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Abstract

The nonlinear deformation of lattices with linear and nonlinear materials
is analyzed employing the Dynamic Relaxation (DR) method to solve the
equations of equilibrium. A new approach of considering the exact equations
of equilibrium is presented and the equilibrium configurations are obtained
as the steady state part of dynamical problems. Since all quantities may be
treated as vectors, thus eliminating the need for the calculation of a stiffness
matrix and its inverse, DR offers an attractive alternative. This solution
technique is applied in both pre and post-buckling analyzes for a variety of
different lattices. In the DR method the static solution represents the steady
state part of the dynamical response and equilibrium solutions obtained by
DR could be regarded as asymptotically stable. DR is applied to a variety
of example problems in which linear elastic materials are considered in two
ways:

(1) load control in which DR does not pick up the unstable branch on which
descending load accompanies increasing displacement.

(2) displacement control which traces the whole load-displacement (stress-
strain) curve as the stable solution.

The DR method is ideal for the case of large deformations (linear and non-
linear materials), which include limit points or regions of very soft stiffness
characteristics. The numerical procedure is also applied to include the anal-
ysis of nonlinear materials. The inelastic behavior of trusses is accounted for
by tracing the complete stress-strain relationships in the elastoplastic range.
The unloading characteristics of trusses in the post-critical elastic-plastic



stage are determined and the irreversibility of plastic strains are considered
through an incremental displacement procedure.

Where previous analytical, numerical or experimental results are available,
the present results for both linear and nonlinear materials are shown to com-

pare favorably.



Dedication

To my late mother (God bless her), my father, and my sister and brother



Acknowledgement

I am especially grateful to Dr. D.J. Steigmann for his valuable guidance
and support throughout the course of this work. I would like to take this
opportunity to sincerely thank Dr. M.G. Faulkner and Dr. A. Mioduchowski
for their help at various times. I would also like to thank Dr. A. Atai and
Dr. D. Raboud for their help. I would also like to thank the partial financial
support of Ministry of Culture and Higher Education of Iran and Natural
Sciences and Engineering Research Council of Canada. Last but not the
least, I would like to thank my late mother (God bless her) and my father
who were always great support for me.



Contents

1 Introduction
1.1 Mathematical Formulation . . .. ... .............
1.2 Solution Techniques for Tracing the
Post-BucklingPath . . . .. ... ... . ............
1.3 Imelastic Materials ... .....................
1.4 ThesisOQutline. . . .. ... ... ... ... ...........

2 Formulation of the Problem
2.1 Kinematics and the Basic Constitutive

2.2 'The Variation of the Potential Energy . . . . . . .. ... ...
23 Lattices . ... ... .. ... .. ... ..
2.4 Equilibrium Equations for Small Deformation . .. ... ...
2.5 NumericalResults. . . . . ... ... ..............

3 Numerical Method (Dynamic Relaxation)
3.1 Imtroduction . . ... ... ... ... .. ... . ... ...
3.2 Theory of Dynamic Relaxation . ................
3.3 Application of DR for Linear Deformations . . . .. . ... ..
3.4 Numerical Results. . . . .. .. ... ..............

4 Large Deformation of Structures by DR

13
16
23
26

40
40
41
43
46

51



4.1 Dynamics of Rods for Large Deformation

inSpace . . ... ... ... e e e 51
4.2 Two-Dimensional Large Deformation

(Using DR Method) . . . . ... ... ... ... . ..... 57
4.3 Three-Dimensional Large Deformation

(Using DRMethod) . . . . ... ... ... ............ 59
44 NumericalResults. . . .. ... ... .............. 62

5 Inelastic Post-Buckling Analysis of Truss Structures by DR126

5.1 Imtroduction ... ... ... .. ... ... . ... ... .. 126
5.2 Failure of conventional DR for inelastic material and introduc-

ingincremental DR . . . . .. ... ... .. .......... 128

5.3 Formulation of the Problem . . ... ... ........... 132

5.3.1 ConpstitutiveLaws. . . . . . ... .. .......... 132

5.4 DR Algorithm for Inelastic Materials . ... .......... 138

5.5 NumericalResults. . . . . ... ... .............. 139

6 Concluding Remarks 170

6.1 Summary and Conclusions . . . . . ... .. .......... 170

A SOURCE CODE 179



List of Tables

4.1 Geometry at the end of a curved cantilever under the action
ofadead tipload . . . . .. ... .. ... ... ........ 118
4.2 The numerical result for comparison of NR and DR methods
for nonlinear deformation of circular curved cantilever beam. . 122



List of Figures

2.1
2.2
2.3
24

2.5

2.6
2.7

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Linear deformation forspace truss . . . . ... ... ... ... 28
Linear out of plane deformation for plane frame . . ... ... 29
Linear deformation for spacetruss . . . . .. . ... ...... 31
Comparison of different boundary conditions for out of plane

deformation . .. ... ... ... .. ... ... ... ..., 33
Comparison of different boundary conditions for in plane de-

formation . . ... ... ... ... ... 35
Linear out of plane deformation for plane frame . . ... ... 38
Linear out of plane deformation for plane frame . . ... ... 39

Deformed configuration of the plane frame using F DM with
DR . . ... e e 47
Deformed configuration of the space truss using FEM with DR 49

Nonlinear deformation of a cantilever beam with DR. . . . . . 64
Nonlinear deformation of two-member truss with DR. . ... 67
Nonlinear deformation of two-member frame with DR. . ... 71
Nonlinear deformation of tower truss with DR. . . ... ... 78
Analysis of snap through for truss-arch with DR. . ... ... 80
Analysis of snap through for Fixed-fixed shallow circular arch

with midspan concentrated vertical load. . . ... ... ... 82
The snap through of space structure with one central load with

DR. . ... e e e 84



4.8 'The snap through of space structure with symmetric loading
with DR. . . . . .. . .. e
4.9 The snap through of space structure with non-symmetric load-
ingwithDR. . . ... ... ... .. ..., . ... ....
4.10 The snap through of planar structure with DR. . . ... . ..
4.11 The snap through of planar structure with DR. . . . .. ...
4.12 The snap through of space framewith DR. . . . . .. .. ...
4.13 The deformation of initially curved cantilever beam. . . . . . .
4.14 The deformation of initially circular curved cantilever beam. .
4.15 The buckling of a cantilever beam with NR. . . .. ... ...
4.16 The comparison of NR and DR methods for nonlinear defor-
mation of circular curved cantileverbeam. . .. ... ... ..
4.17 The nonlinear deformation of fixed fixed semicircle under pre-
scribed displacements in the middle.(using DR method) . . .
4.18 The nonlinear deformation of a structure with two circular
arcs (two 1/8 of a circle) under prescribed displacements in
the middle.(using DR method) . . . . . ... ..........
4.19 The nonlinear deformation of fixed free semicircle under pre-
scribed displacements. (using DR method) . . . ... ... ..

5.1 Figures used to justify using incremental-DR instead of con-
ventional DR. . . . . ... ... ... ... ... ...
5.2 Stress-strain relation for different materials . . . . . ... ...
9.3 Coding for different paths of elastic-hardening and nonlinear-
elastic . . ... ... L.
5.4 Flow chart for tracing the behaviour of elastic-hardening and
nonlinear-elasticmaterials . .. .. ... ... ... ......
5.5 Comparison of behaviour of different materials for two-member

5.6 Comparison of behaviour of different materials for space truss.

121

. 123

130



Chapter 1

Introduction

There are many structures of practical engineering importance which can be
modeled as long slender rods that undergo large three-dimensional deforma-
tions due to combined bending and twisting. A large deformation is one in
which the initial geometry is changed significantly during the loading. Much
work has been concentrated on the nonlinearities produced from changes of
the geometry, because these types of structures are more likely to fail due
to instability before significant nonlinear material response is observed. The
elastic stability analysis of structures is concerned with the calculation of
certain critical states at which the stiffness of the structure, with respect to
a small disturbing force, becomes singular.

Apart from the geometric nonlinearity due to the inherently large deforma-
tions these structures can undergo, nonlinearity may be introduced into the
problem through the materials used. Such structures could also have a mate-
rial nonlinearity which adds complexity to the problem. As a result we need
a method that is stable and works well for all situations.

Dynamic Relaxation (DR) is an explicit iterative method developed for static
analysis of structural mechanics problems. This thesis is concerned with the
application of DR to obtain solutions for structures undergoing large (nonlin-
ear) three-dimensional deformations considering different materials including
some exhibiting inelastic behavior.
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1.1 Mathematical Formulation

The equations of equilibrium governing the three-dimensional deformations
of long slender rods are well known. In his treatise on elasticity, Love [19]
presents a derivation of these equations based on that of Kirchhoff (1859).
In this presentation, the general case of a rod with two distinct principle
axes in the cross section is assumed. Extensibility is taken into account as
well. Landau and Lifshitz [16] derived the equations of equilibrium of the rod
based on an analysis of an arbitrary infinitesimal section of the rod. These
equations were expressed in terms of the tangent vector and its derivative.
Steigmann and Faulkner [36] obtained the equilibrium equations for a rod
using variational calculus to minimize the potential energy of the deformed
rod. The rod was considered to be a one dimensional continuum with a
strain energy which depends on the bending and twisting along the rod.
The equations obtained were identical to those of Landau and Lifshitz [16].
Steigmann [37] introduced a theory for spatial lattices in a variational setting
and derived necessary conditions restricting stable deformations. He obtained
the equilibrium equations for a lattice with extensible rods using variational
calculus to minimize the potential energy of the deformed lattice. This work
will be the starting point for what follows in this thesis. The modeling and
the mathematical formulation constitutes an important stage in the analysis
of a structure, but of equal importance is the use of efficient procedures for
the solution of the resuiting system of equations.

1.2 Solution Techniques for Tracing the
Post-Buckling Path

General computational techniques for the analysis of large deformations of
spatial structures have been extensively studied in recent years. The most
widely used method for the study of geometrically nonlinear problems is
the Newton-Raphson method. In the Newton type methods, a lot of effort
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has been devoted to the correct formulation of the linearized incremental
stiffness matrix from the governing nonlinear equations. The main drawback
of the procedure is the considerable computational effort to calculate the
tangent stiffness matrix by numerical or analytical differentiation at each
iterative step. There is also a difficulty in surpassing critical points where
the tangent stiffness matrix becomes singular. Although the methods based
on the minimization of the total potential energy overcome these difficulties,
running times and computer storage requirements become prohibitive for
large problems. In recent years several strategies have been proposed to
trace the nonlinear response from the pre-limit into the post-limit range.
Among these are simple methods for suppressing equilibrium iterations as
follows:

e Method of artificial springs.

In this method, artificial spring stiffness are added to the stiffness ma-
trix, to make it positive-definite through the load-deflection range (35].
A load reduction factor is then applied to get the actual external load
on the structure. For simple structures and load patterns, this method
is very attractive as it requires the addition of only one spring. How-
ever, for multi-degree-of-freedom problems, this method does not seem
to be mathematically justifiable. Also, the addition of artificial springs
destroys the banded nature of the stiffness matrix.

e Displacement incrementation method
The most often used method to avoid the singularity at the critical
points is the interchange of dependent and independent variables. Here
a single displacement component selected as a controlling parameter is
prescribed and the corresponding load level is taken as unknown. The
method was initially proposed by Argyris [2] and, modifications were
suggested by Pian and Tong [26]. A valuable contribution in this field
has been made by Batoz and Dhatt [5] as they have proposed an in-
cremental displacement algorithm which does not destroy the banded
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nature of the stiffness matrix. Powell [27] generalized this procedure
of displacement incrementation. From the pre-buckling analysis of the
structure, a monotonically increasing controlling displacement compo-
nent is selected and will be incremented. Although in most practical
structures it may not be difficult to identify this controlling displace-
ment, for large structures the choice may not be obvious.

e Arc-length methods.
It has been found that instead of incrementing a single displacement
component as in the displacement incrementation method, it is ad-
vantageous to increment the total displacement vector itself. To this
end, a parameter known as arc-length has been defined which limits
the load and displacement steps. A constrained equation for arc length
is written in addition to the N equilibrium equations to solve for N

displacements and one load parameter.

Riks [32] and Wempner [40] have proposed a constraint equation which
fixes the arc length in (N +1)-dimensional space. The iterations are car-
ried out on a plane normal to the tangent of the load-deflection curve.
However, the use of this constraint equation, in addition to the equi-
librium equations in the form suggested destroys the banded nature
of the stiffness matrix. This difficulty could be circumvented by the
two-step technique of Batoz and Dhatt [5]. Crisfield [8] has proposed a
constraint equation that fixes the arc length in N-dimensional displace-
ment space. The iterations are carried out on a sphere, over which the
arc length is constrained to lie. The banded nature of stiffness matrix
is retained using Batoz and Dhatt’s algorithm.

Another approach, the segmental shooting technique, was developed for
applications including the laying of offshore pipelines (Faulkner and Stredulin-
sky [11]) and the prediction of force systems produced by orthodontic reaction
appliances (Lipsett et al.{17]; Faulkner et al.[12]). This technique avoids the
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direct solution of the nonlinear boundary value problem by considering the
rod as being comprised of a large number of segments, each of which ex-
periences only small displacements so that a linear solution can be applied
over each segment. The total nonlinear solution is obtained by assembling
the segments together. This formulation was found to be well suited to in-
vestigate the development of multiple solutions (Faulkner et al.[13]; Lipsett
et al.[18]). This approach has been modified to take fully three-dimensional
deformations into account (Raboud et al.[28];Raboud et al.[29] and Raboud
et al.[30]).

An explicit vector method widely and successfully applied to a nonlinear
analysis of structural mechanics in general is Dynamic Relaxation (DR). The
object of this method is to trace step-by-step, for small time increments At,
the motion of a structure from the time when it is initially loaded to the
time when, due to imposed damping, it reaches a steady equilibrium state.
In this method, the solution is found as the steady state part of the response
of the dynamic problem formed by considering the equations of motion of
the structure. The DR. method is a stable method and does not require the
computation or formulation of any tangent stiffness matrix.

In this field there is no proof of dynamical stability of the equilibrium
configurations and also no proof of Lyapunov stability. However we can
claim that the equilibrium configurations that we calculate are necessarily
asymptotically stable with respect to dynamic chosen.

This method will be used for solving the nonlinear equations of equilib-
rium (with both linear and nonlinear materials). A standard central differ-
ence scheme is applied to the resulting nonlinear equations of motion and
are recursively solved to obtain the equilibrated displacement field under a
given loading or prescribed displacement.
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1.3 Inelastic Materials

A realistic treatment of the behaviour of structures should include material
nonlinearities together with geometric nonlinearities. In solving the equilib-
rium equations for inelastic materials the main principle to be considered
is the path-dependent nature of the stress-strain curve during loading and
unloading. Incremental-DR is a method which could be used for structures
subjected to both material and geometrical nonlinearities with path depen-
dent behaviour. In this technique, loading and prescribed displacements are
considered in a incremental way. At the beginning and end of each increment,
the structure is equilibrated by solving the nonlinear equations of equilibrium
using DR.

In this work we apply DR to investigate the geometric and material non-
linearities of space trusses. When dealing with path-dependent problems, the
incremental-DR technique is used, noting that in each iteration of DR, the
stress state should be compared with that of the beginning of the increment
to determine whether the structure is being loaded or unloaded. We explain
more about incremental-DR in chapter 5. The behaviour of two structures
considering Nonlinear elastic, Elastic-perfectly plastic and Elastic-hardening
materials is studied and irreversibility of the strains under plastic loading is
investigated.

1.4 Thesis Outline

Our contribution is that we applied variational procedure to derive the ex-
act equation of equilibrium for the spatial lattices and used finite difference
scheme to discretize them. Then we used Dynamic Relaxation method to
solve for the deformed configuration. This technique has been used for non-
linear static analysis of other structures, such as cable networks and mem-
branes. We used this method to analyze the behavior of a variety of structures
consisting of extensible rods and derived some interesting results. We also
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modified Dynamic Relaxation and used the incremental Dynamic Relaxation
method to study the large deformation of inelastic response of structures and
elasto-plastic response of nonlinear materials with path-dependent behavior.
Now we give a brief description of each of the following chapters of the thesis.

Chapter 2 describes some of the background theory concerning the kine-
matical and constitutive foundations for three-dimensional deformations of
extensible spatial rods. Also, the equilibrium conditions at the nodes of the
lattice associated with various types of nodal constraints are derived. The
equilibrium equation for linear deformations of elastic materials are derived.
As well, some general results are presented for linear elastic deformations.

In Chapter 3, the Dynamic Relaxation method is presented. The appli-
cation of DR to linear deformations employing the Finite Difference Method
and the Finite Element Method is given. Some results are presented using
DR to verify the numerical procedure.

Chapter 4 considers the dynamics of rods for large deformations in space.
The DR is then formulated to solve the nonlinear equilibrium equations for
nonlinear elastic materials in two and three-dimensional deformations. Nu-
merical results are then presented for a variety of problems. These are com-
pared with previous analytical, numerical or experimental results to assess
the effectiveness of the numerical technique.

Chapter 5 considers an application of the DR to include materials with
inelastic behavior . Failure of conventional DR for inelastic material and
introducing incremental DR is explained here. Some numerical results are
also presented to illustrate the application of the DR algorithm.



Chapter 2

Formulation of the Problem

In this chapter, we use the nonlinear variational theory for three-dimensional
deformation of extensible spatial rods. This derivation closely follows the
work done by Steigmann [37] since the subsequent work is based on his work.
This theory is based on the notion of a one-dimensional continuum endowed
with a kinematical and constitutive structure sufficient to represent the dom-
inant features of the mechanics of suitably loaded thin three-dimensional
elastic bodies. This theory belongs to a general class, ranging from flexi-
ble cables to rods with significant flexural and torsional rigidity, that has
received considerable attention. An extensive account of such theories and
their mathematical structure may be found in Antman’s book [1].

In this chapter, section (2.1) is devoted to a brief discussion of the kine-
matical and constitutive foundations of the theory under consideration. The
framework used here generalizes the viewpoint adopted in [36] for inextensi-
ble rods. In section (2.2) the expressions for the first and second variations
of the strain energy are presented based on a local characterization of kine-
matically admissible configurations.

The results are used in section (2.3) to obtain the Euler equations of
equilibrium. These are identical in form to the well known statical equations
of rod theory. Also the equilibrium conditions at the nodes of the lattice
associated with various types of nodal constraints are derived. These, too,
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correspond to the conditions that would be obtained from elementary con-
siderations. In section (2.4) the equilibrium equations for linear deformation
of an initially straight rod with isotropic material and circular cross-section
are derived using this theory.

2.1 Kinematics and the Basic Constitutive
Hypothesis

Configurations of spatial rods are defined by mappings of an arclength pa-
rameter S € [0, L] onto {r(S),e;(S)};i=1,2,3 , where

e S is the initial arclength in a reference placement that varies in the
domain [0, L]

e 5(S) is the deformed arclength that varies in the domain [0, {]

o ©(s) = £(s(S)) = r(S) is the position vector of points on the rod in the
deformed configuration relative to a fixed origin

o e;(S) are the vector-valued functions that specify the orientations of
cross-section in the deformed configuration

In the reference configuration the functions r(S) and e;(S) take the values
X(S) and E;(S), respectively.

We take E;(S) to be an orthonormal set in which E;(S) is the unit
tangent to the space curve defined by X(S) : E;(S) = X'(S). Henceforth
prime means derivative with respect to S. The vectors E,;(S) and E3(S)
span the plane normal to the curve at arclength station S. In principle,
there is no further restriction on the specification of these vectors, but it
is frequently advantageous to define them so that E; - E; x Ez = 1 with
E,(S) and E3(S) along the geometric principal axes of the cross-section. We
consider a constrained theory in which the set {e;(S)} is orthonormal at
every cross-section, with e; - e; x e3 = 1, and also let e;(S) coincide with
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the unit tangent to the space curve defined by r(S). Thus we get e; = &£ ,
comparing to E; = ££. We then have

,_dr ds
== (2.1)

or r'=)e (2.2)

r

where A = £ = || is the local stretch of the rod. Note that in the un-

stretched configuration A(S) = 1.
The deformation gradient is defined by

dr(S) = FdX(S) (2.3)
We can write
dr =r'(S)dS (24)
or
dr = Ae;dS (2.5)

But since dX = X'(S)dS = EdS, so
dS = E1 . dX (2.6)

Substitution Eqn.(2.6) into Eqn.(2.4) gives

dr = e, (E; - dX) 2.7)
or
dl' = (Ael R El)dX (2.8)

Comparing Eqns.(2.3) and (2.8) gives the deformation gradient as
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F= /\61 ® E1 (2.9)
or
F=r(S)®E; (2.10)

Moreover, the constraints on {e;} and {E;} imply the existence of a rotation
R(S) (detR =1, RT =R"!) such that

e:(S) = R(S)Eq(S) (2.11)

In particular,

R=R1l= R(E, & E,) = (RE,) RE;=e;E; (2.12)

where 1 is the unit tensor for 3-space.

A kinematical framework of this type is appropriate when modeling the
response of thin extensible rods in which shear of the cross-section, relative
to the rod axis, is suppressed. We refer to Antman [1] for comprehensive
discussion. The kinematical description is completed by introducing a tensor
W defined by:

W=e’,~®e,-=W,-je,~®ej ’ VV,,=e,ej (213)
This furnishes the rate of change of {e;} with respect to S:
e; = We; (2.14)

The orthonormality of e; implies that W is skew i.e. WT = —W. Thus
W (S) is equivalent to a vector-valued function w(S), in the sense that Wu =
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w X u for any vector u. The use of w allows Eqn.(2.14) to be written in the

form
ei=wxe; (2.15)

The relation between the components w;(= w - €;) and V;; is well known:

1
w; = Eeijkaj ) Wij = w; ey (2.16)

where e;jx is the usual permutation symbol (e;23 = 1).
Let 2 be the skew tensor defined by

Q =RTWR = W,;(E; ® E;) (2.17)

and let & = k;E; be its vector-equivalent, then we will have

1
ki = eiWiy ; Wi = ki eiji (2.18)

Evidently k; = w; and w = Rk. It is easy to show that A and & are invariant
under superimposed rigid deformation

r(S) = Qr(S) +c, e(S)=Qe;(S), €:i(S) = Qe'i(S) (2.19)

where Q is an arbitrary fixed rotation and c is an arbitrary fixed vector.
Because of this invariance property, it is natural to formulate a theory for
elastic rods by introducing a strain energy, w, per unit length of the reference
placement, that depends on ), x and «°

w = w(), K, k?) (2.20)

where k) = 2e;;xEy - E'; which are the values of k;(S) in the configuration
{X,E;}. We will leave any dependence on arclength S that arise due to
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nonuniformity of the material properties, or the presence of non-zero values
of functions £?(S) tacit, and we just consider w = w(\, k), as it does not
affect the considerations of this work.

