
Approximation Algorithms for Some
Combinatorial Optimization Problems

by

Yao Xu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

©Yao Xu, 2019

https://www.cs.ualberta.ca/
http://www.ualberta.ca/

Abstract
Many real-world problems can be formulated as combinatorial optimization problems,

thus making it very important to find efficient methods to solve them, both theoretically

and practically. In this thesis, we consider several NP-hard combinatorial optimization

problems, consisting of some classification problems and some computational biology

problems, all of which can be formulated in terms of graphs; we focus on the design and

analysis of approximation algorithms for these problems. The main techniques used to

design and analyze approximation algorithms in this thesis include: randomized rounding

(based on linear programming relaxation), local search, and amortization.

We investigate the following NP-hard problems in this thesis: the maximum happy vertice

(MHV) problem, its complement the minimum unhappy vertices (MUHV) problem, the

maximum duo-preservation string mapping (Max-Duo) problem, and the k-path-partition

(k-PP) problem. TheMHV andMUHV problems, which are actually labeling problems, and

the k-PP problem can all be considered as classification problems. TheMax-Duo problem is

a string comparison problem, with applications in bioinformatics and data compression, and

the k-PP problem was actually arising from a broadcasting problem in data communication

networks. We present approximation algorithms forMHV andMUHV based on randomized

linear programming rounding. For Max-Duo and k-PP with k = 3, we propose improved

approximation algorithms mainly based on local search, and the performances of these

approximation algorithms are all done through amortized analysis.

ii

Acknowledgements
I am very grateful to everyone who has contributed in one way or anther to the completion
of my thesis. I sincerely appreciate all their help and support.

First and foremost, I would like to thank my supervisor, Dr. Guohui Lin, for his guidance,
advice, encouragement, and patience that have contributed tremendously to my four years
of Ph.D. life. I feel very fortunate to have had a teacher and collaborator like Dr. Lin. I have
learned quite a lot from discussing problems with him, and after every discussion, I could
always find a right direction for the next step of my research. His enthusiasm for research
and his way of thinking has been an inspiration to me. In addition to my research, Dr. Lin
has also spent much time in teaching and providing valuable suggestions to my writing and
my talks, for which I am really thankful. Besides, I have also benefited from Dr. Lin’s
support and advice outside of my research.

I am very thankful to Dr. Yong Chen, Dr. Longchen Liu, Dr. Taibo Luo, and Dr. Wenchang
Luo, for long time discussions on problems we have been working on. In addition to them,
I want to thank my other collaborators as well, Dr. Randy Goebel, Dr. Tao Jiang, Dr.
Angsheng Li, Dr. Guohui Lin, Dr. Tian Liu, Dr. Eiji Miyano, Dr. Bing Su, Dr. Weitian
Tong, and Dr. Peng Zhang. Additionally, I would also like to express my appreciation to
my supervisory committee members and two other examiners, Dr. Zachary Friggstad, Dr.
Randy Goebel, Dr. Linglong Kong, and Dr. FangxiangWu, for their time, extreme patience,
and valuable suggestions.

I would also like to thank my references Dr. Guohui Lin, Dr. Randy Goebel, and Dr.
Jia-Huai You, for their supportive letters of recommendation for my job applications.

Lastly, I want to give my appreciation to my family for their unconditional love and support.
For all these years I have been studying and living abroad, my parents and my grandmother
have always been very much supportive and encouraging. Most of all, I want to thank
my husband Weitian for his love, support, encouragement, patience, and his faith in me.
Although all my family are far away from me for most of my Ph.D. life, I can always feel
their love and support, which are indispensable to the completion of my Ph.D. journey.

iii

Contents

List of Figures vii

Acronyms xii

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Some graph terminologies . 2
1.1.2 Notations of some basic complexity classes 4
1.1.3 Approximation algorithms . 6

1.2 Techniques for approximation algorithms design and analysis 8
1.2.1 Randomized rounding . 8
1.2.2 Local search . 9
1.2.3 Amortized analysis . 10

1.3 Problems discussed and thesis contributions 11
1.3.1 The vertex happiness problems . 11
1.3.2 The maximum duo-preservation string mapping problem 14
1.3.3 The path partition problem . 16

2 The Vertex Happiness Problems 18
2.1 Introduction . 18

2.1.1 Related work . 21
2.1.2 Our contributions . 25
2.1.3 Organization . 26

2.2 A 1/
(
∆ + 1/g(∆)

)
-approximation for MHV 26

2.2.1 Probability that a vertex in B0 becomes happy 28
2.2.2 Probability that a vertex in B1 becomes happy 30
2.2.3 The approximation ratio analysis 31

2.3 The Sub-ML and the Sup-ML problems 36
2.4 The approximability of the MUHV problem 38
2.5 Improved approximation results for the MHV problem 43

2.5.1 A 2/k-approximation for MHV 43
2.5.2 A hardness result for MHV . 46

2.6 Concluding remarks and possible future work 48

3 The Maximum Duo-preservation String Mapping Problem 50
3.1 Introduction . 50
3.2 Preliminaries . 54
3.3 On approximating the 2-Max-Duo problem 58

iv

Contents

3.3.1 Properties for the graph H when k = 2 58
3.3.2 An approximation algorithm for 2-Max-Duo 65
3.3.3 Review of the reduction from MIS on cubic graphs 68

3.4 On approximating the general Max-Duo problem 72
3.4.1 A local search algorithm LS . 72

3.4.1.1 Operation Replace-5-by-6 73
3.4.1.2 Operation Reduce-5-by-5 74
3.4.1.3 The local search algorithm LS 75
3.4.1.4 A better time complexity analysis for LS 75

3.4.2 Approximation ratio analysis for the algorithm LS 81
3.4.2.1 The amortization scheme 81
3.4.2.2 Value combinations of τ(ei, j ← C∗(ei, j)) with ω(ei, j) ≥ 3 83
3.4.2.3 Ordered value combinations of τ(ei, j ← C∗(ei,�)) with

ω(ei, j) ≥ 3 . 85
3.4.2.4 Edge combinations of C(C∗(ei, j)) with ω(ei, j) ≥ 3 89

ei, j cannot be a parallel edge of M 89
ei, j is a singleton edge of M 90

3.4.2.5 An upper bound on ω(e) for e ∈ C(C∗(ei, j)) − {ei, j} . . . 101
3.4.2.6 An upper bound on ω(e) for e ∈ C(C∗(ei, j)) known to be

parallel . 106
3.4.2.7 An upper bound on the average value of ω(e) 115

3.4.3 Lower bounds on the locality gap for the algorithm LS 117
3.4.3.1 An instance of MCBM 117
3.4.3.2 An instance of Max-Duo 121

3.5 Concluding remarks and possible future work 123

4 The Path Partition Problem 126
4.1 Introduction . 126
4.2 A local search approximation algorithm 128

4.2.1 Computing a 3-path partition with the least 1-paths 129
4.2.1.1 Step 1: computing a maximum matching 129
4.2.1.2 Step 2: computing a second maximum matching 130
4.2.1.3 Step 3: reducing 1-paths to the minimum 130
4.2.1.4 The main theorem . 133

4.2.2 Local operations and their priorities 136
4.2.2.1 Operation 3-0-By-0-2, highest priority 1 136
4.2.2.2 Operation 3-1-By-0-3, priority 2 137
4.2.2.3 Operation 4-1-By-1-3, priority 3 138
4.2.2.4 Operation 4-2-By-1-4, lowest priority 4 138

4.2.3 The complete local search algorithm Approx 140
4.3 Analysis of the approximation ratio 4/3 141

4.3.1 Distribution process Phase 1 . 142

v

Contents

4.3.2 Distribution process Phase 2 . 144
4.3.3 A tight instance of algorithm Approx 150

4.4 Concluding remarks and possible future work 150

5 Conclusions and Future Work 152

Bibliography 154

vi

List of Figures

2.1 An instance of MHV on the left and a coloring scheme on the right, where
the integer in the parenthesis on each vertex is its weight. In this coloring
scheme, the total weight of happy vertices is w(a) + w(d) + w(h) + w(g) = 9. 19

2.2 A high-level description of Algorithm P for the MHV problem. 27
2.3 A high-level description of Algorithm R for the MHV problem. 27
2.4 The non-uniform Algorithm A for the MHV problem. 27
2.5 An illustration of a0(λ) and a1(λ) with λ2 ≤ λ

∗. The thick line denotes the
function min{a0(λ), a1(λ)}. 34

2.6 An illustration of a0(λ) and a1(λ) with λ∗ < λ2. The thick line denotes the
function min{a0(λ), a1(λ)}. 35

2.7 A high-level description of Algorithm P for the MHV problem. 37

3.1 An instance of Max-Duo with two strings A = (a, b, c, d, a, b, c) and B =
(b, c, d, c, a, b, a), and a common partition {a, bcd, ab, c} that preserves three
duos (b, c), (c, d) and (a, b), corresponding to the perfect matching shown
in the figure. 52

3.2 A bipartite graph G = (DA,DB, E) constructed from the two strings A =
(a, b, c, d, a, b, c) and B = (b, c, d, c, a, b, a), and a compatible matching in G
containing three edges e2,1, e3,2, e5,5. 55

3.3 An instance of the k-Max-Duo problem with A = (a, b, c, d, e, f , b, c, d, e)
and B = (f , b, c, d, e, a, b, c, d, e). Figure 3.3a is the graphical view as a
bipartite graph G0 = (A, B, E0), where a perfect matching consisting of the
ten bold edges form into eight pairs of parallel edges, corresponding to the
eight preserved duos (a, b), (b, c), (c, d), (d, e), (f , b), (b, c), (c, d) and (d, e).
Figure 3.3b shows the instance graphH = (V, F) ofMIS constructed fromH,
where the independent set {v1,6, v2,7, v3,8, v4,9, v6,1, v7,2, v8,3, v9,4} corresponds
to the eight pairs of parallel edges shown in Figure 3.3a, and consequently
also corresponds to the eight preserved duos. In this instance, we have
k = 2. Any maximum independent set of H must contain some of the
degree-6 vertices, invalidating the (1.6 + ε)-approximation for 2-Max-Duo
proposed in [10]. 57

3.4 The square S(i, i′; j, j′) shown in bold lines. The two non-adjacent vertices
vi, j and vi′, j ′ of the square form a pair stated in Corollary 3.5; they have 6
common neighbors, of which two inside the square and four outside of the
square. 61

vii

List of Figures

3.5 An instance of the 2-Max-Duo problemwith A = (a, b, c, d, e, f , g, b, c, d, e, h, y, x)
and B = (g, b, c, d, e, h, a, b, c, d, x, y, e, f). The bipartite graphG0 = (A, B, E0)
is shown in Figure 3.5a and the instance graph H = (V, F) of the MIS prob-
lem is shown in Figure 3.5b. There is a maximal series of 2 squares
S2(2, 8; 2, 8) in the graph G, with the four substrings “bcd”. The bi-
partite graph G′0 = (A

′, B′, E′0) is shown in Figure 3.5c and the graph
H′ = (V ′, F′) is shown in Figure 3.5d, on A′ = (a, d, e, f , g, d, e, h, y, x)
and B′ = (g, d, e, h, a, d, x, y, e, f). Applying the vertex contracting process
on H also gives the graph H′. 62

3.6 A high-level description of the approximation algorithm for 2-Max-Duo. . 65
3.7 Illustration of the execution of our algorithm Approx on the instance shown

in Figure 3.5. The independent set I1 in the graph H1 is shown in Figure 3.7a
in filled circles, for whichwe did not apply the state-of-the-art approximation
algorithm for the MIS problem. The independent set I in the graph H is
shown in Figure 3.7b in filled circles, according to Corollary 3.9 the four
vertices v2,8, v3,9, v8,2, v9,3 are added due to v10,4 ∈ I1. The parallel edges of
G0 corresponding to the vertices of I are shown in Figure 3.7c, representing
a feasible solution to the 2-Max-Duo instance shown in Figure 3.5. 67

3.8 The instance Iu = (Au, Bu) defined for each vertex u ∈ V ′. Each two dots
between a pair of substrings represent a substring of two distinct letters
(xi

u, y
i
u) in Au and (yi

u, xi
u) in Bu, respectively, for i = 1, . . . , 6. All these 12

letters xi
u, yi

u are distinct and also distinct from all the other letters in Au and
Bu. Each solid or dashed line connects a pair of common duos in Au and Bu.
The set of five duos connecting by solid lines is a unique optimal solution
to Iu. 69

3.9 The gadget subgraph associated with the instance Iu = (Au, Bu), in which
there are nine vertices corresponding to the nine common duos between Au
and Bu. 69

3.10 Four options of modifying instances Iu and Iv by only modifying the right
side of Au, Bu and the left side of Av, Bv such that an optimal solution to IH ′

coincides with at most one of the optimal solutions to Iu and Iv. 70
3.11 Four different configurations for joining the two gadget subgraphs for the

vertices u, v ∈ V ′, in each of which a common duo is revised for the directed
edge (u, v) ∈ E′. 71

3.12 A high-level description of the algorithm of finding an X′1 in E′1. 79
3.13 A high-level description of the algorithm of finding a compatible matching

of G∗ incident on U A. 80

viii

List of Figures

3.15 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2, 1,

1
2
)
. We have |C(C∗(ei,�))| = 3, and |Np(ei+2)| = |Np(e j ′−2)| = 1 in this

configuration. It also represents the other three symmetric configurations
where |Np(ei+2)| = |Np(ei−2)| = 1, |Np(e j ′+2)| = |Np(e j ′−2)| = 1, and
|Np(e j ′+2)| = |Np(ei−2)| = 1, respectively. (Recall that the edge ei, j is in
bold solid line, the edges in vertical bold dashed lines are in C∗(ei,�), the
edges in thin solid lines are in C(C∗(ei,�)), and the edges in thin dashed lines
are inNp(C(C∗(ei,�)); the vertices in filled circles are surely incident with no
edges of M and the vertices in hollow circles have uncertain incidence in M .) 92

3.16 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2, 1,

1
3
)
. We have |C(C∗(ei,�))| = 4 and |Np(e j ′−2)| = 1 in this configuration.

It also represents the symmetric configuration where |Np(ei−2)| = 1. 92
3.17 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(

1, 1
2,

1
3
)
. We have |C(C∗(ei,�))| = 3 and |Np(e j ′+2)| = 1 in this configuration. 93

3.18 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(
1, 1

2,
1
4
)
. We have |C(C∗(ei,�))| = 4 and Np(e j ′+2) = ∅ in this configuration. . 93

3.19 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
3, 1,

1
3
)
, where |C(C∗(ei,�))| = 5. 93

3.20 The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2,

1
2,

1
3
)
. We have |C(C∗(ei,�))| = 4. They also represent the symmetric case

where ei′−2 ∈ M instead of e j ′−2 ∈ M . 94
3.21 The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1

2,
1
2,

1
4
)
. They are associated with the only possible edge combination of

C(C∗(ei,�)) with |C(C∗(ei,�))| = 5, which also represents the symmetric case
where ei′−2 ∈ M instead of e j ′−2 ∈ M . The first configuration shadows the
second one. 95

3.22 The three possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
3,

1
2,

1
3
)
, associated with three possible edge combinations of C(C∗(ei,�))

with |C(C∗(ei,�))| = 4, 5, 5, respectively. The configuration in Figure 3.22a
also represents the symmetric case where ei−2 ∈ M instead of e j ′−2 ∈ M
and/or e j ′+2 ∈ M instead of ei+2 ∈ M . 96

3.23 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2,

1
3,

1
3
)
. We have |C(C∗(ei,�))| = 4 and |Np(e j ′+2)| = 1. 96

3.24 The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
3,

1
2,

1
4
)
, associated with two possible edge combinations ofC(C∗(ei,�))with

|C(C∗(ei,�))| = 5, 6, respectively. The configuration in Figure 3.24a also
represents the symmetric case where ei−2 ∈ M instead of e j ′−2 ∈ M 97

3.25 The three possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2,

1
3,

1
4
)
, associated with three possible edge combinations of C(C∗(ei,�))

with |C(C∗(ei,�))| = 4, 4, 5, respectively. 98
3.26 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1

2,
1
3,

1
5
)
, where |C(C∗(ei,�))| = 5. 98

3.27 The only possible configuration ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
4,

1
2,

1
4
)
, where |C(C∗(ei,�))| = 6. 98

ix

List of Figures

3.28 The four possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
3,

1
3,

1
3
)
, associated with four possible edge combinations ofC(C∗(ei,�))with

|C(C∗(ei,�))| = 4, 5, 5, 5, respectively. Figure 3.28a also represents the case
where e j ′+2 ∈ M instead of ei+2 ∈ M; Figure 3.28c also represents the case
where e j ′−2, ei+2 ∈ M instead of ei−2, e j ′+2 ∈ M 99

3.29 The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2,

1
2, 0

)
, associated with the only possible edge combinations of C(C∗(ei,�))

with |C(C∗(ei,�))| = 3. Each of them also represents the case where ei−2 ∈ M
instead of e j ′−2 ∈ M . 100

3.30 The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2, 0,

1
2
)
, associated with the two possible edge combinations of C(C∗(ei,�))

with |C(C∗(ei,�))| = 3. The second configuration represents the other 15
symmetric cases exactly one of i − 2, j′′ − 2, j′′ − 1, j′′ is incident with an
edge of M and exactly one of i + 2, j′′′, j′′′ + 1, j′′′ + 2 is incident with an
edge of M , but the two edges are not parallel to each other. 100

3.31 A bipartite graph G = (V A,V B, E), where V A = {1, 2, . . . , 26}, V B =

{1′, 2′, . . . , 26′}, and E = M ∪ M∗. M consists of the 12 edges in solid
lines and it is a maximal compatible matching in G; M∗ consists of the
26 edges in dashed lines and it is an optimal compatible matching to the
MCBM problem on G. 118

3.32 The corresponding bipartite graph G = (V A,V B, E) constructed from two
identical strings A = B = (a, b, c, d, e, f , b, c, d, e, g), whereV A = {1, 2, . . . , 10},
V B = {1′, 2′, . . . , 10′}, and E = M ∪ M∗. M consists of the six edges in
solid lines and it is a compatible matching in G; M∗ consists of the ten edges
in dashed lines and it is an optimal compatible matching to the MCBM
problem on G. 121

3.14 A high-level description of the algorithm of expanding the current maximal
compatible matching by swapping ρ edges out for ρ + 1 compatible edges. . 125

4.1 An instance of 3-PP. The two 2-paths and the two 3-paths represented by
edges with red backgroud is a solution to 3-PP for this instance. 127

4.2 An alternating path v0-w1-u1-w2-u2-. . .-wi-ui-ui+1 that saves the singleton
v0, where the first i paths are 3-paths and the last one is a 2-path. In the
figure, solid edges are in the edge set E∗ and dashed edges are outside of E∗. 132

4.3 A high-level description of Algorithm A for computing a 3-path partition
in the graph G = (V, E) with the least singletons. 133

4.4 The configuration of the expected collection for Operation 3-0-By-0-2,
which has the highest priority 1, where solid black edges are in Q, dashed
edges are in E but outside of Q, and the edges with red backgroud form the
replacement collection. 136

4.5 The first class of configuration of the expected collection for Operation 3-
1-By-0-3, which has priority 2.1, where solid black edges are in Q, dashed
edges are in E but outside of Q, and the edges highlighted in red form the
replacement collection. 137

x

List of Figures

4.6 The second class of configurations of the expected collection in Operation
3-1-By-0-3, which has priority 2.2, where solid black edges are in Q, dashed
edges are in E but outside of Q, and the edges highlighted in red form the
replacement collection. 138

4.7 The configuration of the expected collection for Operation 4-1-By-1-3,
which has priority 3, where solid black edges are in Q, dashed edges are in
E but outside of Q, and the edges highlighted in red form the replacement
collection. 139

4.8 The three classes of configurations of the expected collections for an Oper-
ation 4-2-By-1-4, where solid black edges are in Q, dashed edges are in E
but outside of Q, and the edges highlighted in red form a possible replace-
ment collection. In every class, each dotted edge between P5 = u-w-v and
P6 = u′-w′-v′ corresponds to one configuration. 139

4.9 A high-level description of the local search algorithm Approx, where each
“break” is meant to go to the next iteration of the loop. 140

4.10 Illustrations of the token distribution scheme in Phase 1, where solid edges
are in E(Q2) and dashed edges are in E(Q∗). In Fig. 4.10c, u or v can be
either an endpoint or the midpoint of the corresponding 3-path of Q∗3. . . . 143

4.11 An illustration of a 3-path P1 = v-v′-v′′ ∈ Q∗3 with τ1(P1) = 3/2, where u-v,
u′-v′ ∈ E(Q2), P3 ∈ Q3, with w being either the midpoint or an endpoint of
P3, and P2 ∈ E(Q∗3) is represented by dashed edges, on which w is adjacent
to u. 145

4.12 The cases when P4 is a singleton of Q∗1, where solid edges are in E(Q2) or
E(Q3) and dashed edges are in E(Q∗). x1 is the tail of the pipe through
which P4 could receive 1/2 token from the 2-path of u-v. 146

4.13 The cases when both P4 and P5 are in Q∗2 ∪ Q
∗
3, where solid edges are in

E(Q2) or E(Q3) and dashed edges are in E(Q∗). In Fig. 4.13a, y1 is the
tail of the pipe through which P5 receives 1/2 token from the 2-path u-v;
in Fig. 4.13b, x1 is the tail of the pipe through which P4 receives 1/4 token
from the 2-path u-v and y1 is the tail of the pipe through which P5 receives
1/4 token from the 2-path u-v. 147

4.14 An illustration of y2 in Fig. 4.13a being the tail of a pipe, say z1 → w′→ y2,
which could never happen due to Operation 4-2-By-1-4. 148

4.15 An illustration of y1 being an endpoint of P5 in Fig. 4.13a, where P5 = y1-
y2-y3, solid edges are in E(Q2) or E(Q3) and dashed edges are in E(Q∗). y3
could be on a path of Q1, Q2, or Q3. 149

4.16 A tight instance of 27 vertices, where solid edges represent a 3-path parti-
tion Q produced by Approx and dashed edges represent an optimal 3-path
partition Q∗. The edges (ui, vi), i = 1, 3, 5, 7, 9, are in E(Q2)∩E(Q∗), shown
in both solid and dashed edges. In our distribution process, each of the nine
3-paths in Q∗ receives 1 token from the 2-paths in Q. 150

xi

Acronyms

CMIS constrained maximum induced subgraph 51, 52

Coloring graph coloring 12, 19, 46

Cubic-MIS maximum independent set on cubic graphs 68

FPT fixed parameter tractable 51

FPTAS fully polynomial-time approximation scheme 7

Hyp-MC hypergraph multiway cut 13, 22–25, 41–43, 49

ILP integer linear program or integer linear programming 8, 9

LP linear program or linear programming 8, 9, 21, 24–26, 44–46, 48

MC multiway cut 22–24

MCBM maximum compatible bipartite matching x, 53–55, 75, 117, 118, 120, 121, 123,
124

MCSP minimum common string partition 14, 15, 50, 51, 53, 68, 123

MHE maximum happy edges 12, 18, 21, 24

MHV maximum happy vertices ii, vii, 12, 13, 18–22, 24–27, 29, 31, 35–37, 43–49, 152

MIS maximum independent set vii, viii, 13, 15, 46–49, 52–54, 56–59, 62, 64, 66–69, 123,
124

MPSM maximum duo-preservation string mapping 14, 51

MUC multiway uncut 24

MUHV minimum unhappy vertices ii, 12, 13, 19, 20, 22, 25, 26, 38–43, 48, 49, 152

Max-Duo maximum duo-preservation string mapping ii, vii, viii, 14, 15, 51–60, 62, 65,
67, 68, 81, 117, 121–124, 152, 153

NPO NP-optimization 6, 7

xii

Acronyms

Node-MC node-weighted multiway cut 22–24

PP path partition ii, x, 16, 17, 126–128, 135, 141, 142, 150–153

PTAS polynomial-time approximation scheme 7

SC set cover 16, 17, 127, 128, 151

Sub-ML submodular multi-labeling 13, 20, 22, 25, 26, 36, 37, 39, 43, 48, 49

Sub-MP submodular multiway partition 22, 24–26, 37, 39, 48

Sup-ML supermodular multi-labeling 13, 20, 22, 24–26, 37, 38, 44, 46, 48, 49

Sup-MP supermodular multiway partition 24

xiii

Chapter 1

Introduction

In real life applications, many computational problems can be formulated as combinatorial
optimization problems. According to [3], an optimization problem can be formally defined
as follows.

Definition 1.1. An optimization problem P can be characterized by a quadruple (IP , FP ,
VP , GP), where

• IP is the set of instances of the problem;

• FP is a function which associates to any input instance I ∈ IP the set of feasible
solutions of I, i.e., the set of solutions satisfying all the given constraints;

• VP is a function defined for pairs (I, s) such that I ∈ IP and s ∈ FP(I), andVP(I, s)
provides a positive real number for each pair (I, s) which is the value of the feasible
solution s;

• GP ∈ {min,max} specifies whether the problem is a minimization or a maximization
problem.

Thus, the goal of an optimization problem is to find an optimal solution out of the set of
feasible solutions. Formally, given an instance I ∈ IP , an optimal solution of I is a feasible
solution s∗ ∈ FP(I) such that for all s ∈ FP(I), VP(I, s∗) ≤ VP(I, s) if GP = min, or
VP(I, s∗) ≥ VP(I, s) if GP = max.

An optimization problem is called combinatorial if the variables are discrete and the set of
feasible solutions is finite, or possibly countably infinite [66].

In order to solve a combinatorial optimization problem, the most straightforward approach
would be to enumerate all possible feasible solutions and then determine which of them
is an optimal one. This approach can be referred to as brute-force search. However, for
many combinatorial optimization problems, the search space grows exponentially with the
size of the problem, thus making the brute-force search impractical. Actually, there are

1

Chapter 1. Introduction

numerous combinatorial optimization problems which are computationally intractable, that
is, no efficient, i.e., polynomial-time, algorithms can solve them in practice, for example,
those known as NP-hard problems. Under the overwhelming consensus P,NP, NP-hard
problems do not admit efficient exact algorithms. Thus, it becomes very important to design
a polynomial-time approximation algorithm for an NP-hard problem, which can find a
solution provably close to the actual optimal solution.

In this thesis, all the problems we discuss areNP-hard combinatorial optimization problems
that can be modeled by graphs. In this chapter, we will first introduce some basic graph
terminologies in Section 1.1.1 and some definitions of complexity classes related to this
thesis in Sections 1.1.2 and 1.1.3; then we introduce in Section 1.2 the main techniques that
will be used in the design and analysis of approximation algorithms in this thesis; lastly in
Section 1.3, we give a brief introduction on all the problems that will be discussed in the
following chapters, along with our main contributions.

1.1 Preliminaries

1.1.1 Some graph terminologies

In this section, we introduce some basic graph terminologies, with most of the definitions
adopted from [27, 58].

A graph G = (V, E) consists of a finite set V of vertices and a finite set E of edges, with
each edge in E corresponding to a pair of two vertices in V . We use the notation (u, v) for an
edge associated with the vertices u, v ∈ V . Then, if u , v, in an undirected graph, each edge
of E is an unordered pair of vertices of V , that is, (u, v) and (v, u) present the same edge in
an undirected graph; in a directed graph (also called digraph), each edge is an ordered pair
of vertices of V , that is, (u, v) and (v, u) are two distinct directed edges in a directed graph.
An orientation of an undirected graph G is a digraph obtained by orienting, i.e., choosing a
direction for, each edge of G.

If e = (u, v) is an edge in a graph G = (V, E), we say u and v are adjacent, u and v are
neighbors to each other, u and v are the two endpoints of e, u and v are both incident with
e, and e is incident on u and v. For a vertex v, the neighborhood of v is the set of all the
vertices adjacent to v, which is denoted as N(v); the closed neighborhood of v is the union
of N(v) and {v} itself, which is denoted as N[v]. The degree of a vertex v is the total

2

Chapter 1. Introduction

number of vertices in N(v), and we say v is a degree-N(v) vertex. In a directed graph, we
say e = (u, v) leaves u and enters v, the out-degree of v is the number of edges leaving it,
and the in-degree of v is the number of edges entering it.

An edge is called a loop if its two endpoints are the same. Two or more edges are called
multi-edges if they are incident on the same pair of vertices. A graph is called simple if
there are no loops or multi-edges in it. In this thesis, every graph is simple and undirected,
unless stated otherwise.

We say a graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E . Given a
set V ′ ⊆ V , G′ = (V ′, E′) is an induced subgraph of G if E′ = {(u, v) ∈ E | u, v ∈ V ′}, and
we say G′ is the subgraph of G induced by V ′.

In a graph G = (V, E), a path is an alternating sequence of vertices and edges v1, e1, v2,
. . ., vk , ek , vk+1 such that k ≥ 0 and ei = (vi, vi+1) ∈ E for i = 1, 2, . . . , k. It is also called
a v1-vk+1-path (or a path from v1 to vk+1). A path is simple if all vertices in the path are
distinct. A cycle is a v1-vk+1-path, with vk+1 = v1, and the cycle is simple if all vertices in
the cycle are distinct.

A graph G = (V, E) is called connected if for any two vertices u, v ∈ V , there is a u-v-path
in G; otherwise G is disconnected. The maximal connected subgraphs of a graph are called
its connected components.

An independent set in G is a subset of pairwise non-adjacent vertices I ⊆ V ; a matching in
G is a set of pairwise non-adjacent edges M ⊆ E , i.e., the endpoints of all the edges in M

are different. Consider a matching M in a graph G. We say a vertex v is covered by M if
v is an endpoint of some edge e ∈ M; otherwise v is exposed by M . If all the vertices are
covered by M , then M is called a perfect matching of G.

Here are the definitions of some special graphs whichwill be helpful in presenting this thesis.
A complete graph is a graph in which every two vertices are adjacent. A bipartite graph is a
graph G = (V1,V2, E), where V1 and V2 are two disjoint sets of vertices and both of them are
independent sets inG, i.e., E ⊆ {(u, v) | u ∈ V1, v ∈ V2}. When E = {(u, v) | u ∈ V1, v ∈ V2},
with |V1 | = n1, |V2 | = n2, then G is called a complete bipartite graph and is denoted by
Kn1,n2 . A forest is a graph without a cycle as a subgraph, and a tree is a connected forest. A
degree-1 vertex in a graph is called a leaf.

3

Chapter 1. Introduction

1.1.2 Notations of some basic complexity classes

In this section, we introduce some basic complexity classes, with most of the definitions
adopted from [2, 3].

The study of computational complexity focuses on issues of computational efficiency, which
is to quantify the amount of computational resources required to solve a given task. With
appropriate encoding, discrete objects can usually be represented by strings of bits. A basic
computational task is computing a function, whose inputs and outputs are both restricted to
finite strings of bits, i.e., f : {0, 1}∗ → {0, 1}∗.

A problem P is called a decision problem if the set IP of all the instances of P can be
partitioned into a setYP of YES instances and a setNP of NO instances, and for any instance
I ∈ IP , the problem asks to verify whether I ∈ YP . Formally, given a function f whose
output is a single bit, i.e., in {0, 1}, the subset L f B {x : f (x) = 1} of {0, 1}∗ is called
a language or decision problem. For any decision problem P, its complementary problem
PC is the decision problem with IPC = IP , YPC = NP , and NPC = YP .

The computational efficiency of an algorithm is typically measured as the number of basic
operations it performs as a function of its input length. Here are the five basic asymptotic
notations which are to describe the running time of an algorithm.

• f (n) ∈ O(g(n)) if ∃c > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0, f (n) ≤ c · g(n);

• f (n) ∈ Ω(g(n)) if ∃c > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0, f (n) ≥ c · g(n);

• f (n) ∈ Θ(g(n)) if ∃c0, c1 > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0, c0 · g(n) ≤ f (n) ≤ c1 · g(n);

• f (n) ∈ o(g(n)) if ∀c > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0, f (n) < c · g(n);

• f (n) ∈ ω(g(n)) if ∀c > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0, f (n) > c · g(n).

There is a simple mathematical model that suffices for studying computational efficiency,
called the Turing machine (TM), which can be defined as follows, according to [2].

Definition 1.2. A Turing machine (TM) M is described by a tuple (Γ,Q, δ) containing:

• A finite set Γ of the symbols that M’s tapes can contain, which is called the alphabet
of M . Assume that Γ contains a designated “blank” symbol, a designated “start”
symbol, and the numbers 0 and 1.

• A finite set Q of possible states M’s register can be in. Assume that Q contains a
designated start state and a designated halting state.

4

Chapter 1. Introduction

• A function δ : Q × Γk → Q × Γk−1 × {Left, Stay,Right}, k ≥ 2, describing the rules
M uses in performing each step, which is called the transition function of M .

Let f : {0, 1}∗ → {0, 1}∗ be some function and M be a TM. M computes f if and only if
for every input x ∈ {0, 1}∗, M halts with f (x) written on its output tape. M computes f in
T(n)-time if its computation on every input of length n requires at most T(n) steps.

A complexity class is a set of functions that can be computed within given resource bounds.
We introduce as follows some basic complexity classes related to this thesis (the definitions
are mainly based on the book [2]).

The class P, where P stands for “polynomial”, is the set of decision problems that can be
solved by a TM in polynomial time. The TM defined above is more precisely called the
deterministic TM since for any input x, the machine’s computation can proceed in exactly
one way. The class P can also be defined more formally based on the definition of the class
DTIME, where D refers to “deterministic”, as follows.

Definition 1.3. Let T : N→ N be some function. A language L ⊆ {0, 1}∗ with input length
n is in DTIME(T(n)) if and only if there is a TM that runs in time c ·T(n) for some constant
c > 0 and computes the function fL : {0, 1}∗ → {0, 1}, where fL(x) = 1⇔ x ∈ L.

Definition 1.4. P = ∪c≥1DTIME(nc).

The class NP, which stands for “nondeterministic polynomial”, is the set of decision prob-
lems that can be verified by a deterministic TM in polynomial time. It can also be defined
more formally using a variant of TM called nondeterministic Turing machine (NDTM). The
only difference between an NDTM and a standard TM is that an NDTM has two transition
functions δ0 and δ1, and a special state denoted as qaccept . In each step, an NDTM M makes
an arbitrary choice as to which of its two transition functions to apply. For every input x,
M(x) = 1 if there exists some sequence of these choices that would make M reach qaccept

on input x; otherwise, if every sequence of choices makes M halt without reaching qaccept ,
then M(x) = 0. M runs in T(n) time if for every input x ∈ {0, 1}∗ of length n and every
sequence of nondeterministic choices, M reaches either the halting state or qaccept within
T(n) steps. Then, the class NTIME, where N refers to “nondeterministic”, can be defined
as follows.

Definition 1.5. For every function T : N → N and L ⊆ {0, 1}∗, we say that L ∈

NTIME(T(n)) if there is a constant c > 0 and a c · T(n)-time NDTM M such that for
every x ∈ {0, 1}∗, x ∈ L ⇔ M(x) = 1.

5

Chapter 1. Introduction

Definition 1.6. NP = ∪c∈NNTIME(nc).

A language L ⊆ {0, 1}∗ is polynomial-time reducible to a language L′ ⊆ {0, 1}∗, denoted
by L ≤p L′, if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such
that for every x ∈ {0, 1}∗, x ∈ L if and only if f (x) ∈ L′.

Definition 1.7. A language L′ ⊆ {0, 1}∗ is NP-hard if L ≤p L′ for every L ∈ NP. L′ is
NP-complete if L′ is NP-hard and L′ ∈ NP.

1.1.3 Approximation algorithms

The problems we discuss in this thesis are all NP-optimization (NPO) problems. An
optimization problem P = (I, F ,V,G) is called an NPO problem [3] if the following
holds:

• the set of instances I is recognizable in polynomial time;

• there exists a polynomial φ such that, given an instance I ∈ I, for any s ∈ F (I),
|s | ≤ φ(|I |), and additionally, for any I and s, it is decidable in polynomial time
whether s ∈ F (I);

• the functionV is computable in polynomial time.

These implies the corresponding decision problems are in NP [3]. Thus, the class NPO can
also be defined as the class of optimization problems whose decision versions are in NP.

In order to approach NP-hard problems, one way is to design a polynomial time algorithm
which can find a solution provably close to the actual optimal solution. Such a polynomial
time algorithm is called an approximation algorithm, which can be formally defined as
follows.

Definition 1.8 ([75]). An α-approximation algorithm for an optimization problem is a
polynomial-time algorithm that for all instances of the problem produces a solution whose
value is within a factor of α of the value of an optimal solution.

For an α-approximation algorithm, we call α the performance ratio or approximation ratio
of the algorithm.

6

Chapter 1. Introduction

Definition 1.9 ([75]). A polynomial-time approximation scheme (PTAS) is a family of
algorithms {Aε }, where there is an algorithm for each ε > 0, such that Aε is a (1 + ε)-
approximation algorithm (for minimization problems) or a (1− ε)-approximation algorithm
(for maximization problems).

The running time of the algorithm Aε is allowed to depend arbitrarily on 1/ε , which could
be exponential in 1/ε or worse.

Definition 1.10 ([75]). A fully polynomial-time approximation scheme (FPTAS) is an
approximation scheme such that its running time is bounded by a polynomial in n and 1/ε ,
where n is the input size.

Definition 1.11 ([3]). The class APX is the class of NPO problems that allow polynomial-
time approximation algorithms with a approximation ratio bounded by a constant.

A PTAS reduction from A to B is an approximation-preserving reduction from A to B such
that there exists three polynomial-time computable functions f , g, δ, for any ε > 0, if the
solution y to f (x) (an instance of problem B) is a (1 + δ(ε))-approximation for B, then the
corresponding solution g(x, y, ε) to x (an instance of problem A) is a (1 + ε)-approximation
for A.

Definition 1.12. A problem isAPX-hard if there exists a PTAS reduction from any problem
in APX to the given problem. A problem is APX-complete if it is APX-hard and it is in
APX.

According to Definition 1.8, we have the approximation ratio α > 1 for minimization prob-
lems and α < 1 for maximization problems. However, in the literature, an approximation
ratio of an algorithm for a minimization (maximization, respectively) problem may also be
expressed by 1/α, which is a value less than (greater than, respectively) 1. In this thesis,
to express the approximation ratio of an algorithm for each problem, we will follow the
convention in most of the literature on it, which can either be less than or greater than 1.

7

Chapter 1. Introduction

1.2 Techniques for approximation algorithms design and
analysis

There are different techniques on the design and analysis of approximation algorithms.
We focus on the randomized rounding and local search approaches for designing, and the
amortization scheme for analyzing.

1.2.1 Randomized rounding

A linear program (LP) consists of a vector x of n real variables, a linear objective function
in x, and some linear constraints on x. Given two constant vectors c ∈ Rn, b ∈ Rm and a
constant matrix A = (ai j) ∈ R

m×n, an LP can be formulated as follows:

minimize
n∑

i=1
ci xi

subject to
n∑

i=1
ai j xi ≥ b j, j = 1, 2, . . . ,m (1.1)

xi ≥ 0, i = 1, 2, . . . , n (1.2)

The goal is to find a setting of the variables that minimizes the objective function
∑n

i=1 ci xi

and satisfies all the constraints in (1.1) and (1.2).

If there are constraints that require each variable of the vector x to be an integer, then it is
called an integer linear program (ILP).

Any vector of n real numbers assigned to x such that all of the constraints are satisfied is
called a feasible solution. A feasible solution x which minimizes the objective function is
an optimal solution, and the corresponding value of

∑n
i=1 ci xi is the optimal objective value.

An LP or ILP is infeasible if there does not exist any feasible solution to it. Note that an LP
or ILP may also be unbounded if the optimal solution to it does not lead to a finite optimal
objective value.

Given an ILP, if we replace the integral constraint xi ∈ {di
1, d

i
2, . . . , d

i
`i
} on each variable xi,

where di
1 < di

2 < . . . < di
`i
and they are all integers, by a continuous constraint xi ∈ [di

1, d
i
`i
],

we obtain an LP, which is called a relaxation of the original ILP. Then, every feasible
solution to the original ILP is also a feasible solution to its LP relaxation.

8

Chapter 1. Introduction

Consider an ILP for an optimization problem and its LP relaxation. Let OPT be the
optimal objective value for the original ILP, OPT f be the optimal objective value for the LP
relaxation. The integrality gap of an ILP/LP is the worst-case ratio between OPT and OPT f ,
which is supI{OPT(I)/OPT f (I)} for a minimization problem or inf I{OPT(I)/OPT f (I)} for
a maximization problem, for every possible instance I. An integrality gap of ρ > 1 (ρ < 1,
respectively) indicates that based on this ILP/LP formulation, the approximation ratio α for
solving the corresponding minimization (maximization, respectively) problem has a lower
bound (an upper bound, respectively) of ρ.

The techniques for designing approximation algorithms based on LP relaxation include the
primal-dual method, the deterministic LP rounding, the randomized LP rounding, etc...
For more details, including the definitions and applications of these LP based techniques,
one can refer to [74, 75]. We mainly aim to design randomized rounding algorithms each
consisting of the following four steps:

Step 1. Formulate an ILP for the optimization problem;

Step 2. Provide an LP relaxation for the ILP;

Step 3. Solve the LP relaxation and obtain an optimal fractional solution x∗;

Step 4. Round the fractional solution x∗ to an integral solution x to the original ILP.

The third step of solving an LP can be done in polynomial time [47, 52, 53].

Let SOL be the objective value of the solution we obtained by a randomized rounding
algorithm. Then, for a minimization problem, we have OPT f ≤ OPT ≤ SOL, resulting in
an approximation ratio α = SOL/OPT ≤ SOL/OPT f ; for a maximization problem, we have
OPT f ≥ OPT ≥ SOL, resulting in an approximation ratio α = SOL/OPT ≥ SOL/OPT f .

1.2.2 Local search

To solve a combinatorial optimization problem with a local search technique, we design an
algorithm consisting of the following steps:

Step 1. We start with an arbitrary feasible solution;

Step 2. Check a specified neighborhood of the current solution, and if a local modification
can lead to another solution which can improve the objective value of the current
solution, we update the solution;

9

Chapter 1. Introduction

Step 3. Repeat step 2 till a specified condition is satisfied.

In step 3, the specified condition is for the local search algorithm to eventually terminate in
polynomial time. We usually have the following three ways for specifying such a condition:

1. Directly specify a bound for the number of iterations;

2. Define the neighborhood of a solution appropriately such that we can find a local
optimal solution in polynomial time, i.e., no further improvements can be made
within the defined search space;

3. Compare the objective value of the current solution with the one in the previous
iteration; and set a condition for the algorithm to terminate when the difference
between these two objective values is small enough.

Among the above three ways, we mainly study and follow the second one.

Let SOL be the objective value of the solution obtained by a local search algorithm, and
OPT be the objective value of a global optimal solution to the problem. The locality
gap of a local search algorithm is the worst-case ratio between SOL and OPT, which
is supI{SOL(I)/OPT(I)} for a minimization problem or inf I{SOL(I)/OPT(I)} for a maxi-
mization problem, for every possible instance I. A locality gap of ρ > 1 (ρ < 1, respectively)
indicates that based on this local search algorithm, the approximation ratio α for solving the
corresponding minimization (maximization, respectively) problem has a lower bound (an
upper bound, respectively) of ρ.

1.2.3 Amortized analysis

Amortized analysis can be considered as a way to determine the average cost of a sequence
of objects, among which some objects might be much more expensive than the others.

We can also analyze the performance ratio of an algorithm through an amortization scheme,
usually for solving an optimization problem whose goal is to minimize or maximize the
cardinality of a feasible solution.

Consider an optimization problem of selecting a minimum (or maximum) cardinality set of
elements satisfying some given constraints. Let S be a feasible solution obtained by our
algorithm, with SOL B |S | being the cardinality of S, and let S∗ be an optimal solution,
with OPT B |S∗ | being the cardinality of S∗. The general idea of amortized analysis could
start with assigning one token to each element of S∗, then distribute all OPT tokens to the

10

Chapter 1. Introduction

elements of S; or the other way around, i.e., start with assigning one token to each element
of S, then distribute all SOL tokens to the elements of S∗.

If we start by assigning one token to each element of S∗, then we have a total of OPT tokens
to be distributed all to the elements of S. We need to find a distribution scheme such that on
average every element of S can receive at least c < 1 token (at most c > 1 tokens, respec-
tively), for some constant c, if it is a minimization (maximization, respectively) problem.
Thus, for a minimization problem, we get an approximation ratio of α = SOL/OPT ≤ 1/c;
for a maximization problem, we get an approximation ratio of α = SOL/OPT ≥ 1/c.

If we start by assigning one token to each element of S, then we have a total of SOL
tokens to be distributed all to the elements of S∗. We need to find a distribution scheme
such that on average every element of S∗ can receive at most c′ > 1 tokens (at least
c′ < 1 token, respectively), for some constant c′, if it is a minimization (maximization,
respectively) problem. Thus, for a minimization problem, we get an approximation ratio
of α = SOL/OPT ≤ c′; for a maximization problem, we get an approximation ratio of
α = SOL/OPT ≥ c′.

The major step is to find an appropriate distribution scheme. We need to determine the
relationships between an optimal solution and any feasible solution obtained by our algo-
rithm. If our algorithm is a local search, then we can always find in polynomial time a local
optimal solution in a specified small neighborhood; by discovering some good properties of
the problem, we would be able to find for any constant number of elements a lower or upper
bound of tokens they can receive, then the average token or tokens one element can receive
becomes the bound of the performance ratio of our algorithm.

1.3 Problems discussed and thesis contributions

1.3.1 The vertex happiness problems

In Chapter 2, we study the vertex happiness problems introduced by Zhang and Li [78]
recently, which were inspired by the study on homophyly [36] law governing the structures
of large scale networks, stating that edges in a network tend to connect nodes with the same
or similar attributes. In a network where the homophyly law holds but some vertices have
unknown attributes, one may consider the natural question of how to assign (or predict)
attributes so that the homophyly law is followed to the greatest degree. Following this

11

Chapter 1. Introduction

idea, and identifying attributes with colors, Zhang and Li [78] introduced the following two
interesting maximization problems in terms of vertex coloring. For simplicity, they focused
on the case that each vertex can have only one color.

Maximum Happy Vertices (MHV): Given a graph G = (V, E) with a weight w(v) ≥ 0
for each vertex v ∈ V , a color set C = {1, 2, . . . , k}, and a partial vertex coloring function
c : V 7→ C, i.e., c assigns colors to a part of the vertices in V , the goal is to color all the
uncolored vertices such that the total weight of happy vertices is maximized. A vertex is
happy if it shares the same color with all its neighbors; otherwise, it is unhappy.

Maximum Happy Edges (MHE): Given a graph G = (V, E) with a weight w(e) ≥ 0
for each edge e ∈ E , a color set C = {1, 2, . . . , k}, and a partial vertex coloring function
c : V 7→ C, the goal is to color all the uncolored vertices such that the total weight of happy
edges is maximized. An edge is happy if its two endpoints share the same color; otherwise,
it is unhappy.

We observe that, if no vertex is pre-colored i, for any i, then this color i can be removed
without affecting the optimum; we therefore assume without loss of generality that every
color is used in the given partial vertex coloring function c.

Note that these two “vertex-coloring” problems are in fact labeling problems, and we use
“color” and “label” interchangeably. They are different from the classic graph coloring
(Coloring) problem [48], in which a feasible vertex coloring scheme must assign different
colors to any adjacent vertices.

Zhang and Li [78] proved that both the MHV and MHE problems are already NP-hard even
if the color number k is fixed. More precisely, when k = 2, MHV and MHE are polynomial
time solvable; when k ≥ 3, MHV and MHE are NP-hard.

In Section 2.2, we present a non-uniform algorithm A for the MHV problem which is the
combination of a simple randomized version of the greedy algorithm presented in [78] and
a randomized LP-rounding algorithm presented in [77]. We show that the MHV problem
on general graphs can be approximated within 1/

(
∆ + 1/g(∆)

)
by algorithm A, where

g(∆) = (
√
∆ +
√
∆ + 1)2∆ > 41.7; for not-too-large k, that is, when 3 ≤ k ≤ h(∆), the

approximation ratio can be improved to
(
1 + (∆ − 1)/h(∆)

)
/∆, where h(∆) ≥ 219.8. This

improves the previous best approximation ratio of 1/(∆ + 1) [77] for MHV.

We also consider the complement of MHV, the minimum unhappy vertices (MUHV) prob-
lem, which is to minimize the total weight of unhappy vertices. In order to design better

12

Chapter 1. Introduction

approximation algorithms, we introduce in Section 2.3 the following submodular multi-
labeling (Sub-ML) and supermodular multi-labeling (Sup-ML) problems, which covers the
MUHV and MHV problems as a special case, respectively.

SubmodularMulti-Labeling (Sub-ML): Given a ground setV , a non-negative submodular
set function f : 2V → R+, with f (∅) = 0, a set of labels L = {1, 2, . . . , k}, and a partial
labeling function ` : V 7→ L which pre-assigns each label i to all the elements of a non-empty
subset Ti ⊂ V , the goal of the Sub-ML problem is to find a partition S = {S1, S2, . . . , Sk} of
the ground set V to minimize f (S) B

∑k
i=1 f (Si), where the part Si is the subset of elements

assigned with the label i.

Supermodular Multi-Labeling (Sup-ML): Given a ground set V , a non-negative super-
modular set function f : 2V → R+, with f (∅) = 0, a set of labels L = {1, 2, . . . , k}, and
a partial labeling function ` : V 7→ L which pre-assigns each label i to all the elements
of a non-empty subset Ti ⊂ V , the goal of the Sup-ML problem is to find a partition
S = {S1, S2, . . . , Sk} of the ground set V to maximize f (S) B

∑k
i=1 f (Si), where the part Si

is the subset of elements assigned with the label i.

In Sections 2.4 and 2.5, we show that MUHV is a special case of Sub-ML, while MHV is
a special case of Sup-ML, by re-writing their objective functions as set functions. Then, by
showing that the Sub-ML and Sup-ML problems can be approximated within a factor of
(2 − 2/k) and 2/k, respectively, we conclude that the MUHV and MHV problems can also
be approximated within a factor of (2− 2/k) and 2/k, respectively. The 2/k-approximation
algorithm for the MHV problem further improves the previous best approximation ratio of
1/k [78]. Together with our first approximation for MHV [79], we improve the approxima-
tion ratio for MHV from max{1/k, 1/(∆ + 1)} [77, 78] to max{2/k, 1/

(
∆ + 1/g(∆)

)
}.

On the inapproximability, we show in Section 2.4 that theMUHV problem is approximation-
equivalent to the hypergraph multiway cut (Hyp-MC) problem [65], thus MUHV is Unique
Games-hard to achieve (2− 2

k −ε)-approximation, for any ε > 0. In Section 2.5, we prove that
the MHV problem is Unique Games-hard to approximate within a factor of Ω(log2 k/k), by
showing an approximation preserving reduction from the maximum independent set (MIS)
problem [43]. These two hardness results also give evidence that it is Unique Games-hard
to approximate the Sub-ML and Sup-ML problems within a factor of (2 − 2

k − ε) and
Ω(log2 k/k), respectively.

The results presented in Section 2.2 contributed as Section 3 of the paper [79] which was
published by Algorithmica; [79] also contains some results presented in [77]. I contributed

13

Chapter 1. Introduction

most of the work shown in Sections 2.3-2.5, and they were summarized and presented in the
paper [72] which is a submission currently still under review.

1.3.2 The maximum duo-preservation string mapping problem

In Chapter 3, we study the maximum duo-preservation string mapping (Max-Duo) prob-
lem [21], which is the complement of the minimum common string partition (MCSP)
problem, a well-studied string comparison problem in computer science, with applications
in fields such as data compression and bioinformatics. In both data compression and bioin-
formatics, string (or sequence) comparison is a routine work. For the similarity between
two strings, a commonly used measure is the edit distance, which is the minimum number
of operations required to transform one string into the other. At the finest scale, the edit
operations involve a single character of a string, including insertion, deletion, and substitu-
tion. When comparing two long strings such as the whole genomes of multiple species, long
range operations become more interesting, leading to the genome rearrangement problems
[22, 69]. In particular, consider a transportation operation to cut out a substring and insert it
back to another position in the string. The problem of partitioning one string into aminimum
number of substrings such that a reshuffle of them becomes the other string is then referred
to as the MCSP problem. MCSP was first formally introduced by Goldstein et al. [46] as
follows.

Minimum Common String Partition (MCSP): Consider two length-n strings A = (a1, a2,
. . ., an) and B = (b1, b2, . . . , bn) over some alphabet Σ, such that B is a permutation of
A. A partition of A, denoted as PA, is a multi-set of substrings whose concatenation in a
certain order becomes A. The number of substrings in PA is the cardinality of PA. The
MCSP problem asks for a minimum cardinality partition PA of A that is also a partition of
B. k-MCSP is the restricted version of MCSP when every letter of the alphabet Σ occurs at
most k times in each of the two given strings.

The MCSP problem is NP-hard and APX-hard even when k = 2 [46]. The current
best result is an O(log n log∗ n)-approximation [28] for the general MCSP and an O(k)-
approximation [57] for k-MCSP.

The complement of MCSP, referred to as the maximum duo-preservation string mapping
(MPSM) problem by Chen et al. [21] can be defined as follows, while we call this problem
as Max-Duo instead (mostly because the acronym MPSM looks too similar to the other
acronyms).

14

Chapter 1. Introduction

Maximum Duo-preservation String Mapping (Max-Duo): Given a string, an ordered
pair of consecutive letters is called a duo [46]; a length-` substring in a partition preserves
` − 1 duos of the given string. The Max-Duo problem is to maximize the number of duos
preserved in the common partition. k-Max-Duo is the restricted version ofMax-Duowhen
every letter of the alphabet Σ occurs at most k times in each of the two given strings.

