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Abstract

It is common in linguistic analysis to treat words as strings of speech segments that

are believed to be transduced from the speech signal. However, there are notable

shortcomings with this approach, especially concerning word comparison. Princi-

pally, comparing speech segment strings does not directly assess the acoustic simi-

larity of words, despite theories and evidence that words that sound similar compete

for activation during spoken word recognition. The present dissertation aims to

provide a perceptually-grounded method by which words can be represented acous-

tically and then compared with the dynamic time warping algorithm. The disserta-

tion comprises three studies. The first study is a regression analysis to demonstrate

the relationship between acoustic distance and spoken word recognition. It also

investigates how to derive more abstract acoustic representations for words based

on productions from multiple speakers. The second study investigates what sort of

spectral distance function best reflects human perception of acoustic distance. It

also examines human perceptual sensitivity to duration differences. The third study
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compares speech features that are learned by a neural network to mel frequency

cepstral coefficients to determine which style of representation for the speech signal

better reflects perception. The neural network features are an ensemble of features

specific to certain regions of the speech spectrum, while the mel frequency cepstral

coefficients are a summary of the entire spectrum. Together, these studies inform the

processes of converting the speech signal to an acoustic representation and tuning

acoustic comparisons so that they better relate to human cognition.
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Preface

The three body chapters of this dissertation are intended to be published as stan-

dalone, separate research articles. Each chapter has its own introduction and con-

clusion. Some chapters refer to supplementary materials, and these materials are

included as appendices at the end of the present dissertation. Benjamin V. Tucker

supervised these projects and provided conceptual and editorial feedback throughout

the writing process.

Chapter 2 has been submitted and is undergoing revision as: Kelley M. C., &

Tucker, B. V. (2021). Using acoustic distance and acoustic absement to quantify

lexical competition.

The study in Chapter 3 received ethics approval from the University of Alberta

Research Ethics Board, Project Name “Describing human judgments of acoustic

distance”, No. Pro00103566, October 10, 2020.
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Chapter 1

Introduction

The traditional representation of words and speech segments in phonetics and lin-

guistics as a whole is a string of symbols. These symbols most often represent phones

or phonemes, and this is often a useful representation. It is compact, discrete, and

often unvarying. Whereas, recordings of speech are storage-intensive, they represent

continuous events, and two recordings of the same word are virtually never identical.

Yet, acoustic representations of speech are both a far more faithful representation of

speech events and much more similar to the phenomenon that a human listener en-

counters when hearing speech. So, it is striking that there has yet to be a well-tested

method to represent and compare words acoustically. This dissertation proposes the

use of dynamic time warping to quantify differences between acoustic representa-

tions of speech. It analyzes various aspects of the dynamic time warping algorithm

as relevant to speech perception and spoken word recognition. The present chapter

serves to situate acoustic representations and comparisons in linguistic theory and

provide additional information and context on dynamic time warping that will be

relevant to motivating the remaining chapters.
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Note that the term “representation” is used throughout this dissertation. It

is common in linguistics to use “representation” with specific reference to how a

linguistic object exists in the mind. However, the use of the term here is meant to

invoke the more general sense of one object standing in for another. In this instance,

a concrete, measurable acoustic object is used as a manipulable stand-in for the more

nebulous and abstract concept of a word. That is, the acoustic representation is an

instantiation of a word. This meaning of representation is rooted in the concept of

representation in fields like mathematics (Goldin, 2014). In this sense, the acoustic

representations are used in an instrumentalist sense more so than a realist sense.

1.1 Theoretical motivation

Within linguistics, words are commonly represented in a textual, discrete, and sym-

bolic format for analytical purposes. Without a doubt, these formats are incredibly

useful and allow for a wide range of analyses. Discrete, symbolic representations of

language allow for the application of a wide range of methodology from formalized

disciplines like discrete mathematics to theoretical computer science (Port & Leary,

2005). Such a treatment has been incredibly fruitful for many subdisciplines of lin-

guistics. However, using this symbolic representation requires a transduction of the

continuous speech signal into discrete elements. Often, this transduction forces the

loss of some or all of the acoustic properties of the speech signal. Some approaches

to phonology believe the lack of acoustic “substance” in symbolic representations

is ideal and accurate for cognitive representations, as evidenced in substance-free

phonology (Reiss, 2017). However, this loss of acoustic information is certainly not

ideal in the context of research on speech perception and spoken word recognition as

it is likely that listeners make use of this information. A wealth of evidence suggests
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that the sound similarity between words in the lexicon can influence the speed with

which a word is recognized in speech (reviewed in Vitevitch & Luce, 2016).

Assessing sound similarity would make the most sense to do acoustically. Yet,

there remains a gap in terms of representing segments and words acoustically. It

may be the case that acoustic representations of words are not needed for certain

aspects of cognitive modeling, but they are necessary to make acoustic comparisons

between words. Local acoustic comparisons have existed in the phonetics literature

for decades, including comparisons of voice onset time (Lisker & Abramson, 1964),

spectral moments (Jongman et al., 2000), and formants (Peterson & Barney, 1952).

No local acoustic measurement or characteristic can be applied across all speech

sounds, however, so none of these methods can be simply extended to encompass

word-level comparisons. Word-level acoustic comparisons have been carried out pre-

viously (Bartelds et al., 2020; Heeringa, 2004; Kirchner et al., 2010; Lewandowski,

2012; Lewandowski & Jilka, 2019; Mermelstein, 1976), but the acoustic represen-

tations and distance functions used were not cognitively validated with behavioral

data from a large variety of words.

The present dissertation extends previous research on acoustic word-level compar-

isons by testing various components involved in these comparisons and grounding the

acoustic comparisons in human cognition using behavioral data. A running theme

throughout the dissertation is also what, exactly, the nature of a non-trivial acous-

tic representation of words might look like. Trivial representations could simply be

recordings of words, but such a representation neglects the abstraction process that

occurs when less relevant information is filtered out of an object. The present work

focuses on abstraction regarding acoustic information and regarding exemplars of

words. Abstraction over acoustics concerns determining what parts of the acoustic

signal are meaningful, while abstraction over exemplars has to do with how individ-
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ual tokens are categorized into larger units and what those larger units might look

like. Both of these types of abstraction are needed so that acoustic comparisons

between words compare relevant parts of the acoustic signal and are applicable to

more than just individual recordings of words. These are common themes in the

tension between exemplar-based approaches to speech perception (e.g., Goldinger,

1998; Johnson, 1997; Pierrehumbert, 2001) and abstractionist/prototype-based au-

ditorist approaches to speech perception (e.g., Diehl & Kluender, 1989; Farrar, 1981;

Kingston & Diehl, 1995; Kuhl, 1992).

1.1.1 Acoustic representation

The nature of acoustic representation that is used throughout the dissertation is

continuous rather than discrete. The continuous nature of the representations is

similar to that of a spectrogram, where frequency information and intensity infor-

mation are represented across time. Because these representations are manipulated

with digital computers, they are necessarily discretized, finite approximations of con-

tinuous phenomena. These acoustic representations are intended to be treated as

physical representations of words; that is, they are simply a time-bound sequence

of acoustic information. They are intended to be representations of sequences of

acoustic information expected in the speech signal for a given word. In this sense,

acoustic representations could be thought of as acoustic “templates” in that they

specify a template of a word that the speech signal can be checked against, similar

to Klatt (1981). They are not intended to be literal neurological representations of

words in the brain. They are also not intended to be interpreted as individual word

detectors à la the logogen model of spoken word recognition (Morton, 1969). To

some degree, the acoustic representation is merely a change in perspective from a
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symbolic representation. A string of segments that is used to represent a word in

the lexicon can be taken as an expectation of what the acoustic signal will sound

like, after transducing each segment into the acoustic cues that are associated with

it. However, the transduction of segments into acoustics necessarily requires some

storage of the cue associations between segments and acoustics. Within the acoustic

representation, that information is already present.

This style of acoustic representation has potentially far-reaching ramifications for

speech production as well as speech perception. If words are treated as sequences

of acoustic information, there is no longer a need to posit a transduction between

segments and articulation during speech planning. Instead, there would be a stored

relationship between acoustic qualities or targets and the articulations that achieve

those acoustic qualities. The fact that an acoustic representation is being used here

quite clearly does not imply that humans use acoustic representations in this fashion

nor that speech production is only a mapping between acoustic and articulatory

information without the need for segments as an intermediary. These questions are

not explicitly addressed in the dissertation, but they do frame the possible future

consequences of acoustic representations if they prove analytically useful.

1.1.2 Acoustic comparisons

Being that the acoustic representations are time-bound, there is a natural difficulty

in comparing words to each other. Virtually no two words or even two pronunciations

of the same word will be identical in duration. This problem is modestly alleviated

by a finite representation due to the pigeonhole principle, which basically states that

if you have n items but fewer than n boxes in which to put the items, some of the

boxes must contain more than one item (consult Keller & Trotter, 2017, Chapter
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4). However, even though the word-level duration between two recordings may occa-

sionally coincide, segment-level duration is unlikely to coincide between the words.

Naturally, these temporal differences between segments (and often words) mean that

more care must be given to comparing the acoustic representations than simply find-

ing the Euclidean distance between them; in many cases, it will be impossible since

the discretized representations of the words are of different lengths, and in other

cases, non-similar portions of the words may end up compared to each other. The

latter problem is severe when it comes to cognitive modeling since humans permit

some elasticity in terms of temporally matching an input to a lexical template; were

this not the case, every uttered exemplar of a segment category would need to be

identical in length to all other exemplars of that category, which is obviously false.

A family of algorithms exists that by default allow for distance-over-time calcula-

tion with elastic correspondences between time steps. These algorithms are generally

referred to as elastic matching algorithms (Uchida & Sakoe, 2005) or elastic align-

ment algorithms (Abanda et al., 2019). Because these algorithms compare sequences

across time, they naturally fit in with the mathematical notions of dynamical sys-

tems and differential equations. Indeed, they sum distance values across the time

dimension, a quantity which is referred to as “absement” (Mann et al., 2018; Mann

et al., 2006). This situation is analogous to how summing velocity values across time

yields the distance quantity. By nature of using such algorithms, the dynamics—

that is, patterns of changes over time—of acoustic differences between words are

centered. While many of these algorithms may potentially be useful, one particular

algorithm within this family stands out for use in speech due to its history of use in

automatic speech recognition: dynamic time warping. Using dynamic time warping

to compare words is a direct extension of work dating back at least to Mermelstein

(1976), who used a temporal alignment algorithm to calculate a form of distance
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with Mel frequency cepstral coefficients (MFCCs) as the acoustic representation.

1.2 Dynamic time warping in detail

Dynamic time warping is a dynamic programming method used to compute the

following recurrence relation (similar to a recursive phrase-structure rule or syntactic

schema) for two sequences S1 and S2 of length M and N , respectively:

C(m,n) = d(Sm
1 , S

n
2 ) + min(C(m− 1, n), C(m,n− 1), C(m− 1, n− 1)) (1.1)

C(m, 1) = d(Sm
1 , S

1
2) + C(m− 1, 1) (1.2)

C(1, n) = d(S1
1 , S

n
2 ) + C(1, n− 1) (1.3)

C(0, 0) = C(0, n) = C(m, 0) = ∞ , (1.4)

where C(m,n) indicates the cost function evaluated at time step m in S1 and time

step n in S2, d(·, ·) indicates a distance function like Euclidean distance, and the

notation Sm
1 indicates the m-th time step of S1, and Sn

2 indicates the n-th time step

of N . When the min function in Equation 1.1 chooses C(m − 1, n), the n-th time

step of S2 is being stretched over an additional time step in S1. When the min

function chooses C(m,n − 1)), the m-th time step of S1 is being stretched over an

additional time step in S2. And, when the min function chooses C(m − 1, n − 1),

neither sequence is being stretched in time at the corresponding time steps. These

possibilities are displayed in Figure 1.1a. It may appear as though S1 and S2 are

mislabeled on the axis labels or in the text annotations, but they are not. Rather, it

is what is being held constant with each path option that must be interpreted. For

example, in the horizontal line at the bottom, it is the time step of Sm
1 that is being
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held constant across the time steps of S2. This means that Sm
1 is being stretched

across two time steps in S2.

(a) Possible paths checked in the min
function to calculate C(m,n).

(b) Optimal path through dynamic pro-
gramming trellis for the words abandon-
ment and abandoned, which are on the x-
and y-axes, respectively.

Figure 1.1: Dynamic time warping process shown for an individual frame and for
comparing two different words.

This recurrence is often (though not always) computed by filling in a dynamic

programming matrix, from which the lowest cost alignment path can be determined

via backtracking from the value of C(M,N). An example of this path for the words

abandonment and abandoned from the Massive Auditory Lexical Decision database

(Tucker et al., 2019) is given in Figure 1.1b. The overall dynamic time warping cost

between the two words is equivalent to summing the distance between each point

along the black warping path. Note that the warping path is not a straight line,

indicating that some time steps in each word are compared to multiple time steps

in the other. A straight line is also impossible because the words have a different
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number of discrete time steps.

Dynamic time warping was historically used in automatic speech recognition since

Sakoe and Chiba (1970), though it has since fallen out of popularity in favor of deep

learning models and hidden Markov models. It is still popular when comparing time

sequences in data mining, such as in Petitjean et al. (2014) and Rakthanmanon

et al. (2012). In fact, it often provides state-of-the-art results when comparing the

similarity of time series (Ding et al., 2008). Given its popularity in comparing time-

series and the frequent analysis of time-series data in phonetics and linguistics, it

is conspicuous that dynamic time warping has not been taken up significantly in

our field yet, outside of a handful of studies such as Mermelstein (1976), Kirchner

et al. (2010), Mielke (2012), McCloy (2013), and Bartelds et al. (2020). Perhaps this

is because it is not obviously relevant to the sorts of questions that researchers ask.

Indeed, it may be the case that the focus on segmental analysis of speech has obscured

the potential utility in dynamic time warping as a research tool. It does, after all,

require numerical distances between the objects being compared, and methods for

computing the distance between a character and a sound are not obvious.

Previous research has pointed out that dynamic time warping and the Viterbi al-

gorithm bear considerable similarities. Unlike dynamic time warping, the Viterbi al-

gorithm uses a more symbolic approach for speech recognition that involves phoneme

recognition in tandem with word recognition. These algorithms are so similar, in fact,

that they can be said to optimize the same quantity (Oates et al., 2000). It is worth

considering some aspects of this similarity in greater detail, in addition to potential

differences.

There are a number of algorithms that are related to the Viterbi algorithm that

are also used in speech recognition, like the token passing algorithm and the beam

search algorithm, such as given in Graves (2012). They are all interrelated by virtue
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of being dynamic programming algorithms. All of these algorithms are designed to

perform a search over all possible symbol strings to find the one that best matches the

acoustic input. For automatic speech recognition, it is typical to search both phoneme

strings and word strings in parallel, one coming from the other via dictionary lookup.

Although, newer models map directly to graphemes (e.g., Amodei et al., 2016). These

systems are trained to perform categorization, providing probability distributions

over phonemes or graphemes at each time step of audio being processed. In so

doing, these models provide an alternative solution to the difficulty in measuring the

similarity between symbols and acoustic input.

It is worth considering some of the assumptions that using dynamic time warping

makes and how those assumptions relate back to phonetics and speech perception.

The first assumption has to do with what sorts of objects are compared with each

other. Dynamic time warping is often used to compare like-to-like. That is, the rep-

resentation of both objects is often the same, like comparing two different formant

tracks to each other. The underlying assumption in systems using dynamic time

warping for speech recognition is that it is tenable to represent words acoustically

for speech recognition systems. By using dynamic time warping as a form of acoustic

comparison between words, the same assumption is made in this dissertation. But,

the assumption is narrower in that representing words acoustically is not just useful

for engineering purposes, but also for cognitive modeling. These assumptions neces-

sitate experimental validation. At the word level, experimental results are needed

that the results of dynamic time warping relate to human perception. And, at the

subsegmental level, experimental results are needed that distance comparisons made

in dynamic time warping relate to human distance perception, as well as that the

acoustic representation itself relates to human perception. The studies in this dis-

sertation are designed to gather experimental evidence related to those assumptions.
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Contrast that sort of like-to-like comparison with neural networks used for speech

recognition. The neural networks are trained to produce similarity scores in the

form of probabilities between slices of acoustic information and symbols. There is

an underlying assumption that words are best represented as phoneme or grapheme

strings. Mapping acoustics onto symbols reliably is a remarkably difficult problem,

as anyone who has ever performed spectrographic analysis of speech is well aware (see

the history in Shankweiler & Fowler, 2015). This is doubly true in the face of results

like Ladefoged and Broadbent (1957), where the same acoustic input can be assigned

to different phoneme categories based on previous formant context. These results

suggest that context-free phoneme categorization is a one-to-many relationship. That

is, a single input could have multiple possible outputs associated with it. Magnuson

et al. (2020) similarly suggested that the relationship is many-to-many, that is, that

multiple inputs pair with multiple outputs. These types of relationships are not

learnable by neural networks and can only be approximated. This is because neural

networks learn continuous functions (Cybenko, 1989), which can only represent one-

to-one and many-to-one relationships. Dynamic time warping on acoustic lexical

templates, then, may present the opportunity to study spoken word recognition with

processes that are more computationally tractable than some sort of transduction

from the acoustic signal to phoneme categories per se.

In dynamic time warping, the non-linear mapping produced between two words

allows for the accumulation of acoustic distance across time. This accumulation

represents the sustained distance between two words in time, that is, absement. In

some sense, absement can be thought of as being inversely related to activation dur-

ing spoken word recognition, in that higher values indicate poorer matches between

the incoming signal and an item in the lexicon. This quantity is central to Chapter

2, which attempts to create a new measure of lexical competition based on acous-
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tics. Absement values are calculated between each pair of the 26,793 English words

in the Massive Auditory Lexical Decision data set (Tucker et al., 2019), and the

mean value from a given word to all words in the data set is taken to be its “acous-

tic distinctiveness.” This value is related to auditory lexical decision behavior as a

measure of competition, with the hypothesis that words with low values of acoustic

distinctiveness—that is, words that sound like many other words—will take longer to

respond to, and vice-versa. This hypothesis mirrors results using phonological neigh-

borhood density as an index of lexical competition during spoken word recognition

(Luce, 1986; Luce & Pisoni, 1998; Vitevitch & Luce, 2016).

By using dynamic time warping, another assumption is made about how slices

of acoustic information should be compared to each other. It is common to use

Euclidean distance or squared Euclidean distance when computing dynamic time

warping (Rakthanmanon et al., 2012). It is not clear that this is necessarily the best

distance function to use to compare slices of acoustic information. That is, Euclidean

distance may not be the best reflection of human cognition. In a more abstract sense,

it is also not clear what sorts of acoustic features are best suited to use as the acoustic

representation of a word. The notion of the feature set should not be overlooked;

indeed, the feature set is what will ultimately determine what sounds are close to

each other and what sounds are far apart from each other, and the distance function

is merely a choice about how to quantify that distance. To more concretely exemplify

this relationship between feature sets and distance functions, consider a feature set

that consists only of F1 values for vowels. It would be the case, then, that [i] and

[u] would be very close together, regardless of whether the distance is quantified

with Euclidean distance, Manhattan distance, etc. Taking the mean formant values

by category for the male speakers in the Hillenbrand et al. (1995) data provided

in the phonTools R package (v0.2-2.1 Barreda, 2015), [i] and [u] are only 36.98
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Hz apart, compared to [i] and [ɪ] being 86.67 Hz apart. However, on adding F2

to the feature set, [i] and [u] are suddenly much further apart at 1331.05 Hz using

Euclidean distance, compared to [i] and [ɪ] being 301.61 Hz apart. This example

underscores the importance of choosing a set of features; no distance function can

make up for a feature set that does not appropriately separate objects. Both the

feature set selection and the distance function selection must be considered together.

1.3 The present dissertation

At its core, the present dissertation seeks to provide experimental and empirical

validation for using dynamic time warping in phonetics and linguistics. Chapter 2

relates the cost value derived from dynamic time warping to lexical competition, in

comparison with phonological neighborhood density. Chapter 3 compares possible

distance functions to human judgments of acoustic distance in perceptual tasks. It

additionally derives temporal bounds to impose on the dynamic time warping process

based on perceptual sensitivity to duration differences in vowels. Chapter 4 com-

pares representing words as hand-crafted Mel frequency cepstral coefficient (MFCC)

sequences to representing words with acoustic features learned by a neural network

trained to perform formant and vocal tract resonance tracking. The chapters are

interrelated, but each one has been written to serve as a standalone paper. As such,

there are separate abstracts and introductions for each chapter to provide a more

in-depth contextualization of the relevant topics and previous literature. Chapter

5 connects the results of each chapter together and offers a speculative hypothe-

sis about speech communication as an acoustically-driven, goal-oriented process as

informed by these results.

Chapter 3 and Chapter 4 together address the issue of choosing a distance func-
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tion and choosing a feature set, respectively. The research question for Chapter 3

is what distance function should be used to compare audio slices to each other, in

addition to how many other audio slices in the future and in the past a particular

slice should be able to be compared to. These questions are addressed by modeling

the results from a rating task and a duration discrimination task. In this way, the

selected distance function can be related to human perception, as can the temporal

elasticity, so to speak, of the audio slices in acoustically represented words. The

results from both experiments are then used to re-analyze the results from Chapter

2 to situate the distance function and the elasticity in the context of spoken word

recognition. The results speak to how duration differences might be accounted for

cognitively during spoken word recognition and how acoustic information might be

compared to a lexical template in the listener’s mind.

Chapter 4 addresses the research question of what sort of features should be

used to represent speech. The different features compared are MFCCs and features

learned by a neural network to do formant tracking. The neural network features

are interpreted in the context of determining what frequency components in a sound

cause features to have high values. These features are compared with MFCCs by

re-modeling the analyses from previous chapters and comparing results. The results

from this analysis relate to what style of acoustic abstraction might be at play as

regards spoken word recognition. The MFCCs represent summary style features that

summarize the entire acoustic spectrum, whereas the neural network features each

relate to the presence or absence of a combination of frequency components.

Together, these studies investigate the interplay between acoustic representations

and mental acoustic comparisons. It is difficult to study one without the other, or

indeed for one to exist without the other. By extension, these studies also evidence

the interrelated nature of speech perception and speech production. Production data
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is used to explain perceptual phenomena that occur during spoken word recognition,

and the acoustic representation for production data is designed to satisfy cognitive

and perceptual desiderata.
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Chapter 2

Using acoustic distance and

acoustic absement to quantify

lexical competition

This chapter has been submitted as: Kelley, M. C., & Tucker, B. V. (2021). Using

acoustic distance and acoustic absement to quantify lexical competition.

Abstract

Phonological neighborhood density has been a common method to quantify lexi-

cal competition. It is useful and convenient, but it has shortcomings that are worth

reconsidering. The present study quantifies the effects of lexical competition dur-

ing spoken word recognition using acoustic distance and acoustic absement, rather

than phonological neighborhood density. The indication of a word’s lexical compe-

tition is given by what is termed its acoustic distinctiveness, which is taken as its

average acoustic absement to all words in the lexicon. A variety of acoustic rep-

resentations for items in the lexicon are analyzed. Statistical modeling shows that
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acoustic distinctiveness has a similar effect trend as phonological neighborhood den-

sity. Additionally, acoustic distinctiveness consistently increases model fitness more

than phonological neighborhood density, regardless of which kind of acoustic rep-

resentation is used. Acoustic distinctiveness does not seem to explain all the same

things as phonological neighborhood density, however. The different areas that these

two predictors explain are discussed, in addition to potential theoretical implications

of acoustic distinctiveness’s usefulness in models. The paper concludes with rea-

sons why a researcher may want to use acoustic distinctiveness over phonological

neighborhood density in future experiments.

2.1 Introduction

In spoken word recognition, a listener must discriminate or recognize the word con-

tained in an audio signal from among other potential candidates. One predominant

metaphor used to describe this process is the activation/competition metaphor. Un-

der this metaphor, potential matches for the word in the audio signal receive activa-

tion based on how well the acoustic information in the signal matches the listener’s

expectations for each word. A group of words that sound similar and are expected to

compete have been called phonological neighborhoods (Luce, 1986; Luce & Pisoni,

1998). In Luce (1986), words are defined as neighbors on the basis of being one edit

(phoneme addition, deletion, or substitution) away from each other. For example,

some of the phonological neighbors of /kɪt/ are /skɪt/, /ɪt/, and /sɪt/. In this sense, the

sound similarity between words is assessed using text in the form of phoneme strings.

Competition is then quantified by counting the number of words in the lexicon that
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are neighbors with a given word. This count is defined as the word’s phonologi-

cal neighborhood density. Phonological neighborhood density has been found to be

predictive of participant behavior in many psycholinguistic tasks. In auditory lexi-

cal decision, for example, high phonological neighborhood density values have been

found to have inhibitory effects in English (Goldinger et al., 1989; Luce & Pisoni,

1998). However, facilitatory effects were found for Spanish (Vitevitch & Rodríguez,

2005) and Japanese (Yoneyama, 2002). See Vitevitch and Luce (2016) for a review

of other tasks that this measure has been used for.

Yet, when the notion of phonological neighbors based on the one-edit rule was

introduced, Luce (1986) remarked that a more sophisticated method of assessing

sound similarity should eventually be used. He noted that the one-edit definition of

neighbors applies equal weight to segmental substitutions wherever they occur in the

word and does not reflect phonetic differences that would occur. For example, /kɪt/

would be considered as similar to /sɪt/ as it is to /kɪs/. What’s more, equal weight

is also assigned to any possible segmental change, so /pɪt/ would be considered to

be as close to /bɪt/ as it is to /nɪt/, which does not reflect how the word or phrase

position of a segment influences its production. This is in spite of the fact that not

all speech sounds are equally similar to each other, which is readily apparent whether

considering the sounds from an articulatory, auditory, or acoustic perspective.

While researchers have learned a lot about spoken word recognition and compe-

tition from the one-edit rule phonological neighborhood density, it is time to address

these shortcomings. In the present study, we used acoustic distance comparisons to

quantify the sound similarity between words. We then used those comparisons to

operationalize lexical competition to model responses in an auditory lexical decision

task and compare the results to phonological neighborhood density.

Previous research has not left Levenshtein distance or the one-edit rule unques-
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tioned. Luce (1986) detailed more sophisticated methods of quantifying competition,

ending on the frequency-weighted neighborhood probability rule. It incorporates lexi-

cal frequency, neighborhood density, and phoneme confusability. Neighbors are still

detected based on the one-edit rule. However, despite the additional explanatory

value of the frequency-weighted neighborhood probability rule, most studies that

use, analyze, or control for phonological neighborhood effects have used the one-edit

rule and classical phonological neighborhood density Vitevitch and Luce (2016). A

modification to the one-edit definition of neighbors was proposed by Kapatsinski

(2005) where neighbors are defined by having at least two thirds of their segments in

common, as assessed by Levenshtein distance. However, this modification still does

not address the original concerns about the type or position of change. In production,

Nelson and Wedel (2017) suggested that the presence of minimal pairs was a bet-

ter predictor than phonological neighborhood density for lexical competition during

production. Switching to using the presence of a minimal pair does not resolve the

concerns about the timing or type of change to the phonetic signal when assessing

sound similarity, though.

It seems, then, that a method with more gradience than binary same/different

comparisons is needed to assess the similarity of sounds. Comparisons between seg-

ments date back at least to Saporta (1955), who used distinctive features from English

(Jakobson et al., 1952) and Spanish (Llorach, 1950) to calculate a sort of distance

between segment pairs for each language. This style of assessing the similarity of

sounds with distinctive features has found use in many other studies (Albright &

Hayes, 2006; B. Allen & Becker, 2015; Frisch et al., 2004; Mohr & Wang, 1968).

Other feature sets have also been used (Heeringa, 2004; Kondrak, 2000; Peterson

& Harary, 1961; Sanders & Chin, 2009). Featural comparisons may very well be

analytically useful, but it cannot be assumed a priori that similarity measures based
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on them will be relevant in acoustico-perceptual studies. From a perceptual per-

spective, Iverson et al. (1998) used confusion data to calculate used the phi-square

coefficient, which is equivalent to the squared Pearson correlation between binary

variables (Howell, 2008). This method found later adoption in Gahl and Strand

(2016). However, phoneme confusion data is difficult to extend to the word level,

and confusion in simple syllables may not relate well to confusion in longer words

due to context effects.

Other researchers comparing linguistic units have instead focused on using acous-

tic data. Heeringa (2004) compared formant tracks using Euclidean distance in a

dynamic programming paradigm with a speech rate normalization to ensure a con-

sistent duration for every segment. A shortcoming of this method for use in per-

ceptual work is the speech rate normalization, since speaking rate is ever-present

in speech. Lewandowski and Jilka (2019) calculated acoustic similarity based on

the amplitude envelopes of specific frequency bands of the signals in question using

cross-correlation. Cross-correlation, though, does not deal with temporal distortions

between two signals such as might occur between different productions of the same

vowel.

Johnson (1997) and Yoneyama (2002) created acoustically-derived exemplar mod-

els of words. The exemplars used a vector-quantization technique on sequences of

spectra to create the exemplars, and the vector-quantized exemplars were compared

with an exponential function of Euclidean distance based on the quantized spectra.

When exemplars were of different lengths, an alignment algorithm was used. As well,

these representations do not truly resolve the highlighted issues for phonemic repre-

sentations. The quantized spectra themselves—that is, the internal representations

of the words—are discrete and effectively symbols.

Mielke (2012) introduced a method of calculating phonetic similarity between
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phone or phoneme categories. It works with Mel-frequency cepstral coefficient (MFCC)

and delta coefficient representations of two audio signals, which is a form of time-

frequency representation for sound. The distance is taken as the average distance

between each pairing produced by the dynamic time warping algorithm, which finds

the set of pairings between two signals that minimizes the accumulated distance

between them, while maintaining temporal order. This method found later adop-

tion in Bennett et al. (2018), who summed the distances instead of averaging them.

Bartelds et al. (2020) also used dynamic time warping on MFCCs, delta coefficients,

and delta-delta coefficients as a measure of pronunciation distance between words

and also used a temporal normalization technique that is similar to averaging. Dy-

namic time warping has also been used in McCloy (2013) to align pitch and intensity

contours and Kirchner et al. (2010) to create averages of speech exemplars.