A model of elastic cables may be obtained by eliminating k:(and £?)
from the list of arguments of the strain energy function. Alternatively, if
dependence on A is eliminated (i.e. by setting A = 1), we recover the theory
of inextensible rods considered in [36]. Retention of the full list enables us
to consider a wide range of problems using a single theory.

2.2 The Variation of the Potential Energy

The total potential energy of the rod is the sum of strain energy, the potential
energy of external loading like Dead-load end (fr,fo) and the distributed
forces (b).
L
E= /O (w(\ k) —b-1)dS — (£ - o(L) + £ -£(0))  (2.21)

We minimize F to obtain the equilibrium configuration.

Let us consider a family of kinematically admissible configurations
{r*(S;€),€;(S;€)} with {r*(S;0), e}(S; 0)}={r(S), e:(S)} an Energy-minimizing
configuration. Here kinematic admissibility means that, for each fixed ¢ ,
r*(S;¢€) and ef(S;¢€) are at least piecewise C? on [0, L] and satisfy (2.2);

F=Aep; A= (2.22)

Let us just consider the strain energy of the rod which is the functional of
the configuration {r*,e}}

L
Es = / w(A, k)dS (2.23)
0
Then the first and the second variations of E; at the configuration {r,e;} are

) L aw o
B, = /0 (G5 + (532 2)kids (2.24)
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and
/; [( £ )(,\)2 + (Ex)/\ +2D; hA + C,,k Ic + M; Ic :]dS (2.25)

respectively, where

ow Pw Pw
P Di=—: i = . 2.26
M=o ook ' 9 = Bk (2-26)
Also we define
M= M,-e,-, D= D,-e,-, C= C,-jei ® e; (2.27)

In the next section we interpret M as the moment exerted on the part [0, S)

of the rod by the remainder [S, L]
Henceforth in this chapter, (o) denotes denvauve of function with respect

to € , evaluated at €e=0. The {/\ k ;} and {A L,} are the first and second
variations of {A, k;} induced by the variations of {r*,ef}. To analyze the
structure of these variations near e=0 , we write

e*i(S,€) = ei(S) +cei(S) + -52‘3’,(5) + o(e?) (2.28)
r*(S,e) =r(S) +¢eu(S) + —e 2v(S) + o(€?) (2.29)

where u=r and v=T.
Since {e}(S;e)} is an orthonormal basis for all S € [0,L] and € €

(—601 50)1
i.e. in every kinematically admissible configuration as Eqn.(2.11) we have
e.i(ss E) = R.(S: E)E,(S) (230)

where R*(S, €) is a rotation. Then

dt_ i = "\T & __ s =
dee,—(dER)(R)e,—ae, (2.31)
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where a*(S,¢) is a skew matrix. Then introducing a*(S,¢) as its vector-

equivalent we have
;Ze'i =a" x e’ (2.32)
Let a(S) = a*(S,0), then we have
e;=axe; (2.33)
Further differentiation of Eqn.(2.32) yields
e;=ax(axe)+bxe; (2.34)
where b(S) = £°|._,. Also we have

A(S,€) = A(S) +eA(S) + 5523’(5) +o(e2) (2.35)

On combining this with (2.28), (2.29) and the constraint (2.22), we obtain
the compatibility conditions

u'(S) = :\el +laxe = :\el +axr (2.36)
and
v/(S) = 2:\(/\a xe)+ax(axr)+ i{,el +bxr (2.37)

Formulae for the first and second variations of «}(S,e) may be derived
from (2.13) and (2.18):

o
= .

Ky = eijk(é,k -e'; +ec-€'y) (2.38)

N | =

Using (2.33) gives

o 1
Ri = segelaxex-ej+ep-(a' xej+axe) (2.39)
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The terms involving a cancel, and we obtain

o 1 1
K = §eijka' -ej X e =a - (Eeijkejkmem) (2.40)

One of the e — § identies furnishes the result
foci = ei . a' (2-41)

With the use of (2.34), we may also show that

Qo

K;=e;-a xa+e;-b (2.42)

2.3 Lattices

Consider a network consisting of n rods, the jth rod has the arclength L;
in its reference configuration. These rods are connected at ! unconstrained
nodes located at the positions xi; k = 1,...,[. After deformation, the nodes
displaced to the (unknown) positions y;. Let the set of all unconstrained
nodes be denoted by K. We let m nodes, belonging to the set H, be fixed
at prescribed positions z,; h = 1, ..., m. At each of the unconstrained nodes,
a dead load qy, k£ € K is applied. The collection of all node labels is K| H.
The deformed configuration of the jth rod is described by the vector-valued
position function r;(S;) and the orientation traid {e;(S;)}; where S; € [0, L]
is the reference arclength along the jth rod. Following Cannarozzi [6], we
introduce the sets

Iy={j:5;=0 atnodeke€ K}
E, = {_7 : SJ‘ = Lj at node k € I(} (243)

and

In={j:S;=0 atnodehe€ H}
Ey ={j:Sj = L; at node h € H} (2.44)
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Henceforth we use superscripts 0 and L to denote the values of functions at
Sj = 0 and S; = L; respectively. Thus

rg = rj(O) and 1'1[-' = rj(L,-) (2-45)

These are subjected to the following continuity constraints

)=y JjE€IL
L 2.46
{ 1‘%’ =Yr JEE (2:46)
and
)=z, jE€I
{ g (2.47)

The potential energy, E, of a configuration of the entire lattice, suppressing
the distributed forces, is

n l
E=) Ey=) a¥x (2.48)
k=1

j=1

where Eg; is the total strain energy of the jth rod. A configuration of the
lattice is equilibrated if and only if the associated first variation of the energy
vanishes for all admissible variation of the kinematical variables:

no {
0=> E;— ;qk.uk; W=y, (2.49)
=1

1

where using Eqns.(2.24),(2.26),(2.28),(2.36) and (2.41) gives
o Lj
E,; = / [(%z;\l{)el -u'+M-a'ldS (2.50)
0

in which the index j has been suppressed in the integrand for the sake of
clarity.
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To proceed it is necessary to account explicity for the fact that the varia-
tion u(S) and a(S) are not independent. In particular, scalar multiplication
of (2.36) with e,(a = 2, 3) furnishes the constraints:

u-e,+r'raxe,=0; a=2,3 (2.51)

Using this we have loi‘ s; = T, where

LJ
T; = ( )e1 u+M-a' +F,(u'-e,+1r'-axe,)ldS (2.52)
L;
T; = [F-u+M-a' +r'-ax (F,e,)dS (2.53)
0
where F,(S), a € {2, 3}, are Lagrange multipliers, and
ow
F= (a—/\)el + F,e, (2.54)

Since r’ is parallel to e;, the last term in Eqn.(2.53) can be replaced with
a-F x r/, and integration by parts yields

T; =U; +F}-u} + MF-al —F9-uf — M} - a) (2.55)
where
L;
U= - / [u-F +a- (M —F xr')dS (2.56)
0

These expressions may be used to reduce the stationary-energy condition,
Eqn.(2.49), to

0= Uj-— Zuk [ — (Y FF - FY]

j=1 k=1 JEE: €l
{
S M af - M ) a0
k=1 j€EE; JEl:

+Z(ZM[’ -aj —ZMO

h=1 jEE, Jely
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wherein we have imposed the constraints

W=uw, jEL uf=w, jEE; ul=0, jEh; uf=0, j€E,
(2.58)
Restrictions on the virtual rotations ag and aJ’.‘ must also be imposed in
accordance with the particular type of nodal connection under consideration.
Now Eqn.(2.57) must be satisfied for all admissible u, aj and af. Null
values of these variations are admissible in all lattice types, and for this
choice (2.57) requires that the sum ) U; vanish. By choosing u(S) and
a(S) to be non-zero in each of the n rods in succession, we conclude that
U; =0;j = 1,...,n, where Uj is given by (2.56). The multiplier rule [10] of

the calculus of variations then yields the equilibrium equation in each rod:

F'=0, M=Fxr (2.59)

These are identical to the classical equations of rod theory [5], in the absence
of distributed load, provided that F(S) and M(S) are identified with the force
and moment, respectively, exerted by the part [S, L] on the remainder [0, S).
The moment is given by the constitutive equation (2.26) with (2.27). In view
of (2.54), it is only the tangential component of the force that is determined
by a constitutive equation. The transverse components F,, are shear reactions
that are workless in any variation of the configuration compatible with (2.51).
They are determined by equilibrium considerations alone.

With (2.59) satisfied in each rod, all of the Uj in (2.57) vanish, and the
remaining expression must be satisfied for all u; and for all admissible af
and a}. On setting aJ = 0, af = 0 and taking all but one of the uy to be
zero in succession, we obtain the nodal force balance equations

Y FF-Y Fl=q, keK (2.60)

JEE: JEI
These require that the net effect of the nodal reactions (the forces exerted
by the nodes on the rods) be such as to balance the applied forces.
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Additional equilibrium conditions may be derived, but these vary depend-
ing on the class of nodal constraint. We present discussions of three of these
classes.

(a) Unrestricted rotations

If the rod rotations are unrestricted at the nodes, then there are no kinemat-
ical constraints on virtual displacements or rotations beyond those that have
already been imposed. Nodal connections of this type are appropriate in a
theory of cable networks, or in models of ball and socket joints in structural
lattices.
For illustrative purposes, suppose that a particular node &’ € K is of this
type. Then a necessary condition for (2.57) is
d o Mf-af— > MI-al=0 (2.61)
JEEu JE€Ly
For each j € Ey |J Iis, the a? and aJ’-' may be specified independently, so the
node is equilibrated only if it transmits no moment to any of the attached
rods:

M{=0, jely ; Mi=0, jeEw (2.62)

(b) Rigidly constrained rotations

Once again we focus attention on a particular ¥’ € K for the sake of illus-
tration. Suppose the nodal connection is rigid in the sense that, for any two
values of j in the set E |JIw, the angles formed by the triads {E;}$ and
{E:}} are preserved under deformation. This is equivalent to requiring that

Ri=Ry , j€Iy ; Rf=Ry , jEEW (2.63)

for some rotation Rys, where R? and R’ are the endpoint values of the rod
rotation R defined in (2.12). If such conditions are imposed in all configura-
tions, then (2.31) may be used to derive an associated set of restrictions on
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the virtual endpoint rotations:
ag:ak:, jeIkI; a_-,p:ak’ ’ jeEk' (2'64)

for some arbitrary vector a.
In the present case (2.61) remains valid, and (2.64) yields

ap - pp =0, forall ap (2.65)
where
b= 3 ME- M (256)
JEEW jely

Thus the net moment at the node vanishes: g;, =0

(c) Concurrent azes of rotation

As a final example, let the rods joined at node k¥’ € K be constrained in
such a way as to pivot freely about a common axis with orientation N in the
reference configuration of the lattice. Then the endpoint rotations R? and
RFE are such that

RiN=n, jelx ; R/N=n, j€Er (2.67)

where n is the pivotal axis in the deformed lattice. We take N and n to be
unit vectors without loss of generality.
The variational versions of (2.67) are

ajxn=8, jely ; ajxn=B, j€FEp (2.68)
where

(2.69)

[
[
Bo
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is the variation of n. We note that #-n = 0 because n is a unit vector. Now
any vector a may be represented in the form

a=(n-a)n+nx (axn) (2.70)

so that

a3 =aln+nxpB and al=cfn+nxg (2.71)
for some scalars of, af.
Substitution of (2.71) into (2.61) yields

O=Zafn-M§'—Zagn-M2+an-pk, (2.72)
J.EEH 13 Y]

where p;, is given by (2.66). This must hold for arbitrary af,oF, and for
any S perpendicular to n. By setting 8 = 0 and all but one of the a’s equal
to zero in succession, we derive the necessary conditions

n-M2=0, jelv ; n-ME=0, je&y (2.73)

Thus the node transmits no azial moment to any of the attached rods. Fi-
nally, the last term in (2.72) requires that ;. be orthogonal to any vector in
the plane perpendicular to n, so that g, = (n- g )n. But

n-opgp=» n-M/-> n-M (2.74)

JEE., JEI,

and this vanishes by (2.73). Thus there is no net moment at the node:
K = 0 (2.75)

Considering Examples (2-4) and (2-5) shows that a concurrent axes of
rotation node behaves like a rigid node for the pure out of plane deformation
and like a pinned node for the in plane deformation, which is reasonable.
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2.4 Equilibriuia: Equations for Small Defor-
mation

Consider initially straight rods, for the isotropic material and circular cross-
section the strain energy, w, per unit length of the reference placement, can
be written as

w(\ k) = %El(n% + K2) + %GJK% + %EA(A —-1)? (2.76)

where EI and GJ are flexural and torsional rigidity. The last part of this
equation is due to the extensibility of the rod. Using Eqns.(2.27), (2.26) and
(2.76) gives

M = FI(kse; + £3€3) + GJK € (2.77)
Using Eqn.(2.15) and since &; = w; we get
€| = Kzex — Kpe;
ey, = Kkie3 — Kze; (2.78)
€'s = Kpep — K1€2
Using Eqns.(2.78) and (2.77) gives the constitutive equation as
M= Ele; xe'| + GJk e, (2.79)
Also using (2.54) and (2.76) gives
F=FA(A—1l)e,+ F,eq; a=2,3 (2.80)

Suppose the deformed curvatures and twist are not too large, and let
(r*,ef) be a one-parameter () family of equilibrium configurations. So we
have

el =e; +né; +o(n)
r* =r+nu+o(n) (2.81)
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Associated with these, there will be small changes in F and M as

F*=F +nF + o(n)
M* = M + 1M + o() (2.82)

Equilibrium of the stared-configuration implies that
(F*)Y'=0, M*) =F*x (*) (2-83)
and also we have
F'=0, M=Fxr (2.84)

Substituting (2.82) into (2.83) with (2.84) and dividing the result by 5 and
let n = 0 we get

FF=0, M=Fxr+Fx# (2.85)

We could also get these equations with taking the derivatives of equilibrium
equations (2.59) with respect to n at n = 0.

Taking derivatives of equations (2.79) and (2.80) with respect to 7 at
1 = 0 gives the linearizations

M = EI(&, x €'; +e; x &) + GJ(Rre; + £1&;) (2.86)

F = EAde; + EA(A — 1)8, + Fo8, + FLeq (2.87)

Since at the undeformed configuration before applying the load we have F =
0,k=0and A=1so0

e;=0, r=e¢e (2.88)
Using these Eqns.(2.85), (2.85) and (2.87) can be simplified as

FF=0, M=Fxe (2.89)
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M = El(e, x &) + GJie (2.90)

F = EA)e, + FLeq (2.91)

Taking derivative of Eqn.(2.90) with respect to arclength S gives

M' = El(e, x &") + GJR,e, (2.92)
Considering Eqn.(2.81) gives
& =u (2.93)
Taking derivative of equation u = u;e; with respect to S and using (2.88)
gives
u' = uje; (2.94)
Using Eqns.(2.93),(2.94) with (2.92) gives
M' = El(e, x u™e;) + GJR\e, (2.95)
After applying the nodal force P = p;e; we have
F=P=npne (2.96)
Considering (2.95) with the equation (2.89) for the moment with (2.96) gives
Eluy =-p., a=2,3 GJR;=0 (2.97)
Also considering (2.96) with (2.91) gives
EAX=py, Fy=p,, =23 (2.98)
Using results analogous to Eqn.(2.36) gives the compatibility conditions as

ul =1, up=Aas, uj=—Aap (2.99)
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where a, and a3 are the infinitesimal cross-section rotations. With A =1 we
get

=4, uy=as u,=-a, (2.100)

Using results analogous to Eqn.(2.41) gives &; = a} , so applying this with
(2.97) gives

Elul) =—p,, «a=23 GJaj=0 (2.101)

Equations (2.98) and (2.101), are the linear equations of equilibrium for
the small deformation. So equations (2.98), (2.101) and (2.100) give the
deformation of a lattice for the small deformation. These equations have
been applied for different types of lattices with different kind of boundary
conditions which were mentioned in section (2.1) employing the FDM and
FEM. The Gauss-Elimination method was used to solve the equations of
equilibrium. The following section show some results of some of them.

2.5 Numerical Results

Example (2-1): The space truss shown in Figure (2.1a) was also considered
in [34] (page 207). In the initial configuration nodes 5, 6, 7, 12, 13, 14,19,
20, and 21 are in plane z = 2.5 ft; all other nodes have z = 0. Nodes
1, 4, 22, and 25 are restrained in the z, y, and z directions. Nodes 2, 3,
8, 11, 15, 18, 23, and 24 have applied loads of P, = 2.5 klb; nodes 9, 10,
16 and 17 have P, = 5 kib. All elements have a cross-section 1 in? and
E = 29000 kpsi. The deformed configuration shown in Figure (2.1b) is
scaled here. For the displacement u, at nodes 2, 5, 6, 9, 13, our results are
0.1339", 0.10523", 0.1508”, 0.1679",0.1679" , whereas the results given in [34]
are 0.134",0.105", 0.150",0.168",0.168".

Example (2-2): Here we consider the frame with the initial configuration
shown in Figure (2.2a) in the plane z = 0. The applied out of plane loads
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are Fy = 5 klb and F; = 1 klb. The material properties are £ = 29000
kpsi, G=20000 kpsi and the radius of the circular cross section is 1 in. The
displacements in the deformed configuration are u, = 2.72 in for nodes 9,
10, 16, 17 and u, = 3.561 in for node 13. The scaled deformed configuration
is shown in Figure (2.2b).

Example (2-3): Space truss shown in Figure (2.3b) is also considered in
[9] (page 165). Figure (2.3a) shows two views of the space truss. The rods
have a cross-sectional area of 10 cm?2, except for rods AB and BC which have
an area of 20 cm? and also E = 200 GNm~2 is for all rods. Our results for
displacements of node A are u, = —0.5469 mm, u, = 3.12601 mm, u, =0
and for node B are u; = —0.5103 mm, uy = 1.3418 mm, u. = 0.The results
given in [9] for displacements of node A are u, = —0.5476 mm, u, = 3.09846
mm, u. = 0 and for node B are u; = —0.5 mm, u, = 1.34375 mm, u, = 0.
The scaled deformed configuration is also shown in Figure (2.3b).

Example (2-4): The out of plane deformation for different boundary con-
ditions is compared here. From the scaled deformed configurations shown in
Figure (2.4) we see that the out of plane deformation for concurrent axes-
jointed node is the same as rigid-jointed node.

Example (2-5): Similar to the previous example the in-plane deformation
for different boundary conditions is compared here. From the scaled deformed
configurations shown in Figure (2.5) we see that the out of plane deformation
for concurrent axes-jointed node is the same as pinned-jointed node.
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Figure (2-2): Linear out of plane deformation for plane frame.
(@) Geometry of initial configuration
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Figure (2-3): Linear deformation for space truss.

(a) The elevation and plan views of the space structure.
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(b): Initial configuration and scaled deformed configuration.
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Figure (2-4): Comparison of different boundary conditions for out of plane deformation.
Initial configuration (thick line) and scaled deformed configuration (thin line) for
(a) Node A rigid-jointed

(b) Node A ball-jointed
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(c) Node A concurrent axes-jointed.
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Figure (2-5): Comparison of different boundary conditions for in plane deformation.
Initial configuration (thick line) and scaled deformed configuration (thin line) for
(a) Node A ball-jointed

(b) Node A rigid-jointed
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(c) Node A concurrent axes-jointed.
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Example (2-6): The plane frame shown in Figure (2.6a) is also considered
in [9] (page 164). For the members 2-1-4 EI, = 15 MNm? and GI = 4
MNm?2. For members 1-3 and 1-5, EI, = 8 MNm? and GI = 2 MNm?.
Halfway along member 1 — 3 a load of 100 kN is applied in the z direction.
Our result for the displacement u. at node 1 is 4.69 mm, whereas the result
given in [9] is 4.69186 mm. The scaled deformed configuration is shown in
Figure (2.6b).

Example (2-7): The plane frame shown in Figure (2.7a) is also considered
in [9] (page 142). For the members 2-5 and 3-6 the flexural and torsional
rigidities are EI, = 6.4 MNm? and GI =4 MNm?. For all other members
El, = 12.5 MNm? and GI = 10 MNm?2. Equal loads of magnitude 50kN
are applied at points 5 and 6 in the direction normal to the plane of frame,
i.e. in the z direction. Our result for the displacement u. at nodes 5, 6
is 19.947 mm, whereas the result given in [9] is 20.011 mm. The scaled
deformed configuration is shown in Figure (2.7b).
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Figure (2-6): Linear out of plane deformation for plane frame with the applied load in the
halfway member 1-3.
(a) Geometry of initial configuration .

(b) Initial and scaled deformed configurations.
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Figure (2-7): Linear out of plane deformation for plane frame with the equal out of plane
applied forces at nodes 35, 6.
(a) Geometry of initial configuration

(b) Initial and scaled deformed configurations



Chapter 3

Numerical Method (Dynamic
Relaxation)

3.1 Introduction

The Dynamic Relaxation method has a very long history of success in seeking
the goal of equilibrium. It has been modified, adapted and enriched in many
ways. It has been successfully applied in many material nonlinearity prob-
lems to predict the collapse load of a structure. As the DR method needs
little effort for the solution, it can easily be combined with a very sophis-
ticated material model to solve highly nonlinear problems. Since 1970 the
DR literature has expanded considerably. More complex problems concerned
with a large variety of structural configurations have been analyzed using DR.
Geometrical and material nonlinearities have been successfully incorporated
into the procedure. The technique has been used for nonlinear static anal-
ysis of other structures, such as cable networks and membranes. Solutions
of plate and shell problems, especially the large deflection case, have also
been successfully obtained with DR. As well, a variety of other problems
such as the large deformation inelastic response of solids and Elasto-plastic
response of nonlinear materials have been solved using DR. For contribu-
tions to improvement of the DR method we should mention Underwood [39],

40



CHAPTER 3. NUMERICAL METHOD (DYNAMIC RELAXATION) 41

which presents a detailed review on the subject of DR, as well as an adap-
tive DR algorithm for nonlinear problems. Also, the paper by Papadrakakis
[22], which presents a method for a automatic evaluation of the DR iteration

parameters.

