which 
cannot be ignored at the Planck/string scale [6,7].

W ith phenomenological interest now in a universe with nonzero cosmological con­
stant. it is also important to consider spacetimes describing rotating black holes with 
a cosmological constant. Another motivation for including a cosmological constant is 
driven by the A dS/C FT correspondence. The study of black holes in an Ant.i-de Sitter 
background could give rise to interesting descriptions in terms of the CFT on the bound­
ary leading to better understanding of the correspondence [8,9]. There is also a very 
strong need to understand the structure of geodesics in the background of black holes
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C H APTER 2. INTRODUCTION 6

in Anti-de Sitter backgrounds in the context of string theory and the A dS/CFT corre­
spondence. This is due to the recent work in exploring black hole singularity structure 
using geodesics and correlators on the dual CFT on the boundary [10-15].

In this part of the thesis the separability of the Hamilton-Jacobi equation in many 
such spacetimes. which can be used to describe the motion of classical massive and 
massless particles (including photons), is studied. Separation of the equation is explic­
itly demonstrated and carried out in these backgrounds for many cases. This explicit, 
separation is used to obtain first-order equations of motion for both massive and massless 
particles in these backgrounds. The equations are obtained in a form that could be used 
for numerical study, and in the case of spacetimes with cosmological constant, also in 
the study of black hole singularity structure using geodesic probes and the AdS/CFT 
correspondence.

The Klein-Gordon equation describing the propagation of massive and massless scalar 
fields in these spacetimes is also studied. Separation is again explicitly shown for the 
same situations that the Hamilton-Jacobi equation is separable.

In many of these spacetimes, separation is possible for both equations due to the ex­
istence of a second-order non-trivial irreducible Killing tensor. These are generalizations 
of the Killing tensor in the Kerr black hole spacetime in four dimensions constructed 
in [16], w'hich was subsequently described by Chandrasekhar as the “miraculous prop­
erty of the Kerr metric” . The Killing tensor provides an additional integral of motion 
necessary for complete integrability. The Killing vectors of the spacetimes, which are 
the generators of the spacetime symmetries, are explicitly constructed, and their role 
in the separability of both equations is demonstrated. By this procedure, information 
regarding the complete symmetry groups of these spacetimes is obtained.

The published text of the papers appears in the following six chapters, with very 
minor changes to correct errors and update the bibliographies.

Chapter 3 deals with the recently discovered Kerr-(Anti) de Sitter metrics in all 
dimensions [17.18]. Separation is carried out in the case where all the rotation parameters 
are equal. This also needs the restriction that the spacetime is odd-dimensional.

Chapter 4 deals with the Myers-Perry metrics describing rotating black holes in 
higher dimensions without a cosmological constant. Separation is carried out in the case 
where there are only two sets of possibly unequal rotation parameters. [19]

Chapter 5 deals with two rotating supergravity black hole solutions with charge in 
four and five dimensions. Separation is established in all cases.

Chapter 6 deals with a general class of rotating black hole spacetimes carrying NUT 
charge. Separation is established in all cases.
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C H APTE R 2. INTRODUCTION 7

Chapter 7 deals again with the Kerr-(Anti) de Sitter metrics from Chapter 3. Separa­
tion is now established for the case where there are two sets of possibly unequal rotation 
parameters. This removes the restriction on dimensionality and is now applicable in all 
dimensions. This encompasses the results of Chapters 3 and 4. This also appears to be 
the most general case for this class of black holes where separability is possible.
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C hapter 3

Equal Param eter Kerr-de Sitter 
M etrics

3.1 Introduction

Solutions of the vacuum Einstein equations describing black hole solutions in higher 
dimensions are currently of great, interest. This is mainly due to a number of recent 
developments in high energy physics. Models of spacetimes with large extra dimensions 
have been proposed to deal with several questions arising in modern particle phenomenol­
ogy (e.g. the hierarchy problem) [1] [2] [3]. These models allow for the existence of higher 
dimensional black holes which can be described classically. Also of interest in these mod­
els is the possibility of mini black hole production in high energy particle colliders which, 
if they occur, provide a window into non-perturbative gravitational physics [4] [5].

Superstring and M-Theory, which call for additional spacetime dimensions, naturally 
incorporate black hole solutions in higher dimensions (10 or 11). P-branes present in 
these theories can also support black holes, thereby making black hole solutions in an 
intermediate number of dimensions physically interesting as well. Black hole solutions in 
superstring theory are particularly relevant since they can be described as solitonic ob­
jects. They provide important keys to understanding strongly coupled non-perturbative 
phenomena which cannot be ignored at the Planck/string scale [6] [7],

Astrophysically relevant black hole spacetimes are, to a very good approximation, 
described by the Kerr metric [8]. One generalization of the Kerr metric to higher di­
mensions is given by the Myers-Perry construction [9]. W ith interest now in a nonzero 
cosmological constant, it is worth studying spacetimes describing rotating black holes 
with a cosmological constant. Another motivation for including a cosmological constant
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is driven by the A dS/C FT correspondence. The study of black holes in an anti-de Sitter 
background could give rise to interesting descriptions in terms of the conformal field 
theory on the boundary leading to better understanding of the correspondence [10] [11]. 
The general Kerr-de Sitter metrics describing rotating black holes in the presence of a 
cosmological constant have been constructed explicitly in [12] [13].

In this paper we study the separability of the Hamilton-Jacobi equation in these 
spacetimes, which can be used to describe the motion of classical massive and massless 
particles (including photons). We also investigate the separability of the Klein-Gorclon 
equation, describing a spinlcss field propagating in this background. For both equations, 
separation is possible in some special cases due to the enlargement of the dynamical 
symmetry group underlying these metrics. We construct the separation of both equations 
explicitly in these cases. We also construct Killing vectors, which exist due to the 
additional symmetry, and which permit the separation of these equations. We also 
derive and study equations of motion for particles in these spacetimes.

3.2 C onstruction  and O verview of th e K err-de Sitter M et­
rics

A remarkable property of the Kerr metric is that it can be written in the so-called Kerr- 
Schild [14] form, where the metric g^u is given exactly by its linear approximation around 
the flat metric as follows:

d s 2 =  g ^ d a T d x 1'  =  g ^ d a C d x 1' +  (k ^ c h C )2 , (3 .1)

where kM is null and geodesic with respect to both the full metric ĝ lu and the flat metric 

V w
The Kerr-de Sitter metrics in all dimensions are obtained in [12] by using the de 

Sitter metric instead of the flat background r/^ , with coordinates chosen appropriately 
to allow for the incorporation of the Kerr metric via the null geodesic vectors Aqt . We 
quickly review the construction here.

We introduce n =  [D/2] coordinates /q subject to the constraint

n
=  (3-2)

i= 1

together with N  = {(D — l)/2] azimuthal angular coordinates </;, the radial coordinate 
r, and the time coordinate t. When the total spacetime dimension D  is odd, D  =
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2n + I — 2N  +  1, there are n  azimuthal coordinates fa, each with period 27T. If D is 
even, D =  2n = 2N  + 2, there are only N  — n — 1 azimuthal coordinates bn Define e to 
be 1 for even D, and 0 for odd D.

The Kerr-de Sitter metrics ds2  in D dimensions satisfy the Einstein equation

R/J.V =  (D -  1) Xg^u • (3.3)

Define IE and F  as follows:

n  2 ,2 n  2

IE =  V  , F  =  r —  V  . (3.4)
^  1 +  A of ' 1 -  A r 2 r 2 + a2I—l 1 1 = 1  r

In D  dimensions, the Kerr-de Sitter metrics are given by

9 M
ds2  = ds2 + j j- (k ^ d x > 1)2 , (3.5)

where the de Sitter metric ds2, the null vector k„, and the function U are now given by

n  2 i . 2  n ~ c  2 i 2

ds2  = - W { 1  -  A r2) dt2  + F d r 2  + ^  <1$
"  1 +  A a~ f - '  1 +  A a-1=1 «' '1 = 1 '

+
A / ^  (r2 +  af) iM dm \  2

IE (1 — A r 2) V 1 +  A a?
1 =  1 1

n - c  2

=  IE dt +  F  dr -  V  ai , (3.7)
M ^ 1  +  Aa2 17 =  ]

u  = E  ^ 2  n V 2 + d )  ■ (30
i= 1 1 j= l

In the even-dimensional case, where there is no azimuthal coordinate <f>„, there is also 
no associated rotation parameter; i.e., an = 0. Note that the null vector corresponding 
to the null one-form is

^  I -  + #  -  E  -T -  ■ ^1 -  A r -  dt dr f - '  r2 +  a~ 9<t>i 1=1 1

This is easily obtained by using the background metric to raise and lower indices rather
than the full metric, since k is null with respect to both metrics.

For the purposes of analyzing the equations of motion and the Klein-Gordon equation, 
it is very convenient to work with the metric expressed in Boyer-Lindquist coordinates.
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In these coordinates there are 110 cross terms involving the differential dr. In both even 
and odd dimensions, the Boyer-Lindquist form is obtained by means of the following 
coordinate transform ation:

2 M  dr 2 M  o, dr
d t  =  dT + ( l - \ r ! ) ( V - 2 N i >  ' # .  = ^ . - V . * + (,.2 + 0?)(F_ , M)- (310)

In Boyer-Lindquist coordinates in D  dimensions, the Kerr-de Sitter metrics are given by

, 9 TT7 . 9 , , 9 , U dr '2 2M  /  ai dip
* -  =  - " ' ( 1 - A' - |dT  + w t i m  + — ( * - E i t i p(.= 1

n  9  ■) 71— e 9  , 9
\  ^ +  a : 2 , \  ^ r +  aJ 2 M \ J \2

+  1 ■ d ?Li +  1 , \  9  U i (d 'E i -  a  a , : d r )f - f  1 i- A ar "  1 +  A a~1=1 '■ i=i *

^ (7̂  +  N
W (1 — A?’2) V 1 +  Aa2 ,1 ’ ^■ilJi—i *

where V  is defined here by

V  =  r t -2 (l -  Ar2) n V 2 +  «2) =  ^ ,  (3-12)
■i=i

Note that obviously an =  0 in the even dimensional case, as there is no rotation associated 
with the last direction.

3.3 O btaining the Inverse M etric

Note that the metric is block diagonal in the (/q) and the (r. r. yq) sectors and so can be 
inverted separately.

To deal with the ( r ,r ,^ i)  sector, the most efficient method is to use the Kerr-Schilcl 
construction of the metric. From (3.1) and using the fact that k is null, we can write

2M
=  f c ' r ,  (3 .13 )

where 77 here is the de Sitter metric rather than the flat metric, and we raise and lower 
indices with 77. Since the null vector k has no components in the /q sector, we can regard 
the above equation as holding true in the (r, r, </?,•) sector with k null here as well. Then 
we can explicitly perform the coordinate transformation (3.10) (or rather its inverse) 011
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the raised metric to obtain the components of c/1" in Boyer-Lindquist coordinates in the 
(?’, r, ipQ sector.

We get the following components for the (? \r, gy) sector of g ^ :

gTr = = o ,
V  -  2M

grr = u  

gTT =  Q -
4 M 2

U{ 1 -  Ar 2)2(V -  2M ) ‘
4M 2 a ,( l + Aa2) 2M  a,

giPl X0'iQ  {7(1 — \ r 2)2(V — 2M )(r 2 +  a2) U (1 -  Ar2)(r2 +  a2'
(1 +  A a 2)

 o u ' T  '  ii. 'i y /  - r  '
'i

4M 2a,-a,-(l -I- Aa2)(l +  Aa2)
■ 1 3 (3.14)

(r- +  a V /r

H(1 -  Ar2)2(U -  2M )(r2 +  a2) (r2 +  a2) ’ 

where <5 and are defined to be

1 2M  1 
Q ~ ~  W (  1 -  Ar2) “  U (1 -  Ar2)2 : 3̂,15)

Qij =
- 4 M 2 \a,iaj[(l +  Xa?)(r2 +  a2) +  (1 +  A a2)(r2 +  aj

U( 1 -  Ar2)2(V -  2M )(r2 +  a2) (r2 +  a2)

2M 2M Aa,;a,'
+

17 (r2 +  a2)(r2 +  a 2) (7(1 -  Ar2) |_(r2 +  a2) (r

4M 2a*aj[(l +  Aa2) +  (1 +  Aa2)]

|)7(1 -  Ar2)2(V  -  2M )(r2 +  a2)(r2 +  a (3.16)

These results were compared to previously known ones in the case of A — 0 and 
showed agreement [15]. Also, we used the GRTensor package for Maple explicitly to 
check that this is the correct inverse metric [16].

Note that the functions W  and U both depend explicitly on the /Vs. Unless the 
(r, r. <pi) sector can be decoupled from the p. sector, complete separation is unlikely. If 
however, all the V s  are equal, then the functions W  and U are no longer q dependent 
(taking the constraint into account). W ith unequal values of the rotation parameters a,;, 
separation does not seem to be possible in this coordinate system, and it is likely that 
a different coordinate system might be needed to analyze separability in those cases.
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We will consider the case where all rotation parameters arc equal: a,; =  a. Then we 
explicitly show separability. Note that since an =  0 by definition for even dimensional 
cases, we will restrict our attention to odd dimensional spaces. In the discussions that 
follow, we explicitly set all rotation parameters equal, and assume that the spacetime 
dimensionality is odd.

Note that the p sector metric is completely diagonal upon assuming that the rotation 
parameters are equal and upon imposing the constraint. Consider the last term in 
equation (3.11) in the case of odd dimensions with all a,; =  a. In this case the term reads

However, by differentiating the constraint (3.2) we get )T)?: p,-dpj =  0. Hence upon 
imposing the constraint this term vanishes from the metric, and the corresponding term 
vanishes from the inverse metric (and thus in the Hamilton-Jacobi equation.)

Now that the p ?;’s are constrained by (3.2), we can use independent coordinates. 
Since the constraint describes a unit (n — 1) sphere in p. space, the natural choice is to 
use spherical polar coordinates. We write

with the understanding that the product is one when i = n  and that 9„ — 0. The p 
sector metric can then be written as

again with the understanding that the product is one when i = 1 . This diagonal metric 
can be easily inverted to give

(3.17)

(3.18)

(3.19)

(3.20)
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3.4 T he H am ilton-Jacobi Equation and Separation

The Hamilton-Jacobi equation in a curved background is given by

= H =  (3.21)
dl 2 did1 d x u

where S  is the action associated with the particle and I is some affine parameter along 
the worldline of the particle. Note that this treatm ent also accommodates the case of 
massless particles, where the trajectory cannot be parametrized by proper time.

Using (3.14) and (3.20), we write the Hamilton-Jacobi equation in odd dimensions 
with all rotation parameters equal as

}dS_ 
J dl

4 M 2

U{ 1 -  Ar 2 f { V  -  2M) 

4 M  a

3S_
dr

q(l +  A a2) OS 
r 2  + a2 ^  dtfi

7. =  1

8 M 2 OS
U{ 1 -  Ar2) (r2 +  a2) ^  dr dipt U( 1 -  Ar2)2(U -  2M) \  dr

V ' pi? 83  +  ^ °2) \  ‘
^  dVidtpj +  (r2 +  a2) /j2 { d < f j

V
u

2 M  fdS^ 
dr

(1 +  A a 
' (r2 +  a2

2 \ n “ 1

ij= 1 

1
V

( n ’fc= is in2 0fc

dS_
ddi Q

ds s ^  ds
—— h A a y  —— 
d r  <3^

2 =  1

(3.22

Note that here the p., are not coordinates, but simply notation defined by (3.18). The 
set of coordinates relevant to the problem is (r.r.ipi.Oj). Note also that the functions 
U, W, Q, and are all now independent of the (9,;; i.e., in the Hamilton-Jacobi equation, 
the r sector has completely decoupled from the 0,; sector.

Now we can attem pt a separation of coordinates as follows. Let

S  = \ m 2l -  E t + Y ,  L m  +  Sr(r) + ] T  S^ ) .
n— 1

(3.23)
i=i i = l

t  and ipi are cyclic coordinates, so their conjugate momenta are conserved. The conserved
quantity associated with time translation is the energy E , and those with rotation in the 
<Pi are the corresponding angular momenta Li, all of which are conserved. Applying this 
ansatz to (3.22), we can separate out the overall 9 dependence as
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4 = E
i=i

L

n z i i  sin2 0fc cos2 0n _ i+1
+ £

f d S 8i (3.24)

where J 2 is a constant. The separated r  equation is

A' =  m 2 (r2 +  a2) +  Q(r 2  + a2)

4 M 2 (r2 +  a2)
+ U{ 1 -  \ r 2)2(V  — 2M)

-E  +  Aa 'y ( Z,;
i=l

+
(K -  2M )(r 2 + a2

U
dSr,
dr

a( 1 +  Aa2) y -
r -  4 -  17.2 Z ^ L ‘

? := i

8 M  E  (r + a ) 
'U(  1 -  \ r 2 ) ( V - 2 M ) + {r2 + a2) J 2  dZ'/. +

id- 1

4M aE
H(1 -  A?'

y  (3.25)
i=l

where this separation constant is K  =  —(1 +  Aa2 ) J 2. At this point the ( r . r . ^ )  coor­
dinates have been separated out. To show complete separation of the Hamilton-Jacobi 
equation we analyze the 9 sector (3.24).

The pattern here is that of a Hamiltonian of a classical (non-relativistic) particle on 
the unit (n — 1) p,-sphere, with some potential dependent on the squares of the /q. This 
can easily be additively separated following the usual procedure, one angle at. a time, 
and the pattern continues for all integers n > 2 .

The separation has the following inductive form for k — 1,.... n  — 2:

t '2 ■ 2 a L n- k +1 sin . 2  a ( ĉ SkJk sm cfc---------------------  sm“ 0fc' - Acos2 Ok dBk = J ifc+i •

4m -  E
T ' 2

n —i+1
n - 1

E
i=k+1 (n}=fe+i sin“ Ojj cos2 9i t=k+i (n}=fc+i s iir  di

The final step of separation gives

, L\  , f d S 0n_,

dSei
d.9.

(3.26)

= (3.27)
n 1 cos2 0„_i sin2 0„_i V dOn-i 

Thus, the Hamilton-Jacobi equation in odd dimensional Kerr-de Sitter space with all
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rotation parameters a,: =  a has the general separation

1 n  n —1

S =  - m2l -• V  Lupi +  Sr(r) + E  S 'e , ( # i ) , (3.28)
;=i ?:=i

where the 9i are the spherical polar coordinates on the unit ( n — 1) sphere. Sr(r) can be 
obtained by quadratures from (3.25), and the Sof again by quadratures from (3.26) and 

(3.27).

3.5 The Equations of M otion

3 .5 .1  D e r iv a tio n  o f  th e  E q u a tio n s  o f  M o tio n

To derive the equations of motion, we will write the separated action S  from the 
Hamilton-Jacobi equation in the following form:

i n  r r    " - 1 r O i  ------------

s  = - m 2l - E t  + Y I  L m  +  J  \J R(r ' )dr '  +  E  /  V 0 i  ^ d0i t3 '29)
i=i

where
St

Sill
T2-Si-fc+i 
cos2 0 fc

j—l

k — 1  n — 1 (3.30)

(1 + A a2)U QU
( V - 2 M ) ( r 2 + a?) [V -  2M)

U 4 M 2

—f t  An 'y  ̂Lj:
i=i

-m
( V - 2 M )  ( 1 - A r l f ( V -

4 MaE  v '  8 M 2E2
(V — 2M)(r2 +  a2) 4—i 1

n(l +  A a2) j
E +  r 2 +  0! E L ‘

i=i
U

i=i (1 -  Ar2)(V -  2M )2 ( V - 2  M)■ *j=i

(3.31)

where Q and are functions of r given in (3.16) (with all a* =  a). For convenience, we 
define J2 = L\.  (Note that J 2 is obviously not a new conserved quantity. It is simply 
written this way to facilitate the inductive definition given above for @.„_i).

To obtain the equations of motion, we differentiate S with respect to the parameters 
m2, E. Li. Jj  and set these derivatives to equal other constants of motion. However, we 
can set all these new constants of motion to zero (following from freedom in choice of 
origin for the corresponding coordinates, or alternatively by changing the constants of
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integration). Following this procedure, we get the following equations of motion: 

dr _  ( V -  2 M ) V R

WH./iW
i — I, ..., n -  1 (3.32)

dl U
d$i (1 +  Xa2)CWi
dl (?'2 +  o2) ( n jh 11 sin2 8 j)

8 M 2 (r2 +  a2) (  a ( l  +  Aa2) ^  \  16 M 2 E (r 2 + a2)
E +  ( K + n D  +(1 -  A?’2)2(V -  2M ) \  (r2 +  a2) ^  1)  U{ 1 -  Ar2)(K -  2M) '

We can obtain n more equations of motion which give the ^  in terms of the r. 9j 
coordinates by differentiating S  with respect to the angular momenta Lj. However, 
these equations are not particularly illuminating, but can be written out explicitly if 
necessary by following this procedure.

3 .5 .2  A n a ly s is  o f  th e  R a d ia l E q u a tio n

The worldline of particles in the Kerr-de Sitter backgrounds considered above are com­
pletely specified by the values of the conserved quantities E,L i ,  J 2, and by the initial 
values of the coordinates. We will consider particle motion in the black hole exterior. 
Allowed regions of particle motion necessarily need to have positive value for the quan­
tity R, owing to equation (3.32). We determine some of the possibilities of the allowed 
motion.

At large r. the dominant contribution to R , in the case of A =  0, is E 2 — m 2 . Thus 
we can say that for E 2  < m 2, we cannot have unbounded orbits, whereas for E '2 > m 2. 
such orbits are possible. For the case of nonzero A, the dominant term  at large r in R  
(or rather the slowest decaying term) is Thus in the case of the Kerr-anti-de Sitter 
background, only bound orbits arc possible, whereas in the Kerr-de Sitter backgrounds, 
both unbounded and bound orbits may be possible.

In order to study the radial motion of particles in these metrics, it is useful to cast 
the radial equation of motion into a different form. Decompose R  as a quadratic in E  
as follows:

-R =  a E 2  — 20 E  + 7  , (3.33)
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where

a
QU AM 8 M 2

V  -  2M  (1 -  Ar2)2(V -  2M )2 (1 -  Ar2){V -  2 M ) 2

f  QUXa 4M 2o(l 4- Aa2) 2M a  v
' ~  \ V ^ 2 M  +  (1 -  Xi'2)2(V — 2m)'2 (r2 +  a-) +  (V -  2M )(r2 +  dA ' ^  '

? := i

J f (  1 +  Xa2)U QUX2 a2 ( ^  V  M 2U 
(V -  2 M )  (r2 + a2) ~  V  -  2 M  I ^  1 ~ V  -  2 MKi=1 

n
4A/ a (1 +  Afl") E i _ _  e  (3.34)

( 1 - Ar2)2 ( E ~ 2 M ) 2 (r2 +  a2)2 1 V - 2 M\ i —1 /  aj—1

The turning points for trajectories in the radial motion (defined by the condition 
R  =  0) are given by E  =  V± where

=  0 ± < / p - a
a

These functions, called the effective potentials [15], determine allowed regions of motion. 
In this form, the radial equation is much more suitable for detailed numerical analysis 
for specific values of parameters.

3 .5 .3  A n a ly s is  o f  th e  A n gu lar  E q u a tio n s

Another class of interesting motions possible describes motion at a constant value of 6 i:. 
These motions are described by the simultaneous equations

0i(0* =  fli) =  ^ r ( 0 i  =  ■<?<) =  0, (3.36)ClUi

where 0; is the constant value of along this trajectory. These equations can be explic­
itly solved to give the relations

T '2  t '2
J i + 1 _  n —i — l

sin4 cos4 0 i
T’2 t 2

7*2 i + 1 , n — a4*1 • i i / o  o ~ \=  ^  ^ ----- W7T ! z =  1 , ....n  -  1 , (3.30s u r  9j cos2 9i

where, as before, J 2 — L\.  Note that if d, =  0 . then J 2+1 =  0. and if — tt / 2 , then

£ ' n - i + 1 ~  O '

Examining ©/. in the general case. 0k — 0 can only be reached if Jk+\ — 0, and
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9k — tx/ 2  can be only be reached if Tn-fc+1 =  0- The orbit will completely be in the 
subspace 9k =  0 only if =  L * _ i + 1  and will completely be in the subspace $k =  tt/2

Again these equations are in a form suitable for numerical analysis for specific values 
of the black hole and particle parameters.

3.6 D ynam ical Sym m etry

The general class of metrics discussed here are stationary and “axisyrnmetric” ; i.e., 
d /d r  and d/d<Pi are Killing vectors and have associated conserved quantities, - E  and 

In general if £ is a Killing vector, then is a conserved quantity, where p is the 
momentum. Note tha t this quantity is first order in the momenta.

W ith the assumption of odd dimensions and equality of all the ads, the spacetime 
acquires additional dynamical symmetry and more Killing vectors are generated. By 
setting the rotation parameters ay's equal, we have complete symmetry between the 
various planes of rotation, and we can “rotate” one into another. The vectors that 
generate these transformations are the required Killing vectors. We will construct these 
explicitly. Parametrize the rotation planes as follows:

again with the understanding that the product equals one when i = n  and that 9n — 0 . 
Define the rotation generators on the planes as

interesting, as it simply represents rotation in <pi, which is already known to generate 
a Killing vector. The L ab themselves are obviously not Killing vectors (aside from the 
trivial cases just mentioned), but the combinations

only if J'l =  ,/2+1.

(3.38)

L ai:i = adb — bda . (3.39)

where a and b can be any x l or yJ . The case of a = x l .b — y% for same i is not

~  L XiXj + Lyiyj , P i j  —  L Xiyj P L.j-.jyi . (3.40)
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are Killing vectors. Explicit expressions for these in polar coordinates in the case of 
n  =  2 can be found in [17] [18].

These additional Killing vectors exist, since the symmetry of the spacetime has been 
greatly enhanced by the equality of the rotation parameters. The (U{ 1))'" spatial rotation 
symmetry, where each U(l)  is the rotational symmetry in one of the planes, has been 
increased to a U (n) symmetry. This follows from the fact that we now have the additional 
symmetry of being able to rotate planes into one another.

The separation constants K  in (3.25) and j f  in (3.24) are conserved quantities that, 
are quadratic in the associated momenta. So these quantities must be derived from a 
rank two Killing tensor K IU' [19]. We will work with the J f . (We can ignore K  since 
it only differs from j f  by a constant factor.) Any conserved quantity A  that is second 
order in momenta is constructed from a Killing tensor as

f)c
^  =  (3-41)

Since the Hamilton-Jacobi equation can be fully separated, we should be able to
construct Killing tensors explicitly. It turns out however that these Killing tensors are
not irreducible; i.e., they can be constructed as linear combinations of tensor products 
of the Killing vectors present due to the increased symmetry.

Comparing (3.24), (3.26) and (3.27) with (3.41), where the conserved quantities are 
j f , we can obtain the following Killing tensors:

K n \  =  — ^ 7  t f h t f h - F -y r  < « , + < $  8 %  , ,
!_1 sm 9n- \  cos $7i—i y'2 v2 8 n - 1 n_1 '

K T  = ffjT , +  - 4 t t ^  , X  i , +  K  %  i k = l  «  -  2 , (3.42)sin Ok cos 9k <>h vk

which can be written as

fc -1 -1  f c - l -1  i — 1

Kn-k = 5 3 ' -  • <K- 53 53  sVmi 9^  ® 9fij)
1 — 1 1 =  1 j  =  1

f c - y  1  i  — 1  I v - f l  2 — 1

+  5 3  5 3 ^ ’ ® €ij +  5 3  5 3 ^ =  li •■•>n — 1 1 (3.43)
? ; = i  j = 1 i = l  j = \

where J f  — i C ^ p ^ .
Therefore, as we can see from the form of the Killing tensors, they can explicitly be 

obtained from quadratic combinations of the Killing vectors 9 ^ ,  Cj, and py.
This is a demonstration of the fact, that in this case separation of the Hamilton-
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Jacobi equation is possible due to the enlargement of the symmetry group in the case of 
all a,; =  a.

where we have included a curvature dependent coupling. However, in the Kerr-(anti) 
cle Sitter background, R — A is constant. As a result we can trade off the curvature 
coupling for a different mass term. So it is sufficient to study the massive Klein-Gordon 
equation in this background. We will simply set a — 0 in the following. Variation of the 
action leads to the Klein-Gordon equation

As discussed by Carter [20], the assumption of separability of the Klein-Gordon 
equation usually implies separability of the Hamilton-Jacobi equation. Conversely, if the 
Hamilton-Jacobi equation does not separate, the Klein-Gordon equation seems unlikely 
to separate. We can also see this explicitly (as in the case of the Hamilton-Jacobi 
equation), since the (r, r, y?*) sector has coefficients in the equations that explicitly depend 
on the m  except in the case of all a,; =  a. Thus, we will once again restrict our attention 
to the case of all a,; =  a in odd dimensional spacetimes.

Once again, we impose the constraint (3.2) and decompose the /q in terms of spherical 
coordinates as in (3.18). We calculate the determinant of the metric to be

3.7 The Scalar Field Equation

Consider a scalar field T with the action

dDr v/V ^((V T )2 +  aRAf2  + m 2 H2) (3.44)

2y2n—2
(3.46)

For convenience we write g — —PA,  where

n — 1
(3.47)

j =i
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Then the Klein-Gordon equation in this background (3.45) becomes 

77?2 T =  Q
dr s/P  V f/ dr

+
AM2

77(1 -  Ar2)2(K -2 A f)  

AM a

d  a (l +  Aa2)GG c) 
dr r 2  +  a2 2 -j dp,

n -d -r\ ' eh 4/
' rh-Bin;

8 M 2

77(1 -  Ar2) (r2 +  a2) ^  drcG , 77(1 -  Ar2)2(V  -  2M) V, d r 2

qR  4 -  (-*- +  ^ ft2)
^ f ) i n . r ) ( n  - ( v ~  -L /V2 \ 2—̂  , ,2  \  f ) , n *dPidpj ' {r2 + a2) p 2 \ d p 2

X >.(w ^V (3.48)
\[A  . ,*j=i

We attem pt the usual multiplicative separation for 4/ in the following form:

T =  e - lEtel ^ L^ ‘T e{e1 ,....9n_ 1 ) ^ r{r) . (3.49)

Then the Klein-Gordon equation simplifies to give the following ordinary differential 
equation in r for &r (r):

~Q E  -  A0 ^  Li
i=i

AMaE  
2x777? i „7■

1 d r - { V - 2 M ) d A \ \  1 +  Aa21 T
<f>r +  —7=  — C P -  - ----  -  +  V 7----- ^A i< L r

s/P dr V 77 dr J (r2 + a2 )

77(1 — Ar2)(r2 +  a2) Ê m , .
8 M 2 E 2

7=1
77(1 — Ar2)2(F  — 2Af)

-  £  Q C.J. A k -
i j  = 1

AM2
77(1 -  \ r 2)2(V -  2M) E-

1 -j- Act'
r w +  a t=i

(3.50)

<fv.

We have separated all the 67 dependence into the separation constant K\  given by

77 — 1

K ' - v Xi= i

L

Pi 1
+ E  -M e ,, ,  (

V o V A  \  ‘  d 6 i  Ji = 1

;3.5i)

where xve have used the fact tha t <fi9i is diagonal, and that the m  are functions of the 
6 j  given by (3.18).

Equation (3.50) separates out the r  dependence of the Klein-Gordon equation, and 
gives the function 4V (r) when the differential equation is solved. We can also completely
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separate the 0* sector. Again, assume a multiplicative separation of the form

=  (3.52)

The 9 separation then reads as

k~~ 1  j '

K \  =  Aj +  fc_i k p'":'" i k — — 1, (3.53)
i= 1 n t i sin2

where

A,- -   „ (cos A sin2" - 21- 1* d$6
d>0i: cos 9{ sin2" 2i 1 9i n i =\  s™2 V d9

T ’2^n-i+l
cos2 9i n ; =i Sin2 9j

(3.54)

Then we inductively have the complete separation of the 19,; dependence as

T '  ^ n — k + l  , 1  d  (  n  ■ n  ( o  c c \= — wu y v -  + ----------- -— r 9„_9fc_T7r ITT cos0fesm 0fc— ^  , (3.55)sirr 9k cos- 9k <fr0k cos 9k sin - 0  ̂d9k \  ddk J

where k =  1 . — 1 , and we use the convention K n = —L\.
As a result we can write the complete separation of the Klein-Gordon equation (3.48) 

in the Kerr-de Sitter background in odd dimensions with all rotation parameters equal 
as

*  =  e - iJ£tei ^ L^ 0 1 {e1 ) . . ^ 0 n_1 (On. 1 ) ^ r (r) , (3.56)

where $ (r)  is obtained from (3.50), and the $ ^ ’s are the decomposition of the q sector 
into cigenmodes in independent coordinates 0,; on the /i sphere.

Note that the separation of the Klein-Gordon equation in this geometry is again due 
to the fact that the symmetry of the space has been enlarged. (We can explicitly see the 
role of the Killing vectors again in the separation of the r equation from the 9 sector in 
a very similar fashion to that in the Hamilton-Jacobi equation [20]).

Conclusions

We studied the separability properties of the Hamilton-Jacobi and the Klein-Gordon 
equations in the Kerr-de Sitter backgrounds. Separation in Boyer-Lindquist. coordinates 
seems to be possible only for the case of an odd number of spacetimc dimensions with all
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rotation parameters equal. This is possible clue to the enlarged dynamical symmetry of 
the spacetime. We derive expressions for the Killing vectors that correspond to the ad­
ditional symmetries. We also show that integrals of motion are obtained from reducible 
Killing tensors, which are themselves constructed from the angular Killing vectors. Thus 
we demonstrate the separability of the Hamilton-Jacobi and the Klein-Gordon equations 
as a direct consequence of the enhancement of symmetry. We also derive first-order equa­
tions of motion for classical particles in these backgrounds, and analyze the properties 
of some special trajectories.

Future work in this direction could include finding a suitable coordinate system to 
permit possible separation in an even number of spacetime dimensions. Different coor­
dinates might also be required to study the cases of unequal rotation parameters, since 
separation does not seem likely in Boyer-Lindquist coordinates. The study of higher-spin 
field equations in these backgrounds could also prove to be of great, interest, particularly 
in the context of string theory. Explicit numerical study of the equations of motion for 
specific values of the black hole parameters could lead to interesting results.
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C hapter 4

Two Param eter M yers-Perry  
M etrics

4.1 Introduction

Solutions of the vacuum Einstein equations describing black hole solutions in higher 
dimensions are currently of great interest. This is mainly due to a number of recent 
developments in high energy physics. Models of spacetimes with large extra dimensions 
have been proposed to deal with several questions arising in modern particle phenomenol- 
ogy (e.g. the hierarchy problem) [1] [2] [3]. These models allow for the existence of higher 
dimensional black holes which can be described classically. Also of interest in these mod­
els is the possibility of mini black hole production in high energy particle colliders which, 
if they occur, provide a window into non-perturbative gravitational physics [4] [5].