Boria et al. [10] proved that 2-Max-Duo is APX-hard, similar to 2-MCSP [46], via a
linear reduction from MIS on cubic graphs. The Max-Duo problem can actually be cast
as a special case of the well-known maximum independent set (MIS) problem [43]; in
particular, Boria et al. [10] showed that an instance of k-Max-Duo translates to a graph
with the maximum degree ∆ ≤ 6(k − 1). It follows that the state-of-the-art

(
(∆ + 3)/5 + ε

)
-

approximation algorithm for MIS [7], for any ε > 0, is a
(
(6k − 3)/5 + ε

)
-approximation

algorithm for k-Max-Duo. Especially, 2-Max-Duo and 3-Max-Duo can be approximated
within a ratio of 1.8 + ε and 3 + ε , respectively, for any ε > 0. The previous best result on
general Max-Duo is a 3.25-approximation presented by Brubach [12].

We remark again that in order to be consistent with the results presented in the literature, all
the approximation ratios for the maximization problems Max-Duo and k-Max-Duo in this
section are actually 1/α, instead of α as defined in Definition 1.8. To keep consistency, we
also use 1/ρ to express a locality gap if the approximation ratio is expressed by 1/α.

In Section 3.3, by studying the local optimal properties of the 2-Max-Duo problem, we
present a vertex-degree reduction technique and show that 2-Max-Duo can be approximated
arbitrarily close to 1.4. This improves the previous best results of 1.8 + ε , for ε > 0, by
directly applying the state-of-the-art

(
(∆+ 3)/5+ ε

)
-approximation algorithm for MIS [10],

for any ε > 0, where ∆ is the maximum vertex degree of the input graph.

In Section 3.4, we present an improved local search approximation algorithm for Max-Duo
and showed that its performance ratio is no greater than 35/12 < 2.917, which beats the
previous best 3.25-approximation for Max-Duo [12], while the current best approximation
ratio for Max-Duo is 2 + ε [33], for any ε > 0. The performance analysis of our 2.917-
approximation algorithm is done through a complex yet interesting amortization.

This result presented in Section 3.3 formed the paper [70] which was presented on the 28th
International Symposium on Algorithms and Computation (ISAAC 2017) and later submitted
as the paper [25] which is currently still under review; I contributed most of the work to
this result. The results presented in Section 3.4 were summarized and presented in the
paper [71]; together with my supervisor Dr. Lin and the other collaborators, we desinged
the algorithm and proved the performance based on many discussions.

15

Chapter 1. Introduction

1.3.3 The path partition problem

In Chapter 4, we investigate the k-path partition (k-PP) problem, which is motivated by the
data integrity of communication in wireless sensor networks and several other applications
and was first considered by Yan et al. [76]. One can consider a broadcasting problem in data
communication networks. Given some information, by modeling a data communication
network with a graph, broadcasting is to transmit the information from some vertices to all
the other vertices in the network only through paths, that is, one vertex can only transmit the
information to its adjacent vertices through the edge connecting them. It requires one unit
of time to transmit the information from one vertex to another through an edge. The goal is
to select the minimum number of vertices such that the information can be transmitted from
those selected vertices to all the other vertices within a fixed number of time units. This is
an application of the k-PP problem, which can be formally defined as follows.

k-Path Partition (k-PP): Given a simple graph G = (V, E), the order of a simple path in
G is the number of vertices on the path and it is called a k-path if its order is k. The k-PP
problem asks to find a minimum collection of vertex-disjoint paths of order at most k such
that every vertex is on some path in the collection.

Clearly, the 2-PP problem is exactly the Maximum Matching problem, which is solvable
in O(m

√
n log(n2/m)/log n)-time [45]. For k ≥ 3, k-PP is NP-hard [76]. To the best of our

knowledge, there is no approximation algorithm with proven performance for the general
k-PP problem, except the trivial k-approximation using all 1-paths.

The k-PP problem is closely related to the k-set cover (k-SC) problem defined as follows.

k-Set Cover (k-SC): Given a universe U = {x1, x2, . . . , xn} of n elements and a collection
of subsets C = {S1, S2, . . . , Sm} of U, with every Si ∈ C has size at most k, the goal is to
find a minimum sub-collection of C that covers all the elements of U.

The k-SC problem is a variant of the well-known set cover (SC) problem, which is one of
the first proven NP-hard problems [43]. k-SC is APX-complete and admits an (Hk −

1
2)-

approximation (for k ≥ 3) [35] and an (Hk −
196
390)-approximation (for k ≥ 4) [61].

For the k-PP problemwith k = 3, Monnot and Toulouse [64] proposed a 3/2-approximation,
based on two maximum matchings. In Section 4.2, we present a local search algorithm
Approx which first applies Algorithm A to computes a 3-path partition with the least 1-
paths, and then appliesAlgorithm B to iteratively perform several replacement operations to

16

Chapter 1. Introduction

reduce the total number of 2- and 3-paths. We point out that Algorithm A is already a k/2-
approximation for the general k-PP problem. in Section 4.3, we show by an amortization
scheme that Approx is a 4/3-approximation. The ratio of 4/3 coincidentally meets the
current best approximation ratio for the 3-SC problem.

The result of the k/2-approximation presented in Section 4.2.1 contributed as the first
half of the paper [24] which was published by the Journal of Combinatorial Optimization
(JOCO); this result was contributed mainly by discussions with my supervisor Dr. Lin and
the other collaborators. The local search algorithm and the performance analysis presented
in Sections 4.2.2 and 4.3 were summarized and presented in the paper [23] which is a
submission currently still under review; I contributed most of the work to the design and
anlysis of this 4/3-approximation, based on some discussions with Dr. Lin and the other
collaborators.

17

Chapter 2

The Vertex Happiness Problems1

2.1 Introduction

In this chapter, we investigate the vertex happiness problem recently introduced by Zhang
and Li [78], which was inspired by the study on homophyly [36, Chapter 4] law stating that
in a (large scale) network, the nodes have a tendency of connecting with nodes that share
the similar attributes with them. Consider a network in which only a part of the nodes are
assigned with some attributes, and assume the homophyly law holds, it would be common
to ask how to assign attributes to the rest of the nodes so that the homophyly law could be
followed to the maximum extent. By identifying attributes with colors, Zhang and Li [78]
introduced the maximum happy vertices (MHV) problem and the maximum happy edges
(MHE), which can be defined formally as follows. In both problems, each vertex can only
be assigned with one color.

Maximum Happy Vertices (MHV): Given a graph G = (V, E) with a non-negative weight
w(v) for each vertex v ∈ V , a color set C = {1, 2, . . . , k}, and a partial vertex coloring
function c : V 7→ C, i.e., c assigns colors only to a part of the vertices in V , the goal is to
color all the uncolored vertices such that the total weight of happy vertices is maximized.
A vertex is happy if it shares the same color with all its neighbors in the coloring scheme;
otherwise, it is unhappy. (See Figure 2.1 for an instance along with a coloring scheme for
the MHV problem.)

Maximum Happy Edges (MHE): Given a graph G = (V, E) with a non-negative weight
w(e) for each edge e ∈ E , a color setC = {1, 2, . . . , k}, and a partial vertex coloring function
c : V 7→ C, i.e., c assigns colors only to a part of the vertices in V , the goal is to color all
the uncolored vertices such that the total weight of happy edges is maximized. An edge

1This chapter is based on two papers [72, 79]. [79] is a work with Zhang, Jiang, Li, Lin, and Miyano,
“Improved approximation algorithms for the maximum happy vertices and edges problems”, which was
published by Algorithmica; [72] is a work with Chen, Zhang, and Goebel, “Approximation algorithms for
the vertex happiness”, which is a submission under review, while there is an old version available publicly at
arXiv [73], covering most of the results in [72].

18

Chapter 2. The Vertex Happiness Problems

b(2)

e(2) f (2)

h(2) j(2)

d(3)

a(2)

g(2)

c(1)

i(1)

b(2)

e(2) f (2)

h(2) j(2)

d(3)

a(2)

g(2)

c(1)

i(1)

b(2)

e(2) f (2)d(3)

h(2) j(2)

Figure 2.1: An instance of MHV on the left and a coloring scheme on the right, where
the integer in the parenthesis on each vertex is its weight. In this coloring scheme, the total
weight of happy vertices is w(a) + w(d) + w(h) + w(g) = 9.

is happy if its two endpoints share the same color in the coloring scheme; otherwise, it is
unhappy.

We only study the MHV problem and its complement, the minimum unhappy vertice
(MUHV) problem, which is to minimize the total weight of unhappy vertices in the given
graph. In both the MHV and MUHV problems, there could be multiple vertices in the given
graph pre-colored the same color. When only one vertex is pre-colored by the partial vertex
coloring function c for each i ∈ C, we denote these two problems as the restricted-MHV
and the restricted-MUHV problems, respectively. For MUHV, there is a polynomial time
reduction from the general MUHV problem to the restricted-MUHV problem, by creating a
vertex for each i ∈ C with a weight large enough, pre-coloring it with the color i, connect-
ing it to all the vertices pre-colored i, and uncoloring those vertices (see a detailed proof
in Section 2.4). This reduction implies that the restricted-MUHV problem and the general
MUHV problem are approximation-equivalent.

We remark that the vertex-coloring problems we study here are in fact labeling problems,
and we use “color” and “label” interchangeably; they are different from the classic graph
coloring (Coloring) problem [48], in which a feasible vertex coloring scheme must assign
different colors to any adjacent vertices. We also note that, if no vertex is pre-colored i,
for any i, then this color i can be removed without affecting the optimum; we therefore
assume without loss of generality that every color is used in the given partial vertex coloring
function c.

Given a graph G = (V, E) with the vertex set V and the edge set E , for any subset X ⊆ V ,
define the boundary of X , denoted as ∂(X), to be the subset of vertices of X each having at
least one neighbor outside of X . Let ι(X) = X − ∂(X), which is called the interior of X . In
a coloring scheme, let Si denote the subset of all the vertices colored i; then every vertex of
∂(X) is unhappy while all vertices of ι(Si) are happy. We extend the vertex weight function
to subsets of vertices, that is, w(X) B

∑
v∈X w(v) for any X ⊆ V ; and we define the set

19

Chapter 2. The Vertex Happiness Problems

function fb(·) as
fb(X) B w(∂(X)), ∀X ⊆ V . (2.1)

A vertex coloring scheme one-to-one corresponds to a partition S = {S1, S2, . . . , Sk} of the
vertex set V , where each part Si contains all the vertices colored i. This way, the MUHV
problem can be cast as finding a partition S such that fb(S) B

∑k
i=1 fb(Si) is minimized.

It is not hard to validate (see a detailed proof in Section 2.4) that the boundary ∂(·) of a
vertex subset in the given graph G = (V, E) has the following properties for any two subsets
X,Y ⊆ V :

(i) ∂(∅) = ∅;

(ii) ∂(X ∩ Y) ⊆ ∂(X) ∪ ∂(Y);

(iii) ∂(X ∪ Y) ⊆ ∂(X) ∪ ∂(Y); and

(iv) ∂(X ∩ Y) ∩ ∂(X ∪ Y) ⊆ ∂(X) ∩ ∂(Y).

Therefore, the set function fb : 2V → R defined in Eq. (2.1) satisfies fb(X) + fb(Y) ≥

fb(X ∩ Y) + fb(X ∪ Y), for any two subsets X,Y ⊆ V (see a detailed proof in Section 2.4).
That is, fb(·) is a submodular [63] function on the set V . This way, the MUHV problem can
be cast as a special case of the following submodular multi-labeling (Sub-ML) problem:

Given a ground set V , a non-negative submodular set function f : 2V → R+, with f (∅) = 0,
a set of labels L = {1, 2, . . . , k}, and a partial labeling function ` : V 7→ L which pre-assigns
each label i to all the elements of a non-empty subsetTi ⊂ V , the goal of the Sub-ML problem
is to find a partitionS = {S1, S2, . . . , Sk} of the ground setV to minimize f (S) =

∑k
i=1 f (Si),

where the part Si is the subset of elements assigned with the label i.

Conversely, given the graph G = (V, E), we define another set function fp(·) as

fp(X) B w(ι(X)), ∀X ⊆ V . (2.2)

Then fp(X) = w(X) − fb(X) for any subset X ⊆ V and consequently fp(·) is a supermodu-
lar [63] function on the set V . Thus, the MHV problem can be cast as finding a partition
S = {S1, S2, . . . , Sk} of the vertex set V such that fp(S) =

∑k
i=1 fp(Si) is maximized, where

each part Si contains all the vertices colored i; it can also be cast as a special case of the
supermodular multi-labeling (Sup-ML) problem that can be analogously defined.

20

Chapter 2. The Vertex Happiness Problems

2.1.1 Related work

Classification problems have been formulated as cuts, partition, labeling, or coloring, and
have been widely studied for a very long time.

Zhang and Li [78] proved that both the MHV and MHE problems are already NP-hard even
if the color number k is fixed. More precisely, when k = 2, MHV and MHE are polynomial
time solvable; when k ≥ 3, MHV and MHE are NP-hard.

For the unit weight version of MHV, Zhang and Li [78] presented two approximation
algorithms. One algorithm is based on a greedy approach, whose approximation ratio is
1/k, which is actually a 1/k-approximation for the general MHV problem (the weighted
version); the other algorithm is based on a subset-growth technique, whose approximation
ratio is Ω(1/∆3), where ∆ is the maximum vertex degree of the input graph. Later, Zhang
et al. [77] presented an improved algorithm with an approximation ratio of 1/(∆ + 1) based
on an LP relaxation (LP-MHV) shown as follows.

Let yi
j B yi(v j) indicate whether vertex v j is colored i, xi

j indicate whether the vertex v j is
happy by color i, x j indicate whether the vertex v j is happy, and B(v j) = N[v j] be the closed
neighborhood of the vertex v j .

maximize
n∑

j=1
w j x j (LP-MHV)

subject to
k∑

i=1
yi

j = 1, ∀v j ∈ V (2.3)

yi
j = 1, ∀v j ∈ V, ∀i ∈ C s.t. c(v j) = i (2.4)

xi
j = min

v`∈B(vj)
{yi

`}, ∀v j ∈ V, ∀i ∈ C (2.5)

x j =

k∑
i=1

xi
j, ∀v j ∈ V (2.6)

x j, xi
j, y

i
j ≥ 0, ∀v j ∈ V, ∀i ∈ C (2.7)

Note that the set of constraints 2.5 is equivalent to the linear constraints xi
j ≤ yi

`
, ∀v j ∈

V, ∀i ∈ C, v` ∈ B(v j).

Based on this LP relaxation (LP-MHV), Zhang et al. [77] presented a randomized rounding
algorithm using the rounding scheme proposed by Kleinberg and Tardos [55].

21

Chapter 2. The Vertex Happiness Problems

In summary, the previous best approximation ratio for the MHV problem is max{1/k,
1/(∆ + 1)} [77, 78], where ∆ is the maximum vertex degree of the input graph. For the
complementary MUHV problem, to the best of our knowledge, it hasn’t been studied in the
literature.

Recall that the MHV and the MUHV problems are a special case of the Sup-ML and
the Sub-ML problems, respectively. We again remind the readers that in an instance of
these multi-labeling problems, each label is pre-assigned to at least one element and to
multiple elements in general. A restricted version of the Sub-ML problem, when each label
is pre-assigned to exactly one element, is the submodular multiway partition (Sub-MP)
problem [80], which has received a lot of studies. The restricted-MUHV problem is a
special case of the Sub-MP problem.

The Sub-MP problem was first studied by Zhao et al. [80], who presented a (k − 1)-
approximation algorithm. Years later, Chekuri and Ene [18] proposed a convex relaxation
for Sub-MP by using the Lovász extension, and they presented a 2-approximation based on
this relaxation. This was further improved to a (2−2/k)-approximation shortly after by Ene
et al. [37], which immediately gives a (2 − 2/k)-approximation for the restricted-MUHV
and the general MUHV problems. On the inapproximability, Ene et al. [37] proved that any
(2− 2/k − ε)-approximation for Sub-MP requires exponentially many value queries for any
ε > 0, or otherwise it implies NP = RP.

It is important to note that although the restricted-MUHV problem and the general MUHV
problem are approximation-equivalent, we cannot simply conclude that theSub-MP problem
and the Sub-ML problem are also approximation-equivalent based on similar reduction
proofs. The difference between Sub-MP and Sub-ML depends heavily on how the set
function f (·) is defined; a change to the ground set V could alter the optimal solution value
and a feasible solution value differently.

The Sub-MP problem includes many well studied cut problems including the classic (edge-
weighted) multiway cut (MC) problem [30], the node-weighted multiway cut (Node-MC)
problem [44] and the hypergraph multiway cut (Hyp-MC) problem [65], all defined in the
following, as special cases.

Multiway Cut (MC): Given a graph G = (V, E) with a non-negative weight w(e) for each
edge e ∈ E and a set T = {t1, t2, . . . , tk} ⊆ V of k distinct terminals, the goal is to remove a
minimum weight set of edges F ⊆ E such that no two distinct terminals in T are connected
in (V, E − F).

22

Chapter 2. The Vertex Happiness Problems

Node-weighted Multiway Cut (Node-MC): Given a graph G = (V, E) with a non-negative
weight w(v) for each vertex v ∈ V and a set T = {t1, t2, . . . , tk} ⊆ V of k distinct terminals,
the goal is to remove a minimum weight set of vertices V ′ ⊆ V such that no two distinct
terminals in T are connected in the subgraph of G induced by V − V ′.

Hypergraph Multiway Cut (Hyp-MC): Given a hypergraph H = (VH, EH) with a non-
negativeweightw(e) for each hyperedge e ∈ EH and a set of k terminalsT = {t1, t2, . . . , tk} ⊆

V , the Hyp-MC problem asks to remove a minimum-weight set of hyperedges so that every
two terminals are disconnected.

The classic MC problem is NP-hard for k ≥ 3 even if all edges have unit weight [30].
Dahlhaus et al. [30] also showed that MC is APX-hard and gave a first combinatorial
algorithm which achieves a (2 − 2/k)-approximation. After that, there have been many
approximation algorithms designed and analyzed [13, 17, 29, 42, 51, 68] for MC, most of
which are based on the CKR relaxation presented by Călinescu et al. [17] shown as follows.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the vector with 1 in the i-th coordinate and zeros elsewhere,
and ∆k be the k-dimensional simplex, i.e., ∆k = {x ∈ Rk |

∑k
i=1 xi = 1}. The CKR

relaxation can be formulated as

maximize
∑

e=(u,v)∈E

ce · ‖xu − xv ‖1 (LP-CKR)

subject to xti = ei, i = 1, 2, . . . , k

xu ∈ ∆k, ∀u ∈ V

where ‖xu − xv ‖1 =
∑k

i=1 |x
i
u − xi

v |.

Based on the CKR relaxation, Călinescu et al. [17] presented a randomized rounding
algorithm for MC with an approximation ratio of (3/2 − 1/k), which was further improved
to 1.3438 as k goes to infinity by Karger et al. [51]. For k = 3 specifically, Cunnigham
and Tang [29] and Karger et al. [51] independently presented a 12/11-approximation and
showed that it is the best approximation achievable using the CKR relaxation for k = 3
by giving an integrality gap example of ratio 12/11 − ε for any ε > 0. Later, Buchbinder
et al. [13] introduced a new rounding scheme for the CKR relaxation and presented an
elegant 4/3-approximation algorithm for general k and further improved it to 1.3239. The
current best approximation ratio for MC is 1.2965 [68] which is difficult and only verified
by computer, still based on the same CKR relaxation; while recently, Buchbinder et al. [14]

23

Chapter 2. The Vertex Happiness Problems

designed a much simpler algorithm which yields an approximation ratio of 1.2969, which
roughly matches the 1.2965 approximation guarantee in [68]. On the negative side, a lower
bound of 8/

(
7 + 1/(k − 1)

)
on the integrality gap of (LP-CKR) has been proved by Freund

and Karloff [42], which was improved to 6/
(
5+1/(k −1)

)
recently by Angelidakis et al. [1].

The Hyp-MC problem and the Node-MC problem are actually approximation-equivalent,
and they both admit a (2−2/k)-approximation [44, 65]; on the negative side, they are proven
more difficult to approximate, that it is Unique Games-hard to achieve a (2 − 2/k − ε)-
approximation, for any ε > 0 [37].

The complement of the Sub-MP problem, called the supermodular multiway partition (Sup-
MP) problem, can be defined similarly. The restricted-MHV problem is then a special case
of Sup-MP, which also includes the multiway uncut (MUC) problem [59] defined in the
following, as a special case, where the k terminals in the input graph can be considered as
k elements each being pre-assigned with a distinct label.

Multiway Uncut (MUC): the complement of MC, whose goal is to find a partition
{V1,V2, . . . ,Vk} of V such that for each i, ti is contained in Vi and the total weight of
edges not cut by the partition is maximized.

The MUC problem seems only studied by Langberg et al. [59], who presented a 0.8535-
approximation based on an LP relaxation with a randomized rounding algorithm also using
the rounding technique proposed by Kleinberg and Tardos [55].

When generalizing the MUC problem to pre-assign multiple terminals in a part of the vertex
partition, it becomes the MHE problem, which is a special case of the Sup-ML problem.
Zhang and Li [78] proposed a 1/2-approximation algorithm for the unit weight version of
MHE based on a combinatorial partitioning strategy; by using an extended LP relaxation of
the one presented for the MUC and adopting the rounding technique proposed by Kleinberg
and Tardos [55], Zhang et al. [77] later proved that MHE can be approximated within
1/2 + (

√
2/4)h1(k) ≥ 0.8535, where h1(k) ≥ 1 is a function of k. This is the previous best

approximation ratio for the MHE problem (also for the MUC problem) on general graphs.

More broadly, the multi-labeling problems can be viewed as special cases of the cost
allocation [19] problem, in which k different non-negative set functions are given for
evaluating the k parts of the partition separately; they are also closely related to the optimal
allocation problem [32, 39, 40, 54, 60] in combinatorial auctions, where no elements are
necessarily pre-assigned a label but the set function (called utility function) is assumed
monotone in general.

24

Chapter 2. The Vertex Happiness Problems

2.1.2 Our contributions

Our target problems are the MHV and the MUHV problems, and we aim to design improved
approximation algorithms for them and to prove the hardness results in approximability.

First, we study theMHV problem. By combining a simple randomized version of the greedy
1/k-approximation algorithm for MHV presented in [78] and the randomized 1/(∆ + 1)-
approximation algorithm for MHV presented in [77], we give a non-uniform algorithm, and
with deeper analysis, we show an approximation ratio of 1/

(
∆ + 1/g(∆)

)
, where ∆ is the

maximum vertex degree of the input graph and g(∆) = (
√
∆ +
√
∆ + 1)2∆ > 4∆2. This

improves the previous best approximation ratio of max{1/k, 1/(∆ + 1)} [77, 78].

Next, we show that the convex relaxation on the Lovász extension for the Sub-MP prob-
lem [18] can be extended for the Sub-ML problem; therefore the same approximation algo-
rithm works for Sub-ML with a performance ratio of (2 − 2/k). Analogously, we present
the concave relaxation on the Lovász extension for the Sup-ML problem, thus showing that
Sup-ML can be approximated within a factor of 2/k. Therefore, the MUHV problem can
be approximated within a factor of (2 − 2/k) and the MHV problem can be approximated
within a factor of 2/k; the 2/k-approximation for MHV improves the previous best ratio of
max{1/k, 1/

(
∆ + 1/g(∆)

)
}, where ∆ is the maximum vertex degree of the input graph and

g(∆) = (
√
∆ +
√
∆ + 1)2∆ > 4∆2.

For the MUHV problem, the (2 − 2/k)-approximation can also be obtained due to its
approximation-equivalent to the restricted-MUHV problem, which is a special case of
Sub-MP. We also prove that the MUHV problem is approximation-equivalent to the Hyp-
MC problem [65], thus MUHV is Unique Games-hard to approximate within a factor of
(2 − 2/k − ε), for any ε > 0. This hardness result gives another evidence that it is Unique
Games-hard to achieve a (2 − 2/k − ε)-approximation for the general Sub-ML problem, for
any ε > 0.

For the MHV problem, we show that the LP relaxation for the MHV problem presented
in [77], called LP-MHV, is equivalent to the concave relaxation for the Sup-ML problem
based on the Lovász extension to the set function fp(·) defined in Eq. (2.2). We then
prove an upper bound of 2/k on the integrality gap of LP-MHV, and conclude that the
2/k-approximation is the best possible based on LP-MHV. On the inapproximability of
MHV, we prove that it is Unique Games-hard to approximate within a factor ofΩ(log2 k/k),
by showing an approximation preserving reduction from the maximum independent set

25

Chapter 2. The Vertex Happiness Problems

problem [43]. This hardness result also gives another evidence that it is Unique Games-hard
to achieve an Ω(log2 k/k)-approximation for the general Sup-ML problem.

2.1.3 Organization

The remainder of this chapter is organized as follows. In Section 2.2, we present a non-
uniform algorithm for MHV, which is a combination of a simple randomized version of the
greedy 1/k-approximation [78] and the 1/(∆+1)-approximation [77]; with deeper analysis,
we show that it is a 1/

(
∆ + 1/g(∆)

)
-approximation, where ∆ is the maximum vertex degree

of the input graph and g(∆) = (
√
∆ +
√
∆ + 1)2∆ > 4∆2. In Section 2.3, we introduce

some basic notions such as the Lovász extension to a set function; we then present the
relaxation based on the Lovász extension for the Sub-ML problem and a similar relaxation
for the Sup-ML problem. We also present the approximation algorithm using the same
randomized rounding technique for the Sub-MP problem in [37], and conclude that it is also
a (2 − 2/k)-approximation for the Sub-ML problem and it is a 2/k-approximation for the
Sup-ML problem. In Section 2.4, we study the MUHV problem which admits a (2 − 2/k)-
approximation, and further show that it is approximation-equivalent to the hypergraph
multiway cut problem, thus MUHV is Unique Games-hard to approximate within a factor of
(2−2/k−ε), for any ε > 0. In Section 2.5, we study theMHV problem, by firstly introducing
the LP relaxation formulated in [77], then showing its equivalence to the relaxation based
on the Lovász extension to the set function f (·) defined in Eq. (2.1), and proving an upper
bound of 2/k on the integrality gap; lastly, we prove an inapproximability result for MHV
that it is Unique Games-hard to achieve an Ω(log2 k/k)-approximation. We conclude this
chapter in Section 2.6, along with some possible future work.

2.2 A 1/
(
∆ + 1/g(∆)

)
-approximation for MHV

Consider the LP relaxation (LP-MHV) presented by Zhang et al. [77] for the MHV problem
on a general graph G = (V, E). Let ∆ be the maximum vertex degree of graph G, then
|B(v)| ≤ ∆+1. 2 Wemay safely assume k ≥ ∆+1, since otherwise, the 1/k-approximation
would be better than our 1/

(
∆ + 1/g(∆)

)
-approximation.

Denote Algorithm P as the simple randomized version of the greedy 1/k-approximation
algorithm for MHV presented in [78] (see Figure 2.7 for a high-level description), and

2The problem with ∆ ≤ 2 is trivial, so in the following analysis, we will assume ∆ ≥ 3.

26

Chapter 2. The Vertex Happiness Problems

Algorithm R as the randomized 1/(∆ + 1)-approximation algorithm for MHV presented
in [77] (see Figure 2.3 for a high-level description).

Algorithm P
1: Pick a color i ∈ {1, 2, . . . , k} uniformly at random.
2: Color all the uncolored vertices in i.

Figure 2.2: A high-level description of Algorithm P for the MHV problem.

Algorithm R
1: Solve (LP-MHV) to obtain an optimal solution (x, y).
2: while there exists some uncolored vertex do
3: Pick a color i ∈ {1, 2, . . . , k} uniformly at random.
4: Pick a parameter ρ ∈ [0, 1] uniformly at random.
5: For each uncolored vertex vj , if yij ≥ ρ, then color vj in i.
6: end while

Figure 2.3: A high-level description of Algorithm R for the MHV problem.

Our final algorithm for MHV is a randomized non-uniform algorithm, denoted as Algo-
rithm A, shown in Figure 2.4.

Algorithm A
1: With probability λ run Algorithm R, and with probability 1 − p run Algorithm P.
2: Return the coloring found (by either R or P) in step 1.

Figure 2.4: The non-uniform Algorithm A for the MHV problem.

If we can make a good balance between Algorithm P and Algorithm R in step 1 of
Algorithm A by carefully choosing the probability λ, we may get a ratio for MHV better
than 1/(∆+ 1). We adopt the same analysis scheme for Algorithm R from [77] which was
motivated by the analysis ideas in [55, 59].

In Algorithm R, each execution of steps 3 to 5 is called a round. A ball B(v) is called a
blank ball if it contains no colored vertices, and it is called a monochrome ball if it contains
only one color. At the beginning of Algorithm R, let B0 be the set of vertices whose B(v)’s
are blank balls, and B1 be the set of vertices whose B(v)’s are monochrome balls. Then,
only vertices in B0 ∪ B1 can become happy.

27

Chapter 2. The Vertex Happiness Problems

For ` ∈ {0, 1}, let P`, R`, and A` be the total weight of happy vertices in B` found by
Algorithm P, R, and A, respectively. We have

E[A`] = (1 − λ)E[P`] + λE[R`]

= (1 − λ)
∑
vj∈B`

w jPr[v j is happy in P] + λ
∑
vj∈B`

w jPr[v j is happy in R], (2.8)

Let SOL be the total weight of happy vertices found by Algorithm A. Then we have

E[SOL] = E[A0] + E[A1]. (2.9)

2.2.1 Probability that a vertex in B0 becomes happy

For a vertex v ∈ B0, by Algorithm P, we get

Pr[v is happy in P] = 1. (2.10)

By Algorithm R, define the following events for v ∈ B0. N0
<r : all vertices in B(v) are not

colored before the r-th round, N0
r : all vertices in B(v) are not colored in the r-th round, A0

r :
all vertices in B(v) are colored in the r-th round, and E0

r : there exists a vertex in B(v) that
is colored in the r-th round. The following Lemma 2.1 has already been proved in [77].

Lemma 2.1 ([77]). Let v j be a vertex in B0, then Pr[A0
r |N

0
<r] ≥

xj
k .

Lemma 2.2. Let v j be a vertex in B0, then Pr[E0
r |N

0
<r] ≤

∆+1−∆xj
k .

Proof. By step 5 of Algorithm R, we have

Pr[E0
r |N

0
<r] =

∑
i

1
k

max
v`∈B(vj)

{yi
`}. (2.11)

Note that 1 ≤ |B(v j)| ≤ ∆ + 1. By simple calculation, we have

max
v`∈B(vj)

{yi
`} ≤

∑
v`∈B(vj)

yi
` − (|B(v j)| − 1) min

v`∈B(vj)
{yi

`},

28

Chapter 2. The Vertex Happiness Problems

which implies∑
i

max
v`∈B(vj)

{yi
`} ≤

∑
i

∑
v`∈B(vj)

yi
` − (|B(v j)| − 1)

∑
i

min
v`∈B(vj)

{yi
`}

=
∑

v`∈B(vj)

∑
i

yi
` − (|B(v j)| − 1)

∑
i

min
v`∈B(vj)

{yi
`}

= |B(v j)| − (|B(v j)| − 1)x j = |B(v j)|(1 − x j) + x j

≤ (∆ + 1)(1 − x j) + x j = ∆ + 1 − ∆x j, (2.12)

where the second inequality holds due to the constraints in (LP-MHV).

Therefore, by (2.11) and (2.12), we have

Pr[E0
r |N

0
<r] ≤

∆ + 1 − ∆x j

k
.

�

Lemma 2.3. Let v j be a vertex in B0, then Pr[v is happy in R] ≥
x j

∆ + 1 − ∆x j
.

Proof. First we note that

Pr[v j is happy in R] ≥
∞∑

r=1
Pr[N0

<r] · Pr[A0
r |N

0
<r]

=

∞∑
r=1

(r−1∏
t=1

(
1 − Pr[E0

t |N
0
<t]

))
· Pr[A0

r |N
0
<r].

Then, by Lemma 2.1 and Lemma 2.2, we have

Pr[v j is happy in R] ≥
∞∑

r=1

(
1 −
∆ + 1 − ∆x j

k

)r−1
·

x j

k

=
x j

∆ + 1 − ∆x j
.

�

29

Chapter 2. The Vertex Happiness Problems

2.2.2 Probability that a vertex in B1 becomes happy

For a vertex v ∈ B1, with B(v) pre-colored i∗, by Algorithm P, we get

Pr[v is happy in P] =
1
k
. (2.13)

By Algorithm R, define the following events for v ∈ B1 similarly as before. N1
<r : all

vertices in B(v) are not colored before the r-th round, N1
r : all vertices in B(v) are not

colored in the r-th round, A1
r : all vertices in B(v) are colored in i∗ in the r-th round, and E1

r :
there exists a vertex in B(v) that is colored in the r-th round. The following Lemma 2.4 has
already been proved in [77].

Lemma 2.4. Let v j be a vertex in B1, then Pr[A1
r |N

1
<r] ≥

xj
k .

Lemma 2.5. Let v j be a vertex in B1, then Pr[E1
r |N

1
<r] ≤

∆−(∆−1)xj
k .

Proof. Let B◦(v j) be the set of uncolored vertices in B(v j). Then, we have

Pr[E1
r |N

1
<r] =

∑
i

1
k

max
v`∈B◦(vj)

{yi
`}. (2.14)

Note that 1 ≤ |B◦(v j)| ≤ ∆ (when |B◦(v j)| = 0, v is already happy). By simple calculation,
we have

max
v`∈B◦(vj)

{yi
`} ≤

∑
v`∈B◦(vj)

yi
` − (|B

◦(v j)| − 1) min
v`∈B◦(vj)

{yi
`},

which implies∑
i

max
v`∈B◦(vj)

{yi
`} ≤ |B

◦(v j)| − (|B◦(v j)| − 1)
∑

i

min
v`∈B◦(vj)

{yi
`}

≤ |B◦(v j)| − (|B◦(v j)| − 1)
∑

i

min
v`∈B◦(vj)

{yi
`}

= |B◦(v j)| − (|B◦(v j)| − 1)x j = |B◦(v j)|(1 − x j) + x j

≤ ∆(1 − x j) + x j = ∆ − (∆ − 1)x j, (2.15)

where the second inequality holds since minv`∈B◦(vj){y
i
`
} ≥ minv`∈B(vj){y

i
`
}.

Therefore, by (2.14) and (2.15), we have

Pr[E1
r |N

1
<r] ≤

∆ − (∆ − 1)x j

k
.

30

Chapter 2. The Vertex Happiness Problems

�

Lemma 2.6. Let v j be a vertex in B1, then Pr[v is happy in R] ≥
x j

∆ − (∆ − 1)x j
.

Proof. Same as Lemma 2.3, we have

Pr[v j is happy in R] ≥
∞∑

r=1
Pr[N1

<r] · Pr[A1
r |N

1
<r]

=

∞∑
r=1

(r−1∏
t=1

(
1 − Pr[E1

t |N
1
<t]

))
· Pr[A1

r |N
1
<r].

Therefore, by Lemma 2.4 and Lemma 2.5, we get

Pr[v j is happy in R] ≥
∞∑

r=1

(
1 −
∆ − (∆ − 1)x j

k

)r−1
·

x j

k

=
x j

∆ − (∆ − 1)x j
.

�

2.2.3 The approximation ratio analysis

Theorem 2.7. The MHV problem on general graphs can be approximated within 1
∆+1/g(∆) by

AlgorithmA, where g(∆) = (
√
∆+
√
∆ + 1)2∆ > 41.7. For not-too-large k (3 ≤ k ≤ h(∆)),

the approximation ratio can be improved to 1+(∆−1)/h(∆)
∆

, where h(∆) ≥ 219.8.

Proof. By equalities (2.8), (2.10), and Lemma 2.3, we have

E[A0] ≥ (1 − λ)
∑
vj∈B0

w j + λ
∑
vj∈B0

w j
x j

∆ + 1 − ∆x j

=
∑
vj∈B0

(
1 − λ

x j
+

λ

∆ + 1 − ∆x j

)
w j x j .

Note that there are three items multiplied together in the above summation. We consider the
first item and let f0(x) = 1−λ

x +
λ

∆+1−∆x . Since f0(x) is a convex function of x ∈ [0, 1], solving

31

Chapter 2. The Vertex Happiness Problems

f ′0(x) = 0, we get x0 =
(∆+1)

√
1−λ

√
∆λ+∆

√
1−λ

. We must guarantee that x0 ≤ 1, which is equivalent to
λ ≥ 1

∆+1 , so we get that

f0(x) ≥


f0(x0) =
∆(1−λ)+λ+2

√
∆λ(1−λ)

∆+1 , when 1
∆+1 ≤ λ ≤ 1,

f0(1) = 1, when 0 ≤ λ ≤ 1
∆+1 .

By equalities (2.8), (2.13), and Lemma 2.6, we have

E[A1] ≥ (1 − λ)
∑
vj∈B1

w j
1
k
+ λ

∑
vj∈B1

w j
x j

∆ − (∆ − 1)x j

=
∑
vj∈B1

(
1 − λ
k x j

+
λ

∆ − (∆ − 1)x j

)
w j x j .

Let f1(x) = 1−λ
k x +

λ
∆−(∆−1)x . Since f1(x) is a convex function of x ∈ [0, 1], solving f ′1(x) = 0,

we get x1 =
∆
√

1−λ√
k(∆−1)λ+(∆−1)

√
1−λ

. As before, we must guarantee that x1 ≤ 1. Therefore, we
finally get that

f1(x) ≥


f1(x1) =
(∆−1)(1−λ)+kλ+2

√
k(∆−1)λ(1−λ)

k∆ , when 1
k(∆−1)+1 ≤ λ ≤ 1,

f1(1) = (k−1)λ+1
k , when 0 ≤ λ ≤ 1

k(∆−1)+1 .

Let OPT be the optimal total weight of happy vertices, then by (2.9), we have

E[SOL] = E[A0] + E[A1] ≥ min{ f0(x), f1(x)} · OPT.

Denote

a0(λ) = f0(x0) =
∆(1 − λ) + λ + 2

√
∆λ(1 − λ)

∆ + 1
and

a1(λ) = f1(x1) =
(∆ − 1)(1 − λ) + kλ + 2

√
k(∆ − 1)λ(1 − λ)

k∆
Then the expected approximation ratio of Algorithm A is α(λ) = min{ f0(x), f1(x)}:

32

Chapter 2. The Vertex Happiness Problems

α(λ) =


min

{
1, (k−1)λ+1

k

}
=
(k−1)λ+1

k , when 0 ≤ λ ≤ 1
k(∆−1)+1,

min{1, a1(λ)} = a1(λ), when 1
k(∆−1)+1 ≤ λ ≤

1
∆+1,

min{a0(λ), a1(λ)}, when 1
∆+1 ≤ λ ≤ 1.

To obtain the best value for α through setting the probability λ, we consider the following
three cases.

Case 1. 0 ≤ λ ≤ 1
k(∆−1)+1 .

In this case, α(λ) = (k−1)λ+1
k is monotonically increasing in λ, and we have the

maximum value

α(λ0) =
∆

k(∆ − 1) + 1
at λ0 =

1
k(∆ − 1) + 1

.

Case 2. 1
k(∆−1)+1 ≤ λ ≤

1
∆+1 .

In this case, a1(λ) is monotonically increasing in λ, and we have the maximum
value

α(λ1) = a1(λ1) at λ1 =
1
∆ + 1

.

Case 3. 1
∆+1 ≤ λ ≤ 1.
In this case, both a0(λ) and a1(λ) are concave functions of λ, and we have the
maximum value for a0(λ) at λ1 and the maximum value for a1(λ) at λ2 =

k
∆+k−1 ,

with λ2 > λ1. We want to determine which one of a0(λ2) and a1(λ2) is larger by
solving a0(λ) = a1(λ), and we obtain

λ∗ =
K2

K2 + k
,

where K = (
√
∆ +
√
∆ + 1)(∆

√
k −
√
∆2 − 1).

That is, a0(λ2) ≥ a1(λ2) if and only if λ2 ≤ λ
∗, which is determined by the detailed

values of ∆ and k. Furthermore, by solving λ∗ = λ2 we represent k as a function
of ∆, h(∆), and we find that h(∆) is a monotonically increasing function of ∆, with
h(∆) ≥ h(3) = 219.8.

To conclude, a0(λ2) ≥ a1(λ2) if and only if λ2 ≤ λ∗, which holds if and only
if k ≤ h(∆). And if so, we have max 1

∆+1≤λ≤1 min{a0(λ), a1(λ)} = a1(λ2) (see

33

Chapter 2. The Vertex Happiness Problems

Figure 2.5 for an illustration), and the maximum value of α(λ) we can obtain is

α(λ2) = a1(λ2) =
∆ + k − 1
∆k

;

otherwise, we have max 1
∆+1≤λ≤1 min{a0(λ), a1(λ)} = a0(λ

∗) = a1(λ
∗) (see Fig-

ure 2.6 for an illustration), and the maximum value of α(λ) we can obtain is

α(λ∗) = a0(λ
∗) = a1(λ

∗) =

(
K +
√
∆k

)2

(∆ + 1)(K2 + k)
.

Figure 2.5: An illustration of a0(λ) and a1(λ) with λ2 ≤ λ∗. The thick line denotes the
function min{a0(λ), a1(λ)}.

Recall that our goal is to select a probability λ to achieve the maximum value for α(λ),
which is one of the three α(λ0), α(λ2), and α(λ∗) (since α(λ1) < α(λ0)). Based on the above
argument, when 3 ≤ k ≤ h(∆) (that is, k is not-too-large), the approximation ratio we can
achieve is max{α(λ0), α(λ1), α(λ2)} = α(λ2). So, we should set λ = λ2 and the achieved
approximation ratio is

α(λ2) = a1(λ2) =
∆ + k − 1
∆k

≥
1 + (∆ − 1)/h(∆)

∆
>

1
∆
.

34

Chapter 2. The Vertex Happiness Problems

Figure 2.6: An illustration of a0(λ) and a1(λ) with λ∗ < λ2. The thick line denotes the
function min{a0(λ), a1(λ)}.

When k ≥ h(∆), the approximation ratio we can achieve is max{α(λ0), α(λ1), α(λ
∗)} =

α(λ∗). So, we should set λ = λ∗ and the achieved approximation ratio is

α(λ∗) = a0(λ
∗) = a1(λ

∗) =

(
K +
√
∆k

)2

(∆ + 1)(K2 + k)
=

1
∆ + 1/g(∆)

>
1
∆ + 1

,

where g(∆) = (
√
∆ +
√
∆ + 1)2∆ ≥ g(3) > 41.7.

Note that 1+(∆−1)/h(∆)
∆

> 1
∆+1/g(∆) . Therefore, Algorithm A is a 1

∆+1/g(∆) -approximation
algorithm for the MHV problem, where k is the number of colors, ∆ is the maximum vertex
degree, and g(∆) = (

√
∆ +
√
∆ + 1)2∆. For not-too-large k, the approximation ratio can be

improved to 1+(∆−1)/h(∆)
∆

, which is greater than 1
∆
.

�

Algorithm P can be derandomized by trying every color, which is exactly the greedy 1/k-
approximation algorithm [78], and Algorithm R can also be derandomized in polynomial
time [77] by trying all possible colors and all possible ρ (each value of yi

j would be a possible
selection for ρ and the number of different yi

j values is in O(kn)). Therefore, the results in
Theorem 2.7 is actually a deterministic result.

35

Chapter 2. The Vertex Happiness Problems

We remark that the 1/k-approximation algorithm is also an algorithm that can round any
optimal solution of (LP-MHV), with an objective value of OPT f , to an integer solution with
an objective value of SOL ≥ OPT f /k, making 1/k a lower bound on the integrality gap of
(LP-MHV). Therefore, the approximation ratio 1/(∆ + 1/g(∆)) we obtained is also a lower
bound on the integrality gap of (LP-MHV).

2.3 The Sub-ML and the Sup-ML problems

Given a ground set V = {v1, v2, . . . , vn}, y j B y(v j) is a real variable that maps the element
v j to the closed unit interval [0, 1]. For any non-negative set function f : 2V → R+, its
Lovász extension [63, 74] is a function f̂ : [0, 1]V → R+ such that

f̂ (y) =
n−1∑
j=1
(yπj − yπj+1) f ({vπ1, vπ2, . . . , vπj }), (2.16)

where y = (y1, y2, . . . , yn) ∈ [0, 1]V and π is a permutation on {1, 2, . . . , n} such that
1 = yπ1 ≥ yπ2 ≥ . . . ≥ yπn = 0. It has been proved by Lovász [63] that a set function
is submodular (supermodular, respectively) if and only if its Lovász extension is convex
(concave, respectively).

In the context of the Sub-ML problem with f (·) being the non-negative submodular set
function and Ti ⊂ V being the non-empty subset of elements pre-labeled i, i ∈ L =

{1, 2, . . . , k}, we define a binary variable yi
j B yi(v j) for each pair of an element v j and a

label i, such that yi
j = 1 if and only if the element v j is labeled i. Next, yi

j is relaxed to be a
real variable in the closed unit interval [0, 1]. For each i, let yi = (y

i
1, y

i
2, . . . , y

i
n) ∈ [0, 1]V ;

let f̂ : [0, 1]V → R+ is the Lovász extension of f (·) as defined in Eq. (2.16). A relaxation
based on the Lovász extension for Sub-ML can be written as follows:

minimize
k∑

i=1
f̂ (yi) (CP-Sub-ML)

subject to
k∑

i=1
yi

j = 1, ∀v j ∈ V (2.17)

yi
j = 1, ∀v j ∈ Ti, i ∈ L (2.18)

yi
j ≥ 0, ∀v j ∈ V, i ∈ L (2.19)

36

Chapter 2. The Vertex Happiness Problems

The submodularity of the function f (·) implies that (CP-Sub-ML) is a convex program.
Chekuri and Ene [20] have shown that this relaxation (CP-Sub-ML) can be solved exactly
in polynomial time.

In fact, such a relaxation based on the Lovász extension was proposed by Chekuri and
Ene [18] for the Sub-MP problem, which is a special case of the Sub-ML problem in which
|Ti | = 1 for every label i. We extend this relaxation for the Sub-ML problem with only
one change that in the set of constraints (2.17) yi

j = 1 holds for multiple elements v j . We
remark that one cannot reduce the Sub-ML problem to Sub-MP by cruelly contracting all the
elements pre-labeled with the same label into a single element, which suggests incorrectly
that all these pre-labeled elements were identical.

The following approximation algorithm RR first solves the convex program (CP-Sub-ML),
followed by a randomized rounding scheme, whichwas applied to solve theSub-MP problem
in [37], to obtain a feasible solution to the Sub-ML problem. Ene et al. [37] showed that RR
is a (2 − 2/k)-approximation for Sub-MP. The algorithm uses a uniformly random variable
θ in the interval (12, 1], and defines the following k + 3 sets:

Si(θ) = {v j | y
i
j > θ}, for each i ∈ L,

S(θ) =
⋃k

i=1 Si(θ),

R(θ) = V − S(θ),

Q(θ) = R(1 − θ).

(2.20)

Algorithm RR
1: Solve (CP-Sub-ML) to obtain an optimal fractional solution {yij | vj ∈ V, i ∈ L}.
2: Pick a parameter θ ∈ (12, 1] uniformly at random.
3: Assign all elements of Si(θ) the label i, for each i ∈ L.
4: Pick a label i′ from L uniformly at random, assign all elements of R(θ) the label i′.

Figure 2.7: A high-level description of Algorithm P for the MHV problem.

The performance analysis for the algorithm RR on the Sub-MP problem presented in [37]
does not need the fact that |Ti | = 1 for every label i. Therefore, the same analysis can also
prove the following theorem.

Theorem 2.8. Algorithm RR is a (2 − 2/k)-approximation for the Sub-ML problem.

For theSup-ML problemwith f (·) being a non-negative supmodular set function, a relaxation
based on the Lovász extension can be written just by replacing the objective “minimize”

37

Chapter 2. The Vertex Happiness Problems

in (CP-Sub-ML) to “maximize”, and we denote this relaxation as (CP-Sup-ML). (CP-Sup-
ML) is a concave program which can also be solved in polynomial time similarly to the
methods of solving (CP-Sub-ML).Using an analogous argument as the proof of Theorem2.8,
we can have the following corollary on theSup-ML problem (we omit the proofs here because
the only differences in proving this corollary and Theorem 2.8 lie on a couple of inequalities
of which the sign of less than or equal to should be greater than or equal to instead).

Corollary 2.9. Algorithm RR is a 2/k-approximation for Sup-ML.

2.4 The approximability of the MUHV problem

Recall that the MUHV problem can be cast as finding a partition S = {S1, S2, . . . , Sk} of
the vertex set V such that fb(S) =

∑k
i=1 fb(Si) is minimized, where the set function fb(·) is

defined in Eq. (2.1) and Si is the subset of vertices colored i, for each i.

First, we prove the following two lemmas.

Lemma 2.10. Given a graph G = (V, E), the boundary ∂(·) of a vertex subset has the
following properties for any two subsets X,Y ⊆ V:

(i) ∂(∅) = ∅;

(ii) ∂(X ∩ Y) ⊆ ∂(X) ∪ ∂(Y);

(iii) ∂(X ∪ Y) ⊆ ∂(X) ∪ ∂(Y); and

(iv) ∂(X ∩ Y) ∩ ∂(X ∪ Y) ⊆ ∂(X) ∩ ∂(Y).

Proof. Recall that for any X ⊆ V , ∂(X) is the subset of vertices of X each having at least
one neighbor outside of X . It follows that ∂(∅) = ∅.

Next, for any v ∈ ∂(X ∩ Y), v ∈ X ∩ Y and v has a neighbor u < X ∩ Y . That is, u is either
outside of X or outside of Y . If u is outside of X , then v ∈ ∂(X); otherwise, v ∈ ∂(Y).
Therefore, ∂(X ∩ Y) ⊆ ∂(X) ∪ ∂(Y).

For any v ∈ ∂(X ∪ Y), v ∈ X ∪ Y and v has a neighbor u < X ∪ Y . If v ∈ X , then v ∈ ∂(X);
otherwise, v ∈ ∂(Y). Therefore, ∂(X ∪ Y) ⊆ ∂(X) ∪ ∂(Y).

Lastly, from the last paragraph, if v ∈ ∂(X ∩ Y) ∩ ∂(X ∪ Y), then v ∈ X ∩ Y and v has
a neighbor u < X ∪ Y . These imply that v ∈ ∂(X) and v ∈ ∂(Y), i.e., v ∈ ∂(X) ∩ ∂(Y).
Therefore, ∂(X ∩ Y) ∩ ∂(X ∪ Y) ⊆ ∂(X) ∩ ∂(Y). �

38

Chapter 2. The Vertex Happiness Problems

Lemma 2.11. Given a graph G = (V, E), the set function fb(X) B w(∂(X)) defined in
Eq. (2.1) satisfies fb(X) + fb(Y) ≥ fb(X ∩ Y) + fb(X ∪ Y), for any two subsets X,Y ⊆ V .

Proof. According to Lemma 2.10, the boundary ∂(·) satisfies

(ii) ∂(X ∩ Y) ⊆ ∂(X) ∪ ∂(Y) and

(iii) ∂(X ∪ Y) ⊆ ∂(X) ∪ ∂(Y).

Therefore, ∂(X ∩Y) ∪ ∂(X ∪Y) ⊆ ∂(X) ∪ ∂(Y) also holds. Furthermore, the boundary ∂(·)
also satisfies

(iv) ∂(X ∩ Y) ∩ ∂(X ∪ Y) ⊆ ∂(X) ∩ ∂(Y).

We thus conclude that

w(∂(X ∩ Y) ∪ ∂(X ∪ Y)) + w(∂(X ∩ Y) ∩ ∂(X ∪ Y)) ≤ w(∂(X) ∪ ∂(Y)) + w(∂(X) ∩ ∂(Y)),

which is exactly
fb(X) + fb(Y) ≥ fb(X ∩ Y) + fb(X ∪ Y).

�

Lemma 2.11 implies the submodularity of the function fb(·) defined in Eq. (2.1), thus we
have:

Lemma 2.12. The set function fb(·) defined in Eq. (2.1) is submodular.

Therefore, the MUHV problem is a special case of the Sub-ML problem, and the following
theorem immediately follows according to Theorem 2.8.

Theorem 2.13. There exists a (2 − 2/k)-approximation algorithm for the MUHV problem.

On the other hand, we can prove that the general MUHV problem and the restricted-
MUHV problem are approximation-equivalent by showing the following Lemma 2.14.
Then, Theorem 2.13 also follows the fact that the restricted-MUHV problem can be cast as
a special case of the Sub-MP problem, which admits a (2 − 2/k)-approximation [37].

Lemma 2.14. If the restricted-MUHV problem admits a ρ-approximation algorithm, then
the general MUHV problem also admits a ρ-approximation algorithm.

39

Chapter 2. The Vertex Happiness Problems

Proof. We prove this lemma by constructing a polynomial time reduction from the general
MUHV problem to the restricted-MUHV problem.