3.2 Theory of Dynamic Relaxation

The discretized equilibrium equations of a structure may be represented in
the general form Ku = F where K is the stiffness matrix, u is the displace-
ment vector and F is the vector of external forces.

A spatial discretization of the global equations of motion can be repre-
sented as a form of Newton’s second law as

Mi+Ca+Ku=F (3.1)

where M and C are mass and damping matrices. Henceforth in this chapter
dots indicate differentiation with respect to time. The response for this
motion is the sum of homogeneous part(transient response) and particular
part(steady state response). If the transient part dies out, we are left with
particular solution u* = K~'F which is what we want.

We intend to solve (3.1), for fixed F, in increments of time. For the n*

increment this equation can be written as
Mi™ + Ca®™ + Ku™ =F (3.2)

Using the finite difference technique with the central difference scheme we
can write

{0 = l—,(u+&)_‘?,‘(n—§) (3.3)

{ 1) = a@ouemn
At

where At is the fixed time increment. The expression for " is obtained by

the average

am+d) 4 gin-dH

2

a = (3.4)
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Substituting (3.3) and (3.4) into (3.2) we get the following formula

1+ = (AM + 10) (M - LC)alt P + (F — Ku®)] (3.5)
u+l) = u(  Ata+d)
The initial conditions for DR are of the form [39]
u® prescribed
Using (3.4) and the second of (3.6) gives
a3 = —a® (3.7)
then from the first of (3.5) we get
a®) = %EM“(F — Ku®) (3.8)
Now we can summarize the recurrence formula as
a®) = &LM-1(F — Ku®) forn=0
ant+) = (&M +1C)[(ZM - %C)ﬁ(’“%) +(F—-Ku™)] forn#0
ulr+) = ) ¢ Apgn+d) for all n
(3.9)

The DR algorithm then can be written as the following steps [39]
1. choose M and C; n = 0;u® given; x(® =0
2. check residuals R™ = F — Ku®™ if R(™) ~ 0 stop, otherwise continue

3. if n = 0 then a¥) = SLIM-'R® otherwise
a3 = (LM + 1C) (LM - LC)utD + R™)]

4. urtD) = g™ 4 Apn+a)

5. n=n+1; go to 2.
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3.3 Application of DR for Linear Deforma-
tions

(a) Employing the Finite Difference Method

The equations of motion for a space motion considering linear deformations,
ignoring the rotatory inertia pl, and including the damping terms are
pAit) + Cy ity — EAu] =
pAiiy + Cpiia + Elug” =0
pAiz + Cy iz + Elug" =0
pJb, + Co, 0, — GJB," =0

(3.10)

where 8, = a; is the twist angle.

For different classes of nodal constraint given in section (2.3), to get
the configuration in each time step, from the previous one, the appropriate
boundary conditions at the unconstrained and the constrained nodes should
be applied.

(b) Employing the Finite Element Method

Here we give the stiffness matrix K for some kind of different joints using
FEM (Bathe [4]).

(1) Rigid-Rigid jointed rod in space frame

The column matrices of force and displacement components are
P i _ di
e=(5) (&)

Pi=(F: Fu Fsi My My My) ; di=(uu uxn us O O 0y )

where now
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where o; = aqo; in which (@ = 1,2,3). The P; and d; are defined in similar
fashion with suffix j in place of 7 of course.
Then the stiffness matrix for this case is

K= ( ku Sym. )

k21 k22
where
AE/l
0 I12EL/P Sym.
k= 0 0 12EL, /13
= 0 0 0 GJ/l
0 0 —6EL/I? 0 4EL/l
0 6EL/2 0 0 0 4EL/l
AE/l
0 12ET. 3 / & S ym.
fo = 0 0 12EL /P
2= 0 0 0 GJ/
0 0 6EL/I? 0 4EL/l
0 —6EIL/I2 0 0 0 4EI/l
—-AE/l 0 0 0 0 0
0 —12EL/B 0 0 0 —6EL/I2
kot — 0 0 —12EL /B 0 6EL/P 0
A= 0 0 0 -GJ/l 0 0
0 0 —6EL /12 0 2EL/l 0
0 6EL; /12 0 0 0 2EIL;/1

(1) Rigid-Ball jointed rod in space frame

It will be assumed that end 7 is connected to a rigid joint whereas end j is
ball jointed and free of applied moment. The stiffness matrix for this element
will be derived by simply modifying the stiffness equations for the rigid-rigid
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jointed element by using the condition that the moment at end j has zero
value. The column matrices of force and displacement components are

Pi=(Fu Fu Fiui My M) )
and
Pi=(F; Fj Fy) ;

dj = (w; up uz)

Then the stiffness matrix for this case is

[ AE/i
0  3EL/B
0 0 3EL/13 Sym.
K — 0 0 —3EL/I* 3EL)/l
= 0 3EL/E 0 0 3EL/L

—AE/l 0 0 0 0 AE/l
0 —3EL/P 0 0 -3ELJ/I? 0 3EIL/B
0 0 —3EL/1® 3EL/? 0 0 0

(1) Ball-Ball jointed rod in space frame

The column matrices of force and displacement components simply are

Fy; Uy )
P——— ’ d:
( Fy; ) ( Uy

Then the stiffness matrix for this case is
—-AE/l )

_ [ AE[l
K= ( AE[l

—AE/l
Having assembled the stiffness matrix for the lattice and following the given
procedure in section (3.2) we could get the deformed configuration for the
linear deformation of the lattice.

di=(un us uz Oy O )

SEL/E )
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3.4 Numerical Results

Example (3-1). The linear deformed configuration of the plane frame shown
in Figure (3.1a) is derived using FDM with DR. For all members EA = 1000,
EI = 1000. The applied forces are F; = 0.1, F, = 0.05. The graphs (3.1b)
and (3.1c) show the time history for horizontal and vertical displacements of
node B respectively. As shown in these graphs, after sometime the transient
part of the response dies out, and the the steady state of the solution is left
which is the solution to the static problem. The scaled deformed configura-
tion is also shown in Figure (3.1a).

Example (3-2). The linear deformed configuration of the space truss
shown in Figure (3.2a) is derived using FEM with DR. This truss is also con-
sidered in [9] (page 165). For all members EA = 400 M N. The graphs (3.2b)
and (3.2c) show the time history for horizontal and vertical displacements of
node B respectively. As shown in these graphs, after sometime the transient
part of the response dies out, and the the steady state of the solution is left
which is the solution to the static problem. We should mention that FEM
would reach steady state part much faster comparing to FDM. The scaled
deformed configuration is also shown in Figure (3.2a). For displacements
node B our results are u; = 3.01 mm, u, = 0.952 mm , whereas the results

given in [9] are u, = 2.962 mm, u, = 0.94785 mm.
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A(0,0)

Figure(3-1): Linear deformation of the plane frame with the applied
forces at node B using FDM with DR.

(a) Initial configuration and scaled deformed configuration.
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Figure (3-2) : Linear deformation of the space truss with the applied
forces at node B using FEM with DR.
(a) Initial configuration and scaled deformed configuration.
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Chapter 4

Large Deformation of
Structures by DR

4.1 Dynamics of Rods for Large Deformation
in Space

To use DR for nonlinear deformations we derive the equations of motion for
large deformation. We only consider rods that are materially homogeneous
and composed of isotropic material. For evaluation of the internal terms
in the balance laws of linear and angular momentum, we assume that as a
rod deforms its cross sections remain planar, undistorted, and normal to the
axis. In this dynamical theory, as in the classical theory of the equilibrium of
elastic rods, linear constitutive relations implying proportionality of moment
and curvature are employed; it is because of the intrinsic nonlinearity of
geometrical effects accompanying the flexure and torsion of slender bodies
that the resulting field equations are nonlinear.

Now let’s find the relation between the orientation of the body-fixed axes
(oejeze3) in the deformed configuration with respect to the body-fixed axes
(OE, E,E;) in the undeformed configuration using three Eulerian angles. The
vectors ey, e3 are along the principal axes of the cross section. Now to find the
relation between {e;} and {E;}, assume the axes (oz;y;2;) is rotated about

o1
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the E3-axis by an angle §; with respect to the (OF,E;E3). Next (ozoy,2;)
is rotated about the y;-axis by an angle 6, with respect to the (oz;y2).
Finally, (oeieze3) is rotated about the z,-axis by an angle 8, with respect to
the (oz,y22,). Hence, we get

1 0 0 cosf 0 —sinb, cosf; sinf; 0
T=1{ 0 cosf sin#, 0 1 0 —sinf; cosf; O

0 —sin#; cos#, sinf, 0 cosf, 0 0 1
(4.1)
or
Ty Tz Tis
T=| Ta T2 Tz (4.2)
I3, T3 T33
where the elements of the transformation matrix T are
Tu = COos 93 COoSs 02, T[g = CO0s 02 sin 03, T13 = —sin 92
1-‘21 =C0Ss 03 sin01 sin 02, T22 =sin01 sin 02 sin03, T23 = COs 92 sin91
— cos @, sin 6, + cos 8, cos by (4.3)
T3, =cosf, cosfzsin by, T3 =cos b, sinf,sin b3, T33 = cos @, cos
+sin918in03 —COSO3SiD.01
Thus
e; =T E; (44)

Comparing this equation to Eqn.(2.11) we see that

T=RT (4.5)
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To describe the motion of the rod, let r(S,t) be the position vector of a
point on the deformed centroidal line and r,(S, Y, Z, t) be the position vector
of any other point p on the corresponding deformed cross section at time ¢.
Where Y, Z are the coordinates of the point p in the principal axes directions
(Bernard et al.[7]). We can write

1,(S,Y, Z,t) = £(S,t) + Yey(S,t) + Zes(S, t) (4.6)

Let the Piola stress vector at the point p be o = o(S,Y, Z,t) . The
resultant force at X, F(S,t), is the integral of the vector field o over the area

F(S,t) = / / odYdZ (4.7)

area

The resultant moment of o about the centeriod point is

M(S, t) = / / (Ye, + Zes) x cdYdZ (4.8)

grea

If body forces and tractions on the lateral surfaces are negligible, the balance
laws for linear and angular momentum including the damping terms yield

F = / / ptpdYdZ + / ctpdYdZ (4.9)
and

M +r'xF= //p(Yeg + Ze3) x £pdYdZ + //c()’ez + Ze3) x £p,dYdZ
area area
(4.10)
Here p is the mass density and c is the damping coefficient per volume in
the reference configuration and both are taken to be constant in space and
time. Substituting for r, and noting that Y and Z are not functions of time,
Eqns.(4.9) and (4.10) reduce to

F' = pAF + cAf (4.11)
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and

M’ + rxF= p13e2 X éz + p12e3 X 53 + CI362 X ég + c12e3 X é3 (4.12)

L= / / Z22dYdZ |, I = / / Y2dYdZ (4.13)

area area

where

The rods considered here will be assumed to be linearly elastic and have
a quadratic strain energy function, w, per unit length of the reference place-
ment. It is usually further assumed that w depends only on the difference in
curvature components of the rod (i.e. x2 and k3 as well as the twist per unit
length «,) between the deformed and undeformed (reference) configurations
(Love [19]). In the rod’s undeformed configuration &; take on the values «?
and we have

w(A k) = —E'Ig(fcg - 9) + EI3(A.3 —-r%+ —G’J(fcl - &2+ -EA(A —1)2
(4.14)

where

J= / / Y2+ 224Y gg 3¢ o2 )dvaz (4.15)
area
with ¢ the warping function for torsion given by the linear theory of elasticity.
For rods of circular cross section, ¢ vanishes.
Using Eqns.(2.27), (2.26) and (4.14) yields

M = EDL(r; — k3)e; + El(k3 — £3)es + GJ(k; — K3)e; (4.16)
Also using Eqn.(2.54) and Eqn.(2.76) results in
F = Fie; where Fi=FA\-1) (4.17)
Also we have

r= T,‘Ei and I‘, = TéEi (4.18)
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Using Eqn.(2.2) and (4.4) gives
ri=AT;  where A=|r] (4.19)
Using Eqn.(2.15) and since k; = w; we get
e'| = Kzep — Ka€3
9'2 = K1€3 — K3€; (4.20)
ey = Kpe; — K€,

‘Taking the derivative of Eqns.(4.16), (4.17) and also using Eqns. (4.20) yields

M' =GJkie, + Elkbe; + Elzkhe; + GJ(x; — £3)(k3e; — kaye3) (4.21)
+ EI2(I\‘.2 - Kg) (h’.lea - Ksel) -+ EIs(Es - lfg) (K:gel - Eleg) )

and

F' =F,-’e.- + F1 (1c3e2 —_ I€263) + Fz(l€193 bt I\‘.gel)
(4.22)
+ Fs (h’.gel - mez)

To make the calculations easier we express the Eqn.(4.22) in the reference
coordinate {E;} and Eqn.(4.21) in the body-fixed axes in the deformed con-
figuration {e;}. To express Eqn.(4.22) in the reference coordinate {E;} using
(4.4) gives

F' = TynE; (4.23)
where

m = F] — Fors + Fakg
M= le - F3K21 + Fllis (4.24)
s = F3 — Firy + Fory

Combining Eqns. (4.11) and (4.23) results in

Ti;imE; = pAT;E; + CAijj where 7=123 (4.25)
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Taking the dot product of the Eqn.(4.12) with e;, e, and e; respectively,
gives
M'.e, = plze3.8; — plye;.83 + clzes.6; — clzez.é;3
M'.e; — AF3 = plhe;.€; + clre; .83 (4.26)
M'.e3 + AFy = —plze;.8; — clze .62
Substituting Eqn.(4.21) into the equations of motion (4.26) yields

GJKZ'I + (EI3 - EIQ)I'Cgh‘g + EIQICgK.g - EI;;K,QK,g =p13e3.ég - plgeg.és
(4.27)

+ C[3€3.é2 - CIgeg.é3
ELky + (GJ — El3)k ks — GJIK3k) + ELkika—AFs = ple; €3 + cle).é;
Elsl‘ég + (EI2 — GJ)I'CP‘CQ —+ GJIszC? - E12K1K2+/\F2 = —plze;.€; — clze;.e;

Using Eqns.(2.18) and (2.13) results in
1 '
Ky = 5(6'2 re3 —ey-€'z)
Ko = %(3'3 -e; —e3-€) (4.28)
1
K3 = 5(3'1 re; —ey-€y)
Also substituting (4.4) into (4.28) yields
1
Ky = E(TéiTSi — T5;T34)
1
ke = §(T:;iT1i — T3;Ty;) (4-29)
1
K3 = §(T1'iTzi - leT;j)
Taking derivative of the elements of the transformations matrix T, Eqns.(4.3),
and substituting them into Equns. (4.29) and simplifying them results in
Ky = 9’1 - 0; sin 02
Ko = 0’2 cos 6, + 03 sin @, cos 8, (4.30)

k3 = —0,sin6; + 65 cos 8, cos b,
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Taking derivative of these Eqns. also gives
Ky =0] — 05 sin 6, — 836, cos 6,
Ky =05 cos6, — 8,8, sin 0, + 87 sin 8, cos O,
+ 836} cos 8, cos 8, — 630, sin 8, sin 6, (4.31)
Ky = — 05 sin 8, — 638} cos 6, + 67 cos 8, cos 6,

— 030, sin 8, cos 8, — 6368, cos b, sin b,

4.2 Two-Dimensional Large Deformation
(Using DR Method)

We consider the two-dimensional large deformation of a structure consisting
of initially straight rods (x® = 0) with circular cross-sections (El; = El3 =
ET) in which the axis of each rod lies at all time in the (E;, E;) plane. In
such a deformation «j is non-zero, while «; and «; are zero. Using (4.3) gives

Tu = Cos 03 T12 = sm93
T21 = —sin 03 1’22 = COs 03 (4.32)

Using Eqns.(4.29) with (4.32) results in
Ki=kKy=0 K3=0, (4.33)
Taking § = 63 and substituting Eqns.(4.33) into (4.20) gives
e =0ey, ey =—0¢ (4.34)
Using (4.19) with (4.32) gives
i = Acos@, ro=Asinf  where A =|r| (4.35)
Substitution Eqns.(4.33) into Eqns.(4.25) and (4.27) and simplifying yields

ELG" + \Fy = pI§ + cIf (4.36)
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and
Ficos@ — @ F,sinf — F,sinf — ¢’ F, cos @ = pAF, + cAr,

4.37
Fisinf+ &' F,cos 8 + F,cos 0 — @ Fysin @ = pAt, + cAr, (4.37)

For the thin rods we consider the form of the equilibrium equation of (4.36)
which becomes

EI8" + \Fy =0 (4.38)

We intend to solve (4.37) in increments of time. At the n‘® increment this
equation can be written as

M 5 + ¢ 7 — (Fi cos§ — §'Fy sin6 — Fisin — ¢ Fy cos )™ = 0
me, 7 + Crao) — (FYsin 6 + 0 Fy cos 0 + Fi cos§ — ¢ Fysin 6)™ = 0
(4.39)

where m,,, m,, and c,, ¢, are virtual mass and damping coefficients. In
DR we are not considering the real dynamics of the problem and the goal is
achieving the solution of the equilibrium equations. So the mass and damping
coefficients are not necessarily those of the structure and they should be
chosen in such a way that the number of iterations required for convergence
is minimized.

The DR algorithm then can be used as the following steps

1. choose n = 0;r; and 75 given; 7, =0 and 7, =0
2. use § = a.rcta.n;z and A = |r'| to get # and A at the n*® step
1

3. use F; = —E—f\‘"-' and Fy} = EA(A — 1) to get the shear and axial forces

at the n®* step

4. check R, and R, at the n® step
R™ = (F!cos§ — 6 Fysinf — Fisinf — ' F, cos )™
R™ = (F!sin + 8'F, cosf + F} cos 6 — 6' F, sin §)™
if R™ ~ 0 and R ~ 0 stop, otherwise continue
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iy 1
5. if n =0 then 7:{2) = -2TA:TR£O) and fgz) = %Rgo) otherwise

.(n+d _ .(n—3
A ;’ = (Fme, + $on) M (Fme, — den)T ;) + RV
.(n+3) - .(n—3)
o 2 = (&Me + 1) H(Eme, — Le)2 2 + RYY]

1 1
6. 1'1("+1) =,..l(n) +At1..£n+z) and 1'2("+1) — Tz(n) +At1"£n+z)

7. n=mn+1; go to 2.

4.3 Three-Dimensional Large Deformation
(Using DR Method)

Consider a structure consisting of rods which are initially curved and twisted.
For rods with the circular cross-section (El, = EI; = EI), simplifying
equations of motion (4.27) gives

GJI\‘.’l + EI(K;;Kg - I{glig) = p[(es.éz - eg.és) + cI(e3.é2 - 82.é3) (4.40)
EIcy + (GJ — EI)k1k3 — GJk3k? + EIk K — AF3 = ple;.&; + cle;.é3
Elky + (EI = GJ)k Ky + GJIKkaK] — EIR K + AFy = —ple,.&; — cle;.&;

Taking derivative of Eqn.(4.4) with respect to time and substituting them
into the first equation of (4.27) and simplifying yields

GJK, + EI(k3kd — k2kd) =pI(—26,05c050, — 203sin6, + 26;)

+ ¢l (26, — 2635in6,) (4.41)
Rearranging this yields
- - GJ , EI o b . . - .
mg, 0, + cp,6, — (71':1 + ‘T(I{3I€2 — KaKg) + mg, (6203cos8; + O3s5inby;) + cg,035inb2) =0

(4.42)

We intend to solve (4.25) and (4.42) in increments of time. At the nf*
increment Eqn. (4.25) can be written as

M 7 + e 7 — (Tae)™ =0; where k=1,2,3 (4.43)
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where m,,, m,,, m,,,my, and ¢,,, C,, Cr;, Cg, are virtual mass and damping
coefficients and should be chosen in such a way that the number of iterations

required for convergence is minimized.
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The DR algorithm then can be used as the following steps
1. Choose n = 0;71, 2, r3 and 6, given; ¥, =0, 7, =0, 73 = 0 and 6, =0

2. Use A= ||, 6, = armin——;:1 and 63 = arctan';? to get A, 0, and 63 at
the n step

3. Having 6,, 6; and 63 , using Eqns. (4.30) and (4.31) calculate «;, Ko,
k3 and K}, K, k5 at the n*® step

4. Using backward finite difference equations in time, calculate 6,, 65 and
927 93

5. Calculate the residual RS at the n* step from

n GJ EI
R( b= (2= 2 Ky + —(rcan2 — KaK3) + g, (6205050, + G3sinds) + cg, O35ind;)
6. Calculate
0'9) S R(O) forn=0
o.(n-i-l) -1 _ l o'(n—%) R(n) f
(Atmal + 3 091) [(Agmol 2091) 1 + o ] orn ?é 0
g,(n+1) — g (m 4 At()("+2) for all n

7. Check residuals R,; at n* step for j = 1,2, 3 from
(’1) (T ; )(n)
if R('f) ~0, R ~0, R™ ~ 0 and R,(,':) ~ 0 stop, otherwise continue

8. For 7 =1, 2, 3; calculate

L
1"1(-2) o R(o) forn=0
) _1

J(n+ ¥ = (Azm": 36) " l(@eme; — c,.))rgn 4+ R| forn#0
(D) = i) 4 Atr; :(n+3) for alln

9. n=n+1;goto2.
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4.4 Numerical Results

Example (4-1): The nonlinear deformation for a simple cantilever beam is
compared in Figures (4.1a) and (4.1b) considering Newton-Raphson and Dy-
namic Relaxation respectively. For the simplicity, for the property of beam
we considered FA = EI = 1 also the length of beam is assumed 1. The
applied forces are Fx, = Fx, = 1. In undeformed configuration the com-
ponents of position vector at free end, are considered X; =1, X =0. In
deformed configuration the components of position vector at free end, with
DR becomes r; = 2.09133 and r, = 0.8232, whereas with NR becomes
r; = 2.125 and r, = 0.8195. Using DR the time history of horizontal and
vertical position for the free end is shown in Figures (4.1c) and (4.1d). As
shown in these graphs, after sometime the transient part of the response dies
out, and the the steady state of the solution is left which is the solution to
the static problem. Also the time history of A for free end and distribution
of A for final result as a function of initial arclength in a reference placement
(S) is given in Figures (4.1e) and (4.1f).

