I do not approve of anything that tampers with natural ignorance. Ignorance
is like a delicate exotic fruit; touch it and the bloom is gone.

The Importance of Being Earnest, Oscar Wilde

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Symmetries of Black Holes and D-Branes

by

Muraari Vasudevan @

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Physics

Edmonton, Alberta
Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14054-2
Our file Notre référence
ISBN: 0-494-14054-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To

Erin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Symmetry is one of the most important guiding principles in the formulation of
modern physical theories and it also plays a major role in determining and constraining
the dynamics of such theories. This is particularly true in the context of quantum field
theory and string theory. In this thesis, symmetry aspects of two of the most important
aspects of these theories are studied, namely black holes and D-branes.

Part I of the thesis focuses on several black hole solutions in four and higher dimen-
sions. Specifically, the Kerr-(A)-de Sitter and the Myers-Perry metrics in all dimensions,
some charged rotating supergravity black hole solutions in four and five dimensions, and
a class of NUT charged black holes in several dimensions are studied. The separability
of the Hamilton-Jacobi equation describing the propagation of classical particles and the
Klein-Gordon equation describing the propagation of scalar fields in these spacetimes is
analyzed. This analysis provides information regarding the spacetime symmetry group,
and in many cases, non-trivial Killing tensors are found, whose existence is directly
responsible for enhancement of symmetry that permits separation.

Part II of the thesis focuses on D-branes. In recent years, it has been realized that
D-brane dynamics are heavily dominated by their charges. The macroscopic approach to
D-brane charges involving K-theory and cohomeology only calculates the charge groups,
but not the explicit charges of the D-branes. Conformal field theory techniques can
be used in a microscopic approach to determine D-brane charges. This calculation is
explicitly carried out for a class of Wess-Zumino-Witten models describing string theory
on Lie groups. Specifically, the D-brane charges of the group Dy twisted by triality and
the group Fj twisted by charge conjugation are calculated explicitly. Along the way a
number of non-trivial and surprising Lie theoretic identities are established and proved.
The charges are also determined for the D-branes of the non-simply connected group

Ey /73 twisted by charge conjugation.
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The results presented in this Doctoral Thesis were obtained over the course of the
author’s Ph.D. program at The University of Alberta between 2002 and 2006. The
presentation of this work is in accordance with the “Paper Format” rcgulations of the
Faculty of Graduate Studies at the University of Alberta. The majority of results have

been published in peer reviewed journals and appear in the following chapters:

Chapter 3 is based on

M. Vasudevan, K. A. Stevens, and D. N. Page, Separability of the Hamilton-Jacobi
and Klein-Gordon equations in Kerr-de Sitter metrics, Class. Quant. Grav. 22 (2005)
339-352, gr-qc/0405125.

Chapter 4 is based on

M. Vasudevan, K. A. Stevens, and D.N. Page, Particle Motion and scalar field prop-
agation in Myers-Perry black hole spacetimes in all dimensions, Class. Quant. Grav. 22
(2005) 1469-1482, gr-qc/0407030.

Chapter 5 is based on
M. Vasudevan, Integrability of some charged rotating supergravity black hole solu-
tions in four and five dimensions, Phys. Lett. B 624 (2005) 287-296 , gr-qc/0507092.

Chapter 6 is based on
M. Vasudevan, A note on particles and scalor fields in higher dimensional nutty
spacetimes, Phys. Lett. B632 (2006) 532-536, gr-qc/06511028.

Chapter 7 is based on

M. Vasudevan and K. A. Stevens, Integrability of particle motion and scalar field
propagation in Kerr-(anti) de Sitter black hole spacetimes in all dimensions, Phys. Rev.
D72 124008 (2005), gr-qc/0507096.

Chapter 11 is based on (following the usual convention in high energy physics of
listing author names alphabetically)

T. Gannon and M. Vasudevan, Charges of exceptionally twisted branes. JHEP 07
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In addition, Chapter 12 contains completed sections of original research in progress

which will appear at a future date.
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Chapter 1

The Grand Scheme of Things

The concept of symmetry has become the fundamental guiding principle in the formula-
tion and study of most aspects of theoretical physics, and particularly so in high energy
physics and in theories of gravity. The importance of symmetry was essentially first ap-
preciated in quantum field theory, where the so-called Landau-Ginzburg approach com-
pletely formulates the theory through symmetry demands on the fields of interest [1,2].
The lessons learned in quantum field theory have made the study of syminetries one of
the most powerful tools in both the formulation and the dynamical structure of string
theory.

Another lesson learned from quantum field theory is the extent to which the dynamics
of the theory is dominated by solitonic structures when they are present. In quantum field
theory, these are usually in the form of vortices, instantons, monopoles, domain walls, etc.
[1,3,4]. In fact important phenomena like vacuum tunneling, and the Dirac quantization
condition on charge are direct consequences of solitonic physics. In recent years, it has
been learned that string theory formulations are incomplete without accommodating for
solitons. In fact, it has been shown that string theories are completely inconsistent,
inaccurate, and unpredictive if the solitonic sectors of the theory are ignored {5]. It has
also been realized that solitonic structures are even more important than string dynamics
itself in the large string tension limits of the theory [6,7]. The two most important
classes of solitons in string theory are black holes and D-branes. This thesis examines
the symmetry structure and the resulting dynamical constraints for many important
black holes and D-branes occurring in various limits of string theory.

The first part of this thesis deals with the study of several classical black holes in four
and higher dimensions. The classical Hamilton-Jacobi equation describing the motion of

massive and massless particles in these backgrounds is studied and is shown to be sepa-
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CHAPTER 1. THE GRAND SCHEME OF THINGS 2

rable in several important situations. In addition, the Klein-Gordon equation describing
the propagation of massive and massless scalar flelds in these backgrounds is also stud-
ied, and separability is established for the same situations. In the process, expressions
are obtained for Killing vectors that generate the various spacetime symmetries of these
backgrounds, thereby obtaining information regarding the spacetime symmetry groups.
In addition, non-trivial second-rank Killing tensors are found for many of these space-
times, which provide the analogue of the Carter constant and permit separation of both
cquations. Killing tensors are “symmetries”™ on phase space which are conjectured to be
very interesting quantities in string theory, particularly in the context of the so-called
AdS/CFT correspondence.

The second part of the thesis deals with the study of D-brane charges of Wess-Zumino-
Witten (WZW) models. WZW models describe string theory on a group manifold, and
are of great current interest, as they are exactly solvable as Conformal Field Theories
(CFT) [8]. In addition, some WZW models are exactly dual to string theory models of
phenomenological interest. The dynamics of D-branes are constrained heavily by their
conserved charges. The study of D-brane charges was initially investigated using the
powerful geometric tools of K-theory, whereby it was realized that D-brane charges can
be interpreted as instantons on the D-branes [9]. However, K-theoretic calculations turn
out to provide information regarding the charge groups of the D-branes only, but not
the actual charges of the D-branes specifically. A more “microscopic” and complete ap-
proach is to use a Boundary Conformal Field Theory (BCFT) calculation of the D-brane
charges. This calculation is carried out in detail and the charges are determined for the
charge conjugation twisted Eg branes, and triality twisted D4 branes, which completes
an important previously missing section of the D-brane charge rescarch literature. In
addition, several non-trivial results regarding simple current symmetries of the affine
Lie algebras in the context of WZW models are established. The charge calculations
for D-branes on the non-simply connected group Fg/Zs twisted by charge conjugation
are also presented. This part also begins with a self-contained introduction to affine Lie
algebras, WZW models and their fusion rules, and BCFT D-brane charge calculations.
A short introduction to some methods of conformal field theory is also presented in an

appendix.
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Chapter 2

Introduction

Solutions of the vacuum Finstein equations describing rotating black hole spacetimes in
higher dimensions are of great current interest due to many recent developments in high
energy physics and gravity. Models of spacetimes with large extra dimensions that have
been proposed to deal with several questions arising in modern particle phenomenology
(e.g. the hierarchy problem) naturally include such higher dimensional black hole solu-
tions [1-3]. These models are also of interest in the context of mini-black hole production
in high energy particle colliders, which would provide a window into non-perturbative
gravitational physics [4,5].

Higher dimensional black hole solutions also find a natural description in superstring
and M-theory due to their 10 or 11 dimensional ambient spacetimes. Branes present in
these theories can also support black holes, thereby making black hole solutions in an
intermediate number of dimensions physically interesting as well. Solitonic objects in
superstring theory frequently find a natural description in terms of higher dimensional
black holes. In fact the black hole entropy calculation in string theory makes use of
such a description where black holes are related to collections of D-branes. They provide
important keys to understanding strongly coupled non-perturbative phenomena which
cannot be ignored at the Planck/string scale [6,7].

With phenomenological interest now in a universe with nonzero cosmological con-
stant, it is also important to consider spacetimes describing rotating black holes with
a cosmological constant. Another motivation for including a cosmological constant is
driven by the AdS/CFT correspondence. The study of black holes in an Anti-de Sitter
background could give rise to interesting descriptions in terms of the CFT on the bound-
ary leading to better understanding of the correspondence (8, 9. There is also a very

strong need to understand the structure of geodesics in the background of black holes
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CHAPTER 2. INTRODUCTION 6

in Anti-de Sitter backgrounds in the context of string theory and the AdS/CFT corre-
spondence. This is due to the recent work in exploring black hole singularity structure
using geodesics and correlators on the dual CFT on the boundary [10-15].

In this part of the thesis the separability of the Hamilton-Jacobi equation in many
such spacetimes. which can be used to describe the motion of classical massive and
massless particles (including photons), is studied. Separation of the equation is explic-
itly demonstrated and carried out in these backgrounds for many cases. This explicit
separation is used to obtain first-order equations of motion for both massive and massless
particles in these backgrounds. The equations are obtained in a form that could be used
for numerical study, and in the case of spacetimes with cosmological constant, also in
the study of black hole singularity structure using geodesic probes and the AdS/CFT
correspondence.

The Klein-Gordon equation describing the propagation of massive and massless scalar
fields in these spacetimes is also studied. Separation is again explicitly shown for the
same situations that the Hamilton-Jacobi equation is separable.

In many of these spacetimes, separation is possible for both equations due to the ex-
istence of a second-order non-trivial irreducible Killing tensor. These are generalizations
of the Killing tensor in the Kerr black hole spacetime in four dimensions constructed
in [16], which was subsequently described by Chandrasekhar as the “miraculous prop-
erty of the Kerr metric”. The Killing tensor provides an additional integral of motion
necessary for complete integrability. The Killing vectors of the spacetimes, which are
the generators of the spacetime symmetries, are explicitly constructed, and their role
in the separability of both equations is demonstrated. By this procedure, information
regarding the complete symmetry groups of these spacetimes is obtained.

The published text of the papers appears in the following six chapters, with very
minor changes to correct errors and update the bibliographies.

Chapter 3 deals with the recently discovered Kerr-(Anti) de Sitter metrics in all
dimensions [17,18]. Separation is carried out in the case where all the rotation parameters
are equal. This also needs the restriction that the spacetime is odd-dimensional.

Chapter 4 deals with the Myers-Perry metrics describing rotating black holes in
higher dimensions without a cosmological constant. Separation is carried out in the case
where there are only two scts of possibly unequal rotation parameters. [19]

Chapter 5 deals with two rotating supergravity black hole solutions with charge in
four and five dimensions. Separation is established in all cases.

Chapter 6 deals with a general class of rotating black hole spacetimes carrying NUT

charge. Separation is established in all cases.
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CHAPTER 2. INTRODUCTION 7

Chapter 7 deals again with the Kerr-(Anti) de Sitter metrics from Chapter 3. Separa-
tion is now established for the case where there are two sets of possibly unequal rotation
parameters. This removes the restriction on dimensionality and is now applicable in all
dimensions. This encompasses the results of Chapters 3 and 4. This also appears to be

the most general case for this class of black holes where separability is possible.
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Chapter 3

Equal Parameter Kerr-de Sitter
Metrics

3.1 Introduction

Solutions of the vacuum Einstein equations describing black hole solutions in higher
dimensions are currently of great interest. This is mainly due to a number of recent
developments in high energy physics. Models of spacetimes with large extra dimensions
have been proposed to deal with several questions arising in modern particle phenomenol-
ogy {e.g. the hierarchy problem) [1] [2] [3]. These models allow for the existence of higher
dimensional black holes which can be described classically. Also of interest in these mod-
els is the possibility of mini black hole production in high energy particle colliders which,
if they occur, provide a window into non-perturbative gravitational physics [4] [5].

Superstring and M-Theory, which call for additional spacetime dimensions, naturally
incorporate black hole solutions in higher dimensions (10 or 11). P-branes present in
these theories can also support black holes, thereby making black hole solutions in an
intermediate number of dimensions physically interesting as well. Black hole solutions in
superstring theory are particularly relevant since they can be described as solitonic ob-
jects. They provide important keys to understanding strongly coupled non-perturbative
phenomena which cannot be ignored at the Planck/string scale [6] [7].

Agtrophysically relevant black hole spacetimes are, to a very good approximation,
described by the Kerr metric [8]. One generalization of the Kerr metric to higher di-
mensions is given by the Myers-Perry construction [9]. With interest now in a nonzero
cosmological constant, it is worth studying spacetimes describing rotating black holes

with a cosmological constant. Another motivation for including a cosmological constanut
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is driven by the AdS/CFT correspondence. The study of black holes in an anti-de Sitter
background could give rise to interesting descriptions in terms of the conformal field
theory on the boundary leading to better understanding of the correspondence [10] [11].
The general Kerr-de Sitter metrics describing rotating black holes in the presence of a
cosmological constant have been constructed explicitly in [12] [13].

In this paper we study the separability of the Hamilton-Jacobi equation in these
spacetimes, which can be used to describe the motion of classical massive and massless
particles (including photons). We also investigate the separability of the Klein-Gordon
equation describing a spinless ficld propagating in this background. For hoth equations,
separation is possible in some special cases due to the enlargement of the dynamical
symmetry group underlying these metrics. We construct the separation of both equations
explicitly in these cases. We also construct Killing vectors, which exist due to the
additional symmetry, and which permit the separation of these equations. We also

derive and study equations of motion for particles in these spacetimes.

3.2 Construction and Overview of the Kerr-de Sitter Met-
rics
A remarkable property of the Kerr metric is that it can be written in the so-called Kerr-

Schild [14] form, where the metric g, is given exactly by its linear approximation around
the flat metric 7, as follows:

. , . 2M
ds® = Guodztda” = ngdatde” + il (kpudat)? (3.1)
where &, is null and geodesic with respect to both the full metric g,,, and the flat metric

Ny

The Kerr-de Sitter metrics in all dimensions are obtained in [12] by using the de
Sitter metric instead of the flat background 7,,, with coordinates chosen appropriately
to allow for the incorporation of the Kerr metric via the null geodesic vectors k,. We
quickly review the construction here.

We introduce n = [D/2] coordinates u; subject to the constraint

7
S oui=1. (3.2)
i=1

together with N = [(D — 1)/2] azimuthal angular coordinates ¢;, the radial coordinate
7, and the time coordinate 7. When the total spacetime dimension D is odd, D =
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2n 4+ 1 = 2N + 1, there are n azimuthal coordinates ¢;, cach with period 27. If D is
even, D = 2n = 2N + 2, there are only N = n — 1 azimuthal coordinates ¢;. Define € to
be 1 for even D, and 0 for odd D.

The Kerr-de Sitter metrics ds? in D dimensions satisfy the Einstein equation

R;Ll/ = (D - 1) )\guy . (33)
Define W and F as follows:
n MQ 2 n HQ
=) F = i 3.4
W ;1—0—/\(1?' 1— A2 ;7'2+a,; (3.4)

In D dimensions, the Kerr-de Sitter metrics are given by

ds? = ds? + :Ai(k,,drﬂ) (3.5)

where the de Sitter metric d3*, the null vector k,, and the function U are now given by

n—c 9 9

2 _ 2 rPral 5,

ds? = —W(1—Ar?)dt> + Fdr® +Z % 1+Z1+/\(}§ 12 doy
A (r® + aF) p dpss o s
TW I A <; 1+ Aa? ) ’ (3.6)

=€ a-uz
kydat = Wdt+ Fdr— ; m des , (3.7)
n /_1,2 n—e

U = r - 2+ a?). 3.8
;7*2+af jI:—‘[l( i) (3:8)

In the even-dimensional case, where there is no azimuthal coordinate ¢,, there is also
no associated rotation paramecter; i.c., ¢, = 0. Note that the null vector corresponding

to the null one-form is

i 1 0 o . a; 3]
leL J), = —— _ __'—. 3.
On 1—Ar2 0t+(‘97‘ Z r2 +a? do; (3.9)

This is easily obtained by using the background metric to raise and lower indices rather
than the full metric, since k is null with respect to both metrics.
For the purposes of analyzing the equations of motion and the Klein-Gordon equation,

it is very convenient to work with the metric expressed in Boyer-Lindquist coordinates.
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In these coordinates there are no cross terms involving the differential dr. In both even
and odd dimensions, the Boyer-Lindquist form is obtained by means of the following
coordinate transformation:

2M dr 2M a;dr

In Boyer-Lindquist coordinates in D dimensions, the Kerr-de Sitter metrics are given by

s , oo Ud? 2M — a; 11 dipi\ 2
n 2 2 n—e 9 2
e+ a; 9 YA+ ar o, )
—tduz ——Lt pus (dp; — Na; dT)”
+;1+)\a; M+;l+/\a;ﬂl‘< v 2 dr)
A = (12 4 e dp\ 2
: - , 3.11
+W(1—)\1~~’)<Z T aa? ) (3.11)

where V is defined here by

n—e€
) . . . . U
V=r21-n7) [[0 +af) = ol (3.12)
i=1
Note that obviously a, = 0 in the even dimensional case, as there is no rotation associated

with the last direction.

3.3 Obtaining the Inverse Metric

Note that the motric is block diagonal in the (g;) and the (r.7.;) scctors and so can be
inverted separately.

To deal with the (r,7, ;) sector, the most efficient method is to use the Kerr-Schild
construction of the metric. From (3.1) and using the fact that % is null, we can write
24

1
SRR (3.13)

7 T 7
g =n -

where n here is the de Sitter metric rather than the flat metric, and we raise and lower
indices with 7. Since the null vector & has no components in the p; sector, we can regard
the above equation as holding true in the (r. 7,4;) sector with & null here as well. Then

we can explicitly perform the coordinate transformation (3.10) (or rather its inverse) on
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the raised metric to obtain the components of g" in Boyer-Lindquist coordinates in the
(r,7,;) sector.

We get the following components for the (r,7,¢;) sector of gH”:

g = g — VY,
oV —2M
g - (7
4M*
T .
g T TE AV —2n)
4M2a;(1 2 2M ;
gﬂpi - /\G@Q - ) oalr( ki )\al) 5 2y = OCLL 5 N
U(l — Ar2)2(V —2M)(r? + af) U (1-Mr2)(r?+a7)
gri¥s = —————(1 +Aq] )‘, 5+ Aza,;an + QY

(2 + a2
4M%aj0;(1 + Na?)(1 + )\a,?)
Ul = X)XV = 2M)(r? + af) (12 + a3)

(3.14)

where Q and QY are defined to be

1 oM 1 ,
S T ve) Rl s e v (3:49)

—4AM?Aa;a;](1 4 Naf) (7% + @) + (1 + Xaf) (r? + a?)]
UL = )2V = 2M)(r? + a?)(r? + a3)
_2_11\1 a;a; B 2M Aasa; 1 n 1
U (2 +al)(r?+a3) Ud-M2) | (P +a) (2 +ad)
4M%a;a;[(1 + Ma?) + (1 + )\aj)}

TNV M) @)t ad) (3.16)

These results were compared to previously known ones in the case of A = 0 and
showed agreement [15]. Also, we used the GRTensor package for Maple explicitly to
check that this is the correct inverse metric [16].

Note that the functions W and U both depend explicitly on the p;’s. Unless the
(r, 7, i) sector can be decoupled from the p sector, complete separation is unlikely. If
however, all the a;’s are equal, then the functions W and U are no longer 1 dependent
(taking the constraint into account). With unequal values of the rotation parameters a;.
separation does not seem to be possible in this coordinate system, and it is likely that

a different coordinate system might be needed to analyze separability in those cases.
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We will consider the case where all rotation parameters are equal: «; = a. Then we
explicitly show separability. Note that since a, = 0 by definition for even dimensional
cases, we will restrict our attention to odd dimensional spaces. In the discussions that
follow, we explicitly set all rotation parameters equal, and assume that the spacetime
dimensionality is odd.

Note that the u sector metric is completely diagonal upon assuming that the rotation
parameters are equal and upon imposing the constraint. Consider the last term in

equation (3.11) in the case of odd dimensions with all ¢; = a. In this case the term reads

/\ B
W (1 — Ar?) 1+ \a (Zﬂzdﬂ) : (3.17)

However, by differentiating the constraint (3.2) we get >, y;du; = 0. Hence upon
imposing the constraint this term vanishes from the metric, and the corresponding term
vanishes from the inverse metric (and thus in the Hamilton-Jacobi equation.)

Now that the wu;’s are constrained by (3.2), we can use independent coordinates.
Since the constraint describes a unit (n — 1) sphere in w space, the natural choice is to

use spherical polar coordinates. We write
i = Hsin ;| cosbp_it1, (3.18)

with the understanding that the product is one when ¢ = n and that 6, = 0. The u

sector metric can then he written as

o n—1 fi—1

5 TP+ a? 5 ‘
ds,, = 1—+—)\a~ Z Hbln g do;, (3.19)

again with the understanding that the product is one when ¢ = 1. This diagonal metric

can be easily inverted to give

o 1+ Ma® 1 )
aa_( a’) 5

= = - Bis . 3.20
g (r? +a?) < 1 gin? 9k> K (3:20)
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3.4 The Hamilton-Jacobi Equation and Separation

The Hamilton-Jacobi equation in a curved background is given by

where S is the action associated with the particle and [ is some affine parameter along
the worldline of the particle. Note that this treatment also accommodates the case of
massless particles, where the trajectory cannot be parametrized by proper time.

Using (3.14) and (3.20), we write the Hamilton-Jacobi equation in odd dimensions

with all rotation parameters equal as

25 = e g o8
Ol T UA-MRV-RM) (O P Ad o
AM z BS dS 8M2 (Q 2
TG =€+ o) 5 9 B U0 =XV =230 \Br
Il ij U2 1
S(E) Uz_mQ 9 f(aa,)
(1 + )\(LQ) nol 1 <0S> S n X
+ 2 9 - e -+ Q 2
(7‘- + (l“) ; ( 2:—:11 Sil’l2 ek) o8, Zl

Note that here the u; are not coordinates, but simply notation defined by (3.18). The
set of coordinates relevant to the problem is (7,7, 4, 60;). Note also that the functions
U, W, Q, and Q¥ are all now independent of the 6;; i.e., in the Hamilton-Jacobi equatior,
the 7 scctor has completely decoupled from the 8; sector.

Now we can attempt a separation of coordinates as follows. Let

n—1

S = —m - Er+ E Ly, + Sp(r) + E Sp, (6 (3.23)

=1
7 and ; are cyclic coordinates, so their conjugate momenta are conserved. The conserved
quantity associated with time translation is the energy E, and those with rotation in the
@; are the corresponding angular momenta L;, all of which are conserved. Applying this

ansatz to (3.22), we can separate out the overall 8 dependence as
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n—1

+ Z (ds"f>2 . (3.24)
cos? O i1 <Hl ) gin? 9,\) do;

where J} is a constant. The separated r equation is

n L
=1 <H}f tsin? gy,

~—

K = m*(rP+a®)+Q(r*+ad%) |-E+ /\aZ L;

'“+ (V = 2M) (1% + a?) [dS,]?
U dr

AM?(r? + a?)
U(l— Mr2)2(V —2M)

a{l + )\a -
r? 4+ g2 Z Lb}
i=1

BM2E?(r* + a?) 2 2 N i 4\IaE
- T+ a” L L + 3.25)
U(l = Mr?)(V — 2M) Tlra )ijz'=:1 Gihly+ U1 - \r2) 221
where this separation constant is K = —(1 + Ae?)J7. At this point the (r, 7, ¢;) coor-

dinates have been separated out. To show complete separation of the Hamilton-Jacobi
equation we analyze the 6 sector (3.24).

The pattern here is that of a Hamiltonian of a classical (non-relativistic) particle on
the unit (n — 1) u-sphere, with some potential dependent on the squares of the p;. This
can easily be additively separated following the usual procedure, one angle at a time,
and the pattern continues for all integers n > 2.

The separation has the following inductive form for k=1,...,n — 2:

2N i N <dsgl>2 3.26
k+1 Z i1 . o Z (HJ L 91n29j> do; (326)

i=k+1 (Hj:k+l sin® 9]) cos? ;i Zpra

The final step of separation gives

. L3 L2 185 2
J = 2 -+ - +<‘ "’”) . (3.27)

N 2
cos? b, sin” 6,1 df,_y

Thus, the Hamilton-Jacobi equation in odd dimensional Kerr-de Sitter space with all
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rotation parammeters a; = ¢ has the general separation
1 n n—]1
§= 577131 — BT+ Ligi+ Sp(r)+>_ Sp(6:), (3.28)
i=1 =

where the 6; are the spherical polar coordinates on the unit (nn — 1) sphere. S,.(r) can be
obtained by quadratures from (3.25), and the Sp, again by quadratures from (3.26) and
(3.27).

3.5 The Equations of Motion

3.5.1 Derivation of the Equations of Motion

To derive the equations of motion, we will write the separated action S from the

Hamilton-Jacobi equation in the following form:

1 n r n=1 .0,
S = Em?l —Er+ Z Lip; + / VR(")dr' + Z / \/ CACALL (3.29)
i=1 - t=1"

where
o R B,
e, =J - == — I c=1,..,n—1, 3.30
g P osin28,  cosé RS (3.30)
. (12U QU n 70
R = —J2- ( Np—_ - |- ;
LV —2M)(r2 +a2) (V- 2M) E+A“;LL

2 U 4M3 1 a(l+ \a*) /\a ~
m (V—2M) (1—M)Z(V —2M)? z:: } (3.31)

4MaE L 8M2E? U L
__ L, — _ WL
(V = 2M)(r? + a2) Z 1= Ar?)(V —2M)2 (V —2M) Z QY LiL;

i=1 ij=1

where @ and Q¥ are functions of r given in (3.16) (with all a; = a). For convenience, we
define J2 = L. (Note that J2 is obviously not a new conserved quantity. It is simply
written this way to facilitate the inductive definition given above for @, _.1).

To obtain the equations of motion, we differentiate S with respect to the paramecters
m?, E, L;, JJ“’ and set these derivatives to cqual other constants of motion. However, we
can sct all these new constants of motion to zero (following from freedom in choice of

origin for the corresponding coordinates, or alternatively by changing the constants of
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integration). Following this procedure, we get the following equations of motion:

dr_ (V-2DVR

a U

i 1+ 2a%)VEs i=1,.m—1 (3.32)
dl (r2 + a,z)(H}lll sin? 0;) o

r . n iMa &

= 202 2 il = i

dl Q(l +CI><E+)\G§IH> [<1*>‘7~)12_:L

M2 (r? + a* 1 1607
. 8)h q(r‘7 +ra ) e+ al +>\a ZL 6 Ei(r ,+ a?) .
(1~ N2)2(V — 2M) (1 — n2)(V — 2M)

We can obtain n more equations of motion which give the %’}— in terms of the 7.6;
coordinates by differentiating S with respect to the angular momenta L;. However,
these equations are not particularly illuminating, but can be written out explicitly if

necessary by following this procedure.

3.5.2 Analysis of the Radial Equation

The worldline of particles in the Kerr-de Sitter backgrounds considered above are com-
pletely specified by the values of the conserved quantities F, L;, 172 and by the initial
values of the coordinates. We will consider particle motion in the black hole exterior.
Allowed regions of particle motion necessarily need to have positive value for the quan-
tity R, owing to equation (3.32). We determine some of the possibilities of the allowed
motion.

At large r, the dominant contribution to R, in the case of A = 0, is E* — m?. Thus
we can say that for E? < m?, we cannot have unbounded orbits, whereas for E? > m2,
such orbits are possible. For the case of nonzero A, the dominant term at large r in R
(or rather the slowest decaying term) is —(’7‘7 Thus in the case of the Kerr-anti-de Sitter
background, only bound orbits are possible, whereas in the Kerr-de Sitter backgrounds,
both unbounded and bound orbits may be possible.

In order to study the radial motion of particles in these metrics, it is useful to cast
the radial equation of motion into a different form. Decompose R as a quadratic in
as follows:

R=aF*—23F +~, (3.33)
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where
_ QU 4M* B 8M*
“ V_aM (1- M)V -2M)?2 (1-XN2(V-2M)?2"
QUMa 4M?a(1 + Xa?) 2Ma u
/- — - Py
g (V~2M+X1-M%%V4mm%ﬂ+a%+(V—2Mﬂﬂ+a% 2 L
2

o JE1+ Xa®)U QUA~ 2 ZL MU
P T VM)t a?) V—32M V —2M

4M2a2 (1 + Na?) U N '

(1= M2V —2M)? w+wL<XFJ _V—MWZ;QLJ“ (3:34)

The turning points for trajectories in the radial motion (defined by the condition

R =0) are given by E = V. where

B+ /53— ay
e '

Vi = (3.35)

These functions, called the effective potentials [15], determine allowed regions of motion.
In this form, the radial equation is much more suitable for detailed numerical analysis

for specific values of parameters.

3.5.3 Analysis of the Angular Equations

Another class of interesting motions possible describes motion at a constant value of 6;.

These motions are described by the simultaneous equations

_de;
8,

(6; = 9;) =0, (3.36)

where ¥; is the constant value of 6; along this trajectory. These equations can be explic-

itly solved to give the relations

2 2
’]7'+1 _ Ln i—1
sin 6 costh;
2 2
5 J —i . L
J?P = i+l | Tmeid] i=1,...n—1, (3.37)

] G )
sin® 4,  cos?f;

where. as before, J2 = L?. Note that if J; = 0. then J? , = 0. and if ¥, = 7/2, then
n 1 i+1
2
Ly 44150

Examining ©y, in the general case, 0, = 0 can only be reached if Ji 1 = 0, and
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g, = w/2 can be only be rcached if L, g1 = 0. The orbit will completely be in the
subspace 6. = 0 only if J? = L?_;,; and will completely be in the subspace 6 = /2
only if J? = JE,H.

Again these equations are in a form suitable for numerical analysis for specific values

of the black hole and particle parameters.

3.6 Dynamical Symmetry

The general class of metrics discussed here are stationary and “axisymmetric”; i.e.,
/0T and /0y, are Killing vectors and have associated conserved quantities, —E and
L;. In general if £ is a Killing vector, then {"p, is a conserved quantity, where p is the
momentum. Note that this quantity is first order in the momenta.

With the assumption of odd dimensions and equality of all the a;’s, the spacetime
acquires additional dynamical symmetry and more Killing vectors are generated. By
setting the rotation parameters a;’s equal, we have complete symmetry between the
various planes of rotation, and we can “rotate” one into another. The vectors that
generate these transformations are the required Killing vectors. We will construct these

explicitly. Parametrize the rotation planes as follows:

n—1
Ty =T COS@G =T H sind; | cos Op_iyi1cos e,
j=1
n-—1i
Y = T sing; =71 H sinf; | cos 0,,_iy18inp;, (3.38)
J=1

again with the understanding that the product equals one when i = n and that 6, = 0.
Define the rotation generators on the planes as

Loy = ady — bd, . (3.39)

where a and b can be any z' or 3/ . The case of a = z.b = 3 for same 7 is not
interesting, as it simply represents rotation in ¢;, which is already known to generate
a Killing vector. The L, themselves are obviously not Killing vectors (aside from the

trivial cases just mentioned), but the combinations

& = Ly + Lyzy;, . Pis = Lfl,iy_y‘ -+ Lw;,'yi, . (3.40)
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o
(8]

are Killing vectors. Explicit expressions for these in polar coordinates in the case of
n = 2 can be found in [17] [18].

These additional Killing vectors exist, since the symmetry of the spacetime has been
greatly enhanced by the equality of the rotation parameters. The (U(1))™ spatial rotation
symmetry, where each U(1) is the rotational symmetry in one of the planes, has been
increased to a U(n) symmetry. This follows from the fact that we now have the additional
symmetry of being able to rotate planes into one another.

The separation constants K in (3.25) and J? in (3.24) arc conserved quantities that
are quadratic in the associated momenta. So these quantities must be derived from a
rank two Killing tensor K# [19]. We will work with the J?. (We can ignore K since
it only differs from Jf by a constant factor.) Any conserved quantity A that is second
order in momenta is constructed from a Killing tensor as
a5 a5

A — JTHY . 0y — MY
A= K"pup, = K¥ Ozt Oav

(3.41)

Since the Hamilton-Jacobi equation can be fully separated, we should be able to
construct Killing tensors explicitly. It turns out however that these Killing tensors are
not irreducible; i.e., they can be constructed as linear combinations of tensor products
of the Killing vectors present due to the increased symmetry.

Comparing (3.24), (3.26) and (3.27) with (3.41), where the conserved quantitics arc

J?, we can obtain the following Killing tensors:

1 1
i Sp SV TRV N N
KM, T 0 b g S 05
1 1
AT AdY Su N 1Y A ) 9
K 26, K+ o2 br O o1 O o1 T 0,05 k=1,..,n—2,(342)

which can be written as

k+1 k41 i1
K, = Z(’) D0, — Z Zsym(@w ® Oy;)
i=1 i=1 j=1
k+1i—1 k+14¢—1
AN L@ Y Y py @iy, k=10 -1, (3.43)
i=1 j=1 i=1 j=1

o T2 O
where J7 = K pup..

Thercfore, as we can see from the form of the Killing tensors, they can explicitly be
obtained from quadratic combinations of the Killing vectors d,,, &;, and p;;.

This is a demonstration of the fact that in this case separation of the Hamilton-
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Jacobi equation is possible due to the enlargement of the symmetry group in the case of

all a; = a.

3.7 The Scalar Field Equation

Consider a scalar field ¥ with the action
1 f . . .
St = -3 / AP/ =G((VT)? + aRY? + m?¥?), (3.44)

where we have included a curvature dependent coupling. However, in the Kerr-(anti)
de Sitter background, R = X is constant. As a result we can trade off the curvature
coupling for a different mass term. So it is sufficient to study the massive Klein-Gordon
equation in this background. We will simply set «« = 0 in the following. Variation of the
action leads to the Klein-Gordon equation

1 . ) ‘ \
ﬁa,,,(\/—ggw’ayxy) =m0, (3.45)

equation usually implies separability of the Hamilton-Jacobi equation. Conversely, if the
Hamilton-Jacobi equation does not separate, the Klein-Gordon equation seems unlikely
to separate. We can also see this explicitly (as in the case of the Hamilton-Jacobi
equation), since the (r, 7, ;) sector has cocfficients in the equations that explicitly depend
on the u; except in the case of all a; = a. Thus, we will once again restrict our attention
to the case of all a; = a in odd dimensional spacetimes.

