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Abstract 

Corner cleaning is a critical step after welding of window frames to ensure aesthetic quality. 

Current methods to clean weld seams are limited in adaptability and quality, increasing rework, 

cost, and waste. This is largely attributable to the use of CNC cutting machines in combination 

with manual inspection and seam cleaning. Because the system relies on predefined window 

designs, cleaning processes are ineffective when dealing with manufacturing imperfections. 

However, as the blueprint of Industry 4.0 is becoming clear, the development of automation is 

proceeding at a rapid pace, and new technologies such as robots and sensors are playing a lead 

role in driving innovation within the manufacturing field. In this thesis, a vision-based robotics 

system is proposed that enhances adaptability to variability in weld cleaning while ensuring high 

quality and precision through an approach that combines robotic arms and computer vision in 

place of existing manual-based methods. The developed system uses edge detection to locate the 

window and identify its orientation, image segmentation techniques with a pre-trained Mask R-

CNN model to detect the window weld seam, and a vision-guided robot manipulator to control 

the moving path for the robotic arm. The working process begins with the window location to 

obtain the rough position for the purpose of guiding the robot toward the window target, 

followed by image processing and detection in conjunction with instance segmentation 

techniques to segment the target area of the weld seam, and, finally, the generation of cleaning 

paths for further robot manipulation. The proposed robotic system is validated in a simulated 

environment as well as in a real-world scenario, with the results obtained demonstrating the 

effectiveness and adaptability of the proposed system. 
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Chapter 1   Introduction 

This chapter presents an overview of the current practice for corner cleaning of welded window 

frames, followed by a definition of the problem motivating the research described in this thesis, 

and, finally, an outline of the thesis. 

 Background 1.1.

With the emergence of the concept of Industry 4.0 and the ongoing development of related 

technologies, automation in the construction industry has drawn increasing attention in recent 

years. Successful applications in the manufacturing industry in particular have inspired the 

pursuit of further automated applications in the industrialized construction field. With the 

integration of novel technologies such as robotic arms, computer vision, and various real-time 

sensors, repetitive tasks can be executed more flexibly and accurately [1]. In the window 

manufacturing industry, for instance, a typical plastic framing production line may consist of a 

combination of semi-automated or automated processes: an initial cutting station where frames 

are cut to length using saws, a hot-plate welding station where individual frame elements are 

fused together to create the window frames, and a final corner-cleaning station where excess 

material on the corner of the joined window frame elements is removed [2]. This excess material 

is generated as pressure is applied to different individual elements to secure the frame during the 

welding process. As such, the material to be removed is always located on the exterior surface of 

the weld area, around the perimeter of the window frame. An example of the corner of a window 

frame with its main elements prior to cleaning can be seen in Figure 1. 
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Figure 1. Example of the weld area of a window frame. 

In this study, the window manufacturing procedure is based on the current practice implemented 

at All Weather Windows, which is Canada’s largest privately-owned window and door 

manufacturer. Their current practice for removing excess material from window frame seams, 

which is assumed to be representative of the practice of other large-scale window and door 

manufacturers, proceeds in two sequential steps: (1) a series of knifing and milling tools, driven 

by linear actuators, are responsible for cleaning the window frame surface and leaving it as 

aesthetically pleasing as possible so that the weld seam is barely noticeable; and (2) a manual 

inspection ensures the quality of the cleaning process, and, if needed, a worker removes any 

residual seam materials manually. However, this procedure has crucial flaws, including low 

adaptability to variations in window placement and unpredictable quality due to the volume of 

weld seam material to be cleaned being unknown. 



 3 

In the first part of the cleaning process, since the machine tasks are planned in advance based on 

idealistic CAD window models, the efficiency of the tool to clean the weld seam depends on the 

correct and accurate placement of the window, as well as on the geometric accuracy and overall 

quality of the anterior processes (cutting and welding operations). Window placement, which is 

in most cases a manual operation, becomes more complicated with larger window frames, as 

they are more difficult to handle. Furthermore, the weld seam characteristics, namely volume and 

shape, may change depending on the precision of the anterior hot-plate welding process. Under 

the current practice with its inflexible execution of the corner-cleaning process, even a minute 

variance between the design and the manufacturing output, such as 1 mm in seam thickness or 1-

degree difference in weld angle, can lead to an unsatisfactory outcome of the cleaning process. 

These limitations challenge the reliability of current corner-cleaning machines to achieve the 

desired outcome and threaten product integrity. In fact, if product tolerances are considered, in 

introducing additional variability to the product status, the current approach to automated corner 

cleaning is rendered ineffective and incapable of ensuring product quality. 

In the second part of the cleaning process, the quality of manually removing excess material 

highly depends on the skill of individual workers, so the quality is uncertain and difficult to 

control due to individual differences. In some instances, the frame may become damaged to the 

extent that it fails to meet the quality standards of a marketable product. Although workers 

exhibit better adaptability to varying and unpredictable product specifications than do machines, 

this manual process has the disadvantages of uncertain quality and high labour cost. Due to these 

inherent disadvantages, workers only play an assistive role in the cleaning procedure. However, 

the manual inspection of the window frames is still time consuming, tedious, and an inefficient 
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use of labour resources. In summary, the current practice for clean weld seams in window 

manufacturing is suboptimal and needs to be improved. 

 Motivation and Objectives 1.2.

Although the drawbacks of current practice are apparent, to the author's best knowledge, no 

previous study has investigated a dual approach combining computer vision and robots to clean 

window weld seams. As mentioned above, the placement difference can easily lead to 

irreversible damage to window frames, and non-standardized manually cleaning increases the 

uncertainty of the final quality. Moreover, rule-based machine operations and manual fine work 

that relies highly on worker skill and performance are limited in their capacity to accommodate 

complex variables within this manufacturing activity. In this context, the aim of the present 

research is to explore the prospect of applying computer vision and robotic manipulation to 

window manufacturing, particularly the weld-cleaning activity. 

Automation in manufacturing has progressed significantly within the last decade, such that the 

use of robots and vision assistance on production lines can no longer be considered novel ideas. 

Combined with the rapid evolution of deep learning algorithms, which are now being widely 

applied in a number of research areas, manufacturing is gradually becoming more closely aligned 

with the vision of Industry 4.0, and several Industry 4.0 approaches have already achieved 

impressive outcomes in manufacturing [3]. Building on the success of these previous 

applications of Industry 4.0 principles, in the present research a framework of vision-based 

robotic window weld cleaning system is proposed to overcome the flaws in the current corner-

cleaning procedure. To enhance its adaptability to accommodate variability and ensure cleaning 

quality, vision techniques and robotics are incorporated in the framework to identify and locate 
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window frames, detect the weld seams on window frames, and generate moving paths for the 

robotic arm. 

Specifically, the present study seeks to achieve the following two objectives: 

1) To develop a working framework of a vision-based robotic system that guides the 

cleaning tool operation following window frame welding. 

2) To investigate the feasibility of Mask R-CNN image segmentation for window weld 

seam identification. 

 Thesis Organization 1.3.

This thesis consists of six chapters. The current chapter provides a summary of the current state 

of window cleaning, pointing out the flaws of current practice with regards to adaptability and 

quality. The motivation and objectives are also outlined. Chapter 2 reviews the literature on 

window manufacturing, identifying the segmentation techniques, algorithms (including Mask R-

CNN, and vision-guided robot manipulation approaches already applied in this area. The 

methodology of the present study is presented in chapter 3. Chapter 4 describes the development 

of the framework for vision-guided robotic manipulation, including the details of each working 

module in the vision-based robotics system framework. The validation and results are presented 

in chapter 5. Serval experiments are carried out to validate the framework proposed. Chapter 6 

summarizes the research, including the outcomes, suggest avenues of future work, and the 

limitations of the research are discussed. 
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Chapter 2   Literature Review  

This chapter describes the two core techniques used in the thesis and reviews the related 

literature. First a summary of the evolution and current practice of window manufacturing is 

presented, where it is shown how several studies have explored the prospect of combining vision 

systems to guide robotic arms to make them better able to adapt to various situations with 

flexibility and accuracy. Among the advanced technologies that have been developed, vision-

guided robot manipulation and image segmentation are the two core technologies employed in 

this study, and they are elaborated on as follows. 

 Window frame manufacturing 2.1.

Windows are crucial components of a well-functioning building. The comfort level of the 

internal environment is largely governed by the relationship between openings and various 

physical variables, such as lighting, acoustics, flow of air, and thermal energy [4]. To adapt to 

various climatic conditions, strategies such as specialized window designs may be devised as 

passive design measures to better handle the outer environment [5]. For example, Takada et al. 

(2021) used various elemental technologies to improve the thermal insulation properties of 

windows [6]. In current practice, depending on various contributing factors, the materials used 

for window frame production may include wood, aluminum, wood-cladding, fibreglass, 

polyvinyl chloride (PVC), and other composite materials. 

Due to the importance of windows in a building, the quality of the manufactured product must be 

taken seriously. In this regard, Kermani et al. (2015) proposed an application model for 

operational planning and order control in profile door and window manufacturing [7]. Another 

recent study investigated the cutting process for aluminum bars in door and window 

manufacturing aiming to reduce material waste [8]. Another recent study presented a Lean 
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Manufacturing 4.0 approach to aid decision-making in window manufacturing to optimize the 

manufacturing process, and, ultimately, the quality of the final product [9]. The same study also 

describes how, with the development of Industry 4.0, the window manufacturing process is 

continuing to mature and to gain momentum, particularly with the introduction of new 

technologies. 