Superstring and M-Theory, which call for additional spacetime dimensions, naturally 
incorporate black hole solutions in higher dimensions (10 or 11). P-branes present in 
these theories can also support black holes, thereby making black hole solutions in an 
intermediate number of dimensions physically interesting as well. Black hole solutions in 
superstring theory are particularly relevant since they can be described as solitonic ob­
jects. They provide important keys to understanding strongly coupled non-perturbative 
phenomena which cannot be ignored at the Planck/string scale [6] [7],

Astrophysically relevant black hole spacetimes are. to a very good approximation, 
described by the Kerr metric [8], The most natural generalization of the Kerr metric 
to higher dimensions, for zero cosmological constant, is given by the Myers-Perry con­
struction [9]. (For a recent generalization with a cosmological constant, see [10], but 
a nonzero cosmological constant seems to thwart the type of separability demonstrated
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in the present paper, so here we shall take the cosmological constant to be zero.) The 
Myers-Perry metric also does not have charge, but since charged black holes are unlikely 
to occur in nature, we expect the Myers-Perry type black holes to be the most relevant 
type in spacetimes with extra dimensions.

In this paper, we analyze the separability of the Hamilton-Jacobi equation in Myers- 
Perry black hole backgrounds in all dimensions. We explicitly perform the separation in 
the case where there are only two sets of equal rotation parameters describing the black 
hole. We use this explicit separation to obtain first-order equations of motion for both 
massive and massless particles in these backgrounds. The equations are obtained in a 
form that could be used for numerical study.

We study the Klein-Gordon equation describing the propagation of a massive scalar 
field in this spacetime. Separation is again explicitly shown for the case of two sets of 
equal black hole rotation parameters. We construct the separation of both equations 
explicitly in these cases. We also construct Killing vectors, which exist due to the 
additional symmetry, and which permit the separation of these equations.

4.2 Overview o f the M yers-Perry M etrics

The Myers-Perry metrics are vacuum solutions of Einstein’s equations describing general 
rotating black hole spacetimes. The Kerr black hole in four dimensions needs an axis of 
rotation specified. In higher dimensions, this specification is no longer possible. Instead, 
we provide rotation parameters specifying rotations in various planes. As such, we use 
the construction described below.

We introduce n — [D/2] coordinates p.,; subject to the constraint

together with N  = [{D — 1 )/2] azimuthal angular coordinates <fii- the radial coordinate r. 
and the time coordinate r. When the total spacetime dimension D  is odd, D = 2n +  1 =  
2N  + 1, there are N  =  n  azimuthal coordinates 4>iy each with period 27T. If D  is even, 
D =  2n = 2N  +  2, there are only N  = n — 1 azimuthal coordinates ipj. Define e to be 1 
for even D, and 0 for odd D, so N  = n  — e.

In Boyer-Lindquist coordinates in D  dimensions, the Myers-Perry metrics are given

by

n
(4.1)

i = 1
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l2  j 2  U d r 2 2 M l ,
= - d r  +  _  +  P T “  2 ^  a ‘ M  dcf>1V  -  2 M  U .\  l—l

+ (r 2 +«<)  +  X ]  (r<J +  °<) ■ (4-2)

where

i=l  i=l

* = ''‘£Z^n<’J+
i = l  * j = l

2 \

aj)

f  =  ’s E nT“ +  a."i=l

v  =  U~2 J | ( r 2 +  a2) =  ^  . (4.3)
i = i

Note that obviously an =  0 in the even dimensional case, as there is no rotation associated 
with the last direction.

Since tha t the metric is block diagonal in the (/t,;) and the (r, r, fa) sectors, these 
sectors can be inverted separately. To deal with the (r , r , f a ) sector, the most efficient 
method is to use the Kerr-Schild construction of the metric. For details on construction 
of the inverse metric using the Kerr-Schild form, see [11].

We get the following components for the (r, r, fa.) sector of glw:

gTr =  / ‘r =  o ,
V  -  2 Mg'-’- =

u  '
=  - i -  2MV

g T C,

U{V -  2M )  ! 
2 MVa-j

U ( V -  2M )(r2 +  af) ’
V V  =  1______ V ________________ 2 M V  cijcij_____________

J (r2 + a ? )tf  U(U -  2M )(r- + o*)(r* +  aj) ' ’ J

Note that the function U depends explicitly on the /V s- Unless the (r, r, <V sector 
can be decoupled from the sector, complete separation is unlikely. If however, all the 
Oi =  a for some non-zero value a. then the U are no longer /i dependent (taking the 
constraint into account) and separation seems likely. Note, however, that in this case we
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cannot deal with even dimensional spacetimes, since an =  0 is different from the other 
a* =  a.

We will actually wrork with a much more general case, in which separation works in 
both even and odd dimensional spacetimes. We consider the situation in which the set 
of rotation parameters di take on at most only two distinct values a and b (a = b can 
be obtained as a special case). In even dimensions at least one of these values must be 
zero, since an =  0. As such in even dimensions we take 6 =  0 and a to be some (possibly 
different) value. In the odd dimensional case, there are no restrictions on the values of 
a ancl b. We adopt the convention

where m + p = N  + e = n.
Since the pf's are constrained by (4.1), we need to use suitable independent coordi­

nates instead. We use the following decomposition of the py

Since these constraints describe unit (m — 1) and (p — 1) dimensional spheres in 
the A and u spaces respectively, the natural choice is to use two sets of spherical polar 
coordinates. We write

with the understanding that the products are one when i — in or j  — p respectively, and 
that a rn =  0 and lip =  0.

The p  sector metric can then be written as

a,i =  a for i — bj =  b for j  = (4.5)

Pi = AjSin# for i =  1, ....m  , V-j+m =  cos 9 for j  = l , . . . .p .  (4.6)

where the Aj and Vj have to satisfy the constraints

m V

3 =  1

(4.7)

(4.8)

ds2tJ =  p2 dd2  +
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p - l  / i —1 \

+  (r2 +  b2) cos2 « y , [ T ]  sin2 3k j dfi2 , (4.9)
j = i  \ f c = i  /

again with the understanding that the products are one when i =  1 or j  =  1. We use 
the definition

p2 = r 2 +  a2  cos2 9 +  b2 sin2 9 . (4.10)

This diagonal metric can be easily inverted to give

/ '  =  y .

9° ,ai =  (r2 +  a£)sin2 $ ( n ^ l \s in 2a*) =

^  , 1 , . . . sr f y  • '• ./ i . . . . . / '•  (4.11)
; sill-1 • d j

For the case of two sets of rotation parameters that we consider here, the following 
symbols will be extremely useful in addition to p2\

A =  V - 2  M ,
N

n  =  jQ ( r2 +  a2) =  (r2 +  a2 )m(r2  +  b2)p~ ' ,
i=i

Z  = (r2 +  a2 )(r 2 + b2 ) . (4.12)

€ 2 TT
Note that these are functions of the variable r only. We note that U =  r b, .

4.3 The H am ilton-Jacobi Equation and Separation

The Hamilton-Jacobi equation in a curved background is given by

^  II '■ u -'t i  • (4-13)dl 2 oxi'1 o x "

where S is the action associated with the particle and I is some affine parameter along 
the worldline of the particle. Note th a t this treatm ent also accommodates the case of 
massless particles, where the trajectory cannot be parametrized by proper time.
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We can attem pt a separation of coordinates as follows. Let

m  P  m — 1 p — 1

S  — - m 2 l - E r + ' ) T ^ i < f i i + ' 5 ' i 4 > m + i + S r ( r ) + S o ( 8 )  + sP / S Q i { a i ) + ' ^ 2  S f t i P i )  ■ (4.14)
“  i= 1 i = l  i= 1 i= 1

r  and d>, are cyclic coordinates, so their conjugate momenta are conserved. The conserved 
quantity associated with time translation is the energy E. and the conserved quantity 
associated with rotation in each (pi is the corresponding angular momentum or T p 
We also adopt the convention that — 0 in an even number of spacetime dimensions. 

Using (4.4), (4.11), (4.12), and (4.14) we write the Hamilton-Jacobi equation (4.13)
as

/ r 2M Z  \  ^  2M a(r 2 +  b2 ^  ^  2M a r  +  a2 A  „  T
m 2 = -  1 +  -5 -^ x  E~ + ------- i-5-r---- 1 > E $ i  + ------

V r 2p2A  J r 2p2A ^  r 2p2Av / i=i i=i
A Z  /  dS r \ 2 1 1 A t 2

+  r t n 2 n  Jr -  +  (r-2 _L /-,2\ ,,2 +  ( r 2 , 2 ^  ,,2C p 2n  V d r  y  (r2 + Cl2) ^  p 2 (r 2 +  fl6) ^  ^

2M ar(r 2 +  62) ^  2Mb2 (r2 +  a2) ^  ^  _ _
A r 2p2(r 2 +  a 2) ^  ^  1 2 A r 2p2( r 2 +  b2) ^  ^  '

4 M a b ^ ^ „ T ^  1 ( dSa x 2
v l ( 2 p i  L  * 1 +  Z _ ^  f 2 I , . : „ 2  /) T T 'i -1  , . : „ TA r‘-p ,=1 j>=1 ,=1 (r2 +  a2) sin2 0 H U i  sin2 a k V da*

, v ____________ i____________1 4 i t^  (r 2 +  62) C0S2 0 n -iyli s in2 /3fc ^  d0i )  p i  \ d e  )

Note that here the /p are not coordinates, but simply quantities defined by (4.6). We 
continue to use the convention defined for products of sin2 cp and sin2 Qj defined earlier. 
Separate the a* and 0j coordinates from the Hamilton-Jacobi equation via

J f

L i  =

E
1

P

E
i= l

< t>2

N  +
ilr2 
—  + 
vt

rfSa?

n i t 1! sin2 «fe v da< 

n r i s m 2 /?fc d d
(4.16)

where J 2 and L \  are separation constants. Then the remaining terms in the Hamilton- 
Jacobi equations can be explicitly separated to give ordinary differential equations for r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. T W O  P AR AM ETER M YE R S-P E R R Y M ETRICS 35

and 0 :

• > * „ • > /  2 2 i i m  A Z  f d S A  - 2M «(r»+  # » ) * „

V '  ̂ 7 1=1
•2M6(r-’ +  a2) A  „ T 2Ma V  +  1>2) C l  ™ 4M ai W  CC

i = l  V '  i = 1 j  =  l  j = l  ,; =  1

0 ..n2 , 2 n P P 2 i l2 2 i 22Mb (?’“ -f- a ) v ' v  r +  b ■-> r +  a o ,
+  W'1 ')

, : = i  j = i

A' =  (m2 — A 2) (a2 cos2 0 + b2  sin2 6 ) +  ‘ +  cot2 0 J 2 +  tan2 6 L\ , (4.18)

where K  is a separation constant.
In order to show complete separation of the Hamilton-Jacobi equation, we analyze 

the a  and , 8  sectors in (4.16) and demonstrate separation of the individual a,; and 8 j- 
The pattern here is that of a Hamiltonian of classical (non-rela.tivist.ic) particles on the 
unit, (rn — l)-«  and the unit (p — l)-(3 spheres, with some potential dependent on the 
squares of the /q. This can easily be additively separated following the usual procedure, 
one angle at a time, and the pattern continues for all integers m .p  > 2.

The separation has the following inductive form for k =  1,..., m —2, and I — 1, 2:

dSak\ "    2 J fc+l fc+1
— Vi, —

da.k J  sin* og. cos2 ay.

_ r 2 ^ 2    J-nj  / i n —  i • ■> . 9(tctm~1 /  sin l cos" ctm—\

dS i 3 l \ 2  _  t 2  L'i+i ^ _ /+ i
cl8i J  sin2 fa cos2 8i

( dSW - X  = 1 2 * 2 14 19)
U v J  P_1 sin2 8 P- i  cos2 /!,,_! '

Thus, the Hamilton-Jacobi equation in the Myers-Perry rotating black hole back­
ground with two sets of possibly unequal rotation parameters has the general separation

- m. p m — 1 p — 1

S  — —rn~l — ET+'X^<I>idii+'XJ '&i<t>m + iP S r (r) + S$(9)+'X^ bai (o,» ) + ^  (Pi) , (4.20)
•t=l i= 1 i= 1 1=1

where the a , and 8 j  are the spherical polar coordinates on the unit (rn — 1) and unit
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(p — 1) spheres respectively. S,-(r) can be obtained by quadratures from (4.17). S${9) 
by quadratures from (4.18), and the Sai(ai) and the Sfyifij) again by quadratures from
(4.19).

4.4 The Equations of M otion

4 .4 .1  D e r iv a tio n  o f  th e  E q u a tio n s  o f  M o tio n

To derive the equations of motion, we will write the separated action S  from the 
Hamilton-Jacobi equation in the following form:

i m  P p r  pO

S  = - m 2 l - E T  + Y J ^  + H ^ ^ + /  Vf W r) d r '+ /  i / O ^ d O '
i=1 i= l ^

m ~ l  pQi   p ~  1 p f y ----------------

+  £ /  V ^ K ) ^  +  E /  (4-21)
i=i  ̂ ?=i

where

Ak = Jk~ ~ ®m~k+1 , k =  1,..., m -  2 .
sin" cq. cos- a t

h r i - 1 T- _____
J  r n - 1 .

< f> ?

S i r r  Om-X COS- 

7-2 U /2 ,
n  __ r  2   fc+1   P ~ fc+ 1  __ -I   oPk ■ o a   ̂ i? ’ 1. . . . ,  22 ~  ,sm" (3k cos- [3k

O T t  T o

5 P-1 =  LP-i ■ (4-2jp 1 sin2 /3P_! cos2 /3p_i ’

0  is obtained from (4.18) as

0  =  K  + (E 2  — m 2 )(a2  cos2 0 4- Ir sin2 6 ) -  cot2 6 J 2 — tan2 6 L \  , (4.23)

and R  is obtained from (4.17) as 

A Z n  , „ ox o 2M Z 2M a(r 2  +  b2) mTO / £.2 2\ 2 I J-12 - JUU ' i 0 2 \  '  r , i^  -R — (E -  rn )r H v r - E ----------- ^ -------  > £4?,
n r e. v 7 ?- 2  A  r 2 A

i= l
9 , 9 v P  0  ,  ,f  9 / 9 | , 9  N m  771 , ,  ,  , ??1 Pr “ h- a- _ 2Mor ( r  +  tr)  ̂ 4Ma6

'  \  I T  VT7 i N ' V V . T k H v i

r 2A ' A r2(r2 +  a2)
i=1 v ' i= l j= l  i=l j= 1
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71 r  j 9 r 9 | 9 \ P P 9 i 1 2 i 22Mb (r +  a ) ^  ljf r  +  b- p ? +  a ,
+  A r2(r 2 + b2 ) ?’2 +  a2 r 2 +  62 x ' 1 ' j

»=i j = i

To obtain the equations of motion, we differentiate S  with respect to the parameters 
m2,K ,E ,J ? ,L ? ,$ i ,  ' i j  and set these derivatives to equal other constants of motion. 
However, we can set all these new constants of motion to zero (following from freedom 
in choice of origin for the corresponding coordinates, or alternatively by changing the 
constants of integration). Following this procedure, we get the following equations of 
motion:

d S  q  ̂ I'Th ' e + 2  dr f  (a2 cos2 9 +  b2 sin2 6 )d6

d m 2 ' J A  Z  sfR  J  sfQ
OS f  dd [ H P  dr
OK J v ' e  J AZ / r/
dS  f  da i f  ILr* r 2 + b2 dr f  ,  . dd

—IT =  0 => I —== — / ——: —T = —=  +  / cot" 9 — 7 =  .dJ{ J \JA\ J AZ  ?’■“ +  a“ \/R J a/@
d S  n f  dak f  1 dak- i  , 0 0

— 77 =  0 =>____ ,__: =  / — o-----------, , k =  2 rn -  2  .
dJk J \fAk J  sin- a:fc_i y/Afc.i

n f  d[41 f  n?,e r2 +  a2 dr f  , . rffl
a l f  =  J  W C  J  * z r a * 7 n  + J

n f  d$l f  1 7 o o m or\mpt =  0=> ~~*---------- 7 t? =  > l = 2 , . . . , p - 2 .  (4.25)dL i J s/Bi J sm c*fc_i v B w

We can obtain IV more equations of motion for the variables cj> by differentiating- S  with 
respect to the angular momenta and T j. Another equation can also be obtained
by differentiating S  with respect to E  involving the time coordinate r . However, these 
equations are not particularly illuminating, bu t can be written out explicitly if necessary 
by following this procedure. It is often more convenient to rewrite these in the form 
of first-orcler differential equations obtained from (4.25) by direct differentiation with 
respect to the affine parameter. We only list the most relevant ones here:

P~
ydr A  Z
dl n r e

s / R ,

od9
V7© ,

dak _  VAk
dl sin2 6  I l t / i 1 shi2 °-i

(r2 +  a2 ) - j j -  = , To " . k = .... rn -  1,
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cos2 9 n U  s n̂2

n/B j
—fi—i I = 1 , ...,p -  1 , (4.26)

4 .4 .2  A n a ly s is  o f  th e  R a d ia l E q u a tio n

The worldline of particles in the Myers-Perry black hole backgrounds considered above 
are completely specified by the values of the conserved quantities E, dq, T j, J 2, L 2, and 
by the initial values of the coordinates. We will consider particle motion in the black 
hole exterior. Allowed regions of particle motion necessarily need to have positive value 
for the quantity R, owing to equation (4.26). At large r. the dominant contribution to 
R  is E 2 — m 2. Thus we can say tha t for E 2  < m 2, we cannot have unbounded orbits, 
whereas for E 2 > m 2, such orbits are possible.

In order to study the radial motion of particles in these metrics, it is useful to cast, 
the radial equation of motion into a different form. Decompose R  as a quadratic in E  
as follows:

The turning points for trajectories in the radial motion (defined by the condition 
R  — 0) are given by E  = V± where

These functions, called the effective potentials [12], determine allowed regions of motion. 
In this form, the radial equation is much more suitable for detailed numerical analysis 
for specific values of parameters.

R  = a E 2 — 2/3E  +  7  , (4.27)

where

2 M Z

(4.28)
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4 .4 .3  A n a ly s is  o f  th e  A n g u la r  E q u a tio n s

Another class of interesting motions possible describes motion at a constant value of ch 
or (3 j .  These motions are described by the simultaneous equations

AAcn =  a ?;o) =  —— (a* — a,;o) =  0 , i — 1,.... m  — 1. (4.30)
dai

in the case of constant a,; motion, where a x  is the constant value, of a,; along this 
trajectory, or by the simultaneous equations

Bi( 0 i = Ax,) = = Ao) =  0 , i = l, ...,p -  1. (4.31)

in the case of constant pi motion, where Px  is the constant value of A  along this trajec­
tory.

These equations can be explicitly solved. In the case of constant cn motion, we get 
the relations

t 9 jx. 9
A “+ l  _  rn —i —1

S i l l 4 O j  COS4 Oj

t 2  ' A --1 n i  —  / — 1 . -. . i  t  o fJj ~   1-------7)----- , i — 1,..., m  — 1. (4.3^
sin* a, cos“ a.

Note that if a,;o =  0, then J 2+1 =  0, and if a,;o =  n/2, then <h“1_ i+1 =  0. Similarly, in 
the case of constant [% motion, we get the relations

r 2 \J/2
i + 1 _  p - i - 1

sin4 /3i cos4 0 i

L U  ,

sin2 pi cos2 pi
I?  T 2 ,

T  2 i+ 1  . p - J + 1  1 1 , ,Li =  , 9 H------ 5- 3-  , 1 = 1, ...,p -  1. (4.33)

Again if ,/3jo =  0, then l | +] =  0, and if /Ao =  7r / 2 . then T 2_ !+1 =  0.
Examining A), in the general case, og =  0 can only be reached if =  0, and 

og =  rr/2 can be only be reached if =  0. The orbit will completely be in the
subspa.ee og =  0 only if =  § 2m_i+l and will completely be in the subspace og =  w/ 2  

only if ./ t2 =  4 + v  Analogous results hold for constant /?,: motion.
Again these equations are in a form suitable for numerical analysis for specific values 

of the black hole and particle parameters.
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4.5 D ynam ical Sym m etry

The general class of metrics discussed here are stationary and “axisymmetric” ; i.e.. 
d /d t and d/d<pi are Killing vectors and have associated conserved quantities, —E  and 
Li. In general if £ is a Killing vector, then ^ p ^  is a conserved quantity, where p is the 
momentum. Note that this quantity is first order in the momenta.

W ith the assumption of only two sets of possibly unequal rotation parameters, the 
spacetime acquires additional dynamical symmetry and more Killing vectors are gener­
ated. We have complete symmetry between the various planes of rotation characterized 
by the same value of rotation parameter a* =  a. and we can “rotate” one into another. 
Similarly, we have symmetry between the planes of rotation characterized by the same 
value of the rotation parameter Oj — 6, and we can “rotate" these into one another as 
well. The vectors that generate these transformations are the required Killing vectors. 
The explicit construction of such Killing vectors is done in [11], In this case, we get 
two independent sets of such Killing vectors, associated with the constant a and b value 
rotations.

These Killing vectors exist since the rotational symmetry of the spacetime has been 
greatly enhanced. In an odd number of spacetime dimensions, if a A b and both are 
nonvanishing, then the rotational symmetry group is U(m) x U(p). If one of them is zero, 
but the other is nonzero (we take the nonzero one to be a), then the rotational symmetry 
group is U{m) x 0(2p). In the case when a = b ^  0, the rotational symmetry group is 
U(m +p)- In the case when a =  b — 0, i.e. in the Schwarzschild metric, the rotational 
symmetry group is 0 (2 m  + 2p). In an even number of spacetime dimensions, b — 0 in the 
cases we have analyzed. If a ^  0, then the rotational symmetry group is U(m) xO (2p—l), 
and in the case when a — b = 0, i.e. in the Schwarzschild metric, the rotational symmetry 
group is 0 (2 m  + 2p— 1). Note that since these metrics are stationary, the full dynamical 
symmetry group is the direct product of R  and the rotational symmetry group, where 
R  is the additive group of real numbers parametrizing r .

In addition to these reducible angular Killing tensors, we also obtain a non-trivial 
irreducible second-order Killing tensor, which permits the separation of the r — 0 equa­
tions. This Killing tensor is a generalization of the result obtained in the five dimensional 
case in [12]. This is obtained from the separation constant I\ in (4.17) and (4,18). We 
choose to analyze the latter.

K  ■= (m 2 — E 2 )(a2 cos2 0 +  b2 sin2 0) +  cot2 0 J 2 +  tan 2 0L\ + (4.34)
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The Killing tensor is obtained from this separation constant (which is quadratic in 
the canonical momenta) using the relation K  =  K ^ p ^p p .  Its is then easy to see that

K 'w =  {gIMJ -  5 m  (a2  cos2 0 + b2  sin2 6 ) +  cot2 9 J ^  + tan2 6 L f  ' +  < $ $  , (4.35)

where J f"  and L f '  are the reducible Killing tensors associated with the a i and 
separation.

It is the existence of these additional Killing vectors and the nontrivial irreducible 
Killing tensor, due to the increased symmetry of the spacetime, which permits complete 
separation of the Hamilton-Jacobi equation.

4.6 The Scalar Field Equation

Consider a scalar field T in a gravitational background with the action

S[T] = ~ l  J  dDx^Pg{(y<H ) 2  + a R & 2 +  m 2T 2) , (4.36)

where we have included a curvature-dependent coupling. However, the Myers-Perry 
background is Ricci flat since it is a solution to the vacuum Einstein equations, so 
R  = 0. Variation of the action leads to the Klein-Gordon equation

1 =  m 2T . (4.37)

As discussed by Carter [14], the assumption of separability of the Klein-Gordon 
equation usually implies separability of the Hamilton-Jacobi equation. Conversely, if the 
Hamilton-Jacobi equation does not separate, the Klein-Gordon equation seems unlikely 
to separate. We can also see this explicitly (as in the case of the Hamilton-Jacobi 
equation), since the (r, r, (pi) sector has coefficients in the equations that explicitly depend 
on the m  except when of all a,; =  a, in which case separation seems likely. We will again 
consider the much more general case of two sets of possibly unequal sets of rotation 
parameters a and b. We continue using the same numbering conventions for the variables.

Once again, we impose the constraint (4.1) and decompose the fu in two sets of 
spherical polar coordinates as in (4.6) and (4.8). We calculate the determinant of the 
metric to be

2 4 t t /  2 i 2 \ 7 7 i — 2 /  2 i 1 2 \ u —2 • 47??,—2 a  4t>—2 —2 e  ag =  — r p l l( r  + a ) (r +  b y  sm 6  cos p 0
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171 — 1 -p- 1 -1
sin4’"-42-2 Qj cos2 OLj J ]  sin4p-4fc-2 0k COS2 dk

N=1 ./,■=! -

cos 2t fl\ . (4.38)

For convenience we write g — —R T A B p 4. where

R  = r 2 U(r2  + a2 )m- 2 (r2 + b2)p- 2 . 

T  = sin4™-2 0 cos4p_2_2e 9,
m— 1

A  =  sin4m~4j'-2 aj  cos2 aj ,
3 =  1 

p- 1

B  — J J  sin4p 4k 2 Sk cos2 !3k cos 2e f3i ■
k= 1

(4.39)

Note that R  and T are functions of r  and 6  only, and A  and B  only depend on the set 
of variables ca and 0j respectively. Then the Klein-Gordon equation in this background 
(4.37) becomes

mr T  =
1 .  (  r - A Z

 j=dT I v R ——dpV
p2V r . V ?’en

i +
2 M Z
r p  A

2 M a V  +  t>2)
9 /' 9 ~~i 3"'

1 1 52vp j________ V '  — d '2 T
r r 2 4- a2 ^  u? ®!'

2 = 1  *

+  A r2p2(r2 +  a2) ^

2 M  
r 2 p2A

p-C

a (r2 +  b2) dTd,Pi T  +  b(r2 +  a2) ^  <9r%n, {T
1= 1 1 = 1

2MH2 (r2  + a2) ^ -4 ^ 4  4 M a 6 ^ ^ 4 0
7)2 'l Z-l X /  ^  + m C h) - m ̂  ^  r  2 p ‘2  Z l  T 4/ -  mA r 2 p2 (r2  + b2

i= l  j = i i=i j= i

+ ( n / T ^ t )  +  1 , 2
/ r v T  v y ( r  +  r ) s n n

’m—1 V I
ctj I 2 a'

V I  ’ U l i .  )
"4 'I'

s n r  cxk

(■r 2 +  62) cos2 0

■ p - i

S v b ^ '  ( n r . 1,™ 2*
CB

'b  T (4.40)

We attem pt the usual multiplicative separation for T  in the following form:

/  m —l  \  /p - 1
T = <I>r (r)$e(6 )e~iEte‘^ ^ e^ L* P m+l / J J  $ 0,(a i ) J  m S f t O f r (4.41)

The Klein-Gordon equation then completely separates. The r and 0 equations are given
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£LS

K  =
1 d (  r~AZd<I>r \ ^  2 2 2 2 M Z E 2

v R — ^ — r—  I + r  \ E  -  m  )$ r\ /R d r  V. ?’en  dr 

2 M E

r 2 A

r 2 A 

2M

p—1 e
(r2 +  62) Y  +  H r 2  +  fl2) Y  ^

A r2

i = i

9 , 9 7 9 v m m
i=l

a2(r2 +  62) E E ^  + S ^ E E ^(r2 +  a2) (r2 +  b2,
v ; » = i  j = i  v ' i = i  j = i

m p—t

- / i  =

2",' E » Vl'.
i = i  j = l

1 d ( J f d* ‘
<5>eV T d 0  V de

+  (E 2 — m 2)(a2 cos2 0 +  62 sin2 0)

+  K\  cot’ 6  + M\  tan" 6  , (4.42

where K . K \  and M\ are separation constants. K \  and M\  encode all the a  and (3 
dependence respectively and are defined explicitly as follows:

fc-i
A] -  Y A ' TTFT

I<k
i=1 l l j  I sin2 aj

k =  1,..., m  — 1 , (4.43)

where

A i =
$ a , .  COS Oi sin2m 2? 1 O j n U l  SIH2 a k djQi

d (  ■ 2 m.—2 i—l d$ccos at sm a,.
da.

<f>77?,— i - f l
9  T j i  — 1 • 2cos~ a-i 1 l j=1 sm aj

(4.44)

and

fc-i
M , =  y . b <

i- 1
— 7 7---------— , fc =  L . . . , p - l ,

n l i h i n 2^
(4.45)

and where

Bi =
d'A: COS Si sin2?' 28 1 Si n U  sin'2 0k d0‘

d ^eos Si sin2?’ 2t 1

cos2 Si n }= i sin2 0.
(4.46)
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Then we inductively have the complete separation of the a,- dependence as

. 9s n r  a k cos“ a k <±>afe cos ak sm
1

cos ak sin a k —;—- 
dak

d$0k
)  - (4-47)

where k =  1, ...,m  — 1, and we use the convention K m — - ‘h2- Similarly, the complete 
separation of the dependence is given inductively by

where k = 1, ...,p — 1, and we use the convention Mp — — These results agree with 
the previously known analysis in five dimensions [13].

At this point we have complete separation of the Klein-Gordon equation in the Myers- 
Perry black hole background in all dimensions with two sets of possibly unequal rotation 
parameters in the form given by (4.41) with the individual separation functions given by 
the ordinary differential equations above. Note that the separation of the Klein-Gordon 
equation in this geometry is again due to the fact that the symmetry of the space has 
been enlarged.

Conclusions

Wc studied the separability properties of the Hamilton-Jacobi and the Klein-Gordon 
equations in the Myers-Perry black hole backgrounds in all dimensions. Separation 
in Boyer-Lindquist coordinates is possible for the case of two possibly unequal sets of 
rotation parameters. This is due to the enlarged dynamical symmetry of the spacetime. 
We discuss the Killing vectors and reducible Killing tensors tha t exist in the spacetime. 
In addition we construct the nontrivial irreducible Killing tensor which explicitly permits 
complete separation. Thus we demonstrate the separability of the Hamilton-Jacobi and 
the Klein-Gordon equations as a direct consequence of the enhancement of symmetry. 
We also derive first-order equations of motion for classical particles in these backgrounds, 
and analyze the properties of some special trajectories.

Further work in this direction could include the study of higher-spin field equations in 
these backgrounds, which is of great interest, particularly in the context of string theory. 
Explicit numerical study of the equations of motion for specific values of the black hole 
parameters could lead to interesting results.

sin2 (3k cos2 (3k § &k cos 0 k s'm2p 2k 1 0 k
M k+l 4>2_fc+1 l
. O O T ,-9 (4.48)
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C hapter 5

Some Charged R otating  
Supergravity Black Holes

5.1 Introduction

Solutions of the vacuum Einstein equations describing black hole solutions in both four 
and higher dimensions are currently of great interest. This is mainly due to a number 
of recent developments in high energy physics. Models of spacetimes with large extra 
dimensions have been proposed to deal with several questions arising in modern par­
ticle phenomenology (eat about.g. the hierarchy problem) [1-3]. These models allow 
for the existence of higher dimensional black holes which can be described classically. 
Also of interest in these models is the possibility of mini black hole production in high 
energy particle colliders which, if they occur, provide a window into non-perturbative 
gravitational physics [4,5].

Superstring and M-Theory, which call for additional spacetime dimensions, naturally 
incorporate black hole solutions in higher dimensions (10 or 11). P-branes present in 
these theories can also support black holes, thereby making black hole solutions in an 
intermediate number of dimensions physically interesting as well. Black hole solutions in 
superstring theory are particularly relevant since they can be described as solitonic ob­
jects. They provide im portant keys to understanding strongly coupled non-perturbative 
phenomena which cannot be ignored at the Planck/string scale [6.7].

Astrophysically relevant black hole spacetimes are, to a very good approximation, 
described by the Kerr metric [8]. One generalization of the Kerr metric to higher di­
mensions is given by the Myers-Perry construction [9]. W ith interest now in a nonzero 
cosmological constant, it is worth studying spacetimes describing rotating black holes
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with a cosmological constant. Another motivation for including a cosmological constant 
is driven by the A dS/C FT correspondence. The study of black holes in an Anti-de Sitter 
background could give rise to interesting descriptions in terms of the conformal field 
theory on the boundary leading to better understanding of the correspondence [10.11]. 
The general Kerr-de Sitter metrics describing rotating black holes in the presence of a 
cosmological constant have been constructed explicitly in [12,13].

There is a strong need to understand explicitly the structure of geodesics in the 
background of black holes in Anti-de Sitter space in the context of string theory and 
the A dS/C FT correspondence. This is clue to the recent work in exploring black hole 
singularity structure using geodesics and correlators in the dual CFT on the boundary 
[14-19], The metrics mentioned above have so far proven to yield little or no information 
through an analysis of this sort. Black holes with charge are particularly interesting for 
this type of analysis, since the charges are reinterpreted as the R-charges of the dual 
theory. The spacetimes explored in this paper are exact solutions of supergravity in 
backgrounds with a cosmological constant and charges, and thus could be more suitable 
for this sort of geodesic analysis.

In this paper we work with the four-dimensional multicharge Kerr-Taub-NUT-(Anti) 
de Sitter solution of supergravity recently discovered by Chong, Cvetic, Lu, and Pope
[20], as well as the U ( l ) 3  gauged Kerr-(Anti) de Sitter black hole solution of N =  2 
supergravity in five dimensions discovered by Cvetic, Lu, and Pope [21].

We study the separability of the Hamilton-Jacobi equation in these spacetimes, which 
can be used to describe the motion of classical massive and massless particles (including 
photons). We use this explicit separation to obtain first-order equations of motion for 
both massive and massless particles in these backgrounds. The equations are obtained 
in a form that could be used for numerical study, and also in the study of black hole 
singularity structure using geodesic probes and the A dS/C FT correspondence.

We also study the Klein-Gordon equation describing the propagation of a massive 
scalar field in these spacetimes. Separation again turns out to be possible with the usual 
multiplicative ansatz.