2.1.1 The present study

Demonstrably, myriad methods have been used to quantify differences between words

and sounds. However, fewer of these methods have been directly compared against

the one-edit rule used to calculate phonological neighborhood density. Gahl and

Strand (2016) found that some aspects of phonological neighborhood density did

not reflect perceptual similarity, and Yoneyama (2002) reported better performance

using more acoustic comparisons. There has yet to be a large-scale comparison be-

tween phonological neighborhood density and more acoustically-grounded methods,

however.

The remainder of the paper describes a measure of lexical competition based

on acoustic comparisons between words and analyzes auditory lexical decision data.

This paper extends the methods in Mielke (2012), using dynamic time warping at
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the word level and in the realm of lexical competition. The most direct acoustic

notion of a word having many or few phonological neighbors is whether a word

is acoustically similar or distinct from many words. We refer to this as a word’s

“acoustic distinctiveness” and calculate this variable over a large lexicon of speech

data by using dynamic time warping.

Being that dynamic time warping calculates distance at various time points in the

signal and can handle temporal distortion, it seems a good candidate for assessing the

similarity of sounds, as long as the format of the input captures the acoustic charac-

teristics of the signal well. MFCCs are a good starting place to represent speech since

they are the industry standard for speech recognition. Dynamic time warping also

addresses the concerns about the type and position of different segmental changes,

to the extent that they are present in the acoustic signal.

While some previous work on dynamic time warping has referred to its accumu-

lated cost value output as a distance metric (e.g., Bennett et al., 2018), in the strict

sense of a mathematical distance metric, this is inaccurate because dynamic time

warping’s output does not meet all the criteria necessary to be a distance metric.

Bartelds et al. (2020) and Mielke (2012) avoided this problem by finding average

or approximately average distances between aligned MFCC vectors in the dynamic

time warping output. However, durational differences between otherwise acousti-

cally similar segments will not be penalized in the output due to the nature of the

alignment in vanilla dynamic time warping. Such differences may actually result in a

lower average value due to a higher prevalence of small difference values in the set of

numbers over which the average is calculated. Whereas, for spoken word recognition

research, it is desirable for such durational mismatches to be penalized because du-

ration is a cue for a variety of speech sounds like vowels and geminates. We believe,

however, that there is an elegant solution at hand that also has a strong connection
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with kinematics. Specifically, acoustic distance forms the “interior” of dynamic time

warping, so to speak, when a distance is computed between two chunks of audio.

The accumulated distance that is output, then, is the absement between the two

sequences being compared in dynamic time warping. In kinematics, absement is the

time-integral of displacement or distance, and it is indeed the case that dynamic time

warping sums distance over time. Absement has found use in fields such as musi-

cal instrument design (Mann et al., 2006) and kinesiological feedback (Mann et al.,

2018). For vanilla dynamic time warping, absement would be the lowest accumulated

mismatch between the two signals.

Our first analysis is a proof-of-concept where approximately 26,000 real word

stimuli from an auditory lexical decision experiment are compared with each other

to determine an overall acoustic distinctiveness value for each word using the concept

of acoustic absement. The acoustic distinctiveness measure is then used as a statis-

tical variable to predict the response latency of the participants in auditory lexical

decision. The second analysis builds on the first but compares different ways of rep-

resenting the words in the experiment, including using recordings from speakers that

aren’t used in the auditory lexical decision stimuli and applying a sequence aver-

aging technique to multiple recordings to create prototype acoustic representations.

These results are compared with a statistical model that uses neighborhood den-

sity instead of acoustic distinctiveness to predict participant response latency. The

third analysis investigates the extent to which acoustic distinctiveness and phono-

logical neighborhood density overlap in the models. These analyses are followed by

a general discussion of the results and why a researcher might choose to use acoustic

distinctiveness over phonological neighborhood density.
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2.2 Analyses and results

The data that are used in the analysis come from the freely available Massive Audi-

tory Lexical Decision (MALD) data set (Tucker et al., 2019). MALD is an auditory

lexical decision megastudy, with about 28,000 real words recorded by a young male

speaker of western Canadian English. Each word was responded to in auditory lexical

decision at least 4 times from among 231 unique participants who were also native

speakers of western Canadian English, for a total of 227,129 data points (including

responses to both real words and pseudowords). Stimuli sets were also recorded for

two other speakers: a young female and an older male, both of whom are native

speakers of western Canadian English. These other recording sets will be crucial for

further development and testing of the acoustically-based measures of competition

detailed later on in the present study. As such, only words that are common between

these three speakers will be used, so that no particular word is left incomparable in

the different representations developed herein. In total, there were 26,005 words in

common between the speakers.

Further details are available in Tucker et al. (2019) on the recording process for

the young male speaker, the auditory lexical decision task, and the variables included

in the data set. The young female and older male speakers were recorded in a similar

environment and with similar methods and equipment as the young male speaker.

2.2.1 Analysis 1

The first analysis used the stimuli from the auditory lexical decision task itself as

templates to compare against each word. In this sense, the frequency information in

the recordings was taken as an acoustic representation of the word.
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Calculating acoustic distinctiveness

Each word was first converted to a Mel-frequency cepstral coefficient (MFCC) rep-

resentation, similar to Mielke (2012). At a high level, this process converts the

waveform of the audio into a transform of the frequency representation, similar in

some ways to a spectrogram. More specifically, this process involves multiplying

frames of the signal with a window function like a Hamming window, calculating

Mel filterbanks for each windowed frame, and determining the cepstral coefficients

for each filterbank with a discrete cosine transform. In the present analysis, a typical

format used in speech recognition was selected, where the window length was 25 ms,

and the step size for the windows was 10 ms. 13 coefficients were calculated, and the

zeroth coefficient was replaced with the log energy of the frames.

Delta and delta-delta coefficients were not calculated, unlike standard practice

in speech recognition and also unlike Bartelds et al. (2020) and Mielke (2012). The

choice not to calculate them in the present paper was made on the grounds that the

goal is to calculate the distance between time slices in the signals, and derivatives

do not make sense to use in such calculations. For example, if you have two points

in space and want to know the distance between them, only their current positions

matter; how quickly they are moving in space does not matter.

Once the words were converted to an MFCC-by-time representation using the

MFCC.jl package (v0.3.1 van Leeuwen, 2019) in the Julia programming language

(v1.4.2, Bezanson et al., 2017), each individual word was acoustically compared to

all other words and itself using the dynamic time warping algorithm. There was

one instance of each word in the data set. After comparing each word to all the

words, the mean of its absement to all words was calculated. This mean value was

taken as an indicator of the word’s acoustic distinctiveness, or how distinct it is on

25



average from all the words in the lexicon. In terms of graph-theoretic (Vitevitch,

2008) and network scientific approaches to modeling connections between words in

the lexicon (Vitevitch, 2008, 2021), the connections are modeled as a complete graph

with the addition of a word being connected to itself. The weight on each connec-

tion is the acoustic absement. The acoustic distinctiveness value would then be a

word’s average connection weight. These calculations were performed using the Pho-

netics.jl (v0.1, Kelley, 2020) package and the DynamicAxisWarping.jl (v0.2.5,

Bagge Carlson, 2020) packages.

Additionally, some words were recorded but not used in the experiment because

there were not enough to fill an additional experimental list. As such, these words

were used in calculating the acoustic distinctiveness for other words, but those words’

acoustic distinctiveness values themselves were not used in the modeling process.

Statistical analysis

The acoustic distinctiveness values correlated highly with the duration of the stimuli

(r = .89, p < .001). This is to be expected, however. The interval over which

the acoustic distances are summed to calculate the absement between word pairs

is linearly related to the duration of the stimuli (modulo some zero padding for

the final window on which the MFCCs are calculated). And, absement increases

monotonically over time in this case. The high correlation does not mean that these

variables are the same, however. Consider that f(x) = x2 and g(x) = x also have a

very high correlation when x is strictly positive, yet it is clear that x2 and x are not

equivalent.

What the correlation between duration and acoustic distinctiveness means prac-

tically is that they should not both be in the model at the same time if the results
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are meant to be interpretable. We also believe that absement—and, by extension,

acoustic distinctiveness—provide a characterization of the role that duration plays

in the modeling. That is, absement describes what is happening over the duration of

the stimulus, and as a result, it more clearly represents speech processing than dura-

tion. To draw a more concrete example, consider trying to model the fuel efficiency

of a car. It is standard to quantify fuel efficiency as the ratio of distance to volume of

gasoline used, such as in miles per gallon or liters per 100 kilometers. However, one

could also model the ratio between time spent driving and the amount of gasoline

used, which would also index a car’s fuel efficiency. The ratio of time to volume

of gasoline is related but not equivalent to the ratio of distance driven and volume

of gas. Yet, measuring fuel efficiency with time does not capture the crucial rela-

tionship between gasoline consumption and speed of travel, where faster speeds use

more gasoline and reduce travel time. As such, without appealing to other factors,

time spent driving obviously does not afford the same potential for explanation in a

model of fuel efficiency as the actual distance driven does. The same holds for the

relationship between stimulus duration and absement/acoustic distinctiveness: The

time it takes to hear a word does not give the same amount of information regarding

perception as the accumulated acoustic differences between a word and other words

in a language.

Theoretically, the general relationship between phonological neighborhood den-

sity and acoustic distinctiveness is inverse. Where phonological neighborhood density

is high, acoustic distinctiveness is low, and vice-versa. The reason for this relation-

ship is that acoustic distinctiveness is a measure of how acoustically unique a word is

in the lexicon, whereas phonological neighborhood density is a measure of how sim-

ilar a word is to other words. This relationship is reflected in the linear correlation

value of -0.30 between these two variables in the data used for modeling.
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Acoustic distinctiveness values were used as a predictor of response latency in

generalized additive mixed models (GAMMs) using the mgcv (v1.8.3, Wood, 2011)

and itsadug (v2.3, van Rij et al., 2017) packages in the R programming language

(v3.6.3, R Core Team, 2020). GAMMs were chosen to model nonlinear relation-

ships between the variables. We feel that modeling possible nonlinear responses is

especially important when introducing a new variable. Response time was measured

from stimulus offset to help factor stimulus duration out of the response latency

values themselves. These response times were then logged. Only correct responses

to real words made after stimulus offset were retained. This restriction leaves 96,001

responses for the modeling process.

Model fitting consisted of a forward-fitting process for the random structure,

where complexity was gradually added based on the f restricted maximum likelihood

score (fREML), as suggested in van Rij et al. (2017). The fixed-effect structure was

fit analogously but gradually removing complexity. This backward-fitting process

resulted in a smooth term for age, a smooth term for education level, and a parametric

term for sex being removed from the model for not contributing to the overall fitness

of the model. The final model had fixed smooth terms for trial number, log COCA

frequency+1, acoustic distinctiveness, phonological uniqueness point, and log moving

average response latency. Phonological uniqueness point is the point at which a word

can be uniquely identified from among all other competitors, and it has been found

to be predictive of participant behavior in spoken word recognition (Tucker et al.,

2019; William Marslen-Wilson & Pienie Zwisterlood, 1989). Log moving average

response latency is a decaying average of a participants’ previous responses. It was

calculated using the algorithm from ten Bosch et al. (2018), with the α variable set

to 0.1 globally. Both phonological uniqueness point and log moving average response

latency are included in the model as control variables.
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The random effect structure consisted solely of random intercepts by subject.

Adding random slopes did not significantly improve the model fit. By-item random

intercepts were not included in the model because the models took a prohibitively

long time and amount of RAM to run. Additionally, most items had four or fewer

responses after subsetting, so the explanatory power added by having the by-item

random intercepts is small, and the potential for overfitting increases.

The best model from the model-fitting process was then subjected to model crit-

icism, as outlined in Baayen and Milin (2010). There was a left skew in the distribu-

tion of the residuals, so the observations associated with residuals that were greater

than 2.5 standard deviations from the mean residual value were dropped (n = 2386

or 2.49% of the data used for model fitting), and the model was re-fit. The table of

coefficients for the fixed smooth terms in this model can be seen in Table 2.1.

Table 2.1: Table of coefficients for the GAMM after model criticism.

Predictor edf Ref.df F p-value
Trial number 3.32 4.12 23.22 < .001
Log COCA frequency+1 5.76 6.72 333.01 < .001
Acoustic distinctiveness 5.39 6.59 1154.60 < .001
Phonological uniqueness point 5.62 6.53 441.76 < .001
Log moving average RT 8.41 8.91 540.72 < .001

The smooths for the control variables were as expected. And, a plot of the

smooth effect of acoustic distinctiveness can be seen in Figure 2.1. Smooth effect

plots for the other effects can be are provided in the supplementary material.1 The

relationship is monotonically decreasing, with the amount of decrease leveling off

at the higher values of distinctiveness. That is, words that are acoustically similar
1See supplementary materials at [URL will be insert by AIP] for additional smooth effect plots

from the first model.
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to many words are responded to slower. Analogously, words that are acoustically

distinct from many words are responded to faster. In the frame of competition, words

with many potential competitors (words that are acoustically similar to many words)

are responded to more slowly, and words with few potential competitors (words that

are more acoustically distinct) are responded to more quickly. This is the same

general trend as reported for phonological neighborhood density, at least for English

(Luce & Pisoni, 1998). In terms of speech perception, these results suggest that it

takes longer for the competition process to play out in the mind when hearing a word

that sounds like many words.

Concurvity was also calculated for this model. The results are reported in Table

2.2. Concurvity is a generalization of collinearity for nonlinear trends (Wood, 2011).

Since GAMMs model nonlinear trends, it is appropriate to use concurvity here. The

measures of concurvity from mgcv use a similar scale as correlation, where a value

of 0 means no concurvity and a value of 1 means indiscernibility from other smooths,

though intermediate values cannot necessarily be mapped onto standard correlation

thresholds.

Of the three indices that mgcv provides, we choose to interpret the “observed”

index. While the documentation suggests that this measure is possibly optimistic

(underestimates) about how much concurvity is in the model (Wood, 2020), it is

close to the worst-case for concurvity in our data. We also prefer that it measures

the concurvity present in the data given the GAMM coefficients that the fitting

process determined. For a given smooth term, the index can be thought of as the

proportion of its effect that can be explained using other smooth terms. We provide

a deeper explanation of these indices in our supplementary materials.2

2See supplementary materials at [URL will be insert by AIP] for these explanations of the
concurvity indices.
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Figure 2.1: Smooth effect for the acoustic distinctiveness value, where all other pre-
dictors are held constant. The y-axis is the response latency after backtransforming
from log scale. The x-axis is the centered and scaled acoustic distinctiveness. Each
point in the function represents how much additional time it would take to respond
to a word with that particular acoustic distinctiveness value.
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There seems to have yet to be a calibration of these measures of concurvity against

different kinds of statistical errors, nor is there a consensus on when the values begin

to become concerning. Johnston et al. (2019) used a provisional cutoff of 0.3 in the

indices as an indication of a potential problem regarding which variables to include.

For our purposes, however, such a calibration is not strictly necessary because we

are not using concurvity measures as a method of determining which variables to

include in a model. Rather, we are interested in determining the extent to which

an effect, such as phonological neighborhood density, is explained by all the other

predictors in the model. In this case, we believe that a cutoff of 0.5 is appropriate.

The interpretation of this cutoff is that a concurvity measure above 0.5 suggests that

a majority of a predictor’s effect can be explained by other terms in the model.

Table 2.2: Estimate concurvity table for smooths in the GAMM model. A value of 0
indicates no concurvity and a value of 1 indicates indiscernability of the effect among
other smooths.

Concurvity index
Predictor worst observed estimate
Trial number 0.21 0.14 0.10
Log frequency+1 0.16 0.12 0.13
Acoustic distinctiveness 0.31 0.30 0.23
Uniqueness point 0.24 0.21 0.20
Log moving average RT 0.57 0.57 0.47
Subject 1.00 0.24 0.01

There is one predictor for which the measure crosses our threshold, that of log

moving average reaction time. It is a control predictor that does not really relate

to the research questions, so is not really a concern for the interpretation of acous-

tic distinctiveness in the model. Still, an examination of the pairwise measures of

concurvity from the concurvity function shows that much of the high concurvity
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value is due to the random effect for subject, where the value of the observed index

was 0.49. The concurvity between log moving average reaction time and the random

effect for subject is to be expected, though, since log moving average reaction time

is calculated on a by-subject basis.

There are some implications for speech processing to be gleaned from the effect of

acoustic distinctiveness in the model presented here. First, it would seem that compe-

tition effects can be modeled using data directly derived from physical measurements

of the acoustic signal. The MFCC templates used for calculating acoustic distinctive-

ness are based on the acoustic production of the speaker, and each coefficient in each

frame of the template indicates frequency information. If competition were to first

arise at an abstract, symbolic level—like that of phonemes—acoustic distinctiveness

should not have had a great effect in modeling the response latencies because it would

not connect directly to the cognitive information that is producing the competition

effect. However, since acoustic distinctiveness produced a competition-style effect,

its effect in this model challenges the idea that word-level competition plays out

among candidates represented as symbol strings (e.g., phonemes or diphones) and

not acoustics, such as suggested by the networks in TRACE (McClelland & Elman,

1986) and TISK (You & Magnuson, 2018).

Overall, these results show that calculating acoustic distinctiveness by comparing

sequences of MFCC values produces a useful predictor for response latencies in the

auditory lexical decision task. Due to its high correlation (and, likely, high con-

curvity) with item duration, acoustic distinctiveness may account for roughly the

same portion of variance in the data that duration does. However, acoustic dis-

tinctiveness has a clearer relationship to the signal and other items in the lexicon

than does duration. This is a particularly important point because duration is often

included in models as a control predictor for nuisance variance, while that same vari-
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ance can be more easily related to competition when using acoustic distinctiveness

as a predictor. Additionally, in our data, phonological neighborhood density is more

correlated with duration (r = −0.46) than with acoustic distinctiveness (r = −0.30).

From a modeling perspective, the effects of lexical predictors in the model may be

more easily interpreted when using acoustic distinctiveness than duration due to

lower amounts of multicollinearity or concurvity. Acoustic distinctiveness may thus

be preferable over duration in this scenario.

However, there is a potential shortcoming of using the stimuli themselves as the

template against which the stimuli are compared to find their acoustic distinctiveness.

Namely, it is not very ecological to the prior experience of a listener. Regardless of

what the structure of the lexicon may be or what the mechanisms of speech processing

are, an adult listener will have experience with a wide variety of speakers. New stimuli

will be compared against this sum total experience, rather than just the experience

relating to the speaker themselves. As such, the next analysis focuses on comparing

templates created from different and multiple speakers and assessing how well they

match the lexical decision data, with attention also paid to how they compare to

phonological neighborhood density.

2.2.2 Analysis 2

To answer the question of how using different and multiple speakers to create the

templates for calculating acoustic distinctiveness and how these compare to neigh-

borhood density, acoustic distinctiveness values were calculated similarly to those in

Analysis 1. This time, additional speakers’ recordings were used. These were the

previously mentioned young female and older male speakers. Both of these speakers’

recordings were used as template sets for determining the acoustic distinctiveness
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of the stimuli used in the lexical decision task. Additionally, values were calculated

using each possible combination of speakers as templates by using a sequence aver-

aging technique of the words. Each of these instantiations of acoustic distinctiveness

was also compared against phonological neighborhood density. The motivating hy-

potheses were that (1) if the acoustic representation is abstracted enough away from

the raw signal, using a different speaker’s recordings as the templates should also

provide an indication of lexical competition, and (2) that since a listener has mul-

tiple experiences with a given word’s acoustic characteristics, using an average of

multiple speakers’ recordings should produce a template that is closer to a listener’s

cognitive representation, providing a better index than a single speaker would. The

different templates compared were all possible subsets of the three speakers: (1) the

young male speaker, (2) the young female speaker, (3) the older male speaker, (4)

the average of the young male speaker and the young female speaker (5) the average

of the young male speaker and the older male speaker, (6) the average of the young

female speaker and the older male speaker, (7) and the average of all three speakers.

Calculating average sequences

The averaging process comes from Petitjean et al. (2011) and Petitjean et al. (2014),

which was designed for time series data generally. We started with MFCC-by-time

representations as described before. Next, the medoid of the sequence was found.

The medoid is a central tendency—like the mean and median—for a set of data. It

is the element in the data set which is closest to all the other elements in the set,

given a cost function. In this case, the absement between sequences (dynamic time

warping cost) was used as the cost function to minimize. Here, the medoid is found

by computing all pairwise absement values and choosing the recording that has the
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lowest summed absement to the other recordings.

The medoid is taken to be the time series that will be modified to find the average

sequence. Subsequently, the medoid is mapped onto each time-series with dynamic

time warping. In doing so, each frame of the current average sequence is mapped onto

relevant frames in the other time series. Each frame in the current average sequence

is then replaced with the average (or barycenter) of all the frames mapped to it

from dynamic time warping. The process is repeated iteratively until a convergence

criterion is met, and the resulting sequence is taken as the average. This process was

carried out using the avgseq function in the Phonetics.jl package.

Conceptually, this averaging process is similar to Kirchner et al. (2010), who also

used dynamic time warping to create a type of average of exemplars, though the

algorithm and representation were different.

Statistical analysis

To compare the effect of each of the different methods of calculating the acoustic dis-

tinctiveness had on the model, the same model from Analysis 1 without the acoustic

distinctiveness variable was taken as a baseline model. The acoustic distinctiveness

values from different calculation methods were then added to the model separately,

and the changes in the fREML values were observed. The change was also observed

for adding phonological neighborhood density. When comparing to the baseline

model, there was a decrease in fREML for each method used to calculate acoustic

distinctiveness, as well as for phonological neighborhood density. The magnitudes

of these decreases are presented in Figure 2.2. The decreases in fREML support

both hypotheses outlined for this analysis. The second hypothesis was not fully sup-

ported, though, since using the young male speaker’s recordings as the templates
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produced the greatest increase to model fitness. This is not completely unexpected

since his recordings are naturally going to be closer to each other than they are to

other speakers’ recordings.

By a large margin, neighborhood density provided the least improved model fit

when compared to the baseline model. However, based on the fREML value, there

is a significant increase in fitness from the baseline model. Generally, all templates

that included the speaker of the stimuli for the lexical decision task increased the

model fitness the most.

What is more striking is that using the older male speaker’s productions as tem-

plates to compare the experimental stimuli against does not improve model fitness

to the same degree as the other acoustic distinctiveness values. It suggests that

older male speaker’s speech is not a good model of the younger male speaker’s due

to the greater acoustic differences. Conversely, the larger increases to model fitness

from the other acoustic templates could be taken to indicate more acoustic similarity

between the templates and the stimuli. Support for this idea is also found in that

using the younger male speaker’s recordings as the templates produces the greatest

increase to model fitness. These results also suggest that age differences produce

greater acoustic differences in production than do sex differences. The results also

suggest that acoustic representations based on single speakers run the risk of creat-

ing idiosyncratic models of speech that may not effectively capture the important

acoustic aspects of words.

Concurvity was also checked for each model, and the results were similar to those

in Analysis 1, with the exception that the model that used neighborhood density

instead of acoustic distinctiveness, the observed concurvity index for neighborhood

density was 0.51. In the pairwise observed concurvity indices, phonological neigh-

borhood density was most concurved with uniqueness point at a value of 0.39 and
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Figure 2.2: (Color online) fREML differences between acoustic distinctiveness calcu-
lations and neighborhood density. All the changes were decreases, indicating better
model fit. Larger values indicate greater increases to model fitness. “YM” refers to
the young male speaker, “YF” refers to the young female speaker, and “OM” refers
to the older male speaker.
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log frequency at a value of 0.23. Overall, these concurvity results suggests that a

slight majority of the smooth for phonological neighborhood can be explained using

the other variables in the model. Specifically, a moderate amount of the concurvity

in the model is owed to uniqueness point and log frequency.

In the face of these observations, it is clear that acoustic distinctiveness increases

model fitness more so than neighborhood density. Overall, this indicates that acous-

tic distinctiveness is a better predictor of response times in the model. Treating

acoustic distinctiveness as an indicator of lexical competition, these results imply

that competition is better measured using acoustic representations that are closer to

the observed data than phoneme sequences. And, acoustic distinctiveness is closer

than phonological neighborhood density to a literal reading of the phrase “sound

similarity” that underlies the idea of phonological neighbors, i.e., words that sound

similar.

What’s more, the results suggest that this measure can be generalized to be

used in future research that does not necessarily use the MALD stimuli. Because

various speakers or combinations thereof can be used as templates for the stimuli in

the experiment without destroying the effect of acoustic distinctiveness, a database

could be produced that contains a large number of templates. A researcher could

then input their stimuli to a program that would compare the stimuli to the items

in the database and provide an acoustic distinctiveness score for the stimuli.

It is still unclear, though, if acoustic distinctiveness values represent the same

kind of information as neighborhood density does. To answer this question, a third

analysis was carried out that examined the degree to which neighborhood density

further increased model fitness for models that already had distinctiveness values as

predictors.
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2.2.3 Analysis 3

To answer the question of whether acoustic distinctiveness and neighborhood density

capture similar information about competition, a third analysis was performed. The

motivating hypothesis is that if neighborhood density and acoustic distinctiveness

are measuring the same thing and accounting for the same variance in the data,

adding neighborhood density to a model that already has acoustic distinctiveness

should not significantly increase the model’s goodness of fit.

Statistical analysis

Phonological neighborhood density was added to each of the models with acoustic

distinctiveness from Analysis 2, and the changes in the fREML values were ob-

served. The fREML decreased for each model, and the magnitude of the decreases

are presented in Figure 2.3. Overall, neighborhood density contributed significantly

to improving the fitness of all the models, which is taken as evidence against the

idea that acoustic distinctiveness and phonological neighborhood density represent

closely related information about the lexicon.

Note that the level of fREML decrease (that is, the level of model fitness increase)

was greatest for the model using the older male speaker’s recordings as the template

for acoustic distinctiveness. There is a parallel to the finding in Analysis 2 where

using the older male speaker’s recordings as the templates increased model fit the

least compared to the other acoustic distinctiveness values. Together, these results

imply again that using the older male speaker’s productions as the templates for

the younger male speaker’s productions is a worse fit, potentially due to there being

greater acoustic differences between the two speakers.

A similar trend to those from Analysis 2 is seen in the concurvity values for the
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Figure 2.3: (Color online) fREML differences between acoustic distinctiveness calcu-
lations and neighborhood density. All the changes were decreases, indicating better
model fit. Larger values indicate greater increases to model fitness.

models in the present analysis. The best case for phonological neighborhood density

was when it was added to the model using the older male’s recordings as templates.

41



In this case, phonological neighborhood density had an observed concurvity index

of 0.53, with uniqueness point, log frequency, and the acoustic distinctiveness values

being the greatest contributors in the pairwise comparisons, having values of 0.40,

0.23, and 0.12, respectively. The worst case for phonological neighborhood density

was the model using the young female’s recordings as templates, where neighborhood

density had an observed concurvity index of 0.55, with values of 0.41, 0.23, and 0.21

for uniqueness point, log frequency, and acoustic distinctiveness, respectively. The

concurvity values for acoustic distinctiveness were largely similar to those in Analysis

1. For the model with templates from the young female, the observed index on the full

model was 0.37, with its largest values in the pairwise comparisons being 0.23, 0.13,

and 0.25 for neighborhood density, log frequency, and uniqueness point, respectively.

In sum, the better the acoustic representation contained in the templates matched

the stimuli, the more that acoustic distinctiveness explained parts of neighborhood

density’s effect. Further against the hypothesis motivating this analysis, it may not

be possible for acoustic distinctiveness to completely subsume neighborhood den-

sity’s effect since they appear to be measuring different phenomena, even if there

is some overlap. There are at least three possible reasons for this difference. 1)

Neighborhood density relies on phonological, phoneme-based representations that

are multiple degrees removed from the observed acoustic signal, while acoustic dis-

tinctiveness does not. 2) Phonological neighborhood density’s reliance on phonemes

may cause it to be confounded by the effects of orthography. 3) Phonemic rep-

resentations may capture some level of abstractness that is not currently captured

in the way that acoustic distinctiveness is calculated. The remaining question is

whether what remains of neighborhood density’s effect in the presence of acoustic

distinctiveness is still relevant to sound similarity.
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2.3 General discussion

The overall results presented in the current study are that acoustic distinctiveness

significantly predicts response latencies in auditory lexical decision, acoustic dis-

tinctiveness is more predictive than phonological neighborhood density in statistical

models, and there is a degree of overlap both conceptually and statistically between

what acoustic distinctiveness and phonological neighborhood density are measur-

ing. The overlap, however, did not seem to rise to the level at which it could be

said that neighborhood density and acoustic distinctiveness are measuring the exact

same thing. While both measures can be interpreted as some indication of lexical

competition, in reality, it should be clear that they are not the same. Acoustic

distinctiveness measures an average tendency of how well a given word acoustically

matches all words in the lexicon, in the form of absement. Phonological neighbor-

hood density provides an index of approximately how many words there are that

sound like a given word based on the one-edit rule.

Looking back to initial investigations using phonological neighborhood density,

the focus was on examining the role of the structure of words on lexical competition

(Luce, 1986). Structure was taken to be sound patterns, which can have a variety

of representations. It could be a sequential string of phoneme-like units, a series of

acoustically derived values, the intensity-by-time signal itself, etc. The one-edit rule

was seemingly chosen simply as a tool to model lexical competition and not strictly

due to theoretical motivations for how words are represented in the mind. As such,

it stands to reason that what is important in any index of lexical competition is

that it models trends seen in the data. As such, it does not appear that what

is understood about lexical competition based on sound similarity is married to

phonological neighborhood density itself.
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The decision of whether to use phonological neighborhood density or acoustic

distinctiveness should be based on the merits of what assumptions the measures

make about lexical representation and what trends they can predict. To begin, it

is informative that acoustic distinctiveness and phonological neighborhood density

do not share a high level of correlation. Were this to be the case, it would sug-

gest they could be operationalizing the same characteristics of words as each other,

and are interchangeable for non-theoretical reasons. Rather, replacing phonological

neighborhood density with acoustic distinctiveness must be predicated on theoretical

reasons. These reasons may be on the basis of representation, in that they concern

the nature of lexical representations; applicability, in that one of the measures can

explain something another cannot; statistics, in that one of the measures provides a

better fit to the data; or feasibility, in that the measure can be calculated easily and

efficiently by researchers without being experts in high-performance computing.