Example (4-2): The two member truss shown in Figure (4.2a) was used by
many investigators to test the mathematical formulation and the numerical
solution procedure. Hangai and Kawamata [15] have previously analyzed this
truss by the static perturbation technique using various degrees of approxi-
mation in force-displacement relation. Papadrakakis [23] solved this problem
by DR method using a beam-column approach in the element formulation.
By assuming that each member is going to be straight in the deformation,
there would be an analytical solution for this truss (Bathe [4]). The results
obtained with the present approach appeared to be in complete agreement
previous results. The deformed configuration after the snap through is shown
in Figure (4.2b). In the load control for the increasing load Figure (4.2c) and
decreasing load Figure (4.2d) DR does not pick up the unstable branch, so
there is a jump in the graphs. In the displacement control with increasing the
prescribed displacement for node a DR gives the the whole load-displacement
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graph Figure (4.2e) as the stable solution. In displacement control we spec-
ify the displacement for a specific node (here node a), usually step by step,
then using DR we derive the displacements for the rest of the structure for
that given specified displacement. The external required force for equilib-
rium would be the negative of resultant of the internal forces at the specified
node (here node a).

Example (4-3): William’s toggle frame. This problem, shown in Figure
(4.3a) has been solved analytically and tested experimentally by Williams
[41]. In his analytical treatment of the frame, Williams took into con-
sideration the finite change of geometry as well as the effects of the ax-
ial forces on the flexural stiffness and the flexural shortening of the mem-
bers. Papadrakakis 23] used the beam-column approach to derive the non-
linear equilibrium equations, which were solved by DR procedure. Wood
and Zienkiewicz [42] have also investigated this problem employing an as-
sumed displacement finite element approach with 5 element per member.
Meeck and Tan [20] also used a beam-column large rotation formation and
Crisfield’s constant-arc length method. The deformed configuration after the
snap through is shown in Figure (4.3b). In the load control for the increasing
load Figure (4.3c) and decreasing load Figure (4.3d) DR does not pick up
the unstable branch, so there is a jump in the graphs. In the displacement
control with increasing the prescribed displacement for node a DR gives the
the whole load-displacement graph Figure (4.3¢) as the stable solution. In
displacement control we specify the displacement for a specific node (here
node a), usually step by step, then using DR we derive the displacements
for the rest of the structure for that given specified displacement. The exter-
nal required force for equilibrium would be the negative of resultant of the
internal forces at the specified node (here node a).
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Figure (4-1): Non-linear deformation of a cantilever beam with applied forces at free end .
(a) The deformed configuration is derived using FDM with Newton-Raphson method.

(b) The deformed configuration is derived using FDM with DR.
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Figure (4-2): The two-member truss with the vertical force applied at pin-jointed node a.
(a) The initial and deformed configurations (before the snap through).

(b) The initial and deformed configurations (after the snap through).
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Figure (4-2c) Analytical and numerical results of load-deflection curve for node a . (increasing load)
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Figure (4-2d) Analytical and numerical results of load deflection curve for node a. (decreasing load)
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Figure (4.2e) Analytical and numerical results of load-deflection curve for node a .
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Figure (4-3): The two-member framewith the vertical force applied at rigid-jointed

node a . (EA=1.855x106 Ib, EI=9.27x103 Ib/in2)
(a) The initial and deformed configurations (before the snap through) .

J

(b) The initial and deformed configurations (after the snap through) .
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Figure (4.3c) Load-deflection curve for node a. (increasing load)
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Figure '(4.3d) Load-deflection curve for node a. (decreasing load)
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Figure (4.3¢) Load-deflection curve for node a
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Example (4-4): This structure shown in Figure (4.4a) has been analyzed
by Powell and Simons [27]. They have adopted a displacement control strat-
egy where a monotically increasing nodal displacement was chosen to incre-
ment the solution. The comparison of our results using load control with
Powell’s ones is given in Figure (4.4b).

Example (4-5): This structure shown in Figure (4.5a) has been analyzed
by Meek and Tan [21] and also by Powell and Simons [27]. The comparison
of our results with the previous ones for nodes 18, 26 (previous authors
presented the results for these nodes only) is shown in Figure (4.5b). The
results shown for after snap through are not published by other authors.

Example (4-6): This frame shown in Figure (4.6a) has been analyzed by
Lipsett and Faulkner [18] using the segmental shooting technique by con-
sidering the rod as being comprised of a large number of segments, each of
which experiences only small displacements so that a linear solution can be
applied over each segment. The total nonlinear solution was obtained by
assembling the segments together. Surana and Sorem [38] also used Finite
Element method to analyze this problem. Our results (considering extensi-
bility) using DR are compared in Figure (4.6¢c) with the results of [18] (with
inextensible assumption). For a given force the midspan deflection would
be higher considering extensibility comparing to inextensible one. In other
word, to have a specific midspan deflection the required force would be less
for the extensible case comparing to inextensible one which is reasonable.

Example (4-7): The behaviour of the structure shown in Figure (4.7a) (24
member hexagonal star-shaped shallow dome) was investigated by Paradiso
et al. [25] where a secant-tangent approach is used with successive linear
approximations. Also the results obtained by Papadrakakis [23] which used
the beam-column approach to derive the nonlinear equilibrium equations
and used DR procedure to solve them. Due to the symmetry in the initial
configuration and loading the deformed configuration shown in Figure (4.7b)
is also symmetric. Figure (4.7e) shows the load-deflection in the z direction
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for central node 1. For node 2 Figures (4.7f) and (4.7g) show the load-
deflection in the z and z directions respectively. For both of these graphs
in the beginning of applying the force both displacements are in positive
direction. After a while to maintain the equilibrium the direction of force
should be reversed.

Example (4-8): This structure shown in Figure (4.8b) has been analyzed
by Paradiso et al. [25] where a secant-tangent approach is used with succes-
sive linear approximations. The deformed configuration after the first snap
through is shown in Figure (4.8c). The deformed configurations before and
after the second snap through are shown in Figure (4.8d) and Figure (4.8¢)
respectively. Due to the symmetry in the initial configuration and loading
the deformed configurations in all different steps of loading are also symmet-
ric. Figure (4.8f) shows the comparison of load-deflection curve of our results
and the ones given in [25]

Example (4-9): For the structure shown in Figure (4.9b) with the side-
view shown in Figure (4.9a) the deformed configurations after the first snap
through, before the second snap through and after the second snap through
are derived using present study (Figures (4.9¢) through (4.9e)). In spite of
being symmetric in the initial configuration, due to unsymmetric loading the
deformed configurations in all different steps of loading are unsymmetric. The
Figures (4.9f) and (4.9g) show the load-deflection curves for displacement in
the z direction for nodes 1 and 2 respectively.

Example (4-10): For the structure shown in Figure (4.10a) the deformed
configurations after the first snap through (due to node 1), Figure (4.10b),
before the second snap through, Figure (4.10c), and after the second snap
through (due to node 2), Figure (4.10d), are derived using present study.
Figure (4.10e) shows the load-deflection curve for displacement in the y di-
rection for node 1 during the first snap through. Figure (4.10f) shows the
load-deflection curve for displacement in the z direction for node 2 during
the first snap through. Figure (4.10g) shows the load-deflection curve for
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displacement in the y direction for node 1 during the second snap through.
Figure (4.10h) shows the load-deflection curve for displacement in the z di-
rection for node 2 during the second snap through.
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Figure (4-4): (a) The geometry of tower truss with the combined vertical and horizontal forces.
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Figure (4.4b) P-Delta curve for tower
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( EA=9x109)

Figure (4-5): The truss-arch with the vertical forces applied at pin-jointed nodes.
(a) The initial and deformed configurations .
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Figure (4.5b) Load-deflection curve for nodes 18 and 26 A (Vertical displacement)
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Figure (4-6): The Fixed-fixed shallow circular arch with midspan concentrated vertical load.
(EI=5493 Ib.in2, EA=1875000 1b, Radius=133.114 in, Span angle=14.67458 )

(2) The initial and deformed configurations (before the snap through) .

%—‘:

(b) The initial and deformed configurations - (after the snap through) .
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Figure (4.6c) Load-midspan deflection curve for fixed-fixed shallow circular arch
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Figure (4.7): The space structure with ball-jointed nodes, the vertical force applied at
centeral node 1. (all dimensions are in cm)
(a) The side-view of the initial configuration.

Figure (4.7b) The initial and deformed configurations (after the snap through) .
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Figure (4.7¢c) The side-view of the initial and deformed configurations
(before the snap through) .

Figure (4.7d) The side-view of the initial and deformed configurations
(after the snap through) .
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Figure (4-7¢) Load-deflection curve for node 1
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Figure (4.7f) Load-dcflection curve for node2
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Figure (4-7g) Load-deflection curve for node 2
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Figure (4.8): The space structure with ball-jointed nodes (all dimensions are in cm).

(a) The side-view of the initial configuration.
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Figure (4.8b) The initial and deformed configurations (before the first snap through) .
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Figure (4.8c) The initial and deformed configurations (after the first snap through) .

Figure (4.8d) The initial and deformed configurations (before the second snap through) .
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Figure (4.8¢) The initial and deformed configurations (after the second snap through) .
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Figure (4.8f) Load-deflection curve for node 1
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Figure (4.9): The space structure with ball-jointed nodes (all dimensions are in cm).

(a) The side-view of the initial configuration.

Figure (4.9b) The initial and deformed configurations (before the first snap through) .
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Figure (4.9¢c) The initial and deformed configurations (after the first snap through) .

Figure (4.9d) The initial and deformed configurations (before the second snap through) .
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Figure (4.9¢) The initial and deformed configurations (after the second snap through) .
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Figure (4.9f) Load-deflection curve for node 1
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Figure (4.9g) Load-deflection curve for node 2
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Figure (4-10): The planar structure with ball-jointed nodes .
(a) The initial and deformed configurations (before the first snap through) .

(b) The initial and deformed configurations (after the first snap through) .
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(c) The initial and deformed configurations (before the second snap through) .
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(d) The initial and deformed configurations (after the second snap through) .
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Figure (4.10¢) Load-deflection curve for nodel (for the first snap through).
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Figure (4.10f) Load-deflection curve for node 2 (for the first snap through).
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Figure (4.10g) Load-dcflection curve for node 1 (for the second snap through).
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Figure (4.10h) Load-deflection curve for node 2 (for the second snap through).
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Example (4-11): For the structure shown in Figure (4.11a) increasing the
load makes the first snap through (due to node 1). The deformed configura-
tion after the first snap through is shown in Figure (4.11b). Increasing the
load forms the second snap through (due to node 4). Deformed configurations
before and after the second snap through are shown in Figures (4.11c) and
(4.11d) respectively which are derived using present study. Figures (4.11e)
and (4.11f) show the load-deflection curves for displacement in the y direction
for node 1 during the first and the second snap through respectively. Figure
(4.11g) shows the load-deflection curve for displacement in the z direction for
node 2 during the second snap through. We see that before the second snap
through moves to the right and at the second snap through there is a little
jump to the left and then starts to move to the right. The same thing hap-
pens to the vertical displacement for node 3 (Figure (4.11h)). Figure (4.11i)
shows the load-deflection curve for displacement in the z direction for node
5 during the second snap through. Figure (4.11j) shows the load-deflection
curve for displacement in the y direction for node 4 during the second snap
through.

Example (4-12): For the space structure shown in Figure (4.12a) the
material properties are FA = 1.855x10° b, EI = 9.27x10% (b/in®. Due
to the symmetry in the initial configuration and loading only bending is
involved without any twist and also the deformed configuration (dashed-line)
shown in Figure (4.7a) is symmetric. The deformed configuration after snap
through is derived using DR. The load-deflection curve for displacement in
the z direction for node a for both techniques load control and displacement
control are given in Figure (4.12).

Example (4-13): The initially curved cantilever shown in Figure (4.13),
loaded out of the initial plane of curvature by a dead load is considered here.
The material properties are E = 107 psi, G = 3.33x10° psi. The cross section
of beam is 1x1 in and the radius of circle in the initial configuration is 100
in. Raboud et al. [29] also studied this problem considering inextensible rod
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theory. Our results using Newton-Raphson are compared with the results of
[29] in table (4.1). This table shows the predicted coordinates of the tip of
the cantilever for various dimensionless loads k where k& = Eg.

Example (4-14): The deformed configuration of a circular beam shown
in Figure (4.14) with one end clamped and the other end free with applied
force at free end is derived using NR. This example is considered here for
the first time. The material properties are E = 107 psi, G = 3.33x10° psi.
The cross section of beam is 1x1 in and the radius of circle in the initial
configuration is 100 in. In initial configuration the coordinate of free end
is (0,100,0). After applying dead load P = 32 [b the coordinate of free
end becomes 27.439",22.71",336.5". Also applying dead load P = 8 [b the
coordinate of free end becomes 4.55",71.37",136.95".

Example (4-15): The buckling of a cantilever beam shown in Figure (4.15)
is derived here. The material properties are £ = 20000 psi, A = 42 in? |
I = 6482 in*, Length = 400 in. Using Eulerian equation for a cantilever
beam p., = "Tsz—’ gives p = 1999.2/b. Numerical result using NR gives
Per = 20500b which is quite close to the theory(p., = 1999.2b).

Example (4-16): The deformed configuration of initially curved cantilever
beam shown in Figure (4.16) is derived using both NR and DR. The material
properties are EJ = 8.33x10° lb.in?, GJ = 5.5x10° [b.in%?, EA = 100 lb. The
radius of arch in the initial configuration is 100 in. Table (4.2) shows the
numerical results for both methods and the DR result is compared to NR.

In the following examples (considered here for the first time) we apply a
prescribed displacement and we derive the deformed configuration using DR.
For the prescribed displacement for a specific node, we usually apply it step
by step, use DR to derive the displacements for the rest of the structure at
that given step of specified displacement, then take the deformed configura-
tion in that step as the initial condition for the next step and continue it until
we reach to the desired specified displacement for that specified node. The
external required forces and moments for equilibrium would be the negative
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of resultant of the internal forces and moments at that specified node. To
solve these problems with applying load we should restart the problem by
applying the external required forces and moments at the specific node and
derive the deformed configuration.

Example (4-17): The nonlinear deformed configuration of a fixed-fixed
semicircle shown in Figure (4.17) under prescribed displacement in the middle
is derived using DR method. The material properties are EI = 8.33x10°
lb.in?, GJ = 5.5x10° lb.in?, EA = 100 Ib. The radius of semicircle in the
initial configuration is 100 in. The prescribed displacement in the middle
is 34 in. Due to the symmetry in the initial configuration and symmetric
prescribed displacement the deformed configuration shown in Figure (4.17)
is also symmetric.

Example (4-18): The nonlinear deformed configuration of a structure
shown in Figure (4.18) with two circular arcs (two 1/8 of a circle) with fixed-
fixed ends under prescribed displacement in the middle is derived using DR
method. The material properties are EI = 8.33x10° [b.in2, GJ = 5.5x10°
lb.in?, EA = 100 {b. The radius of arc in the initial configuration is 100 in.
The prescribed displacement in the middle is 4.7 in. Due to the symmetry
in the initial configuration and and symmetric prescribed displacement the
deformed configuration shown in Figure (4.17) is also symmetric.

Example (4-19): The nonlinear deformed configuration of a fixed-free
semicircle shown in Figure (4.19) under prescribed displacement at the free
end is derived using DR method. The material properties are £ = 8.33x10°
[b.in?, GJ = 5.5x10° [b.in?, EA = 100 lb. The radius of semicircle in the
initial configuration is 100 in. The prescribed displacement in the middle is
56.5 in.
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Figure (4-11): The plarar structure with ball-jointed nodes . The dimensions of all the
elements are similar to the element 1 except the middle one which is given.
(a) The initial and deformed configurations (before the first snap through) .
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(b) The initial and deformed configurations (after the first snap through) .
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(c) The initial and deformed configurations (before the second snap through) .
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(d) The initial and deformed configurations (after the second snap through) .
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Figure (4.11¢) Load-deflection curve for node 1 (for the first snap through).
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Figure (4.11f) Load-dcflection curve for node 1 (for the second snap through).
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Figure (4.11g) Load-deflection curve for node 2 (for the second snap through).
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Figure (4.11h) Load-deflection curve for node 3 (for the second snap through).



CHAPTER 4. LARGE DEFORMATION OF STRUCTURES BY DR 113

F/EA * 16
12

10 1

2 - OGM
~ 0 00 Ax(cm)

0 L1 L] T L R 1

1 1.5 2 2.5 3 35
Figure (4.11i) Load-deflection curve for node 5 (for the second snap through)
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Figure (4.11j) Load-deflection curve for node 4 (for the second snap through).
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Figure (4-12): The space frame with the applied force at rigid-jointed node a .
(a) Deformed configuration (dashed line) is after the snap through (with DR method).
(EA=1.855x1061b, EI=9.27x103 1b/in2)
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Figure (4.12b) Load-deflection curve for node a.
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(E=107psi, G=3.33x106 psi)

E,

Figure (4-13): The deformed (with NR method) and undeformed configuration of

initially curved cantilever beam with cross section of 1x1 in.The applied tip
load P is out of the plane of initial curvature. (P=1250 Ib)
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Inextensible case (Raboud et al. [29]) Extensible case

E1 (in.) E2 (in.) E3 (in.) Et (in.) E2 (in.) E3 (in.)
69.1362 71.6529 15.2722 69.0609 71.7090 15.6527
65.4006 73.8728 27.5836 65.1787 74.0355 28.1189
61.0592 76.4225 36.4615 60.7362 76.6619 36.9854
56.9396 78.8072 42.7314 56.5712 79.0845 43.1851
53.2915 80.8861 47.2451 52.9133 81.1753 47.6212
50.1288 82.6567 50.9550 49.7592 82.9455 50.9027
47.3945 84.1679 53.1595 47.0418 84.4423 53.4113
45.0206 85.4561 55.1786 44.6873 85.7147 55.3864
42.9451 86.5639 56.8080 42.6307 86.8047 56.9816
41.1167 87.5240 58.1511 40.8193 87.7464 58.2983
39.4935 88.3625 59.2787 39.2108 88.5669 59.4057
38.0422 89.1002 60.2404 37.7719 89.2875 60.3519
36.7359 89.7536 61.0719 36.4760 89.9250 61.1716
35.5530 90.3359 61.7994 35.3020 90.4928 61.8900
34.4758 90.8580 62.4427 34.2326 91.0017 62.5261

—t el el e md ed
NEPP Ao @RNOOAWN 4F

Table (4.1): Geometry at the End of a Curved Cantilever Under the Action of a Dead Tip Load
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Figure (4-14): The deformed (with NR method) and undeformed configuration of initially
curved cantilever beam with cross section of 1X1 in. The radius of circle in initial

configuration is100 in. (E=107 psi, G=3.33x106 psi)
The applied tip load P is out of the plane of initial curvature (P=32 Ib).



CHAPTER 4. LARGE DEFORMATION OF STRUCTURES BY DR 120

Figure (4-15): The buckled (with NR method) and initial configuration of a cantilever
beam .( E=20000 psi, A=42 in2, [=6482 in%, L=400 in, P=2050 1b)
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Example (4-16): The comparison of NR and DR methods for deformation of circular curved
cantilever beam. (EI=8.33x105 1b.in2, GJ=5.5x105 Ib.in2 , EA=100 Ib, radius=100 in)
The applied tip loads are (Px=P,=P,=100 b, M,=M,=M_=100 Ib.in).
(a) NR method

(b) DR method
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Node Initial Coﬁg_;uration Coordinate

X (in.) y (in.) z (in.)
1 0 100.0000 0.0000
2 7.848 99.6900 0.0000
3 15.647 98.7685 0.0000
4 23.35 97.2362 0.0000
5 30.9 95.1043 0.0000
6 38.278 92.3860 0.0000
7 45.41 89.0978 0.0000
8 52.26 85.2602 0.0000
9 58.79 80.8967 0.0000
10 64.96 76.0344 0.0000
11 70.73 70.7031 0.0000

(a) The initial coordinate for different nodes

Node Deformed Coordinate with NR Deformed Coordinate with DR

x (in.) y (in.) 2 (in.) x (in.) y (in.) 2 (in.)
1 0.0000 100.0000 0.0000 0.0000 100.0000 0.0000
2 11.8260 99.8952 0.2532 11.5810 99.8991 0.2550
3 23.6926 99.5348 0.9862 23.2039 99.5480 0.9839
4 35.5331 98.8561 2.1564 34.8002 98.8826 2.1344
5 47.2789 97.7969 3.7133 46.3020 97.8408 3.6507
6 58.8579 96.2975 5.5994 57.6392 96.3643 5.4745
7 70.1929 94.3033 7.7511 68.7375 894.4006 7.5453
8 81.2006 91.7685 10.0992 79.5168 891.8064 9.8008
9 91.7901 88.6600 12.5704 89.8897 88.8506 12.1776
10 | 101.8636 84.9617 15.0880 99.7620 85.2188 14.6111
11 111.3170 80.6800 17.5760 | 109.0339 81.0169 17.0367

(b) The numerical results for deformed configurations with NR and DR

Table (4.2): The comparison for deformed configurations between NR and DR
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Figure (4-17): The undeformed and deformed configurations of fixed fixed semicircle
under prescribed displacement and angle in the middle.
(using DR method)

(EI=8.33x105 Ib.in2, GJ=5.5x105 Ib.in2, =34 in, EA=100 Ib, radius=100 in)
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Figure (4-18): The undeformed and deformed configurations of a structure with two circular arcs
(two 1/8 of a circle) under prescribed displacement and angle at node a.
(using DR method)

(EI=8.33x105 Ib.in2, GJ=5.5x105 Ib.in? , EA=100 Ib, 8=4.7 in, radius of arc=100 in)
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Figure (4-19): The undeformed and deformed configurations of fixed free semicircle
under prescribed displacement and angle at the end. (using DR method)

(EI=8.33x105 Ib.in2, GJ=5.5x105 Ib.in2 , EA=100 Ib, 8=56.5 in, radius=100 in)



Chapter 5

Inelastic Post-Buckling
Analysis of Truss Structures by

DR

5.1 Introduction

In the previous chapters the geometric nonlinearities were considered, assum-
ing a linear elastic stress-strain relationship for the rod member. In reality
however, nonlinear materials showing plastic behaviour could be involved.
If we consider a one rod structure with such a material, increasing the load
to the post-critical range, is called the failure of the structure. However, in
space structures consisting of a large number of rods failure of an individual
element does not necessarily result in the collapse of the structure. Instead
the forces among the members in the neighborhood of the element could
be distributed and the structure may still be capable of carrying increased
loads, while the members which have failed will behave according to their
post-critical characteristics. In fact considering of both types of nonlinear-
ities becomes necessary when structural responses to exceptional loads are
studied in order to assess ultimate strength or serviceability.