This paper greatly generalizes many of the results of [22, 23] for the Myers-Perry 
metric in five dimensions, [24] which separates the equations in the case of equal rotation 
parameters in the odd dimensional Kerr-(A) dS spacetimes, [25] which separates the 
equations for the general five dimensional Kerr-(A) dS spacetime with unequal rotation 
parameters, [26] which separates the equations in the case of two independent sets of 
rotation parameters in the Myers-Perry metrics in all dimensions, [27] which separates 
the equations in the case of two independent sets of rotation parameters in the Kerr-(A)
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dS metrics in all dimensions, and [28] which separates the equations in the case of a 
single non-zero rotation parameter for uncharged Kerr-Taub-NUT metrics in arbitrary 
dimensions. Some further work for other special cases were also done in [29] and [30].

Separation turns out to be possible for both equations in these metrics due to the 
existence of second-order Killing tensors, one of them non-trivial and irreducible. This is 
a generalization of the Killing tensor in the Kerr black hole spacetime in four dimensions 
constructed in [20] which was subsequently described by Chandrasekhar as the “mirac­
ulous property of the Kerr metric” . A similar construction for the Myers-Perry metrics 
in higher dimensions has also been done [22,26], and for the Kerr-Taub-NUT metrics in 
arbitrary dimensions without charge and only one nonzero rotation parameter in [28]. 
The Killing tensors, in each case, provides an additional integral of motion necessary for 
complete integrability.

5.2 O verview of the M etrics

5 .2 .1  Four D im en sio n a l K er r -T a u b -N U T  M u ltic h a r g e  G au ged  S o lu tio n  
o f  S u p erg ra v ity

This metric was recently obtained by Chong, Cvetic, Lu. and Pope in [20]. The solution 
was obtained by starting out with the four dimensional Kerr-Taub-NUT metric, dimen- 
sionally reducing to three dimensions along the time direction, and then lifting back up 
after “dualizing” . The metric is given by

Here S\ is the magnetic charge, 8 2  is the electric charge, I is the NUT parameter, a is 
the rotation parameter, and g is the gauge parameter. The cosmological constant A is

where

W  ~  rii ' 2 +  uiuo , i'i = r +  2ms} . v* =  u  +  21 s} ■ i = 1,2, 

Ar =  r 2 + a2 — 2mr + g2 ri'r2 {ri'r2 + a2) ,

A lt =  —u 2  +  a2 +  2lu +  g2 u\U2 {u\U2  — a2) , (5.2)

and we use the notation

Si = sinh S i , Ci =  cosh S i , 1 =  1,2. (5.3)
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given by A =  — g2. The ungauged solution is obtained by setting g to zero.
If the two charge parameters are set equal, <5i =  <$2, then the solution reduces to the 

charged AdS-Kerr-Taub-NUT solution of Einstein-Maxwell theory with a cosmological 
constant. To reduce to the usual coordinate system, we use the change of coordinate 
u — a cos 0. W ith I set to zero, we recover the metric found in [20] for a multicharge 
Kerr-(Anti) de Sitter black hole in gauged supergravity in four dimensions.

For future reference, we note the following expressions. The determinant of the metric 
is given by

W 2
g = ------- . (5.4)

a

The components of the inverse metric are

*  -  +  (5 .5 )

We also note that the functions A r and A u are functions of r  and u only, respectively.

5 .2 .2  U ( l ) 3 G a u g ed  K er r -(A n ti)  de S itte r  B la ck  H o le  S o lu tio n  o f  AC =  2 
S u p erg ra v ity  in  F iv e  D im e n sio n s

This metric was recently obtained by Chong, Lu, and Pope in [21]. The metric is given 

by

ds2 = — —  J 3  dt2 +  1 —̂ 2 dr 2 +  RdLl2 +  ——^ - ( s in ‘ Odd +  cos2 Odp) 2
R 2 Y R 2

-  '^ -d t( s in 2 Odd +  cos2 Odd) ■ (5.6)

where

=  dO2 +  sin,02 dd 2 +  cos2 Odii’ 2 ■ (5.7]

and as before

S{ = sinh S i , eg — cosh 5t , i =  1 ,2 ,3 . (-5.8)
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The functions /,., and Y  arc defined by

h

h

iz

i<j
I P  ■ \ h r r ~  ■ M L S  •_> ( n ‘ I I - )  U p  1 ^ '

V i  i /  j

7ftAR 3  +  M a  | 11 r - J 1  si J ' J +  { S
V i i /  i

j 2a2A2R 3 + Mar A [27 ( | | c' II s,:l _ S

+Ma~ -  A T M 2 a2

Y  = f s -  A Y R 3  +  r 4 -  M M  ,

2< n c,: n Si) n ̂
j i<j

and

E =  1 +  7 2a2A.

2\<yM2ci2 H  S j.
i

(5.9)

(5.10)

It is important to note that these are functions of the coordinate r only.
The parameter M  is related to the mass of the black hole, the 5* are the charges 

associated with each of the three U(l)  gauge groups, the gauge parameter g is related to 
the cosmological constant A via A =  —g2, a is the rotation param eter of the black hole 
(equal rotation parameters in the two independent planes was assumed in the derivation 
of the metric), and the constant 7  is simply a redundant param eter which is useful to test 
several limits, but could be eliminated if necessary. This metric encompasses, as special 
limits, several previously known solutions such as the Klemm-Sabra BPS solution etc. 
More details about these limits can be found in [20].

In order to avoid long complicated expressions, we introduce the following functions 
to write the metric more compactly

(5.11)

Note that all of these are functions of the coordinate r  only. The metric is then written 
compactly in the form

ds‘ A(r)dt2
dr2

W (r
2C{r)dt(sin2 8 d<fi +  cos2 Odp)

+  Rdil\  + .B(r)(sin2 Qd<f> + cos2 Od'ip) 2

(5.12)
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The components of the inverse metric are

grr =  w ( r ) ,
1

g "

9U

R  ’
B(r) + R  
r - W  (r) ’

gt0 =

y W

rHV(r)  ’
A{r)B{r)  cos2 0 +  A (r)R  +  C 2 (r) cos2 0 

R r 2 W (r)  sin2 0 
A(r)B (r)  sin2 6  +  +  C 2 {r) sin2 0

R r 2 W (r) cos2 0
A (r)g(r) + C2(r)

J R r 2 W(r)  ' ( j

We note for future reference the following identity which can easily be verified using 
Maple [32]

A(r)B(r)  + A (r)R  + C 2 (r) = r 2 W (r ).  (5.14)

Finally, the determinant of the metric can be calculated to be

g = —r2R 2 sin2 9 cos2 9 , (5.15)

where we need to make use of the identity given above repeatedly.

5.3 Integrals o f M otion and the H am ilton-Jacobi Equation

The equations of motion of a test particle of mass rn in a gravitational background 
described by a metric ĝ w are

D 2 xA
o u  = 0 -  <5-16>

where ^  is the covariant derivative with respect to proper time r . These equations can 
be derived from a Lagrangian

L = \ g l,vxilx'J , (5.17)
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where a dot denotes a partial derivative with respect to an affine parameter A. This can 
be chosen such that r  — mX.

The symmetries of the metric, if any, can provide us with some integrals of motion. 
For instance, if the metric is stationary, i.e. does not depend on the time t, then the 
energy is conserved. However, in most situations, sufficient number of integrals of motion 
do not exist. Also, using the Lagrangian formulation, sometimes certain integrals of 
motion are impossible to obtain even if they exist. Usually these are “second order” in 
the momenta such as the case of the Carter constant for the Kerr metric. Such additional 
integral of motion, which permit us in these cases to integrate the equations of motion 
completely, can be provided by the Hamilton-Jacobi equation (though a proper choice 
of coordinate system is necessary).

The Hamilton-Jacobi equation in a curved background is given by

_  II  __ ^ nu-v ^  / c  i o \

where S is the action associated with the particle and A is some affine parameter along 
the worlclline of the particle. Note that this treatm ent also accommodates the case of 
massless particles, where the trajectory cannot be parametrized by proper time.

5.4 Particle M otion in the Four D im ensional Kerr-Taub- 
N U T  M ulticharge Gauged Solution of Supergravity

5 .4 .1  S e p a r a tio n  o f  V ariab les

We can attem pt a separation of coordinates as follows. Let

S  =  \ m 2 A - E t  + + Sg(e) + Sr (r) . (5.19)

t and <p are cyclic coordinates, so their conjugate momenta are conserved. The conserved 
quantity associated with time translation is the energy E, and that with rotation in <p 
is the corresponding angular momentum L&. Then using the components of the inverse 
metric (5.5), the Hamilton-Jacobi equation (5.18) is written to be

-rn -  =  - — r - ^ [ A ru ? t t | - A wrjfrfl(--E )2 +  A A „  J Ar -  A U\LA rA „W l u' L"nK ' ’ A rA » W L“ r ~ u i ± j 0  ^  W
dSr (r ) 1 2 

dr

Au
W

dSu(u)
du

[Aru iu 2 +  N ur ir 2 \ ( - E ) L 0  . (5.20)
Ar A„U
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Now multiplying both sides by W . we can separate out the equation in the form

K  = A r 

K  = - A u

dSr(r)
dr 

dSu(n 
du

A,
[ri'i^E + aLtt]2 +  m 2rp ''2 ,

Au
[u\U‘2 E  — ciL&Y — m"u\U 2 ■ (5.21)

where K  is a constant of separation.

5 .4 .2  T h e  E q u a t io n s  o f  M o tio n

To derive the equations of motion, we will write the separated action S  from the 
Hamilton-Jacobi equation in the following form:

5  =  - m 2 X -  E t  + L il(t>+ / v /n {r ')d r ' +  / s/U{u')du ' , (5.22)

where

A,-7Z{r) =  id +  — ['rp/qE +  aLp]2 - 'm2'/qr2 , 

A uU(u) = —K  — —  [uiuaE — aL<*]2 — m 2uiUo ■
^ 1i.

(5.23)

To obtain the equations of motion, we differentiate S  with respect to the parameters 
m 2 ,K ,E ,  L<t> and set these derivatives to equal other constants of motion. However, we 
can set all these new constants of motion to zero (following from freedom in choice of 
origin for the corresponding coordinates, or alternatively by changing the constants of 
integration). Following this procedure, we get the following equations of motion:

OS f  dr f  du
- —7; = 0 => A =  / rp/n f= +  / Ui'U-2 1=  ■
d m 2 J  1 “A rV n  J  A  Us/U

dS  f  du f  dr
di< J a uV u  J  a rV n ’

d&- -  0=>(p= f i n ^ E  + aLt ) — [  {ulU2E  -  aL#) du
dL* ' 91A  'P,A l s f u '

H  =  0=>t = j  rpr2(rpr2X +  aL^) _  -  j  t tp u 2 (« iU 2^  -  aL#) ^ ^ 5 .24)

It is often more convenient to rewrite these in the form of first-order differential equations
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obtained from (5.24) by direct differentiation with respect to the affine parameter:

5 .4 .3  A n a ly s is  o f  th e  R ad ia l E q u a tio n

The worldline of particles in the background considered above are completely specified 
by the values of the conserved quantities E ,L ,p ,K ,  and by the initial values of the 
coordinates. We will consider particle motion in the black hole exterior. Allowed regions 
of particle motion necessarily need to have positive value for the quantity R, owing to 
equation (5.25). We determine some of the possibilities of the allowed motion.

We will consider the motion of a particle in the black hole exterior. Thus we can 
assume that A r >  0 for large r. At large r, the dominant contribution to 1Z. in the case 
of A =  0, is E 2 — m 2. Since A =  —g2, zero cosmological constant corresponds to the 
charged rotating black hole in four dimensions in ungauged supergravity. Here, we can 
thus say that for E 2  < m 2, we cannot have unbounded orbits, whereas for E 2 > m 2, 
such orbits are possible. For the case of nonzero A (i.e. also nonzero g which implies we 
are now considering gauged supergravity), the dominant term at large r in R  (or rather 
the slowest decaying term) is - m 2r 2. Thus in the case of the Anti-de Sitter background 
(since A =  — g2 is negative), only bound orbits are possible.

In order to study the radial motion of particles in these metrics, it is useful to cast 
the radial equation of motion into a different form. Decompose 1Z as a quadratic in E  
as follows:

Ar V l l ,

A UV U ,

r \r 2 {r\r2 E  +  aLff,) uiUoiuiu-zE — aL$)

1' i r o E  + c l L q  U 1 U 2 E  — a L p

A r A 0

A r

A 0

A<j
(5.25)

n  =  a E 2 -  2PE  +  7 , (5.26)

where

A r A-l (5.27)
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The turning points for trajectories in the radial motion (defined by the condition 
71 =  0) are given by E  =  V± where

These functions, called the effective potentials [22], determine allowed regions of motion. 
In this form, the radial equation is much more suitable for detailed numerical analysis 
for specific values of parameters.

5.5 Particle M otion in th e U { 1 ) 3  Gauged K err-(A nti) de 
Sitter Black H ole Solution of J \ f  =  2 Supergravity in 
Five D im ensions

We will only sketch the analysis of the separation of variables here, since the procedure

t, </>, and ip are cyclic coordinates, so their conjugate momenta are conserved. The
conserved quantity associated with time translation is the energy E, and those with 
rotation in <p and ip are the corresponding angular momenta Lg and Ty. Then using the 
components of the inverse metric (5.13), the Hamilton-Jacobi equation (5.18) is written 
to be

After some algebraic manipulation and using some trigonometric identitcs we can write 
this as

13 ±  (32 -  a7
V± = -------------------- (5.28)

a

for deriving equations of motion etc. is virtually identical to those of the metric above. 
We can attem pt a separation of coordinates as follows. Let.

S  = \ m 2A - E t  + L ^  +  Se(0) + S r( r ) . (5.29)

— 77? "
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A(r)B (r)  + C 2 (r) 1 1
(1/0 +  L ^ Y  +  ^ ( csc“ +  sec~ $A/>) +  u

dS 0 (9)
d9R r 2W  (r

In this form, the Hamilton-Jacobi equation can now be easily separated to give 

'dSo(O) "

5.31)

- K  =
dO

I\ = R m 2 +  W (r)R

+  esc' 9L i  +  sec-' 9 L i  .

dSr(r)
dr r 2 W (r) r 2 W (r

A(r)B (r)  +  C 2 (r) 
r 2 W(r)

(L,j, +  L ^ r (5.32)

where K  is a constant of separation.
To derive the equations of motion, the separated action S  from the Hamilton-Jacobi 

equation is more conveniently written, as before, in the following form:

5 =  ^ m 2A -  E t + Lgd* +  - M ’ +  j  \ J n { r ’)dr' +  J  ^ 0 ( 9 ' ) d 9 ' , (5.33)

where

R W (r)H (r)
C{r)RE

(L<f, +  Lg) +
r 2W (r) ^  1 ¥J 

A(r)B (r)  + C 2 (r)

B (r )R  + R 2 

r 2 W (r)
E -

r 2 W(r) ~{L$ + L j.

0(9) =  — K  — esc2 9L \  — sec2 9L \ , . (5.34)

By following the same procedure as earlier, we can easily establish first-order equa­
tions of motion, a radial effective potential, etc. Since the derivation is remarkably 
similar, we will not reproduce the results here in the interests of being concise.

5.6 D ynam ical Sym m etry

The general class of metrics discussed here are stationary and “axisymmetric” ; i.e., d /d t  
and d/dcj) (as well as d/dij> in the five dimensional K (l)3 case) are Killing vectors and 
have associated conserved quantities, —E  and L# (and L^). In general if £ is a Killing 
vector, then is a conserved quantity, where p is the momentum of the particle. Note 
that, this quantity is first order in the momenta.

As mentioned earlier, the additional constant of motion K  which allowed for complete 
integrability of the equations of motion is not related to a Killing vector from a cyclic
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coordinate. This constant is, rather, derived from a non-trivial irreducible second-order 
Killing tensor in both spacetimes, which permits the separation of the r — 0 (or r — u) 
equations in both cases. These Killing tensors are generalizations of the Killing tensor 
obtained in four dimensions by Carter [31] and in five dimensions for the Myers-Perry 
metric in [22], Killing tensors are not symmetries on configuration space, and cannot be 
derived from a Noether procedure, and are rather, symmetries on phase space. They obey 
a generalization of the Killing equation for Killing vectors (which do generate symmetries 
in configuration space by the Noether procedure) given by

where K  is any second order Killing tensor, and the parentheses indicate complete sym- 
metrization of all indices.

The Killing tensors can be obtained from the expressions for the separation constant 
K  in each case. If the particle has momentum p, then the Killing tensor /C;„, is related 
to the constant K  via

In both cases, we can use the expression in terms of the r equation or the u / 6  equation. 
We will choose to work with the latter in both cases.

For the four dimensional Kerr-Taub-NUT metric analyzed above, the expression for 
K  from (5.21) is

(5.35)

(5.36)

t- \  dS 'm(u) 1 , o *2A =  — Au —  ----  — — \uiUoE — aLd,\ —m  u\Uo .
' [ au  J & u

Thus, from (5.36) we can easily read

(5.37)

1C = <$du -  -r— [upuodt <&dt + a2 d,j, ® +  symiaupuodt 0  d,p)\ (5.38)

Since this Killing tensor is not a simple linear combination of Killing vectors, it is 
non-trivial and irreducible.

For the five dimensional U{I)3 charged metric analyzed above, the expressions for K  
from (5.32) is

—K (5.39)
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Thus, again from (5.36) we can read

(5.40)

This Killing tensor however turns out to be a reducible one. In this situation, since 
both rotation parameters, there is an additional Killing vector which represents the 
additional symmetry of being able to rotate each of the two rotation planes into each

We can easily check using Maple [32], that the Killing tensors in both spacetimes do 
satisfy the Killing equation. It is the existence of these Killing tensors that allows for 
complete separation of the Hamilton-Jacobi equation.

5.7 The Scalar Field Equation

Consider a scalar field T in a gravitational background with the action

where we have included a curvature dependent coupling. However, in these Kerr-(Anti) 
de Sitter backgrounds with charges, R  is constant (proportional to the cosmological 
constant A). As a result we can trade off the curvature coupling for a different mass 
term. So it is sufficient to study the massive Klein-Gordon equation in this background. 
We will simply set a  =  0 in the following. Variation of the action leads to the Klein- 
Gordon equation

5 .7 .1  M a ssiv e  Scalar F ie ld s  in th e  Four D im e n sio n a l K err -T a u b -N U T  
M u ltic h a r g e  G au ged  S o lu tio n  o f  S u p erg ra v ity

Using the explicit expressions for the components of the inverse metric (5.5) and the 
determinant (5.4), the Klein-Gordon equation for a massive scalar field in this spacetime 
can be written as

other. This Killing tensor can be obtained using linear combinations of outer products 
of this Killing vector. Further details and explicit constructions can be found in [26].

/ i 'v U g ( ( V 4 ') 2 +  mRT2 +  m 2$ 2) (5.41)

(5.43)
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(Note tha t this expression agrees with equation (16) in [28] with the notation p = a cos 9, 
q = r, X  =  A U) Y  = A r , and k — 0 in four dimensions for the uncharged, i.e. h,; =  0, 
Kerr-Taub-NUT metrics. This is a good check for consistency.) We assume the usual 
multiplicative ansatz for the separation of the Klein-Gordon equation

T =  ^ r{r )^u{u)e-iEteiL^  . (5.44)

Then we can easily separate out the r and u dependence as

1 d f  d&u( u ) \  2 a f u 2 o 2 au\U2 „ r 2a'2-^0
K =  -  — T - ( A u v +  m 2 u ] U 2 + ------ E L 4, + *

$u(n) du \  du J Au A„ A.,

1 d f  d $ r ( r ) \  9 , , 2 2 a r1r 2 2a2L^K  = — — X- _  m U p , -  -jr^-E  +  — M ^ E L ^  +  — , (5.45)
$ r (r) dr \  dr J A,. A,, 9 Ar v '

where K  is again a separation constant. At this point we have completely separated out 
the Klein-Gordon equation for a massive scalar field in this spacetime.

5 .7 .2  M a ssiv e  Scalar F ie ld s  in  th e  C/(l)3 G a u g ed  K er r -(A n ti)  de S itte r  
B lack  H o le  S o lu tio n  o f  J\f =  2 S u p erg ra v ity  in F iv e  D im en sio n s

Using the explicit expressions for the components of the inverse metric (5.13) and the 
determinant (5.15), the Klein-Gordon equation for a massive scalar field in this spacetime 
can be written as

A(r)B(r)  cos2 9 +  A{r)R  +  C 2(r) cos2 6  2 
+  R  sin2 9r2 W (r)  '

A(r)B(r)  sin2 6  + A (r )R  + C 2 (r) sin2 9 2 2[A(r)B(r) +  C'2 {r)\ 2
+  R  cos2 9r2 W{r)  ^ R r 2 W{r) **

1
de(sm9cosOde'T). (5.46)

R  sin 9 cos 9

Again we assume the usual multiplicative ansatz for separation

$  =  ^ r(r)^e{9)e-iEtelL^ e iL''i4’ . (5.47)

After extensive algebraic manipulation similar to that of the Hamilton-Jaeobi equa­
tion, and the use of some trigonometric identities along the way, we find that the r and
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9 equations decouple into the form 

K  =
1 d ( ,  „d $ 9 ( d ) \  L% _L^_

$e( 6 ) sin 6  cos 6  d9 \  ' cW )  sin2 6  ' cos2
1 d (  r>iwt ^d$ r { r ) \  , B (r )R  + R~ , 2 C (r )R fr , r N

K =  i / \ ~r~ r R W ( r )— ----  H-------0 — E  +  , {L# +  L^)$,-(?’)?’ dr \  dr J r 2 W{r) r 2 W{r)
A(r)B(r) + C 2 (r) , 

r 2W (r)

where A' is again a separation constant. At this point we have completely separated out 
the Klein-Gordon equation for a massive scalar field in this spacetime.

We note the role of the Killing tensors in the separation terms of the Klein-Gordon 
equations in both spacetirnes. In fact, the complete integrabilitv of geodesic flow of both 
metrics via the Hamilton-Jacobi equation can be viewed as the classical limit of the 
statement that the Klein-Gordon equation in both metrics also completely separates.

C onclusions

We studied the complete integrability properties of the Hamilton-Jacobi and the Klein- 
Gordon equations in the background of two recently discovered rotating black hole solu­
tions of supergravitv with charge(s): the four dimensional Kerr-Taub-NUT Multicharge 
gauged supergravity solution, and the U{l ) 3 gauged Kerr-(Anti) de Sitter black hole 
solution of J\f =  2 supergravity in five dimensions. Complete separation of both the 
Hamilton-Jacobi and Klein-Gordon equations in these backgrounds in Boyer-Lindquist- 
like coordinates is demonstrated. This is clue to the enlarged dynamical symmetry of 
the spacetime. We construct the Killing tensors (one of them irreducible) in both space- 
times which explicitly permits complete separation. We also derive first-order equations 
of motion for classical particles in these backgrounds, and analyze the properties of some 
special trajectories. It should be emphasized that these complete integrability properties 
are a fairly non-trivial consequence of the specific form of the metrics, and generalize 
several such remarkable properties for other previously known metrics.

Further work in this direction could include the study of higher-spin field equations in 
these backgrounds, which is of great interest, particularly in the context of string theory. 
Explicit numerical study of the equations of motion for specific values of the black hole 
parameters could lead to interesting results. The geodesic equations presented can also 
readily be used in the study of black hole singularity structure in an AdS background 
using the AdS/CFT correspondence.
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C hapter 6

N UT-C harged R otating  
Spacetim es

6.1 Introduction

Taub-NUT solutions arise in a very wide variety of situations in both string theory and 
general relativity. NUT-charged spacetimes, in general, are studied for their unusual 
properties which typically provide rather unique counterexamples to many notions in 
Einstein gravity. They are also widely studied in the context of issues of chronology 
protection in the A dS/C FT correspondence. Understanding the nature of geodesics in 
these backgrounds, as well as scalar field propagation, could prove to be very interesting 
in further exploration of these spacetimes.

There is a strong need to understand explicitly the structure of geodesics in the 
background of black holes in Anti-de Sitter space in the context of string theory and 
the A dS/CFT correspondence. This is due to the recent work in exploring black hole 
singularity structure using geodesics and correlators in the dual CFT on the boundary 
[1-6]. Black holes with charge are particularly interesting for this type of analysis since 
the charges are reinterpreted as the R-charges of the dual theory. The class of solutions 
dealt with in this paper also include black holes that carry both NUT and electric charges 
in various dimensions, and could prove very interesting in this sort of analysis.

In this paper we explore a very general metric describing a wide variety of spacetimes 
with NUT charge(s). In addition further metrics can also be obtained from these through 
various analytic continuations (which does not affect separability as demonstrated for 
these class of metrics). As such, the study of separability in this set of spacetimes en­
compasses the cases of both singly and multiply NUT-charged solutions, electrically and
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magnetically charged solutions with NUT parameter(s), solutions with a cosmological 
constant and NUT parameters(s), and time dependant bubble-like NUT-charged solu­
tions. Many of these describe very interesting gravitational instantons. Some of these 
solutions include static backgrounds, while others are time-dependent and provide very 
interesting backgrounds for studying both string theory and general relativity. Some of 
these solutions, especially the bubble-like ones, are particularly interesting in the context 
of string theory as they arise in the context of topology changing processes, e.g. they 
show up as possible end states for Hawking evaporation., and they show up in transitions 
of black strings in closed string tachyon condensation.

We study the separability of the Hamilton-Jacobi equation in these spacetimes, which 
can be used to describe the motion of classical massive and massless particles (including 
photons). We use this explicit separation to obtain first-order equations of motion for 
both massive and massless particles in these backgrounds. The equations are obtained 
in a form that could be used for numerical study, and also in the study of black hole 
singularity structure using geodesic probes and the AdS/CFT correspondence. We also 
study the Klein-Gordon equation describing the propagation of a massive scalar field in 
these spacetimes. Separation again turns out to be possible with the usual multiplicative 
ansatz.

Separation is possible for both equations in these metrics due to the existence of 
non-trivial second-order Killing tensors. The Killing tensors, in each case, provides an 
additional integral of motion necessary for complete integrability.

There has been a lot of work recently dealing with geodesics and integrability in 
black hole backgrounds in higher dimensions both with and without the presence of a 
cosmological constant [7-16]. Of particular note in the context of this paper are [12,14] 
which deal with black holes with NUT parameters in some special cases. This work 
extends, and generalizes, some of the results obtained in these papers.

6.2 O verview o f the M etrics

The class of metrics dealt with in this paper, and their generalizations obtained via 
analytic continuations, have been constructed and analyzed in [17-22], as well as some 
references contained therein. We will very briefly describe the metrics, and some of the 
various types of spacetimes that can be obtained from them. As mentioned earlier, sepa­
rability for all the metrics is addressed by dealing with the class we do here, since analytic 
continuations do not affect separability of either the Hamilton-Jacobi or Klein-Gordon 
equation (though they do affect the physical interpretations of the various variables and
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their associated conserved quantities).
The general spacetimes we study are described by the metrics

F(r)  +  + ^  +  2 ^ 7'2 +  A?? ) ( d ^  + 9 i ( W i ) -  ( 6 .1)

A very general class of metrics in even dimensions where the (<pi,0j) sector has the 
form Mi  x M 2 x . . .  x M p, with each Mi a two dimensional space of constant curvature 
<5j. In this case the functions are given by

and an expression for F(r)  can be found in [21] along with a detailed description. Gener­
alizations to include electric charge are obtained by suitably modifying F(r), and can be 
found in [20,22]. Metrics describing “bubbles of nothing” also fall under this class and 
can be found in [19]. Examples of NUT-charged spacetimes in cosmological backgrounds 
also fall in this framework and can be found in [19].

For the purposes of analyzing separability, some odd dimensional NUT-charged space­
times also fall under this category. For instance in five dimensions (i.e p =  2) a NUT 
charged spacetime is obtained by taking 92(#2) =  0 and i\T2 =  0 . i.e. a metric of the form

This describes a spacetime in an AclS background; similar clS and flat background space­
times can be obtained by following the prescriptions in (6 .2 ) while maintaining 90(^2) =  0 

and No =  0. Generalizations to higher odd dimensional spacetimes are obvious.
Various twists of these spacetimes can also be obtained through analytic continua­

tions. For instance, using the prescriptions t —» i$, 0 —> it, we can obtain time-dependent 
bubbles. In five dimensions in an AdS background, some examples obtained via this pre­
scription, and a few other suitable obvious variable redefinitions are

5i =  1 : fi(9i) =  -  cos 9 i , 9 “ (0<) =  sin2 0 %,

Si = 0: fi(0i) = —0 i . gf(0%) = I ,

Si =  - 1  : fiWi) =  -  cosh d i , £{0 i)  = sin lr , ( 6 .2 )
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dr
ds 2 = F{r){dBi +  2N\ cosh <pdt) 2  +  JTfyj +  (?,i +  N 2 )(d<f>2 -  s in lr odd1) +- r 2d9o .

dr'2
d.s2  = F { r ) {d 9 iA 2 N l e(t>dt ) 2  + ——  + {r2  + Nl){dcl>2 - e 2 *dt2 ) + r 2 d9l. (6.4)

t  (r)

For future use, we give the determinant of the metric (6.1)

, = - n < ' a + * ? ) v w .  (6-5)
(=1

The components of the inverse metric are

ntt = ^  1
y 2 s  ( r 2

9'

l=l (r2 +  N f ) g ? ( 0 i )  F ( r )

t<t>i _  ^dNifi(9i)
g f i e ^  + N 2) '

=   ______

grr = F ( r ) ,
Jidi _  %

r + N f
( 6 .6 )

These formulae are somewhat tedious to derive, but can be proved using a few Maple 
calculations, and then using mathematical induction [23].

6.3 The H am ilton-Jacobi Equation and Separability

The Hamilton-Jacobi equation in a curved background is given by

l e a s e s
d \  2 dx» d x v •

where S  is the action associated with the particle and A is some affine parameter along 
the worldline of the particle. Note tha t this treatm ent also accommodates the case of 
massless particles, where the trajectory cannot be parametrized by proper time.
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6 .3 .1  S ep a ra b ility

We can attem pt a separation of coordinates as follows. Let

 ̂ p p
S = rn2X - E t + Y ^ L o A  + Y ,  S* ^  + S^ r ) (6 .8)

i=1

t  and the </>,■ are cyclic coordinates, so their conjugate momenta are conserved. The con­
served quantity associated with time translation is the energy E, and those with rotation 
in the 4>i are the corresponding angular momenta L$r  Then, using the components of 
the inverse metric (6.6), the Hamilton-Jacobi equation (6.7) is written to be

—m =  Y  —(r2

i
(r2 4 -  A

i= l

-E 2
F(r)

r 2  + N ! ) 9 l m L i i + F { r

E 2 ^  ANtm )
r) ^  (r2  +  N 2 )gf(d,) *‘)( ]

dSr (r)
dr

1
Nr

dSeSBi 
d.0 i

(6.9)

After some manipulation, we can recursively separate out the equation into

IU =

E 2

"F{r

dSeM
d6 j

+ F(r)

+

dSr (r)
dr

p

£ ;
i= l

L t i + 2Nif i (6i) E ' 
9i{0i)

+  N 2 '

( 6 . 10 )

For future reference we will use the notation K  =  XX=i Also note that for 
the metrics obtained through analytic continuations discussed earlier, the issue of sep­
arability is clearly not affected. However, for an analytic continuation of the form 
t  —*■ i0,9 —> it, we need to replace E  -+ —iLg, and the energy is no longer conserved as 
we have a time-dependent background. However, now the angular momentum Lo asso­
ciated to 6  is conserved. Similar substitutions need to be made for any other analytic 
continuations or variable redefinitions used to define the new metrics.

6 .3 .2  T h e  E q u a tio n s o f  M o tio n

To derive the equations of motion, we will write the separated action 5  from the 
Hamilton-Jacobi equation in the following form:

i P rr P r&; .-------------

5  =  E< ■ Y L - ° -  ' \ f W ) d r '  + Y j  yQii.fyde'i, (6 .11 )
i~ 1 1 i=1 '
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where

K i IP
m~

I — I 1

-L<k+ 2 N if i {9i )E
0  i(9P =  K t

9 i ( 0 i

( 6 . 1 2 )

To obtain the equations of motion, we differentiate S  with respect to the parameters 
m 2,Ki,E,L<pi and set these derivatives to equal other constants of motion. However, we 
can set all these new constants of motion to zero (following from freedom in choice of 
origin for the corresponding coordinates, or alternatively by changing the constants of 
integration). Following this procedure, we get the following equations of motion:

a S  =  0 => A — f
d m 2  J F{r)y/K(jrl
d S  __ f  ddi f  1 dr

d K i  J  a / 0 ” ./ ( P  + N ' D F i ^ y d j ^ r ) '

d S  n ^  f  L f r  + 2 N i f i ( 8 i ) E  d0i-  0 = > / , ; = /   T—  7 — , (6.1.3)
"  J  g i i O i )

9S  _  f  E  dr A  [ 2 N lL<pi m )  + 4 N 2 f 2 (6l )E d6 t
9 E  n "  ' J  p p r W R t r] E /  g fiep  P % W ) '

It is often more convenient to rewrite these in the form of first-order differential equations 
obtained from (6.13) by direct differentiation with respect to the affine parameter:

dr
Tx = F ( r ) V W ) ,

ddi _
dX ~  r 2 +  N 2 '

d p  _  L 4h +  2Njfi(0j)E
dP "  g f m ^  + N 2) •

dt_ =  E  2NjL0j f i{ 8 i) +  AN 2 f 2 (9j)E
dX F(r) g2 ((?;) p 2  +  N 2) ' j

6.4 D ynam ical Sym m etry

The general class of metrics discussed here are stationary and “axisymmetric” ; i.e., d /d t  
and the d/d<t>% are Killing vectors and have associated conserved quantities, —E  and 
Llj>i. In general, if £ is a Killing vector, then is a conserved quantity, where p is the
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momentum of the particle. Note that this quantity is first order in the momenta.
The additional constants of motion K{ which allowed for complete integrability of 

the equations of motion is not related to a Killing vector from a cyclic coordinate. 
These constants are. rather, derived from irreducible second-order Killing tensors in 
which permit the complete separation of equations. Killing tensors are not symmetries 
on configuration space and cannot be derived from a Noether procedure, but they are 
instead symmetries on phase space. They obey a generalization of the Killing equation 
for Killing vectors (which do generate symmetries in configuration space by the Noether 
procedure) given by

-  0 > (6.15)

where K  is any second order Killing tensor, and the parentheses indicate complete sym- 
metrization of all indices.