Concerning representational reasons, the principal question is how a word is rep-

resented in the mind. Phonological neighborhood density relies on an assumption

that lexical entries take the form of strings of phonemes. Whereas, acoustic dis-

tinctiveness makes an assumption that lexical entries contain some sort of acoustic

representation. Inherently, acoustic distinctiveness is less well-defined as a concept

because acoustic representations can take many forms. In the context of the present

study, the acoustic representations were taken as sequences of MFCC frames, or oth-

erwise sequences of frequency information. A representation based on acoustics is

similar in spirit to approaches to phonetic and psycholinguistic analysis that do not

coerce the continuous acoustic or articulatory signal to discrete symbols (Baayen

et al., 2016; Goldinger & Azuma, 2003; Kohler, 1995; Pike, 1943; Port & Leary,

2005). We are not arguing for or against phonemes or abstraction more generally,

but using acoustic absement and acoustic distance may form the basis of describing
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how sound-level contrast works on an acoustic level.

In spoken word recognition, it is definitional that the acoustic signal itself will

come to bear on how words are recognized. The question is whether it is also nec-

essary for discrete symbols like phonemes to be recognized, or if some less abstract,

acoustic features suffice for representing words in the lexicon. The averaged MFCC

sequences in a word represent a level of abstraction between the raw signal and

phoneme strings. Discrete symbols are convenient as a representation for words be-

cause they are static. Although, provided a sufficient number of observations are

available for any given word, it is likely that the average sequence would converge

toward one sequence to represent that word. This average representation would be

such that the addition of new observations similar to the representation does little

to alter the average sequence if there is nothing particularly novel about the new

exemplar. In other words, the sequence is stable and quasi-static. And, this point

leads into the question of the applicability to future research since the processes

of creating the acoustic specifications associated with acoustic distinctiveness are

transparent and can be mapped to explaining a variety of linguistic phenomena.

One such linguistic phenomenon is when a listener adapts to an unfamiliar speaker

or accent, the latter of which seems to require rapid updating of cognitive represen-

tations or processing (Adank & McQueen, 2007; Clarke & Garrett, 2004). Using the

acoustically specified lexical entries, this process can be modeled as adding additional

observations to the lexical entries that must be incorporated into the representation.

Empirical data could be gathered from a variety of speakers to examine how the rep-

resentation changes with each new speaker. This process can still be modeled when

assuming phonemes as the units of lexical representation, possibly as the listener

adjusting the weights they have in the connections they have between acoustic infor-

mation and phonemes. However, it is unclear how this process might be simulated

45



or modeled effectively when using phonemic strings as the representations for words

instead of acoustics. The conclusion in Ohala (1996) highlights some difficulties and

potential remedies to finding invariant cues for phonemes such as looking for cues

to diphones or looking for different sets of features. But, to date, the constellations

of cues that unvaryingly lead to the perception of phonemes are unknown, if such

invariant cues exist at all.

An example of where it is not possible to use phonological neighborhood density

is the analysis of perception relating to homophones. By definition, homophones

will have the same phonemic representation. However, production differences in ho-

mophones have been found previously (Gahl, 2008; Lohmann, 2018; Seyfarth et al.,

2018; Warner et al., 2004). Warner et al. (2004) also found that listeners are sensi-

tive to these production differences. Any study wishing to examine the perceptual

differences of homophones will not be able to use phonological neighborhood density

to tease out these perceptual effects, since it will be the same for the homophone

pairs. Acoustic distinctiveness, however, has the potential to be used in such studies

because it allows for more granular representations of words that can be sensitive

to differences in production. It would also be applicable to studies examining the

effects of studies on perception, where phonological neighborhood density could not.

Turning now to statistical reasons for using one of phonological neighborhood den-

sity and acoustic distinctiveness over the other, the case for acoustic distinctiveness is

stronger. The analyses presented in the current study show acoustic distinctiveness

to be more predictive than neighborhood density in a variety of different methods

of deriving the acoustic representation. Whether using the stimuli themselves that

were being presented to the participants, recordings of the same words by differ-

ent speakers, or averages of recordings, acoustic distinctiveness increased model fit

more so than did neighborhood density. Phonological neighborhood density showed
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moderately concerning concurvity levels over 0.5 in our models, whether acoustic

distinctiveness was in them or not. The parts of phonological neighborhood density

that were not subsumed by acoustic distinctiveness, lexical frequency, and uniqueness

point may not have to do with lexical competition, either. Since phonological neigh-

borhood density uses letter-like units, it is possible that part of the observed effects

of phonological neighborhood density is due to the effects of orthography, which has

been found to have profound and varied effects on speech perception (Mukai et al.,

2018; Perre & Ziegler, 2008; Taft et al., 2008; Ziegler & Ferrand, 1998). Though,

demonstrating such a connection would require further research. Nevertheless, our

results suggest that using acoustic distinctiveness in place of neighborhood density

would reduce the chance of encountering concurvity or collinearity issues during

regression modeling.

In terms of feasibility, phonological neighborhood density has some factors in

its favor. It is easier to program, especially compared to the average sequencing

procedure. Note, however, that the Levenshtein distance used in neighborhood den-

sity is a dynamic programming algorithm just like dynamic time warping, so the

implementation differences between them are slight. Neighborhood density also uses

textual data, which is easier to manipulate and gather, and it takes up less hard

drive space. However, some steps can be taken for acoustic distinctiveness to make

it more accessible to researchers. It can be incorporated into software packages, like

Phonetics.jl, which will give researchers an accessible programmatic interface for

calculating it on their stimuli. Additionally, we have made our acoustic absement

comparisons and distinctiveness values available in Kelley and Tucker (2021a) for

other researchers to be able to use acoustic absement in their own work.

There are, thus, various reasons to favor the use of acoustic distinctiveness over

phonological neighborhood density defined using the one-edit rule and Levenshtein

47



distance. Representationally, acoustic representations of lexical items can provide

more transparent explanations of phenomena than phonemic representations. In

terms of applicability, acoustic distinctiveness seems applicable to a wider variety

of experiments performed in phonetic and linguistic research. Statistically, acoustic

distinctiveness contributes more to model fitness than phonological neighborhood

density and does not seem to have the possibility of being confounded with the

effects of orthography. For those reasons, we believe the time has arrived to reconsider

quantifying lexical competition with the one-edit rule and phonological neighborhood

density. Recent increases in computational power and quantity of data obviate some

of the technical reasons to use the one-edit rule on textual representations of words

to assess sound similarity. Future research can build upon the concept of absement

to measure lexical competition and sound similarity acoustically.

One specific improvement would be to ensure that the acoustic representations

can account for the acoustic cues known to be relevant in speech perception. It

is also crucial to develop acoustic representations based on more than just three

speakers’ recordings, especially so as to avoid the problem of using the experimental

stimuli themselves in the acoustic template. It will also be necessary to use acoustic

distinctiveness and acoustic distance in modeling spoken word recognition in non-

English languages. The results presented in the present study are intended to be

applicable cross-linguistically, but it cannot be determined whether these results

are indeed valid across languages until future experiments are conducted. Finally,

alternative representations should be explored, such as those using functional data

analysis discussed in Pigoli et al. (2018) or using the encoding that an off-the-shelf

automatic speech recognition system has learned. It may also be fruitful to explore

the methods used in Kirchner et al. (2010).
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2.4 Conclusion

We began the present paper began by discussing the activation/competition metaphor

in language comprehension and discussed a common operationalization of competi-

tion, phonological neighborhood density. It was observed that acoustic distinctive-

ness is a stronger predictor of competition effects than phonological neighborhood

density is, even if they don’t completely account for the same information.

Though competition has often been reasoned about using abstract symbolic

forms, acoustic distinctiveness opens the door to reasoning about competition in

terms of acoustics. Lexical representations may encode acoustic information itself,

rather than acoustics being a mere tool to get to abstract symbols used for repre-

sentation. Additionally, the sequencing of the onset of competition effects may be

earlier than once thought, beginning while acoustic information is being processed,

and future models of spoken word recognition will need to be intentional in how they

depict the sequencing of processing and competition.

The advent of large databases of speech and more powerful computers has ushered

in the possibility of refining the notion of phonological neighborhoods. The initial

concerns of Luce (1986) may finally be addressed, and characteristics of acoustic

data can play a larger role in understanding the comprehension of spoken language,

as well they should.
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Chapter 3

Perception and timing of acoustic

distance

Abstract

The notion of acoustic distance figures into many aspects of phonetics such as

vowel overlap and phonological neighborhoods. A measurement of word-level acous-

tic distance useful for cognitive modeling must account for two aspects of perception:

listener sensitivity to acoustic differences and the duration discrepancies between dif-

ferent words. The present paper suggests the use of dynamic time warping as a way

to measure how acoustic distance accumulates between words over time. The results

of a distance rating task with synthesized vowels are used as a basis for selecting

a mathematical function that best matches listener sensitivities. Additionally, the

results of a reminder task with synthesized vowels are used to determine a just notice-

able difference threshold for vowels. The results suggested that a distance function

based on the 4.5-norm and using a 30 ms radius for dynamic time warping best

matched human behavior. A third analysis used these new dynamic time warping
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configurations to model reaction times in an auditory lexical decision task and found

that Euclidean distance and no temporal constraints on dynamic time warping best

matched human behavior during spoken word recognition. These ultimate results are

discussed in relation to models of spoken word recognition, including how to assess

the acoustic match between the speech signal and a word in the lexicon based on the

perceptual results given here.

3.1 Introduction

There are various cognitive models of spoken word recognition. At a minimum,

these models explain spoken word recognition conceptually. Some models, such as

the cohort model (W. D. Marslen-Wilson & Welsh, 1978) and the neighborhood

activation model (Luce & Pisoni, 1998) stop at this level. Still other models are

computational or mathematical in nature and provide the steps necessary to use the

model on a computer. Such models include TRACE (McClelland & Elman, 1986),

DIANA (ten Bosch, Boves, & Ernestus, 2015; ten Bosch, Boves, Tucker, et al., 2015),

the discriminative lexicon (Baayen et al., 2019), TISK (You & Magnuson, 2018),

EARSHOT (Magnuson et al., 2020), Shortlist B (Norris & McQueen, 2008), Fine-

Tracker (Scharenborg, 2010), and PARSYN—itself a computational implementation

of the Neighborhood Activation Model that was referred to but not fully described

in Luce et al. (2000) and Vitevitch et al. (1999).

Every model that has been proposed and taken up in the literature has been

informed by some sort of behavioral data. These data are often of the sort that come

from lexical decision and/or cross-modal priming tasks, among others. Some models
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also go so far as to incorporate the results of experiments that might be considered

more perceptual in nature, of the sort that might be seen in discrimination, iden-

tification, and rating tasks. For example, the Neighborhood Activation Model uses

experimental phoneme confusion data from a phoneme identification task as part of

the frequency-weighted neighborhood probability rule, which Luce (1986) and Luce

and Pisoni (1998) suggested has having more explanatory power than phonological

neighborhood density. Shortlist B uses confusion data from a gating task as a basis

for calculating probabilities. Fine-Tracker was tested against data on human percep-

tion of duration as a cue for word boundaries. The features learned in EARSHOT

were compared to electrocorticography data, essentially establishing a relationship

between the model and neurolinguistic speech perception results. Not every aspect

of these models is grounded in perceptual data either, though, nor is it realistic to

expect as much. The present study focuses on a specific computational aspect of spo-

ken word recognition, how two words might be compared acoustically. Specifically,

it provides data from a distance rating task for synthetic vowels and a reminder

task for vowel duration that inform the process of acoustically comparing words with

dynamic time warping in a cognitively informed way.

Peculiarly, there is a lack of specificity regarding what would seem to be a crucial

process that goes on in the Neighborhood Activation Model. Specifically, Luce and

Pisoni (1998) posited that phonetic or acoustic (mis)match between the acoustic sig-

nal and items in the lexicon mediates the accumulation of activation for a candidate

during spoken word recognition. Generally, a strong match between the signal and

an item would induce high activation, and vice-versa. There is not much more de-

tail on acoustic or phonetic matching given in the model description, however. The

level of similarity also figures into the definition of “phonological neighbors” as words

that sound similar. Yet, the degree of acoustico-phonetic matching is assessed using
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Levenshtein distance on phoneme strings and termed “sound similarity.” Despite in-

voking the concepts of sound and acoustics, textual evaluation of phoneme strings is

a decidedly non-acoustic way to assess sound similarity. There is, thus, a mismatch

in the description given of lexical activation and competition in the Neighborhood

Activation model and the quantitative methods employed. Vitevitch and Luce (2016)

noted that Levenshtein distance is but one way to assess sound similarity between

words, though it remains the most common.

More computationally explicit models perform some degree of acoustico-lexical

matching, but it is difficult to compare words to each other in this sort of framework.

Consider DIANA, in which words are specified as a sequence of sub-phone states

(ten Bosch, Boves, Tucker, et al., 2015). The sub-phone states of [p] as in peep,

for example, might be roughly modeled as 1) beginning of [p], 2) middle of [p], and

3) end of [p]. The acoustic signal is compared against these sub-phone states with

Gaussian mixture models providing probabilities of belonging to a particular sub-

phone class, while a hidden Markov model assigns a probability to transitioning to a

new state or continuing in the current state. The speech signal is thus compared with

the segmental symbol sequence of a word in the lexicon more probabilistically than

acoustically. It can likely be inferred that words with similar probabilistic activation

values in DIANA are acoustically similar if lexical frequency is ignored. However,

sub-phone states have not yet been demonstrated to be acoustically separable with

machine learning techniques. In a similar acoustic model in Graves (2012, Chapter

6), for example, approximately 1 in 3 phones were identified incorrectly, suggesting

that the sub-phone states were not completely acoustically distinguishable from each

other. It is thus somewhat unclear how well the Gaussian mixtures model acoustic

differences if they are modeling acoustic categories that they can’t separate well.

To address the apparent tension in the description of spoken word recognition
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and methods used to implement those descriptions, Kelley and Tucker (2021c) pro-

posed using the results of dynamic time warping to assess acoustic absement between

recordings of words. Acoustic absement is the accumulation of acoustic distance over

time. That is, when comparing two recordings, one can find the acoustic distance

between two discrete time points. When the distances computed from these dis-

crete time points between the two recordings are summed over time, the quantity

produced is absement. Using dynamic time warping provides an algorithmic-level

description of the assessment of sound similarity and how acoustic mismatch (or dis-

tance) between two words may be accumulated over time. That is, using dynamic

time warping quantifies the acoustico-phonetic dissimilarity between two words more

appropriately than the Levenshtein distance method previously described. Because

dynamic time warping directly compares acoustic information between two sound

sequences, the results are more clearly interpretable acoustically than the probabilis-

tic results that might come from a model that is using hidden Markov models like

DIANA.

Dynamic time warping has its origins in speech technology and was in part de-

signed to account for temporal variation between different exemplars of the same

item in speech. It dates back at least to Sakoe and Chiba (1970, as cited in Sakoe

& Chiba, 1978). It was used to calculate how different a recording of a given word

was from a bank of recorded words, for the purpose of automatic speech recogni-

tion. It produces a nonlinear alignment between two sequences such that the overall

dissimilarity between the two signals is minimized. The alignment process is very

similar to that of forced alignment, but instead of mapping phones onto chunks of

the speech signal, small spectral or cepstral chunks are mapped onto each other be-

tween two speech signals. The net result is that similar regions of the signals are

compared with each other. For example, small temporal variation in the production
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of a vowel between two utterances of heed [hid] would not cause the algorithm to end

up comparing [d] or [h] in one recording to [i] in the other.

An example alignment for two hypothetical recordings of heed is presented in

Figure 3.1. Each tick on an axis represents a time step associated with a particular

phone label. Note that the recording represented on the x-axis has a shorter [h]

than the second recording, but it has a longer [i]. The orange line represents the

comparisons that would happen if the sequences were aligned linearly. Note how at

(3, 3) the [i] in the first recording is being compared to the [h] in the second recording,

which is not ideal. The optimal alignment path identified by dynamic time warping

avoids this problem so that, between the two recordings [h] is compared with [h], [i] is

compared with [i], and [d] is compared with [d]. Note also that a linear alignment is

impossible if the sounds are of different lengths, which happens often with phonetic

data, especially when comparing recordings of different words. The present example

is simplified, but it captures the general behavior of the alignment in the algorithm.

The output of the dynamic time warping algorithm comprises the alignment path

between the two sounds and the dissimilarity score that comes from comparing the

aligned portions of the sounds. There are two components of dynamic time warping

that, when modified, will have an obvious impact on the calculation of acoustic

absement and are related to human perception. The first component is how distance

is calculated between time steps. The second component is how long a time step is

allowed to be warped in the warping path.

The motivation for investigating the second component is as follows. An acous-

tic representation of a word should roughly approximate the characteristic sound

patterns of the word. This is especially true when the acoustic representation is a

mean over multiple exemplars of a word, as in Kelley and Tucker. It is reasonable to

expect that these acoustic regions of a word have some degree of time-boundedness,
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Figure 3.1: Example alignment of two recordings of heed being compared with dy-
namic time warping.

that is, that their temporal location matters. Indeed, the time-boundedness must be

true at some level because peak /pik/ and keep /kip/ are not the same word. In fact,

it must be true at the subphonemic level because temporal aspects like voice onset

time (Lisker & Abramson, 1964) and vowel inherent spectral change (Nearey & Ass-

mann, 1986) themselves have a time-bound nature, let alone the formant patterns of

diphthongs. As such, the comparisons that dynamic time warping performs should

also be time-bound in such a way as to better reflect production and perception.

That is, each acoustic frame of a word should only be comparable to a small number
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of frames in another word, and comparisons between frames that are hundreds of

milliseconds apart should be disallowed. The question is to determine what the con-

straint should be on dynamic time warping to reasonably limit how many previous

or following frames a given acoustic frame should be allowed to be compared with.

There have been a number of studies on the psychological perception of audi-

tory distance. Kawahara and Matsui (2003) referred to perceptual distance while

developing a speech resynthesis tool. But, they did not experimentally investigate

whether their resynthesis technique reflects human judgments. However, Terasawa

et al. (2005) focused on non-speech sounds and designed a measure of the perception

of “timbre,” which they define as any acoustic perception that is not related to pitch

and loudness. They validated their measure with behavioral experiments to see if

participant behavior matched the measure they designed, using a 10-point Likert

scale rating of dissimilarity between stimulus pairs. They found that a perceptual

timbre space based on Mel frequency cepstral coefficients (MFCCs) with compar-

isons based on Euclidean distance was a good match to human behavior. However,

it is unclear what sort of stimuli they used, except that they were described as an

additive synthesis of sine waves that were voice-like and had pitch vibrato. It cannot

be assumed a priori that these results will extend to speech.

There has been some work looking directly at judgments of similarity between

words as well. Vitz and Winkler (1973) correlated Likert-scale participant ratings of

word pair similarity with what they define as the “predicted phonemic distance.” The

predicted phonemic distance is a proportion between how many phoneme mismatches

there are between the aligned phoneme strings and how long the aligned sequences

are. Such a measurement does not actually capture the nature of the perceptual task

that humans perform when hearing speech, but rather it attempts to capture some

sort of linguistic processing that putatively occurs once the continuous speech signal

58



has been discretized to abstract symbols. Similarly, W. Marslen-Wilson et al. (1996)

examined how phonological distance affects participant responses in behavioral tasks.

Phonological distance is calculated in terms of how many distinctive features differ

between the initial segments of word pairs. No assessment of human perceptions of

distance was performed, however.

While both Vitz and Winkler (1973) and W. Marslen-Wilson et al. (1996) studied

similarity between words, they lacked mathematical particulars for how the acoustic

signals should be compared to each other. While phonemes have some basis in

acoustics, even sophisticated deep learning models of speech recognition that perform

well on word recognition (e.g., Graves & Jaitly, 2014; Zeghidour et al., 2018) cannot

with high accuracy map the acoustic signal to even a subset of phonemes that collapse

acoustically similar segments. Such systems top out around 70 or 80%, whether

they are trying to classify small sections of speech as belonging to a given phoneme

(as in Graves & Schmidhuber, 2005) or merely create a phonemic transcription (as

in Zhang et al., 2016). As such, it seems implausible that complete descriptions

of human perceptual judgments of acoustic distance can be accomplished looking

only at the phoneme level. There simply does not appear to be a strong enough

relationship between phonemes and the acoustic signal. Certainly, though, automatic

speech recognition systems perform much better when word-level language models

are combined with phone recognition models (as in Graves & Jaitly, 2014). However,

word-level language models, such as n-gram models, are based purely on frequency

of occurrence and not acoustics. Thus, they should not come to bear on judgments

of acoustic distance, though they may be important for judging some form of lexical

distance between words.

Regarding perceptions of duration, Hirsh (1959) reported a minimum interval

of approximately 20 ms between two sounds before listeners could accurately recall
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the order in which two stimuli were presented, perhaps suggestive of the temporal

resolving power of the auditory processing system. This result and claim about tem-

poral resolving power were reified in various studies like R. E. Pastore et al. (1977).

However, Kewley-Port et al. (1988) examined perception of voice onset time in a

/ba/-/pa/ continuum and found that participants could perceive differences down to

10 ms depending on the task. They also found a 50% crossover threshold of approx-

imately 34 ms for listeners in a labeling task in a quiet environment. For vowels,

Tomaschek et al. (2011) found a range of just noticeable difference values of approx-

imately 43 ms to 65 ms when comparing German /a/ and /aː/ for native German

listeners, depending on the duration of the stimuli being compared. The lowest just

noticeable difference was achieved near the category boundary for /a/ and /aː/, sug-

gesting that sensitivity to duration differences changes as category boundaries are

approached. Note, however, that German has a phonological distinction between /a/

and /aː/, so phonological perception is necessarily implicated in the results.

Porretta and Tucker (2013) found that native English listeners could perceive

phonetic differences in duration using a speeded AX discrimination task. The prob-

ability of discriminating the difference increased as the duration difference between

consonant stimuli increased, and especially so when the instructions indicated that

listeners would be hearing duration contrasts. Due to the variability in the perception

of duration differences based on experimental task, task instructions, speech sound

category, and native language, it seems reasonable to assume that determining some

sort of parameter to limit the temporal extent of warping in dynamic time warping

will be more heuristic than an exact representation of human auditory processing.

Still, a heuristic will likely be more useful when calculating acoustic absement than

having no explicit constraint at all.

The remainder of the present paper presents two experiments. The first exper-
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iment is designed to determine how acoustic distance should be calculated within

dynamic time warping. The experiment employs a rating task similar to Terasawa

et al. (2005). The second experiment is designed to determine a reasonable warping

allowance for dynamic time warping when comparing words. The results of these

experiments are then evaluated by calculating a predictor for lexical competition like

in Kelley and Tucker (2021c). These calculations involve different configurations of

dynamic time warping based on the experimental results. Then, the different config-

urations are evaluated based on how well the predictor of lexical competition relates

to auditory lexical decision response times.

3.2 Experiment 1

The goal of Experiment 1 was to determine what sort of distance function would fit

human judgments of acoustic distance the best. There are an infinite number of pos-

sible ways to calculate mathematical distance, so searching all of them is impossible.

One particular class of distance functions that can be easily searched over is the one

formed from the p-norms since only the value of p needs to be manipulated. The

general formula for the distance function dp for which different values of p would be

tested is given in Equation 3.1. The vectors x and y are of length n, χi and ψi are

the i-th elements in x and y, respectively, and |·| is the absolute value function.

dp(x, y) =

(
n∑

i=1

|χi − ψi|p
) 1

p

(3.1)

This formula is mathematically identical to the formula for spectral distance in

(Lindblom, 1978). Note how dp becomes familiar distance function at specific values

of p. When p = 1, it becomes Manhattan distance or summed absolute distance,
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which has been used in other areas, for example, formant tracking (Barreda, 2021).

The formula is shown in Equation 3.2.

d1(x, y) =

(
n∑

i=1

|χi − ψi|1
) 1

1

=
n∑

i=1

|χi − ψi| (3.2)

Similarly, when p = 2, dp becomes Euclidean distance, which has featured promi-

nently in, for example, analyses of vowel overlap (Fridland & Kendall, 2017; Kendall

& Fridland, 2012; Nycz & Hall-Lew, 2015). The formula is shown in Equation 3.3.

d2(x, y) =

(
n∑

i=1

|χi − ψi|2
) 1

2

=

√√√√ n∑
i=1

(χi − ψi)2 (3.3)

It is then relatively simple to iterate over a range of values of p to find which

of these possible distance formulas is closest to matching human judgments. To

have human judgments to compare against, an acoustic distance rating task was

performed on synthetic stimuli. Due to the equivalence of vector norms (consult van

de Geijn & Myers, 2020), they will all have a strong correlation with the data if

any of them have a strong correlation, but it may still be important for cognitive

modeling to determine how much weight to apply to outlying acoustic difference

values in individual dimensions of an MFCC vector.

3.2.1 Methods

In this experiment, participants were asked to perform a distance rating task on

synthetic vowels. The ratings were used as the independent variables for both a

correlation analysis and a regression analysis of the different distance functions.
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Participants

Participants were recruited from the University of Alberta Department of Linguistics

subject pool, which consisted of undergraduate students enrolled in introductory

linguistics classes. Participants were compensated for their time with credit for

the course they were enrolled in. At the beginning of the experimental session,

participants took a demographic questionnaire. One hundred sixteen participants

took part in the experiment, and 84 of these participants’ data were successfully

uploaded to the servers. 39 of these participants were determined to be monolingual

native speakers of English.

As part of the demographic questionnaire, participants were asked if they had

been diagnosed with hearing loss. Also during the questionnaire, participants were

informed that it was strongly preferred that they participate in a quiet room and that

they wear wired headphones. They responded to a yes/no question with whether or

not they were in a quiet environment and whether they were wearing wired head-

phones. One participant was excluded for reporting being diagnosed with hearing

loss, and one more participant was excluded for reporting not participating in a quiet

room. Thirty-seven participants remained to be analyzed.

Of these 37 participants, 34 participants reported their gender as “female”, 2

reported their gender as “male”, and 1 participant reported their gender as “nonbi-

nary”. The demographic question asking about gender was a freeform text answer, so

the reported genders were based on participants’ interpretation of the word “gender”

in the question. The average age was 19.62 years old (SD = 1.53).
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Materials

The experimental stimuli were synthesized based on vowel formant measurements

from the Hillenbrand et al. (1995) data set. The data set was chosen because the

formant values were hand-verified and provided in a format that made subsequent

modeling easier. Formant values were modeled as a multivariate Gaussian distri-

bution, using the mean F1 and F2 measurements of the male speakers in the data

set. The vowel categories used were all the monophthongs: [i], [u], [ʌ], [ɔ], [ʊ], [ɛ],

[æ], [ɑ], and [ɪ]. The mean vector of the distribution was calculated as the mean of

each formant for a given vowel category, and the covariance matrix was calculated

as the covariance of the F1 and F2 values for a given vowel category. The pitch

was determined by finding the medoid male speaker based on each speaker’s F1 and

F2, using Euclidean distance to compare each speaker. The medoid speaker is the

one labeled as “m07” in the data, and his average pitch of approximately 99 Hz was

selected as the pitch for all of the synthetic vowels.

For each vowel category, a series of paired stimuli were synthesized using Praat

v6.1.27 (Boersma & Weenink, 2020). Both stimuli in the pair were randomly sampled

from the category distribution. Each formant value then had noise added to it from

a Gaussian distribution with a mean of 200 Hz and a standard deviation of 50 Hz.

These parameters were determined through manual search to balance not deviating

too far from a vowel category’s center with not generating many formant values

that would result in nearly indistinguishable vowels syntheses. Thirty-three pairs

of vowels were created for each vowel category (9 vowels), for a total of 297 pairs

of stimuli. The mean and standard deviation for each nominal stimulus category

can be found in Table 3.2. The category labels only indicate which distribution

the vowel parameters were initially generated from; the stimuli themselves are not
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guaranteed to still have that vowel quality. The subscript after the category label

indicates whether it was the first or second sound in the stimulus pairings. While

standard deviation is not the most informative statistic of spread in this case since the

formant values were generated from multivariate distributions using the covariance of

the formants. The covariance, however, is unwieldy to represent in a table. A table

of all the generated formant values can be found in the supplementary materials

accompanying the present paper.

These formant values were used to create the synthetic vowels in Praat by us-

ing the Create KlattGrid from vowel function. The F1 and F2 values varied as

determined by the randomly sampled values, and the other values were held con-

stant as can be seen in Table 3.2. These “KlattGrid” vowels were then converted

to “Sound” objects with a sampling rate of 44,100 Hz. The Scale intensity func-

tion was applied to each synthesized vowel individually, with a value of 70 dB SPL

(corresponding to the default interpretation of dB SPL in Praat). The vowel pairs

were then spliced together with a 500 ms period of silence between them before being

saved.

Procedure

The synthesized vowels were used to create a rating task. The COVID-19 pandemic

necessitated the use of online experimental procedures, rather than in-person proce-

dures. Running speech perception experiments online introduces more confounds and

variability in the results due to a less controlled listening environment. Some of these

confounds can be somewhat controlled for statistically using demographic questions,

but they cannot be completely controlled for. The experiment was created using

the jsPsych framework v6.1.0 (de Leeuw, 2015), which is used for running online
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Table 3.1: Formant-wise means and standard deviations of each nominal stimulus
category.

Category Mean F1 (Hz) Mean F2 (Hz) SD F1 (Hz) SD F2 (Hz)
i1 538.22 2486.20 62.78 125.13
i2 548.17 2529.29 45.66 118.76
u1 569.24 1159.86 63.82 120.19
u2 589.46 1186.45 77.59 107.50
ʌ1 829.06 1383.46 57.36 70.74
ʌ2 829.10 1369.29 61.94 101.23
ɔ1 878.29 1238.36 57.10 83.41
ɔ2 863.07 1125.58 51.62 95.82
ʊ1 660.94 1330.76 68.54 85.62
ʊ2 662.49 1315.02 59.57 82.62
ɛ1 782.16 1995.74 69.51 133.27
ɛ2 785.03 2026.62 63.51 101.14
æ1 789.91 2139.28 59.05 129.34
æ2 795.47 2128.45 80.73 184.48
ɑ1 970.07 1494.43 77.78 12.05
ɑ2 945.23 1521.43 80.87 111.48
ɪ1 621.78 2226.85 49.12 109.24
ɪ2 647.70 2187.97 65.97 124.67

psychological experiments. Experiments created in jsPsych are stored as webpages

that a participant can access with a web browser. The experiment is run locally in

the participant’s web browser using the participant’s hardware, and the results are

then uploaded to a server awaiting file uploads.

The experiment was structured so that participants would listen to a block of 50

stimuli and then receive a prompt to take a break. The order of presentation for the
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Table 3.2: Constant values for the Create KlattGrid from vowel function.