The methods used to connect junctions are also crucial. For PVC window frame production—i.e., 

the research target of the present study—hot-plate welding is widely used due to its simplicity. 

The quality of the window junction after hot-plate welding, of course, has a significant impact on 

the final product quality [2]. The welding process, it should be noted, consists of four stages: 

squaring, heating, welding, and cooling, and each stage has a direct impact on the function of the 

final product. Not only does the welding process itself require accurate execution, but the 

subsequent weld seam cleaning task must be carried out with precision. However, the current 

practice has two main drawbacks—low adaptability and unpredictable quality—that can have 

impact on the final product.  

As an alternative to existing cleaning methods applied in window manufacturing, such as the use 

of CNC machine and manual removal, several studies have sought to address the problem of 

weld seam cleaning using different tools, including laser techniques, waterjet, and even pre-

simulation for reducing contaminants in advance. The material under investigation in these 

studies has typically been steel or alloy. To reduce material waste and enhance porosity 

formation, AlShaer et al. researched the effects of short pulse laser surface cleaning for 

automotive component production, which includes the cleaning of the surface after welding as 

part of the production [10]. In another study, laser cleaning was applied as both a pre-treatment 

and a post-treatment for butt welding of HSLA steel plates [11]. Vu et al., meanwhile, conducted 
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a study on the effect of pulsed fiber laser on the surface of both steel and aluminum alloy by 

estimating the roughness of the surface [12]. Jin et al. mentioned the application of fiber laser 

techniques in surface cleaning in their discussion of the development of fiber-laser-based 

photoacoustic microscopy (PAM) [13]. Applications of laser cleaning in manufacturing has also 

been identified as an important technique in the context of surface contamination and cleaning 

[14]. As mentioned above, waterjet has also been applied as a cleaning technique in research 

investigating its influence on welding quality [15]. Other researchers have sought to address root 

causes for surface contamination using simulation techniques. For instance, modelling has been 

applied to predict the impact of linear friction welding on the surface cleaning of a Ti-6AI-4V T-

Joint [16]. Another study modelled the plastic flow of welding ends in order to optimize the self-

cleaning effect of linear friction welding, which is an effective method for removing surface 

contaminants [17]. As demonstrated in the summary above, although weld seam cleaning has 

been the subject of a few research studies, the use of robotics for weld seam cleaning in window 

manufacturing has yet to be explored. Emerging technology applications with the potential to 

improve window manufacturing and thereby enhance the overall quality of PVC window 

manufacturing in accordance with the principles of Industry 4.0 are discussed in the next section. 

 Vision-guided robots in manufacturing 2.2.

Within the Industry 4.0 paradigm, a wide range of vision techniques have been applied in 

inspection and quality control to enhance the positioning accuracy of robotic manipulation, 

including photogrammetry, stereo vision, structured light, time of flight, and laser triangulation 

[18]. Machine vision and robotics are at the forefront of innovation in manufacturing, and robot 

guidance applications have drawn increasing attention within the manufacturing field. The most 

intuitive and simple application of machine vision is to mount cameras to monitor a working area. 
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For example, Shah et al. (2017) proposed an approach for recognition of butt welding joints. 

They mounted a fixed camera at a working area to locate the position of the weld seam and 

create a path for the robot in 2D coordinates, thereby simplifying the coordinate transformation 

for situations in which the vertical distance between object and camera is fixed [19]. Abdelaal et 

al. (2019) conducted an experiment to control an industrial robotic arm to pick and place moving 

objects using a real-time computer vision system that detects the object’s exact location on a 

moving conveyor belt. Their system overcomes the challenge of dynamic picking point 

estimation with a stereo vision system comprising two fixed cameras, thereby demonstrating the 

efficient use of multiple fixed cameras monitoring the working area to precisely locate positions 

in dynamic situations [20]. 

Kleppe et al. (2017) proposed an approach that uses a 3D camera and a 2D camera on a robotic 

arm to facilitate automated assembly tasks. The system first finds a rough estimate of the target 

object position using the 3D camera. A 2D camera on a robotic arm is then used to generate a 

fine estimate of the target. Their approach overcomes the viewing range limitation of robotic 

cameras by first estimating the rough location in order to guide the robotic arm to the working 

area. Their method also demonstrates a case of fixed cameras and robotic cameras operating 

cooperatively to position the target with high accuracy [21]. Levines et al. (2018) presented a 

deep learning-based approach to hand–eye coordination for robotic grasping. Since the target 

objects were scattered randomly in their study, optimal real-time control was achieved by 

implementing deep learning on the robotic arm grasping data. They also explored and validated 

the ability of deep learning and vision techniques to accommodate variability [22].  

In recent decades, the advantages of using robotics for welding procedures, including quality 

improvement and worker safety enhancement, have been demonstrated. Not only has vision-
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aided robotic welding been applied, but several other applications in welding-related scenarios 

have also been explored [23]. For instance, the use of supporting sensor technologies, such as 

vision-sensing and self-learning neural control, have been deployed in robotic welding [24]. 

Moreover, advanced vision techniques have been implemented in the control process for robotic 

welding to facilitate seam tracking and identification, which is an important task in efforts to 

automatically direct the robots along the correct welding path [25]. 

With the emergence of Industry 4.0, robotics and deep learning now play a central role in the 

ongoing evolution of manufacturing, with their application in seam identification to realize 

intelligent welding being an example of particular relevance to the present study. Dinham & 

Fang (2013), for instance, found that the combination of computer vision and a welding robot 

aided by camera monitoring provided highly accurate weld seam identification [26]. Along with 

the ongoing advancement of deep learning algorithms, image-processing techniques have 

improved, as has the accuracy of welding seam recognition. As recent studies have noted, these 

developments underscore the potential of computer vision to accommodate varying and dynamic 

environments based on their capacity to identify multiple types of seams [19, 20]. Meanwhile, as 

Rout et al. (2019) have noted, novel algorithms such as neural networks and fuzzy approaches, 

generally applied in the control design, are now bringing promising results in terms of improved 

accuracy, and this trend is expected to continue as new soft computing techniques are introduced 

[21, 22]. Although these previous applications have performed well in welding-related cases, 

weld seam corner-cleaning in particular, which is the target of the present research, has received 

little attention in the literature.  



 11 

 Image segmentation 2.3.

For accurate detection of seams on window frames, high-precision object-detection techniques 

are essential. Image segmentation is a general designation of techniques used in digital image 

processing to define objects and boundaries by dividing the image into meaningful segments. 

The recent success of image segmentation has largely been a function of the rapid development 

of deep learning models, which has led to significant improvements in feature extraction and 

accuracy. Deep learning is generally proficient in tackling the issue of feature learning, and this 

allows it to easily overcome the domain knowledge requirement [27]. Among the notable 

algorithms for image segmentation, region-based convolutional networks models, such as Mask 

R-CNN, are widely deployed for instance segmentation, and they have exhibited high accuracy 

in object detection and image segmentation applications. Mask R-CNN was first proposed in 

2017, building on the existing Faster R-CNN model by adding a third branch to generate an 

object mask output along with the original outputs, as well as a bounding box and a class label, 

and replacing the region of interest (ROI) pooling module with an ROI Align module. This 

algorithm uses a selective search technique to analyze characters on images, such as colour or 

texture, in order to locate possible object regions based on the analysis results. 

Applications of the Mask R-CNN model in manufacturing are numerous, but the primary use has 

been for inspection. Due to the crucial role of assembly in automated manufacturing, the 

advantages of Mask R-CNN, including its ability to perform multi-object classification and 

identification, can simplify the inspection process by easily finding defects [28]. A similar 

application has been in vehicle appearance component inspection [29]. Moreover, for objects 

with specific rather than generic shapes, Mask R-CNN is capable of yielding highly accurate 

results. 
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With regard to applications in weld seam identification, although in the case of weld seams the 

shape is usually not as specific as in the examples discussed above, the Mask R-CNN algorithm 

has still been shown to be highly effective. For instance, Xia et al. (2020) proposed a Mask R-

CNN-based method to detect the melt pool area within a visual sensing system for a robotic wire 

arc additive manufacturing system. Their method demonstrated the potential of detecting objects 

with a non-specific shape [30]. Another recent study proposed a micro-gap weld detection 

method to overcome the difficulty of recognizing welds with widths less than 40 μm with the 

utilization of Mask R-CNN [31]. Jin et al. (2020) also proposed a method based on Mask R-CNN 

to recognize small batches, and their findings demonstrated the potential for more complex 

welding seam location, given the pixel-level accuracy of their results [32]. Yang et al. (2020) 

used identification and classification techniques in a trajectory planning method to obtain the 

pixel-wise coordinate data for the small target objects to be scanned. This data was then 

extracted using a cloud-point method based on Mask R-CNN [33]. Overall, these examples show 

that deep learning algorithms have performed well in vision-based weld identification. For the 

present study, Mask R-CNN is applied to weld seam identification in window manufacturing. 

 Summary and Research Gap 2.4.