The Killing tensors can be obtained from the expressions for the separation constants 
K{ in each case. If the particle has momentum p, then the Killing tensor is related 
to the constant K  via

K  -  tO^PfiPv -  ~  . (6.16)' OxV o x 1'

We can use the expression for the A) in terms of the the 6) equations.
For the Taub-NUT metrics analyzed above, the expression for A) from (6.10) is

Ki = d S e M
d d i

Thus, from (6.16) we can readily read

2

+
+  2 NiM OiJE' 

9 i ( & i )
(6.17)

Ki = d0i ®&ei H---- 7̂ 2 [dfr © 00, +  4N if i (9 i )d t ®dt -  2Nifi(0i )sym.(d4H © dt )] (6.18)
9 i  { t ' i  J

We can easily check using Maple [23], that the Killings tensors do satisfy the Killing 
equation.

Note that if any of the NUT parameters Ap were zero, then the corresponding Killing 
tensor /C* would simply be the usual Killing tensor of the underlying two dimensional 
space M/. (which is a reducible one in the case of a homogenous constant curvature 
space Mi;, as is the case for many situations here). In general, however, a 11011-zero 
NUT parameter A), provides a nontrivial coupling between the (?% <t>i, 6)) sectors, and 
the existence of the Killing vectors dfa and dt along is not enough to ensure complete
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separability. It is the existence of these nontrivial irreducible Killing tensors /Q that 
provides the addition separation constants /\", necessary for complete separation of each 
space Mi from another space M j , as well as separation of the angular sectors completely 
from the radial sector. These tensors are irreducible since they are not simply linear 
combinations of tensor products of Killing vectors of the spacetime.

6.5 T he Scalar Field Equation

Consider a scalar field T in a gravitational background with the action

S[T] = ~ \ J  dDXsfM )({V ^)2 +  ccRT2 + m2T2) . (6.19)

where we have included a curvature dependent coupling. However, in these (Anti)-de 
Sitter and flat backgrounds with charges, R  is constant (proportional to the cosmological 
constant A). As a result we can trade off the curvature coupling for a different mass term. 
So it is sufficient to study the massive Klein-Gordon equation in this background. We 
will simply set a  =  0 in the following. Variation of the action leads to the Klein-Gordon 
equation

(6 .2 0 )

Using the explicit expressions for the components of the inverse metric (6.6) and the 
determinant (6.5), the Klein-Gordon equation for a massive scalar field in this spacetime 
can be written as

r rrT  =
1

^ ( r 2 + N {)g2m  F(r)

Q2iTr ^  4 N tM e t) Q,
(\  ^  2 s  n 2  {a . \t ,.2 _l aC \ U,. ̂i=1 i $ m r 2  + N t

d n
. « = i

E
<3 <r*+  "!)*(•>)<* Q 6 i

(6 .2 1 )

We assume the usual multiplicative ansatz for the separation of the Klein-Gordon equa­
tion

=  $ r (r )e“ ' ^ e>:E L 1 W,:0t (6.22
i=1
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Then we can easily completely separate the Klein-Gordon equation as

Ki =

-m  =

1 d
ddi

1

9i(0i)
dQo^Oi) 

dO,
+ 2Nifi(9l)E

d
n L i  (r~ + N ?)dr

n C r 2 +  N ?)F(r

9%{Qi 
d $ r (r)

J=1 dr

T T '>  V  T '

r) " r -i=iF(r) N f

where the are again separation constants. At this point we have completely separated 
out the Klein-Gordon equation for a massive scalar field in these spacetimes.

We note the role of the Killing tensors in the separation terms of the Klein-Gordon 
equations in these spacetimes. In fact, the complete integrability of geodesic flow of 
the metrics via the Hamilton-Jacobi equation can be viewed as the classical limit of the 
statement that the Klein-Gordon equation in these metrics also completely separates.

C onclusions

We studied the complete integrability properties of the Hamilton-Jacobi and the Klein- 
Gordon equations in the background of a very general class of Taub-NUT metrics in 
higher dimensions, which include the cases of both singly and multiply NUT-charged 
solutions, electrically and magnetically charged solutions with NUT parameter(s), solu­
tions with a cosmological constant and NUT parameter(s), and time-dependent bubble­
like NUT-charged solutions, and other very interesting gravitational instantons. Com­
plete separation of both the Hamilton-Jacobi and Klein-Gordon equations in these back­
grounds is demonstrated. This is due to the enlarged dynamical symmetry of the space­
time. We construct the Killing tensors in these spacetimes which explicitly permit com­
plete separation. We also derive first-order equations of motion for classical particles in 
these backgrounds. It should be emphasized tha t these complete integrability properties 
are a fairly non-trivial consequence of the specific form of the metrics, and generalize 
several such remarkable properties for other previously known metrics.

Further work in this direction could include the study of liigher-spin field equations in 
these backgrounds, which is of great interest, particularly in the context of string theory. 
Explicit numerical study of the equations of motion for specific values of the black hole 
parameters could lead to interesting results. The geodesic equations presented can also 
readily be used in the study of black hole singularity structure in an AdS background 
using the A dS/C FT correspondence.
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C hapter 7

Two Param eter Kerr-de Sitter 
M etrics

7.1 Introduction

A number of recent developments in high energy physics have generated great interest in 
vacuum solutions of Einstein equations describing higher dimensional black holes, and the 
properties of these spacetimes. Models of spacetimes with large extra dimensions have 
been proposed to deal with several questions arising in modern particle phenomenology 
(e.g. the hierarchy problem) [1-3]. Higher dimensional black hole solutions arise nat­
urally in such models. These models are also of interest in the context of mini-black 
hole production in high energy particle colliders, which would provide a window into 
non-perturbative gravitational physics [4,5].

Superstring and M-theory also naturally give rise to higher dimensional black holes 
in their 10 or 11 dimensional ambient spacetimes. P-branes present in these theories can 
also support black holes, thereby making black hole solutions in an intermediate num­
ber of dimensions physically interesting as well. Solitonic objects in superstring theory 
frequently find a natural description in terms of higher dimensional black holes. They 
provide im portant keys to understanding strongly coupled non-perturbative phenomena 
which cannot be ignored at the Planck/string scale [6,7].

The Kerr metric describes astrophysically relevant black hole spacetimes, to a very 
good approximation [8]. One generalization of the Kerr metric to higher dimensions is 
given by the Myers-Perry construction [9]. W ith interest now in a nonzero cosmological 
constant, it is worth studying spacetimes describing rotating black holes with a cosmo­
logical constant. Another motivation for including a cosmological constant is driven by
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the A dS/C FT correspondence. The study of black holes in an Anti-cle Sitter background 
could give rise to interesting descriptions in terms of the conformal field theory on the 
boundary leading to better understanding of the correspondence [10,11/ The general 
Kerr-de Sitter metrics describing rotating black holes in the presence of a cosmological 
constant have been constructed explicitly in [12,13].

There is also a very strong need to understand the structure of geodesics in the 
background of black holes in Anti-de Sitter backgrounds in the context of string theory 
and the A dS/C FT correspondence. This is due to the recent work in exploring black hole 
singularity structure using geodesics and correlators on the dual CFT on the boundary 
[14-19],

In this paper we study the separability of the Hamilton-Jacobi equation in these 
spacetimes, which can be used to describe the motion of classical massive and massless 
particles (including photons). We also investigate the separability of the Klein-Gordon 
equation describing a massive scalar field propagating in this background. We explicitly 
perform the separation in the case where there are only two sets of equal rotation pa­
rameters describing the black hole. We use this explicit separation to obtain first-order 
equations of motion for both massive and massless particles in these backgrounds. The 
equations are obtained in a form that could be used for numerical study, and also in 
the study of black hole singularity structure using geodesic probes and the A dS/CFT 
correspondence.

We also study the Klein-Gordon equation describing the propagation of a massive 
scalar field in this spacetime. Separation is again explicitly shown for the case of two sets 
of equal black hole rotation parameters. We construct the separation of both equations 
explicitly in these cases.

This paper greatly generalizes the results of [20,21] for the Myers-Perry metric in five 
dimensions, [22] which separates the equations in the case of equal rotation parameters 
in the odd dimensional Kerr-(A)dS spacetimes, and [23] which separates the equations 
in the case of two independent sets of rotation parameters in the Myers-Perry metrics in 
all dimensions, as well as some related results in five dimensional black hole spacetimes 
in [24,2.5],

Separation is possible for both equations in this case due to the existence of a second- 
order non-trivial irreducible Killing tensor. This is a generalization of the Killing tensor 
in the Kerr black hole spacetime in four dimensions constructed in [26] which was sub­
sequently described by Chandrasekhar as the “miraculous property of the Kerr metric". 
A similar construction for the Myers-Perry metrics in higher dimensions has also been 
done [20.23]. The Killing tensor provides an additional integral of motion necessary
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for complete integrability. We also construct Killing vectors, which exist due to the 
additional symmetry, and which permit the separation of these equations.

7.2 C onstruction and O verview  of the Kerr-de Sitter M et­
rics

One of the most useful properties of the Kerr metric is that it can be written in the 
Kerr-Schild [27] form, where the metric g/w is given exactly by its linear approximation 
around the flat metric rifW as follows:

ds2  = g ^ d x ^ d x 1' =  r i^d x ^d x 1' + {k^dxl1) 2  , (7.1)

where kfl is null and geodesic with respect to both the full metric gIIL, and the flat metric 

d , . w

The Kerr-de Sitter metrics in all dimensions were obtained in [12] by using the de 
Sitter metric instead of the flat background p/t|y, with coordinates chosen appropriately 
to allow for the incorporation of the Kerr metric via the null geodesic vectors /q,. We 
quickly review the construction here.

In D-dimensional spacetime, we introduce n = [D/2] coordinates p.,;, where [i] denotes 
the integer part of i, subject to the constraint

n
(7-2)

i = 1

together with N  = [(D — l)/2] azimuthal angular coordinates rp,, the radial coordinate 
r, and the time coordinate t. When the total spacetime dimension D is odd, D =  
2n +  1 =  2 N  +  1, there are n  azimuthal coordinates 0,;, each with period 27r. If D is 
even, D =  2n = 2N  +  2, there are only N  — n — 1 azimuthal coordinates <&. Define e to 
be 1 for even D, and 0 for odd D.

The Kerr-de Sitter metric ds2  in D dimensional spacetime satisfies the Einstein equa­
tion with cosmological constant A:

Rpi, -  ( D - l ) A ^ .  (7.3)
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Define functions W  ancl F  as follows:

n  9

(7‘4)1 +  A a“ * ...
1 = 1  1 1=1

In D  dimensions, the Kerr-de Sitter metrics are given by

9 ]\ , f
ds2 = ds '2  +  dxT ) 2 , (7.5)

where the de Sitter metric ds2, the null vector fc„, and the function U are now given by

ds2 =  —W  (1 -  A r 2) dt2 +  F d r 2 +  ' + ° \  d t f  +  ' ,+.%  IE
1 +  A a,“ 1 -1- A ay

7=1 1 1 4

A  Z' \  '  ( r 2  +  aj )  di chk  \  2
‘l K ( l - A r 2) 1 +  Aaf /  ’ ( '7=1 6

k^dM 1 = W d t -  I  dr Y  1 1 (7.7)
 ̂ d 1 J_ A n  r'

7 =  1

n  o  n — e

1 +  A d;

fr =  ’" E ^ n ^  + d ) -  P-8)
i=l * j= l

In the even-dimensional case, where there is no azimuthal coordinate <pn, there is also 
no associated rotation parameter: i.e., an =  0. Note that the null vector corresponding 
to the null one-form is

;  H 9  —  1  0  8  a i ® (r- r,- ,
A1 i-----1—2-ib7 ^  «------Z_  ̂ ^ NT" 1 ( 1 )1 — A r 2 dt or r 2 +  a- o<p,;

This is easily obtained by using the background metric to raise and lower indices rather 
than the full metric, since k is null with respect to both metrics.

For the purposes of analyzing the equations of motion and the Klein-Gordon equation, 
it is very convenient to work with the metric expressed in Boyer-Linclquist coordinates. 
In these coordinates there are no cross terms involving the differential dr. In both even 
and odd dimensions, the Boyer-Lindquist form is obtained by means of the following 
coordinate transformation:

2 M  dr , 2 M  dr
( i  — A f b ( v —2M ) ’ f # -; = dip' -  x a ' dT +  ■ <7-10)

In Boyer-Lindquist coordinates in D  dimensions, the Kerr-de Sitter metrics are given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 7. TW O  P A R A M E T E R  KERR-DE S IT T E R  M ETRIC S 81

ds2 =  —W  (1 — Ar2) dr

+  TT (1 -  Ar2)
A y -  (?’" +  aj)ni d/i-A 2

^  1 +  A a? )
1 =  1 1

(7.11)

where V  is defined here by

(7.12)

Note that obviously an =  0 in the even dimensional case, as there is no rotation associated 
with the last direction.

7.3 Inverting the K err-(A )dS m etric in all dim ensions

AVe briefly review the process of inversion of the metric using the Kerr-Schild formalism. 
More extensive details of this type of procedure can be found in [22,231. This section 
will also help establish some useful notation and conventions for the rest of the paper. 
Note that the metric is block diagonal in the (/U*) and the (r, r, ipj) sectors and so can be 
inverted separately.

To deal with the (?\ r, (p̂ ) sector, the most efficient method is to use the Kerr-Schild 
construction of the metric. From (7.1) and using the fact that k is null, we can write

where 77 here is the de Sitter metric rather than the fiat metric, and we raise and lower 
indices with r]. Since the null vector k has no components in the /i,; sector, we can regard 
the above equation as holding true in the (r, r, </?*) sector with k null here as well. Then 
we can explicitly perform the coordinate transformation (7.10) (or rather its inverse) on 
the raised metric to obtain the components of g/llJ in Boyer-Lindquist coordinates in the 
(r, r, ip-;,) sector.

(7.13)
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We get the following components for the (r,r,<pi) sector of gfU':

grr = g '-P -i r =  q  ?

V  -  2 M  Qrr =   7±L
U ’

=  Q

gT/-pi _ A ciiQ

U( 1 -  Xr2)2(V -  2M) '
AM 2 cp (1 +  A a2) 2 M   a,:

17(1 — Ar2)2(F  — 2M )(r2 +  af) U (1 -  Ar2)(r2 +  a2)

=  / ^ AA ^  +  A2at% Q + ^

AM 2 a,iaj(l + Xa2)(l  4- A a2) /<- t A\
+ U{ 1 -  Ar2)2(V -  2Af)(r2 +  a2 )(r2 +  a |)  ’

where Q and are defined to be

1 2 M  1 r i n
^  “  W(1 -  Ar2) U (1 -  Ar2)2 ’ ^

—4M 2Aoi0.j[(l 4- Aaj)(r 2  4- a2) +  (1 4- Aa2 )(r 2 4- a2)] 
Q =  (1 — Ar2)2(V — 2 M )(r 2 + a2 )(r2  + a2)

2MAa,-a,- 
(1 — Ar2) (r2 4 -o |) (r2 +  a'j)

2 M- r 2 +  a 2 ) ( r 2 + 0 2 )

4Af2a;aj[(l 4- A of) 4- (1 +  Aa2)]jlv v jji {716)
(1 -  Xr2)2(V -  2M )(r 2  + a2)(r2 +  a2) '

These results were compared to previously known ones in the case of A =  0 and 
showed agreement [20]. Also, we used the GRTensor package for Maple to explicitly 
check that this is the correct inverse metric [28].

Note tha t the functions W  and U both depend explicitly on the p.,;Is. Unless the 
[r.Tjtpi) sector can be decoupled from the /.i sector, complete separation is unlikely. 
If however, all the flj =  a for some non-zero value a, then W  and U are no longer 
H dependent (taking the constraint into account) and separation seems likely. Note, 
however, that in this case we cannot deal with even dimensional spacetimes, since an = 0 
is different from the other a,: =  a. The analysis in this case has been done in detail in [22],

We will actually work with a much more general case, in which separation works in 
both even and odd dimensional spacetimes. We consider the situation in which the set
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of rotation parameters a* take on at most only two distinct values a and b (a = b can 
be obtained as a special case). In even dimensions at least one of these values must be 
zero, since an =  0. As such in even dimensions we take 6 =  0 and a to be some (possibly 
different) value. In the odd dimensional case, there are no restrictions on the values of 
a and b. We adopt, the convention

where m  +  p =  Ar +  e =  n.
Since the p{’s are constrained by (7.2), we need to use suitable independent coordi­

nates instead. We use the following decomposition of the pp.

Since these constraints describe unit (m -  1) and (p -  1) dimensional spheres in 
the A and u spaces respectively, the natural choice is to use two sets of spherical polar 
coordinates. We write

with the understanding that the products are one when i =  m  or j  = p respectively, and 
that am = 0 and 0 P =  0.

The p. sector metric can then be written as

again with the understanding that the products are one when i = 1  or j  = 1. and we use

Oi — a for i = . cij+m = b for j  =  1 , ....p , (7.17)

Pi =  A,; sin 9 for i = 1, ...,m  , Pj+m =  ^  cos 9 for j  — 1 p .  (7.18)

where the A,; and Vj have to satisfy the constraints

777. V

(7.19)
i=1 .7 =  1

(7.20)

(7.21)
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the definitions

9  2  , 9  9  /T , i 2  . 9  np“ — r 4- a" cos" 9 +  b sm" 9 ,

Ao =  1 +  A a2  cos2 9 +  A b2 sin2 9 ,

Pa ~  Id - A ci2 ,

S 6 =  1 +  A62 ,

Z  =  r e(r2 +  a2)m_1(?’2 +  62)p” 1-e. (7.22)

This diagonal metric can be easily inverted to give

nee _
9  P2

T a 1
(r2 +  a2) sin2 £ ( n ^ s i n 2 a fc)

^6 1
(r2 +  fe2) cos2 0 ( n t = \  Sin2 /3fc)

Sjj , i , j  =  1, ..., 777. ,

<%, i , j  =  l (7.23)

For the case of two sets of rotation parameters that we consider here, the following 
expressions will be extremely useful:

U =  p2 Z ,
A/,

W  =  - j r .  (7.24)

We note that both V and T are functions of r only.
The following identity, which can be easily verified, will be crucial in the following:

V p2 \ A e p2A(l — A?’2) p2 Z ( l - X r 2)2(V - 2 M ) '  1 1

7.4 The H am ilton-Jacobi Equation and Separation

The Hamilton-Jacobi equation in a curved background is given by

= H  = V " | 4 | h ,  (7.26)
0 1  2 J dxMdx1'

where S  is the action associated with the particle and I is some affine parameter along 
the worldline of the particle. Note tha t this treatm ent also accommodates the case of 
massless particles, where the trajectory cannot be parameterized by proper time.
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We can attem pt a separation of coordinates as follows. Let

777 p  777 — 1 P- 1
s  - ~m2l-E T +'^2 ^iTm+i+Sr{r)+So(0)+ ^ 2  SQi ( 0 , ) + ^  Sfr ( A )  ■ ( 7 -2 7 )

i=1 i = 1 i = 1 i = l

r  and tfi are cyclic coordinates, so their conjugate momenta are conserved. The conserved 
quantity associated with time translation is the energy E, and the conserved quantity 
associated with rotation in each <pi is the corresponding angular momentum <3y or Tj. 
We also adopt the convention tha t =  0 in an even number of spacetime dimensions. 

Using (7.14), (7.22), (7.23), and (7.27) we write the Hamilton-Jacobi equation (7.26)
as

— m ■‘a^b 2M 4 M 2

+ 2

EaEfj
_Xp2 A 0 ~  p2 A(1 -  Ar2) “  p2 Z{ 1 -  Ar2) “  p2 Z{ 1 -  Ar2 

aE a£ fe a S aS 6 4M 2o S a

E

p2 A e p2(l — Ar2) p2 Z ( l  — Xr2)2(V — 2 M )(r 2 + a2)

2 M a 2MXa

+ 2

p2 Z(  1 -  Ar2)(r2 +  a2) p2 Z(  1 -  Ar2)2

bEaT b 6E0E{,
i = l

AM bEb
p2 A e p2 { l - X r 2) p2 Z { l - X r 2 )2 { V - 2 M ) { r 2 + b2

2Mb 2MXb
p2 Z{ 1 -  Ar2)(r2 +  62) p2 Z{ 1 -  Ar2

r 2 4- a2) sin2 0 A f  A? (r2 +  62) cos2 0 f r f  v f  P2
'  7=1 '• v 7 =  1 '■

E ( - £ ) o
i=i

P &  A e

V  -  2 M dSr {r)
dr

2  77).—1 E,,

rfSe(e)

dS'o,
(r2 +  a2) sin2 0  n U i  sin2 a k \  dlCXl

E 6 f  dSpi
p- l

^  (r2 +  52) cos2 0 n i = i  -sin2 Pk V dPi

E .„E,. Ea£b 2Af
E E
7 = 1  j  =  l

+

+

1.1/ '/ E-.

p2A 0 p2A(l -  Ar2) /22E(1 -  Ar2) ,

p2Z(U -  2M )(r 2 + a2 ) 2 + p2Z
p p

E E
1 = 1  .7 =  1

X2 b 2 I S aS 6 E Ei P-‘a^b 2M
p2 A e p2A(l — Ar2) p2 Z { l - X r 2)
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+
4M 262E?

p2 Z ( V - 2 M ) ( r 2 + b2y
rn p

+

’E E
i=i j=i

A ab
S Ei

)(i+m)(j+m)

M m

E«Eb 2 M

+

p2 A e p2A(l — Ar2) p2 Z( l - A r 2:

l M ’uhEaX ‘, QM+M
p2 Z{V  -  2M ) (r2 +  a2)(r2 +  b2) p2Z

(7.28)

Note that here the A,’ and Uj axe not coordinates, but simply quantities defined by
(7.20). We continue to use the convention defined for products of sin2 cq and sin2 /Jj 
defined earlier. Separate the cq and (3j coordinates from the Hamilton-Jacobi equation 
via

4 - E
i = i

p

% = £

$ 2 f d S at

\ r  n U sin2 a k V d a i
T 2

+
? := i L vi n u sin'2 &  v dP

dSg,
[7.29)

where J 2  and L \  are separation constants. Then the remaining terms in the Hamilton- 
•Jacobi equations can be explicitly separated to give ordinary differential equations for r 
and 9:

K  = 9 9ro v~ —
S „Ea^b +

2M 4 M 2

A ( l - A  r 2) Z ( 1  — Ar2) Z ( l - A r 2)2_
V  -  2 M 

£  +   ----
dSr (r)

dr

+ 2
2MAa

(1 -  Ar2) 1 Z(1 -  Ar2)2 +  Z(1 -  Ar2)2(V -  2M )(r2 +  a2) 

2Mo

4M 2a£„

Z ( l - A r 2)(r2 +  a2) i=1
6EaE6 , 2\/..Vi

(1 — Ar2) Z{\ — Ar2
4M 2 bZb

Z(1 — Ar2)2(F  — 2A /)(r2 +  h2)

2M6
Z(1 — Ar2)(r2 +  62) 

2M
j = l  i = l  j  =  l

Z

\ 2  2 A a { _ L a X b _
U(1 ~ Ar2)

4M 2a2E2
Z(1 -  Ar2) y Z (F  -  2M )(r2 +  a2)2
p p

E E
*=1 j = l

A262
2M 4M 262S 2

A(1 -  Ar2) Z(1 -  Ar2) /  Z(H -  2 M )(r2 +  62)2
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Q 'i+rn)(j+rri)

z + 2
m  p

E E
i = l  j ^ i

X ab

4M 2a6EaEb

r-  +  cT r 2 + b'2

E V,
+

2 M
A(1 — XT2) Z(1 — XT

Z(K  -  2M ){r 2 + a?){r2 + b2)

Ea(r2 + H2) t 2  , E6(r2 +  a2) r2
H „ 2  , U'2 h \  > (7.30)

and 

— K  = m 2 a2 cos2 6  +  m 2 b2 sin2 0 +  A, +  S Q cot2 9J f  + Eft tan2 0L\

v n  " {' v*’'  P  7 0  77?. 7/d’ \  0  9 n  v -’'

AAo A-  ̂ Ao “  Ao A_/ A-/
1 = 1  7=1 7 =  1 J =  1

P P \ 2 7 2 V' V'1
A u 1- ia^b  T t+ E E  Art * ^

»=1 J = 1

(7.31)
i=i j=i

where A' is a separation constant.
In order to show complete separation of the Hamilton-Jacobi equation, we analyze 

the a  and p  sectors in (7.29) and demonstrate separation of the individual a,; and P j .  

The pattern here is that of a Hamiltonian of non-relativistic classical particles on the 
unit (to — l) -a  and the unit (p — 1 )-f3 spheres, with some potential dependent on the 
squares of the p,j. This can easily be additively separated following the usual procedure, 
one angle at a time, and the pattern continues for all integers m, p > 2.

The separation has the following inductive form for k — 1,.... m —2, and I =  1, 2:

dSak 
dak 

f  dSgm_i
V dctm —i 

dS3l
dpi

dS;3p ,

dp.'p-l

=  J i
J\

sin" a k cos"' og-

J2  _  _  _
777— 1 . • 2

S i l l  CXjn 1

T 2
COS*' Oim— 1

Lr
L

sin2 pi cos2 pi
i+1

r 2
% - l  1sin" /3p_i cos'"/3p_i

(7.31

Thus, the Hamilton-Jacobi equation in the Kerr-(Anti) de Sitter rotating black hole 
background in all dimensions with two sets of possibly unequal rotation parameters has
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the general separation

.. m p r)7 — l  p  1

S  = - m ^ l - E r h i ( p m+i +Sr(r)+So(d)+ ' y^ Sai ( p i ) S y  (fy) , (7.33)
7=1 7 =  1 7 =  1 7 =  1

where the a,; and pj are the spherical polar coordinates on the unit (m — 1) and unit 
(p — 1) spheres respectively. Sr(r) can be obtained by quadratures from (7.30), So(6 ) 
by quadratures from (7.31), and the Sai(oii) and the Spj(pj) again by quadratures from 
(7.32).

7.5 The Equations of M otion

7 .5 .1  D e r iv a tio n  o f  th e  E q u a tio n s  o f  M o tio n

To derive the equations of motion, we will write the separated action S  from the 
Hamilton-Jacobi equation in the following form:

-I rn p . r   .0

5 = 7.m2l_ ET + J 2 ^ l + J2^iPm+l+ / \ZWy)dr' + / ^W)de'
i  =  1 % =  1 2  J

rn—1

^ 2  /  ’ + J 2 1  > (7-34)
7=1 7=1 "

where

4 +i o'
sin2 ak cos* ajt

—i Jpji—i

A t2  ^fr +  1 777. — Al+1 J -1 o
=  Jk -  i k =  L m “  2

s i r  am_i cos“ a m_i 
r 2 Vtr'2

ID   T 2   fc +  1   p  —fc +  1 7.   -1 ^  _ o
Pk Tp - 2 Q 0 U ' ' ’ • ’ '  ̂ :sm" Pk cos- Pk

5 p_i =  L 2̂ - — ^ --------------- 2 , (7.35)
sim frp_i cos“ /tp_i

0  is obtained from (7.31) as

AA0 =:= — m 2 a2 cos2 6  — rrrb1 sin2 Q — cot2 6 J(  — £/, tan2 OL2,=:= — m  a cos v — m  o sm a — Zja cor u j 1 — n ^ i a n o l 1

x . o £ 0£ 6 ^  ^  6£0£ 6 ^  A2n2£ a£
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P  P  \ 9 7 9 v-1 V"1 ^  \  2 7 V1

■ 1 - 1  ^ 6  1 = 1  J = 1

and R  is obtained from (7.30) as 

V  - 2 M
-R  =  — m 2 r 2 +

i=1 j = 1

2 M

7.36)

4 M 2
A(1 — Ar2) 7 ( 1 - A r 2) 7(1 -  Ar2)2.

— 9

+

a S 0Sft 2M  A a 4A:f2aE n
_(1 — Ar2) Z ( l - A r 2)2 Z(1 -  Ar2)2(Vr -  2M )(r2 +  a2

2M a
7(1 -  Ar2)(r2 +  a2 )

-  9

i = l

&EaE 6 2 MXb 4 M 2 bTb
(1 — Ar2) 7(1 — A?’2)2 Z { 1 - X r 2 )2 { V - 2 M ) { r 2 + b2

2Mb
7(1 — Ar2)(r2 +  b'2) 

2 M
7(1 -  Ar2) J  Z ( V  -

E w - E E
i= i i - i  1=1

4Af2a2E 2 Qv_
~Z

\ 2  2 A a
v VL

A(1 -  Ar2)

p p

E E
i=i 1=1
Q(i+m)(j+m)

,2 +  a2)2 

2M
v  A(1 -  Ar2) 7(1  -  Ar2) J  Z {V  -  2Af)(r2 +  b2)

a m -isy?

m p
^ 1 - 2  E E

i = l  1  =  1

4Af o.6EaE{,

A“a6

g i ( l + r ,

z "

E„Ea b 2M
A(1 — Ar2) 7 ( 1 - A r 2)

7 ( F - 2 A f ) ( r 2 +  a2)(r2 +  62)

Ea(r2 +  62) 2 Sfc(r2 +  a2) 2
••A -----------, m— +  A .r 2 +  a2 r 2 +  62

(7.37)

To obtain the. equations of motion, we differentiate S  with respect to the parameters 
m2, K ,  E ,  V j  and set these derivatives to equal other constants of motion.
However, we can set all these new constants of motion to zero (following from freedom 
in choice of origin for the corresponding coordinates, or alternatively by changing the 
constants of integration). Following this procedure, wc get the following equations of 
motion:

dS  ^  f  Z r 2 dr f  (a2 cos2 6  +  b2 sin2 9)dQ
d m 2 ~ ^  ' _ J V  - 2 M  , / R + ]  Agy/Q
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a s  s r <16 r z  dr 
OK ~  ^  J Aq\/@ ~~ J V - 2  M s f R '
a s  f  dai f  z  S a(r2 + b2) d r  f  Ea cot2 8 d8

OJ2 ~  J -S A  ~ J V  -  2 M  r 2 +  a2 vI r  + J  A 0 y/& ’

^  =  0 ^  f ^ L =  [  ■- d^ z L , k =
dJk J J  sm- a fe_! s /A k_ t
8 S _  f  dpi r Z  £f,(?’2 +  a2) dr /' S b tan 2 dd6

d l f  ~  J  W i ~  1  ’ -2  + V  / W  J  A » v ^  ’

“ = 0  ^  [ J V L = , = .2......„ - 2 .  (7.38)
dLf J \/Bi J sm“ ftk-i \J B i_ i

We can obtain N  more equations of motion for the variables qy, by differentiating S  with 
respect to the angular momenta d>j and T j. Another equation can also be obtained 
by differentiating S  with respect to E  involving the time coordinate r . However, these 
equations are not particularly illuminating, but can be written out explicitly if necessary 
by following this procedure. It is often more convenient to rewrite these in the form 
of first-order differential equations obtained from (7.38) by direct differentiation with 
respect to the affine parameter. We only list the most relevant ones here:

, d r  V - 2 M  r -

=  — z — ™ '

= A sv /0 ,
dl

(r“ +  a“) doik a/A k
k = 1,.... m  — 1. 

l = l , . . . , p - l ,  (7.39)

S a dl sin2 6  n t i 1 sin2 a i
(r2 +  b2) dpk = y/Ej

S i dl cos2 8  n t l  sin2 pi

7 .5 .2  A n a ly s is  o f  th e  R a d ia l E q u a tio n

Worldlines of particles in these backgrounds are completely specified by the values of the 
conserved quantities E , K , L 2, J'j, and by the initial values of the coordinates. We will 
consider particle motion in the black hole exterior. Allowed regions of particle motion 
necessarily need to have positive value for the quantity R. owing to equation (7.39). We 
determine some of the possibilities of the allowed motion.

At large radius r, the dominant contribution to R, in the case of A =  0. is E 2 — m 2. 
Thus we can say that for E 2 <  m 2, we cannot have unbounded orbits, whereas for 
E 2 > m 2. such orbits are possible. For the case of nonzero A, the dominant term at 
large r in R  (or rather the slowest decaying term) is ^ . Thus in the case of the Kerr-
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Anti-de Sitter background, only bound orbits are possible, whereas in the Kerr-de Sitter 
backgrounds, both unbounded and bound orbits may be possible.

In order to study the radial motion of particles in these metrics, it is useful to cast 
the radial equation of motion into a different form. Decompose R  as a quadratic in E  
as follows:

R  =  a E 2  -  20 E  + 7  , (7.40)

where

a =

0  =

V -  2 M  
- Z

V  -  2 M

_A(1 -  Ar2) +  Z{ 1 -  Ar2) ^  Z{ 1 -  Ar2)2 

aE aE fe

■1M
+

4M 2

2M  Aa 4M 2aS,
(1 -  Ar2) Z{ 1 -  Ar2)2 Z( 1 -  Ar2)2(V -  2M )(r 2 +

2 M a
Z(1 — Ar2)(r2 +  a2)_ E*<

i=1

z
V - 2  M

bEa 2 MXb
(1 -  Ar2) ^  Z{ 1 -  Ar2)2 +  Z{ 1 -  Ar2)2(V -  2M )(r2 +  b2)

4M 26Sfc

+
2 Mb

Z { 1  -  Ar2)(r2 +  62
i=l

rn m

E E
i = i  j —1

\2 2 (  E aE5 A a —------—r- 4-
2 M

\A (1 — Ar2) ' Z ( 1  — Ar2) J Z ( V  -  2 M )(r 2 + a2

AM2crY0

p v
X2 b2

EaSfe

i=1 j=l

4Af262E 2 

E (F  -  2Af)(r2 +  b2 )'2

S 0(r2 +  62) t2 Sfe(r2 +  a2) 2 , r . 2^ 2 
- J 1 ------- 5------^— L x + 1\  — 771 r

2 M
A(1 -  Ar2) Z(  1 -  Ar '1

Q ( i + m ) ( j + m )

E

v +  a-
m  p

2£ E
j=i i= i

r 2 +  a2

Ea
A"a&

v. 2M
\  A(1 — Ar2) E (1 — Ar2 

AM 2 abEaEb q E + E
Z {V  -  2 M ) (r2 +  a2 )(r2 +  62) Z

(7.41)

The turning points for trajectories in the radial motion (defined by the condition 
R  =  0) are given by E  = V± where

V+ =
0  ±  - s /0 '2 -  a q

a
(7.42)
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These functions, called the effective potentials [20]. determine allowed regions of motion. 
In this form, the radial equation is much more suitable for detailed numerical analysis 
for specific values of parameters.