Once again, we impose the constraint (3.2) and decompose the y; in terms of spherical

coordinates as in (3.18). We calculate the determinant of the metric to be

2/ 9 2yop—2 n—1
7{re +a°) . qn—d4i_2 2
g= ———h——%fn—— H sinin4—2 B cos”0;. (3.46)
AQT )" ¥
‘ i=1
For convenience we write g = —PA, where
\E : n-—1

7}2(7,2 4+ CLB)EH—E o dm—dj2 9
P= e A=Ilsw ) cos™ b . (347)
: : =1
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Then the Klein-Gordon equation in this background (3.45) becomes

, ; 1, (V — 2M) 00
.~ = . P =
m- { az ()(’/J \/_15(), <\/— i 37’>
4N g a(l+ Xa?) ¢
T = MRV~ 2M) {E RN E 0%}
4M Z v 8M? 9*y
U1 - M2 ) (r~ + a? drdp; U1 — M2)2(V —2M) \ 972
" (1+Aa~) "1 <a"
ij o
+”z:l @ Bga 091 (7‘2 +a?) ; 12\ Op?

n—1
ov , «
8:6; 9 AR
E s, ( Ag dﬁ) . (3.48)

le

We attempt the usual multiplicative separation for ¥ in the following form:
U= e Bl L litigo (0, .. 6,_1)D,(r). (3.49)

Then the Klein-Gordon equation simplifies to give the following ordinary differential

equation in r for &, (r):

9
n 1 2
5 1 d (V —2M) dd.,. (1+ Xa®) .
"',‘(I)‘,' = — Aa L (I) _— P——— — -
m a E ; + TP (\/ i ar ) + e +(1‘_))I\1(I>,
4MaoE 8AZE?
— L;®, 5
U(1 — Mr2)(r2 + a?) Z N (3:50)

T(1— M22(V - 2M)

n
— Z QUL,L;®, —

4M? { Ca(l+ Aa?) & ]
ij=1

Ul — A\r?)2(V — 2M) r? + a? pat

We have separated all the #; dependence into the separation constant K given by

1 n L2 n—1 1 f)‘lfe
K, = N T ) \/ch’ﬂf%—>. 3.51)
cn [l S (A 51

where we have used the fact that ¢%% is diagonal, and that the ; are functions of the
6, given by (3.18).
Equation (3.50) separates out the r dependence of the Klein-Gordon equation, and

gives the function @, (r) when the differential equation is solved. We can alsc completely
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scparate the 8; sector. Again, assume a multiplicative separation of the form
Uy = @91(91)..@’9774(971_1) . (3.52)

The 8 separation then reads as

A+ ——————, k=1,...,n—-1, 3.53
Z Hk 1%111 9; ( )
where
A = ! d (Cm& sin® %1 g, 4Py >
Py, cos B, sin> 21 g, T sin® 6, db; dt;
LZ
nit] , (3.54)

C eos2 B 24
cos? 0; szl sin” 6
Then we inductively have the complete separation of the #; dependence as

- 2
]\k—i—l Ln k+1 1

[X — v -k d c 3111 9 i (.) )
v 2 2 ) 5 Iy OS5 6) . .5 5
k Sin) 9[3 CcOs 0}\ (bf N oS ek 5‘1]']«]u7_[_-4k_ Hk dé . k k i: )

where k= 1,...,n — 1, and we use the convention K,, = —L?.

As a result we can write the complete separation of the Klein-Gordon equation (3.48)
in the Kerr-de Sitter background in odd dimensions with all rotation paramecters equal
as

U= Wt i bividy (0))..0g,_ (0,-1)®,(r), (3.56)

where ®(r) is obtained from (3.50), and the ®g,’s are the decomposition of the u sector
into cigenmodes in independent coordinates 6; on the u sphere.

Note that the separation of the Klein-Gordon equation in this geometry is again due
to the fact that the symmetry of the space has been enlarged. (We can explicitly see the
role of the Killing vectors again in the separation of the r equation from the 8 sector in

a very similar fashion to that in the Hamilton-Jacobi equation [20]).

Conclusions

We studied the separability properties of the Hamilton-Jacobi and the Klein-Gordon
equations in the Kerr-de Sitter backgrounds. Separation in Boyer-Lindquist coordinates

seems to be possible only for the case of an odd number of spacetime dimensions with all
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rotation parameters equal. This is possible due to the enlarged dynamical symmetry of
the spacetime. We derive expressions for the Killing vectors that correspond to the ad-
ditional symmetries. We also show that integrals of motion are obtained from reducible
Killing tensors, which are themselves constructed from the angular Killing vectors. Thus
we demonstrate the separability of the Hamilton-Jacobi and the Klein-Gordon equations
as a direct consequence of the enhancement of symmetry. We also derive first-order equa-
tions of motion for classical particles in these backgrounds, and analyze the properties
of some special trajectories.

Future work in this direction could include finding a suitable coordinate system to
permit possible separation in an even number of spacetime dimensions. Different coor-
dinates might also be required to study the cases of unequal rotation parameters, since
separation does not seem likely in Boyer-Lindquist coordinates. The study of higher-spin
field equations in these backgrounds could also prove to be of great interest, particularly
in the context of string theory. Explicit numerical study of the equations of motion for

specific values of the black hole parameters could lead to interesting results.

Acknowledgments

We are grateful to Gary Gibbons for providing a copy of earlier work by Rebecca Palmer
[21] that made progress toward separation in higher dimensional Myers-Perry metrics.
Our research was supported in part by the Natural Science and Engineering Research

Jouncil of Canada.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] N. Arkani-Hamed, S Dimopoulos and G. Dvali The Hierarchy Problem and new
dimensions at a millimeter, Phys. Lett. B429 (1998) 263-272, hep-ph/9803315

2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali New dimensions at o
millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B436 (1998) 257-263,
hep-ph /9804398

[3] L. Randall and R. Sundrum A large mass hierarchy from a small extra dimension,
Phys. Rev. Lett. 83 (1999) 3370-3373, hep-ph /9905221

[4] M. Cavaglia Black hole and brane production in TeV gravity: a review, Int. J. Mod.
Phys. A18 (2003) 1843-1882, hep-ph/0210296

[5] P. Kanti Black holes in theories with large extra dimensions: a review, hep-
ph/0402168

[6] G.Dvali and A. Vilenkin Solitonic D-branes and brane annihilation, Phys. Rev. D67
(2003) 046002, hep-th/0209217

(7] M. Cvetic and A. A. Tseytlin Solitonic strings and BPS saturated dyonic black holes,
Phys. Rev. D53 (1996) 5619-5633, hep-th/9512031

8] R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically
special metrics, Phys. Rev. Lett. 11, 237 (1963).

9] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann.
Phys. 172, 304 (1986).

[10] J. Maldacena The large N limit of superconformal field theories and supergravity.
Adv.Theor. Math.Phys. 2 (1998) 231-252; Int. J. Theor. Phys. 38 (1999) 1113-1133,
hep-th /9711200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 28

[11] E. Witten Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2 (1998)
253-29, hep-th /9802150

[12] G.W. Gibbons, H. Lii, D.N. Page and C.N. Pope, The general Kerr-de Sitter metrics
in all dimensions, J. Geom. Phys. 53 (2005) 49-73, hep-th/0404008.

[13] G.W. Gibbons, H. Lii, D.N. Page and C.N. Pope, Rotating black holes in higher
dimensions with a cosmological constant, Phys. Rev. Lett. 93:171102 (2004) 49-73,
hep-th/0409155.

[14] R.P. Kerr and A. Schild, Some algebraically degenerate solutions of Einstein's grav-
itational field equations, Proc. Symp. Appl. Math. 17, 199 (1965).

i15] V. Frolov and D. Stojkovic, Particle and light motion in a space-time of a five-
dimensional rotating black hole, Phys. Rev. D68 (2003) 064011, gr-qc/0301016.

[16] Maple 6 for Linux, Maplesoft Inc., Waterloo Ontario, http://www.maplesoft.com

[17] V. Frolov and D. Stojkovic, Quantum radiation from a 5-dimensional rotating black
hole, Phys. Rev. D68 (2003) 064011, gr-qc/0301016.

[18] K. Stevens, Stationary cosmic strings near a higher dimensional black hole, MSc.
Thesis, University of Alberta, 2004,

[19] B. Carter, Black hole equilibrium states, in Black Holes (Les Houches Lectures), eds.
B.S. DeWitt and C. DeWitt (Gordon and Breach, N.Y., 1972).

[20] B. Carter, Hamilton-Jacobi and Schridinger separable solutions of Finstein's equa-
tions, Commun. Math. Phys. 10, 280 (1968).

121] R. Palmer, Geodesics in higher dimensional rotating black hole space-times, unpub-

lished report on a Summer Project, Trinity College (2002).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.maplesoft.com

Chapter 4

Two Parameter Myers-Perry
Metrics

4.1 Introduction

Solutions of the vacuum Einstein equations describing black hole solutions in higher
dimensions are currently of great interest. This is mainly due to a number of recent
developments in high energy physics. Models of spacetimes with large extra dimensions
have been proposed to deal with several questions arising in modern particle phenomenol-
ogy (e.g. the hierarchy problem) [1] [2] [3]. These models allow for the existence of higher
dimensional black holes which can be described classically. Also of interest in these mod-
els is the possibility of mini black hole production in high energy particle colliders which,
if they occur, provide a window into non-perturbative gravitational physics [4] [5].

Superstring and M-Theory, which call for additional spacetime dimensions, naturally
incorporate black hole solutions in higher dimensions (10 or 11). P-branes present in
these theories can also support black holes, thereby making black hole solutions in an
intermediate number of dimensions physically interesting as well. Black hole solutions in
superstring theory are particularly relevant since they can be described as solitonic ob-
jects. They provide important keys to understanding strongly coupled non-perturbative
phenomena which cannot be ignored at the Planck/string scale [6] [7].

Astrophysically relevant black hole spacetimes are, to a very good approximation,
described by the Kerr metric {8]. The most natural generalization of the Kerr metric
to higher dimensions, for zero cosmological constant, is given by the Myers-Perry con-
struction [9]. (For a recent generalization with a cosmological constant, see [10], but

a nonzero cosmological constant seems to thwart the type of separability demonstrated
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in the present paper, so here we shall take the cosmological constant to be zero.) The
Myers-Perry metric also does not have charge, but since charged black holes are unlikely
to occur in nature, we expect the Myers-Perry type black holes to be the most relevant
type in spacetimes with extra dimensions.

In this paper, we analyze the separability of the Hamilton-Jacobi equation in Myers-
Perry black hole backgrounds in all dimensions. We explicitly perform the separation in
the case where there are only two sets of equal rotation parameters describing the black
hole. We use this explicit separation to obtain first-order equations of motion for both
massive and massless particles in these backgrounds. The cquations are obtained in a
form that could be used for numerical study.

We study the Klein-Gordon equation describing the propagation of a massive scalar
field in this spacetime. Separation is again explicitly shown for the case of two sets of
equal black hole rotation parameters. We construct the separation of both equations
explicitly in these cases. We also construct Killing vectors, which exist due to the

additional symmetry, and which permit the separation of these equations.

4.2 Overview of the Myers-Perry Metrics

The Myers-Perry metrics are vacuum solutions of Einstein’s equations describing general
rotating black hole spacetimes. The Kerr black hole in four dimensions needs an axis of
rotation specified. In higher dimensions, this specification is no longer possible. Instead,
we provide rotation parameters specifying rotations in various planes. As such, we use
the construction described below.

We introduce n = [D/2] coordinates p; subject to the constraint

n
Z/J.?: 1, (4.1)
i=1

together with N = [(D —1)/2] azimuthal angular coordinates ¢;, the radial coordinate r,
and the time coordinate 7. When the total spacetime dimension D is odd, D =2n-+1 =
2N + 1, there are N = n azimuthal coordinates ¢;, each with period 2#. If D is even,
D =2n = 2N + 2, there are only N = n — 1 azimuthal coordinates ¢,;. Define ¢ to be 1
for even D, and 0 for odd D, so N =n —e.

In Boyer-Lindquist coordinates in D dimensions, the Myers-Perry metrics are given

by
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2

. . Udr? 2]\[
2 _ g2 _
ds® = —dr°+ = 21\‘[ s (dr Zmu d@)
n ] n—e )
+ Z ('r2 +a? du + Z P 4ad ;Lf dos . (4.2)
=1

where

i=1 ; ’
n—e
-9 2 2 U
N 2 2= 4.5
1% r f=l(r +aZ) 7 (4.3)

Note that obviously a, = 0 in the even dimensional case, as there is no rotation associated
with the last direction.

Since that the metric is block diagonal in the (g;) and the (r,7,¢;) sectors, these
sectors can be inverted separately. To deal with the (r,7, ;) sector, the most efficient
method is to use the Kerr-Schild construction of the metric. For details on construction
of the inverse metric using the Kerr-Schild form, see [11].

We get the following components for the (r, 7, ¢;) sector of gH*:

gT7' — g — O ,
oo Voo
. C] ’
o - 2MV
g7 UV —2M)’
o 2MVa,
g UV =2M)(r? +a2)
- 1 . 2MVaja;
L R — . it S — . 44
g (r2 + a2)p? UV = 2M)(r% + af)(r? + a3) (4.4)

Note that the function U depends explicitly on the wu;’s. Unless the (r, 7, ¢;) sector
can be decoupled from the u sector, complete separation is unlikely. If however, all the
a; = a for some non-zero value a. then the U are no longer p dependent (taking the

constraint into account) and separation seems likely. Note, however, that in this case we
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cannot deal with even dimensional spacetimes, since a, = 0 is different from the other
aQ; = a.

We will actually work with a much more general case, in which separation works in
both even and odd dimensional spacetimes. We consider the situation in which the set
of rotation parameters a; take on at most only two distinct values a and b (@ = b can
be obtained as a special case). In even dimensions at least one of these values must be
zero, since a, = 0. As such in even dimensions we take b = () and «a to be some (possibly
different) value. In the odd dimensional case, there are no restrictions on the values of

a and b. We adopt the convention
a; = a for i=1,....m , by =b for j7=1,..,p, (4.5)

where m+p=N +¢=n.
Since the p;’s are constrained by (4.1), we need to use suitable independent coordi-

nates instead. We use the following decomposition of the y,:
i =A;sinf for i=1,...m Hjrm =vjcos8 for j=1,..p, (4.6)

where the A\; and v; have to satisfy the constraints

m

yd
Yox=1 ., D=1, (4.7)
j=1

i=1

Since these constraints describe unit (m — 1) and (p — 1) dimensional spheres in
the A and v spaces respectively, the natural choice is to use two sets of spherical polar

coordinates. We write

m—1
A = H sin g | Co8 Qumitr
k=1
p—J
vi = H sin By, | cos Fp—jer . (4.8)
k=1

with the understanding that the products are one when 7 = m or j = p respectively, and
that o, = 0 and 3, = 0.

The @ sector metric can then be written as

m—1 /i—1
2 2902 (02 2y b2 .2 2
ds;, = p°df+ (r°+a”)sin” 0 E Hsm oy | deg
i=1 \k=1
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p—1 /5-1
+(r® + b*) cos> f Z (H sin® /3;;) d,{?j) , (4.9)
j=1 \k=1

again with the understanding that the products are one when i =1 or j = 1. We use
the definition
p? =12+ a’cos?§ 4+ b?sin 0. (4.10)

This diagonal metric can be easily inverted to give

o o 1
P
X 1
e 2e = - E (5 . 7 ] = 1:""’“””’
g (2 + a2) 80 (T2 sin o) ) J

. 1 1
Bifi  — 3is . i,j=1....p. 4.11
g (2 —12) cos? B (H};ll sin? /ﬁ«) Y, p (4.11)

For the case of two sets of rotation parameters that we consider here, the following

symbols will be extremely useful in addition to p*:
A = V -2M,
T o= [[0?+ad) =02+ a0+ B
1
Z = Prae 4. (412)

Note that these are functions of the variable r only. We note that [/ = T—@

4.3 The Hamilton-Jacobi Equation and Separation

The Hamilton-Jacobi equation in a curved background is given by

oS _

~ w08 98
al

1
- (j N
2‘] Ok dxv

(4.13)
where S is the action associated with the particle and [ is some affine parameter along

the worldline of the particle. Note that this treatment also accommodates the case of

massless particles, where the trajectory cannot be parametrized by proper time.
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We can attempt a separation of coordinates as follows. Let

m—1 p—1

S = —m l—ET+E cMwZ UiGmai+Sr(r)+Sp(0)+ D Sa (o) +>_ S5,(5) . (4.14)
i=1 i=1 i= i=

7 and ¢; are cyclic coordinates, so their conjugate momenta are conserved. The conserved

quantity associated with time translation is the energy E, and the conserved quantity

associated with rotation in each ¢; is the corresponding angular momentum ®; or ¥;.

We also adopt the convention that ¥, = 0 in an even number of spacetime dimensions.

Using (4.4), (4.11), (4.12), and (4.14) we write the Hamilton-Jacobi equation (4.13)

as

AZ [dS.\? 1 = @2 1 A
€ "H(d?") +(7"2+(1,2‘)Z:—7+(r +a)z 2

rep’ 5 = Uim

, 2MZ\ o 2Ma(r® +b?) 2Maly? + o)
—m- = <1 + 7"2p2A> E* + '-—T—p—z—A— ZE@ + — 7 7 ZE‘I’

ladl v

2Ma*(r? + 1) S~ 2MBE(r? + 02) & —
OAPR(r? 4 a?) ZZ(I)(D m , v
i=1 j=1 i=1 j=1
AMab & = 1 dSa; \*
— ;v i
Ar2p? Z * Z ( dey; )

24 g2)
Pt — (r? + a?)sin” OHk L sin? oy,

- 1 dsﬂ>2 1 <ds@>‘~’
+ S— d) - (L) 415
; (r2 4 b2) cos? 6 []LY sin® By ( dp; p7\ db (418)

Note that here the p; are not coordinates, but simply quantities defined by (4.6). We

continue to use the convention defined for products of sin? o; and sin® 3 ; defined earlier.

Separate the o; and (3; coordinates from the Hamilton-Jacobi equation via

32 1 (dS'm)Q
5 + ‘ .
A Tl sin? og \ day
\1:2 1 155\ >
<( 3) , (4.16)
,\_1 sin? By \ dGi

2 2 . .y . .
where J;i and L7 are separation constants. Then the remaining terms in the Hamilton-

S
Il
‘"'M

| 5
L;’:Z

Jacobi equations can be explicitly separated to give ordinary differential equations for r
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and 8:
. N 2MZ AZ (dS, 2ua + v?) &
K= — m*?+E* < 1'9A>_7"5H<—(j77> ZE@
2Mb(r? + a?) e - Jfa 4uab LA
- BRELDS pu RELD Y Y w0+ LY Y e,
i=] i=1 j=1 i=1 j=1
2MbY*(r? + a?) P& r2ev , ri4a® _
—_— W — Ji— 1, A7
+ Ar2(rZ 4 2) ;; U, R Ji PR Ly, (4.17)
.\ 2
K= (m?* — E?)(a? cos® 0 + b2 sin® 0) + <%> + cot? 0.7 + tan® OL7 (4.18)

where K is a separation constant.

In order to show complete separation of the Hamilton-Jacobi equation, we analyze
the v and 3 sectors in (4.16) and demonstrate separation of the individual ¢y and 3;.
The pattern here is that of a Hamiltonian of classical (non-relativistic) particles on the
unit (m — 1)-cv and the unit (p — 1)-3 spheres, with some potential dependent on the
squares of the g;. This can easily be additively separated following the usual procedure,
one angle at a time, and the pattern continues for all integers m,p > 2

The separation has the following inductive form for k = 1,...,m—2, and [ =1, ..., p—2:

2 2 2
(dsak) _ ]2 ']k—H m— A—H
Tk = J. - _

doy, sinay,  cos?ay

3 2 2 2
dSur N2 ? 3
- m—1 " "% - ) :
At 1 Sin” Qym—1 COS? (4t

<d5x3z>2 - 12 L?+1 ‘I’gflﬂ

ds sin? 3, cos2 3

dsS; 2 ., 2 T2
< J,H) S I 2 (4.19)

.9
aBp—1 sin”® /3p—1 cos? Bp_1

Thus, the Hamilton-Jacobi equation in the Myers-Perry rotating black hole back-

ground with two sets of possibly unequal rotation parameters has the general separation
m m—1

S = —m N-ET+y ‘Mﬁz U, Pri+ S (1 6)+ Z Se (@i +Z S, (4.20)

i=1 i=1

where the oy and ; are the spherical polar coordinates on the unit (m — 1) and unit
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(p — 1) spheres respectively. S,(r) can be obtained by quadraturcs from (4.17). Sg(6)
by quadratures from (4.18), and the Sy, () and the S3,(J;) again by quadratures from
(4.19).

4.4 The Equations of Motion

4.4.1 Derivation of the Equations of Motion

To derive the equations of motion, we will write the separated action S from the
Hamilton-Jacobi equation in the following form:
m

r 2
S = lm Z—ET+Z<I> (pq—ﬁ-Z‘I’qcb? / Vv R(1") d?‘/—i—/ vV O(0)do'

m—1

+ Z/ \/—da +Z/ By(3)ds;, (4.21)

where
, J2 o
Ay = Jf— - A.';Ll - 'm-‘;k«{—l . k=1,..m-2,
sin®ap  cos? ag
. P? ®3
I
mel mlGin? g,y o8 ey
, LI v2
By = LI- "H S el E=1,..p—2,
sin? B, cos? By
, w3 w3
Byo1 = L — —+ — 4.22
p-1 Pl gin? /3])4 cos? -1 ( )
© is obtained from (4.18) as
O =K + (E? —m*)(a?cos? 0 + b?sin? ) — cot? §.J7 — tan 4L, (4.23)
and R is obtained from (4.17) as
AZ . oy o 2MZ 7]\[(1, 2 +b
gt = (B —miy? s o B ZE(I)
IMb(r? + a?) & Ma 24 b° 47\[(1
— EV, 4+ — D, D; o,V
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ZA 24 %) &

+a” a r? +b? r? 4+ a?
) 2 ‘
* TAP(r2 + B2) 2 B2) ZZ%\PJ_ 7~?+a3']f— .,,2+b2Li- (4.24)
i=1 j=1 '

To obtain the equations of motion, we differentiate S with respect to the parameters
m? K,E,J?,L? ®;,¥; and set these derivatives to equal other constants of motion.
However, we can set all these new constants of motion to zero (following from freedom
in choice of origin for the corresponding coordinates, or alternatively by changing the
constants of integration). Following this procedure, we get the following equations of
motion:

a8 ‘ Tt dr " (a? cos? § + b7 sin® 0)df
= 0=l= ;

om? ’ AZ T - NE)
as / e d
oK _ AZ \/_

as O:>/ doq [ Hre r2 4+ 6% dr cot? 9

aJi VA, ] AZrria? \/— \F’

a8 dflA 1 d()ik_]

= = 0= = : . k=2,..m—2,

oJ;; / sin? ag_q .\/AA 1 "

ﬁ = 0= d/jl _ (I i dr / an” 9

aL: VB AZvZ+b~\/_ -

as d/3l ' 1 dB_4

gy = G s l:2.,...,'f - 2. 4.25
8Ll‘) / sin‘) (o730 \/Bl—l b ( )

We can obtain N more equations of motion for the variables ¢ by differentiating S with
respect to the angular momenta ®; and ¥;. Another equation can also be obtained
by differentiating § with respect to £ involving the time coordinate 7. However, these
equations are not particularly illuminating, but can be written out explicitly if necessary
by following this procedure. It is often more convenient to rewrite these in the form
of first-order differential equations obtained from (4.25) by direct differentiation with

respect to the affine parameter. We only list the most relevant ones here:

o dr AZ
P T e VR,
,df
P i \/_@_,
2 o, Ao, AV Ayg,
(7"—#(1')—ﬂ = 5 k_’{ —, E=1..m-1,
dl sin® 6 [[72 sin” oy
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Bk — VB l=1,....p—-1, (4.26)

2 2
re 4+ b)) —= —,
( ) dl cos?  T[L21 sin® 3;

4.4.2 Analysis of the Radial Equation

The worldline of particles in the Myers-Perry black hole backgrounds considered above
2
g
by the initial values of the coordinates. We will consider particle motion in the black

are completely specified by the values of the conserved quantities £, ®;, ¥;, ]13 L=, and
hole exterior. Allowed regions of particle motion necessarily need to have positive value
for the quantity R, owing to equation (4.26). At large r, the dominant contribution to
R is E? — m? Thus we can say that for E? < m?, we cannot have unbounded orbits,
whereas for E? > m?, such orbits are possible.

In order to study the radial motion of particles in these metrics. it is useful to cast
the radial equation of motion into a different form. Decompose R as a quadratic in

as follows:

R=aE®—23E +~, (4.27)
where
L e, 2MZ
“ = Az \ r?A )7
PMIT2 [ 5 2 AN g 28
B o= ATz <a(r +b );E@i—er('l' +a );E‘Iﬁ ; (4.28)
H’rf 2 ]\ 1— 2 2 2 me m m P
I e - G +b);j;¢>@j+2ab;;wj

k)

2, 9 9 P P . 7.’3 + b'} ) ’,')-3 + (12
+b2 (¢ + g N7\ R _rAe?
| )gg Al B s A N

The turning points for trajectories in the radial motion (defined by the condition

R = 0) are given by ' = Vi where

5 :
Vi= . (4.29)
These functions, called the effective potentials [12], determine allowed regions of motion.

In this form. the radial equation is much more suitable for detailed numerical analysis

for specific values of parameters.
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4.4.3 Analysis of the Angular Equations

Another class of interesting motions possible describes motion at a constant value of «;

or 3;. These motions are described by the simultancous equations

dA;
da,;

Aoy = o) = (i = o) =0, i=1,..m—1, (4.30)

in the case of constant «; motion, where «; is the constant value of «¢; along this
trajectory, or by the simultaneous equations

dB;
d/jj

Bi(ﬁi = IBZO) = (//31 = rB’iO) = 01 i= 1: Y L 1 s (431)
in the case of constant 3; motion, where F;p is the constant value of 3; along this trajec-
tory.

These equations can be explicitly solved. In the case of constant v motion, we get

the relations

5 R
41 — q)m—i—l
sin oy cost oy
J? o2 .
2 q L—1 . ¢
]7,. — 141 + m—i+1 ., ?’:15““’”2’_1. (432)

.9 )
sin®q; €08 ¢y

2
m—i+1

Note that if ajo = 0, then J2; = 0, and if a0 = 7/2, then ® = 0. Similarly, in

the case of constant 3; motion, we get the relations

L?+1 _ \I’f)—i—l
sin* 3; cos* f;
2 U2
L72 = il p—i+1 i=1,...p—1. (4.33)

T 0, G
sin®3;  cos?p; ]

Again if B0 = 0, then LfH =0, and if By = 7/2, then \I!;‘;_Hl = 0.

Examining A; in the general case, a; = 0 can only be reached if J, .3 = 0, and
ap = 7/2 can be only be reached if ®,, 11 = 0. The orbit will completely be in the
subspace oy, = 0 only if ']}? = (I’?n.—m—l and will completely be in the subspace oy = 7/2
only if ],f = ff +1- Analogous results hold for constant 3; motion.

Again these equations arc in a form suitable for numecrical analysis for specific values

of the black hole and particle parameters.
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4.5 Dynamical Symmetry

The general class of metrics discussed here are stationary and “axisymmetric”; i.e.,
A/d7 and /0y, are Killing vectors and have associated conserved quantities, —£ and
L;. In general if ¢ is a Killing vector, then £#p,, is a conserved quantity, where p is the
momentum. Note that this quantity is first order in the momenta.

With the assumption of only two scts of possibly unequal rotation paramecters, the
spacetime acquires additional dynamical symmetry and more Killing vectors are gener-
ated. We have complete symmetry between the various planes of rotation characterized
by the same value of rotation parameter a; = a, and we can “rotate” one into another.
Similarly, we have symmetry between the planes of rotation characterized by the same
value of the rotation parameter a; = b, and we can “rotate” these into one another as
well. The vectors that generate these transformations are the required Killing vectors.
The explicit construction of such Killing vectors is done in [11]. In this case, we get
two independent sets of such Killing vectors, associated with the constant a and b value
rotations.

These Killing vectors exist since the rotational symmetry of the spacetime has been
greatly enhanced. In an odd number of spacetime dimensions. if @ # b and both are
nonvanishing, then the rotational symmetry group is U(m) x U(p). If one of them is zero,
but the other is nonzero (we take the nonzero one to be @), then the rotational symmetry
group is U(m) x O(2p). In the case when a = b # 0, the rotational symmetry group is
U(m+p). In the casc when a = b = 0, i.e. in the Schwarzschild metric, the rotational
symmetry group is O(2m+2p). In an even number of spacetime dimensions, b = 0 in the
cases we have analyzed. If @ # 0, then the rotational symmetry group is U(m) < O(2p—1),
and in the case when a = b = 0, i.e. in the Schwarzschild metric, the rotational symmetry
group is O(2m + 2p —1). Note that since these metrics are stationary, the full dynamical
symmetry group is the direct product of R and the rotational symmetry group, where
R is the additive group of real numbers parametrizing 7.

In addition to thesc reducible angular Killing tensors, we also obtain a non-trivial
irreducible second-order Killing tensor, which permits the separation of the » — 6 equa-
tions. This Killing tensor is a generalization of the result obtained in the five dimensional
case in [12]. This is obtained from the separation constant K in (4.17) and (4.18). We
choose to analyze the latter.

N

K = (m? — E)(a?cos® 0 + b*sin” ) + cot? 6.7 + tan® 0L2 + (3—2) . (4.34)
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The Killing tensor K#¥ is obtained from this separation constant (which is quadratic in
g P

the canonical momenta) using the relation K = K#'p,p,. Its is then easy to see that
KM = (g — 616%) (a® cos®  + b? sin? 0) + cot® 0J1 + tan® 0L + 646, (4.35)

where J{" and L{" are the reducible Killing tensors associated with the o, and f
separation.

It is the existence of these additional Killing vectors and the nontrivial irreducible
Killing tensor, due to the increased symmetry of the spacetime, which permits complete

separation of the Hamilton-Jacobi equation.

4.6 The Scalar Field Equation

Consider a scalar field ¥ in a gravitational background with the action
1 : 2 202
S{U] =~ /dDa:\/—g((V\I’)2 + aRT? + m?¥?), (4.36)

where we have included a curvature-dependent coupling. However, the Myers-Perry
background is Ricci flat since it is a solution to the vacuum Einstein equations, so
R = 0. Variation of the action leads to the Klein-Gordon equation
1
V=g

As discussed by Carter [14], the assumption of separability of the Klein-Gordon

(V=99 8,9) = m*T . (4.37)

equation usually implies separability of the Hamilton-Jacobi equation. Conversely, if the
Hamilton-Jacobi equation does not separate, the Klein-Gordon equation seems unlikely
to separate. We can also see this explicitly (as in the case of the Hamilton-Jacobi
equation), since the (r, 7, ¢;) sector has coefficients in the equations that explicitly depend
on the p; except when of all a; = a, in which case separation seerns likely. We will again
consider the much more general case of two sets of possibly unequal sets of rotation
parameters ¢ and b. We continue using the same numbering conventions for the variables.

Once again, we impose the constraint (4.1) and decompose the p; in two scts of
spherical polar coordinates as in (4.6) and (4.8). We calculate the determinant of the

metric to be

2 2 2 —2 2 A\p-—-2 . -9 o —
g = =PI + 0?0 4 )P sin ™2 h cosP T2
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m—1 p—1
. Am—4§—2 2 cdp—4k—2 4 : —% n PN
* H sinm—4 “aj cos” Hsm*p k=2 3 cos? B | cos™ 3. (4.38)
j=1 k=1
For convenience we write g = —RTABp*, where

R = T‘EH(TE+CL2)m_2(’r2+b2)p_2

T = sin'™ 2@cos’P~272%9,
m—1
A = H sin?m 42 o; cos’ o,
j=1
p-—-1
B = H sin?=%=2 3 cos® B cos™* B . (4.39)
k=1

Note that R and T are functions of r and # only, and A and B only depend on the set
of variables oy and 3; respectively. Then the Klein-Gordon equation in this background
(4.37) becomes

ae 1 AZ 2MZ ] ., 2
mAy = =0r <\/E a,,qf)—{wrgpm}agu? Zl 503,

[

m m

S R 20 a(r? + b?)
E ; 5 _97 . —— E E ) 1
+ ,"2 + b2 ; 2 :( Dism \Il A,r p ) 2 + CI,‘ 0 aaﬁ \I

=1 j=1
2M )3 0.0, T + b(r NS 6.0
— 7/37A 24 Z 6. U+ b(r? + a* }: b U

IMB(r? + a?) —— p“e‘ , 4Mab o= e
- A2 070 | 19y a i - C)d’y m A ) 2 ZZC)@'( @]ﬂ»m I
i=1 j=1 i=1 j=1

o (VT00) + i (—1‘/—_4———()&\11>

02 \/ — [T sin® oy,

p—1
: (—1—-—_9{2\/_ (n - wka’ﬂf‘l’ﬂ' A0

We attempt the usual multiplicative separation for ¥ in the following form:

m—1 p—1
T = (1)7‘(7,)@&(9) —*ZEfGLEITT D0 qV“ CWidmti (H (IDCW(CYZ‘)> <H qD,g{(l_%)) . (441)
i=1

i=1

(r2 + a?)sin’4

The Klein-Gordon equation then completely separates. The r and 8 equations are given
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as
1 d AZ dd, 5, 5 2MZE?
K = — | VR—— “(E* —m~) + ——
K 3 VR dr <\/47’€H I ) +77( m-) + N
0 —le
2ME TN 2, .2 £
- A a(r*+b )z;q)i—kb(r +a)2%
1= =
I b moom ( p e p—le
S S A 3 3
i=1 j=1 i=1 j=1
m p—e
+2ab Y D @Y
i=1 j=1
1 o 5 o, 5 o
-K = ‘%\/T% (\/Tdd00> + (E? = m?)(a® cos® 6 + b sin? 0)
+ Kjcot?0 4 M tan®8, (4.42)

where K. Ky and M;j are separation constants. Kj and Mj encode all the o and 3

dependence respectively and are defined explicitly as follows:

ZA t T ;, TaZ o E=1,..m-1, (4.43)
=15 J
where
L d ozt A0,
A= Y —1 - 5 — <COS v 51112’”'3‘“1( ‘7>
D, cos a; sin® 1 o [T sin? oy, dovs " dey;
(I);zn—ii—l
" cos? oy [T:2t sin?a; (4.44)
A ML =1 47
and
o ZB e s, 1:1n g Febeer—L (4.45)
and where
1 d i q o D
Bi = Y i—1 5 <COS /31' Sil’l'}p_h——1 ,"37; 45 >
U5 cos /3 gin2r- 213, [ iz sin® By dp; ds;
lIJZ
= 1+1 (4.46)

cos? 3; H L sin? 3;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. TWO PARAMETER MYERS-PERRY METRICS 44

Then we inductively have the complete separation of the a; dependence as

5
N Ky, [ 1 ) dd,,,

Ky = — I.\;H — = .)Hl — T 7 | COS ¢y sinay, k), (4.47)
sin“qy  cosfar Py, cos oy sint T o do dovg,

where & = 1,...,m — 1, and we use the convention K,, = —@f. Similarly, the complete

separation of the 3; dependence is given inductively by

)

My p—k+1 1 d < ., d%g, .
My=-""2r 2702 | cos By sinfB—=5 |, (4.48
b7 sin? B, cos?fBr  ®s, cos P sinZP—2k-1 3. dpy, g h dfs ( )
where k = 1,...,p — 1, and we use the convention M, = —¥F. Thesc results agree with

the previously known analysis in five dimensions [13].