Parameter Value
Duration 0.5 s
Pitch 99 Hz
B1 50 Hz
B2 50 Hz
F3 3000 Hz
B3 100 Hz
F4 4000 Hz
Bandwidth fraction 0.05
Formant frequency interval 1000 Hz

stimuli was randomized. It was up to each participant to determine whether or not

they wanted to take a break, and if so, for how long. In each trial, a fixation cross

was displayed for 500 ms. Then, the audio file containing the pair of sounds to be

rated was played. Subsequently, the participant was asked to rate how acoustically

different the two sounds they heard were. The rating scale ranged from 1 to 7, where

a value of 1 indicated that the sounds were the same, and a value of 7 indicated that

the sounds were very different. During the rating portion of the trial, the participants

were textually reminded of the scale, and they responded using the number keys on

their keyboard. There was no time limit for response.

Participants were instructed to use Google Chrome for the experiment because

it was found to work most reliably with the online experiment and file uploading

programs. After the demographic questionnaire and before the experiment began, a

single synthetic vowel was played that was also scaled to the same intensity as the

experimental stimuli so that participants could adjust their volume to a comfortable

listening level.
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At the beginning of the experiment, participants were told that the results from

this task were going to be used to help evaluate a new speech synthesizer. During

the experiment debrief, they were informed of the true purpose of the experiment,

to better understand human judgments of acoustic distance. The deception was

employed to help prevent the participants from hyper-focusing on the purpose of the

task while participating. It also helped set up the participants’ expectations for the

stimuli since synthetic speech was used.

Thirteen participants (35.13%) reported not wearing wired headphones during the

experiment. To determine the extent to which using headphones or not affected the

participants’ responses, the overlapping coefficient (Inman, 1984) was calculated in

both a parametric and non-parametric manner. The overlapping coefficient gives an

indication of how similar the underlying distributions of two groups are. Previously,

it has been applied to analyze acoustic vowel overlap (Kelley & Tucker, 2020). For

the parametric version, sample Gaussian distributions were determined for both the

headphone-wearing and non-headphone-wearing groups with each group’s sample

mean and standard deviation of their rating.

Because it will be the by-item mean ratings that will be analyzed, these were

the values for which the overlapping coefficient was determined. The mean of the

by-item mean ratings for the headphone-wearing group was 3.02 with a standard

deviation of 1.74. The mean of the by-item mean ratings for the non-headphone-

wearing group was 2.89 with a standard deviation of 1.65. The overlapping coefficient

between these two distributions was determined via integration using the built-in

integrate function in the R programming language. The value was 0.96 with an

absolute error less than 6.9×10−5. The non-parametric version was calculated using

the overlapping package (M. Pastore & Calcagnì, 2019), the result of which was a

value of 0.88. These results indicate that the underlying distributions are remarkably

68



similar. As well, a Welch two-sample t-test indicated that there was no significant

difference between by-item mean ratings for each group (t = 1.52, p = 0.13). It stands

to reason, then, that the differences between the groups are neither statistically nor

practically different to a level of significance. As such, both of these groups will be

analyzed together. Were there more participants who had reported hearing loss or

not participating in a quiet room, a similar analysis could have been performed to

determine whether it would impact the result to have those participants’ data in

the mix, but there were not enough participants who reported hearing loss or not

participating in a quiet room.

Finally, the data were subset to remove implausible responses. While there was

no time limit for responses, some participants reported being distracted or falling

asleep during the experiment. An upper cutoff of 5 s is between the 0.98 and 0.99

quantiles, so only responses rendered in 5 seconds or less were included in the analysis,

resulting in a loss of 129 responses (1.17 %). There was a mean of 36.57 responses

per item, with a standard deviation of 0.66. The median rating over all stimuli was

3 (IQR = 2).

Analysis

There were two analyses performed in sequence. The first was to determine what the

optimal value of p was for the p-norm distance function. The general procedure was

to search through possible values of p and determine how well the resultant distance

function correlated with the participant responses.

The participant judgments were mean-pooled over the stimuli to make the search

for the value of p easier, and optimizing correlation should roughly produce a result

that minimizes the distance to the mean values anyway. MFCCs were calculated for
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each stimulus using the MFCC.jl (v0.3.1, van Leeuwen, 2019) package in the Julia

programming language (v1.5.3 Bezanson et al., 2017), using a window size equal to

the stimulus length. The result was that a single MFCC vector was calculated for

each stimulus. The motivation for this choice was that frequencies in each stimulus

were approximately static over time since they were just vowels with static formant

values, so there was no need to look at changes in frequency over small windows of

the signal (as is done with spectrograms).

Then, a discretized linear search was performed over the possible values of p.

The search ranged from 1 up to and including 100, moving up in increments of 0.01.

One hundred was chosen as an upper limit because it produces results remarkably

close to the infinity-norm, which itself just selects the maximum value in a vector as

the norm. In terms of distance, the infinity norm would select the largest absolute

difference between the elements being compared. At each step in the search, the

distance function from the p-norm in question was calculated for each stimulus pair

in the experiment, and the output was correlated with the mean participating ratings.

As pointed out previously, a current practice in evaluating the acoustic distance

between vowels is to calculate the Euclidean distance between formant values (Frid-

land & Kendall, 2017; Kendall & Fridland, 2012; Nycz & Hall-Lew, 2015). To ground

the p-norm on MFCC results against that practice, the second analysis compared the

results of the best-performing distance functions to Euclidean distance on formants.

The comparisons were evaluated both in terms of correlations and linear mixed-effect

regressions (LMERs) fit with the lme4 (v1.1-26, Bates et al., 2015) package in the

R (v3.5.1, R Core Team, 2018) programming language. The base model had fixed

effects for trial number, age, gender, education, and vowel category. The base model

also had a random intercept for subject and another random intercept for item. Ran-

dom slopes caused the models to have singular fits or fail to converge, so random
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slopes were not included in the models. Various models were then fit by adding

the best-performing norms and Euclidean distances from different combinations of

formant values as predictors to the base model. A categorical predictor for tense/lax

was attempted to be used at one point in the modeling process, but it created a rank-

deficient matrix because the tense/lax variable was not independent from the vowel

category predictor. That is, the tense/lax predictor added no predictive capacity to

the model, so it was not included as a predictor.

3.2.2 Results and discussion

The values for p in the p-norm with the highest correlation to the by-item mean

distance ratings were clustered around 4.5. The maximum correlation was achieved

at p = 4.47 (r = .883, p < .001). The 2-norm or Euclidean distance was also

very highly correlated to the mean ratings (r = 0.878, p < .001), and the lowest

correlation was found at p = 1 (r = 0.864, p < .001). A plot of the correlation

values for different choices of p is presented in Figure 3.2. These results generally

agree with results reported in Klatt (1981), where measuring the area between two

spectral curves explained about 80% of the variance in distance rating data from

listeners.

As a simple empirical verification of how significantly correlated the norm value

is with the participant’s ratings, bootstrap resampling was performed 100,000 times

by creating resamples with replacement with the same number of observations as the

original sample (n = 297) for both the norm values and the mean ratings and then

calculating the correlation between these two random samples. The mean magnitude

of correlation in this resampled distribution was 0.05, with a standard deviation of

0.03, and the highest achieved magnitude of correlation was 0.29. These results,
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Figure 3.2: Correlation between by-item mean distance ratings and choices of p for
the p-norm distance function. Note that there is no data associated with values less
than 1.

along with the correlation test, demonstrate the strength of the association between

a norm of the difference between MFCC vectors and the participant’s ratings of

the distance of the stimuli. Overall, these results suggest that performing these

linear algebra computations on MFCC vectors has a strong relationship with human

perception of acoustic distance between vowels.

An additional comparison was performed to see how the 4.5-norm of the MFCC

vector compared to calculating the Euclidean distance (2-norm) between the F1
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and F2 values used to create the synthetic vowels pairs. The achieved correlation

was high (r = 0.81, p < .001). Individually, F1 differences achieved a moderately

high correlation (r = 0.66, p < .001), and F2 differences achieved a slightly lower

correlation (r = 0.60, p < .001). Note that the correlations between the formant-

based distances and the average ratings are lower than the best correlations when

using MFCC-based distances. Because MFCCs are a more complete summary of the

speech spectrum than formant values, the higher correlation for the MFCC-based

distances suggests that calculating acoustic distance with more full representations

of the acoustic spectrum result in a closer association with participant behavior.

That is, human judgments of acoustic distance seem to involve the entire spectrum

of the sounds, not just the most relevant acoustic cues for speech perception. These

results are buttressed by findings from Ito et al. (2001) and Nenadić et al. (2020)

that, while formants are prominent contributors to vowel perception, other parts

of the spectrum can be used to compensate for missing formant information. Still,

not all speech sounds have strongly associated formant patterns, so representations

based on the full spectrum are likely more appropriate than just formant values for

the purposes of cognitively modeling acoustic distance for a broad range of speech

patterns.

A visual display of these formant-based distances and the MFCC 4.5-norm is given

in Figure 3.3. Note how the association between the distance metric and the by-item

mean rating grows more linear as more of the acoustic spectrum is incorporated.

To be clear, these results should not be construed to suggest that the human mind

is literally calculating a norm on difference values between acoustic information.

Rather, these results suggest that the p-norm from linear algebra provides an effective

way to capture the behavioral performance of listeners.

As for the LMER models, only trial number and the distance value were signif-
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Figure 3.3: Scatter plots for mean by-item ratings over a) F1 difference (r = 0.66),
b) F2 difference (r = 0.60), c) formant 2-norm (Euclidean distance, r = 0.81), and
d) MFCC 4.5-norm (r = 0.88).

icant in all models. Some vowel contrasts were significant in some models, though

these vowel results are not reported in detail because a vowel’s significance was in-
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consistent across models, and vowel category was, after all, a control variable. The

Akaike information criterion (AIC, Akaike, 1973, 1974) value was also calculated for

each LMER model. AIC is a quantification of model fit that rewards fitting trends

in the data but penalizes model complexity. Lower values indicate a better fit. The

AIC values can be seen in Table 3.3. The trend of which version of acoustic distance

best matched the listeners’ behavior matches that of the correlation analysis, where

the MFCC-based distances performed better than the formant-based distances, and

the 4.5-norm performed the best.

Table 3.3: AIC values from LMER models for the different types of distance evalu-
ated. The AIC values are sorted in ascending order, producing a best fit to worst fit
ordering.

Distance type AIC
4.5-norm 36,367.68
2-norm 36,380.24
∞-norm 36,386.98
F1 and F2 36,503.80
F1 36,648.87
F2 36,692.81

3.3 Experiment 2

The goal of Experiment 2 was to determine when a listener would be able to tell

the difference in duration between two sounds. This experiment was designed to

collect data relevant to the question posed in the introduction of what the temporal

constraint should be on the dynamic time warping process. The experiment is de-

signed to elicit responses that can be used to determine a just noticeable difference
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threshold for duration perception. The idea is that an acoustic frame in a word

should be able to be compared with acoustic frames in another word to the extent

that a listener would not notice the temporal mismatch. That is, when acoustically

comparing two words, a given acoustic frame should only be compared with nearby

frames to the extent that a listener would not notice the duration difference implied

by the additional comparisons. In many ways, the MFCC-by-time representation

of the words can be thought of as a stand-in for an alphabetic transcription. The

difference is that each acoustic frame is representing a discretized time step in the

acoustic trajectory of the word it belongs to. To the extent that the acoustic frames

can be assigned to segments, they can also specify the state of a segment in time.

The state specification is conceptually very similar to using multi-state models for

phonemes in hidden Markov models for automatic speech recognition (consult Ju-

rafsky & Martin, 2009, Chapter 9), whereby machine learning models are trained

to detect subphonemic states of phonemes. The difference when using MFCCs and

dynamic time warping is that the states are determined on a word-by-word basis in

a bottom-up, empirical fashion.

Consider, for example, calculating the acoustic absement for the word pair bad

[bæːd] and bat [bæt]. The MFCC representation of each word can be taken as an

acoustic model of each word. Take {æː1, æː2, æː3, æː4} to be the frames represent-

ing [æː] in bad, and take {æ1, æ2} to be the frames representing [æ] in pad. If the

unconstrained alignment were to come out as shown in Figure 3.4, and if listeners

could detect duration differences greater two time steps, the alignment would be

unrealistic. The reason that it would be unrealistic is that it suggests the acoustic

region and information represented by æ1 corresponds to acoustic events that span

four sequential frames in the model for [æː]. Thus, the æ1 frame would need to con-

tain all the acoustic information in all the frames of [æː], or the acoustic information
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in æ1 would need to be spread over more frames than currently exist. More con-

cretely, the onset formant frequencies might be roughly represented in æ1, while the

offset formant frequencies are contained in æ2. Whereas, the onset for [æː] might be

represented in æː1, with inherent spectral change (Nearey & Assmann, 1986) occur-

ring over æː2 and æː3, ending with the offset formant frequencies in æː4. While the

alignment should allow some elasticity for duration, it should not allow a particular

frame to be mapped beyond a reasonable temporal extent. In the present example,

the onset formant frequencies for [æ] should not be mapped across the entire extent

of [æː], spectral change and all. Choosing the correct radius constraint for dynamic

time warping can prevent such unrealistic alignments from occurring.

æ 1 æ 2 æ 3 æ 4

æ1 æ2

Figure 3.4: An example of an unrealistic alignment. The 1b frame is mapped to
all of the frames of [p] even though listeners would be able to discern this duration
difference. The 2b frame is only mapped to 4p.

3.3.1 Methods

In this experiment, participants were asked to take part in a reminder task designed to

elicit responses related to the discrimination of vowel duration. The ratings were used

as the independent variables for a regression analysis to determine a just noticeable
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difference threshold.

Participants

As in Experiment 1, participants were recruited from the University of Alberta De-

partment of Linguistics subject pool, which consisted of undergraduate students en-

rolled in introductory linguistics classes. Participants were again compensated for

their time with credit for the course they were enrolled in. The same demographic

questionnaire from Experiment 1 was used for this experiment.

One hundred twenty-five participants took part in the experiment, and data from

all 125 participants who participated were successfully uploaded to the server. Of

these 125 participants, 49 were determined to be monolingual native English speakers

during childhood on the basis of only speaking English in the home before the age

of 5. Of these 49 participants, 1 was removed from the analysis for reporting not

listening in a quiet room. Among the remaining 48 participants, 31 reported their

gender as “female”, and 17 reported their gender as “male”. The average age was

20.6 years old (SD = 3.34).

Materials

As in Experiment 1, the stimuli were based on the values from the Hillenbrand et al.

(1995) data set. This time, only three vowel categories were synthesized: /i/, /ɑ/ and

/u/. The F1, F2, and pitch values were taken from the medoid male speaker from

before, speaker “m07.” Of note, the pitch was kept constant at 99 Hz (the speaker’s

mean pitch across all vowels) so that pitch differences between vowel categories would

not influence the results. Whereas, the F1 and F2 values were taken as the reported

mean F1 and F2 values across the speaker’s vowel productions for each category.
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For each category, a continuum of vowels was created along the duration dimension,

ranging from 100 ms below the reported vowel duration to 100 ms above, in steps of

20 ms. The result was 11 steps for each category. A table containing the acoustic

information for each of the vowel categories can be seen in Table 3.4.

Table 3.4: Acoustic variables for KlattGrid synthesized vowels.

Vowel category F1 (Hz) F2 (Hz) Duration range (ms)
/ɑ/ 642 949 165 – 365
/i/ 346 2379 155 – 355
/u/ 326 997 135 – 335

Due to a combination of the sampling rate, the period of the vowel sounds, and

the desired duration, the synthesized vowels did not end at a zero-crossing. To

avoid introducing pops that might affect the listener’s perception of the duration,

a 15 ms amplitude ramp down was applied during the synthesis process by using

the voicing amplitude track. An amplitude ramp-up was not needed because the

synthesis procedure in Praat already forced a sort of ramp up onto the signal. An

amplitude point was set at 90 dB at 15 ms before the offset of the sound, and then a

second amplitude point was set at 0 dB at the end of the sound. In so doing, clicks

and pops were avoided that would otherwise occur due to the sounds not ending at

or near a zero-crossing. The 15 ms value was chosen by manual search as the smallest

ramp down duration that eliminated the clicks and pops in the stimuli. Each sound

was subsequently scaled to 70 dB using the Scale intensity... function in Praat.

The sounds were then spliced together to form a reminder task, which was in-

formed by Lapid et al. (2008). The median sound in terms of duration was used

as the reminder sound for each category. Then for each sound in a vowel category
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continuum, the stimuli were created by concatenating the reminder sound, a 750 ms

silence, and the target sound within the vowel category duration continuum. The

result was 11 stimuli per vowel category, for a total of 33 unique stimuli.

Procedure

As in Experiment 1, the experiment was run online using jsPsych. This time the

task was a reminder task, where participants were instructed to listen to pairs of

sounds and indicate whether they believed the second sound in a pair was shorter or

longer than the first sound. They responded by pressing “S” on their keyboard to

indicate shorter or “L” to indicate longer. A fixation cross was displayed for 500 ms

before each trial. The same demographic questions as in Experiment 1 were used.

Each participant heard each stimulus a total of 10 times, for a total of 330 trials in

the experiment. The presentation order of the stimuli was randomized at experiment

startup, and the participants were prompted to take breaks after every 50 stimuli,

as in Experiment 1. Each trial was untimed, and the same deception as used in

Experiment 1 was used in this experiment.

Of the 48 monolingual participants, 16 indicated that they were not wearing wired

headphones while participating in the experiment. A chi-square goodness-of-fit test

indicated that the participants wearing wired headphones responded significantly

different than those who were not (χ2 = 12.02, p < .001), so those further 16

participants were excluded from the analysis. In the end, 32 participants (65.31% of

the original 49) remained to be analyzed. Within this subset, 18 of the participants

reported their gender as “female”, and 14 reported their gender as “male”. The

average age within this subset was 20.7 years old (SD = 2.93).

There were 10,560 responses before removing implausible responses. For the same
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motivations as in Experiment 1, 91 responses (0.86%) with a reaction time greater

than 5 s were dropped. There remained 10,469 data points to analyze.

Analysis

A psychometric function was fit to the data as a mixed-effects logistic regression using

lme4 in the R programming language. The fitting process involved a forward-fitting

process for random structure and a backward-fitting process for fixed structure. In-

termediate models were compared using the anova function from lme4. The logistic

regression model can then be used to calculate the just noticeable difference. Some

previous studies have used a single-variable logistic regression to determine the just

noticeable difference (Lapid et al., 2008; Tomaschek, 2013). Mixed-effects regression

presents an advantage from a modeling perspective because it allows for additional

nuisance variation to be accounted for in order to draw out a less noisy estimate of

what the effect of the duration difference is on stimulus discrimination.

The location of the just noticeable difference or difference limen has been defined

as half the interquartile range (e.g., Lapid et al., 2008). This quantity is also known

as the semi interquartile range. It presents the average distance from the second

quartile to the first and third quartiles. It is important to give this quantity some

consideration. First, the second quartile of the function should represent the region

where a listener’s response is most uncertain, that is, where they are responding

at chance. The question is, then, how far from that second quartile point must

the duration difference be before the listener can reliably notice it? One quartile

away from the median is, admittedly, a somewhat arbitrary cutoff. Indeed, Boring

(1939) also gave examples of using the standard deviation, the probable error, or the

modulus of a normal distribution (which Gorroochurn, 2016, noted is a historical
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term denoting σ
√
2). Levitt (1971) used slightly different values of the roughly 0.29

and 0.71 quantiles as an estimate of the standard deviation, but for a transformed

up-down procedure that was not used in the present experiment. Ultimately, some

measurement of statistical spread from a central value is used. Lapid et al. (2008)

described the first and third quantile cutoffs as the most typical in the literature, so

those are the points that will be used in the present study for maximal compatibility

with previous results. It is also easier to calculate the semi interquartile range with

algebra from the logistic regression coefficients as compared to other statistics like

the standard deviation.

A single-variable logistic regression can be expressed in the form given in Equation

3.4:

ŷ = ln
(

p

1− p

)
= β0 + β1x , (3.4)

where p is a probability, β0 is the model intercept, β1 is the slope associated with

the duration, and x is a duration value. To find the duration value associated with

the first quartile, Equation 3.4 must be solved for x when p = 0.25. To find the

duration value associated with the third quartile, Equation 3.4 must be solved for x

when p = 0.75. From these values, the just noticeable difference can be calculated.

3.3.2 Results and discussion

The final model consisted of fixed effects for stimulus duration and vowel category,

with a reference level of /ɑ/. There were by-subject and by-item random intercepts.

Fixed effects that were dropped were gender, education level, and trial number. A

random slope for vowel category on the by-subject random intercept was fit, but

it did not significantly increase model fit, so it wasn’t included in the final model.
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Additionally, a random slope for vowel category was attempted to be fit for the by-

item random intercept, but it resulted in a singular fit. The table of coefficients for

the final model can be seen in Table 3.5. Like Experiment 1, a t-value of 2 or more

in magnitude was taken as an indication of statistical significance.

Table 3.5: Table of coefficients for fixed effects of final model.

Predictor Estimate Std. Error z value
Intercept 0.12 0.13 0.95
Duration difference 0.04 0.00 41.51
Scaled trial number 0.10 0.03 3.10
/i/ -0.21 0.12 -1.70
/u/ -0.83 0.15 -5.43

As in Lapid et al. (2008), to assess how well the model fit the data and matched

the proportions of response types to each stimulus, the estimated values were plotted

against the raw proportions and can be seen in Figure 3.5. There is relatively little

difference between the estimated values and the raw probabilities. Some of the

probability values are contained within the confidence interval of the estimates. The

values that are outside of the confidence interval are only slightly outside, and the

differences would be unlikely to make a practical difference on the results. As such,

the model fit seems to match the data well.

The effect of the duration variable was then used to find the just noticeable

difference for the perception of duration differences. After solving for x in Equation

3.4, the first quartile is associated with a duration value of −22.46 ms and the third

quartile is associated with a duration value of 28.08 for an interquartile range of 50.54

ms, which is illustrated with the black lines in Figure 3.5. The semi interquartile

range, and thus the just noticeable difference threshold, is 25.27 ms. To use this value
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Figure 3.5: Comparison between mean probability of responding “longer” and the
predicted probability from the logistic model. A 95% confidence interval based on
evaluating the fixed-effect portion of the model is presented for the predicted values
in blue. The confidence interval and the predicted values were calculated using the
effects R package (v4.1-4, Fox & Weisberg, 2019). The first quartile and third
quartile are indicated with the vertical black lines.

as a guideline for acoustic absement calculations, the radius must be at least this

value. So, in the case of computing acoustic absement with dynamic time warping

and using 10 ms between steps of acoustic information, 30 ms (or 3 steps) would

be an appropriate radius to choose as a limit for how far forward or backward in

time any given time step could be matched to other time steps. In effect, this choice

84



means that a particular time step would not be allowed to be compared with time

steps more than 30 ms before or after it.

The 25.27 ms just noticeable difference threshold is close to approximately 31

ms threshold that Lapid et al. (2008) found for discriminating between white noise

sounds of different durations. Additionally, the 25.57 ms threshold is similar to the

32.9 ms threshold Henry (1948) reported for for pure tones of 175 ms in duration.

(This last threshold is calculated by multiplying the reported Weber ratio of 0.188

by the duration of 175 ms to get the just noticeable difference threshold of 32.9 ms.)

3.4 Re-analyzing previous models

(Kelley & Tucker, 2021c) fit a series of generalized additive mixed models (GAMMs)

were fit to auditory lexical decision data. The goal was to determine if lexical com-

petition could be quantified acoustically by using dynamic time warping. This would

be as opposed to quantifying lexical competition through textual means as is done

when calculating phonological neighborhood density. A new variable called acoustic

distinctiveness was created by calculating the acoustic absement from one word to

all words in the Massive Auditory Lexical Decision (MALD) database (Tucker et al.,

2019). Acoustic distinctiveness was found to produce a similar effect in the data as

phonological neighborhood density. It was reasoned that the absement value that

comes from dynamic time warping was relevant to cognitive processes, especially

those used during spoken word recognition. The experiments in the present study

were designed to fine-tune certain aspects of the dynamic time warping algorithm to

be more related to human perception. As such, it makes sense to re-fit the GAMM

models from Kelley and Tucker (2021c) after calculating acoustic distinctiveness us-

ing the results of the previous experiments in the dynamic time warping algorithm.
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By so doing, the relevance of the experimental results to determining the acoustic

absement between words can be assessed.

3.4.1 Data

The data used came from the MALD database. The data to be modeled in the

GAMMs was the response latency in the lexical decision task. MALD is an auditory

lexical decision megastudy, with about 28,000 real words recorded by a young male

speaker of western Canadian English. Each word was responded to in auditory lexical

decision at least 4 times from among 231 unique participants who were also native

speakers of western Canadian English, for a total of 227,129 data points (including

responses to both real words and pseudowords). Stimuli sets were also recorded for

two other speakers: a young female and an older male, both of whom were native

speakers of western Canadian English. Further details are available in Tucker et al.

(2019) on the recording process for the young male speaker, the auditory lexical

decision task, and the variables included in the data set.

There were a total of 113,675 responses to real words in the data set. Responses

faster than 500 ms were removed for being implausible responses. For modeling

purposes, response time was measured from stimulus offset to help factor stimulus

duration out of the response latency values themselves. These response times were

then logged. Only correct responses to real words made after stimulus offset were

retained. This restriction leaves 96,001 responses (84.45% of the original number)

for the modeling process.
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3.4.2 Methods

Acoustic distinctiveness was calculated using the stimuli from the young male speaker

in the experiment. To keep the models in line with those in Kelley and Tucker, only

words that are common between the three speakers will be used. In total, there

were 26,005 words used in the calculation of acoustic distinctiveness. Each word in

the database was first transformed into a series MFCC vectors using the MFCC.jl

package in the Julia programming language. The window length was set to 25 ms,

and the step size for the windows was set to 10 ms. 13 coefficients were calculated,

and the zeroth coefficient was replaced with the log energy of the frame.

Then, to calculate the acoustic distinctiveness for a given word, its absement to

all words in the data set was calculated with dynamic time warping. Three particular

configurations of dynamic time warping were compared. The first is the standard

formulation, which uses the 2-norm (that is, Euclidean distance) to compare MFCC

slices of the words with no constraints beyond the default dynamic time warping ones

on what frames can be compared to each other. The second configuration incorpo-

rates the results from Experiment 1 and uses the 4.5-norm to compare MFCC slices

of the words, still with no additional constraints on what frames can be compared.

And, the third configuration incorporates the results from Experiment 2 and sets a

radius constraint on the dynamic time warping process so that a given acoustic frame

in a word can only be compared with frames up to three time steps before or after

it in the other word, while still using the 2-norm to compare frames. An example

alignment for two hypothetical words with the radius set to 3 is shown in Figure 3.6.

Note how there is some degree of compensation enforced in the warping path when

a given time step is stretched across various time points. One such example in the

given figure is how time step 4 in word two would only be allowed to be stretched
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by 1 time step due to how long time step 3 was stretched in word 2.

Figure 3.6: Hypothetical warping path using a radius of 3 time steps. The order
of the axes (with word 1 on the x-axis and word 2 on the y-axis) indicates that we
are looking at word 1 being stretched onto word 2. The blue line on the bottom
represents the earliest time point in word 2 that a given time step in word 1 can be
mapped onto. Similarly, the orange line on the top represents the latest time point
in word 2 that a given time point in word 1 can be mapped onto.

The baseline model from the second analysis in Kelley and Tucker (2021c) was

used as a baseline model. It consisted of fixed-effect smooths for trial number, log

frequency from the Corpus of Contemporary American English (Davies, 2008) from

the MALD data set, phonological uniqueness point, and log moving average response
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latency (as defined in ten Bosch et al., 2018). There was also a smooth term for a by-

subject random intercept. The different forms of calculating absement were assessed

by adding them individually to the base model and comparing how much the fast

restricted maximum likelihood (fREML) improved. The fREML statistic is GAMM

analog to AIC, where lower values indicate better fit. Models were fit using the mgcv

(v1.8-36, Wood, 2011) package in R version 3.6.3. Model criticism was not applied

to the models because it could not be guaranteed that each model would be fit on

the same data.

3.4.3 Results & discussion

The statistics indicating model fitness and explanatory power can be found in Table

3.6. There was slightly worse performance in terms of fREML when using the 4.5-

norm or the 3-step radius. As an implementation note, because some words were too

short to only have a 3-step radius, the last time step was used for all comparisons

that would otherwise be out of range when calculating the absement using the 3-step

radius constraint.

Table 3.6: Indicators of model fit for the GAMMs. The “fREML improvement”
column indicates the magnitude of the decrease in fREML from the baseline model,
so higher numbers are better.

Variant fREML improvement Adj. R2 Deviance explained
Standard 3,395.95 0.28 27.75%
4.5 norm 3,309.87 0.28 27.43%
Radius of 3 3,359.67 0.28 27.70%
Both 3,275.99 0.27 27.60%

Overall, there were numerical differences in the fREML scores, with the standard
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variant performing the best. However, the R2 and deviance explained statistics sug-

gested that the differences may not have meant much in practice, whether or not they

are statistically significant. It may be the case that the 4.5-norm distance function

relates better to more static signals, like simple vowels. Whereas, the differences that

it would highlight between static signals do not matter much or at all when compar-

ing dynamic signals like full words. Note, too, that the 4.5-norm distance is more

computationally expensive to compute than the 2-norm/Euclidean distance because

there are techniques that speed up Euclidean distance. For comparison purposes,

computing the acoustic distinctiveness values using Euclidean distance for all the

words in MALD could be performed in about six hours using parallel multiprocess-

ing with 15 cores with a clock speed of 2.93 GHz. On the same hardware, computing

acoustic distinctiveness using the 4.5-norm distance took around one week. As such,

any modest accuracy benefit that may ostensibly be achieved using the 4.5-norm

distance is likely not worth the significant time burden that comes with it. To drive

that point home even further, consider that calculating acoustic distinctiveness on

the same data set would take around 15 weeks to run on a single core of the same

power when using the 4.5 norm distance. Some minor improvements are likely pos-

sible. The speed difference between the 2-norm distance the 4.5-norm distance will

likely remain prohibitive, though.

The results of using the 3-step radius are more felicitous, though. There was

a difference in fREML between the model using standard dynamic time warping

and the model using the 3-step radius. But, this difference was smaller in magni-

tude than when comparing the 4.5 norm distance to the 2-norm distance. Using

the type of temporal constraint reduces the amount of computation needed to be

performed. As such, it would be reasonable to use this parameter setting even if just

for speedup reasons since it does not seem to significantly disturb the relationship
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between acoustic absement and human behavior.