The aim of this chapter is to determine the complete load deflection curve
of trusses, far beyond the occurrence of the yield point, by considering mate-

126
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rial as well as geometric nonlinearities. The solution of the highly nonlinear
governing equilibrium equations has been obtained by the dynamic relaxation
method. Most investigators ([8], [14], [31], [33]) have used some scheme based
on the well-known Newton-Raphson procedure where the condition that the
determinant of the Jacobian matrix be nonzero is a basic requirement for
the successful working of the method. For snap-through problems, however,
the matrix becomes singular at the limit point. Therefore, the method needs
special treatment to overcome this point without the failure of the numerical
procedure. Negative elements on the leading diagonal of the stiffness matrix
that may appear in the post-buckling range may pose additional problems
when a Newton-Raphson type of method is used. With dynamic relaxation,
however, all these problems are very easily surmounted. The difficulties in
the vicinity of the limit points are over come by a straightforward implemen-
tation of a displacement incremental technique, while no provision is required
for handling negative diagonal stiffness elements.

The inclusion of both geometric and material nonlinearities in the analy-
sis of elasto-plastic trusses will be considered here. The solution of the highly
nonlinear governing equilibrium equations has been obtained by the dynamic
relaxation method in each increment of applied load and/or prescribed dis-
placement.

The scope of this chapter is truss structures in which the axial force, Fj,
is the only load to be calculated from the constitute law. To generalize to
deformations with bending, we would need constitutive equations for moment
versus curvature. Also when shear deformation is involved shear forces F,
and F3 can be calculated from the constitutive relationships (see Antman
(1] for example). When shear is not considered, F> and F3 are not given
by any constitutive relationship but are rather determined by a balance of
momentum as in the usual linear theory of elasticity.
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5.2 Failure of conventional DR for inelastic
material and introducing incremental DR

In this section, we present a counter example that shows why the standard
DR doesn’t work for inelastic materials and then explain the incremental-DR.
that we used to study inelastic materials. Let us consider a single rod under
uniaxial load F' as shown in Figure (5.1)(a). The rod has an initial length
Ly = 1m and a cross section A =100 mm?2. The material is elastic hardening
with the modulus of elasticity E = 2x108 K N/m?2, yield stress o, = 2x10°
KN/m?, and also e; = 4x10" KN/m?. The applied force F is 10 N. Since
o = 10°KN/m? is less than o, the rod is in elastic mode and the displace-
ment of the rod at the loaded end is X.q = 0 Lo/ E which becomes 5x10~%m to
maintain equilibrium. Now using DR, depending on different initial guesses
we get different solutions which all satisfy the equilibrium equations as il-
lustrated in Figure (5.1)(b). Incremental-DR is a method which should be
used for structures subjected to both material and geometrical nonlinearities
with path dependent behaviour. In this technique, loading and prescribed
displacements are considered in an incremental way. We start with the struc-
ture in equilibrium and incrementing the load/prescribed displacement, the
structure is equilibrated by solving the nonlinear equations of equilibrium
using DR at the beginning and end of each increment. For each increment
the configuration at the end of the previous increment will be considered as
the initial guess for the next increment.

Inside each increment using DR the behavior of material considered on
the specific path on the stress-strain curve and the irreversibility of inelastic
strains has been taken into account only in passing from one increment of
displacement stage to the subsequent one.

In each iteration of DR, the stress state should be compared with that of
the beginning of the increment to determine whether the structure is being
loaded or unloaded.
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Considering Figure (5.1)(c) to start from initial configuration, initial con-
dition is the beginning of increment. The DR in this increment will be forced
to move on path C’'B’ABC depending on loading or unloading comparing to
the beginning of the increment.

Considering Figure (5.1)(c) the beginning of the increment is at point A
which will be the initial guess as well. The DR in this increment will be
forced to move on path B'’AB depending on loading or unloading compared
to the beginning of the increment. To get the right solution, the increment
for applied load or applied displacement should be small, especially in the
zones where the tangent modules has sudden and discontinuous changes.
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Figure (5.1) Figures used to justify using incremental-DR instead of conventional DR
(a): A single rod under uniaxial tension

e

cr(KN/m2

(b): Stress-strain curve for using conventional DR
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KN/t

(c): Stress-strain path using incremental DR from initial configuration

2
o(KN/m,)
(beginning of increment)
Initial guess ( B
A
R =
C,y (end of increment)

(d): Stress-strain path using incremental DR from arbitrary condition
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5.3 Formulation of the Problem

In the truss structures for all the rods M = 0, and therefore & = 0. Consid-
ering Eqns. (2.14) a solution would be 8] = 8, = §; = 0. Since prime means
derivative respect to reference arclength, so always 6,,6, and 83 would be
constant along each rod and each rod will remain straight all the time. So
we could take 8, to have any value (zero for convenience) and calculate 6;,0;
from

0, =sin”! —2,  f;=tan"'-2 (5.1)

Also F; and F3 are zero and F} = cA where o is the axial stress in the
rod and A is its cross section area. So Eqns. (4.24) can be simplified as
m = F{,1m2 =0 and 73 =0, then Eqn. (4.25) becomes.

leF{Ej = pAT;E; + cAr;E; where 7=123 (5.2)

5.3.1 Constitutive Laws

For the materials showing inelastic behaviour the axial stress value is not
uniquely defined, for a given strain value. So the history of loading is required
to yield a value of stress corresponding to the given load/displacement path.
Figure (5.2) shows the stress-strain relations of the four different materials
that we will consider here. For such materials all the possible paths on
the stress-strain curve should be carefully coded. The stress-strain coding
for the different paths for Elastic-hardening and nonlinear-elastic materials
is given in Figure (5.3). Figures (5.4) (a) and (b) show the constitutive law
flow charts for Elastic-hardening and nonlinear-elastic materials respectively.
The following is the list of the variables used in coding the constitutive law
for different materials:

® €., 0y are stress and strain for the yield point in tension

® €y, Oy are stress and strain for the yield point in compression
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® €,,0, are stress and strain in previous step
® €,,0, are stress and strain in present step

e ¢, for each step is the strain for the point of intersection of the lines
with code 0 and code 1 shown in Figure (5.3(a) for Elastic-hardening
material.

_ Oyt — 0, + E€, — ej€,
€ = E—e (5.3)

e ¢4 for each step is the strain for the point of intersection of the lines
with code 0 and code 2 shown in Figure (5.3(a) for Elastic-hardening
material.

Oyc — 0o + E¢, — e3¢,

€4 = E — e (54)

It is clear that setting e; = e, = 0 in the Elastic-hardening case yields the
Elastic-perfectly plastic behaviour.
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(a) Linear-Elastic
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(b) Nonlinear-Elastic
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(c) Elastic-perfectly plastic

VAR %

(d) Elastic-hardening

Figure (5.2): Stress-strain relation for different materials
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Figure (5.3) Coding for different paths
(a) Elastic-hardening
(b) Nonlinear-Elastic
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No oD Yes

v

No Y&s No @ Yes

O =e,€q§)+Oyc On=E(E5-&, )+Co Gi=e,€ “-EYC)"' Oyc On=E(E& )+ 0o
code=2 code=0 codew2 code=0
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Op=e, € 7€)+ Oyt O=E(E 7€, )+Co Gre, €€, )+On O =E(E-€ )+Co
code=1 code=0 code=1 code=0

Figure (5.4) Flow chart for different materials
(a) For Elastic-hardening material
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(b) Flow chart for the Nonlinear-Elastic material



CHAPTER 5. INELASTIC POST-BUCKLING ANALYSIS OF TRUSS
STRUCTURES BY DR 138

5.4 DR Algorithm for Inelastic Materials

Since the behaviour of the structure for the inelastic material is path-dependent,
to get the right solution, the time increment should be small, especially in
the zones where the tangent modules has sudden and discontinous changes.
The DR algorithm then can be used as the following steps

1. Choose n =0;ry, 19, T3 given; 7, =0, 7, =0, 3 =0

2. Use A =r’|, ; = arcsin 3 and 63 = arctan 2 to get ), 0; and 65
3. Having €, =1 — A, use proper algorithm to find o,

4. Use F} = Aoy, to find Fy

5. Check Ry, R, and R; at the n* step using R™ = (Tu:F])™ where
1i=1,2,3
if R ~ 0, R{ = 0 and R{™ = 0 stop, otherwise continue.

6. For j = 1,2, 3; calculate

1
,,:;_2) - 23: R|(—?) forn=0
.(n+1) - .(n—1)
i = (mmey + 50) (@M - 3e)T; T+ Rl forn#0
(nt+1) — () (n+)
T; =T + AtTj foralln

7. n=n+1; go to 2.
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5.5 Numerical Results

Two examples were examined and their response to different stress-strain
relations of Figure (5.2) were compared. Papadrakakis [24] also solved these
problems by DR method using the beam-column approach in the element
formulation. Our results are in good agreement with his results.

Example (5-1). The two member truss is shown in Figure (5.5a). For
each member of truss the modulus of elasticity is £ = 2.06x108 KN/m?,
the yield stress is 6, = 2.35x10° K N/m?, and for Elastic-hardening material
e; = 4x107 KN/m?, e, = 8x10" KN/m?. The comparison of stress-strain
curves for each member of truss is shown in Figure (5.5b). The load-vertical
displacement response for apex node (node 1 of Figure (5.5a)) for different
stress-strain relations is shown in Figure (5.5¢). The comparison of stress-
vertical displacement response node 1 for different stress-strain relations is
shown in Figure (5.5d). Wherever applicable, on all graphs, the small letters
indicate the corresponding stress-strain relations from Figure (5.2), while
capital letters correspond to the characteristic points of the stress-strain
curve. On graphs (5.5b),(5.5¢c) and (5.5d), at point A curves correspond-
ing to other materials deviate from Linear-Elastic case. Point B corresponds
to the maximum compressive stress/strain. The strain at point B is the
same for all the materials whereas the value of stress is different. This point
corresponds to a deformed configuration in which rods are on the line con-
necting the two supports (vertical apex displacement is 0.695m). No force
would be required to keep equilibrium at this point. After this point to
keep equilibrium satisfied we should change the direction of the applied force
F'. However, since the internal force is still compressive, the stress in each
member of truss would stay compressive. At point C,, Nonlinear Elastic
and Linear Elastic curves join together once again. In Figures (5.5¢) and
(5.5d) points Cy and A are symmetric with respect to point B. Points A
and Cj are corresponding to the deformed configurations where apex node
would be at the same height above and below the deformed configuration
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corresponding to point B. As we continue to increase the force, after some-
time we should change the direction of applied force F' which corresponds
to the intersection with the € axes in Figure (5.5b), Z axes in Figures (5.5¢)
and (5.5d). For Linear-Elastic and Nonlinear-Elastic materials, this corre-
sponds to the deformed configuration where node 1 in is at the same height
as initial configuration, below the deformed configuration corresponding to
point B. Whereas for Elastic-perfectly plastic and Elastic-hardening at this
stage we would have compression strain. Points D., D, correspond to the
change in the slope of stress-strain curves. All curves pass through point £
which is the yield point in tension and from that point on Nonlinear Elastic
separate from Linear Elastic. If we unload from point E, all the materials
behave the same way and curves move toward point C, on the Linear Elastic
curve.Whereas if we unload from before or after point F it would not be the
case. Figure (5.5e) through (5.5j) shows the comparison of our results with
that of Papadrakakis [24].
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|

| 21.954m |

(a) The geometry of two member truss.

Figure (5.5): The two member truss with rectangular cross section of 2.54 x 2.54 m.
The modulus of elasticity is, E=2.06 x 108 kN/m?2.
The yield stress is Oy = 2.35 x 10° kN/m2.
For Elastic -hardening material ;=4 x 107 kN/m2 and e,=8 x 107 kN/m?2.
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Figure (5.5b) Comparison of stress-strain curves for each member of truss.



CHAPTER 5. INELASTIC POST-BUCKLING ANALYSIS OF TRUSS

STRUCTURES BY DR 143
F(KN)
7 - .
(x IOOOg_ /
5 o4
4
3 -
2 -
1 -
Z(m)
0.2 22
-1 1
-2 -

Figure (5.5¢c) Comparison of load-vertical displacement curves for node 1.
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Figure (5.5d) Comparison of stress-vertical displacement curves for each member of truss.
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Figure (5.5e) Load-vertical displacement curve for node 1. (Linear-Elastic)
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Figure (5.5f) Load-vertical displacement curve for node 1. (Nonlinear-Elastic)



CHAPTER 5. INELASTIC POST-BUCKLING ANALYSIS OF TRUSS

STRUCTURES BY DR 147
FKN)
4 -
(x 1000)
339 +  Papadrakais (24]
31 ~————— Present study
2_5 p

0.5 1
/ e N / Z(m)

Figure (5.5g) Load-vertical displacement curve for node 1. (Elastic-perfectly plastic)
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Figure (5.5h) Stress-vertical displacement curve for cach member of truss. (Linear-Elastic)
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Figure (5.5i) Stress-vertical displacement curve for each member of truss. (Nonlinear-Elastic)
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Figure (5.5j) Stress-vertical displacement curve for each member of truss. (Elastic-perfectly plastic)
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Example (5-2). The 24-member shallow dome is shown in Figure (5.6a).
For all members the modulus of elasticity is E = 2.06x10° KN/m?, the
yield stress is o, = 2.35x10° KN/m?, and for Elastic-hardening material
e; = 4x10" KN/m?, e; = 8x10" KN/m?. The comparison of stress-strain
curves for member 1 of structure is shown in Figure (5.6b). The load-vertical
displacement response for apex node (node 1) for different stress-strain rela-
tions is shown in Figure (5.6c). Again here, at point A curves corresponding
to other materials deviate from Linear-Elastic case. Point B corresponds to
the maximum compressive stress/strain, but the strain at point B is differ-
ent for different materials. At point C;, Nonlinear Elastic and Linear Elastic
curves join together once again. All curves pass through point F which is
yield point in tension. Figure (5.6d) shows the response of the displacement
of node 2 in the X direction with respect to the apex load P. Figures (5.6e),
(5.6f) and (5.6g) show the axial stress of members 1, 2 and 3 versus vertical
apex displacement curves respectively, for different materials. Figures (5.6h),
(5.61), (5.6j) and (5.6k) compare the axial stress of members 1, 2 and 3 for
different materials Linear-Elastic, Nonlinear-Elastic, Elastic-perfectly plas-
tic and Elastic-hardening. From Figure (5.6d) it can be seen that curve for
Nonlinear Elastic has a discontinuity at point B, where the load P changes
sign, from point B, to B,. Considering Figure (5.6i) shows that at this point
members type 1 and type 2 are in the same plane in the deformed configura-
tion and all of these members are at their limiting stress (members type 1 in
compression and members type 2 in tension and members type 3 are stress-
free). When node 1 is displaced in the Z direction further, a tensile stress is
developed in members type 3 and consequently the stress in members type 1
will be less than limiting case to maintain equilibrium. This causes a jump
in the strain for this specific material and hence a discontinuity is observed
in the force-displacement curve of Figure (5.6d).
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z

(a) The initial configuration and the side-view of it.

Figure (5-6): The space structure with ball-jointed nodes, the vertical force applied at
central node 1. (all dimensions are in cm)
The cross section is rectangular of 2.54 x 2.54 cm.
The modulus of elasticity is, E=2.06 x 108 kN/m?

The yield stress is 6y = 2,35 x 10° kN/m%
e1=4 x 107 and e;=8 x 107.
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Figure (5.6b) Comparison of stress-strain curves for member 1
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Figure (5.6c) Load-vertical displacement curves for node 1
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Figure (5.6d) Comparison of load-horizontal displacement curves for node 2
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Figure (5.6¢) Axial stress of member 1 vs. vertical apex displacement curves.
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Figure (5.6f) Axial stress of member 2 vs. vertical apex displacement curves.




CHAPTER 5. INELASTIC POST-BUCKLING ANALYSIS OF TRUSS
STRUCTURES BY DR 158

04 -

Figure (5.6g) Axial stress of member 3 vs. vertical apex displcement curves.
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Figure (5.6h) Axial stress of members vs. vertical apex displacement curves. (Linear-Elastic)
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Figure (5.6i) Axial stress of members vs. vertical apex displacement curves. (Nonlinear-Elastic)
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Figure (5.6j) Axial stress of members vs. vertical apex displacement curves. (Elastic-perfectly plast
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Figure (5.6k) Axial stress of members vs. vertical apex displacement curves. (Elastic-hardening)



CHAPTER 5. INELASTIC POST-BUCKLING ANALYSIS OF TRUSS
STRUCTURES BY DR 163

The comparison of our results with the results of Papadrakakis [24] for
load-vertical displacement of node 1 for Linear-Elastic, Nonlinear-Elastic and
Elastic-perfectly plastic are given in Figures (5.6L), (5.6m) and (5.6n) respec-
tively. Also the comparison of our results with the results of Papadrakakis
[24] for load-horizontal displacement of node 2 for Linear-Elastic, Nonlinear-
Elastic and Elastic-perfectly plastic are given in Figures (5.60), (5.6p) and
(5.6q) respectively. He did not derive any result for Elastic-hardening.
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Figure (5.6L) Load-vertical displacement curve for node 1. (Linear-Elastic)
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Figure (5.6m) Load-vertical displacement curve for node 1. (Nonlinear-Elastic)
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Figure (5.6n) Load-vertical displacement curve for node 1. (Elastic-perfectly plastic)
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Figure (5.6 o) Load-horizontal displacement curve for node 2. (Linecar-Elastic)
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Figure (5.6p) Load-horizontal displacement curve for node 2. (Nonlinear-Elastic)
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Figure (5.6q) Load-horizontal displacement curve for node 2. (Elastic-perfectly plastic)



Chapter 6

Concluding Remarks

6.1 Summary and Conclusions

In this work the numerical procedure Dynamic Relaxation (DR) has been
adopted in an attempt to analyze problems involving large three-dimensional
deformations of flexible rods. Since the deformations considered are large,
these problems are governed by highly nonlinear equations which are difficult
to solve analytically. This is further compounded by the wide variety of
boundary condition which may be involved. As a result numerical procedure
are usually required to obtain approximate solutions to such problems.

DR is an explicit iterative method developed for static analysis of struc-
tural mechanics problems. DR involves converting first the equilibrium equa-
tion into an equation of a damped motion, by artificially adding an accelera-
tion term as well as a viscous damping term, and then integrating explicitly
in time from the initial conditions until the transient dynamic response has
damped out to the static solution, with equilibrium satisfied. The transient
response obtained with this algorithm does not represent the real behavior of
the structure, due to the fictitious mass and damping characteristics. How-
ever, since the force vector corresponds to the physical problem, the steady
state part of the response, which satisfies the equilibrium equation, represents
the static solution. Due to its explicit nature, the method is highly suitable

170
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for computations, since all quantities may be treated as vectors, eliminat-
ing the need for matrix manipulations of any kind. Therefore the method
is easily programmable and has low storage requirements. Its explicit form
makes it also ideal for case of large deformations with nonlinear geometric
and material behavior.

To summarize the Comparison of NR. with DR we could have the follow-

ing.

1. Newton-Raphson

Formulation. More involved with the construction and inversion
of the stiffness matrix.

Memory requirement. Needs large space to store stiffness matrix
and its inversion.

Computational time. Takes less time.
Computer code. More difficult.

Limit point tracing in post-buckling analysis. Can not be traced
accurately.

Automation of the method. Fully automated.

2. Dynamic Relaxation.

Formulation. Does not require the construction and inversion of
the stiffness matrix, so DR is easier.

Memory requirement. Needs less space.
Computational time. Takes more time.
Computer code. Easier.

Limit point tracing in post-buckling analysis. Can be traced accu-
rately.
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e Automation of the method. Requires input of mass and damping
values..

The automation of DR method may be difficult as it requires the input
of certain parameters such as time step, mass and damping. The number
of iterations required depends heavily on the mass and damping and time
step values, with better values for them resulting in fewer iterations and con-
sequently less computer time. Also, problems without twist involved show
faster convergence behavior and require considerably shorter computer time.
Even though the DR method is inferior compared to the NR method in the
aspect of computational time, yet it offers an attractive alternative when-
ever both pre and post-buckling analyses need to be carried out for a given
structure.

Since equilibrium solution obtained by DR would be regarded as asymp-
totically dynamically stable, the load control case DR does not pick up the
unstable branch on which descending load accompanies increasing displace-
ment. To get the whole load-displacement (stress-strain) curve as the stable
solution we should use displacement control.

Apart from the geometric nonlinearity due to the inherently large defor-
mation the structures can undergo, nonlinearity may be introduced into the
problem through the material used. Most engineering structures are con-
structed of linearly elastic material, or more precisely materials used in their
linearly elastic ranges. However increasing use is being made of materials
which do not exhibit this type of linear elastic behavior. Such structures
could also have a material nonlinearity which adds complexity to the prob-
lem. The numerical technique was also modified to include materials which
exhibit inelastic behavior. The behavior of the structure were fully studied
by means of the displacement analysis.