Industry 4.0 expands the scope of manufacturing innovation, particularly in the form of 

automated manufacturing solutions. Moreover, recent technological advancements provide the 

opportunity to integrate vision techniques and robot manipulation for tackling the dynamic 

operations and working conditions characteristic of automated manufacturing. Existing literature 

in this area touches on current practice of window manufacturing, vision-guided robotics 

applications in manufacturing (i.e., welding-related cases), and applications of the Mask R-CNN 

deep learning model for image segmentation. The literature review above reveals a research gap, 
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which is investigated in this thesis. Although several welding-related applications of vision-

guided robots have been explored, to the author’s knowledge the welding seam cleaning 

application has yet to be investigated. As mentioned in Chapter 1, the current practice has 

notable flaws in terms of low adaptability and unpredictable quality, so innovation of the 

cleaning process is needed in order to ensure a high-quality final product. In this context, to 

provide an adaptive solution for welding seam cleaning, a vision-based robotic system 

integrating the use of robotic arms and computer vision for image segmentation is a promising 

solution to fill the gap.  
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Chapter 3   Methodology 

This chapter describes the methodology used in this research. A design science research (DSR) 

methodology is adopted to develop a framework of vision-based robotic system capable of 

locating, identifying, and cleaning the weld seams at window corners. The goal of DSR is to 

develop an artifact—something that has a meaningful use and improves the understanding of a 

problem at the identified research gaps. The process of developing an artifact includes a rigorous 

procedure of literature review, then developing the artifact in accordance with predefined 

evaluation methods in a structured and replicable manner while clearly communicating its 

outputs [34]. The artifact developed in this research is a vision-based framework to enable 

robotic corner cleaning of window frames. Following development of the artifact, an alternative 

method to the industrial machinery currently employed for corner cleaning in window 

manufacturing is devised that increases the flexibility and reliability of the operation. The 

methods applied in this research are divided into four stages as illustrated in Figure 2. 

 

Figure 2. Overview of the proposed research methods. 
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In the observation stage, the purpose is to develop a concise understanding of PVC window 

manufacturing by investigating the welding process and identifying issues with regard to current 

window cleaning practice and task requirements. From a “big picture” perspective, these flaws 

associated with the current practice provide highly relevant information that can be used as the 

basis for selecting a suitable technique to address the problems. The modelling stage involves 

model building using Mask R-CNN and vision techniques. Based on the information obtained at 

the observation stage, the structure of a vision-based robotic system is developed using computer 

vision algorithms for image segmentation, and using vision techniques to monitor and control the 

working environment. The simulation stage includes several experiments for validating the 

proposed approach. The data generated through the validation process in this stage is recorded 

and analyzed. In the evaluation stage, the proposed approach is evaluated and tested in a real-

world scenario. The resulting performance is compared with the hypothesis to evaluate the 

efficiency of the proposed approach, as well as to identify any limitations and potential measures 

to improve it. Definition of seam area and expert knowledge are required inputs for the model 

training and operation involved, and the final output is an assessment of the performance of the 

weld seam identification and cleaning path estimation.  
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Chapter 4   Vision-based Robotic Corner-cleaning of Window 

frames 

This chapter describes the framework proposed in this research based on the combination of 

image segmentation and vision-guided robot manipulation. The vision-based robotic framework 

consists of three modules—window and location identification, weld seam detection, and 

cleaning path generation. 

 Overview of framework 4.1.

The purpose of the framework presented in this study is to guide a robotic arm in executing weld 

cleaning on window frames with the assistance of computer vision. As shown in Figure 3 and as 

mentioned above, the proposed framework comprises three consecutive modules: (1) window 

and location identification; (2) weld seam detection; and (3) cleaning path generation. The first 

module uses the Hough transform technique to perform accurate edge detection from the image 

captured from a fixed camera in order to define the location of the target. In the second module, 

the camera attached to the robotic arm captures a close-range image of the target. The framework 

employs a pre-trained Mask R-CNN model to process the image for the purpose of seam 

detection, and generates a mask to quantify the area of weld seam where there is material to be 

removed. In the last module, based on the information obtained in the previous stage, the 

framework calculates a cleaning path for the robotic arm and transforms the coordinates from the 

2D image to 3D (real world). The three modules are described in greater detail in the following 

sections. The Python scripts used for training the Mask R-CNN model, it should be noted, are 

developed based on the scripts from Matterport available on GitHub [35]. The complete scripts 

can be found in Appendix A. 
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Figure 3. Proposed vision-based window corner-cleaning framework. 

The framework’s process model and notation showing the process of one working cycle, as well 

as the interactions among the three main elements—the fixed camera, the robotic arm, and the 

control system—are illustrated in Figure 4. The working cycle begins when a task is assigned, at 

which point an order is placed in the framework. The fixed camera is activated and captures an 

image for the purpose of locating the corner of the window frame. Next, the control system 

detects the location of the window frame, calculates the coordinates of the edge points, and sends 

this information to the robotic arm to serve as the start-point for the robot’s path. Once the 

robotic arm has moved to the location above the start-point, the camera attached to the robot 

begins capturing images and the system detects whether there is any seam in the image based on 

the pre-trained image seam-detection model. If no seam is detected, the order will be completed, 

whereas, if a seam is detected, a cleaning path will be generated and sent to the robotic arm. The 

robotic arm then executes the cleaning task and returns to the start-point to repeat the cycle. The 

cycle keeps repeating until there is no seam captured by the moving camera. 
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Figure 4. Proposed vision-based window corner-cleaning process model and notation. 
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 Module 1: Window location and identification 4.2.

In this module, images from the fixed camera are processed in order to obtain the current 

location and orientation of the window. This information supports an initial approximation of the 

robot towards its target. Considering that the vision range of the camera attached to the robotic 

arm is highly dependent on the position of the robot, a fixed camera overlooking the corner-

cleaning workstation is used to initially guide the robot towards the target and perform a 

controlled approach towards the weld seam. Because two window profiles are forced together to 

produce the weld seam, the only possible location for the generated weld seam on the window 

frame is along the intersection of the two profiles. The illustration is shown in Figure 5.  

 

Figure 5. Window profiles and weld seam. 
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To be more specific, the only possible seam location is along the intersecting line between the 

edge points on the corner of the window, and with an identical inclined angle between both 

edges of the window (assuming an orthogonal window box, which is the most common design).  

A summary of the operations performed in this module is shown in Figure 6. 

 

Figure 6. Proposed window identification and location system. 

To detect the window edge coordinates, the same principle underlying the vision-based 

inspection method proposed by Martinez et al. (2020) is followed. In terms of hardware, the 

fixed camera is connected by USB cable the desktop running the python script, while Basler 

Pylon camera software is used for running the image capture. The images taken are stored in a 

folder that is then accessed by module 1 in order to initiate the subsequent tasks. The Hough 

transform, it should be noted, is a feature extraction technique widely used in image analysis to 

detect lines, among other geometrical shapes. It was introduced to detect complex patterns of 

points in binary image data [36]. In the present research, this technique is applied on the image 

captured by the fixed camera to obtain the parametric lines that are recognized as the edge lines 

in accordance with Equation (1): 

𝑳(𝝆, 𝜽) ≔ {
𝝆 =  √𝒙𝟐 + 𝒚𝟐

𝜽 =  𝐭𝐚𝐧−𝟏(𝒚
𝒙
)

                                                     (1) 
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where 𝐿 (𝜌, 𝜃)is the set of lines defined by the Hough transform, and (x, y) are the coordinates of 

the points of each edge as defined based on the image. Sample image results for edge detection 

using the Hough transform technique are presented in Figure 7. As can be seen, three main 

orientations of these lines, namely, the edges of both individual frame elements and the weld 

seam, are consistently detected. Thus, the detected lines can be used to generate rough start-

points by calculating their points of intersection in the next step. 

  

 
Figure 7. Examples of edge detection results in a window corner. Top: image samples from a 

virtual environment. Bottom: image samples from real environment. 

 

The lines detected are categorized into three clusters based on slope: (1) the edges from the 

vertical frame element; (2) the weld seam; and (3) the edges from the horizontal frame element. 

This is done by using k-means clustering around the value of (𝜃𝑐𝑗) of each line. The line clusters 

identified are illustrated in Figure 8. To simplify the calculation of the intersection point, each 

cluster is integrated into an average line, 𝐶(𝜌𝑐, 𝜃𝑐), to represent the cluster. The term 𝐶(𝜌𝑐, 𝜃𝑐), 

is defined in Equation (2) below: 

𝑪𝒋(𝝆𝒄𝒋, 𝜽𝒄𝒋) ≔  { 
𝝆𝒄𝒋 =  𝟏

𝒏
∑ 𝝆𝒊

𝒏
𝒊=𝟎

𝜽𝒄𝒋 = 𝟏
𝒏

∑ 𝜽𝒊
𝒏
𝒊=𝟎

                                              (2) 
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where (𝐶1), (𝐶2), and (𝐶3) are the average lines from each cluster, satisfying 𝜃𝑐1 < 𝜃𝑐2 < 𝜃𝑐3. 

Next, considering that the three lines cannot intersect at any one point, three intersection points 

(𝑃𝑖) of any two of the three lines are calculated as defined in Equation (3), where the average of 

the three intersection points calculated serves as the final start-point. 

𝑷 =  
||

𝒂𝟏 𝒂𝟐
𝒃𝟏 𝒃𝟐

|
𝒂𝟏−𝒂𝟐
𝒃𝟏−𝒃𝟐

|

|𝒂𝟏−𝒂𝟐 𝒃𝟏−𝒃𝟐|                                                           (3) 

where any two lines of different clusters are defined by two sets of points, (𝑎1,  𝑎2) and (𝑏1,  𝑏2), 

and 𝑎1,  𝑎2,  𝑏1and 𝑏2are the endpoints of a line. 