3.5 General discussion

There are several factors to discuss regarding the components of dynamic time warp-

ing used to calculate acoustic absement. When comparing MFCC vectors to each

other, it seems that many of the p-norm possibilities for distance functions are useful.

And, in fact, this is something that should well be true anyway if any single p-norm

based distance function is useful. As previously mentioned, this result is predicted

by the equivalence of vector norms, where when one norm is high for a vector, all

the other norms will be high for that same vector, and the analog is true when a

norm is low (see, for example van de Geijn & Myers, 2020). This is clearly obvi-

ously connected to the notion of correlation. As such, while p-norms where p ≈ 4.5

provided the highest correlation with human judgments in these data, virtually any

p-norm would perform well too. For reasons of familiarity and computational effi-

ciency, it is likely better to choose to use the Euclidean norm (2-norm) or the squared

version of it because there already exist algorithms that can compute pairwise Eu-

clidean norms/distances far more efficiently than other p-norms by taking advantage

of matrix-matrix multiplication.

In terms of modeling human perception, these results suggest that the choice of a

distance function is likely to be largely inconsequential if deciding between distance

functions that are based on p-norms. Other forms of distance functions exist, how-

ever, and they may have larger consequences for modeling purposes. Extending the

results of the distance function search further, it may be the case that it is the acous-

tic features that matter most for modeling human perceptions of acoustic distance.

Simply put, the acoustic features must have enough capacity to allow for speech
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sounds to be differentiated, that is, discriminated. So long as the chosen acoustic

features maintain the discriminability of different speech sounds or components of

the speech signal, the choice of distance function does not matter very much because

much of the comparison has already been implicitly performed via the feature set. It

can be postulated, then, that there is some sort of cognitive acoustic feature space

(one example of which is the F1-by-F2 vowel space) in which dissimilar parts of the

speech signal are naturally separated and a distance function merely serves as a way

to quantify and rank the similarity between segments of acoustic information in the

speech stream. This concept of space is similar to how semantic vector spaces are

used in other areas of linguistics to group words with similar meanings and separate

words with disparate meanings (e.g., Baayen et al., 2019; Foltz et al., 1998), though a

physical interpretation of acoustic features is more straightforward than for semantic

features. The present study used MFCCs as the features of that space, but many

other acoustic properties may also be used as the features. The resultant processing

mechanism by which words receive activation based on acoustic similarity may then

be algorithmically similar to those used in models like Shortlist B, Fine-Tracker, and

DIANA.

As for the duration perception, the use of a radius has a clearer motivation. The

results of calculating acoustic distinctiveness did not substantially change between

standard dynamic time warping and the use of the radius. However, using the ra-

dius can be leveraged to decrease the amount of calculation that is needed. This is a

common technique to increase computational efficiency in data mining (Ratanama-

hatana & Keogh, 2004; Wu & Keogh, 2020), and it dates back to original uses of

dynamic time warping by Sakoe and Chiba (1978) for speech recognition. However,

Ratanamahatana and Keogh (2004) and Wu and Keogh (2020) pointed out that the

increased computational efficiency is merely a fortunate coincidence of what this sort
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of constraint should actually be used for. In fact, they noted that such constraints

can prevent what is known as “pathological warping,” where part of a time series

gets mapped over a section that is unrealistically long in another time series. A

phonetic example would be one phone in a word being mapped over five phones in

another word. Such warpings are undesirable, and having some sort of radius on

the temporal extent that a frame in one word can be mapped onto another prevents

such a situation. This is all the more important given the goal to model cognitive

processing, in which it is implausible that a listener would map one short time step

of acoustic information across many time steps in another sound.

Different models of spoken word recognition can be approximated with dynamic

time warping by tuning the duration constraint as well. With a short duration radius,

the results of the dynamic time warping comparisons will resemble the predictions

of the cohort model. The cohort model’s behavior is such that words will be pruned

from the list of competitors when phonetic mismatches between onsets occur. With

a short duration radius in dynamic time warping, words where this sort of onset

mismatch occurs will have a high absement value because the radius constraint will

prevent the algorithm from accommodating the mismatch. Similarly, a wider radius

can allow for roughly one phone to be skipped, allowing for results similar to those

in the neighborhood activation model and phonological neighborhood density, where

words that are one phone different will be competitors. The wider radius will allow

the algorithm to accommodate longer-term mismatches in acoustic comparisons of

words, which will allow for words that are one-off in terms of phones to accrue

less absement than they would with a stricter duration radius. Of course, these

examples are merely possible approximations since dynamic time warping as used in

the present study is working on the acoustic, continuous level, not on the segmental,

discrete level that the cohort and neighborhood activation models work on.
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Insofar as recommendations for acoustic absement calculations using dynamic

time warping, the evidence suggests that using Euclidean distance between acoustic

slices and using a 3-step radius will provide the best result in terms of both computa-

tional efficiency and matching participant behavior. However, adding a sort of radius

to the dynamic time warping process broaches the issue of how to handle sequences

of wildly different lengths. For example, how should a be compared to crepuscular?

It is likely that that crepuscular will be more than three times longer than a, in

which case it is undefined what to do once the last time step in a is reached and

has been matched with three time steps in crepuscular. Ratanamahatana and Keogh

(2004) summarized a common technique for resolving length or duration differences

wherein the shorter sequence is reinterpolated so that it is the same length as the

longer sequence. Yet, this technique cannot reasonably be applied to speech data

because the reinterpolation process would put one of the utterances on a different

time scale than the other. It is unreasonable to cast cognitive processing as operating

at a variable time scale that depends on the relative length difference of the input

and a lexical template.

In models of spoken word recognition like the cohort model, TRACE, TISK,

EARSHOT, and DIANA where the signal is processed sequentially, it might be

reasonable to expect that the search would be abandoned in this sort of scenario. This

could certainly be written algorithmically into a model of spoken word recognition

without too much trouble. However, it is less clear what should be done when a

word needs to have some sort of comparison to every other word in the lexicon, as

when calculating acoustic distinctiveness. In Analysis 2, the choice was made to

force all comparisons that would otherwise be outside the radius to be compared

to the last slice of the shorter word. This will effectively penalize the score for the

short word in this sort of scenario by introducing many comparisons that may not be
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between acoustically similar regions. Ultimately, there is no perfect solution because

the sort of global comparison where every candidate must be fully evaluated for a

given input signal is not ecologically valid due to the nature of competition and

activation. This is especially true given descriptions of competition (Luce & Pisoni,

1998) where activation of competitors is mediated by how well the incoming acoustic

signal matches the potential candidates for recognition. In sum, the choice of how to

penalize this sort of durational mismatch for global lexical measures will necessarily

be non-ecological and such choices must be predicated on other desiderata, like having

high absement values when the duration mismatch is great.

Future work may wish to explore different methods of computing distance or

restricting how long a particular frame of audio can be stretched in time. For exam-

ple, Bagge Carlson and Chitre (2020) have recently identified Wasserstein distance

(among other spectral distances) as a candidate to quantify spectral distances that

may be reflective of how humans are sensitive to frequency differences. However, the

spectrum of the speech signal changes constantly, sometimes to a drastic extent such

as from a vowel to a stop or fricative. As such, the Wasserstein distance would need

to be used as the method to compute the distance between small slices of acoustic

information. Using it globally to compare the spectra for entire words is not ecolog-

ical, either, because the order of the changes in the acoustic spectra is an important

differentiating feature for words made up of the same phones in different order, such

as apt [æpt], pat [pæt], and tap [tæp]. Similarly, borrowing concepts of differential

equations and dynamical systems from planning systems involving algorithms like

dynamic time warping (e.g., Lavalle, 2006) may help express the calculation of acous-

tic absement and distance in a way that better interfaces with fields such as control

theory and artificial intelligence.

Additional work must also be done to build upon the duration discrimination
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results in Experiment 2. It is particularly important to determine whether duration

differences in other speech sounds are also perceptible at the same threshold as the

vowels tested here. For example, in conjunction with the results from the present

study, the finding from Kewley-Port et al. (1988) that voice onset time discrimina-

tion had a 50% crossover point around 34 ms in good listening conditions suggests

that listeners have different temporal sensitivities to different categories of speech

sounds. Of course, it may well be the case that testing sensitivities that relate to

phonological contrasts (such as voice onset time) will result in different sensitiv-

ity thresholds than testing for the ability to perceive phonetic differences between

sounds. If dynamic time warping is to be used as some sort of algorithmic repre-

sentation of auditory processing when computing acoustic absement, these sorts of

differences must be accounted for. Within the algorithm, it may be possible to deter-

mine variable boundaries with which to compare the frames of audio based on what

type of sound is represented. However, the most straightforward way of doing this

would be to build some sort of speech sound category recognizer, which itself brings

assumptions and marked complications to the algorithm. It may also be possible to

make the larger acoustic comparison process account for differences between speech

sounds simply by ensuring that the acoustic representation allows for these differ-

ences to be salient. If the acoustic differences between different categories of speech

sounds are apparent in the chosen representation, the very process of performing

dynamic time warping may prevent the implausible temporal extension of a single

frame or short sequences of frames from being mapped far beyond what the human

auditory system would do.
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3.6 Conclusion

There are two easily tunable components of dynamic time warping: the distance

function used to compare time steps and the radius in which a time step is allowed

to match with other time steps. By choosing settings that are informed by behavioral

experiments, dynamic time warping as used to calculate acoustic absement can be

made to better reflect human auditory processing. The experiments from the present

study suggest that Euclidean distance is acceptable as a distance function, and its

computational efficiency will likely outweigh its slightly lower correlation with hu-

man judgments than p-norms where p ≈ 4.5. Using a radius of 3 time steps (when

the time steps are 10 ms apart) will afford a close match to the reported duration

discrimination results. Non-vowel speech sounds have different durational discrim-

inability properties, and indeed different individual vowels may as well. However, the

3 time step window should suffice as a starting point, especially when the features

for acoustic representation represent salient frequency differences well.

Overall, the results from these experiments serve as a perceptual grounding for

dynamic time warping as an algorithmic representation of auditory processing, at

least as regards words. As is typical in linguistics, this algorithmic representation is

not meant to serve as a literal neuroscientific description of auditory processing. In

fact, it is the mapping between acoustic frames that is important, not the trellis-filling

process induced through dynamic programming. This mapping is intended to serve

as a high-level description of the ongoing processing, and various implementations

are assumed to be possible. This is analogous to the way that most programming

languages work, where the language itself is used to specify a program at a high level,

and a separate compiler or interpreter actually creates the machine code needed for

program execution.
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The overall results are suggestive of a model of acoustic absement between words

that is grounded in dynamics and dynamical modeling like in the dynamical hypoth-

esis of cognition (van Gelder, 1995, 1997). There is a history of dynamical models

being used in phonetics and phonology, such as in articulatory phonology (Browman

& Goldstein, 1992, 1995) and task dynamic models of speech production (Saltzman

& Munhall, 1989). Dynamical approaches are, of course, a natural fit for obviously

continuous phenomena like the movement of articulators during speech production.

It is less immediately obvious that a concept such as “distance” (or some related

quantity) between words should be thought of in a more continuous fashion. And,

perhaps this is due to a predisposition to think of words as discrete objects, so a

logical conclusion would be that the distance between words should be static and

discrete. Yet, distance is itself the result of the accumulation of velocity over time,

and distance is an indication of how absement is changing over time. Segmental or

acoustic representations of words do also, however, specify some sort of state that

changes over time, whether the state is segments or acoustic spectra. The temporal

nature of both distance and words suggests that, in point of fact, dynamical modeling

is an appropriate tool for words, distance, and absement. Dynamic time warping—

customized based on experimental results such as those from the present study—is

a step forward in modeling the nature of acoustic differences between words.
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Chapter 4

Features for acoustic distance

Abstract

A coustically comparing words requires choosing a set of features by which to make

the comparison. It is common to represent words as sequences of mel frequency

cepstral coefficients (MFCC), though this set of features has not truly been compared

to other features for human judgments of acoustic distance. The present study

seeks to compare MFCCs to a set of features learned by a neural network that

does tracks vocal tract resonances. A neural network was trained to track vocal

tract resonances. The features it learned were probed with a simulated behavioral

experiment and interpreted as being similar to resonant filters localized to specific

regions of the spectrum. These features were then compared to MFCCs in quantifying

lexical competition as part of regression modeling of response latencies in an auditory

lexical decision task. MFCCs better quantified lexical competition in a way that

matched human behavior. Subsequently, the features were compared as predictors of

human judgments of acoustic distance between synthetic vowels. MFCCs correlated

more highly with the ratings than did the neural network features. These results
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overall suggested MFCCs—which summarize the entire spectrum—better modeled

the acoustic information human listeners use during speech processing.

4.1 Introduction

Acoustic distance between words has a relationship to spoken word recognition. This

concept is often invoked through the notion of sound similarity (Luce, 1986; Luce &

Pisoni, 1998). Kelley and Tucker (2021c) used acoustic distance as the basis for a new

way to quantify lexical competition. Words were converted to an acoustic format

using mel frequency cepstral coefficients (MFCCs). Acoustic distance between two

words’ MFCC sequences was accumulated over time using dynamic time warping,

resulting in a quantity known as absement. A word’s average absement to all words

in the lexicon—termed “acoustic distinctiveness”—was found to bear a strong rela-

tionship to response latencies in auditory lexical decision. Kelley and Tucker (2021b)

delved further into the specifics of dynamic time warping to determine what sort of

distance formula most closely matched human judgments of distance in a rating task,

finding that Euclidean distance offered the best compromise between correlation to

human judgments, familiarity of calculation, and computational efficiency.

However, another challenge when cognitively modeling the acoustic distance of

speech sounds and spoken words is determining the best set of features to use. Kel-

ley and Tucker (2021c) and Kelley and Tucker (2021b) used MFCCs due to conve-

nience and familiarity. MFCCs have been used in a variety of other perceptual work

(Bartelds et al., 2020; Mermelstein, 1976; Mielke, 2012). These features are com-

monly used because they are traditional and common features in automatic speech
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recognition research and development (Graves, 2012; Graves & Schmidhuber, 2005;

Hinton et al., 2012; Jurafsky & Martin, 2009). Several other feature sets could also

be used. A similar feature set is a (log) mel filterbank, as in Zhang et al. (2016)

and Graves and Jaitly (2014) or perceptual linear predictive coding coefficients as

in Hendriks et al. (2004). These options for representing an acoustic signal are all

hand-crafted to mimic certain aspects of human perception. However, machine learn-

ing techniques also present an interesting possibility for creating features that are

learned to be relevant for a given task. For a task that involves human speech, it

could be possible to learn a set of features that is optimally useful for representing

speech. The present paper seeks to investigate this possibility and compare features

learned by a neural network to MFCCs as a basis for cognitive modeling.

The present study compares the acoustic features a neural network learns to

MFCCs for cognitive modeling of phonetic phenomena. Necessarily, it will involve

training a neural network. These features will be compared to previous cognitive

modeling results using MFCCs in Kelley and Tucker (2021c) and Kelley and Tucker

(2021b). Because it is important to understand what these new features represent,

an attempt will be made to interpret them using a form of the previously discussed

simulated experiment technique. These results will be discussed with specific refer-

ence to whether these features are a plausible alternative to MFCCs for cognitive

modeling. Special attention will also be given to the process of neural network feature

interpretation as a part of cognitive modeling and how such interpretations must be

situated in a context that makes the numbers in the features meaningful.
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4.1.1 Learning features

Machine learning techniques have a history of use in feature engineering (Hastie et

al., 2009, Chapter 5). Perhaps the most prominent technique of recent years is deep

neural networks. An attractive feature of deep neural networks is that they can

learn useful representations and features from minimally processed data (Goodfellow

et al., 2016, Chapter 1). “Usefulness” in this respect is defined relative to the task

that the machine learning model is being asked to perform and not necessarily for

the purpose of scientific description, explanation, and experimentation. The major

problem for using a set of features developed from machine learning is that a re-

searcher must determine what the machine learning model should learn. This task is

not as straightforward as it seems. Beyond choosing what should be learned—such

as a mapping from a waveform to phoneme labels—there are choices that must be

made about how those concepts or mapping should be learned, such as what should

be optimized (e.g., how much does the relative magnitude of an error matter?).

A common approach for learning useful features is to use an autoencoder neural

network (Goodfellow et al., 2016, Chapter 14). In this type of neural network, the

model is trained to take its input, compress it to a smaller number of features, and

then reconstruct the input based on the compressed features. For psycholinguistic

experiments, autoencoders have been used to learn useful features related to word

embeddings (Jones & Brandt, 2019; Vitevitch & Storkel, 2013). However, an au-

toencoder may not prove to be the best type of network to use for the question of

learning features that may reflect human cognition. Indeed, because an autoencoder

is learning how to reconstruct its input from its learned features, it will learn struc-

ture that is inherent in the input data, as is relevant for reconstructing it and not

necessarily as relevant for human perception.
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A different approach would be to train a neural network to perform a task that

is related to what humans do with speech and language. In doing so, the network

would be forced to learn features that are useful for completing the task. This is not

to say that the learned features will be the same features that humans use during

cognition, but rather, they are features that can be used to complete tasks related to

human cognition. Determining the cognitive validity of a given set of features requires

experimentation. This is much in the same way that determining whether acoustic

correlates of a given speech segment are also perceptual cues requires controlled

experimentation. Consider, for example, how F4 lowering is an occasional acoustic

correlate of flaps but not a reliable perceptual cue in English (Warner et al., 2009;

Warner & Tucker, 2017). The features that a neural network learns are analogous

to acoustic correlates.

Within the realm of speech perception, three tasks stand out as potentially rele-

vant for a neural network to learn. The first two are phoneme and grapheme recog-

nition. Phoneme and grapheme recognition are common tasks for neural networks

used in speech recognition systems (Graves & Jaitly, 2014; Graves & Schmidhuber,

2005; Hinton et al., 2012; Zhang et al., 2016). As potential tasks related to acous-

tic distance, phoneme and grapheme recognition are not particularly good choices,

though. Both phonemes and graphemes are alphabetic targets, not acoustic targets.

For that reason, they are not good targets to predict if the goal is to find acoustic

features that are relevant for describing acoustic distance. That is, there are non-

acoustic components to phoneme and grapheme recognition, such as phonotactics

and spelling conventions. It might be argued that, for example, phonotactics do

manifest in the acoustic signal at some level like having no English utterances begin

with [ŋ] or end with [h]. However, this itself is not an acoustic property of the speech

signal, but rather, a statement about the patterning of certain aspects in the acous-
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tic signal and thus not actually acoustic. An analogous argument applies to spelling

conventions. The features that the neural network learns could then not reliably

be said to wholly relate to the acoustic properties of the speech signal. Thus, the

features could not be used to measure acoustic distance proper in the same way that

distances measured with a feature set for speech that includes spatial coordinates

of the tongue and lips cannot be said to be completely acoustic. While it is likely

true that these sorts of information can be useful during the cognitive processing of

speech, they are unrelated to determining the acoustic distance between words or

sounds in speech.

A third potential task is tracking what Deng and O’Shaughnessy (2003, Chapter

10) referred to as vocal tract resonances. Vocal tract resonances are related to

formants, but they are more general and apply to all types of speech sounds. They

are the frequencies that would resonate in the vocal tract based on the articulatory

configuration for a given segment. For sounds with formant structure like vowels and

approximants, they coincide with formants. Vocal tract resonance tracking is less

popular than phoneme or grapheme recognition, though Dissen and Keshet (2016)

and Dissen et al. (2019) presented some recent deep learning results for formant

tracking. Such projects are often described as formant tracking projects, but they

are, in reality, vocal tract resonance tracking projects. The advantage of having the

neural network learn to predict vocal tract resonance values is this: Because the

network is predicting acoustic phenomena, the features it learns should be relevant

to acoustic processing. That is, formants are defined acoustically as peaks in the

spectrum, so the neural network should be processing its input into more-or-less

acoustic features. And, vocal tract resonances are trackable (Deng & O’Shaughnessy,

2003). Vocal tract resonance tracking is, then, a reasonable task to ask a neural

network to learn so that it learns acoustic features. It is not necessarily the case
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that humans literally track formants in speech, to say nothing of all vocal tract

resonances. But, human listeners have shown sensitivity to relatively small changes

in formant frequencies (Kewley-Port & Watson, 1994), addition to sensitivity to

formant trajectories (Nearey, 1989; Nearey & Assmann, 1986). As a machine learning

task that is more or less strictly acoustic, then, vocal tract resonance tracking seems

to bear some relation to what humans do during perception of vowels and other

segments that involve formants, even if formant tracking and vocal tract resonance

tracking is not exactly and explicitly what humans do.

4.1.2 Formant tracking

While tracking vocal tract resonances is more involved than tracking formants, it

is still related to tracking formants and uses a lot of the same methodology. For

this reason, it is instructive to discuss formant tracking approaches, which are more

prevalent and well-documented than tracking vocal tract resonances. Detecting for-

mant values requires analyzing the acoustic spectrum for resonant frequencies. Given

the bell shape of a resonant filter, determining the central frequency of a formant

requires choosing the frequency where the peak of the filter is. That is, a local max-

imum must be found. This general procedure is known as “peak-picking,” and it

is common throughout many fields of science. It is obvious to a human where the

peaks are in a spectrum, but it is difficult to write a program that will automatically

perform peak picking. In classical models of computing, peak picking might be ex-

pressed as a calculus problem of finding the zeros of the derivative of a function, or

else of performing a search for values that are higher than their surrounding values

(as in the find_peaks function in SciPy, Virtanen et al., 2020). For simple spectra,

these sorts of algorithms might work well. Speech signals, however, do not have a
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simple spectrum; rather, a typical speech spectrum has many peaks, and correctly

determining the formant frequencies requires choosing the correct peaks.

Historical approaches to formant tracking have relied primarily on analysis using

linear predictive coding (LPC). In speech signal processing, LPC analysis is a method

that estimates the vocal tract filter as a polynomial. The poles or roots of the

polynomial (where the polynomial is equal to zero) can be used to determine the

formant frequencies and the formant bandwidths, bearing in mind that the LPC

filter was an estimate of the vocal tract filter. Effectively, this method leverages

linear algebra to find the peaks in the spectrum.

As is typically the case with signal processing techniques, one must choose the

length of the window of analysis in order to track formants over time. This is the

case because many signal processing techniques are most amenable to stationary—

roughly, “static-state”—signals, and static states in the speech signal exist only over

small increments of time (to the extent that they exist at all). As all phoneticians

are aware, the choice of this window length incurs a tradeoff between frequency reso-

lution and temporal resolution. Choosing a short time window will allow for greater

temporal resolution, but lower frequency resolution, as represented in a broadband

spectrogram. Conversely, choosing a longer time window will allow for a greater fre-

quency resolution, but a lower temporal resolution, as represented in a narrowband

spectrogram. This tradeoff is part of the Gabor uncertainty principle (Gabor, 1946),

itself based on the Heisenburg uncertainty principle Heisenberg (1927). The Gabor

uncertainty principle has been discussed directly for time-frequency analysis (inter

alia, Benedetto et al., 1992; Hsieh & Saberi, 2016; Parhizkar et al., 2015), among

many others. It has also been discussed indirectly in phonetics when describing the

differences between broadband and narrowband spectrograms (Johnson, 2012; Zue

& Cole, 1979, inter alia, ).
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Formant tracking techniques usually choose temporal resolution over frequency

resolution. In part, frequency resolution is not of extreme importance in formant

analysis for traditionally male voices because formant frequencies do not often have

such narrow bandwidths that the entire resonant filter could be missed by the coarser

sampling. And, harmonics for male voices occur at more frequent intervals due to

an, on average, lower fundamental frequency. For traditionally female and children’s

voices, greater spacing between harmonics can be a source of error when estimating

formant frequencies (Kent & Vorperian, 2018) since there are fewer opportunities for

a harmonic to be amplified through the resonant filter. Logically, a more granular

frequency resolution may help ameliorate this difficulty by at least capturing the

general shape of the resonant filter if not the peak, but too coarse a frequency

resolution runs the risk of smearing the shape of the resonant filter in much the same

way that too low a sampling frequency will not appropriately capture the peaks and

valleys of higher-frequency sounds.

This tradeoff leads to a natural difficulty in casting formant tracking as a deep

learning problem. Formant tracking can be thought of as a localization problem,

where the peaks in a spectrum must be found and localized, and those localized

peaks will be connected to a regression model for F1, F2, and F3. However, due

to differences in formant spacing for typical male, female, and children’s voices, the

network may have a difficult time associating a particular peak location in frequency

space to a given formant when the region is ambiguous. A potential alternative is to

make the uncertainty tradeoff at variable points throughout the frequency spectrum

by using wavelets instead of the Fourier transform. The outcome is a multiresolution

analysis, which typically results in greater resolution at lower frequencies and less

resolution at higher frequencies. Conversely, there is less temporal resolution at low

frequencies and more temporal resolution at high frequencies. In effect, each time
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step in the output of such a representation should contain the fundamental frequency

and perhaps some of the next few harmonics, followed by more spaced out frequency

components that should result in formant peaks being detected. The network can

use this information to determine which formant to assign a localized peak to.

Historical approaches to formant tracking have been more computational than

connectionist in nature. For example, the Burg technique as described by Press et

al. (1992) is a commonly used method in software like Praat Boersma and Weenink

(2020). The Burg method computes linear predictive coding coefficients on a small

chunk of audio and then performs pole picking from among the coefficients to deter-

mine the local maxima associated with formant frequencies. While this process may

involve some steps similar to those that are performed by humans during the process

of audition, the algorithm was not designed to reflect certain aspects of human cog-

nition. The input representation is a particular standout in that regard, where the

spectrum is represented linearly even though human perception of frequency tends to

be more logarithmic in nature as in the mel scale (S. S. Stevens et al., 1937) and the

bark scale (Zwicker, 1961). More recent speech features have tried to more closely

represent human cognition such as perceptual linear predictive coding coefficients

(Hendriks et al., 2004), though they do not appear to be used prominently in the

methods that phoneticians currently use for formant tracking. It is also worth noting

that the approach from Dissen and Keshet (2016) and Dissen et al. (2019) used fea-

tures based on linear predictive coding coefficients as input for some models, though

they did also use spectrograms as input for convolutional neural network models.
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4.1.3 Interpreting neural networks

One problem facing the notion of using acoustic features learned by a neural network

is that neural networks are generally considered black boxes. That is, whatever

they have learned is difficult to access and describe. It would not be advisable—to

the point of being unscientific—to recommend a black-box feature set for scientific

analysis and cognitive modeling in place of features that are generally easier to

understand like MFCCs. As such, features learned by the neural network would

need to be interpreted to be usable. For this reason, there is a significant focus in

the present paper on potential methods for understanding neural networks and the

features they have learned. In this way, the features that the neural network learns

can be more meaningfully compared with MFCCs or other features for phonetic

and cognitive modeling purposes. This focus requires a discussion of why exactly

it is difficult to interpret a neural network, which will motivate the interpretation

methods used in the present paper.

Two principal reasons that neural networks are difficult to interpret are that

they are semantically non-compositional, and they represent non-linear functions.

Concerning non-compositionality, consider the perceptron given in Figure 4.1 and

Equation 4.1. Both of these formats are equivalent approximations of the logical

AND function. This function takes in two TRUE/FALSE variables and returns

TRUE if both variables are TRUE; it returns FALSE otherwise. There is no way

to use the morphological and syntactic composition of these representations to un-

derstand that they compute the AND function. This situation is analogous to X

kicked the bucket being a non-compositional idiom whose meaning cannot be

apprehended from the constituent parts. Standard neural networks are far more com-

plex than this simple example, so the difficulties incurred by non-compositionality
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are far greater than this example suggests. Regarding non-linearity, humans seem to

have difficulty in intuitively understanding non-linear relationships and often treat

them linearly. For example, humans have a tendency to treat exponential functions

as linear when reasoning intuitively (Banerjee et al., 2021; Levy & Tasoff, 2017;

Schonger & Sele, 2020; Stango & Zinman, 2009). There is also a sentiment prevalent

within quantitative fields, where linear systems are said to be easier to understand

than nonlinear systems (see, for example, Hastie et al., 2009, Chapter 5).

1
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-0.998

Sx 1.008

y

0.992
z

Figure 4.1: Representation of the logical AND function as a simple network with
floating-point weights.
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(4.1)

The non-compositional, nonlinear meaning of neural networks is not unlike the

sorts of systems and processes that are studied in phonetics, psycholinguistics, and

the social and behavioral sciences generally. As a phonetic example, neural networks

are conceptually similar to spectrographic representations of speech. A spectrogram

itself is well-defined mathematically, but its mathematical definition does not help
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a phonetician much in systematically determining what linguistic information the

spectrogram represents, nor do the numbers in a spectrogram lend themselves to easy

interpretation. Rather, a phonetician may be able to determine acoustic correlates of

linguistic information based on knowledge that was derived through experimentation

and careful analysis, such as the correspondence between formant values and vowel

quality. By gathering systematic scientific knowledge, we create much-needed context

surrounding the acoustic measurements that are being made. And, perhaps applying

these techniques to analyzing a neural network can provide some level of explanation

of what, exactly, a neural network is doing. The conjecture here is that one method of

understanding neural networks is to create context by asking appropriate questions

informed by domain expertise and answering them using the statistical and analytical

methods employed in the social and behavioral sciences. This issue of context as an

important factor in interpreting neural networks has also recently been highlighted

by Sheu (2020). In a broader sense, cognition is a black box in much the same way

that a neural network is.

Previous research has interpreted a variety of aspects of neural networks. Some of

these aspects include optimal architectures and generalization (Tishby & Zaslavsky,

2015) and decision explanation for playing video games like Frogger (Ehsan et al.,

2019). It is also common to visualize the parts of a network that detect features for

recognition tasks (Krizhevsky et al., 2012; Zeiler & Fergus, 2014). Word embeddings

have also been used to cluster semantically similar image labels to analyze image

recognition errors (Dharmaretnam et al., 2021). More closely related to speech and

audio processing, some studies have implicitly performed perceptual experiments

on their networks by examining how the neuron activations changed according to

different types of input. Krug et al. (2018) examined clustering for phoneme and

grapheme categories by examining how different phoneme categories affect neuron

111



activation in the network. Palaz et al. (2015) examined the frequency response to

different stimuli in the first convolutional layer in their networks, finding behavior

similar to a filterbank. Similar techniques have been applied with a more explicitly-

stated connection to psycholinguistic work, such as Baayen et al. (2011) examining

the activation to various linguistic stimuli in a naive discriminative learning network,

and Baayen et al. (2019) examining activation diversity for linguistic stimuli in a

linear discriminative network. It is these types of implicit and explicit simulated

perceptual experiments that inform the analysis that was performed in the present

study.