At this point we have complete separation of the Klein-Gordon equation in the Myers-
Perry black hole background in all dimensions with two sets of possibly unequal rotation
parameters in the form given by (4.41) with the individual separation functions given by
the ordinary differential equations above. Note that the separation of the Klein-Gordon
equation in this geometry is again due to the fact that the symmetry of the space has

been enlarged.

Conclusions

We studied the separability properties of the Hamilton-Jacobi and the Klein-Gordon
equations in the Myers-Perry black hole backgrounds in all dimensions. Separation
in Boyer-Lindquist coordinates is possible for the case of two possibly unequal sets of
rotation parameters. This is due to the enlarged dynamical symmetry of the spacetime.
We discuss the Killing vectors and reducible Killing tensors that exist in the spacetime.
In addition we construct the nontrivial irreducible Killing tensor which explicitly permits
complete separation. Thus we demonstrate the separability of the Hamilton-Jacobi and
the Klein-Gordon equations as a direct consequence of the enhancement of symmetry.
We also derive first-order equations of motion for classical particles in these backgrounds,
and analyze the properties of some special trajectories.

Further work in this direction could include the study of higher-spin field equations in
these backgrounds, which is of great interest, particularly in the context of string theory.
Explicit numerical study of the equations of motion for specific values of the black hole

parameters could lead to interesting results.
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Chapter 5

Some Charged Rotating
Supergravity Black Holes

5.1 Introduction

Solutions of the vacuum Einstein equations describing black hole solutions in both four
and higher dimensions are currently of great interest. This is mainly due to a number
of recent developments in high energy physics. Models of spacetimes with large extra
dimensions have heen proposed to deal with several questions arising in modern par-
ticle phenomenology (eat about.g. the hicrarchy problem) [1-3]. These models allow
for the existence of higher dimensional black holes which can be described classically.
Also of interest in these models is the possibility of mini black hole production in high
energy particle colliders which, if they occur, provide a window into non-perturbative
gravitational physics [4, 5].

Superstring and M-Theory, which call for additional spacetime dimensions, naturally
incorporate black hole solutions in higher dimensions (10 or 11). P-branes present in
these theories can also support black holes, thercby making black hole solutions in an
intermediate number of dimensions physically interesting as well. Black hole solutions in
superstring theory are particularly relevant since they can be described as solitonic ob-
jects. They provide important keys to understanding strongly coupled non-perturbative
phenomena which cannot be ignored at the Planck/string scale [6,7].

Astrophysically relevant black hole spacetimes are, to a very good approximation,
described by the Kerr metric [8]. One generalization of the Kerr metric to higher di-
mensions is given by the Myers-Perry construction [9]. With interest now in a nonzero

cosmological constant, it is worth studying spacctimes describing rotating black holes
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with a cosmological constant. Another motivation for including a cosmological constant
is driven by the AdS/CFT correspondence. The study of black holes in an Anti-de Sitter
background could give rise to interesting descriptions in terms of the conformal field
theory on the boundary leading to better understanding of the correspondence [10,11].
The general Kerr-de Sitter metrics describing rotating black holes in the presence of a
cosmological constant have been constructed explicitly in [12,13].

There is a strong need to understand explicitly the structure of geodesics in the
hackground of black holes in Anti-de Sitter space in the context of string theory and
the AdS/CFT correspondence. This is due to the recent work in exploring black hole
singularity structure using geodesics and correlators in the dual CFT on the boundary
[14-19]. The metrics mentioned above have so far proven to yield little or no information
through an analysis of this sort. Black holes with charge are particularly interesting for
this type of analysis, since the charges are reinterpreted as the R-charges of the dual
theory. The spacetimes explored in this paper are exact solutions of supergravity in
backgrounds with a cosmological constant and charges, and thus could be more suitable
for this sort of geodesic analysis.

In this paper we work with the four-dimensional multicharge Kerr-Taub-NUT-(Anti)
de Sitter solution of supergravity recently discovered by Chong, Cvetic, Lu, and Pope
20], as well as the U(1)® gauged Kerr-(Anti) de Sitter black hole solution of N = 2
supergravity in five dimensions discovered by Cvetic, Lu, and Pope [21].

We study the separability of the Hamilton-Jacobi equation in these spacetimes, which
can be used to describe the motion of classical massive and massless particles (including
photons). We use this explicit separation to obtain first-order cquations of motion for
both massive and massless particles in these backgrounds. The equations are obtained
in a form that could be used for numerical study, and also in the study of black hole
singularity structure using geodesic probes and the AdS/CFT correspondence.

We also study the Klein-Gordon equation describing the propagation of a massive
scalar field in these spacetimes. Separation again turns out to be possible with the usual
multiplicative ansatz.

This paper greatly generalizes many of the results of [22, 23] for the Myers-Perry
metric in five dimensions, [24] which separates the equations in the case of equal rotation
parameters in the odd dimensional Kerr-(A) dS spacetimes, [25] which separates the
equations for the general five dimensional Kerr-(A) dS spacetime with unequal rotation
parameters, [26] which separates the equations in the case of two independent sets of
rotation parameters in the Myers-Perry metrics in all dimensions, [27] which separates

the equations in the case of two independent sets of rotation parameters in the Kerr-(A)
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dS metrics in all dimensions, and [28] which scparates the equations in the case of a
single non-zero rotation parameter for uncharged Kerr-Taub-NUT metrics in arbitrary
dimensions. Some further work for other special cases were also done in {29] and [30].

Separation turns out to be possible for both equations in these metrics due to the
existence of second-order Killing tensors, one of them non-trivial and irreducible. This is
a generalization of the Killing tensor in the Kerr black hole spacetime in four dimensions
constructed in [20] which was subsequently described by Chandrasekhar as the “mirac-
ulous property of the Kerr metric”. A similar construction for the Myers-Perry metrics
in higher dimensions has also been done [22,26], and for the Kerr-Taub-NUT metrics in
arbitrary dimensions without charge and only one nonzero rotation parameter in [28].
The Killing tensors, in each case, provides an additional integral of motion necessary for

complete integrability.

5.2 Overview of the Metrics

5.2.1 Four Dimensional Kerr-Taub-NUT Multicharge Gauged Solution
of Supergravity

This metric was recently obtained by Chong, Cvetic, Lu, and Pope in [20]. The solution
was obtained by starting out with the four dimensional Kerr-Taub-NUT metric, dimen-
sionally reducing to three dimensions along the time direction, and then lifting back up

after “dualizing”. The metric is given by

ds? By ladt + uyusde] + Bt Ao + W dr? 4 i (5.1)
s° = ———=ladl + ujuad : — 7 W+ —
2W L2l T Ty Bk A, A ’
where
W = rrotuius, =1+ Qmsg . U= U QZSE ., 1=1,2,
Ay = 24 0% = 2mr + gPrira(rire + a?),
A, = —u?+ad®+2Au+ Puiwe (u1us — a?), (5.2)
and we use the notation
s; =sinhd;, ¢ =coshd;,, i=1,2. (5.3)

Here 47 is the magnetic charge, 4 is the electric charge, | is the NUT parameter, a is

the rotation parameter, and g is the gauge parameter. The cosmological constant A is
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given by A = —¢°. The ungauged solution is obtained by sctting ¢ to zero.

If the two charge parameters are set equal, §; = d, then the solution reduces to the
charged AdS-Kerr-Taub-NUT solution of Einstein-Maxwell theory with a cosmological
constant. To reduce to the usual coordinate system, we use the change of coordinate
u = acosf. With [ set to zero, we recover the metric found in [20] for a multicharge
Kerr-(Anti) de Sitter black hole in gauged supergravity in four dimensions.

For future reference, we note the following expressions. The determinant of the metric

is given by

w?
9= (5.4)
The components of the inverse metric are
g = —1——[A,uzug — Arrd], g% = ———az (A, — A
' AAW TR TR A AW T T
a s A LA ]
g¢ = m[A,wulm +Ayrime], ¢ = —M—: . g = ﬁ;i ‘ (5.5)

We also note that the functions A, and A, are functions of » and w only, respectively.

5.2.2 U(1)* Gauged Kerr-(Anti) de Sitter Black Hole Solution of N = 2
Supergravity in Five Dimensions

This metric was rcecently obtained by Chong, Lu, and Pope in [21]. The metric is given

by
‘ Y — fa .2 ‘ - p3 N ‘
ds* = - RQJ(B dt* + r—Y:EdTZ + RdQj + f 2R (sin? Bdo + cos® Ody)?
2f2 .2 ) 2 , -
- dt(sin” 8d¢ + cos” 8dy)) , (5.6)
where

3 1/3 M 2
R = 7~‘~’< H) . Hi=1+—3,

i=1 '
dQ2 = df* + sinf?d¢” + cos® Gdy? (5.7)

and as before

s; =sinhd;, ¢; =coshd;, 1=12,3. (5.8)
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The functions f;, and Y are defined by

fi

li

R3 + Ma*r? + M?a® |2 (H Ci — H Si> H 55— ‘12*?
i i

j i<

fa = vaAR® + Ma (H ¢ - H si> r? + Z\IQCLH 84,
i i

1

2 (H a1 SI.) _ 2} 2

7

+Ma® — ANM?a® |2 (H a—]] s,l'> [Isi - D sisi| +2xmpr?e® [ [ s,
; ; ;

i 1<j i

fz = YN R+ Mda’A

Y = f3—ASR 41— Mr2, (5.9)
and
Y =14~%"A. (5.10)

It is important to note that these are functions of the coordinate r only.
The parameter M is related to the mass of the black hole, the §; are the charges
associated with each of the three U(1) gauge groups, the gauge parameter g is related to
the cosmological constant A via A = —g¢?, a is the rotation parameter of the black hole
(equal rotation parameters in the two independent planes was assumed in the derivation
of the metric), and the constant ~ is simply a redundant parameter which is useful to test
several limits, but could be eliminated if necessary. This metric encompasses, as special
limits, several previously known solutions such as the Klemm-Sabra BPS solution etc.
More details about these limits can be found in [20].
In order to avoid long complicated expressions, we introduce the following functions
to write the metric more compactly
Y- v . h-R

Alr) = W(r) = B(r) . Cr)=

f2 -
RT R’ R? '~ RY

(5.11)

Note that all of these are functions of the coordinate r only. The metric is then written

compactly in the form

d,,,E

/(r)
+  2C(r)dt(sin® 0de + cos® 8duy) . (5.12)

2

ds® = — A(r)dt* +

+ Rd -+ B(r)(sin” 8d¢ + cos® Ody)?
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The components of the inverse metric are

gr o= W(r),
1
06 _
= 5
oo ( )+
; C('/)
top iy
g =9 riW(r)’
. A(r)B(r)cos? 8 + A(r)R 4+ C?(r)cos? ¢
g Rr2W (r)sin®6 '
R A(r)B(r)sin® 8 + A(r)R + C?(r)sin% 4
J B Rr2W (r)cos? 0 '
: A(r)B(r) + C3(r) -
o _ -
g ReEW () (5:13)

We note for future reference the following identity which can easily be verified using
Maple [32]

A(P)B(r) + A(PMR+ C*(r) = W (r). (5.14)
Finally, the determinant of the metric can be calculated to be
g = —r?R%sin?Hcos? b, (5.15)

where we need to make use of the identity given above repeatedly.

5.3 Integrals of Motion and the Hamilton-Jacobi Equation

The equations of motion of a test particle of mass m in a gravitational background

described by a metric g, are

D?gH

D’]‘Z = 0 (516\)

where DD; is the covariant derivative with respect to proper time 7. These equations can

be derived from a Lagrangian

1 .o
L= Sg/,,,;r,/";r”, (5.17)
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where a dot denotes a partial derivative with respect to an affine parameter A. This can
be chosen such that 7 = mA.

The symmetries of the metric, if any, can provide us with some integrals of motion.
For instance, if the metric is stationary, i.e. does not depend on the time ¢, then the
energy is conserved. However, in most situations, sufficient number of integrals of motion
do not exist. Also, using the Lagrangian formulation, sometimes certain integrals of
motion are impossible to obtain even if they exist. Usually these are “second order” in
the momenta such as the case of the Carter constant for the Kerr metric. Such additional
integral of motion, which permit us in these cases to integrate the equations of motion
completely, can be provided by the Hamilton-Jacobi equation (though a proper choice
of coordinate system is necessary).

The Hamilton-Jacobi equation in a curved background is given by

as I :l o 05 05

“ox 7 T2 Gaman (5.18)

where S is the action associated with the particle and A is some affine parameter along
the worldline of the particle. Note that this treatment also accommodates the case of

massless particles, where the trajectory cannot be parametrized by proper time.

5.4 Particle Motion in the Four Dimensional Kerr-Taub-

NUT Multicharge Gauged Solution of Supergravity

5.4.1 Separation of Variables

We can attempt a separation of coordinates as follows. Let
1 .
§=sm*A—= Bt + Ly¢ + Sp(6) + S (r) . (5.19)

t and ¢ are cyclic coordinates, so their conjugate momenta are conserved. The conserved
quantity associated with time translation is the energy E, and that with rotation in ¢
is the corresponding angular momentum L. Then using the components of the inverse

metric (5.5), the Hamilton-Jacobi equation (5.18) is written to be

—m? = SR uiug — Ayrird)(—E)? 4 @ (A, — AL + Ar [dS(r) i
CT A Ay O T Bl B Ao Be  Bulky T s T

A, [dS,(u)]? 2a | )

‘ + Aty + Ay (= ‘ 5.20

TW{ do | TR A ST Bunral(=ElL (5.20)
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Now multiplying hoth sides by W, we can separate out the equation in the form

i ds,(m]* 1
K = AT{ d‘l'(' )} ——‘i——[lﬁ)E—raL@J +m? 1T,
d NE 1 P 9
K = —A, l: AS(}QEZL):l — A—u[ul U B — (LLM' —mTuius, (5.21)

where K is a constant of separation.

5.4.2 The Equations of Motion

To derive the equations of motion, we will write the separated action § from the

Hamilton-Jacobi equation in the following form:

S = %mi’,\ — Et+ L¢¢+/ vV R(r")dr" + / VU )du' (5.22)

where
- 1 2 2
AR = K+ Z—[m‘gE +aLyl® —mryr,
T

AUw) = K~ [utusE — CLL¢;]2 — mPuiug . (5.23)

w

To obtain the equations of motion, we differentiate S with respect to the parameters
m?, K, E, L4 and set these derivatives to equal other constants of motion. However, we
can set all these new constants of motion to zero (following from freedom in choice of
origin for the corresponding coordinates, or alternatively by changing the constants of

integration). Following this procedure, we get the following equations of motion:

2 = 0=>/\’—/'11)7 /ulu)——.

Am? AWVR VU

95 _ oo / ar

oK Au\/_ A, \/_

dali) = O0=¢= /()11>E+0L A \/._ / (ugus E — CIL"))A;{:I/F

05 _ 0=>t= / riro(riroE 4+ aly) uruz(wusE — aly) du 5.24)
8 R v B v

It is often more convenient to rewrite these in the form of first-order differential equations
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obtained from (5.24) by direct differentiation with respect to the affine parameter:

wi AVR,

dl
W% = AN,
W dp rmreE+aly  wuzE —al,
a A, " Ay '
L 2T T L 1 U , E—L
W,Ll_f _ rire(rireE + aly) 3 uy g (U aLy) ' (5.25)
dl A, Ay ,

5.4.3 Analysis of the Radial Equation

The worldline of particles in the background considered above are completely specified
by the values of the conserved quantities £, L,, K, and by the initial values of the
coordinates. We will consider particle motion in the black hole exterior. Allowed regions
of particle motion necessarily nced to have positive value for the quantity R, owing to
equation (5.25). We determine some of the possibilities of the allowed motion.

We will consider the motion of a particle in the black hole exterior. Thus we can
assume that A, > 0 for large r. At large r, the dominant contribution to R, in the case
of A =0, is E? —m?. Since A = —g?, zero cosmological constant corresponds to the
charged rotating black hole in four dimensions in ungauged supergravity. Here, we can
thus say that for £?2 < m?, we cannot have unbounded orbits, whereas for E? > m?2,
such orbits are possible. For the case of nonzero A (i.e. also nonzero g which implics we
are now considering gauged supergravity), the dominant term at large r in R (or rather
the slowest decaying term) is —m?r?, Thus in the case of the Anti-de Sitter background
(since A = —g? is negative), only bound orbits are possible,

In order to study the radial motion of particles in these metrics, it is useful to cast
the radial equation of motion into a different form. Decompose R as a quadratic in F

as follows:

R =aE*—208F +~, (5.26)
where
r2p2
o = 102
T
[3 _ 7 )(:L@
r
K —m2riry a,zLi )
~o= = 5.27
! AT A})‘ ( )
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The turning points for trajectorics in the radial motion (defined by the condition

R = 0) are given by E = V_ where

Bt/F%— ay ‘
Ve =T (5.

(14
[
[o'9]
——

These functions, called the effective potentials [22], determine allowed regions of motion.
In this form, the radial equation is much more suitable for detailed numerical analysis

for specific values of parameters.

5.5 Particle Motion in the U(1)> Gauged Kerr-(Anti) de
Sitter Black Hole Solution of A/ = 2 Supergravity in

Five Dimensions

We will only sketch the analysis of the separation of variables here, since the procedure
for deriving equations of motion etc. is virtually identical to those of the metric above.

We can attempt a separation of coordinates as follows, Let

1. ,
S = Sm°A\ = Et + Ly + Ly + Se(6) + 5,(r). (5.29;

Ot
o
0

t, ¢, and 4 are cyclic coordinates, so their conjugate momenta are conserved. The

conserved quantity associated with time translation is the energy E, and those with
rotation in ¢ and v are the corresponding angular momenta Ly and L,. Then using the

components of the inverse metric (5.13), the Hamilton-Jacobi equation (5.18) is written

to be
9 B(r)+R 9 C(r) C(r) )
—_m° = =L (—FE)*+2 —E){(L, 2 - :
m 712{"{/(71) ( ) + 71;{/( ) ( )( Kb) + 7121’,‘/(71) ( E)II‘L/ )
N A(r)B(r)cos? 8 + A(r)R + C*(r) cos? HL; N 1 [dSs(0) ’ i
Rr2W (y )qm 6 R 46
A(r)B(r)sin?dA(r)R ( 7)sin® 6 Sy dSe(r) 2 .
+ Rr2W (1) o0 LL,, Wi(r) e (5.30)
After some algebraic manipulation and using some trigonometric identites we can write
this as
) o [dS.(m1E _CrE B(ry+R _,
-m- = Wi{r —2————(Ly : — B~
m Wir) { dr } rQI/V(r‘)( o+ Ly) r2W(r) E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SOME CHARGED ROTATING SUPERGRAVITY BLACK HOLES58

A(r)B(r C‘Q ; 9 1 9 o b 9
- o>g)iq0>@¢+Lwn+§@wwm;+%ca@)+

[&23

31)

1 [dSp(6)17
ﬁ[d@i

In this form, the Hamilton-Jacobi equation can now be easily separated to give

-K [d_é(%@} +csc? §L2 + sec® 0L,
s d&wjﬂﬂcumE,’; W?BMR+RZ#
K Rm*+W(r)R { I W (Lg + Ly) TRW
A(r)B(r) + C*(r) 9
: L L), 5.32
ey Lot L) (552

where K is a constant of separation.
To derive the equations of motion, the separated action S from the Hamilton-Jacobi

equation is more conveniently written, as before, in the following form:

1 T 8
S = gmgA — Et+ Lyd + Lytp + / VR + / VOende,  (5.33)

where
B} 5 C(r)RE B(r)R+R?> _,
T S = . — - 2——-—— il /) "~
RW(r)R(r) K — Rm~ + TV (Ly+ Ly) + ) E
A(r)B(r) + C*(r) 2
7.‘2{,{7(7.) (Lo + L‘I#’) :
O) = —K —csc® (JLgb —sec® L2 . (5.34)

By following the same procedure as earlier, we can easily establish first-order equa-
tions of motion, a radial effective potential, etc. Since the derivation is remarkably

similar, we will not reproduce the results here in the interests of being concise.

5.6 Dynamical Symmetry

The general class of metrics discussed here are stationary and “axisymmetric”; i.e., 3/0t
and 0/0¢ (as well as 8/ in the five dimensional U(1)? case) are Killing vectors and
have associated conserved quantities, —F and Ly (and Ly). In general if £ is a Killing
vector, then #p,, is a conserved quantity, where p is the momentum of the particle. Note
that this quantity is first order in the momenta.

As mentioned carlier, the additional constant of motion K which allowed for complete

integrability of the equations of motion is not related to a Killing vector from a cyclic
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coordinate. This constant is, rather, derived from a non-trivial irreducible second-order
Killing tensor in both spacetimes, which permits the separation of the r — 8 (or r — u)
equations in both cases. These Killing tensors are generalizations of the Killing tensor
obtained in four dimensions by Carter [31] and in five dimensions for the Myers-Perry
metric in [22]. Killing tensors are not symmetries on configuration space, and cannot be
derived from a Noether procedure, and are rather, symmetries on phase space. They obey
a generalization of the Killing equation for Killing vectors (which do generate symmetries

in configuration space hy the Nocther procedure) given by
[{(/,u/;p) = O (535)

where K is any sccond order Killing tensor, and the parentheses indicate complete sym-
metrization of all indices.
The Killing tensors can be obtained from the expressions for the separation constant
K in each case. If the particle has momentum p, then the Killing tensor K, is related
to the constant K via
a5 a8

K= K pupe = K e

(5.36)

In both cases, we can use the expression in terms of the r equation or the u/f equation.
We will choose to work with the latter in both cases.
For the four dimensional Kerr-Taub-NUT metric analyzed above, the expression for

K from (5.21) is

dsS,(w)1? 1 .
K = —-A, { b(;lsu)} - A—[ulugE —alg]” — m2uius . (5.37)
4 u

Thus, from (5.36) we can easily read

K=-4,0,©0,— . [u1uads @ Oy + a0y © Oy + sym{aw uz20; © O,)] (5.38)
1
Since this Killing tensor is not a simple lincar combination of Killing vectors, it is
non-trivial and irreducible.
For the five dimensional U (1)3 charged metric analyzed above, the expressions for A
from (5.32) is

2

-K } + csc? QLﬁ, + sec? HLE/, : (5.39)

.55 ()
=
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Thus, again from (5.36) we can read

K= 850 0 - ;;j—éa@ 8~ —530y 0y . (5.40)
This Killing tensor however turns out to be a reducible one. In this situation, since
both rotation parameters, there is an additional Killing vector which represents the
additional symmetry of being able to rotate each of the two rotation planes into each
other. This Killing tensor can be obtained using linear combinations of outer products
of this Killing vector. Further details and explicit constructions can be found in [26].
We can easily check using Maple [32], that the Killing tensors in both spacetimes do
satisfy the Killing equation. It is the existence of these Killing tensors that allows for

complete separation of the Hamilton-Jacobi equation.

5.7 The Scalar Field Equation

Consider a scalar field ¥ in a gravitational background with the action

. 1 ¢ 2 212
S[¥] = -5 /LZD;lT\/——g((V\I’)Z + aR¥? + m>T?), (5.41)

]

where we have included a curvature dependent coupling. However, in these Kerr-(Anti)
de Sitter backgrounds with charges, R is constant (proportional to the cosmological
constant A). As a result we can trade off the curvature coupling for a different mass
term. So it is sufficient to study the massive Klein-Gordon equation in this background.
We will simply set @ = 0 in the following. Variation of the action leads to the Klein-
Gordon equation
1 . : 2 .

T 0u(V=9g" 0, Y) = m*T. (5.42)

5.7.1 Massive Scalar Fields in the Four Dimensional Kerr-Taub-NUT
Multicharge Gauged Solution of Supergravity

Using the explicit expressions for the components of the inverse metric (5.5) and the
determinant (5.4), the Klein-Gordon equation for a massive scalar field iu this spacetime

can be written as

2 1 1 9 9 9 1 A9 2 10
me¥ = W (AuAr Ayuius — Ayrirs|0; U + ﬁ:[&rulug + Au7°17’2j()[2¢7@
2a* 5 \
LA = AJRT + 0,(A,0,0) + 0, (A0, T) ) (5.43)
ArAy ’
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(Note that this expression agrees with equation (16) in [28] with the notation p = acos 8,
g=7r, X =A4,, Y =A, and k = 0 in four dimensions for the uncharged, i.e. é; = 0,
Kerr-Taub-NUT metrics. This is a good check for consistency.) We assume the usual

multiplicative ansatz for the separation of the Klein-Gordon equation
U =&, (r)0,(u)e Fletle? (5.44)

Then we can easily separate out the r and u dependance as

. 1 d ad,, (u) 5 wiud . 2auiug 2a°L}
= - — A Fmu g <F* — ~ELy + ——,
K o u) du ( T > + miuyug + AL A, 6+ A
i 1 d d®,.(r) 9 rir? o 2arirg Qaszb
K = — A — —mPriry — =2 E° ELg , (545
! ®,.(r) dr < "odr ) e A, * A, » A (5.45)

where K is again a separation constant. At this point we have completely separated out

the Klein-Gordon equation for a massive scalar field in this spacetime.

5.7.2 Massive Scalar Fields in the U(1)® Gauged Kerr-(Anti) de Sitter
Black Hole Solution of N' = 2 Supergravity in Five Dimensions

Using the explicit expressions for the components of the inverse metric (5.13) and the
determinant (5.15), the Klein-Gordon equation for a massive scalar field in this spacetime
can be written as
mv = —%@2@ + %%(df@‘lf + O V) + 771&50,‘(7~RLV(7’)OT\I/)
A(P)B(r)cos? 8 + A(r)R + C%(r) cos® 8 _,
RN ;¥
Rsin® 6r2W (r)
A(r)B(r)sin? 0 + A(r)R + C?*(r) sin® 0(‘92‘1’ _ 2[A(r)B(r) + C*(r)]
Rcos? 0r2W (r) v Rr2W(r)
1

+ Remdcosd Op(sin b cos 8950 . (5.46)

dé Y 4

Again we assume the usual multiplicative ansatz for separation
U = B, (r)®g(0)e~ Fleiledeilut (5.47)

After extensive algebraic manipulation similar to that of the Hamilton-Jacobi equa-

tion, and the use of some trigonometric identities along the way, we find that the r and
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6 cquations decouple into the form

- 1 d (. d®g(8) L3 L2
{ = ————————sinfcosh o, v
K Dy(0)sin B cos b db <bm fcos do ) - sn2f  coslh’
«- 1 d d®,(r)\ | B(r)R+R> _, 2C(r)R
— — - T g 2 ‘ L )
K @7-(7')7’ dr <7 RW (7) dr > + 7,2{4/(7,) E°+ _7‘21/1/(7’) (L¢ -+ 1{)
A(r)B(r) + C*(r) 5 )
o+ Ly)” 5.48
N IS L (5.48)

where K is again a separation constant. At this point we have completely separated out
the Klein-Gordon equation for a massive scalar field in this spacetime.

We note the role of the Killing tensors in the separation terms of the Klein-Gordon
equations in both spacetimes. In fact, the complete integrability of geodesic flow of both
metrics via the Hamilton-Jacobi equation can he viewed as the classical limit of the

statement that the Klein-Gordon equation in both metrics also completely separates.

Conclusions

We studied the complete integrability properties of the Hamilton-Jacobi and the Klein-
Gordon equations in the background of two recently discovered rotating black hole solu-
tions of supergravity with charge(s): the four dimensional Kerr-Taub-NUT Multicharge
ganged supergravity solution, and the U(1)? gauged Kerr-(Anti) de Sitter black hole
solution of AV = 2 supergravity in five dimensions. Complete separation of both the
Hamilton-Jacohi and Klein-Gordon equations in these backgrounds in Boyer-Lindquist-
like coordinates is demonstrated. This is due to the enlarged dynamical symmetry of
the spacetime. We construct the Killing tensors (one of them irreducible) in both space-
times which explicitly permits complete separation. We also derive first-order equations
of motion for classical particles in these backgrounds, and analyze the properties of some
special trajectories. It should be emphasized that these complete integrability properties
are a fairly non-trivial consequence of the specific form of the metrics, and generalize
several such remarkable properties for other previously known metrics.

Further work in this direction could include the study of higher-spin field equations in
these backgrounds, which is of great interest, particularly in the context of string theory.
Explicit numerical study of the equations of motion for specific values of the black hole
parameters could lead to interesting results. The geodesic equations presented can also
readily be used in the study of black hole singularity structure in an AdS background
using the AdS/CFT correspondence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Bibliography

[1] N. Arkani-Hamed, S Dimopoulos and G. Dvali The Hierarchy Problem and new
dimensions at o millimeter, Phys. Lett. B429 (1998) 263-272, hep-ph/9803315.

2] I Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali New dimensions at a
millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B436 (1998) 257-263,
hep-ph/9804398.

3] L. Randall and R. Sundrum A large mass hierarchy from a small extra dimension,
Phys. Rev. Lett. 83 (1999) 3370-3373, hep-ph/9905221.

4] M. Cavaglia Black hole and brane production in TeV gravity: A review, Int. J. Mod.
Phys. A18 (2003) 1843-1882, hep-ph/0210296.

[5] P. Kanti Black holes in theories with large extra dimensions: a Review, hep-
ph/0402168.

[6] G.Dvali and A. Vilenkin Solitonic D-branes and brane annihilation, Phys. Rev. D67
(2003) 046002, hep-th/0209217.

[7] M. Cvetic and A. A. Tseytlin Solitonic strings and BPS saturated dyonic black holes,
Phys. Rev. D53 (1996) 5619-5633, hep-th/9512031.

8] R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically
special metrics, Phys. Rev. Lett. 11, 237 (1963).

9] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann.
Phys. 172, 304 (1986).

[10] J. Maldacena The large N limit of superconformal field theories and supergravity.
Adv.Theor.Math.Phys. 2 (1998) 231-252; Int. J. Theor. Phys. 38 (1999) 1113-1133.
hep-th/9711200.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 64

[11] E. Witten Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
253-29, hep-th/9802150.

(12] G.W. Gibbons, H. Lii, D.N. Page and C.N. Pope, The general Kerr-de Sitter metrics
in all dimensions, J. Geom. Phys. 53 (2005) 49-73, hep-th/0404008.

13] G.W. Gibbons, H. Lii, D.N. Page and C.N. Pope, Rotating black holes in higher
dimensions with a cosmological constant, Phys. Rev. Lett. 93:171102 (2004) 49-73,
hep-th/0409155.

[14] L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in
AdS/CFT, JHEP 0402 (2004) 014, hep-th/0306170.

[15] D. Brecher, J. He and M. Razali, On charged black holes in anti-de Sitter space,
JHEP 0504 (2005) 004, hep-th/0410214.

[16] N. Cruz, M. Olivares, J. Villanueva, The geodesic structure of the Schwarzchild
anti-de Sitter black hole, Class. Quant. Grav 22 (2005) 1167-1190, gr-qc/0408016.

(17} J. Kaplan, Extracting data from behind horizons with the AdS/CFT correspondence,
hep-th/0402066.

18] V. Hubeny, Black hole singularity in AdS/CFT, hep-th/0401138.
/

[19] V. Balasubramanian and T.S. Levi, Beyond the veil: inner horizon instability and
holography, Phys. Rev. D70 (2004) 106005, hep-th/0405048.

[20] Z.W. Chong, M. Cvetic, H. Lu and C.N. Pope, Charged rotating black holes in four-
dimensional gauged and ungauged supergravities, Nuel. Phys. B717 (2005) 246-271,
hep-th/0411045.

[21] M. Cvetic, H. Lu and C.N. Pope, Charged rotating black holes in five dimensional
U(1)® gauged N=2 supergravity, Phys. Rev. D70 (2004) 081502, hep-th/0407058.

[22] V. Frolov and D. Stojkovic, Particle and light motion in a space-time of a five-
dimensional rotating black hole, Phys. Rev. D68 (2003) 064011, gr-qc/0301016.

[23] V. Frolov and D. Stojkovic, Quantum radiation from a 5-dimensional rotating black
hole, Phys. Rev. D67 (2003) 084004, gr-qc/0211055.

[24] M. Vasudevan, K. Stevens and D.N. Page, Separability of the Hamilton-Jacobi and
Klein-Gordon equations in Kerr-de Sitter metrics, Class. Quant. Grav, 22 (2005)
14691482, gr-qc/0407030.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 65

25] H.K. Kunduri and J. Lucietti, Integrability and the Kerr-(A)dS black hole in five
dimensions, Phys. Rev. D71 (2005) 104021, hep-th/0502124.

26] M. Vasudevan, K. Stevens and D.N. Page, Particle motion and scalar field propoga-
tion in Myers-Perry black hole spacetimes in all dimensions, Class. Quant. Grav.
22 (2005) 339352, gr-qc/0405125.

[27] M. Vasudevan and K. Stevens, Integrability of particle motion and scalar field prop-
agation in Kerr-(Anti) de Sitter black hole spacetimes in all dimensions, Phys. Rev.
D72 124008 (2005), gr-qc/0507096.

28] Z.W. Chong, G.W. Gibbons, H. Lu and C.N. Pope, Separability and Killing tensors
in Kerr-Taub-NUT-de Sitter metrics in higher dimensions, Phys. Lett. B609 (2005)
124-132, hep-th/0405061.

129] M.M. Caldarelli, D. Klemm and W.A. Sabra Causality violation and naeked time
machines in AdS5, JHEP 0105 (2001) 014, hep-th/0103133.

(30] H.K. Kunduri and J. Lucietti, Notes on non-extremal, charged, rotating black
holes in minimal D=5 gauged supergravity, Nucl. Phys. B724 (2005) 343-356, hep-
th /0504158,

'31] B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equa-
tions, Commun. Math. Phys. 10, 280 (1968).

'32] Maple 6 for Linux, Maplesoft Inc., Waterloo Ontario, http://www.maplesoft.com.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.niaplesoft.com

Chapter 6

NUT-Charged Rotating

Spacetimes

6.1 Introduction

Taub-NUT solutions arise in a very wide variety of situations in both string theory and
general relativity. NUT-charged spacetimes, in general, are studied for their unusual
properties which typically provide rather unique counterexamples to many notions in
Einstein gravity. They are also widely studied in the context of issues of chronology
protection in the AdS/CFT correspondence. Understanding the nature of geodesics in
these backgrounds, as well as scalar field propagation, could prove to be very interesting
in further exploration of these spacetimes.

There is a strong need to understand explicitly the structure of geodesics in the
background of black holes in Anti-de Sitter space in the context of string theory and
the AdS/CFT correspondence. This is due to the recent work in exploring black hole
singularity structure using geodesics and correlators in the dual CFT on the boundary
[1-6]. Black holes with charge are particularly interesting for this type of analysis since
the charges are reinterpreted as the R-charges of the dual theory. The class of solutions
dealt with in this paper also include black holes that carry both NUT and electric charges
in various dimensions, and could prove very interesting in this sort of analysis.