Given an instance I = (G = (V, E),w(·),C = {1, 2, . . . , k}, c) of the general MUHV
problem, we construct an instance of I′ = (G′ = (V ′, E′),w′(·),C = {1, 2, . . . , k}, c′) of
restricted-MUHV as follows:

• for each color i ∈ C, we create a vertex ti and connect ti to all the vertices v ∈ V with
c(v) = i;

• let V ′ = V ∪ T , where T = {t1, t2, . . . , tk}, and E′ = E ∪
⋃k

i=1{(ti, v)|c(v) = i};

• for each v ∈ V , let w′(v) = w(v); for each ti ∈ T , let w(ti) = W = ρ · w(V) + 1;

• let C = {1, 2, . . . , k} still be the color set, and the partial coloring function c′ only
pre-colors the vertices in T with c′(ti) = i, for i ∈ C.

Let OPT(I) be the total weight of the optimal set of unhappy vertices in G; let OPT(I′) be
the total weight of the optimal set of unhappy vertices in G′.

For any coloring function c∗ that completes the given partial coloring function c for G, we
can apply the same function c∗ to color all the uncolored vertices in G′. Then for each ti ∈ T ,
c∗(v) = i for any v ∈ N(ti), so ti must be happy. Thus, for any vertex in G, its happiness must
be identical to the corresponding vertex in G′, and they share the same weight. Therefore,
under this coloring scheme, the set of unhappy vertices in G′ has the same weight as the set
of unhappy vertices in G. This also indicates that OPT(I′) ≤ OPT(I) ≤ w(V).

If the restricted-MUHV admits a ρ-approximation algorithm, then we can always find in
polynomial time a coloring function c′∗ that colors all the uncolored vertices in G′, which
makes R ⊆ V ′ the set of unhappy vertices in G′ and w(R) ≤ ρ ·OPT(I′) ≤ ρ · w(V). Under
this coloring scheme, we must have ti < R for every ti ∈ T , that is, vertices in T must be all
happy. Assume for the sake of contradiction that ti is unhappy for some ti ∈ T , then we have
w(R) ≥ W = ρ · w(V) + 1 > ρ · w(V), a contradiction. Then, by applying the same function
c′∗ to color all the corresponding uncolored vertices in G, every vertex in G has the same
happiness as the corresponding vertex in G′, and they share the same weight. Therefore,
under this coloring scheme, the corresponding set R in G is also the set of unhappy vertices
in G.

In summary, the general MUHV problem is polynomial-time reducible to the restricted-
MUHV problem, and if there exists a ρ-approximation for the restricted-MUHV problem,
then the general MUHV problem also admits a ρ-approximation algorithm. �

40

Chapter 2. The Vertex Happiness Problems

Next, we prove that the restricted-MUHV problemand theHyp-MCproblemare approximation-
equivalent, thus MUHV and Hyp-MC are also approximation-equivalent.

Lemma 2.15. There is an approximation preserving reduction from the restricted-MUHV
problem to the Hyp-MC problem.

Proof. Given an instance I = (G = (V, E),w(·),C = {1, 2, . . . , k}, c) of the restricted-
MUHV problem, we construct an instance I′ = (H = (V, EH),w

′(·),T = {t1, t2, . . . , tk}) of
the Hyp-MC problem as follows:

• let the vertex set be V ; for each i ∈ C, let vi which is pre-colored i be a terminal ti; let
T = {t1, t2, . . . , tk} be the terminal set;

• for each v ∈ V , we create a hyperedge ev = N[v] and add it to the hyperedge set EH ,
where N[v] = {v} ∪ N(v) is the set of all the neighbors of v in G along with v itself;

• for each hyperedge ev ∈ EH , let w′(ev) = w(v).

Each vertex in G corresponds one-to-one to a hyperedge in H and shares the same weight.

Consider a simple path P connecting two terminals ti and t j in the constructed hypergraph
H. Every two consecutive vertices on P must belong to a common hyperedge, thus the path
P corresponds one-to-one to a simple path connecting the two vertices ti and t j in G, which
we also denote as P without any ambiguity. For any coloring function c∗ that completes
the given partial coloring function c for G, we have c∗(ti) = i for each i = {1, 2, . . . , k}. It
follows that any simple path P connecting ti and t j must contain at least one vertex v ∈ V

such that its preceding vertex or its succeeding vertex is colored differently from v itself.
The vertex v is thus unhappy under the coloring scheme c∗. Then in the hypergraph H,
removing the corresponding hyperedge ev breaks the path P, thus disconnecting ti and t j

via the path P. Therefore, removing all the hyperedges whose corresponding vertices in
the graph G are unhappy disconnects all pairs of terminals in H, and the total weight of the
removed hyperedges is equivalent to the total weight of the unhappy vertices in G.

Conversely, consider a subset E∗H of hyperedges in the hypergraph H = (VH, EH) whose
removal disconnects all pairs of terminals. Let V i and E i

H denote the subsets of vertices
and hyperedges in the connected component of the remainder hypergraph (V, EH − E∗H) that
contains the terminal ti, for each i = 1, 2, . . . , k. We complete the partial coloring function
c by coloring all vertices of the corresponding vertex set V i in G with the color i, for
i = 1, 2, . . . , k, and coloring all the other remaining vertices of V with the color 1. Clearly,

41

Chapter 2. The Vertex Happiness Problems

all the vertices corresponding to the hyperedges of EH−E∗H are happy. Thus, the total weight
of unhappy vertices under this coloring scheme is no more than w(E∗H) B

∑
e∈E∗H

w(e).

In summary, the restricted-MUHV problem is polynomial-time reducible to the Hyp-MC
problem, and our reduction preserves the value of any feasible solution and consequently
preserves the approximation ratio. �

We note that due to the (2 − 2
k)-approximation for the Hyp-MC problem [44, 65], Theo-

rem 2.13 can also be proved according to Lemma 2.15.

Lemma 2.16. There is an approximation preserving reduction from the Hyp-MC problem
to the restricted-MUHV problem.

Proof. Given an instance I = (H = (VH, EH),w(·),T = {t1, t2, . . . , tk}) of the Hyp-MC
problem, we construct an instance I′ = (G = (V, E),w′(·),C = {1, 2, . . . , k}, c) of the
restricted-MUHV problem as follows:

• for each hyperedge e ∈ EH , we create a vertex ve; let the vertex set be V = VH ∪ VE ,
where VE = {ve | e ∈ EH}; call T = {t1, t2, . . . , tk} ⊆ V the terminal set;

• for each vertex v ∈ VH , let w′(v) = 0; for each vertex ve ∈ VE , let w′(ve) = w(e);

• for each vertex ve ∈ VE , it is adjacent to every vertex of e; let the edge set be
E = {{ve, v} | e ∈ EH, v ∈ e};

• let the color set be C = {1, 2, . . . , k} and let the partial coloring function c : V 7→ C

pre-color the terminal ti with i, for each i ∈ C.

We note that the graph G is actually bipartite, and the two parts of vertices are VH and VE .

Consider a simple path P connecting two terminals ti and t j in the hypergraph H. Every two
consecutive vertices on P must belong to a common hyperedge, thus the path P corresponds
one-to-one to a simple path connecting the two vertices ti and t j in G, which we also denote
as P without any ambiguity. For any coloring function c∗ that completes the given partial
coloring function c for G, we have c∗(ti) = i for each i = {1, 2, . . . , k}. It follows that any
simple path P connecting ti and t j must contain at least one vertex ve ∈ VE such that its
preceding vertex and its succeeding vertex, both in VH , are colored differently. The vertex
ve is thus unhappy under the coloring scheme c∗. Then in the hypergraph H, removing the
corresponding hyperedge e breaks the path P, thus disconnecting ti and t j via the path P.
Therefore, removing all the hyperedges whose corresponding vertices in the graph G are

42

Chapter 2. The Vertex Happiness Problems

unhappy disconnects all pairs of terminals, and the total weight of the removed hyperedges
is equivalent to the total weight of the unhappy vertices in G.

Conversely, consider a subset E∗H of hyperedges in the hypergraph H = (VH, EH) whose
removal disconnects all pairs of terminals. LetV i

H and E i
H denote the subsets of vertices and

hyperedges in the connected component of the remainder hypergraph (VH, EH − E∗H) that
contains the terminal ti, for each i = 1, 2, . . . , k. Denote the vertex subsets in the constructed
graph G = (V, E) corresponding toV i

H and E i
H asV i

H andV i
E , respectively, for i = 1, 2, . . . , k.

We complete the partial coloring function c by coloring all vertices of V i
H ∪ V i

E with the
color i, for i = 1, 2, . . . , k, and coloring all the other remaining vertices of V with the color
1. Clearly, all the vertices of {ve | e ∈ EH − E∗H} are happy; due to every vertex of VH

has weight 0 (such that we may ignore its happiness), we conclude that the total weight of
unhappy vertices under this coloring scheme is no more than w(E∗H) B

∑
e∈E∗H

w(e).

In summary, the Hyp-MC problem is polynomial-time reducible to the restricted-MUHV
problem, and our reduction preserves the value of any feasible solution and consequently
preserves the approximation ratio. �

Ene et al. [37] proved that achieving a (2− 2/k − ε)-approximation for Hyp-MC is NP-hard,
for any ε > 0, assuming the Unique Games Conjecture. According to Lemma 2.16, we have
Theorem 2.17; due to MUHV being a special case of Sub-ML, Corollary 2.18 immediately
follows.

Theorem 2.17. No (2 − 2/k − ε)-approximation algorithm for the restricted-MUHV or the
general MUHV problem exists, for any ε > 0, assuming the Unique Games Conjecture.

Corollary 2.18. No (2 − 2/k − ε)-approximation algorithm for the Sub-ML problem exists,
for any ε > 0, assuming the Unique Games Conjecture.

2.5 Improved approximation results for theMHV problem

2.5.1 A 2/k-approximation for MHV

Recall that the MHV problem can be cast as finding a partition S = {S1, S2, . . . , Sk} of
the vertex set V such that fp(S) =

∑k
i=1 fp(Si) is maximized, where the set function fp(·)

is defined in Eq. (2.2) and Si is the subset of vertices colored i, for each i. The following
lemma can be proved analogously to Lemma 2.12.

43

Chapter 2. The Vertex Happiness Problems

Lemma 2.19. The set function fp(·) defined in Eq. (2.2) is supermodular.

Therefore, the MHV problem is a special case of the Sup-ML problem, and the following
theorem immediately follows according to Corollary 2.9.

Theorem 2.20. Algorithm RR is a 2/k-approximation for the MHV problem, which is a
special case of the Sup-ML problem.

Recall the LP relaxation (LP-MHV) for the MHV problem on a given graph G = (V, E). For
each color i, since there is at least one vertex pre-colored i and at least one vertex pre-colored
another color (due to k ≥ 2), we let yi = (y

i
1, y

i
2, . . . , y

i
n) and π be the permutation for yi such

that 1 = yi
π1 ≥ yi

π2 ≥ . . . ≥ yi
πn = 0. In the concave relaxation (CP-Sup-ML) based on the

Lovász extension for Sup-ML, when we set the supermodular set function fp as in Eq. (2.2),
the objective function of (CP-Sup-ML) becomes

k∑
i=1

f̂p(yi) =

k∑
i=1

n−1∑
j=1

(
yi
πj − yi

πj+1

)
fp({vπ1, vπ2, . . . , vπj })

=

k∑
i=1

n−1∑
j=1

(
yi
πj − yi

πj+1

) ∑
v`∈ι({vπ1,vπ2,...,vπj })

w` . (2.21)

For each vertex vp ∈ V , let vq denote its neighbor that appears the last in the permutation
(vπ1, vπ2, . . . , vπn). Assume p = π j1 and q = π j2 . Clearly, vp ∈ ι({vπ1, vπ2, . . . , vπj }) if and
only if p, q ∈ {π1, π2, . . . , π j}, that is, we must have j1, j2 ≤ j. It follows that for the vertex
vp ∈ V , the coefficient of wp in Eq. (2.21) is

k∑
i=1

n∑
j=max{ j1, j2}

(
yi
πj − yi

πj+1

)
=

k∑
i=1

xi
p = xp,

where the last two equalities hold due to Constraints (2.5, 2.6) of (LP-MHV). This shows
that by setting the supermodular set function g as defined in Eq. (2.2), (CP-Sup-ML) is the
same as (LP-MHV). Therefore, we have the following theorem.

Theorem 2.21. The LP relaxation for the MHV problem (LP-MHV) is the same as the
relaxation based on the Lovász extension for the Sup-ML problem CP-Sub-ML, when the
MHV problem is cast into the Sup-ML problem.

Theorem 2.22. The integrality gap of (LP-MHV) has an upper bound of 2
k .

44

Chapter 2. The Vertex Happiness Problems

Proof. We prove this theorem by constructing an instance I = (G = (V, E),w(·),C =
{1, 2, . . . , k}, c) of the MHV problem.

• LetT = {t1, t2, . . . , tk} be a set of k pre-colored vertices, called terminals; all terminals
have the same weight wt ≥ 0, and the terminal ti is pre-colored i, i.e. c(ti) = i.

• Associated with each pair of distinct terminals ti and t j , i < j, there is a vertex b{i j}.
Let Vb = {b{i j} | i < j}, then |Vb | =

(k
2
)
; all vertices of Vb have the same weight

wb ≥ 0, and none of them is pre-colored.

• The vertex set V = T ∪ Vb; the edge set E = {{ti, b{i j}}, {t j, b{i j}} | i < j}. Clearly,
|V | = k +

(k
2
)
and |E | = 2

(k
2
)
.

Let c∗ denote a coloring function that completes the given partial coloring function c, that
is, c∗ assigns a color for each vertex and it assigns the color i to the terminal ti, for each
i ∈ C. Then,

• all vertices of Vb must be unhappy, since the vertex b{i j} is adjacent to two terminals
ti and t j colored with distinct colors;

• the terminal ti is adjacent to k − 1 vertices {b{i j} | j , i}, while the vertex b{i j} is
adjacent to the terminals ti and t j ; it follows that if ti is happy, then all vertices of
{b{i j} | j , i} are colored i, subsequently none of the other terminals can be happy;
in other words, at most one of the k terminals can be happy, regardless of what the
coloring function c∗ is.

Let OPT(MHV) denote the value of an optimal solution to the constructed instance I; we
obtain:

OPT(MHV) ≤ wt . (2.22)

Consider the following fractional feasible solution to the instance I in the LP relaxation
(LP-MHV),

• for each terminal ti ∈ T , yi(ti) = 1 and y j(ti) = 0 for all j , i;

• for each vertex b{i j} ∈ Vb, yi(b{i j}) = y j(b{i j}) =
1
2 and y`(b{i j}) = 0 for all ` , i, j;

• for each terminal ti ∈ T , we set xi(ti) = yi(b{i j}) =
1
2 , x j(ti) = 0 for all j , i, and

x(ti) =
∑k
`=1 x`(ti) = 1

2 ;

• for each vertex b{i j} ∈ Vb, we set x`(b{i j}) = 0 for all ` ∈ C, and x(b{i j}) = 0.

45

Chapter 2. The Vertex Happiness Problems

Let OPT(LP-MHV) denote the optimum of the instance I in the LP relaxation (LP-MHV).
It is greater than or equal to the value of the above fractional feasible solution, that is,

OPT(LP-MHV) ≥
1
2

kwt . (2.23)

Combining Eqs. (2.22) and (2.23), it gives an upper bound on the integrality gap of the LP
relaxation (LP-MHV):

OPT(MHV)
OPT(LP-MHV)

≤
1

1
2 k
=

2
k
.

�

Theorems 2.20 and 2.22 together imply that the 2
k -approximation algorithm RR for the

MHV problem is the best possible based on the LP relaxation (LP-MHV), and furthermore,

Corollary 2.23. The 2
k -approximation algorithm RR for the Sup-ML problem is the best

possible based on the concave relaxation on the Lovász extension (CP-Sup-ML).

2.5.2 A hardness result for MHV

In this section, we show a hardness result on approximating theMHV problem by a reduction
from themaximum independent set (MIS) problem, inwhichwe are given a graphG = (V, E)

with a non-negative weight w(v) for each vertex v ∈ V , the goal is to find a maximum-weight
independent set I ⊆ V . We also note that if there is a connected component in G which is
exactly a clique, then the maximum-weight vertex in the clique is an optimal solution to the
MIS problem on that connected component. Thus, we assume without loss of generality
that the input graph of the MIS problem does not contain any connected component being
exactly a clique.

We observe that any graph G with maximum degree of ∆ ≥ 3 can also be viewed as a
∆-partite graph if G contains no clique of size ∆ + 1, by solving the classic Coloring
problem, which is to color all the vertices in the given graph such that no two adjacent
vertices have the same color. In other words, the Coloring problem asks to partition the
vertex set into subsets of independent sets, and the number of the subsets of independent
sets is then equivalent to the number of colors required to color all the vertices. Due to
Brooks’ theorem [11], along with a simplified proof presented by Lovász [62], one can solve
the Coloring problem on G by using at most ∆ colors in polynomial time.

46

Chapter 2. The Vertex Happiness Problems

Given an instance I = (G = (V, E),w(·)) of MIS, where G is a k-partite graph, with
k ≥ 3 and V1,V2, . . . ,Vk being the k parts of the vertex set V , we construct an instance
I′ = (G′ = (V ′, E′),w′(·),C = {1, 2, . . . , k}, c) of MHV as follows:

• for each edge e = (u, v) ∈ E , we break it into two edges (u, ze) and (v, ze) by creating
an additional vertex ze;

• let V ′ = V ∪ X , where X = {ze |e ∈ E}, and E′ = {(u, ze), (v, ze)|e = (u, v) ∈ E};

• for each vertex v ∈ V , let w′(v) = w(v); for each vertex ze ∈ X , let w′(ze) = 0;

• let the color set be C = {1, 2, . . . , k} and let the partial coloring function c : V ′ 7→ C

pre-color each vertex vi ∈ Vi with i, for i = 1, 2, . . . , k.

We note that in the graph G′, only the vertices in X are uncolored; all the neighbors of any
vertex inV are in X; each vertex ze ∈ X has exactly two neighbors u and v which correspond
to the two endpoints of e = (u, v) ∈ E , and c(u) , c(v) since G is k-partite, thus ze must be
unhappy.

Consider an independent set I ⊆ V of G. For any two vertices u, v ∈ I in the graph G′, they
do not share any neighbor, i.e., N(u) ∩ N(v) = ∅. Assume for the sake of contradiction that
there exists some x ∈ N(u) ∩ N(v), then x ∈ X and N(x) = {u, v}, indicating that (u, v) ∈ E

in graph G, which contradicts to I being an independent set of G. Then in graph G′, for
any v ∈ I, we color every vertex in N(v) with c(v); for any ze of the remaining uncolored
vertices in X , with N(ze) = {vi, v j}, where c(vi) = i and c(v j) = j, we color ze with any
color in C − {i, j}. This is a feasible coloring scheme for G′, which makes all the vertices in
I happy and all the vertices in V ′ − I unhappy in G′. Since in the constructed instance, the
weights of all vertices in V are unchanged, the total weight of I is also unchanged.

Conversely, consider a feasible coloring scheme for G′, which makes all the vertices in
S ⊆ V ′ happy and the remaining vertices unhappy. Then, S ⊆ V and for any two vertices
u, v ∈ S, either u, v ∈ Vi for some i ∈ C or u ∈ Vi and v ∈ Vj for two distinct i, j ∈ C. In
both cases, we can conclude (u, v) < E in G. The first case is straightforward, for the second
case, assume for the sake of contradiction that (u, v) ∈ E in G, then u and v cannot be both
happy in G′ since c(u) , c(v) and they share a common neighbor. Therefore, S is also an
independent set in G. Still, since in the constructed instance, the weights of all vertices in
V are unchanged, the total weight of S is also unchanged.

Therefore, any feasible solution to the given instance I of MIS corresponds one-to-one to a
feasible solution to the constructed instance I′ of MHV, and the two solutions have exactly
the same value.

47

Chapter 2. The Vertex Happiness Problems

In summary, the MIS problem is polynomial-time reducible to the MHV problem, and
our reduction preserves the value of any feasible solution and consequently preserves the
approximation ratio. Austrin [4] proved that MIS is Unique Games-hard to approximate
within a factor of Ω(log2 ∆/∆), where ∆ is the maximum vertex degree of the input graph,
thus we have Theorem 2.24. Due to MHV being a special case of Sup-ML, Corollary 2.25
immediately follows.

Theorem 2.24. The MHV problem is Unique Games-hard to approximate within a factor
of Ω(log2 k/k).

Corollary 2.25. The Sup-ML problem is Unique Games-hard to approximate within a factor
of Ω(log2 k/k).

2.6 Concluding remarks and possible future work

In this chapter, we investigated the MHV problem and its complement, the MUHV problem.
First, we presented a non-uniform algorithm for MHV with an approximation ratio of
1/

(
∆ + 1/g(∆)

)
, where ∆ is the maximum vertex degree of the input graph and g(∆) =

(
√
∆+
√
∆ + 1)2∆ > 4∆2. This improves the previous best approximation ratio of max{1/k,

1/(∆ + 1)} [77, 78].

Next, we showed that the MHV and MUHV problems are a special case of the supermodular
and submodular multi-labeling (Sup-ML and Sub-ML) problems, respectively, by re-writing
the objective functions as set functions. We showed that the convex relaxation on the
Lovász extension, presented by Chekuri and Ene for the submodular multi-partitioning
(Sub-MP) problem [18], can be extended for the Sub-ML problem, thereby proving that
the Sub-ML (Sup-ML, respectively) can be approximated within a factor of 2 − 2/k (2/k,
respectively). These general results imply that the MHV and the MUHV problems can
also be approximated within a factor of 2/k and 2 − 2/k, respectively, using the same
approximation algorithms. The 2/k-approximation algorithm for MHV further improves
the previous best approximation ratio to max{2/k, 1/

(
∆ + 1/g(∆)

)
}.

For the MHV problem, we also showed that the LP relaxation presented by Zhang et al. [77]
is the same as the concave relaxation on the Lovász extension for the Sup-ML problem; we
then prove an upper bound of 2/k on the integrality gap of the LP relaxation. These suggest
that the 2/k-approximation algorithm is the best possible based on theLP relaxation; thus the
2/k-approximation algorithm is also the best possible based on the concave relaxation on the

48

Chapter 2. The Vertex Happiness Problems

Lovász extension for the Sup-ML problem. Further, we proved that it is Unique Games-hard
to approximate the MHV problem within a factor of Ω(log2 k/k), by a reduction from MIS,
which also gives another evidence that the general Sup-ML problem is Unique Games-hard
to approximate within a factor of Ω(log2 k/k).

For the MUHV problem, we showed that it is approximation-equivalent to the Hyp-MC
problem, thus it is Unique Games-hard to achieve a (2−2/k − ε)-approximation for MUHV,
for any ε > 0. This hardness result also gives another evidence that it is Unique Games-hard
to achieve a (2 − 2/k − ε)-approximation for the general Sub-ML problem, for any ε > 0.

In summary, for both the MUHV problem and the generalized Sub-ML problems, we have
closed the gaps between the upper and lower bounds on the approximability, which are both
(2− 2/k); for the MHV problem and the generalized Sup-ML problems, we showed a lower
bound of 2/k and an upper bound of Ω(log2 k/k) on the approximability for both of them.
A possible future work would be to see if there is a better approximation algorithm for the
MHV problem.

49

Chapter 3

The Maximum Duo-preservation String
Mapping Problem1

3.1 Introduction

The minimum common string partition (MCSP) problem is a well-studied problem in com-
puter science, with applications in the fields such as text compression and bioinformatics.

In both text compression and bioinformatics, string (or sequence) comparison is a routine
work. For the similarity between two strings, a commonly used measure is the edit distance,
which is the minimum number of operations required to transform one string into the other.
At the finest scale, the edit operations involve a single character of a string, including
insertion, deletion, and substitution. When comparing two long strings such as the whole
genomes of multiple species, long range operations become more interesting, leading to
the genome rearrangement problems [22, 69]. In particular, a transportation operation is
to cut out a substring and insert it back to another position in the string. The problem of
partitioning one string into a minimum number of substrings such that a reshuffle of them
becomes the other string is then referred to as the MCSP problem. MCSP was first formally
introduced by Goldstein et al. [46] as follows.

Minimum Common String Partition (MCSP): Consider two length-n strings A = (a1, a2,
. . ., an) and B = (b1, b2, . . ., bn) over some alphabet Σ, such that B is a permutation of A. A
partition of A, denoted as PA, is a multi-set of substrings whose concatenation in a certain
order becomes A. The number of substrings in PA is the cardinality of PA. The MCSP
problem asks for a minimum cardinality partition PA of A that is also a partition of B.

1This chapter is based on the papers [25, 70, 71]. [70] is a work with Chen, Lin, Liu, Luo, and Zhang,
“A (1.4 + ε)-approximation algorithm for the 2-max-duo problem”, which was published by the conference
of the 28th International Symposium on Algorithms and Computation (ISAAC 2017), and later submitted
as a journal version [25] which is under review; [71] is a work with Chen, Luo, and Lin, “A local search
2.917-approximation algorithm for duo-preservation string mapping”, which is available publicly at arXiv.

50

Chapter 3. The Max-Duo Problem

k-MCSP: The restricted version of MCSP when every letter of the alphabet Σ occurs at
most k times in each of the two given strings.

TheMCSP problem isNP-hard andAPX-hard evenwhen k = 2 [46]. Several approximation
algorithms [22, 26, 28, 46, 56, 57] have been presented since 2004. The current best result is
anO(log n log∗ n)-approximation [28] for the generalMCSP and anO(k)-approximation [57]
for k-MCSP. On the other hand, MCSP is proved to be fixed parameter tractable (FPT) [15,
16, 31, 49], with respect to k and/or to the cardinality of the optimal partition, which are/is
considered as fixed rather than part of the input.

The complement of MCSP, referred to as the maximum duo-preservation string mapping
(MPSM) problem by Chen et al. [21] can be defined as follows, while we call this problem
as Max-Duo instead (mostly because the acronym MPSM looks too similar to the other
acronyms).

MaximumDuo-preservation StringMapping (Max-Duo): The input still consists of two
length-n strings A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) over some alphabet Σ, such
that B is a permutation of A. Given a string, an ordered pair of consecutive letters is called
a duo [46]; a length-` substring in a partition preserves ` − 1 duos of the given string. The
Max-Duo problem is to maximize the number of duos preserved in the common partition
of A and B.

k-Max-Duo: The restricted version ofMax-Duowhen every letter of the alphabet Σ occurs
at most k times in each of the two given strings.

The Max-Duo problem has also been proved to be FPT by Beretta et al. [5, 6], with respect
to the maximum number of preserved duos.

We next give a graphical view on a common partition of the two given strings A =

(a1, a2, . . . , an) and B = (b1, b2, . . . , bn). Construct a bipartite graph G0 = (A, B, E0), where
the vertices of A (B, respectively) are a1, a2, . . . , an in order (b1, b2, . . . , bn in order, respec-
tively) and there is an edge between ai and b j if they are the same letter. A common partition
P of the strings A and B one-to-one corresponds to a perfect matching M in the graph G0

(see Figure 3.1 for an example), and the number of duos preserved by the partition is exactly
the number of pairs of parallel edges in the matching; if both (ai, b j), (ai+1, b j+1) ∈ E , then
they form a pair of parallel edges.

Along with Max-Duo, Chen et al. [21] introduced the constrained maximum induced
subgraph (CMIS) problem, in which one is given an m-partite graph G = (V1,V2, . . . ,Vm, E),

51

Chapter 3. The Max-Duo Problem

d acba

c a b ad

b c

cb

A :

B :

Figure 3.1: An instance of Max-Duo with two strings A = (a, b, c, d, a, b, c) and B =
(b, c, d, c, a, b, a), and a common partition {a, bcd, ab, c} that preserves three duos (b, c),
(c, d) and (a, b), corresponding to the perfect matching shown in the figure.

with each Vi having n2
i vertices arranged in an ni × ni matrix, and the goal is to select ni

vertices of each Vi in different rows and different columns such that the induced subgraph
contains the maximum number of edges. The restricted version of CMIS when ni ≤ k for
all i is denoted as k-CMIS. For an instance of the Max-Duo problem, one can first set m

to be the number of distinct letters in the string A, set ni to be the number of occurrences
of the i-th distinct letter, and the (s, t)-vertex in the ni × ni matrix “means” mapping the
s-th occurrence of the i-th distinct letter in the string A to its t-th occurrence in the string
B; and then set an edge connecting a vertex of Vi and a vertex of Vj if the two vertices
together preserve a duo. This way, the Max-Duo problem becomes a special case of the
CMIS problem, and furthermore the k-Max-Duo is a special case of the k-CMIS. Chen
et al. [21] presented a k2-approximation for k-CMIS and a 2-approximation for 2-CMIS,
based on linear programming and a randomized rounding. These imply that k-Max-Duo
can also be approximated within a ratio of k2 and 2-Max-Duo can be approximated within
a ratio of 2.

Continuing on the graphical view as shown in Figure 3.1 on a common partition of the two
given strings A and B, we can construct another graph H = (V, F) in which every vertex
of V corresponds to a pair of parallel edges in the bipartite graph G0 = (A, B, E0), and two
vertices of V are adjacent if the two pairs of parallel edges of E cannot co-exist in any
perfect matching of G0 (called conflicting, which can be determined in constant time, see
Section 3.2). This way, a set of duos that can be preserved by some perfect matching of
G0 (called compatible, see Section 3.2) one-to-one corresponds to an independent set of H

[10, 46]. Therefore, the Max-Duo problem can be cast as a special case of the well-known
maximum independent set (MIS) problem [43]; in particular, Boria et al. [10] showed that
an instance of k-Max-Duo translates to a graph with the maximum degree ∆ ≤ 6(k − 1).
It follows that the state-of-the-art

(
(∆ + 3)/5 + ε

)
-approximation algorithm for MIS [7],

for any ε > 0, is a
(
(6k − 3)/5 + ε

)
-approximation algorithm for k-Max-Duo. Especially,

2-Max-Duo and 3-Max-Duo can be approximated within a ratio of 1.8 + ε and 3 + ε ,
respectively, for any ε > 0. Boria et al. [10] proved that 2-Max-Duo is APX-hard, similar

52

Chapter 3. The Max-Duo Problem

to 2-MCSP [46], via a linear reduction from MIS on cubic graphs, and since MIS on cubic
graphs is NP-hard to approximate within 1.00719 [8], Boria et al. [10] showed that 2-Max-
Duo is NP-hard to approximate within 1.00042. Besides, Boria et al. [10] claimed that
2-Max-Duo can be approximated within 1.6 + ε , for any ε > 0. In this chapter, we also
study the 2-Max-Duo problem; using the above reduction to the MIS problem, we present
a vertex-degree reduction scheme and design an improved (1.4 + ε)-approximation, for any
ε > 0.

In Section 3.2, we will construct another bipartite graph for an instance of the Max-Duo
problem, and thus cast Max-Duo as a special case of the maximum compatible bipartite
matching (MCBM) problem. Such a reduction was first shown by Boria et al. [10], who
presented a 4-approximation for the MCBM problem, implying that Max-Duo can also
be approximated within a ratio of 4. Boria et al. [9] also used this reduction, with the
word consecutive in place of compatible, to present a local search 3.5-approximation for the
MCBM problem. In the meantime, Brubach [12] presented a 3.25-approximation for the
Max-Duo based on a novel combinatorial triplet matching.

The basic idea in the local search 3.5-approximation for the MCBM problem by Boria et
al. [9] is to swap one edge of the current matching out for two compatible edges, thus to
increase the size of the matching till a local optimum is reached. The performance ratio
3.5 is shown to be tight. We extend this idea to allow swapping five edges of the current
matching out for six compatible edges. By observing that any matching can be partitioned
into a subset of singleton edges and a subset of parallel edges (to be defined in Section 3.2),
we also allow a new operation of swapping five edges of the current matching out for five
compatible edges if the number of singleton edges is strictly decreased (or equivalently, the
number of parallel edges is strictly increased). Through a complex yet interesting amortized
analysis, we prove that our local search algorithm has an approximation ratio of at most
35/12 < 2.917, for both the MCBM and the Max-Duo problems, which improves the
previous best 3.25-approximation algorithm and breaks the barrier of 3.

We remark that immediately after the first version of our 2.917-approximation result was
made publicly available on arXiv [71], Deduk et al. posted an article on arXiv [34], later
appearing in CPM 2017 [33], in which they proposed an nO(1/ε)-time (2+ ε)-approximation
algorithm for the general Max-Duo problem, for any ε > 0. Both results exceed the
previously the best

(
(6k − 3)/5+ ε

)
-approximation algorithm for k-Max-Duo, when k ≥ 3.

The (2 + ε)-approximation algorithm is also designed for the MCBM problem, and it is the
current best approximation. In more details, given an ε > 0, by setting t = d4ε e + 1, the
algorithm first greedily finds a set of compatible streaks of size greater than or equal to t,

53

Chapter 3. The Max-Duo Problem

where a streak is a maximal set of consecutive parallel edges; it then applies a local search for
swapping t − 1 edges of the current matching out for t compatible edges. One thus sees that
both our 2.917-approximation and this (2+ ε)-approximation are based on two design ideas,
one is to iteratively swap some edges out of the current matching for strictly more compatible
edges to increase the size of the matching, and the other is to select into the matching as
many consecutive parallel edges as possible. Interestingly, the performance analysis for the
(2 + ε)-approximation is also done by an amortization scheme, though differently (called
credit distribution scheme in [33]). From the approximation ratio perspective, our 2.917-
approximation is superseded by the (2+ ε)-approximation; nevertheless, we believe that the
design ideas in our algorithm and the amortized performance analysis can provide additional
insights into the Max-Duo problem, and perhaps become helpful for further improvement.

The rest of this chapter is organized as follows. In Section 3.2, We provide some pre-
liminaries, including the formal description of the MCBM problem and the terminologies,
several important structural properties of the graph constructed from the two given strings,
and notations to be used throughout this chapter. In Section 3.3, we study the 2-Max-Duo
problem. We present the vertex-degree reduction scheme in Section 3.3.1. The new approx-
imation algorithm, denoted as Approx, is presented in Section 3.3.2, where we show that
it is a (1.4 + ε)-approximation for 2-Max-Duo. In Section 3.3.3, we review the reduction
from MIS on cubic graphs to 2-Max-Duo and make a conclusion that would be helpful for
further improving the approximation result for 2-Max-Duo. In Section 3.4, we study the
general Max-Duo problem. Our local search algorithm is presented in Section 3.4.1. In
Section 3.4.2, we analyze the approximation ratio of our algorithm through amortization. In
Section 3.4.3, we show a lower bound of 13/6 > 2.166 on the locality gap of our algorithm
for the MCBM problem, and a lower bound of 5/3 > 1.666 on the locality gap of our
algorithm for the Max-Duo problem. We conclude this chapter in Section 3.5, along with
some possible future work.

3.2 Preliminaries

Consider an instance of theMax-Duo problemwith two length-n strings A = (a1, a2, . . . , an)

and B = (b1, b2, . . . , bn) such that B is a permutation of A. Recall that we can view the
instance as a bipartite graph G0 = (A, B, E0), where the vertices in A and B are a1, a2, . . . , an

in order and b1, b2, . . . , bn in order, respectively, and there is an edge between ai ∈ A

and b j ∈ B if they are the same letter, denoted as ei, j . We use dA
i = (ai, ai+1) and

54

Chapter 3. The Max-Duo Problem

dB
i = (bi, bi+1) to denote the i-th duo of A and B, respectively, for i = 1, 2, . . . , n − 1;

and DA = {dA
1 , d

A
2 , . . . , d

A
n−1} and DB = {dB

1 , d
B
2 , . . . , d

B
n−1}. We construct a bipartite graph

G = (DA,DB, E), where there is an edge ei, j connecting dA
i and dB

j if ai = b j and ai+1 = b j+1,
suggesting that the duo dA

i is preserved if the edge ei, j = (dA
i , d

B
j) is selected into the solution

matching. (See Figure 3.2a for the bipartite graph constructed from the two strings shown in
Figure 3.1.) Note that selecting the edge ei, j rules out all the other edges incident on dA

i and
all the other edges incident on dB

j , and some more edges described in the next paragraph.

Formally, the two edges ei, j and ei, j ′ with j , j′ are called adjacent, and they are conflicting
since they cannot be both selected into a feasible solution matching. Similarly, two adjacent
edges ei, j and ei′, j with i , i′ are conflicting. The two edges ei, j and ei+1, j+1 are called
parallel; while the two edges ei, j and ei+1, j ′ with j′ , j, j + 1 are called neighboring. Two
neighboring edges are conflicting too since they cannot be both selected. Similarly, the two
edges ei, j and ei′, j+1 with i′ , i, i+1 are neighboring and conflicting. Any two unconflicting
edges are said compatible to each other, and a compatible set of edges contains edges
that are pairwise compatible, which is consequently a feasible solution matching (called a
compatible matching). (See Figure 3.2b for a compatible matching found in the bipartite
graph in Figure 3.2a.) The goal of the maximum compatible bipartite matching (MCBM)
problem is to find a maximum cardinality compatible matching in the bipartite graph
G = (DA,DB, E).

da abcdbcab

ca ab badc

bc

cdbc

DA :

DB :

dA1 dA2 dA3 dA4 dA5 dA6

dB1 dB2 dB3 dB4 dB5 dB6

(a) The constructed bipartite graph.

da abcdbcab

ca ab badc

bc

cdbc

DA :

DB :

dA1 dA2 dA3 dA4 dA5 dA6

dB1 dB2 dB3 dB4 dB5 dB6

(b) A compatible matching in the graph.

Figure 3.2: A bipartite graph G = (DA,DB, E) constructed from the two strings A =
(a, b, c, d, a, b, c) and B = (b, c, d, c, a, b, a), and a compatible matching in G containing
three edges e2,1, e3,2, e5,5.

Clearly, the bipartite graph G = (DA,DB, E) in the MCBM problem does not have to be
constructed out of two given strings in the Max-Duo problem, and therefore Max-Duo is
a special case of MCBM. Nevertheless, when restricted to Max-Duo, the cardinality of a
compatible matching is exactly the number of duos preserved by the matching. An edge
in a compatible matching M is called singleton if it is not parallel to any other edge in the
matching. This way, the matching M is partitioned into two parts: s(M) containing all the

55

Chapter 3. The Max-Duo Problem

singleton edges and p(M) containing all the parallel edges. A series of pairs of parallel
edges ei, j, ei+1, j+1, . . . , ei+p, j+p, for some p ≥ 2, is referred to as consecutive parallel edges.

Observation 3.1. Any edge ei, j ∈ E can be conflicting with at most 6 edges that are
pairwise compatible, which are ei, j ′, ei−1, j ′′−1, ei+1, j ′′′+1, ei′, j , ei′′−1, j−1, ei′′′+1, j+1 incident
on dA

i−1, d
A
i , d

A
i+1, d

B
j−1, dB

j , d
B
j+1, respectively, where none of i′, i′′, i′′′ can be i and none of

j′, j′′, j′′′ can be j.

We remark that in Observation 3.1 by “at most”, some of the six edges could be void, that
is, non-existent in E; also, when ei, j ′ and ei−1, j ′′−1 are both present, then they have to be
parallel suggesting that j′ = j′′ (the same applies to ei, j ′ and ei+1, j ′′′+1, ei′, j and ei′′−1, j−1, ei′, j

and ei′′′+1, j+1).

The fact that two pairs of parallel edges are conflicting if they cannot co-exist in any perfect
matching of G0 also motivates the following reduction from the k-Max-Duo problem to
the MIS problem: From the bipartite graph G0 = (A, B, E0), we construct another graph
H = (V, F) in which a vertex vi, j of V corresponds to the pair of parallel edges (ei, j, ei+1, j+1)

of E0; two vertices of V are conflicting if and only if the two corresponding pairs of parallel
edges are conflicting, and two conflicting vertices of V are adjacent in H. One can see
that a set of duos of A that can be preserved all together, a set of pairwise non-conflicting
pairs of parallel edges of E0, and an independent set in H, are equivalent to each other. See
Figure 3.3b for an example of the graph H = (V, F) constructed from the bipartite graph G0

shown in Figure 3.3a. We note that |V | ≤ k(n−1) and thus H can be constructed in O(k2n2)

time from the instance of the k-Max-Duo problem.

In the graph H, for any v ∈ V , we use N(v) to denote the set of its neighbors, that is, the
vertices adjacent to v. The two ordered letters in the duo corresponding to the vertex v is
referred to as the letter content of v. For example, in Figure 3.3b, the letter content of v1,6

is “ab” and the letter content of v6,1 is “ f b”.

Recall from the construction that there is an edge ei, j in the graph G0 = (A, B, E0) if ai = b j ,
and there is a vertex vi, j in the graph H = (V, F) if the parallel edges ei, j and ei+1, j+1 are in
G0 = (A, B, E0).

Lemma 3.1. The graph H = (V, F) has the following properties.

1. If vi, j , vi+2, j+2 ∈ V , then vi+1, j+1 ∈ V .

2. Given any subset of vertices V ′ ⊂ V , let E′0 = {ei, j |vi, j ∈ V ′}, A′ = {ai |ei, j ∈ E′0},
and B′ = {b j |ei, j ∈ E′0}. If the subgraph G′0 = (A

′, B′, E′0) in H is connected, then all

56

Chapter 3. The Max-Duo Problem

a c e b d

b c d ca b

A :

B :

b d f c e

f e d e

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(a) The bipartite graph G0 = (A, B, E0),
where the ten edges in bold form a perfect
matching.

v1,6 v2,7 v3,8 v4,9

v2,2 v3,3 v4,4 v7,7 v8,8 v9,9

v6,1 v7,2 v8,3 v9,4

(b) The instance graph H = (V, F) of MIS, where the eight
filled vertices form an independent set.

Figure 3.3: An instance of the k-Max-Duo problem with A = (a, b, c, d, e, f , b, c, d, e)
and B = (f , b, c, d, e, a, b, c, d, e). Figure 3.3a is the graphical view as a bipar-
tite graph G0 = (A, B, E0), where a perfect matching consisting of the ten bold
edges form into eight pairs of parallel edges, corresponding to the eight preserved
duos (a, b), (b, c), (c, d), (d, e), (f , b), (b, c), (c, d) and (d, e). Figure 3.3b shows the in-
stance graph H = (V, F) of MIS constructed from H, where the independent set
{v1,6, v2,7, v3,8, v4,9, v6,1, v7,2, v8,3, v9,4} corresponds to the eight pairs of parallel edges shown
in Figure 3.3a, and consequently also corresponds to the eight preserved duos. In this in-
stance, we have k = 2. Any maximum independent set of H must contain some of the
degree-6 vertices, invalidating the (1.6 + ε)-approximation for 2-Max-Duo proposed in
[10].

the vertices of V ′ have the same letter content; and consequently for any two vertices
vi, j, vh,` ∈ V ′, we have both vh, j, vi,` ∈ V .

3. For any vi, j ∈ V , we have

N(vi, j) =
⋃

p=−1,0,1
{vi′+p, j+p ∈ V | i′ , i} ∪

⋃
p=−1,0,1

{vi+p, j ′+p ∈ V | j′ , j}. (3.1)

Proof. By definition, vi, j ∈ V if and only if ei, j, ei+1, j+1 ∈ E0.

1. If also vi+2, j+2 ∈ V , that is, ei+2, j+2, ei+3, j+3 ∈ E0, then ei+1, j+1, ei+2, j+2 ∈ E0 leading
to vi+1, j+1 ∈ V .

57

Chapter 3. The Max-Duo Problem

2. Note that an edge ei, j ∈ E0 if and only if the two vertices ai and b j are the same letter,
and clearly each connected component in H is complete bipartite and all the vertices
are the same letter. It follows that if the induced subgraph G′0 = (A

′, B′, E′0) in G0 is
connected, then all its vertices are the same letter; furthermore, all the duos starting
with these vertices have the same letter content; and therefore for any two vertices
vi, j, vh,` ∈ V ′, both vh, j, vi,` ∈ V .

3. For any vertex vi, j , or equivalently the pair of parallel edges (ei, j, ei+1, j+1) in E0, which
are incident on four vertices ai, ai+1, b j, b j+1, a conflicting pair of parallel edges can be
one of the six kinds: to share exactly one of the four vertices ai, ai+1, b j, b j+1, to share
exactly two vertices ai and ai+1, and to share exactly two vertices b j and b j+1. The
sets of these six kinds of conflicting pairs are as described in the lemma, for example,
{vi′−1, j−1 ∈ V | i′ , i} is the set of conflicting pairs each sharing only the vertex b j

with the pair vi, j .

�

From Lemma 3.1 and its proof, we see that for any vertex of V there are at most k − 1
conflicting vertices of each kind (corresponding to a set in Equation 3.1). We thus have the
following corollary.

Corollary 3.2. The maximum degree of the vertices in H = (V, F) is ∆ ≤ 6(k − 1).

3.3 On approximating the 2-Max-Duo problem

3.3.1 Properties for the graph H when k = 2

First, from Corollary 3.2 we have ∆ ≤ 6. Berman and Fujito [7] have presented an
approximation algorithm with a performance ratio arbitrarily close to (∆ + 3)/5 for the
MIS problem, on graphs with maximum degree ∆. This immediately implies a (1.8 + ε)-
approximation for 2-Max-Duo. Our goal is to reduce the maximum degree of the graph
H = (V, F) to achieve a better approximation algorithm. To this purpose, we examine all
the degree-6 and degree-5 vertices in the graph H, and show a scheme to safely remove
them from consideration when computing an independent set. This gives rise to a new
graph H2 with maximum degree at most 4, leading to a desired (1.4 + ε)-approximation for
2-Max-Duo.

58

Chapter 3. The Max-Duo Problem

We remark that, in our scheme we first remove the degree-6 vertices from H to compute
an independent set, and later we add half of these degree-6 vertices to the computed
independent set to become the final solution. Contrary to the claim that there always exists a
maximum independent set in H containing no degree-6 vertices [10, Lemma 1], the instance
in Chapter 3.3 shows that any maximum independent set for the instance must contain some
degree-6 vertices, thus invalidating the (1.6 + ε)-approximation for 2-Max-Duo proposed
in [10].

Inmore details, the instance of 2-Max-Duo, illustrated inChapter 3.3, consists of two length-
10 strings A = (a, b, c, d, e, f , b, c, d, e) and B = (f , b, c, d, e, a, b, c, d, e). The bipartite
graph G0 = (A, B, E0) is shown in Chapter 3.3a and the instance graph H = (V, F) of the
MIS problem is shown in Chapter 3.3b. In the graph H, we have six degree-6 vertices:
v2,2, v7,7, v3,3, v3,8, v8,3 and v8,8. One can check that {v1,6, v2,7, v3,8, v4,9, v6,1, v7,2, v8,3, v9,4} is
an independent set in H, of size 8. On the other hand, if none of these degree-6 vertices is
included in an independent set, then because the four vertices v4,4, v4,9, v9,4, v9,9 form a square
implying that at most two of them can be included in the independent set, the independent
set would be of size at most 6, and thus can never be a maximum independent set in H.

Consider a duo (ai, ai+1) of the string A and for ease of presentation assume its letter content
is “ab”. If no duo of the string B has the same letter content “ab”, then this duo of the string
A can never be preserved; in fact this duo does not even become (a part of) a vertex ofV of the
graph H. If there is exactly one duo (b j, b j+1) of the string B having the same letter content
“ab”, then these two duos make up a vertex vi, j ∈ V , and from Lemma 3.1 we know that the
degree of the vertex vi, j ∈ V is at most 5, since there is no such vertex vi, j ′ with j′ , j sharing
exactly the two letters ai and ai+1 with vi, j . Therefore, if the degree of the vertex vi, j ∈ V is
six, then there must be two duos of the string A and two duos of the string B having the same
letter content “ab”. Assume the other duo of the string A and the other duo of the string B

having the same letter content “ab” are (ai′, ai′+1) and (b j ′, b j ′+1), respectively. Then all four
vertices vi, j, vi, j ′, vi′, j, vi′, j ′ exist inV . We call the subgraph of H induced by these four vertices
a square, and denote it as S(i, i′; j, j′) = (V(i, i′; j, j′), F(i, i′; j, j′)), where V(i, i′; j, j′) =

{vi, j, vi, j ′, vi′, j, vi′, j ′} and F(i, i′; j, j′) = {(vi, j, vi, j ′), (vi, j, vi′, j), (vi′, j ′, vi, j ′), (vi′, j ′, vi′, j)} due to
their conflicting relationships. One clearly sees that every square has a unique letter content,
which is the letter content of its four member vertices.

In Figure 3.3b, there are three squares S(2, 7; 2, 7), S(3, 8; 3, 8) and S(4, 9; 4, 9), with their
letter contents “bc”, “cd” and “de”, respectively. The above argument says that every
degree-6 vertex of V must belong to a square, but the converse is not necessarily true, for

59

Chapter 3. The Max-Duo Problem

example, all vertices of the square S(4, 9; 4, 9) have degree 4. We next characterize several
properties of a square.

The following lemma is a direct consequence of how the graph H is constructed and the fact
that k = 2.

Lemma 3.3. In the graph H = (V, F) constructed from an instance of 2-Max-Duo,

1. for each index i, there are at most two distinct j and j′ such that vi, j, vi, j ′ ∈ V;

2. if vi, j, vi, j ′ ∈ V where j′ , j, and vi+1, j ′′+1 ∈ V (or symmetrically, vi−1, j ′′−1 ∈ V), then
either j′′ = j or j′′ = j′.

Lemma 3.4. For any square S(i, i′; j, j′) in the graph H = (V, F), N(vi, j) = N(vi′, j ′),
N(vi, j ′) = N(vi′, j), and N(vi, j) ∩ N(vi, j ′) = ∅. (Together, these imply that every vertex of V

is adjacent to either none or exactly two of the four member vertices of a square.)

Proof. Consider the two vertices vi, j and vi′, j ′, which have common neighbors vi, j ′ and vi′, j

in the square.

Note that vi, j ′ and vi, j share both the letters ai and ai+1. If there is a vertex adjacent to vi, j by
sharing ai+1 but not ai, then this vertex is vi+1, j ′′+1 with j′′ , j, and thus it has to be vi+1, j ′+1

(by Lemma 3.3). We consider two subcases: If i + 1 = i′ − 1, then j′ + 1 = j − 1 due to
k = 2. Thus, this vertex vi+1, j ′+1 actually shares ai+1 and b j with vi, j ; also, it shares ai′ and
b j ′+1 with vi′, j ′; and therefore it is adjacent to vi′, j ′ too, but not adjacent to vi, j ′ or vi′, j . If
i + 1 , i′ − 1, then this vertex vi+1, j ′+1 shares only a j+1 with the vertex vi, j ; also it shares
only b j ′+1 with vi′, j ′; and therefore it is adjacent to vi′, j ′ too, but not adjacent to vi, j ′ or vi′, j .

The other three symmetric cases can be discussed exactly the same and the lemma is
proved. �

Corollary 3.5. In the graph H = (V, F), the degree-6 vertices can be partitioned into pairs,
where each pair of degree-6 vertices belong to a square in H and they are adjacent to the
same six other vertices, two inside the square and four outside of the square.

Proof. We have seen that every degree-6 vertex in the graph H must be in a square. The
above Lemma 3.4 states that the four vertices of a square S(i, i′; j, j′) can be partitioned
into two pairs, {vi, j, vi′, j ′} and {vi, j ′, vi′, j}, and the two vertices inside each pair are non-
adjacent to each other and have the same neighbors. In particular, if the vertex vi, j in the
square S(i, i′; j, j′) has degree 6, then Lemma 3.1 states that it is adjacent to the six vertices
vi−1, j ′−1, vi, j ′, vi+1, j ′+1, vi′−1, j−1, vi′, j, vi′+1, j+1 (see an illustration in Figure 3.4). �

60

Chapter 3. The Max-Duo Problem

vi,j

vi′,j′

vi−1,j′−1 vi,j′ vi+1,j′+1 vi′−1,j−1 vi′,j vi′+1,j+1

Figure 3.4: The square S(i, i′; j, j ′) shown in bold lines. The two non-adjacent vertices vi, j
and vi′, j′ of the square form a pair stated in Corollary 3.5; they have 6 common neighbors,
of which two inside the square and four outside of the square.

Corollary 3.6. If there is no square in the graph H = (V, F), then every degree-5 vertex is
adjacent to a degree-1 vertex.

Proof. Assume the vertex vi, j has degree 5. Due to the non-existence of any square in the
graph H and Lemma 3.1, either there is no vertex sharing exactly the two letters ai and
ai+1 with vi, j , or there is no vertex sharing exactly the two letters b j and b j+1 with vi, j . We
assume without loss of generality that there is no vertex sharing exactly the two letters ai

and ai+1 with vi, j , and furthermore assume vi′, j , i′ , i, is the vertex sharing exactly the two
letters b j and b j+1 with vi, j .

It follows that N(vi, j) = {vi−1, j ′′−1, vi+1, j ′′′+1, vi′−1, j−1, vi′, j, vi′+1, j+1}, for some j′′ , j and
j′′′ , j. Due to k = 2, this implies that ai−1 , b j−1 = ai′−1 and ai+2 , b j+2 = ai′+2.
Therefore, there is no vertex of V sharing exactly the letter ai′ (ai′+1, b j, b j+1, respectively)
with the vertex vi′, j , neither a vertex of V sharing exactly the two letters ai′ and ai′+1 with
the vertex vi′, j . That is, the vertex vi′, j is adjacent to only vi, j in the graph H. �

We say the two vertices vi, j and vi+1, j+1 of V are consecutive; and we say the two squares
S(i, i′; j, j′) and S(i + 1, i′ + 1; j + 1, j′ + 1) in H are consecutive. Clearly, two consecutive
squares contain four pairs of consecutive vertices. The following Lemma 3.7 summarizes
the fact that when two consecutive vertices belong to two different squares, then these two
squares are also consecutive (and thus contain the other three pairs of consecutive vertices).