4.1.4 The present study

The present study trained a neural network to track vocal tract resonances in speech.

The input features were scalograms that resulted from multiresolution wavelet anal-

ysis, for the previously mentioned possible advantages. The network was trained

using the Vocal Tract Resonance Database from Deng et al. (2006). Due to the

scientific importance of understanding the features used to represent an object, an

attempt was made to interpret the features that the neural network learns. The

feature interpretation was framed as a perceptual experiment to find the acoustic

correlates of neurons’ activation.

Following the feature interpretation, the models from Kelley and Tucker (2021c)

and Kelley and Tucker (2021b) were re-fit using the neural network features as

the acoustic representation for words. The re-analysis based on Kelley and Tucker

(2021c) refit the statistical models used to analyze auditory lexical decision data from

the Massive Auditory Lexical Decision data set Tucker et al. (2019). These results

speak to how well the neural network’s features relate to spoken word recognition,

112



especially regarding the accumulation of acoustic distance over time. The re-analysis

of Kelley and Tucker (2021b) focused on re-assessing the suitability of various dis-

tance functions to measure the acoustic distance between vectors of neural network

features. This analysis involved correlating a variety of distance functions against

the mean-pooled human participant responses from a distance rating task. The best

correlation achieved using the neural network features was compared to the best cor-

relation achieved with MFCCs to discern which feature set might best represent the

sorts of acoustic information that matters for judgments of distance in the human

mind.

These results all jointly inform the discussion of which feature set best suits the

description of acoustic distance for humans.

4.2 Training the formant tracker

The neural network to be trained was roughly modeled after the convolutional neu-

ral network from Dissen et al. (2019). Unlike Dissen et al., the convolutional layers

did not include recurrent connections. This choice was made because recurrent con-

nections will make the network much more difficult to interpret. That is, recurrent

connections in the network would require the output of the networks and layers to

be interpreted in relation to all of the times steps before and/or after the current

time step, or else the temporal aspect of the features will need to be ignored. Choos-

ing a network that is made up of strictly convolutional and fully-connected layers

avoids having to account for the temporal dimension of the predictions. However,

this does mean that the network may struggle to learn how to use previous and future

context to make decisions. This is a potential tradeoff sacrificing some amount of

accuracy for the sake of interpretability. The network architecture will be discussed
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in a subsequent section.

4.2.1 Data

The data set used was the Vocal Tract Resonance Database (Deng et al., 2006). It

contains extra annotations for a subset of the TIMIT corpus (Garofolo et al., 1993).

These extra annotations are peculiar because they provide formant values for sounds

that are not typically associated with having formant values, such as fricatives and

stops. The data set itself is actually designed to track vocal tract resonances and

not strictly formants, so it could be argued that it is not the most suitable data

set to work with when only trying to track formant values. However, to maintain

compatibility and comparability with previous results from Dissen et al. (2019), this

data set was used.

When Deng et al. (2006) created the annotations, they started by using the

tracking algorithm described in Deng et al. (2004). The tracking algorithm models

the resonances as LPC cepstra poles. The resonance tracks are statistically smoothed,

and the prediction errors are modeled with Gaussian mixtures. In effect, the model

for the resonances is LPC cepstra poles that are smoothed over time and adjusted

for errors based on learned distributions of the prediction error. This is similar

to how formants are tracked, though the additional statistical processes adjust the

values. After tracking the resonances in the subset of TIMIT, the initial annotations

were hand-corrected and interpolated based on values from Deng and O’Shaughnessy

(2003, Chapter 10).

While Dissen et al. (2019) used spectrograms as input to the convolutional neural

network, scalograms were used instead for the present study. Scalograms are a vi-

sual representation of the continuous wavelet transform instead of windowed Fourier
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transforms. Scalograms provide good frequency resolution at lower frequencies and

good temporal resolution at higher frequencies. In effect, there is a gradual shift from

a narrowband spectrogram-style representation for lower frequencies to broadband

spectrogram-style representation for higher frequencies. More technical information

on wavelets and the continuous wavelet transform can be found in Mallat (2009),

and a more applied explanation of the scalogram and continuous wavelet transform

for speech analysis can be found in Farouk (2018). A manual examination of spectra

contained in the temporal slices of the scalogram suggested they were generally less

noisy than those of a spectrogram calculated for the same data, and the peaks associ-

ated with formant values were generally easier to discern. Ultimately, the scalogram

representation was chosen over the spectrogram representation because the cleaner

spectra, more clear formant peaks, and the inclusion of pitch and harmonic informa-

tion at lower frequencies was hypothesized to be more useful to the neural network

than the spectral information that a broadband spectrogram would provide.

Note that while scalograms and spectrograms may appear at first glance to be

visual representations of the speech signal, this is not necessarily true and is not

true in this case. Despite the fact that phoneticians often visualize spectrograms in

programs like Praat Boersma and Weenink (2020) and interpret them visually, all

values in scalograms and spectrograms are acoustic and have no visual interpretation

by default. This is the same situation as for representing stereo sounds, where each

channel forms either a row or column in a matrix, but that matrix is no more a visual

representation than are scalograms and spectrograms. It is only when scalograms

and spectrograms are attempted to be visualized that they gain some sort of visual

interpretation via a mapping from the acoustic intensity values to grayscale or color

representations. If the scalograms or spectrograms were first saved as, for example,

a PNG image before being analyzed, they would become a visual format to represent
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the sound. This is to say that scalograms and spectrograms are not the same as

their visualizations. Neither conversion to an image format nor visualization is not

taken for this neural network, so the network is still receiving acoustic and not visual

information with the scalogram, although the acoustic information is spread over

axes representing frequency and time.

The scalograms were computed from the appropriate TIMIT files. The cwt func-

tion from the signal module in SciPy (Virtanen et al., 2020) was used to calculate

the scalograms. The complex morlet2 wavelet was used. A 200-length linearly

spaced frequency range from 1 Hz to 5000 Hz was used to create the widths of each

wavelet using the formula given in the function’s documentation, with a width pa-

rameter of 6. The other parameter only had to deal with the output type, which was

left at the default of float64 for real-valued wavelets and complex128 for complex-

valued wavelets. Once the scalogram was calculated, it was decimated with a non-

overlapping mean window such that each time step was equivalent to 1 ms, rather

than 1 sample. This step was necessary in part because the full scalograms produced

large files, and it would be difficult to load all of them into memory at once when

training the network.

The steps of calculating the scalograms and decimating them can roughly be

thought of as a pre-determined convolutional layer on the raw waveform followed

by mean pooling. The continuous wavelet transform in SciPy is computed as a

convolution, and the decimation with the mean operation simply is a mean pooling

operation. These steps cannot be easily added to a convolutional neural network,

however, because the kernels that a convolutional network learns are not generally

large enough to represent the family of wavelets that are used in a continuous wavelet

transform. While a custom implementation of the convolutional layers to specifically

learn relevant wavelets could be designed, such a project is beyond the scope of the
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present paper.

4.2.2 Network architecture

The network consisted of a series of interleaved convolutional and pooling layers

to perform spatiotemporally localized feature extraction, followed by a series of five

fully-connected layers to model connections between the features. The first convo-

lutional layer had a kernel size of 10-by-8 (time-by-frequency), a stride length of

10-by-1, 256 feature maps, and zero-padding of 4 in the temporal dimension. This

layer was followed by a max-pooling layer with a size of 1-by-4. The next convolu-

tional layer had a kernel size of 3-by-8, a stride length of 1-by-1, 256 feature maps,

and zero padding of 1-by-4. This was followed by a max-pooling layer with dimen-

sions of 1-by-4. The data was then reshaped and permuted so as to conform to

the upcoming fully-connected layers so that the features in each time step would

be multiplied appropriately with the layers’ weights. This section of the network is

visualized in Figure 4.2.

There were 5 fully-connected layers with 512, 256, 128, 64, and 3 neurons in se-

quence. All convolutional layers and fully-connected layers used the ReLU activation

function, except for the output layer, which used the identity activation function.

The particular setup for the first convolutional section was to take each millisec-

ond of the scalogram and decimate it temporally to have time steps that corresponded

to each 10 ms in the audio to match up with the provided formant values. This is

the second time that decimation was applied to the speech signal, where the first

was when the scalograms were calculated. While it is possible to have decimated the

signal to 10 ms increments from the start, this second decimation process allows for

the network to learn what kind of convolutional kernel should be used to perform

117



Input Convolutional Max-pooling Convolutional Max-pooling
Dimension 

permutation and 
reshaping

Output

200xTx1x1 256 filters of
size 8x10

Pooling at 4x1 256 filters of
size 8x3

Pooling at 4x1 3072x(T/10)

Figure 4.2: Architecture of the convolutional portion of the network. The input
begins as a 200 by T by 1 by 1 matrix, ordered as height-width-channels-batch size
and where T is the length of the recording in milliseconds. The rectangles in each
layer indicate the relative size of the filter or pooling operation in the subsequent
layer.

the second decimation, rather than a strict mean-pooling operation.

4.2.3 Network training

The network was created and trained using the Flux deep learning library (Innes et

al., 2018; Innes, 2018). The network was trained for 100 epochs. Eighteen sentences

were held out from the training data to serve as validation data. The model from

the epoch with the lowest validation loss is the one that was kept. The optimizer

used was the Adam optimizer (Kingma & Ba, 2015), and the parameters were kept

at the default values in Flux.

4.2.4 Network performance

The results of the network on the test data are presented in Table 4.1, which also

contains the results from the convolutional neural network trained in Dissen et al.
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(2019). Each column contains the mean absolute regression error of a particular

formant or vocal tract resonance, plus-or-minus the standard deviation. The vocal

tract resonances are broken down by broad segment category. In every case, the

results from the network trained in the present paper were worse than those from

Dissen et al. The discrepancy in the results may be due to the network in the present

approach not having recurrent connections, which limits its ability to handle context,

especially since the convolutional section is not very deep. Whereas, the convolu-

tional network from Dissen et al. did have recurrent connections, which would allow

it to better model time-series data. It also used a size-restricted spectrogram as

input, and it is possible that spectrograms are better fits to this problem domain

than scalograms.

Table 4.1: Comparison between the convolutional neural network in Dissen et al.
(2019) and the network trained in the present paper. All units are in Hz, and each
entry is presented as mean absolute error ± the standard deviation of the absolute
error. Results are separated by speech sound category. The columns for the Dissen
et al. (2019) paper come from their convolutional neural network model trained on
spectrograms. Whereas, the columns under the “CNN” heading are the results of
the convolutional model trained in the present study. Each column is labeled as a
formant for parity with previous results, though the predicted values are only truly
formants for the sonorant categories and are instead vocal tract resonances for the
obstruent categories.

Dissen et al. (2019) CNN
Category F1 F2 F3 F1 F2 F3

Vowels 53± 52 73± 74 108± 128 66± 96 123± 60 144± 148
Approx. 68± 62 111± 143 160± 187 75± 147 220± 70 222± 266
Nasals 69± 66 191± 208 158± 152 104± 249 195± 95 275± 198
Fricatives 139± 118 142± 143 167± 156 148± 168 195± 130 167± 172
Affricates 174± 146 173± 144 195± 164 166± 172 219± 147 147± 170
Stops 123± 102 135± 149 170± 168 143± 159 200± 121 182± 188
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Regardless of the performance, though, the vowel formant tracking performance is

not that far off compared to previous work. Additionally, the purpose of this network

is not to be a competitive formant tracker, as useful as such a tool could be. Rather,

the network is being trained to learn acoustic features useful for formant prediction.

And, the network certainly must have learned something related to formants and

vocal tract resonances since the results are not nonsensical. Even though the network

could theoretically perform better, it should suffice for the purposes of assessing its

features for cognitive modeling.

4.3 Interpretation of features

The conjecture from the introduction that understanding a neural network’s features

necessitates crafting context motivates the present analysis. One way to produce that

context is to determine what the acoustic correlates of neural activation are. An

obvious choice is frequency since frequency is one axis/dimension of the scalogram

fed into the neural network. As an explanation, though, saying that frequency is an

acoustic correlate of neural activation is uninformative when all of the information

the neural network receives is frequency-over-time information. A more useful and

specific explanation would involve determining what frequency components cause a

neuron to receive activation. The resultant analysis could be structured to determine

which frequency components are acoustic correlates of a specific neuron’s activation.

Frequency components can be modeled as simple, pure tone sinusoids, as is well-

known from the Fourier transform. For this reason, the present analysis will assess

the relationship between acoustic components and neuron activation using pure tone

sinusoids. Doing so requires testing the neuron activation levels over a range of

frequency values. It is likely that the intensity of a frequency component has an
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effect on the activation of a neuron as well, but the present analysis will hold the

intensity constant and use full-scale sinusoids as a simplification.

The methods and results will be described as a perceptual experiment, with

the exception that the subject in the experiment will be the neural network itself.

The specific features that will be examined are those in the layer just before the

output. In effect, the layers that occur in between the input features and the layer

in question are abstracted into an unknown function. The exact structure of the

function is the network itself, but as established, the network’s meaning is non-

compositional regarding its structure. As such, plotting a neuron’s activation levels as

a function of individual frequency components models the effect of different frequency

components on each neuron’s activation reflects the overall relationship between the

input and the features as the sum of basis functions. This approach is roughly the

same as a piecewise linear analysis in functional data analysis (Ramsay & Silverman,

2005), and functional data analysis itself is used implicitly throughout speech science

via the Fourier transform when performing spectral and spectrographic analysis.

This approach is also similar to Beguš and Zhou (2021), although they used TIMIT

sentences instead of pure tones to examine changes in activation in their network.

4.3.1 Methods

The present analysis will be described as a perceptual experiment, with the exception

being that the subject in the experiment will be the neural network itself. The specific

features that will be examined are those in the layer just before the output. In

effect, the layers that occur in between the input features and the layer in question

are abstracted into an unknown function. The exact structure of the function is

the network itself, but as established, the network’s meaning is non-compositional
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as regards its structure. As such, using plotting a neuron’s activation levels as a

function of individual frequency components models the effect of different frequency

components on each neuron’s activation. This approach is roughly the same as

functional data analysis (Ramsay & Silverman, 2005), and functional data analysis

itself is used implicitly throughout speech science via the Fourier transform when

performing spectral and spectrographic analysis.

Overall, treating the network in this manner is very similar to how behavioral

experiments are performed with humans. The actual processing and decision-making

that a human does during an experiment is a black box. Careful experimentation

and modeling allow a researcher to relate specific variables to the human subject’s

responses and determine.

Materials

Stimuli representing a frequency sweep along the same scale as the scalograms that

were used as input data were synthesized. They are scalograms generated based on

the frequency scale used to create the scalograms, 1 Hz to 5000 Hz in 200 equally

spaced linear steps. Each stimulus was generated as a full-scale sine wave for 1 second,

sampled at 16,000 Hz. The sine wave was then treated as an audio file and passed

into the same function that made the scalograms used to train the neural network,

using the same parameters as before. The result was 200 separate scalograms, each

representing a different one-second pure tone along the 1 Hz to 5000 Hz scale.

Procedure

The output layer of the network that predicted formant values from the last set of

features was removed, leaving the features as the output. Then, each scalogram
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stimulus was fed into the network. The output was the activation levels for the

features in the last layer of the network. These activation levels were averaged over

time for each frequency that was tested, though there was not much variation in

the activation values for each time step of the pure tones (as should be the case).

A matrix that consisted of the activation level of each neuron to each frequency

component was created and written to disk.

When visualized, these values produce a plot that is roughly what Friedman

(2001) referred to as a “partial dependence plot.” Sheu (2020) classifies this method

as a model-agnostic, global method of neural network interpretation. These plots

have been identified as suffering from a statistical bias problem when the predictors

are not independent from each other (Parr & Wilson, 2020). However, waves of

different frequencies are generally orthogonal to each other and thus independent, so

this potential problem should not be of great concern for the present analysis.

Each individual neuron’s activation pattern was analyzed in the raw form—

without smoothing—and in a smoothed form. The logged version of the activation

patterns was also analyzed similarly. The smoothing was performed by fitting a gen-

eralized additive model (GAM) to the data using the mgcv package (v1.8.28, Wood,

2011) in R. The was used as a response variable, and the frequency values were used

as the predictor.

4.3.2 Results & Discussion

The average adjusted R2 for the GAMs fit to the linear activations was calculated

(M = 0.51, SD = 0.29), and a density plot of these values can be seen in Figure

4.3a. Thirty neurons received no activation, for which no GAM model could be fit,

so they were excluded. In a similar fashion, the average adjusted R2 for the GAMs
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fit to the log activations was calculated for the neurons (M = 0.64, SD = 0.23),

and a density plot of these values can be seen in Figure 4.3b. Again, 30 neurons

received no activation (the same neurons from before), so no GAM model could be

fit for their activation response pattern. These neurons likely had negative values

for activation, which the ReLU activation function set to 0. It is possible that they

would only respond to acoustic features that are only present with more complex

inputs. Such an example might be the presence of multiple frequency components.

(a) Linear activation (b) Log activation

Figure 4.3: Density plots for the adjusted R2 value for the GAMs fit to the linear
and log activation values. Thirty of the neurons did not receive activation, so it was
not possible to fit GAMs for them or include them in these density plots.

In general, the GAMs fit to the log activations had better explanatory power,

and a paired t-test on the adjusted R2 values indicated that they were significantly

different, t(33) = −3.83, p < .001. These results generally suggest that the activation

values can be modeled with reasonable accuracy using smooth functions. That is,
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the relationship between the frequency components and the activation levels does

not have a lot of extreme discontinuities in it. This smoothness is important because

it suggests that the neuron’s responses are localized to particular frequency regions

and are not an uninterpretable combination of frequencies that might occur if the

neuron had, for example, high activation for a 1,000 Hz frequency component but

low activation for a 1,001 Hz frequency component. Heatmaps of the activation of

each of the neurons for each tested frequency can be seen in Figure 4.4. It is possible

that some of the neurons that seem to be activated at every frequency more or less

respond to the presence of sound, which might be useful as part of a binary detection

of stop closures.

There is a distribution of activation for regions that may be relevant for each

formant. For example, neuron 23’s activation response pattern is reminiscent of a

resonant filter at 1,000 Hz. This can be seen clearly in Figure 4.5, which is a plot of

its linear raw activation over each frequency component. It is similar to a frequency

response plot, showing how the activation levels of the neuron respond to different

frequencies in the input signal. The plot depicts something like a resonant filter,

which is an expected type of feature to learn when predicting vocal tract resonance

values. This filter-like behavior is also observable in Figure 4.4b where the activation

increases up to a peak at 1,000 Hz and then more or less gradually decreases. It could

be said, then, that a frequency component near 1,000 Hz is an acoustic correlate for

the activation of neuron 23.

The activation levels for neuron 42, which had high activation at a number of

different frequency positions, can be seen in Figure 4.6. The log activation levels

were largely similar in shape and would be redundant to examine. The activation

response shows what looks similar to a complex filter made up of 3 resonant filters at

roughly around 1,200 Hz, 2,900 Hz, and 3,600 Hz, based on visual inspection. These
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(a) Linear raw activations (b) Smoothed linear activations

(c) Log raw activations (d) Log smoothed activations

Figure 4.4: Activations of each neuron in the feature set. Dark blue colors represent
low activation, while yellow colors represent high amounts of activation. The activa-
tions in the smoothed plots are predicted values from a GAM fit on the data. The
log space plots had an epsilon value of 1 × 10−8 added to the value before the log
function to avoid taking the log of 0.
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Figure 4.5: Linear raw activation response pattern for neuron 23 in the feature set.

components could be said to be acoustic correlates for the activation of neuron 42.

Some of the neurons seemed to respond in way more suggestive of a consonant

than a vowel, though. Consider neuron 60, the linear activations for which are

displayed in Figure 4.7. There are notable peaks in the activation pattern. The

highest peak is near 3,800 Hz, which close to the spectral maximum for [ʃ] and [ʒ],

which at around 3,500 Hz (Johnson, 2012; K. N. Stevens, 1998). That is to say, it

seems that this neuron in particular would respond significantly to [ʃ] and [ʒ] and

receive a significant amount of activation. In this sense, this acoustic correlate of

neuron 60’s activation matches one of the acoustic correlates of the post-alveolar
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Figure 4.6: Linear raw activation for neuron 42 in the features extracted.

fricatives.

Overall, it appears that many of the neurons in the feature set respond similarly

to resonant filters or combinations of resonant filters. Or rather, that they represent

the response of a resonant filter on the input sound. It is difficult to pinpoint how

these filter-like features might be used when predicting the formant values, especially

since many of the neurons show activation for frequencies that are rather high, around

5,000 Hz. With that being said, The response to higher frequencies than might be

expected for F3 could be due to the consonants contained in the data set used to

train the network. It is also possible that the network uses the presence of high
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Figure 4.7: Linear, raw activation for neuron 60 in the features extracted.

energy in high-frequency regions to decrease the output for a particular formant.

Further simulations would be required to determine whether or not this is the case,

however. Regardless, the final set of features that the network learns thus seem to

be a sort of filterbank made up of what often looks like resonant filters, and possibly

some features that detect the presence of sound (as opposed to a stop closure).
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4.4 Feature comparison

Having analyzed the neural network features as similar to resonant filters, the features

are now ready to be compared against MFCCs in statistical modeling. The neural

network features represent a summary of “important” aspects of the acoustic signal,

where the regions of importance were determined in the training process. Whereas,

the MFCCs represent a summary of the entire acoustic spectrum. Both of these

sets of features define an acoustic space, as it were. The procedures for calculating

the neural network features and the MFCCs, then, are the functions or processes by

which a slice of the acoustic signal is transformed into the feature space.

Kelley and Tucker (2021b) observed that for these features to be useful in spo-

ken word recognition, they must prove to have sufficient discriminatory power. To

demonstrate this need, consider the converse scenario, where a feature set is designed

to have low discriminatory power. Such a scenario might be a feature set that con-

sists of one number, the frequency of F1 in the signal. That feature set would fail to

discriminate between vowels with similar F1 values, such as [i] and [u], even though

F1 is clearly very important for distinguishing vowel qualities from each other. For

this reason, such a feature space would not sufficiently separate word pairs like heap

[hip] and hoop [hup]. Or, when such a feature space is used to calculate acoustic

absement, the absement value would not reflect differences that humans are sensi-

tive to. An ideal feature set would represent completely and only the differences

that humans are sensitive to, no more, no less. The acoustic space, then, forms the

dimensions through which a word could be said to “travel” throughout its duration.

The question that the present analysis seeks to answer is how much of the acoustic

spectrum must be represented within a feature set to reliably distinguish words in a

way that aligns with the concept of phonological neighborhoods, where words that
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are less distinctive in the lexicon take longer to recognize and vice-versa (Luce, 1986;

Luce & Pisoni, 1998).

However, it is not enough for the acoustic spaces to merely separate acoustic

slices and words. Rather, these features must also be related to cognition in some

way since they are intended to explain a portion of cognition. To that end, the

present section performs a comparative analysis by using the results from Kelley

and Tucker (2021c) and Kelley and Tucker (2021b) to assess how much the neural

network features relate to spoken word recognition and speech perception.

4.4.1 Analysis 1

Kelley and Tucker (2021c) fit a series of generalized additive mixed models (GAMMs)

to model response latencies in an auditory lexical decision task from the Massive

Auditory Lexical Decision (MALD) data set (Tucker et al., 2019). As previously dis-

cussed, these models used MFCCs to calculate a variable referred to as “acoustic dis-

tinctiveness”, which represented how distinctive a particular word was compared to

all the other real English words recorded for the experiment (approximately 28,000).

Acoustic distinctiveness was calculated as a word’s average acoustic absement to all

recorded words in the data set using dynamic time warping. As mentioned in the

introduction, acoustic absement is the accumulation of distance over time, that is,

the summation of the distances between sequential acoustic frames in two separate

sounds. It was found that words that had low values of acoustic distinctiveness took

less time to recognize than words with high values of acoustic distinctiveness. The

present analysis compares the previous results to how well the acoustic distinctive-

ness variable calculated with the neural network features explains the variation in

the data.
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Materials

The data used in this analysis came from the MALD database. The data to be

modeled in the GAMMs was the response latency in the lexical decision task. MALD

is an auditory lexical decision megastudy, with about 28,000 real words recorded by

a young male speaker of western Canadian English. Approximately 26,800 of these

words were used in the auditory lexical decision task. Each word was responded to

at least 4 times from among 231 unique participants who were also native speakers

of western Canadian English, for a total of 227,129 data points (including responses

to both real words and pseudowords). Stimuli sets were also recorded for two other

speakers: a young female and an older male, both of whom are native speakers of

western Canadian English. Further details are available in Tucker et al. (2019) on

the recording process for the young male speaker, the auditory lexical decision task,

and the variables included in the data set.

As part of the MALD project, two other speakers recorded real word and pseu-

doword productions. One speaker was a young female of similar age to the young

male speaker. The other speaker was an older male speaker in his 80s. Kelley and

Tucker (2021c) compared using these speakers’ productions to using the young male

speaker’s productions as the acoustic representation for items in the lexicon, as well

as combinations of the three speakers’ productions. Only words that were common

to all of the speakers, resulting in 26,005 unique words to compare each word to.

That subset of words is what Kelley and Tucker (2021c) used. For parity and com-

patibility with previous results, only those words were used when calculating acoustic

absement in the present analysis, and only responses to those words were used when

modeling the data in the present analysis.

There were a total of 113,675 responses to real words in the data set. Responses

132



faster than 500 ms or before stimulus offset were removed for being implausible re-

sponses. For modeling purposes, response time was measured from stimulus offset to

help factor stimulus duration out of the response latency values themselves. These

response times were then logged. Subsequent analysis found that recordings of au-

tomaton, exhalation, standoff, and sweets were just recordings of silence, indicating

that they had been extracted improperly. Responses to these stimuli were also ex-

cluded. These restrictions leave 95,992 responses (84.454% of the original number)

for the modeling process.

Procedure

In Kelley and Tucker (2021c), acoustic distinctiveness using MFCCs was calculated

using the stimuli from the young male speaker in the experiment. Each word in the

data set was first transformed into a series of MFCC vectors using the MFCC.jl pack-

age in the Julia programming language. The window length was set to 25 ms, and

the step size for the windows was set to 10 ms. Thirteen coefficients were calculated,

and the zeroth coefficient was replaced with the log energy of the frame. The model

that performed the best was using just the young male speaker’s productions to cal-

culate acoustic distinctiveness. As such, only the young male speaker’s productions

will be used for calculating acoustic distinctiveness in the present analysis as well.

Acoustic distinctiveness was re-calculated using the neural network features in-

stead of MFCCs. Each word in the data set was pre-processed into scalograms using

the same function as was used for the neural network. These scalograms were then

fed into the neural network, and the neural network features were stored for each

time step. These features were taken as the acoustic representation of the words,

just as the sequence of MFCC vectors was taken as the acoustic representation of the
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words in Kelley and Tucker (2021c). Acoustic distinctiveness was then calculated by

using the distinctiveness function in the Phonetics.jl package (Kelley, 2020).

The interior dynamic time warping function was set to use Euclidean distance to

compare time steps to each other, as recommended in Kelley and Tucker (2021c).

This acoustic distinctiveness method could then be used in the GAMM.

Results

The results from the reanalysis were equivalent to those in Kelley and Tucker (2021c).

The only change of real import was that the fREML values were different. The

fREML value is an indication of model fitness that rewards prediction accuracy and

penalizes model complexity. Lower values are better. The GAMM using the acoustic

distinctiveness values from MFCCs had an fREML that was lower by 2080, which

is a greater difference than between any of the models using the various methods of

calculating acoustic distinctiveness in Kelley and Tucker (2021c), suggesting that it is

categorically better to calculate acoustic distinctiveness using MFCCs than with the

neural network features as learned here. The GAMM using the MFCC-based acoustic

distinctiveness also had a higher adjusted coefficient of determination (adjusted R2 =

.28) compared to the model using the neural network features (adjusted R2 = .24).

Additionally, the neural network features had a lower correlation with item dura-

tion (r = .58, p < .001) compared to the MFCC-based acoustic distinctiveness with

a value of (r = .89, p < .001). Kelley and Tucker (2021c) acknowledged a concern

about how statistically distinguishable acoustic distinctiveness was from item dura-

tion. But, the fact that the version of acoustic distinctiveness calculated with the

neural network features was still a significant predictor in the model suggests that

there is an important distinction between acoustic distinctiveness and item duration.
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Additionally, the acoustic distinctiveness values calculated with the neural network

features and with the MFCCs were highly correlated with each other (r = .74,

p < .001), suggesting that they are indeed quantifying similar phenomena.

In general, these results suggest that there is a greater correspondence between

spoken word recognition processes and acoustic representations of the entire spectrum

than with representations of selected features.

4.4.2 Analysis 2

The next question that needs to be addressed regarding the neural network features

is whether they correlate better with human judgments of acoustic distance than

do MFCCs. In Kelley and Tucker (2021b), an experiment was performed where

participants rated the distance of synthesized vowel pairs on a scale of 1 to 7. These

ratings were subsequently mean-pooled across each item. Then, a variety of distance

functions were calculated between each of the vowel pairs that participants heard,

with each vowel being represented as an MFCC vector. The correlations were checked

between each of the distance functions and the pooled participant ratings. Euclidean

distance was found as the best option, with near-optimal performance among the

tested functions and the ability to be calculated faster than most other distance

functions. To better interpret how well the neural network features mimic human

performance, the correlation analysis can be repeated.

Materials

The same synthetic vowels from Kelley and Tucker (2021b) were used. These vowels

were created via Klatt synthesis in Praat (Boersma & Weenink, 2020). Each vowel

pair was synthesized based on the monophthongs in the Hillenbrand et al. (1995)
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data: [i], [u], [ʌ], [ɔ], [ʊ], [ɛ], [æ], [ɑ], and [ɪ]. The F1 and F2 values were randomly

sampled from a multivariate Gaussian distribution. Each vowel category had its own

distribution, and the mean vector and covariance matrix were determined based on

the mean F1 and F2 measurements in the data for the male speakers.