In this paper we explore a very general metric describing a wide variety of spacetimes
with NUT charge(s). In addition further metrics can also be obtained from these through
various analytic continuations (which does not affect separability as demonstrated for
these class of metrics). As such, the study of separability in this set of spacetimes en-

compasses the cases of both singly and multiply NUT-charged solutions, clectrically and
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magnetically charged solutions with NUT parameter(s), solutions with a cosmological
constant and NUT parameters(s), and time dependant bubble-like NUT-charged solu-
tions. Many of these describe very interesting gravitational instantons. Some of these
solutions include static backgrounds, while others are time-dependent and provide very
interesting backgrounds for studying both string theory and general relativity. Some of
these solutions, especially the bubble-like ones, are particularly interesting in the context
of string theory as they arise in the context of topology changing processes. e.g. they
show up as possible end states for Hawking evaporation., and they show up in transitions
of black strings in closed string tachyon condensation.

We study the separability of the Hamilton-Jacobi equation in these spacetimes, which
can be used to describe the motion of classical massive and massless particles (including
photons). We use this explicit separation to obtain first-order equations of motion for
both massive and massless particles in these backgrounds. The equations are obtained
in a form that could be used for numerical study, and also in the study of black hole
singularity structure using geodesic probes and the AdS/CFT correspondence. We also
study the Klein-Gordon equation describing the propagation of a massive scalar ficld in
these spacetimes. Separation again turns out to be possible with the usual multiplicative
ansatz.

Separation is possible for both equations in these metrics due to the existence of
non-trivial second-order Killing tensors. The Killing tensors, in each case, provides an
additional integral of motion necessary for complete integrability.

There has been a lot of work recently dealing with geodesics and integrability in
black hole backgrounds in higher dimensions both with and without the prescnce of a
cosmological constant [7-16]. Of particular note in the context of this paper are {12,14]
which deal with black holes with NUT parameters in some special cases. This work

extends, and generalizes, some of the results obtained in these papers.

6.2 Overview of the Metrics

The class of metrics dealt with in this paper, and their generalizations obtained via
analytic continuations, have been constructed and analyzed in [17-22], as well as some
references contained therein. We will very briefly describe the metrics, and some of the
various types of spacetimes that can be obtained from them. As mentioned carlier, scpa-
rability for all the metrics is addressed by dealing with the class we do here, since analytic
continuations do not affect separability of either the Hamilton-Jacobi or Klein-Gordon

equation (though they do affect the physical interpretations of the various variables and
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their associated conserved quantities).

The general spacetimes we study are described by the metrics

2
b 4
ds® = —F(r) [dt + > 2N fi(8:)do, = Z 24+ N2(d6? + g2(6,)de?) . (6.1)
i=1
A very general class of metrics in even dimensions where the (¢;,0;) sector has the
form M; x My x ... x M,, with each M; a two dimensional space of constant curvature

5;. In this case the functions are given by

Si=1: fi(8)=—cosb;, ¢2(6;) =sin’0;,
6 =0: [fi(bi)=—b;. (0;) = 1.
§=—1: fi(#;) = —cosh 9,,4,., g2 (6;) = sinh?6; (6.2)

and an expression for F(r) can be found in [21] along with a detailed description. Gener-
alizations to include electric charge are obtained by suitably modifying £{r), and can he
found in [20,22]. Metrics describing “bubbles of nothing” also fall under this class and
can be found in [19]. Examples of NUT-charged spacetimes in cosmological backgrounds
also fall in this framework and can be found in [19].

For the purposes of analyzing separability, some odd dimensional NUT-charged space-
times also fall under this category. For instance in five dimensions (i.e p = 2) a NUT

charged spacetime is obtained by taking g2(82) = 0 and Ny = 0. i.e. a metric of the form

dr?

ds®* = —F(r)(dt — 2N, cosh 6,dp;)? + ——
F(r)

+ (2 4+ N?)(df? + sinh® 6, db?) + 12d3(6.3)
This describes a spacetime in an AdS background; similar dS and flat background space-
times can be obtained by following the prescriptions in (6.2) while maintaining g2(6y) = 0
and N = 0. Generalizations to higher odd dimensional spacetimes are obvious.
Various twists of these spacetimes can also be obtained through analytic continua-
tions. For instance, using the prescriptions t — 6,6 — it, we can obtain time-dependent
bubbles. In five dimensions in an AdS hackground, some examples obtained via this pre-

scription, and a few other suitable obvious variable redefinitions are

9 9 d -2 : 9 9 9 9 RN
ds® = F(r)(d6; + 2Ny costde)” + FZ?’) + (r® + NP)(—dt? + sin® tdo?) + r2db3 |
ds® = F(r)(df; + 2Ny sinh ¢dt)? + Fz'r) + (r? + NP (dp* — cosh? ¢dt?) + 12db3 .
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1 2 9 PP 9 9 2 4ne
li{r) + (r + Nf)(d@‘) - sinh® @dt”) + r“(lH._;) .

ds®> = F(r)(df, + 2Ny cosh ¢dt)? +

o dr?
2 _ . 2N, e?dt)?
ds F(r)(dfy + 2N, e%dt)” + 0

+ (12 4+ N3 (dop? — e*®at?) +r2df3 . (6.4)

For future use, we give the determinant of the metric (6.1)

The components of the inverse metric are

)

o _ EP: 4szfi (6;) 1

g £ (72 N2)gi(6;)  F(r)
to, 2N fi(6;)
g T 22 L N2
9; (0;)(r? + Ni )
g¢>7’d)j — “’—673—9"** ,
(r2 + N7)g; (0:)
g = F(),
5
0:8; . __TW 5.6
q TN (6.6)

These formulae are somewhat tedious to derive, but can be proved using a few Maple

calculations, and then using mathematical induction [23].

6.3 The Hamilton-Jacobi Equation and Separability

The Hamilton-Jacobi equation in a curved background is given by

o5 1 a5 88
_90 gt Y2 99
A H Qg Jar Az’

(6.7)
where S is the action associated with the particle and A is some affine parameter along

the worldline of the particle. Note that this treatment also accommodates the case of

massless particles, where the trajectory cannot be parametrized by proper time.
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6.3.1 Separability

We can attempt a separation of coordinates as follows. Let
1 P P
S=smPA—Bt+Y Lo+ Sg(0:)+S.(r). (6.8)
- i=1 i=1

t and the ¢, are cyclic coordinates, so their conjugate momenta are conserved. The con-
served quantity associated with time translation is the energy E, and those with rotation
in the ¢; are the corresponding angular momenta Ly,. Then, using the components of

the inverse metric (6.6), the Hamilton-Jacobi equation (6.7) is written to be

2T ENDEG) T T F) A
P 2 P ; 2
1 9 dS,(r) 1 dSy. (8;)
L + F(r » . ‘ 6.9
T ; (7“2 + N,.))(JL_) (9L) & * (I ) { dr * ]Z:; 7'2 + :’7\7,1-’2 (197 <] )
After some manipulation, we can recursively separate out the equation into
. E? as.(M? & K,
2 7 3
-m° = - F(r -5
m F(r) + F(r) { ar + ; o
: Sy, «m} ’ {L@' + 2N¢f¢(9i)Er
K; — A | 6.10
{ db; 9:(6:) (6.10)
For future reference we will use the notation K = Y% | K;. Also note that for

the metrics obtained through analytic continuations discussed ecarlier, the issue of sep-
arability is clearly not affected. However, for an analytic continuation of the form
t — 16,8 — it, we need to replace E — —ilLg, and the energy is no longer conserved as
we have a time-dependent background. However, now the angular momentum Ly asso-
ciated to 8 is conserved. Similar substitutions need to be made for any other analytic

continuations or variable redefinitions used to define the new metrics.

6.3.2 The Equations of Motion

To derive the equations of motion, we will write the separated action S from the

Hamilton-Jacobi equation in the following form:

1, a [ byt , o
§ = ZmPA-Et+ > Lo+ / VR )dr' +3 / J/©i(8hag .  (6.11)
i=1 v i=1"
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where
2 E2 2
FMR(r) = - 7221 TN + ) —m*,
Ly + 2N, fi(0)E]*? -
©:(6;) = K- { o, 20 fi(0:) (6.12)
9i(0;)

To obtain the equations of motion, we differentiate S with respect to the parameters
m?, K;, F, Ly, and set these derivatives to equal other constants of motion. However, we
can set all these new constants of motion to zero (following from freedom in choice of
origin for the corresponding coordinates, or alternatively by changing the constants of

integration). Following this procedure, we get the following equations of motion:

a5 0 \_/ dr
om? ’ F(r)/R(r)

05, [de / 1 dr
OK; VO, ) P+ N RO YR
as / Ly, + 2N, f:(6,)E  db;
= 0 - (IL1 = L 5 s 613
OLg, i’ 95(9') ©;(6;) o4
s / Z/?NL¢ £0:) + ANPf2(6)E  db;
9E 20 R0 7206, NCXOR

It is often more convenient to rewrite these in the form of first-order differential equations

obtained from (6.13) by direct differentiation with respect to the affine parameter:

& = FOVRD),

do; /Ol

do; Ly, +2N; fi(0)E

dx T A2(6)(r? + N?)

dt E 2N; Ly, fi(8; -r—4V f (9; o
N F(m_; 30)<, + N?) (6.14)

6.4 Dynamical Symmetry

The general class of metrics discussed here are stationary and “axisymumetric”; ie., /0t
and the 9/0¢; are Killing vectors and have associated conserved quantities, —F and

Ly,. In general, if € is a Killing vector, then £&#p,, is a conserved quantity, where p is the
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momentum of the particle. Note that this quantity is first order in the momenta.

The additional constants of motion K; which allowed for complete integrability of
the equations of motion is not related to a Killing vector from a cyclic coordinate.
These constants are, rather, derived from irreducible second-order Killing tensors in
which permit the complete separation of equations. Killing tensors are not symmetries
on configuration space and cannot be derived from a Noether procedure, but they are
instead symmetries on phase space. They obey a generalization of the Killing equation
for Killing vectors (which do generate symmetries in configuration space by the Nocther

procedure) given by

K:(u.u;p) =0, (615)
where K is any second order Killing tensor, and the parentheses indicate complete sym-
metrization of all indices.
The Killing tensors can be obtained from the expressions for the separation constants
K in each case. If the particle has momentum p, then the Killing tensor K, is related
to the constant K via
a5 98

L kY e
K=K"pp, =K o Bav

(6.16)

We can use the expression for the K; in terms of the the 8; cquations.

For the Taub-NUT metrics analyzed above, the expression for K; from (6.10) is

2

o - [356.(00)]7 | Lot 2Nifi(#:)E)
oL 5:(6:)

(6.17)

Thus, from (6.16) we can readily read

1

c= 0y Dy —
o= O Ot Sy

[aj)i @ 6@ + 4]\th fl((),)af €0y — 2Nifi(97‘y)8y‘f”((:‘)@7 & (i?t)} (6.18)

K3

We can easily check using Maple {23], that the Killings tensors do satisfy the Killing
equation.

Note that if any of the NUT parameters Nj, were zero, then the corresponding Killing
tensor K would simply bhe the usual Killing tensor of the underlying two dimensional
space My (which is a reducible one in the case of a homogenous constant curvature
space My, as is the case for many situations here). In general. however. a non-zero
NUT parameter Ni provides a nontrivial coupling between the (r. ¢;.6;) sectors, and

the existence of the Killing vectors dy, and J¢ along is not enough to ensure complete
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separability. It is the existence of these nontrivial irreducible Killing tensors K; that
provides the addition separation constants K; necessary for complete separation of each
space M; from another space Mj;, as well as separation of the angular sectors completely
from the radial sector. These tensors are irreducible since they are not simply linear

combinations of tensor products of Killing vectors of the spacetime.

6.5 The Scalar Field Equation

Consider a scalar field ¥ in a gravitational background with the action
1 ; o
S[¥] = fs/le:\/:y((v\y)z + aRY? + m*0?) (6.19)

where we have included a curvature dependent coupling. However, in these (Anti)-de
Sitter and flat backgrounds with charges, R is constant (proportional to the cosmological
constant A). As a result we can trade off the curvature coupling for a different mass terimn.
So it is sufficient to study the massive Klein-Gordon equation in this background. We
will simply set @ = 0 in the following. Variation of the action leads to the Klein-Gordon

equation
1 ) . .
\/—:gdﬂ,(\/ ‘gg‘“’()u\lf) =m*V. (()20)
Using the explicit expressions for the components of the inverse metric (6.6) and the
determinant (6.5), the Klein-Gordon equation for a massive scalar field in this spacetime

can be written as

P 2 g2 P
9 41V-‘f;“(9¢) 1 A9 4N; fb(f)?) -
m2U = I A Y ) W L KA O N, R
" ; (r2+ N7)gi(6:)  F(r) “ ; G2 (0;)(r? + Nf)(””
p 5 [P :
1 Fa¥) 1 d D) D) d\I}
+ ——,—7‘—7——()“)‘1’ + —r 5 A o re 4 .’7\[1»" F(r -
12::1 (r2 4+ N2)g2(8;) T (r2+ N2y or D:Il( JE) or
. 1 0

‘N'} . (6.21)

(r2 + N2)g:(8,) 90; {%‘(90%

We assume the usual multiplicative ansatz for the separation of the Klein-Gordon equa-

tion

»
U = @, (r)e" el Zima bt T @9, (6) (6.

i=1

[\
[ow]
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Then we can casily completely separate the Klein-Gordon equation as

Ko 1 d ( ')d@gi((%) _[Ls, +2N:fi(6:)ET?
b gi(0:) e, (0:) db; I, gi(6:) 7
) 1 d |1tr, 5 o do,(r) 2 &K
—mT = =TS T " i ? i £6.23
" T N dr E( HNDFO== | + 7y * L o)

where the K are again separation constants. At this point we have completely separated
out the Klein-Gordon equation for a massive scalar field in these spacetimes.

We note the role of the Killing tensors in the separation terms of the Klein-Gordon
equations in these spacetimes. In fact, the complete integrability of geodesic flow of
the metrics via the Hamilton-Jacobi cquation can be viewed as the classical limit of the

statement that the Klein-Gordon cquation in these metrics also completely separates.

Conclusions

We studied the complete integrability properties of the Hamilton-Jacobi and the Klein-
Gordon equations in the background of a very general class of Taub-NUT metrics in
higher dimensions, which include the cases of both singly and multiply NUT-charged
solutions, electrically and magnetically charged solutions with NUT parameter(s), solu-
tions with a cosmological constant and NUT parameter(s), and time-dependent bubble-
like NUT-charged solutions, and other very interesting gravitational instantons. Com-
plete separation of both the Hamilton-Jacobi and Klein-Gordon equations in these back-
grounds is demonstrated. This is due to the enlarged dynamical symmetry of the space-
time. We construct the Killing tensors in these spacetimes which explicitly permit com-
plete separation. We also derive first-order equations of motion for classical particles in
these backgrounds. It should be emphasized that these complete integrability properties
are a fairly non-trivial consequence of the specific form of the metrics, and generalize
several such remarkable properties for other previously known metrics.

Further work in this direction could include the study of higher-spin field equations in
these backgrounds, which is of great interest, particularly in the context of string theory.
Explicit numerical study of the equations of motion for specific values of the black hole
parameters could lead to interesting results. The geodesic equations presented can also
readily be used in the study of black hole singularity structure in an AdS background
using the AdS/CFT correspondence.
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Chapter 7

Two Parameter Kerr-de Sitter
Metrics

7.1 Introduction

A number of recent developments in high energy physics have generated great interest in
vacuum solutions of Einstein equations describing higher dimensional black holes, and the
properties of these spacetimes. Models of spacetimes with large extra dimensions have
been proposed to deal with several questions arising in modern particle phenomenology
(c.g. the hierarchy problem) [1-3]. Higher dimensional black hole solutions arise nat-
urally in such models. These models are also of interest in the context of mini-black
hole production in high energy particle colliders, which would provide a window into
non-perturbative gravitational physics [4, 3].

Superstring and M-theory also naturally give rise to higher dimensional black holes
in their 10 or 11 dimensional ambient spacetimes. P-branes present in these theories can
also support black holes, thereby making black hole solutions in an intermediate num-
ber of dimensions physically interesting as well. Solitonic objects in superstring theory
frequently find a natural description in terms of higher dimensional black holes. They
provide important keys to understanding strongly coupled non-perturbative phenomena
which cannot be ignored at the Planck/string scale [6,7].

The Kerr metric describes astrophysically relevant black hole spacetimes, to a very
good approximation [8]. One generalization of the Kerr metric to higher dimensions is
given by the Myers-Perry construction [9]. With interest now in a nonzero cosmological
constant, it is worth studying spacetimes describing rotating black holes with a cosmo-

logical constant. Another motivation for including a cosmological constant is driven by
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the AdS/CFT correspondence. The study of black holes in an Anti-de Sitter background
could give rise to interesting descriptions in terms of the conformal field theory on the
boundary leading to better understanding of the correspondence [10,11]. The general
Kerr-de Sitter metrics describing rotating black holes in the presence of a cosmological
constant have been constructed explicitly in [12,13].

There is also a very strong need to understand the structure of geodesics in the
background of black holes in Anti-de Sitter backgrounds in the context of string theory
and the AdS/CFT correspondence. This is due to the recent work in exploring black hole
singularity structure using geodesics and correlators on the dual CFT on the boundary
[14-19].

In this paper we study the separability of the Hamilton-Jacobi equation in these
spacetimes, which can be used to describe the motion of classical massive and massless
particles (including photons). We also investigate the separability of the Klein-Gordon
equation describing a massive scalar field propagating in this background. We explicitly
perform the separation in the case where there are only two scts of equal rotation pa-

rameters describing the black hole. We usce this explicit separation to obtain first-order

equations are obtained in a form that could be used for numerical study, and also in
the study of black hole singularity structure using geodesic probes and the AdS/CFT
correspondence.

We also study the Klein-Gordon equation describing the propagation of a massive
scalar field in this spacetime. Separation is again explicitly shown for the case of two sets
of equal black hole rotation parameters. We construct the separation of both cquations
explicitly in these cases.

This paper greatly generalizes the results of [20,21] for the Myers-Perry metric in five
dimensions, [22] which separates the equations in the case of equal rotation parameters
in the odd dimensional Kerr-(A)dS spacetimes, and [23] which separates the equations
in the case of two independent sets of rotation parameters in the Myers-Perry metrics in
all dimensions, as well as some related results in five dimensional black hole spacetimes
in [24,25].

Separation is possible for both equations in this case due to the existence of a second-
order non-trivial irreducible Killing tensor. This is a generalization of the Killing tensor
in the Kerr black hole spacetime in four dimensions constructed in [26] which was sub-
sequently described by Chandrasekhar as the “miraculous property of the Kerr metric”.
A similar construction for the Myers-Perry metrics in higher dimensions has also heen

done [20,23]. The Killing tensor provides an additional integral of motion necessary
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for complete integrability. We also construct Killing vectors, which exist due to the

additional symmetry, and which permit the separation of these equations.

7.2 Construction and Overview of the Kerr-de Sitter Met-

rics

One of the most useful propertics of the Kerr metric is that it can be written in the
Kerr-Schild [27] form, where the metric g, is given exactly by its lincar approximation
around the flat metric 7, as follows:

5 , . 2M 5
ds® = gudxtde” = detda” + il (kudat)”, (7.1)
where &, is null and geodesic with respect to both the full metric g, and the flat metric
N -

The Kerr-de Sitter metrics in all dimensions were obtained in [12] by using the de
Sitter metric instead of the flat background ,,, with coordinates chosen appropriately
to allow for the incorporation of the Kerr metric via the null geodesic vectors k,. We
quickly review the construction here.

In D-dimensional spacetime, we introduce n = [D/2] coordinates p;, where [i] denotes

the integer part of i, subject to the constraint

n
S opi=1, (7.2)
i=1

together with N = [(D — 1)/2] azimuthal angular coordinates ¢;. the radial coordinate
r, and the time coordinate t. When the total spacetime dimension D is odd, D =
2n + 1 = 2N + 1, there are n azimuthal coordinates ¢;. each with period 27, If D is
even, I) = 2n = 2N + 2, there are only N = n — 1 azimuthal coordinates ¢;. Decfine € to
be 1 for even D, and 0 for odd D.

The Kerr-de Sitter metric ds® in D dimensional spacetime satisfies the Einstein equa-

tion with cosmological constant A:

R;w =(D-1) /\g;w- (7.3)
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Define functions W and F as follows:

n 2 2 n 9

L re s
W = s F = —t 7.4
;1%—)@5' 1—Ar2 ;7'3+a§ (74)

In D dimensions, the Kerr-de Sitter metrics arc given by

where the de Sitter metric 452, the null vector k,, and the function U are now given by

n o 9 n—e 9 9
2 ; N ») rtal o rTHar o9
452 = —W ({1 =\ dt> + Fdr +;1_+Ta— dyi? +§1_IT(T 112 do?
A "2+ a?) g dp\ 2 .
. A 7.6
+W(1—,\7~)<7Z:; T+ \a2 ) (7.6)
kudt = Wdt+ Fdr— z—: I gy, (7.7)
I - as - g 1+A(I,? e .
n /LQ n—e
- € i 2 2
vo=o ;wﬁg j=1(7 + ;) (7.8)

In the even-dimensional case, where there is no azimuthal coordinate ¢,,, there is also
no associated rotation parameter; i.e., a, = 0. Note that the null vector corresponding

to the null one-form is

1 8 0 n—e @ a
oH — . 1 v ~
ko, 1—Ar2 ot + ar ; 2y aqz o (7.9)

This is easily obtained by using the background metric to raise and lower indices rather
than the full metric, since k is null with respect to both metrics.

For the purposes of analyzing the equations of motion and the Klein-Gordon cquation.
it is very convenient to work with the metric expressed in Boyer-Lindquist coordinates.
In these coordinates there are no cross terms involving the differential dr. In both even
and odd dimensions, the Boyer-Lindquist form is obtained by means of the following

coordinate transformation:

2M dr 2M a; dr

1t = l - \ D; — f".L' —_ ; ; -
dt = dr + 0 N 230 do; = dpy — Ao dr + (2 + a2)(V — 2M)

. (7.10)

In Boyer-Lindquist coordinates in D dimensions, the Kerr-de Sitter metrics are given by
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5 9 9 U dT2 2M — g llg d(roi 2
P = WO =nD At e+ S - Y T
ds W= dr s oo T o <d7 ; 1+ Aa;)

4 Z 02+ Z ) M (do; — A a; dr)?

A (r~ + af) dM E 7
+W(l—)\7’3)(; 1+ X ) | o

where V' is defined here by

n—e
2 2 2 U
V=r"1-M) Il(rg +aj) = ik (7.12)
1=

Note that obviously a,, = 0 in the even dimensional case, as there is no rotation associated

with the last direction.

7.3 Inverting the Kerr-(A)dS metric in all dimensions

We briefly review the process of inversion of the metric using the Kerr-Schild formalism.
More extensive details of this type of procedure can be found in [22,23]. This section
will also help establish some useful notation and conventions for the rest of the paper.
Note that the metric is block diagonal in the (1;) and the (r, 7, ;) scctors and so can be
inverted separately.

To deal with the (7,7, ;) sector, the most efficient method is to use the Kerr-Schild

construction of the metric. From (7.1) and using the fact that & is null, we can write
2M
gt =nt" — —z—]—k“k", (7.13)

where 7 here is the de Sitter metric rather than the flat metric, and we raise and lower
indices with 7. Since the null vector & has no components in the u; sector, we can regard
the above equation as holding true in the (r, 7, ;) sector with &k null here as well. Then
we can explicitly perform the coordinate transformation (7.10) (or rather its inverse) on
the raised metric to obtain the components of ¢g"* in Boyer-Lindquist coordinates in the

(r,T, ;) sector.
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We get the following components for the (r, 7,¢;) sector of gh":

g = g7 =
. V —2M
g7'l — LT ,
_— 407
gt = @- U — M2)2(V = 2M)°
" = AwQ AM?ai(1+ Aaf) 2M ai
g - U(l— Ar2)2(V —2M)(r? + a?) U (1-X2)(r2+a?)’
" (14 Xa?) . Qv
Fir; — '"——SL‘-?(SL‘I MNaas x
7 (r2 + a?)u? + A aia;Q + U

4M?a;a;(1 + Aaf) (1 + Aa3)

- 7.14
+U(1 = A2V = 2M)(1? + af)(r? +aF) (7.14)
where @ and Q¥ are defined to be
1 2M 1
= T 7.15
CETwao Ny T T Ao (7.15)
g - —4M?haja;[(1+ Aa3)(r? + a?) + (1 4+ Xaf) (r? + a)]
(1= Nr22(V = 2M)(r? + af)(+? + aF)
- 2M )\(1,7' aj 1 i 1 B ;@
(L =A2) | (P2 +a7)  (r?+aj) (r? 4+ a3)(r? + a3)
AM2a;a;[(1 4+ Aa?) + (1 + Ma?
. S0+ Aad) + (1 + a2y _—

(1 =222V —2M)(r2 + a?)(r2 + rzjz) ' /

These results were compared to previously known ones in the case of A = 0 and
showed agreement [20]. Also, we used the GRTensor package for Maple to explicitly
check that this is the correct inverse metric [28].

Note that the functions W and U both depend explicitly on the j;’s. Unless the
(r.7,;) sector can be decoupled from the u sector, complete separation is unlikely.
If however, all the a¢; = a for some non-zero value a, then W and U are no longer
1 dependent (taking the constraint into account) and separation seems likely. Note,
however, that in this case we cannot deal with even dimensional spacetimes, since a,, = 0
is different from the other a; = a. The analysis in this casc has been done in detail in [221,

We will actually work with a much more general case, in which separation works in

both even and odd dimensional spacetimes. We consider the situation in which the set
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of rotation paramecters a; take on at most only two distinct values ¢ and b (@ = b can
be obtained as a special case). In even dimensions at least one of these values must be
zero, since a, = 0. As such in even dimensions we take b = 0 and a to be some (possibly
different) vahie. In the odd dimensional case, there are no restrictions on the values of

a and b. We adopt the convention
i =a for i=1,...m Ajym = b for j=1,....p. (7.17)

where m+p=N +¢e=n.
Since the p;'s are constrained by (7.2), we need to use suitable independent coordi-

nates instead. We use the following decomposition of the pu;:
i = XNsin@ for i=1,...m , [jeom =vjcosf for j=1....p. (7.18)

where the A; and v; have to satisfy the constraints

dox=1 ., S =1, (7.19)

m P
7=1

=1 J

Since these constraints describe unit (m — 1) and (p — 1) dimensional spheres in
the A and v spaces respectively, the natural choice is to use two sets of spherical polar

coordinates. We write

m—i
A = H sin vy, | cos it .

k=1

p—J
(H sin ,’3k) COs Bp—_j+1, (7.20)

k=1

I

1y

with the understanding that the products are one when i = m or j = p respectively, and
that o, = 0 and 3, = 0.

The 1t sector metric can then be written as

,02 712 +(L2 m—1 /i—1
2 2 ] 11 2 a1 s 2
ds, = A—@d() + o sin 7 Z <H sin cm) doyg
@ i=1 \k=1
r2 4 b2 p-l /i-l
2 .2 22 -
+ 5, cos Hz Hsm Br | dB5 (7.21)
j=1 \k=1

again with the understanding that the products are one wheni =1 or j = 1, and we use
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the definitions

2 : 2 2 2 .. 9
pF = r?+a’cos® 8+ b sin® 4,

Ap = 1+ Aa*cos?d+ N sin? 0,
S, = 1+ A2,

Y, = 14X,

Z = 1?4+ a4 pP)piE (7:

=1
o
[A]
=

This diagonal metric can be easily inverted to give

08 _ @
5
°
gLt = a ! 8ii s i,j=1,..,m,
: (r? +a?)sin® 4 (Hi;ll sin? CYk) W e
3 3. by 1 .
gﬁiﬂj = b (SIJ y by = 1, ey 7 (723)

(r2 + b2) cos? 0 (Hi‘_:ll sin? ﬂA)

For the case of two sets of rotation parameters that we consider here, the following

expressions will be extremely useful:

U = p*Z,
A
W= E-gb' (7.24)

We note that both V and Z are functions of r only.
The following identity, which can be easily verified, will be crucial in the following:
Zazb Z(I,Eb 2]\[

= — — — — . .25
@ PNy AL = N2 pPZ(1 = M)AV - 2M) (7.25)

7.4 The Hamilton-Jacobi Equation and Separation

The Hamilton-Jacobi equation in a curved background is given by

a8 1 as o8
_—— = H — - R, .
ol 2 g Oxk dxv

(7.26)

where S is the action associated with the particle and [ is some affine parameter along
the worldline of the particle. Note that this treatment also accommodates the case of

massless particles, where the trajectory cannot be parameterized by proper time.
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We can attempt a separation of coordinates asg follows. Let

m--1

1. m p
S =cmll—Er+) ®ipit ) Viomsi+Sp(r)+5p(6 +Z S (0t +Z Sg,(Bi). (1.27)
- i=1 i=1

7 and (; are cyclic coordinates, so their conjugate momenta are conserved. The conserved
quantity associated with time translation is the energy E, and the conserved quantity
associated with rotation in each ¢; is the corresponding angular momentum &®; or ¥;.
We also adopt the convention that ¥, = 0 in an even number of spacetime dimensions.

Using (7.14), (7.22), (7.23), and (7.27) we write the Hamilton-Jacobi equation (7.26)

as
e SaS __ Za% M 4 ],
- APDy PPN = Ar?) pPZ(1—Nr2) pPZ(1 - Ar2)?
L9 I:(Luazb aZaSb 7”2(1 2ig
20y 21— Xr2)  PPZ(1 = W22V = 2M)(r? + a?)
2Ma 2M)a
T FIA@) >2} B
Y%y b3, % 4M?bE,
+ 2 - - .
20y PO =N2) PZ(1 = 2RV — 20 (2 + B2
2Mb 2M &
- - AN S By,
PPZ(1 = r2)(r2 +b%)  p2Z(1— A\r?)? =
m ~' » -')
h3 s A d gg( )
* (r2 + a?)sin? HZ 0092 g 2 P> { g }

VoM [dS ()] & =, dS,, \*
Pz { S B Dy e dm:)

=7 (r*+a?)sin® 0 [ [} sin” oy,

p—! v N2
+ pz X (d‘sﬂi>
< (r2 4+ 1?) cos? HH;. Lsin? B \ df;

m.om . vy s 5 o
I /\2 2 ‘-4.(1 b . 24b _ 2] >
N z_:z { ¢ <_/72A0 PEN1 =A%) p2Z(1 - Nr2)

=1 j=1
4M?a¥%2 Qv
T RZV _2M) (7 + a2)? +,)-Z}‘M>
P P -
Lok T.E 2M
)\sz ‘a b _ a~b _
. ; i=1 { <P“)A0 PPAL = Nr2) p2Z(1 = Ar?)
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4M2P52 (i+m)(j+m)
* 7 =0 -w+Q 5 A%
PPZ(V = 2M)(r? + b?)? 27
m P , > 5 5 onr
2 /\'~’ab<,”b _ah >
;; { p2Dg  PN1 - Nr2)  pPZ(1 - Ar?)
4:]\1 abzaub Qi(j+771) )
‘ ‘ 0T 7.28
T vy | ez | (7.28)

Note that here the \; and v; are not coordinates, but simply quantities defined by
(7.20). We continue to use the convention defined for products of sin®; and sin® 3;

defined earlier. Separate the ¢; and 3; coordinates from the Hamilton-Jacobi equation

. U T 1 S, \?
J? = AT o)
— | N p—1 SI07 Qg i

s 1 dSs, ) 2
— , 7.29
Hk | sin? 3, ( df3; ‘| ( )

o 5 . .. . .
where J7 and L7 are separation constants. Then the remaining terms in the Hamilton-

via

Ll '}
HH
Sera

=43

If

<
=

L¥ =

=
Rl 1P

i=1

Jacobi equations can be explicitly separated to give ordinary differential equations for »

and 6:
o 5 s s 2M 4M? .V —2M [dS.(m)]?
K= m7 [/\(1 ) T oD T za—wep | P T Tz ar
Lo 0ZeD |, 2MAa 4M?a3,
1 M2) " ZO - a2 T Z(1 = M)V —2M)(r? + a?)
2Ma —
* Z(1 = r2)(r? + ag)} ;<_E>@I
)5 2M b AM2bY,
+ 2 2] + PAWA + AN 7 B 7 92 ~)
(L=X\2)  Z1=N2)2 " Z(1 = A2V = 2M) (72 + b?)
2Mb vy
e E)¥; A2 _—“—
- e SCE R Y (e
2M 4030252 Q'
ToTaC ,\rﬂ‘)) T Z(V = 2M) (2 + a2)? _Z—} iP5
3 22 (_ZaZy , 2M ~ AMPYE2
T = s ’ M1I=Ar2)  Z(1=N2) ) Z(V = 2M)(r? + b2)?
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Q(H—m)(jer 5 m PN 20
- | Wl 2 ZZ Nab /\ oo
=1 j=1
4M2ab¥,Ts B Q"?<J‘+m> 5.0
Z(V = 2M)(r? + a?)(r? + b?) Z td
S+ 0%, Tp(rP+a?) \
: Ly, 7.30
r? +a? it P24 p2 L (7.30)
and
- 2 9 2 213 .. 9 CZSA 2 9 2
—-K = m*a” cos” 8+ m°b~sin” 0 + Ay d(9 + 2, cot? . 7“ + Xptan= AL]
TuZb o L)) banb T o AZg? zaub
—F -2 ——FE®; -2 ——FEV,; +
p P i3
N8, 5, A2 1)24127 .
+ 33 > Z‘I’\IIJ—%‘)ZZ B0, (7.31)
=1 j=1 i=1 j=1

where K is a scparation constant.

In order to show complete separation of the Hamilton-Jacobi equation, we analyze
the o and 3 sectors in (7.29) and demonstrate separation of the individual oy and 3;.
The pattern here is that of a Hamiltonian of non-relativistic classical particles on the
unit (m - 1)-a and the unit (p — 1)-3 spheres, with some potential dependent on the
squares of the p;. This can easily be additively separated following the usual procedure,
one angle at a time, and the pattern continues for all integers m,p > 2

The separation has the following inductive form for k =1.....m—2, and [ =1, ...,p—2:

<d,s%>2 _ g Jia S

dovg sinay,  cosZay

S, \° . o2 2
< Y. 1> — -]731_] _ — 1 _ . 2

2 -2 s
dﬂm—1 SN (Yppp—1 COS QU1

2 2 2
dSu?lI _ LQ B Ll+l Ip I+1
ds L gin? >3, cos?F

(i&) - 2, - uwoo B (7.32)

9 92
Ay sin® Fp_1 cos® B,

Thus, the Hamilton-Jacobi equation in the Kerr-(Anti) de Sitter rotating black hole

background in all dimensions with two scts of possibly unequal rotation paramecters has
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the general separation
m m-—-1 p—1
S = —m 2]~ ET+Z <I>1g¢7+z Wi omai 90 (7)+5p( +Z S (i -1—2 Sp.8i), (7.33)

i=1 i=1

where the c; and J3; are the spherical polar coordinates on the unit (m — 1) and unit
(p — 1) spheres respectively. S,(r) can be obtained by quadratures from (7.30), Sp(8)
by quadratures from (7.31), and the S, () and the Sg, (3;) again by quadratures from
(7.32).