Lemma 3.7. In the graph H, if there are two consecutive vertices vi, j and vi+1, j+1 belonging
to two different squares S(i1, i′1; j1, j′1) and S(i2, i′2; j2, j′2) respectively, then i2 = i1 + 1, i′2 =
i′1 + 1, j2 = j1 + 1, j′2 = j′1 + 1, i.e., these two squares are consecutive.

Proof. This is a direct result of the fact that no two distinct squares have any member vertex
in common. �

61

Chapter 3. The Max-Duo Problem

a b c d e f g b

g b c d e h a b

A :

B :

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

9
c

10
d

11
e

12
h

13
y

14
x

c d x y e f
9 10 11 12 13 14

(a) The bipartite graph G0 = (A, B,G0).

v4,4v2,2 v3,3

v1,7

v8,8 v9,9

v2,8 v3,9 v7,1 v8,2 v9,3 v10,4 v11,5×

×

××

v5,13

(b) The instance graph H = (V, F).

a d e f g

g d e h a

A :

B :

1 4 5 6 7

1 4 5 6 7

10
d

11
e

12
h

13
y

14
x

d x y e f
10 11 12 13 14

(c) The bipartite graph G′0 = (A
′, B′, E ′0)

after removal of S2(2, 8; 2, 8).

v4,4

v1,7

v5,13

v7,1 v10,4

×

×

× ×

v11,5

(d) The updated instance graph H ′ = (V ′, F ′)
after removal of S2(2, 8; 2, 8).

Figure 3.5: An instance of the 2-Max-Duo problem with A =

(a, b, c, d, e, f , g, b, c, d, e, h, y, x) and B = (g, b, c, d, e, h, a, b, c, d, x, y, e, f). The bi-
partite graph G0 = (A, B, E0) is shown in Figure 3.5a and the instance graph H = (V, F)
of the MIS problem is shown in Figure 3.5b. There is a maximal series of 2 squares
S2(2, 8; 2, 8) in the graph G, with the four substrings “bcd”. The bipartite graph
G′0 = (A

′, B′, E ′0) is shown in Figure 3.5c and the graph H ′ = (V ′, F ′) is shown in
Figure 3.5d, on A′ = (a, d, e, f , g, d, e, h, y, x) and B′ = (g, d, e, h, a, d, x, y, e, f). Applying
the vertex contracting process on H also gives the graph H ′.

A series of p consecutive squares {S(i + q, i′ + q; j + q, j′ + q), q = 0, 1, . . . , p − 1} in the
graph H, where p ≥ 1, is maximal if none of the square S(i − 1, i′ − 1; j − 1, j′ − 1) and
the square S(i + p, i′ + p; j + p, j′ + p) exists in the graph H. Note that the non-existence
of the square S(i − 1, i′ − 1; j − 1, j′ − 1) in H does not rule out the existence of some of
the four vertices vi−1, j−1, vi′−1, j ′−1, vi−1, j ′−1, vi′−1, j−1 in V ; in fact by Lemma 3.1 there can
be as many as two of these four vertices existing in V (however, more than two would
imply the existence of the square). Similarly, there can be as many as two of the four
vertices vi+p, j+p, vi′+p, j ′+p, vi+p, j ′+p, vi′+p, j+p existing in V . In the sequel, a maximal series
of p consecutive squares starting with S(i, i′; j, j′) is denoted as Sp(i, i′; j, j′), where p ≥ 1.
See for an example in Figure 3.5b where there is a maximal series of 2 consecutive squares
S2(2, 8; 2, 8), where the instance of the 2-Max-Duo is expanded slightly from the instance
shown in Figure 3.3.

Lemma 3.8. Suppose Sp(i, i′; j, j′), where p ≥ 1, exists in the graph H. Then,

62

Chapter 3. The Max-Duo Problem

1. the two substrings (ai, ai+1, . . . , ai+p) and (ai′, ai′+1, . . . , ai′+p) of the string A and
the two substrings (b j, b j+1, . . . , b j+p) and (b j ′, b j ′+1, . . . , b j ′+p) of the string B are
identical and do not overlap;

2. if a maximum independent set of H contains less than 2p vertices from Sp(i, i′; j, j′),
then it must contain either the four vertices vi−1, j−1, vi′−1, j ′−1, vi′+p, j+p, vi+p, j ′+p or the
four vertices vi′−1, j−1, vi−1, j ′−1, vi+p, j+p, vi′+p, j ′+p.

Proof. By the definition of the square S(i + q, i′ + q; j + q, j′ + q), we have ai+q = ai′+q

and ai+q+1 = ai′+q+1; we thus conclude that the two substrings (ai, ai+1, . . . , ai+p) and
(ai′, ai′+1, . . . , ai′+p) are identical. In Figure 3.5b, for S2(2, 8; 2, 8) the two substrings are
“bcd”. If these two substrings overlapped, then there would be three occurrences of at least
one letter, contradicting the fact that k = 2. This proves the first item.

Note that the square S(i−1, i′−1; j−1, j′−1) does not exist in the graph H, and thus at most
two of its four vertices (which are vi−1, j−1, vi′−1, j−1, vi−1, j ′−1 and vi′−1, j ′−1) exist in V . We
claim that if no vertex of the square S(i, i′; j, j′) is in I∗, then there are exactly two of the four
vertices vi−1, j−1, vi′−1, j−1, vi−1, j ′−1 and vi′−1, j ′−1 exist in V and they both are in I∗. Suppose
otherwise there is at most one of the four vertices in I∗, say vi−1, j−1; we may increase the
size of I∗ by removing vi−1, j−1 while adding either the two vertices vi, j and vi′, j ′ or the two
vertices vi′, j and vi, j ′ (depending on which vertices of the square S(i + 1, i′ + 1; j + 1, j′ + 1)
are in I∗), a contradiction.

Assume next that a vertex of the square S(i, i′; j, j′) is in I∗, say vi, j ; then due to maximality
of I∗ and Lemma 3.4 both vi, j and vi′, j ′ are in I∗. We claim and prove similarly as in the last
paragraph that if no vertex of the square S(i + 1, i′ + 1; j + 1, j′ + 1) is in I∗, then there are
exactly two of the four vertices vi−1, j−1, vi′−1, j−1, vi−1, j ′−1 and vi′−1, j ′−1 exist in V and they
both are in I∗. If there is a vertex of the square S(i+1, i′+1; j+1, j′+1) in I∗, then it must be
one of vi+1, j+1 and vi′+1, j ′+1; and due tomaximality and Lemma 3.4 both vi+1, j+1 and vi′+1, j ′+1

are in I∗. And so on; repeatedly applying this argument, we claim and prove similarly that
if no vertex of the square S(i + p − 1, i′ + p − 1; j + p − 1, j′ + p − 1) is in I∗, then there are
exactly two of the four vertices vi−1, j−1, vi′−1, j−1, vi−1, j ′−1 and vi′−1, j ′−1 exist in V and they
both are in I∗. If there is a vertex of the square S(i+ p−1, i′+ p−1; j + p−1, j′+ p−1) in I∗,
then it must be one of vi+p−1, j+p−1 and vi′+p−1, j ′+p−1; and due to maximality and Lemma 3.4
both vi+p−1, j+p−1 and vi′+p−1, j ′+p−1 are in I∗.

To summarize, we proved in the above two paragraphs that if I∗ contains less than 2p vertices
from Sp(i, i′; j, j′), then there are exactly two of the four vertices vi−1, j−1, vi′−1, j−1, vi−1, j ′−1

63

Chapter 3. The Max-Duo Problem

and vi′−1, j ′−1 exist in V and they both are in I∗; and these two vertices are either vi−1, j−1 and
vi′−1, j ′−1 or vi′−1, j−1 and vi−1, j ′−1. Symmetrically, there are exactly two of the four vertices
vi+p, j+p, vi′+p, j+p, vi+p, j ′+p and vi′+p, j ′+p exist in V and they both are in I∗; and these two
vertices are either vi+p, j+p and vi′+p, j ′+p or vi′+p, j+p and vi+p, j ′+p. Clearly from the above,
when the combination is vi−1, j−1 and vi′−1, j ′−1 versus vi+p, j+p and vi′+p, j ′+p, we may increase
the size of I∗ to contain exactly 2p vertices from Sp(i, i′; j, j′) without affecting any vertex
outside of Sp(i, i′; j, j′), a contradiction. Therefore, the only possible combinations are
vi−1, j−1 and vi′−1, j ′−1 versus vi′+p, j+p and vi+p, j ′+p, and vi′−1, j−1 and vi−1, j ′−1 versus vi+p, j+p

and vi′+p, j ′+p. This proves the second item of the lemma. �

Suppose Sp(i, i′; j, j′), where p ≥ 1, exists in the graph H. Let A′ denote the string obtained
from A by removing the two substrings (ai, ai+1, . . . , ai+p−1) and (ai′, ai′+1, . . . , ai′+p−1) and
concatenating the remainder together, and B′ denote the string obtained from B by removing
the two substrings (b j, b j+1, . . . , b j+p−1) and (b j ′, b j ′+1, . . . , b j ′+p−1) and concatenating the
remainder. Let the graph H′ = (V ′, F′) denote the instance graph of the MIS problem
constructed from the two strings A′ and B′. See for an example H′ in Figure 3.5d, where
there is a maximal series of 2 consecutive squares S2(2, 8; 2, 8) in the graph H.

Corollary 3.9. Suppose Sp(i, i′; j, j′), where p ≥ 1, exists in the graph H. Then, the union
of a maximum independent set in the graph H′ = (V ′, F′) and certain 2p vertices from
Sp(i, i′; j, j′) becomes a maximum independent set in the graph H = (V, F), where these
certain 2p vertices are vi, j, vi+1, j+1, . . . , vi+p−1, j+p−1 and vi′, j ′, vi′+1, j ′+1, . . . , vi′+p−1, j ′+p−1 if
vi−1, j−1 or vi+p, j+p is in the maximum independent set in H′, or they are vi′, j, vi′+1, j+1, . . .,
vi′+p−1, j+p−1 and vi, j ′, vi+1, j ′+1, . . . , vi+p−1, j ′+p−1 if vi′−1, j−1 or vi′+p, j+p is in the maximum
independent set in H′.

Proof. Consider the construction of the graph H′ = (V ′, F′) from the two strings A′

and B′. Equivalently, starting with the graph H = (V, F), if we contract the p vertices
vi, j, vi+1, j+1, . . . , vi+p−1, j+p−1 into the vertex vi+p, j+p if it exists or otherwise into a void ver-
tex, contract the p vertices vi′, j ′, vi′+1, j ′+1, . . . , vi′+p−1, j ′+p−1 into the vertex vi′+p, j ′+p if it exists
or otherwise into a void vertex, contract the p vertices vi′, j, vi′+1, j+1, . . . , vi′+p−1, j+p−1 into
the vertex vi′+p, j+p if it exists or otherwise into a void vertex, and contract the p vertices
vi, j ′, vi+1, j ′+1, . . . , vi+p−1, j ′+p−1 into the vertex vi+p, j ′+p if it exists or otherwise into a void
vertex, then we obtain a graph that is exactly H′. In the graph H′, the vertices vi−1, j−1

and vi′+p, j+p, if both exist in V , become adjacent to each other; so are the vertices vi′−1, j−1

and vi+p, j+p, if both exist in V . It follows that the maximum independent set in the graph
H′ = (V ′, F′) does not contain both vertices vi−1, j−1 and vi′+p, j+p, or both vertices vi′−1, j−1 and

64

Chapter 3. The Max-Duo Problem

vi+p, j+p. Therefore, starting with the maximum independent set in the graph H′ = (V ′, F′),
we can add exactly 2p vertices from Sp(i, i′; j, j′) to form an independent set in H, of which
the maximality can be proved by a simple contradiction.

We remark that in the extreme case where none of the vertices of S(i − 1, i′ − 1; j − 1, j′ − 1)
and none of the vertices of S(i+ p, i′+ p; j + p, j′+ p) are in the maximum independent set in
H′, we may add either of the two sets of 2p vertices from Sp(i, i′; j, j′) to form a maximum
independent set in H. �

Iteratively applying the above string shrinkage process, or equivalently the vertex contracting
process, associated with the elimination of a maximal series of consecutive squares. In
O(n) iterations, we achieve the final graph containing no squares, which we denote as
H1 = (V1, F1).

3.3.2 An approximation algorithm for 2-Max-Duo

A high-level description of the approximation algorithm, denoted as Approx, for the 2-
Max-Duo problem is depicted in Figure 3.6.

Algorithm Approx
1: Construct the graph H = (V, F) from two input strings A and B;
2: while (there is a square in the graph) do
3: find a maximal series of squares;
4: locate the four identical substrings of A and B as in Lemma 3.8;
5: remove the corresponding substrings and accordingly update the graph;
6: end while
7: denote the resultant graph as H1 = (V1, F1);
8: set L1 to contain all degree-0 and degree-1 vertices of H1;
9: set N[L1] to be the closed neighborhood of L1 in H1, i.e. N[L1] = L1 ∪ N(L1);
10: set H2 = H1[V1 − N[L1]], the subgraph of H1 induced by V1 − N[L1];
11: compute an independent set I2 in H2 by the ((∆ + 3)/5 + ε)-approximation in [7];
12: set I1 = I2 ∪ L1, an independent set in H1;
13: return an independent set I in H using I1 and Corollary 3.9.

Figure 3.6: A high-level description of the approximation algorithm for 2-Max-Duo.

In more details, given an instance of the 2-Max-Duo problem with two length-n strings
A and B, the first step of our algorithm is to construct the graph H = (V, F), which is
done in O(n2) time. In the second step (Lines 2–7 in Figure 3.6), it iteratively applies the

65

Chapter 3. The Max-Duo Problem

vertex contracting process presented in Section 3.3.1 at the existence of a maximal series
of consecutive squares, and at the end it achieves the final graph H1 = (V1, F1) which does
not contain any square. This second step can be done in O(n2) time too since each iteration
of vertex contracting process is done in O(n) time and there are O(n) iterations. In the
third step (Lines 8–10 in Figure 3.6), let L1 denote the set of singletons (degree-0 vertices)
and leaves (degree-1 vertices) in the graph H1; our algorithm removes all the vertices of L1

and their neighbors from the graph H1 to obtain the remainder graph H2 = (V2, F2). This
step can be done in O(n2) time too due to |V1 | ≤ |V | ≤ 2n, and the resultant graph H2

has maximum degree ∆ ≤ 4 by Corollaries 3.5 and 3.6. (See for an example illustrated
in Figure 3.7a.) In the fourth step (Lines 11–12 in Figure 3.6), our algorithm calls the
state-of-the-art approximation algorithm for the MIS problem [7] on the graph H2 to obtain
an independent set I2 in H2; and returns I1 = L1 ∪ I2 as an independent set in the graph
H1. The running time of this step is dominated by the running time of the state-of-the-art
approximation algorithm for the MIS problem, which is a high polynomial in n and 1/ε . In
the last step (Line 13 in Figure 3.6), using the independent set I1 in H1, our algorithm adds
2p vertices from each maximal series of p consecutive squares according to Corollary 3.9,
to produce an independent set I in the graph H. (For an illustrated example see Figure 3.7b.)
The last step can be done in O(n) time.

The state-of-the-art approximation algorithm for theMIS problem on a graphwithmaximum
degree ∆ has a performance ratio of (∆ + 3)/5 + ε , for any ε > 0 [7].

Lemma 3.10. In the graph H1 = (V1, F1), let OPT1 denote the cardinality of a maximum
independent set in F1, and let SOL1 denote the cardinality of the independent set I1 returned
by the algorithm Approx. Then, OPT1 ≤ (1.4 + ε)SOL1, for any ε > 0.

Proof. Let L1 denote the set of singletons (degree-0 vertices) and leaves (degree-1 vertices)
in the graph H1; our algorithm Approx removes all the vertices of L1 and their neighbors
from the graph H1 to obtain the remainder graph H2 = (V2, F2). The graph H2 has maximum
degree ∆ ≤ 4 by Corollaries 3.5 and 3.6. Let OPT2 denote the cardinality of a maximum
independent set in H2, and let SOL2 denote the cardinality of the independent set I2 returned
by the state-of-the-art approximation algorithm for the MIS problem. We have OPT1 =

|L1 | + OPT2 and OPT2 ≤ (1.4 + ε)SOL2, for any ε > 0. Therefore,

OPT1 ≤ |L1 | + (1.4 + ε)SOL2 ≤ (1.4 + ε)(|L1 | + SOL2) = (1.4 + ε)SOL1.

This proves the lemma. �

66

Chapter 3. The Max-Duo Problem

v4,4

v10,4v1,7 v7,1 v11,5

v5,13

(a) The independent set I1 =

{v1,7, v7,1, v10,4, v11,5, v5,13} in H1, con-
sisting of all the five leaves of H1 = H ′

shown in Figure 3.5d.

v2,2 v3,3 v4,4

v10,4v1,7 v2,8 v3,9 v7,1 v8,2 v9,3

v8,8 v9,9

v11,5

v5,13

(b) Using I1, since v10,4 ∈ I1, the four vertices
v2,8, v3,9, v8,2, v9,3 are added to form an independent
set I in the original graph H shown in Figure 3.5b.

a b c d e f g b

g b c d e h a b

A :

B :

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

9
c

10
d

11
e

12
h

13
y

14
x

c d x y e f
9 10 11 12 13 14

(c) The parallel edges of G0 corresponding to the in-
dependent set I shown in Figure 3.7b, also corre-
spond to the 9 preserved duos (a, b), (b, c), (c, d), (e, f),
(g, b), (b, c), (c, d), (d, e), (e, h) for the instance shown in Fig-
ure 3.5a.

Figure 3.7: Illustration of the execution of our algorithm Approx on the instance shown
in Figure 3.5. The independent set I1 in the graph H1 is shown in Figure 3.7a in filled
circles, for which we did not apply the state-of-the-art approximation algorithm for the MIS
problem. The independent set I in the graph H is shown in Figure 3.7b in filled circles,
according to Corollary 3.9 the four vertices v2,8, v3,9, v8,2, v9,3 are added due to v10,4 ∈ I1.
The parallel edges of G0 corresponding to the vertices of I are shown in Figure 3.7c,
representing a feasible solution to the 2-Max-Duo instance shown in Figure 3.5.

Theorem 3.11. The 2-Max-Duo problem can be approximated within a ratio arbitrarily
close to 1.4, by a linear reduction to the MIS problem.

Proof. We prove by induction. At the presence of maximal series of p consecutive squares,
we perform the vertex contracting process iteratively. In each iteration to handle onemaximal
series of p consecutive squares, let H and H′ denote the graph before and after the contracting
step, respectively. Let OPT′ denote the cardinality of a maximum independent set in H′, and
let SOL′ denote the cardinality of the independent set I′ returned by the algorithm Approx.
Given any ε > 0, from Lemma 3.10, we may assume that OPT′ ≤ (1.4 + ε)SOL′.

Let OPT denote the cardinality of a maximum independent set in H, and let SOL denote the
cardinality of the independent set returned by the algorithm Approx, which adds 2p vertices
from the maximal series of p consecutive squares to the independent set I′ in H′, according

67

Chapter 3. The Max-Duo Problem

to Corollary 3.9, to produce an independent set I in the graph H. Lemma 3.8 states that
OPT = OPT′ + 2p. Therefore,

OPT = OPT′ + 2p ≤ (1.4 + ε)SOL′ + 2p ≤ (1.4 + ε)(SOL′ + 2p) = (1.4 + ε)SOL.

This proves that for the original graph H = (V, F) we also have OPT ≤ (1.4 + ε)SOL
accordingly. That is, the worst-case performance ratio of our algorithm Approx is 1.4 + ε ,
for any ε > 0. The time complexity of the algorithm Approx has been determined to be
polynomial at the beginning of the section, and it is dominated by the time complexity
of the state-of-the-art approximation algorithm for the MIS problem. The theorem is thus
proved. �

3.3.3 Review of the reduction from MIS on cubic graphs

In the above approximation algorithm Approx for 2-Max-Duo, we apply a vertex-degree
reduction scheme on the constructed instance graph of the MIS problem, to remove all the
degree-6 vertices and all the degree-5 vertices. This scheme essentially reduces the 2-Max-
Duo problem to computing a maximum independent set in a graph of maximum degree
∆ ≤ 4. One might wonder whether all the degree-4 vertices can be similarly removed.

Goldstein et al. [46] proved that the 2-MCSP problem is APX-hard via a linear reduction
from MIS on cubic graphs (Cubic-MIS), and Boria et al. [10] showed that the same
reduction could also be applied to prove that 2-Max-Duo is also APX-hard. In this section,
we review this APX-hardness reduction from Cubic-MIS to 2-Max-Duo, to point out that
it is unlikely possible to further reduce the maximum degree ∆ from 4 to 3 by removing all
the degree-4 vertices.

Given a cubic graph H′ = (V ′, F′) as an input for Cubic-MIS, an instance of 2-Max-Duo
can be created in the following steps.

1. For each u ∈ V ′, define a small 2-Max-Duo instance Iu = (Au, Bu) as shown in
Figure 3.8, where both Au and Bu are length-28 strings with seven main substrings,
and each pair of two consecutive main substrings are separated by a substring of two
distinct letters (xi

u, y
i
u) in Au and by (yi

u, xi
u) in Bu, respectively, for i = 1, . . . , 6. There

12 letters xi
u’s and yi

u’s are distinct, each appears only once in Au and represented by
dot in Figure 3.8.

68

Chapter 3. The Max-Duo Problem

du · · au bu · · cu du eu · · bu eu fu gu · · fu hu ku · · gu lu · · hu

bu · · cu du · · au bu eu · · du eu fu hu · · fu gu lu · · hu ku · · gu

Au :

Bu :

Figure 3.8: The instance Iu = (Au, Bu) defined for each vertex u ∈ V ′. Each two dots
between a pair of substrings represent a substring of two distinct letters (xiu, yiu) in Au and
(yiu, xiu) in Bu, respectively, for i = 1, . . . , 6. All these 12 letters xiu, yiu are distinct and also
distinct from all the other letters in Au and Bu. Each solid or dashed line connects a pair
of common duos in Au and Bu. The set of five duos connecting by solid lines is a unique
optimal solution to Iu.

One can easily check that there are nine common duos between Au and Bu, and the set
of five duos connected by solid lines in Figure 3.8 is a unique optimal solution to the
instance Iu. Equivalently, this constructs a gadget subgraph of the MIS problem, as
shown in Figure 3.9, in which there are nine vertices one-to-one corresponding to the
nine common duos and two vertices are adjacent if and only if they are conflicting.
The vertex subset {aubu, cudu, eu fu, gulu, huku} is the unique maximum independent
set in this subgraph.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

Figure 3.9: The gadget subgraph associated with the instance Iu = (Au, Bu), in which there
are nine vertices corresponding to the nine common duos between Au and Bu.

2. Orient each edge in F′ such that each vertex in V ′ has an in-degree of at most two
and an out-degree of at most two. This can be done by partitioning H′ into a set of
edge-disjoint cycles and a forest, followed by orienting the edges of a cycle to form
a directed cycle, and rooting a tree at a leaf and then orient the edges away from the
root.

3. Let AH ′ =
⋃

u∈V ′ Au, BH ′ =
⋃

u∈V ′ Bu, IH ′ = (AH ′, BH ′). For each
−−−→
(u, v) ∈ F′, modify

instances Iu and Iv such that an optimal solution to IH ′ coincides with at most one of
the optimal solutions to Iu and Iv. To this purpose, either the common duo avbv is
revised into lubv (kubv, respectively) to be in conflict with only the common duo gulu
(huku, respectively); the common duo cvdv is revised into ludv (kudv, respectively) to
be in conflict with only the common duo gulu (huku, respectively). These four options

69

Chapter 3. The Max-Duo Problem

of modification are shown in Figure 3.10. Since every vertex of V ′ has at most two
incoming edges and at most two outgoing edges, the revision process for the directed
edge (u, v) ∈ F′ can be independently done with respect to all the other edges of F′.

· · fu hu ku · · gu lu bv · · hu · · · dv · · lu · · cv dv ev · ·

· · fu gu lu · · hu ku · · gu · · · bv · · cv dv · · lu bv ev · ·
(a) The common duo avbv is revised into duo lubv to be in conflict
with only the common duo gulu.

· · fu hu ku · · gu lu dv ev · · hu · · · dv · · av bv · · lu · ·

· · fu gu lu · · hu ku · · gu · · · bv · · lu dv · · av bv ev · ·
(b) The common duo cvdv is revised into duo ludv to be in conflict
with only the common duo gulu.

· · fu hu ku bv · · gu lu · · hu · · · dv · · ku · · cv dv ev · ·

· · fu gu lu · · hu ku · · gu · · · bv · · cv dv · · ku bv ev · ·
(c) The common duo avbv is revised into duo kubv to be in conflict
with only the common duo huku.

· · fu hu ku dv ev · · gu lu · · hu · · · dv · · av bv · · ku · ·

· · fu gu lu · · hu ku · · gu · · · bv · · ku dv · · av bv ev · ·
(d) The common duo cvdv is revised into duo kudv to be in conflict
with only the common duo huku.

Figure 3.10: Four options of modifying instances Iu and Iv by only modifying the right
side of Au, Bu and the left side of Av, Bv such that an optimal solution to IH′ coincides with
at most one of the optimal solutions to Iu and Iv.

According to the proofs in [10, 46], one can check that there exists an independent set of
size α in H′ if and only if there are 4|V ′| + α duos can be preserved in IH ′. The above
common duo modification process for each directed edge (u, v) ∈ F′ is equivalent to joining
the two gadget subgraphs for the vertices u, v ∈ V ′ by connecting one of gulu and huku to
one of avbv and cvdv, but additionally revising the letter content of the common duo of Iv.

70

Chapter 3. The Max-Duo Problem

Corresponding to the four options of modification shown in Figure 3.10, the two gadget
subgraphs are joined as shown in Figure 3.11, respectively.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

lubv bvev fvgv gvlv

cvdv dvev fvhv hvkv

evfv

(a) When the modification is done as in Figure 3.10a, the vertex lubv
connects the two gadget subgraphs.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

avbv bvev fvgv gvlv

ludv dvev fvhv hvkv

evfv

(b) When the modification is done as in Figure 3.10b, the vertex ludv
connects the two gadget subgraphs.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

kubv bvev fvgv gvlv

cvdv dvev fvhv hvkv

evfv

(c) When the modification is done as in Figure 3.10c, the vertex kubv
connects the two gadget subgraphs.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

avbv bvev fvgv gvlv

kudv dvev fvhv hvkv

evfv

(d) When the modification is done as in Figure 3.10d, the vertex kudv
connects the two gadget subgraphs.

Figure 3.11: Four different configurations for joining the two gadget subgraphs for the
vertices u, v ∈ V ′, in each of which a common duo is revised for the directed edge (u, v) ∈ E ′.

Since each directed edge (u, v) ∈ F′ gives rise to exactly one of the four possible config-
urations shown in Figure 3.11, we conclude from H′ being cubic that exactly three of the
four degree-1 vertices {aubu, cudu, gulu, huku} in the gadget subgraph for the vertex u ∈ V ′

71

Chapter 3. The Max-Duo Problem

increase their degree to 2. It follows that however the edge orientation scheme is, all the
vertices in the final graph H have degrees 1, 2, or 4.

Therefore, it is impossible to determine in polynomial time which subset of all the degree-4
vertices is in the maximum independent set of G. It would be interesting to investigate
whether the maximum degree can be further reduced to 3, but not by determining in
polynomial time which subset of all the degree-4 vertices is in the maximum independent
set.

3.4 On approximating the general Max-Duo problem

3.4.1 A local search algorithm LS

Given a bipartite graph G = (DA,DB, E), the 3.5-approximation algorithm presented by
Boria et al. [9] starts with an arbitrary maximal compatible matching, iteratively seeks
swapping one edge in the current matching out for two compatible edges, and terminates
when the expansion by such swapping is impossible.

Our local search algorithm is an extension of the above algorithm, to iteratively apply two
different swapping operations to increase the size of thematching and to decrease the number
of singleton edges in the matching, respectively. We present the algorithm in details in the
following. Note that we also start with an arbitrary maximal compatible matching, which
by Observation 3.1 can be obtained in O(n2)-time, where n is the number of vertices in one
side of the bipartite graph (or more precisely, |DA | = |DB | = n − 1).

Let M denote the current compatible matching in hand. For any edge ei, j ∈ M , let C(ei, j)

be the set of all the edges of E conflicting with ei, j ; then (q = −1, 0,+1 in the following set
unions)

C(ei, j) =

+1⋃
q=−1

{
ei+q, j ′+q ∈ E | j′ , j

}
∪

+1⋃
q=−1

{
ei′+q, j+q ∈ E | i′ , i

}
. (3.2)

Clearly, |C(ei, j)| ≤ 6(n − 1). Recall that |E | ∈ O(n2). We have the following observation,
which essentially narrows down the candidate edges for swapping with the edge ei, j .

Observation 3.2. For a maximal compatible matching M and an edge ei, j ∈ M , the edges
compatible with all the edges of M − {ei, j} must be in C(ei, j) ∪ {ei, j}.

72

Chapter 3. The Max-Duo Problem

We next describe the two different swapping operations. Both of them apply to a maximal
compatible matching M . One operation is to replace 5 edges of M by 6 edges, denoted
as Replace-5-by-6, thus to increase the size of the matching; and the other operation is to
replace 5 edges of M by 5 edges with the resulted matching having strictly less singleton
edges, denoted as Reduce-5-by-5. Note that in each iteration, the operation Reduce-5-by-5
applies only when the operation Replace-5-by-6 fails to expand the current matching M .

3.4.1.1 Operation Replace-5-by-6

The operationReplace-5-by-6 seeks to expand the current maximal compatible matching M

by swapping five edges of M out for six compatible edges. It does so by scanning all size-5
subsets of M and terminates at a successful expansion. If no such expansion is possible, it
also terminates but without making any change to the matching M .

Let X = {e1, e2, . . . , e5} be a subset of M (in the special case where |M | ≤ 5, we seek for
a compatible matching of size |M | + 1 directly by an exhaustive search). The operation
composes a set E′ = X ∪ C(X), where C(X) contains all the edges each conflicting with an
edge of X but compatible with (all the edges of) M − X; it then checks every size-6 subset
X′ of E′ for compatibility and, if affirmative, swaps X out for X′ to expand M .

Recall that |M | < n. The number of size-5 subsets of M is O(n5). For each size-5 subset X ,
composing the set E′ takes O(n2) time and |E′| < 30n. It follows that the number of size-6
subsets of E′ is O(n6). Lastly, checking the compatibility of each size-6 subset X′ takes
O(1) time. Therefore, the time complexity of the operation Replace-5-By-6 is O(n11).

In Section 3.4.1.4, we show that the six edges of the target subset X′, if exists, must be
incident on six out of a set of at most 30 vertices determined by the five edges of X (at most
15 vertices of DA and at most 15 vertices of DB, see Observation 3.1). This gives rise to no
more than

(30
6
)
size-6 vertex sets. For each such size-6 vertex set Z , let Zc denote the subset

of vertices each is incident with at most 3 × 5 − 2 = 13 edges of E′, and let Zn = Z − Zc.
Choosing one edge of E′ incident on a vertex of Zc, we form an edge subset of size |Zc |, and
we can prove that if this edge subset is compatible then it can be extended to the target subset
X′ in O(n) time, through a linear scan on the vertex set DA and a linear scan on the vertex set
DB. Note that there are at most 13|Zc | ≤ 136 possibilities to check and therefore the target
size-6 subset X′, if exists, can be found in O(n) time. This way, the time complexity of the
operation Replace-5-by-6 is improved to O(n6).

73

Chapter 3. The Max-Duo Problem

In the (2 + ε)-approximation algorithm by Deduk et al. [33], the second phase of local
optimization is to iteratively swap a subset of t − 1 edges out of the current compatible
matching for a subset of t edges (i.e., Replace-(t − 1)-By-t in our notation), and the
authors show that there would be O(n2) iterations each of which takes O(n4t) time, where
t = d4ε e+1. Using our time analysis (for technical details see ...), one sees that there are only
O(n) iterations and each iteration takes only O(nt) time. Therefore, we are able to lower
the time complexity of the (2 + ε)-approximation significantly from O(n

16
ε +4) to O(n

4
ε +2),

though both of them are in nO(1/ε).

3.4.1.2 Operation Reduce-5-by-5

From Equation 3.2, one sees that given a maximal compatible matching M , a pair of parallel
edges of M are expected to conflict much less edges outside of M than two singleton edges
of M do. This hints that for two compatible matchings of the same cardinality, the one
with more parallel edges more likely can be expanded, and motivates the new operation
Reduce-5-by-5.

When the operation Replace-5-By-6 fails to expand the current maximal compatible match-
ing M , the operation Reduce-5-by-5 seeks to decrease the number of singleton edges in M ,
by swapping five edges of M out for five compatible edges. Similarly, it does so by scanning
all size-5 subsets of M , and terminates at a successful reduction. If no such reduction is
possible, it also terminates but without making any change to the matching M .

Recall that M is partitioned into p(M) and s(M), containing all the parallel edges and all
the singleton edges, respectively. Let X = {e1, e2, . . . , e5} be a subset of M (in the special
case where |M | ≤ 5, we seek for a compatible matching of the same size but containing
strictly less singleton edges directly by an exhaustive search). The operation composes a set
E′ = X ∪ C(X), where C(X) contains all the edges each conflicting with an edge of X but
compatible with M − X; it then checks every size-5 subset X′ of E′ for compatibility and
subsequently checks whether |s(M − X ∪ X′)| < |s(M)|, if both affirmative, swaps X out for
X′ to reduce the number of singleton edges in M .

For the time complexity of the operation Reduce-5-by-5, similarly we recall that |M | < n.
Partitioning M into p(M) and s(M) takes O(n2) time. There are O(n5) size-5 subsets of M .
For each such size-5 subset X , composing the set E′ takes O(n2) time and |E′| < 30n. It
follows that the number of size-5 subsets of E′ is O(n5). Lastly, checking the compatibility
of each size-5 subset X′ takes O(1) time and counting the singleton edges of M − X ∪ X′

74

Chapter 3. The Max-Duo Problem

can be done in O(n) time. Therefore, the time complexity of the operation Reduce-5-By-5
is O(n11) too.

In Section 3.4.1.4, we similarly show in technical details that the time complexity of the
operation Reduce-5-By-5 can be improved to O(n6).

3.4.1.3 The local search algorithm LS

Our local search algorithm is iterative. The compatible matching M is initialized to ∅.

At the beginning of each iteration, we greedily expand the current compatible matching M

to the maximal, by adding one edge at a time. Next, with the current maximal compatible
matching M , the operation Replace-5-By-6 is applied to expand M . If successful, the
iteration ends. Otherwise, M is not modified by the operation Replace-5-By-6 and the
operation Reduce-5-By-5 is applied to reduce the number of singleton edges in M . If
successful, the iteration ends; otherwise the entire algorithm terminates and returns the
current M as the solution.

Clearly, the step of greedy expansion takes O(n2) time. The running time of the rest of the
iteration is O(n6), which is dominant.

Note that every iteration, except the last, either increases the cardinality of the compatible
matching or decreases the number of the singleton edges in the compatible matching. Also,
since one would not remove only the middle edge of a set of three parallel edges, removing
(adding, respectively) an edge from (to, respectively) the matching would increase the
number of the singleton edges in the compatible matching by at most one. Therefore,
the operation Replace-5-By-6 would increase the number of the singleton edges in the
compatible matching by at most 11. We thus conclude that there are only O(n) iterations
in the entire algorithm, which we denote as LS. It follows that the time complexity of the
algorithm LS is O(n7). We state the above in the following theorem.

Theorem 3.12. The time complexity of the local search algorithm LS for the MCBM
problem is O(n7), where n is the number of vertices in one side of the bipartite graph.

3.4.1.4 A better time complexity analysis for LS

Now we show in technical details how the time complexity of the operations Replace-5-
By-6 and Reduce-5-By-5 can be improved to O(n6), leading to a total time complexity of

75

Chapter 3. The Max-Duo Problem

O(n7) for the algorithm LS. We in fact show that the time complexity of both operations
Replace-ρ-by-(ρ + 1) and Reduce-ρ-by-ρ is O(nρ+1), for any integer ρ ≥ 1.

Given a maximal compatible matching M of G = (V, E) and a subset of edges X ⊆ M , with
|X | = ρ being a constant, we define some notations as follows:

• V0(X) B
⋃

ei, j∈X {dA
i−1, d

A
i , d

A
i+1, d

B
j−1, d

B
j , d

B
j+1}, then any edge in E conflicting with at

least one edge of X must be incident on some vertex in V0(X);

• C(X) B
⋃

ei, j∈X C(ei, j);

• C′(X) ⊆ C(X) contains all the edges each compatible with all the edges of M − X;

• G′ = (V ′, E′) is a subgraph of G with E′ = X ∪ C′(X) and V ′ is the union of all the
endpoints of edges in E′, then all the candidate edges that can be added to M − X to
form another compatible matching of G must be from E′;

• V(X) B V0(X) ∩ V ′, then any edge in E′ must be incident on some vertex in V(X).

Observe that the sizes of V0(X) and V(X) are both in O(1), the size of E′ is then in O(n).
Since M is maximal, E′ is just the subset of all the edges each incident on some vertex in
V0(X)while not conflicting with any edge of M−X . E′ can be found inO(n) time as follows.
For each vertex in V0(X), say dA

i , we check if there is an edge in M − X incident on dA
i−1 or

dA
i+1 (which takes O(1) time). If there is an edge ei−1, j−1 ∈ M − X (or ei+1, j+1 ∈ M − X)

and ei, j ∈ E , then we add ei, j to E′ (if ei, j ∈ E) and move on to the next vertex in V0(X);
otherwise we add all the edges incident on dA

i to E′. In total, it takes O(n) time to obtain E′.

For any subset of vertices U′ ⊆ V , we say a subset F′ of |U′| edges is incident on U′ if each
edge of F′ is incident on exactly one vertex of U′. In order to find a size-ρ subset of edges
X′ ⊆ E′, with |X | ≤ ρ ≤ |E′|, to obtain another compatible matching M′ = (M − X) ∪ X′

of G, we can traverse through all subsets U’s of ρ vertices from V(X), and check if there is
a subset of pairwise compatible edges in E′ incident on U.

Consider a subset U ⊆ V(X) of ρ vertices, we define

• U A B U ∩ DA, UB B U ∩ DB, then ρ = |U A | + |UB |;

• U A
i,h B {d

A
i , d

A
i+1, . . . , d

A
i+h−1} ⊆ U A (or UB

j,` B {d
B
j , d

B
j+1, . . . , d

B
j+`−1} ⊆ UB, resp.) is

a subset of maximal subset of consecutive vertices in U A (or UB, resp.);

• E′i, j,h B {ei, j, ei+1, j+1, . . . , ei+h−1, j+h−1} ⊆ E′ is a size-h subset of consecutive parallel
edges;

76

Chapter 3. The Max-Duo Problem

• V A
E ′ B {d

A
i |ei, j ∈ E′}, V B

E ′ B {d
B
j |ei, j ∈ E′}, and the vertices in V A

E ′ and V B
E ′ are

kept as dA
i1
, dA

i2
, . . . and dB

j1
, dB

j2
, . . ., with i1, i2, . . . and j1, j2, . . . in ascending order,

respectively.

For the purpose of finding a compatible matching X′ ⊆ E′ incident on U, we can safely
remove from E′ all the edges with one endpoint in U A and the other endpoint in UB.
Observe that for any U A

i,h (or UB
j,`, resp.), the only possible subset of pairwise compatible

edges incident onU A
i,h (orUB

j,`, resp.) is a subset of consecutive parallel edges E′i, j ′,h for some
j′ (or E′i′, j,` for some i′, resp.). Thus, X′ may exist in E′ only if there is at least one subset of
consecutive parallel edges in E′ incident on U A

i,h and UB
j,`, for ∀U A

i,h ⊆ U A and ∀UB
j,` ⊆ UB,

respectively. For simplicity, we also call a maximal subset of consecutive parallel edges in
X′ as a streak of X′. Then, any X′ can be partitioned into two subsets X′1 and X′2, where
X′1 is the union of streaks of X′ each incident on a single U A

i,h or a single UB
j,` and X′2 is the

union of streaks of X′ each incident on a combination of at least one U A
i,h and at least one

UB
j,`. Correspondingly, U can also be partitioned into two subsets U1 and U2 such that X′1 is

incident on U1 and X′2 is incident on U2.

Consider any pair of U A
i,h and UB

j,`, we observe that there are two possible cases in which
E′i, j ′,h ∪ E′i′, j,` form a size-(h+ `) subset of consecutive parallel edges incident on U A

i,h ∪UB
j,`:

• i′ = i + h and j′ = j − h: define X′i,h; j,` = E′i, j ′,h ∪ E′i′, j,` = E′i, j−h,h+`;

• i′ = i − ` and j′ = j + `: define X′j,`;i,h = E′i′, j,` ∪ E′i, j ′,h = E′i−`, j,`+h.

Define Y = {X′i,h; j,`, X′j,`;i,h ⊆ E′|U A
i,h ⊆ U A,UB

j,` ⊆ UB}, then X′2 must be the union of all
the X′·,·;·,·’s in some subset of Y . Since the size of Y is a constant due to |U | being a constant,
we can find all possible X′2 by traversing through all subsets of Y in O(1) time. Then X′1 will
be a subset of pairwise compatible edges incident on U1 in E′1 = E′ −

(
X′2 ∪ C(X′2)

)
.

Define U A
1adj =

⋃
dA
i ∈U

A
1
{dA

i−1, d
A
i+1} ∩ V A

E ′1
and UB

1adj =
⋃

dB
j ∈U

B
1
{dB

j−1, d
B
j+1} ∩ V B

E ′1
. For the

purpose of finding a compatible matching X′1 ⊆ E′1 incident on U1, we can safely remove
from E′1 all the edges ei, j such that dA

i ∈ U A
1 and dB

j ∈ UB
1adj OR dA

i ∈ U A
1adj and dB

j ∈ UB
1 .

Then in the remaining edges in E′1, any edge incident on a vertex in U A
1 is compatible with

any edge incident on a vertex of UB
1 . Thus, if there is a subset X′1A of pairwise compatible

edges incident on U A
1 and a subset X′1B of pairwise compatible edges incident on UB

1 , then
X′1A ∪ X′1B must also be a compatible matching in E′1.

For eachU A
i,h ⊆ U A

1 andUB
j,` ⊆ UB

1 ., we first find all the subsets of consecutive parallel edges
E′i, j ′,h incident on U A

i,h and E′i′, j,` incident on UB
j,`, respectively. Let E∗ =

⋃
∀UA

i,h
,UB

j,h
⊆U E′i, j,h.

77

Chapter 3. The Max-Duo Problem

Then, the edges of a compatible matching X′1 ⊆ E′1 must be all from E∗. Define deg(u) as
the number of edges in E∗ incident on u for each u ∈ U1. X′ may exist only if deg(u) ≥ 1
for each u ∈ U1. We will determine a constant c, and partition U1 into two subsets
U≥c = {u ∈ U1 |deg(u) ≥ c} and U<c = U1 −U≥c. For the vertices in U<c, we can traverse
through all O(1) combinations of edges incident on U<c to find possible subset of pairwise
compatible edges, say X′0. Let E∗1 = E∗ −

(
X′0 ∪ C(X′0)

)
. From the following lemma

which will be proved later, we can conclude that we can always find a compatible matching
X′A incident on U A

≥c (X′B incident on UB
≥c, resp.) in linear time, if deg(u) ≥ 2|U A

≥c | − 1
(deg(u) ≥ 2|UB

≥c | − 1, resp.) in E∗1 , for ∀u ∈ U A
≥c (∀u ∈ UB

≥c, resp.). Then X′A ∪ X′B is a
compatible matching in E∗1 . Together with X′0, X′1 = X′0 ∪ X′A ∪ X′B will be a compatible
matching in E′1. See function FindCompatibleEdgesAtU for a high-level description of
the algorithm of finding an X′1 in E′1.

Lemma 3.13. Given a subgraph G∗ = (V A,V B, E∗) of G, a subset of vertices U A ⊆ V A,
with |U A | being a constant, we can always find a compatible matching incident on U A in
linear time, if deg(u) ≥ 2|U A | − 1 in G∗ for ∀u ∈ U A.

Because |U1 | is constant, each step of performing function FindCompatibleEdgesAtU

on E′1,U1 can either be done in O(1) time or in O(n) time. Since the two functions
FindCompatibleEdgesAtU A and FindCompatibleEdgesAtUB can both be done in linear
time, function FindCompatibleEdgesAtU can be done in O(n) time.

Now let us determine c. Consider a vertex u ∈ U A
≥c. For the |U A

<c | edges incident on U A
<c

added into X′0, there are at most 3|U A
<c | edges incident on dA

i which are conflicting with
them and have been removed from E∗. Recall that in E∗, any edge incident on a vertex
in U A

1 is compatible with any edge incident on a vertex of UB
1 . Therefore, together with

Lemma 3.1, in order to always find a size-|U A
≥c | compatible matching from E∗1 , we must

have deg(u) ≥ 2|U A
≥c | − 1 + 3|U A

<c | = |U
A
<c | + 2|U1 | − 1. Since E∗1 is not empty only if

|U<c | ≤ |U1 | − 1, we can set c = 3|U1 | − 2.

Proof. (of Lemma 3.13)
Check each vertex dB

j ∈ V B
E∗ from the smallest j to the largest j. We arbitrarily select an edge

ei, j ∈ E∗, with dA
i ∈ U A, and find the maximal subset of consecutive vertices U A

i,h ⊆ U A,
then add the corresponding h consecutive parallel edges ei, j, ei+1, j+1, . . . , ei+h−1, j+h−1 to the
solution matching, say X′A. We move to the next vertex dB

j ′ ∈ V B
E∗ , if j′ = j + h, that is, dB

j ′

is next to dB
j+h−1, then any edge ei′, j ′ with dA

i′ ∈ U A must be conflicting with an edge in the
current X′A. While any edge ei′, j ′ with j′ ≥ j + h + 1 and dA

i′ ∈ U A − {dA
i , . . . , d

A
i+h−1} must

78

Chapter 3. The Max-Duo Problem

FindCompatibleEdgesAtU(E ′,U = UA ∪UB)
1: E ′← E ′− {edges ei, j such that dA

i ∈ UA and dB
j ∈ UB

adj
OR dA

i ∈ UA
adj

and dB
j ∈ UB}

2: for each maximal subset of consecutive vertices UA
i,h
⊆ UA (or UB

j,` ⊆ UB, resp.) do
3: find all subsets of consecutive parallel edges E ′

i, j′,h
(or E ′i′, j,` , resp.) in E ′ incident

on UA
i,h

(or UB
j,` , resp.)

4: end for
5: E∗ ←

⋃
∀UA

i,h
,UB

j,h
⊆U E ′

i, j,h

6: deg(u) ← the number of edges in E∗ incident on u for each u ∈ U
7: X ′← ∅
8: if deg(u) ≥ 1 for all u ∈ U then
9: c← 3|U | − 2
10: U<c ← the subset of vertices in U with deg(u) < c for u ∈ U<c

11: U≥c ← U −U<c

12: if |U<c | = 0 then
13: X ′A← FindCompatibleEdgesAtUA(E∗,U) . O(n)
14: X ′B ← FindCompatibleEdgesAtUB(E∗,U) . O(n)
15: X ′← X ′A ∪ X ′B
16: else
17: for each subset X ′0 ⊆ E∗ of |U<c | edges in incident on U<c do . O(1) iterations
18: if the edges in X ′0 are pairwise compatible then . checked in O(1)
19: E∗1 ← E∗ −

(
X ′0 ∪ C(X ′0)

)
20: X ′A← FindCompatibleEdgesAtUA(E∗1,U≥c) . O(n)
21: X ′B ← FindCompatibleEdgesAtUB(E∗1,U≥c) . O(n)
22: X ′← X ′0 ∪ X ′A ∪ X ′B
23: end if
24: end for
25: end if
26: end if
27: return X ′

Figure 3.12: A high-level description of the algorithm of finding an X ′1 in E ′1.

be compatible with all the edges in the current X′A. Thus, we can consider the vertex dB
j ′

with the smallest j′ ≥ j + h + 1, and repeat the procedure until |X′A | = |U
A |.

We observe that every time we come to a vertex dB
j ∈ V B

E∗ and select an edge incident on
dB

j to X′A, there is at most one vertex, just the one next to dB
j , cannot be considered to have

an edge compatible to the current X′A. Therefore, if deg(u) ≥ 2|U A | − 1 for each vertex
u ∈ U A, i.e., there are at least 2|U A | − 1 edges in E∗ incident on u, then we can always find
a size-|U A | compatible matching in G∗.

See function FindCompatibleEdgesAtU A for a high-level description of the algorithm of
finding a compatible matching of G∗ incident on U A. Since |V B

E∗ | ≤ |V
B | is in O(n), there

79

Chapter 3. The Max-Duo Problem

are O(n) iterations, and each iteration can be done in O(1) time, thus X′A can be found in
linear time. �

FindCompatibleEdgesAtUA(E∗,U = UA ∪UB)
1: select any edge ei, j1 ∈ E∗ with dA

i ∈ UA and dB
j1
∈ VB

E∗ −UB
adj

2: find the maximal subset of consecutive vertices UA
i,h
⊆ UA

3: X ′← {ei, j1, ei+1, j1+1, . . . , ei+h−1, j1+h−1}

4: UA
r ← UA − {dA

i , . . . , d
A
i+h−1}

5: ` ← h + 1
6: while dB

j`
∈ VB

E∗ do . O(n) iterations
7: if j` ≥ jh + 2 and dB

j`
< UB

adj
then

8: select any edge ei′, j` ∈ E∗ with dA
i′ ∈ UA

r

9: find the maximal subset of consecutive vertices UA
i,h
⊆ UA

r

10: X ′← X ′ ∪ {ei′, j` , ei′+1, j`+1, . . . , ei′+h−1, j`+h−1}

11: UA
r ← UA

r − {d
A
i′ , . . . , d

A
i′+h−1}

12: ` ← ` + h
13: else
14: ` ← ` + 1
15: end if
16: end while
17: return X ′

Figure 3.13: A high-level description of the algorithm of finding a compatible matching
of G∗ incident on UA.

The function FindCompatibleEdgesAtUB is the same as FindCompatibleEdgesAtU A

except that every superscript “A” is replaced by “B” and every superscript “B” is replaced by
“A”.

See operationReplace-ρ-by-(ρ+1) for a high-level description of the algorithmof expanding
the current maximal compatible matching by swapping ρ edges out for ρ + 1 compatible
edges.
In operation Replace-ρ-by-(ρ + 1), there are O(nρ) iterations. Line 5 can be done in O(n)

time: all the maximal subsets of consecutive vertices can be determined in O(1) time, and
for each maximal subset of consecutive vertices, let dA

i (or dB
j) be the vertex in U` with i

being the smallest subscript and q = |U` |, then we only need to check if there are consecutive
parallel edges ei+1, j+1, . . . ei+q−1, j+q−1 ∈ E′ for each edge ei, j incident on dA

i . The other steps
can also be done in O(n) time, thus the time complexity of operation Replace-ρ-by-(ρ + 1)
is O(nρ+1).

The operation Reduce-ρ-by-ρ is almost the same as the operation Replace-ρ-by-(ρ + 1)
except the following:

80

Chapter 3. The Max-Duo Problem

• in line 3, the size of U is ρ instead of ρ + 1;

• before each of the lines 17, 29, and 35, we need to check if (M − X) ∪ X′ has strictly
less singleton edges, and if it has, then we swap X out by X′.

In order to compare the number of singleton edges in M and M′ = (M − X) ∪ X′, we only
need to find the edges incident on vertices of V0(X) ∪ V0(X′) in M and M′, and compare
those two subsets of edges to see if the number of singleton edges from M′ is strictly less.
Since the size of V0(X) ∪V0(X′) must be constant and whether an edge in a singleton or not
can also be checked in O(1) time, this additional condition can be checked in O(1) time.
Therefore, the time complexity of the operation Reduce-ρ-by-ρ is also O(nρ+1).

Observe that in the operation Replace-ρ-by-(ρ + 1), for each subset of ρ edges in M , we
traverse through all possible combinations of ρ + 1 edges in M − X except for the vertices
with relatively large degrees, which are the cases when we are trying to find a compatible
matching X′1 incident on U1 in E′1. Recall that X′1 is a union of streaks of X′ each incident on
a singleU A

i,h or a singleUB
j,`. Thus, when all the vertices inU A

i,h orUB
j,` have large degrees, no

edge in X′1 can be parallel with an edge from M−X; nomatter which sequence of consecutive
parallel edges incident on U A

i,h or UB
j,` is selected to X′1, the numbers of singleton edges in

X′ are always the same. Therefore, the operation Reduce-ρ-by-ρ will not miss any possible
combination of X′ which will lead to an improved compatible matching M′ = (M − X) ∪ X′

with strictly less singleton edges.

Together with the first step of greedy expansion which takes O(n2) time, when we set ρ = 5,
the time complexity of algorithm LS is O(n7).

3.4.2 Approximation ratio analysis for the algorithm LS

We analyze the performance ratio of the algorithm LS through amortization. The main
result is to prove that the algorithm LS is a 35/12-approximation for the MCBM problem,
and thus it is also a 35/12-approximation for the Max-Duo problem.

3.4.2.1 The amortization scheme

Let M∗ be the optimal compatible matching to the MCBM problem and OPT = |M∗ |, and
M be the maximal compatible matching returned by the algorithm LS and SOL = |M |. We
partition M into s(M) and p(M). (In the sequel, notations with a superscript ∗ are associated

81

Chapter 3. The Max-Duo Problem

with M∗; notations without a superscript are associated with M . In general, the subscript of
a vertex of DA has an i or h, and the subscript of a vertex of DB has a j or `.)