Inside each increment using DR the behavior of material considered on
the specific path on the stress-strain curve and the irreversibility of inelastic
strains has been taken into account only in passing from one increment of
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displacement stage to the subsequent one. The nonlinear governing equi-
librium equations were solved using dynamic relaxation method, where the
nonlinear behavior of the stress-strain relationships of members are followed
in each iteration. For the inelastic material, since the behaviour of the struc-
ture is path-dependent,to get the right solution, the increment for applied
load or applied displacement should be small, especially in the zones where
the tangent modules has sudden and discontinuous changes. In chapter 5
the inclusion of both geometric and material nonlinearities in the analysis of
elasto-plastic trusses was considered. In all cases for both linear and non-
linear materials where previous analytical, numerical or experimental results
were available, the present method showed excellent agreement.

Constitutive relationships, which relate kinematics of the deformation to
the forces and moments generated in the material, play an important role
in applying the theory. Most commonly in the literature, the materials con-
sidered are assumed to be linearly elastic with the moments produced being
related to the differences between the initial and final curvatures along the
rod. For the material nonlinearity this work just considered truss structure
in which axial force is the only load to be calculated from the constitu-
tive law. Future work for material nonlinearity can be done in investigating
the deformations with bending and twist involved. To generalize nonlinear
deformations constitutive equations for moment versus curvature would be
required.
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Appendix A
SOURCE CODE

This is the source code that is used for the numerical results.

C AS DISPLACEMENT OR LOAD CONTROL FOR STRUCTURES WITH EITHER
C RIGID OR HINGED UNCONSTRAINED WITH EITHER LINEAR ELASTIC OR
C NONLINEAR ELASIT OR ELASTIC PERFECTLY PLASTIC OR ELASTIC

C HARDENING PLASTIC.

C TO GET THE RESULT FOR LINEAR ELASTIC ITYPEPROB=1

C TO GET THE RESULT FOR NONLINEAR ELASTIC ITYPEPROB=2

C TO GET THE RESULT FOR ELASTIC PERFECTLY PLASTIC ITYPEPROB=3
C TO GET THE RESULT FOR ELASTIC HARDENING PLASTIC ITYPEPROB=4

C TO GET THE RIGHT VALUE FOR STRAIN IN THE ROD IN CASES 2,3 WE
C CALCULATE THE AVERAGE OF STRAIN IN THE ROD IN WHICH THE NO. OF
C NODE BETWEEN SHOULD BE ODD.

201 is the number of the nodes.

171 is the number of the rods.

99 is the maximum of the nnodbet+2

45 is the number of the constrained nodes

9 is the maximum number of the rods which come to the constrained node.
55 is the number of the unconstrained nodes

11 is the maximum number of the rods which come to the unconstrained
node.

* % K X % K X X

179
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integer jstress(171),nrodstress

Double precision r(171,99,3)

Double precision 1an(171,99)

Double precision €2(171),e3(171)

Double precision sigmay(171),x1,x2,length(171)

double precision e(171),iz(171),area(171),gs(171),jx(171)
double precision delta(171)

double precision x(171,99,3)

double precision fx(201),fy(201),fz(201),bool(171,3,3)
double precision cu,mu

double precision cv,mv,cw,mw

double precision error,deltat

double precision coefforce

Double precision u0(55,3)

integer icri(171),jcri(171),keri(171),nf

integer nnod,nrod,ncons,nuncons,conmat(171,2),ep(171)
integer nnodbet(171)

integer nrodsco(45),ntypeco(45),nnodcon(45)

integer nrodcon(45,9)

integer nrodsuc(S5),ntypeun(55),nnodunc(55)

integer nrodunc(55,11)

integer nodload(55),nload

integer nrodspre(55),ntypepre(55),nnodpre(55)

integer nrcdpre(55,11),npre

character filein * 12, fileout * 12,fileoutl * 12
* asking the name of input file and output file

print*, 'what is the name of intput file : '

read* filein

print*, 'what is the name of output file : '

read* fileout

print*, ‘'what is the name of output file for graphic :
read* fileout!

*opening the input file and output file
open (1,file=filein)
open (2,file=fileout)
open(3,file=fileoutl)

* calling the needed subroutines
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call inputrod(icode,conmat,ncons,nuncons
+ ,e,iz,area,jx,gs,delta,nodload,fx, fy fz
+ ,ntypeco,nrodcon,ntypeun,nrodunc,nnodcon
+ ,nnodunc,nrod,nnodbet,nrodsco,nrodsuc,nnod
+ ,cu,mu,cv,mv,cw,mw,error,deltat,x,bool,itype
+ ,icri,jeri keri,nf ,coefforce,nload,nnodcri,nwgraph
+ ,nodefcri,ndir,nwconfig
+ ,nrodspre,ntypepre,nnodpre,nrodpre,npre,uQ
+ ,sigmay,x1,x2,length,itypeprob,e2,e3
& ,jstress,nrodstress)

Call DR(icode,lan,no,x,r,mu,mv,cw,mw
,cu,cv,delta,e,area,jx,gs,iz,fx,fy,fz
,nnod,error,deltat,bool,nrod,nnodbet,conmat
,nicons,ntypeco,nrodsco,nrodcon,nnodcon
,nuncons,ntypeun,nrodsuc,nrodunc,nnodunc

,itype,icri,jcri, kcri,nf,coefforce,nodload,nload
,nnodcri,nwgraph,nodefcri,ndir,nwconfig

+ ,nrodspre,ntypepre,nnodpre,nrodpre,npre,uQ

* sigmay,x1,x2,length,itypeprob,e2,e3

& .jstress,nrodstress)

* % X X ¥ x

call output(lan,no,r,nnod,nrod,nnodbet
* ,cu,mu,cv,mv,cw,mw,error,deltat,x,jf)

stop
end

subroutine inputrod(icode,conmat,ncons,nuncons
+ ,e,iz,area,jx,gs,delta,nodload,fx,fy,fz
+ ,ntypeco,nrodcon,ntypeun,nrodunc,nnodcon
+ ,nnodunc,nrod,nnodbet,nrodsco,nrodsuc,nnod
+ ,cu,mu,cv,mv,cw,mw,error,deltat,x,bool,itype
+ ,icri,jeri kcri,nf,coefforce,nload,nnodcri,nwgraph
+ ,nodefcri,ndir,nwconfig
+ ,nrodspre,ntypepre,nnodpre,nrodpre,npre,uQ
+ ,sigmay,x1,x2,length,itypeprob,e2,e3
& ,jstress,nrodstress)

character txt * 80

integer jstress(171),nrodstress
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*

double precision coord(201,3),coefforce

double precision etemp(171), inetemp(171), areatemp(171)
double precision €(171),iz(171),area(171)

double precision delta(171),length(171),sigmaytemp(171)
double precision x(171,99,3),sigmay(171),x1,x2

double precision fx(201),fy(201),fz(201)

double precision cu,mu

double precision cv,mv,cw,mw

double precision error,deltat

double precision bool(171,3,3),dx,dy,dz,lprime

double precision gtemp(171),jtemp(171),gs(171),jx(171)
Double precision u0(55,3),e2(171),e3(171),e2temp(171),e3temp(171)
integer nnod,nrod,ncons,nuncons,conmat(171,2),ep(171)
integer nnodbet(171)

integer nrodsco(45),ntypeco(45),nnodcon(45)

integer nrodcon(45,9)

integer nrodsuc(55),ntypeun(55),nnodunc(S5)

integer nrodunc(55,11)

integer nrodspre(55),ntypepre(55),nnodpre(55)

integer nrodpre(55,11),npre

integer nodload(55),icri(171)jeri(171),keri(171),nf

read(l,¥) xt
read(1,*) xt
read(l,*) txt
read(1,¥) txt
read(1,*) xt
read(l,*) txt
read(1,¥) txt
read(1,*) txt
read(1,¥) txt
read(l,¥) txt

read(l,¥) nnod,x1,x2,itypeprob
coord(i,1) is x of node i & coord(i,2) is y of node i

do10j=1, nnod
read(1,*) i, (coord(j, k)k=1,3)

10 continue

* nproper is no. of properties in structure

read(1,*) nproper

*reading material property

read(1,*) ext
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do20j=1, nproper

*
*

read(1,*) i, etemp(i), inetemp(i), areatemp(i)
,gtemp(i),jtemp(i),sigmaytemp(i)
,e2temp(i),e3temp(i)

20 continue

* nrod is no. of element in structure

read(1,*) nrod

* reading material type ep(i),no. of first node and second node,

do30j=1,nrod

read(1,*) i, ep(i), conmat(i, 1), conmat(i, 2)

+ ,nnodbet(i)
30 continue

do40j=1,nrod

e()=etemp(ep(i))
area(j)=areatemp(ep(j))
iz(j)=inetemp(ep(j))
gs(j)=gtemp(ep(j))
ixQ)=jtemp(ep())

sigmay(j)=sigmaytemp(ep(j))
e2Q)=e2temp(epQ))
e3(j)=e3temp(ep(j))

40 continue

do50j=1,nrod
length(j)=Dsqrt((coord(conmat(j,2),1)-coord(conmat(j,1),1))**2D0

<+
+

+(coord(conmat(j,2),2)-coord(conmat(j, 1),2))**2D0
+(coord(conmat(j,2),3)-coord(conmat(j, 1),3))**2D0)
delta(j)=length(j)/(nnodbet(j)+1DQ)
x(j,1,1)=coord(conmat(j,1),1)
x(j,1,2)=coord(conmat(j,1),2)
x(j,1,3)=coord(conmat(j,1),3)
x(j,nnodbet(j)+2,1)=coord(conmat(,2),1)
x(j,nnodbet(j)+2,2)=coord(conmat(j,2),2)
x(j,nnodbet(j)+2,3)=coord(conmat(j,2),3)
do 60 i=2,nnodbet(j)+1
x(,1,1)=x(j,1,1)+(i-1D0)*(x(j,nnodbet(j)+2,1)
-x(j,1,1))/(nnodbet(j)+1D0)
x(,1,2)=x(j,1,2)+(1-1D0)*(x(j,nnodbet(j)+2,2)
-x(j,1,2))/(nnodbet(§)+1D0)
x(j»1,3)=x(j,1,3)+(i-1D0)*(x(j,nnodbet(j)+2,3)
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+ -x(j,1,3))/(nnodbet(j)+1D0)
60 continue
50 continue

do 31 j = 1,nrod

dx=coord(conmat(j,2),1)-coord(conmat(j,1),1)
dy=coord(conmat(j,2),2)-coord(conmat(j,1),2)
dz=coord(conmat(j,2),3)-coord(conmat(j,1),3)
if((dx.eq.0).and.(dz.eq.0)) then
if(coord(conmat(j,2),2).gt.coord(conmat(j,1),2)) then
bool(j,1,2)=1D0
bool(j,2,1)=-1D0
bool(j,3,3)=1D0
else
bool(j,1,2)=-1D0
bool(j,2,1)=1D0
bool(j,3,3)=1D0
endif
else
bool(,1,1)=dx/(delta(j)*(nnodbet(j)+1D0))
bool(j,1,2)=dy/(delta(j) *(nnodbet(j)+1D0))
bool(j,1,3)=dz/(delta(j)*(nnodbet(j)+1D0))
lprime=sqrt(bool(j,1,1)**2D0+bool(j,1,3)**2D0)
bool(j,2,1)=-(bool(j,1,1)*bool(j,1,2))/lprime
bool(j,2,2)=Ilprime
bool(j,2,3)=-bool(j,1,2)*bool(j,1,3)/lprime
bool(j,3,1)=-bool(j,1,3)/lprime
bool(j,3,3)=bool(j,1,1)/lprime
endif
31 continue

read(1,¥) ncons,nuncons

do70i=1, ncons

* nrodsco(i) is the no. of rods which come to the same constraint
* ntypeco(i) is the type of constraint

read(1,*) nnodcon(i), ntypeco(i)
70 continue

if (nuncons.ne.Q) then
do 90 i=1,nuncons

* nrodsuc(i) is the no. of rods which comes to the same constraint
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* ntypeun(i) is the type of constraint
read(1,*) nnodunc(i), ntypeun(i)

90 continue
endif

read(1,*) npre

if (npre.ne.0) then
do i=1,npre

read(1,*) nnodpre(i), ntypepre(i),u0(i, 1),u0(i,2),u0(i,3)

enddo
endif

do i=1,npre
ipre=0
do j=1,nrod
if (conmat(j,1).eq.nnodpre(i))then
ipre=ipre+1
nrodpre(i,ipre)=j
en
if (conmat(j,2).eq.nnodpre(i))then
ipre=ipre+1
nrodpre(i,ipre)=j
endi
enddo
nrodspre(i)=ipre
enddo

do 100 i=1,ncons
icon=0
do 110 j=1,nrod
if (conmat(j,1).eq.nnodcon(i))then
icon=icon+1
nrodcon(i,icon)=j
dif

en

if (conmat(j,2).eq.nnodcon(i))then
icon=icon+1
nrodcon(i,icon)=j
endif

110  continue

nrodsco(i)=icon
100 continue

do 130 i=1,nuncons
iuncon=0
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do 120 j=1,nrod

if (conmat(j,1).eq.nnodunc(i))then
iuncon=iuncon+1
nrodunc(i,iuncon)=j
endif
if (conmat(j,2).eq.nnodunc(i))then
iuncon=iuncon+1
nrodunc(i,iuncon)=j
endif

120  continue

nrodsuc(i)=iuncon
130 continue

read(1,¥) nload
* nodload(i) is the nod no. of the load
do 140 j=1,nload

. read(1,*) nodload(j),fx(nodload(j)).fy(nodload(j))

Sfz(nodload(j))
140 continue

read(1,¥) txt
read(1,*) error,deltat
read(1,¥) txt
read(1,¥) nnodcri
read(1,*) «xt

do j=1,nnodcri
read(1,*) icri(j)jeri(j).keri(j)
enddo

read(1,*) txt
read(1,*)nf,coefforce,nwgraph,nwconfig
read(1,¥) txt

read(1,*)nodefcri,ndir

read(1,*) txt

read(1,¥) nrodstress

read(1,*) txt

do ks=1,nrodstress

read(1,*) jstress(ks)
enddo

read(1,*) xt

read(1,*) cu,mu
read(1,¥) cv,mv
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read(1,*) cw,mw

return
end

Subroutine DR (icode,lan,no,x,r,mu,mv,cw,mw
,cu,cv,delta,e,area,jx,gs,iz,fx,fy,fz
,;anod,error,deltat,bool,nrod,nnodbet,conmat
,ncons,ntypeco,nrodsco,nrodcon,nnodcon
,nuncons,ntypeun,nrodsuc,nrodunc,nnodunc
,itype,icri,jcri,keri,nf,coefforce,nodload,nload
,anodcri,nwgraph,nodefcri,ndir,nwconfig

+ ,nrodspre,ntypepre,nnodpre,nrodpre,npre,u0

* sigmay,x1,x2,length,itypeprob,e2,e3

& ,jstress,nrodstress)

¥ % X X ¥ X

integer jstress(171),nrodstress
Double precision €2(171),e3(171)
Double precision epsilonold(171,99),sigmaold(171,99)
Double precision epsilonnew(171,99),sigmanew(171,99)
Double precision tempaveeps(1000,171),tempavsigma(1000,171)
Double precision sigmay(171),x1,x2,length(171),pi
Double precision tempcri(10000,171),fcri(10000)

Double precision x(171,99,3),r(171,99,3),rr(171,99,3)

Double precision mu,mv,cu,cv,delta(171),e(171),rmaxu,rmaxv

Double precision area(171),iz(171),fx(201),gs(171),jx(171)

Double precision fy(201),fz(201),udotp(171,99,3),bool(171,3,3)

Double precision udotc(171,99,3),deltat,u(171,99,3)

Double precision error,vu,vv,Jan(171,99)

Double precision t(171,99,3,3),cw,mw;,teta(171,99,3)

Double precision rmax1,rmax2,teta0,dteta

double precision coefforce,fx0(201),fy0(201),f20(201)

Double precision r((171,99,3),u0(55,3),£(171,99,3)

Double precision tempepsilon(10000,171),tempsigma(10000,171)
integer icri(171),jcri(171),kcri(171),nf,nload

integer icodeold(171,99)
integer icodenew(171,99)
integer ncons,nuncons,conmat(171,2)
integer nrodsco(45),ntypeco(45),nnodcon(45)
integer nrodcon(45,9)
integer nrodsuc(55),ntypeun(55),nnodunc(55)
integer nrodunc(55,11)
integer nodload(55)
integer nnodbet(171),nrod
integer nrodspre(55),ntypepre(55),nnodpre(55)
integer nrodpre(55,11),npre
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print*,'what is the no. of iterations for error to be writen’
read*,iwrite

pi=4D0*A tan(1D0)

ir=0
kwrite=0
no=0
nwrite=1
vu=deltat*cu
vv=deltat¥*cv
vw=deltat*cw
do 1000j =1, nrod
do 1005 i=1,nnodbet(j)+2
u(j,i,1)=0D0
u(j,i,2)=0D0
u(j,i,3)=0D0
1005 continue
1000 continue

do jl=1,nload
fx0(nodload(jl))=fx(nodload(jl))
fyO(nodload(jl))=fy(nodload(jl))
fﬁ%(nodload(jl))#z(nodload(jl))
enddo

6000  do 9000 jf=1,nf

do jl=1,nload
fx(nodload(jl))=fx0(nodload(jl))*(1DO+(jf-1d0)*coefforce)
fy(nodload(jl))=fyO(nodioad(j1))*(1 DO+(jf-1d0)*coefforce)
fz(nodload(jl))=fz0(nodload(j1))*(1D0+(j- 1d0)*coefforce)
c fx(nodload(jl))=fx0(nodload(jl)) *Sin(2D0*pi*jf/nf)
c fy(nodload(j1))=fyO(nodload(j1)) *Sin(2D0*pi*;f/nf)
c t('i%(nodload(jl))=f20(nodload(il))*Sin(ZDO*pi*jflnf)
enddo

do j=1,npre
do kd=1,3
do k=1,nrodspre(j)
nr=nrodpre(j,k)
nj=nnodbet(nrodpre(j,k))+2
if(conmat(nrodpre(j,k),1).eq.nnodpre(j)) then
rO(ar, 1,kd)=x(nr,1,kd)
& +u0(j,kd)*(1D0+(jf-1d0)*coefforce)
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rO(nr,1,kd)=x(nr,1,kd)

C
¢ &  +u0(j,kd)**Sin(2D0*pi*jf/nf)

else
rO(nr,nj,kd)=x(nr,nj,kd)

& +u0(,kd)*(1D0+(jf-1d0)*coefforce)

rO(nr,nj,kd)=x(nr,nj,kd)

(el ¢)

endif
enddo
enddo
enddo

1900 Do 1010 j=1, nrod
do 1015 i=1,nnodbet(j)+2
r(,i,1)=x(j,i,1)+u(j,i, 1)
1(,1,2)=x(,i,2)+u(j,i,2)
1(j,1,3)=x(j,1,3)+u(,i,3)
1015 continue
1010 Continue

do jp=1,npre
do kd=1,3
do k=1,nrodspre(jp)
nr=nrodpre(jp,k)

nj=nnodbet(nzodpre(jp,k))+2
if(conmat(nrodpre(jp,k),1).eq.nnodpre(jp)) then

r(nr, 1,kd)=r0(nr,1,kd)
else
r(nr,nj,kd)=r0(nr,nj,kd)
endif
enddo
enddo
enddo

Call calcres(x,lan,r,delta,e,area,jx,gs,iz,fx,fy,fz
,anod,ir,bool,nrod,nnodbet,conmat
,ncons,ntypeco,nrodsco,nrodcon,nnodcon
,huncons,ntypeun,nrodsuc,nrodunc,nnodunc

Lteta0,teta,itype
,sigmay,x1,x2,length,itypeprob

* X % ox ® X X%

rmaxu=0D0
rmaxv=0D0

& +u0(,kd)**Sin(2D0*pi*jf/nf)

,nrodspre,ntypepre,nnodpre,nrodpre,npre

,epsilonold,sigmaold,f,icodeold
.epsilonnew,sigmanew,icodenew,iconverged,e2,e3)
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rmaxw=0D0

Do 1020 j=1, nrod
do 1025 i=1,nnodbet(j)+2
If (Abs(rr(j,i,1)).gt.rmaxu) Then
rmaxu=Abs(rr(j,i, 1))
Jju=
ilu=i
End If
If (Abs(rr(j,i,2)).gt.rmaxv) Then
rmaxv=Abs(rr(j,i,2))
gjv=j
iiv=i
End If
If (Abs(rr(j,1,3))-gt.rmaxw) Then
rmaxw=Abs(rr(j,1,3))
ijw=j
iiw=i
End If
1025 continue
1020 Continue

c write(*,*)'rmax u,v,w=',rmaxu,rmaxv,rmaxw

if(nwrite.eq.iwrite) then
write(*,*)'rmax u,v=",rmaxu,rmaxv
write(*,*)'rmax w='",rmaxw
nwrite=0

endif

If (rmaxv.gt.rmaxu) Then
rmax1=rmaxv
else

rmaxl=rmaxu
End If

If (rmaxw.gt.rmax1) Then
=Tmaxw
else

rmax2=rmax1
End If

If (rmax2.1t.error) Go To 1950
If (itr.eq.0) Then

Do 1030 j=1,nrod
do 1035 i=1, nnodbet(j)+2
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udotc(j,i,1)=(deltat/(2D0*mu))*r(,i,1)
udotc(j,i,2)=(deltat/(2D0*mv))*m(j,i,2)

udotc(,i,3)=(deltat/(2D0*mw))*r(j,i,3)
1035 continue

1030 Continue
Else

do 1045 j=1,nrod
Do 1040 i=1 , nnodbet(j)+2

udotc(,i,1)=((2d0-vu)/(2d0+vu))*udotp(j,i,1)
* +(2d0*deltat/(2d0+vu))*mr(j,i,1)/mu
udotc(j,1,2)=((2d0-vv)/(2d0+vv))*udotp(j,i,2)
* +(2d0*deltat/(2d0+vv))*rr(j,i,2)/mv
. udotc(,i,3)=((2d0-vw)/(2d0+vw))*udotp(j,i,3)