7 .5 .3  A n a ly s is  o f  th e  A n g u la r  E q u a tio n s

Another class of interesting motions possible describes motion at a constant value of a* 
or 0 j .  These are analogous to the same class of motions analyzed in [23]. We briefly 
summarize them  here. These motions are described by the simultaneous equations

dA-
Ai(ati = oiio) = (a* =  Wo) =  0 , i =  1 ,....m -  1. (7.43)

in the case of constant cq motion, where cqo is the constant value of cq along this 
trajectory, or by the simultaneous equations

£ i(A  =  Ao) =  ^ ( &  =  Ao) =  0 , i =  l  p - l ,  (7.44)

in the case of constant Pi motion, where /ifo is the constant value of along this trajec­
tory.

These equations can be explicitly solved. In the case of constant a,; motion, we get 
the relations

tO t  9
'7f+ i ill—*—i

sin4 a,; cos4 a,;

J'f = Jit —  +  • i =  1,..., r n - 1 .  (7.45)
sin" a,; cos- cq

Note that if cqo =  0, then Jf+l = 0, and if cqo =  7t/2, then =  0. Similarly, in
the case of constant Pi motion, we get the relations

1
in4 fa cos1 fasm

Lj = +  i = l . „ . , p - l .  (7.46)
sm“ pi cos- pi

Again if /3,;o =  0, then L\+l =  0, and if 0iO = 7r/2, then =  0.
Examining Ak  hr the general case. og =  0 can only be reached if Jk+\ ~  0. and 

og =  tt/2 can be only be reached if Tm_fc+i =  0. The orbit will completely be in the 
subspace og =  0 only if J% — <f>)2n_fc+1 and will completely be in the subspace og =  tt/ 2
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only if =  J£+1. Analogous results hold for constant /3,; motion.
Again these equations are in a form suitable for numerical analysis for specific values 

of the black hole and particle parameters.

7.6 D ynam ical Sym m etry

The spacetimes discussed here are stationary and “axisymmetric” ; i.e.. d /d r  and d/dtpi 
are Killing vectors and have associated conserved quantities. —E. $ j. and T,.. In general, 
if r/ is a Killing vector, then r fp fJs is a conserved quantity, where p is the momentum. 
Note that this quantity is first order in the momenta.

In the case of only two sets of possibly unequal rotation parameters, more Killing 
vectors exist since the spacetime acquires additional dynamical symmetry. We have 
complete symmetry between the various planes of rotation characterized by the same 
value of rotation param eter a,; =  a, and we can “rotate” one into another. Similarly, 
we have symmetry between the planes of rotation characterized by the same value of 
the rotation parameter a, =  b, and we can “rotate” these into one another as well. The 
vectors that generate these transformations are the required Killing vectors. The explicit 
construction of such Killing vectors is done in [22]. In this case, we get two independent 
sets of such Killing vectors, associated with the constant a and b value rotations.

In an odd number of spacetime dimensions, if a ^  b and both are nonvanishing, then 
the rotational symmetry group is U(m)  x U(p). If one of them is zero, but the other 
is nonzero (we take the nonzero one to be a), then the rotational symmetry group is 
U(m) x 0(2p). In the case when a — b ^  0, the rotational symmetry group is U(m + p). 
In the case when a — b — 0, i.e. in the Schwarzschild metric, the rotational symmetry 
group is 0 (2m  +  2p). In an even number of spaectimc dimensions, b = 0 in the cases we 
have analyzed. If a ^  0, then the rotational symmetry group is U{rn) x 0[2p  — 1), and 
in the case when a — b — 0, i.e. in the Schwarzschild metric, the rotational symmetry 
group is 0 (2 m  + 2p— 1). Note that since these metrics are stationary, the full dynamical 
symmetry group is the direct product of R  and the rotational symmetry group, where 
R  is the additive group of real numbers parameterizing r.

We also obtain a non-trivial irreducible second-order Killing tensor, whose existence 
is the principal reason that permits the separation of the r -  0 equations. This Killing 
tensor is a generalization of the result obtained in the five dimensional case in [20]. This 
is obtained from the separation constant K  in (7.30) and (7.31). We choose to analyze
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the latter.

K  = — m 2 a2 cos2 9 — m 2 b2 sin2 6  — £ a.— E 2 -  E a cot2 6 J f  — Efc tan2 9L\
XAf) 1 1

7T>. v— P  j  771 771 \  2 2  V ' V-
2 y a ^  y b ^  y y X _ a E ^

h  Ae Ae Ae

-  1 1  ^ - l £ ±  -  A .  ( f )  2 . (7.47,
? ; = i  j = i  w i = i  j = i  w v  7

The Killing tensor K iW is obtained from this separation constant (which is quadratic in 
the canonical momenta) using the relation K  =  K ^p ^p , , .  It is then easy to see that

ICa' = -  c f u (a2 cos2 9 +  b2 sin2 9) -  -  Ea cot2 9 J f '  -  S fe tan2
XAf)

- Mf«- £  + W  - E^W C,,, + K,tmrr)
i = 1 9  j = 1 9

711 ^  \ 2  2 v  V  ^  P  \ 2 1 2 v '  V '

- E E - E E
7=1 3 = 1  6  i = l  3 = 1

Dl p  \  2 I y 1 yi

- E E J w i ijy;.«+ 't.‘a. (7.18)
7 =  1 j = l  6

where J[tl' and 1/“' are the reducible Killing tensors associated with the a and 0  sepa­
ration.

The existence of these additional Killing vectors and of the nontrivial irreducible 
Killing tensor is the principal reason behind the complete separation of the Hamilton- 
Jacobi equation. The nontrivial Killing tensor, in particular, exists due to the detailed 
structure of the metrics under consideration and is a surprising result.

7.7 The Scalar Field Equation

Consider a scalar field T in a gravitational background with the action

S[V] = - \  I  dDX y / = g ( ( W ) 2 +  aRW 2 +  m 2T 2) . (7.49)

where we have included a curvature dependent coupling. However, in the Kerr-(Anti) 
de Sitter background, R  = A is constant. As a result we can trade off the curvature 
coupling for a different mass term. So it is sufficient to study the massive Klein-Gordon
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equation in this background. We will simply set a = 0 in the following. Variation of the 
action leads to the Klein-Gordon equation

1
(7.50)

As discussed by Carter [26], the assumption of separability of the Klein-Gordon 
equation usually implies separability of the Hamilton-Jacobi equation. Conversely, if the 
Hamilton-Jacobi equation does not separate, the Klein-Gordon equation seems unlikely 
to separate. We can also see this explicitly (as in the case of the Hamilton-Jacobi 
equation), since the (r, r, (pi) sector has coefficients in the equations that explicitly depend 
on the m  except when of all at =  a. in which case separation seems likely. We will again 
consider the much more general case of two sets of possibly unequal sets of rotation 
parameters a and b. We continue using the same numbering conventions for the variables.

Once again, we impose the constraint (7.2) and decompose the Hi in two sets of 
spherical polar coordinates as in (7.18) and (7.20). We calculate the determinant of the 
metric to be

9 =
—r 2 p4 (r2 + a2)2Tn 2 (r2 + b2)2p 2 6 . 4

V2rn.y2P-2e
a ^b

sin4m~2 6  cns4p-2~2t 6

777,-1 -p-1
Y l  sin4m~ li— 2  2 J a.j COS Q 'j sin4p“ 4fc_2 0 k cos2 0 k cos

J= i .k=i
cos 2c j3\ . (7.51)

For convenience we write q = —. , where
o  v 2 mv*'*

R  = 

T  =

A =

B  =

r 2 (r:2 + a2 f m- 2 (r2  + b2)2p- 2~C 

sin4m-2 0  cos4p-2-2e 9 ,
r r i —  1

sin'lm~lj - 2  a . j  cos2 ctj ,
1=1
p-l
J ]  sin4̂ 4fc- 2dfccos2dfcCos-2VJi 
k=1

(7.52

Note that R  and T are functions of r and 9 only, and A  and B  only depend on the set 
of variables a.j and 3j respectively. Then the Klein-Gordon equation in this background
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(7.50) becomes 

m 24' =

+

1 (  r ^ y  ~ - M  „ T >~dr I v R  —— drI f ) +
E

I  V  — d 2  Hn «;t,2 a 2 ~, \ 2 uVip1 \ [ R Jr VV ±L z  J (r2  +  a,2) sin2 6  A

 .  „ ,  ^
(r2 +  a2) sin2 0

T b
(r2 +  b2) cos2 0

7 3 a»

o—l
E,-,Ep S 0Si,

*771— 1

E
. i= i 
r - i  1

— -  a «,®
,Yl'k=\s'm 2 a k 

y/B

, n U i sin2/^
2 M 4 M 2

_A/92A 0 /92A(1 — A?’2) /52Z(1 — Ar2) p2 Z ( l  -  Ar2)2_
d2'!'

+ 2
aEaEb 4M 2aE aa £ aEfe

/c^Afl p2( l - A r 2) p2Z ( l - A r 2)2( F - 2 M ) ( r 2 +  a2)

2M  Aa 2.\/c
/y2Z (l — Ar2)2 p2E (l -  Ar2)(r2 +  a2) _

+ 2
6£0Ei, ftEaE(,

E 4 *
? := i

4 M 2 b Z b

p2Afl p2( l - A r 2) /?2Z (1 — Ar2)2(V — ■2 + f t E

2MXb 2Mb
p2 Z(  1 -  Ar2)2 p2Z (l -  Ar2)(r2 +  62)_ 

f  T aEb+ EE
i=i j= i

A2 a2

E«
j=i

2M

■ 4/Typm-rj

\ p 2  A0 p2A ( l - A r 2) p2 Z ( l - \ r 2

4m 2o2e 2 g ?2
p2E ( y  -  2M )(r2 +  a2)2 p2Z
P P r /vi v-i v  v

E a  E f e

a 2V i PJ

EE
( = 1 ; = 1

2t 2 IA2 b
2 M

+

/o2Afl /92A(1 -  Ar2) p2Z (l -  A?

4 M 2 6 2 E 2 g ( i + m ) ( i + m )

p2 Z ( V  — 2M )(r2 +  62)2
m. p

2EE
i= i j= i

A aft
E Ei— a — 1

//2Z

SaSft

dt  ^n- ^yV' 771 y-J J 777

2A7
p2A 0 p2A(l -  Ar2) p2Z ( l  -  Ar2)

4A/2aftEaE6
+ Q\i(j +  rn)

p 2Z ( V  -  2M )( r2 +  o2)(r2 +  ft2) p2Z
c72 ,v-'iT-J — rn (7.53)
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We attem pt the usual multiplicative separation for T in the following form:

(7.54)

where we again adopt the convention that \&p =  0 in the case of even dimensional 
spacetimes.

The Klein-Gordon equation then completely separates. The r and 9 equations are 
given as

$ r V R d . r  V

EE
i = i  j = i

Q̂ _
Z

\  2 2 A a

Z  di

EaEb

EaEf, 2 M AM2

+

_A(1 — Ar2) ' Z(1 — Ar2) Z(1 -  Ar2)2. 
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and

T-  I d /  r = d $ >o \  T a Tijj 2 2 r 2 2 n  , j 2  ■ 2 m- K  =  -==—  V T& e—rr- -  ——r— E  -  m (a cos 6  + b sm 0 )
§ ey / T d d \  dB J XAg

y s  H I 171 y-i P P

+ I<i cot2 0  +  Mi tan2 0  -  2An2 ~ ^ ±  V  V  -  2Ab2 V  V  T,:T ,

m  P  »r-i ?72 L V  V' P

i=1 j  =  l  i = l  j  =  l

where Jv, A'i and Mi are separation constants. K\  and M\  encode all the a. and ,3 
dependence respectively and are defined explicitly as follows:

fc-i r .At-
A'i =  y > ! +  t *■— , k — 1,.... in — 1,  (7.57)

where

i 1 d (  d,<I>ai
A i =  --------------------------^— — ------ — — ------- ^ ( c o s a i s m 771 ‘ a,:

<3?a>. cos a-i sin2m 1% 1 111= 1 s i n 2 a k da i V da
<f>2 ■ ,m—i+l (7i5g)

9 1—rA— 1 • '■>cos- ai 11^=1 sm~ ty-

and

k-1
M x =  V  Bi +  ■ , , ■ fc =  l . . . . , p - l .  (7.59)

h  n y s m 2/^

and where

d 1 d  (  q ■ 2;>—2i—1 o (̂ ;3iBi =  ----------------- -— .. .------- 1-----   — cos Si sm 1 ;3,
Tg. cos 0i sin2r' 2% 1 /3, n i-= i sin2 dr dpt \  * dS,

T 2 ■. ,

y i 1 . ; ^  , (7.60)
cos2 A n j= i  sin2 ,3/

Then we inductively have the complete separation of the cp dependence as 

i ®h-k+1 , 1 d (
Kk =  — O-----------y —  + ---------------- . -->̂ k - 1 T -  ( cos“ fc smtp,.— A- , (7.61)sm“ a r  cos- a r  $ afc cos a r  sm-m “K ak “a fe V ®a fc /

where k =  — 1, and wc use the convention K m = — <f>2. Similarly, the complete
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separation of the $  dependence is given inductively by

„ r Aik-1-1 fe+i 1 d (  Q . Q \  Pr,\
A-h =  —  - o i r  + T a . o-n oc i 1,3 cos ih  smf3k— -  , {(.62)sm “ dfc cos - pk <f>/3fc cos/3fcs n r p l l3k dpk \  dpk J

where k — 1, . .. ,p  -  1, and we use the convention AIp — — 'bp These results agree with 
the previously known analysis in five dimensions [21],

At this point we have complete separation of the Klein-Gordon equation in the Kerr- 
(Anti) de Sitter black hole background in all dimensions with two sets of possibly unequal 
rotation parameters in the form given by (7.54) with the individual separation functions 
given by the ordinary differential equations above. Note that the separation of the Klein- 
Gordon equation in this geometry is again due to the existence of the non-trivial Killing 
tensor.

Conclusions

We studied the integrability properties of the Hamilton-Jacobi and the massive Klein- 
Gordon equations in the Kerr-(Anti) de Sitter black hole backgrounds in all dimensions. 
Complete separation of both equations in Boyer-Lindquist coordinates is possible for 
the case of two possibly unequal sets of rotation parameters. We discuss the Killing 
vectors and reducible Killing tensors that exist in the spacetime and also construct 
the nontrivial irreducible Killing tensor which explicitly permits complete separation. 
Thus we demonstrate the separability of the Hamilton-Jacobi and the Klein-Gordon 
equations as a direct consequence of the enhancement of symmetry. We also derive first- 
order equations of motion for classical particles in these backgrounds, and analyze the 
properties of some special trajectories.

Further work in this direction could include the study of higher-spin field equations 
in these backgrounds, which is of great interest, particularly in the context of string 
theory. Explicit numerical study of the equations of motion for specific values of the black 
hole parameters could lead to interesting results. The first order equations of motion 
presented here can also readily be used in the detailed study of black hole singularity 
structure in an AdS background geodesic probes and the AdS/CFT correspondence.
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C hapter 8

The Virtues of “Lie”-ing

String theories that are of direct phenomenological relevance are notoriously difficult to 
handle for many reasons like non-perturbative limits, strong curvatures, strong couplings 
etc. As a consequence, it is desirable to study several “toy models” which exhibit similar 
features of interest as the real string theories, but are easier to understand and more 
tractable. Two of the most im portant classes of such models studied in recent years are 
the Wess-Zumino-Witten (WZW) models, and the matrix models. In this part of the 
thesis, we will work with symmetries and D-branes in the context of the former.

D-branes, and their charges, are extremely important aspects of string theory. D- 
branes cannot be ignored in any consistent string theory owing to their solitonic nature, 
and also since they are in some sense as natural as strings in certain sectors of the theory. 
Their charges heavily constrain their dynamics. For instance, a D-brane with a conserved 
charge may be stable against decay. Brane anti-brane annihilation is another situation 
where the charges are relevant, since the resulting products are constrained by charge 
conservation. In the target space approach, charges of D-branes in string theory are dealt 
with using the powerful geometric tools of K-theory and cohomology. This approach is 
essentially useful anytime the supergravity approximation can be trusted and is, thus, 
valid in many situations. However, one major drawback of this “macroscopic” approach 
is that it only provides information about the charge groups of the D-branes, and not 
the individual charges of the D-branes themselves. Also, there may be situations where 
the supergravity approximation is insufficient, and it may be useful to have another 
calculation method which could provide information about D-brane charges in these 
situations.

This other, “microscopic” , approach has been developed in great detail for the situ­
ation of WZW models. WZW models describe string theory where the target space is
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some group manifold (i.e. a Lie group). WZW models exhibit many of the broad fea­
tures we would like in a toy model of phenomenological string theory, and importantly 
for our purposes, they have very interesting D-branes and associated dynamics. Thus, 
understanding the microscopic D-brane charge calculation in the context of WZW mod­
els may perhaps shed light on similar calculations in other string theories. In addition, 
the study of WZW models has great intrinsic value in the context of mathematics, and 
particularly in knot theory and algebraic geometry.

WZW models are highly tractable since they are exactly solvable CFT’s. In addition 
to the standard infinite dimensional conformal symmetry of any CFT, they also possess 
additional symmetries related to the affine Lie algebra of the underlying group manifold. 
Large amounts of symmetry translate to large numbers of constraints, which can be very 
effectively exploited to the properties of WZW models. The use of these symmetries 
provides a microscopic method of calculating D-brane charges. The remarkable thing 
about this method is tha t it is an exact CFT/string description, i.e. its answers can 
be trusted in all situations where the method is applicable. Thus, it provides informa­
tion complementary to the K-theory approach. In addition, this m ethod calculates the 
charges themselves and not just the charge groups.

The charge groups of D-branes on WZW models using K-theory have been calculated 
in [1] for full affine symmetry preserving D-branes and in [2] for D-branes that preserve 
the affine symmetry only up to some twist. Microscopic calculations have been done in 
many cases, and they agree with the K-theory calculations for the charge groups [3-7]. 
In addition, the microscopic calculation has been done for cases where the K-theory 
approach has not (yet) yielded information [8-10]. Several of these D-brancs have been 
explicitly constructed, and their charges have been determined confirming the more 
abstract microscopic and K-theory calculations [11,12]

Chapter 9 contains a very brief introduction to affine Lie algebras and WZW models. 
Chapter 10 presents the basic ideas behind the microscopic approach to D-branes and 
their charges. The main results of this part of the thesis appear in Chapter 11, where 
this approach is used to calculate the charges and charge groups for the triality-twisted 
D-branes of D 4  and the charge conjugation twisted D-branes of Eq. Chapter 12 contains 
results of a similar calculation for the case of charge conjugation twisted D-branes on 
the 11011-simply connected group E^/Z^.  The results of the calculations in this appendix 
will appear in a future paper that will also contain similar calculations for some other 
twisted non-simply connected groups. Appendix A contains a brief introduction to the 
very basic, ideas of conformal field theory that are used throughout this part of the thesis.
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C hapter 9

Affine Lie Algebras & W ZW
M odels for Dum m ies

9.1 Sim ple Lie Algebras

In many respects, the theory of affine Lie algebras is a very natural extension of the theory 
of simple Lie algebras, and as such, affine Lie algebras cannot be studied effectively on 
their own. In addition, the central interests in this part of the thesis are based on 
WZW models and their fusion rules. Fusion rules are naturally seen as truncations of 
tensor products of representations of the underlying Lie algebra. The very basics of the 
theory of simple Lie algebras are presented here. For further information, particularly 
in the context of C FT ;s and WZW models, an excellent reference is [1], Other excellent 
references include [2,3], which are highly recommended, as well as [4.5].

A Lie algebra is a vector space 0 that possesses an antisymmetric bilinear operation 
[.,.] : g x g —> g, called a com m utator or Lie bracket, satisfying the Jacobi identity:

A subspace I) C 0  of a Lie algebra 0 which is itself a Lie algebra is called a Lie subalgebra  
of 0 i.e. symbolically

that is, [any] € fj V x.y 6  f). If in addition to the above, f) satisfies the much stronger

A', [Y, Z]\ + [Z, [X . Y]\ + [Y, [Z, X}] = 0 V A, Y, Z  . (9.1)

h  b] C JJ, (9.2)
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property

ft, 0] C (), (9.3)

then the subalgebra 1] is said to an ideal of g (or an invariant subalgebra). A Lie algebra 
is said to be sim ple if it has no proper ideals, and sem isim ple if it can be expressed 
as a direct sum of simple Lie algebras.

A representation (on V) of a Lie algebra g is a linear mapping into g[(F ). the space 
of linear operators on a vector space V. which preserves the commutation relations of g. 
The dimension of V  is known as the dimension of the representation. A representation 
is said to be irreducible if the matrices representing the elements of g cannot all be 
brought into a block-diagonal form.

A Lie algebra is specified by giving a basis of generators 1 {,Ja} together with their 
commutation relations

r . / '  - (9.4)
c

The constants f"'b are known as structure constants. The standard C artan-W eyl 
basis is a preferred basis of generators constructed as follows. Find a maximal set of 
commuting Hermitean generators H %, 1 ,...,?’:

[H\ H j ] =  0 i , j , =  1 , r  . (9.5)

These span a subalgebra fj of g known as the Cart an subalgebra, and the dimension 
r of f) is known as the rank of the Lie algebra 0 . The remaining generators are chosen 
to be ones that diagonalize the Cartan subalgebra simultaneously with respect to the 
commutator i.e.

[H \ E a] = a iE a , (9.6)

where the vector a  =  (c*1, ...,a r) is called a root, and E °  is the corresponding ladder 
operator, a  is best thought of as an clement of the dual space IT of the Cartan subalgebra 
via the mapping a (H ’) =  a ’. By taking the adjoint of (9.6), we can see that —a  is also 
a root with the corresponding ladder operator E ~ a =  (£/“ )C The set of all roots of g is 
typically denoted by A.

1Note that the terminology is the stan d ard  one in high energy physics, bu t does not necessarily agree 
w ith the m athem atical literature  where the words basis and generator have slightly different meanings
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A representation of special significance is the adjoint representation  where the 
vector space V  is chosen to be the Lie algebra g itself regarded as a vector space. In the 
adjoint representation, the action of a generator X  is represented by ad(X)  defined as

ad (X )Y A .) (9.7)

Using the Jacobi equation it is possible to show that if a  + 0  G A, then the commutator 
[Ea , E i3] is proportional to E a+l3, and vanishes if a + 0  ^ A. Also when a  =  —0, then 
[Ea\ E ~ Q} commutes with all the H l, which is possible only if it is a linear combination 
of the generators of the Cartan subalgebra. Choosing the normalizations, and using the 
notation

a H V  n :H . a I3 = Y s a ^ 3i (9.8)
i - 1 i - 1

where a  and 0  are both roots, the complete commutation relations of the Lie algebra 
can be cast into the form

[H \ W ]  =

[Hl ,E °

E a , E lS

0,

a lE a ,

N a 0 E a+!3, i f a  +  /3 e A
2

(9.9)

;a  ■ H  , if a =  —0 ,
ai

— 0 , otherwise ,

where N a u 0  is a number.
The K illing Form is a unique (up to normalization) inner product that can be 

defined for any Lie algebra g. This is the inner product with respect to which the 
adjoint map is skew symmetric. It can be shown that it is given by

K ( X , Y )  = ^ T r ( a d ( X ) a d ( Y ) ) , (9.10)

where the numerical factor is a convenient normalization, and hv will be defined below. 
By restriction, obviously this defines a norm on t) as well. Thus, a norm is also defined 
on the dual space 1)* consisting of roots (and weights, to be defined below). Further 
details on the exact construction can be found in [1]. Henceforth, it will be understood 
that (a, 0) is the scalar product between the roots defined using the Killing form and 
laj2 =  (a, a).
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For an arbitrary representation, a basis {|A >} can always be found that simultane­
ously diagonalizes the Cartan subalgebra (as they are made up of commuting elements):

H j<\\  > =  /V|A > . (9.11)

The eigenvalues A1 build a vector A =  (A1 ,...,Ar ), called a w eight. Note that roots are 
simply weights in the adjoint representation. Weights also live in the dual space f)'+. 
Using (9.6) it is possible to see that

H lE a \\  > =  [ H \ E a] IA > • E D I  A > =  (A* +  a i )E °|A > . (9.12)

so that E°\  A > , if non-zero, must be proportional to a state A-f a >. So essentially 
the operators E a do indeed behave as ladder operators, similar to the operators J ± in 
the case of angular momentum (su(2 )) in quantum mechanics, or the ladder operators a 

and a* for the simple harmonic oscillator. Using the various E °  the representation can 
be constructed using the basic commutation relations.

Pick a base of roots for f)*, so that any root can be expanded as a =
n iPi such that all the tij's are integers and either all are greater than or equal to 

zero, or all are less than or equal to zero. Relative to this base an ordering can be defined: 
a root a is said to be positive if the first nonzero number in the sequence (rq, ...,nT) is 
positive. Denote the set of positive roots by A+, and the set A _ of negative roots is 
defined similarly. A sim ple root a; is defined to be a root tha t cannot be written as 
the sum of two positive roots. Clearly, there are necessarily r simple roots (where r is 
the rank of g).

A distinguished element of A is the highest root 9. It is the unique root for which 
in the expansion )Th mjCti, the sum V) . rrq is maximized. It is convenient to introduce 
the coroots:

V / n  n

(cq.a;)

The coefficients of the expansion of the highest root 9 in the simple roots and coroots 
carry special names, and are respectively called the marks (a.j) or Coxeter labels and 
the comarks (aU) or dual Coxeter labels:

r r
9 — ^  a.jaj = ^  a'i'cx.i ■ (9-14)

i - i  i= l

The weights are typically normalized by taking \9\2  =  2. Clearly marks and co-marks are
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related by ch =  2a- /Icq)2. Two very important quantities are the C oxeter N um ber h 
and the D ual C oxeter N um ber hN (which is the normalization factor that appears in 
the definition of the Killing form (9.10)), defined as

r  r

h =  1 +  Oi, hv = 1 +  ^ 2  a,/ . (9.15)
i= 1 i = l

One of the most fundamental entities useful in the study of Lie algebras is the Cartan  
M atrix  defined as

Aij = (cq, a j ) , 1 < i , j  < r . (9.16)

The entries of the Cartan matrix are necessarily integers. Its diagonal elements arc all 
2, and it is not symmetric in general. The off-diagonal terms are non-positive and can 
be only 0,-1,-2, or -3. The number A jj  characterizes how the su(2) algebra generated by 
the operator E a-'i acts on the operator E a‘ through the commutation relations.

Weights and roots both live in the dual space of the Cartan subalgebra fo*. Weights 
can be expanded in terms of a basis of simple roots, but the coefficients are not integers, 
so a better basis to use is the one dual to the simple coroot basis. This is a set {cc,;} 
known as the fundam ental w eights of g defined by

(u i,c$) = 6 ij . (9.17)

The expansions coefficients A,; of a weight A in the fundamental weight basis are called 
D ynkin labels. Hence,

r

A =  Aico-i A,; =  (A, o h ) . (9.18)
? := i

The Dynkin labels of weights in finite-dimensional irreducible representations arc always 
integers, and such weights are said to be integral and a weight A is specified in terms
of its Dynkin labels as A = [A],.... Ar], A useful fact to note is that the elements of the
Cartan m atrix of g are the Dynkin labels of the simple roots i.e.

V
ai =  ^  AijU>j , 1 =  1,.. . .  r  ■ (9 .19)

j=i

While the Cartan-Weyl basis is the natural one to obtain information about the 
structure of the Lie algebra g itself, there is a more natural basis to use in the study of
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the finite dimensional representations of g known as the C hevalley-Serre basis. The 
generators are

e* =  E°' , f  = E ~ ai , hi =  ol( ■ H  . (9.20)

The commutation relations between them (which can be easily obtained from the Cartan- 
Weyl commutation relations in combination with the definitions of the Chevalley-Serre 
generators) are:

[hl ,h j ] = 0 ,

[hl , eJ] — Aj jC ,

[ h \ f }  = - A j i f \  (9.21)

[eh  f ]  = SijhP .

These do not reproduce all the commutation relations (since they only address the com­
m utation of the ladder operators associated to the simple roots). The remaining com­
mutation relations (which are present in the Cartan-Weyl commutation relations) are 
provided in terms of the Serre relations

\ad[el ) \ l '''■ h  i).

[a.d{fi )}l ~An f j = 0 ,  (9.22)

where i yf j .
It is important to note that A* refers to an eigenvalue in the Cartan-Weyl basis, 

while the Dynkin labels Aj are the eigenvalues in the Chevalley-Serre basis of the Cartan 
subalgebra, i.e.

h i \ X > = X i \ X > ,  (9.23)

and Aj ^  \ l in most cases. A weight is said to be dom inant if all of its Dynkin labels are 
non-negative integers. Finite dimensional representations of a Lie algebra are given by 
specifying its highest weight, which is dominant integral. The remaining weights are 
obtained by acting on it and its descendants using the Chevalley-Serre ladder operators 
e', /•' and taking the Serre relations (9.22) into account. The highest weight of the 
adjoint representation is 0. Dominant integral highest weight representations for simple 
Lie algebras give rise to irreducible representations.

All the information in the Cartan M atrix can be captured using D ynkin diagram s.
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To every simple root a< associate a node and join the nodes i and j  by AijAjj  lines. 
Hence orthogonal simple roots are not connected. In addition, an arrow is placed on the

classification of finite dimensional simple Lie algebras boils down to a classification of 
Dynkin diagrams. It turns out that there are four infinite families:

-Ar , which are essentially the Lie algebras familiar as su(r +  1).
-Br . which are essentially the Lie algebras familiar as so(2r +  1).
-CT. which are essentially the Lie algebras familiar as sp(2r).
-Dr , which are essentially the Lie algebras familiar as so(2 r).
In addition there are five exceptional Lie algebras knows as E$, E j , and E $, as well 

as F4 and Go- The Dynkin diagrams for all of these is given in Fig. (9.1)2. Lie algebras 
all of whose roots are equal in size are said to be sim ply laced. There are no multiple 
lines present in any of their Dynkin diagrams. From Fig. (9.1), the simply laced Lie 
algebras are easily seen to the be families A r , Dr , as well as Eq, Ej, and Eg-

The quadratic form m atrix is defined by Fq = using the inner product
defined on [)*. In addition, we will also need the W eyl vector defined by

Given an arbitrary root a , consider the operator sa that acts 011 an arbitrary weight 
A (remember that both roots and weights live in f)*) via the action

This corresponds to a reflection in root/weight space in the hyperplane orthogonal to a. 
It can be shown that if A itself is taken to be a root, then sa(0) is also a root. The set 
of all such reflections forms a group known as the W eyl group of g, usually denoted 
W . It is generated by the r sim ple W eyl reflections ,s?; defined by s* =  sai, in the 
sense that every element in w € W  can be decomposed as w = SiSj...Sk- The Weyl group 
is extremely important for many reasons, not least of which is in representation theory. 
Given a highest weight A, the entire representation can be constructed by considering 
the action of the Weyl group on A. Also of great use is the sh ifted  W eyl reflection  
defined by w ■ A =  w (A +  p) — p. For an arbitrary w £ W  define e{w) = (-1)F«9; where 
l(w) is the smallest number of simple reflections required to express w i.e. w  =  .sq ....s,;,.

2Figure reproduced from [31 under the provisions of the Copyright Act. and w ith permission from 
Cambridge University Press.

lines pointing from a longer root to a shorter root when they are of unequal size. The

(9.24)

,sq (A) =  A — (ay , X)a . (9.25)
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“

name n umbe r i ng  of  t he  nodes dua l  C'oxeter labels 
Coxeter labels

Ar ----$---- -------  . . . -----^ ---- ^
1 2 3 r .I r i l l  i i

Br #----• ----®----  ■ • * ---- EZyZ®
. 1 2  3 r - 1 r 1 2 2 2 1

cv
1 2  3 r - 1 r 1 1 1  1 1 

2 2 2 2

D r

r

©-----#-----©-----  . . ——

1 2  3 r — 'i N* 
r — 1

/ °

1 2 2 I 'N o  
1

Eg

1 2  3 4 5
0 — CH-l^
1 2 3 2 3

E j

1 2 3 4 5 6 2 3 - 1  3 2 .1

Eg
A 8
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1 2 3 4 5 6 7
I — o - —c

2 3 4 5 6 4 2

F ,
. 1 2  3 4
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2 3 2 1 

4 2

Go 2 1 
3

Figure 9.1: Dynkin diagrams for the finite dimensional simple Lie algebras
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Given a representation of g with highest weight A. there is a lowest weight in the 
representation, which cannot further be acted on by the /* ’s. There will be some element 
w q  G W  (not necessary a simple reflection) such that w q \  is the lowest weight. Turning 
the representation “upside down" produces the so-called conjugate representation  
(called charge conjugate in some contexts). Its highest weight is the negative of the 
lowest state of the original representation i.e. A* =  -(moA). Conjugation corresponds 
to some symmetry of the Dynkin diagram of g. For instance for the A n's there is a re­
flection symmetry (about the middle) of the Dynkin diagram which essentially amounts 
to reversing the order of the Dynkin labels, and this corresponds to the conjugate rep­
resentation. Algebras whose Dynkin diagrams do not have any symmetries only have 
self-conjugate representations, i.e. A* — — u j q X  = A.

The character of a highest weight representation A is formally defined as

X X  =  m u l C \ ( ^ / ) eA ■ (9 .2 6 )
A'eQ>,

where Ll\ is the set of all weights in the representation with highest weight A, m ult^A ') 
is the multiplicity of the weight A' in Q\, and ea denotes a formal exponential satisfying 
eAe/.i _  eA+a and e^(£) =  e ^ ’̂ ,  where A, p. and £ are arbitrary weights and on the right 
hand side of the second expression is a genuine exponential function of real numbers. It 
is quite a surprising fact that all the Lie theoretic information regarding a representation 
with highest weight A is essentially encoded into xx,  while naively it may seem that the 
sum over weights in its definition wipes out the explicit structure of the representation. 
In fact, most Lie theory arguments tend to work with characters rather than the unwieldy 
representations themselves.

The famous W eyl character form ula relates formal characters defined in terms of 
explicit sums over weights of a representation, to a sum over elements of the Weyl group 
and is given by

Suppose a representation of g has highest weight A, then the W eyl dim ension  
formula gives the dimension of the representation (i.e. the dimension of the vector 
space V  on which the Lie algebra g is represented as a subalgebra of gl(Vj):

dim[A] =  TT ■ 0-28)
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The Weyl dimension formula is derived by taking the limit lim ^o  X\Up) an<i using 
L’Hopital’s rule on the expression in the Weyl character formula.