7.5 The Equations of Motion

7.5.1 Derivation of the Equations of Motion

To derive the equations of motion, we will write the separated action S from the

Hamilton-Jacobi equation in the following form:

1, m p T o
S = sm“l — Er+ Z Dip; + Z Wi omas + / VR dr' + / Vv O(6)d¢
- i=1 :
rm—1 p—1

+ Z/ \/va’fY +Z/ Bi(3})ds; . (7.34)

where
‘ . J? 2
A = JP—— A2+1 - ‘,M'l , E=1,...,m-—2,
sin®qy,  cos® g
> 1 3
Am~1 = m—1" .35 - ) ’
$in® Q-1 COS* Qupm—1
LQ \IJ? k
v - P 1+1 R
Bk = L]z_ . };+1 - po ) k’_"lf'”!p_zt
sin” B, cos? [
A 2 VR
72 1 2 .
B])—1 - Lp——l T /3 - 5 j l (735)
sin® 8,1 cos® Py
® is obtained from (7.31) as
9 9 2 999 .9 2 ) DR Eazb o
AgO = — mTa*costd —m b sint g — ¥, cot” 0J7 — Eptant 4L] — E-
[4
m m m
a3 IS e’
+ QZ a bE@i 9 a bE\I}“‘ZZ « b(I)‘I’
; Ay
= i=1 i=1 j=1
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m p

p P 21.2 2
A*b* Z Zb AcabX Xy . - g
i=1 j=1 i=1 j=1

and R is obtained from (7.30) as

V —2M
Z

LS M4’ \
AML=2Xr2)  Z(— M2 Z(1— r?2)?
o, { aX, 2 N 2M \a n AM?aY,
(1=Xr?)  Z(A - 22 Z(1 - N2)2(V - 2M)(r? + a?)

R =

!

9 9
more 4 [

2Ma
- Z{1 = 2y (r? + az)} Z('E)q)i

=1
D3N 2M b AM2BS,
— 2 +
I=M2) " ZA = N2)Z T Z(1— M2)2(V = 2M)(r? + b?)

m m

| 2Mb B s o/ ST
o Z(1~/\r2)(1~+b)}; ENY; ZZ{/\(L< Al — Ar?)

=1 j=1

oM AM2a25? Qv
Z(1 - \r?) Z(V-2M)(r?+a?)? Z

z”:i 22 z Sy, 2M AM*H°S2
= = —Ar?)  Z(1- Ar?) Z(V = 2M)(r? 4 b2)?
Q(H—m)(]—H‘n)

m P
_4((2[7 217\.[
— S — 92 i
Z } W23 3 {A “b< N1y T Z(l—/\'r9)>

=1 j=1

<] e,

B AM2abE 2y QU _—

Z(V = 2M)(r? + a®)(r? + b?) Z B

Lo (r? 4+ b%) 2 Ty (r? + a®)
r24q2 1 r? 4 b2

L3I+ K. (7.37)

To obtain the equations of motion, we differentiate S with respect to the parameters
°. K.E,J?, L ®;, ¥; and set these derivatives to equal other constants of motion.
However., we can set all these new constants of motion to zero {following from freedom
in choice of origin for the corresponding coordinates, or alternatively by changing the
constants of integration). Following this procedure, we get the following cquations of

motion:

S / Zr*  dr . (a® cos? 6 + b sin® 6)d8
om? ) V-2M /R AgVO ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. TWO PARAMETER KERR-DE SITTER METRICS 90

oS _ . / a9 / Z  dr
oK Apv® ) V-2M R’

s /dm B Z T’ +¥) dr [ Tacot®fdf

aJ: V-2M r?+a¢> VR AgVO

ﬂs; - / da’\ = . ‘)1 dak;l H k= 2, sy T — 27

aJi sin” ap_1 «/Ap_1

s / d/31 o/ Z So(r?+d?) dr [ Tytan®6do

L7 J VM TR VR T a6

as d/j’z 1 dfi

— = 0= = . . l=2,.,p-2. 7.38
OL? / sin? Bk 1 /Bi_1 P (7.38)

We can obtain N more equations of motion for the variables ¢; by differentiating S with
respect to the angular momenta ®; and ¥;. Another cquation can also be obtained
by differentiating S with respect to £ involving the time coordinate 7. However, these
equations are not particularly illuminating, but can be written out explicitly if necessary
by following this procedure. It is often more convenient to rewrite these in the form

of first-order differential equations obtained from (7.38) by direct differentiation with

respect to the affine parameter.

We only list the most relevant ones here:

5 V—-2M
= 7—\/—1?
/)2(;—? = AyVO,
2 2 iy
(r +a)@% = Ak , E=1,..,m-—1,
X dl sin? HHL Lsin? oy
2152 dfy B
(" +07)dfe _ \/I_{ o l=1,..p—1. (7.39)
b dl cos? O [,Z; sin® 3;

7.5.2 Analysis of the Radial Equation

Worldlines of particles in these backgrounds are completely specified by the values of the
conserved quantities E, K, Lf J?, and by the initial values of the coordinates. We will
consider particle motion in the black hole exterior. Allowed regions of particle motion
necessarily need to have positive value for the quantity R, owing to equation (7.39). We
determine some of the possibilities of the allowed motion.

At large radius 7, the dominant contribution to R, in the case of A = 0, is £2 — m?.
Thus we can say that for E? < m?, we cannot have unbounded orbits, whereas for
E? > m?, such orbits are possible. For the case of nonzero A, the dominant term at

large 7 in R (or rather the slowest decaying term) is —’1'—7 Thus in the case of the Kerr-
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Anti-de Sitter background, only bound orbits are possible, whereas in the Kerr-de Sitter
backgrounds, both unbounded and bound orbits may be possible.
In order to study the radial motion of particles in these metrics, it is useful to cast

the radial equation of motion into a different form. Decompose R as a quadratic in E

as follows:
R=«FE? - 28E +~, (7.40)
where
Z el 2M 402
a = = y -~ + = o+ o
V—2M [ NM1—=Ar?2)  Z{1-Xr?) Z(1—-Xr?)?
3 — -7 a2q Xy n 2M Ma L 4M?a¥,
TV =_2M [T M2) 0 Z( -2 Z(1 - Ar?)2(V - 2M)(r? + a?)
2Ma = &
* Z(1 - Ar2)(r? + a?) ; '
B Z bY. Xy 2MNb . AM?bY,
V—2M [(1-X?2)  Z(1-Xr%)2  Z(1 - 22V —2M)(r? + b?)

oMb
T ZA A }Z‘P

o [y2 0 ZlE 2M 4M?a°S2
= — )\2 2 a=b + - : _ “a
i { Z;E:{ a(Au—Aﬂ)‘Zu—Aﬂ) Z(V = 2M)(r2 < a?)2

i=1 j=1
1 poop > o1
— )\ b ( ‘—4(1 b + ‘ &l : )
Z} . 1;{ —Ar?)  Z(1— Mr2)
4]\([2[)“2‘ (H—m)( j 1)
- 3 p — Q \D7\I,J
Z(V —2M)(r? + b2)? VA
Sa(r? £ 0%) o Ey(r? +a?)
— 72 a2 Ji - G R L+ K — m?*r?
Qi - |:/\ b( (1~—Jb 2M )
- a ‘
i=1 j=1 /\") Z(1— Ar?)
4M?abE, Ty Qiti+m) Z B
ZV D) vz | v ol (74)

The turning points for trajectories in the radial motion (defined by the condition

R =0) are given by E = Vi where

3+ /8% — ay
Vi = E__Q_”l . (7.42)
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These functions, called the effective potentials [20], determine allowed regions of motion.
In this form, the radial equation is much more suitable for detailed numerical analysis

for specific values of parameters.

7.5.3 Analysis of the Angular Equations

Another class of interesting motions possible describes motion at a constant value of ¢
or 3;. These arc analogous to the same class of motions analyzed in [23]. We briefly

summarize them here. These motions are described by the simultaneous equations

dA;

dov;

Aoy = ayp) = (v = ) =0, i=1,...,m—1, (7.43)
in the case of constant «; motion, where g is the constant value of oy along this
trajectory, or by the simultaneous equations

. dB; ,

Bi(ﬁi:ﬁio) :—,—Z(/J’)r,j:ﬁio) :O, L= 1,....,17—'1, (744)
in the casc of constant §; motion, where ;g is the constant value of 3; along this trajec-
tory.

These equations can be explicitly solved. In the case of constant «; motion, we get

the relations

2 2
i1 — q)'m.—ifl
sin* o cos? oy
2 2
2 1 —i .
JPo= o omoml i1 om— 1. (7.45)

T : 3
sin® oy cos? oy

Note that if ;g = 0, then .],Lf‘)+1 = 0, and if a9 = 7/2, then (Dfn_iH = (. Similarly, in

the case of constant /3; motion, we get the relations

? 2

41 _ p—i—1
sin* f3; cost By’
. L? w2,
¥ = o el i=1,..,p—1. (7.46)

) H 4
sin® 3;  cos? 3

Again if F;p = 0, then LfH =0, and if F;p = 7/2, then \If;“;_iﬂ = 0.
Examining Aj, in the general case, oy = 0 can only be reached if Jy,y = 0. and
oy = 7/2 can be only be reached if ®,, ;11 = 0. The orbit will completely be in the

subspace a, = 0 only if JZ = &2 _, +1 and will completely be in the subspace «y = 7/2
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only if JZ = J} +1- Analogous results hold for constant /3; motion.
Again these equations are in a form suitable for numerical analysis for specific values

of the black hole and particle parameters.

7.6 Dynamical Symmetry

The spacetimes discussed here are stationary and “axisymmetric”; i.e., /07 and 0/d¢;
are Killing vectors and have associated conserved quantities, —F, ®,. and ¥,. In general,
if # is a Killing vector, then n*p, is a conserved quantity, where p is the momentum.
Note that this quantity is first order in the momenta.

In the case of only two sets of possibly unequal rotation parameters, more Killing
vectors exist since the spacetime acquires additional dynamical symunetry. We have
complete symmetry between the various planes of rotation characterized by the same
value of rotation parameter a; = a, and we can “rotate” one into another. Similarly,
we have symmetry between the planes of rotation characterized by the same value of
the rotation parameter a; = b, and we can “rotate” these into one another as well. The
vectors that generate these transformations are the required Killing vectors, The explicit
construction of such Killing vectors is done in [22]. In this case, we get two independent
sets of such Killing vectors, associated with the constant a and & valuce rotations.

In an odd number of spacetime dimensions, if a # b and both are nonvanishing, then
the rotational symmetry group is U(m) x U(p). If one of them is zero, but the other
is nonzero (we take the nonzero one to be a), then the rotational symmetry group is
U(m) x O(2p). In the case when a = b # 0, the rotational symmetry group is U(m + p).
In the case when ¢ = b = 0, L.e. in the Schwarzschild metric, the rotational symmetry
group is O(2m + 2p). In an even number of spacetime dimensions, b = 0 in the cases we
have analyzed. If @ # 0, then the rotational symmetry group is U(m) x O(2p — 1), and
in the case when @ = b = 0, i.e. in the Schwarzschild metric, the rotational symmetry
group is O(2m+2p —1). Note that since these metrics are stationary, the full dynamical
symmetry group is the direct product of R and the rotational symmetry group, where
R is the additive group of real numbers parameterizing 7.

We also obtain a non-trivial irreducible second-order Killing tensor, whose existence
is the principal reason that permits the separation of the » — 6 equations. This Killing
tensor is a generalization of the result obtained in the five dimensional casc in [20]. This

J

is obtained from the separation constant K in (7.30) and (7.31). We choose to analyze
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the latter.

- 2 9 2 2,2 .9 Zazb
K= — m'a cos” 0 —m7b sin“ 0 — E? — %, cot?8.JF — Tytan? 4L}
Ay
m Z by vy m. m. A) ‘)Eaz
+72““w@wszM!22:“ .t
i=1 j=1
i 2 A2HE, X NETy g g _)szab%ub@@ WY (7.47)
=1 j=1 Do =1 j=1 Ag "\os '

The Killing tensor K# is obtained from this separation constant (which is quadratic in

the canonical momenta) using the relation K = K*p,p,. It is then easy to see that

. Yoo 2 ‘ /
K = — g™ (a®cos? 6 + b?sin® §) — m: 8H6Y — g cot? §J{" — Ty tan® HLL"
T aX. ~ baTs
— Dodfdy — Y IR (G, + 0L 0Y) = Y Y, + 0, ,0)
i=1 6 Jj=1 o
m m
Aa? E Eb y A%h? v“”b 5V
— Z Z 5” 51 Z Z i—LH—m ozpj-?'?'”
i= 1] 1 =1 =1
Aab¥, T ‘
%> ““wM@ﬁw . ra
i=1 j=1

where Ji" and L{" are the reducible Killing tensors associated with the « and 3 sepa-
ration.

The existence of these additional Killing vectors and of the nontrivial irreducible
Killing tensor is the principal reason behind the complete separation of the Hamilton-
Jacobi equation. The nontrivial Killing tensor, in particular, exists due to the detailed

structure of the metrics under consideration and is a surprising result.

7.7 The Scalar Field Equation

Consider a scalar field ¥ in a gravitational background with the action

S =—3 /le\/ (VI)? + aRT? + m?T?), (7.49)

where we have included a curvature dependent coupling. However, in the Kerr-(Anti)
de Sitter background, R = X is constant. As a result we can trade ofl the curvature

coupling for a different mass term. So it is sufficient to study the massive Klein-Gordon
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equation in this background. We will simply set @ = 0 in the following. Variation of the

action leads to the Klein-Gordon equation
1
v—9

As discussed by Carter [26], the assumption of separability of the Klein-Gordon

9,(v/=99" 8,¥) =m?T . (7.50)

equation usually implies separability of the Hamilton-Jacobi equation. Conversely, if the
Hamilton-Jacobi equation does not separate, the Klein-Gordon equation seems unlikely
to separate. We can also see this explicitly (as in the case of the Hamilton-Jacobi
equation), since the (r, 7, ¢;) sector has coefficients in the equations that explicitly depend
on the p; except when of all a; = a, in which case separation seems likely. We will again
consider the much more general case of two sets of possibly unequal sets of rotation
parameters ¢ and b, We continue using the same numbering conventions for the variables.

Once again, we impose the constraint (7.2) and decompose the g, in two sots of
spherical polar coordinates as in (7.18) and (7.20). We calculate the determinant of the

metric to be

__712/)4(7,2 + a?)Qm—Q(T‘Z + bE)Qp—Zve

PO -9 AN — .2
sin®™2 g cos¥P—2-2¢ g

g = L
2mep— €
yamyy
m—1 p-1
. —dg =2 2 . y—d e —2 2. -9
* H sintm—4 “ oy cos” Hsm4p =2 3 cos? B | cos™ By . (7.51)
j=1 k=1
. . 8 4
For convenience we write g = — \‘ijl éf,_ys, where
~a &y
9 9 IND—9 2 INQm—2
R = r(r+a)™ 0 + b”)zp e
T = sin? 2fcos?? 2729,
m—1
v Ay —dg—9 o
A = H siptm——2 o cos” oy,
Jj=1
p—1
o dp—dk—2 2 —9¢ o
B = H51n4p =2 5 cos® By cos T (7.52)
k=1

Note that R and T are functions of r and 8 only, and A and B only depend on the set

of variables a; and 3; respectively. Then the Klein-Gordon equation in this background
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(7.50) becomes

m

2N Ya 1

) 1 ‘/ i A2
miU = 9. |V V)4 —s—F—ss ) =02V
m-y 2 ,—()r ( R——F— C) > (,,._2 + a") Sil’lz A 7221 /\; ¥

2
(r? +0?) cos? 0 Z Oprm ¥+ \/_c)g (\/_Ag()g\lf>

m—1
2a 1 VA )
6 o~ 9 A (,\ —_'—_—da\lj
i (r? 4+ a2) sin® H[Z VA '( i1 inzwk 1 )}

Zb
+ 0z, U
<7H+bz cos? 6 {2/ s, < k 1511’1 2 By 7 )}

n {Zazb B Y2y B 2M B 4M? } ()2‘1
ARDp  pPA1 = Ar2)  p2Z(1—Xr?)  p2Z(1— Ar?)?
+ 9 {azagb B aXaZp AM32a3,
PRy pP(L= M) pPZ(1 = ARV = 2M)(r? + a?)
- 2Mda 2Ma } Z 2
P2Z(1 = )2 p2Z(1 = Ar?)(r? 4 a?) o ¥
L {bzf,zb LB e be
20y P21 =A%) pRZ(1— Nr2)2(V = 2M)(r2 + )
2M b 2Mb } Z]: -
pPZ(1—Ar2)2 p2Z(1— Mr?)(r2 +1b2) Temy

j=1

LIRS RS VD ¥ Y5 2M
2.2 a=b b
- ZZ{“ <p2A9 AT — Ar?) p‘zzu—/\r?)>

i=1 j=1
M52 L@,
P2V =2M)(r? +a*)?  p*Z

DIPHI 3l 2M
i N - e
h ZE { < Ny NI M) 221 = )\,,.2)>

i=1 j=1
AMH?Y2 (i+m)(g+m)
+ 2 r . (fv -)0+Q 2 L:D D41 v
p,Z(‘/ __2]\[)(7__;_6_)- [)“Z i--mPj im
g .5 S5 oM
-2 Aab S R . :
B 22{ ) <f Ay AL X P20 —Ar2>>
4M?abT, Ty @it
P22V = 2M)(r? + o) (r? + b2) - P27 EAEhad (7.53)
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We attempt the usual multiplicative separation for ¥ in the following form:

m—1 p—1
P = @7(71)(b[)<9) V—ZETPZ 21 *I%YYE: 2y Py, iPm+i (H (Dal ; ) <H (D] D’ > . (754)

=1

where we again adopt the convention that ¥, = 0 in the case of even dimensional
spacetimes.
The Klein-Gordon equation then completely separates. The » and # equations are

given as

: 1 d V - 2M d®, ZaZb 20 4M? )
YT 3 VR (W Z > * {/\(1 ) T Z0 = Z =

)
N I Y 2 ) 2M 4M?a?52
T ;Z [’\ “ </\(1~)\7~2) +Z(1—)\r9)> Z(V —2M)(r? + a2)2

b

QY P& ) Tl oM
- } JJ”ZZM L2 Z0— a7

AM2H22 Q('}l—&—m)(j—}—m)
Z(V =2M)(r2 +b2)2 Z

i .5 20
2 )
- ZZ {\ ‘“’( —n?) T Z- A7~2)>

=1 j=1

4M?abz b Qi
ZV 2P a2+ 00 Z
o[ _aZas N 2M Na N 4M%ax,
(1—X\r2)  Z({1 -2 Z(1 = 22V = 2M)(r2 + a?)

. 2Ma iE@
Z(1 — Ar2)(r? + a?)

b, % ZM)\Z; 4M2bY,
- 2 + +
(1-M2)  Z(1—=M2)2 " Z(1 = r2)2(V = 2M)(r? + b?)

?Mb 2 b2 & ,

s }ZE S o K
24 a? 9 55
- Sy ZZ\[ﬂI’zva?‘Z. (7.55)
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and
- 1 dq)(? Zazb 2 2, 2 2 2 .9 A
—-K = \/~A9 - E° —m*(a”cos® f + b~ sin~ 8)
‘I)e\/—d9< > ADyg
E m m Z
+ Kicot?§+Mitan® — 200”32 3 1Y " 8 — 2007 ““’)ZZ\M/
9 i=1 j=1 i=1 j=1
_J m [an
_ pape EbZZ@\y P “EbZE(D ” me (7.56)
i=1 j=1

where K, Ky and M, are separation constants. Ky and Mj encode all the o and 3

dependence respectively and are defined explicitly as follows:

ZA B k —, k=1..m-1, (7.57)
=1 sin” cv;
where
1 d sy AP
= - i 2me—2i—1 o
.44'1; — L m—2i—1 i—1 . 9 d i COS CM,, Sl [eh} _—-—i :
D, COs oy sin o [T sin? oy, dey; doy,
Q_‘
1 L
_ - m—i+ 5 3 ((58)
Cos™ ¢y szl sin® o
and
ZB - A 1@1 /3 k=1,..,p—1, (7.59)
n
and where
1 d 2 i (]q)
v A i 2p=2i=1 3
B = NI e B R i 53, sin™ 3 13-7
W, cos ( sin? =" 3; [ [,y sin” G, a5 d3;
— \I];J 1+l . ] (7.60)
cos? 3; TTZ] sin® 5

Then we inductively have the complete separation of the o; dependence as

- 2
. Ky, o, 1 d . AP,
Ky = — .,,+ e ‘)Hl + TSR] o | COS g sin oy, k) (7.61)
sin“op  costagp Py, cosagsinT T oy, doy, devy,
where k= 1,...,m — 1, and we usc the convention K, = ;Q)f. Similarly, the complete
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scparation of the /; dependence is given inductively by

My ‘I’}z)—k P 1 d ( . ddgs,
My, = -+ ‘ —— | cos B sin B, ——= | , (7.62
b s B cos? By Dp, cos By sin? L gy dBy P sin B gy, (7.62)
where k = 1,...,p — 1, and we use the convention M, = —\If%. These results agree with

the previously known analysis in five dimensions [21].

At this point we have complete separation of the Klein-Gordon equation in the Kerr-
(Anti) de Sitter black hole background in all dimensions with two sets of possibly unequal
rotation parameters in the form given by (7.54) with the individual separation functions
given by the ordinary differential equations above. Note that the separation of the Klein-
Gordon equation in this geometry is again due to the existence of the non-trivial Killing

tensor.

Conclusions

We studied the integrability properties of the Hamilton-Jacobi and the massive Klein-
Gordon equations in the Kerr-(Anti) de Sitter black hole backgrounds in all dimensions.
Complete separation of both equations in Boyer-Lindquist coordinates is possible for
the case of two possibly unequal sets of rotation parameters. We discuss the Killing
vectors and reducible Killing tensors that exist in the spacetime and also construct
the nontrivial irreducible Killing tensor which explicitly permits complete separation.
Thus we demonstrate the separability of the Hamilton-Jacobi and the Klein-Gordon
equations as a direct consequence of the enhancement of symmetry. We also derive first-
order equations of motion for classical particles in these backgrounds, and analyze the
properties of some special trajectories.

Further work in this direction could include the study of higher-spin field equations
in these backgrounds, which is of great interest, particularly in the context of string
theory. Explicit numerical study of the equations of motion for specific values of the black
hole parameters could lead to interesting results. The first order equations of motion
presented here can also readily be used in the detailed study of black hole singularity

structure in an AdS background geodesic probes and the AdS/CFT correspondence.
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Part 11

D-Branes of Wess-Zumino-Witten
Models
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Chapter 8

The Virtues of “Lie”-ing

String theories that are of direct phenomenological relevance are notoriously difficult to
handle for many reasons like non-perturbative limits, strong curvatures, strong couplings
etc. As a consequence, it is desirable to study several “toy models” which exhibit similar
features of interest as the real string theories, but are easier to understand and more
tractable. Two of the most important classes of such models studied in recent years are
the Wess-Zumino-Witten (WZW) models, and the matrix models. In this part of the
thesis, we will work with symmetries and D-branes in the context of the former.

D-branes, and their charges, are extremely important aspects of string theory. D-
branes cannot be ignored in any consistent string theory owing to their solitonic nature,
and also since they are in some sense as natural as strings in certain sectors of the theory.
Their charges heavily constrain their dynamics. For instance, a D-brane with a conserved
charge may be stable against decay. Brane anti-brane annihilation is another situation
where the charges are relevant, since the resulting products are constrained by charge
conservation. In the target space approach, charges of D-branes in string theory are dealt
with using the powerful geometric tools of K-theory and cohomology. This approach is
essentially useful anytime the supergravity approximation can be trusted and is, thus,
valid in many situations. However, one major drawback of this “macroscopic” approach
is that it only provides information about the charge groups of the D-branes, and not
the individual charges of the D-branes themselves. Also, there may be situations where
the supergravity approximation is insufficient, and it may be useful to have another
calculation method which could provide information about D-brane charges in these
situations.

This other, “microscopic”, approach has been developed in great detail for the situ-

ation of WZW models. WZW models describe string theory where the target space is
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some group manifold (i.c. a Lic group). WZW modcls exhibit many of the broad fea-
tures we would like in a toy model of phenomenological string theory, and importantly
for our purposes, they have very interesting D-branes and associated dynamics. Thus,
understanding the microscopic D-brane charge calculation in the context of WZW mod-
els may perhaps shed light on similar calculations in other string theories. In addition,
the study of WZW models has great intrinsic value in the context of mathematics, and
particularly in knot theory and algebraic geometry.

WZW models are highly tractable since they are exactly solvable CFT’s. In addition
to the standard infinite dimensional conformal symmetry of any CFT, they also possess
additional symmetries related to the affine Lie algebra of the underlying group manifold.
Large amounts of symmetry translate to large numbers of constraints, which can be very
effectively exploited to the properties of WZW models. The use of these symmetries
provides a microscopic method of calculating D-brane charges. The remarkable thing
about this method is that it is an exact CFT/string description, i.e. its answers can
be trusted in all situations where the method is applicable. Thus, it provides informa-
tion complementary to the K-theory approach. In addition, this method calculates the
charges themselves and not just the charge groups.

The charge groups of D-branes on WZW models using K-theory have been calculated
in {1] for full affine symmetry preserving D-branes and in [2] for D-branes that preserve
the affine symmetry only up to some twist. Microscopic calculations have been done in
many cases, and they agree with the K-theory calculations for the charge groups [3-7].
In addition, the microscopic calculation has been done for cases where the K-theory
approach has not (yet) yielded information [8-10]. Several of these D-brancs have been
explicitly constructed, and their charges have been determined confirming the more
abstract microscopic and K-theory calculations [11,12]

Chapter 9 contains a very brief introduction to affine Lie algebras and WZW models.
Chapter 10 presents the basic ideas behind the microscopic approach to D-branes and
their charges. The main results of this part of the thesis appear in Chapter 11, where
this approach is used to calculate the charges and charge groups for the triality-twisted
D-branes of Dy and the charge conjugation twisted D-branes of Eg. Chapter 12 contains
results of a similar calculation for the case of charge conjugation twisted D-branes on
the non-simply connected group Fg/Zs. The results of the calculations in this appendix
will appear in a future paper that will also contain similar calculations for some other
twisted non-simply connected groups. Appendix A contains a brief introduction to the

very basic ideas of conformal field theory that are used throughout this part of the thesis.
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Chapter 9

Affine Lie Algebras & WZW

Models for Dummies

9.1 Simple Lie Algebras

In many respects, the theory of affine Lie algebras is a very natural extension of the theory
of simple Lie algebras, and as such, affine Lie algebras cannot be studied effectively on
their own. In addition, the central interests in this part of the thesis are based on
WZW models and their fusion rules. Fusion rules are naturally seen as truncations of
tensor products of representations of the underlying Lie algebra. The very basics of the
theory of simple Lie algebras are presented here. For further information, particularly
in the context of CFT’s and WZW models, an excellent reference is [1]. Other excellent
references include [2,3], which are highly recommended, as well as [4, 5],

A Lie algebra is a vector space g that possesses an antisymmetric bilinear operation
[...] rgxg— g. called a commutator or Lie bracket, satisfying the Jacobi identity:

X, V.2 + 2. [X.Y]]+[Y.]Z.X]) =0 VX.Y.Z. (9.1)

A subspace i) C g of a Lie algebra g which is itself a Lie algebra is called a Lie subalgebra

of g i.e. symbolically
h.hlCh, (9.2)

that is, [z,y] € BVz,y € . If in addition to the above, h satisfies the much stronger
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property
el Ch, (9.3)

then the subalgebra b is said to an ideal of g (or an invariant subalgebra}. A Lie algebra
is sald to be simple if it has no proper ideals, and semisimple if it can be expressed
as a direct sum of simple Lie algebras.

A representation (on V) of a Lie algebra g is a linear mapping into gl(V'), the space
of linear operators on a vector space V', which preserves the commutation relations of g.
The dimension of V' is known as the dimension of the representation. A represeuntation
is said to be irreducible if the matrices representing the clements of g cannot all be
brought into a block-diagonal form.

A Lie algebra is specified by giving a basis of generators ! {J%} together with their

commutation relations
I =Y ife. (9.4)
¢

The constants f% are known as structure constants. The standard Cartan-Weyl

Je y
basis is a preferred basis of generators constructed as follows. Find a maximal set of
commuting Hermitean generators H L

(H',H/] =0 i j=1,..,1. (9.5)

These span a subalgebra § of g known as the Cartan subalgebra, and the dimension
7 of hy is known as the rank of the Lie algebra g. The remaining generators are chosen
to be ones that diagonalize the Cartan subalgebra simultaneously with respect to the

commutator i.e.
[H',E®] = 'E*, (9.6)

L ..,a") is called a root, and E® is the corresponding ladder

where the vector a = («
operator. « is best thought of as an clement of the dual space §* of the Cartan subalgebra
via the mapping «(H') = o'. By taking the adjoint of (9.6), we can see that —a is also
a root with the corresponding ladder operator E~% = (E®)T. The set of all roots of g is

typically denoted by A,

!Note that the terminology is the standard one in high energy physics, but does not necessarily agree
with the mathematical literature where the words basis and gencrator have slightly different meanings
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A representation of special significance is the adjoint representation where the
vector space V is chosen to be the Lie algebra g itself regarded as a vector space. In the

adjoint representation, the action of a generator X is represented by ad(X) defined as
ad(X)Y = [X,Y]. (9.7)

Using the Jacobi equation it is possible to show that if o+ € A, then the commutator
[E“, Eﬂ] is proportional to E“*#, and vanishes if o + 3 ¢ A. Also when = —f3, then
[E%, E~%] commutes with all the H*, which is possible only if it is a linear combination
of the generators of the Cartan subalgebra. Choosing the normalizations, and using the

notation
r T o
a-H:Zale. C!)B:ZCY’L,B‘] (98)
i=1 1=1

where o and / are both roots, the complete commutation relations of the Lic algebra

can be cast into the form

[H', H/| = 0,
[Hi,Ea} — C!'I"ECY_.
[EC&EB} = NogEt? . ifa+pBeA. (9.9)
2 .
= pecH. ifa=-5,

= (, otherwise,

where N, 5 is a number.

The Killing Form is a unique (up to normalization) inner product that can he
defined for any Lie algebra g. This is the inner product with respect to which the
adjoint map is skew symmetric. It can be shown that it is given by

r
u

K(X,Y) = w%Tr(ad(X)ad(Y)), (9.10)
where the numerical factor is a convenient normalization, and kY will be defined below.
By restriction. obviously this defines a norm on h as well. Thus, a norm is also defined
on the dual space h* consisting of roots (and weights, to be defined below). Further
details on the exact construction can be found in [1]. Henceforth, it will be understood
that (o, 8) is the scalar product between the roots defined using the Killing form and

al? = (o, ).
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For an arbitrary representation, a basis {|{\ >} can always be found that simultane-

ously diagonalizes the Cartan subalgebra (as they are made up of commuting elements):
H A >= N\ > . (9.11)

The eigenvalues A! build a vector A = (Al,..., A7), called a weight. Note that roots are
simply weights in the adjoint representation. Weights also live in the dual space h*.

Using (9.6) it is possible to see that
HEY\>=[H.E*] ]\ > +E*H\ >= (\' + o' )E¥|\ > (9.12)

so that E%|\ >, if non-zero, must be proportional to a state |A + « >. So essentially
the operators £ do indeed behave as ladder operators, similar to the operators J* in
the case of angular momentum (su(2)) in quantum mechanics, or the ladder operators a
and «' for the simple harmonic oscillator. Using the various E® the representation can
be constructed using the basic commutation relations.

Pick a base of roots {f1,..., 3.} for §*, so that any root can be expanded as o =

i1 mif3; such that all the n;’s are integers and either all are greater than or equal to
zero, or all are less than or equal to zero. Relative to this base an ordering can be defined:
a root v is said to be positive if the first nonzero number in the sequence (ny,...,n,) is
positive. Denote the set of positive roots by Ay, and the set A_ of negative roots is
defined similarly. A simple root «; is defined to be a root that cannot be written as
the sum of two positive roots. Clearly, there are necessarily r simple roots (where r is
the rank of g).

A distinguished element of A is the highest root 8. It is the unique root for which
in the expansion 21. mqey;, the sum zl m,; 1s maximized. It is convenient to introduce
the coroots:

v 20y
2

= e (9.13)

The coefficients of the expansion of the highest root # in the simple roots and coroots
carry special names, and are respectively called the marks (a;) or Coxeter labels and

the comarks (a;”) or dual Coxeter labels:

8= Zr: a;0; = ia;/ay . (9.14)

=1 i=1

The weights are typically normalized by taking |6]? = 2. Clearly marks and co-marks arc
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related by a; = 2a) /|a;|?. Two very important quantitics are the Coxeter Number h
and the Dual Coxeter Number /" (which is the normalization factor that appears in
the definition of the Killing form (9.10)), defined as

T T
h=1+Y a, hY=1+> a. (9.15)
i=1 =1

One of the most fundamental entities useful in the study of Lie algebras is the Cartan
Matrix defined as

Ay =(ai,af),  1<ij<r. (9.16)

The entries of the Cartan matrix are necessarily integers. Its diagonal clements arc all
2, and it is not symmetric in general. The off-diagonal terms are non-positive and can
be only 0,-1,-2, or -3. The number A;; characterizes how the su(2) algebra generated by
the operator E% acts on the operator E% through the commutation relations.
Weights and roots both live in the dual space of the Cartan subalgebra h*. Weights
can be expanded in terms of a basis of simple roots, but the coefficients are not integers,
s0 a better basis to use is the one dual to the simple coroot basis. This is a set {w;}

known as the fundamental weights of g defined by
(wiyof ) = dij . (9.17)

The expansions coefficients A; of a weight A in the fundamental weight basis are called

Dynkin labels. Hence,
,
A=) hwi e A= (A o). (9.18)
i=1
The Dynkin labels of weights in finite-dimensional irreducible representations are always
integers, and such weights are said to be integral and a weight A is specified in terms

of its Dynkin labels as A = [Ar, ..., Ar]. A useful fact to note is that the elements of the

Cartan matrix of g are the Dynkin labels of the simple roots i.e.
;
@ =) Ajwy,  i=1..7. (9.19)
i=1

While the Cartan-Weyl basis is the natural one to obtain information about the

structure of the Lic algebra g itself, there is a more natural basis to use in the study of
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the finite dimensional representations of g known as the Chevalley-Serre basis. The

generators are
e'i — Fi .’ fv? — i , h"i, _ (Y.;/ CH. (920)

The commutation relations between them (which can be easily obtained from the Cartan-
Weyl commutation relations in combination with the definitions of the Chevalley-Serre

generators) are:

(A, ] =0

[he,el] = Ajiel

[P 7 = = Ajf (9.21)
[ei:f‘q = ol\]hl

These do not reproduce all the commutation relations (since they only address the com-
mutation of the ladder operators associated to the simple roots). The remaining com-
mutation relations (which are present in the Cartan-Weyl commutation relations) are

provided in terms of the Serre relations

ad(e")] i g,

ad(fH)' M fi =0, (9:

[8V)
[R]
~

[
L
[
L

where i # j.
It is important to note that A° refers to an eigenvalue in the Cartan-Weyl basis,
while the Dynkin labels A; are the cigenvalues in the Chevalley-Serre basis of the Cartan

subalgebra, i.e.