In the amortization scheme, we assign one token to each edge e∗ ∈ M∗, and thus the total
amount of tokens is OPT. The edge e∗ will be conflicting to a number of edges of M

(including the case where e∗ is in M , then e∗ is conflicting to itself only); it then splits the
token evenly and distributes a fraction to every conflicting edge of M . To the end, the total
amount of tokens received by all the edges of M is exactly OPT. Our main task is to estimate
an upper bound (which is expected to be 35/12) on the amount of tokens received by an
edge of M , thereby to give a lower bound on SOL.

Formally, we define the function τ(e ← e∗) ≥ 0 to be the amount of token e∗ ∈ M∗ gives
to e ∈ M . For the edge e∗ ∈ M∗, let C(e∗) ⊆ M be the subset of edges of M conflicting
with e∗, and for the edge e ∈ M , let C∗(e) ⊆ M∗ be the subset of edges of M∗ conflicting
with e. From the maximality, we know that both |C(e∗)|, |C∗(e)| ≥ 1, for any e∗, e. Then,
τ(e ← e∗) = 1

|C(e∗)| , if e ∈ C(e∗); or otherwise τ(e ← e∗) = 0. The total amount of tokens
e ∈ M receives is denoted as

ω(e) :=
∑

e∗∈C∗(e)

1
|C(e∗)|

, ∀e ∈ M . (3.3)

And we have OPT =
∑

e∈M ω(e) ≤ maxe∈M ω(e) · SOL.

Therefore, the quantity maxe∈M ω(e) is an upper bound on the performance ratio of the
algorithm LS. We thus aim to estimate maxe∈M ω(e). In the following, we will see that
maxe∈M ω(e) = 10/3, which is larger than our target ratio 35/12. We then switch to
enumerate all possible cases where an edge e has ω(e) ≥ 3 and amortize some fraction of its
token to certain provably existing edges e′ with ω(e′) < 3. In other words, we will estimate
the average value of ω(·) for all the edges of M , denoted as ω(e), and prove an upper bound
(which is shown to be 35/12) on ω(e) that is also an upper bound on the performance ratio
of the algorithm LS.

To this purpose, we may assume without loss of generality that M ∩ M∗ = ∅ since their
ω(·)’s are all 1. According to Observation 3.1 in Section 3.2, we have |C∗(e)| ≤ 6 and
|C(e∗)| ≤ 6 for any e ∈ M and e∗ ∈ M∗. Consider an arbitrary edge ei, j ∈ M , we have

C∗(ei, j) = {e∗i−1, j ′′−1, e
∗
i, j ′, e

∗
i+1, j ′′′+1, e

∗
i′′−1, j−1, e

∗
i′, j, e

∗
i′′′+1, j+1},

82

Chapter 3. The Max-Duo Problem

where e∗i, j ′ (e
∗
i−1, j ′′−1, e

∗
i+1, j ′′′+1, respectively) denotes the edge of M∗ incident on dA

i (dA
i−1, d

A
i+1,

respectively), if it exists, or otherwise it is a void edge; e∗i′, j (e
∗
i′′−1, j−1, e

∗
i′′′+1, j+1, respectively)

denotes the edge of M∗ incident on dB
j (dB

j−1, d
B
j+1, respectively), if it exists, or otherwise it is

a void edge; and none of i′, i′′, i′′′ can be i and none of j′, j′′, j′′′ can be j. (It is important to
point out that C∗(ei, j) does not necessarily contain 6 edges, due to the possible void edges.)
We partition C∗(ei, j) into two parts C∗(ei,�) and C∗(e�, j):

C∗(ei,�) = {e∗i−1, j ′′−1, e
∗
i, j ′, e

∗
i+1, j ′′′+1} and C∗(e�, j) = {e∗i′′−1, j−1, e

∗
i′, j, e

∗
i′′′+1, j+1}.

(Again, each of C∗(ei,�) and C∗(e�, j) does not necessarily contain 3 edges, due to the possible
void edges.) We extend the function notation to let τ(ei, j ← C∗(ei, j)) be the multi-set of the
τ(ei, j ← e∗) values, where e∗ ∈ C∗(ei, j), that is,

τ(ei, j ← C∗(ei,�)) =

{
1

|C(e∗)|

���� e∗ ∈ C∗(ei,�)

}
,

τ(ei, j ← C∗(e�, j)) =
{

1
|C(e∗)|

���� e∗ ∈ C∗(e�, j)
}
,

τ(ei, j ← C∗(ei, j)) = τ(ei, j ← C∗(ei,�)) ∪ τ(ei, j ← C∗(e�, j)).

Then ω(ei, j) is the sum of all the (at most six) values in the set τ(ei, j ← C∗(ei, j)); each of
these values can be any of 1, 1

2,
1
3,

1
4,

1
5,

1
6 , since 1 ≤ |C(e∗)| ≤ 6 for any e∗ ∈ C∗(ei, j). We

need the following three more subsets of M , all of which are associated with ei, j ∈ M .

C(C∗(ei,�)) =
⋃

e∗∈C∗(ei,�)

C(e∗),

C(C∗(e�, j)) =
⋃

e∗∈C∗(e�, j)

C(e∗),

C(C∗(ei, j)) = C(C∗(ei,�)) ∪ C(C∗(e�, j)).

3.4.2.2 Value combinations of τ(ei, j ← C∗(ei, j)) with ω(ei, j) ≥ 3

Note that the operation Replace-5-by-6 actually executes swapping p edges of the current
compatible matching out for p + 1 compatible edges to expand the matching, for p =

1, 2, 3, 4, 5. Therefore, for any edge ei, j ∈ M , we can never have two edges e∗i1, j1, e
∗
i2, j2
∈

C∗(ei, j) such that |C(e∗i1, j1)| = |C(e
∗
i2, j2
)| = 1, that is, both of them conflict with only the edge

ei, j in M . Thus we immediately have the following lemma, which has also been observed in
[9].

83

Chapter 3. The Max-Duo Problem

Lemma 3.14. [9] For any edge ei, j ∈ M , there is at most one edge e∗i1, j1 ∈ C∗(ei, j) such that
|C(e∗i1, j1)| = 1.

Lemma 3.15. For any edge ei, j ∈ M , and for any pair of parallel edges e∗i1, j1, e
∗
i1+1, j1+1 ∈

C∗(ei, j), | |C(e∗i1, j1)| − |C(e
∗
i1+1, j1+1)| | ≤ 2.

Proof. Since the edges of C(e∗i1, j1) ∪ C(e∗i1+1, j1+1) ⊆ M are pairwise compatible, we have
C(e∗i1, j1) − C(e∗i1+1, j1+1) ⊆ {ei1−1,�, e�, j1−1} and C(e∗i1+1, j1+1) − C(e∗i1, j1) ⊆ {ei1+2,�, e�, j1+2},
where ei1−1,� (e�, j1−1, ei1+2,�, e�, j1+2, respectively) denotes the edge of M incident on dA

i1−1
(dB

j1−1, dA
i1+2, dB

j1+2, respectively), if it exists, or otherwise it is a void edge. Thus, |C(e
∗
i1, j1
) −

C(e∗i1+1, j1+1)| ≤ 2 and |C(e∗i1+1, j1+1) − C(e∗i1, j1)| ≤ 2, which together imply | |C(e∗i1, j1)| −
|C(e∗i1+1, j1+1)| | ≤ 2. �

Lemma3.16. Suppose |C∗(ei,�)| = 3, thenC∗(ei,�) = {e∗i−1, j ′−1, e
∗
i, j ′, e

∗
i+1, j ′+1} for some j′ , j.

In this case we can never have |C(e∗i−1, j ′−1)| = |C(e
∗
i, j ′)| = |C(e

∗
i+1, j ′+1)| = 2, if one of the

following three conditions holds:

1. there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1;

2. |C(C∗(e�, j))| ≤ |C∗(e�, j)|;

3. there is at least one singleton edge of M in C(C∗(ei,�)).

Proof. (of Lemma 3.16) Recall thatC∗(ei,�) = {e∗i−1, j ′′−1, e
∗
i, j ′, e

∗
i+1, j ′′′+1} for some j′, j′′, j′′′(,

j). When all these three edges of M∗ exist, they are consecutive parallel edges, that is,
j′ = j′′ = j′′′ and thus C∗(ei,�) = {e∗i−1, j ′−1, e

∗
i, j ′, e

∗
i+1, j ′+1} for some j′ , j. This proves the

first half of the lemma.

Next, assume |C(e∗i−1, j ′−1)| = |C(e
∗
i, j ′)| = |C(e

∗
i+1, j ′+1)| = 2, and we will show none of the

three conditions holds.

Since ei, j ∈ C(e∗i−1, j ′−1) ∩ C(e∗i, j ′) ∩ C(e∗i+1, j ′+1), each of C(e∗i−1, j ′−1),C(e
∗
i, j ′),C(e

∗
i+1, j ′+1)

contains exactly one edge other than ei, j . Observe that any edge of M conflicting with e∗i, j ′
must be conflicting with either e∗i−1, j ′−1 or e∗i+1, j ′+1. We conclude that either C(e∗i−1, j ′−1) =

C(e∗i, j ′) or C(e∗i+1, j ′+1) = C(e∗i, j ′), implying that 2 ≤ |C(C∗(ei,�))| ≤ 3.

If |C(C∗(ei,�))| = 2, then the algorithmLSwould have replaced these two edges ofC(C∗(ei,�))

by the three edges of C∗(ei,�), contradicting to the fact that M is the solution by LS.
Therefore, |C(C∗(ei,�))| = 3.

84

Chapter 3. The Max-Duo Problem

If the first condition holds, the algorithm LS would have replaced the three edges of
C(C∗(ei,�)) by the edge e∗i1, j1 and the three edges ofC∗(ei,�) to expand M , again a contradiction.

If the second condition holds, we have |C(C∗(ei, j))| ≤ |C(C∗(ei,�))| + |C(C∗(e�, j))| − 1 ≤
2+ |C∗(e�, j)| < |C∗(ei, j)| ≤ 6. Then, the algorithm LS would have replaced all the edges of
C(C∗(ei, j)) by all the edges of C∗(ei, j) to expand M , also a contradiction.

When there is at least one singleton edge of M inC(C∗(ei,�)), we distinguish two cases where
ei, j is singleton or not. If ei, j is not a singleton, thenwemay assume the edge ei+1, j+1 ∈ M and
thus ei+1, j+1 ∈ C(C∗(ei,�)) too; it follows from |C(e∗i−1, j ′−1)| = |C(e

∗
i, j ′)| = |C(e

∗
i+1, j ′+1)| = 2

that these two edges form an isolated pair of parallel edges in M . In this case, the algorithm
LS would have replaced the three edges in C(C∗(ei,�)) by the three parallel edges of C∗(ei,�)

to decrease the number of singleton edges by at least one, a contradiction. If ei, j is a
singleton, then the other edge conflicting with e∗i, j ′ must also be a singleton. The algorithm
LS would still have replaced the three edges in C(C∗(ei,�)) by the three parallel edges of
C∗(ei,�) to decrease the number of singleton edges by at least one, again a contradiction.

In summary, we conclude that none of the three conditions would hold. This proves the
second half of the lemma. �

For an edge ei, j ∈ M with ω(ei, j) ≥ 3, we can now characterize the multi-set τ(ei, j ←

C∗(ei, j)) of six values, in which an entry of 0 represents a void edge in C∗(ei, j). We arrange
these six values in a non-increasing order. Using the above three Lemmas 3.14–3.16, we
have the following conclusion:

Lemma 3.17. For an edge ei, j ∈ M with ω(ei, j) ≥ 3, there are 8 possible value combina-
tions of τ(ei, j ← C∗(ei, j)), which are

{
1, 1

2,
1
2,

1
2,

1
2,

1
3
}
,
{
1, 1

2,
1
2,

1
2,

1
2,

1
4
}
,
{
1, 1

2,
1
2,

1
2,

1
3,

1
3
}
,{

1, 1
2,

1
2,

1
2,

1
3,

1
4
}
,

{
1, 1

2,
1
2,

1
2,

1
3,

1
5
}
,

{
1, 1

2,
1
2,

1
2,

1
4,

1
4
}
,

{
1, 1

2,
1
2,

1
3,

1
3,

1
3
}
, and

{
1, 1

2,
1
2,

1
2,

1
2, 0

}
.

These combinations give rise to ω(ei, j) =
10
3 ,

13
4 ,

19
6 ,

37
12 ,

91
30 , 3, 3 and 3 respectively.

We remark that in Lemma 3.17, |C∗(ei, j)| = 6 except for the last combination where
|C∗(ei, j)| = 5. Also, we see that maxe∈M ω(e) ≤ 10/3, implying that the algorithm LS is a
10/3-approximation. (This is worse than the previous 3.25-approximation though.)

3.4.2.3 Ordered value combinations of τ(ei, j ← C∗(ei,�)) with ω(ei, j) ≥ 3

To find a good upper bound on the average value of ω(·) for all the edges of M , we consider
all the possible combinations of edges in C(C∗(ei,�)) with ω(ei, j) ≥ 3. The goal is to show

85

Chapter 3. The Max-Duo Problem

that every edge of C(C∗(ei,�)) other than ei, j has its ω(·) ≤ 3, and there must be some
accompanying edges with ω(·) ≤ 2.5. This way, we are able to “move” a fraction of token
received by the edge ei, j to these accompanying edges.

We discuss the possible ordered value combinations of τ(ei, j ← C∗(ei,�)) in this section.
The discussion holds for τ(ei, j ← C∗(e�, j)) too.

We use the following vectors to represent the ordered values of τ(ei, j ← C∗(ei,�)) and
τ(ei, j ← C∗(e�, j)), respectively:(

τ(ei, j ← e∗i−1, j ′′−1), τ(ei, j ← e∗i, j ′), τ(ei, j ← e∗i+1, j ′′′+1)
)
,(

τ(ei, j ← e∗i′′−1, j−1), τ(ei, j ← e∗i′, j), τ(ei, j ← e∗i′′′+1, j+1)
)
.

Using the first condition of Lemma 3.16, we can rule out
{ 1

2,
1
2,

1
2
}
for τ(ei, j ← C∗(ei,�)).

From the 8 possible value combinations of τ(ei, j ← C∗(ei, j)) stated in Lemma 3.17, by
Lemma 3.15 we can identify in total 12 possible value combinations of τ(ei, j ← C∗(ei,�))

with ω(ei, j) ≥ 3, stated in the following lemma.

Lemma 3.18. For an edge ei, j ∈ M with ω(ei, j) ≥ 3, there are 12 possible value com-
binations of τ(ei, j ← C∗(ei,�)), which are

{
1, 1

2,
1
2
}
,
{
1, 1

2,
1
3
}
,
{
1, 1

2,
1
4
}
,
{
1, 1

3,
1
3
}
,
{ 1

2,
1
2,

1
3
}
,{ 1

2,
1
2,

1
4
}
,
{ 1

2,
1
3,

1
3
}
,
{ 1

2,
1
3,

1
4
}
,
{ 1

2,
1
3,

1
5
}
,
{ 1

2,
1
4,

1
4
}
,
{ 1

3,
1
3,

1
3
}
, and

{ 1
2,

1
2, 0

}
.

Lemma 3.19. Suppose |C∗(ei,�)| = 3 andC∗(ei,�) = {e∗i−1, j ′−1, e∗i, j ′, e∗i+1, j ′+1} for some j′ , j.
We have

C(e∗i, j ′) ⊆ C(e∗i−1, j ′−1) ∪ C(e∗i+1, j ′+1), (3.4)

|C(C∗(ei,�))| ≤ |C(e∗i−1, j ′−1)| + |C(e
∗
i+1, j ′+1)| − 1, (3.5)

|C(C∗(ei,�))| ≥ max


3,

|C(e∗i−1, j ′−1)| + |C(e
∗
i+1, j ′+1)| − 2,

|C(e∗i−1, j ′−1)| + |C(e
∗
i+1, j ′+1)| − |C(e

∗
i, j ′)|.

(3.6)

Proof. Observe that any edge of M conflictingwith e∗i, j ′must also conflictwith either e∗i−1, j ′−1
or e∗i+1, j ′+1. We have C(e∗i, j ′) ⊆ C(e∗i−1, j ′−1) ∪ C(e∗i+1, j ′+1), which proves the inequality (3.4)
and also indicates that C(C∗(ei,�)) = C(e∗i−1, j ′−1) ∪ C(e∗i+1, j ′+1). Since ei, j ∈ C(e∗i−1, j ′−1) ∩

C(e∗i, j ′) ∩ C(e∗i+1, j ′+1) ⊆ {ei, j, e�, j ′}, where e�, j ′ is a possible edge of M incident on dB
j ′, we

have

|C(e∗i−1, j ′−1)| + |C(e
∗
i+1, j ′+1)| − 2 ≤ |C(C∗(ei,�))| ≤ |C(e∗i−1, j ′−1)| + |C(e

∗
i+1, j ′+1)| − 1.

86

Chapter 3. The Max-Duo Problem

This proves the inequality (3.5) and the second inequality in (3.6).

Also observe that any edge of M conflicting with both e∗i−1, j ′−1 and e∗i+1, j ′+1 must conflict
with e∗i, j ′ too. We have C(e∗i−1, j ′−1) ∩ C(e∗i+1, j ′+1) ⊆ C(e∗i, j ′). Therefore,

|C(C∗(ei,�))| ≥ |C(e∗i−1, j ′−1)| + |C(e
∗
i+1, j ′+1)| − |C(e

∗
i, j ′)|,

proving the last inequality in (3.6). |C(C∗(ei,�))| ≥ 3 can be proven by a simple contradiction,
since otherwise the algorithm LS would replace all the edges of C(C∗(ei,�)) by the three
edges of C∗(ei,�) to expand M . �

Lemma 3.20. Suppose |C∗(ei,�)| = 3 and C∗(ei,�) = {e∗i−1, j ′−1, e∗i, j ′, e∗i+1, j ′+1} for some
j′ , j, and there is an edge e∗i3, j3 ∈ C∗(e�, j) such that |C(e∗i3, j3)| = 1. For any two edges
e∗i1, j1, e

∗
i2, j2
∈ C∗(ei,�), if |C(e∗i1, j1)| = |C(e

∗
i2, j2
)| = 2, then the following two statements hold:

1. e∗i1, j1 and e∗i2, j2 are parallel, that is, either i2 = i1+1, j2 = j1+1 or i2 = i1−1, j2 = j1−1.

2. C(e∗i1, j1) ∩ C(e∗i2, j2) = {ei, j}.

Proof. Using |C(e∗i3, j3)| = 1, we know fromLemma 3.14 that |C(e∗i−1, j ′−1)| ≥ 2, |C(e∗i, j ′)| ≥ 2
and |C(e∗i+1, j ′+1)| ≥ 2.

To prove the first statement, we suppose to the contrary that i1 = i − 1 and i2 = i + 1,
and thus |C(e∗i−1, j ′−1)| = |C(e

∗
i+1, j ′+1)| = 2. From the inequality (3.5) of Lemma 3.19, we

have |C(e∗i, j ′)| ≤ |C(C
∗(ei,�))| ≤ 3. Since Lemma 3.16 has ruled out the possibility of

|C(e∗i, j ′)| = 2, we have |C(e∗i, j ′)| = |C(C
∗(ei,�))| = 3. However, the algorithm LS would

replace the three edges of C(C∗(ei,�)) by e∗i3, j3 and the three edges of C∗(ei,�) to expand M , a
contradiction.

Based on the first statement, we assumewithout loss of generality that |C(e∗i, j ′)| = |C(e
∗
i−1, j ′−1)|

= 2. Note that ei, j ∈ C(e∗i, j ′) ∩ C(e∗i−1, j ′−1). If C(e∗i, j ′) = C(e∗i−1, j ′−1), then the algorithm
LS would replace the two edges of C(e∗i, j ′) by the three edges e∗i, j ′, e∗i−1, j ′−1, e∗i3, j3 to expand
M , a contradiction. Therefore, C(e∗i, j ′) , C(e∗i−1, j ′−1), which implies the second statement
C(e∗i1, j1) ∩ C(e∗i2, j2) = {ei, j}. �

Note that each value combination {τ1, τ2, τ3} of τ(ei, j ← C∗(ei,�)) in Lemma 3.18 gives rise
to 3! = 6 different ordered value combinations. Due to symmetry, we consider only three
of them: (τ2, τ1, τ3), (τ1, τ2, τ3), and (τ1, τ3, τ2), in the following to determine whether or not
they can be possible ordered value combinations for τ(ei, j ← C∗(ei,�)).

87

Chapter 3. The Max-Duo Problem

1. τ(ei, j ← C∗(ei,�)) =
{
1, 1

2,
1
2
}
.

The case of
(
1, 1

2,
1
2
)
can be ruled out by the inequalities (3.5) and (3.6) of Lemma 3.19.

Then the only possible case left is
(1

2, 1,
1
2
)
.

2. τ(ei, j ← C∗(ei,�)) =
{
1, 1

2,
1
3
}
.

The case of
(
1, 1

3,
1
2
)
can immediately be ruled out by the inequality (3.5) of Lemma3.19.

Then the two possible cases left are
(1

2, 1,
1
3
)
and

(
1, 1

2,
1
3
)
.

3. τ(ei, j ← C∗(ei,�)) =
{
1, 1

2,
1
4
}
.

Both cases of
(1

2, 1,
1
4
)
and

(
1, 1

4,
1
2
)
can immediately be ruled out by Lemma 3.15.

Then the only possible case left is
(
1, 1

2,
1
4
)
.

4. τ(ei, j ← C∗(ei,�)) =
{
1, 1

3,
1
3
}
.

Consider the case of τ(ei, j ← C∗(ei,�)) =
(
1, 1

3,
1
3
)
. In this case, we have C(C∗(ei,�)) =

C(e∗i, j ′) = C(e∗i+1, j ′+1) with |C(C
∗(ei,�))| = 3, indicating that one of the three edges

in C(C∗(ei,�)) must be a singleton edge of M and there is no edge in M − C(C∗(ei,�))

parallel with any edge in C(C∗(ei,�)). However, the algorithm LS would replace the
three edges of C(C∗(ei,�)) by the three parallel edges of C∗(ei,�) to reduce the singleton
edges in M , a contradiction.
Thus the only possible case left is

(1
3, 1,

1
3
)
.

5. τ(ei, j ← C∗(ei,�)) =
{ 1

2,
1
2,

1
3
}
.

The case of
(1

2,
1
3,

1
2
)
can immediately be ruled out by Lemma 3.20.

Then the only possible case left is
(1

2,
1
2,

1
3
)
.

6. τ(C∗(ei,�)) =
{ 1

2,
1
2,

1
4
}
.

The case of
(1

2,
1
4,

1
2
)
can immediately be ruled out by the inequality (3.5) of Lemma3.19.

Then the only possible case left is
(1

2,
1
2,

1
4
)
.

7. τ(ei, j ← C∗(ei,�)) =
{ 1

2,
1
3,

1
3
}
.

Both cases of
(1

3,
1
2,

1
3
)
and

(1
2,

1
3,

1
3
)
are possible.

8. τ(ei, j ← C∗(ei,�)) =
{ 1

2,
1
3,

1
4
}
.

All three cases of
(1

3,
1
2,

1
4
)
,
(1

2,
1
3,

1
4
)
, and

(1
2,

1
4,

1
3
)
are possible.

9. τ(ei, j ← C∗(ei,�)) =
{ 1

2,
1
3,

1
5
}
.

Both cases of
(1

3,
1
2,

1
5
)
and

(1
2,

1
5,

1
3
)
can immediately be ruled out by Lemma 3.15.

Then the only possible case left is
(1

2,
1
3,

1
5
)
.

10. τ(C∗(ei,�)) =
{ 1

2,
1
4,

1
4
}
.

Both cases of
(1

2,
1
4,

1
4
)
and

(1
4,

1
2,

1
4
)
are possible.

11. τ(ei, j ← C∗(ei,�)) =
{ 1

3,
1
3,

1
3
}
.

The only case
(1

3,
1
3,

1
3
)
is possible.

88

Chapter 3. The Max-Duo Problem

12. τ(ei, j ← C∗(ei,�)) =
{ 1

2,
1
2, 0

}
.

Both cases of
(1

2,
1
2, 0

)
and

(1
2, 0,

1
2
)
are possible.

We summarize the above discussion in the following lemma:

Lemma 3.21. For an edge ei, j ∈ M with ω(ei, j) ≥ 3, there are 18 possible ordered value
combinations of τ(ei, j ← C∗(ei,�)), which are

(1
2, 1,

1
2
)
,
(1

2, 1,
1
3
)
,
(
1, 1

2,
1
3
)
,
(
1, 1

2,
1
4
)
,
(1

3, 1,
1
3
)
,(1

2,
1
2,

1
3
)
,
(1

2,
1
2,

1
4
)
,
(1

3,
1
2,

1
3
)
,
(1

2,
1
3,

1
3
)
,
(1

3,
1
2,

1
4
)
,
(1

2,
1
3,

1
4
)
,
(1

2,
1
4,

1
3
)
,
(1

2,
1
3,

1
5
)
,
(1

2,
1
4,

1
4
)
,
(1

4,
1
2,

1
4
)
,(1

3,
1
3,

1
3
)
,
(1

2,
1
2, 0

)
, and

(1
2, 0,

1
2
)
.

3.4.2.4 Edge combinations of C(C∗(ei, j)) with ω(ei, j) ≥ 3

We examine all possible combinations of the edges in C(C∗(ei,�)) with ω(ei, j) ≥ 3. We
distinguish two cases where ei, j ∈ p(M) and ei, j ∈ s(M), respectively. In fact, as shown in
the following section, the edge ei, j cannot be a parallel edge in M .

ei, j cannot be a parallel edge of M Recall that the number of singleton edges of the
maximal compatible matching M cannot be further reduced by the algorithm LS using the
operation Reduce-5-By-5.

We assume to the contrary that ei, j ∈ p(M), and assume that ei+1, j+1 ∈ p(M) too.

From |C∗(ei, j)| ≥ 5 in Lemma 3.17, we consider |C∗(ei,�)| = 3 and suppose that C∗(ei,�) =

{e∗i−1, j ′−1, e
∗
i, j ′, e

∗
i+1, j ′+1} for some j′ , j.

Clearly, |C(e∗i, j ′)| ≥ 2 and |C(e∗i+1, j ′+1)| ≥ 2 since both contain the edges ei, j and ei+1, j+1.
It follows that the middle value in the ordered value combination of τ(ei, j ← C∗(ei,�))

must be ≤ 1
2 . This rules out three of the 18 possible ordered value combinations stated

in Lemma 3.21, each having a 1 in the middle, which are
(1

2, 1,
1
2
)
,

(1
2, 1,

1
3
)
,

(1
3, 1,

1
3
)
.

Furthermore, since
(1

2, 1,
1
2
)
is the only one resulted from the (unordered) value combination{

1, 1
2,

1
2
}
, we conclude that it is impossible to have τ(ei, j ← C∗(ei,�)) =

{
1, 1

2,
1
2
}
. For the

same reason, it is impossible to have τ(ei, j ← C∗(ei,�)) =
{
1, 1

3,
1
3
}
.

When |C∗(e�, j)| = 3, the argument in the last paragraph applies to C∗(e�, j) too.

Consider the 8 possible value combinations of τ(ei, j ← C∗(ei, j)) such that ω(ei, j) ≥ 3, in
Lemma 3.17. We observe that τ(ei, j ← C∗(ei,�)) ∈

{{ 1
2,

1
3,

1
4
}
,
{ 1

2,
1
3,

1
5
}
,
{ 1

2,
1
4,

1
4
}
,
{ 1

3,
1
3,

1
3
}
,{ 1

2,
1
2, 0

}}
only if τ(ei, j ← C∗(e�, j)) =

{
1, 1

2,
1
2
}
, which is impossible to happen. We thus

89

Chapter 3. The Max-Duo Problem

conclude that only 5 out of the 12 value combinations of τ(ei, j ← C∗(ei,�)) in Lemma 3.18
remain possible, which are

{
1, 1

2,
1
3
}
,
{
1, 1

2,
1
4
}
,
{ 1

2,
1
2,

1
3
}
,
{ 1

2,
1
2,

1
4
}
, and

{ 1
2,

1
3,

1
3
}
. These give

6 possible ordered value combinations of τ(ei, j ← C∗(ei,�)), which are,
(
1, 1

2,
1
3
)
,
(
1, 1

2,
1
4
)
,(1

2,
1
2,

1
3
)
,
(1

2,
1
2,

1
4
)
,
(1

3,
1
2,

1
3
)
, and

(1
2,

1
3,

1
3
)
.

In the rest of this section, we have |C∗(ei, j)| = 6, C∗(ei,�) = {e∗i−1, j ′−1, e
∗
i, j ′, e

∗
i+1, j ′+1} for some

j′ , j, and C∗(e�, j) = {e∗i′−1, j−1, e
∗
i′, j, e

∗
i′+1, j+1} for some i′ , i.

Lemma 3.22. For the pair of parallel edges ei, j, ei+1, j+1 ∈ p(M), C∗(ei, j) ∩ C∗(ei+1, j+1) =

{e∗i, j ′, e∗i+1, j ′+1, e∗i′, j , e∗i′+1, j+1}. If |C(e∗i−1, j ′−1)| = 1, then there is at most one edge e∗i1, j1 ∈

C∗(ei, j) ∩ C∗(ei+1, j+1) such that |C(e∗i1, j1)| = 2.

Proof. The first half of the lemma is trivial. For the second half, we note that C(e∗i−1, j ′−1) =

{ei, j}; if there is another edge e∗i2, j2 ∈ C∗(ei, j) ∩ C∗(ei+1, j+1) such that |C(e∗i2, j2)| = 2, that is,
C(e∗i1, j1) = C(e∗i2, j2) = {ei, j, ei+1, j+1}, then the algorithm LS would replace the two edges ei, j

and ei+1, j+1 by the three edges e∗i−1, j ′−1, e∗i1, j1 , e∗i2, j2 to expand M , a contradiction. �

Lemma 3.22 states that when ei, j is a parallel edge of M , the value combination of τ(ei, j ←

C∗(ei, j)) contains at most two 1
2 ’s, besides the value 1. Among the 8 possible value

combinations of τ(ei, j ← C∗(ei, j)) such that ω(ei, j) ≥ 3, in Lemma 3.17, the only one
with two 1

2 ’s is
{
1, 1

2,
1
2,

1
3,

1
3,

1
3
}
. This leaves only two possible ordered value combinations

of τ(ei, j ← C∗(ei,�)), which are,
(
1, 1

2,
1
3
)
and

(1
2,

1
3,

1
3
)
.

Assume τ(ei, j ← C∗(ei,�)) =
(
1, 1

2,
1
3
)
and τ(ei, j ← C∗(e�, j)) =

(1
2,

1
3,

1
3
)
(or the other way

around). By the inequalities (3.5) and (3.6) in Lemma 3.19, we have |C(C∗(ei,�))| = 3
and 3 ≤ |C(C∗(e�, j))| ≤ 4. Since {ei, j, ei+1, j+1} ⊆ C(C∗(ei,�)) ∩ C(C∗(e�, j)), we have
4 ≤ |C(C∗(ei, j))| ≤ 5. Thus, the algorithm LS would replace all the edges of C(C∗(ei, j))

by the six edges of C∗(ei, j) to expand M . This contradiction leaves no ordered value
combination of τ(ei, j ← C∗(ei,�)). We thus have proved the following lemma:

Lemma 3.23. When the edge ei, j is a parallel edge of M , there is no value combination of
τ(ei, j ← C∗(ei, j)) such that ω(ei, j) ≥ 3.

ei, j is a singleton edge of M With ei, j ∈ s(M), we discuss each of the 18 possible ordered
value combinations of τ(ei, j ← C∗(ei,�)) listed in Lemma 3.21.

Consider an edge eh,` ∈ C(C∗(ei,�)), eh,` , ei, j . Note that eh,` might be parallel with an edge
in M − C(C∗(ei,�)). We define Np(eh,`) to be the subset of the maximal consecutive parallel

90

Chapter 3. The Max-Duo Problem

(to eh,`) edges in M − C(C∗(ei,�)). Therefore, Np(eh,`) will be either {eh+1,`+1, . . . , eh+q,`+q}

or {eh−1,`−1, . . . , eh−q,`−q}, for some q ≥ 0 (when q = 0, this set is empty). Let

Np(C(C∗(ei,�))) =
⋃

eh,`∈C(C∗(ei,�))

Np(eh,`),

and
Np[C(C∗(ei,�))] = Np(C(C∗(ei,�))) ∪ C(C∗(ei,�)).

Recall that, in general, the subscript of a vertex of DA has an i or h, and the subscript of
a vertex of DB has a j or `. In the sequel, for simplicity, we use eh and e` (e∗h and e∗

`
,

respectively) to denote the edges of M (M∗, respectively) incident on the vertices dA
h and

dB
`
, respectively, if they exist, or otherwise they are void edges.

We next discuss all possible configurations of the edges of C∗(ei,�) and C(C∗(ei,�)) in figures,
associated with each of the 18 ordered value combinations of τ(ei, j ← C∗(ei,�)) listed in
Lemma 3.21. We adopt the following scheme for graphically presenting a configuration:
In each figure (for example, Figure 3.15), the edge ei, j is in the bold solid line; the edges
in vertical bold dashed lines are in C∗(ei,�) (for example, e∗i, j ′); the edges in thin solid lines
are edges in C(C∗(ei,�)) (for example, ei+2); and the edges in thin dashed lines are edges in
Np(C(C∗(ei,�)) (for example, ei+3); the vertices in filled circles are surely not incident with
any edge of M (for example, i − 2); the vertices in hollow circles have uncertain incidence
in M (for example, j′ − 2).

We remind the readers that if there is no entry 1 in a value combination of τ(ei, j ← C∗(ei,�)),
then there must be an entry 1 in the corresponding value combination of τ(ei, j ← C∗(e�, j)),
that is, there is an edge e∗i1, j1 ∈ C∗(e�, j)) such that |C(e∗i1, j1)| = 1.

1. τ(ei, j ← C∗(ei,�)) =
(1

2, 1,
1
2
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have |C(C∗(ei,�))| = 3. There is exactly one edge of M incident
on either of i + 2 and j′ + 2 but not both. We assume ei+2 ∈ M . If ei+2 is a singleton
edge of M or |Np(ei+2)| ≥ 2, then the algorithm LS would replace ei, j and ei+2 by
the two parallel edges e∗i, j ′ and e∗i+1, j ′+1 to reduce the singleton edges, a contradiction.
Therefore, we have ei+3 ∈ M but no edge of M is incident on i + 4. The incidence at
i − 2 and j′ − 2 and further to the left can be symmetrically discussed. In this sense,
there is only one possible edge combination of C(C∗(ei,�)), as shown in Figure 3.15
with ei+2, e j ′−2 ∈ M , where the corresponding configuration ofNp[C(C∗(ei,�))] is also
shown.

91

Chapter 3. The Max-Duo Problem

1
2

1 1
2

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.15: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(1
2, 1,

1
2
)
. We have |C(C∗(ei,�))| = 3, and |Np(ei+2)| = |Np(ej′−2)| = 1 in this configuration.

It also represents the other three symmetric configurations where |Np(ei+2)| = |Np(ei−2)| =

1, |Np(ej′+2)| = |Np(ej′−2)| = 1, and |Np(ej′+2)| = |Np(ei−2)| = 1, respectively. (Recall
that the edge ei, j is in bold solid line, the edges in vertical bold dashed lines are in C∗(ei,�),
the edges in thin solid lines are in C(C∗(ei,�)), and the edges in thin dashed lines are in
Np(C(C∗(ei,�)); the vertices in filled circles are surely incident with no edges of M and the
vertices in hollow circles have uncertain incidence in M .)

2. τ(ei, j ← C∗(ei,�)) =
(1

2, 1,
1
3
)
: We have C(e∗i, j ′) ⊂ C(e∗i−1, j ′−1), and thus |C(e∗i, j ′) ∪

C(e∗i−1, j ′−1)| = 2 and |C(C∗(ei,�))| = 4. There is exactly one edge of M incident on
either of i − 2 and j′ − 2 but not both. We assume e j ′−2 ∈ M . If e j ′−2 is a singleton
edge of M or |Np(e j ′−2)| ≥ 2, then the algorithm LS would replace ei, j and e j ′−2 by
the two parallel edges e∗i, j ′ and e∗i−1, j ′−1 to reduce the singleton edges, a contradiction.
Therefore, we have e j ′−3 ∈ M but no edge of M is incident on j′ − 4. In this sense,
there is only one possible edge combination of C(C∗(ei,�)), as shown in Figure 3.16
with e j ′−2 ∈ M , where the corresponding configuration of Np[C(C∗(ei,�))] is also
shown.

1
2

1 1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.16: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(1
2, 1,

1
3
)
. We have |C(C∗(ei,�))| = 4 and |Np(ej′−2)| = 1 in this configuration. It also

represents the symmetric configuration where |Np(ei−2)| = 1.

3. τ(ei, j ← C∗(ei,�)) =
(
1, 1

2,
1
3
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have |C(C∗(ei,�))| = 3. Since ei, j is a singleton edge of M , e j ′+1 ∈ M;
and either ei+2 ∈ M or e j ′+2 ∈ M but no both. If ei+2 ∈ M , then e j ′+1 is a singleton
edge of M , and thus the algorithm LS would replace ei, j and e j ′+1 by the two parallel
edges e∗i, j ′ and e∗i−1, j ′−1 to reduce the singleton edges, a contradiction. Therefore,
e j ′+2 ∈ M . Similarly, if Np(e j ′+2) = ∅ or |Np(e j ′+2)| ≥ 2, then the algorithm LS
would replace the three edges ofC(C∗(ei,�)) by the three parallel edges ofC∗(ei,�) to re-
duce the singleton edges, a contradiction. This leaves the only possible configuration

92

Chapter 3. The Max-Duo Problem

with |Np(e j ′+2)| = 1, as shown in Figure 3.17, where the corresponding configuration
of Np[C(C∗(ei,�))] is also shown.

1
2

1 1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.17: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(
1, 1

2,
1
3
)
. We have |C(C∗(ei,�))| = 3 and |Np(ej′+2)| = 1 in this configuration.

4. τ(ei, j ← C∗(ei,�)) =
(
1, 1

2,
1
4
)
: We have e j ′ < M and |C(C∗(ei,�))| = 4. Therefore,

ei+2, e j ′+1, e j ′+2 ∈ M . If |Np(e j ′+2)| ≥ 1, then the algorithm LS would replace ei, j

and e j ′+1 by the two parallel edges e∗i, j ′ and e∗i−1, j ′−1 to reduce the singleton edges, a
contradiction. Therefore,Np(e j ′+2) = ∅, that is, e j ′+3 < M . There is only one possible
edge combination of C(C∗(ei,�)), as shown in Figure 3.18, where the corresponding
configuration of Np[C(C∗(ei,�))] is also shown.

1
2

1 1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.18: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(
1, 1

2,
1
4
)
. We have |C(C∗(ei,�))| = 4 and Np(ej′+2) = ∅ in this configuration.

5. τ(ei, j ← C∗(ei,�)) =
(1

3, 1,
1
3
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have |C(C∗(ei,�))| = 5. There is only one possible edge combi-
nation of C(C∗(ei,�)), which is shown in Figure 3.19, where any configuration of
Np[C(C∗(ei,�))] is possible.

1
3

1 1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.19: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(1
3, 1,

1
3
)
, where |C(C∗(ei,�))| = 5.

6. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
2,

1
3
)
: According toLemma3.20, we haveC(e∗i, j ′)∩C(e∗i−1, j ′−1) =

{ei, j}; thus e j ′+1 ∈ M , either ei′−2 ∈ M or e j ′−2 ∈ M but no both, either ei+2 ∈ M

93

Chapter 3. The Max-Duo Problem

or e j ′+2 ∈ M but no both, and |C(C∗(ei,�))| = 4. We assume e j ′−2 ∈ M (ei′−2 ∈ M

is discussed the same). When ei+2 ∈ M , e j ′+1 is a singleton edge of M . If e j ′−2

is also a singleton edge of M , then the algorithm LS would replace the four edges
in C(C∗(ei,�)) by the three parallel edges in C∗(ei,�) and e∗i1, j1 to reduce the single-
ton edges, a contradiction. Therefore in this case we have |Np(e j ′−2)| ≥ 1, that is,
e j ′−3 ∈ M . Similarly, if ei+2 is a singleton edge of M or |Np(ei+2)| ≥ 2, then the
algorithm LS would replace the three edges ei, j, e j ′+1, ei+2 by the two parallel edges
e∗i, j ′, e

∗
i+1, j ′+1 and e∗i1, j1 to reduce the singleton edges, a contradiction. That is, ei+3 ∈ M

but ei+4 < M . This edge combination of C(C∗(ei,�)) is shown in Figure 3.20b, where
the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

When e j ′+2 ∈ M , for the same reason, if |Np(e j ′+2)| , 1 then e j ′−2 must not be a
singleton edge of M . This edge combination of C(C∗(ei,�)) is shown in Figure 3.20a,
where the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

1
2

1
2

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) If |Np(ej′+2)| , 1 then |Np(ej′−2)| ≥ 1.

1
2

1
2

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |Np(ei+2)| = 1 and |Np(ej′−2)| ≥ 1.

Figure 3.20: The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2,

1
2,

1
3
)
. We have |C(C∗(ei,�))| = 4. They also represent the symmetric case where

ei′−2 ∈ M instead of ej′−2 ∈ M .

7. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
2,

1
4
)
: According toLemma3.20, we haveC(e∗i, j ′)∩C(e∗i−1, j ′−1) =

{ei, j}; thus e j ′+1 ∈ M , either ei′−2 ∈ M or e j ′−2 ∈ M but no both, ei+2, e j ′+2 ∈ M ,
and |C(C∗(ei,�))| = 5. We assume e j ′−2 ∈ M (ei′−2 ∈ M is discussed the same). If
e j ′−2 is a singleton edge of M and |Np(e j ′+2)| ≥ 1, then the algorithm LS would
replace the three edges ei, j , e j ′−2, and e j ′+1 by e∗i1, j1 and the two parallel edges e∗i, j ′
and e∗i−1, j ′−1 to reduce the singleton edges, a contradiction. Therefore, |Np(e j ′−2)| ≥ 1
(shown in Figure 3.21b) or Np(e j ′+2) = ∅ (shown in Figure 3.21a). These two edge
combinations of C(C∗(ei,�)) are shown in Figure 3.21a and Figure 3.21b, respectively,
where the corresponding configurations of Np[C(C∗(ei,�))] are also shown.

Between the two configurations shown in Figure 3.21a and Figure 3.21b, we notice
that for every edge e ∈ C(C∗(ei,�)) − {ei, j}, the largest possible value for ω(e) in
Figure 3.21a is at least as large as in Figure 3.21b. Since we are interested in the
worst-case analysis, we say Figure 3.21b is shadowed by Figure 3.21a and we will
consider Figure 3.21a only in the sequel.

94

Chapter 3. The Max-Duo Problem

1
2

1
2

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) Np(ej′+2) = ∅.

1
2

1
2

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |Np(ej′−2)| ≥ 1.

Figure 3.21: The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
2,

1
2,

1
4
)
. They are associated with the only possible edge combination of C(C∗(ei,�)) with

|C(C∗(ei,�))| = 5, which also represents the symmetric case where ei′−2 ∈ M instead of
ej′−2 ∈ M . The first configuration shadows the second one.

8. τ(ei, j ← C∗(ei,�)) =
(1

3,
1
2,

1
3
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have 4 ≤ |C(C∗(ei,�))| ≤ 5. Since i − 1 and i + 1 are symmet-
ric with respect to i, we only discuss one of them. We have either e j ′ ∈ M or
e j ′−1 ∈ M , but not both.

When e j ′ ∈ M , then either ei−2 ∈ M or e j ′−2 ∈ M , but not both. We assume e j ′−2 ∈ M .
Similarly, either ei+2 ∈ M or e j ′+2 ∈ M , but not both. We assume ei+2 ∈ M . If ei+2

is a singleton edge of M or |Np(ei+2)| ≥ 2, then the algorithm LS would replace the
three edges ei, j , e j ′, ei+2 by e∗i1, j1 and the two parallel edges e∗i, j ′ and e∗i+1, j ′+1 to reduce
the singleton edges, a contradiction. Therefore, |Np(ei+2)| = 1; for the same reason,
|Np(e j ′−2)| = 1. This edge combination ofC(C∗(ei,�)) is shown in Figure 3.22a, where
the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

When e j ′−1 ∈ M , then still either ei−2 ∈ M or e j ′−2 ∈ M , but not both. On the
other side, ei+2 ∈ M and e j ′+2 ∈ M . When ei−2 ∈ M , e j ′−1 is a singleton edge of
M; and therefore |Np(ei′−2)| = 1. This edge combination of C(C∗(ei,�)) is shown in
Figure 3.22b, where the corresponding configuration ofNp[C(C∗(ei,�))] is also shown.

When e j ′−2 ∈ M , the edge combination of C(C∗(ei,�)) is shown in Figure 3.22c, where
the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

95

Chapter 3. The Max-Duo Problem

1
2

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) |C(C∗(ei,�))| = 4 and
|Np(ei+2)| = |Np(ej′−2)| = 1.

1
2

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |C(C∗(ei,�))| = 5 and |Np(ei−2)| = 1.

1
2

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(c) |C(C∗(ei,�))| = 5.

Figure 3.22: The three possible configurations of Np[C(C∗(ei,�))] when τ(ei, j ←
C∗(ei,�)) =

(1
3,

1
2,

1
3
)
, associated with three possible edge combinations of C(C∗(ei,�)) with

|C(C∗(ei,�))| = 4, 5, 5, respectively. The configuration in Figure 3.22a also represents the
symmetric case where ei−2 ∈ M instead of ej′−2 ∈ M and/or ej′+2 ∈ M instead of ei+2 ∈ M .

9. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
3,

1
3
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have 3 ≤ |C(C∗(ei,�))| ≤ 4. If |C(C∗(ei,�))| = 3, then the algo-
rithm LS would replace the three edges of C(C∗(ei,�)) by e∗i1, j1 and the three parallel
edges in C∗(ei,�) to expand M , a contradiction. Therefore, |C(C∗(ei,�))| = 4. From
e j ′−1, e j ′+1 ∈ M , we know that either ei+2 ∈ M or e j ′+2 ∈ M but not both. If ei+2 ∈ M ,
then all three edges e j ′−1, ei, j, e j ′+1 are singleton edges of M , and the algorithm LS
would replace the four edges of C(C∗(ei,�)) by e∗i1, j1 and the three parallel edges of
C∗(ei,�) to reduce the singleton edges, a contradiction. Therefore, e j ′+2 ∈ M , which
then implies |Np(e j ′+2)| = 1. This only edge combination of C(C∗(ei,�)) is shown in
Figure 3.23, where the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

1
3

1
2

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.23: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(1
2,

1
3,

1
3
)
. We have |C(C∗(ei,�))| = 4 and |Np(ej′+2)| = 1.

10. τ(ei, j ← C∗(ei,�)) =
(1

3,
1
2,

1
4
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have 5 ≤ |C(C∗(ei,�))| ≤ 6. Note that either e j ′ ∈ M or e j ′+1 ∈ M

but not both.

When e j ′ ∈ M , we have two symmetric cases where ei−2 ∈ M and e j ′−2 ∈ M ,
respectively; and we assume e j ′−2 ∈ M . We conclude that e j ′−2 must not be a

96

Chapter 3. The Max-Duo Problem

singleton edge of M or |Np(e j ′−2)| ≥ 2. This edge combination of C(C∗(ei,�)) is
shown in Figure 3.24a, where the corresponding configuration of Np[C(C∗(ei,�))] is
also shown.

When e j ′+1 ∈ M , both ei−2 ∈ M and e j ′−2 ∈ M . This edge combination of C(C∗(ei,�))

is shown in Figure 3.24b, where the corresponding configuration of Np[C(C∗(ei,�))]

is also shown.

1
2

1
3

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) |C(C∗(ei,�))| = 5 and |Np(ej′−2)| = 1.

1
2

1
3

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |C(C∗(ei,�))| = 6.

Figure 3.24: The two possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
3,

1
2,

1
4
)
, associated with two possible edge combinations of C(C∗(ei,�))with |C(C∗(ei,�))| =

5, 6, respectively. The configuration in Figure 3.24a also represents the symmetric case
where ei−2 ∈ M instead of ej′−2 ∈ M .

11. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
3,

1
4
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have 4 ≤ |C(C∗(ei,�))| ≤ 5. Note that either e j ′−1 < M or e j ′ < M

but not both, and e j ′+1 ∈ M .

When e j ′−1 < M , then either ei+2 ∈ M or e j ′+2 ∈ M but not both. When e j ′+2 ∈ M ,
the edge combination ofC(C∗(ei,�)) is shown in Figure 3.25a, where the corresponding
configuration of Np[C(C∗(ei,�))] is also shown.

When ei+2 ∈ M , we conclude that ei+2 should not be a singleton edge of M; the
edge combination of C(C∗(ei,�)) is shown in Figure 3.25b, where the corresponding
configuration of Np[C(C∗(ei,�))] is also shown.

When e j ′ < M , then both ei+2 ∈ M and e j ′+2 ∈ M; we conclude that Np(e j ′+2) = ∅.
This edge combination of C(C∗(ei,�)) is shown in Figure 3.25c, where the correspond-
ing configuration of Np[C(C∗(ei,�))] is also shown.

97

Chapter 3. The Max-Duo Problem

1
3

1
2

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) |C(C∗(ei,�))| = 4.

1
3

1
2

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |C(C∗(ei,�))| = 4 and |Np(ei+2)| ≥ 1.

1
3

1
2

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(c) |C(C∗(ei,�))| = 5 and Np(ej′+2) = ∅.

Figure 3.25: The three possible configurations of Np[C(C∗(ei,�))] when τ(ei, j ←
C∗(ei,�)) =

(1
2,

1
3,

1
4
)
, associated with three possible edge combinations of C(C∗(ei,�)) with

|C(C∗(ei,�))| = 4, 4, 5, respectively.

12. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
4,

1
3
)
: This ordered value combination is impossible due to

the edge ei, j being a singleton edge of M .

13. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
3,

1
5
)
: We have e j ′, e j ′+1, e j ′+2, ei+2 ∈ M , giving rise to

|C(C∗(ei,�))| = 5. This only edge combination of C(C∗(ei,�)) is shown in Figure 3.26,
where the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

1
3

1
2

1
5

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.26: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(1
2,

1
3,

1
5
)
, where |C(C∗(ei,�))| = 5.

14. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
4,

1
4
)
: This ordered value combination is impossible due to

the edge ei, j being a singleton edge of M .

15. τ(ei, j ← C∗(ei,�)) =
(1

4,
1
2,

1
4
)
: Since the edge e j ′ has to be in M , we have both ei−2 ∈ M

and e j ′−2 ∈ M , and both ei+2 ∈ M and e j ′+2 ∈ M , giving rise to |C(C∗(ei,�))| = 6. This
only edge combination ofC(C∗(ei,�)) is shown in Figure 3.27, where the corresponding
configuration of Np[C(C∗(ei,�))] is also shown.

1
4

1
2

1
4

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

Figure 3.27: The only possible configuration ofNp[C(C∗(ei,�))] when τ(ei, j ← C∗(ei,�)) =(1
4,

1
2,

1
4
)
, where |C(C∗(ei,�))| = 6.

98

Chapter 3. The Max-Duo Problem

16. τ(ei, j ← C∗(ei,�)) =
(1

3,
1
3,

1
3
)
: According to the inequalities (3.5) and (3.6) of

Lemma 3.19, we have 4 ≤ |C(C∗(ei,�))| ≤ 5. Note that exactly one of the three
vertices j′− 1, j, j′+ 1 is not incident with any edge of M , we thus consider two cases
where e j ′ < M and e j ′+1 < M (e j ′−1 < M is symmetric to e j ′+1 ∈ M), respectively.

When e j ′+1 < M , then either ei+2 ∈ M or e j ′+2 ∈ M but not both, while ei−2 < M

and e j ′−2 < M . We assume ei+2 ∈ M , which implies ei+2 should not be a singleton
edge of M . This edge combination of C(C∗(ei,�)) is shown in Figure 3.28a, where the
corresponding configuration of Np[C(C∗(ei,�))] is also shown.

When e j ′ < M , then either ei+2 ∈ M or e j ′+2 ∈ M but not both, and either ei−2 ∈ M or
e j ′−2 ∈ M but not both. Four different combinations of their memberships of M give
rise to 0, 1, 2 singleton edges between e j ′−1 and e j ′+1. These three edge combinations
of C(C∗(ei,�)) are shown in Figure 3.28b, Figure 3.28c, Figure 3.28d, respectively,
where the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

1
3

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) |C(C∗(ei,�))| = 4 and |Np(ei+2)| ≥ 1.

1
3

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |C(C∗(ei,�))| = 5.

1
3

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(c) |C(C∗(ei,�))| = 5.

1
3

1
3

1
3

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(d) |C(C∗(ei,�))| = 5.

Figure 3.28: The four possible configurations ofNp[C(C∗(ei,�))]when τ(ei, j ← C∗(ei,�)) =(1
3,

1
3,

1
3
)
, associated with four possible edge combinations ofC(C∗(ei,�))with |C(C∗(ei,�))| =

4, 5, 5, 5, respectively. Figure 3.28a also represents the case where ej′+2 ∈ M instead
of ei+2 ∈ M; Figure 3.28c also represents the case where ej′−2, ei+2 ∈ M instead of
ei−2, ej′+2 ∈ M .