Tensor products of various representations of a Lie algebra g will be very important 
subsequently, especially in the context of fusion rules of WZW models. Given two finite 
dimensional representations of g with highest weights A and g, the tensor product of 
these representations can be decomposed into irreducible representations as

where P+ is the set of all dominant weights, and jV/'jJ' called the tensor product coef­
ficient gives the multiplicity of the representation v  in the decomposition of the tensor 
product A®/i. There are very general methods such as the character method, Littlewood 
Richardson rules. Young tableaux etc. for calculating tensor product coefficients, many 
of which rely on the Weyl character formula. Further details can be found in [1—3].

9.2 Affine Lie Algebras

The basic philosophy behind affine Lie algebras is as follows. For every (finite) Lie 
algebra g there is associated an affine extension g obtained by adding an extra node 
to the Dynkin diagram of g, which essentially corresponds to the highest root 9. The 
effect of adding this extra simple root is to make the root system of g infinite, and 
consequently, highest-weight representations are also infinite dimensional. However, the 
collection of these representations have an additional substructure to them in that they 
are organized by means of a new parameter called the level, usually denoted by k. 
For a fixed level, there is a finite number of highest weight representations, the so- 
called integrable representations. These representations have almost miraculous modular 
transformation properties. However, we adopt a slightly different approach in the initial 
construction of the affine Lie algebras, and display this aspect as well shortly thereafter.

Consider the situation where all the elements of g are also Laurent polynomials in 
some variable s. The set of all such polynomials is denoted C[z, c-1 ]. This generalization 
is called the loop algebra g of g i.e. g =  g®C[r, z -1] with generators J a® zn, where J a 
are the generators of g. The name loop algebra is appropriate since g could be regarded as 
the space of all polynomial mappings from the circle S 1 to g. The notation J° = ,Ja ® zn 
will be used. Now g is centrally extended by adding to it a central elem ent k such

(9.29)
<reP-
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that

■ K ,  J n + m  + k n 5 a b 5 n + m , 0  ,

C

(9.30)

where the commutation relations of the underlying simple Lie algebra g (9.4) are inherited 
by the centrally extended loop algebra.

Finally a new operator, called a derivation, defined by

which acts on the adjoint representation i.e. \i$, -/“] =  — n J “, is added to the centrally 
extended loop algebra. The resulting algebra,

is known as an affine Lie algebra. Clearly it is an infinite dimensional algebra since 
it has an infinite number of generators {./“}, n £ Z. g is generally called the finite or 
zero-mode algebra, and it has generators J§.

For the purposes of constructing the algebra and its representations, instead of using 
the set J “, it is preferable to use if* and jF“ , which are the loop extended elements 
of the Cartan-Weyl basis, with the obvious commutation relations. Affine w eights 
are characterized as A =  { \ ;k y ,n \) ,  where A is a finite weight of g, and k\  and n \  are 
the eigenvalues of k and £q. The algebra has sufficient degrees of freedom (e.g. linear 
deformations of £q) that the Killing form can be chosen to yield the inner product between 
two affine weights as

Affine roots are affine weights in the adjoint representation. In the adjoint representation

product of the corresponding finite roots. The affine root associated to the generator E "  
is clearly (a; 0;n). The generator 5 = (0; 0; 1) is known as an im aginary root, since it 
has zero length i.e. (S. 6 ) =  0. If we represent a finite root a  in the space of affine weights 
as a  =  (a; 0; 0), then every affine root is either of the form {o +  nd, n  £ Z, a £ A} or of 
the form {n 8 , n £ Z, n ^  0}. The union of these two sets, i.e. the collection of all affine

A .
dz ’

(9.31)

g =  0 w Ck  © CIq . (9.32)

(9.33)

the eigenvalue of k is 0 since k  commutes with all the generators. So. roots of g are of 
the form [3 =  (0; 0; n). Thus, the scalar product of two affine roots is simply the scalar
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roots, is denoted A.
It can be shown that a basis of simple roots of g is given by a,;, i — 1,.... r, the simple 

roots of g together with op =  (—0; 0:1) =  —0 + 8 , where 9 is the highest root of g. The 
set of positive roots is A+ =  {a +  n<5|n > 0, a G A }U {o |a  € A+}. This now provides a 
relation to the initial description of affine Lie algebras in terms of adding an extra node.

Now that a basis of simple roots and a scalar product have been defined, the ex­
ten ded  Cartan m atrix can be defined as

Aij =  (ai, ex- ) , 0 < i , j  < r , (9.34)

where the coroots are given by d v =  The addition of the extra simple root
ao implies tha t the extended Cartan matrix has one extra row and column compared to 
the Cartan matrix of g. Similar to the construction of the Dynkin diagrams for simple 
Lie algebras, extended Dynkin diagrams can be constructed for these affine Lie algebras 
as well, which encodes all the information of the extended Cartan matrix. These are 
illustrated in the set (A) of Dynkin diagrams in Fig. (9.2)3. Clearly, these are obtained 
from the corresponding algebra by the addition of an extra node for op.

As mentioned earlier, associated to every affine Lie algebra, there is an extended 
Cartan matrix. However, in addition to the extended Cartan matrices obtained by 
the above procedure of going through centrally extending loop algebras, other extended 
Cartan matrices can be defined as well. These result in the so called tw isted  affine 
Lie algebras and are shown in set (B) in Fig. (9.2). The first label for each of these 
Dynkin diagrams indicates the finite algebra whose Cartan matrix has been extended 
to obtain the twisted algebra, and the superscript of 2 indicates that the affine algebra 
is twisted and is not readily constructed as an extended loop algebra as above, without 
modification of the procedure.

The second labeling for these Dynkin diagrams arises from the loop algebra tech­
nique used to construct the extended Lie algebra. As stated earlier, the loop algebra 
is the space of analytic mappings from .S'1 to the Lie algebra g. If instead of using the 
boundary conditions V(e 2 wtz) — V{z). we impose the tw isted  boundary conditions 
x ® V{e2 mz) =  u>(x) 0  V(z),  for every x  in g, where co is an outer automorphism (a 
symmetry) of the (unextended) Dynkin diagram of g on finite order N : i.e. N  is the 
smallest integer such that toN =  1. In this case the automorphism co provides a natural 
Zjv-grading of g, and consequently for the generators as well. The construction then 
proceeds similar to the affine Lie algebras constructed above, taking this grading into

3Figure reproduced from [3] under the provisions of the Copyright Act. and w ith permission from 
Cambridge University Press.
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account as well. This procedure results in the twisted algebra. Thus, in this labeling 
the algebra symbol indicates the horizontal subalgebra whose jV-folded centrally ex­
tended algebra results in the twisted affine Lie algebra and the superscript indicates the 
order N  of the automorphism used.

The affine m arks a,; and affine com arks ah are defined by

r r

a' ^ j  = =  0 • (9-35)
i = 0  i = 0

The affine C oxeter and affine dual C oxeter numbers are defined by h — Y^i=o °* 
and hv =  ai respectively. Through abuse of terminology, the label “affine" will 
typically be dropped when referring to all four of these quantities.

Completely analogous to the finite case, a Chevalley-Serre basis can be constructed, 
with commutation relations identical to (9.21) and (9.22), with indices now running from 
0, instead of 1, to r, and the affine Cartan matrix is used instead.

The affine fundam ental w eights {d>i} are, as before, defined to be dual to the 
basis of coroots. The fundamental weights then turn  out to be

(bi =  (cjf, ah ; 0 ) , 1 < i < r ,

Cjq — (0; 1; 0). (9.36)

The scalar product between the fundamental weights can be worked out to be (T,;,d)j) =  
Fij and (<*>*,a>o) =  (a>o,wo) =  0 for 1 < i , j  < r. Again, weights are specified using 
Dynkin labels A,; where i now runs from 0 to r via A =  anc  ̂are usually written
as A — [Aq, ..., A,.]. Also, the affine Weyl vector can be similarly defined as p

In an irreducible highest weight representation, k will be sent to a scalar multiple k 
of the identity. This number k plays a very important role, and is called the level of the 
representation. Any affine weight A in a level k representation will satisfy

r 

i= C )

The representations of most interest in the case of affine Lie algebras are the so-called 
integrable dom inant h ighest weight representations. As before, “dominant” im­
plies that all Dynkin labels are non-negative. In addition, the integrability condition 
requires that

k e  Z + , k > (A, 9). (9.38)
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Figure 9.2: Dynkin diagrams for the affine Lie algebras
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The latter condition ensures non-negativity of Ao- The set of all dominant weights for 
a given level k will be denoted by P+. The integrability condition also ensures that 
for any level k there are only a finite number of highest weights. Using the Chevalley- 
Serre generators and relations the representations can be explicitly constructed. The 
representations turn  out necessarily to be infinite-dimensional. However, the integrabil­
ity condition allows the representations to be effectively organized by the grade, the 
eigenvalue of Lq. At any grade, there are only a finite number of weights. This substruc­
ture of these representations allows greater control over the infinite dimensionality of 
the representation modules, and also provides a very effective way of dealing with their 
transformation properties. Explicit details of the representation theory will not concern 
us here, and can be found in [1,3,6].

The affine W eyl group W  is generated in a similar fashion to the finite Weyl group, 
and is made of the “reflections” s& = A— (A, d v)d. The generator corresponding to do 
is in fact a reflection combined with a translation, and the affine Wely group has some 
additional structure organizing it in spite of being an infinite group, again dependent 
on the level k. Shifted affine Weyl reflections can be defined by w ■ A =  w(A +  p) — p. 
e{w) is also defined similar to the finite case as the parity of w in terms of simple Weyl 
elements.

Affine characters are defined by

AT “  2 2  mult^(A ')e^ , (9.39)
A'eOx

which can be shown to be equivalent to

W * e(w)pw'l''x+C
XX =  ^ eW V ̂  F T  ’ (9'4°)A E we w < ^ u"{p)

where m^S is the so called m odular shift anom aly given by

I C . - 1 o | .  | o \  , | o | I oj \X + p\ \p\ A +  p\- \p\“ ^
=  2 (k + hv ) ~  2 fC =  2 (k +  IP) ~  2W  ‘ (9'41)

Characters of affine Lie algebras encode all the information regarding their representation 
theory. In addition, they allow for easy analysis of several remarkable properties of affine 
Lie algebras, which would not be transparent if the representations are directly studied. 
The modular shift is essentially a normalization, but is going to be relevant for ensuring 
that these characters behave well under modular transformations to be discussed below.
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9.3 M odular Transform ations

Affine Lie algebras show up in the context of C FT ’s in many situations, not least of 
which are the WZW models which will be discussed in detail shortly. As is well known, 
C F T ’s have a a consistency condition that need to be satisfied at the one loop level, and 
this gives rise to the concept of modularity. At the one-loop level, we need to consider 
C F T ’s defined on a torus worldshect. Tori are classified by their modular parameter r, 
and the conformally equivalent classes are invariant under modular transformations

where a, b, c, and d are integers. T hat is, the m o d u la r  g ro u p  is SL2 (Z). SL2(Z) has 
two generators 5  : r  —> —1 /r  and T  : r  —> r  +  1. The the former simply interchanges 
the two non-trivial cycles of the torus, while latter corresponds to an operation on the 
torus known as a Dehn twist which cuts the torus, twists it and then reattaches it.

Any affine Lie algebras associated with the C FT ’s also need to have nice transfor­
mation properties under the modular group so tha t the one-loop consistency condition 
may be satisfied. As mentioned earlier, characters encode all the information about 
representations, and are particularly easy to work with in this context.

Given an affine weight (<f, r, t), under the action of the modular group through (9.42), 
the transformation of the weight is

The matrices that specify the transformations between affine weights at level k gen­
erated by S  and T  of SL2 (Z), are called the m o d u la r  S a n d  T  m a tr ic e s  of § i.e.

It is important to note that the transformation is only between dominant integrable 
weights at the same level k. As such, the matrices S  and T  are finite dimensional (since 
there are only a finite number of dominant weights at any given level), but their size 
increases with the level.

(9.43)

(9.44)
n'iSPf:
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Explicit formulae for these matrices can be worked out. T  is particularly simple:

r »  =  V " 4'  ■ <»•«>

i.e. r  —» r  +  1 simply introduces a phase change. 5  on the other hand, is non-diagonal 
and quite complicated

7; |A+|
d e t f a h  c t Y ) ,

5 a  = ------ -̂------- —V-—— V  €(w ) e ~ ^ i ( v H X + P) . ^ + P ) / A + h  ) (9.46)
V  2(fc +  /)v )1/2 v >

'  • 'it'd I A/we w

where the sum is over the finite Weyl group, and the determinant is also only over the 
finite coroots. It is very important to note that both the S  and T  matrices are unitary.

It can be shown that S 2 — C where C is the charge conjugation matrix with i’ \ x =  
\ y .  C itself acts on S  very simply through complex conjugation of the matrix i.e. 
CS — SC = S* , or equivalently

=  5 a*a =  5 a,* . (9.47)

where S* is S  with the matrix entries complex conjugated. It can also be shown that

y  — > ^ ! (9.48)

where 0 is the state with Dynkin labels \k. 0,.., 0], and is typically called the vacuum .

9.4 W ess-Z um ino-W itten M odels

C FT’s are exactly solvable precisely because of the presence of a vast infinite dimensional 
symmetry algebra viz. the Virasoro algebra. The early study of C F T ’s, starting with 
the seminal work of Belavin, Polyakov, and Zamolodchikov [7], worked with the so- 
called minimal models, which basically implemented the Virasoro algebra in a "minimal 
fashion" with no other symmetries. Subsequently, attem pts were made to define C FT ’s 
with sufficiently large symmetry algebras that the Virasoro algebra is included as a 
subalgebra, so that the tools of CFT would still be applicable, but richer structures 
would come into play. Some of the most important are the Wess-Zumino W itten models. 
Here the larger algebras are taken to be affine Lie algebras, and these naturally include 
the Virasoro algebra (as a Lie subalgebra of the universal enveloping algebra of the affine 
algebra), thereby preserving the infinite conformal symmetry. WZW models have also 
been the source of even richer C F T ’s such as coset C FT ’s obtained through taking cosets
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of the symmetry algebra of a WZW model, or C FT’s with W-algebra symmetry obtained 
through Hamiltonian reduction of WZW models.

Let G be a compact connected Lie group, and g its simple Lie algebra. Suppose 7  is 
a G-valued field on the complex plane i.e. we are considering the theory of a string with 
target space group manifold G. The Wess-Zumino-Witten (WZW) action is

S = - d 2 xLV(<TVV9A(7) +  fch , (9.49)

where F will be discussed below [8]. The first term in the action is a so-called non-linear 
sigma model. It has an infrared stable fixed point, and when the dynamics of the theory 
lives at that point, the extra term T can be consistently added, which results in the 
infinite symmetry that gives rise to a CFT. T is known as the Wess-Zumino term:

T = 2 ^ j B d3ye^ i'IV (7 " 15Q7 7 " 15 /37 7 " 15a7) ■ (9-50)

This term is defined on a three-dimensional manifold B . such tha t its boundary is the 
compactification of our two-dimensional space (i.e. S'2) and 7  is the extension to B  of the 
field 7 . A natural question to ask is whether this extension is unique, or if it depends on 
the choice of manifold B  thereby leading to an ambiguity in the definition of P. However,
since the second homotopy group ^ (G )  — 0 , this implies that the extension is unique
up to homeomorphism. In addition, to ensure that elb is single valued (for the purposes 
of the path integral), we need to have k € Z+. This is essentially a Dirac quantization 
condition for this theory.

We will use complex coordinates on the plane henceforth. The WZW action has two 
conserved currents given by

J(z)  = —k d 7 7 -1  . J(z)  =  k z ~ 1d " f , (9.51)

where d = dz and d = dr. If we use the decomposition J(z)  — )T)a J ata, where the ta are 
the generators of the algebra 0 . Then the operator product expansion using the WZW 
action can be worked out as

c < m V )  ~  ■ 0.52)

Further, doing a Laurent decomposition J a{z) =  Y2npZ z~n~l Jn into modes and using
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standard CFT tools, wc can obtain the commutation relations

J m  - +  k n S c tb $ n + m ,0 ,1° 7h'J n  ’ u m
cc

(9.53)

C

which is essentially two copies of (9.30), the basic commutation relations for an affine 
Lie algebra i.e. we have one copy of g in the holomorphic sector, and another for the 
antiholomorphic sector. As is usual in C FT’s we deal with the holomorphic sector. Also 
note that the constant k, which was essentially related to a winding number in the WZW 
action, is now interpreted in the full quantum theory as the level of the associated affine 
Lie algebra.

Using the so-called S ugaw ara  c o n s tru c tio n , the stress tensor for the theory can 
be constructed:

where : ... : denotes operator normal ordering for operators.
These do indeed generate the Virasoro algebra and can be shown to satisfy the 

standard commutation relations

where the last equation is from (9.53), and is included to show the complete commutation

(9.54)

where (...) denotes the normal ordered product of fields. An operator product expansion 
of this T  with itself gives the central charge as

k dimg
(9.55)C k + hA

In addition we can form the operators

a m
(9.56)

n + m  "T"

[Ln, .

Jn- Jm — ^  i f f 1 Jn+m + knSabSn+m,0 ,

n + m , ' (9.57)

C
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relations of the holomorphic sector. This explicitly illustrates the earlier claim that WZW 
models enlarge the Virasoro algebra symmetry of all C FT ’s.

Using these commutation relations, the representations of WZW models can be con­
structed. Further details can be found in [1], Prim ary fields of WZW theories regarded 
as C F T ’s turn  out to be the highest weight states of the affine algebra, i.e.. we can label 
a specific representation of the WZW model states by giving a highest weight at level k. 
Typically the eigenvalue n  of the operator L q, known as the grade, is chosen to be 0 at 
the highest weight, and the commutation relations show that the action of the lowering 
operators likewise raise the grade in the descendents, as you would expect in the repre­
sentation theory of affine Lie algebras. Note that this L q is simply a scalar multiple of 
the operator Iq defined as a derivation in the context of affine Lie algebras.

As mentioned earlier, it is typical to consider only one sector of the theory, usually the 
holomorphic sector. However, a very important question is regarding how to assemble 
the two sectors back together to make a complete theory. At the level of characters 
(which encode the complete information about the representations anyway, so there is 
no loss in information in just considering them), we can assemble a partition function 
for the theory:

Z ( T) = Y 1  , (9.58)
A

where the bar denotes a character in the antiholomorphic sector of the theory, and r  is 
the modular parameter on the torus. This implies that the Hilbert space of states of the 
full theory is assembled as

« =  ©  0.59)
A, A e P f

The matrix M^fl that specifies how to combine the holomorphic and antiholomorphic 
sectors of the theory together to obtain the full theory is known as a m o d u la r  invarian t. 
Obviously, a good choice is to take M  to the identity matrix, in which case it is referred 
to as the diagonal modular invariant. Non-diagonal modular invariants provide many 
interesting features not seen in the diagonal theories. Several of these non-diagonal 
modular invariants are known. Symmetries of the unextended Dynkin diagram always 
give rise to modular invariants. An example of this is to take M  = C (where, as discussed 
earlier, charge conjugation is non-trivial if there is a. symmetry of the unextended Dynkin 
diagram). Symmetries of the extended Dynkin diagram, may or may not give rise to
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non-trivial modular invariants. Usually there is some restriction on the level k, if it is 
possible at all. We will see some special cases later of such modular invariants in the 
context of twisted algebras. Symmetries of both the extended and unextended Dynkin 
diagrams give rise to an infinite family of modular invariants.

WZW models have extremely rich properties and hidden unexpected structure in the 
form of differential and algebraic constraints. Examples of these include the Knizhnik- 
Zamolodchikov equation, the Gepner-W itten equation, level-rank duality etc., all of 
which are still extremely interesting topics. In addition, they give rise to remarkable 
Lie and number theoretic phenomena, as well as extensive algebraic geometry in the 
form of concepts like the braid group, knot theory etc. Unfortunately, we will not have 
sufficient space to explore these here, but there are a number of excellent references 
available on the subject, including [1,6,9-11].

9.5 Fusion R ules and Sim ple Currents

In any Rational Conformal Field Theory (RCFT), the so-called fusion coefficients
Af0 i(pjtpk count the number of independent couplings between the three primary fields
fa,, 4>j, and fa ,  i.e., counts the multiplicity of the conjugate field fa  in the
Operator Product Expansion (OPE) of fa(z)  with 4>j(w). Formally, we have

f a x f a = J 2  (9.60)
fa

It is important to remember that in the above rule (and henceforth in the context of 
fusions), we are considering not just the field’s fa, but rather all of its descendants as 
well, i.e., the OPE of any two descendants of fai and cpj will also produce a field from the 
family of fa  and its descendants with the same multiplicity ■

For a WZW model at level k with spectrum generating algebra jjj,, the primary fields 
are in one-to-one correspondence with the highest weight representations A G P+, ancj 
can, thus, simply be labeled by them. The fusion rules then take the form

A x £ = ® A ry> ,  (9.61)
eePf

where it is understood that the fusion rules are specific to the level k.
There is a remarkable formula known as the Verlinde form ula that allows for the 

calculation of the level k fusion coefficients Af  in terms of the level-k modular S matrix
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(9.46):

S\A.'SaceS* a' X o F f i a ^ v a  

^ 0  a
(9.62)

aePt

where 0 is the vacuum state kCjQ. This formula can be proven on some very general 
grounds and is also the source of the braiding relations of conformal blocks on a torus 
which gives rise to several very exciting knot theory results, including many of the results 
of Jones-W itten [9].

Unitarity of S  immediately implies that AW =  SC In addition. (9.47) implies that
0  A A

i.e., in WZW models (as in any RCFT), indices are raised and lowered using the charge 
conjugation matrix C =  S 2.

In addition, an argument using the Weyl character formula results in the Kac- 
W alton formula:

where the coefficients Af  appearing on the right hand side are the tensor product coeffi­
cients (9.29) of the underlying finite algebra g of 0 fc, P+ is the set of all dominant highest 
weights of g, and the sum is over the affine Weyl group elements whose action on v gives a 
dominant finite weight of 0 (i.e. in P+). This formula relates fusion coefficients of WZW 
models with spectrum generating algebra to tensor product coefficients of the finite 
algebra 0 . W ith some further work it can be shown that this formula roughly says that 
the fusion coefficients are the tensor product coefficients, but with an accommodation for 
level truncation. That is, a highest weight of g is not taken into account, even if it shows 
up in the tensor product, if it cannot then be regarded as a level k dominant, integral 
weight of g (though in some cases it counts if there is a Weyl reflection of that weight 
that maps it into a dominant integral weight). Further details, including many calcula- 
tional recipes, can be found in [1.6]. In addition to some of the symmetries mentioned 
above, fusion rules can respect some other very important symmetries, which are related 
to symmetries of extended Dynkin diagrams. We now present a detailed discussion of 
these.

Many of the untwisted affine Lie algebras have symmetries associated with their

(9.64)
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(extended) Dynkin diagrams. These are shown in Fig. 9.34. This in turn, in the obvious 
way, results in an action on the Dynkin labels of the weights of the affine Lie algebra. For 
instance, has a cyclic symmetry A of its Dynkin diagram that acts on the Dynkin 
labels of weights via

A  [Aq, Ai , At] =  [A'2, Aq, Aj] . (9.65)

The generalization to the higher A„1>5s is obvious, and likewise for the other algebras 
whose extended Dynkin diagrams have the symmetries shown in Fig. 9.3.

The set O(g) of symmetries of extended Dynkin diagrams is isomorphic to B (G ), the 
center of the group G of g (obtained by exponentiating the elements of g). The center 
G is the normal subgroup of G consisting of all elements of G th a t commute with all the 
elements of the group.

The action of any outer automorphism A  on the modular S-matrix can be shown to
be

-Oa„ -  • % „ .  -  S y r * * * * * . (9.66)

The quantity appearing in the phase is known as the charge of the simple current is 
typically denoted Q (A) =  (Auo,X).

Using this, and the Verlinde formula (9.62), the following properties of the fusion 
coefficients can be established:

a t  k'j) = A T  . AT - = A fy  . (9 67'/i(A)A'(A) -W yD  •,v .4(A)a y - '
rAA'{0)

A special case of the second equality is

•^ 4 (0 )g = K .U M )= 5A(A); (9-68)

that is, A(0) acts simply as a perm utation in the fusion rules; i.e., the OPE of A(0) 
with any other prim ary field fi only contains one primary field v. Fields that act in this 
manner in fusion rules are known as sim ple currents. Usually, by abuse of terminology, 
the outer automorphism A  itself is referred to as a simple current, and simple currents 
are said to act on weights through the action of this outer automorphism. In this context, 
the simple current is usually denoted by the letter J.

For WZW models based on simple Lie algebras, all simple currents arise from outer

4Figure reproduced from [1] under the provisions of the C opyright Act. and w ith permission from
Springer-Verlag.
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Figure 9.3: Outer automorphisms of affine Lie algebras
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automorphisms, the only exception being a simple current that occurs only at level 2 for

One further topic regarding fusion rules tha t merits discussion is the following. Since 
the fusion coefficients Af  are supposed to be multiplicities, they obviously need to be 
non-negative integers. However, this is not apparent from the Verlinde formula (9.62). 
Thus, so-called Non-Integer Matrix representations or NIM-reps of fusion algebras are 
of great interest since they can accurately represent fusions in WZW models.
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C hapter 10

BCFT Approach to D-branes

10.1 Boundaries in CFT

The standard picture of D-branes in string theory is of extended objects in space-time 
that can wrap around certain cycles in the target space geometry. From this point 
of view, the analysis of D-branes is tackled through powerful geometrical tools such 
as K-theory, cohomology etc. [13]. A second approach to D-branes is the so-called 
microscopic viewpoint. Here, D-branes are regarded as open string sectors that can 
be consistently added to closed string theory, and the analysis of D-branes is tackled 
through the equally powerful tools of boundary CFT. This is an exact string description 
and thus can be quite powerful. However, unfortunately, this description is only available 
at specific points in the moduli spaces of the target space geometries, such as orbifold 
points, etc. The macroscopic/geometrical viewpoint is more freely available, essentially 
whenever the supergravity approximation to string theory can be trusted. The two 
descriptions, in some sense, are “dual’'' to each other, and comparison of results from 
both approaches when possible provide insight into the structure of string theory, and in 
several situations one approach yields answers while the other fails. We will be concerned 
with the microscopic point of view here. We will start with a generic discussion of 
boundaries in CFT, then specialize to WZW models.

Closed string theory is defined on Ricmann surfaces, which are closed compact w ork­
sheets without boundary. In order to add D-branes to the closed string theory, we need 
to consistently add boundaries to closed Riemann surfaces. We can start with the sphere, 
since the behaviour of C FT ’s on the sphere uniquely determines its behaviour on all genus 
Riemann surfaces (whether it is a consistent CFT or not depends on whether it satisfies 
the one-loop constraint, i.e., whether it is well behaved under the modular group on the
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torus). The OPE defines an algebra of fields under fusion rules <pa x <pi =  £
Any potential boundary we add should respect this algebra of primary fields, and there­
fore, must define a homomorphism to C  from the space of prim ary fields of the theory 
regarded as an algebra.

Every state in the spectrum H  of the theory on the sphere, defines such a homomor­
phism (by evaluation), and in fact, every such map arises from a suitable linear combi­
nation of such states. Thus, every boundary condition can be described by a coherent 
state in the full CFT. For a boundary condition labeled by A, denote the corresponding 
boundary state by j|A >. The amplitude of fields in the presence of the boundary con­
dition a  is then given by expressions of the form < <pi4>2 > \= <  ChboIjA >, where the 
inner product is evaluated in H. This is nothing more than the usual field/operator-state 
correspondence used in CFT.

However, not every linear homomorphism from the space of prim ary fields to C defines 
a boundary state. The coherent states that describe boundary conditions need to relate 
any symmetries in the closed theory properly at the boundary without breaking them in 
the bulk. If the boundary is taken to be along the real axis, then the relevant condition 
is that

S{z) = p (S (z ) ) , z e R ,  (10 .1)

where S and S  are generators of the symmetry of the theory in the holomorphic and 
antiholomorphic sectors preserved by the boundary, and p is an automorphism of the 
algebra of prim ary fields that leaves the stress tensor invariant (i.e.. does not change 
the CFT). If there are further symmetries of the CFT that need to be obeyed, similar 
conditions need to be respected by the generators of those symmetries at the boundary. 
S  and S  have Laurent decompositions

so = E Jh ■ 5P) = E ■ (10.2)
n€Z m tZ

where h and h arc the conformal weights of S  and S.
The description above was on the description of the CFT in the plane/sphere with 

the boundary as the real axis. In order to get the description in terms of operators and 
boundary states, we transform to the picture on the cylinder via the conformal trans­
formation w = e~ 2ms, and we use the fact that since this is a conformal transformation, 
a primary field S(z)  transforms as S(z)  -* v / ( z ) hS(w(z)). Now we are describing the 
CFT on the cylinder, and the boundary corresponds to a circle on the cylinder. Using
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the mode decompositions above, we can write the boundary condition (10 .1) in terms of 
the boundary state in the operator picture as

f Y ,  Snwn -  ( ~ l) h Y  p(Sm)w~m j 11A > =  0 , for \w\ = 1. (10.3)
\ n  6 2 ;  m &  /

Since this has to hold for all w such that \vj\ = 1. we obtain the g lu ing  co n d itio n

( s n -  ( - 1  )hp ( S - nj)  !|A > =  0 . V n e Z .  (10.4)

The gluing condition needs to hold for any symmetries of the closed string sector. 
In particular, it must hold for conformal symmetries, in which case the modes Sn and 
S m are, respectively, L n and L m, the generators of the holomorphic and antiholomorphic 
sectors of the Virasoro algebras of the CFT. They both have conformal weights h =  h = 2. 
The gluing condition then reads

(Ln — T_„) ] |A > =  0 , V n e Z .  (10.5)

If the theory possesses sufficient symmetries, there may be enough constraints stem­
ming from the various gluing conditions that the boundary state j [a > may be determined 
uniquely (up to normalization and phase). Denote the symmetry algebra of the holo­
morphic sector of the CFT by A  (and implicitly we assume that A  = A). Now, the full 
spectrum of the theory can be decomposed as H  =  • M ijH i  © 'Hj. where the decom­
position is in terms of the individual spectra of the holomorphic and antiholomorphic 
sectors of the theory. Now, the modes that appear in (10.4) map each Hi ® Hj  into 
itself. Thus, we can solve the gluing condition separately for each such summand. It 
turns out that a lion-trivial solution can be found in the case where Hi is the conjugate 
representation of H j .  Thus, if a state exists solving the gluing condition (10.4) for every 
symmetry in A,  it is known as the Ishibashi sta te  (unique up to normalization for each 
i in the sum):

||i > €  H i®  H i ,  (Sn -  { - l ) hsp ( S - n)̂ j ||A > =  0 , V n £  Z . V S  s  .4. (1 0 .6 )

Since we only consider Rational C FT ’s, the spectrum H  only contains a finite number 
of summands, and thus the number of Ishibashi states is also finite. This in turn means 
that there are only finitely many (if any at all) boundaries that can consistently be added
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to a given CFT. Every boundary state can be written in terms of the Ishibashi states as

| | A > = X > i i K > : (10.7)
i

for some constants B \ .  In addition, there are one-loop constraints to satisfy to ensure 
the theory is consistent. This is an important step, but we will not pursue the details 
of the most general construction, and further details can be found in [4,5]. One of the 
most important, of these is the Cardy condition, which needs to be satisfied. While it can 
be discussed in this general setting, we will restrict ourself to the case of WZW models 
discussed below.

10.2 W ZW  D -branes

The spectra of WZW models have the decomposition 'H = 0 ^  ^ pk Given

a modular invariant M ,  a weight A € P+ is said to be an e x p o n e n t if M \ \  ^  0. From 
the arguments above, there is associated to every exponent A, an Ishibashi state j j A >. 
Denote the set of all exponents A of the modular invariant M  (with multiplicity M \\)  

£\i-
WZW models have the full symmetry of the associated affine Lie algebra, which 

provide additional gluing conditions. In the simplest situation, the gluing conditions 
(10.4) for the affine symmetries read

+  J b- m ĵ \\a > — 0 , V b and V m £ Z . (10.8)

Here, the are the modes of the generators of the affine symmetry of the WZW 
models. In addition to these, the WZW model Ishibashi states also have to satisfy the 
gluing condition (10.5) arising from the conformal symmetry.

We shall partially fix the normalization of the Ishibashi states by requiring that

< A!jg3(io+ £ o - 0 j | /( > _  S\hX \(t ) i Q — e2n%T • (10.9)

Every boundary state can then be written as a linear combination (10.7) of Ishibashi 
states

l!a > =  ~ 4 i = l l d >  ' (10.10)

We have adopted the standard convention of using lowercase Latin letters to denote
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boundary states. The factor s/Sq/j. is just a convenient normalization of the coefficients.
Given the above normalization of the Ishibashi states, finding the ip matrix is equivalent 
to specifying a boundary state. In general, it turns out that ip is square and unitary. 

Not every linear combination (10.10) defines a boundary state. The allowed boundary

we now describe heuristically. The “overlap” between two boundary states is give by

this amplitude should be expressible in terms of a non-negative integer combination of 
characters i.e.

As this needs to be a non-negative set of integers, it forms a NIM-rep. If such a NIM-rep 
can be found, then the Cardy consistency condition is met.

As mentioned earlier, adding boundaries to a closed string theory corresponds to 
adding D-branes to the theory. Here we have associated a boundary state for every 
such boundary (provided consistency and gluing conditions can be met). Thus D-branes 
in the theory are labeled by the boundary states of the theory. Solutions to the gluing 
conditions (10.8) represent D-brancs that preserve the full affine symmetry of the theory, 
and are known as untw isted  branes.