+(2d0*deltat/(2d0+vw))*rr(j,i,3)/mw
1040 Continue

1045 continue
End If
do 1055 j=1,nrod
Do 1050 i=1 ,nnodbet(j)+2
u(.i,1)=u(,i,1)+udotc(j,i, 1)*deltat
u(j,i,2)=u(j,i,2)+udotc(j,i,2) *deltat
u(j,i,3)=u(,i,3)+udotc(j,i,3)*deltat
udotp(j,i,1)=udotc(,i,1)
udotp(j,i,2)=udotc(j,i,2)
udotp(j,i,3)=udotc(j,i,3)
1050 Continue
1055 continue

itr=itr+1

no=no+1
nwrite=nwrite+1

Go To 1900

1950 write(*,*)'converged',jf
iconverged=iconverged+1

if(MOD(jf,nwgraph).eq.0) then
kwrite=kwrite+1

do ks=1,nrodstress
tempaveeps(kwrite,jstress(ks))=0d0
tempavsigma(kwrite,jstress(ks))=0d0
nj=nnodbet(jstress(ks))+2

Do i=2, nj-1,2

tempaveeps(kwrite,jstress(ks))=tempaveeps(kwrite,jstress(ks))
&

+epsilonnew(jstress(ks),i)
tempavsigma(kwrite,jstress(ks))=tempavsigma
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c

& (kwrite,jstress(ks))+sigmanew(jstress(ks),i)
enddo
tempaveeps(kwrite,jstress(ks))=
(tempaveeps(kwrite jstress(ks))*2d0)/(nj* 1d0-1d0)
tempavsigma(kwrite,jstress(ks))=
(tempavsigma(kwrite,jstress(ks))*2d0)/(nj*1d0-1d0)

enddo

do kw=1,nnodcri
temperi(kwrite kw)=x(icri(kw),jcri(kw),kcri(kw))-
r(icri(kw),jeri(kw) kcri(kw))

enddo

if(ndir.eq.1)then
feri(kwrite)=-fx(nodefcri)
elseif(ndir.eq.2)then
feri(kwrite)=-fy(nodefcri)
elseif(ndir.eq.3)then
feri(kwrite)=-fz(nodefcri)
endif

write(2,*) 'kwrite',kwrite

do jwr=1,nnodcri

cc write(2,¥) jwr,',’ fcrikwrite)

cc & + stempcri(kwrite,jwr)

(¢ ¢}

write(*,*) jwr,', fcri(kwrite)
&, tempcri(kwrite,jwr)
enddo

do jwr=1,nnodcri

write(*,*) jwr,', tempepsilon(kwrite jwr)
&, tempsigma(kwrite,jwr)
enddo

endif

if((MOD(jf,nwconfig).eq.0).or.(jf.eq.1)) then

if((jf.eq.3).or.(jf.eq.4).or.(jf.eq.5).or.(jf.eq.25)
& .or.(jf.eq.26).or.(jf.eq.27)) then
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ccc call output(lan,no,r,nnod,nrod,nnodbet
ccc  * ,cu,mu,cv,mv,cw,mw,error,deltat,x,jf)
c write(2,*)'No. of force',jf
c endif
endif

do j=1,nrod
nj=nnodbet(j)+2
Do i=1, nj
ccc write(2,¥) 'lan,f1(,j,1,)="lan(j,i),£(j.i,1)
enddo
enddo

do j=1,nrod
nj=nnodbet(j)+2
Do i=1, nj
cce write(2,¥*) 'epsilon,sigma(,j,i,)='
ccce & ,epsilonnew(j,i),sigmanew(j,i)
enddo
enddo

do j=1,nrod

nj=nnodbet(j)+2

Do i=1, nj
epsilonold(j,i)=epsilonnew(j,1)
sigmaold(j,1)=sigmanew(j,i)
icodeold(j,i)=icodenew(j,1)
Enddo

enddo

9000 contnue

do j=1,nnodcri
write(3,%)'j',j
do i=1,kwrite
write(3,*) temperi(i,j), ', feri(@)
enddo
enddo

¢  if((itypeprob.eq.2) .or.(itypeprob.eq.3)) then
do ks=1,nrodstress
write(3,*)'average strain rod',jstress(ks)
do i=1kwrite
write(3,*) tempaveeps(i,jstress(ks))/1d3,',’,
& tempavsigma(i,jstress(ks))/1d1
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Cc

OO0 00

Q

enddo
enddo
elseif

do j=1,nnodcri
write(3,*)'j stress',j
do i=1kwrite
write(3,*) tempepsilon(i,j),’,’, tempsigma(i,j)
enddo
enddo

endif

Return
End

Subroutine constitutive2(lan,e,area,length
* ,iz,nrod,nnodbet,f,x1,x2,sigmay,iprint
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew)

Double precision epsilonold(171,99),sigmaold(171,99)

Double precision £f(171,99,3),iz(171),e(171),area(171)

Double precision epsilonnew(171,99),sigmanew(171,99)
Double precision 1an(171,99),pi

Double precision sigmay(171),length(171)

Double precision epsilonyp(171),epsilonyn(171)

Double precision epsilonup,epsilondown

integer nnodbet(171),nrod,icodeold(171,99),icodenew(171,99)

pi=4D0*Atan(1D0)

do j=1,nrod

epsilonyp(j)=sigmay(j)/e()

epsilonyn(j)=-sigmay(j)/e(j)
nj=nnodbet(j)+2

Do i=1, nj
epsilonnew(j,i)=lan(j,i)-1D0

if(epsilonnew(j,i).eq.epsilonold(j,i)) then

C The stress-strain state is the same as before.

sigmanew(j,i)=sigmaold(j,i)
elseif(epsilonnew(j,i).ge.epsilonyp(j)) then

C The stress-strain state is on the line sigmay

sigmanew(j,i)=sigmay(j)
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elseif(epsilonnew(j,i).It.epsilonyn(j)) then
C The stress-strain state is on the line -sigmay
sigmanew(j,i)=-sigmay(j)

else
C The stress-strain state is on the elastic part.

sigmanew(j,i)=e(j)*epsilonnew(j,i)
endif
£(,i,1)=sigmanew(j,i)*area(j)

Enddo
enddo

Return
End

Subroutine constitutive3(lan,e,area,length

* ,Jiz,nrod,nnodbet,f,x1,x2,sigmay,iprint
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew)

Double precision epsilonold(171,99),sigmaold(171,99)
Double precision £(171,99,3),iz(171),e(171),area(171)

Double precision epsilonnew(171,99),sigmanew(171,99)
Double precision 1an(171,99),pi

Double precision sigmay(171),length(171)

Double precision epsilonyp(171),epsilonyn(171)

Double precision epsilonup,epsilondown

integer nnodbet(171),nrod,icodeold(171,99),icodenew(171,99)

pi=4D0*Atan(1D0)

do j=1,nrod

epsilonyp(j)=sigmay(j)/e(j)

epsilonyn(j)=-sigmay(j)/e(j)
nj=nnodbet(j)+2

Do i=1, nj
epsilonnew(j,i)=lan(,i)-1D0

if(epsilonnew(j,i).eq.epsilonold(j,i)) then
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C The stress-strain state is the same as before.

sigmanew(j,i)=sigmaold(,i)
icodenew(j,i)=icodeold(,i)
elself(epsﬂonncw(] i).gt.epsilonold(j,i)) then
C Strain is increasing

if(icodeold(j, i).eq. 1) then
C The stress-strain state is not on the normal curve.

epsilonup=(sigmay(j)-sigmaold(j,i))/e(j)
+epsilonold(j.i)
if(epsilonnew(j,i).lt.epsilonup) then
C The stress-strain state is under the line sigmay

sigmanew(j,i)=e(§) *(epsilonnew(j,i)-epsilonold(j,i))
+sigmaold(,i)
icodenew(j,i)=1
else

C The stress-strain state is on the line sigmay

sigmanew(j,i)=sigmay(j)
icodenew(j,i)=0

endif

else
if(sigmaold(j,i).eq.sigmay(j)) then
sigmanew(j,i)=sigmay(j)
icodenew(j,i)=0

C The stress-strain state is on the normal curve.

elseif(epsilonnew(j,i).ge.epsilonyp(j)) then
C The stress-strain state is on the line sigmay

sigmanew(j,i)=sigmay(j)

icodenew(j,i)=0

elseif(epsilonnew(j,i). It.epsilonyn(j)) then
C The stress-strain state is on the line -sigmay

sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(j,i))
+sigmaold(j,i)
icodenew(j,i)=1
else
C The stress-strain state is on the elastic part.

sigmanew(j,i)=e(j)*epsilonnew(j,i)
icodenew(j,i)=0
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endif
endif

else
C Strain is decreasing

if(icodeold(j,i).eq.1) then
C The stress-strain state is not on the normal curve.

epsilondown=(-sigmay(j)-sigmaold(j,i))/e(j)
& +epsilonold(j,i)
if(epsilonnew(j,i).ge.epsilondown) then
C The stress-strain state is upper the line -sigmay

sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(j,i))
+sigmaold(j,i)
icodenew(j,i)=1
else
C The stress-strain state is on the line -sigmay

sigmanew(j, 1)-»51gmay(])
icodenew(j,i)=0
endif

else

if(sigmaold(j,i).eq.-sigmay(j)) then
sigmanew(j,i)=-sigmay(j)
icodenew(j,i)=0

C The stress-strain state is on the normal curve.

elseif(epsilonnew(j,i).It.epsilonyn(j)) then
C The stress-strain state is on the line -sigmay

sigmanew(j, 1) sigmay(j)

icodenew(j,i)=0

elseif(epsilonnew(j,i).It.epsilonyp(j)) then
C The stress-strain state is on the elastic part.

sigmanew(j,i)=e(j)*epsilonnew(j,i)
icodenew(j,i)=0
else
C The stress-strain state is on the sigmay

sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(,i))
+sigmaold(j,i)
icodenew(j,i)=1
endif
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OOOO0O0O0000

endif
endif

£(j.i,1)=sigmanew(j,i)*area(j)

Enddo
enddo

Return
End

Subroutine constitutive4(lan,e,area,length

* »iz,nrod,nnodbet,f,x1,x2 sigmay,iprint
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew,iconverged,e2,e3)

Double precision epsilonold(171,99),sigmaold(171,99)
Double precision £f(171,99,3),iz(171),e(171),area(171)
Double precision epsilonnew(171,99),sigmanew(171,99)
Double precision lan(171,99),pi,e2(171),e3(171)

Double precision sigmay(171),length(171)

Double precision epsilonyp(171),epsilonyn(171)

Double precision epsilonup,epsilondown

integer nnodbet(171),-nrod,icodeold(171,99),icodenew(l71,99)
pi=4D0*Atan(1D0)

do j=1,nrod o
epsilonyp(j)=sigmay(j)/e(j)
epsilonyn(j)=-sigmay(j)/eQ)
nj=nnodbet(j)+2

Doi=1,nj
epsilonnew(j,i)=lan(j,i)-1D0

if(iconverged.gt.340) then
print*,'icodenew,icodeold’,
icodenew(j,i),icodeold(j,i)
print*,'sigmanew,sigmaold’,
sigmanew(j,1),sigmaold(j,i)
print*,'epsilonnew,epsilonold’,
epsilonnew(j,i),epsilonold(j,i)
print*,j,i',j,i
en
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if(epsilonnew(j,1).eq.epsilonold(j,i)) then
C The stress-strain state is the same as before.

sigmanew(j,i)=sigmaold(j,i)
icodenew(j,i)=icodeold(j,i)
elseif(epsilonnew(j,i).gt.epsilonold(j,i)) then
C Strain is increasing

if(icodeold(j,i).eq.1) then
C The stress-strain state is not on the normal curve.

epsilonup=(sigmay(j)-sigmaold(j,i)+e(j)*epsilonold(j,i)
& -e2()*epsilonyp(§))/(e()-e2(3))

if(epsilonnew(j,i).1t.epsilonup) then
C The stress-strain state is under the line sigmay

sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(j,i))
+sigmaold(j,i)
icodenew(j,i)=1
else

C The stress-strain state is on the line sigmay
sigmanew(j,i)=e2(j)*(epsilonnew(j,i)-epsilonyp(j))
+sigmay(j)

icodenew(j,i)=4
endif
else

if(icodeold(j,i).eq.4) then

sigmanew(j,i)=e2(j)*(epsilonnew(j,i)-epsilonyp(j))
+sigmay(j)

icodenew(j,i)=4
C The stress-strain state is on the normal curve.

elseif(epsilonnew(j,i). ge.epsilonyp(j)) then
C The stress-strain state is on the line sigmay
sigmanew(j,i)=e2(j)*(epsilonnew(j,i)-epsilonyp(j))
+sigmay(j)

icodenew(j,i)=4
elseif(epsilonnew(j,i).It.epsilonyn(j)) then
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C The stress-strain state is on the line -sigmay

sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(j.i))
+sigmaold(j,i)
icodenew(j,i)=1
else
C The stress-strain state is on the elastic part.

sigmanew(j,i)=e(j)*epsilonnew(j,i)
icodenew(j,i)=0

endif

endif

else
C Strain is decreasing

if(icodeold(j,i).eq.1) then
c if(iconverged.gt.340) then
c print¥*,'step 1'
c endif
C The stress-strain state is not on the normal curve.

epsilondown=(-sigmay(j)-sigmaold(j,i)+e(j)*epsilonold(j,i)
& -e3(j)*epsilonyn(j))/(e(i)-e3())

if(epsilonnew(j,i).gt.epsilondown) then
C The stress-strain state is upper the line -sigmay

c if(iconverged.gt.340) then
c print¥,'step 2'
c endif

sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(,i))
+sigmaold(j,1)
icodenew(j,i)=1
else
C The stress-strain state is on the line -sigmay

sigmanew(j,i)=e3(j) *(epsilonnew(j,i)-epsilonyn(j))

i -sigmay(j)
icodenew(j,i)=2

c if(iconverged.gt.340) then
c print*,'step 3'
c endif
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endif
c if(iconverged.gt.340) then
c print*,'step 4'
c endif
else
if(icodeold(j,i).eq.2) then

c if(iconverged.gt.340) then
print¥*,'step 5'
c endif

o

sigmanew(i,i)=e3(j).*(cpsilonnew(j,i)—cpsilonyn(j))

-sigmay(j)
icodenew(j,i)=2

C The stress-strain state is on the normal curve.

elseif(epsilonnew(j,i).lt.epsilonyn(j)) then
C The stress-strain state is on the line -sigmay
sigmanew(j,i)=e3(j)*(epsilonnew(j,i)-epsilonyn(j))
-sigmay(j)
icodenew(j,i)=2

c if(iconverged.gt.340) then
c print*,'step 6'
c endif

elseif(epsilonnew(j,i).lt.epsilonyp(j)) then
C The stress-strain state is on the elastic part.

sigmanew(j,i)=e(j)*epsilonnew(j,i)

icodenew(},i)=0
c if(iconverged.gt.340) then
c print*,'step 7'
c endif
else

C The stress-strain state is on the sigmay
sigmanew(j,i)=e(j)*(epsilonnew(j,i)-epsilonold(j,i))
+sigmaold(j,i)
icodenew(j,i)=1

c if(iconverged.gt.340) then



APPENDIX A. SOURCE CODE

202

c print*,'step 8'
c endif

endif
endif
endif

f(j,i,1)=sigmanew(j,i)*area(j)
Enddo
enddo

Return
End

Subroutine calcres(x,lan,rg,delta,e,area,jx,gs,iz,fx,fy,fz
,nnod,ir,bool,nrod,nnodbet,conmat
,ncons,ntypeco,nrodsco,nrodcon,nnodcon
,nuncons,ntypeun,nrodsuc,nrodunc,nnodunc
.tteta0,teta itype

* ,nrodspre,ntypepre,nnodpre,nrodpre,npre

* sigmay,x1,x2,length,itypeprob

* ,epsilonold,sigmaold,f,icodeold

* ,epsilonnew,sigmanew,icodenew,iconverged,e2,e3)

* % % X

Double precision epsilonnew(171,99),sigmanew(171,99)
integer icodenew(171,99)
Double precision €2(171),e3(171)
Double precision epsilonold(171,99),sigmaold(171,99)
Double precision sigmay(171),x1,x2,length(171)
Double precision rg(171,99,3),delta(171),e(171),area(171)
Double precision gs(171),jx(171)
Double precision 1z(171),rrp(171,99,3)
Double precision fx(201),fy(201),fz(201),m(171,99,3)
Double precision bool(171,3,3),r(171,99,3),x(171,99,3)
Double precision rp(171,99,3),tetap(171,99,3)
Double precision tetapp(171,99,3)
Double precision t(171,99,3,3),lan(171,99)
Double precision teta(171,99,3),sum(3)
Double precision suml(3),teta0
Double precision tp(171,99,3,3),£(171,99,3),fp(171,99,3)
Double precision kapa(171,99,3),kapap(171,99,3)
integer icodeold(171,99)
integer ncons,nuncons,conmat(171,2)
integer nrodsco(45),ntypeco(45),nnodcon(45)
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integer nrodcon(45,9)
integer nrodsuc(55),ntypeun(55),nnodunc(55)

integer nrodunc(55,11)

integer nodload(55)

integer nnodbet(171),nrod
integer nrodspre(55),ntypepre(55),nnodpre(S5)
integer nrodpre(55,11),npre

4+ * % x ¥

* % X % %

100

120

Call rprime(x,bool,rg,r,nnod,delta,rp,nrod,nnodbet)

Call lanteta(rp,lan,nnod
,teta,nrod,nnodbet,conmat
,ncons,ntypeco,nrodsco,nrodcon,nnodcon
,nuncons,ntypeun,nrodsuc,nrodunc,nnodunc
,delta,teta0,itype

,nrodspre,ntypepre,nnodpre,nrodpre,npre)

Call trans(rp,lan,nrod,nnodbet,teta,t)

Call tetaprime(lan,r,nnod,delta,tetap,tetapp,teta
,arod,nnodbet)

Call kapaprime(kapa,kapap,nrod,nnodbet
,teta,tetap,tetapp)

Call calcf(lan,nnod,e.kapa,kapap
.JjX,gs,area,nrod,nnodbet
Jiz,delta f,sigmay,x1,x2,length
,itypeprob
,epsilonold,sigmaold,icodeold
,epsilonnew,sigmanew,icodenew,iconverged,e2,e3)

Call fprime(f,fp,delta,nrod,nnodbet)
Call transprime(nrod,nnodbet,teta,tetap,tp)

do 2005 j=1,nrod

nj=nnodbet(j)+2
Do 2000 i=2 , nj-1
do 100 k=1,3
rp(j,1,k)=fp(,i, 1) *t(j,i, L k)+p(,i,2)*t(j,i,2,k)+
p(,1,3)*t(j,1,3,k)+£(G,1, 1) *tp(,i, 1 k)+
_ 1G.1.2)*1p(.1.2,k)+{(.1,3) *tp(,i,3.k)
continue
do 120 k=1,3
r(j,i,k)=rrp(j,i,1)*bool(j, 1,k)+1rp(j,i,2)*bool(j,2,k)+
_ 1p{j,i,3)*bool(j,3.k)
continue
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2000 Continue
2005 continue

do 4050 j=1,nuncons
do 130 1=1,3
sum(1)=0D0
130  continue

do 4060 k=1,nrodsuc(j)
nr=nrodunc(j k)
nj=nnodbet(nrodunc(j,k))}+2
if(conmat(nrodunc(j,k),1).eq.nnodunc(j)) then

do 140 jj=1,3
suml(jj)=f(nr,1,1)*t(nr,1,1,jj)+f(nr,1,2)*t(nr,1,2,jj)+
* f(nr,1,3)*t(nr,1,3,jj)
140 continue
do 150 jj=1,3
sum(jj)=sum(jj)+(suml(1)*bool(nr,1,jj)+
* suml(2)*bool(nr,2,jj)+suml(3)*bool(nr,3,jj))
150 continue
else
do 160 jj=1,3
suml(jj)=f(nr,nj,1)*t(nr,nj, 1,ij)
* +f(nr,nj,2)*t(nr,nj,2,jj)+f(nr,nj,3)*t(nr,nj,3,jj)
160 continue
do 170 jj=1,3
sum(jj)=sum(jj)-(suml(1)*bool(nr, 1,jj)+
* suml(2)*bool(nr,2,jj)+suml(3)*bool(nr,3,jj))
170 continue
endif

4060 continue

do 4080 k=1,nrodsuc(j)
nr=nrodunc(j.k)
nj=nnodbet(nrodunc(jk))+2
if(conmat(nrodunc(j,k),1).eq.nnodunc(j)) then
r(nr, 1,1)=sum(1)+fx(nnodunc())
r(nr,1,2)=sum(2)+fy(nnodunc(j))
r(nr,1,3)=sum(3)+fz(nnodunc())
else
rr(nr,nj, 1 )=sum(1)+fx(nnodunc())
r(nr,nj,2)=sum(2)+fy(nnodunc(j))
mr(nr,nj,3)=sum(3)+fz(nnodunc())
endif
4080 continue
4050 continue

do j=1,npre
do I=1,3
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sum(1)=0D0
enddo
do k=1,nrodspre(j)
nr=nrodpre(j,k)
nj=nnodbet(nrodpre(j,k))+2
zf(cgmlngt(nrodpre(i,k),1)-eq.nn0dpre(i)) then
o jj=1,
sujgnl(jj)=f(nr,l,1)*t(nr,1,1,jj)+f(nr,1,2)*t(nr,1,2,jj)+
* f(nr,1,3)*t(nr,1,3,jj)
enddo
do jj=1,3
sum(jj)=sum(jj)+(suml(1)*bool(nr, 1,jj)+
* suml(2)*bool(nr,2,jj)+suml(3)*bool(nr,3,jj))
enddo
else
do jj=1,3
suml(jj)=f(nr,nj,1)*t(nr,nj,1,j;)
+f(nr,nj,2)*t(nr,nj,2,jj)+f(nr,nj,3)*t(nr,nj,3,jj)
enddo
do jj=1,3
sum(jj)=sum(jj)-(suml(1)*bool(nr, 1,jj)+
* suml(2)*bool(nr,2,jj)+suml(3)*bool(nr,3,jj))
enddo
endif
enddo
fx(nnodpre(j))=-sum(1)
fy(nnodpre(}))=-sum(2)
fz(nnodpre(j))=-sum(3)
enddo

*

Return
End

Subroutine rprime(x,bool,rg,r,nnod,delta,rp,nrod,nnodbet)

Double precision rg(171,99,3),r(171,99,3),delta(171)
Double precision rp(171,99,3)
integer nnodbet(171),nrod