17. τ(ei, j ← C∗(ei,�)) =
(1

2,
1
2, 0

)
: We have 2 ≤ |C(C∗(ei,�))| ≤ 3. If |C(C∗(ei,�))| = 2, then

the algorithmLS would replace the two edges ofC(C∗(ei,�)) by e∗i1, j1 and the two edges
of C∗(ei,�) to expand M , a contradiction. Therefore, |C(C∗(ei,�))| = 3, and furthermore
e j ′+1 ∈ M , and either ei−2 ∈ M or e j ′−2 ∈ M but not both. Due to symmetry we
assume e j ′−2 ∈ M . We conclude that at most one of e j ′+1 and e j ′−2 can be a singleton
edge of M . The edge combination of C(C∗(ei,�)) when e j ′−2 is not a singleton edge
is shown in Figure 3.29a, and the edge combination of C(C∗(ei,�)) when e j ′+1 is not
a singleton edge is shown in Figure 3.29b, where the corresponding configuration of
Np[C(C∗(ei,�))] is also shown, respectively.

99

Chapter 3. The Max-Duo Problem

1
2

1
2

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(a) |C(C∗(ei,�))| = 3 and |Np(ej′−2)| ≥ 1.

1
2

1
2

i i+ 1i− 1i− 2i− 3

j
′

j
′
+ 1 j

′
+ 2 j

′
+ 3j

′ − 1

i+ 2 i+ 3

j
′ − 2j

′ − 3

(b) |C(C∗(ei,�))| = 3 and |Np(ej′+1)| ≥ 1.

Figure 3.29: The two possible configurations of Np[C(C∗(ei,�))] when τ(ei, j ←
C∗(ei,�)) =

(1
2,

1
2, 0

)
, associated with the only possible edge combinations of C(C∗(ei,�))

with |C(C∗(ei,�))| = 3. Each of them also represents the case where ei−2 ∈ M instead of
ej′−2 ∈ M .

18. τ(ei, j ← C∗(ei,�)) =
(1

2, 0,
1
2
)
: We denote the two edges of C∗(ei,�) as ei−1, j ′′−1 and

ei+1, j ′′′+1, respectively; clearly, |(j′′−1)−(j′′′+1)| ≥ 2. We have 2 ≤ |C(C∗(ei,�))| ≤ 3.
The same as in the last case, we have |C(C∗(ei,�))| = 3, and furthermore exactly
one of i − 2, j′′ − 2, j′′ − 1, j′′ is incident with an edge of M , and exactly one of
i + 2, j′′′, j′′′ + 1, j′′′ + 2 is incident with an edge of M . Among these 16 edge
combinations of C(C∗(ei,�)), in one of them the two edges of C(C∗(ei,�)) could be
parallel to each other, as shown in Figure 3.30a (this happens when j′′′ = j′′ + 1,
and e j ′′, e j ′′′ ∈ M), where the corresponding configuration of Np[C(C∗(ei,�))] is also
shown; one of the other 15 is shown in Figure 3.30b (j′′′ > j′′ + 1, e j ′′−1, e j ′′′ ∈ M),
where the corresponding configuration of Np[C(C∗(ei,�))] is also shown.

1
2

1
2

i i+ 1i− 1i− 2i− 3

j
′′′

j
′′′
+ 1 j

′′′
+ 2j

′′

i+ 2 i+ 3

j
′′ − 1j

′′ − 2

(a) |C(C∗(ei,�))| = 3 and j ′′′ = j ′′ + 1.

1
2

1
2

i i+ 1i− 1i− 2i− 3

j
′′′

j
′′′
+ 1 j

′′′
+ 2j

′′

i+ 2 i+ 3

j
′′ − 1j

′′ − 2
......

(b) |C(C∗(ei,�))| = 3 and j ′′′ > j ′′ + 1.

Figure 3.30: The two possible configurations of Np[C(C∗(ei,�))] when τ(ei, j ←
C∗(ei,�)) =

(1
2, 0,

1
2
)
, associated with the two possible edge combinations of C(C∗(ei,�))

with |C(C∗(ei,�))| = 3. The second configuration represents the other 15 symmetric cases
exactly one of i − 2, j ′′ − 2, j ′′ − 1, j ′′ is incident with an edge of M and exactly one of
i + 2, j ′′′, j ′′′ + 1, j ′′′ + 2 is incident with an edge of M , but the two edges are not parallel
to each other.

Therefore, we have a total of 27 configurations of Np[C(C∗(ei,�))] associated with all the
possible edge combinations of C(C∗(ei,�)), up to symmetry, for further discussion.

Lemma3.24. When ei, j is a singleton edge of M withω(ei, j) ≥ 3, there is at least one parallel
edge of M in C(C∗(ei, j)) for each of the 8 possible value combinations of τ(ei, j ← C∗(ei, j)).

Proof. From Lemma 3.17, for each of the 8 possible value combinations of τ(ei, j ←

C∗(ei, j)), there is an entry 1 in the ordered value combination of τ(ei, j ← C∗(ei,�)) or

100

Chapter 3. The Max-Duo Problem

τ(ei, j ← C∗(e�, j)). There are only 5 possible such ordered value combinations, which
are

(1
2, 1,

1
2
)
,
(1

2, 1,
1
3
)
,
(
1, 1

2,
1
3
)
,
(
1, 1

2,
1
4
)
, and

(1
3, 1,

1
3
)
. The above Figures 3.15–3.18 show

that for the first 4 ordered value combinations, there is at least one parallel edge of M in
C(C∗(ei, j)).

If
(1

3, 1,
1
3
)
is the ordered value combination for τ(ei, j ← C∗(ei,�)), then τ(ei, j ← C∗(e�, j)) has

an ordered value combination either
(1

2,
1
2,

1
3
)
or

(1
2,

1
3,

1
2
)
. The above Figures 3.20 and 3.23

show that there is at least one parallel edge of M in C(C∗(e�, j)). This proves the lemma. �

3.4.2.5 An upper bound on ω(e) for e ∈ C(C∗(ei, j)) − {ei, j}

From Lemma 3.23, in the sequel we always consider the case ei, j is a singleton edge of M

with ω(ei, j) ≥ 3.

We walk through all the 27 configurations of Np[C(C∗(ei,�))] to determine an upper bound
on ω(e), for any e ∈ C(C∗(ei,�)) − {ei, j}.

Lemma 3.25. For any edge e ∈ C(C∗(ei,�)) − {ei, j}, |C(e∗h,`)| ≥ 2 for all edges e∗h,` ∈ C∗(e),
if any one of the following five conditions holds:

1. |C(C∗(ei,�))| = |C∗(ei,�)| = 3.

2. |C(C∗(ei,�))| = |C∗(ei,�)| + 1 = 4 and there is an edge e∗i1, j1 ∈ C∗(e�, j) such that
|C(e∗i1, j1)| = 1.

3. e ∈ C(e∗i2, j2) for some e∗i2, j2 ∈ C∗(ei,�) with |C(e∗i2, j2)| = 2, and there is an edge
e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1.

4. e ∈ C(e∗i1, j1) ∪ C(e∗i2, j2) for some e∗i1, j1, e
∗
i2, j2
∈ C∗(ei,�) with |C(e∗i1, j1) ∪ C(e∗i2, j2)| = 2.

5. e ∈ C(e∗i2, j2) ∪ C(e∗i3, j3) for some e∗i2, j2, e
∗
i3, j3
∈ C∗(ei,�) with |C(e∗i2, j2) ∪ C(e∗i3, j3)| = 3,

and there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1.

And consequently, ω(e) ≤ 17
6 .

Proof. We prove by contradiction, and thus assume that there is an edge e∗h,` ∈ C∗(e) such
that |C(e∗h,`)| = 1.

If the first condition holds, then the algorithmLSwould replace the three edges ofC(C∗(ei,�))

by e∗h,` and the three parallel edges of C∗(ei,�) to expand M , a contradiction.

101

Chapter 3. The Max-Duo Problem

If the second condition holds, then the algorithm LS would replace the four edges of
C(C∗(ei,�)) by e∗i1, j1 , e∗h,`, and the three parallel edges in C∗(ei,�) to expand M , a contradiction.

If the third condition holds, then the algorithm LS would replace the two edges of C(e∗i2, j2)

by e∗i2, j2 , e∗i1, j1 , e∗h,` to expand M , a contradiction.

If the fourth condition holds, then the algorithm LS would replace the two edges of
C(e∗i1, j1) ∪ C(e∗i2, j2) by e∗i1, j1, e

∗
i2, j2

, e∗h,` to expand M , a contradiction.

If the fifth condition holds, then the algorithmLS would replace the three edges ofC(e∗i2, j2)∪

C(e∗i3, j3) by e∗i2, j2, e
∗
i3, j3

, e∗i1, j1 , e∗h,` to expand M , a contradiction.

Therefore, we proved that |C(e∗h,`)| ≥ 2 for all edges e∗h,` ∈ C∗(e). It then follows from
Lemma 3.16 that ω(e) ≤ 5 × 1

2 +
1
3 =

17
6 . �

Lemma 3.26. For each edge e ∈ C(C∗(ei,�)) − {ei, j} in Figures 3.15, 3.17, 3.20a, 3.20b,
3.22a, 3.23, 3.25a, 3.25b, 3.28a, 3.29a, 3.29b, 3.30a, 3.30b, e j ′−2 in Figure 3.21a, e j ′−1

in Figure 3.22b, e j ′ in Figure 3.24a, e j ′−1 in Figure 3.25c, and e j ′ in Figure 3.27, its total
amount of tokens is ω(e) ≤ 17

6 .

Proof. At least one of the five conditions in Lemma 3.25 applies to each of these edges. For
example, in Figure 3.15, for the edge e j ′−2, the fourth condition of Lemma 3.25 holds by
setting (i1, j1) := (i − 1, j′ − 1) and (i2, j2) := (i, j′); for the edge ei+2, the fourth condition of
Lemma 3.25 holds by setting (i1, j1) := (i, j′) and (i2, j2) := (i + 1, j′ + 1). �

Lemma 3.27. For both the edges ei+q, e j ′+q ∈ C(C∗(ei,�)) shown in Figures 3.16, 3.18, 3.19,
3.21a, 3.22b, 3.22c, 3.24b, 3.25c, for some q = 2 or −2, the total amount of tokens for each
of them is at most 35

12 .

Proof. Consider the edge ei+q. If it is a parallel edge of M , then it simply cannot fit into any
of the 27 configurations shown in Figures 3.15–3.30, in which the edge ei, j is a singleton
edge of M . (By “fitting into” it means the edge ei+q takes up the role of the edge ei, j in
the configuration.) If ei+q is a singleton edge of M , we show next that due to the existence
of the paired edge e j ′+q ∈ M , ei+q cannot fit into any of the 27 configurations shown in
Figures 3.15–3.30 either. This is done by using the edge combinations of C(C∗(i, �)) and the
existence of certain edges in Np(C(C∗(ei,�)).

In more details, we first see that ei+q can only possibly fit into 7 of the 27 configurations
shown in Figures 3.22a, 3.24a, 3.25a, 3.25b, 3.26, 3.27, 3.28a, due to the existence of the

102

Chapter 3. The Max-Duo Problem

edge e j ′+q ∈ M . Next, if it were fit in any of them, then in the fitted configuration there
is an edge ei−2 ∈ M but none of the five edges ei−3, e j ′−3, e j ′−2, ei−1, e j ′−1 can be in M .
This last requirement rules out Figure 3.22a due to e j ′−3, ei+3 ∈ Np(C(C∗(ei,�))); it rules out
Figure 3.24a due to e j ′−3 ∈ Np(C(C∗(ei,�))); it rules out Figures 3.25a, 3.25b, 3.26 due to
e j ′+1 ∈ C(C∗(ei,�)) but none of ei−2, e j ′−2 is in C(C∗(ei,�)); it rules out Figure 3.27 due to
ei−2, e j ′−2, ei+2, e j ′+2 ∈ C(C∗(ei,�)); and it rules out Figure 3.28a due to e j ′−1 ∈ C(C∗(ei,�))

and ei+3 ∈ Np(C(C∗(ei,�))).

Therefore, ω(ei+q) < 3.

Using at most six values from {1, 1
2,

1
3,

1
4,

1
5,

1
6 }, the sum closest but less than 3 is 1 +

1
2 +

1
2 +

1
2 +

1
4 +

1
5 =

59
20 . In order for τ(ei, j ← C∗(ei, j)) to have a value combination{

1, 1
2,

1
2,

1
2,

1
4,

1
5
}
, Lemma 3.15 says that the value combinations for τ(ei, j ← C∗(ei,�)) and

τ(ei, j ← C∗(e�, j)) are
{
1, 1

2,
1
2
}
and

{ 1
2,

1
4,

1
5
}
. Furthermore, Lemmas 3.15 and 3.19 together

state that the subsequent ordered value combinations are
(1

2, 1,
1
2
)
and

(1
2,

1
4,

1
5
)
. However,(1

2, 1,
1
2
)
requires ei, j to be a singleton edge of M , while

(1
2,

1
4,

1
5
)
implies ei, j is a parallel

edge of M , a contradiction.

The second closest sum to 3 is 35
12 , that is the sum of the value combinations

{
1, 1

2,
1
2,

1
2,

1
4,

1
6
}

(which can be ruled out similarly as in the last paragraph) and
{
1, 1

2,
1
2,

1
3,

1
3,

1
4
}
. Therefore,

ω(ei+q) ≤
35
12 . �

Lemma 3.28. For each edge e ∈ C(C∗(ei, j)) − {ei, j} with ω(ei, j) ≥ 3, we have ω(e) ≤ 35
12 ,

except for the following two cases where we have ω(ei, j) = 3:

1. in the configuration shown in Figure 3.28b, it is possible to have either ω(e j ′−1) = 3
(when |Np(ei−2)| ≥ 1) or ω(e j ′+1) = 3 (when |Np(ei+2)| ≥ 1), but not both;

2. in the configuration shown in Figure 3.28c, it is possible to have either ω(e j ′−1) = 3
or ω(ei−2) = 3 (when |Np(e j ′−3)| ≥ 1), but not both.

Proof. Recall that Lemma 3.26 settled all the edges of C(C∗(ei, j)) − {ei, j} in Figures 3.15,
3.17, 3.20a, 3.20b, 3.22a, 3.23, 3.25a, 3.25b, 3.28a, 3.29a, 3.29b, 3.30a, 3.30b, e j ′−2 in
Figure 3.21a, e j ′−1 in Figure 3.22b, e j ′ in Figure 3.24a, e j ′−1 in Figure 3.25c, and e j ′ in
Figure 3.27; Lemma 3.27 settled all the paired edges ei+q, e j ′+q ∈ C(C∗(ei,�)) in Figures
3.16, 3.18, 3.19, 3.21a, 3.22b, 3.22c, 3.24b, 3.25c, for some q = 2 or −2, and all the
edges known to be parallel, including e j ′−2 in Figure 3.16, e j ′+1 in Figure 3.18, e j ′+1

in Figure 3.21a, ei−2 in Figure 3.22b, e j ′−1 in Figure 3.22c, e j ′−2 in Figure 3.24a, e j ′+1 in

103

Chapter 3. The Max-Duo Problem

Figure 3.24b, e j ′+1 in Figure 3.25c, e j ′, e j ′+1, e j ′+2 in Figure 3.26, e j ′+1, e j ′+2 in Figure 3.28c,
and e j ′−2, e j ′−1, e j ′+1, e j ′+2 in Figure 3.28d.

We therefore are left to prove the lemma for the edges not known to be parallel in Figures
3.24a, 3.26, 3.27, 3.28b, 3.28c. We deal with them separately in the following.

1. The edges ei+2, e j ′+2 in Figure 3.24a and the edges ei−2, e j ′−2, ei+2, e j ′+2 in Figure 3.27,
which can be settled the same.

Consider the edge ei+2, which can potentially fit into the configuration in Figure 3.24a
or Figure 3.27. In either case, there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1
and there is an edge e∗h1,`1

∈ C∗(ei+2) such that |C(e∗h1,`1
)| = 1. Then the algorithm

LS would replace the four edges ei, j , e j ′, ei+2, e j ′+2 by the five edges e∗i, j ′, e∗i+1, j ′+1,
e∗i+2, j ′+2, e∗i1, j1 , e∗h1,`1

to expand M , a contradiction. In summary, ei+2 cannot fit into
any of the 27 configurations shown in Figures 3.15–3.30 and thus ω(ei+2) ≤

35
12 .

2. The edge ei+2 in Figure 3.26.

If ei+2 is to fit in, then it can fit only into the configuration in Figure 3.26. This
suggests that C(C∗(ei+2,�)) = C(C∗(ei,�)). Since there is an edge e∗i1, j1 ∈ C∗(e�, j) such
that |C(e∗i1, j1)| = 1 and there is an edge e∗h1,`1

∈ C∗(ei+2) such that |C(e∗h1,`1
)| = 1,

the algorithm LS would replace the five edges of C(C∗(ei,�)) by any six edges from{
e∗i−1, j ′−1, e∗i, j ′, e∗i+1, j ′+1, e∗i+2, j ′+2, e∗i+3, j ′+3, e∗i1, j1 , e∗h1,`1

}
to expand M , a contradiction.

In summary, ei+2 cannot fit into any of the 27 configurations shown in Figures 3.15–
3.30 and thus ω(ei+2) ≤

35
12 .

3. The edges ei−2 and ei+2 in Figure 3.28b, which can be settled the same.

Consider the edge ei−2, which can potentially fit into the configuration in Figure 3.28b
or Figure 3.28c. In either case, all the four edges ei−2, e j ′−1, ei, j , e j ′+1 are singleton
edges of M , and there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1 and there
is an edge e∗h1,`1

∈ C∗(ei−2) such that |C(e∗h1,`1
)| = 1. Then the algorithm LS would

replace these four singleton edges of M by the edges e∗i1, j1, e
∗
h1,`1

and the two parallel
edges e∗i−1, j ′−1, e

∗
i, j ′ to reduce the singleton edges of M , a contradiction. In summary,

ei−2 cannot fit into any of the 27 configurations shown in Figures 3.15–3.30 and thus
ω(ei−2) ≤

35
12 .

4. The edges e j ′−1 and e j ′+1 in Figure 3.28b, which can be settled the same.

Consider the edge e j ′−1, which can potentially fit into the configuration in Figure 3.28b
or Figure 3.28c. If e j ′−1 fits into the configuration in Figure 3.28b, then the same as
in the last case the algorithm LS would be able to reduce the singleton edges of M , a

104

Chapter 3. The Max-Duo Problem

contradiction. If e j ′−1 fits into the configuration in Figure 3.28c, then the edge ei−2 is a
parallel edge of M . From τ(ei, j ← C∗(ei,�)) =

(1
3,

1
3,

1
3
)
, we conclude that ω(ei, j) ≤ 3,

and consequently ω(ei, j) = 3 and ω(e j ′−1) = 3.

It is easy to see that we cannot have both ω(e j ′−1) = ω(e j ′+1) = 3, since otherwise
the algorithm LS would be able to expand M by swapping out the five edges of
C(C∗(ei,�)), a contradiction.

In summary, we have either ω(e j ′−1) ≤
35
12 or ω(e j ′−1) = 3, the latter of which implies

|Np(ei−2)| ≥ 1 and it is the first case stated in the lemma.

5. The edge ei−2 in Figure 3.28c.

If ei−2 is to fit in, then it can fit only into the configuration in Figure 3.28b or
Figure 3.28c. If ei−2 fits into the configuration in Figure 3.28b, then all the four edges
ei, j , e j ′−1, ei−2, e j ′−3 are singleton edges of M . Since there is an edge e∗i1, j1 ∈ C∗(e�, j)

such that |C(e∗i1, j1)| = 1 and there is an edge e∗h1,`1
∈ C∗(ei−2) such that |C(e∗h1,`1

)| =

1, the algorithm LS would replace these four singleton edges of M by the edges
e∗i1, j1, e

∗
h1,`1

and the two parallel edges e∗i−1, j ′−1, e
∗
i−2, j ′−2 to reduce the singleton edges,

a contradiction. If ei−2 fits into the configuration in Figure 3.28c, then the edge
e j ′−3 is a parallel edge of M . From τ(ei, j ← C∗(ei,�)) =

(1
3,

1
3,

1
3
)
, we conclude that

ω(ei, j) ≤ 3, and consequently ω(ei, j) = 3 and ω(ei−2) = 3. In summary, we have
either ω(ei−2) ≤

35
12 or ω(ei−2) = 3, the latter of which implies |Np(e j ′−3)| ≥ 1.

6. The edge e j ′−1 in Figure 3.28c.

If e j ′−1 is to fit in, then it can fit only into the configuration in Figure 3.28b or
Figure 3.28c. If e j ′−1 fits into the configuration in Figure 3.28b, then the edge ei−2

is a singleton edge of M . If e j ′−1 fits into the configuration in Figure 3.28c, then the
edge ei−2 is a parallel edge of M . From τ(ei, j ← C∗(ei,�)) =

(1
3,

1
3,

1
3
)
, we conclude

that ω(ei, j) ≤ 3, and consequently ω(ei, j) = 3 and ω(e j ′−1) = 3. In summary, we have
either ω(e j ′−1) ≤

35
12 or ω(e j ′−1) = 3.

It is also easy to see that we cannot have both ω(e j ′−1) = ω(ei−2) = 3 in the last two items,
since otherwise the algorithm LS would be able to expand M by swapping out the five
edges of C(C∗(ei,�)), a contradiction. This is the second case stated in the lemma. We have
proved the lemma. �

105

Chapter 3. The Max-Duo Problem

3.4.2.6 An upper bound on ω(e) for e ∈ C(C∗(ei, j)) known to be parallel

In this section, we provide a better upper bound on the total amount of tokens received by
an edge of C(C∗(ei, j)) that is known to be parallel, for example, in Figure 3.16 the edge e j ′−2

is known parallel but the edge ei+2 is not. Also, from Lemma 3.28, in Figure 3.28b it is
possible to have ω(e j ′−1) = 3 when |Np(ei−2)| ≥ 1; we therefore consider the edge ei−2 to be
parallel too. For the same reason, we consider the edge ei+2 in Figure 3.28b to be parallel.

Lemma 3.29. For each parallel edge e ∈ C(C∗(ei,�)) with ω(ei, j) ≥ 3, we have |C(e∗h,`)| ≥ 2
for all e∗h,` ∈ C∗(e), except for the following edges:

1. the edge e j ′+2 in Figures 3.18, 3.21a, 3.24b, 3.25c, 3.26,

2. the edges ei−2, ei+2 in Figure 3.28b,

3. the edges e j ′+1, e j ′+2 in Figure 3.28c, and

4. the edges e j ′−1, e j ′−2, e j ′+1, e j ′+2 in Figure 3.28d.

Proof. At least one of the five conditions in Lemma 3.25 applies to each of these edges. For
example, in Figure 3.16, for the edge e j ′−2, the fourth condition of Lemma 3.25 holds by
setting (i1, j1) := (i − 1, j′ − 1) and (i2, j2) := (i, j′). �

Among all the 27 configurations in Figures 3.15–3.30, we have the following two observa-
tions.

Observation 3.3. If the edge ei−1 (or the edge e j ′−1) is a known parallel edge of M in
C(C∗(ei,�)), and e∗i−1, j ′−1 ∈ M∗, then |C(e∗i−1, j ′−1)| ≥ 3; if the edge e j ′ is a known parallel
edge of M inC(C∗(ei,�)), and e∗i, j ′ ∈ M∗, then |C(e∗i, j ′)| ≥ 3; if the edge ei+1 (or the edge e j ′+1)
is a known parallel edge of M in C(C∗(ei,�)), and e∗i+1, j ′+1 ∈ M∗, then |C(e∗i+1, j ′+1)| ≥ 3.

Observation 3.4. When e∗i, j ′ ∈ C∗(ei,�), if the edge ei+p (or e j ′+p, respectively) is a known
parallel edge of M in C(C∗(ei,�)) for some p = −2, 2, then |C(e∗i+p)| ≥ 2 (or |C(e∗j ′+p)| ≥ 2,
respectively).

Based on Lemmas 3.23, 3.25, and Observations 3.3 and 3.4, we can prove the following two
lemmas.

Lemma 3.30. For any pair of parallel edges eh,`, eh+1,`+1 ∈ C(C∗(ei,�)), and an edge e∗ ∈

C∗(eh,`) ∩ C∗(eh+1,`+1), we have |C(e∗)| ≥ 3 if one of the following three conditions holds.

106

Chapter 3. The Max-Duo Problem

1. |C(C∗(ei,�))| = |C∗(ei,�)| = 3.

2. |C(C∗(ei,�))| = |C∗(ei,�)| + 1 = 4 and there is an edge e∗i1, j1 ∈ C∗(e�, j) such that
|C(e∗i1, j1)| = 1.

3. eh,`, eh+1,`+1 ∈ C(e∗i2, j2) ∪ C(e∗i3, j3) for some e∗i2, j2, e
∗
i3, j3
∈ C∗(ei,�) with |C(e∗i2, j2) ∪

C(e∗i3, j3)| = 3, and there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1.

Proof. We prove by contradiction, and thus assume that there is an edge e∗ ∈ C∗(eh,`) ∩

C∗(eh+1,`+1) such that C(e∗) = {eh,`, eh+1,`+1}.

If the first condition holds, then it follows from Observation 3.3 that e∗ < C∗(ei,�). In this
case, the algorithm LS would replace the three edges of C(C∗(ei,�)) by e∗ and the three
edges of C∗(ei,�) to expand M , a contradiction.

If the second condition holds, then again it follows from Observation 3.3 that e∗ < C∗(ei,�).
Also, the edge e∗i1, j1 is distinct from e∗. In this case, the algorithmLS would replace the four
edges in C(C∗(ei,�)) by e∗i1, j1, e

∗, and the three edges of C∗(ei,�) to expand M , a contradiction.

If the third condition holds, then by Observation 3.3 the edge e∗ is distinct from e∗i2, j2, e
∗
i3, j3

,
and the edge e∗i1, j1 is distinct from e∗. In this case, the algorithm LS would replace the three
edges of C(e∗i2, j2) ∪ C(e∗i3, j3) by e∗i2, j2, e

∗
i3, j3

, e∗i1, j1 , e∗ to expand M , a contradiction. �

Lemma 3.31. For any pair of parallel edges eh,`, eh+1,`+1 where eh,` ∈ C(C∗(ei,�)), there is
at most one edge e∗ ∈ C∗(eh,`) ∩ C∗(eh+1,`+1) such that |C(e∗)| = 2, if one of the following
six conditions holds.

1. eh+1,`+1 < C(C∗(ei,�)) and |C(C∗(ei,�))| = |C∗(ei,�)| = 3.

2. eh,` ∈ C(e∗i1, j1) ∪ C(e∗i2, j2), eh+1,`+1 < C(e∗i1, j1) ∪ C(e∗i2, j2) for some e∗i1, j1, e
∗
i2, j2
∈ C∗(ei,�)

with |C(e∗i1, j1) ∪ C(e∗i2, j2)| = 2.

3. eh+1,`+1 < C(C∗(ei,�)), |C(C∗(ei,�))| = |C∗(ei,�)| + 1 = 4, and there is an edge e∗i1, j1 ∈

C∗(e�, j) such that |C(e∗i1, j1)| = 1.

4. eh,` ∈ C(e∗i2, j2) ∪ C(e∗i3, j3), eh+1,`+1 < C(e∗i2, j2) ∪ C(e∗i3, j3) for some e∗i2, j2, e
∗
i3, j3
∈ C∗(ei,�),

with |C(e∗i2, j2)∪C(e∗i3, j3)| = 3, and there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| =
1.

5. eh,` ∈ C(e∗i2, j2), eh+1,`+1 < C(e∗i2, j2) for some e∗i2, j2 ∈ C∗(ei,�) with |C(e∗i2, j2)| = 2, and
there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1.

6. eh+1,`+1 ∈ C(C∗(ei,�)), |C(C∗(ei,�))| = |C∗(ei,�)| + 2 = 5, and there is an edge e∗i1, j1 ∈

C∗(e�, j) such that |C(e∗i1, j1)| = 1.

107

Chapter 3. The Max-Duo Problem

Proof. We prove by contradiction, and thus assume that there are two edges e∗h1,`1
, e∗h2,`2

∈

C∗(eh,`) ∩ C∗(eh+1,`+1) such that C(e∗h1,`1
) = C(e∗h2,`2

) = {eh,`, eh+1,`+1}.

If the first condition holds, then due to eh+1,`+1 < C(C∗(ei,�)), none of e∗h1,`1
, e∗h2,`2

is in
C∗(ei,�). In this case, the algorithm LS would replace the edge eh+1,`+1 and the three edges
of C(C∗(ei,�)) by e∗h1,`1

, e∗h2,`2
and the three edges of C∗(ei,�) to expand M , a contradiction.

The other five conditions can be similarly proved by this kind of contradiction. �

Using Lemmas 3.30 and 3.31, we can prove a better upper bound on ω(e) for those edges
stated in Lemma 3.29. This better bound is 5

2 , a reduction from
17
6 stated in Lemma 3.25.

Lemma 3.32. For any parallel edge e ∈ C(C∗(ei,�)) discussed in Lemma 3.29, its total
amount of tokens received ω(e) can be better bounded, in particular, ω(e) ≤ 5

2 .

Proof. We enumerate through all these edges in the following:

1. In Figure 3.15, we have τ(ei, j ← C∗(ei,�)) =
(1

2, 1,
1
2
)
. For the edge e j ′−2, it is

parallel to e j ′−3 < C(C∗(ei,�)). By the condition 1 of Lemma 3.31 and Lemma 3.29,
ω(e j ′−2) ≤ 3

(1
2 +

1
3
)
= 5

2 = 2.5. The same argument applies to the edge ei+2.

In the rest of the proof, we point out only the condition used in the argument to avoid
repetition.

2. In Figure 3.16, ω(e j ′−2) ≤ 3
(1

2 +
1
3
)
= 5

2 = 2.5, due to the condition 2 of Lemma 3.31.

3. In Figure 3.17, ω(e j ′+1), ω(e j ′+2) ≤ 2
(1

2 + 2 × 1
3
)
= 7

3 ≈ 2.333, due to the condition 1
of Lemma 3.30.

4. In Figure 3.18, ω(e j ′+1) ≤
(1

2 +
1
4 +

1
3
)
+

(
2× 1

2 +
1
3
)
= 29

12 ≈ 2.417, due to the condition
2 of Lemma 3.30.

5. In Figure 3.20a, ω(e j ′+1), ω(e j ′+2) ≤ 2
(1

2 + 2 × 1
3
)
= 7

3 ≈ 2.333, due to the condition
2 of Lemma 3.30.

6. In Figure 3.20b, ω(e j ′−2) ≤ 3
(1

2 +
1
3
)
= 5

2 = 2.5, due to the condition 3 of Lemma
3.31;

ω(ei+2) ≤ 4 × 1
3 + 2 × 1

2 =
7
3 ≈ 2.333, due to the condition 3 of Lemma 3.31.

7. In Figure 3.21a, ω(e j ′+1) ≤
(1

2 +
1
4 +

1
3
)
+

(
2 × 1

2 +
1
3
)
= 29

12 ≈ 2.417, due to the
condition 4 of Lemma 3.31.

8. In Figure 3.22a, ω(e j ′−2), ω(ei+2) ≤ 4 × 1
3 + 2 × 1

2 =
7
3 ≈ 2.333, due to the condition

3 of Lemma 3.31.

108

Chapter 3. The Max-Duo Problem

9. In Figure 3.22b, ω(e j ′−1), ω(e j ′−2) ≤ 2
(1

2 + 2 × 1
3
)
= 7

3 ≈ 2.333, due to the condition
3 of Lemma 3.30.

10. In Figure 3.22c, ω(ei−2) ≤ 2
(1

2 +2× 1
3
)
= 7

3 ≈ 2.333, due to the condition 4 of Lemma
3.31.

11. In Figure 3.23, ω(e j ′+1), ω(e j ′+2) ≤ 5 × 1
3 +

1
2 =

13
6 ≈ 2.167, due to the condition 2 of

Lemma 3.30.

12. In Figure 3.24a, ω(e j ′−2) ≤ 4 × 1
3 + 2 × 1

2 =
7
3 ≈ 2.333, due to the condition 4 of

Lemma 3.31.

13. In Figure 3.24b, ω(e j ′+1) ≤
(1

2 +
1
4 +

1
3
)
+

(
2 × 1

2 +
1
3
)
= 29

12 ≈ 2.417, due to the
condition 5 of Lemma 3.31.

14. In Figure 3.25a, ω(e j ′), ω(e j ′+2) ≤
(1

2 +
1
3 +

1
4
)
+

(1
2 + 2 × 1

3
)
= 9

4 = 2.25, due to the
condition 2 of Lemma 3.30;

ω(e j ′+1) ≤
(1

3 +
1
4 +

1
3
)
+

(1
2 + 2 × 1

3
)
= 25

12 ≈ 2.083, due to the condition 2 of Lemma
3.30.

15. In Figure 3.25b, ω(e j ′), ω(ei+2) ≤
(1

2 +
1
3 +

1
4
)
+

(1
2 + 2 × 1

3
)
= 9

4 = 2.25, due to the
condition 2 of Lemma 3.30;

ω(e j ′+1) ≤
(1

3 +
1
4 +

1
3
)
+

(1
2 + 2 × 1

3
)
= 25

12 ≈ 2.083, due to the condition 2 of Lemma
3.30.

16. In Figure 3.25c, ω(e j ′+1) ≤
(1

2 +
1
3 +

1
4
)
+

(1
2 + 2× 1

3
)
= 9

4 = 2.25, due to the condition
4 of Lemma 3.31.

17. In Figure 3.26, ω(e j ′) ≤
(1

2 +
1
3 +

1
5
)
+

(1
2 + 2 × 1

3
)
= 11

5 = 2.2, due to the condition 3
of Lemma 3.30;

ω(e j ′+1) ≤
(
2 × 1

3 +
1
5
)
+

(1
2 + 2 × 1

3
)
= 61

30 ≈ 2.033, due to the condition 3 of Lemma
3.30.

18. In Figure 3.28a, ω(e j ′) ≤ 5 × 1
3 +

1
2 =

13
6 ≈ 2.167, due to the condition 2 of Lemma

3.30;

ω(e j ′−1) ≤ 2
(1

2 + 2 × 1
3
)
= 7

3 ≈ 2.333, due to the condition 2 of Lemma 3.30;

ω(ei+2) ≤ 4 × 1
3 + 2 × 1

2 =
7
3 ≈ 2.333, due to the condition 3 of Lemma 3.31.

19. In Figure 3.29a, ω(e j ′−2) ≤ 3× 1
2 + 3× 1

3 =
5
2 = 2.5, due to the condition 4 of Lemma

3.31.

20. In Figure 3.29b, ω(e j ′+1) ≤ 2 × 1
2 + 3 × 1

3 = 2, due to the condition 4 of Lemma 3.31
and no edge of M∗ incident on j′ + 1.

109

Chapter 3. The Max-Duo Problem

21. In Figure 3.30a, ω(e j ′′), ω(e j ′′′) ≤ 1 + 3 × 1
2 =

5
2 = 2.5, simply due to no edge of M∗

incident on j′′ and e j ′′′ where j′′′ = j′′ + 1.

Note the maximum value among the above is 5
2 = 2.5. The lemma is proved. �

The next lemma is on the parallel edges excluded from Lemma 3.32.

Lemma 3.33. For each of following parallel edge e ∈ C(C∗(ei,�)) with ω(ei, j) ≥ 3, we have

1. for the edge e j ′+2 in Figures 3.18, 3.21a, 3.24b, ω(e j ′+2) ≤
29
12 ;

2. for the edge e j ′+2 in Figures 3.25c, 3.26, ω(e j ′+2) ≤
35
12 ;

3. for the edges ei−2, ei+2 in Figure 3.28b, either ω(ei−2), ω(ei+2) ≤
35
12 , or ω(ei−2) ≤

13
6

when ω(e j ′−1) = 3, or ω(ei+2) ≤
13
6 when ω(e j ′+1) = 3;

4. for the edges e j ′+1, e j ′+2 in Figure 3.28c, ω(e j ′+1) ≤
13
6 and ω(e j ′+2) ≤

7
3 ;

5. for the edges e j ′−1, e j ′−2, e j ′+1, e j ′+2 in Figure 3.28d, ω(e) ≤ 35
12 .

Proof. We first note that in items 2) and 5) we do not succeed in getting a better bound,
and thus quote the existing bounds. More specifically, for the edge e j ′+2 in Figure 3.25c,
ω(e j ′+2) ≤

35
12 is from Lemma 3.27; for the others, ω(e) ≤ 35

12 is from Lemma 3.28.

In the rest of the proof, we let e∗i1, j1 denote the edge of C∗(ei, j) such that |C(e∗i1, j1)| = 1.

1. The edge e j ′+2 in Figures 3.18, 3.21a, 3.24b.

One sees that for the edge e j ′+2 in Figure 3.24b, its ω(e j ′+2) is larger (or worst) when
Np(e j ′+2) = ∅ than when Np(e j ′+2) , ∅. We therefore consider the worse case when
Np(e j ′+2) = ∅; this way, all three edges can be discussed exactly the same (ignoring
the incidence information of i − 2 and j′ − 2 in M).

Assume the edge e j ′+2 is incident on h, i.e., eh, j ′+2 := e j ′+2. We consider the case
where |C∗(eh, j ′+2)| ≥ 5, as otherwise ω(e j ′+2) ≤ 1+ 1

2 +
1
2 +

1
4 <

29
12 . When there is an

edge e∗h1,`1
∈ C∗(eh, j ′+2) such that |C(e∗h1,`1

)| = 1, then either h1 = h+1 or `1 = j′+3. If
there is an edge e∗h of M∗ incident on h, then |C(e∗h)| ≥ 3, since otherwise the algorithm
LS would be able to expand M by swapping the four edges ei, j, eh−1, j ′+1, eh, j ′+2, ei+2

of C(C∗(ei,�)) by the five edges e∗h, e
∗
h1,`1

, e∗i1, j1, e
∗
i, j ′, e

∗
i+1, j ′+1; for the same reason, if

there is an edge e∗h−1 of M∗ incident on h − 1, then |C(e∗h−1)| ≥ 3. These together say
that the value combination of τ(eh, j ′+2 ← C∗(eh,�)) is impossible to have two values
≥ 1

2 . Therefore, if |C∗(eh, j ′+2)| = 5, we have ω(eh, j ′+2) ≤ 1 + 1
2 +

1
3 +

1
3 +

1
4 =

29
12 ,

due to Lemmas 3.14, 3.16, and |C(e∗i+1, j ′+1)| = 4 and |C(e∗i+2, j ′+2)| ≥ 3. When there

110

Chapter 3. The Max-Duo Problem

is no edge e∗ ∈ C∗(eh, j ′+2) such that |C(e∗)| = 1, if |C∗(eh, j ′+2)| = 5, then we have
ω(eh, j ′+2) ≤ 4 × 1

2 +
1
4 <

29
12 , due to |C(e

∗
i+1, j ′+1)| = 4.

We next consider |C∗(eh, j ′+2)| = 6 and C∗(eh, j ′+2) = {e∗i+1, j ′+1, e∗i+2, j ′+2, e∗i+3, j ′+3,
e∗h−1,`−1, e∗h,`, e∗h+1,`+1}, for some `. If there is an edge of C∗(eh, j ′+2) conflicts only one
edge of M , then this edge has to be e∗h+1,`+1. Then we have |C(e∗i+2, j ′+2)| ≥ 4, since
otherwise the algorithm LS would replace the four edges ei, j , ei+2, eh−1, j ′+1, eh, j ′+2

by the five edges e∗i1, j1, e
∗
i, j ′, e

∗
i+1, j ′+1, e

∗
i+2, j ′+2, e

∗
h+1,`+1 to expand M , a contradiction.

For a similar reason, we have |C(e∗h,`)| ≥ 3 and then |C(e∗h−1,`−1)| ≥ 4. It follows
that |C(e∗i+3, j ′+3)| ≥ 3 and |C(e∗h,`)| = 3. Therefore, we have ω(eh, j ′+2) ≤

(
2 ×

1
4 +

1
3
)
+

(
1 + 1

3 +
1
4
)
= 29

12 . When there is no edge of C∗(eh, j ′+2) conflicts only
one edge of M , since we cannot have both |C(e∗h,`)| = |C(e

∗
h−1,`−1)| = 2, we have

ω(eh, j ′+2) ≤
(1

4 +
1
3 +

1
2
)
+

(
2 × 1

2 +
1
3
)
= 29

12 .

Note that in the above proof we did not use the incidence information of i−2 and j′−2
in M . In summary, we have ω(e j ′+2) ≤

29
12 ≈ 2.417 in Figures 3.18, 3.21a, 3.24b.

3. The edges ei−2 and ei+2 in Figure 3.28b, which can be discussed exactly the same.

Recall that there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1.

From Lemma 3.28, we know that when ω(e j ′−1) = 3, ei−2 has to be a parallel edge of
M; if ei−2 is a singleton then ω(ei−2) ≤

35
12 , and if ω(e j ′−1) < 3, then ω(e j ′−1) ≤

35
12 .

We consider in the following ω(e j ′−1) = 3.

Assume the edge e j ′−1 is incident on h′, i.e., eh′, j ′−1 := e j ′−1. Thus we have
|C(e∗i−2, j ′−2)| = 3 (that is, no edge of M incident on j′ − 3), |C(C∗(e�, j ′−1))| = 5,
and there is an edge e∗h′1, j ′1

∈ C∗(eh′,�) such that |C(e∗h′1, j ′1)| = 1.

Assume the edge ei−2 is incident on `, i.e., ei−2,` := ei−2. We observe first that if there
is an edge e∗

`
of M∗ incident on `, then |C(e∗

`
)| ≥ 3, since otherwise the algorithm

LS would be able to expand M by swapping the five edges of C(C∗(e�, j ′−1)) by six
edges including e∗

`
; for the same reason, if there is an edge e∗

`−1 of M∗ incident on
` − 1, then |C(e∗

`−1)| ≥ 3; if there is an edge e∗i−3 = e∗i−3, j ′−3 of M∗ incident on i − 3,
then |C(e∗i−3)| ≥ 3. This says that the value combination of τ(ei−2,` ← C∗(ei−2,`)) is
impossible to have two values ≥ 1

2 .

If there is an edge of C∗(ei−2,`) conflicting only one edge of M , then this edge
has to be e∗

`+1. In this case, the algorithm LS would replace the five edges of
C(C∗(e�, j ′−1)) by the edges e∗

`+1, e
∗
h′1, j

′
1
, e∗i1, j1 and the three edges of C∗(e�, j ′−1) to expand

M , a contradiction. Therefore, there is no edge of C∗(ei−2,`) conflicting only one edge
of M . It follows that if |C∗(ei−2,`)| ≤ 5, we have ω(ei−2,`) ≤

1
2 + 4 × 1

3 =
11
6 .

111

Chapter 3. The Max-Duo Problem

We next assume C∗(ei−2,`) =
{
e∗i−1, j ′−1, e

∗
i−2, j ′−2, e

∗
i−3, j ′−3, e

∗
h−1,`−1, e

∗
h,`, e

∗
h+1,`+1}, for

some h. Note that every one of e∗i−3, j ′−3, e
∗
h−1,`−1, e

∗
h,` conflicts both edges ei−3,`−1

and ei−2,`. If there is one of them conflicting only these two edges of M , then
the five edges of C(C∗(e�, j ′−1)) can be replaced by six edges to expand M . It thus
follows that all three |C(e∗i−3, j ′−3)|, |C(e

∗
h−1,`−1)|, |C(e

∗
h,`)| ≥ 3; and subsequently

ω(ei−2,`) ≤ 5 × 1
3 +

1
2 =

13
6 ≈ 2.167.

In summary, we have for ei−2 in Figure 3.28b: if ω(e j ′−1) ≤
35
12 then ω(ei−2) ≤

35
12 ;

if ω(e j ′−1) = 3 then ω(ei−2) ≤
13
6 . Similarly, we have for ei+2 in Figure 3.28b: if

ω(e j ′+1) ≤
35
12 then ω(ei+2) ≤

35
12 ; if ω(e j ′+1) = 3 then ω(ei+2) ≤

13
6 .

4.1. The edge e j ′+1 in Figure 3.28c.

Recall that there is an edge e∗i1, j1 ∈ C∗(e�, j) such that |C(e∗i1, j1)| = 1.

From Lemma 3.28, we know that if ω(e j ′−1) < 3, then ω(e j ′−1) ≤
35
12 . We consider

in the following ω(e j ′−1) = 3. Assume the edge e j ′−1 is incident on h′, i.e., eh′, j ′−1 :=
e j ′−1. From ω(e j ′−1) = 3, there is an edge e∗h′1, j ′1

∈ C∗(eh′,�) such that |C(e∗h′1, j ′1)| = 1.

Assume the edge e j ′+1 is incident on h, i.e., eh, j ′+1 := e j ′+1. We observe first that
if there is an edge e∗h of M∗ incident on h, then |C(e∗h)| ≥ 3, since otherwise the
algorithmLS would be able to expand M by swapping the five edges ofC(C∗(ei,�)) by
six edges including e∗h; for the same reason, if there is an edge e∗h+1 of M∗ incident on
h+1, then |C(e∗h+1)| ≥ 3. This says that the value combination of τ(eh, j ′+2 ← C∗(eh,�))

is impossible to have two values ≥ 1
2 .

If there is an edge of C∗(eh, j ′+1) conflicting only one edge of M , then this edge has to
be e∗h−1. In this case, the algorithm LS would replace the five edges of C(C∗(ei,�)) by
the edges e∗h−1, e

∗
h′1, j

′
1
, e∗i1, j1 and the three edges of C∗(ei,�) to expand M , a contradiction.

Therefore, there is no edge of C∗(eh, j ′+1) conflicting only one edge of M . It follows
that if |C∗(eh, j ′+1)| ≤ 5, we have ω(eh, j ′+1) ≤

1
2 +

1
3 +

1
2 +

1
3 +

1
3 = 2.

We next assume C∗(eh, j ′+1) =
{
e∗h−1,`−1, e

∗
h,`, e

∗
h+1,`+1, e

∗
i, j ′, e

∗
i+1, j ′+1, e

∗
i+2, j ′+2}, for some

`. Note that every one of e∗i+2, j ′+2, e
∗
h,`, e

∗
h+1,`+1 conflicts both edges eh, j ′+1 and eh+1, j ′+2.

If there is one of them conflicting only these two edges of M , then the five edges of
C(C∗(ei,�)) can be replaced by six edges to expand M . It thus follows that all three
|C(e∗i+2, j ′+2)|, |C(e

∗
h,`)|, |C(e

∗
h+1,`+1)| ≥ 3; and subsequently ω(eh, j ′+1) ≤ 5 × 1

3 +
1
2 =

13
6 ≈ 2.167.

From Lemma 3.28, we also know that if ω(ei−2) < 3, then ω(ei−2) ≤
35
12 . We

consider ω(ei−2) = 3, which implies that there is an edge e∗h′1, j ′1
∈ C∗(ei−2) such that

|C(e∗h′1, j ′1
)| = 1. It follows by the same argument as in the above that ω(e j ′+1) ≤

13
6 .

112

Chapter 3. The Max-Duo Problem

In summary, we have for e j ′+1 in Figure 3.28c: if both ω(e j ′−1), ω(ei−2) ≤
35
12 then

ω(e j ′+1) ≤
35
12 too; otherwise, ω(e j ′+1) ≤

13
6 .

4.2. The edge e j ′+2 in Figure 3.28c.

The argument here is the same as in the last item (4.1) to consider ω(e j ′−1) = 3.

Assume the edge e j ′+2 is incident on h, i.e., eh, j ′+2 := e j ′+2.

We observe first, for the same reasons, that if there is an edge e∗h of M∗ incident on h,
then |C(e∗h)| ≥ 3; if there is an edge e∗h+1 of M∗ incident on h + 1, then |C(e∗h+1)| ≥ 3;
there is no edge of C∗(eh, j ′+2) conflicting only one edge of M; if there is an edge
e∗j ′+2 of M∗ incident on j′ + 2, then |C(e∗j ′+2)| ≥ 2; if there is an edge e∗j ′+3 of M∗

incident on j′ + 3, then |C(e∗j ′+3)| ≥ 2. These together say that the value combination
of τ(eh, j ′+2 ← C∗(eh, j ′+2)) is impossible to have a value 1, and it is impossible to have
three values ≥ 1

2 . It follows that ω(eh, j ′+2) ≤ 2 × 1
2 + 4 × 1

3 =
7
3 ≈ 2.333.

In summary, we have for e j ′+2 in Figure 3.28c: if both ω(e j ′−1), ω(ei−2) ≤
35
12 then

ω(e j ′+2) ≤
35
12 too; otherwise, ω(e j ′+1) ≤

7
3 .

This finishes the proof of the lemma. �

Lemma 3.18 states the 12 possible value combinations of τ(ei, j ← C∗(ei,�))withω(ei, j) ≥ 3,
which are

{
1, 1

2,
1
2
}
,
{
1, 1

2,
1
3
}
,
{
1, 1

2,
1
4
}
,
{
1, 1

3,
1
3
}
,
{ 1

2,
1
2,

1
3
}
,
{ 1

2,
1
2,

1
4
}
,
{ 1

2,
1
3,

1
3
}
,
{ 1

2,
1
3,

1
4
}
,{ 1

2,
1
3,

1
5
}
,
{ 1

2,
1
4,

1
4
}
,
{ 1

3,
1
3,

1
3
}
, and

{ 1
2,

1
2, 0

}
. We next count the minimum number of known-

to-be parallel edges of M in C(C∗(ei,�)) and use Lemmas 3.32 and 3.33 to upper bound their
ω(·) values respectively, for each combination.

1.
{
1, 1

2,
1
2
}
: there are at least 2 parallel edges of M , each with ω(·) ≤ 5

2 = 2.5 (by
Lemma 3.32);

2.
{
1, 1

2,
1
3
}
: there is at least 1 parallel edge of M , with ω(·) ≤ 5

2 = 2.5 (by Lemma 3.32);

3.
{
1, 1

2,
1
4
}
: there are at least 2 parallel edges of M , each with ω(·) ≤ 29

12 ≈ 2.417 (by
Lemmas 3.32, 3.33);

4.
{
1, 1

3,
1
3
}
: no parallel edge;

5.
{ 1

2,
1
2,

1
3
}
: there are at least 2 parallel edges of M , each with ω(·) ≤ 5

2 = 2.5 (by
Lemma 3.32);

6.
{ 1

2,
1
2,

1
4
}
: there are at least 2 parallel edges of M , each with ω(·) ≤ 29

12 ≈ 2.417 (by
Lemmas 3.32, 3.33);

113

Chapter 3. The Max-Duo Problem

7.
{ 1

2,
1
3,

1
3
}
: there is at least 1 parallel edge of M , with ω(·) ≤ 7

3 ≈ 2.333 (by
Lemma 3.32);

8.
{ 1

2,
1
3,

1
4
}
: there are three possible cases,

(a) there is at least 1 parallel edge of M with ω(·) ≤ 7
3 ≈ 2.333 (by Lemma 3.32), or

(b) there are at least 2 parallel edges of M , each with ω(·) ≤ 29
12 ≈ 2.417 (by

Lemmas 3.32, 3.33), or

(c) there are at least 2 parallel edges of M , one with ω(·) ≤ 9
4 = 2.25 and the other

with ω(·) ≤ 35
12 ≈ 2.917 (by Lemmas 3.32, 3.33);

9.
{ 1

2,
1
3,

1
5
}
: there are at least 2 parallel edges of M , each with ω(·) ≤ 11

5 = 2.2 (by
Lemma 3.32);

10.
{ 1

2,
1
4,

1
4
}
: no parallel edge;

11.
{ 1

3,
1
3,

1
3
}
: there are five possible cases,

(a) there is no singleton edge other than ei, j with ω(·) ≥ 3, no parallel edge;

(b) there is no singleton edge other than ei, j with ω(·) ≥ 3, but there is at least 1
parallel edge of M with ω(·) ≤ 35

12 ≈ 2.917 (by Lemmas 3.32, 3.33),

(c) there is no singleton edge other than ei, j with ω(·) ≥ 3, but there are at least 2
parallel edges of M , each with ω(·) ≤ 35

12 ≈ 2.917 (by Lemmas 3.32, 3.33),

(d) there is one singleton edge other than ei, j with ω(·) = 3, accompanied by at least
1 parallel edge of M with ω(·) ≤ 13

6 ≈ 2.167 (by Lemma 3.33),

(e) there is one singleton edge other than ei, j with ω(·) = 3, accompanied by at
least 2 parallel edges of M , one with ω(·) ≤ 13

6 ≈ 2.167 and the other with
ω(·) ≤ 7

3 ≈ 2.333 (by Lemma 3.33);

12.
{ 1

2,
1
2, 0

}
: no parallel edge.

Lemma 3.17 states the 8 possible value combinations of τ(ei, j ← C∗(ei, j)) with ω(ei, j) ≥ 3,
which are

{
1, 1

2,
1
2,

1
2,

1
2,

1
3
}
,
{
1, 1

2,
1
2,

1
2,

1
2,

1
4
}
,
{
1, 1

2,
1
2,

1
2,

1
3,

1
3
}
,
{
1, 1

2,
1
2,

1
2,

1
3,

1
4
}
,
{
1, 1

2,
1
2,

1
2,

1
3,

1
5
}
,{

1, 1
2,

1
2,

1
2,

1
4,

1
4
}
,

{
1, 1

2,
1
2,

1
3,

1
3,

1
3
}
, and

{
1, 1

2,
1
2,

1
2,

1
2, 0

}
. These combinations give rise to

ω(ei, j) =
10
3 ,

13
4 ,

19
6 ,

37
12 ,

91
30 , 3, 3 and 3 respectively. Based on the above list, we conclude the

minimum number of known-to-be parallel edges of M in C(C∗(ei, j)) for each combination,
using the cut-off upper bound 2.5 on their ω(·) values, as follows.