 

Figure 8. Clusters of detected lines based on the Hough transform angle. 

The start-point on the image having been defined, the pinhole model is used to transform the 

coordinates from the 2D image into 3D space in accordance with Equation (3) and as illustrated 

in Figure 9 below. 
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                                      𝒁 =  𝒅  𝒇
𝒍

 =  𝒅 𝒇
√𝒇𝟐 + 𝒙𝟐 + 𝒙𝟐                                            (3) 

 

Figure 9. Pinhole camera model illustration. 

where (Z) is the distance between the reference point and the camera, (d) is the distance between 

the start-point and the camera, (l) is the distance between the camera and the reference point 

projected on the image, and (f) represents the focal length of the camera. The height of the start-

point is fixed in order to keep the robotic arm at an adequate distance to observe the target. The 

setup is shown in Figure 10, where (𝑟0) and (𝑟) are the reference points in the 3D space and (𝑠0) 

and (𝑠) are the start-points on the 2D image. 



 24 

 
Figure 10. Application of the pinhole model in the workstation under investigation. 

 Module 2: Weld seam detection 4.3.

In this module, the goal is to determine the area of weld seam to be cleaned in order to guide the 

corner-cleaning process accordingly. A summary of the operations performed in this module is 

shown in Figure 11. 

 
Figure 11. Proposed weld seam detection system. 
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The coordinates that are the final output of module 1 need to be transformed into a script file in 

order for the robotic arm to perform a motion. The transformation script is generated using 

RoboDK motion planning. Example motion script can be found in Figure 12. 

 
Figure 12. Example script for robot motion 

where moveJ represents a point-to-point motion, which is a most used command in a robot script. 

A typical format of a moveJ command is: 𝑚𝑜𝑣𝑒𝑗(𝑞, 𝑎 =  1.4, 𝑣 = 1.05, 𝑡 = 0, 𝑟 =  0), where 

𝑞 represents joint positions, 𝑎 is the joint acceleration of the leading axis, 𝑣 is the joint speed of 

the leading axis, 𝑡 is time, and 𝑟 is the blend radius [37]. 

Weld seams are not generated as any particular geometrical shape, due to the nature of the 

process where force is applied to the thermoplastic material from both sides in a non-uniform 

manner. This makes it difficult to locate the exact area of seams to be cleaned, as simple feature 

recognition image-processing techniques are not directly applicable to such situations. However, 

image segmentation techniques can be used to define objects and boundaries by separating the 

image into several segments. For the purpose of segmenting the weld seam and accurately 

determining the boundaries of the area to be cleaned, a Mask R-CNN network is created. An 

example of the desired detection result and the Mask R-CNN architecture are shown in Figure 13. 

 
Figure 13. Image segmentation using Mask R-CNN. 
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To train a weld seam detection model that can identify the boundaries of the area to be cleaned 

correctly, several steps are required. Step (1): images of uncleaned corners of window frames are 

collected as training material. Step (2): to teach the model to recognize the weld seam, each 

image is manually labelled, and the labelled images are then divided into two datasets—a 

training dataset and a validation dataset—at a proportion of 3:2. Step (3): the model is trained 

using the training dataset, and then tested using the validation dataset. These steps are described 

in greater detail as follows. First, the selected model is trained using a pre-labelled dataset 

containing 817 images in total, 396 of them being images of weld seams in actual windows, and 

421 of them being representations of weld seams from modelling software. The image dataset is 

constructed using images obtained using a Robotiq wrist camera affixed to the robot arm. All 

images in the database are manually labelled and segmented. The software used, it should be 

noted, is VGG Image Annotator (VIA), which is an online manual annotation software 

developed by the Visual Geometry Group at the University of Oxford [38]. A few examples of 

images from the training database are shown in Figure 14. 
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Figure 14. Sample images with labels from the training dataset. 

The model is trained within Google Colaboratory with GPU boosting and 12 GB of RAM, with 

Tensorflow (version 1.15.0) and Keras (version 2.1.5) installed. The COCO dataset, which is a 

large-scale object detection, segmentation, and captioning dataset, is used as the initial training 

weights on the pre-trained R-CNN model. The training process takes 3.5 hr to complete 50 

epochs of model training. 

The model has a final training loss of 0.2959 and a final validation loss of 1.0228, as shown in 

Figure 15. As expected, the model’s loss (error) gradually decreases as the number of training 

epochs (runs) increases. In the figure, “loss” indicates the overall model loss during the training 

and validation steps; the other indices in the figure, i.e., “rpn_class_loss” and “rpn_bbox_loss”, 

represent the region proposal losses for the classification and localization (bounding box); and 

“mrcnn_class_loss”, “mrcnn_bbox_loss”, and “mrcnn_mask_loss” represent the classification, 

localization (bounding box), and segmentation (mask) losses during the Mask R-CNN training 
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and validation steps. It is important to note that, in this particular application of this neural 

network, it is paramount that the final value for “mrcnn_mask_loss” is as small as possible. With 

the dataset used, the final segmentation loss achieved is found to be 0.0542 for the training and 

0.0976 for the validation. 
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Figure 15. Model training results. Top: training data. Bottom: validation data. 
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 Module 3: Cleaning path generation 4.4.

In this module, the cleaning path is generated based on the object mask obtained in the preceding 

module. The overall module procedure is illustrated in Figure 16. The weld seams are typically 

of a strip-like shape due to the manner in which the frame elements are forced together during 

the weld operation, so the cleaning path is an almost linear path between the start- and end-points 

of the seam. Since the width of the seam is usually approximately 2 mm to 5 mm, the most 

efficient cleaning method is to go travel along the centerline of the seam with a tool that is 

sufficiently wide to span the full width of the seam, similar to the current practice for automated 

corner-cleaning procedure. Accordingly, the objective of this module is to estimate the centerline 

of the weld seam. Given that weld seams are irregular in shape due to non-uniform forces 

applied during the hot-plate welding process, the path generated must be able to adapt to the 

weld’s shape. 

 

Figure 16. Proposed cleaning path generation system. 

The output of the preceding module having been a strip-like mask that defines the seam area, the 

first step in this module is to extract a contour from the generated mask. This contour defines, 

using as many points as necessary, the mask obtained by the Mask R-CNN model. Each contour 

point is stored into a list and assigned an index according to its location on the contour. Due to 

the strip-like shape of the area, by comparing the distances between any two points on the 
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contour, the two points with the longest distance are chosen as start- and end-points for the robot 

path. Both end-points satisfy Equation (3): 

(𝑬𝟏, 𝑬𝟐) =  {(𝒑, 𝒒)|𝒎𝒂𝒙(𝒅(𝒑, 𝒒)}𝒘𝒉𝒆𝒓𝒆 𝒅(𝒑, 𝒒) =  √(𝒒𝒙 −  𝒑𝒙)𝟐 + (𝒒𝒚 − 𝒑𝒚)𝟐}     (3) 

where (𝐸1) and (𝐸2) represent the start- and end-points for the robot path and 𝑑(𝑝, 𝑞) is the 

Euclidean distance between two cartesian points 𝑝(𝑝𝑥, 𝑝𝑦) and 𝑞(𝑞𝑥, 𝑞𝑦). From the remaining 

contour points, the robot path is determined using the Greedy algorithm. The Greedy algorithm, 

it should be noted, is typically applied when obtaining an optimal result is not feasible in a single 

solution. It divides the optimization problem—in this case, a path planning problem—into 

several minimization problems in order to yield locally optimal solutions at every iteration and 

eventually reach an optimal solution. Thus, the cleaning path generation is calculated by dividing 

the whole area into several sections and gathering the local center points from each section to 

define a final path. As shown in Figure 16, (𝐸1) and (𝐸2) represent the start- and end-points, 

respectively, on the contour. To ensure efficient weld cleaning, the path should track along the 

center of the seam, so the best local solution for the division, where the contour is divided into 

many parts by each pair of counterpart contour points, is determined as the midpoint of each two 

counterpart points. All (𝑃𝑖) points are defined while extracting the contour. Thus, if (𝐸1) is the 

start-point of the path, the second point for the robot path is defined as the midpoint, (𝐶𝑃1), of 

the next two points, represented by (𝑃1) and (𝑃1
′) in Figure 17. Consequently, the third point, 

(𝐶𝑃2), is the midpoint of (𝑃2) and (𝑃2
′), and so on. The set of points generating the robot path, 

(𝐶𝑃𝑖), is defined by Equation (4). 
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𝑪𝑷𝒊(𝒙𝒄𝒊, 𝒚𝒄𝒊) = ( 𝑿𝒊+𝒙𝒊 
′

𝟐
,  𝒚𝒊+𝒚𝒊

′ 
𝟐

)                                        (4) 

where 𝑃𝑖 (𝑥𝑖, 𝑦𝑖) and 𝑃𝑖
′ (𝑥𝑖 

′ , 𝑦𝑖 
′ ) are the corresponding points on the contour. Given that every 

point in the contour list is assigned an index, if we let the index of (𝐸1) be j, then the indices of 

(𝑃𝑖 ) and (𝑃𝑖
′) will be j+1 and j−1. Taking the figure below as an example, (𝐸1) in the figure is 

(𝑃45) in the contour list, and the corresponding points for calculating (𝐶𝑃1) are (𝑃44) and (𝑃46). A 

step-by-step overview of the path generation results is provided in Figure 18. 