A vowel pair for any given vowel category was created by first sampling two sets of

F1 and F2 values from the corresponding Gaussian distribution. Four random noise

values were then sampled from a univariate Gaussian distribution with a mean of

200 Hz and a standard deviation of 50 Hz, and these values were then added to each

of the sampled formant values. These noise values helped to prevent the vowel pairs

from being too clustered and thus indistinguishable in the rating task. The formant

values were then used to perform the Klatt synthesis with the Create KlattGrid

form vowel function in Praat, with other parameters being held constant. A table

of these values can be seen in Table 4.2.

Table 4.2: Constant values for the Create KlattGrid from vowel function in
Praat.

Parameter Value
Duration 0.5 s
Pitch 99 Hz
B1 50 Hz
B2 50 Hz
F3 3000 Hz
B3 100 Hz
F4 4000 Hz
Bandwidth fraction 0.05
Formant frequency interval 1000 Hz

The vowels that were synthesized for Kelley and Tucker (2021b) had a sampling
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rate of 44,100 Hz, but the functions used to create the scalogram expected the sam-

pling rate to be 16,000 Hz. As such, the stimuli were downsampled to 16,000 Hz

using SoX (v14.4.2, Bagwell, 2015). Each sound file was then converted to a scalo-

gram using the same functions as before, and the scalograms were then given to the

neural network to extract the features from. The features were then mean-pooled

across time to produce a single feature vector for each stimulus. Since the synthe-

sized vowels were stationary signals and the neural network did not have recurrent

connections, mean-pooling across time should not cause any significant information

loss. These feature vectors could then be used to replicate the correlation analysis

from Kelley and Tucker (2021b).

Procedure

Following Kelley and Tucker (2021b), a variety of distance functions compared with

each other. These distance functions were based on the p-norm from linear algebra,

and the algebraic form of the distance function for two acoustic vectors x and y is

shown in Equation 4.2,

dp(x, y) =

(
n∑

i=1

|χi − ψi|p
) 1

p

, (4.2)

where χi is the i-th element in the vector x, ψi is the i-th element in the vector y,

and p a variable that is greater than or equal to 1 that changes how the distance

function is calculated.

To find which distance function best fit the data, a variety of values of p were

searched. The values ranged from 1 to 100 and increased in increments of 0.01. For

each value of p, the distance values were calculated, and the correlation between the

distances with the neural network features and the pooled human judgments was
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calculated.

Results

The results from this analysis mimic those of Kelley and Tucker (2021b), where all

of the distance functions compared had a relatively high correlation, with a well-

defined peak. A plot of all of the correlation values achieved is presented in Figure

4.8. The highest Pearson correlation between the human judgments and the distance

calculation using the neural network features was achieved when p = 1.6 (r = .701,

p < .001). The 2-norm was only slightly worse (r = .700, p < .001). In practice,

such a small difference is unlikely to be meaningful. Note as well that the overall

range of correlation values is remarkably small, ranging from 0.660 to 0.701. This

reflects results from a small range of differences seen in Kelley and Tucker (2021b).

Regardless, the human judgments correlate more highly with Euclidean distance

calculated on MFCC vectors (r = .88, p < .001), and with Euclidean distance on F1

and F2 values (r = .81, p < .001). However, human judgments correlate less highly

with F1 (r = .66, p < .001) and F2 (r = .60, p < .001) individually compared with

the neural network features.

4.5 General discussion

The neural network features performed decently when used as part of modeling hu-

man behavior in a lexical decision task. Of particular note is how they performed

when used to calculate acoustic distinctiveness. Since acoustic distinctiveness did

not correlate nearly as much with duration when using the neural network features,

it demonstrates that the effects of acoustic distinctiveness from Kelley and Tucker

(2021c) did not depend merely on the high correlation between acoustic distinctive-
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Figure 4.8: Correlation between by-item mean distance ratings and choices of p for
the p-norm distance function calculated on the neural network features. Note that
there is no data associated with values less than 1.

ness and duration. Rather, it suggests that while a word’s acoustic distinctiveness

depends in part on duration, acoustic distinctiveness cannot be completely factor-

ized into item duration when using certain acoustic representations. However, using

MFCCs still provided a better fit to performance. More work would be required

before being able to recommend an alternative feature set to MFCCs.

As it appears, though, the neural-network-learned features did not fare better

than MFCCs in terms of relating to human perceptions of acoustic distance. This
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is somewhat surprising given that the network’s features were designed to predict

formants (and vocal tract resonances) and the assessment of the features was based

on human judgments of vowels, which themselves have strong formants. However,

it merits consideration that the data set used for training contained vocal tract

resonances for all types of English speech sounds.

Deng and O’Shaughnessy (2003) laid out a theoretical description of vocal tract

resonances, which are more closely related to articulation than acoustics. Vocal tract

resonances are the resonant frequencies that a particular vocal tract configuration

would produce. In the case of formants, these resonances are clear in the acoustic

signal. For other speech sounds, though, the resonances do not readily appear in

the acoustic signal, and part of the analysis in Deng et al. (2004) was on calculating

these hidden aspects of the signal. There has not been much uptake of this concept

within phonetics and speech science. In part, this may be due to a relative lack of

obvious application in discussing what the resonant frequencies of the vocal tract

qua filter would be when articulating a sound such as [s]. For [s], there may be some

sort of resonant-like frequency in the spectral maxima that occur, but these do not

coincide with the vocal tract resonances in the data. Indeed, there are also better,

more easily measured discriminating features like spectral moments (Jongman et al.,

2000). This is not to say that there is no possible application of the concept of vocal

tract resonances in phonetics. But, it does highlight a problem endemic to using

the data set of vocal tract resonances from Deng et al. (2006) as the training data

for an acoustically-driving feature set: It doesn’t strictly contain observable acoustic

values. As previously discussed, these values are based on vocal tract models from

Deng et al. (2004) and treated as hidden or latent variables that theoretically can be

deduced from the acoustic signal. Moreover, it is not an ideal data set for training

a literal formant tracker since it includes more than just formant data. Machine
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learning systems for formant tracking such as Dissen and Keshet (2016) and Dissen

et al. (2019) would need to be trained specifically on only the vocal tract resonances

associated with vowels to create an actual formant tracker.

It is also worth thinking more about the resonances that were predicted for non-

vocalic speech sounds being more clearly acoustico-articulatory than just acoustic

properties of the vocal tract. For this reason, the features the network learned

may not be strictly acoustic and may reflect some sort of articulatory information

transduced from the speech signal. In this sense, the network would be learning

to predict characteristics of the vocal tract filter rather than characteristics of the

speech signal. The vocal tract resonances do not surface in the signal, so learning the

resonances to predict for a sound like [s] has more to do with the network predicting

tongue position via formants rather than characteristics of the acoustic signal itself.

Additionally, formant tracking itself, let alone vocal tract resonance tracking, is

something of an odd problem for convolutional neural networks. Traditional con-

volutional neural networks have alternating sequences of convolutional layers and

pooling layers. By using the pooling layers, the network gains a property known as

translation invariance (Goodfellow et al., 2016, Chapter 9), wherein the location of

a detected feature does not affect the output. This is a useful property for networks

that perform tasks like face detection or image classification. This property is detri-

mental to a task like formant tracking, though, where the location of features—like

spectral peaks—is crucial to determining the correct output. It is rather remarkable

that the results with convolutional networks in Dissen et al. (2019) performed well

at all considering that they used pooling layers in their network. Of note, however,

is that their convolutional layers included a form of recurrence, allowing their net-

work to incorporate previous context into their predictions. Recurrent connections

were not used in the network in the present analysis so that the network could be
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interpreted in a more straightforward manner, but it may be the case the recur-

rent connections are important for accurate performance in formant or vocal tract

resonance trackers.

It also seems that using the continuous wavelet transform to create scalograms

instead of using a windowed Fourier transform to create spectrograms did not consti-

tute a significant change for the neural network. While spectrograms were not tested

as a possible input type for the network presented in the current work, the scalogram

input type did not seem to significantly affect the task in such a way that the network

had remarkably better performance than other networks. It is not possible with the

data at hand to restrict the worse performance with the current network to the use

of the scalograms, but it seems safe to say that they have a neutral effect on model

performance at best. This result is somewhat surprising because the narrowband

harmonic information contained in the lower frequency region should be useful for

the network to account for formant spacing variation in different voice types. Future

work on neural-network-based formant tracking that is not focused on constraining

the model to be more interpretable should test scalogram representations further

and against spectrographic and LPC representations.

Regarding the features, it seems that the neural network learned features that

roughly corresponded to the results of resonant filters. These features are particu-

lar to the exact neural network fit here, and features learned as part of a different

task, network architecture, and/or data set would very likely be different. How-

ever, it must also be considered that the perceptual question asked of the neural

network’s features would likely produce behavior that looks like resonant filters. In

particular, by examining the activation levels for different frequency components,

the output was almost assured to look like a resonant filter. As the frequency sweep

approached the frequency or frequencies that a neuron was trained to respond to,
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the activation would naturally increase. The activation would subsequently decrease

thereafter, creating the bell-like shape that is characteristic of resonant filters. Had

the perceptual question been framed along the lines of what particular vowels cause

excite individual neurons and presented synthetic vowels to the network, it would

be reasonable to expect that certain neurons might look like vowel detectors. This

possibility highlights the importance of choosing an appropriate perceptual question

to ask the network.

As such, it is reasonable to expect that the results that come of interpreting a

neural network are likely to be intricately tied to the context created to give its

behavior meaning, including the data it was trained on and the task it was asked to

perform. That is, conclusions that come from interpreting a neural network based on

experiment simulation will reflect the nature of the stimuli presented to the network,

analogous to task effects that are seen in behavioral experiments with humans. Fu-

ture work with formant tracking networks should attempt to re-create the network

features as a filterbank with classical computing and signal processing methods. The

discrepancy between the network’s output and the re-created filterbank could then

be assessed, especially with input stimuli that are more complex than pure tones. In

so doing, the filterbank analysis will be validated against the network’s performance,

though other possible interpretations of the features would not be ruled out. Cer-

tainly, neuron 60 showed performance that, while still visually similar to a resonant

filter, is also likely better classified as responding to the spectrum of [ʃ].

Assessing neural networks’ features using a simulated experimental paradigm

would seem to give results that are linked specifically to the experimental task. That

is, the results are conditioned on the question a researcher has. This is not necessarily

bad; it may well be the case that a satisfying answer to the research question can be

found using methods within the domain the network is being used—phonetics, in the
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present case. However, this should be borne in mind when attempting to generalize

the results of an analysis since there is an enormous number of connections between

neurons and possible statistical interactions in a neural network.

The relationship between the simulated experiment, the domain of inquiry, and

the resultant analysis is to be expected. The experimental analysis technique is

meant to create meaning for the neural network. Meaning is created with context,

and the experimental task, domain, and analysis are the context created for the

neural network. The present explanation and analysis may be unsatisfactory for

those researchers who do not have phonetic questions about neural networks. But,

the idea of using a simulated experiment should be applicable to other questions that

can be asked about a neural network (as indeed it has from previous studies, e..g,

Krug et al., 2018; Palaz et al., 2015; Zeiler & Fergus, 2014). For those questions about

networks that cannot reasonably be addressed through simulated experimentation,

the general process of creating context that affords an interpretable explanation is

still applicable.

The results from the present analyses are disparate but have a unified implication

for calculating acoustic distance: Differences in all regions of the acoustic spectrum

contribute to the perception of acoustic distance. This particular finding is apparent

in the re-analyses. The neural network features that represented a collection of

more localized acoustic features fared worse as components of a cognitive model

than did MFCCs, which are a global representation of the acoustic spectrum. A

similar observation was made in Kelley and Tucker (2021b) when acoustic distance

calculated using F1 and F2 did not correlate as highly with human judgments than

acoustic distance calculated with MFCC vectors. Compared to the formant values,

though, the neural network features seem to represent features that are more localized

in the spectrum for specific speech sounds. Formant values are localized features,
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but they can be used to describe vowel qualities generally. Whereas, many of the

neural network features are likely irrelevant for certain classes of speech sounds. For

this reason, it seems to be the case that human listeners attend to the acoustic

spectrum more generally rather than to just a select few regions of the spectrum.

This conclusion dovetails with findings from Ito et al. (2001) and Nenadić et al.

(2020) that vowel identification is not insurmountably hindered when one formant is

missing.

The results from the two reanalyses suggest that the distance between the neural

network features does not more closely match human judgments of acoustic distance

than does the distance between MFCC vectors or the distance between formant

pairs. This finding would seem to indicate that summaries of the entire acoustic

spectrum—as represented by MFCCs—are a better representation of the acoustic

signal insofar as to allow for the separation between different speech sounds to reflect

cognition. That is to say that the distance between speech sounds in an acoustic space

represented by MFCCs is more closely aligned with how humans perceive and rate

distance than is the distance between more selective acoustic spaces like formant

spaces or features learned to map to formant values.

These results suggest, then, that in the moment-to-moment process of a lexical

candidate receiving activation, activation is accrued based on how well the momen-

tary of matches the listener’s expectations. It would not necessarily need to be the

case that these expectations are literally acoustic, but they must have some acoustic

instantiation that can be expected in the speech signal. Using Euclidean distance in

this way does weight all regions of difference equally, which may not necessarily be

ideal. It is worth noting that full-spectrum analysis does not decouple source charac-

teristics from filter characteristics in the representation. Taken to its logical extreme,

this could suggest that a listener’s expectations of prosodic and suprasegmental infor-
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mation are epiphenomenal or otherwise baked into acoustic representation. Such an

analysis is not supported by the results here and was not tested in the experimental

design.

That a summary of the acoustic spectrum fared best in perceptual validation is

suggestive of the acoustic space in which segments and words are distinguished. It

would seem that the acoustic space itself is representative of the whole spectrum.

In effect, listeners appear to use all of the acoustic spectrum during speech percep-

tion and spoken word recognition. While some aspects of the acoustic signal are

certainly more important for distinguishing certain sounds from each other (like for-

mants for vowels), listeners make use of all available information. Such a finding

is in agreement with research on cue weighting for spoken word recognition from

Redmon (2020). Within the cue weighting paradigm, unimportant components of

the acoustic signal—e.g., individual cues—can be weighted less than more important

components of the acoustic signal, but all components contribute to some degree to

speech perception, speech processing, and spoken word recognition.

It is also worthwhile to reflect on the cognitive plausibility of MFCCs. They have

fared better than the features that were learned with the neural network, and they

performed better than F1 and F2 in Kelley and Tucker (2021b). It may well be the

case that MFCCs provide a decent computational match to how the human mind

is processing sound. The mind may not necessarily be performing all of the steps

used in calculating MFCCs—such as a discrete cosine transform. But, the way that

the coefficients in an MFCC vector interact with each other may indeed reflect a

summary of how the mind is processing sound. This is clearly a postulation, but

the constellation of the evidence in Kelley and Tucker (2021c), Kelley and Tucker

(2021b), and the present research seems to point in this direction. This postulate

should not be shocking, either, since the mel scale was designed to reflect logarithmic
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perception in humans S. S. Stevens et al. (1937). Mermelstein (1976) also found that

acoustic distance between words calculated using MFCCs related well to human

perception. For these reasons, acoustic representations that involve the mel scale

will likely bear a considerable relation to perception by virtue of the mel scale being

perceptually informed.

4.6 Conclusion

The feature set one uses to describe the speech signal must generally allow for the

speech events that a researcher is interested in to be separated, to the degree that

such separation is possible. It is a boon when the features used are also interpretable

and/or have a demonstrated relationship to human perception. To the extent that

MFCCs are an industry standard for speech recognition, it could be said that they

satisfy some of these desiderata. There is a reasonable enough separation of phonemes

and graphemes as categories of speech events that automatic speech recognition

is possible when using MFCCs as input. They also bear some relation to human

perception by being based on the mel scale. They are, however, difficult to interpret

in a way that is meaningful to phonetic description, theory, and methods.

A similar remark could be made about the neural network features here, though

the evidence for having met these goals is thinner. They related to human perception

in the reanalyses of previous experiments. They also formed a reasonable basis on

which to calculate acoustic distinctiveness, which itself speaks to the separability

goal. Due to the black box-esque nature of neural networks, the features are also

difficult to interpret. Via speculative experiment simulation, a coarse description of

what the features represented was achieved. Yet, it would be difficult to recommend

the use of these features in a broad range of scenarios due to the network not achieving
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performance nearly as good as those of Dissen et al. (2019), as well as the difficulty

in reconciling the differences between vocal tract resonances and formants in the

training data.

Nevertheless, there is still some evidence here that neural networks learn features

that may be related to human cognition when modeling knowledge that humans have

tacitly. Treating the neural network activation levels functionally (as in “functional

programming” or “functional data analysis”) led to some level of interpretability. It

was also clear though that the context provided by the analysis methods and prior

domain knowledge was instrumental to understanding the numbers produced by the

networks. As in all things, context is crucial. Without it, the neural network weights

and activations would just be an ocean of numbers.
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Chapter 5

General discussion and conclusion

The present dissertation ultimately sought to find a consistent method by which

to acoustically compare words. This type of comparison is of great importance for

research into spoken word recognition, which has often invoked the concept of sound

similarity without analyzing actual sound. The preceding studies were designed

to collect data to algorithmically summarize. The specific parts of spoken word

recognition that were assessed were how well acoustic absement relates to the concept

of phonological neighborhoods, how the spectra of two sounds should be compared,

how sensitive humans are to duration differences between sounds, and what sorts of

acoustic features are important when comparing sounds. The answers provided are,

of course, preliminary, but they sketch the human behavior that must be abstracted

over to create a computational method to compare sounds.

Principally, words must be compared with each other over time. While this is,

in some sense, obvious, it is not at all trivial to accommodate this fact. Even when

finitely approximated, few words will have a close enough duration to be directly

compared with each other, let alone comparing individual pronunciations of words. It
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is for this reason that elastic algorithms like dynamic time warping are so useful since

they can handle these types of durational discrepancies. The relationship between

the cost value of dynamic time warping and perception was demonstrated in Chapter

2, where acoustic distinctiveness had a strong relationship to reaction time. It is also

clear that humans must also have some sort of elastic tolerance for the duration

of individual speech sounds, given how variable segment duration is during speech

production. The results from the second experiment in Chapter 3 also directly speak

to this fact.

But perhaps the most important aspect of all of these studies is the notion of

acoustic space. The variables that are chosen to represent the acoustic spectrum are

of incredible importance to the results from acoustic distance comparisons and the

calculation of acoustic absement with dynamic time warping. The reason they are

so important is that the choice of acoustic features dictates the distance between

acoustic slices of words, which in turn dictates how acoustic distance will accumu-

late over time. If too specific a set of features is chosen, irrelevant information will

not be filtered out and slight variations in production will cause huge increases in

distance. Whereas, choosing too vague or incomplete a set of features will cause

important acoustic differences to not propagate into the distance calculations. In

this sense, the distance values, absement values, and alignment between words are

simply measurements within the feature space. And, words are simply time-series

objects that exist in the acoustic space. For these reasons, the choice of an appropri-

ate feature space is paramount. The results from all of the chapters combined have

suggested that, of the tested options, Mel frequency cepstral coefficients (MFCCs)

correlated highest with human judgments of distance and were the strongest predic-

tors of response latency in auditory lexical decision. These results are not divorced

from human cognition either. To the extent that humans perform acoustic compar-
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isons between the incoming signal and words competing for activation, the acoustic

features that the mind derives from the speech signal will already dictate a large part

of what words could possibly be recognized during and after audition.

The remainder of this chapter presents a summary of the results from previous

chapters, the tuned dynamic time warping algorithm, possible future refinements for

calculating acoustic absement, and possible applications and implications of these

results for phonetics and speech communication.

5.1 Summary of results

This section presents a high-level summary of the major results from each chapter.

5.1.1 Chapter 2

Chapter 2 proposed the use of dynamic time warping as a way to measure acoustic

differences between words. The output of dynamic time warping was characterized

as the accumulation of acoustic distance over time (or word duration), which is

the quantity of acoustic absement. Acoustic absement was calculated between all

words in the Massive Auditory Lexical Decision data set (MALD, Tucker et al.,

2019). A word’s average absement to all words was taken as an indicator of its

“acoustic distinctiveness”, which was used as an index of lexical competition. High

values indicated that a word was very acoustically distinct from all words in the

lexicon and should have few competitors, while low values indicated that a word

was acoustically less distinct from all words in the lexicon and should have many

competitors. Acoustic distinctiveness was found to be highly predictive in regression

modeling of response latency in the auditory lexical decision data in MALD. It also
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correlated highly with word duration, which was likely due to how time factors into

the calculation of absement.

Subsequently, dynamic barycenter averaging (Petitjean et al., 2011) was used to

compute acoustic representations of words that were averaged over multiple speakers

in MALD. Acoustic distinctiveness was re-calculated using these averaged represen-

tations and the regression model was re-fit. Each time, acoustic distinctiveness was a

highly significant predictor of response latency. These results suggested that acous-

tic absement calculated with dynamic time warping had a strong association with

speech processing and spoken word recognition.

5.1.2 Chapter 3

Chapter 3 sought to refine certain aspects of the dynamic time warping process. The

goals were for acoustic distance comparisons to reflect how humans judge the acous-

tic distance of speech sounds and for time-alignment of words to reflect how sensitive

humans are to durational differences in acoustic information. Experimental data

were collected in support of these goals. The first experiment was a distance rating

task with synthetic vowels with varying quality but constant duration. The sec-

ond experiment was a reminder discrimination task with synthetic vowels of varying

duration but identical quality.

The rating task results suggested that many of the distance functions tested

had a very high correlation with human judgments. It was ultimately decided that

Euclidean distance provided the best compromise between reflecting the human judg-

ments, familiarity of distance function, and computational efficiency. The reminder

discrimination task suggested that the just noticeable difference threshold for vowel

duration is approximately 30 ms (rounded up to the nearest 10). The distance re-
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sults were factored into the dynamic time warping function via the function used to

compare time steps to each other. Whereas, the duration discrimination results were

incorporated by enforcing a radius in the time dimension that specified what time

steps could be compared with each other.

5.1.3 Chapter 4

Chapter 4 was designed to test different styles of acoustic representation as input

to the dynamic time warping function. The first style was a general summary of

the acoustic spectrum, which took the form of mel frequency cepstral coefficients

(MFCCs). The second style was a set of features learned by a neural network trained

to predict vocal tract resonances from speech data. After interpreting the neural

network features, this second style of representation was assessed as a collection of

features localized to specific regions of the acoustic spectrum.

The two styles of representation were used to recalculate acoustic distinctiveness

and repeat the regression analysis of Chapter 2. The summary style features fit

the auditory lexical decision response latencies better than the localized features.

These results suggested that acoustic distance as relates to perception is affected by

the entire acoustic spectrum, rather than specific local features. It was also found

that acoustic distinctiveness calculated with the neural network features correlated

only moderately with word duration, in contrast to the high correlation between

MFCC-based acoustic distinctiveness and word duration.
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5.2 An algorithm for acoustic absement

The dynamic time warping tuning results from the previous chapters are presented

algorithmically in Algorithm 1, where W1 and W2 are two words represented as

sequences of MFCC vectors (strided at 10 ms), and d(·, ·) is the Euclidean distance

function (or 2-norm). Note that arrays are indexed at 1, and ranges in for loops are

inclusive of both the minimum and maximum values. The initialization of the array

to be filled with ∞ and to be one column and row larger than would be needed for

a comparison of W1 and W2 serves to obviate some nuances in indexing and bounds

checking that would otherwise be needed. This approach makes the presentation of

the algorithm cleaner, but it is not obligatory, and traditional bounds checking could

also be used. The condition on Line 12 represents the duration constraint derived

from the results of the second experiment in Chapter 3. It also forces the algorithm

to compare any remaining time steps in W2 outside the 30 ms radius to the last time

step in W1, which was discussed in Chapter 3. It is worth noting that the radius

is a heuristic method of enforcing the 30 ms duration constraint. It is theoretically

possible for a time step t to be stretched from t − 3 to t + 3 in the other sequence

for a total of 7 time steps or 70 ms. Doing so would force other time comparisons to

be shorter to compensate for the longer comparison, as discussed in Chapter 3.

The sort of heuristic with the radius is useful because it requires only a small

modification to the dynamic time warping algorithm, and it is non-trivial to change

the algorithm to find an optimal warping path for which a time step can only be

stretched up to three times. If future research determines that more precise timing is

required, a substantial modification to the dynamic time warping and backtracking

algorithms would be needed. There is still an outlying empirical question, though,

of what the distribution of warping lengths for time steps in word comparisons is.
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Algorithm 1 Algorithm for calculating acoustic absement
1: function aa(W1, W2)
2: if W1 is longer than W2 then
3: Swap W1 and W2

4: end if
5: T1 := the number of time steps in W1

6: T2 := the number of time steps in W2

7: Initialize a (T1 + 1)-by-(T2 + 1) matrix D
8: Set all values in D to ∞
9: D[1, 1] := 0

10: for i from 2 to T1 + 1 do
11: for j from 2 to T2 + 1 do
12: if |i− j| ≤ 3 ∨ i = T1 + 1 then
13: D[i, j] := d(W1[i],W2[j])
14: D[i, j] := D[i, j] + min(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1])
15: end if
16: end for
17: end for
18: Remove the first column and first row from D
19: Calculate warping path via backtracking and store as π
20: return π,D[T1, T2]
21: end function

That is, on average, how many time steps in W1 is any given time step mapped to

in W2? Such distributions would give a more definitive answer as to whether the

radius constraint often allows for stretching that is longer than desired. If there are

many time steps in W1 mapped to more than 3 time steps in W2, then the warping

radius is not satisfying the 30 ms constraint derived in Chapter 3, and an alternative

solution would need to be pursued.

Nevertheless, the rudiments of an algorithmic method to acoustically compare

words are present. The algorithm serves as an alternative method by which to

compare words when the concept of “sound similarity” is invoked. Dynamic time

warping in this sense is arguably a better method for evaluating the similarity of
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sounds than Levenshtein distance on phoneme strings, too, being that it compares

sounds to each other.

5.3 Dynamic time warping and cognitive modeling

The point of using dynamic time warping in cognitive modeling is not to say that

the dynamic programming aspect is directly related to cognition. Rather, it is that

the absement value and the warping path specifically are related to cognition. The

dynamic programming aspects are just the method by which to perform the appro-

priate calculations. The acoustic distinctiveness modeling results from Chapter 4

suggest that acoustic distinctiveness is not merely an artifact of duration, as the

results of Chapter 2 could suggest. The correlation between duration and the acous-

tic distinctiveness values calculated with the neural network features was lower than

when calculating acoustic distinctiveness using MFCCs. But, acoustic distinctiveness

when calculated with the neural network features was still a significant predictor of

response latency. Its significance suggests that acoustic distinctiveness, in general,

is a significant predictor not merely because it correlates with duration, but rather,

that it has a strong relationship to spoken word recognition.

The warping path should be of particular interest to models of spoken word

recognition. The reason is that the warping path specifies the temporal dynamics

of acoustic phonetic matching in the activation process. Individual acoustic frames

within the signal and lexical template may be thought of as temporally elastic in

the sense that the occurrence of the acoustic event the frame specifies is not rigidly

assigned to a particular time point. It is the warping path that shows how elastic the

frames were during the comparison process. There is some level of implausibility in

the warping path that remains to be resolved, though. The optimal path in dynamic
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time warping is often determined by backtracking from the temporal endpoint of

the comparisons, though it is clear that humans have more continuous and eager

recognition of words in the speech signal. It is also possible to remember the optimal

path by storing it as it is determined, like Jurafsky and Martin (2009, Chapter 9)

do with the Viterbi algorithm. Doing so does not really resolve the issue of how the

cognitive system would know when to progress to the next time step in either of the

input sounds. Future research and development would be required to determine a

method that solely uses a semi-elastic forward iteration to create a warping path that

reasonably models the cognitive process of comparing the speech signal to a template.

A key process to describe is when the comparison process knows to transition from

one time step in the template or signal to the next. Perhaps a reasonable starting

point would be to identify when the next time frame is more plausible than the

previous one (i.e., transition eagerly, without attempting to find what is necessarily

the optimal path). This sort of algorithm would be similar to the best path decoding

algorithm given in Graves et al. (2006) and the beam search given in Graves and

Jaitly (2014).

A more serious outlying problem is how to move from comparing isolated words

to modeling the comparisons occurring during continuous speech. Inherently, it

would be necessary to determine some sort of mechanism to determine when a word

is recognized and when to move on to recognizing the next word. This problem is

addressed in automatic speech recognition systems using algorithms like the Viterbi

algorithm given in Jurafsky and Martin (2009, Chapter 9) and the token passing and

beam search algorithms given in Graves (2012, Chapter 7), which constantly check

the probability of beginning a new word at each assessed time step. These mecha-

nisms are used when comparing acoustic representations of speech-to-grapheme and

-phoneme models of words. One method used with dynamic time warping is search-
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ing for words starting at every frame to determine a temporal matching profile for

each word at each point in the signal (Sakoe, 1979). Though, Rabiner and Schmidt

(1980) pointed out that this is computationally infeasible, even when just recognizing

digits, let alone all the possible words in a language. Rabiner and Schmidt instead

opted to only search near the endpoints of already recognized words to shrink the

amount of computation necessary. Nevertheless, work is still necessary to determine

a recognition or transition mechanism that relates to cognitive processing.

Psycholinguistic models of spoken word recognition have primarily focused on

isolated word recognition, and Nenadić (2020) found that few models had a mecha-

nism that determines when a word is or should be recognized. DIANA (ten Bosch

et al., 2013, 2015) and Fine-Tracker (Scharenborg, 2010) have so far been limited to

isolated word recognition via modeling auditory lexical decision. EARSHOT (Mag-

nuson et al., 2020) uses thresholds based on cosine similarity to determine when

a semantic vector has received sufficient activation for a sustained amount of time

that it could be recognized. And, SpeM (Scharenborg et al., 2005) and Shortlist B

(Norris & McQueen, 2008) have an approach designed to be similar to the methods

in automatic speech recognition. Each of these models used search algorithms that

were very similar to those used in automatic speech recognition. Of these models,

DIANA, SpeM, and Shortlist B all use phone or phoneme strings as the lexical model,

though Shortlist B does not use acoustic data as input. DIANA in particular is not,

however, restricted to using phonemic representations of words and was designed

to allow for a variety of different input and representation types. Fine-Tracker, on

the other hand, uses articulatory feature vectors as recognition targets, and related

work has found articulatory information to be useful in computational speech pro-

cessing (Espy-Wilson et al., 2019). EARSHOT uses random sparse semantic vectors.