1.
{
1, 1

2,
1
2,

1
2,

1
2,

1
3
}
(ω(ei, j) =

10
3): there are at least 4 parallel edges of M;

2.
{
1, 1

2,
1
2,

1
2,

1
2,

1
4
}
(ω(ei, j) =

13
4): there are at least 4 parallel edges of M;

3.
{
1, 1

2,
1
2,

1
2,

1
3,

1
3
}
(ω(ei, j) =

19
6): there are at least 3 parallel edges of M;

114

Chapter 3. The Max-Duo Problem

4.
{
1, 1

2,
1
2,

1
2,

1
3,

1
4
}
(ω(ei, j) =

37
12): there are at least 3 parallel edges of M;

5.
{
1, 1

2,
1
2,

1
2,

1
3,

1
5
}
(ω(ei, j) =

91
30): there are at least 4 parallel edges of M;

6.
{
1, 1

2,
1
2,

1
2,

1
4,

1
4
}
(ω(ei, j) = 3): there are at least 2 parallel edges of M;

7.
{
1, 1

2,
1
2,

1
3,

1
3,

1
3
}
(ω(ei, j) = 3): there are two possible cases,

(a) there is no singleton edge other than ei, j with ω(·) ≥ 3, but there are at least 2
parallel edges of M;

(b) there is one singleton edge other than ei, j with ω(·) = 3, accompanied by at least
3 parallel edges of M;

8.
{
1, 1

2,
1
2,

1
2,

1
2, 0

}
(ω(ei, j) = 3): there are at least 2 parallel edges of M .

We conclude this section with the following lemma.

Lemma 3.34. Every edge ei, j ∈ M with ω(ei, j) ≥ 3 must be a singleton, and ω(ei, j) ∈
{ 10

3 ,
13
4 ,

19
6 ,

37
12 ,

91
30, 3

}
. Furthermore,

1. the existence of an edge ei, j ∈ M with ω(ei, j) =
10
3 or 13

4 or 91
30 is accompanied with at

least 4 parallel edges of M each with ω(·) ≤ 2.5;

2. the existence of an edge ei, j ∈ M with ω(ei, j) =
19
6 or 37

12 is accompanied with at least
3 parallel edges of M each with ω(·) ≤ 2.5;

3. the existence of an edge ei, j ∈ M with ω(ei, j) = 3 is accompanied with at least 1.5
parallel edges of M each with ω(·) ≤ 2.5.

Each of these accompanying parallel edges must belong to eitherC(C∗(ei,�))with |C∗(ei,�)| =

3, or C(C∗(e�, j)) with |C∗(e�, j)| = 3, for some ei, j .

3.4.2.7 An upper bound on the average value of ω(e)

Let M≥3 be the subset of all the edges of M with ω(·) ≥ 3, and let ns = |M≥3 |. Let P denote
the subset of all the accompanying parallel edges of M determined in Lemma 3.34, and let
np = |P |. From Lemma 3.23, every edge of M≥3 is a singleton, and thus M≥3 ∩ P = ∅.

Lemma3.35. Each edge of P belongs toC(C∗(ei, j)) for atmost four distinct edges ei, j ∈ M≥3.

Proof. Consider an edge eh,` ∈ P and assume that the edge eh+1,`+1 is also in M .

Consider the vertex dB
`
on which eh,` is incident; let e∗

`−2, e
∗
`−1, e

∗
`
, e∗
`+1, e

∗
`+2 be the edge

of M∗ incident on the vertex dB
`−2, dB

`−1, dB
`
, dB

`+1, dB
`+2, respectively, if such an edge

115

Chapter 3. The Max-Duo Problem

exists. Clearly, for any edge ei, j ∈ M≥3, if C∗(ei, j) does not contain any of the five
edges e∗

`−2, e
∗
`−1, e

∗
`
, e∗
`+1, e

∗
`+2, then eh,` < C(C∗(ei, j)) (unless eh,` ∈ C(C∗(ei, j)) through the

symmetric discussion using the vertex dA
h). We distinguish two cases whereC∗(ei,�) contains

one of the five edges and C∗(e�, j) contains one of the five edges, respectively.

When C∗(ei,�) contains one of the five edges e∗
`−2, e

∗
`−1, e

∗
`
, e∗
`+1, e

∗
`+2, we see from all the 27

configurations of C(C∗(ei,�)) and Lemma 3.28 that neither of the edges e∗
`
, e∗
`+1, if exists, can

be incident on the vertex dA
i . It follows that the vertex dA

i is an end of one of the three edges
e∗
`−2, e

∗
`−1, e

∗
`+2.

When C∗(e�, j) contains one of the five edges e∗
`−2, e

∗
`−1, e

∗
`
, e∗
`+1, e

∗
`+2, we know that j = ` − 2

due to the fact that the edge ei, j is a singleton edge of M .

Since no two edges of M≥3 are adjacent to a common edge of M∗, we conclude that there
are at most three distinct edges ei, j ∈ M≥3 such that eh,` ∈ C(C∗(ei, j)) through the vertex
dB
`
. Furthermore, if there are such three distinct edges, then one is incident on vB

`−2, one is
adjacent to e∗

`−1 (but not incident on v
B
`−1), and the other is adjacent to e∗

`+2 (but not incident
on vB

`+2); the five edges e∗
`−2, e

∗
`−1, e

∗
`
, e∗
`+1, e

∗
`+2 all exist, so do the extra two edges e∗

`−3 and
e∗
`+3, and these seven edges of M∗ are consecutively parallel.

The three edges e∗
`−1, e

∗
`
, e∗
`+1 of M∗ are conflicting with only the three edges of M≥3 and

the two parallel edges eh,`, eh+1,`+1 of M; and for each of these three edges of M≥3, there is
another distinct edge of M∗ conflicting with only this edge of M≥3. In other words, there
are six edges of M∗ conflicting with only the three edges of M≥3 and the two parallel edges
eh,`, eh+1,`+1 of M , a contradiction as the algorithm LS would swap them to expand M .

This proves that there are at most two distinct edges ei, j ∈ M≥3 such that eh,` ∈ C(C∗(ei, j))

through the vertex dB
`
. Symmetrically, we can prove that there are at most two distinct edges

ei, j ∈ M≥3 such that eh,` ∈ C(C∗(ei, j)) through the vertex dA
h . Therefore, there are at most

four distinct edges ei, j ∈ M≥3 such that eh,` ∈ C(C∗(ei, j)). �

Using Lemma 3.34, assume there is a fraction of xns edges of M≥3 each accompanied with
4 parallel edges of P; there is a fraction of yns edges of M≥3 each accompanied with 3
parallel edges of P; and there is a fraction of (1 − x − y)ns edges of M≥3 each accompanied
with 1.5 parallel edges of P, where x ≥ 0, y ≥ 0, 1− x − y ≥ 0. From Lemma 3.35, we have

4np ≥ 4xns + 3yns + 1.5(1 − x − y)ns = (1.5 + 2.5x + 1.5y)ns,

116

Chapter 3. The Max-Duo Problem

which gives
np

ns
≥

1.5 + 2.5x + 1.5y
4

, (3.7)

and the average amount of tokens for all the edges of M≥3 ∪ P is, using Equation 3.7,

ω(e) ≤
2.5np +

10
3 xns +

19
6 yns + 3(1 − x − y)ns

np + ns
≤

5
2
+

12 + 8x
33 + 15x

≤
35
12
. (3.8)

Since every other edge of M has its ω(·) ≤ 35
12 too (see Lemma 3.28, proved in Sec-

tion 3.4.2.5). Therefore, the average amount of tokens for all the edges of M is no greater
than 35

12 . We have thus proved the following theorem.

Theorem 3.36. The algorithm LS is an O(n13)-time 35
12 -approximation for both the MCBM

and the Max-Duo problems.

3.4.3 Lower bounds on the locality gap for the algorithm LS

In this section, we present two instances of theMCBM andMax-Duo problems, respectively,
to show that the approximation ratio of the algorithm LS has a lower bound of 13

6 > 2.166
for MCBM and a lower bound of 5

3 > 1.666 for Max-Duo.

3.4.3.1 An instance of MCBM

For theMCBM problem, consider the bipartite graph G = (V A,V B, E) shown in Figure 3.31,
where V A = {1, 2, . . . , 26}, V B = {1′, 2′, . . . , 26′}, and E is the set of all the edges in solid
and dashed lines. One can see that the set of 26 consecutive parallel edges (in dashed lines)
is an optimal solution M∗ to the MCBM problem on G. Let M be the maximal compatible
matching shown as solid lines in Figure 3.31, and assume it is the starting matching for the
algorithm LS on G.

117

Chapter 3. The Max-Duo Problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′12′13′14′15′16′

17 18 19 20 21 22 23 24 25 26

17′18′ 19′20′21′22′23′ 24′25′ 26′

Figure 3.31: A bipartite graph G = (V A,VB, E), where V A = {1, 2, . . . , 26}, VB =

{1′, 2′, . . . , 26′}, and E = M ∪ M∗. M consists of the 12 edges in solid lines and it is a
maximal compatible matching in G; M∗ consists of the 26 edges in dashed lines and it is
an optimal compatible matching to the MCBM problem on G.

Lemma 3.37. M cannot be further improved by the algorithm LS due to the following
reasons:

1. M is a maximal compatible matching in G;

2. all the edges of M are parallel edges;

3. for any e ∈ M , there is at most one edge of M∗ compatible with all the edges in
M − {e};

4. for any 2 edges e1, e2 ∈ M , there are at most two edges of M∗ compatible with all the
edges in M − {e1, e2};

5. for any 3 edges e1, e2, e3 ∈ M , there are at most three edges in M∗ compatible with
all the edges in M − {e1, e2, e3};

6. for any 4 edges e1, . . . , e4 ∈ M , there are at most four edges in M∗ compatible with
all the edges in M − {e1, . . . , e4};

7. for any 5 edges e1, . . . , e5 ∈ M , there are at most five edges in M∗ compatible with all
the edges in M − {e1, . . . , e5}.

Proof. The first two items are trivial. We note that the second item implies that M cannot
be further improved by the algorithm using the operation Reduce-5-By-5. We next show
that M cannot be further improved by the algorithm using the operation Replace-5-By-6.

We examine whether some edges of M can be swapped out for more edges from M∗

by Replace-5-By-6. For ease of presentation, we partition M∗ into 3 subsets M∗1 =

{(1, 1′), (26, 26′)}, M∗2 = {(2, 2′), (25, 25′)}, and M∗3 = {(3, 3′), (4, 4′), . . . , (24, 24′)} (in
Figure 3.31, their edges are colored red, blue, black, respectively). We have the following
observations.

118

Chapter 3. The Max-Duo Problem

Observation 3.5. To swap for an edge of M∗1, a unique edge of M has to be swap out. In
details, (2, 8′) needs to be swapped out for (1, 1′), and (19, 25′) needs to be swapped out for
(26, 26′).

Observation 3.6. To swap for an edge of M∗2, a unique pair of parallel edges of M has to
be swap out. In details, (2, 8′) and (3, 9′) need to be swapped out for (2, 2′), and (19, 25′)
and (18, 24′) need to be swapped out for (25, 25′).

Observation 3.7. To swap for an edge of M∗3, a unique triplet of edges of M has to be
swap out. In details, when i = 3 (mod 4), ei−1, ei, ei+1′ need to be swapped out for (i, i′);
when i = 0 (mod 4), ei−1, ei′, ei+1′ need to be swapped out for (i, i′); when i = 1 (mod 4),
ei−1′, ei′, ei+1 need to be swapped out for (i, i′); when i = 2 (mod 4), ei−1′, ei, ei+1 need to be
swapped out for (i, i′).

The Observations 3.5, 3.6, 3.7 prove trivially the items 3–5 of the lemma.

To prove the item 6, we next see what a subset of four edges of M can do. If these four edges
are able to swap in one edge of M∗3, then by Observation 3.7 this edge of M∗3 actually
requires three out of the four edges. Note that these particular three edges are not able to
swap for any other edge of M∗3. If they contain a unique pair of parallel edges of M in
Observation 3.6, then they can swap in three edges one from each of M∗1, M∗2, M∗3, and
the fourth edge either forms with two of them to form another triplet to swap in an other
edge of M∗3, or it is able to swap in the other edge of M∗1. If these particular three edges
do not contain a unique pair of parallel edges of M in Observation 3.6, then they can swap
in only the edge of M∗3, and the fourth edge can either form with one of them to form a
unique pair of parallel edges of M in Observation 3.6 to swap in two edges one from each
of M∗1, M∗2, and/or form with two of them to form another triplet to swap in an other edge
of M∗3, or it is able to swap in the other edge of M∗1. Therefore, these four edges can swap
in the best case four edges (1, 1′), (2, 2′), (3, 3′) (or (26, 26′), (25, 25′), (24, 24′), respectively)
and another edge of M∗1 ∪M∗3. If these four edges are not able to swap in any edge of M∗3,
then they can swap in the best case four edges of M∗1 ∪ M∗2.

To prove the item 7, we next see what a subset of five edges of M can do. If these five
edges are able to swap in two edges of M∗3, then by Observation 3.7 these two edges of M∗3

actually require at least four out of the five edges. Note that these particular four edges are
only able to swap for four edges of M∗, including the above two edges of M∗3 and the other
two edges must be either (1, 1′), (2, 2′) or (26, 26′), (25, 25′). Then the fifth edge either forms
with two of these particular four edges to form another triplet to swap in an other edge of

119

Chapter 3. The Max-Duo Problem

M∗3, or it is able to swap in the other edge of M∗1. If these five edges are not able to swap
in at least two edges of M∗3, then they can swap in the best case one edge of M∗3 and four
edges of M∗1 ∪ M∗2. �

Theorem 3.38. There is a lower bound of 13
6 > 2.166 on the locality gap of the algorithm

LS for the MCBM problem.

Proof. By Lemma 3.37, if the matching M is fed as the starting matching to the algorithm
LS, then the algorithm terminates without modifying it. Note that we have |M | = 12 and
|M∗ | = 26, we conclude that the algorithm can not do better than 13

6 in the worst case, which
proves Table 3.38. �

Remark 3.39. Using our amortized analysis, letC(e∗) be the subset of edges of M conflicting
with the edge e∗ ∈ M∗. Then in the above instance, we have |C(e∗)| = 1, 2, 3 for e∗ ∈

M∗1, M∗2, M∗3, respectively. The maximum total amount of tokens received by the edges of
M is achieved at (2, 8′), whereω((2, 8′)) = 1+ 1

2+4× 1
3 =

17
6 ≈ 2.833. This maximum is quite

close to the approximation ratio 35
12 ≈ 2.917 of the algorithmLS, which is also themaximum

possible ω(·) value for the parallel edges of M . (Recall that 35
12 = 1 + 2 × 1

2 + 2 × 1
3 +

1
4 .)

Remark 3.40. We may have variants of the algorithm LS by substituting the operation
Replace-5-By-6 with the similarly defined operation Replace-ρ-By-(ρ + 1), for any ρ ≥ 1
(with or without the operation Reduce-5-By-6).

For ρ = 1, 2, 3, 4, we can construct similar instances to show the corresponding lower bounds
on the locality gap for the variants on the MCBM problem.

• ρ = 4.

We can construct a similar instance G = (V A,V B, E), except that |V A | = |V B | = 22
and |M | = 10. The performance ratio of the algorithm is 11

5 = 2.2.

• ρ = 3.

We can construct two different instances for G = (V A,V B, E). One is similar to the
previous two, except that |V A | = |V B | = 18 and |M | = 8. In the other we have
|V A | = |V B | = 9 and |M | = 4, such that the four edges of M are consecutively parallel.
The performance ratio of the algorithm on both instances is 9

4 = 2.25.

• ρ = 2.

We can construct an instance similar to the second instance when ρ = 3, which is a
graph G = (V A,V B, E) with |V A | = |V B | = 8 and |M | = 3, such that the three edges
of M are consecutively parallel. The performance ratio of the algorithm is 8

3 ≈ 2.667.

120

Chapter 3. The Max-Duo Problem

• ρ = 1.

We can construct a similar graph G = (V A,V B, E) with |V A | = |V B | = 7 and |M | = 2,
such that the two edges of M are parallel. The performance ratio of the algorithm is
7
2 = 3.5. This is essentially the 3.5-approximation by Boria et al. [9], and the instance
shows that the performance ratio is tight.

3.4.3.2 An instance of Max-Duo

For the Max-Duo problem, consider an instance with two identical length-11 strings
A = B = (a, b, c, d, e, f , b, c, d, e, g). We construct the corresponding bipartite graph G =

(V A,V B, E) (shown in Figure 3.32), where V A = {1, 2, . . . , 10} and V B = {1′, 2′, . . . , 10′}.
Since A = B, each pair of duos represented by the vertices i and i′ are the same, for
i = 1, 2, . . . , 10. Thus it is easy to see that there is an optimal solution M∗ to MCBM on
G, which consists of all the 10 edges in dashed lines shown in Figure 3.32. Let M be the
compatible matching consisting of the six edges in solid lines in Figure 3.32.

Figure 3.32: The corresponding bipartite graph G = (V A,VB, E) constructed from two
identical strings A = B = (a, b, c, d, e, f , b, c, d, e, g), where V A = {1, 2, . . . , 10}, VB =

{1′, 2′, . . . , 10′}, and E = M ∪ M∗. M consists of the six edges in solid lines and it is a
compatible matching in G; M∗ consists of the ten edges in dashed lines and it is an optimal
compatible matching to the MCBM problem on G.

Lemma 3.41. M cannot be further improved by the algorithm LS due to the following
reasons:

1. M is a local maximal compatible matching;

2. all edges of M are parallel edges;

3. for any e ∈ M , there is no edge in M∗ compatible with all the 5 edges in M − {e};

4. for any 2 edges e1, e2 ∈ M , there are at most 2 edges in M∗ compatible with all the 4
edges in M − {e1, e2};

121

Chapter 3. The Max-Duo Problem

5. for any 3 edges e1, e2, e3 ∈ M , there are at most 2 edges in M∗ compatible with all the
3 edges in M − {e1, e2, e3};

6. for any 4 edges e1, . . . , e4 ∈ M , there are at most 4 edges in M∗ compatible with both
of the 2 edges in M − {e1, . . . , e4};

7. for any 5 edges e1, . . . , e5 ∈ M , there are 4 edges in M∗ compatible with the only edge
in M − {e1, . . . , e5}.

Proof. The first three items are trivial. We note that the second item implies that M cannot
be further improved by the algorithm using the operation Reduce-5-By-5. We partition M

into three subsets M2 = {(2, 7′), (7, 2′)}, M3 = {(3, 8′), (8, 3′)}, and M4 = {(4, 9′), (9, 4′)}.

For any e ∈ M , we see that |C∗(e)| = 6, implying there are only 4 edges of M∗ compatible
with e; this proves the 7th observation.

For the two edges e1, e2 in the same part of the partition, we see that C∗(e1) = C∗(e2),
implying that if one of them is in M , then none of the six edges of C∗(e1) can be compatible
with it. (This proves again the item 3.) Also, we see that the edges (1, 1′), (6, 6′) are not
compatible with the edges and only these edges in M2; and the edges (10, 10′), (5, 5′) are not
compatible with the edges and only these edges in M4.

To prove the item 4, we see that when the two edges e1, e2 ∈ M are not in the same part,
then from the last paragraph there is no edge in M∗ compatible with all the 4 edges in
M − {e1, e2}; when the two edges e1, e2 ∈ M are in the same part, then either there are two
edges in M∗ compatible with all the 4 edges in M − {e1, e2}, if this part is M2 or M4, or
otherwise there is no edge in M∗ compatible with all the 4 edges in M − {e1, e2}.

For the item 5, any three edges e1, e2, e3 ∈ M cannot take up two separate parts, and therefore
there are at most 2 edges in M∗ compatible with all the 3 edges in M − {e1, e2, e3}.

For any 4 edges e1, . . . , e4 ∈ M , if they take up two parts, then there are exactly 4 edges of
M∗ compatible with the 2 edges in M − {e1, . . . , e4}, which belong to the same part; if they
do not take up two parts, then there are at most 2 edges of M∗ compatible with the 2 edges
in M − {e1, . . . , e4}. This proves the item 6, and completes the proof of the lemma. �

Theorem 3.42. There is a lower bound of 5
3 > 1.666 on the locality gap of the algorithm

LS for the Max-Duo problem.

Proof. By Lemma 3.41, if the matching M is fed as the starting matching to the algorithm
LS, then the algorithm terminates without modifying it. Note that we have |M | = 6 and

122

Chapter 3. The Max-Duo Problem

|M∗ | = 10, we conclude that the algorithm can not do better than 5
3 in the worst case, which

proves Chapter 3.42. �

3.5 Concluding remarks and possible future work

In this chapter, we examined the Max-Duo problem, the complement of the well studied
MCSP problem.

In Section 3.3, based on an existing linear reduction to the MIS problem [10, 46], we
presented a vertex-degree reduction technique for the 2-Max-Duo to reduce the maximum
degree of the constructed instance graph to 4. Along the way, we uncoveredmany interesting
structural properties of the constructed instance graph. This degree reduction enabled us
to adopt the state-of-the-art approximation algorithm for the MIS problem on low degree
graphs [7] to achieve a (1.4 + ε)-approximation for 2-Max-Duo, for any ε > 0.

It is worth mentioning that our vertex-degree reduction technique can be applied for k-Max-
Duo with k ≥ 3. In fact, we had worked out the details for k = 3, to reduce the maximum
degree of the constructed instance graph from 12 to 10, leading to a (2.6+ ε)-approximation
for 3-Max-Duo, for any ε > 0. Nevertheless, the (2.6 + ε)-approximation is superseded by
the (2 + ε)-approximation for the general Max-Duo [33].

In Section 3.4, motivated by an earlier local search algorithm, we presented an improved
algorithm LS for a more general MCBM problem, that uses one operation to increase the
cardinality of the solution and another novel operation to reduce the singleton edges in the
solution. The algorithm is iterative and has a time complexity O(n7), where n is the length
of the input strings. Through an amortized analysis, we were able to show that the proposed
algorithmLS has an approximation ratio of at most 35/12 < 2.917. Our result improves the
previous best 3.25-approximation for both problems, thus breaking the barrier of 3; but there
is a better (2+ε)-approximation [33] which appears about the same time as ours. The (2+ε)-
approximation is based on the same two design ideas while applies them in a different order
to first greedily select as many large-size consecutive parallel edges as possible, followed by
swapping procedure for increasing the matching size; its performance analysis is also done
by an amortization scheme, though different. We believe both approximation algorithms and
both performance analyses are interesting, and they together will provide better insights into
the Max-Duo problem, eventually leading to further improved approximation algorithms.

123

Chapter 3. The Max-Duo Problem

We also showed that there is a lower bound of 13/6 > 2.166 and 5/3 > 1.666 on the locality
gap of the algorithm LS for the MCBM and the Max-Duo problems, respectively. Our
construction method could be used to design instances to show a lower bound of 2 for the
(2 + ε)-approximation too.

For possible future work, it would be worthwhile to further investigate the 2-Max-Duo
problem to see whether the maximum degree can be further reduced to 3, by examining the
structural properties associated with the degree-4 vertices to see if all the degree-4 vertices
can be converted to vertices with maximum degree of 3. On the other hand, it is also
interesting to examine whether a better-than-1.4 approximation algorithm can be designed
directly for the MIS problem on those degree-4 graphs obtained at the end of the vertex
contracting process. For the general Max-Duo problem, one direction would be to find
a technique other than the local search approach which may result in an approximation
guarantee of 2 or less.

124

Chapter 3. The Max-Duo Problem

Replace-ρ-by-(ρ + 1)(G, M)
1: for each subset X of M with |X | = ρ do . O(nρ) combinations of such X
2: find V0(X), E ′ = X ∪ C ′(X), and V(X) . E ′ can be found in O(n) time
3: for each subset U of V(X) with |U | = ρ + 1 do . O(1) combinations of such U
4: E ′← E ′− {edges with one endpoint in UA and the other in UB}
5: find all the maximal subsets of consecutive vertices in UA and UB . O(n)
6: if there is at least one subset of consecutive parallel edges incident on UA

i,h
and UB

j,` , for
∀UA

i,h
⊆ UA and ∀UB

j,` ⊆ UB, respectively then
7: for every pair of UA

i,h
and UB

j,` do . O(1) pairs in total
8: find all possible subsets of consecutive parallel edges in E ′ incident onUA

i,h
∪UB

j,`
. at most two possible subsets

9: X ′
i,h;j,` ← E ′

i, j′,h
∪ E ′i′, j,` if i′ = i + h and j ′ = j − h

10: X ′
j,`;i,h ← E ′i′, j,` ∪ E ′

i, j′,h
if i′ = i − ` and j ′ = j + `

11: end for
12: Y ← {X ′

i,h;j,`, X ′
j,`;i,h |U

A
i,h
⊆ UA,UB

j,` ⊆ UB} . |Y | is in O(1)
13: for each subset Y ′ ⊆ Y do . 2 |Y | subsets, which is in O(1)
14: if Y ′ = ∅ then
15: X ′← FindCompatibleEdgesAtU(E ′,U) . O(n)
16: if X ′ , ∅ then
17: M ← (M − X) ∪ X ′

18: break
19: end if
20: else
21: X ′2 ← the union of all X ′·, ·;·, · in Y ′ . |X ′2 | is in O(1)
22: if the edges in X ′2 are pairwise compatible then . checked in O(1)
23: E ′1 ← E ′ −

(
X ′2 ∪ C(X ′2)

)
24: V ′1 ← the union of all the endpoints of edges in E ′1
25: U1 ← U ∩ V ′1
26: X ′1 ← FindCompatibleEdgesAtU(E ′1,U1) . O(n)
27: if X ′1 , ∅ then
28: X ′← X ′1 ∪ X ′2
29: M ← (M − X) ∪ X ′

30: break
31: end if
32: else
33: X ′← FindCompatibleEdgesAtU(E ′,U) . O(n)
34: if X ′ , ∅ then
35: M ← (M − X) ∪ X ′

36: break
37: end if
38: end if
39: end if
40: end for
41: end if
42: end for
43: end for
44: return M

Figure 3.14: A high-level description of the algorithm of expanding the current maximal
compatible matching by swapping ρ edges out for ρ + 1 compatible edges.

125

Chapter 4

The Path Partition Problem1

4.1 Introduction

Motivated by the data integrity of communication in wireless sensor networks and several
other applications, the k-path partition (k-PP) problem was first considered by Yan et
al. [76]. One can consider a broadcasting problem in data communication networks. Given
some information, by modeling a data communication network with a graph, broadcasting
is to transmit the information from some vertices to all the other vertices in the network only
through paths, that is, one vertex can only transmit the information to its adjacent vertices
through the edge connecting them. It requires one unit of time to transmit the information
from one vertex to another through an edge. The goal is to select the minimum number
of vertices such that the information can be transmitted from those selected vertices to all
the other vertices within a fixed number of time units. This is an application of the k-PP
problem, which can be formally defined as follows. Given a graph G = (V, E), the order of
a simple path in G is the number of vertices on the path and it is called a k-path if its order
is k. (The length of a k-path is k − 1, the number of edges thereon.) The k-PP problem is to
find a minimum collection of vertex-disjoint paths of order at most k such that every vertex
is on some path in the collection.

Clearly, the 2-PP problem is exactly the Maximum Matching problem, which is solvable
in O(m

√
n log(n2/m)/log n)-time [45], where n = |V | and m = |E |. For k ≥ 3, k-PP is

NP-hard [43]. (See Figure 4.1 for an instance with a solution for the 3-PP problem.)

We point out the key phrase “at most k” in the definition, that ensures the existence of a
feasible solution for any given graph; on the other hand, if one asks for a path partition
in which every path has an order exactly k, the problem is called Pk-partitioning and is

1This chapter is based on two papers [23, 24]. [24] is a work with Chen, Goebel, Lin, Su, and Zhang,
“An improved approximation algorithm for the minimum 3-path partition problem” which is published by the
Journal of Combinatorial Optimization (JOCO); [23] is a work with Chen, Goebel, Lin, Liu, Su, Tong, and
Zhang “A local search 4/3-approximation algorithm for the minimum 3-path partition problem” which is a
submission under review.

126

Chapter 4. The Path Partition Problem

Figure 4.1: An instance of 3-PP. The two 2-paths and the two 3-paths represented by edges
with red backgroud is a solution to 3-PP for this instance.

also NP-complete for any fixed constant k ≥ 3 [43], even on bipartite graphs of maximum
degree three [64]. To the best of our knowledge, there is no approximation algorithm with
proven performance for the general k-PP problem, except the trivial k-approximation using
all 1-paths. For 3-PP, Monnot and Toulouse [64] proposed a 3/2-approximation, based on
two maximum matchings.

The k-PP problem is a generalization to the Path Cover problem [41] (also called Path
Partition), which is to find a minimum collection of vertex-disjoint paths which together
cover all the vertices in G. Path Cover contains the Hamiltonian Path problem [43] as a
special case, and thus it is NP-hard and it is outside APX.

The k-PP problem is also closely related to the well-known set cover SC problem. Given
a collection of subsets C = {S1, S2, . . . , Sm} of a finite ground set U = {x1, x2, . . . , xn},
an element xi ∈ Sj is said to be covered by the subset Sj , and a set cover is a collection
of subsets which together cover all the elements of the ground set U. The SC problem
asks to find a minimum set cover. SC is one of the first proven NP-hard problems [43],
and is also one of the most studied optimization problems for the approximability [50]
and inapproximability [38, 67, 74]. The variant of SC in which every given subset has
size at most k is called k-SC, which is APX-complete and admits a 4/3-approximation for
k = 3 [35] and an (Hk −

196
390)-approximation for k ≥ 4 [61].

To see the connection between k-PP and k-SC, we may take the vertex set V of the given
graph as the universe, and an `-path with ` ≤ k as a subset, then the k-PP problem is the
same as asking for a special minimum set cover in which the subsets are mutually disjoint.
However, existing approximations for k-SC do not readily apply to k-PP. This is because in
a feasible set cover, an element of the ground set U could be covered by multiple subsets,
while in k-PP, every vertex is on exactly one path in a feasible solution. If one wants to
enforce the mutual disjointness requirement in the SC problem, then they can expand C to
include all the proper subsets of each given subset Sj ∈ C. But in an instance graph of k-PP,
not every subset of vertices on a path is traceable, and so such an expanding technique does

127

Chapter 4. The Path Partition Problem

not apply. In summary, k-PP and k-SC share some similarities, but none contains the other
as a special case.

For the 3-PP problem, the previous best result is a 3/2-approximation; for the 3-SC problem,
the currently best result is the 20+ years old 4/3-approximation. In this chapter, we propose
a 4/3-approximation for 3-PP, which coincidently meets the current best approximation
result for 3-SC.

We briefly review the previous 3/2-approximation for 3-PP by Monnot and Toulouse [64].
It first computes a maximummatching M∗ in the given G, then computes another maximum
matching between the edges of M∗ and the vertices exposed by M∗, which essentially
maximizes the number of 3-paths each is formed by attaching an isolated vertex to an edge
of M∗. It returns the achieved 3-path partition deduced from these two matchings and the
remaining isolated vertices. The running time of this algorithm is in O(nm), where n = |V |

and m = |E |.

Our 4/3-approximation algorithm for the 3-PP problem first computes a 3-path partition
with the least 1-paths in O(nm) time, and then it applies a local search scheme to repeatedly
search for an expected collection of 2- and 3-paths and replace it by a strictly smaller
replacement collection of new 2- and 3-paths. It is worth pointing out that the number of
1-paths in the 3-path partition computed in the first step is actually the minimum among all
k-path partitions, for any k ≥ 3. Thus this first step itself is already a k/2-approximation
for the k-PP problem. We prove its performance through a more complicated amortized
analysis.

The rest of this chapter is organized as follows. In Section 4.2, we present the local search
scheme, including the algorithm to compute a 3-path partition with the least 1-paths, and
the expected collections of 2- and 3-paths, along with the replacement collection of new 2-
and 3-paths. The performance analysis is presented in Section 4.3, where we also show that
the ratio 4/3 is tight for our algorithm. We conclude the chapter in Section 4.4, along with
some possible future work.

4.2 A local search approximation algorithm

Our 4/3-approximation algorithm for the 3-PP problem first computes a 3-path partition
with the least 1-paths, then with this 3-path partition, it repeatedly finds a certain collection
of 2- and 3-paths (called an expected collection) and replaces it by another collection of

128

Chapter 4. The Path Partition Problem

one less new 2- and 3-paths (called a replacement collection). We present in Section 4.2.1
the O(nm)-time algorithm that computes a 3-path partition with the least 1-paths. The
expected collections of 2- and 3-paths and the corresponding replacement collections are
presented in Section 4.3.2. The complete algorithm, denoted as Approx, is summarized in
Section 4.3.3.

4.2.1 Computing a 3-path partition with the least 1-paths

In a 3-path partition, a 1-path contains only one vertex and in the sequel it is often referred
to as a singleton of the 3-path partition.

In this section, we present an algorithm calledAlgorithm A for computing a 3-path partition
with the least 1-paths, and show that Algorithm A runs in O(nm) time in the given graph
G = (V, E), where n = |V | and m = |E |. We explain in the following the three steps in
Algorithm A, the first two of which constitute exactly the 3/2-approximation by Monnot
and Toulouse [64]. A high-level description of Algorithm A is depicted in Figure 4.3.

4.2.1.1 Step 1: computing a maximum matching

Recall that the running time of computing amaximummatching of the graphG = (V, E) is in
O(m
√

n log(n2/m)/log n)-time [45]. In the first step, we apply an O(m
√

n log(n2/m)/log n)-
time algorithm to find a maximum matching in G, denoted as M∗; let V0 denote the subset
of vertices exposed by M∗. If V0 = ∅, then we have achieved a 3-path partition without (and
thus the least) 1-paths, in which a 2-path one-to-one corresponds to an edge of M∗. In the
sequel we assume V0 is non-empty. The following two lemmas are trivial due to the edge
maximality of M∗.

Lemma 4.1. In the graph G = (V, E), all the vertices of V0 are pairwise non-adjacent to
each other; for any edge (u, v) ∈ M∗, if u is adjacent to a vertex x ∈ V0 and v is adjacent to
a vertex y ∈ V0, then x = y.

Lemma 4.2. In any 3-path partition for the graph G = (V, E), the total number of 2-paths
and 3-paths is at most |M∗ |.

Proof. Clearly, if there were more than |M∗ | vertex disjoint 2-paths and 3-paths in the graph
G, then selecting one edge per such path gives rise to a matching of size greater than |M∗ |,
contradicting the maximality of M∗. �

129

Chapter 4. The Path Partition Problem

4.2.1.2 Step 2: computing a second maximum matching

In the second step, we construct a bipartite graph G′ = (M∗,V0, E′) as follows:

1. each edge e = (u, v) ∈ M∗ is “shrunk” into a vertex denoted as e and the part containing
all these vertices is denoted as M∗;

2. each vertex of V0 remains as a vertex and the part containing these vertices is still
denoted as V0;

3. the vertices of M∗ (V0, respectively) are non-adjacent to each other;

4. a vertex e = (u, v) ∈ M∗ and a vertex v0 ∈ V0 are adjacent in G′ if and only if either
(u, v0) ∈ E or (v, v0) ∈ E or both, and the set of edges in G′ is denoted as E′.

The graph G′ can be constructed in O(m)-time, where m = |E | is the number of edges in
the graph G = (V, E). We then apply an O(m

√
n log(n2/m)/log n)-time algorithm to find

a maximum matching in G′, denoted as M1. For each edge ((u, v), v0) ∈ M1, we select the
edge (u, v0) if (u, v0) ∈ E or otherwise the edge (v, v0) into the edge set M2, which is a
matching in the graph G = (V, E). The following lemma is trivial due to the construction of
M1 and M2.

Lemma 4.3. In the graph G = (V, E), the subgraph Q = (V, M∗ ∪ M2) is a collection of
vertex disjoint 1-paths, 2-paths, and 3-paths; moreover, the total number of 2-paths and
3-paths is |M∗ |.

Let E∗ = M∗ ∪ M2 and Q = (V, E∗), which is the starting 3-path partition. Note that
the above two steps constitute the 3/2-approximation by Monnot and Toulouse [64], for
which the ratio 3/2 is claimed tight. In other words, our Algorithm A builds on the
3/2-approximation and uses its output 3-path partition Q as the starting point. In the next
subsection, we present the third step of Algorithm A to iteratively update both the edge
set E∗ and the 3-path partition Q, to maintain the total number of 2-paths and 3-paths in Q
and to minimize the number of 1-paths in Q. Therefore, the 3-path partition produced by
Algorithm A is at least as good as the solution by the 3/2-approximation.

4.2.1.3 Step 3: reducing 1-paths to the minimum

LetQ1 (Q2,Q3, respectively) denote the collection of 1-paths (2-paths, 3-paths, respectively)
in Q. The third step is iterative, and in every iteration we try to eliminate one singleton

130

Chapter 4. The Path Partition Problem

while maintaining the total number of 2-paths and 3-paths to be |M∗ |. That is, we have an
invariant that the total number of 2-paths and 3-paths in the 3-path partition Q is |M∗ |.

Clearly, if Q1 = ∅, then we are done with the third step. We thus assume Q1 is non-empty.
For ease of presentation, a vertex that is an ending vertex of a 2-path or a 3-path in the
current 3-path partition Q is called an endpoint; a vertex that is the middle vertex of a 3-path
in Q is called a midpoint.

Consider a singleton (i.e., 1-path) v0 in Q. Due to Lemma 4.2, we conclude that v0 cannot
be adjacent to any endpoint of a 3-path, or any other singleton in the graph G. Therefore, if
v0 is adjacent to a vertex w1 in G, then w1 has to be the midpoint of some 3-path P1 ∈ Q3.

In the case where w1 is the midpoint of some 3-path P1 ∈ Q3: u1-w1-v1. We claim that if
the vertex u1 is adjacent to a vertex u2 in the graph G, then u2 is neither a singleton or an
endpoint of another 3-path.

We prove this claim by contradiction. First, u2 cannot be a singleton due to its role the same
as v0 (due to Lemma 4.2). Next, assume u2 is an endpoint of a 3-path P2 , P1 and P2 is
u2-w2-v2; then we may remove the edges (w1, u1) and (w1, u2) while adding the edge (u1, u2)

to E∗, resulting in (|M∗ |+1) 2-paths and 3-paths in total and thus contradicting Lemma 4.2.
This proves the claim.

It follows from the above claim that either u2 is an endpoint of a 2-path or u2 is the midpoint
of another 3-path. (That is, u2 now takes up the role of w1.)

Case 1. In the case when u2 is an endpoint of some 2-path u2-v2, denoted as P2 ∈ Q2.
We remove the edge (w1, u1) while adding the edges (v0,w1) and (u1, u2) to E∗,
resulting in two new 3-paths v0-w1-v1 and u1-u2-v2 while destroying the two paths
P1 and P2 (that is, u1-w1-v1 and u2-v2). This process eliminates the singleton v0

and maintains in total |M∗ | 2-paths and 3-paths, and we say that the alternating
path v0-w1-u1-u2 saves the singleton v0. We subsequently update the edge set E∗

and the 3-path partition Q, and end the iteration.

Case 2. In the general setting, in the graph G, v0 is adjacent to the midpoint w1 of a 3-path
P1, and for j = 1, 2, . . . , i − 1, one endpoint u j of Pj is adjacent to the midpoint
w j+1 of another 3-path Pj+1, and lastly one endpoint ui of Pi is adjacent to an
endpoint ui+1 of a 2-path Pi+1 (see Figure 4.2 for an illustration). Then we may
delete the edges {(w j, u j) | j = 1, 2, . . . , i} from E∗ while adding the edges (v0,w1),
{(u j,w j+1) | j = 1, 2, . . . , i − 1}, and (ui, ui+1) to E∗ to obtain (i + 1) 3-paths from

131

Chapter 4. The Path Partition Problem

the collection of one singleton, i 3-paths, and one 2-path. This process eliminates
the singleton v0 and maintains in total |M∗ | 2-paths and 3-paths, and we say the
alternating path v0-w1-u1-w2-u2-. . .-wi-ui-ui+1 saves the singleton v0. We remark
that a length-(2i + 1) alternating path connects a singleton to a 2-path, through a
series of i 3-paths, where i ≥ 0 (see Figure 4.2). We subsequently update the edge
set E∗ and the 3-path partition Q, and end the iteration.

v0

u1 u2 u3

w1 w2 w3

ui

v1 v2 v3 vi

wi ui+1

vi+1

. . .

. . .

. . .

. . .

P1 P2 P3 Pi Pi+1. . .

Figure 4.2: An alternating path v0-w1-u1-w2-u2-. . .-wi-ui-ui+1 that saves the singleton v0,
where the first i paths are 3-paths and the last one is a 2-path. In the figure, solid edges are
in the edge set E∗ and dashed edges are outside of E∗.

Lemma 4.4. Given an edge set E∗ in the graphG = (V, E), the associated 3-path partitionQ
containing |M∗ | 2-paths and 3-paths, and a singleton v0 therein, finding a simple alternating
path to save v0, if exists, can be done in O(m) time, where m = |E |.

Proof. Firstly, if an alternating path is not simple, then a cycle that forms a subpath is
also alternating and has an even length, and thus the cycle can be removed resulting in a
shorter alternating path. Repeating this process if necessary, at the end we achieve a simple
alternating path. Therefore, we can limit the search for a simple alternating path.

We construct a digraph G′′ by creating the following four kinds of directed edges:

1. all those edges incident on v0, each oriented out of v0;

2. all those edges of the 3-paths, each oriented from the midpoint and to the endpoint;

3. all those edges each connecting an endpoint of a 3-path to the midpoint of another
3-path, oriented from the endpoint and to the midpoint;

4. all those edges each connecting an endpoint of a 3-path to an endpoint of a 2-path,
oriented out of the endpoint of the 3-path.

Then, the edges on all possible alternating paths that save v0 must be on G′′ formed by the
above four kinds of directed edges. If follows that by a BFS (breadth-first search) traversal

132

Chapter 4. The Path Partition Problem

starting from v0 on G′′, if an endpoint of a 2-path can be reached then we achieve a simple
alternating path; otherwise, we conclude that no alternating path saving the singleton v0

exists. Both construction of the digraph and the BFS traversal take O(m) time. This proves
the lemma. �

Using Lemma 4.4, the third step of the algorithm is to iteratively find a simple alternating
path to save a singleton; it terminates when no alternating path is found. We still use Q to
denote the 3-path partition at termination. A high-level description of our Algorithm A is
provided in Figure 4.3.

Algorithm A on G = (V, E):

Step 1. 1.1. compute a maximum matching M∗ in G;
1.2. determine the subset V0 of vertices in G which are exposed by M∗;

Step 2. 2.1. construct the bipartite graph G′ = (M∗,V0, E′);
2.2. compute a maximum matching M1 in G′;
2.3. determine the edge set M2 associated with M1;
2.4. initialize E∗ = M∗ ∪ M2 and the associated 3-path cover Q;

Step 3. 3.1. repeatedly find an alternating path to save a singleton in Q,
till no alternating path is found;

3.2. return the resulting 3-path partition Q.

Figure 4.3: A high-level description of Algorithm A for computing a 3-path partition in
the graph G = (V, E) with the least singletons.

4.2.1.4 The main theorem

We prove in the next theorem that the 3-path partition produced by Algorithm A contains
the minimum number of singletons.

Theorem 4.5. Algorithm A is an O(nm)-time algorithm for computing a 3-path partition
in the graph G = (V, E) with the least 1-paths.

Proof. Recall that at the end of the second step, the achieved starting 3-path partition
contains |M∗ | 2-paths and 3-paths; in the third step, in each iteration where an alternating
path is found to save a singleton of the current 3-path partition, we swap the edges on the
alternating path inside the edge set with the edges outside of the edge set to move from the

133

Chapter 4. The Path Partition Problem

current 3-path partition to another 3-path partition which contains still |M∗ | 2-paths and
3-paths (that is, an invariant) but one less singleton.

Denote Qo and Q∗o as the 3-path partition produced by Algorithm A for the original input
graph G = (V, E) and some 3-path partition of G with the least 1-paths, respectively. Let V ′

be the set of all the vertices on the paths of Qo ∩ Q∗o, and G′ be the subgraph of G induced
by V − V ′. Let Q = Qo −Q∗oandQ∗ = Q∗o −Qo. We prove the theorem by showing that the
numbers of singletons in the corresponding two 3-path partitions Q and Q∗ of the induced
subgraph G′ must be equal.

LetQ1 (Q2,Q3, respectively) denote the collection of 1-paths (2-paths, 3-paths, respectively)
in the 3-path partition Q produced by Algorithm A (the associated edge set is E∗), and let
Q∗1 denote the collection of 1-paths inQ∗. Our assumption is |Q1 | > |Q∗1 |. SinceQ∩Q∗ = ∅,
we have

Q1 ∩ Q
∗
1 = ∅. (4.1)

i.e., a singleton v0 ∈ Q1 is not a singleton in Q∗1, and thus v0 is on some path of Q∗2 ∪ Q
∗
3.

Suppose the edge (v0,w1) is on some path of Q∗2 ∪ Q
∗
3. Let us examine where the vertex w1

could be in the computed 3-path partition Q. Recall that Q contains in total |M∗ | 2-paths
and 3-paths. Due to Lemma 4.2, w1 cannot be a singleton or an endpoint of a 3-path. From
the non-existence of an alternating path at the end of the third step of Algorithm A, w1

cannot be an endpoint a 2-path either. Therefore, w1 has to be the midpoint of some 3-path
u1-w1-v1, denoted as P1 ∈ Q. (We refer the reader to Figure 4.2 for an illustration, taking
that the solid edges are in Q while the dashed edges are in Q∗.)

Now we examine where the endpoints u1 and v1 of the path P1 could be in Q∗. Apparently
not both of them are adjacent to w1 in Q∗, or otherwise the degree of w1 in Q∗ would be
at least three. Assume without loss of generality u1 is not adjacent to w1 in Q∗. If u1 is
a singleton in Q∗, then we may add the edge (u1,w1) to Q∗ and remove the edge (v0,w1)

from Q∗ to obtain another 3-path partition Q∗′ in which u1 is no longer a singleton but v0

becomes a singleton. That is, Q∗′ is also an optimal solution and shares a singleton v0 with
Q, contradicting Equation 4.1. This proves that u1 is not a singleton in Q∗ and consequently,
exactly the same as v0, it is on some path ofQ∗2∪Q

∗
3. (Again, we refer the reader to Figure 4.2

for an illustration.)

Suppose the edge (u1,w2) is on some path of Q∗2∪Q
∗
3. We next examine where the vertex w2

could be in the computed 3-path partition Q. Due to Lemma 4.2, w2 cannot be a singleton or
an endpoint of a new 3-path (other than P1). From the non-existence of an alternating path

134

Chapter 4. The Path Partition Problem

at the end of the third step, w2 cannot be an endpoint a 2-path either. Therefore, w2 either
collides into v1 or it has to be the midpoint of some new 3-path (other than P1). If w2 = v1,
then we may remove the edges (u1,w1) and (w1, v1) from E∗ and add the edges (v0,w1) and
(u1, v1) to E∗ to obtain another 3-path partition that contains (|M∗ | + 1) 2-paths and 3-paths,
contradicting Lemma 4.2. It follows that w2 has to be the midpoint of some new 3-path
u2-w2-v2, denoted as P2. (Again, we refer the reader to Figure 4.2 for an illustration.)

Now we recursively examine where the endpoints u2 and v2 of the path P2 could be in Q∗.
Apparently not both of them are adjacent to w2 in Q∗, or otherwise the degree of w2 in Q∗

would be at least three. Assume without loss of generality u2 is not adjacent to w2 in Q∗.
If u2 is a singleton in Q∗, then we may use the alternating path v0-w1-u1-w2-u2 to obtain
another optimal 3-path partition Q∗′ that violates Equation 4.1. This proves that u2 is not
a singleton in Q∗ and consequently, exactly the same as v0 and u1, it is on some path of
Q∗2 ∪ Q

∗
3.

Suppose the edge (u2,w3) is on some path of Q∗2 ∪ Q
∗
3. We may repeat the above argument

for w2 to prove that w3 has to be the midpoint of some new 3-path u3-w3-v3, denoted as
P3 ∈ Q, resulting in the same configuration as shown in Figure 4.2. From the path P3,
repeating the same argument we will discover a new distinct path P4 ∈ Q. Repeatedly, we
will discover an infinitely many distinct 3-paths in Q, contradicting the fact that the graph
G is finite. Such a contradiction proves that the 3-path partition Q produced by Algorithm
A has the same number of, and thus the least, singletons as Q∗.

For the running time, since in each iteration of the third step we may “glue” all singletons
as one for finding an alternating path. If no alternating path is found, then the algorithm
terminates; otherwise one can easily check which singletons are the root of the alternating
path and pick to save one of them, and the iteration ends. It follows that there could be
O(n) iterations and each iteration needs O(m) time, and thus the total running time for the
third step is O(nm). Since the first two steps take O(m

√
n log(n2/m)/log n) time, the overall

running time of Algorithm A is in O(nm). This finishes the proof of the theorem. �

We observe that the number of 1-paths in the 3-path partition produced by Algorithm A
is actually the minimum among all k-path partitions, for any k ≥ 3. Thus, we have the
following corollary.

Corollary 4.6. Algorithm A is an O(nm)-time algorithm for computing a k-path partition
in the graph G = (V, E) with the least 1-paths, thus it is a k/2-approximation for the k-PP
problem, for any k ≥ 3.

135

Chapter 4. The Path Partition Problem

4.2.2 Local operations and their priorities

With the 3-path partition Q produced by Algorithm A, we design four local operations to
improve Q. Throughout the local search, the 3-path partitions are maintained to have the
least 1-paths. Our four local operations are designed so not to touch the 1-paths and thus the
final 3-path partition still contains the least 1-paths. Each operation transfers three 2-paths
to two 3-paths with the aid of a few other 2- or 3-paths. These operations are associated with
different priorities, that is, one operation applies only when all the other operations of higher
priorities (labeled by smaller numbers) fail to apply to the current 3-path partition. This
local search is iterative, and every iteration ends after executing a designed local operation
which strictly reduces the number of paths in the partition by exactly one. It terminates
when none of the designed local operations applies.

Definition 4.7. With respect to the current 3-path partition Q, a local Operation i1-i2-By-
j1- j2, where j1 = i1 − 3 and j2 = i2 + 2, replaces a collection of i1 2-paths and i2 3-paths of
Q (called an expected collection) by a collection of j1 2-paths and j2 3-paths on the same
subset of 2i1 + 3i2 vertices (called a replacement collection).

We present in the rest of this section all the replacement operations to perform on the 3-path
partition with the least 1-paths.

4.2.2.1 Operation 3-0-By-0-2, highest priority 1

When three 2-paths of Q can be connected into a 6-path in the graph G (see Fig. 4.4 for
an illustration), they form into an expected collection. By removing the middle edge on
the 6-path, we achieve two 3-paths on the same six vertices and they form the replacement
collection. In the example illustrated in Fig. 4.4, with the two dashed edges in E but outside
of Q, Operation 3-0-By-0-2 replaces the three 2-paths (solid black edges) by two new
3-paths (edges with red backgroud).

u1 u2 u3

v1 v2 v3

Figure 4.4: The configuration of the expected collection for Operation 3-0-By-0-2, which
has the highest priority 1, where solid black edges are in Q, dashed edges are in E but
outside of Q, and the edges with red backgroud form the replacement collection.

136

Chapter 4. The Path Partition Problem

An Operation 3-0-By-0-2 does not need the assistance of any 3-path of Q. In each of the
following operations, we need the aid of a couple of other 2- or/and 3-paths to transfer three
2-paths to two 3-paths.

4.2.2.2 Operation 3-1-By-0-3, priority 2

Consider an expected collection of three 2-paths P1 = u1-v1, P2 = u2-v2, P3 = u3-v3, and a
3-path P4 = u-w-v in Q. Note that an Operation 3-1-By-0-3 applies only when Operation
3-0-By-0-2 fails to apply to the current Q, thus P1, P2, P3 cannot be connected into a 6-path.
We only determine the following two classes of configurations for the expected collection
in an Operation 3-1-By-0-3.

In the first class, which has priority 2.1, u,w, v are adjacent to an endpoint of P1, P2, P3 in
G, respectively (see Fig. 4.5 for an illustration). The operation breaks the 3-path u-w-v into
three singletons and connects each of them to the respective 2-path to form the replacement
collection of three new 3-paths. In the example illustrated in Fig. 4.5,Operation 3-1-By-0-3
replaces the expected collection by three new 3-paths represented by edges highlighted in
red.

u u1 v1

w u2 v2

v u3 v3

Figure 4.5: The first class of configuration of the expected collection for Operation 3-1-
By-0-3, which has priority 2.1, where solid black edges are in Q, dashed edges are in E but
outside of Q, and the edges highlighted in red form the replacement collection.

In the second class, which has priority 2.2, two of the three 2-paths, say P1 and P2, are
adjacent and thus they can be replaced by a new 3-path and a singleton. We determine
two configurations in this class (see Fig. 4.6 for illustrations). In the first configuration, the
singleton is adjacent to the midpoint w and P3 is adjacent to one of u and v; in the second
configuration, the singleton and P3 are adjacent to u and v, respectively. For an expected
collection of any of the two configurations, the operation replaces it by three new 3-paths.