 

Figure 17. Application of greedy algorithm in path planning. 
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(a) (b) 

  

(c) (d) 

Figure 18. Steps to generate the corner-cleaning path alongside the detected weld seam:(a) Mask 
R-CNN mask generated; (b) contour extracted from the mask; (c) estimated start- and end-points 
for the corner-cleaning operation; (d) cleaning path obtained using the Greedy algorithm. 
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Chapter 5   Results 

This chapter presents the validation of the proposed vision-based robotics framework in two 

different environments: a simulation environment and the real-world environment. In the 

following sections, the experimental setup is first defined, then the results and analysis are 

presented, followed by a discussion of the limitations of the study. 

 Environmental setup 5.1.

For the validation of the proposed approach to corner cleaning in window manufacturing, two 

cameras are used—a Basler ACE camera with an Optron 35 mm lens monitoring the working 

area, and a Robotiq wrist camera attached to a Universal Robots UR5e. The virtual environment 

is built within the RoboDK platform, providing an accurate representation of the real 

environment. In the robotic reference frame, the origin is defined as the center base of the robot, 

so the coordinates of the camera position are (500, −500, 600), where the unit is mm. Both 

experimental setups in their environments are shown in Figure 19. 

  

Figure 19. Validation environments: Vision-guided robot system. Left: virtual environment in 
RoboDK software. Right: Real world environment. 
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The window frames used in the real environment are made of polyvinyl chloride (PVC), and 

their geometry is modelled in a CAD software before being transferred to the virtual 

environment in STL format. The height of the selected window profiles is 3.260 ± 0.15 inches 

(82.804 ± 3.81 mm) and the width is 4.31 ± 0.20 inches (109.474 ± 5.08 mm). Examples of the 

windows used in both environments are shown in Figure 20. 

  

Figure 20. Window samples used in this study. Left: STL model used in the virtual environment. 
Right: PVC window used in the real-world environment. 

 

The wrist camera attached to the UR5e robot arm has a field of view (FOV) ranging from 100 

mm × 75 mm to 640 mm × 480 mm, and the focus ranges from 70 mm to infinity. Based on the 

specifications and the height of the window under investigation in this study, a required 

minimum FOV to fully cover the corner area is around 110 mm × 110 mm. However, 

considering that the placement angle of the window frame may vary, the narrowest FOV should 

not be less than 156 mm, which is the maximum length of the seam (as shown in Figure 21). If 

the shorter width is approximately 156 mm, then the working distance from the camera should be 

approximately 146 mm above the object (see Figure 21). The height of the window frame (83 
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mm) must be taken into consideration as well. Therefore, the vertical distance from the camera to 

the working table should be not less than 229 mm, which equals the height of the window plus 

the working distance. Finally, to reserve a sufficient amount of space in which for the end-

effector (cleaning tool) to operate, the fixed distance along the z-axis is ultimately set to 300 mm. 

Since the camera distance to the workstation is fixed, as is the height of the robotic arm at the 

initial position, the height measurements (z-axis) are kept as a constant true value, rather than 

being estimated, in order to simplify the system’s operations. 

 

Figure 21. Camera placement considerations. Left: Illustration of the decision for the minimum 
width of field of view. Right: Illustration of the calculation for the minimum working distance 
needed to completely cover the window corner area. 

 

 Validated results 5.2.

All three modules the proposed framework comprises are engaged during the process in both the 

virtual and real environments. The results of these experiments are analyzed in order to validate 

the framework performance. 
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5.2.1. Module 1 validation 

The first module, window identification and location, locates the rough position of the start-point 

to enable the robot to perform an initial approach towards the corner of the window frame. To 

validate the coordinate estimation process, several window corners, are placed one-by-one at 

random positions within the working area. The system is then run to obtain the location estimate. 

The actual location is measured as well using a manual tape measure accurate to within 1 mm. 

The error is calculated following Equation (5), where (𝑥𝐴), (𝑦𝐴) are the coordinates along the x- 

and y-axes of the actual position of the start-point, and (𝑥𝐸), (𝑦𝐸) are the coordinates along the x- 

and y-axes of the estimated position of the start-point. The results for locating the window corner 

area are presented in Table 1. 

𝑬𝒓𝒓𝒐𝒓 =  √(𝒙𝑨 − 𝒙𝑬)𝟐 + (𝒚𝑨 − 𝒚𝑬)𝟐                                        (5) 

Table 1. List of results obtained from Module 1. 

# 

Coordinates of start-point (x, y) 

Virtual environment Real environment 

Estimated Actual Error Estimated Actual Error 

 

x[mm] y[mm] x[mm] y[mm] [mm] x[mm] y[mm] x[mm] y[mm] [mm] 

1 494 −497 496 −499 2.828 486 −510 489 −506 5.000 

2 499 −490 501 −503 13.153 470 −488 467 −479 9.487 

3 488 −504 492 −510 7.211 478 −502 481 −496 6.708 

4 512 −508 510 −516 8.246 478.0 −497 475 −499 3.606 

5 502 −509 507 −501 9.434 472 −500 471 −502 2.236 

6 469 −405 476 −401 8.062 496 −408 500 −401 8.062 

7 490 −388 497 −391 7.616 512 −388 500 −390 12.166 
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8 482 −393 480 −405 12.166 488 −420 494 −415 7.810 

9 485 −402 480 −398 6.403 496 −420 500 −412 8.944 

10 483 −401 481 −405 4.472 497 −413 498 −400 13.038 

11 589 −499 593 −501 4.472 602 −498 600 −500 2.828 

12 586 −502 592 −508 8.486 596 −480 597 −483 3.162 

13 605 −509 608 −505 5.000 604 −518 601 −515 4.242 

14 601 −505 602 −503 2.236 598 −483 600 −481 2.828 

15 600 −487 601 −480 7.071 601 −495 610 −496 9.055 

Average [mm] 7.123735848 Average [mm] 6.611634874 

Standard Deviation [mm] 2.975296215 Standard Deviation [mm] 3.389142118 

 

Based on the results in Table 1, the performance of the identification algorithm can be 

statistically analyzed. The average measurement error (mean ± standard deviation) of the 

window location is 7.23 ± 3.21 mm and 6.10 ± 3.55 mm for the virtual environment and the real 

environment, respectively. As per Figure 21, the dimensions of the window corner are 110 mm × 

110 mm and the FOV of the set height is approximately 232 mm × 309 mm. The FOV at the set 

height is kept at least 86 mm wider than the required FOV in order to fully cover both sides of 

the corner. Given these specifications, a 6 to 7 mm measurement error represents a 5% error 

relative to the window corner area, and this is considered acceptable considering the purpose of 

this particular algorithm (i.e., approximation). 

5.2.2. Module 2 validation 

The main function of the second module is to detect the weld seam using the pre-trained image 

segmentation model. The Mask R-CNN applied dataset, which consists of 78 new images from 
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the virtual and real environments, is used for validation of the model. An example of the weld 

seam classification, location, and segmentation results is presented in Figure 22. 

 

 
Figure 22. Results of the weld seam segmentation using the Mask R-CNN model on images of 
the test dataset. Top: Images of the simulated environment. Bottom: Images of the real 
environment. 
 
Table 2 shows the seam-detection model’s performance for the intersection over union (IoU) at 

various values. IoU, it should be noted, indicates the area of overlap over the area of union, as 

expressed in Equation (6). 

𝑰𝒐𝑼 =  𝑨𝒓𝒆𝒂 𝒐𝒇 𝑶𝒗𝒆𝒓𝒍𝒂𝒑
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

                                                          (6) 

IoU is often used as a threshold to classify a prediction as either a true positive or a false positive. 

Given that the mask prediction accuracy is the key performance factor in this research, the IoU 

here is calculated by dividing the overlap of the predicted and ground-truth masks over the area 
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of union. Additionally, the mean average precision (mAP) is commonly used to evaluate object 

detection models. Since, in this particular case, there is only one type of object to predict, mAP 

represents the average precision (AP), which is the area under the precision-recall curve. 

Precision, recall, AP, and mAP, defined in Equations (7) to (10), respectively, are used as the 

performance metrics for the Mask R-CNN model. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

                                       (7) 

                              𝑹𝒆𝒄𝒂𝒍𝒍 =  𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

                                     (8) 

𝑨𝑷@𝒏 =  𝟏
𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒈𝒓𝒐𝒖𝒏𝒅 𝑻𝑭

∑ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏@𝒌𝒏
𝒌 × 𝑹𝒆𝒄𝒂𝒍𝒍@𝒌             (9) 

              𝒎𝑨𝑷 = 𝟏
𝑵

∑ 𝑨𝑷𝒊
𝑵
𝒊=𝟏                                               (10) 

Table 2. Seam-detection performance using the Mask R-CNN model with an IoU = 0.5, 0.75, 
0.8 and 0.9. 

IoU  mAP 

0.50 0.953 

0.60 0.851 

0.75 0.755 

0.80 0.707 

0.90 0.511 

 

The mAP results in Table 2 are the calculated results corresponding to 20 randomly chosen 

images from the test dataset, where the IoU is defined as falling within the range from 0 (no 

union between the ground truth and detection) to 1 (detection and ground truth are identical). 