Double precision x(171,99,3),bool(171,3,3)

do 3010 j=1,nrod
nj=nnodbet(j)+2
do 3020 i=1,nj
r(j,i,1)=(rg(,i,1)-x(§,1,1))*bool(,1,1)+
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* (rg(,1,2)-x(j,1,2))*bool(j,1,2)+

* (rg(,i,3)-x(,1,3))*bool(j,1,3)
r(,1,2)=(rg(j,i,1)-x(j, 1,1))*bool(j.2,1)+

* (r8(3:1,2)-x(j, 1,2))*bool(j,2,2)+

* (rg(.1,3)-x@,1,3))*bool(j,2,3)
1G,1,3)=(rg(,1,1)-x(j, 1, 1))*bool(j,3,1)+

¥ (rg(,1,2)-x(j,1,2))*bool(j,3,2)+

* (rg(.1,3)-x(,1,3))*bool(j,3,3)

3020 Continue
3010 continue

do 3005 j=1,nrod
nj=nnodbet(j)+2
p(,1,1)=(-1(j,3,1)+4D0*1(j,2,1)

* -3D0%*r(j,1,1))/(2D0*delta(j))
rp(i’ 1 v2)=('rG!372)+4D0*rG,232)
* -3D0%*r(j, 1,2))/(2D0*delta(j))
rp(j,1,3)=(-r(§,3,3)+4D0%r(j,2,3)
* -3D0*r(j, 1,3))/(2D0*delta(j))
p(j,nj,1)=(3D0*r(j,nj,1)-4D0*1(j,nj-1,1)
* +1(j,nj-2,1))/(2D0*delta(j))
p(j,nj,2)=(3D0*r(j,nj,2)-4D0*r(j,nj-1,2)
* +1(j,nj-2,2))/(2D0*delta(j))
rp(j,nj,3)=(3D0*r(j,nj,3)-4D0*r(j,nj-1,3)
* +1(j,nj-2,3))/(2D0*delta(j))

Do 3000 i=2, nj-1
rp(j.i, 1)=(r(,i+1,1)-r(j,i-1,1))/(2D0*delta(j))
p(J,1,2)=(r(j,i+1,2)-r(j,i-1,2))/(2D0*delta(j))
rp(,i,3)=(r(,i+1,3)-r(,i-1,3))/(2D0*delta(j))
3000 Continue
3005 continue

Return
End

Subroutine lanteta(rp,lan,nnod
,teta,nrod,nnodbet,conmat
Jncons,ntypeco,nrodsco,nrodcon,nnodcon
,nuncons,ntypeun,nrodsuc,nrodunc,nnodunc
,delta,tetaQ,itype
+ ,nrodspre,ntypepre,nnodpre,nrodpre,npre)

¥ % ¥ %

Double precision rp(171,99,3),l1an(171,99)
Double precision teta(171,99,3)
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Double precision delta(171),tetaQ
integer nnodbet(171),nrod
integer ncons,nuncons,conmat(171,2)
integer nrodsco(45),ntypeco(45),nnodcon(45)
integer nrodcon(45,9)
integer nrodsuc(55),ntypeun(55),nnodunc(55)
integer nrodunc(55,11)
integer nrodspre(S5),ntypepre(55),nnodpre(55)
integer nrodpre(55,11),npre

do 4005 j=1,nrod
nj=nnodbet(j)+2
Do 4000 i=2 , nj-1
lan(j,i)=Sqrt(rp(,i,1)**2D0+1p(,i,2)**2D0
+1p(j,1,3)**2D0)
tctaG,i,Z):ASin('Ip(i,i,3)/lan(j,i))
teta(j,i,3)=Atan(rp(,i,2)/rp(,i, 1))
4000 Continue
lan(j,1)=Sqrt(rp(,1,1)**2D0+rp(j,1,2)**2D0
+1p(j,1,3)**2D0)
lan(j,nj)=Sqrt(rp(j,nj,1)**2D0+rp(j,nj,2)**2D0
+1p(j,nj,3)**2D0)
4005 continue

do 4020 j=1,ncons
if (ntypeco(j).eq.1) then

do 4030 k=1,nrodsco(j)

if(conmat(nrodcon(j.k),1).eq.nnodcon(j)) then
teta(nrodcon(j,k),1,1)=0D0
teta(nrodcon(j,k),1,2)=0D0
teta(nrodcon(j,k),1,3)=0D0

else
teta(nrodcon(j,k),nnodbet(nrodcon(j,k))+2,1)=0D0
teta(nrodcon(j,k),nnodbet(nrodcon(j,k))+2,2)=0D0
teta(nrodcon(j,k),nnodbet(nrodcon(j,k))+2,3)=0D0

endif

4030 continue
else

do 4040 k=1,nrodsco(j)
nr=nrodcon(j,k)
nj=nnodbet(nrodcon(j,k))+2
if(conmat(nrodcon(j,k),1).eq.nnodcon(j)) then
teta(nr, 1,2)=(-teta(nr,3,2)+4D0*teta(nr,2,2))/3D0
teta(nr, 1,3)=(-teta(nr,3,3)+4D0*teta(nr,2,3))/3D0



APPENDIX A. SOURCE CODE

208

else
teta(nr,nj,2)=(-teta(nr,nj-2,2)
* +4D0*teta(nr,nj-1,2))/3D0
teta(nr,nj,3)=(-teta(nr,nj-2,3)
+4D0*teta(nr,nj-1,3))/3D0
endif

4040 continue
endif
4020 continue

do 4050 j=1,nuncons
if (ntypeun(j).eq.2) then
do 4070 k=1,nrodsuc(j)
nr=nrodunc(j,k)
nj=nnodbet(nrodunc(j,k))+2
if(conmat(nrodunc(j,k),1).eq.nnodunc(j)) then

teta(nr, 1,2)=(-teta(nr,3,2)+4D0*teta(nr,2,2))/3D0
teta(nr, 1,3)=(-teta(nr,3,3)+4D0*teta(nr,2,3))/3D0

else
teta(nr,nj,2)=(-teta(nr,nj-2,2)
* +4D0*teta(nr,nj-1,2))/3D0
teta(nr,nj,3)=(-teta(nr,nj-2,3)
* +4D0*teta(nr,nj-1,3))/3D0
endif
4070 continue
endif

4050 continue

do j=1,npre
if (ntypepre(j).eq.2) then
do k=1,nrodspre(j)
nr=nrodpre(j,k)
nj=nnodbet(nrodpre(j,k))+2
if(conmat(nrodpre(j,k),1).eq.nnodpre(j)) then
teta(nr, 1,2)=(-teta(nr,3,2)+4D0*teta(nr,2,2))/3D0
teta(nr, 1,3)=(-teta(nr,3,3)+4D0*teta(nr,2,3))/3D0
else
teta(nr,nj,2)=(-teta(nr,nj-2,2)
* +4D0*teta(nr,nj-1,2))/3D0
teta(nr,nj,3)=(-teta(nr,nj-2,3)
* +4D0%*teta(nr,nj-1,3))/3D0
endif
enddo
endif
enddo
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Return
End

subroutine trans(rp,lan,nrod,nnodbet,teta,t)

Double precision teta(171,99,3)
Double precision t(171,99,3,3)
Double precision rp(171,99,3),lan(171,99)

integer nnodbet(171),nrod

do 4090 j=1,nrod
nj=nnodbet(j)+2
Do 4100 i=1 , nj
t(j,1,1,1)=Cos(teta(j,i,2))*Cos(teta(j,i,3))
t(j,1,1,2)=Cos(teta(j,i,2)) *Sin(teta(j,i,3))
t(j,i,1,3)=-Sin(teta(j,i,2))
t(j,1,2,1)=Cos(teta(j,i,3))*Sin(teta(j,i, 1))

* *Sin(teta(j,i,2))-

* Cos(teta(j,i, 1)) *Sin(teta(j,i,3))
t(j,1,2,2)=Cos(teta(j,i,1))*Cos(teta(j,i,3))+

* Sin(teta(j,i, 1))*Sin(teta(j,i,2))

* *Sin(teta(j,i,3))

t(j.1,2,3)=Cos(teta(j,i,2)) *Sin(teta(j,i,1))
t(j.1,3,1)=Cos(teta(j,i,1))*Cos(teta(j,i,3))

* *Sin(teta(j,i,2))+

* Sin(teta(j,i,1))*Sin(teta(j,i,3))
t(j,1,3,2)=-Cos(teta(j,1,3)) *Sin(teta(j,i, 1))+

* Cos(teta(j,i,1))*Sin(teta(j,i,2))

* *Sin(teta(j,i,3))

t(j,1,3,3)=Cos(teta(j,i,1))*Cos(teta(j,i,2))
4100 Continue
4090 continue

Returm
End

Subroutine tetaprime(lan,r,nnod,delta,tetap,tetapp
* ,teta,nrod,nnodbet)
Double precision 1an(171,99),r(171,99,3)
Double precision tetap(171,99,3),delta(171)
Double precision teta(171,99,3),tetapp(171,99,3)
integer nnodbet(171),nrod

do 5005 j=I,nrod
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50

70

5000
5005

80
6005

nj=nnodbet(j)+2
Do 5000 i=1, nj
If (i.eq.1) Then
do 50 k=1,3
tetap(j,i,k)=(-teta(j,3,k)+4d0*teta(j,2,k)
-3d0*teta(j, 1,k))/(2d0*delta(j))
continue
Else if (i.eq.nj) Then
do 60 k=1,3
tetap(j,i,k)=(3d0*teta(j,i,k)-4d0*teta(j,i- 1,k)
+teta(j,i-2,k))/(2d0*delta(j))
continue
Else
do 70 k=1,3
tetap(j,i.k)=(teta(j,i+1,k)-teta(j,i-1,k))
/(2d0*delta(j))
continue
End If
Continue
continue

do 6005 j=1,nrod
nj=nnodbet(j)+2
Do 6000 i=1, nj
do 80 k=1,3
If (i.eq.1) Then
tetapp(j.i,k)=(-teta(j,4,k)+4d0*teta(j,3,k)
-5d0*teta(j,2.k)
+2d0*teta(j, 1,k)) /(delta(j)**2d0)
Elseif (i.eq.nj) then
tetapp(j.i.k)=(-teta(j,nj-3,k)+4d0*teta(j,nj-2 k)
-5d0*teta(j,nj-1,k)
+2d0*teta(j,nj,k))/(delta(j)**2d0)
else
tetapp(j,i,k)=(teta(j,i+1,k)-2d0*teta(j,i,k)
+teta(j,i-1,k))/(delta(j)**2d0)
End If
continue
Continue
continue

Return
End

subroutine kapaprime(kapa,kapap,nrod,nnodbet
*

,teta,tetap,tetapp)
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Double precision teta(171,99,3),tetap(171,99,3)
Double precision tetapp(171,99,3)
Double precision kapa(171,99,3),kapap(171,99,3)

integer nnodbet(171),nrod

do 4090 j=1,nrod
nj=nnodbet(j)+2
Do 4100 i=1, nj
kapa(j,i,1)=tetap(j,i,1)-tetap(j,i,3)

* *Sin(teta(},i,2))
kapa(j,i,2)=tetap(j,i,2)*Cos(teta(j,i,1))+

* tetap(j,i,3)*Sin(teta(j,i, 1))

* *Cos(teta(j,i,2))
kapa(j,i,3)=-tetap(j,i,2)*Sin(teta(j,i,1))+

* tetap(j,i,3)*Cos(teta(j,i, 1))

* *Cos(teta(j,i,2))

kapap(j,i,1)=tetapp(j,i,1)-tetapp(},i,3)
*Sin(teta(j,i,2))-tetap(,i,3)
*tetap(j,i,2)*Cos(teta(j,i,2))
kapap(j.i,2)=tetapp(j.i,2)*Cos(teta(j,i, 1))
-tetap(j,i,2)*tetap(j,i,1)*Sin(teta(j,i,1))
+tetapp(j,i,3)*Sin(teta(j,i, 1)) *Cos(teta(j,i,2))
+tetap(j,i,3)*tetap(j,i, 1)*Cos(teta(j,i,1))
*Cos(teta(j,i,2))
-tetap(j,i,3)*tetap(j,i,2)*Sin(teta(j,i, 1))
*Sin(teta(j,i,2))
kapap(j,i,3)=-tetapp(j,i,2)*Sin(teta(,i, 1))
-tetap(j,i,2)*tetap(j,i,1)*Cos(teta(j,i, 1))
+tetapp(j,i,3)*Cos(teta(j,i,1))*Cos(teta(j,i,2))
-tetap(j,i,3)*tetap(j,i,1)*Sin(teta(j,i,1))
*Cos(teta(j,i,2))
-tetap(j,i,3)*tetap(j,i,2)*Cos(teta(j,i, 1))
*Sin(teta(j,i,2))

4100 Continue
4090 continue

* *

* % K %X % ¥

* X X % % X

Return
End

Subroutine calcf(lan,nnod,e.kapa,kapap
* JX,gs,area,nrod,nnodbet
* Jiz,delta,f,sigmay,x1,x2,length
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* ;itypeprob
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew,iconverged,e2,e3)

Double precision epsilonnew(171,99),sigmanew(171,99)
integer icodenew(171,99)
Double precision €2(171),e3(171)
Double precision epsilonold(171,99),sigmaold(171,99)
Double precision sigmay(171),x1,x2,length(171)

Double precision 1an(171,99)

Double precision e(171),area(171)

Double precision gs(171),jx(171)

Double precision iz(171),delta(171)

Double precision kapa(171,99,3),kapap(171,99,3)

Double precision mprime(171,99,3),£(171,99,3)

integer icodeold(171,99)

integer nnodbet(171),nrod

do 1005 j=1,nrod
nj=nnodbet(j)+2
Do 1000 i=1, nj
mprime(j,i, 1)=gs(§)*jx(j) *kapap(j,i,1)

mprime(j,i,2)=e(j) *iz(§)*kapap(j,i,2)

* -e(j)*iz(j)*kapa(j,i, 1)*kapa(j,i,3)

* +gs(§)*jx(§)*kapa(,i, 1)*kapa(j,i,3)
mprime(j,i,3)=e(§)*iz(j)*kapap(j,i,3)

* +e(j)*iz(j)*kapa(j,i,1)*kapa(j,i,2)

* -gs()*jx(j)*kapa(j.i,1)*kapa(j,i,2)

1000 Continue
1005 continue

do 4005 j=1,nrod
nj=nnodbet(j)+2
Do 4000 i=1, nj
f(j,i,2)=-mprime(j,i,3)/1an(j,i)

f(3,1,3)=mprime(j,i,2)/1an(j,i)
4000 Continue
4005 continue

if(itypeprob.eq.1)then
do j=1,nrod
nj=nnodbet(j)+2
Do i=1, nj
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£(.1, 1)=e(j)*area(j)*(lan(j,i)-1D0)
epsilonnew(j,i)=(lan(j,i)-1D0)
sigmanew(j,i)=e(j)*(lan(j,i)-1D0)
Enddo
enddo

elseif(itypeprob.eq.2)then

Call constitutive2(lan,e,area,length
* ,iz,nrod,nnodbet,f,x1,x2,sigmay,iprint
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew)

elseif(itypeprob.eq.3)then

Call constitutive3(lan,e,area,length
* Jiz,nrod,nnodbet,f,x1,x2,sigmay,iprint
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew)

elseif(itypeprob.eq.4)then

Call constitutive4(lan,e,area,length
* Jiz,nrod,nnodbet,f,x1,x2,sigmay,0
* ,epsilonold,sigmaold,icodeold
* ,epsilonnew,sigmanew,icodenew,iconverged,e2,e3)

endif

Return
End

Subroutine fprime(f,fp,delta,nrod,nnodbet)

Double precision £(171,99,3),fp(171,99,3),delta(171)
integer nnodbet(171),nrod

do 6015 j=1,nrod
nj=nnodbet(j)+2
Do 6010i=1, nj
do 10 k=1,3
if(i.eq.1) then
fp(i’ 1 »k)=('f0.13»k)+4d0*f(is2’k)'3d0*f(i’ 1 rk))
* /(2d0*delta(j))
elseif(i.eq.nj) then
fp(.nj,k)=(3d0*f(j,nj,k)-4d0*£(j,nj-1,k)
+(j,nj-2,k))/(2d0*delta(j))
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else
fp(j.1,k)=(fG,i+1 k)-f(j,i- 1,k))/(2d0*delta(j))
endif
10 continue
6010 Continue

6015 continue

Return
End

subroutine transprime(nrod,nnodbet,teta,tetap,tp)

Double precision teta(171,99,3),tetap(171,99,3)
Double precision tp(171,99,3,3)

integer nnodbet(171),nrod

do 4090 j=1,nrod
nj=nnodbet(j)+2
Do 4100 i=1, nj

tp(,1,1,1)=-tetap(j,i,2)*Cos(teta(j,i,3))*
Sin(teta(j,i,2))-
* tetap(j,i,3)*Cos(teta(j,i,2))*
Sin(teta(j,i,3))

tp(j,i,1,2)=-tetap(j,i,2)*Sin(teta(j,i,2))*
Sin(teta(j,i,3))+

* tetap(j,i,3)*Cos(teta(j,i,2))*

Cos(teta(j,i,3))

tp(,i,1,3)=-tetap(j,i,2)*Cos(teta(j,i,2))

*

*

*

tp(j.i.2,1)=tetap(j,i,1)*Cos(teta(j,i,1))*
Cos(teta(j,1,3))*Sin(teta(j,1,2))+
tetap(j,i,1)*Sin(teta(,i,1))*
Sin(teta(j,i,3))+
tetap(j,i,2)*Cos(teta(j,i,2))*
Cos(teta(j,i,3))*Sin(teta(j,i,1))-
tetap(j,i,3)*Cos(teta(j,i,1))*
Cos(teta(j,i,3))-
tetap(j,i,3)*Sin(teta(j,i,2))*
Sin(teta(j,i,3))*Sin(teta(j,i, 1))

LR B B N BN
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1p(j,,2,2)=-tetap(j,i,1)*Cos(teta(j,i,3))*
Sin(teta(j,i,1))+
tetap(j,i,1)*Cos(teta(j,i, 1))*
Sin(teta(j,1,2))*Sin(teta(j,i,3))+
tetap(j,i,2)*Cos(teta(j,i,2))*
Sin(teta(j,i,1))*Sin(teta(j,i,3))+
tetap(j,i,3)*Cos(teta(j,i,3))*
Sin(teta(j,i,1))*Sin(teta(j,i,2))-
tetap(j,i,3)*Cos(teta(j,i, 1))*
Sin(teta(j,i,3))

tp(,1,2,3)=tetap(j,i, 1)*Cos(teta(j,i,1))*
* Cos(teta(j,i,2))-
* tetap(j,i,2)*Sin(teta(j,i,1))*
* Sin(teta(j,i,2))

* oK N XN K X N ®

tp(,1,3,1)=-tetap(j,i,1)*Cos(teta(j,i,3))*
Sin(teta(j,i,1))*Sin(teta(j,i,2))+
tetap(j,i,1)*Cos(teta(j,i, 1))*
Sin(teta(j,i,3))+
tetap(j,i,2)*Cos(teta(j,i,1))*
Cos(teta(j,i,2))*Cos(teta(j,i,3))+
tetap(j,i,3)*Cos(teta(j,i,3))*
Sin(teta(j,i,1))-
tetap(j,i,3)*Cos(teta(j,i, 1))*
Sin(teta(j,i,2))*Sin(teta(j,i,3))

tp(,1,3,2)=-tetap(j,i, 1) *Cos(teta(j,i,1))*
Cos(teta(j,i,3))-
tetap(j,i,1)*Sin(teta(j,i,1))*
Sin(teta(j,i,2))*Sin(teta(j,i,3))+
tetap(j,i,2)*Cos(tetaj,i,1))*
Cos(teta(j,i,2))*Sin(teta(j,i,3))+
tetap(j,i,3)*Cos(teta(j,i,1))*
Cos(teta(j,1,3))*Sin(teta(,1,2))+
tetap(j,i,3)*Sin(teta(j,i,1))*
Sin(teta(j,i,3))

tp(,1,3,3)=-tetap(j,i, 1)*Cos(teta(j,i,2))*
Sin(teta(j,i,1))-
tetap(j,i,2)*Cos(teta(j,i,1))*
Sin(teta(j,i,2))

LR R I K BN K B

L R B B B A AR

* * »

4100 Continue
4090 continue
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Retumn
End

Subroutine output(lan,no,r,nnod,nrod,nnodbet
* cu,mu,cv,mv,cw,mw,error,deltat,x,jf)

double precision cu,mu
double precision cv,mv,cw,mw
double precision error,deltat

Double precision r(171,99,3),lan(171,99),x(171,99,3)
integer nnodbet(171),nrod

if(jf.eq.1)then
nnode=0
nconmat=0
do 1000 j=1,nrod
nnode=nnode-+nnodbet(j)+2
nconmat=nconmat+nnodbet(j)+1
1000 continue
write(2,¥) nnode
do 1100 j=1,nrod
nj=nnodbet(j)+2
do 1200 i=1,nj
write(2,*) x(5:1,1),x(,i.2):% (01, 3)
1200 continue
1100 continue

write(2,¥) nconmat
do 1300 j=1,nrod
nj=nnodbet(j)+2
do 1400 i=1,nj-1
nl=i+(j-1)*(nnodbet(-1)+2)
n2=i+1+(j-1)*(nnodbet(j-1)+2)
write(2,¥) n1,n2
1400 continue
1300 continue

endif
do 1500 j=1,nrod
nj—nnodbet(])+2
do 1600 i=1,nj
write(2,*) r(l.l,l) £(,1,2),rG1,3)
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1600 continue
1500 continue

if(jf.eq.1)then
write(2,*)'No. of iterations=',no
write(2,*)'cu,mu=',cu,mu
write(2,*)'cv,mv=',cv,mv
write(2,*)'cw,mw=",cw,mw

write(2,*)'error,deltat=",error,deltat
endif

do 7005 j=1,nrod
nj=nnodbet(j)+2
Do 7000 i=1, nj
c write(2,%)j,1,r(,1,1),r(,i,2),1G,1,3)
7000 Continue
7005 continue

do 7110 j=1,nrod
nj=nnodbet(j)+2
Do 7100 i=1, nj
c write(2,*)'lambda’j,i,lan(j,1)
7100 Continue
7110 continue

Return
End
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