B

A= NI >, (9.23)

and \; # \* in most cases. A weight is said to be dominant if all of its Dynkin labels are
non-negative integers. Finite dimensional representations of a Lie algebra are given hy
specifying its highest weight, which is dominant integral. The remaining weights are
obtained by acting on it and its descendants using the Chevalley-Serre ladder operators
et, f7 and taking the Serre relations (9.22) into account. The highest weight of the
adjoint representation is . Dominant integral highest weight representations for simple
Lie algebras give rise to irreducible representations.

All the information in the Cartan Matrix can be captured using Dynkin diagrams.
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To every simple root q; associate a node and join the nodes i and j by Aj;A;; lines.
Hence orthogonal simple roots are not connected. In addition, an arrow is placed on the
lines pointing from a longer root to a shorter root when they are of unequal size. The
classification of finite dimensional simple Lie algebras boils down to a classification of
Dynkin diagrams. It turns out that there are four infinite families:

-A,, which are essentially the Lie algebras familiar as su(r + 1).

-B,.. which are essentially the Lie algebras familiar as so(2r + 1).

-C', which are essentially the Lie algebras familiar as sp(2r).

-D,, which are cssentially the Lic algcbras familiar as so(2r).

In addition there are five exceptional Lie algebras knows as Eg, E7, and Eg, as well
as Fy and G3. The Dynkin diagrams for all of these is given in Fig. (9.1)%. Lie algebras
all of whose roots are equal in size are said to be simply laced. There are no multiple
lines present in any of their Dynkin diagrams. From Fig. (9.1), the simply laced Lie
algebras are easily seen to the be families A,, D,, as well as Eg, E7, and Es.

The quadratic form matrix is defined by F; = (w;,w;), using the inner product

defined on h*. In addition, we will also need the Weyl vector defined by

-
/):Zwi:% Z . (9.24)
i=1 -

aEA

Given an arbitrary root v, consider the operator s, that acts on an arbitrary weight

A (remember that both roots and weights live in §*) via the action
sa(A) = A= (a¥, Na. (9.25)

This corresponds to a reflection in root/weight space in the hyperplane orthogonal to .
It can be shown that if ) itself is taken to be a root, then s,(5) is also a root. The set
of all such reflections forms a group known as the Weyl group of g, usually denoted
W. It is generated by the r simple Weyl reflections s; defined by s; = s4,, in the
sense that every element in w € W can be decomposed as w = s;s;...5;,. The Weyl group
is extremely important for many reasons, not least of which is in representation theory.
Given a highest weight A, the entire representation can be constructed by considering
the action of the Weyl group on A. Also of great use is the shifted Weyl reflection

I{w

defined by w - A = w(\ + p) — p. For an arbitrary w € W define e(w) = (—1)**), where

[(w) is the smallest number of simple reflections required to express w ie. w = s;,...8;.

9 . o N “ ~ » . . . N
“Figure reproduced from [3] under the provisions of the Copyright Act. and with permission from
Cambridge University Press.
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Figure 9.1: Dynkin diagrams for the finite dimensional simple Lic algebras
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Given a representation of g with highest weight A, there is a lowest weight in the
representation, which cannot further be acted on by the f*'s. There will be some element
wo € W (not necessary a simple reflection) such that woA is the lowest weight. Turning
the representation “upside down” produces the so-called conjugate representation
(called charge conjugate in some contexts). Its highest weight is the negative of the
lowest state of the original representation i.e. A* = —(wgA). Conjugation corresponds
to some symmetry of the Dynkin diagram of g. For instance for the A,’s there is a re-
flection symmetry (about the middle) of the Dynkin diagram which essentially amounts
to reversing the order of the Dynkin labels, and this corresponds to the conjugate rep-
resentation. Algebras whose Dynkin diagrams do not have any symmetries only have
self-conjugate representations, i.e. A* = —wgA = A

The character of a highest weight representation A is formally defined as

e S e o
AeQly

where 2 is the set of all weights in the representation with highest weight A, multy(\')
is the multiplicity of the weight A in €y, and ¢® denotes a formal exponential satisfying

Miand e(€) = e, where \, . and € are arbitrary weights and on the right
F S Yy weig g

et =¢
hand side of the second expression is a genuine exponential function of real numbers. It
is quite a surprising fact that all the Lie theoretic information regarding a representation
with highest weight A is essentially encoded into vy, while naively it may seem that the
sum over weights in its definition wipes out the explicit structure of the representation.
In fact, most Lie theory arguments tend to work with characters rather than the unwieldy
representations themselves.

The famous Weyl character formula relates formal characters defined in terms of
explicit sums over weights of a representation, to a sum over elements of the Weyl group

and is given by

Dpew elw)e )
Zwe W €<7‘U) eur ()

Suppose a representation of g has highest weight A, then the Weyl dimension

XA =
formula gives the dimension of the representation (i.e. the dimension of the vector

space V on which the Lie algebra g is represented as a subalgebra of gi(V')):

dim\ = ] (—A(:—Z)a—) , (9.28)

QEA L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 9. AFFINE LIE ALGEBRAS & WZW MODELS FOR DUMMIES 116

The Weyl dimension formula is derived by taking the limit limy_g x)\(tp) and using
L’Hoépital’s rule on the expression in the Weyl character formula.

Tensor products of various representations of a Lie algebra g will be very important
subsequently, especially in the context of fusion rules of WZW models. Given two finite
dimensional representations of g with highest weights A and p, the tensor product of

these representations can be decomposed into irreducible representations as

Nop= P M, (9.29)

vEP.

where Py is the set of all dominant weights, and J e called the tensor product coef-
ficient gives the multiplicity of the representation v in the decomposition of the tensor
product A@ u. There are very general methods such as the character method, Littlewood
Richardson rules, Young tableaux etc. for calculating tensor product coefficients, many

of which rely on the Weyl character formula. Further details can be found in [1-3].

9.2 Affine Lie Algebras

The basic philosophy behind affine Lie algebras is as follows. For every (finite) Lie
algebra g there is associated an affine extension § obtained by adding an extra node
to the Dynkin diagram of g, which essentially corresponds to the highest root 8. The
effect of adding this extra simple root is to make the root system of g infinite, and
consequently, highest-weight representations are also infinite dimensional. However, the
collection of these representations have an additional substructure to them in that they
are organized by means of a new parameter called the level, usually denoted by k.
For a fixed level, there is a finite number of highest weight representations, the so-
called integrable representations. These representations have almost miraculous modular
transformation properties. However, we adopt a slightly different approach in the initial
construction of the affine Lic algebras, and display this aspect as well shortly thereafter.

Consider the situation where all the elements of g are also Laurent polynomials in
some variable z. The set of all such polynomials is denoted C[z, z7!]. This generalization
is called the loop algebra g of gi.e. § = g@Clz, 27| with generators J* @ z", where J¢
are the generators of g. The name loop algebra is appropriate since g could be regarded as
the space of all polynomial mappings from the circle S? to g. The notation J¢ = J*@ "

will be used. Now g is centrally extended by adding to it a central element k such
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that

v b - pab T &
{]7(;* ’]m} - Z ? g k 1CH-m. + ]‘Un'oabdn—!—m,ﬂ ,

cC

@mﬁ}zo, (9.30)

where the commutation relations of the underlying simple Lie algebra ¢ (9.4) are inherited
by the centrally extended loop algebra.

Finally a new operator, called a derivation, defined by

d
by = —2—, 9.31
0 T (9.31)
which acts on the adjoint representation i.e. [y, /3] = —nJ7, is added to the centrally
extended loop algebra. The resulting algebra,
f=goChaCl. (9.32)

is known as an affine Lie algebra. Clearly it is an infinite dimensional algebra since
it has an infinite number of generators {J2}, n € Z. g is generally called the finite or
zero-mode algebra, and it has generators J§.

For the purposes of constructing the algebra and its representations, instead of using
the set J¢

nI

it is preferable to use HY and B

', which are the loop extended elements

of the Cartan-Weyl basis, with the obvious commutation relations. Affine weights
are characterized as A = (A ky;ny), where A is a finite weight of g, and ky and n, arc
the eigenvalues of k and #4y. The algebra has sufficient degrees of freedom (e.g. linear
deformations of £5) that the Killing form can be chosen to yield the inner product between

two affine weights as
1) = () + Eang, + kuny . (9.33)

Affine roots are affine weights in the adjoint representation. In the adjoint representation
the eigenvalue of & is 0 since & commutes with all the generators. So, roots of § are of
the form /3 = (8:0;n). Thus, the scalar product of two affine roots is simply the scalar
product of the corresponding finite roots. The affine root associated to the generator £
is clearly (c;0;n). The generator § = (0;0;1) is known as an imaginary root, since it
has zero length ie. (6.8) = 0. If we represent a finite root «v in the space of affine weights
as a = (@ 0;0), then every affine root is either of the form {a-+-nd, n € Z, @ € A} or of

the form {nd, n € Z, n # 0}. The union of these two sets, i.e. the collection of all affine
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roots, is denoted A.

It can be shown that a basis of simple roots of g is given by «,, i = 1,..., 7, the simple
roots of g together with ag = (—8:;0;1) = —0 + 8, where 6 is the highest root of g. The
set of positive roots is AL = {a+ndin >0, a € AYU{a

€ AL}, This now provides a
relation to the initial description of affine Lie algebras in terms of adding an extra node.
Now that a basis of simple roots and a scalar product have been defined, the ex-

tended Cartan matrix can be defined as

Aij = (ay,0), 0<id,j<r, (9.34)
where the coroots are given by &V = rj‘—qa = ]—j.—_,a. The addition of the extra simple root

oo implics that the extended Cartan matrix has one extra row and column compared to
the Cartan matrix of g. Similar to the construction of the Dynkin diagrams for simple
Lie algebras, extended Dynkin diagrams can be constructed for these affine Lie algebras
as well, which encodes all the information of the extended Cartan matrix. These are
illustrated in the set (A) of Dynkin diagrams in Fig. (9.2)%. Clearly, these are obtained
from the corresponding algebra by the addition of an extra node for «q.

As mentioned earlier, associated to every affine Lie algebra, there is an extended
Cartan matrix. However, in addition to the extended Cartan matrices obtained by
the above procedure of going through centrally extending loop algebras, other extended
Cartan matrices can be defined as well. These result in the so called twisted affine
Lie algebras and are shown in set (B) in Fig. (9.2). The first label for each of these
Dynkin diagrams indicates the finite algebra whose Cartan matrix has been extended
to obtain the twisted algebra, and the superscript of 2 indicates that the affine algebra
is twisted and is not readily constructed as an extended loop algebra as above, without
modification of the procedure.

The second labeling for these Dynkin diagrams arises from the loop algebra tech-
nique used to construct the extended Lie algebra. As stated earlier, the loop algebra
is the space of analytic mappings from S* to the Lie algebra g. If instead of using the
boundary conditions P(e*™z) = P(z), we impose the twisted boundary conditions
x® P(e¥™2) = w(z) @ P(z), for every z in g, where w is an outer automorphism (a
symmetry) of the (unextended) Dynkin diagram of g on finite order N; i.e. N is the
smallest integer such that w’ = 1. In this casc the automorphism w provides a natural
Zy-grading of g, and consequently for the generators as well. The construction then

proceeds similar to the affine Lie algebras constructed above, taking this grading into

3Figure reproduced from [3] under the provisions of the Copyright Act. and with permission from
Cambridge University Press.
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account as well. This procedure results in the twisted algebra. Thus, in this labeling
the algebra symbol indicates the horizontal subalgebra whose N-folded centrally ex-
tended algebra results in the twisted affine Lie algebra and the superscript indicates the
order N of the automorphism used.

The affine marks a; and affine comarks a) are defined by

> ady =) Ayal =0. (9.35)
i=0 1=0

The affine Coxeter and affine dual Coxeter numbers are defined by h = > 7_, a;

and hY = Y7 _ja’ respectively. Through abuse of terminology, the label “affine” will
typically be dropped when referring to all four of these quantities.

Completely analogous to the finite case, a Chevalley-Serre basis can be constructed,
with commutation relations identical to (9.21) and (9.22), with indices now running from
0, instead of 1, to r, and the affine Cartan matrix is used instead.

The affine fundamental weights {&;} are, as before, defined to be dual to the
basis of coroots. The fundamental weights then turn out to be

uf}.,j:(w,,;l(L;/ZO)q 1<i<r,

Zo = (0;1:0). (9.36)

The scalar product between the fundamental weights can be worked out to be (@, &;) =
Fij and (w;,wg) = (wo,wo) = 0 for 1 < 4,5 < r. Again, weights arc specified using
Dynkin labels A; where i now runs from 0 to r via A= Z;:o Mw; and are usually written
as A = (Ao, ...y Ar]. Also, the affine Weyl vector can be similarly defined as p= "7 @;.

In an irreducible highest weight representation, k will be sent to a scalar multiple &
of the identity. This number k plays a very important role, and is called the level of the

representation. Any affine weight \in a level k representation will satisfy
-
k= a/\. (9.37)
i=0

The representations of most interest in the case of afline Lie algebras are the so-called
integrable dominant highest weight representations. As before, “dominant” im-
plies that all Dynkin labels are non-negative., In addition, the integrability condition

requires that

keZ,, k>(\6). (9.38)
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Figure 9.2: Dynkin diagrams for the affine Lic algebras
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The latter condition ensures non-negativity of Ag. The set of all dominant weights for
a given level k& will be denoted by Pj‘:. The integrability condition also ensures that
for any level k there are only a finite number of highest weights. Using the Chevalley-
Serre generators and relations the representations can be explicitly constructed. The
representations turn out necessarily to be infinite-dimensional. However, the integrabil-
ity condition allows the representations to be effectively organized by the grade, the
eigenvalue of Lg. At any grade, there are only a finite number of weights. This substruc-
ture of these representations allows greater control over the infinite dimensionality of
the representation modules, and also provides a very effective way of dealing with their
transformation properties. Explicit details of the representation theory will not concern
us here, and can be found in [1,3,6].

The affine Weyl group W is generated in a similar fashion to the finite Weyl group,
and is made of the “reflections” sg = A— (/\ &Y)é. The generator 85 corresponding to g
is in fact a reflection combined with a translation, and the affine Wely group has some
additional structure organiving it in spite of being an infinite group, again dependent
on the level k. Shifted affine Weyl reflections can be defined by w - A = w(\ + p) — p.
e(w) is also defined similar to the finite case as the parity of w in terms of simple Weyl
elements.

Affine characters are defined by

= Y mult (Ve (9.39)
Ve,

which can be shown to be equivalent to

A - e(w)ew A
/\A — 6,777,;\6 ZwEM/ ( ) ’ (94())

Zweﬁ/’ E(w)e“"(ﬁ)

where myd is the so called modular shift anomaly given by

2

L :
20V T 2(k+ hY) 2RV (9.41)

- /i\ %
)'n,/‘\() = TP - —

2(k + hY)
Characters of affine Lie algebras encode all the information regarding their representation
theory. In addition, they allow for easy analysis of several remarkable properties of affine
Lie algebras, which would not be transparent if the representations are directly studied.
The modular shift is essentially a normalization, but is going to be relevant for ensuring

that these characters behave well under modular transformations to be discussed below.
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9.3 Modular Transformations

Affine Lie algebras show up in the context of CFT’s in many situations, not least of
which are the WZW models which will be discussed in detail shortly. As is well known,
CFT’s have a a consistency condition that need to be satisfied at the one loop level, and
this gives rise to the concept of modularity. At the one-loop level, we need to consider
CFT’s defined on a torus worldsheet. Tori are classified by their modular parameter 7,

and the conformally equivalent classes are invariant under modular transformations

at +b
cr +d’

— (9.42)
where a, b, ¢, and d are integers. That is, the modular group is SLo(Z). SLo(7Z) has
two generators S : 7 — —1/7 and T : 7 — 7+ 1. The the former simply interchanges
the two non-trivial cycles of the torus, while latter corresponds to an operation on the
torus known as a Dehn twist which cuts the torus, twists it and then reattaches it.

Any affine Lie algebras associated with the CFT’s also need to have nice transfor-
mation properties under the modular group so that the one-loop consistency condition
may be satisfied. As mentioned earlier, characters encode all the information about
representations, and are particularly easy to work with in this context.

Given an affine weight (£, 7,¢), under the action of the modular group through (9.42),

the transformation of the weight is

E  ar+b cl€]?
,T, ) — > ; it : . 4
&m0 <c7' +d et+d - 2{cr +4d) (943)

The matrices that specify the transformations between affine weights at level & gen-
erated by § and T of SLy(Z), are called the modular S and T matrices of § i.e.

Xy (& +1it) = Z T xpl&mit)

LEPE
¢ —1 €12
S 1S
G it 5o) = > S5l i) (9.44)
pepPk

It is important to note that the transformation is only between dominant integrable
weights at the same level k. As such, the matrices S and 7 are finite dimensional (since
there are only a finite number of dominant weights at any given level), but their size

increases with the level.
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Explicit formulac for these matrices can be worked out. 7 is particularly simple:

= & em/\(S’ (945)

/T/\ Afd

i
i.e. T — 7+ 1 simply introduces a phase change. & on the other hand, is non-diagonal

and quite complicated

18+ [ ta, o }
S‘- o 1 det(aq, B (‘VJ ) Z f(u;)e—“gﬁi(l"""(’\+p)‘“+p)/(k+h‘v) . (946)
w 2(10 + h\/)l/Q weW /

where the sum is over the finite Weyl group, and the determinant is also only over the
finite coroots. It is very important to note that both the & and 7 matrices are unitary.

It can be shown that S = C where C is the charge conjugation matrix with Cxs =
Xi.- C itself acts on S very simply through complex conjugation of the matrix ie.
CS = 8C = &%, or equivalently

S: S; (9.47)

Aji = 5,\*/,1 VAR

where §* is § with the matrix entries complex conjugated. It can also be shown that
‘55\0 > Spo >0, (9.48)

where ( is the state with Dynkin labels [k.0,..,0], and is typically called the vacuum.

9.4 Wess-Zumino-Witten Models

CFT's are exactly solvable precisely because of the presence of a vast infinite dimensional
symmetry algebra viz. the Virasoro algebra. The early study of CFT's, starting with
the seminal work of Belavin, Polyakov, and Zamolodchikov [7], worked with the so-
called minimal models, which basically implemented the Virasoro algebra in a “minimal
fashion” with no other symmetrics. Subsequently, attempts were made to define CFT's
with sufficiently large symmetry algebras that the Virasoro algebra is included as a
subalgebra, so that the tools of CFT would still be applicable, but richer structures
would come into play. Some of the most important are the Wess-Zumino Witten models.
Here the larger algebras are taken to be affine Lie algebras, and these naturally include
the Virasoro algebra (as a Lie subalgebra of the universal enveloping algebra of the affine
algebra), thereby preserving the infinite conformal symmetry. WZW models have also

been the source of even richer CFT’s such as coset CFT's obtained through taking cosets
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of the symmetry algebra of a WZW model, or CFT’s with W-algebra symmetry obtained
through Hamiltonian reduction of WZW models.
Let G be a compact connected Lie group, and g its simple Lie algebra. Suppose 7 is
a G-valued field on the complex plane i.e. we are considering the theory of a string with
target space group manifold G. The Wess-Zumino-Witten (WZW) action is
S = i /d"a'ﬁ(c)“ v 19,) + kT, (9.49)
167
where " will be discussed below [8]. The first term in the action is a so-called non-linear
sigma model. It has an infrared stable fixed point, and when the dynamics of the theory
lives at that point, the extra term I' can he consistently added, which results in the

infinite symmetry that gives rise to a CFT. I is known as the Wess-Zumino term:

r— 2:’ ' Pyeas Te(3-1057- 19955 10%%) (9.50)
This term is defined on a three-dimensional manifold B, such that its boundary is the
compactification of our two-dimensional space (i.e. S2) and % is the extension to B of the
field ~. A natural question to ask is whether this extension is unique, or if it depends on
the choice of manifold B thereby leading to an ambiguity in the definition of I'. However,
since the second homotopy group m(G) = 0, this implies that the extension is unique
up to homeomorphism. In addition, to ensure that *® is single valued (for the purposes
of the path integral), we nced to have k € Z. This is essentially a Dirac quantization
condition for this theory.
We will use complex coordinates on the plane henceforth. The WZW action has two

conserved currents given by
J(z) = ko™,  JE) =ky 'Oy, (9.51)

where 9 = 9, and d = Jz. If we use the decomposition J(z) = 3" J9*, where the t* are
the generators of the algebra g. Then the operator product expansion using the WZW

action can be worked out as

,]a(,:),]b<’u7) N u(sub Z abz__L_L_‘__ ) (952)

Further, doing a Laurent decomposition J%(z) = 3., - 27" 1J% into modes and using
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standard CFT tools, we can obtain the commutation relations
[J;.Ll, ngl = Zi g’b._ fi—}—m -4- k77/6ab5n+m,0 \
[

T =0, 9.53)

13

[—j; s 7?77} = Z 'iffbjfﬂ.m + kn(sabén—s—m,() .
¢

which is essentially two coples of (9.30), the basic commutation relations for an affine
Lic algebra i.e. we have one copy of g in the holomorphic sector, and another for the
antiholomorphic sector. As is usual in CFT’s we deal with the holomorphic sector. Also
note that the constant k, which was essentially related to a winding number in the WZW
action, is now interpreted in the full quantum theory as the level of the associated affine
Lie algebra.
Using the so-called Sugawara construction, the stress tensor for the theory can
be constructed:
T() = 5 ST () (2). (9.54)
20k +hY) -

where (...) denotes the normal ordered product of fields. An operator product expansion

of this T with itself gives the central charge as

k dimg
= 0. 9.55
K+ Y (9:55)

In addition we can form the opcrators
1

L?L = m ZZ : -]7(:7‘-],,?_777 Ty (956)

a m

where : ... : denotes operator normal ordering for operators.

These do indeed generate the Virasoro algebra and can be shown to satisfy the

standard commutation relations

C
(L, L] = (n—m)Lyym + I§n(n2 — 1)0n4m,0 -
[Ln: ngj = _777"‘]7%—6—777, * (9'57)
T ] = ST+ BB

C

where the last equation is from (9.53), and is included to show the complete commutation
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relations of the holomorphic sector. This explicitly illustrates the carlier claim that WZW
models enlarge the Virasoro algebra symmetry of all CFT's.

Using these commutation relations, the representations of WZW models can be con-
structed. Further details can be found in [1]. Primary fields of WZW theories regarded
as CFT’s turn out to be the highest weight states of the affine algebra, i.e., we can label
a specific representation of the WZW model states by giving a highest weight at level .
Typically the eigenvalue n of the operator Lg, known as the grade, is chosen to be 0 at
the highest weight, and the commutation relations show that the action of the lowering
operators likewise raise the grade in the descendents, as you would expect in the repre-
sentation theory of affine Lie algebras. Note that this Ly is simply a scalar multiple of
the operator £y defined as a derivation in the context of affine Lie algebras.

As mentioned earlier, it is typical to consider only one sector of the theory, usually the
holomorphic sector. However, a very important question is regarding how to assemble
the two sectors back together to make a complete theory. At the level of characters
(which encode the complete information about the representations anyway, so there is
no loss in information in just considering them), we can asscmble a partition function

for the theory:

Z(r) = Z f\’f;\ﬂx/'\(T)‘_\fﬂ(T), (9.58)
A\ peP¥

where the bar denotes a character in the antiholomorphic sector of the theory, and r is
the modular parameter on the torus. This implies that the Hilbert space of states of the

full theory is assembled as

H= @ M H,cH,. (9.59)
/A\,[LEPF

The matrix M A that specifies how to combine the holomorphic and antiholomorphic
sectors of the theory together to obtain the full theory is known as a modular invariant.
Obviously, a good choice is to take M to the identity matrix, in which case it is referred
to as the diagonal modular invariant. Non-diagonal modular invariants provide many
interesting features not secen in the diagonal theories. Several of these non-diagonal
modular invariants are known. Symmetries of the unextended Dynkin diagram always
give rise to modular invariants. An example of this is to take A/ = C (where, as discussed
earlier, charge conjugation is non-trivial if there is a symmetry of the unextended Dynkin

diagram). Symmetries of the extended Dynkin diagram, may or may not give rise to
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non-trivial modular invariants. Usually there is some restriction on the level £, if it is
possible at all. We will see some special cases later of such modular invariants in the
context of twisted algebras. Symmetries of both the extended and unextended Dynkin
diagrams give rise to an infinite family of modular invariants.

WZW models have extremely rich properties and hidden unexpected structure in the
form of differential and algebraic constraints. Examples of these include the Knizhnik-
Zamolodchikov equation, the Gepner-Witten equation, level-rank duality etc., all of
which are still extremely interesting topics. In addition, they give rise to remarkable
Lie and number theoretic phenomena, as well as extensive algebraic geometry in the
form of concepts like the braid group, knot theory etc. Unfortunately, we will not have
sufficient space to explore these here, but there are a number of excellent references

available on the subject, including {1,6,9-11].

9.5 Fusion Rules and Simple Currents

In any Rational Conformal Field Theory (RCFT), the so-called fusion coefficients
/\/@i@jm count the number of independent couplings between the three primary fields
bi, ¢j, and ¢g, le., N}bi(j,ﬂbk counts the multiplicity of the conjugate field ¢7 in the
Operator Product Expansion (OPE) of ¢;(2) with ¢;(w). Formally, we have

, Dr ok Ay
¢ X ;= ZN;%%. (9.60)
&3

It is important to remember that in the above rule (and henceforth in the context of
fusions), we are considering not just the field’s ¢;, but rather all of its descendants as
well, i.e., the OPE of any two descendants of ¢; and ¢; will also produce a field from the
family of ¢} and its descendants with the same multiplicity /\fi@i.

For a WZW model at level k with spectrum generating algebra g, the primary fields
are in one-to-one correspondence with the highest weight representations \e PJ’; and

can, thus, simply be labeled by them. The fusion rules then take the form

Ax = € N)i,ti/./ (9.61)

e Pk

where it is understood that the fusion rules are specific to the level k.
There is a remarkable formula known as the Verlinde formula that allows for the

calculation of the level k fusion coefficients A in terms of the level-k modular § matrix
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(9.46):

O *
M Z: S, ; '

P k Oce

aelP?
where 0 is the vacuum state kwg. This formula can be proven on some very general
grounds and is also the source of the braiding relations of conformal blocks on a torus
which gives rise to several very exciting knot theory results, including many of the results
of Jones-Witten [9].

-

Unitarity of & immediately implies that NV OL/\ = 5’)’\ . In addition, (9.47) implics that

i

NY =Ny = N

;\/1. AN 7 (963)

i.e., in WZW models (as in any RCFT), indices are raised and lowered using the charge
conjugation matrix C = S2.

In addition, an argument using the Weyl character formula results in the Kac-
Walton formula:

Ny = D0 NRelw), (9.64)
weW, wrePL

where the coefficients A appearing on the right hand side are the tensor product coeffi-
cients (9.29) of the underlying finite algebra g of gz, P is the set of all dominant highest
weights of g, and the sum is over the affine Weyl group elements whose action on v gives a
dominant finite weight of g (i.e. in ;). This formula relates fusion cocfficients of WZW
models with spectrum generating algebra gg to tensor product coefficients of the finite
algebra g. With some further work it can be shown that this formula roughly says that
the fusion coefficients are the tensor product coefficients, but with an accommodation for
level truncation. That is, a highest weight of g is not taken into account, even if it shows
up in the tensor product, if it cannot then be regarded as a level k& dominant integral
weight of g (though in some cases it counts if there is a Weyl reflection of that weight
that maps it into a dominant integral weight). Further details, including many calcula-
tional recipes, can be found in [1,6]. In addition to some of the symmetrics mentioned
above, fusion rules can respect some other very important symimetries, which are related
to symmetries of extended Dynkin diagrams. We now present a detailed discussion of
these.

Many of the untwisted affine Lie algebras have symmetries associated with their
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(extended) Dynkin diagrams. These are shown in Fig. 9.3%. This in turn, in the obvious
way, results in an action on the Dynkin labels of the weights of the affine Lie algebra. For

)

instance, Zlgl has a cyclic symmetry A of its Dynkin diagram that acts on the Dynkin

labels of weights via

A [)‘0: )‘1s /\2] = [/\3! /\01 >‘1] . (965)

The generalization to the higher A§71) 's is obvious, and likewise for the other algebras

whose extended Dynkin diagrams have the symmetries shown in Fig. 9.3.

The set O(g) of symmetries of extended Dynkin diagrams is isomorphic to B(G), the
center of the group G of g (obtained by exponentiating the elements of g). The center
G is the normal subgroup of G consisting of all elements of G that commute with all the
elements of the group.

The action of any outer automorphism A on the modular S-matrix can be shown to
be

‘AS;\/fL =3 1

’ ()\)N — 9. 6‘-—271'71(44(.2)0,/.1) ) (966)

An
The quantity appearing in the phase is known as the charge of the simple current is
typically denoted Q(A) = (Adg, A).

Using this, and the Verlinde formula (9.62), the following propertics of the fusion
cocflicients can be established:

NA@) N_Z(;\y N7 . (9.67)

ANA( T TN I3 NA()

A special case of the seccond cquality is
N = Noag) = g (9.68)

that is, A(0) acts simply as a permutation in the fusion rules; i.e., the OPE of A(0)
with any other primary field & only contains one primary field . Fields that act in this
manner in fusion rules are known ag simple currents. Usually, by abuse of terminology.
the outer automorphism A itself is referred to as a simple current, and simple currents
are said to act on weights through the action of this outer automorphism. In this context,
the simple current is usually denoted by the letter .J.

For WZW models based on simple Lie algebras, all simple currents arise from outer

4Pigure reproduced from [1] under the provisions of the Copyright Act. and with permission from
Springer-Verlag.
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Figure 9.3: Outer automorphisms of affine Lic algebras
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automorphisms, the only exception being a simple current that occurs only at level 2 for
(1)
Eg.

One further topic regarding fusion rules that merits discussion is the following. Since
the fusion coefficients N are supposed to be multiplicities, they obviously need to be
non-negative integers. However, this is not apparent from the Verlinde formula (9.62).
Thus, so-called Non-Integer Matrix representations or NIM-reps of fusion algebras are

of great interest since they can accurately represent fusions in WZW models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

1] P. di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-
Verlag, New York, 1997.

2] W. Fulton and J. Harris., Representation theory, Springer-Verlag, New York, 1998.

31 J. Fuchs and C. Schweigert, Symmetries, Lie algebras, and representations, Cam-
(o} 3 .

bridge University Press, Cambridge, 1998.

[4] N. Bourbaki, Elements of mathematics: Lie groups and Lie algebras, Chapters 4-0,

Springer-Verlag, Berlin, 2002.

5] J.H. Humphreys, Introduction to Lie algebras and representation theory, Springer
Verlag, New York, 1994.

6] J. Fuchs, Affine Lie algebras and quantum groups, Cambridge University Press,
Cambridge, 1995.

(7] A.A. Belavin, A.M. Polyakov A.B. Zamolodchikov, Infinite conformal symmetry in
two-dimensional quantum field theory, Nucl. Phys. B241 (1984) 333.

[8] E. Witten, Non-Abelian bosonization in two dimensions, Commun. Math. Phys. 92
(1984) 333.

9] T. Kohno, Conformal field theory and topology, American Mathematical Society.
Providence, 2002.

[10] T. Gannon, Moonshine beyond the Monster, Cambridge University Press, Cam-

bridge, to be published 2006.

[11] M. Walton, Affine Kac-Moody algebras and the Wess-Zumino- Witten model, hep-
th/9911187.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Chapter 10

BCFT Approach to D-branes

10.1 Boundaries in CFT

The standard picture of D-branes in string theory is of extended objects in space-time
that can wrap around certain cycles in the target space geometry. From this point
of view, the analysis of D-branes is tackled through powerful geometrical tools such
as K-theory, cohomology etc. [1-3]. A second approach to D-branes is the so-called
microscopic viewpoint. Here, D-branes are regarded as open string sectors that can
be consistently added to closed string theory, and the analysis of D-branes is tackled
through the equally powerful tools of boundary CFT. This is an exact string description
and thus can be quite powertul. However, unfortunately, this description is only available
at specific points in the moduli spaces of the target space geometries, such as orbifold
points, etc. The macroscopic/geometrical viewpoint is more freely available, essentially
whenever the supergravity approximation to string theory can be trusted. The two
descriptions, in some sense, are “dual” to each other, and comparison of results from
both approaches when possible provide insight into the structure of string theory, and in
several situations one approach yields answers while the other fails. We will be concerned
with the microscopic point of view here. We will start with a generic discussion of
boundaries in CFT, then specialize to WZW models.

Closed string theory is defined on Ricmann surfaces, which are closed compact world-
sheets without boundary. In order to add D-branecs to the closed string theory, we need
to consistently add boundaries to closed Riemann surfaces. We can start with the sphere,
since the behaviour of CE'T’s on the sphere uniquely determines its behaviour on all genus
Riemann surfaces (whether it is a consistent CFT or not depends on whether it satisfies

the one-loop constraint, i.e., whether it is well behaved under the modular group on the
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torus). The OPE defines an algebra of fields under fusion rules ¢, x ¢y = 3 NG o
Any potential boundary we add should respect this algebra of primary fields, and there-
fore, must define a homomorphism to € from the space of primary fields of the theory
regarded as an algebra.

Every state in the spectrum H of the theory on the sphere defines such a homomor-
phism (by evaluation), and in fact, every such map arises from a suitable linear combi-
nation of such states. Thus, every boundary condition can be described by a coherent
state in the full CFT. For a boundary coudition labeled by A, denote the corresponding
boundary state by ||A >. The amplitude of fields in the presence of the boundary con-
dition « is then given by expressions of the form < @19 >)\=< @1é2!|\ >, where the
inner product is evaluated in H. This is nothing more than the usual field /operator-state
correspondence used in CFT.

However, not every linear homomorphism from the space of primary fields to C defines
a boundary state. The coherent states that describe boundary conditions need to relate
any symmetries in the closed theory properly at the houndary without breaking them in
the bulk. If the boundary is taken to be along the real axis, then the relevant condition

is that
S(z)=p(S(3)). z€R, (10.1)

where S and S are generators of the symmetry of the theory in the holomorphic and
antiholomorphic sectors preserved by the boundary, and p is an automorphism of the
algebra of primary fields that leaves the stress tensor invariant (i.e., does not change
the CFT). If there are further symmetries of the CFT that need to be obeyed, similar
conditions need to be respected by the generators of those symmetries at the boundary.

S and S have Laurent decompositions

. Sﬂ = -gm b
SE =2 me S@ =2 (10.2)
nel mez ~

wherc h and h arc the conformal weights of S and 3.