Different IoU thresholds are applied to describe the accuracy of the model in correctly 

identifying the boundaries of the weld seam. As the threshold value increases, the determination 
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of what is considered a true positive becomes stricter. For this study, IoU is tested starting at 0.5 

(commonly used as the minimum acceptable IoU) until it reaches 0.9. Based on the results, the 

model performance is found to decrease gradually as the IoU value increases, having a mAP of 

0.95 when the IoU is set at 0.5, but then decreasing to a mAP as low as 0.5 when the IoU is set at 

0.9. Thus, the model performance in this study is found to be comparable with that of similar 

applications described in the literature [39]. As observed, the performance of the pre-trained 

model is found to be sufficient to proceed to the next module. 

5.2.3. Module 3 validation 

The final output of module 3 is a list of coordinates or target points in the 3D space representing 

the cleaning path for the robot arm. Aside from the accuracy of path location, which is directly 

related to the accuracy obtained from the image segmentation process discussed above, the 

evaluation of this module also encompasses the force control and the accuracy capacity of the 

robotic arm executing the task. The force control process is similar to position control, where 

each joint is adjusted to match the required output, but the force control process is more complex 

than position control due to the fact that both the trajectory and the exact force need to be 

satisfied simultaneously. Since the aim here is simply to demonstrate the preliminary motion 

planning of the cleaning task, only the position control is discussed, but this also constitutes a 

study limitation with respect to the validation of this module as no force analysis is provided. 

According to current industrial practice, it is assumed to be possible to follow the generated path. 

Nonetheless, a full validation of the task execution for the generated cleaning path can only be 

achieved by combining the force control with the position control as discussed above. Thus, the 

results here are limited to visualization results (see Figure 23). Moreover, the force control varies 
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for different end-effectors in the execution of the robotic arm motions, and the impact of this 

aspect on the cleaning performance requires further research. 

 

 

Figure 23. Results of the cleaning path planning (white lines) on a detected weld seam. Top: 
Images of the simulated environment. Bottom: Images of the real environment. 
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Chapter 6   Conclusions 

 Summary and conclusions 6.1.

Hot-plate welding is a commonly used welding technique that plays an important role in the 

current practice of PVC window frame manufacturing. Weld seams are an unwanted result of the 

welding process that must be cleaned to ensure a marketable window frame. When considering 

the quality of weld seam cleaning, current methods lack the ability to adapt to dynamic situations 

while ensuring consistent quality. This leads to unpredictability of the cleaning process and a 

reliance on manual operator capacity to perform any required adjustments or rework. 

In light of these challenges, this study proposes a vision-based robotic corner-cleaning 

framework to enhance the adaptability of weld seam cleaning in window frame production with 

the aid of vision systems and robotic arms to achieve precise cleaning task execution. The 

proposed method relies on novel image-processing tools to locate, identify, and quantify the area 

of weld seam that requires cleaning. The location of the corner area and weld seam are 

determined based on the locations of the edges of the frame, identified using the Hough 

transform technique, and this enables the robot arm to perform a guided approximation that does 

not rely on predefined window positioning or orientation. A Mask R-CNN model is then trained 

to locate and segment the weld seam. Finally, the mask obtained is transformed using the greedy 

algorithm to generate, in an automated manner, the robot path required in order to clean the weld 

seam. 

Two scenarios are used to validate the proposed framework—a virtual simulation, and a real 

scenario involving a UR5e robot furnished with a built-in wrist camera and a Basler ACE camera 

overlooking the workstation. The proposed approach results in less than 1 cm error for the 

window location and robot approximation and a 0.95 mean average precision for weld seam 
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detection and segmentation. In future research, given the limitations in terms of accommodating 

different types of end-effectors and concerns related to generic applicability, solutions will be 

developed to adapt to various blade types and enlarge the sample database in order to optimize 

the vision-based robotic corner-cleaning framework. 

 Discussion and Limitations 6.2.

The proposed framework of vision-based robotic corner-cleaning system is found to be capable 

of identifying and locating window frames, detecting weld seams, and ultimately generating the 

cleaning path that guides the robotic arm. However, there are two limitations in the execution of 

the research and the analysis of the results. These limitations, as well as related topics warranting 

further research, are discussed below. 

First, the choice of end-effector can have significant implications for path planning. The types of 

industrial blades used in manufacturing include circular saws, straight knives, and deburring 

blades. The end-effector considered in this study is a deburring blade, which is the most 

commonly used end-effector for edge deburring, chamfering, countersinking, and scraping of 

material in window manufacturing. However, given the varying designs encountered in window 

manufacturing, the path planning developed in this research is not a universal solution for all 

kinds of end-effectors. Accordingly, potential solutions to adapt to different end-effectors 

warrant further investigation in future research. 

Second, although the results of the neural network model show adequate performance, there are 

concerns of overfitting and a lack of generalization in the dataset. Due to the limited amount of 

window samples, the dataset used to train the image segmentation model is somewhat 

homogeneous, as the images are of windows from the same production line. To increase its 
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generic applicability to different window types and materials, the model will need to be retrained 

and validated using a larger and more diverse dataset. 

Although robotic arms are selected for this study because of their precision in executing tasks, a 

notable limitation of this study is that it only considers the position control, and not the force 

control, of the robotic arm. Since force control and position control normally function together in 

practice and are thus calculated and planned together to ensure the precision of the robotic arm, 

future work in this area should take into consideration the force control aspect. This aspect is 

crucial when it comes to executing cleaning tasks in practice, including taking into account 

friction and force/torque sensors. In other words, since most of the weld seams extend 

horizontally, the force applied to remove the residual material includes a horizontal force as well 

as the downward force. Both the friction between the window frame and the working table and 

the horizontal force applied by the robot need to be taken into consideration when determining 

the amount of force to be applied by the end-effector on a window frame in order to prevent 

displacement of the window frame during execution of the cleaning task. Furthermore, although 

for the purpose of the study the workstation area is assumed to be an ideal working environment, 

some additional support and position-fixed equipment (e.g., clamps, magnetic holders) may be 

required in practice in order to decrease the possibility of displacement. 

Modern industrial robot arms are equipped with sensors to control force and torque, because the 

force needs to be controlled accordingly to match target objects. Considering the diverse position 

and orientation of window frames in the study, the optimal sensor controlling force and torque is 

another key problem to be addressed. For example, the precise amount of force needed to clean 

the weld seam without causing deformation or other damage to the frames needs to be calculated.   
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Appendix A :  Python scripts for the cleaning process 

Table of Contents 

1. Window location and identification 

1.1. Edge detection  

1.2. Intersection point 

1.3. coordinate transformation 

2. Weld seam detection 

2.1. Model training of Mask R-CNN 

2.1.1. Data augmentation 

2.1.2. Environmental setup and model training 

2.2. Mask Prediction 

2.2.1. Environmental setup 

2.2.2. Configurations  

2.2.3. Notebook Preferences 

2.2.4. Load Validation Dataset 

2.2.5. Load Model and run detection 

3. Cleaning Path Generation 

3.1. Extraction of contours 

3.2. Calculation of two end-points 

3.3. Path calculation 

1. Window location and identification 

1.1. Edge detection  

import os 
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os.environ["CUDA_VISIBLE_DEVICES"] = "1" 
%matplotlib inline 
import matplotlib.pyplot as plt 
import matplotlib.image as mpimg 
import cv2 as cv 
import numpy as np 
 
#detect the line using SHT 
def line_detection(image): 
    img = cv.cvtColor(image, cv.COLOR_BGR2GRAY) 
    #load camera parameters 
    camMtx = 
np.genfromtxt("/content/drive/MyDrive/Research/Thesis/Module1/camera/intri
nsics.csv", delimiter = ",")  
    dist = 
np.genfromtxt("/content/drive/MyDrive/Research/Thesis/Module1/camera/disto
rtion.csv", delimiter = ",")  
     
    #image processing 
    img = cv.undistort(img, camMtx, dist, None) 
    img = cv.GaussianBlur(img,(3,3),0) 
    nimg = cv.bitwise_not(img) 
     
    # compute the median of the single channel pixel intensities 
    v = np.median(img) 
    nv = np.median(nimg) 
    sigma = 0.33 
     
    #Canny edge detection 
    lower = int(max(0, (1.0 - sigma) * v)) 
    upper = int(min(255, (1.0 + sigma) * v)) 
    edges = cv.Canny(img, lower, upper) 
    nlower = int(max(0, (1.0 - sigma) * nv)) 
    nupper = int(min(255, (1.0 + sigma) * nv)) 
    nedges = cv.Canny(nimg, nlower, nupper) 
     
    cv.imwrite("edges.png",edges) 
    cv.imwrite("negative_edges.png",nedges) 
     
    # run Hough on edge detected image 
    if nedges.mean() > edges.mean(): 
        lines = cv.HoughLines(nedges,1,np.pi/180,135) 
    else: 
        lines = cv.HoughLines(edges,1,np.pi/180,135) 
    # clean noisy lines due to distortion correction 
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    height, width = img.shape 
    alpha = 0.05 
    c = 0 
    for i,line in enumerate(lines): 
        if (abs(line[0][0]) > (1-alpha)*width) | (abs(line[0][0]) < 
alpha*height) | ((abs(line[0][0]) > (1-alpha)*height) & (abs(line[0][0]) < 
height) & (abs(line[0][1]) > np.pi/4)): 
            lines = np.delete(lines,i-c,axis=0) 
            c = c+1 
    res_img = img.copy() 
     