None of the representations are acoustic, though, so there is still a need to determine
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what the recognition mechanism would be for acoustic-to-acoustic comparisons, es-

pecially for cognitive modeling. It is possible that dynamic time warping methods

from Rakthanmanon et al. (2012) could be adapted for this purpose, which have seen

significant speedup for uses of dynamic time warping. Though, it would need to be

possible to relate the methods or their results to cognitive processing.

Acoustic absement between words also has the opportunity to interface well with

graph-theoretic models of the lexicon such as used in Vitevitch (2008) and Vitevitch

(2021). These models of the lexicon represent words in the lexicon as nodes in a

mathematical graph, and the nodes can be connected on the basis of a variety of

factors. This graph-type of structure is overall more complex than a simple list of

words as is commonly used in automatic speech recognition. It is common to con-

nect them based on edit distance from phoneme strings. However, acoustic absement

presents a different method by which to connect nodes based on their acoustic sim-

ilarity. In turn, acoustic cohorts and neighborhoods of words and their associated

processing effects could be more rigorously analyzed than in the previous chapters

of this dissertation.

It may seem that these steps are outlined with the eventual goal of creating a

new model of spoken word recognition. A new model would certainly be a natural

extension of using dynamic time warping for comparing words acoustically. However,

these steps are also necessary for simply extending the comparison mechanism to

continuous speech. That is, a method for calculating acoustic absement for speech is

incomplete if it can only handle comparisons between isolated words. For this reason,

these steps are necessary to complete, whether or not a new model of spoken word

recognition is pursued. One potential avenue to pursue would be to modify DIANA

to use acoustic absement between the input signal and acoustic representations of

words.
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5.4 Invariance and speech communication

A central problem in phonetics is the lack of invariance seen in the speech signal.

Appelbaum (1996) summarized the lack of invariance as a speech segment having

multiple possible acoustic realizations and an acoustic parameter having multiple

possible segment categories it could belong to. In mathematical terms, there is a

many-to-many relationship between speech segments and acoustic parameters, which

Magnuson et al. (2020) also recognized. Despite this type of relationship, listeners

exhibit a consistent ability to understand the speech segments contained in a speech

signal in normal listening conditions.

Appelbaum (1996) cataloged some previous attempts to resolve this problem,

including the gesturalist and auditorist accounts of percepts as well as auditorist

accounts of purportedly invariant acoustic cues. Ohala (1996) also cataloged some

possible resolutions, such as using different units like diphones as percepts or that

a different set of acoustic parameters was needed. In effect, these attempts at re-

solving the problem amount to trying to change the relationship between speech

segment percepts and acoustic parameters to a one-to-one or many-to-one relation-

ship (in terms of acoustic parameters mapping onto percepts) by either changing

the set of parameters or changing the set of percepts. In line with Ohala’s last pro-

posed resolution (itself owing to Lindblom, 1996), I would like to conjecture that the

many-to-many relationship between acoustic parameters and sets of speech segment

percepts is simply a fact that we must accept and that invariance is to be found

in the processing mechanisms that are employed during spoken word recognition.

In other words, the relationship between speech segments and acoustic parameters

is inherently variable, and invariant structures in comprehension are found through

the auditory processing mechanisms that bound the possible variation in the speech
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signal. A variable relationship between speech segments and acoustic parameters

was also acknowledged in Goldinger and Azuma (2003) when extending Adaptive

Resonance Theory (Grossberg, 1982) to speech comprehension.

This speculative proposal was not directly tested in the previous chapters, but it

seems a natural extension of the results and ideas. It may well be wrong, especially

if an acoustically separable set of percepts can be developed. But, it is worth explor-

ing, and in fact, some previous accounts of the relationship between speech segments

or features and the speech signal have already directly and indirectly suggested in-

variant processing mechanisms. For example, K. N. Stevens and Blumstein (1978)

suggested that there was an auditory processing mechanism whose purpose was to

detect the spectral burst characteristics associated with the place of articulation of

stops. Some accounts of phonology like substance-free phonology (Reiss, 2017) refer

to transduction processes between distinctive features and speech, which necessarily

requires a stable processing mechanism. As well, the invariance of processing mecha-

nisms is trivially true in some sense. If this were not the case, it seems highly unlikely

that speech communication would work at all since a speaker would not have any

sense of guarantee that a word or utterance would be reliably processed.

Lindblom (1996) described the speech signal as inherently variable and posited

that invariance in speech communication is found in the correct recognition of spoken

words. He went on to describe speech as a goal-oriented process where the speaker

adapts to the listener and that the listener’s speech comprehension processes were

designed to handle incomplete input. The perspective I am putting forth is a natural

extension of these ideas, where lexical contrast is possible because of the processing

mechanisms that the listener has. And, speakers are tacitly aware of these processing

mechanisms and their tolerance for variability. Under this lens, speech communica-

tion is more actively collaborative because the speaker and listener are constantly
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working to accommodate each other. Reduction and enhancement are also better

situated as related to the speaker’s expectations of the listener’s tolerance for sig-

nal variance, similar to the adaptive processes Lindblom (1990) discussed for H&H

theory. Future research should focus on investigating measures of listener tolerance

for variability, along the lines of how Redmon (2020) investigated acoustic contrast

of obstruents with known acoustic correlates. Work involving acoustic absement

and acoustic lexical templates must focus less on specific acoustic measurements and

more so on how contrast occurs acoustically.

What’s more, it may be worthwhile to invert the relationship between acoustics

and articulation, seeking to first describe acoustic events and then find articulatory

correlates of the acoustic properties. Articulatory correlates have previously been

discussed in relation to phonological phenomena like ambisyllabicity (Gick, 2003)

and stress (Engstrand, 1988). However, in a view of speech production where a

speaker seeks to meet particular acoustic goals informed by perceptual goals, it seems

natural to look first at the acoustic goals and then determine what articulations meet

those goals, thereby finding motor equivalences (consult Perrier & Fuchs, 2015) for

specific acoustic goals. This is related to the claim that part of the process for infants

learning to produce speech is imitating sounds and adapting their articulations until

they produce a sound that matches the target they are aiming for (Kuhl et al., 2008).

Motor equivalences for speech sounds—such as bunched, curled, and hybrid [ɹ] in

American English (Delattre & Freeman, 1968; Westbury et al., 1998)—would then

be learned options that achieve the same acoustic goal.

This approach is not meant to replace the concept of contrastive units like

phonemes, which have clearly been useful tools and models. There is indeed em-

pirical evidence in the form of factorizability (Nearey, 2001) and CVC recognition

accuracies (J. Allen, 1994) for abstract units used in speech perception. The focus
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on competition dynamics and acoustic models of words would form the basis upon

which lexical contrast as exemplified by phoneme-like units could occur. The initial

hypothesis is that lexical contrast occurs when the acoustic input provides sufficient

discriminability to differentiate between similar sounds. This sort of discriminability

is likely quantifiable with statistical distributions of the sort that Pigoli et al. (2018)

used. These distributions and the notion of discriminability must be constrained

in such a way that they inter-operate with the solutions to the previous section’s

word-segmentation problem.

This alternate view of the lack of invariance and of speech communication is

still nascent and vague, almost by obligation. Many more analyses, reanalyses, and

experiments would need to be performed in the future to bear it out.

5.5 Conclusion

The concepts of acoustic distance and acoustic absement touch on many concepts in

phonetics, from the subphonemic level all the way up to the word and phrase levels.

Having a perceptually-validated method of performing appropriate comparisons at

these levels is paramount if these concepts are to be seriously integrated into pho-

netic theory. The results from this dissertation provide a candidate for calculating

acoustic distance and acoustic absement from recordings instead of performing tex-

tual comparisons on phoneme strings. There are a number of possible research areas

that might grow out of the use and refinement of this algorithm, such as mathe-

matical modeling of the dynamics of non-symbolic competition and activation and

perceptually-informed algorithm development. The calculation of acoustic absement

also uses speech production data to quantify aspects of speech perception. As such,

new explorations into the relationship between speech production and speech per-
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ception may be possible as well. Additionally, there is yet another inroad between

speech science and automatic speech recognition which may foment productive col-

laboration. Perhaps most importantly, though, researchers in phonetics can now

measure sound similarity between words as its name suggests: with sound.
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Appendix A

Concurvity and the Frobenius

norm

A.1 Understanding concurvity

To better understand the indices of concurvity that mgcv provides in the concurvity

function, consider that one part of what occurs when a matrix A is multiplied with

a vector b as in Ab is that b can change in length. Determining the size of a matrix,

as it were, is often done by determining just how much A can stretch any particular

vector b. Now, consider that a GAMM is given as a model matrix M containing the

data that the model was fit to and a vector b of coefficients. When M is multiplied

with b as in Mb, the GAMM’s predicted values are obtained. What follows is merely

providing some extra detail to the documentation and source code contained in the

mgcv package (Wood, 2020). The concurvity function determines how much of

the stretching that a smooth term does on b can be explained by other smooth and

parametric terms in the model. This is performed by decomposing M using the QR
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decomposition to cast the effects of the smooth term in question in terms of the

orthnormalized effects of all the other terms in the model as well as what is left to

be explained by the smooth term.

Because the smooth is now decomposed in this way, the proportion of how much

of the smooth term’s stretching can be explained by the other terms to how much

stretching the smooth term does in total on b can be calculated. When the pro-

portion is high, it indicates that the effect of the particular smooth in question can

be explained by other terms in the model. Because there are infinite particular

instantiations of b, the concurvity function provides three indices of this value.

The first index, termed “worst”, is the greatest value that the proportion can be

for all possible particular instantiations of b. The second index, termed “observed”,

is the value of this proportion as calculated using the coefficients from the fitted

model for b. And, the third index, termed “estimate”, is found by comparing the size

of the matrix containing the entire smooth effect to the size of the submatrix that

contains the components of the smooth explained by other terms in the model, where

the size of the matrix is measured with the Frobenius norm. Because the Frobenius

norm is equal to a scaled version of the average or expected value of the stretching

of a vector, this estimate index can also roughly be seen as what the proportion

would be given an average-case instantiation of b. We do not believe that this is

commonly known in our field, and it is difficult to look up, so we provide a proof of

this statement regarding the Frobenius norm (specifically that for an m-by-n matrix

A, ∥A∥2F = nE∥x∥2=1∥Ax∥22) subsequently.
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A.2 Frobenius norm as average case stretching

It is also well-known in linear algebra that the Frobenius norm ||A||F is equal to the

ℓ2 norm of its singular values. That is,

∥A∥F =

√∑
i

σ2
i . (A.1)

We wish to prove the following theorem.

Theorem 1. Given a matrix A with n columns, ∥A∥2F = n E
∥x∥2=1

∥Ax∥22.

Proof. By the singular value decomposition theorem, we have A = UΣV H . By

substituting for A, we have

∥Ax∥22 = ∥UΣV Hx∥22

= (UΣV Hx)HUΣV Hx <∥x∥22 = xHx>

= xHV ΣHUHUΣV Hx <(AB)H = BHAH>

= xHV Σ2V Hx <U is unitary, algebra>

= bHΣ2b <Let b = V Hx>

=
∑
i

β2
i σ

2
i <algebra>

We can now substitute this expression for ∥Ax∥22 in the initial expression to get
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n E
∥x∥2=1

∥Ax∥22 = n E
∥x∥2=1

[∑
i

β2
i σ

2
i

]
= n

∑
i

E
∥x∥2=1

[
β2
i

]
σ2
i <E is linear>

We know that E∥x∥2=1

∑
i β

2
i = 1 because ∥x∥2 = 1 and V H is unitary. We

also know that b must be on the unit sphere. This implies that each βi ∈ b is

identically distributed, and so their expectations must be equivalent, meaning that

E∥x∥2=1 β
2
i = 1

n
. We thus have

n
∑
i

E
∥x∥2=1

[
β2
i

]
σ2
i = n

1

n

∑
i

σ2
i =

∑
i

σ2
i ,

which is clearly equivalent to the definition of ∥A∥F in Equation A.1 after taking the

square root.

We offer a note to readers who attempt to numerically verify this proof using

linear algebra software that such software often does not return the 0 values associ-

ated with rank-deficient matrices, and this must be accounted for when determining

conformability of matrix and vector sizes and counting the total number of singular

values if using rank-deficient matrices.
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Appendix B

Formant values from distance

rating task

Table B.1: Table of the formant values used to synthesize each vowel stimulus in the
distance rating task. Each row is numbered according to the order in which the stimuli
were generated. The F1 and F2 values for the first stimulus are presented in columns
F11 and F21, respectively. The F1 and F2 values for the second stimulus are presented in
columns F12 and F22, respectively.

Vowel Stimulus Number F11 F21 F12 F22

i 1 510.28 2340.71 600.87 2590.07

i 2 509.18 2562.81 520.97 2646.71

i 3 391.95 2458.43 479.32 2781.47

i 4 564.43 2696.75 509.58 2485.34

i 5 490.17 2436.15 561.30 2574.82

i 6 585.23 2404.26 524.36 2478.27

i 7 451.67 2476.35 590.72 2712.41
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Vowel Stimulus Number F11 F21 F12 F22

i 8 534.83 2486.72 487.03 2411.40

i 9 670.27 2576.03 593.57 2607.43

i 10 444.03 2504.54 563.24 2365.88

i 11 676.50 2362.89 513.04 2421.21

i 12 475.01 2407.27 604.93 2490.56

i 13 611.09 2305.77 495.77 2496.56

i 14 492.45 2618.84 642.07 2616.94

i 15 480.10 2343.59 501.73 2584.00

i 16 585.12 2520.33 518.14 2397.44

i 17 614.03 2562.38 548.77 2621.79

i 18 483.78 2762.13 605.90 2599.76

i 19 567.04 2401.98 494.39 2649.29

i 20 589.30 2673.16 558.72 2273.70

i 21 461.81 2600.36 580.17 2602.96

i 22 541.05 2418.51 605.67 2612.32

i 23 509.35 2428.76 505.24 2607.50

i 24 567.77 2320.42 525.21 2723.55

i 25 549.81 2536.49 526.79 2510.41

i 26 587.81 2504.54 623.54 2387.07

i 27 542.55 2254.14 579.99 2371.83

i 28 585.35 2556.66 528.18 2374.05

i 29 557.97 2305.87 543.40 2524.75

i 30 501.65 2662.83 477.63 2465.93
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Vowel Stimulus Number F11 F21 F12 F22

i 31 576.33 2592.88 596.64 2421.51

i 32 526.99 2414.41 516.10 2587.12

i 33 526.51 2547.82 566.69 2472.52

u 1 559.88 1177.76 621.08 1344.67

u 2 574.19 1053.53 535.22 1106.74

u 3 597.90 1126.23 408.96 1211.97

u 4 629.84 1088.74 667.30 981.55

u 5 627.63 1051.89 686.34 1240.28

u 6 550.14 1162.44 481.32 1033.96

u 7 665.65 1361.24 643.40 1325.98

u 8 624.70 1141.76 468.97 906.50

u 9 584.49 1095.42 617.51 1269.21

u 10 569.35 1179.94 567.13 1292.86

u 11 582.72 1319.87 627.19 1108.98

u 12 523.28 1090.00 573.55 1241.17

u 13 503.84 1211.21 593.59 1159.53

u 14 530.15 1064.51 558.78 1086.75

u 15 459.84 1235.96 525.08 1185.93

u 16 510.91 1054.03 650.47 1338.28

u 17 586.21 1231.99 563.10 1249.08

u 18 651.59 1394.69 556.92 1254.80

u 19 721.86 1329.05 546.14 1121.28

u 20 502.21 1165.89 517.79 1241.97
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Vowel Stimulus Number F11 F21 F12 F22

u 21 611.70 1309.10 628.04 1216.01

u 22 512.13 1143.72 512.93 1214.00

u 23 617.64 1254.77 569.06 1356.40

u 24 592.48 1085.49 626.73 1263.14

u 25 467.71 1189.88 648.83 1054.51

u 26 517.79 1120.96 787.79 1206.49

u 27 457.50 1244.55 634.95 1221.02

u 28 483.54 845.56 532.35 1125.74

u 29 610.10 1085.69 750.45 1029.71

u 30 559.41 872.41 658.99 1193.18

u 31 627.35 1194.95 539.60 1105.97

u 32 537.68 1225.29 582.13 1215.57

u 33 633.56 1167.00 570.66 1249.50

ə 1 778.04 1429.57 815.07 1309.53

ə 2 933.16 1368.51 778.55 1452.86

ə 3 838.78 1456.97 775.73 1410.38

ə 4 845.84 1376.02 767.81 1202.38

ə 5 837.69 1318.23 773.15 1347.70

ə 6 853.58 1325.44 774.30 1344.66

ə 7 792.89 1357.82 908.70 1424.09

ə 8 739.79 1464.33 892.30 1500.72

ə 9 862.03 1330.83 892.56 1348.92

ə 10 900.38 1259.24 724.14 1655.74
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Vowel Stimulus Number F11 F21 F12 F22

ə 11 872.48 1361.88 879.18 1271.11

ə 12 872.66 1452.25 757.31 1315.89

ə 13 870.38 1371.25 968.21 1342.98

ə 14 811.86 1332.15 779.52 1457.91

ə 15 731.75 1370.80 778.41 1114.93

ə 16 782.63 1412.63 867.42 1376.79

ə 17 755.92 1222.94 830.98 1464.10

ə 18 912.98 1555.66 857.60 1348.75

ə 19 844.28 1379.24 894.19 1411.04

ə 20 793.95 1425.47 889.41 1460.98

ə 21 892.50 1273.67 778.52 1427.90

ə 22 835.49 1457.55 822.42 1232.15

ə 23 838.14 1364.11 846.40 1437.09

ə 24 875.35 1368.97 830.91 1411.47

ə 25 713.76 1359.63 800.36 1456.90

ə 26 816.04 1278.89 790.11 1329.38

ə 27 854.45 1346.35 783.84 1352.50

ə 28 775.38 1406.19 828.07 1404.49

ə 29 725.20 1421.14 828.86 1321.80

ə 30 921.49 1468.46 844.37 1404.76

ə 31 806.55 1428.19 810.61 1221.87

ə 32 857.27 1473.75 788.54 1251.05

ə 33 816.34 1436.13 1002.89 1373.86
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Vowel Stimulus Number F11 F21 F12 F22

ɔ 1 817.48 1180.40 962.05 1307.97

ɔ 2 916.21 1184.51 895.59 1345.42

ɔ 3 877.59 1320.87 824.10 1375.18

ɔ 4 864.71 1187.01 772.25 1030.28

ɔ 5 883.97 1336.21 872.48 1183.25

ɔ 6 802.58 1316.06 817.65 1282.49

ɔ 7 983.84 1251.53 813.93 1286.52

ɔ 8 1007.64 1353.82 838.40 1274.36

ɔ 9 891.03 1106.30 887.05 1200.90

ɔ 10 969.07 1294.75 907.94 1203.98

ɔ 11 847.46 1181.31 881.27 1314.16

ɔ 12 836.02 1220.46 831.77 1216.01

ɔ 13 868.59 1209.88 871.72 1072.14

ɔ 14 962.05 1352.61 830.19 1132.39

ɔ 15 860.08 1108.01 820.97 1161.75

ɔ 16 915.51 1208.04 754.32 987.92

ɔ 17 950.40 1207.22 881.48 1291.10

ɔ 18 930.93 1305.06 839.65 1309.09

ɔ 19 865.28 1178.05 897.31 1152.84

ɔ 20 856.43 1305.37 885.41 1306.73

ɔ 21 818.94 1334.20 861.67 1265.92

ɔ 22 896.32 1175.01 934.81 1311.21

ɔ 23 833.61 1353.25 933.28 1175.17
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Vowel Stimulus Number F11 F21 F12 F22

ɔ 24 893.05 1276.18 885.94 1251.28

ɔ 25 792.26 1256.88 811.92 1170.87

ɔ 26 844.55 1161.43 786.11 1322.78

ɔ 27 797.29 1231.72 950.55 1247.70

ɔ 28 837.19 1059.21 788.46 1088.21

ɔ 29 881.63 1236.63 907.24 1110.09

ɔ 30 842.52 1303.23 895.89 1337.76

ɔ 31 849.89 1170.27 898.17 1183.91

ɔ 32 819.53 1121.95 898.54 1265.67

ɔ 33 969.85 1378.61 843.25 1279.10

ʊ 1 782.02 1370.06 704.39 1125.69

ʊ 2 798.70 1334.28 728.41 1363.91

ʊ 3 541.88 1382.92 651.37 1250.49

ʊ 4 589.90 1322.57 667.91 1391.61

ʊ 5 749.18 1517.39 633.44 1381.10

ʊ 6 664.00 1310.47 578.44 1482.08

ʊ 7 614.71 1300.29 604.45 1270.63

ʊ 8 775.14 1291.99 568.81 1301.72

ʊ 9 592.10 1274.63 671.36 1429.83

ʊ 10 676.83 1204.38 566.28 1315.29

ʊ 11 587.87 1321.81 641.63 1418.35

ʊ 12 700.70 1268.41 601.65 1296.49

ʊ 13 589.28 1147.13 724.09 1286.97
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Vowel Stimulus Number F11 F21 F12 F22

ʊ 14 599.50 1451.79 692.63 1354.48

ʊ 15 653.51 1325.46 673.39 1198.14

ʊ 16 632.96 1383.91 682.88 1213.61

ʊ 17 587.99 1312.97 685.07 1400.92

ʊ 18 644.96 1328.12 702.22 1487.95

ʊ 19 741.97 1294.28 801.21 1345.69

ʊ 20 680.88 1393.00 616.01 1229.91

ʊ 21 594.80 1186.46 714.82 1287.66

ʊ 22 725.78 1290.40 765.44 1187.64

ʊ 23 634.34 1238.83 707.24 1271.25

ʊ 24 689.46 1363.47 636.31 1241.14

ʊ 25 745.17 1496.36 654.86 1373.40

ʊ 26 575.69 1209.14 678.84 1243.04

ʊ 27 698.40 1356.16 786.24 1370.92

ʊ 28 715.29 1380.36 619.61 1272.61

ʊ 29 610.58 1320.78 661.48 1293.96

ʊ 30 615.37 1328.41 615.02 1324.77

ʊ 31 684.25 1290.06 590.71 1351.78

ʊ 32 715.08 1477.17 608.48 1321.48

ʊ 33 602.82 1441.48 627.43 1311.20

ɛ 1 714.29 2023.31 737.81 1978.08

ɛ 2 858.57 1828.94 735.73 2067.48

ɛ 3 843.42 1983.02 716.14 1931.77
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Vowel Stimulus Number F11 F21 F12 F22

ɛ 4 785.02 1831.79 717.56 1925.70

ɛ 5 824.45 2247.13 794.91 1981.52

ɛ 6 812.50 1881.05 786.77 2005.95

ɛ 7 823.34 2087.69 908.93 1999.10

ɛ 8 750.06 1903.24 840.28 2037.27

ɛ 9 709.37 2061.12 805.79 1959.86

ɛ 10 791.09 2211.13 714.85 1808.69

ɛ 11 780.72 1880.42 719.18 2040.95

ɛ 12 896.22 1962.31 779.66 2022.99

ɛ 13 737.15 1884.19 758.01 2081.14

ɛ 14 702.39 1997.12 712.91 2014.79

ɛ 15 818.97 1955.48 762.16 1953.44

ɛ 16 778.84 1952.39 776.04 2017.38

ɛ 17 657.33 1782.88 917.18 1931.68

ɛ 18 839.66 2306.16 828.26 2080.94

ɛ 19 745.63 2012.21 725.88 2004.86

ɛ 20 807.04 2023.87 907.36 2025.63

ɛ 21 815.03 1831.29 768.30 2035.36

ɛ 22 931.69 1986.53 741.00 2219.84

ɛ 23 817.23 2025.01 761.54 2200.22

ɛ 24 732.46 1918.32 874.58 2133.09

ɛ 25 687.71 2034.11 717.92 1929.10

ɛ 26 826.86 2210.28 870.40 2168.77
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Vowel Stimulus Number F11 F21 F12 F22

ɛ 27 829.54 2053.08 802.63 2175.09

ɛ 28 715.93 1905.50 816.03 1924.62

ɛ 29 748.39 1873.98 705.65 1894.30

ɛ 30 765.75 2148.50 839.39 2278.61

ɛ 31 704.63 1954.25 725.45 1966.33

ɛ 32 649.86 1883.33 861.46 2014.75

ɛ 33 910.08 2219.67 776.37 2069.07

æ 1 829.86 2118.97 967.09 2268.71

æ 2 899.08 2014.48 643.92 2330.25

æ 3 873.14 2147.93 782.99 2298.62

æ 4 874.08 2118.37 798.87 2125.38

æ 5 703.43 2279.33 759.17 1679.76

æ 6 812.89 2237.50 841.22 2286.19

æ 7 740.44 2169.58 806.10 2084.80

æ 8 805.17 2049.80 733.06 2112.05

æ 9 789.46 2111.14 842.14 2489.22

æ 10 891.60 2135.74 871.75 1861.37

æ 11 801.16 2122.49 868.64 2094.28

æ 12 783.68 2182.70 793.31 2291.21

æ 13 801.87 2350.94 736.42 2028.46

æ 14 811.97 2154.86 772.20 2101.17

æ 15 734.57 1882.83 874.81 2025.83

æ 16 759.61 2233.17 794.28 1880.67
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Vowel Stimulus Number F11 F21 F12 F22

æ 17 781.19 2407.98 698.84 1978.81

æ 18 848.41 1980.10 693.07 2229.35

æ 19 743.00 2403.31 788.89 2084.58

æ 20 663.57 2187.94 777.86 2026.76

æ 21 751.70 2007.44 709.19 2281.97

æ 22 807.50 1991.05 646.00 2133.09

æ 23 805.28 2127.83 966.38 2145.13

æ 24 763.42 2143.66 731.38 1946.81

æ 25 814.86 2039.60 837.34 2072.54

æ 26 735.04 2144.12 900.41 2361.23

æ 27 777.29 2055.22 747.68 2391.50

æ 28 723.21 2090.80 859.85 2438.04

æ 29 823.83 2434.92 820.76 2245.89

æ 30 689.29 2040.18 922.11 2058.19

æ 31 859.52 1982.89 732.70 2022.86

æ 32 715.24 2185.69 760.49 1812.85

æ 33 852.63 2063.70 771.65 2051.16

ɑ 1 966.88 1455.95 1010.29 1669.34

ɑ 2 923.54 1535.90 892.86 1435.69

ɑ 3 1040.62 1469.76 973.44 1566.22

ɑ 4 962.92 1421.60 1041.12 1190.14

ɑ 5 957.32 1577.16 1014.12 1523.41

ɑ 6 1045.44 1302.91 883.58 1601.05
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Vowel Stimulus Number F11 F21 F12 F22

ɑ 7 976.79 1529.40 1021.78 1525.54

ɑ 8 845.75 1561.82 906.80 1366.19

ɑ 9 1063.25 1779.76 923.18 1541.84

ɑ 10 954.95 1500.73 1002.43 1559.12

ɑ 11 963.13 1329.99 913.04 1593.08

ɑ 12 1102.15 1576.16 873.65 1607.95

ɑ 13 925.14 1295.60 1020.95 1590.74

ɑ 14 985.83 1629.23 873.84 1568.88

ɑ 15 1055.51 1625.52 789.06 1579.75

ɑ 16 908.35 1328.29 951.90 1688.57

ɑ 17 1047.70 1708.84 946.51 1463.90

ɑ 18 972.91 1297.03 1129.54 1592.36

ɑ 19 866.80 1509.01 855.29 1465.67

ɑ 20 930.22 1565.22 992.87 1352.30

ɑ 21 897.19 1469.08 949.73 1441.23

ɑ 22 1049.36 1620.52 984.32 1497.57

ɑ 23 924.18 1663.71 963.31 1705.90

ɑ 24 1194.79 1480.53 811.32 1567.46

ɑ 25 899.84 1558.39 919.47 1402.59

ɑ 26 911.74 1385.37 1049.10 1554.01

ɑ 27 1037.70 1432.08 1118.76 1591.32

ɑ 28 888.78 1418.96 839.47 1384.44

ɑ 29 1029.71 1510.03 870.46 1553.64
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Vowel Stimulus Number F11 F21 F12 F22

ɑ 30 970.10 1393.63 880.41 1544.87

ɑ 31 837.14 1539.03 945.04 1326.82

ɑ 32 937.17 1397.52 880.41 1630.43

ɑ 33 939.56 1447.48 964.64 1525.07

ɪ 1 695.86 2241.57 710.95 2097.35

ɪ 2 580.79 2337.95 718.52 2417.91

ɪ 3 602.29 2231.35 548.17 2100.31

ɪ 4 623.39 1990.93 454.58 2277.69

ɪ 5 681.01 2364.81 724.99 2038.11

ɪ 6 558.50 2213.59 678.33 2109.57

ɪ 7 538.80 2388.72 629.95 2332.06

ɪ 8 665.29 2235.77 687.92 2148.20

ɪ 9 703.92 2139.10 662.58 2126.04

ɪ 10 557.40 2149.02 593.96 2297.43

ɪ 11 651.29 2249.32 605.15 2168.08

ɪ 12 583.82 2126.48 652.50 2428.41

ɪ 13 620.78 2286.91 600.48 2273.34

ɪ 14 555.74 2201.01 774.69 2051.68

ɪ 15 640.58 2216.76 707.08 2081.53

ɪ 16 633.98 2252.88 705.47 2042.09

ɪ 17 555.89 2150.60 676.21 2192.95

ɪ 18 671.52 2289.94 617.66 2306.16

ɪ 19 623.56 2263.40 644.41 1985.91
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Vowel Stimulus Number F11 F21 F12 F22

ɪ 20 591.43 2333.85 673.03 2262.14

ɪ 21 640.32 2197.24 695.18 2203.02

ɪ 22 669.85 2212.82 644.40 2349.07

ɪ 23 740.05 2183.86 523.91 2124.45

ɪ 24 613.33 2325.38 620.77 2047.32

ɪ 25 664.11 2406.85 601.60 2434.46

ɪ 26 620.20 2205.11 670.29 2207.36

ɪ 27 640.15 2387.36 704.25 2231.15

ɪ 28 586.59 2121.77 704.72 2188.02

ɪ 29 601.39 2170.73 641.45 2082.69

ɪ 30 645.73 1874.01 629.60 2187.12

ɪ 31 562.52 2254.11 695.87 1990.12

ɪ 32 568.01 2191.27 540.94 2131.57

ɪ 33 630.70 2291.52 634.53 2289.76
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