The description above was on the description of the CFT in the plane/sphere with
the boundary as the real axis. In order to get the description in terms of operators and
boundary states, we transform to the picture on the cylinder via the conformal trans-
formation w = e ™%, and we use the fact that since this is a conformal transformation.
a primary field S(z) trausforms as S(z) — w'(2)*S(w(z)). Now we are describing the

CFT on the cylinder, and the boundary corresponds to a circle on the eylinder. Using
3 ; y I \ g
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the mode decompositions above, we can write the boundary condition (10.1) in terms of

the boundary state in the operator picture as

(Z Spuw™ — (=1) Z p(?m)m'm) HA>=0, forjw|=1. (10.3)

ne mez

Since this has to hold for all w such that |w| = 1, we obtain the gluing condition
(Sn - (—1)’1,)(?",1,)) IAN>=0, VncZ. (10.4)

The gluing condition needs to hold for any symmetries of the closed string sector.
In particular, it must hold for conformal symmetries, in which case the modes S, and
S, are, respectively, L,, and L,,, the generators of the holomorphic and antiholomorphic
sectors of the Virasoro algebras of the CFT. They both have conformal weights h = i = 2.

The gluing condition then reads
(Ln —L_p) |]A>=0, VneZ. (10.5)

If the theory possesses sufficient symmetries, there may be enough constraints stem-
ming from the various gluing conditions that the boundary state || > may be determined
uniquely (up to normalization and phase). Denote the symmetry algebra of the holo-
morphic sector of the CFT by A (and implicitly we assume that A = A). Now, the full
spectrum of the theory can be decomposed as H = @M M; i Hy @ ﬂj, where the decom-
position is in terms of the individual spectra of the holomorphic and antiholomorphic
sectors of the theory. Now, the modes that appear in (10.4) map each H; ® H; into
itself. Thus, we can solve the gluing condition separately for cach such summand. It
turns out that a non-trivial solution can be found in the case where H; is the conjugate
representation of ;. Thus, if a state exists solving the gluing condition (10.4) for every
symmetry in A, it is known as the Ishibashi state {unique up to normalization for each

¢ in the sum):
li>eH,oH,, (s - (-1)’1-5'/)(3_”)) IA>=0, YneZ.¥SeAd.  (10.6)
Since we only consider Rational CFT’s, the spectrum H only contains a finite number

of summands, and thus the number of Ishibashi states is also finite. This in turn means

that there are only finitely many (if any at all) boundaries that can consistently be added
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to a given CFT. Every boundary state can be written in terms of the Ishibashi states as

15y >=ZBW>, (10.7)

for some constants BY. In addition, there are one-loop constraints to satisty to ensure
the theory is consistent. This is an important step, but we will not pursue the details
of the most general construction, and further details can be found in [4,5]. One of the
most important of these is the Cardy condition, which needs to be satisfied. While it can
be discussed in this general setting, we will restrict ourself to the case of WZW models

discussed below.

10.2 WZW D-branes

The spectra of WZW models have the decomposition H = €@ 5, peps My H A?Z,, Given
a modular invariant M, a weight X & ij is said to be an exponent if Ay, # 0. From
the arguments above, there is associated to every exponent A, an Ishibashi state ||A >.
Denote the set of all exponents A of the modular invariant A (with multiplicity M)
Enr.

WZW models have the full symmetry of the associated affine Lie algebra, which
provide additional gluing conditions. In the simplest situation, the gluing conditions

(10.4) for the affine symmetries read
(Jf; + 71)_m> lla>=0,VbandVm e Z. (10.8)

Here, the J2 are the modes of the generators of the affine symmetry of the WZW
models. In addition to these, the WZW model Ishibashi states also have to satisfy the
gluing condition (10.5) arising from the conformal symmetry.

We shall partially fix the normalization of the Ishibashi states by requiring that

< Agzborlo 5l >= 5y, v\(1), g =€, (10.9)

Every boundary state can then be written as a linear combination (10.7) of Ishibashi

states

la>= S 28> . (10.10)

We have adopted the standard convention of using lowercase Latin letters to denote
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boundary states. The factor \/301,, is just a convenient normalization of the coefficients.
Given the above normalization of the Ishibashi states, finding the 1 matrix is equivalent
to specifying a boundary state. In general, it turns out that v is square and unitary.
Not every linear combination (10.10) defines a boundary state. The allowed boundary
states also need to satisfy a consistency condition known as the Cardy condition, which

we now describe heuristically. The “overlap” between two boundary states is give by

B W b
< qull}(\L{H_LO_E)Hb >= Z Eaé'fo—lwxu(-,-)’ (1011)
=& U
HEE,
where we have used (10.9) and (10.10). Under the modular transformation 7 — —1/7,

this amplitude should be expressible in terms of a non-negative integer combination of

characters i.e.

):;L 7 1 2
Z TL #dbu,\/u(”;): Z N,{\bX/\(T)' (1012)

S
HEEM On AP,

The N, can easily shown to be

St
[ G i s (10.13)

- S
HEEN On

As this needs to be a non-negative set of integers, it forms a NIM-rep. If such a NIM-rep
can be found, then the Cardy consistency condition is met.

As mentioned earlier, adding boundaries to a closed string theory corresponds to
adding D-branes to the theory. Here we have associated a boundary state for every
such boundary (provided consistency and gluing conditions can be met). Thus D-branes
in the theory are labeled by the boundary states of the theory. Solutions to the gluing
conditions (10.8) represent D-brancs that preserve the full affine symmetry of the theory,
and are known as untwisted branes.

In addition, there are other branes that can be constructed. One of these is the
following set. Suppose w is any outer automorphism of g that is a symmetry of the
unextended Dynkin diagram (i.e. of the finite algebra g, we are not discussing simple
currents here). Associated to any such w, a modular invariant can be constructed for the
theory [6]. We want to find boundary states of a modular invariant that is built out of
w invariant states, i.e., we have an w-twisted affine Lie algebra. The set of exponents &,

of the corresponding NIM-rep is the subset of 7, consisting of representations invariant
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under w. The gluing conditions satisfied herc arc
(.J,’;, tw (73)) lla >“=0,Yband¥m € Z. (10.14)

The construction above for the untwisted case can be repeated here in terms of twisted
Ishibashi states || >*% which are defined for every u € &, i.e, for every p € Py that
satisfies w(p) = p. Similar normalization conditions, and the twisted version of the
Cardy condition can be established leading to an identical expression for the NIM-reps

N. Such D-branes are known as twisted D-branes.
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Chapter 11

Charges of Exceptionally Twisted

Branes

11.1 Introduction

Conserved charges of D-branes in string theory, to a very large part, determine their
effective dynamics. As such, determining these charges and the associated charge groups
provides significant information regarding the D-branes. For strings propagating on
a group manifold, i.c. a gr-WZW model, these charges can be determined using the
underlying CFT [1]. WZW models possess an extremely rich variety of D-brane dynamics
directly attributable to the additional affine Lie structure, which is preserved by the D-
branes.

In addition to the standard untwisted branes, WZW models also possess D-branes
which preserve the afline symmetry only up to a twist, the so-called “twisted” branes.
For every automorphism w of the finite dimensional Lie algebra g of the affine Lie algebra
g, there exist w-twisted D-branes. It is sufficient to consider outer automorphisins only,
and as such, only automorphisms determined by symmetries of the Dynkin diagram of
@ [2,3]. Such twists exist for the A,,’s, D,’s, and Fy, where w in each case is an order
two symmetry referred to as charge conjugation (or chirality flip in the case of D,, with
n even), and for Dy, where w is an order three symmetry referred to as triality. The
microscopic analysis for twisted D-branes started with [4], and a study at large affine
level was done in [5]. The charges and charge groups for the order-two twisted A, and
D,, D-branes have been calculated in [6] (up to some conjectures). This paper deals with
the remaining cases of Dy with triality and Eg with charge conjugation.

The computations for Dy and Eg presented here are purely Lic theoretic, and are
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done from a “microscopic” /CFT point of view. These calculations provide confirmations
for the results for the charge group obtained “macroscopically” /geometrically using K-
theory [7]. However, the K-theoretic arguments only determine the charge group and
not the charges themselves, so the calculations done here provide significantly more
information about the D-branes.

We also prove some Lie theoretic identities which warrant further study. The most
surprising, and likely important, of these are that G and Fy see the simple currents
of As and Dy, respectively. More precisely, for arbitrary choice of level k. the simple

currents J° of A permute the integral weights o’ of Go in such a way that
dimg, (J'd') = dimg,(a’) mod Mg, , (11.1)

where Mg, is an integer given next section. Similarly, the 4 simple currents J of Dy

permute the integral weights of F) in such a way that
dimy, (JV) = dimp, (b))  mod My, , (11.2)

where likewise MF, is given next section.

We first provide a brief summary of the description of untwisted D-brane charges in
CFT, as well as the order-two twisted D-branes of A4, and D,,. Subsequently, we deal
with the exceptional cases of Dy and Eg. The non-trivial Lie theoretic identities, which

arc needed along the way, are stated and proved in the appendices.

11.2 Overview of WZW D-Brane Charges in CFT

The WZW models of relevance here arc the ones on simply connected compact group
manifolds (partition function given by charge conjugation). D-brancs that preserve the
full affine symmetry are labelled by the level k integrable highest weight representations

Pf:(g) of the affine algebra g. They are solutions of the “gluing” condition
J(2)=JZ) .,z =%. (11.3)

where .J,.J are the chiral currents of the WZW model [§].

The charge ¢, of the D-brane labelled by p satisfies

dim(\)q,= Y N{,q modM, (11.4)
I'EPi(g)
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where A € Pi(g), Ny, are the gp-affine fusion rules, and dim(\) = dim()\) denotes the
dimension of the g representation whose highest weight is the finite part of the affine
weight A — in this paper we freely interchange the affine weight A with its finite part A,
which is unambiguous since the level will always be understood. For a finite level k, this
relationship (11.4) is only true modulo some integer M, and the charge group of these
D-branes is then Z/MZ, where M is the largest positive integer such that (11.4) holds.
We are assuming here that the only common divisor of all the q, is 1 (if they do have
a common divisor, then this factor can be divided out). Without loss of generality, we
assume the normalization qp = 1. If we take p to be the trivial representation 0, then

clearly
gy = dim(A). (11.5)
The integer M is then the largest integer such that

dim () dim () Z Ny, dim(v) mod M (11.6)
uEPi(g)

holds. It has been conjectured (and proved for the A, and the C), series) in {7,9,10] that

the integer M is always of the form

k+hY

T gdkt R D) (11.7)

A
where hY is the dual Coxeter number of § and L is a k-independent integer given in
Table 11.1%.

WZW models also possess D-branes that only preserve the affine symmetry up to
some twist. For every automorphism of the finite dimensional algebra g, w-twisted D-

branes can be constructed. These are solutions of the “gluing” condition

J(z)=w- T(E). 2

n|

, (11.8)

where J,J are the chiral currents of the WZW model. These D-branes are labelled by
the w-twisted highest weight representations of g;. The charge group is of the form Z o,

where M“ is the twisted analogue of the integer M from the untwisted case. The charge

'Tt was suggested initially in [10] that there were exceptional values for M at low levels k. However,
this issue was subsequently resolved in [7], where it was proved that there are no exceptional cases using
K-theory. We will show that there are no exceptional cases at low levels in both algebras, on the CI'T
and Lie theory side, when we prove uniqueness of the solutions.
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Algebra | hY L J
An n+1 lem(1,2,...,n)
By 2n—1 | lem(1,2,...,2n — 1)
Ch n+1 | 27 em(1,2,...,2n)
D, 2n — 2 | lem(1,2,...,2n— 3)
Eg 12 lem(1,2,...,11)
B~ 18 lem(1,2,...,17)
By 30 lem(1,2,...,29)
Fy 9 lem(1,2,....11)
G 4 lem(1,2,...,5)

Table 11.1: The dual Coxeter numbers and charge group integer L for the simple Lie
algebras

carried by the D-brane labelled by the w-twisted highest weight a has an integer charge

q¥, such that

dim(A) q = Z/\/fa qf  mod M*, (11.9)
b

where N} {‘a are the NIM-rep coefficients that appear in the Cardy analysis of these D-
branes. MY is the largest integer such that (11.9) holds, again assuming that all the
charges % are relatively prime integers. However the difficulty in carrying over the
analysis from the untwisted case is that there is no brane label a playing the role of the
identity field, and thus we need to resort to a slightly different, and more complicated,
analysis to determine the charges and M*.

It was suggested in [11,12] that the NIM-rep coeflicients N, {’a are actually the twisted
fusion rules that describe the WZW fusion of the twisted representation a with the
untwisted representation A to give the twisted representation b. Thus the conformal
highest weight spaces of all three representations A, a, and b form representations of the
invariant horizontal subalgebra g¥ that consists of the w-invariant elements of g (For
details on such matters, sec [9]). The twisted fusion rules are a level & truncation of the
tensor product coefficients of the horizontal subalgebra. This establishes a parallel with
the untwisted case, where the untwisted fusion rules are the level k& truncation of the

tensor product coefficients of §. Thus by analogy with (11.5), we can make the ansatz
qy = dimge(a), (11.10)

i.e. the charge is simply the §¥-Weyl dimension of the finite part of the twisted weight
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a. Using this ansatz the integer M* was calculated in [6] for the chirality flip twisted A,
and D, series, and it was also shown that, up to rescaling, (11.10) is the unicue solution
to (11.9).

The remaining non-trivial cases of triality twisted D4 and charge conjugation twisted
Eg are dealt with in this paper, and require some nontrivial Lie theory. especially per-

taining to twisted affine Lie algebras. The relevant background can be found in {9,11,13].

11.3 Triality Twisted D, Brane Charges

Dy has five non-trivial conjugations, whose NIM-reps can all be determined from analyz-
ing just the oncs corresponding to chirality flip (which has already be done in [6,11]) and
triality. The latter is an order three automorphism of the Dynkin diagram w that sends
the Dynkin labels (Ag; A1, A2, Ag, Ag) to (Ags Ay, A2, A1, Ag). Thus the relevant twisted al-
gebra here is Df) with a horizontal subalgebra G, labelling w-invariant states. Thus
boundary states are labelled by triples (ag; a1, as) where the level & = ag + 2a; + 3as.
In [11], it is shown how to express the twisted NIM-reps in terms of Ay fusion rules at
level k 4+ 3 via the branching Dy, D Gy D As:

2
b A b o
'/\/',\(1, - Z Zb—y” (N']i,},u’a// - ]VJ{.A,//’C(L//) s (1111)

=0 "

where C' denotes charge conjugation in A., which takes a dominant A; weight to its
dual by interchanging the finite Dynkin labels and J is the simple current of As that
acts by cyclic permutation of the Dynkin labels of the Aém weights, and the ?);\,, are
the Dy © G2 D A branching rules (see for example [14]). The relation between Dy
boundary states and the weights of G’él) and A;l) is given by the identifications of the
appropriate Cartan subalgebras. Explicitly, we write [11]

a = i{ag;ai.as) = (ag+ay+as+2ias,a1)€ Pi“(Gg) , (11.12)
o =id = 11lagsar,a0) = (ag + a1 +as + 2509, a1 + ay + 1) € PP (A4,)11.13)
In the following, level k- D4 quantities (weights and boundary states) are unprimed, while
the corresponding level k+ 2-Go weights and level k+ 3- A, weights are singly and doubly
primed, respectively.

Following [6], we make the ansatz that the charge ¢ is the Go Weyl dimension of
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the horizontal projection (finite part) of the weight i.e.
¥ = dimg,(a’) . (11.14)
Then for an arbitrary dominant integral weight A of Dy the left hand side of (11.9) reads:
dimp, (A\) dimg,(d) = Z b, dimg, (7') dimg, (a')

= Zb;\ > NEdimg,(t)  mod Mg, . (11.15)

¥ YePH2(Gy)

where b:\/, are the Dy O Gy branching rules, and in the second line we have used (11.4)
for the untwisted G branes at level k + 2. Now from Table 11.1 we know that at level
k+ 2 Mg, is the same as Mp, at level &:

k+6
ged(k + 6,22.35)

Mg, = Mp, = (11.16)

and so (11.15) holds mod Mp,. Now G5 fusion rules at level k£ + 2 can be written in

terms of the level £ + 3 fusion rules of As following [15]

NY, = Zb g [ N2 — Ngiic@,,} , (11.17)

where bj{;/ are the G2 O Ag branching rules. Using this and the fact that Zw, b by/ = b
we rewrite the left hand side of (11.9) as

I3

LEHS. =0 % {Ngiia/,—Nsﬁica,,} dimg,(t)  modMp,. (11.18)
YEPFT3(Gy)

//

In order to relate this to the right hand side of (11.9) where the summation is only
over the boundary states of triality twisted Dy, we need to restrict the summation (11.18)
somehow to the set D = Im(¢/t) of images b — " under (11.12),(11.13). To do this. we
first describe the relevant sets precisely.

An A.(zl) weight (bf; by, by) belongs to D, JD, or JD respectively, if

D by > by > b >0,
JD . WS >il>0, (11.19)
J’D . W s> >0,
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. . . 1 .
where .J is the A, simple current acting on Ag ) weights by J (ag:al ay) = (al;af, af).

The set G = // (PFQ(GQ)’) of images of (11.13) (the set over which we are summing
in (11.18)) only has the constraint b5 > 1) > 0. Thus a moment of thought will show
that

G=DUJDUCJDUB, (11.20)

where B consists of weights in G such that either b) = b or by = bJ. The following

hidden symmetries are established in the appendices.

v e P*2(Gy) = dimg, (JV) = dimg, (J°V) = dimg, (') mod Mp, . (11.21)
"€ B= dimg, (b)) =0 mod Mp,, (11.22)
Y e PF2(Gy) = dimg, (CV) = —dime, (V) (11.23)
where ¢ and J act on G,(d)l) weights through conjugation by ¢/
C(bG; by, 0h) = (b by + by + 1, —by — 2), (11.24)
J(by b, 05) = (b + by + 1;b(,b) — by~ 1). (11.25)

Here and elsewhere, we write ‘dimg,(a’)’ even when o’ is not dominant, by formally
evaluating the Weyl dimension formula for G2 at a/. The minus sign in (11.23) indicates
that Ct won’t be a dominant G weight when ¥’ is - indeed, C' belongs to the Weyl
Group of Gs.

Using these, we can rewrite (11.18) as

1
L.H.S. Z b\// Z 7\[.1\//&// - J?V.I;//Ca//} dimGQ (b/)
b eD
1
+ Z U\Ts”u" ]V,ijucan] dim(;,z (b/)
beJiD
G
+ Z $EL// u(au} dime, (CH)|  mod Mp, , (11.26)
beJD

where we note that there is no contribution from B due to {11.22). Using (11.23), the
symmetry Nf;////a// = NCC,J:,’/I//CH//, and the fact that the Dy D As branching has bf?// = bi\?'v”
for all 4", to simplify the third sum in (11.26), we finally obtain

2
LHS. = > > 00 > [N — Nl dime, (V) mod Mp, . (11.27)
i=0 ~/ W eJiD
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But applying (11.11), (11.21), and the symmetries of fusion rules under the action of
simple currents, we see that (11.27) also equals the right hand side of (11.9). Thus (11.9)

is indeed satisfied by our ansatz
o = dimg, (a’) and M® = Mp,, (11.28)

that is, the charges are given by the Weyl dimension of the representation of the hor-
izontal subalgebra, and the charge group is the same as in the untwisted case. As we

show in Section 5, the charges are unique up to a rescaling by a constant factor.

11.4 Charge Conjugation Twisted E; Brane Charges

Eg has a non-trivial order two symmetry of the Dynkin diagram that sends the Dyunkin
labels (Ag; Az, A2, Az Az, As. Ag) 1o (Ag; As. Ad, Az, Az, A1, Ag). The relevant twisted algebra
here is Eém, with a horizontal subalgebra Fy labelling the w invariant states. The
boundary states are labelled by quintuples (ag; a1, a9, a3, aq) such that & = ag + 2a; +
3as +4as + 2a4. Again, in [11] it is shown how to express the twisted NIM-reps in terms

of the untwisted fusion rules of Dy at level k + 6 via the branching Es = Fy D Dy
b . 'z , .
N)\“ - Z Z Z 6(7'(') bf}// jVLl}’y”,Tra“ . (1129)
J Ty

where the sum over 7 is over all 6 conjugations of Dy consisting of permutations of the
1st, 3rd, and 4th Dynkin labels, bg},, are the Eg D Fy D Dy branching rules and e(n)
is the parity of the permutation. The summation labelled by .J is over the four simple
currents of Dy: the identity, J,b" = (b7 b5, b5, b, b5). Jb" = (b b5, 65,67, 8), and J, J;.
Note that each of these simple currents has order 2. The Eg boundary states are related

to F, 4(1) and Dil) weights through the maps [11]

a = lag;ay,as.a3,a1) = (ag + a1 +as +az + 3;a4,a3,a2,a;) € PE+S(F4) {11.30)

a" = a =1ilag;ar, as, a3, aq) (11.31)

= (ap+ar+as+az+3;a1+as+ a3+ 2,a4,03,a2 +az+ 1) € Pj:_‘—ﬁ(D;}) .

These again correspond to the identification of the respective Cartan subalgebras. Un-
primed quantities refer to level k-Fg quantities, while their corresponding level k + 3-Fy
and level k + 6-D, weights are singly and doubly primed, respectively. Again, as ex-

plained in [11] and [15], these relations are established by examining the twisted version
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of the Verlinde formula.
Following [6] again, we take the ansatz that the charge ¢ is the Fy Weyl dimension

of the finite part of the weight, i.e.
¥ = dimp, (a') . (11.32)
Then for an arbitrary dominant integral weight A of Eg, the left hand side of (11.9) reads:
dimg, () dimg, (a’) = Z b2, dimp, (v') dimp, ()

= Zbi/ Z NS:G, dimp, (V') mod Mp, , (11.33)
" YePET(Ry)

where b:>, are the Eg O Fy branching rules, and in the second line we have used (11.4)
for the untwisted F; branes at level k£ + 3. From Table 11.1 we know that at level k£ + 3
Myp, is the same as Mg, at level k:

k412
ged(k +12,28.32.5.7.11) 7

Mp, = Mg, = (11.34)
and so (11.33) also holds mod Mg, .
Now Fj fusion rules at level & + 3 can be written in terms of the level k& + 6 fusion

rules of Dy following [15]

N/,_-ZZ b,,N,/ (11.35)

’\///

where b::/ are the £y D Dy branching rules, and the m € Sy are as before. As explained
in [11] and [15], this is obtained using the Verlinde formula by analyzing the subset of
images of dominaut integral weights under the branching. Now using this and the fact
that Z b\ b, = b vy We rewrite the left hand side of (11.9) as

LHS. = Z Z Z )b o ]\,)//,Ta// dimp, (b') mod Mg, . (11.36)
Y obe Pi% 3(F m

In order to relate this to the right hand side of (11.9) where the summation is only over
the boundary states of twisted Eg. we need to restrict the above summation somehow
to the set £ = I'm(//1) of images b — b”. To do this. we first describe the relevant sets

precisely.
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A D,(ll) weight (b: b, b, b5, b)) belongs to £, J,€, J,€, or J,J,E, where the J are the

D, simple currents, if

E ¢ B> > >0b5>0,
JE ¢+ bW >by>by>by>0,
J& ¢+ U > b5 > by > b

T JE ¢+ by = >b > b5 >0

(11.37)

The set F of images of P£+3(F4) under the Fy O Dy branching (the set over which we
are summing in (11.36) ) only has the constraints b > b > b > 0. Thus a moment of
thought will show that

F =& U musJ,& U Js& U mgsJuJs€ U B, (11.38)

where 7ape is the Dy conjugation taking the Dynkin labels 1,3 and 4 respectively to a,b
and ¢, and B consists of weights in F such that either b = b} or bj = b5 or by = 1.
The following facts, where the 7 are the Dy conjugations and the J are any of the

Dy simple currents, are proved in the appendices:

dimp, (7b') = e(x) dimp, (b)) Wb € PFF3(E), (11.39)
dimp, (JV') = dimp, (V) mod Mp, YV € PM3(Fy), (11.40)
dimp, () =0 mod Mg, W' eB. (11.41)

The action of the D4 conjugations 7 and simple currents J on F, 4(1) weights can be easily
obtained by converting Ffl) weights to Dﬁl) weights using ¢/, applying 7 or J, and then
converting back to F\" using =Y (d/l;d?, 4, dl. dl) = (dll;dl, di, d! —dll —1,d! —d! —1).
As for Go, we write ‘dimp, (¢)’ even when a’ is not dominant, by formally applying the
Weyl dimension formula. The factor e(m) in (11.39) is the parity £1, and as before, each
7 belongs to the Weyl Group of Fy.

Using these, we can rewrite (11.36) as

LHS. = Zb’v\//Ze(ﬂ*) Zl\f%mudim&(b’)
,Y//

™ We&

rmygab’ 1. L/ rrad1 b’ q. 2 1
+ E N;&;ﬁ,} dimy, (m1430") + E NT#e o dimpy (mapn )

bel.E beJs&
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a13b’ 1. y ‘
+ Z N;T/ij%,, dimp, (m413b") mod Mg, , (11.42)
ETWA

where we note that there is no contribution from B due to (11.41). Exactly as for the
argument of the previous section, the symietries of the fusion rules under 7 and simple
currents, the symmetry b;\m’” = bi>/, of the branching rules, together with the hidden

symmetries (11.39),(11.40) and the expression (11.29), show that

LHS. = > 0> Y e(m) > NYundimp, () = RHS. mod Mg,(11.43)
~' J T W'eE

Thus, again, (11.9) is indeed satisfied by our ansatz
o = dimy, (a") and MY = My, , (11.44)

that is, the charges are once again given by the Weyl dimension of the representation of
the horizontal subalgebra, and the charge group is the same as in the untwisted case. As

we show next, the charges are unique up to a rescaling by a constant factor.

11.5 Uniqueness

We need to show that the solutions found to the charge equation (11.9) in both the Dy
and Eg cascs are unique up to rescaling. To this end it is sufficient to prove that if the

charge equation is satisfied by a set of integers 4, modulo some integer M, then
Go = dim(a’) gy mod M . (11.45)

In this case, we can divide all charges by o, and the charge equation will still be satisfied
if we also divide M by ged (o, M). Finally, by an argument due to Fredenhagen [6] we get
that M’ := M /ged(do, M) must divide our M. Explicitly, by construction. M is the g.c.d.
of the dimensions of the elements of the fusion ideal that quotients the representation
ring in order to obtain the fusion ring. Since NIM-reps provide representations of the
fusion ring, any element of the fusion ideal acts trivially i.e. dim(e) dim(a) = 0 mod AL’
for any o in the fusion ideal. Thus, using the fact that the dim(a) arve relatively prime
integers, we see that M’ must divide M. Thus any alternate solution §,. M to (11.9)
which obeys (11.45), is just a rescaled version of our “standard” one q, M.

We will work with Dy, the proof for Ey is similar and will be sketched at the end.
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The G C Dy branching rules can be inverted: we can formally write

d = b5A, (11.46)
A

where BK\ are integers (possibly negative), a’ € P.(G2), and the sum is over Dy weights
A [15]. More precisely, (11.46) holds at the level of characters, where the domain of the
Dy, ones is restricted to the w-invariant vectors in the Dy Cartan subalgebra, and the
G» characters are evaluated at the image of those vectors by «. To prove (11.46), it
suffices to verify it for the G2 fundamental weights, where we find (1,0) = (0,1,0,0) —
(1,0,0,0) + (0,0,0,0) and (0,1) = (1,0,0,0) — (0,0,0,0). Since all other G, weights can
be constructed from the fundamental ones by tensor products, every dominant Gy weight
can formally be inverted under the branching and written in terms of linear combinations

of dominant integral D, weights. Then
dimg,(a)go = Y b dimp,(N) o

A
= ZB‘A’Z/\//{”O(@ mod M | (11.47)
A

4

where we have used the charge equation, which the g, satisty modulo M by assumption.

Now we use the expression (11.11) to write (11.47) in terms of A, fusions: we get
- g t )\ b// bl/ — Ao
RES. =3 B3 S S 08 [N 00 = N o] (11.48)
A b A" j=0

Now however, from (11.17) and [15], we can express this in terms of Go untwisted fusion
rules, and using properties of the A, fusion rules under simple currents along the way,

we obtain

RHS. =) 8> > Z by NDE @ mod M (11.49)
by =0

A ,'

Note that (/ here is the G vacuum (whereas 07, the image of (/ under //, is not the 4,

In the following, we use the fact that both (11.9) and (11.11) {and (11.29) in the case of Fg) remain
true for all dominant weights A and not just affine ones. These expressions were obtained using ratios
of S-matrices (see [11]), which can be interpreted as Lie algebra characters in the case of finite weights,
and thus the NIM-reps A" can be continued to include all dominant weights. This continuation also
remaoves any subtleties in the comparison to K-theory by evaluating the charge constraint equation for
all dominant weights A. We thus can also see there are no exceptional situations at low levels.
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vacuum), and thus

RHS. =Y Y 60" Gy =da mod i , (11.50)
b
where we have used the facts that b’ is never fixed by J and that the sets D and JD are
disjoint(see (11.25)). Thus (11.45), and with it uniqueness, is established.
The proof for Eg is virtually identical, except now we use the expression for untwisted

Fy fusion rules in terms of Dy fusion rules found in [15].

11.6 Conclusion

In this paper, we have shown that the charge groups of the triality twisted Dy and the
charge conjugation twisted Fg branes are identical to those of the untwisted D-branes.
This is in nice agreement with the K-theoretic calculation [7] and completes the excep-
tional cases not dealt with in [6]. Our calculations show that the charges of these twisted
D-branes corresponding to the twisted representation a is the dimension of the highest
weight space of the representation a. Thus from the string theoretic point of view, anal-
ogous to the situation with untwisted D-branes, the charge associated to the D-brane is
the multiplicity of the ground state of the open string stretched between the fundamental
D0-brane and the brane labelled by ¢ in question. So, in the supersymmetric version of
WZW models, the charge may be interpreted as an intersection index, motivating pos-
sible geometric interpretation of these results. The explicit computation of the charges
is missing from the K-theoretic calculations, and has been supplied here.® There are no
additional unproven conjectures made in this paper. All the arguments have been proved
up to some conjectures needed from the untwisted cases (i.e. the content of Table 11.1
for Dy, G2, Eg, and Fy).

A number of non-trivial, and somewhat surprising, Lic theoretic identities have been
proved along the way. Some of the dimension formulae regarding the action of simple
currents of a subalgebra on weights of the larger algebra indicate that there might exist
interesting constraints on the larger algebra due to the underlying symmetry in the
branchings. In some sense, the enlarged algebra “breaks” symmetries of the smaller
algebra, but still “sees” the underlying symmetry {analogous to ideas of renormalization

of quantum field theories with spontaneously broken symmetries.)

*During the preparation of this manuseript the work of [15] has come to our attention, in which
similar results are derived using different methodology. In that work however, many of the numecrical
and Lie theoretic identities, which are explicitly proven here, are left as conjectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 11. CHARGES OF EXCEPTIONALLY TWISTED BRANES 153

The Lic theoretic meaning of (11.23) and (11.39) is clear: the Ay and Dy conjugations
C and 7 € Sy are elements of the Weyl groups of Gy and Fy respectively. The meaning
of (11.21) and (11.40) is far less clear (though it has to do with the theory of equal rank
subalgebras [17]), but it does suggest a far-reaching generalization whenever the Lie
algebras share the same Cartan subalgebras --- for example, A1 @+ & Ay (n copies) and
Cp, or Ag and Eg. Given any simple current .J of any affine Lie algebra g at level k, it is
already surprising that Weyl dimensions for the horizontal subalgebra g see the action of
J via dimg(JA) = £dimg(A) mod M, . Far more surprising is that, at least sometimes,
if two Lic algebras g and g’ share the same Cartan subalgebras, then the Weyl dimensions

of the first sees the simple currents J' of the second: dimg(J'A) = £dimg(A) mod My, .
Acknowledgements

We warmly thank Stefan Fredenhagen, Matthias Gaberdiel, and Mark Walton for valu-
able exchanges. This research is supported in part by NSERC.

11.7 Appendices

We will use the following fact for proofs in both the D4 and Ej cases.

Fact 1 Suppose K, L, N are arbitrary integers. Write M = écd%f)’ and let L = Hp pr
and N = Hp p“r be prime decompositions. Suppose we have integers f;. d; such that both
[L fi and T1;(fi — diK) are divisible by N. Then

[Lfi 1L = diK)

= A D
~ ~ mod M (11.51)

provided that for each prime p dividing M such that A\, < v, it is possible to find

0 < ayp < Ap, such that p™»e divides f; for each i, and ), cgp 2 1.

The reason we can restrict to primes p dividing M is that p coprime to M are
invertible modulo A, and so can be freely cancelled on both sides and ignored. For
primes p dividing M, a;/p™r = (a; — 6, K)/p™? holds mod M, Vi. If N, > v, choose
@; p to be the exact power of p dividing a;. The divisibility by N hypothesis will be
automatically satisfied, because the products we will be interested in come from the

Weyl dimension formula.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 11. CHARGES OF EXCEPTIONALLY TWISTED BRANES 154

11.7.1 Appendix A: D; Dimension Formulae

For any integral weight o = (ag; a1, az) € PF3(A4,), we can substitute o/ = (ag; a1. az) =
(ag;a1,a2 — a1 — 1) = ¢’ into the Weyl dimension formula [18] of G, in order to express

Go-dimensions using As Dynkin labels:

1
dimg,(a) = m(ag —ar)(az + 1)(2a2 + a1 + 3)(a1 + 1)
X (ay + ay + 2)(as + 2a; + 3). (11.52)

Theorem 1 Va' € P**%(G5), dimg,(Cd’) = —dimg, (o).

This is an automatic consequence of the a; « ap anti-symmetry of (7.2). In fact, C is in
the Weyl group of G2 and so more generally Theorem 1 follows from the anti-symmetry

of the Weyl dimension formula under Weyl group elements.
Theorem 2 dimg,(a’) = dimg, (Ja') = dimg,(J?a’) mod Mg, VYo' € PF2(Gy).
Proof: Using (11.52) and ¢/, we get

o 1 . -
dime, (J7a") = F)—@(al +as+2)(a; +2a0+3 - K)(as+1-K)

#(201 +3a2 +5 — K){a1 +3a2+4 - 2K){(a; + 1+ R),

where we put K = £ + 6 and used the fact that k = ag + 2a; + 3as. In the notation of
Fact 1, here N = 120 = 23.3.5, L = 60 = 22.3.5. From Fact 1, it suffices to consider the
primes p with v, > Ay, i.e. p = 2. To show that p = 2 always satisfies the condition of
Fact 1, i.e. that the oy 2 can be found for any choice of a;, it suffices to verify it separately
for the 16 possible values of a1,a5 mod2?. Though perhaps too tedious to check by
hand, a computer does it in no time. The proof for dimg, (Ja') is now automatic from

Theorem 1.

Theorem 3 Given any b € P¥T2(Gy), if CV = J'V for some i, then dimg, (V) = 0
mod Mg, .

Proof: Write b = (by: by, ba) € P*3(4,). By Theorem 1, it suffices to consider the
case where by = by. In this case we can write k+ 3 = by + 2b;. Thus, again using (11.52)
we have

dimg, () = (by + 1) (bs + 1)(by + by + 2)(3by + 3 — K)K(3by + 3 — 2K .

1
120
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The proof now proceeds as in Theorem 2.