 
    #plot the lines 
    for line in lines: 
        for rho,theta in line: 
          #rho,theta=line[0] 
          a=np.cos(theta) 
          b=np.sin(theta) 
          x0=a*rho 
          y0=b*rho 
          x1=int(x0+100000*(-b)) 
          y1=int(y0+100000*a) 
          x2=int(x0-100000*(-b)) 
          y2 = int(y0 - 100000 * a) 
          cv.line(image,(x1,y1),(x2,y2),(0,0,255),2) 
          print("Line", ":[", x1,",",y1,"],[",x2,", ",y2,"]") 
       #   ("Line",  ":(", x1,y1,"),(",x2,y2,")") 
 
     
    cv.imwrite("img lines.png",image) 
    plt.show(image) 
    images = np.hstack((img,nimg,edges,nedges,res_img)) 
 
    cv.namedWindow("image", cv.WINDOW_AUTOSIZE) 
    cv.startWindowThread() 
 
    # separate clusters in arrays 
    for i in range(len(segmented)): 
        for j,line in enumerate(segmented[i]): 
            for rho,theta in line: 
                if rho < 0: 
                    segmented[i][j][0][0] = abs(rho) 
                    segmented[i][j][0][1] = theta - 2*(theta-np.pi/2) 
                     
    dist_cluster0 = np.array([line[0][0] for line in segmented[0]]) 
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    dist_cluster1 = np.array([line[0][0] for line in segmented[1]]) 
    dist_cluster2 = np.array([line[0][0] for line in segmented[2]]) 
    angles_cluster0 = np.array([line[0][1] for line in segmented[0]]) 
    angles_cluster1 = np.array([line[0][1] for line in segmented[1]]) 
    angles_cluster2 = np.array([line[0][1] for line in segmented[2]]) 
 
    # plot results 
    fig = plt.figure() 
    ax = fig.add_subplot(111, polar=True) 
    ax.scatter(angles_cluster0,abs(dist_cluster0), s= 100, color='green') 
    ax.scatter(angles_cluster1,abs(dist_cluster1), s= 100, color='blue') 
    ax.scatter(angles_cluster2,abs(dist_cluster2), s= 100, color='red') 
    ax.set_theta_zero_location('S') 
    plt.show() 
 
    fig.savefig('polar_results.png',bbox_inches='tight') 
 
    # determine each cluster origins 
    m_cluster0 = np.mean(angles_cluster0)*180/np.pi 
    m_cluster1 = np.mean(angles_cluster1)*180/np.pi 
    m_cluster2 = np.mean(angles_cluster2)*180/np.pi 
    if (m_cluster0 > m_cluster1) & (m_cluster0 > m_cluster2): 
        vert_angles = angles_cluster0 
        if m_cluster1 > m_cluster2: 
            diag_angles = angles_cluster1 
            horz_angles = angles_cluster2 
        else: 
            diag_angles = angles_cluster2 
            horz_angles = angles_cluster1 
    elif (m_cluster1 > m_cluster0) & (m_cluster1 > m_cluster2): 
        vert_angles = angles_cluster1 
        if m_cluster0 > m_cluster2: 
            diag_angles = angles_cluster0 
            horz_angles = angles_cluster2 
        else: 
            diag_angles = angles_cluster2 
            horz_angles = angles_cluster0 
    else: 
        vert_angles = angles_cluster2 
        if m_cluster0 > m_cluster1: 
            diag_angles = angles_cluster0 
            horz_angles = angles_cluster1 
        else: 
            diag_angles = angles_cluster1 
            horz_angles = angles_cluster0 
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1.2. Intersection point  

import cv2 as cv 
import numpy as np 
 
def line_intersection(line1, line2): 
    xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0]) 
    ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])  
 
    def det(a, b): 
        return a[0] * b[1] - a[1] * b[0] 
 
    div = det(xdiff, ydiff) 
    if div == 0: 
        raise Exception('lines do not intersect') 
 
    d = (det(*line1), det(*line2)) 
    x = det(d, xdiff) / div 
    y = det(d, ydiff) / div 
    return x, y 
 
 
[a,b] = line_intersection(lineA, lineB) 
x = np.round(a).astype("int") 
y = np.round(b).astype("int") 
print(x,y) 
 

1.3. coordinate transformation 

import cv2 as cv 
import numpy as np 
 
# project the point on image to 3d camera space 
def pinhole_model(x, y): 
   
    # location of camera, unit: mm, origin point 
    L = [0, 0, 0] 
     
    # reference point in camera system, unit: mm, fixed value 
    r0 = [500,500,-500] 
    # reference point: on image, unit: pixel, fixed value 
    r = [900,900] 
     
    # focalLength  
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    f = 250  
     
    # Calculate the real coordinate using pinhole model 
    # W = (DxP)/F 
    x_real = (L[2]-r0[2])*(x-r[0])/f 
    y_real = (L[2]-r0[2])*(y-r[1])/f 
     
    position = [x_real, y_real] 
    return position 
 
#projecct the point from camera into robot coordinate system  
def locate_start_point(x,y): 
     
    # Define the origin point in robot space 
    RL = [0,0,0] 
     
    #Assume the distance between the two origin point 
    LinR = [500,500,600] 
     
    #calculate the start point  
    SPoint = [x+LinR[0], y+LinR[1], 300]] 
     
    return SPoint 
 
2. Weld seam detection 

2.1. Model training of Mask R-CNN 

2.1.1. Data augmentation 

from numpy import expand_dims 
from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
from keras.preprocessing.image import ImageDataGenerator 
from keras.preprocessing.image import save_img 
from matplotlib import pyplot 
 
#load image 
img = load_img("/content/drive/MyDrive/Research/Thesis/Training/sample/1 - 
45.png") 
data = img_to_array(img) 
# expand dimension to one sample 
samples = expand_dims(data, 0) 
# create image data augmentation generator 
datagen = ImageDataGenerator(rotation_range=90) 
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# prepare iterator 
it = datagen.flow(samples, 
batch_size=1,save_to_dir="/content/drive/MyDrive/Research/Thesis/Training/
training photos") 
# generate samples and plot 
for i in range(9): 
  # define subplot 
  pyplot.subplot(330 + 1 + i) 
  # generate batch of images 
  batch = it.next() 
  # convert to unsigned integers for viewing 
  image = batch[0].astype('uint8') 
  # plot raw pixel data 
  pyplot.imshow(image) 
# show the figure 
pyplot.show() 
 

2.1.2. Environmental setup and model training 

!pip install git+https://github.com/minetorch/minetorch.git 
!pip install tensorflow==1.15.0 
# to solve AttributeError: module 'tensorflow_core.compat.v2' has no 
attribute '__internal__' 
!pip uninstall keras-nightly 
!pip install h5py==2.10.0   
!pip list | grep tf 
!pip install 'h5py==2.10.0' --force-reinstall 
!pip install tensorflow-estimator==1.15.1 
 
# downgrage keras to solve ModuleNotFoundError: No module named 
'keras.saving' 
!pip install keras==2.1.5 --force-reinstall --no-deps --no-cache-dir 
 
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior()  
import keras 
 
# unzip the image dataset 
!mkdir ./data 
!cp /content/Datasets.zip ./data/ 
!cd ./data && unzip Datasets.zip 
 
# model training with COCO 



 58 

%cd 
/content/drive/MyDrive/Research/Thesis/Training/Project/main/Mask_RCNN-TF2 
!python3 train.py train --dataset=/content/data/Datasets --weights=coco 
 

2.2. Mask Prediction 

2.2.1. Environmental setup 

# environmental setting  
!pip install tensorflow==1.15.0 
!pip install keras==2.0.8 --force-reinstall --no-deps --no-cache-dir 
 
# to solve AttributeError: module 'tensorflow_core.compat.v2' has no 
attribute '__internal__' 
!pip uninstall keras-nightly 
!pip install h5py==2.10.0 
 
# to solve error: ModuleNotFoundError: No module named 'mrcnn' 
%cd 
/content/drive/MyDrive/Research/Thesis/Training/Project/main/Mask_RCNN-TF2 
!python setup.py install 
 
# to solve error: ModuleNotFoundError: No module named 
'keras.utils.generic_utils' 
!pip list | grep tf 
!pip install 'h5py==2.10.0' --force-reinstall 
 
import tensorflow as tf 
print(tf.__version__) 
import keras 
!pip install tensorflow-estimator==1.15.1 
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior()  
 
# to solve ModuleNotFoundError: No module named 
'keras.utils.training_utils'` 
!pip uninstall keras  
!pip install keras==2.2.4 
 

import os 
import sys 
import random 
import math 
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import re 
import time 
import numpy as np 
import tensorflow as tf 
import matplotlib 
import matplotlib.pyplot as plt 
import matplotlib.patches as patches 
 
# Root directory of the project 
ROOT_DIR = os.path.abspath("/content/drive/MyDrive/My 
Drive/Research/Thesis/Training/Project/main") 
 
# Import Mask RCNN 
sys.path.append(ROOT_DIR)  # To find local version of the library 
from mrcnn import utils 
from mrcnn import visualize 
from mrcnn.visualize import display_images 
import mrcnn.model as modellib 
from mrcnn.model import log 
 