In addition, there are other branes that can be constructed. One of these is the 
following set. Suppose co is any outer automorphism of g that is a symmetry of the 
unextended Dynkin diagram (i.e. of the finite algebra g, we are not discussing simple 
currents here). Associated to any such ui, a modular invariant can be constructed for the 
theory [6]. We want to find boundary states of a modular invariant that is built out of 
oj invariant states, i.e., we have an untwisted affine Lie algebra. The set of exponents 
of the corresponding NIM-rep is the subset of P+ consisting of representations invariant

states also need to satisfy a consistency condition known as the C ardy condition, which

< a\\q'i(Lo+L° 12) ||6 > ( 10. 11)

where we have used (10.9) and (10.10). Under the modular transformation r  —» — 1 / r ,

( 10. 12)

The can easily shown to be

(10.13)
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under u>. The gluing conditions satisfied here are

+  w ( / - , « ) )  I\a > w=  0 , V 6 and V m e Z .  (10.14)

The construction above for the untwisted case can be repeated here in terms of twisted 
Ishibashi states || /i > u  which are defined for every p. G Sw, i.e., for every /i G P+ that 
satisfies cu(/i) =  /j,. Similar normalization conditions, and the twisted version of the 
Cardy condition can be established leading to an identical expression for the NIM-reps 
AC Such D-branes are known as tw isted  D -branes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

Bibliography

[1] G. Moore and R. Minasian, K-theory and Ramond-Ramond charge ,JHEP 9711 
(1997) 002. hep-th/9710230.

[2] J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane instantons and K-theory 
charges, .JHEP 0111 (2001) 062, hep-th/0108100.

[3] E. W itten, D-branes and K-theory, JH EP 9812 (1998) 019, hep-th/9810188.

[4] M. Gaberdiel and T. Gannon, Boundary states for W Z W  models, Nucl.Phys. B639 
(2002) 471-501, hep-th/0202067.

[5] M. Gaberdiel, D-branes from conformed field theory, hep-th/0201113.

[6] J. Fuchs, Affine Lie algebras and quantum groups, Cambridge University Press, 
Cambridge, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

C hapter 11

Charges of Exceptionally Twisted  
Branes

11.1 Introduction

Conserved charges of D-branes in string theory, to a very large part, determine their 
effective dynamics. As such, determining these charges and the associated charge groups 
provides significant information regarding the D-branes. For strings propagating on 
a group manifold, i.e. a g^-WZW model, these charges can be determined using the 
underlying CFT [1]. WZW models possess an extremely rich variety of D-brane dynamics 
directly attributable to the additional affine Lie structure, which is preserved by the D- 
branes.

In addition to the standard untwisted branes, WZW models also possess D-branes 
which preserve the affine symmetry only up to a twist., the so-called ‘'twisted” branes. 
For every automorphism u  of the finite dimensional Lie algebra g of the affine Lie algebra 
0 , there exist w-twisted D-branes. It is sufficient to consider outer automorphisms only, 
and as such, only automorphisms determined by symmetries of the Dynkin diagram of 
0  [2,3]. Such twists exist for the A „’s, Dn 's. and Eq, where u  in each case is an order 
two symmetry referred to as charge conjugation (or chirality flip in the case of Dn with 
n even), and for D 4 , where lo is an order three symmetry referred to as triality. The 
microscopic analysis for twisted D-branes started with [4], and a study at large affine 
level was done in [5]. The charges and charge groups for the order-two twisted A n and 
D„ D-branes have been calculated in [6] (up to some conjectures). This paper deals wdt.li 
the remaining cases of D 4  with triality and Eq with charge conjugation.

The computations for D 4  and Eq presented here are purely Lie theoretic, and are
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done from a “microscopic” /C F T  point of view. These calculations provide confirmations 
for the results for the charge group obtained “macroscopically” /geometrically using Iv- 
theory [7]. However, the K-theoretic arguments only determine the charge group and 
not the charges themselves, so the calculations done here provide significantly more 
information about the D-branes.

We also prove some Lie theoretic identities which warrant further study. The most 
surprising, and likely important, of these are that Cm and F4  see the simple currents 
of A 2  and D 4 , respectively. More precisely, for arbitrary choice of level k. the simple 
currents J % of A 2 permute the integral weights ci' of G2 in such a way that

dimc;2( J !a/) =  dimG'2(o/) mod M q, , (11-1)

where M q 2 is a n  integer given next section. Similarly, the 4 simple currents J  of D 4  

permute the integral weights of F4 in such a way that

dinqq (./&') =  dinp/4(&') m odM f4 , (11.2)

where likewise Af/q is given next section.
We first provide a brief summary of the description of untwisted D-brane charges in 

CFT, as well as the order-two twisted D-branes of A n and D n. Subsequently, we deal 
with the exceptional cases of D 4  and E q .  The n o n - t r i v i a l  Lie theoretic identities, which 
arc needed along the way, are stated and proved in the appendices.

11.2 O verview of W ZW  D -B rane Charges in CFT

The WZW models of relevance here are the ones on simply connected compact group 
manifolds (partition function given by charge conjugation). D-branes that preserve the 
full aifine symmetry are labelled by the level k integrable highest weight representations 
P+(&) of the affine algebra g . They are solutions of the “g l u in g ” condition

J(z)  = J ( z ) , z  = z .  (11.3)

where J, J  are the chiral currents of the WZW model [8].
The charge qM of the D-brane labelled by //. satisfies

dim(A) q/4 =  N ^ t q„ m oclM , (1L4)
"GP*( 0)
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where A e P + (g ) ,  N% are the g^-affine fusion rules, and dim(A) =  dim(A) denotes the 
dimension of the g representation whose highest weight is the finite part of the affine 
weight A — in this paper we freely interchange the affine weight A with its finite part A, 
which is unambiguous since the level will always be understood. For a finite level k, this 
relationship (11.4) is only true modulo some integer M ,  and the charge group of these 
D-branes is then Z /M Z , where M  is the largest positive integer such that (11.4) holds. 
We are assuming here that the only common divisor of all the q/4 is 1 (if they do have 
a common divisor, then this factor can be divided out). W ithout loss of generality, we 
assume the normalization qo =  1. If we take /a to be the trivial representation 0. then 
clearly

4 a — dim(A). (11.5)

The integer M  is then the largest integer such that

dim(A) dim(/./,) =  ^  iV j^dim ^) rnodM  (11-6)
v€P+(9)

holds. It has been conjectured (and proved for the A n and the Cn series) in (7.9,10] that 
the integer M  is always of the form

k +  Iv
M  =  — 771-----77/—FT • (H-7)gcd (k + hv .L)  v J

where /iv is the dual Coxeter number of g and L  is a fc-independent integer given in 
Table l l . l 1.

WZW models also possess D-branes that only preserve the affine symmetry up to 
some twist. For every automorphism of the finite dimensional algebra g, w-twistcd D- 
branes can be constructed. These are solutions of the “gluing” condition

J ( z ) = u - J ( z ) , z  = z ,  (11.8)

where J, ,J are the chiral currents of the WZW model. These D-branes are labelled by 
the cu-twisted highest weight representations of g*.. The charge group is of the form 
where A/w is the twisted analogue of the integer M  from the untwisted case. The charge

JIt was suggested initially in [10] th a t there were exceptional values for Af a t low levels k. However, 
this issue was subsequently resolved in [7], where it was proved th a t there  are no exceptional cases using 
K-theory. We will show th a t there are 110 exceptional cases at low levels in bo th  algebras, on the C FT 
and Lie theory side, when we prove uniqueness of the solutions.
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Algebra 1C L
An n +  1 lcm (l, 2 ,. • • ,n)
B n 2 n  — 1 lcm (l, 2 , . . . , 2n — 1)
Cn 71 +  1 2 _ 1lcm (l, 2 . . . , 2n)
Dn 2n -  2 lcm (l. 2 . . . . . 2n -  3)
E 6 12 lcm (l, 2 ,. . . , 11)
E 7 18 1cm (1 , 2 ,. • •, 17)
E* 30 lcm (l, 2 ,. ■ ■, 29)
Fa 9 lcm (l, 2 ,. . . , 11)
0 - 2 4 lcm (l, 2 , . . . 5)

Table 11.1: The dual Coxeter numbers and charge group integer L for the simple Lie 
algebras

carried by the D-brane labelled by the cu-twisted highest weight a has an integer charge 
q", such that

dim(A) q" =  Y ' M l  Q6 mod Af" , (11.9)
b

where Af^a are the NIM-rep coefficients that appear in the Cardy analysis of these D- 
branes. Af" is the largest integer such that (11.9) holds, again assuming that all the 
charges q" are relatively prime integers. However the difficulty in carrying over the 
analysis from the untwisted case is tha t there is no brane label a playing the role of the 
identity field, and thus we need to resort to a slightly different, and more complicated, 
analysis to determine the charges and Af".

It was suggested in [11,12] that the NIM-rep coefficients Af^a are actually the twisted
fusion rules that describe the WZW fusion of the twisted representation a with the
untwisted representation A to give the twisted representation b. Thus the conformal 
highest weight spaces of all three representations A, a, and b form representations of the 
invariant horizontal subalgebra g" that consists of the u;-invariant elements of g (For 
details on such matters, see [9]). The twisted fusion rules are a level k truncation of the 
tensor product coefficients of the horizontal subalgebra. This establishes a parallel with 
the untwisted case, where the untwisted fusion rules are the level k truncation of the 
tensor product coefficients of g. Thus by analogy with (11.5), we can make the ansatz

q " = c l i m r (a),  (11 .10)

i.e. the charge is simply the g"-Weyl dimension of the finite part of the twisted weight
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a. Using this ansatz the integer AH  was calculated in [6] for the c h i r a l i t y  hip twisted An 
and D n series, and it was also shown that, up to rescaling, (11.10) is the unique solution 

to (11.9).
The remaining non-trivial cases of triality twisted D4 and charge conjugation twisted 

E (3 are dealt with in this paper, and require some nontrivial Lie theory, especially per­
taining to twisted affine Lie algebras. The relevant background can be found in 19,11,13].

11.3 Triality T w isted  D4 Brane Charges

D 4 has five non-trivial conjugations, whose NIM-reps can all be determined from analyz­
ing just the ones corresponding to chirality flip (which has already be done in [6 ,11]) and 
triality. The latter is an order three automorphism of the Dynkin diagram lu that sends 
the Dynkin labels (Ao; Ai, A2 , A3 , A4) to (A0: A4, A2 , Ai, A3). Thus the relevant twisted al-

(O'!
gebra here is D)f with a horizontal subalgebra G2 , labelling w-invariant states. Thus 
boundary states are labelled by triples (00501, 02) where the level k =  «o +  2oi +  802- 
In [11], it is shown how to express the twisted NIM-reps in terms of Ai  fusion rules at 
level k  4-3 via the branching Z?4 D Gi D  A i :

<  = E  E  U (NT,- - < yw ) , (11.11)
i = 0  7 "

where C  denotes charge conjugation in A o .  which takes a dominant A 2  weight to its 
dual by interchanging the finite Dynkin labels and J  is the simple current of A 2  that 
acts by cyclic permutation of the Dynkin labels of the A ^  weights, and the by, are 
the D 4  D  G o  D  A o  branching rules (see for example [14]). The relation between £>4 

boundary states and the weights of G ^  and A ^  is given by the identifications of the 
appropriate Cartan subalgebras. Explicitly, we write [11]

o1 — cq, q.2) =  (no T rq 4- ci2 2; cto, <q) G P ^Jr~(Go) . (11.12)

a" =  if a' =  ifi(ao; <q, a 2 ) =  ( a  0 +  01 +  u 2 +  2; a2, 01 4- a 2 +  1) G P £ 'h3( A,2X11-13)

In the following, level fc-D4 quantities (weights and boundary states) are unprimed, while 
the corresponding level k + 2-G2  weights and level k + 3-A<> weights are singly and doubly 
primed, respectively.

Following [6], we make the ansatz tha t the charge q£ is the G2 Weyl dimension of
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the horizontal projection (finite part) of the weight i.e.

=  dimG2(a/) • (H-14)

Then for an arbitrary dominant integral weight A of Zty the left hand side of (11.9) reads: 

dimjo4 (A) diniG'2 (a') — by dim c2 (Y)  d im c2 (a')
y

=  E  N y ai dimcg 7 )  mod M q 2 , (11.15)
6'eP i+2(G2)

where by are the D 4  D G-i branching rules, and in the second line we have used (11.4) 
for the untwisted Cty branes at level k + 2  

k +  2 M g -2 is the same as M d4 at level k:

y
for the untwisted Go branes at level k + 2. Now from Table 11.1 we know that at level

(1L16)

and so (11.15) holds m odM p i . N o w  Go fusion rules at level k +  2 can be w r i t t e n  in
terms of the level k + 3 fusion rules of A o  following [15]

- (H-17)
7"

where by, are the G o  D A o  branching rules. Using this and the fact that (Tjy byby, =  by , , 
we rewrite the left hand side of (11.9) as

L.H.S. =  E ̂ 7" E N y ,a" — Ny,ca» dimG>2(6/) mod Mjji . (11.18)
7" b'ePt+'2(G2)

In order to relate this to the right hand side of (11.9) where the summation is only 
over the boundary states of triality twisted D4 , we need to restrict the summation (11.18) 
somehow to the set T> = Im{i' l) of images b i->- b" under (11.12).(11.13). To do this, wc 
first describe the relevant sets precisely.

An weight belongs to T>,JT>, or J 2V  respectively, if

V  : 6q > bo > b'{ >  0.

J V  : b'{ > 6q > bo > 0, (11.19)

J 2V  : b'i > b'{ > 50 > 0,
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where J  is the A 2  simple current acting on A ^  weights by J(oq'; a'{, a%) — (a2 ;a'Cj, a").
The set Q — (P k+2 (G2)) of images of (11.13) (the set over which we are summing

in (11.18)) only has the constraint f/2' > b" > 0. Thus a moment of thought will show 
that

g = V  U J 2V  U C J V  U B , (11.20)

where B consists of weights in Q such that either =  b'{ or K  = b'C The following 
hidden symmetries are established in the appendices:

b' £ P k+\ G 2) => dimG2( J 6/) — dixiiG2 (J 2 b') — dimGs)^) m odM £>4 , (11.21)

b" £ B dimc'a (^) =  0 n iodM o4 , (11.22)

b' £ P k+2 {G2) => dimc’2(CT') =  —dim c2(£/), (11.23)

where C  and J  act on G^'  weights through conjugation by i'\

C(b'0 \b'i,b2 ) =  (b'0: b[ +  b2  +  1, — b2 — 2), (11.24)

J{bq.; b[, b'2) =  (b[ + b'2 +  1; b'0, b[ — b'0 — 1). (11.25)

Here and elsewhere, we write ‘climG,2(a/); even when a' is not dominant, by formally 
evaluating the Weyl dimension formula for Go at a'. The minus sign in (11.23) indicates 
that Cb' won’t be a dominant G2 weight when b' is indeed. C  belongs to the Weyl 
Group of Go.

Using these, we can rewrite (11.18) as

L.H.S. =  Y b:
J b " £ D

+ ] T  K ' o "  - N $ CA  dimG2 (U)
b"g./2P

+  Y  -  N % ^ d S m G2(Cy)
b"eJV

mod M  Da (11.26)

where we note that there is no contribution from B  due to (11 .2 2 ). Using (11.23). the 

symmetry N y ,a„ =  Ng$',Ca"> anc  ̂ t îe tha.t the D,\ D  Ao branching has by, = b^ „ 
for all 7 ", to simplify the third sum in (11.26), we finally obtain

L.H.S. =  Y ,  Y ^ i " a "  ~  Y " C a " \ dh'nc;2(5/ ) m o d . (11.27)
i= 0  7 " b"€.PV
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But applying (11.11). (11.21). and the symmetries of fusion rules under the action of 
simple currents, we see that (11.27) also equals the right hand side of (11.9). Thus (11.9) 
is indeed satisfied by our ansatz

q£ =  dim<j2(a/) and AH' — M o 4 ■ (11.28)

that is, the charges are given by the Weyl dimension of the representation of the hor­
izontal subalgebra, and the charge group is the same as in the untwisted case. As we 
show in Section 5, the charges are unique up to a rescaling by a constant factor.

11.4 Charge Conjugation T w isted  E q  Brane Charges

E q has a non-trivial order two symmetry of the Dynkin diagram that sends the Dynkin
labels (Ao; Ai, A2 . A3 . A4 . A5 . Aq) to (Ao; A5. A4. A3. A2 . Ai, Ao). The relevant twisted algebra
here is E$2\  with a horizontal subalgebra F4 labelling the uj invariant states. The 
boundary states are labelled by q u i n t u p l e s  ( a o ; 0 1 , 0 2 ,0 3 , 0 4 )  such that k =  a o  +  2 a \  +  

302 T 4 fl3 +  2a4. Again, in [11] it is shown how to express the twisted NIM-reps in terms 
of the untwisted fusion rules of D4 at level k +  6 via the branching Eq d  F.\ d  Z?4:

• < ,  = E E E E  iVE w a»  • in-29)
J  7T

where the sum over 7r is over all 6 conjugations of D 4  consisting of permutations of the 
1st, 3rd, and 4th Dynkin labels, b*„ are the Eq D F4  D D 4  branching rules and e(7r) 
is the parity of the permutation. The summation labelled by J  is over the four simple 
currents of D 4: the identity, Jvb" = (&'(;&((, 6'4', f/3'). .Jsb" =  (&£ V£, b’L  b'[,%), and JVJS.
Note that each of these simple currents has order 2. The E q boundary states are related 
to and weights through the maps [11]

o '  =  i ( o o ;  o i , a o ,  0 3 , 0 4 ) =  (oo  +  0 1  +  0 2  +  a 3  +  3; a 4 , 0 3 , a o ,  a i ) €  P ^ + 3 ( F 4 ) ( 1 1 .3 0 )

a" =  t/a' =  t't (ao\a.i, ao, (13,0,4) ( 1 1 .3 1 )

=  (0-0 +  «r +  ao +  03 +  3; 01 +  ao +  a3  +  2 ,0 4 , 0,3 ,02  o3 +  1) G P£+6(D4) .

These again correspond to the identification of the respective Cart an subalgebras. Un­
primed quantities refer to level k-E% quantities, while their corresponding level k + S-F4  

and level k +  6-D 4 weights are singly and doubly primed, respectively. Again, as ex­
plained in [11] and [15], these relations are established by examining the twisted version
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of the Verlincle formula.
Following [6] again, we take the ansatz that the charge q£ is the F4  Weyl dimension 

of the finite part of the weight, i.e.

<£ =  dimp4 (a')- (H-32)

Then for an arbitrary dominant integral weight A of E q, the left hand side of (11.9) reads: 

dimEe (A) dimFi (a') = ^  by dimFi (7 ') dimp4 (a! )
V

=  E 6V E  N ^ a,d im FJb')  m odM fj , (11.33) 
T  6 ' s p ^ + 3 ( f 4 )

where by are the E q D F,\ branching rules, and in the second line we have used (11.4) 
for the untwisted F.\ branes at level k + 3. From Table 11.1 we know that at level k +  3 
M Fi is the same as M Fe at level k:

and so (11.33) also holds m odM £6.
Now F,i fusion rules at level k +  3 can be written in terms of the level k + 6 fusion 

rules of ZA4 following [15]

E v  =  E  E K> n y >™» ■ ( ii-ss )

where b y ,  are the F,% D D 4  branching rules, and the  ir £ S 3  are as before. As explained 
in [11] and [15], this is obtained using the Verlinde formula by analyzing the subset of 

images of dom inant integral weights under the branching. Now using this and the fact 

th a t J2y by by, = b*„, we rewrite the left hand side of (11.9) as

L.H.S. =  E  E  E E  E E "  climf-4(b1) m o c (11. 36)
7 "  + 3 (F 4 )

In order to relate this to the right hand side of (11.9) where the sum m ation is only over 
the boundary states of t w i s t e d  E q .  we need to  restric t the above sum m ation somehow 

to the set £  — Im(t'i .) of images b ^  b". To do this, we first describe the relevant sets 

precisely.
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A weight b'l, 6g, b'l) belongs to £, Js£, or JVJS£, where the J  are the
L>4 simple currents, if

£

Jv£

Ja£

JuJaS

jg > b'{ > b'l > b'l >  0 
/ /

b'l
j // .  t // .  r // j Ifbi uq Og b4 0 ,

64 > 63 > 6q > b'l > 0 ,

63 >  6" > bl > 6q > 0 .

(11 .3 7 :

The set T  of images of P++3(F4) under the F4  D D 4 branching (the set over which we 
are summing in (11.36) ) only has the constraints b'{ > b'l > b'l > 0. Thus a moment, of 
thought will show that

F  — C' LJ 7 l \ 4 n J u ^  4J ^"341J s £  b  7T413 J u '1 5 £  Lj 13 . (11.38)

where ttabc is the D4  conjugation taking the Dynkin labels 1.3 and 4 respectively to a, b 
and c, and B consists of weights in F  such that either b'l — b'{ or b'l = bl or b'l =  64 .

The following facts, where the tt are the D 4  conjugations and the J  are any of the 
Z?4 simple currents, are proved in the appendices:

dimF4 {Tib') =  e(7r) dimF4 (6') W  G P k+3 (F4) , 

diinp4 (Jbf) = dimF4 (&') mod M Fi W  G P fc+3(F 4 ) 

dimF4 (6/) =  0 mod M e 0 Vb" G B .

(11.39)

(11.40)

(11.41)

The action of the D 4  conjugations 71 and simple currents J  on F ^  weights can be easily 
obtained by converting F ,^  weights to weights using l ' . applying 71 or J, and then 
converting back to F4(1) using z/ ” 1 (dg; d'{, d'l, d'l, d'l) = dll, d'l,d'l -  d'l -  1, d'{ -  d'l -  1). 
As for <J2 , we write ‘d im jr^a ')’ even when a! is not dominant, by formally applying the 
Weyl dimension formula. The factor e(F ) in (11.39) is the parity ± 1 , and as before, each 
7i belongs to the Weyl Group of F4 .

Using these, we can rewrite (11.36) as

L.H.S. =  E E E e (7 E  A'A « "  dhno ( b')
,b"ei

b" b"£jse
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+  £  d i m F i (Tr413b>)

b"eJ„Js£
mod M e6 , (11.42)

where we note that there is no contribution from B clue to (11.41). Exactly as for the 
argument of the previous section, the symmetries of the fusion rules under 7r and simple 
currents, the symmetry b* „ =  by, of the branching rules, together with the hidden 
symmetries (11.39),(11.40) and the expression (11.29), show that

L.H.S. =  dim/r4(£0 =  R.H.S. mod Af£<.(11.43)
7 " J * b"e£

Thus, again, (11.9) is indeed satisfied by our ansatz

q£ =  dim>’4 (a!) and M w =  M e g , (11.44)

that is, the charges are once again given by the Weyl dimension of the representation of 
the horizontal subalgebra, and the charge group is the same as in the untwisted case. As 
we show next, the charges are unique up to a rescaling by a constant factor.

11.5 U niqueness

We need to show that the solutions found to the charge equation (11.9) in both the D 4  

and Eq cases are unique up to rescaling. To this end it is sufficient to prove that if the 
charge equation is satisfied by a set of integers qa modulo some integer M , then

qa =  dim (o') % mod M  . (11.45)

In this case, we can divide all charges by qo, and the charge equation will still be satisfied 
if we also divide M  by gcd(qo, AI). Finally, by an argument due to Fredenhagen [6] we get 
that A I '  := AI/gcd(qo,M)  must divide our AI. Explicitly, by construction. AI is the g.c.d. 
of the dimensions of the elements of the fusion ideal that quotients the representation 
ring in order to obtain the fusion ring. Since NIM-reps provide representations of the 
fusion ring, any element of the fusion ideal acts trivially i.e. dim(cr) dim(a) =  OmodAf' 
for any a  in the fusion ideal. Thus, using the fact that the dim(a) are relatively prime 
integers, we see that A I '  must divide AI. Thus any alternate solution qa.M  to (11.9) 
which obeys (11.45), is just a rescaled version of our “standard” one qa,M .

We will work with D4, the proof for E q is similar and will be sketched at the end.
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The G 2  C D i  branching rules can be inverted: we can formally write

i' =  E& aA. (11-46)a
A

where b"x are integers (possibly negative), a' G P+ ((?2 ), and the sum is over D4 weights 
A [15]. More precisely, (11.46) holds at the level of characters, where the domain of the 
D i  ones is restricted to the w-invariant vectors in the D 4 Cartan subalgebra, and the 
G o  characters are evaluated at the image of those vectors by 1 . To prove (11.46), it 
suffices to verify it for the G2 fundamental weights, where we find (1 , 0 ) =  (0 , 1 , 0 , 0 ) — 
(1,0,0, 0) +  (0,0,0,0) and (0,1) =  (1, 0,0,0) -  (0,0,0,0).  Since all other G2 weights can 
be constructed from the fundamental ones by tensor products, every dominant G 2 weight 
can formally be inverted under the branching and written in terms of linear combinations 
of dominant integral weights. Then 2

dimc,'2 («-' )Qo = E  Â dim o, (A) q0
A

=  E ^ E E o ® >  m0<l M , (11-47)
A v

where we h a v e  used the charge e q u a t i o n ,  w h ic h  the qa satisfy modulo M  by assumption. 
Now we use the expression (11 .11) to write (11.47) in terms of Ao fusions: we get

2

R.H.S. =  E ̂  E E E E  [ < V',0" -  E E . C 0"] Qb ■ (11-48)
A b 7 " j — 0

Now however, from (11.17) and [15], we can express this in terms of G2 untwisted fusion 
rules, and using properties of the A 2 fusion rules under simple currents along the wTay, 
we obtain

o

r . h . s . = e ^ e e 1 :  byAy'ly % moclM  . (11.49)
A b 7 ' j= o

Note that 0' here is the G2 vacuum (whereas 0", the image of O' under if, is not the A o

2In the following, we use th e  fact th a t both  (11.9) and (11.11) (and (11.29) in the case of E&) remain 
true  for all dom inant weights A and not ju s t affine ones. These expressions were obtained using ratios 
of S-matrices (see [11]), which can be in terpreted  as Lie algebra characters in the case of finite weights, 
and thus the N IM -reps N  can be continued to include all dom inant weights. This continuation also 
removes any subtleties in the comparison to  K -theory by evaluating the. charge constraint equation for 
all dom inant weights A. We thus can also see there are no exceptional situations a t low levels.
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vacuum), and thus

O
r .h .s .  =  £ E  5Ja'h'qb = In mod M ,  (11.50)

b j =o

where we have used the facts that b' is never fixed by J  and that the sets V  and J'D are 
disjoint(see (11.25)). Thus (11.45), and with it uniqueness, is established.

The proof for E q is virtually identical, except now we use the expression for untwisted 
Fi fusion rules in terms of T>4 fusion rules found in [15].

11.6 Conclusion

In this paper, we have shown that the charge groups of the triality twisted Di  and the 
charge conjugation twisted E q branes are identical to those of the untwisted D-branes. 
This is in nice agreement with the K-theoretic calculation [7] and completes the excep­
tional cases not dealt with in [6]. Our calculations show th a t the charges of these twisted 
D-branes corresponding to the twisted representation a is the dimension of the highest 
weight space of the representation a. Thus from the string theoretic point of view, anal­
ogous to the situation with untwisted D-branes, the charge associated to the D-brane is 
the multiplicity of the ground state of the open string stretched between the fundamental 
DO-brane and the brane labelled by a in question. So, in the supersymmetric version of 
WZW models, the charge may be interpreted as an intersection index, motivating pos­
sible geometric interpretation of these results. The explicit computation of the charges 
is missing from the K-theoretic calculations, and has been supplied here .3 There are no 
additional unproven conjectures made in this paper. All the arguments have been proved 
up to some conjectures needed from the untwisted cases (i.e. the content of Table 11.1 
for D i , C-2 , E q, and F i ) .

A number of non-trivial, and somewhat surprising, Lie theoretic identities have been 
proved along the way. Some of the dimension formulae regarding the action of simple 
currents of a subalgebra on weights of the larger algebra indicate that there might exist 
interesting constraints on the larger algebra due to the underlying symmetry in the 
branchings. In some sense, the enlarged algebra “breaks” symmetries of the smaller 
algebra, but still “sees” the underlying symmetry (analogous to ideas of renormalization 
of quantum field theories with spontaneously broken symmetries.)

3D uring the preparation of this m anuscript the work of [16] has come to our attention , in which 
similar results are derived using different methodology. In th a t  work however, m any of the numerical 
and Lie theoretic identities, which are explicitly proven here, are left as conjectures.
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The Lie theoretic meaning of (11.23) and (11.39) is clear: the A 2 and D 4  conjugations 
C and 7T £ S 3 are elements of the Weyl groups of G2 and F4 respectively. The meaning 
of (11.21) and (11.40) is far less clear (though it has to do with the theory of equal rank 
subalgebras [17]). but it does suggest a far-reaching generalization whenever the Lie 
algebras share the same Cart an subalgebras for example, Ai  0  • ■ ■ © Ai  (n copies) and 
Cn, or Ag and E$. Given any simple current J  of any affine Lie algebra 0 at level ft, it is 
already surprising that Weyl dimensions for the horizontal subalgebra g see the action of 
J  via dinig(JA) =  ±dimg(A) mo d Mf t . Far more surprising is that, at least sometimes, 
if two Lie algebras g and g' share the same C artan subalgebras, then the Weyl dimensions 
of the first sees the simple currents .J' of the second: dimg(J'A) =  ±climg(A) m o d M gk.
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11.7 A ppendices

We will use the following fact for proofs in b o th  the D 4  and E% cases.

F act 1 Suppose K . L . N  are arbitrary integers. Write M  — gcd^- j y  and let L  =  YlpP^p 
and N  = Y\ppUp be prime decompositions. Suppose we have integers f i . f i  such that both 
Y li f i  and Yliifi ~  diK) are divisible by N. Then

UiJi = n mo d Mi  (n .5 i)

provided that for each prime p dividing M  such that. Xp < vp, it is possible to find
0 < Oi,p <  Xp, such that pf*** divides fi for each i. and ai.p > vp.

The reason w e  can restric t to prim es p  d i v i d i n g  M  is  th a t p co p r im e  t o  M  a r e

invertible modulo M ,  and so can be freely cancelled 011 bo th  sides and ignored. For 

p r i m e s  p  d i v id i n g  M, ai/pP** =  (a* — 5j,K)/pai-p holds nioclM , V i  If Xp > vp. choose 
on.p to  be the exact power of p dividing a,;. T he divisibility by N  hypothesis will be 
autom atically satisfied, because the p roducts we will be interested in come from the 
Weyl dimension formula.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTE R 11. CHARGES OF EXC EPTIO N ALLY TW ISTED  BRANES 154

1 1 .7 .1  A p p e n d ix  A: D 4 D im e n sio n  F orm ulae

For any integral weight a" =  (ao; a i, a2) £ P k+i{A2 ), we can substitute d _1 (a0 ; 01 . 02 ) =  
(ao; 01 ,0 2  — ai — 1 ) =  a! into the Weyl dimension formula [18] of G2. in order to express 
Ge-dimensions using Ao Dynkin labels:

diniG'a(a/) =  ^ ( a 2 ~  a i )(a2 +  l)(2a2 +  ai +  3)(ai +  1)

x  (a2 T  a2 T  2)(a2 4* 2a^ T  3). (11.52)

T h e o rem  1 V a ' e  P k+2(Go), d im c2(Ca') = -d im G 2(a').

This is an automatic consequence of the a i <-»• a2 anti-symmetry of (7.2). In fact. C  is in 
the Weyl group of Go  and so more generally Theorem 1 follows from the anti-symmetry 
of the Weyl dimension formula under Weyl group elements.

T h e o rem  2 dim c2(a/) =  dim e, (Ja ')  =  dimG20 /2a/) mod Va/ £ P fc+2 (G2).

P ro o f: Using (11.52) and b, we get

cliniG, (J ‘ a ) =  IPO ^  ‘lo.o +  3 — R  )(a2 +  1 — A )

*(2ai +  3a2 +  5 -  K){a\  +  3a2 +  4 -  2K)(a\  +  1 +  K ) ,

where we put K  =  k  + 6 and used the fact that k = ao +  2ai +  3a2. In the notation of 
Fact 1, here N  =  120 =  23.3.5, L =  60 =  22.3.5. From Fact 1, it suffices to consider the 
primes p with vv > Xp, i.e. p =  2. To show that p = 2 always satisfies the condition of 
Fact 1, i.e. th a t the oy2 can be found for any choice of ai, it suffices to verify it separately 
for the 16 possible values of a i , a 2 m od22. Though perhaps too tedious to check by 
hand, a computer does it in 110 time. The proof for dim e, (da') is now automatic from 
Theorem 1.

T h eo rem  3 Given any b! £ P k+2(Go).  if C-V = J H  for ■some i, then dim c2(6') =  0 

mod M c2 ■

P roof: Write b" =  (&o;bi,&2) £ P fc+3 (A2). By Theorem 1, it suffices to consider the 
case where b0 =  &2. In this case we can write k  +  3 — 61 +  2bo. Thus, again using (11.52) 
we have

d im e .# ')  =  ^ q ( 6i +  1) ( fe2 +  l) (6 i +  b2 +  2)(362 +  3 -  K )K {3b2 + 3 -  2K ) .
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The proof now proceeds as in Theorem 2.
Of course given any weight b" £ B, b' = i!~l {b'') will obey the hypothesis of Theorem 

3, and so (11.22) follows. Note that combining Theorems 1 and 2, we get that any weight 
b' as in Theorem 3 will obey dim c2(&/) =  —dim c2(6/ ) mod M ga Thus Theorems 1 and 2 
are almost enough to directly get Theorem 3 (and in fact imply it for all primes p ±  2).

1 1 .7 .2  A p p e n d ix  B: Eq D im e n sio n  F orm ulae

As before, use ;/ and the Weyl dimension formula for T4 to write the (formal) Weyl 
dimension of an arbitrary F4 integral weight b' G P(Fi)  in terms of the Dynkin labels of 
the D i  weight b" — i!{b') = (b'f: b'{, b'f, 63, b'l). For convenience write a,- =  b” A 1. Then 
we obtain

91537 54 7211 a i a 2 a 3 a 4 (a i +  n 2 ) (a i  +  ci3)(ai +  n 4 ) ( a 2 +  03)(02 +  0,4) (a^ A 04) 

x (ai -  0-3)(ai — 04)(®4 -  03 )(aj +  ao +  <13)(ai +  ao A <24) (<22 A 03 +  04) 

x (eu A d2 A a-Q A U4)(ui A 2(22 A U3)(u-i A 2(22 T ai)(2ao A <23 A (24) (11.53)

x (ui A 2a,o A 03 A a,i)(2ai A 2q,2 H- 03 A fl-i)(cii A 2a2 A 20,3 A 0-4) 

x (04 A 2uo A 0.3 A 2u4).

T h e o rem  4 For any F4  weight bf G F (F i) and any outer automorphism ~ G S 3  of D 4 ,

dim//4 (7rf/) =  e(7t) dim^4(&') . (11.54)

This follows easily from the Weyl dimension formula (7.3) by explicitly using the action 
of the 77 on the weights. As with Theorem 1 . it expresses the anti-symmetry of Weyl 
dimensions under the Weyl group.