Of course given any weight b” € B, b’ = /~}(¢") will obey the hypothesis of Theorem
3, and so (11.22) follows. Note that combining Theorems 1 and 2, we get that any weight
¥ as in Theorem 3 will obey dim¢, (b)) = —dime, (V') mod Mg,. Thus Theorems 1 and 2

are almost enough to directly get Theorem 3 (and in fact imply it for all primes p # 2).

11.7.2 Appendix B: F; Dimension Formulae

As before, use // and the Weyl dimension formula for Fy to write the (formal) Weyl
dimension of an arbitrary Fy integral weight ¥ € P(Fy) in terms of the Dynkin labels of
the Dy weight b = /(') = (bg: b7.b5,04,)). For convenience write a; = b/ + 1. Then
we obtain

1

21537547211
X (a1 — az)(a1 — aq)(as — ag)(a1 + a2 + az)(a1 + a2 + aq)(ag + az + aq)

ajasagag(ar + az)(ar + ag)(ar + ag)(az + az){as + aq)(as + aq)

a1+ 2az + az + a4)(2a1 + 2a3 + az + ag)(ag + 2az + 2a3 + ay)

(
x (a1 + az + az + aq)(ay + 2as + az)(a1 + 2a9 + a4)(2a2 + az + a4) (11.53)
x(

(

x (a1 + 2az + az + 2a4) .
Theorem 4 For any Fy weight b/ € P(Fy) and any outer autormorphism 7 € Sy of Dy,
dimyp, (7b') = e(n) dimg (V') . (11.54)

This follows easily from the Weyl dimension formula (7.3) by explicitly using the action
of the 7 on the weights. As with Theorem 1. it expresses the anti-symmetry of Weyl

dimensions under the Weyl group.
Theorem 5 For all FJ‘(” weights b' € PR3(Fy),
dimp, (b") = dimp, (J,V') = dimp, (Jb') = dimpg, (J, Jb')  mod Mg, . (11.55)

From Theorem 4, it suffices to consider only J,. The proof uses Fact 1 and an casy

computer check for primes p = 2,3,5,7, as in the proof of Theorem 2.

Theorem 6 Let V' € PKT3(Fy) be any F,fl) weight satisfying ©b = Jb, for any Dy
simple current J and any order-2 outer automorphism w of Dy. Then dimpg, (b') =

0 mod MFp, .
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Figure 11.2: NIM-reps for Eg with charge conjugation k = 2,3.4

Proof: The proof of this follows automatically from Theorem 4. Analogous to the
situation for GGo, one of the factors in the dimension formula turns out to be K. So.
accommodating the denominators as in Fact 1 will yield the term é}:— for some 0 < o < A,,.

But this is 0 modulo Mg, for every prime p dividing Mp,. Q.E.D.

11.7.3 Appendix C: NIM-Reps and Graphs

In this appendix we give explicit descriptions of some of the NIM-reps at low level for
both Dy and Eg [11]. The NIM-rep graphs characterizing the matrix associated to the
field A = A; arc given. The corresponding graph has vertices labeled by the rows (or

columns) of N, and the vertex associated to 7 and j are linked by (V) lines.
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11.7.4 Appendix D: A Sample Calculation

A suitable example to illustrate the situations considered is at level £ = 5 for triality
twisted Dy. In this case from Table 11.1, we get Mp, = 11. The boundary states are
labelled by triples (ag; a1, as) such that k = ag + 2a; + 3a2. The boundary weights then

are
5,0,0].[3,1,0],[2,0,1],[1.2,0],[0,1.1]. (11.56)

whose G5 Weyl dimensions are respectively, 1, 7, 14, 27, 64.
The relevant NIM-rep graph is illustrated in Figure 11.1. The charge equations (11.9)

with A = A (fundamental representation of Dy with dimension 8) thus are

8o = qo+

8q1 = dqo+2q1 +qz+ s

8gp = Q1+ g2 +qs-+aqs (11.57)
8qs = a1 + a2+ 2q3 + Qs

8ga = q2+qs+aa

The first three equations are identically true with qo = 1,q1 = 7.qu = 14.¢q3 = 27,

and qq = 64, and the last two equations are satisfied modulo Mp, = 11.
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Chapter 12

A Twisted Non-Simply
Connected Group

12.1 Introduction and Modular Invariants

The Hilbert space of CFT's is constructed from the holomorphic and antiholomorphic

sectors by

*

H= P MyuHAcH,, (12.1)
A, peP?

and the resulting partition function for the full theory takes the form

Z(ry= > Myxa(nx.(7). (12.2)
X, nePk

The matrix M), of entries is known as a modular invariant for the WZW theory [1,2].
The theory described by taking M = I, the identity matrix, is known as the diagonal
theory.

CFT’s whose Hilbert space of states is described by the diagonal modular invariant
define a consistent CFT that is defined on arbitrary Riemann surfaces. Other consistent
modular invariants can be constructed from this theory through the use of global symme-
tries to either sector of the theory. For the WZW models based on the affine Lie algebra
g, there are essentially two choices. Any symmetry of the unextended Dynkin diagram
can be used to “twist” the modular invariant. These exist for A,, and Ey corresponding to

charge conjugation, for D, corresponding to chirality flips, and for D, where there is the
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additional symmetry of triality [1,3]. For example, in the case of charge conjugation for
the A,’s or Eg, the twisted modular invariant is simply M = C, the charge conjugation
matrix. It can be shown that twisting by such discrete symmetries of the unextended
Dynkin diagrams (twisting) always leads to a consistent modular invariant [4].

In addition, there are symmetries of the extended Dynkin diagrams which arise from
outer automorphisms of the Lie algebra. Such symmetries of affine Lie algebras are
known as simple currents. These exist for the A,’s, B,’s, C,’s, Day11's, Eg, E7, and
Ds,’s which possess two simple currents [1,2]. In addition, there is a simple current
at level 2 for Eg which does not correspond to an outer automorphism and hence does
not arise from a symmetry of the Dynkin diagram, but this will not concern us here,
However, not every simple current defines a consistent modular invariant. There is an
additional consistency condition imposed on the level. This can be described as follows

Suppose an affine Lie algebra g, has a simple current .J arising from the outer auto-

morphism of the extended Dynkin diagram. It can be shown that
ISy = Siau = Sype QN | (12.3)
where @Q()\), known as the charge of the simple current J, has the explicit form
Qi(A) = (Juwo, A), (12.4)

where wg is the the zeroth fundamental weight of g. Suppose the order NV of the simple
current J is N i.e. N is the smallest positive integer such JV = AN = 1. Then the
consistency condition requires

Nk :
Awol* € Z. (12.5)

2 i

Provided this condition is satisfied, the simple current modular invariant corresponding

to J is given by

N-1
ok
My, = Z O, gru01 ((on,u + %Ju}g)> , (12.6)
p=1 -

where &, (y) takes the value 1 if % is an integer, and the value 0 otherwise [1,2].
Such modular invariants arise in the study of non-simply connected groups. It is well
known that the group of outer automorphisms O(g) is isomorphic to the center B(G) of

the simply connected group G obtained by exponentiating the horizontal subalgebra g.
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A simple current of order N gives Zy which is a subgroup of O(g) = B)G) . Using the
modular invariant arising from the simple current .J, corresponds to defining the theory
on the non-simply connected group manifold G/Zy. Strictly speaking, this is the case
when N is prime. If the order N is not prime, then there is the additional option of
using a simple current J! where [ is a divisor of N, in which case the theory is defined
on the group manifold G/Zyy. This occurs, for instance, for the Ay’s [5].

If an affine Lie algebra g possess both a twist and a simple current, clearly the two
can be combined provided that the level consistency condition (12.5) can be met. The

modular invariant then takes the form

N-1
ok
17\,;[)\“ — Z (5/\‘UJPH§1 ((on,p -+ %Jﬁc’o)) ) (127)

p=1

where D denotes the twist (for example, C' when we have charge conjugation)
In this chapter, we will be concerned with such modular invariants for Eg. Eg has a
charge conjugation symmetry C' of the unextended Dynkin diagram which acts on the

Dynkin labels of an affine weight u via

C'(10y 11, 2, 1435 Has [ss fi6) = (L0, sy [ f135 s 141, fh6) 5 (12.8)

and an order 3 simple current .J which acts on the Dynkin labels of the affine weights

via
J(po, i1, ti2, 113, fhas 15, o) = (K15 s Hay M35 fos o, f2) (12.9)
with charge
Qrlp)=(J0,p) = %[2;1,1 + dpg + Bz + Speg + dps + 3pe) - (12.10)

The vacuum 0 = kwy clearly has Q(0) = 0. In addition, JO = kws has Q(J0) = 4
and J?0 = kw; has Q(J?0) = % These values will be important later.
For completeness, we note that the level k is given in terms of the Dynkin labels of

an Eg weight u by
k= g+ p1 + 2us + 3z + 2 + ps + 26 (12.11)

First of all, the consistency condition (12.5) can be checked with N = 3 and Jwy = ws
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to give

3k
F)

wslP==-¢€12, (12.12)

[SNRRNTEN

i.e. there is no restriction on the level k. Thus at any level k£ we can consistently have
four possibilities: the untwisted simply-connected group Eg, which we will denote by
A; the twisted simply-connected group E§, which we will denote by A*; the untwisted
non-simply-connected group Fgs/Zg, which we will denote D; and finally, the twisted
non-simply-connected group (Fs/Z3)*, which we will denote D*. We will work with this
last case. Remarkably it turns out that for any Lie algebra g, D* is more tractable than
D (when they can be defined), unlike the simply connected case where A is much simpler
than A* [6,7].

For D*, evaluating the inner product of the roots explicitly we find that

. . 3 2k ) 4k
My, = ) cul1 (Q()) + 6x.cupdt <Q(M) + §> + 8y 2,01 (Q(M) + —3—> . (12.13)

12.2 States, Exponents, and NIM-reps

The first task is to find the corresponding NIM-rep, and the description of the exponents
and the boundary states of the theory. We will first deal with the exponents. Recall
that exponents are primaries A of the CFT such that My, # 0, and they appear with a
multiplicity My, (since the Hilbert space will get that many copies of the corresponding
tensor product between the holomorphic and antiholomorphic modules).

Consider any exponent of the A* theory, i.e. C-invariant Eg weights of the form

p= (B0 p1s 2pt3s 2, J1s 116) - (12.14)

First consider the case £ =# 0 mod 3. Using (12.9), (12.10), and (12.9) it is easy to see

that
4k
Q(Jp) = 3 2p01 — 32 — 3p3 — pie
A 2k ,
Q) = Bl (12.15)

Then, by examining (12.13), with a bit of work (where we need to use the explicit form
(12.14) of the weights), it is easy to see that p, Ju, and J%u are exponents, each with
multiplicity 1. For u, ounly the first § term survives; for Ju, only the second ¢ term

. 2 . < . .
survives, and for J-u, only the third § term survives, and in cach case the argument
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of the other delta turns out to he an integer due to the explicit form of the charges
calculated above, and thereby leading to a multiplicity of exactly one for each. In the
case that k is a multiple of 3, in addition to the weights of this form, there are the
additional weights that are both €' and J invariant (known as J-fixed points) which have
the Dynkin labels

1= ([0 Hos M2, f13 s 12, fho- H2) - (12.16)

In this case, Q) = Q(Ju) = Q(J?u) = 2ug + 4y + 23 € Z, by the same procedure, it
is easy to see that such weights are also exponents but with multiplicity 3, since all the
terms will contribute. Thus, in all cases, the exponents can be neatly summarized to be
of the form (u,1) where p is a C-invariant Fg weight, and 0 < i < 2 denotes the J orbit
of such a weight.

There is a general construction by T. Gannon which suggests how to construct NIM-
reps [8]. If A is a NIM-rep, and J a simple current of order N of some fusion ring, then
the corresponding charge (0 is a mapping QJ : Pi’ — ]i\,Z. Then a new NIM-rep will be
the N-fold covering with boundary states (z, ), where x is a boundary state of the old

NIM-rep, and j € Zy, and the NIM-rep itself is given by A - (a,4) = (A - a,7i+ NQ (\)).
Here, the notation on the right hand side is defined by A - a = Zb/\/f(v4*:jl§,d13. and the
similar convention for the NIM-reps for the new theory on the left hand side is obvious.
Essentially, the new NIM-rep will be of the form A @ Zy. In this case, take the old
theory to be A*, and the new theory to be D*. One additional requirement is that we
would like to know whether our new NIM-rep is indecomposable/irredncible i.e. whether
it can be expressed as a direct sum of smaller NIM-reps. The condition for an arbitrary
NIM-rep to indecomposable is that the vacuum of the theory should have multiplicity
1. In this construction, this is equivalent to the requirement that the old NIM-rep is
indecomposable and, in addition, no non-trivial power of the simple current J is itself
an exponent of the old theory.
The NIM-rep constructed for the D* theory is then

Ala,g) = (A-a,j+3Q(N), (12.17)

and the ¥ matrix can easily be seen to be
(D L s, A, 12.18
V(D) ap) () = 7 V(A a0 (12.18)

This can actually be guessed just from looking at the Verlinde formula, since the
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matrix essentially diagonalizes the NIM-reps.

By an argument similar to the one for the exponents, the boundary states are also
seen to be of the form (&,4) with 0 < ¢ < 2, where & is a boundary state of the A* theory
l.e. a boundary state of the twisted simply-connected Eg theory.

In addition, the vacuum, being a C invariant Es exponent, clearly has multiplicity 1
in the new NIM-rep (essentially 7 = 0 in the orbit (0,4)). This implies that the NIM-rep
defined above is indecomposable. The other way to see this is that we know the NIM rep
of the A* theory is indecomposable. Its modular invariant is M = C' i.c. My, = 6y cp.
Clearly JO == kws and J0 = kwg are not exponents of this old NIM-rep.

12.3 D-brane Charges

Charges of D-branes in the D* theory will be integers ¢{a,7) and M such that

dimg, (\)g ZN (D* (\b(la J)q(b,'/ﬁ) mod M . (12.19)
(bz

If all the ¢(0,1) are equal for 0 < i < 2, then using the knowledge of the NIM-reps for
A*, it is easy to see that any ¢(a,7) is independent of 4, and must be a solution ¢(a) of
the A* theory. However, the solutions for the D-brane charges of A* are known to be
dimp, (a) times a constant, which in this case is taken to be the common value ¢(0,4). In
addition, the solutions for A* are known to be unique [7]. Thus, two phenomena become
apparent from this analysis. Firstly, the values ¢(0,7) uniquely determine any solution
o (12.19). Sccondly, the charge group for P must contain L, , since it inherits a
solution from the A theory, and we know that the 4 theory is solved modulo Mg,. In
what follows below, we will denote M = MEg;.

However, the NIM-rep is given by N (D*) = N (A*)©Zs. Thus, it is natural to expect
that the additional Z3 will generate extra solutions to the charge equations. Since 3 is
prime, Zz does not have non-trivial subgroups. As a result the solution is constrained

to be of the form
. . M
g(a,1) = dimpg, (a) {Q + 5(21} . (12.20)

where D = ged(3, M), 0< Q < M and 0 < @; < D. This solution reflects the tensored
form of the NIM-reps.
If D =1, clearly the second term is irrelevant in the charge equation, since everything

is defined modulo M. Thus they vanish, and we simply recover the A* case above (and
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@ will be the common value ¢(0.4)) giving the charge group Zjy.
The other option is D =3 (1.e. M is divisible by 3). In this case, the ansatz (12.20)

on the left hand side of the charge equation (12.19) gives

LHES = dimg (\g(a,q)
= dimg, (A)dimg,(a) {Q+ %Qz} . (12.21)

Similarly, the ansatz (12.20) on the right hand side of the charge equation (12.19)

gives
RHS. = Y N(D )Mu Lalb. )
(b.)
Z N{( 'D* dunm( ) {Q+ %QJ
(b.4)

M
ZN \adlmF4( ) {Q + “5@71-&—3@(,\)} :

.[\
= dimg, (\)dimpg,(a) {Q + T){QHBQ(’\)} mod A . (12.22)

where in the third line we have used the relation (12.17) between the NIM-reps of A*
and D* and in the last line we have used the solution to 4*.

Comparing the left and right hand sides, we need to satisfy
. . M . . M ,
dimg, ()\)dn'nm(a)?@; = dlrnEG()\)dlm&(d)—?)-Qi+;3(9m mod A . (12.23)

Now, Qg can be taken to be 0 since only the relative values hetween the (; matter,
and any unnecessary factor can be absorbed into the value of Q. Note that this is a
matter of convenience, since (Jp is no more physically privileged than either @) or @,
and either of those could have been set to zero as the “ground state” value.

Exponents for the A* theory are C' invariant weights i.e. of the form p = Cp. So the
matrices N (A*)y and N(A*)c, must be equal. Also from the definition of conjugation
as essentially inverting a representation we know that dim(A) = dim(C'A). Also, from
explicitly computing the charges using (12.8) and (12.10), we can see that 3Q(u) =
-3Q(Cu) modulo 3. Thus using (12.19), we get

dim g, (A\)q(0, 1) Z./V A" b 1(13,71 +3Q(A)) mod M.
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dimg, (CX)q(0 ZN (A% (Oq —3Q(A\)) mod M, (12.24)

which in turn gives us
dim g (\)g(0,1) = dimg, (A\)g(0,7 + 6Q(\)) mod M . (12.25)
Now, for any 0 < i < j < 3, with ged(3,j — 1) = ¢, the above gives us
dim(\) (¢(0,7) — q(0,5)) =0 mod M, (12.26)

for all A with ged(3Q(\), 3) = e. Define D, = gcd (% M) (i.c. 1 when e =3 and 3 when
e = 1 since we are considering the case D = 3 which implies that 3 is a factor of M.)
dim(w;) is divisible by 3 for any of the any of the (finite) fundamental weights w; of Eg as
can be seen from tables of dimensions for Eg representations, and the definition (12.10)
for the charge i.e. D, also divides the dimensions of the fundamental representations as
well. [9].

Any highest weight module Ly can be written virtually (i.e. possibly with negative
integer multiplicities) as a sum of tensor products of the representation modules of
fundamental weights. Each term L, @ -+ @ Ly, will have the same “charge” Qlwi, @
e @uwy) = 30 Qwiy) mod 1, and this will equal @(A) mod 1. The dim of A will be
the sum, over all of these terms, of [] j dim(w;; ), and so will be a multiple of 3 unless it
involves constant terms (arising from the scalar representation). Thus, it is easy to see
that D, will divide dim(A). Thus, we get

. M
q(0,4) = q(0,7) mod —115— : (12.
€

o
(]
-

Finally, from the constraint (12.23), and using the above we get

Qi=0Q; mod %{ , (12.28)

From our carlier claim we have (Jg = 0 necessarily. As a result of the above, the charge

group for the twisted non-simply connccted case of C-twisted Eg/Z3 is

2 PR,
Linigy % Ly, (12.29)
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and the charges themselves are given by (12.20)
. , M )
gla,i) = dimp,(a) | Q + ﬁQi , (12.30)

where D = ged(3. M), 0< Q< M and 0 € @Q; < D.

12.4 Conclusion

The work in this chapter has been heavily influenced by the similar situation of the
twisted non-simply connected versions of the A, algebras worked out recently by M.
Gaberdiel and T. Gannon. In fact, the development, for the most part, parallels the
similar situation for 4s/Zg3. This represents the first in a series of calculations involving
twisted non-simply connected groups, which will be written up into a journal publication
upon completion. In addition, M. Gaberdiel and T. Gannon have also discovered an
intertwiner in the A4, case that relates the charges of the twisted non-simply connected
groups to the untwisted non-simply connected groups. Since the calculations in the
latter situation maybe be quite untractable, such an intertwiner could be used to obtain
information regarding their charges using the more tractable calculations in the former
case. It would be interesting to construct such intertwiners for charges of these remaining

twisted non-simply connected groups as well.
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Chapter 14

At Last! Fortissimo!

The numbering of this concluding chapter was chosen specifically to avoid tempting fate
when it comes to the defense. This chapter summarizes the basic results of both parts
of the thesis.

Part I dealt with black holes in four and higher dimensions. Specifically, the sepa-
rability of the Hamilton-Jacobi and Klein-Gordon equations in these backgrounds was
analyzed and explicitly carried out in many cases. Along the way, information regarding
the spacetime symimetry groups of these black holes was obtained, and in many cases,
non-trivial second-rank Killing tensors that explicitly permit the separation were con-
structed. Chapter 3 worked with the recently discovered Kerr-(A) de Sitter metrics in
the situation when all the rotation parameters of the black hole are taken to be equal
(which is only possible in odd numbered dimensions). Chapter 4 worked with the Myers-
Perry rotating black hole spacetimes in the situation when there are only two possibly
unequal sets of rotation parameters. Chapter 7 addressed the situation of the Kerr-(A)
de Sitter black holes in the situation where there are only two possibly unequal sets of
rotation parameters. This result, which encompasses the situations of chapters 3 and
4, is thought to be the most generally separable situation for these spacetimes. More
general separation is perhaps possible in coordinate systems besides Boyer-Lindquist,
but seems unlikely based on the specific structure of the Killing vectors and tensors
discovered here. Chapter 5 dealt with two multiply charged supergravity rotating black
hole solutions in four and five dimensions, and chapter 6 worked with a very general
class of NUT-charged rotating spacetimes. Separability was explicitly carried out for all
thesc metrics, and in some cases non-trivial Killing tensors were found as well.

Part II of the thesis was based on symmetries of D-brancs. and in particular the

Conformal Field Theory (CFT) approach to D-branc charges of Wess-Zumino-Witten
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(WZW) models which describe string theory on a Lie group. The CFT approach has
a distinct advantage over the macroscopic description of D-brane charges using the ge-
ometrical tools available in the target space, since the CFT calculation, in addition to
giving the charge groups of the D-branes, also gives the charges of the individual D-
branes explicitly. Chapter 11 carrvied this calculation out for the D-branes of Ey twisted
by charge conjugation, and the D-branes of D, twisted by triality. In addition, this
chapter also established some surprising phenomena relating to the behaviour of simple
currents. Chapter 12 dealt with the D-brane charges of the non-simply connected group
FEs/Z3 wwisted by charge conjugation. Both chapters leave room for important continua-
tions in the work. Chapter 11 can obviously be extended by studying simple currents in
the context of equal rank subalgebras, and it is thought that this might also be able to
explain the anomalous simple current of Eg at level 2 in terms of simple currents of one of
its equal rank subalgebras like Ag or Ay P Er. Chapter 12 can be extended by studying
the D-brane charges on the other twisted non-simply connected groups. It would also be
interesting to discover intertwiners similar to the A4, case that relates the charge groups
between the twisted non-simply connected case and the untwisted non-simply connected
case, thereby obtained information about the charges in the latter situation as well.
Both parts of the thesis addressed questions about the symmetries of several solitonic
structures that occur in theories of high energy physics, particularly in string theory. The
results established in this thesis provide important information regarding symmetries,
charges, and conserved quantities that can be used to constrain their complicated dy-
namics. This work also raised several important questions which could lead to interesting

research in the quest to understand hlack hole and D-brane dynamics.
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Appendix A

Conformal Field Theory 101

CFT’s have received great attention in the last two decades in theoretical physics owing
to their extremely important uses in at least three different areas: as models for genuinely
interacting quantum field theories; in describing the physics of critical phenomena; and
in the fundamental formulation of string theory. Conformal field theories have also
had great impact on various aspects of modern mathematics: Vertex Operator Algebras
(OPEs), Borcherds algebras, knot theory, number theory, and low dimensional topology
and geometry.

CFT’s are cssentially Euclidean quantum field theories with the additional property
that their symmetry group contains, along with the Euclidean group of rotations and
translations, local conformal transformations, i.e. transformations that preserve angles
but not lengths. In higher than two dimensions, this additional constraint places severe
constraints on the theory since only globally conformal transformations are available.
However, in two dimensions the local conformal symmetry is of special importance in
two dimensions since the corresponding symmetry algebra is infinite-dimensional in this
casc. As a consequence, two-dimensional conformal field theorieg have an infinite number
of conserved quantities, and are completely solvable by symmetry considerations alone.

The brief presentation here will be from a very physical point of view, and does
not de justice to the sophisticated mathematical methods associated to two-dimensional
CFT’s.

In D dimensions, the space of global conformal transformations is given by SO(D +
1,1). In two dimensions, we have the group SO(3,1) as the global conformal group. We
can give an explicit realization of this. Regard the two dimensional space as the complex
plane C and consider a complex-valued function f(z) that is supposed to be globally

conformal. Clearly it should not have any branch points or cssential singularitics, since
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around a branch point the function is not uniquely defined, and around an essential
singularity the function f sweeps the entire complex plane in an arbitrarily small neigh-
borhood about the essential singularity (owing to Picard’s theorem). Thus, in either
cagse, the f would not be invertible. As a result, the only acceptable singularities are
poles, and so f can be written as a ratio of polynomials f(z) = P(z)/Q(z). If P has
several distinct zeros, then the inverse image is not uniquely defined, and f would not
be invertible. Moreover, if the one allowed zero zg of P has multiplicity » more than
one, then the image of a small neighborhood of zy is wrapped n times around 0, and
again f is not invertible. Thus P can only be a lincar function of z. Similarly, the same
argument shows () must also only be a linear function of z, when we look at the behavior
of f near oc as opposed to 0. Thus, the only global conformal transformations are of the

form
—, a,bye.d €C, ad—bec=1. (A1)

ad — be needs to be non-zero in order for f to be invertible. It is easy to see that the
value can be chosen to be 1 without loss of generality. In addition, the reversal of all the
signs on the numbers a, b, ¢, and d does not affect the transformation. Such functions
f define the group SL(2,C)/Zs, which is well known to be isomorphic to the Lorentz
group SO(3,1) through the Weyl spinor representation.

However, in two dimensions, any holomorphic transformation provides a locally con-
formal transformation since it preserve angles. The space of infinitesimal generators of
holomorphic functions is infinite dimensional, thereby making CFT in two-dimensions

far richer. Any holomorphic infinitesimal transformation can be expressed as
o
o - 2\ 1 ¢
T =z+e(z), €(z) = E Cn< : (A.2)
—00

We are considering the behavior of holomorphic functions near 0 without loss of gener-
ality, since any point of interest may be mapped to 0 by means of a global conformal

transformation ,i.c., an element of SL(2,C). Then, a field ¢ on € transforms under this

! s

infinitesimal mapping as ¢'(2/,7) = ¢(2,2) = ¢(2',7') — () 0(2. ) — €20 (. 7).

or equivalently we can write

0p = Z [Cnlnﬁi’(:sf) + Enz'ncb(z-, 3)} . (A.3)
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where
l’n — __377,+10 7 Zn — _377:%15 ) (A‘—L)

These are the generators of the infinitesimal conformal transformations on C and form

the Witt algebra:

lnslm] = (0= m)lpgm
[anm] = (n— M)lpsm (A.35)
[ln.lm] =0

The Witt algebra also contains the generators of global conformal transformations:
l_1,lg, and Iy and their complex conjugates. So far we have been considering spin-
less fields ¢. Under a holomorphic transformation w = w(z), a ficld with spin s and

scaling dimension A transforms as

‘ » —h dw ~h
swm-(3) (F) #=3, (4.6)

where h = $(A + ) and h = $(A — s) are known as the holomorphic and antiholo-

morphic conformal dimensions. Fields that transform this way under global conformal
transformations are known as quasi-primary fields. Fields that transform this way under
all conformal transformations are known as primary fields. Technically, this definition
should be rigorously defined using infinitesimal conformal transformations of the fields
as done earlier. Primary fields (or primaries) are to CFT what the highest weight state
is to a Lie algebra. Their transformation behavior is respected by correlations functions

as well, Le,

—h,

n —h;
. _ dw Y dw ) _ _ -
< d)l(wl-wl)md)n(wnau’n) >= H <—> ( > < @1(51:31)”'@71(371‘:71) ><A"’)

i=1 dz fw; dz [

Clearly, the constraints placed by conformal symmetry should help us solve for such
correlation functions, or at least that is the aim of CFT’s: to be able to solve the theory
from its abundant symmetries. For instance, conformal symmetry implies that two point

functions are necessarily of the form

Jifhy =ho=h,andh; =hy=h, (A8)

(1)

< P1(21,Z1)P2(22.Z2) >=
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where 210 = 21 — 29. The two-point function vanishes it the conformal dimensions of
the two fields do not match. Similar conditions can be used to constrain the three-point
function uniquely as well. In addition, the holomorphic transformations constrain the
dynamics of the theory through Ward identities.

Associated to any Lagrangian of the theory, a stress-energy tensor T),, can be con-
structed. Then, local translation, rotation and scaling invariance provide the Ward
identities

17,
Ok

<TH(x)X >= Zé(;v - :l?i:)% <X >,
i=1 K

n
€ <TH ()X >= —i Z 50— ;) < X >, (A.9)

=1

n
<TH@)X >= = 8z —2)A <X > .

=1

Converting to complex coordinates and write T(2) = —27T.., T(Z) = —2nTs. T,z

4]
Il

T=.

= 0 owing to global scale invariance. The Ward identities can be rewritten

1
. 1 . hy .
<T@A>=§ Oy, < X >+ < X >| +reg. (A.10)
, z— Wy (z — w;)?
i=1
where regular terms are not relevant, since correlation functions will be put under contour
integrals, and only terms with poles will contribute. The so-called conformal Ward iden-
tity provides information regarding the transformation of correlations functions under

conformal mappings with infinitesimal parameter e(z) (A.2):

1 .
dee < X >= 5 dze(z) < T(2)X > +cc.. (A.11)
271
where the contour encloses the point of interest.

Referring to (A.10), for a primary ¢ with holomorphic dimensions h, we can write

h ¢(U"‘) + —1'“awd)(u/’) s (Al?)

(z —w)? z—w

T(z)p(w) ~

and its complex conjugate. It is understood that these expressions are valid only inside
correlation functions. Such expressions which give information regarding the near dis-
tance behavior when two fields coincide are known as operator product expansions. The

~ indicates modulo terms that are regular as z — w, which are irrelevant for studying
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near distance behavior.

Typically the stress tensor is constructed from a Lagrangian, and its OPE’s with the
various fields of the theory are studied using contractions and Laurent expansions. This
is the common way to find information about the behavior of a field, such as its conformal
dimension. Note that the above OPE (A.12) is valid for primary fields that transform
as (A.6) under all conformal mappings. Additional singular terms would appear for
quasi-primary fields. The most important of these is the stress tensor itself which has
the OPE:

/2 2
¢/ T (w) +

T(2)T(w) ~ (z — w)? + (z —w)? r—w

O (W), (A.13)

which indicates that the field is quasi-primary with dimensions 2. This implies that the

stress tensor actually transforms as

dw

T (w) = <E~T> ) [T(:) — 1—%{10 : :}} . (A.14)

where {w : z} is the Schwartzian derivative of w with respect to z. The Schwartzian
derivatives vanishes for linear fractional transformations (global conformal transforma-
tion), and thus 7" is a quasi-primary field, but not primary. The constant ¢, known as
the central charge, is theory specific. Roughly speaking, it counts the number of degrees
of freedom of the theory. For instance the theory of a free scalar field has ¢ = 1, and
that of a free Fermion is ¢ = 1/2. ¢ is also related to the vacuum energy for CFT on a
curved manifold.

In addition to having the above description of CFT, it is desirable to have the so-
called operator formalism. Initially, the theory is defined on a long cylinder, where time
is goes from —oo to oo (i.e. goes along the flat direction of the cylinder), and space is
compactified on the circle and runs from 0 to L. A Wick rotation is performed, and the
cylinder is parameterized by a single complex coordinate € = t--ix. The cylinder is then

mapped to the complex place C (or really the Riemann sphere S?) via the mapping
7= e/ (A.15)

Past infinity (i.e. t — —oc) is mapped to the origin, future infinity (i.e. t — oc) is
mapped to infinity on the Riemann sphere, and constant time sections of the cylinder
are now circles on the complex plane {with the spatial coordinate z giving the angle
around the circle). Also assume the existence of a vacuum state |0 >. States are then
defined from fields on C by |¢ >;n= lim; z_.0¢(2,%)|0 >. Out states are similarly defined
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to the be Hermitian adjoint of these states. Any field ¢ on € can be decomposed into

modes as

— Dm,n
: : Z Z —m— }:1—~n R <A16)

meZ nEL

In order for the in and out states to be well defined, it is necessary to have ¢, |0 >=10
when m > —h,n > —h. We adopt the usual practise of dealing with just the holomorphic
sector, i.e., we simply write the holomorphic sectors and suppress the antiholomorphic

fields and indices. Then, the above mode expansions could be written

Om ~
- Z amh (A]")
meL

Analogous to time ordering in quantum field theory, we order fields on C by radial or-
dering, since circles on C represent constant time sections, and larger radius corresponds
to larger time coordinates. Radial ordering is defined by R®1(z)®Ps(w) = @1(2)Po(w)
when [z| > |w|, and R®1(2)Py(w) = Po(w)P;(z) when |z] < |w].

We can define the operators A = ¢ a(z)dz and B = § b(z)dz associated to fields a(z)
and b(z), where the integration is carried out over fixed time contours. The commutation

relations of these operators can be related to the OPE’s of the fields a and b via

B] = y{dw% dz a{z)b(w) (A.18)

where the first integral is over a contour that includes the origin, and the second is over
a contour that includes w.
For any infinitesimal conformal mapping e(z) (A.2), we can define the charge that

generates such a transformation,

Q. = —L 'd;e(:)T(z) . (A.19)

2mi

Using the conformal Ward identity (A.11), we can write
3P (w) = [—Qe, P(w)]. (A.20)

The stress tensor can be expanded into modes:

1 L77, A — L7 .
T =) o1 T@ =2 ot (A.21)

ne mez
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Using the OPE (A.13) and (A.18), we can write

C - -
[Ln.a Lm] = (71 - 777')Ln+7n + '17771‘(77"2 - 1)071+m,0 :

[LnLim] =0, (A.22)

— — C ¢ -
Env Lm} = (n—=m)Lpyy + 1_,)”(77'2 - 1)()714-772,0 ;

known as the Virasoro algebra. This is the central extension of the Witt algebra, which
generates infinitesimal conformal mappings on C and generates the corresponding in-
finitesimal conformal transformations on the space of fields and operators in the CFT.

Representations of the CFT are built out of the vacuum |0 > through the action of
the Virasoro generators Ly, and L.

In addition to free fields, CFT’s exist for interacting theories, where the OPE’s
produce highly singular terms. It is important to define a normal ordering correctly
$0 that these singular terms arc eliminated (since the VEV of a normal ordered term
needs to be zcro, singular expressions should not show up). This is correctly done by

defining

dz

L—w

(AB)(w) = )L]f A(=)B(w), | (A.23)

ZTL

which has the effect of removing all the singular terms in the OPE. A modec expansion
of the terms (AB)(w) results in the corresponding operator normal ordering : ... : that
is familiar from quantum field theory.

This concludes the very hrief introduction to CFT which has touched all the topics
necessary for the relevant CEFT material in Part IT of the thesis. Obviously, this barely
touches the surface of CFT on both the physics and the mathematical sides. This subject
is quite rich with ideas and phenomena in both fields, and is quite possibly onc of the most
fascinating areas representing the interplay between physics and modern mathematics
that has come to be so crucial in recent years. Further details on the various aspects of
CFT and complete descriptions of ideas only briefly touched upon in this appendix can
be found in [1-10].
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