In the example illustrated in Fig. 4.6a, the singleton is u1 and P3 is adjacent to u. Operation
3-1-By-0-3 replaces the expected collection by three new 3-paths represented by edges

137

Chapter 4. The Path Partition Problem

highlighted in red.In the example illustrated in Fig. 4.6b, the singleton is v2 and P3 = u3-
v3 is adjacent to u. Operation 3-1-By-0-3 replaces the expected collection by three new
3-paths represented by edges highlighted in red.

u3 u u1

v3 w

v1

u2

v v2

(a)

u3 u u1

v3 w

v1

u2

v v2

(b)

Figure 4.6: The second class of configurations of the expected collection in Operation
3-1-By-0-3, which has priority 2.2, where solid black edges are in Q, dashed edges are in
E but outside of Q, and the edges highlighted in red form the replacement collection.

4.2.2.3 Operation 4-1-By-1-3, priority 3

Consider an expected collection of four 2-paths P1 = u1-v1, P2 = u2-v2, P3 = u3-v3,
P4 = u4-v4, and a 3-path P5 = u-w-v in Q. Note that an Operation 4-1-By-1-3 applies only
when Operation 3-0-By-0-2 and Operation 3-1-By-0-3 both fail to apply to the current
Q. Thus, we only consider the cases when the four 2-paths can be separated into two pairs,
each of which are adjacent in the graph G, and we can replace them by two new 3-paths
while leaving two singletons which are adjacent to a common vertex on P5.

In the configuration for the expected collection in an Operation 4-1-By-1-3, the two single-
tons must be adjacent to a common endpoint, say u, of P5 (see Fig. 4.7 for an illustration),
then they can be replaced by a new 2-path v-w and a new 3-path. Overall, the operation
replaces the expected collection by three new 3-paths and a new 2-path. In the example
illustrated in Fig. 4.7, the two singletons are u1 and u3, and they are both adjacent to u.
Operation 4-1-By-1-3 replaces the expected collection by three new 3-paths and a new
2-path represented by edges highlighted in red.

4.2.2.4 Operation 4-2-By-1-4, lowest priority 4

Consider an expected collection of four 2-paths P1 = u1-v1, P2 = u2-v2, P3 = u3-v3,
P4 = u4-v4, and two 3-paths P5 = u-w-v, P6 = u′-w′-v′ in Q. The four 2-paths can be

138

Chapter 4. The Path Partition Problem

u u1 v1 u2 v2

w u3 v3 u4 v4

v

Figure 4.7: The configuration of the expected collection for Operation 4-1-By-1-3, which
has priority 3, where solid black edges are in Q, dashed edges are in E but outside of Q,
and the edges highlighted in red form the replacement collection.

separated into two pairs, each of which are adjacent in the graph G, thus we can replace
them by two new 3-paths while leaving two singletons, which are adjacent to P5 and P6,
respectively (see Fig. 4.8 for illustrations). We determine three classes of configurations for
the expected collection in this operation, for which the replacement collection consists of
four new 3-paths and a new 2-path.

In the first class, the two singletons are adjacent to P5 and P6 at endpoints, say u and u′,
respectively; additionally, one of the five edges (u, v′), (v, u′), (w, v′), (v,w′), (v, v′) is in E

(see Fig. 4.8a for an illustration). In the example illustrated in the Fig. 4.8a, if (u, v′) ∈ E ,
then Operation 4-1-By-1-3 replaces the expected collection by four new 3-paths and a new
2-path represented by edges highlighted in red.

u1 u u′ u3

v1

u2

v2

w

v

w′

v′

v3

u4

v4

(a) The first class.

u1 u u′ u3

v1

u2

v2

w

v

w′

v′

v3

u4

v4

(b) The second class.

u1 u u′ u3

v1

u2

v2

w

v

w′

v′

v3

u4

v4

(c) The third class.

Figure 4.8: The three classes of configurations of the expected collections for anOperation
4-2-By-1-4, where solid black edges are in Q, dashed edges are in E but outside of Q, and
the edges highlighted in red form a possible replacement collection. In every class, each
dotted edge between P5 = u-w-v and P6 = u′-w′-v′ corresponds to one configuration.

In the second class, one singleton is adjacent to an endpoint of a 3-path, say u on P5, and
the other singleton is adjacent to the midpoint w′ of P6; additionally, one of the six edges
(u, u′), (u, v′), (w, u′), (w, v′), (v, u′), (v, v′), is in E (see Fig. 4.8b for an illustration). In
the example illustrated in Fig. 4.8b, if (u, u′) ∈ E , then Operation 4-1-By-1-3 replaces the

139

Chapter 4. The Path Partition Problem

expected collection by four new 3-paths and a new 2-path represented by edges highlighted
in red.

In the third class, the two singletons are adjacent to the midpoints of the two 3-paths, w
and w′, respectively; additionally, one of the four edges (u, u′), (u, v′), (v, u′), (v, v′) is in
E (see Fig. 4.8c for an illustration). In the example illustrated in Fig. 4.8c, if (u, u′) ∈ E ,
then Operation 4-1-By-1-3 replaces the expected collection by four new 3-paths and a new
2-path represented by edges highlighted in red.

4.2.3 The complete local search algorithm Approx

The first three steps of our local search algorithm Approx is to run Algorithm A to
achieve a 3-path partition Q with the least 1-paths. The fourth step is iterative, and in
each iteration the algorithm tries to apply one of the four local operations, from the highest
priority to the lowest, by finding a corresponding expected collection and determining the
subsequent replacement collection. When no expected collection can be found, the fourth
step terminates. We denote the last two steps of our algorithm Approx as Algorithm B.
The final 3-path partition Q is the output solution. A high-level description of the complete
algorithm Approx is illustrated in Figure 4.9. While leaving the performance analysis for
Approx to the next section, we give the running time analysis below.

Algorithm Approx on G = (V, E):

Step 1-3. Algorithm A:
compute a 3-path partition Q with the least 1-paths in G;

Step 4-5. Algorithm B:
Step 4. Iteratively perform:
4.1. if Operation 3-0-By-0-2 applies, update Q and break;
4.2. if Operation 3-1-By-0-3 with priority 2.1 applies, update Q and break;
4.3. if Operation 3-1-By-0-3 with priority 2.2 applies, update Q and break;
4.4. if Operation 4-1-By-1-3 applies, update Q and break;
4.5. if Operation 4-2-By-1-4 applies, update Q and break;
Step 5. Return Q.

Figure 4.9: A high-level description of the local search algorithm Approx, where each
“break” is meant to go to the next iteration of the loop.

We know that Algorithm A runs inO(nm) time (Theorem 4.5), where n = |V | and m = |E |.
Note that there are O(n) 2-paths and O(n) 3-paths in Q at the beginning of each iteration of

140

Chapter 4. The Path Partition Problem

Step 4, and therefore there are O(n6) original candidate collections to be examined, since a
candidate collection has a maximum size of 6. When a local operation applies, an iteration
ends and the 3-path partition Q reduces its size by 1, while introducing at most 5 new 2-
and 3-paths. These new 2- and 3-paths give rise to O(n5) new candidate collections to be
examined in the subsequent iterations. Since there are at most n iterations in Step 4, we
conclude that the total number of original and new candidate collections examined in Step
4 is O(n6). Determining whether a candidate collection is an expected collection, and if
so, deciding the corresponding replacement collection, can be done in O(1) time. We thus
prove that the overall running time of Algorithm B is O(n6), and consequently prove the
following theorem.

Theorem 4.8. The running time of the algorithm Approx is in O(n6).

4.3 Analysis of the approximation ratio 4/3

In this section, we show that our local search algorithm Approx is a 4/3-approximation for
3-PP. The performance analysis is done through amortization.

The 3-path partition produced by the algorithm Approx is denoted as Q; let Qi denote the
sub-collection of i-paths in Q, for i = 1, 2, 3, respectively. Let Q∗ be an optimal 3-path
partition, i.e., it achieves the minimum total number of paths, and let Q∗i denote the sub-
collection of i-paths in Q∗, for i = 1, 2, 3, respectively. Since our Q contains the least 1-paths
among all 3-path partitions for G, we have

|Q1 | ≤ |Q
∗
1 |. (4.2)

Since both Q and Q∗ cover all the vertices of V , we have

|Q1 | + 2|Q2 | + 3|Q3 | = n = |Q∗1 | + 2|Q∗2 | + 3|Q∗3 |. (4.3)

Next, we prove the following inequality which gives an upper bound on |Q2 |, through an
amortized analysis:

|Q2 | ≤ |Q
∗
1 | + 2|Q∗2 | + |Q

∗
3 |. (4.4)

Combining Eqs. (4.2, 4.3, 4.4), it follows that

3|Q1 | + 3|Q2 | + 3|Q3 | ≤ 4|Q∗1 | + 4|Q∗2 | + 4|Q∗3 |, (4.5)

141

Chapter 4. The Path Partition Problem

that is, |Q| ≤ 4
3 |Q

∗ |, and consequently the following theorem holds.

Theorem 4.9. The algorithm Approx is an O(n6)-time 4/3-approximation for the 3-PP
problem, and the performance ratio 4/3 is tight for Approx.

In the amortized analysis, each 2-path of Q2 has one token (i.e., |Q2 | tokens in total) to be
distributed to the paths of Q∗. The upper bound in Eq. (4.4) will immediately follow if we
prove the following lemma.

Lemma 4.10. There is a distribution scheme in which

1. every 1-path of Q∗1 receives at most 1 token;

2. every 2-path of Q∗2 receives at most 2 tokens;

3. every 3-path of Q∗3 receives at most 1 token.

In the rest of the section we present the distribution scheme that satisfies the three require-
ments stated in Lemma 4.10.

Denote E(Q2), E(Q3), E(Q∗2), E(Q∗3) as the set of all the edges on the paths of Q2, Q3, Q∗2,
Q∗3, respectively, and E(Q∗) = E(Q∗2) ∪ E(Q∗3). In the subgraph of G

(
V, E(Q2) ∪ E(Q∗)

)
,

only the midpoint of a 3-path of Q∗3 may have degree 3, i.e., incident with two edges of
E(Q∗) and an edge of E(Q2), while all the other vertices have degree at most 2 since each
is incident with at most one edge of E(Q2) and at most one edge of E(Q∗).

Our distribution scheme consists of two phases. We define two functions τ1(P) and τ2(P)

to denote the fractional amount of token received by a path P ∈ Q∗ in Phase 1 and Phase
2, respectively; we also define the function τ(P) = τ1(P) + τ2(P) to denote the total amount
of token received by the path P ∈ Q∗ at the end of our distribution process. Then, we have∑

P∈Q∗ τ(P) = |Q2 |.

4.3.1 Distribution process Phase 1

In Phase 1, we distribute all the |Q2 | tokens to the paths of Q∗ (i.e.,
∑

P∈Q∗ τ1(P) = |Q2 |)
such that a path P ∈ Q∗ receives some token from a 2-path u-v ∈ Q2 only if u or v is (or
both are) on P, and the following three requirements are satisfied:

1. τ1(Pi) ≤ 1 for ∀Pi ∈ Q
∗
1;

142

Chapter 4. The Path Partition Problem

2. τ1(Pj) ≤ 2 for ∀Pj ∈ Q
∗
2;

3. τ1(P`) ≤ 3/2 for ∀P` ∈ Q∗3.

In this phase, the one token held by each 2-path of Q2 is breakable but can only be broken
into two halves. Thus for every path P ∈ Q∗, τ1(P) is a multiple of 1/2.

For each 2-path u-v ∈ Q2, at most one of u and v can be a singleton of Q∗. If P1 = v ∈ Q∗1,
then the whole 1 token of the path u-v is distributed to v, that is, τ1(v) = 1 (see Fig. 4.10a
for an illustration). This way, we have τ1(P) ≤ 1 for ∀P ∈ Q∗1.

u

v

1

(a)

u

v w

1

(b)
v′′vv′

w u
1
2

1
2

(c)

Figure 4.10: Illustrations of the token distribution scheme in Phase 1, where solid edges
are in E(Q2) and dashed edges are in E(Q∗). In Fig. 4.10c, u or v can be either an endpoint
or the midpoint of the corresponding 3-path of Q∗3.

For a 2-path u-v ∈ Q2, we consider the cases when both u and v are incident with an edge
of E(Q∗). If one of u and v, say v, is incident with an edge of E(Q∗2), that is, v is on a 2-path
P1 = v-w ∈ Q∗2, then the 1 token of the path u-v is given to the path P1 ∈ Q

∗
2 (see Fig. 4.10b

for an illustration). Note that if u is also on a 2-path P2 ∈ Q
∗
2 and P2 , P1, then the path

P2 receives no token from the path u-v. The choice of which one of the two vertices u and
v comes first does not matter. This way, we have τ1(P) ≤ 2 for ∀P ∈ Q∗2 since the 2-path
P1 ∈ Q

∗
2 might receive another token from a 2-path of Q2 incident on w.

Next, we consider the cases for a 2-path u-v ∈ Q2 in which each of u and v is incident
with an edge of E(Q∗3). Consider a 3-path P1 ∈ Q

∗
3: v′-v-v′′. We distinguish two cases

for a vertex of P1 to determine the amount of token received by P1 (see Fig. 4.10c for an
illustration). In the first case, either the vertex, say v′, is not on any path of Q2 or it is on
a path of Q2 with 0 token left, then P1 receives no token through vertex v′. In the second
case, the vertex, say v (the following argument applies the same to the other two vertices
v′ and v′′), is on a path u-v ∈ Q2 holding 1 token, and consequently u must be on a 3-path
P2 ∈ Q

∗
3, then the 1 token of u-v is broken into two halves, with 1/2 token distributed to P1

through vertex v and the other 1/2 token distributed to P2 through vertex u. This way, we
have τ1(P) ≤ 3/2 for ∀P ∈ Q∗3 since the 3-path P1 ∈ Q

∗
3 might receive another 1/2 token

through each of v′ and v′′.

143

Chapter 4. The Path Partition Problem

4.3.2 Distribution process Phase 2

In Phase 2, we will transfer the extra 1/2 token from every 3-path P ∈ Q∗3 with τ1(P) = 3/2
to some other paths of Q∗ in order to satisfy the three requirements of Lemma 4.10. In this
phase, each 1/2 token can be broken into two quarters, thus for a path P ∈ Q∗, τ2(P) is a
multiple of 1/4.

Consider a 3-path P1 = v′′-v′-v ∈ Q∗3. We observe that if τ1(P1) = 3/2, then each of v, v′,
and v′′ must be incident with an edge of E(Q2), the other endpoint of which must also be
on a 3-path of Q∗3. One of the three vertices, say v, on an edge (u, v) ∈ E(Q2), must have
its corresponding u outside of P1. Denote P2 as the 3-path of Q∗3 where u is on. Let w be
a vertex adjacent to u on P2, i.e., (u,w) is an edge on P2. (See Fig. 4.11 for an illustration.)
We can verify the following claim.

Claim 4.11. w must be on a 3-path of Q3, being either an endpoint or the midpoint.

Proof. See Fig. 4.11 for an illustration. Firstly, w cannot collide into any of u′, u′′ since
otherwise the three 2-paths u-v, u′-v′, u′′-v′′ could be replaced due to Operation 3-0-By-0-
2. Then, suppose w is on a 2-path w-x of Q2, then the three 2-paths u-v, u′-v′, w-x could be
replaced due to Operation 3-0-By-0-2. Lastly, suppose w is a singleton of Q1, then w and
the 2-path u-v could be merged to a 3-path so that Q is not a partition with the least 1-paths,
a contradiction. Thus, w cannot be a singleton of Q1 or on any 2-path of Q2, and the claim
is proved. �

We thus conclude that τ1(P2) ≤ 1, and we have the following lemma.

Lemma 4.12. For any 3-path P1 ∈ Q
∗
3 with τ1(P1) = 3/2, there must be another 3-path

P2 ∈ Q
∗
3 with τ1(P2) ≤ 1 such that

1. u-v is a 2-path of Q2, where v is on P1 and u is on P2, and

2. any vertex adjacent to u on P2 must be on a 3-path P3 of Q3.

The first step of Phase 2 is to transfer this extra 1/2 token back from P1 to the 2-path u-v
through vertex v (see Fig. 4.11 for an illustration). Thus, we have τ2(P1) = −1/2 and
τ(P1) = 3/2 − 1/2 = 1.

Using Lemma 4.12 and all its notations, let x1 and y1 be the other two vertices on P3

(P3 = w-x1-y1 or P3 = x1-x-y1). Denote P4 ∈ Q
∗ (P5 ∈ Q

∗, respectively) as the path where

144

Chapter 4. The Path Partition Problem

u

x

w

y
P1

P2

vv′

u′

P4

P5
v′′

1
2

P3

Figure 4.11: An illustration of a 3-path P1 = v-v′-v′′ ∈ Q∗3 with τ1(P1) = 3/2, where
u-v, u′-v′ ∈ E(Q2), P3 ∈ Q3, with w being either the midpoint or an endpoint of P3, and
P2 ∈ E(Q∗3) is represented by dashed edges, on which w is adjacent to u.

x1 (y1, respectively) is on. Next, we will transfer the 1/2 token from u-v to the paths P4

or/and P5 through some pipe or pipes.

We define a pipe r → s → t, where r is an endpoint of a 2-path of Q2 which receives 1/2
token in the first step of Phase 2, (r, s) is an edge on a 3-path P′ ∈ Q∗3 with τ1(P′) ≤ 1
(P′ = P2 here), s and t are both on a 3-path of Q3 (P3 here), and t is a vertex on our
destination path of Q∗ (P4 or P5 here) which will receive token from the 2-path of Q2. r

and t are called the head and tail of the pipe, respectively. For example, in Fig. 4.12a, there
are four possible pipes u → w → x1, u → w → y1, u′′ → w → x1, and u′′ → w → y1.
We distinguish the cases, on which of Q∗1, Q

∗
2, Q

∗
3 the two paths P4 and P5 belong to, to

determine how they receive more token through some pipe or pipes.

Recall that u can be either an endpoint or the midpoint of P2. We distinguish the following
cases with u being an endpoint of P2 (the cases for u being the midpoint can be discussed
the same), that is, P2 = u-w-u′′, depending on which of Q∗1, Q

∗
2, Q

∗
3 the two paths P4 and P5

belong to, to determine the upper bounds on τ(P4) and τ(P5).

Case 1. At least one of P4 and P5 is a singleton of Q∗1, say P4 = x1 ∈ Q
∗
1 (see Fig. 4.12

for illustrations). In this case, we have τ1(P4) = 0, so we transfer the 1/2 token
from u-v to P4 through pipe u → w → x1. We observe that if P5 is also a 3-path
of Q∗3, with (y1, y2) being an edge on P5, then y2 → y1 → x1 is a candidate pipe
through which P4 could receive another 1/2 token. We distinguish the following
two sub-cases based on whether w is an endpoint or the midpoint of P3 to determine
all the possible pipes through each of which could P4 receive 1/2 token.

Sub-case 1.1. w is themidpoint of P3 = x1-w-y1 (see Fig. 4.12a for an illustration).
If P5 ∈ Q

∗
3, with (y1, y2) being an edge on P5, then y2 cannot be on

a 2-path of Q2 (suppose y2 is on a 2-path P′′ ∈ Q2, then the three
2-paths u-v, u′-v′, P′′, and the 3-path P3 could be replaced due to
Operation 3-1-By-0-3). Therefore, only through pipe u′′ → w →

145

Chapter 4. The Path Partition Problem

u w

x1

y1
P1

P2

vv′

u′
u′′

P4

P5y2

1
2

P3

(a)

u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5
y2

1
2

P3

(b)

u

y1

w

x1
P1

P2

vv′

u′
u′′

P5

P4

y2
1
2

P3

(c)

Figure 4.12: The cases when P4 is a singleton of Q∗1, where solid edges are in E(Q2) or
E(Q3) and dashed edges are in E(Q∗). x1 is the tail of the pipe through which P4 could
receive 1/2 token from the 2-path of u-v.

x1 could P4 receive another 1/2 token. Thus, τ2(P4) ≤ 1/2× 2 = 1,
implying τ(P4) ≤ 0 + 1 = 1.

Sub-case 1.2. w is an endpoint of P3, i.e., either P3 = w-x1-y1 (see Fig. 4.12b for
an illustration) or P3 = w-y1-x1 (see Fig. 4.12c for an illustration).
In each sub-case, u′′ cannot be the head of any pipe (i.e., there does
not exist a path u′′-v′′-v′′′-u′′′, where u′′-v′′, v′′′-u′′′ ∈ Q2 and v′′-
v′′′ ∈ Q∗2, since otherwise, the four 2-paths u-v, u′-v′, u′′-v′′, v′′′-u′′′,
and the 3-path P3 could be replaced due to Operation 4-1-By-1-3).
If P5 ∈ Q

∗
3, with (y1, y2) being an edge on P5, then y2 in Fig. 4.12b

cannot be on a 2-path of Q2 (suppose y2 is on a 2-path P′′ ∈ Q2,
then the three 2-paths u-v, u′-v′, P′′, and the 3-path P3 could be
replaced due to Operation 3-1-By-0-3); y2 in Fig. 4.12c cannot
be the head of any pipe (i.e., there does not exist a path y2-z-z′-y′,
where y2-z, z′-y′ ∈ Q2 and z-z′ ∈ Q∗2, since otherwise, the three
2-paths u-v, y2-z, z′-y′, and the 3-path P3 could be replaced due
to Operation 3-1-By-0-3). Therefore, through no other pipe could
P4 receive any other token in either sub-case. Thus, τ2(P4) ≤ 1/2,
implying τ(P4) ≤ 0 + 1/2 = 1/2.

Case 2. Both P4 and P5 are paths of Q∗2∪Q
∗
3 (see Fig. 4.13 for illustrations). We distinguish

two sub-cases based on whether w is an endpoint or the midpoint of P3 to determine
how to transfer the 1/2 token from u-v to P4 or P5 or both.

Sub-case 2.1. w is an endpoint of P3 = w-x1-y1, with y1 on P5 (see Fig. 4.13a for
an illustration). In this sub-case, we transfer the 1/2 token from u-v
to P5 through pipe u → w → y1. Similar to the sub-case shown in
Fig. 4.12b, if (y1, y2) is an edge on P5, then y2 cannot be on a 2-path
of Q2 due to Operation 3-1-By-0-3. Thus, through no other pipe

146

Chapter 4. The Path Partition Problem

u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5y2

x2

1
2

P3

(a)

u w

x1

y1

P1

P2

vv′

u′
u′′

P4

P5

x2

y2

1
4

1
4

P3

(b)

Figure 4.13: The cases when both P4 and P5 are in Q∗2 ∪ Q
∗
3, where solid edges are in

E(Q2) or E(Q3) and dashed edges are in E(Q∗). In Fig. 4.13a, y1 is the tail of the pipe
through which P5 receives 1/2 token from the 2-path u-v; in Fig. 4.13b, x1 is the tail of the
pipe through which P4 receives 1/4 token from the 2-path u-v and y1 is the tail of the pipe
through which P5 receives 1/4 token from the 2-path u-v.

with tail y1 could P5 receive any other token. Therefore, P5 could
receive at most 1/2 token through pipes with tail y1.

Sub-case 2.2. w is the midpoint of P3 = x1-w-y1 (see Fig. 4.13b). In this sub-
case, we break the 1/2 token holding by u-v into two quarters, with
1/4 transferred to P4 through pipe u → w → x1 and the other 1/4
transferred to P5 through pipe u→ w → y1. Similar to the sub-case
shown in Fig. 4.12a, if (x1, x2) is an edge on P4 (or (y1, y2) is an
edge on P5, respectively), then x2 (or y2, respectively) cannot be on
a 2-path of Q2 due to Operation 3-1-By-0-3. Thus, only through
pipe u′′ → w → x1 could P4 receive another 1/4 token and only
through pipe u′′ → w → y1 could P5 receive another 1/4 token.
Therefore, P4 (P5, respectively) could receive at most 1/2 token
through pipes with tail x1 (y1, respectively).

Now we discuss if P4 in Fig. 4.13b and P5 in Fig. 4.13a and Fig. 4.13b could
receive more token through pipes with vertices other than x1 and y1 being the tail,
respectively. Let (x1, x2) and (y1, y2) be edges on P4 and P5, respectively. We first
prove the following two claims.

Claim 4.13. y2 in both Fig. 4.13a and Fig. 4.13b, and x2 in Fig. 4.13b must each
be on a 3-path of Q3.

Proof. Firstly, we have already proved in the discussions for sub-cases 2.1 and 2.2
that y2 in both Fig. 4.13a, Fig. 4.13b, and x2 in Fig. 4.13b cannot be on a 2-path of
Q2. Suppose x2 in Fig. 4.13b is a singleton of Q1, then the 3-path P3 and the edge
(x1, x2) could be reconnected into two 2-paths, implying Q not a partition with the

147

Chapter 4. The Path Partition Problem

least 1-paths, a contradiction. This argument also applies to y2 in Fig. 4.13a and
Fig. 4.13b. Thus, the claim is proved. �

Claim 4.13 implies that for P5 in Fig. 4.13a or 4.13b (P4 in Fig. 4.13b, respectively),
we have τ1(P5) ≤ 1/2 (τ1(P4) ≤ 1/2, respectively).

Claim 4.14. Any of y2 in Fig. 4.13a or Fig. 4.13b, or x2 in Fig. 4.13b cannot be
the tail of a pipe.

Proof. We only prove that y2 in Fig. 4.13a cannot be the tail of a pipe, then the
same argument will also apply to y2 in Fig. 4.13b and x2 in Fig. 4.13b. Suppose y2

in Fig. 4.13a is the tail of a pipe, say z1 → w′ → y2. That is, y2 and w′ are on the
same 3-path, say P′3, of Q3; there is a path w′-z1-z2-z3-z4, where w′-z1, z2-z3 ∈ Q

∗
2

and z1-z2, z3-z4 ∈ Q2. (See Fig. 4.14 for an illustration.) Then the four 2-paths
u-v, u′-v′, z1-z2, z3-z4, and the two 3-paths P3 and P′3 could be replaced due to
Operation 4-2-By-1-4. Thus, the claim is proved. �

u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5y2

x2

1
2

w′ z1

z2 z3

z4

P3

P ′
3

Figure 4.14: An illustration of y2 in Fig. 4.13a being the tail of a pipe, say z1 → w′→ y2,
which could never happen due to Operation 4-2-By-1-4.

Claim 4.14 implies that through no pipe with tail y2 in both Fig. 4.13a and 4.13b
(with tail x2 in Fig. 4.13b, respectively) could P5 (P4, respectively) receive any
other token. That is, if P5 (P4, respectively) is a 2-path or a 3-path with y1 (x1,
respectively) being themidpoint, then it could receive token only through pipeswith
tail y1 (x1, respectively), thus we have τ2(P5) ≤ 1/2 (τ2(P4) ≤ 1/2, respectively).

Next, we discuss the cases when P5 in Fig. 4.13a is a 3-path, with y1 being an
endpoint (the following argument also applies to the cases when P5 in Fig. 4.13b is
a 3-path, with y1 being an endpoint, and the cases when P4 in Fig. 4.13b is a 3-path
with x1 being an endpoint). Let P5 = y1-y2-y3 (see Fig. 4.15 for an illustration).
According to Claim 4.14, P5 could only receive token through pipes with tail y1 or
y3. We distinguish the following three cases based on whether y3 is on a path of
Q1, or Q2, or Q3.

148

Chapter 4. The Path Partition Problem

• If y3 is a singleton of Q1, then we have τ1(P5) = 0, thus with the 1/2
token received through pipe u → w → y1, we have τ2(P5) ≤ 1/2, implying
τ(P5) ≤ 1/2.

• If y3 is on a 2-path of Q2, then we have τ1(P5) ≤ 1/2, thus with the 1/2
token received through pipe u → w → y1, we have τ2(P5) ≤ 1/2, implying
τ(P5) ≤ 1.

• If y3 is on a 3-path of Q3, then we have τ1(P5) = 0. y3 could either be the
tail of one pipe as y1 in sub-case 2.1 (Fig. 4.13a), or be the tail of at most two
pipes as x1 or y1 in sub-case 2.2 (Fig. 4.13b). For any of these sub-cases, P5

could receive at most 1/2 token through pipes with tail y3. Thus, with the 1/2
token received through pipe u → w → y1, we have τ2(P5) ≤ 1/2 + 1/2 = 1,
implying τ(P5) ≤ 0 + 1 = 1.

u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5y2

x2

1
2 y3

P3

Figure 4.15: An illustration of y1 being an endpoint of P5 in Fig. 4.13a, where P5 = y1-
y2-y3, solid edges are in E(Q2) or E(Q3) and dashed edges are in E(Q∗). y3 could be on a
path of Q1, Q2, or Q3.

From the above two cases, we conclude that for any P ∈ {P4, P5}, if τ2(P) > 0, then we
have τ1(P) ≤ 1/2 and τ2(P) ≤ 1, and it falls into one of the following four scenarios:

1. If w is an endpoint of P3 and τ1(P) = 0, then there are at most two pipes through
each of which could P receive 1/2 token. That is, τ2(P) ≤ 1/2 × 2 = 1, implying
τ(P) ≤ 0 + 1 = 1.

2. If w is an endpoint of P3 and τ1(P) = 1/2, then only through one pipe could P receive
the 1/2 token. That is, τ2(P) ≤ 1/2, implying τ(P) ≤ 1/2 + 1/2 = 1.

3. If w is the midpoint of P3 and τ1(P) = 0, then there are at most four pipes through
each of which could P receive 1/4 token. That is, τ2(P) ≤ 1/4 × 4 = 1, implying
τ(P) ≤ 0 + 1 = 1.

4. If w is the midpoint of P3 and τ1(P) = 1/2, then there are at most two pipes through
each of which could P receive 1/4 token. That is, τ2(P) ≤ 1/4 × 2 = 1/2, implying
τ(P) ≤ 1/2 + 1/2 = 1.

149

Chapter 4. The Path Partition Problem

In summary, for any P1 ∈ Q
∗ with τ1(P1) = 3/2, we have τ2(P1) = −1/2; for any P ∈ Q∗

with τ2(P) > 0, we have τ1(P) = 0 if τ2(P) ≤ 1, or τ1(P) ≤ 1/2 if τ2(P) ≤ 1/2. Therefore,
at the end of Phase 2, we have

1. τ(Pi) ≤ 1 for ∀Pi ∈ Q
∗
1,

2. τ(Pj) ≤ 2 for ∀Pj ∈ Q
∗
2,

3. τ(P`) ≤ 1 for ∀P` ∈ Q∗3.

This proves Lemma 4.10.

4.3.3 A tight instance of algorithm Approx

Figure 4.16 illustrates a tight instance, in which our solution 3-path partition Q contains
nine 2-paths and three 3-paths (solid edges) and an optimal 3-path partition Q∗ contains
nine 3-paths (dashed edges). Each 3-path of Q∗ receives 1 token from the 2-paths in Q in
our distribution process. This instance shows that the performance ratio of 4/3 is tight for
Approx.

u3 v3 u4 v4

u1 v1 u2 v2

u8 v8 u7 v7

v5u5v6u6

v9u9

w1 w2 w3

x1 x2 x3

y1 y2 y3

Figure 4.16: A tight instance of 27 vertices, where solid edges represent a 3-path partition
Q produced by Approx and dashed edges represent an optimal 3-path partition Q∗. The
edges (ui, vi), i = 1, 3, 5, 7, 9, are in E(Q2) ∩ E(Q∗), shown in both solid and dashed edges.
In our distribution process, each of the nine 3-paths in Q∗ receives 1 token from the 2-paths
in Q.

4.4 Concluding remarks and possible future work

In this chapter, we studied the 3-PP problem and designed a 4/3-approximation algorithm
Approx for 3-PP.Approx contains two algorithmsA andB, withAlgorithm A computing a
3-path partition Q with the least 1-paths inO(nm)-time first, and then Algorithm B reduces

150

Chapter 4. The Path Partition Problem

the total number of paths inQ by repeatedly finding a certain collection of 2- and 3-paths and
replacing it with a smaller size collection of new 2- and 3-paths inO(n6) time, thus the overall
running time of Approx is O(n6). Algorithm A is already a k/2-approximation for the
general k-PP problem. The performance ratio 4/3 of Approx is proved by an amortization
scheme, using the structure properties of the 3-path partition returned by Approx, matching
the current best approximation ratio for the 3-SC problem. In addition, we also showed
that the performance ratio 4/3 is tight for our algorithm Approx by giving an instance in
Figure 4.16.

Since the k-PP and the k-SC problems are very closely related, it would be interesting to
see if there is a better than 4/3-approximation for either of them by investigating better
properties on both the special cases of k = 3. Also, due to the non-existence of any
approximation algorithm for the general k-PP problem with proven performance except a
trivial k-approximation, it would also be worthwhile to design an algorithm for k-PP with
an approximation ratio better than k.

151

Chapter 5

Conclusions and Future Work

In this thesis, we concentrated on the design and analysis of approximation algorithms for
the following interesting NP-hard combinatorial optimization problems:

• maximum happy vertices (MHV) and minimum unhappy vertices (MUHV),

• maximum duo-preservation string mapping (Max-Duo),

• k-path partition (k-PP).

For the MHV problem, we presented a lower bound of max{2/k, 1/
(
∆ + 1/g(∆)

)
} and an

upper bound of Ω(log2 k/k) on the approximability; for the MUHV problem, we closed the
gap between the upper and lower bounds on the approximability, which are both (2 − 2/k).
The main methods used in obtaining these results are some randomized rounding techniques
based on linear programing relaxation and some polynomial time reduction proofs from and
to some related problems.

For the Max-Duo problem, a lower bound on its approximability is 1.00042 [10], and we
proposed a (1.4 + ε)-approximation algorithm for 2-Max-Duo and a 2.917-approximation
algorithm for generalMax-Duo, while the current best result is a (2+ε)-approximation [33].

For the k-PP problem, we proposed a 4/3-approximation algorithm for k = 3, including a
k/2-approximation for k ≥ 3.

All the approximability results presented in this thesis maintain to be the current best results,
except for the 2.917-approximation for general Max-Duo. The main techniques used in
obtaining the results for these problems are local search and amortized analysis.

Given all the approximability results presented in this thesis, one direction of possible future
work is trying to close the gaps between the lower and upper bounds on the approximability
of the problems we have investigated. On the positive side, we may consider designing
new algorithms with possibly better approximation guarantees; on the negative side, we
may try to improve the inapproximability bounds. Specifically, based on our approximation

152

Chapter 5. Conclusions and Future Work

results on special cases of the Max-Duo and k-PP problems, we want to design improved
approximation algorithms for the general Max-Duo and k-PP problems.

In addition, all the approximation results for Max-Duo and k-PP are based on the idea of
trying to find the local optimum solutions, and our observations on some good properties
of the local structures finally lead to these approximation results. Both the performance
guarantees of the local search algorithms for Max-Duo and 3-PP are proved by amortized
analysis, which seems to be a very interesting and effective technique in proving the per-
formance ratio of some certain kind of algorithms (especially local search). Thus, another
direction of possible future work would be to explore more applications for local search and
amortization.

At last, I want to remark that during my Ph.D. studies, I have also made contributions to the
following publications which are not included in this thesis.

1. L. Liu and Y. Chen and J. Dong and R. Goebel and G. Lin and Y. Luo and G. Ni
and B. Su and Y. Xu and A. Zhang. Approximation algorithms for the three-machine
proportionate mixed-shop scheduling. Submission under review.

2. W. Luo, B. Su, Y. Xu, and G. Lin. An approximation framework for bounded
facility location problems. In The 24th International Computing and Combinatorics
Conference (COCOON 2018), volume 10976 of LNCS, pages 353–364, 2018.

3. W. Luo and Y. Xu and B. Gu and W. Tong and R. Goebel and G. Lin. Algorithms
for Communication Scheduling in Data Gathering Network with Data Compression.
Algorithmica, 80(11):3158–3176, 2018.

4. W. Luo, Y. Xu, W. Tong, and G. Lin. Single machine scheduling with job-dependent
machine deterioration. In Proceedings of the 27th International Symposium on Al-
gorithms and Computation (ISAAC 2016), volume 64 of LIPIcs, pages 55:1–55:13,
2016.

5. S. Zhai and P. Zhang andD. Zhu andW. Tong andY.Xu andG. Lin. An approximation
algorithm for genome sorting by reversals to recover all adjacencies. Journal of
Combinatorial Optimization, 2018.

153

Bibliography

[1] H. Angelidakis, Y. Makarychev, and P. Manurangsi. An improved integrality gap for
the călinescu-karloff-rabani relaxation for multiway cut. In Proceedings of the 19th
Integer Programming and Combinatorial Optimization (IPCO 2017), pages 39–50,
2017.

[2] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[3] G.Ausiello, P. Crescenzi, G.Gambosi, V.Kann, A.Marchetti-Spaccamela, andM. Pro-
tasi. Complexity and approximation: Combinatorial optimization problems and their
approximability properties. Springer Science & Business Media, 2012.

[4] P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and independent
set in bounded degree graphs. In 24th Annual IEEE Conference on Computational
Complexity, pages 74–80, 2009.

[5] S. Beretta,M.Castelli, andR.Dondi. Corrigendum to “Parameterized tractability of the
maximum-duo preservation stringmapping problem” [646(2016), 16–25]. Theoretical
Computer Science, 653:108–110, 2016.

[6] S. Beretta, M. Castelli, and R. Dondi. Parameterized tractability of the maximum-
duo preservation string mapping problem. Theoretical Computer Science, 646:16–25,
2016.

[7] P. Berman and T. Fujito. On approximation properties of the independent set problem
for low degree graphs. Theory of Computing Systems, 32:115–132, 1999.

[8] P. Berman and M. Karpinski. On some tighter inapproximability results. In Proceed-
ings of the of 26th International Colloquium on Automata, Languages and Program-
ming (ICALP’99), pages 200–209, 1999.

[9] N. Boria, G. Cabodi, P. Camurati, M. Palena, P. Pasini, and S. Quer. A 7/2-
approximation algorithm for the maximum duo-preservation string mapping problem.
In Proceedings of the 27th Annual Symposium on Combinatorial Pattern Matching
(CPM 2016), volume 54 of LIPIcs, pages 11:1–11:8, 2016.

154

Bibliography

[10] N. Boria, A. Kurpisz, S. Leppänen, and M. Mastrolilli. Improved approximation for
the maximum duo-preservation string mapping problem. In Proceedings of the 14th
International Workshop on Algorithms in Bioinformatics (WABI 2014), volume 8701
of LNBI, pages 14–25, 2014.

[11] R. L. Brooks. On colouring the nodes of a network. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 37, pages 194–197, 1941.

[12] B. Brubach. Further improvement in approximating the maximum duo-preservation
string mapping problem. In Proceedings of the 16th International Workshop on
Algorithms in Bioinformatics (WABI 2016), volume 9838 of LNBI, pages 52–64, 2016.

[13] N.Buchbinder, J. S. Naor, andR. Schwartz. Simplex partitioning via exponential clocks
and the multiway cut problem. In Proceedings of the 45th Annual ACM Symposium
on Theory of Computing (STOC 2013), pages 535–544. ACM, 2013.

[14] N. Buchbinder, R. Schwartz, and B. Weizman. Simplex transformations and the
multiway cut problem. In Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2017), pages 2400–2410, 2017.

[15] L. Bulteau, G. Fertin, C. Komusiewicz, and I. Rusu. A fixed-parameter algorithm for
minimum common string partition with few duplications. In Proceedings of the 13th
International Workshop on Algorithms in Bioinformatics (WABI 2013), volume 8126
of LNBI, pages 244–258, 2013.

[16] L. Bulteau and C. Komusiewicz. Minimum common string partition parameterized by
partition size is fixed-parameter tractable. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages 102–121, 2014.

[17] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for
multiway cut. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing (STOC 1998), pages 48–52. ACM, 1998.

[18] C. Chekuri and A. Ene. Approximation algorithms for submodular multiway partition.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 807–816. IEEE, 2011.

[19] C. Chekuri and A. Ene. Submodular cost allocation problem and applications. In
Automata, Languages and Programming, pages 354–366. Springer, 2011.

155

Bibliography

[20] C. Chekuri and A. Ene. Submodular cost allocation problem and applications. arXiv,
1105.2040, 2011.

[21] W. Chen, Z. Chen, N. F. Samatova, L. Peng, J. Wang, and M. Tang. Solving the maxi-
mum duo-preservation string mapping problem with linear programming. Theoretical
Computer Science, 530:1–11, 2014.

[22] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment of
orthologous genes via genome rearrangement. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2:302–315, 2005.

[23] Y. Chen, R. Goebel, G. Lin, L. Liu, B. Su,W. Tong,Y.Xu, andA. Zhang. A local search
4/3-approximation algorithm for the minimum 3-path partition problem. Submission
under review.

[24] Y. Chen, R. Goebel, G. Lin, B. Su, Y. Xu, and A. Zhang. An improved approxima-
tion algorithm for the minimum 3-path partition problem. Journal of Combinatorial
Optimization (JOCO), pages 1–15, 2019.

[25] Y. Chen, G. Lin, T. Liu, T. Luo, B. Su, Y. Xu, and P. Zhang. A (1.4+ ε)-approximation
algorithm for the 2-max-duo problem. Submission under review.

[26] M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum common
string partition problem. In Proceedings of the 7th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX 2004)
and the 8th International Workshop on Randomization and Computation (RANDOM
2004), volume 3122 of LNCS, pages 84–95, 2004.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT press Cambridge, 2001.

[28] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Transactions on Algorithms, 3:2:1–2:19, 2007.

[29] W. H. Cunningham and L. Tang. Optimal 3-terminal cuts and linear programming.
Springer, 1999.

[30] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894,
1994.

156

Bibliography

[31] P. Damaschke. Minimum common string partition parameterized. In Proceedings of
the 8th International Workshop on Algorithms in Bioinformatics (WABI 2008), volume
5251 of LNBI, pages 87–98, 2008.

[32] S. Dobzinski and M. Schapira. An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithm, pages 1064–1073. Society for Industrial and Ap-
plied Mathematics, 2006.

[33] B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja. A family of approximation
algorithms for themaximumduo-preservation stringmapping problem. InProceedings
of the 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017),
volume 78 of LIPIcs, 2017.

[34] B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja. A family of approxima-
tion algorithms for the maximum duo-preservation string mapping problem. arXiv,
1702.02405, 2017.

[35] R. Duh and M. Fürer. Approximation of k-set cover by semi-local optimization. In
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC’97, pages 256–264, 1997.

[36] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a
highly connected world. Cambridge University Press, 2010.

[37] A. Ene, J. Vondrák, and Y. Wu. Local distribution and the symmetry gap: Ap-
proximability of multiway partitioning problems. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pages 306–325. SIAM,
2013.

[38] U. Feige. A threshold of for approximating set cover. Journal of the ACM, 45:634–652,
1998.

[39] U. Feige. Onmaximizing welfare when utility functions are subadditive. SIAM Journal
on Computing, 39:122–142, 2009.

[40] U. Feige and J. Vondrak. The allocation problem with submodular utility functions.
In In Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2006.

157

Bibliography

[41] D. S. Franzblau and A. Raychaudhuri. Optimal hamiltonian completions and path
covers for trees, and a reduction to maximum flow. The ANZIAM Journal, 44:193–
204, 2002.

[42] A. Freund and H. Karloff. A lower bound of 8/(7 + 1
k−1) on the integrality ratio of the

Călinescu-Karloff-Rabani relaxation for multiway cut. Information Processing Letters,
75:43–50, 2000.

[43] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman and Company, 1979.

[44] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs.
Journal of Algorithms, 50:49–61, 2004.

[45] A. V. Goldberg and A. V. Karzanov. Maximum skew-symmetric flows and matchings.
Mathematical Programming, 100(3):537–568, 2004.

[46] A. Goldstein, P. Kolman, and J. Zheng. Minimum common string partition problem:
Hardness and approximations. In Proceedings of the 15th International Symposium on
Algorithms and Computation (ISAAC 2004), volume 3341 of LNCS, pages 484–495,
2004.

[47] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[48] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

[49] H. Jiang, B. Zhu, D. Zhu, and H. Zhu. Minimum common string partition revisited.
Journal of Combinatorial Optimization, 23:519–527, 2012.

[50] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256–278, 1974.

[51] D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algorithms
for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29:436–461, 2004.

[52] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-
ings of the Sixteenth Annual ACM Symposium on Theory of Computing (STOC 1984),
pages 302–311. ACM, 1984.

158

Bibliography

[53] L. Khachiian. Polynomial algorithm in linear programming. In Akademiia Nauk SSSR,
Doklady, volume 244, pages 1093–1096, 1979.

[54] S. Khot, R. J. Lipton, E. Markakis, and A. Mehta. Inapproximability results for
combinatorial auctions with submodular utility functions. Algorithmica, 52:3–18,
2008.

[55] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and markov random fields. Journal of the
ACM, 49:616–639, 2002.

[56] P. Kolman and T. Waleń. Reversal distance for strings with duplicates: Linear time
approximation using hitting set. In Proceedings of the 4th International Workshop on
Approximation and Online Algorithms (WAOA 2006), volume 4368 of LNCS, pages
279–289, 2006.

[57] P. Kolman and T. Waleń. Approximating reversal distance for strings with bounded
number of duplicates. Discrete Applied Mathematics, 155:327–336, 2007.

[58] B. Korte and J. Vygen. Combinatorial optimization, volume 2. Springer, 2012.

[59] M. Langberg, Y. Rabani, and C. Swamy. Approximation algorithms for graph ho-
momorphism problems. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques: 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX 2006) and 10th In-
ternational Workshop on Randomization and Computation (RANDOM 2006), pages
176–187. Springer, 2006.

[60] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. In Proceedings of the 3rd ACM conference on Electronic Commerce,
pages 18–28. ACM, 2001.

[61] A. Levin. Approximating the unweighted k-set cover problem: Greedy meets local
search. In Proceedings of the 4th International Workshop on Approximation and
Online Algorithms (WAOA 2006), LNCS 4368, pages 290–301, 2006.

[62] L. Lovász. Three short proofs in graph theory. Journal of Combinatorial Theory,
Series B, 19(3):269–271, 1975.

[63] L. Lovász. Submodular functions and convexity, pages 235–257. Springer, 1983.

159

Bibliography

[64] J.Monnot and S. Toulouse. The path partition problem and related problems in bipartite
graphs. Operations Research Letters, 35:677–684, 2007.

[65] K. Okumoto, T. Fukunaga, and H. Nagamochi. Divide-and-conquer algorithms for
partitioning hypergraphs and submodular systems. Algorithmica, 62:787–806, 2012.

[66] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[67] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characterization of NP. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing (STOC), pages 475–484, 1997.

[68] A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and de-
scending thresholds. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing (STOC 2014), pages 724–733. ACM, 2014.

[69] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. Moret. Approximat-
ing the true evolutionary distance between two genomes. Journal of Experimental
Algorithmics (JEA), 12:3–5, 2008.

[70] Y. Xu, Y. Chen, G. Lin, T. Liu, T. Luo, and P. Zhang. A (1.4 + ε)-approximation
algorithm for the 2-max-duo problem. In Proceedings of the 28th International Sym-
posium on Algorithms and Computation (ISAAC 2017), volume 92 of LIPIcs, pages
66:1–66:12, 2017.

[71] Y. Xu, Y. Chen, T. Luo, and G. Lin. A local search 2.917-approximation algorithm for
duo-preservation string mapping. arXiv, 1702.01877, 2017.

[72] Y. Xu, Y. Chen, P. Zhang, and R. Goebel. Approximation algorithms for vertex
happiness. Submission under review.

[73] Y. Xu, P. Zhang, R. Goebel, and G. Lin. Approximation algorithms for the vertex
happiness. arXiv, 1606.03185v2, 2017.

[74] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

[75] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[76] J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-path partitions in
trees. Discrete Applied Mathematics, 78:227–233, 1997.

160

Bibliography

[77] P. Zhang, T. Jiang, and A. Li. Improved approximation algorithms for the maximum
happy vertices and edges problems. In 21st International Computing and Combina-
torics Conference (COCOON 2015), pages 159–170. Springer, 2015.

[78] P. Zhang and A. Li. Algorithmic aspects of homophyly of networks. Theoretical
Computer Science, 593:117–131, 2015.

[79] P. Zhang, Y. Xu, T. Jiang, A. Li, G. Lin, and E. Miyano. Improved approxima-
tion algorithms for the maximum happy vertices and edges problems. Algorithmica,
80(5):1412–1438, 2017.

[80] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating
multiway partition problems. Mathematical Programming, 102:167–183, 2005.

161

	List of Figures
	Acronyms
	1 Introduction
	1.1 Preliminaries
	1.1.1 Some graph terminologies
	1.1.2 Notations of some basic complexity classes
	1.1.3 Approximation algorithms

	1.2 Techniques for approximation algorithms design and analysis
	1.2.1 Randomized rounding
	1.2.2 Local search
	1.2.3 Amortized analysis

	1.3 Problems discussed and thesis contributions
	1.3.1 The vertex happiness problems
	1.3.2 The maximum duo-preservation string mapping problem
	1.3.3 The path partition problem

	2 The Vertex Happiness ProblemsThis chapter is based on two papers ZXJ17,XCZ18. ZXJ17 is a work with Zhang, Jiang, Li, Lin, and Miyano, ``Improved approximation algorithms for the maximum happy vertices and edges problems'', which was published by Algorithmica; XCZ18 is a work with Chen, Zhang, and Goebel, ``Approximation algorithms for the vertex happiness'', which is a submission under review, while there is an old version available publicly at arXiv XZG17a, covering most of the results in XCZ18.
	2.1 Introduction
	2.1.1 Related work
	2.1.2 Our contributions
	2.1.3 Organization

	2.2 A 1 / (to. + 1 / g())to.-approximation for MHV
	2.2.1 Probability that a vertex in B0 becomes happy
	2.2.2 Probability that a vertex in B1 becomes happy
	2.2.3 The approximation ratio analysis

	2.3 The Sub-ML and the Sup-ML problems
	2.4 The approximability of the MUHV problem
	2.5 Improved approximation results for the MHV problem
	2.5.1 A 2/k-approximation for MHV
	2.5.2 A hardness result for MHV

	2.6 Concluding remarks and possible future work

	3 The Maximum Duo-preservation String Mapping ProblemThis chapter is based on the papers XCL17,XCL19,XCLL17a. XCL17 is a work with Chen, Lin, Liu, Luo, and Zhang, ``A (1.4 +)-approximation algorithm for the 2-max-duo problem'', which was published by the conference of the 28th International Symposium on Algorithms and Computation (ISAAC 2017), and later submitted as a journal version XCL19 which is under review; XCLL17a is a work with Chen, Luo, and Lin, ``A local search 2.917-approximation algorithm for duo-preservation string mapping'', which is available publicly at arXiv.
	3.1 Introduction
	3.2 Preliminaries
	3.3 On approximating the 2-Max-Duo problem
	3.3.1 Properties for the graph H when k = 2
	3.3.2 An approximation algorithm for 2-Max-Duo
	3.3.3 Review of the reduction from MIS on cubic graphs

	3.4 On approximating the general Max-Duo problem
	3.4.1 A local search algorithm LS
	3.4.1.1 Operation Replace-5-by-6
	3.4.1.2 Operation Reduce-5-by-5
	3.4.1.3 The local search algorithm LS
	3.4.1.4 A better time complexity analysis for LS

	3.4.2 Approximation ratio analysis for the algorithm LS
	3.4.2.1 The amortization scheme
	3.4.2.2 Value combinations of (ei, j C*(ei, j)) with (ei, j) 3
	3.4.2.3 Ordered value combinations of (ei, j C*(ei,)) with (ei, j) 3
	3.4.2.4 Edge combinations of C(C*(ei, j)) with (ei, j) 3
	ei, j cannot be a parallel edge of M
	ei, j is a singleton edge of M

	3.4.2.5 An upper bound on (e) for e C(C*(ei, j)) - {ei, j}
	3.4.2.6 An upper bound on (e) for e C(C*(ei, j)) known to be parallel
	3.4.2.7 An upper bound on the average value of (e)

	3.4.3 Lower bounds on the locality gap for the algorithm LS
	3.4.3.1 An instance of MCBM
	3.4.3.2 An instance of Max-Duo

	3.5 Concluding remarks and possible future work

	4 The Path Partition ProblemThis chapter is based on two papers CGL19,CGL18m. CGL19 is a work with Chen, Goebel, Lin, Su, and Zhang, ``An improved approximation algorithm for the minimum 3-path partition problem'' which is published by the Journal of Combinatorial Optimization (JOCO); CGL18m is a work with Chen, Goebel, Lin, Liu, Su, Tong, and Zhang ``A local search 4/3-approximation algorithm for the minimum 3-path partition problem'' which is a submission under review.
	4.1 Introduction
	4.2 A local search approximation algorithm
	4.2.1 Computing a 3-path partition with the least 1-paths
	4.2.1.1 Step 1: computing a maximum matching
	4.2.1.2 Step 2: computing a second maximum matching
	4.2.1.3 Step 3: reducing 1-paths to the minimum
	4.2.1.4 The main theorem

	4.2.2 Local operations and their priorities
	4.2.2.1 Operation 3-0-By-0-2, highest priority 1
	4.2.2.2 Operation 3-1-By-0-3, priority 2
	4.2.2.3 Operation 4-1-By-1-3, priority 3
	4.2.2.4 Operation 4-2-By-1-4, lowest priority 4

	4.2.3 The complete local search algorithm Approx

	4.3 Analysis of the approximation ratio 4/3
	4.3.1 Distribution process Phase 1
	4.3.2 Distribution process Phase 2
	4.3.3 A tight instance of algorithm Approx

	4.4 Concluding remarks and possible future work

	5 Conclusions and Future Work
	Bibliography