T h e o rem  5 For all F4̂  weights b' G P k+3 (F4 ),

dirnF4 (f/) =  dimj?,(Jvb') =  dimFl(Jsb') =  d\mp4 {JuJsb') modMjr, . (11.55)

From Theorem 4. it suffices to consider only J„. The proof uses Fact 1 and an easy 
computer check for primes p =  2.3, 5, 7, as in the proof of Theorem 2.

T h eo rem  6 Let b' G P k+i(Fi) be any F.j1̂ weight satisfying 7xb' —  Jb ' , for any D 4  

simple current J  and any order-2 outer automorphism it of D,\. Then drapr,(F) =  
0 mod M p4 .
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o

Figure 11 .1 : NIM-reps for D i  with triality />; =  2 ..... 7

a_ . — . a v . j

Figure 11.2: NIM-reps for E q with charge conjugation k =  2,3.4

P ro o f: The proof of this follows automatically from Theorem 4. Analogous to the 
situation for G 2 , one of the factors in the dimension formula turns out to be K.  So, 
accommodating the denominators as in Fact 1 will yield the term  ~  for some 0 < a < Xp. 
But this is 0 modulo Mp4, for every prime p dividing Mj?4. Q.E.D.

11 .7 .3  A p p e n d ix  C: N IM -R e p s  an d  G rap h s

In this appendix we give explicit descriptions of some of the NIM-reps at low level for 
both Di  and E q [11], The NIM-rep graphs characterizing the matrix associated to the 
field A =  Ai are given. The corresponding graph has vertices labeled by the rows (or 
columns) of Af\, and the vertex associated to i and j  are linked by (Af\)ij lines.
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1 1 .7 .4  A p p e n d ix  D: A  S am p le  C a lc u la tio n

A suitable example to illustrate the situations considered is at level k = 5 for triality 
twisted Di. In this case from Table 11.1. we get M d4 =  11. The boundary states are 
labelled by triples (ao; a \ . a2) such that fc =  oo +  2a\ +  3a2. The boundary weights then 
are

whose Go Weyl dimensions are respectively. 1 . 7, 14, 27, 64.
The relevant NIM-rep graph is illustrated in Figure 11.1. The charge equations (11.9) 

with A =  Ai (fundamental representation of D i  with dimension 8 ) thus are

The first three equations are identically true with qo =  l .q i  =  7. q2 =  14, qa =  27. 
and <\i = 64. and the last two equations are satisfied modulo A/d, =  11.

[5, 0,0], [.3.1,0], [2,0,1], [1.2,0], [0,1,1], (11.56)

8qo =  Qo +  Qi

8qi — qo +  2q i +  q 2 +  q3

8q2 =  q i +  q2 +  q.3 +  04

8q3 =  qi +  q2 +  2q3 +  q4

8q4 =  q2 +  qs +  04

(11.57)
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C hapter 12

A Tw isted Non-Sim ply  
Connected Group

12.1 Introduction  and M odular Invariants

The Hilbert space of C FT ’s is constructed from the holomorphic. and antiholomorphic. 
sectors by

H  - ®  M v ' H x  W . , . ( 1 2 . 1 )

A, /igPf;

and the resulting partition function for the full theory takes the form

Z { t ) =  J 2  MaA(Xa(p)xm(t) • (12.2)
A, pP-Pf

The matrix M \;( of entries is known as a modular invariant for the WZW theory (1.2]. 
The theory described by taking M  = I, the identity matrix, is known as the diagonal 
theory.

C FT:s whose Hilbert space of states is described by the diagonal modular invariant 
define a consistent CFT that is defined on arbitrary Riemann surfaces. Other consistent 
modular invariants can be constructed from this theory through the use of global symme­
tries to either sector of the theory. For the WZW models based on the affine Lie algebra 
g, there are essentially two choices. Any symmetry of the unextended Dynkin diagram 
can be used to “twist” the modular invariant. These exist for A n and E q corresponding to 
charge conjugation, for D n corresponding to chirality flips, and for D .j where there is the
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additional symmetry of triality [1,3]- For example, in the case of charge conjugation for 
the A ^ s  or E q, the twisted modular invariant is simply M  =  C ,  the charge conjugation 
m atrix. It can be shown that twisting by such discrete symmetries of the unextended 
Dynkin diagrams (twisting) always leads to a consistent modular invariant [4],

In addition, there are symmetries of the extended Dynkin diagrams which arise from 
outer automorphisms of the Lie algebra. Such symmetries of affine Lie algebras are 
known as simple currents. These exist for the A n's, B n 's, CVs, Don+i's, Eq, E 7 , and 
Don's which possess two simple currents [1,2]. In addition, there is a simple current 
at level 2 for E$ which does not correspond to an outer automorphism and hence does 
not arise from a symmetry of the Dynkin diagram, but this will not concern us here. 
However, not every simple current defines a consistent modular invariant. There is an 
additional consistency condition imposed on the level. This can be described as follows 

Suppose an affine Lie algebra g, has a simple current J  arising from the outer auto­
morphism of the extended Dynkin diagram. It can be shown that

JSxu =  S j XlJ, = S x, e - 2̂ ^  , (12.3)

where Q(A), known as the charge of the simple current J , has the explicit form

Q j ( \)  = {Jlj0, \ ) ,  (12.4)

where u>o is the the zeroth fundamental weight of g. Suppose the order N  of the simple 
current J  is N  i.e. N  is the smallest positive integer such J N = A N = 1. Then the 
consistency condition requires

^ ! A u 0 |2 e Z .  (12.5)

Provided this condition is satisfied, the simple current modular invariant corresponding 
to J  is given by

=  1 ^ J w 0, / i +  0 ^  , (12.6)

where Sx(y) takes the value 1 if |  is an integer, and the value 0 otherwise [1 . 2],
Such modular invariants arise in the study of non-simply connected groups. It is well

known that the group of outer automorphisms 0 (g ) is isomorphic to the center B(G) of 
the simply connected group G  obtained by exponentiating the horizontal subalgebra g.
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A simple current of order N  gives Zjv which is a subgroup of O(q) = B)G) . Using the 
modular invariant arising from the simple current J ,  corresponds to defining the theory 
on the non-simply connected group manifold G jZyy. Strictly speaking, this is the case 
when N  is prime. If the order N  is not prime, then there is the additional option of 
using a simple current J l where I is a divisor of N ,  in which case the theory is defined 
on the group manifold G/Zjv/p This occurs, for instance, for the A ^ s  [5].

If an affine Lie algebra g possess both a twist and a simple current, clearly the two 
can be combined provided that the level consistency condition (12.5) can be met. The 
modular invariant then takes the form

where D  denotes the twist (for example, C  when we have charge conjugation)
In this chapter, we will be concerned with such modular invariants for E$. Eq has a 

charge conjugation symmetry C of the unextended Dynkin diagram which acts on the 
Dynkin labels of an affine weight /i via

C(fM), 1*1,1*2, to , 1*4, to , m )  =  , (12 -8 )

and an order 3 simple current J  which acts on the Dynkin labels of the affine weights
via

J(/io,Mi,M2,d3hi4,M5,M6) =  (piUCUHUDUN-. ko-ju)  ■ (12.9)

with charge

Q j(k)  =  (JO, fi) — -  [2/ii +  4/i2 +  6/i3 +  5/m +  4/1,5 +  3/te) • (12 .10 )

The vacuum 0 =  feu>o clearly has Q(0) = 0. In addition, JO =  fcu>5 has Q (J 0) =  4^
and J 20 =  ku)\ has Q [J20 ) =  These values will be important later.

For completeness, we note that the level k is given in terms of the Dynkin labels of
an E q weight //. by

k =  fiQ +  (X\ +  2 /(2  +  3/ig +  2/14 +  Ms +  2//,g . (12.11)

First of all, the consistency condition (12.5) can be checked with N  — 3 and J ujq = 015
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to give

( 12 .12 )

i.e. there is no restriction on the level k. Thus at any level k we can consistently have 
four possibilities: the untwisted simply-connected group E q. which we will denote by 
A ; the twisted simply-connected group Eg, which we will denote by A*\ the untwisted 
non-simply-connected group E q/ Z 3 , which we will denote T>\ and finally, the twisted 
non-simply-connected group (Eq/ Z 3)*, which we will denote V *. We will work with this 
last case. Remarkably it turns out tha t for any Lie algebra g. V* is more tractable than 
T> (when they can be defined), unlike the simply connected case where A  is much simpler 
than A* [6,7].

For V * , evaluating the inner product of the roots explicitly we find that

12.2 States, E xponents, and NIM -reps

The first task is to find the corresponding NIM-rep. and the description of the exponents 
and the boundary states of the theory. We will first deal with the exponents. Recall 
that exponents are primaries A of the CFT such that M \\  yf 0, and they appear with a 
multiplicity M \\  (since the Hilbert space will get that many copies of the corresponding 
tensor product between the lrolomorphic and antiholomorphic modules).

Consider any exponent of the A* theory, i.e. C-invariant Eq weights of the form

First consider the case k =yf 0 mod 3. Using (12.9), (12.10), and (12.9) it is easy to see 
that

Then, by examining (12.13), with a bit of work (where we need to use the explicit form 
(12.14) of the weights), it is easy to see that /./,, J jt, and J 2/.t are exponents, each with 
multiplicity 1. For //., only the first 6 term survives; for J/j, only the second 6 term 
survives, and for J 2//., only the third 5 term survives, and in each case the argument

M ,y  =  <b\,cyA (Q(p)) +  <5a,cj/A  ( Q(p) + —

M =  (mo, Ml,M2M3 , M2 , Mi , Me) • (12.14)

Q(Jl-i) =  y  -  2 / t i  -  3 /(o  -  3 (j.3 -  //.6 ,

0 2 k
Q( J  k) = Y  • (12.15)
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of the other delta turns out to be an integer clue to the explicit form of the charges 
calculated above, and thereby leading to a multiplicity of exactly one for each. In the 
case that k is a multiple of 3, in addition to the weights of this form, there are the 
additional weights tha t are both C  and J  invariant (known as J-fixed points) which have 
the Dynkin labels

/i =  (/.to, /to-/J2-MS' M2! Mo-M2 .) • (12.16)

In this case, Q(p) =  Q(J/T) — Q (J 2n) — 2/z0 +  4p,2 +2/Z3 £ Z, by the same procedure, it 
is easy to see that such weights are also exponents but with multiplicity 3, since all the 
terms will contribute. Thus, in all cases, the exponents can be neatly summarized to be 
of the form (p,. i) where /z is a C-invariant E% weight, and 0 < i < 2 denotes the J  orbit 
of such a weight.

There is a general construction by T. Gannon which suggests howr to construct NIM- 
reps [8]. If Af  is a NIM-rep, and J  a simple current of order N  of some fusion ring, then 
the corresponding charge Q j  is a mapping Q j : P+ —* j jh .  Then a new NIM-rep will be 
the iV-fold covering with boundary states (x . j ) ,  where x is a boundary state of the old 
NIM-rep, and j  £ Z/v, and the NIM-rep itself is given by A ■ (d ,i) — (A • a,i  +  NQj(X)).  
Here, the notation on the right hand side is defined by A • a = and the
similar convention for the NIM-reps for the new theory on the left hand side is obvious. 
Essentially, the new NIM-rep will be of the form J\f ® Zjv- In this case, take the old 
theory to be .4*, and the new theory to be V*. One additional requirement is that we 
would like to know whether our new NIM-rep is indecomposable/irreducible i.e. whether
it can be expressed as a direct sum of smaller NIM-reps. The condition for an arbitrary
NIM-rep to indecomposable is that the vacuum of the theory should have multiplicity 
1. In this construction, this is equivalent to the requirement tha t the old NIM-rep is 
indecomposable and, in addition, no non-trivial power of the simple current J  is itself 
an exponent of the old theory.

The NIM-rep constructed for the V* theory is then

A • (a, j )  -  (A • a, j  +  3Q(A)), (12.17)

and the it matrix can easily be seen to be

[ D * )  (a,p),()i , j )  =  e 27rip:;/ 3U{A* ) a,fI ■ (12.18)

This can actually be guessed just from looking at the Verlinde formula, since the p
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m atrix essentially diagonalizes the NIM-reps.
By an argument similar to the one for the exponents, the boundary states are also 

seen to be of the form (a, i) with 0 < i < 2 , where a is a boundary state of the A* theory 
i.e. a boundary state of the twisted simply-connected E% theory.

In addition, the vacuum, being a C  invariant E q exponent, clearly has multiplicity 1 
in the new NIM-rep (essentially i =  0 in the orbit (0,'i)). This implies that, the NIM-rep 
defined above is indecomposable. The other way to see this is tha t we know the NIM rep 
of the A* theory is indecomposable. Its modular invariant is M  = C  i.e. — 6\ cit-
Clearly JO =  k u 5 and JO — ku>Q are not exponents of this old NIM-rep.

12.3 D -brane Charges

Charges of D-branes in the V* theory will be integers q(a, i) and M  such that

diniE6(A )q(a,j)  =  i) mod M .  (12.19)
( M )

If all the <7(0 , 2') are equal for 0 < i < 2, then using the knowledge of the NIM-reps for 
A*, it is easy to see tha t any q(a,i) is independent of i, and must be a solution q(a) of 
the A* theory. However, the solutions for the D-brane charges of A* are known to be 
dim f4(o) times a constant, which in this case is taken to be the common value q(0,i). In 
addition, the solutions for A* are known to be unique [7]. Thus, two phenomena become 
apparent from this analysis. Firstly, the values q(0,i) uniquely determine any solution 
to (12.19). Secondly, the charge group for V* must contain Zjv/K , since it inherits a 
solution from the A  theory, and we know that the A  theory is solved modulo M e6- In 
what follows below, we will denote M  = M e6.

However, the NIM-rep is given by Af(T>*) — Af(A*)©Z3 . Thus, it is natural to expect 
that the additional Z3 will generate extra solutions to the charge equations. Since 3 is 
prime, Z3 does not have noil-trivial subgroups. As a result the solution is constrained 
to be of the form

q(a.i) = dim/r((a) Q + ^ Q i ( 12 .2 0 )

where D = ged(3,M ), 0 < Q < M  and 0 < Qi < D. This solution reflects the tensored 
form of the NIM-reps.

If D  =  1, clearly the second term is irrelevant in the charge equation, since everything 
is defined modulo M .  Thus they vanish, and we simply recover the A* case above (and
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Q will be the common value q(O.i)) giving the charge group Z m -
The other option is D =  3 (i.e. M  is divisible by 3). In this case, the ansatz (12.20) 

on the left hand side of the charge equation (12.19) gives

L.H.S =  dining (X)q(a.i)

=  dim£:6(A)dimir4(o) Q + ( 12 .21 )

Similarly, the ansatz (12.20) on the right hand side of the charge equation (12.19) 
gives

R.H.S.

( f c j )

(bj)

= diin^g (A)dinif4(o.)

„ M
Q  +  - p Q i + 3 Q ( \ )

™ n .  - ,j j  2 i + 3 Q y \ ) mod M . ( 12.22

where in the third line we have used the relation (12.17) between the NIM-reps of A* 
and V* and in the last line we have used the solution to A*.

Comparing the left and right hand sides, we need to satisfy

dining (A)dirriiq ( a ) j Q , : =  dim£o (A)dimF4 (a) y Q i + 3Q(A) mod M . (12.23)

Now, Q0 can be taken to be 0 since only the relative values between the Qi matter, 
and any unnecessary factor can be absorbed into the value of Q. Note that this is a 
m atter of convenience, since Qq is no more physically privileged than either Qi or Q-j, 
and either of those could have been set to zero as the “ground state” value.

Exponents for the A* theory are C  invariant weights i.e. of the form /i =  C/i. So the 
matrices M {A*)\  and N {A * )c \  must be equal. Also from the definition of conjugation 
as essentially inverting a representation we know that dim(A) =  dim(CA). Also, from 
explicitly computing the charges using (12.8) and (12.10), we can see that 3Q(/T) = 
—3Q(C/i) modulo 3. Thus using (12.19), wTe get

dim£;6(A)cy(6, i) =  Ar(A*)'( ,q(b, i +  3Q{\))  mod M  .
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duxiE6(CX)q(6:i) = -  3Q(A)) m odA /. (12.24)
b

which in turn gives us

dim£6(A)q(0, i) — dim/;6 (A)q(6, i +  6Q(A)) mod M  . (12.25)

Now. for any 0 < i < j  < 3. with gcd(3. j  — i) = e, the above gives us

dim(A) {q(0,i) — q (0 ,j)) =  0 mod M  , (12.26)

for all A with gcd(3Q(A), 3) =  e. Define D e = ged ( | ,  M) (i.e. 1 when e =  3 and 3 when 
e =  1 since we are considering the case D  — 3 which implies that 3 is a factor of M.)  
dim(co,:) is divisible by 3 for any of the any of the (finite) fundamental weights n;,; of Eq as 
can be seen from tables of dimensions for Eq representations, and the definition (12.10) 
for the charge i.e. D e also divides the dimensions of the fundamental representations as 
well. [9].

Any highest weight module L \  can be written virtually (i.e. possibly with negative 
integer multiplicities) as a sum of tensor products of the representation modules of 
fundamental weights. Each term L m  & • ■ • © will have the same “charge” Q{u>i: © 
• • • © iUiJ — Ylj  m°d 1, and this will equal Q(A) mod 1. The dim of A will be
the sum, over all of these terms, of . dim(wij ), and so will be a multiple of 3 unless it 
involves constant terms (arising from the scalar representation). Thus, it is easy to see 
that D e will divide dim(A). Thus, we get

(12.27)
e

Finally, from the constraint (12.23), and using the above we get

Q i  —  Q j  mod — (12.28)
e

From our earlier claim we have Q o  = 0 necessarily. As a result of the above, the charge 
group for the twisted non-simply connected case of C-twisted Eq/Z^  is

(12.29)
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and the charges themselves are given by (12 .20 )

q(a, i) = dimF4(n 

where D — gcd(3,M ), 0 < Q < M  and 0 < Qi < D

(12.30)

12.4 Conclusion

The work in this chapter has been heavily influenced by the similar situation of the 
twisted non-simply connected versions of the A n algebras worked out recently by M. 
Gaberdiel and T. Gannon. In fact, the development, for the most part, parallels the 
similar situation for .A2 /Z 3 . This represents the first in a series of calculations involving 
twisted non-simply connected groups, which will be written up into a journal publication 
upon completion. In addition, M. Gaberdiel and T. Gannon have also discovered an 
intertwiner in the A n case that relates the charges of the twisted non-simply connected 
groups to the untwisted non-simply connected groups. Since the calculations in the 
latter situation maybe be quite untractable, such an intertwiner could be used to obtain 
information regarding their charges using the more tractable calculations in the former 
case. It would be interesting to construct such intertwiners for charges of these remaining 
twisted non-simply connected groups as well.
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C hapter 14

At Last! Fortissimo!

The numbering of this concluding chapter was chosen specifically to avoid tempting fate 
when it comes to the defense. This chapter summarizes the basic results of both parts 
of the thesis.

Part I dealt with black holes in four and higher dimensions. Specifically, the sepa­
rability of the Hamilton-Jacobi and Klein-Gordon equations in these backgrounds was 
analyzed and explicitly carried out in many cases. Along the way, information regarding 
the spacetime symmetry groups of these black holes was obtained, and in many cases, 
non-trivial second-rank Killing tensors that explicitly permit the separation were con­
structed. Chapter 3 worked with the recently discovered Kerr-(A) de Sitter metrics in 
the situation when all the rotation parameters of the black hole are taken to be equal 
(which is only possible in odd numbered dimensions). Chapter 4 worked with the Myers- 
Perry rotating black hole spacetimes in the situation when there are only two possibly 
unequal sets of rotation parameters. Chapter 7 addressed the situation of the Kerr-(A) 
de Sitter black holes in the situation where there are only two possibly unequal sets of 
rotation parameters. This result, which encompasses the situations of chapters 3 and 
4, is thought to be the most generally separable situation for these spacetimes. More 
general separation is perhaps possible in coordinate systems besides Boyer-Lindquist, 
but seems unlikely based on the specific structure of the Killing vectors and tensors 
discovered here. Chapter 5 dealt with two multiply charged supergravity rotating black 
hole solutions in four and five dimensions, and chapter 6 worked with a very general 
class of NUT-charged rotating spacetimes. Separability was explicitly carried out for all 
these metrics, and in some cases non-trivial Killing tensors were found as well.

Part II of the thesis was based on symmetries of D-branes. and in particular the 
Conformal Field Theory (CFT) approach to D-brane charges of Wess-Zumino-Witten
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(WZW) models which describe string theory on a Lie group. The CFT approach has 
a distinct advantage over the macroscopic description of D-brane charges using the ge­
ometrical tools available in the target space, since the CFT calculation, in addition to 
giving the charge groups of the D-branes, also gives the charges of the individual D- 
branes explicitly. Chapter 11 carried this calculation out for the D-branes of E% twisted 
by charge conjugation, and the D-branes of D,\ twisted by triality. In addition, this 
chapter also established some surprising phenomena relating to the behaviour of simple 
currents. Chapter 12 dealt with the D-brane charges of the non-simply connected group 
E q/ Z 3 twisted by charge conjugation. Both chapters leave room for important continua­
tions in the work. Chapter 11 can obviously be extended by studying simple currents in 
the context of equal rank subalgebras, and it is thought that this might also be able to 
explain the anomalous simple current of Eg at level 2 in terms of simple currents of one of 
its equal rank subalgebras like A& or A\  0  £ 7 . Chapter 12 can be extended by studying 
the D-brane charges on the other twisted non-simply connected groups. It would also be 
interesting to discover intertwiners similar to the A n case that relates the charge groups 
between the twisted non-simply connected case and the untwisted non-simply connected 
case, thereby obtained information about the charges in the latter situation as well.

Both parts of the thesis addressed questions about the symmetries of several solitonic 
structures that, occur in theories of high energy physics, particularly in string theory. The 
results established in this thesis provide im portant information regarding symmetries, 
charges, and conserved quantities that can be used to constrain their complicated dy­
namics. This work also raised several im portant questions which could lead to interesting 
research in the quest to understand black hole and D-brane dynamics.
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Conformal Field Theory 101

C FT ’s have received great attention in the last two decades in theoretical physics owing 
to their extremely important uses in at least three different areas: as models for genuinely 
interacting quantum field theories; in describing the physics of critical phenomena; and 
in the fundamental formulation of string theory. Conformal field theories have also 
had great impact on various aspects of modern mathematics: Vertex Operator Algebras 
(OPEs), Borcherds algebras, knot theory, number theory, and low dimensional topology 
and geometry.

C FT’s are essentially Euclidean quantum field theories with the additional property 
that their symmetry group contains, along with the Euclidean group of rotations and 
translations, local conformal transformations, i.e. transformations that preserve angles 
but not lengths. In higher than two dimensions, this additional constraint places severe 
constraints on the theory since only globally conformal transformations are available. 
However, in two dimensions the local conformal symmetry is of special importance in 
two dimensions since the corresponding symmetry algebra is infinite-dimensional in this 
case. As a consequence, two-dimensional conformal field theories have an infinite number 
of conserved quantities, and are completely solvable by symmetry considerations alone.

The brief presentation here will be from a very physical point of view, and does 
not do justice to the sophisticated mathematical methods associated to two-dimensional 
C FT’s.

In D dimensions, the space of global conformal transformations is given by SO(D + 
1 , 1). In two dimensions, we have the group 50 (3 ,1 ) as the global conformal group. We 
can give an explicit realization of this. Regard the two dimensional space as the complex 
plane C and consider a complex-valued function f{z)  that is supposed to be globally 
conformal. Clearly it should not have any branch points or essential singularities, since
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around a branch point the function is not uniquely defined, and around an essential 
singularity the function /  sweeps the entire complex plane in an arbitrarily small neigh­
borhood about the essential singularity (owing to Picard’s theorem). Thus, in either 
case, the /  would not be invertible. As a result, the only acceptable singularities are 
poles, and so /  can be written as a ratio of polynomials f ( z ) =  P(z)/Q (z).  If P  has 
several distinct zeros, then the inverse image is not uniquely defined, and /  would not 
be invertible. Moreover, if the one allowed zero zo of P  has multiplicity n more than 
one, then the image of a small neighborhood of Zq is wrapped n times around 0, and 
again /  is not invertible. Thus P  can only be a linear function of s. Similarly, the same 
argument shows Q must also only be a linear function of z, when we look at the behavior 
of /  near oc as opposed to 0. Thus, the only global conformal transformations are of the 
form

f(z)  =   ̂ , a. 6, c. d e  C . ad — be = 1. (A.l)
cz + d

ad — be needs to be non-zero in order for /  to be invertible. It is easy to see that the 
value can be chosen to be 1 without loss of generality. In addition, the reversal of all the 
signs on the numbers a, b, c, and d does not affect the transformation. Such functions 
/  define the group S L (2 ,T )/Z 2, which is well known to be isomorphic to the Lorentz 
group 50 (3 ,1 ) through the Weyl spinor representation.

However, in two dimensions, any holomorphic. transformation provides a locally con­
formal transformation since it preserve angles. The space of infinitesimal generators of 
holomorphic functions is infinite dimensional, thereby making CFT in two-dimensions 
far richer. Any holomorphic. infinitesimal transformation can be expressed as

CO
z> = z + e(z), e(z) =  £  . (A.2)

— OC

We are considering the behavior of holomorphic functions near 0 without loss of gener­
ality, since any point of interest may be mapped to 0 by means of a global conformal 
transformation ,i.e., an element of SL(2, C). Then, a field (j> on C transforms under this 
infinitesimal mapping as (f>'{z',zr) — 4>{z, z) = <t>[z'.zr) -  e(z')d'(piz', z r) -  e[z')d'<p{z'. z r). 
or equivalently we can write

8<j> = [ c n k +  cnl n(p(z, c)] , (A.3)
n
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where

'11 d ,  in :n+ld  _ (A.4)

These are the generators of the infinitesimal conformal transformations on C and form 
the W itt algebra:

The W itt algebra also contains the generators of global conformal transformations: 
L i ,lo, and l\ and their complex conjugates. So far we have been considering spin- 
less fields 0. Under a holomorphic transformation -w = w(z). a field with spin s and 
scaling dimension A transforms as

morphic conformal dimensions. Fields that transform this way under global conformal 
transformations are known as quasi-primary fields. Fields that transform this way under 
all conformal transformations are known as primary fields. Technically, this definition 
should be rigorously defined using infinitesimal conformal transformations of the fields 
as done earlier. Prim ary fields (or primaries) are to CFT what the highest weight state 
is to a Lie algebra. Their transformation behavior is respected by correlations functions 
as well, i.e.,

Clearly, the constraints placed by conformal symmetry should help us solve for such 
correlation functions, or at least that is the aim of C FT ’s: to be able to solve the theory 
from its abundant symmetries. For instance, conformal symmetry implies that two point 
functions are necessarily of the form

[C.i irn] — (tl — ■.

[Zn ,Zm] = (n — rrijln+m ,

\ } n -  Z m ] ~  0  •

(A.5)

(A.6)

where h =  J?(A +  ,s) and h = tj(A — s) are known as the holomorphic and antiholo-

^  01 (~'l -A 1) - "07i (p i ' -~n) ^  (A. I )

< <pl(zi, Zi)4 >2 (zo) z-i) > — p , if h \ =  ho — h , and hi =  ho =  h , (A.8)
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where Z1 2  =  Zi — ~ 2  ■ The two-point function vanishes if the conformal dimensions of 
the two fields do not match. Similar conditions can be used to constrain the three-point 
function uniquely as well. In addition, the holomorphic transformations constrain the 
dynamics of the theory through Ward identities.

Associated to any Lagrangian of the theory, a stre.ss-energy tensor T^„ can be con­
structed. Then, local translation, rotation and scaling invariance provide the Ward 
identities

 ̂ *")
—  < T £( x ) X  > =  Y  S(x  -  X i ) —  < X  >  , 
d x »  v ^  dx y

i= 1 1
n

<  T ^ ( x ) X  > =  - i  y  Si5(x -  Xi) < X  > , (A.9)
i=l

n

< T£ ( x ) X  > = ~ y  5(x -  Xi) A t < X  > .
i=1

Converting to complex coordinates and write T{z)  — —2nTzz. T ( z ) =  Tzt =
T~s = 0 owing to global scale invariance. The Ward identities can be rewritten

n
< t (z )x  >= y

i=i

where regular terms are not relevant, since correlation functions will be put under contour 
integrals, and only terms with poles will contribute. The so-called conformal Ward iden­
tity provides information regarding the transformation of correlations functions under 
conformal mappings with infinitesimal parameter e(s) (A.2):

5ei < X  > — <£ dze(z) < T ( z ) X  > T c .c .. (A.11)
2 m  J

where the contour encloses the point of interest.
Referring to (A.10), for a primary <f> with holomorphic dimensions h,, we can write

T(z)<j)(w) ~  -— h— -T<fr(w) H — dw<f)(w) , (A.12)
(z — w)~ z  — w

and its complex conjugate. It is understood that these expressions are valid only inside 
correlation functions. Such expressions which give information regarding the near dis­
tance behavior when two fields coincide are known as operator product expansions. The 
~  indicates modulo terms that are regular as z  —>• w, which are irrelevant for studying

-  uu
- a , ,  <  a  >  - -

hi
■ -  IVi

+  re g . (A.10)
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near distance behavior.
Typically the stress tensor is constructed from a Lagrangian, and its O PE’s with the 

various fields of the theory are studied using contractions and Laurent expansions. This 
is the common way to find information about the behavior of a field, such as its conformal 
dimension. Note that the above OPE (A. 12) is valid for primary fields that transform 
as (A.6) under all conformal mappings. Additional singular terms would appear for 
quasi-primary fields. The most important of these is the stress tensor itself which has 
the OPE:

T(z)T(w)  ~  C/2—  +  2 -7 »  +  - ^ d luT ( w ) , (A. 13)
(z -  luR {Z — ILIj- z — IV

which indicates that the field is quasi-primary with dimensions 2. This implies that the 
stress tensor actually transforms as

T(z)  -  ^ { w  : z}] . (A. 14)

where {w : z} is the Schwartzian derivative of w with respect to z. The Schwartzian 
derivatives vanishes for linear fractional transformations (global conformal transforma­
tion), and thus T  is a quasi-primary field, but not primary. The constant c, known as 
the central charge, is theory specific. Roughly speaking, it counts the number of degrees 
of freedom of the theory. For instance the theory of a free scalar field has c = 1, and 
that of a free Fermion is c = 1/2. c is also related to the vacuum energy for CFT on a 
curved manifold.

In addition to having the above description of CFT, it is desirable to have the so- 
called operator formalism. Initially, the theory is defined on a long cylinder, where time 
is goes from — oo to oc (i.e. goes along the flat direction of the cylinder), and space is 
compactified on the circle and runs from 0 to L. A Wick rotation is performed, and the 
cylinder is parameterized by a single complex coordinate £ =  t + ix. The cylinder is then 
mapped to the complex place C (or really the Riemann sphere S 2) via the mapping

Z = e2*i/L' (A tl5)

Past infinity (i.e. t, —*• —oc) is mapped to the origin, future infinity (i.e. t —> oo) is 
mapped to infinity on the Riemann sphere, and constant time sections of the cylinder 
are now circles on the complex plane (with the spatial coordinate x  giving the angle 
around the circle). Also assume the existence of a vacuum state |0 >. States are then 
defined from fields on €  by \<j> >in= linm 2_o<KhF)|0 > . Out states are similarly defined
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to the be Hcrmitian adjoint of these states. Any field <p on C can be decomposed into 
modes as

In order for the in and out states to be well defined, it is necessary to have 4>m,n \0 > =  0 
when m  > —h, n > —h. We adopt the usual practise of dealing with just the holomorphic 
sector, i.e., we simply write the holomorphic sectors and suppress the antiholomorphic. 
fields and indices. Then, the above mode expansions could be written

Analogous to time ordering in quantum  field theory, we order fields on C by radial or­
dering, since circles on C represent constant time sections, and larger radius corresponds 
to larger time coordinates. Radial ordering is defined by 7Uhi(c)<E>2(n’) = $ i ( z )$ 2 (^) 
when | cj  > \w\, and IZ§i ( z ) ^ 2 (w) — (z ) when \z\ < j wj .

We can define the operators A = j> a(z)dz  and B  = § b{z)dz associated to fields a(z) 
and b{z), where the integration is carried out over fixed time contours. The commutation 
relations of these operators can be related to the OPE's of the fields a and b via

where the first integral is over a contour that includes the origin, and the second is over 
a contour that includes w.

For any infinitesimal conformal mapping e(z) (A.2), we can define the charge that 
generates such a transformation,

(A.16)
m € Z  n £ Z  ~

(A. 17)

(A.18)

(A.19)

Using the conformal Ward identity (A. 11), we can write

cfe$(m) =  \ - Q e, $(«,’)]. (A.20)

The stress tensor can be expanded into modes:

(A.21)
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Using the OPE (A.13) and (A. 18). we can write

[Ln , L m\ — (II in)Ln4-m +  ^ n ( n _ l)(5n -̂mjo .'n-rm-yQ ■

(A.22)

\Ln , A)n] — (n m )L n+m +  n(ii“ l)Sn+mfi .

known as the Virasoro algebra. This is the central extension of the W itt algebra, which 
generates infinitesimal conformal mappings on C and generates the corresponding in­
finitesimal conformal transformations on the space of fields and operators in the CFT.

Representations of the CFT are built out of the vacuum |0 > through the action of 
the Virasoro generators L n and L m.

In addition to free fields, C FT ’s exist for interacting theories, where the O PE’s 
produce highly singular terms. It is important to define a normal ordering correctly 
so that these singular terms are eliminated (since the VEV of a normal ordered term 
needs to be zero, singular expressions should not show up). This is correctly done by 
defining

which has the effect of removing all the singular terms in the OPE. A mode expansion 
of the terms (AB)(w) results in the corresponding operator normal ordering : ... : that 
is familiar from quantum  field theory.

This concludes the very brief introduction to CFT which has touched all the topics 
necessary for the relevant CFT material in Part II of the thesis. Obviously, this barely 
touches the surface of CFT on both the physics and the mathematical sides. This subject 
is quite rich with ideas and phenomena in both fields, and is quite possibly one of the most 
fascinating areas representing the interplay between physics and modern mathematics 
that has come to be so crucial in recent years. Further details on the various aspects of 
CFT and complete descriptions of ideas only briefly touched upon in this appendix can 
be found in [1 -TO].

(A.23)
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