%matplotlib inline  
 
# Directory to save logs and trained model 
MODEL_DIR = os.path.join(ROOT_DIR, "logs") 
 
# Local path to trained weights file 
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") 
# Download COCO trained weights from Releases if needed 
if not os.path.exists(COCO_MODEL_PATH): 
    utils.download_trained_weights(COCO_MODEL_PATH) 
 
# Path to Shapes trained weights 
SHAPES_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_object_0050.h5") 

2.2.2. Configurations  

import sys 
import os 
import json 
import datetime 
import numpy as np 
import skimage.draw 
import cv2 
from mrcnn.visualize import display_instances 
from mrcnn.visualize import draw_rois 
from mrcnn.visualize import display_contours 
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import matplotlib.pyplot as plt 
 
# Root directory of the project 
ROOT_DIR = os.path.abspath("/content/drive/MyDrive/My 
Drive/Research/Thesis/Training/Project/main") 
 
# Import Mask RCNN 
sys.path.append(ROOT_DIR)  # To find local version of the library 
from mrcnn.config import Config 
from mrcnn import model as modellib, utils 
 

# Run one of the code blocks 
 
# Shapes toy dataset 
#import object 
config = CustomConfig() 
CUSTOM_DIR = os.path.join(ROOT_DIR, "mask_rcnn_object_0010.h5") 
 

from mrcnn.config import Config 
# Override the training configurations with a few 
# changes for inferencing. 
class InferenceConfig(config.__class__): 
    # Run detection on one image at a time 
    GPU_COUNT = 1 
    IMAGES_PER_GPU = 1 
 
config = InferenceConfig() 
config.display() 
 

2.2.3. Notebook Preferences    

# Device to load the neural network on. 
# Useful if you're training a model on the same  
# machine, in which case use CPU and leave the 
# GPU for training. 
DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0 
 
# Inspect the model in training or inference modes 
# values: 'inference' or 'training' 
# TODO: code for 'training' test mode not ready yet 
TEST_MODE = "inference" 
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def get_ax(rows=1, cols=1, size=16): 
    """Return a Matplotlib Axes array to be used in 
    all visualizations in the notebook. Provide a 
    central point to control graph sizes. 
     
    Adjust the size attribute to control how big to render images 
    """ 
    _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) 
    return ax 
 

2.2.4. Load Validation Dataset    

# Build validation dataset 
if config.NAME == "object": 
  CUSTOM_DIR = 
"/content/drive/MyDrive/Research/Thesis/Training/Project/main/Mask_RCNN-
TF2/data/testDatasets" 
  dataset = CustomDataset() 
  dataset.load_custom(CUSTOM_DIR, "val") 
elif config.NAME == "coco": 
    dataset = coco.CocoDataset() 
    dataset.load_coco(COCO_DIR, "minival") 
print(config.NAME) 
# Must call before using the dataset 
dataset.prepare() 
print("Images: {}\nClasses: {}".format(len(dataset.image_ids), 
dataset.class_names)) 
 

2.2.5. Load Model and run detection   

# Create model in inference mode 
with tf.device(DEVICE): 
    model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, 
                              config=config) 
 
# Set weights file path 
if config.NAME == "object": 
    weights_path = SHAPES_MODEL_PATH 
elif config.NAME == "COCO": 
    weights_path = COCO_MODEL_PATH 
# Or, uncomment to load the last model you trained 
# weights_path = model.find_last() 
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# Load weights 
print("Loading weights ", weights_path) 
model.load_weights(weights_path, by_name=True) 
 

# Run detection 
image_id = random.choice(dataset.image_ids) 
image, image_meta, gt_class_id, gt_bbox, gt_mask =\ 
    modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False) 
info = dataset.image_info[image_id] 
print("image ID: {}.{} ({}) {}".format(info["source"], info["id"], 
image_id,  
                                       dataset.image_reference(image_id))) 
# Run object detection 
results = model.detect([image], verbose=1) 
 
# Display results 
ax = get_ax(1) 
r = results[0] 
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],  
                            dataset.class_names, r['scores'], ax=ax, 
                            title="Predictions") 
log("gt_class_id", gt_class_id) 
log("gt_bbox", gt_bbox) 
log("gt_mask", gt_mask) 
 

3. Cleaning Path Generation  

3.1. Extraction of Contours 

# extract the contour through the display_contours function from 
visualize.py file 
c = visualize.display_contours(image, r['rois'], r['masks'], r['class_ids' 
dataset.class_names, r['scores'], ax=ax,title="Predictions") 
 
# store contour into an a x b matrix 
a = 2 
b = int(np.size(c)/2) 
mask = r['masks'] 
mask = mask.astype(int) 
y_coo = mask.shape[1] 
print(y_coo) 
# empty array to store data 
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mask_polygon = np.empty(shape=[0, a])  
# store all the coordinates into a list mask_polygon 
for j in range(b): 
    mask_polygon = np.append(mask_polygon, [[c[0][0][j][1], y_coo-
c[0][0][j][0]]], axis=0) 
 

# visulize the contour 
from shapely.geometry import Polygon 
from matplotlib import pyplot as plt 
from matplotlib.pyplot import MultipleLocator 
 
ax = plt.gca()  
x_major_locator = MultipleLocator(200) 
y_major_locator = MultipleLocator(200) 
ax.xaxis.set_major_locator(x_major_locator) 
ax.yaxis.set_major_locator(y_major_locator) 
plt.xlim(0,1024) 
plt.ylim(0,1024) 
 
# plot the contour 
poly = Polygon(mask_polygon) 
x, y = poly.exterior.xy 
plt.plot(x,y,color='orange') 
plt.show 
 

3.2. Calculation of two end-points 

size_of_list = int(np.size(mask_polygon)/2) 
print(size_of_list) 
   
# find the farthest two points 
Max_L = 0 
point = [] 
index = 0 
   
for i in range(size_of_list): 
    for j in range(size_of_list): 
      distance = np. linalg. norm(mask_polygon[i]- mask_polygon[j]) 
      if distance > Max_L: 
        point = [mask_polygon[i],mask_polygon[j]] 
        index = i 
        index_2 = j 
      else: 
        pass 
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      Max_L = max(Max_L, distance) 
 
# map the endpoints with the contour  
print(np.linalg.norm(point[0]-point[1])) 
 
plt.plot(point[0][0], point[0][1], "ro") 
plt.plot(point[1][0], point[1][1],"ro") 
 
x_major_locator = MultipleLocator(200) 
y_major_locator = MultipleLocator(200) 
 
ax.xaxis.set_major_locator(x_major_locator) 
ax.yaxis.set_major_locator(y_major_locator) 
plt.xlim(0,1024) 
plt.ylim(0,1024) 
 
p1 = [point[0][0], point[0][1]] 
p2 = [point[1][0], point[1][1]] 
 
plt.plot(x,y,color='orange') 
plt.show 
 

3.3. Path calculation 

# create a new list to store path coordinates 
print(mask_polygon[index]) 
print(i) 
new_size_of_list = size_of_list-1 
print(new_size_of_list ) 
path = np.empty(shape=[0, 2]) 
k = index+1 
l = index-1 
 
# calculate the center points from the endpoint p1 
while k!=index or l!=index: 
  if k == index_2 or l == index_2: 
    break 
  elif k <= new_size_of_list and l>=0:   
    new_point = 
((mask_polygon[k][0]+mask_polygon[l][0])/2,(mask_polygon[k][1]+mask_polygo
n[l][1])/2)  
    path = np.append(path, [new_point], axis = 0) 
    k = k + 1 
    l = l- 1 
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  elif k > new_size_of_list and l>=0: 
    k = 0 
    new_point = 
((mask_polygon[k][0]+mask_polygon[l][0])/2,(mask_polygon[k][1]+mask_polygo
n[l][1])/2)  
    path = np.append(path, [new_point], axis = 0) 
    k = k + 1 
    l = l- 1 
  elif k > new_size_of_list and l<0: 
    k = 0 
    l = new_size_of_list 
    new_point = 
((mask_polygon[k][0]+mask_polygon[l][0])/2,(mask_polygon[k][1]+mask_polygo
n[l][1])/2)  
    path = np.append(path, [new_point], axis = 0) 
    k = k + 1 
    l = l- 1 
  elif k<=new_size_of_list and l<0: 
    l = new_size_of_list 
    new_point = 
((mask_polygon[k][0]+mask_polygon[l][0])/2,(mask_polygon[k][1]+mask_polygo
n[l][1])/2)  
    path = np.append(path, [new_point], axis = 0) 
    k = k + 1 
    l = l - 1 
 

r_1 = int(np.size(path)/2) 
 
# transform the format of the list 
co_x = [] 
co_y = [] 
for h in range(r_1):  
  co_x.append(path[h][0]) 
  co_y.append(path[h][1]) 
 
# map the path with the detection image 
x1 = np.array(co_x) 
y1 = np.array(co_y) 
 
ax = get_ax(1) 
r = results[0] 
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],  
                            dataset.class_names, r['scores'], ax=ax, 
                            title="Predictions") 



 66 

log("gt_class_id", gt_class_id) 
log("gt_bbox", gt_bbox) 
log("gt_mask", gt_mask) 
ax.xaxis.set_major_locator(x_major_locator) 
ax.yaxis.set_major_locator(y_major_locator) 
plt.plot(x1, y1) 
plt.plot(x1,y1,color='white', linewidth= 5) 
plt.show 
 


