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Abstract 

Industrial fabrication for modular installations has its own set of challenges that combine the 

environments of industrial manufacturing and off-site construction. This hybrid execution 

strategy means that fabricators need to look at both fields and adopt the best tools and 

techniques.  

This thesis presents an investigation into the improvement of delivery time estimates of 

industrial fabrication of a pipe spool fabrication shop in Alberta. The main contribution of the 

work is in the area of predicting the total fabrication duration to be expected in order to assist 

fabrication shop management in planning for appropriate workforce availability and material 

delivery date requirements. 

In order to address the objective of improving the prediction of fabrication durations, the spool 

manufacturing process has been modelled for simulation. However, the data required to validate 

this model was found to be time-consuming and cumbersome to capture at the required level of 

details. Alternatively, the development of a data-driven knowledge discovery experiment was 

pursued. The approach employed was to utilize the fabrication information that was already 

being captured by the manufacturing facility and evaluate it using instance-based classification.  

In addition, an effort towards the integration of manufacturing tracking and scheduling 

estimating is presented. This part of the work will ensure that the schedule is not consulted only 

at the beginning of a project, but throughout its completion. Updating a schedule with live 

fabrication progress data will allow production managers to update their completion date 

estimates and adjust the manufacturing plans to reflect existing issues such as material delivery 

and labor shortages or performance.  
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Glossary of Terms 

Term Definition 

Acorn Fabrication drafting and tracking software 

Control Number (CN) Unique identifier for a pipe spool 

Diameter Inches (DI) The sum of the pipe diameters to be welded, expressed in inches 

Fit Complete (or FitC) The date when the fitting process was recorded as completed 

Material Issue Date The date the required material has been delivered to the fabrication 

shop 

Material Issue Report 

(MIR) 

The fabrication package issued for fabrication; sometimes the date 

when this report was released is  abbreviated with only  MIR instead 

of MIR Date 

Material Transfer Report 

(MTR) 

The report compiled when a spool is transferred away from the 

fabrication shop, to either the module yard or to be shipped; 

sometimes the date when this report was released is  abbreviated 

with only  MTR instead of MTR Date 

Maximum Pipe Diameter The diameter of the largest piping item within a spool 

Number of Items The total number of components that make up a pipe spool 

Package Issue Date  

(MIR Date) 

The date when the fabrication drawings package is created in Smart 

Plant; also known as Material Issue Report Date 

Pipe Spool A sub-assembly consisting of pipe pieces and special elements 

called fittings that is used in an industrial application either as a 

stand-alone assembly or as part of an installation module 

QC Complete (or QCC) The date when the Quality Check (QC) process was recorded as 

completed 

Smart Plant Materials 

(SPM) 

Material management and tracking software 

Visual Inspection  Spool assembly, alignment and weld quality visual inspection; also 

referred to as Quality Check or QC 
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CHAPTER 1.   Introduction  

1.1 Background 

Modularization of construction has an increasing share in today’s fast-evolving world, with an 

unusually high utilization in the case of remote worksites, such as the oil sands developments in 

northern Alberta. It is more convenient, faster and more economical to pre-fabricate and 

assemble components of buildings and processing plants off-site, in locations closer to major 

cities. Aside from the advantage of a milder climate and the opportunity to work in more 

controlled environments, the availability of local workforce can be used as a significant 

competitive edge (Bedair, 2013). A particular type of modular construction is that of piping 

structures, whereby pre-fabricated sections of pipe, called pipe spools, are organized and 

attached to a steel structure to speed-up on-site assembly. 

1.1.1 Management of Industrial Fabrication  

Core responsibilities of a project manager are to coordinate the delivery of a quality product on 

time and under budget. All three of these aspects are inter-related: 

 Delivering a quality product the first time eliminates the need for rework, which would 

drive costs up and result in schedule slippage. 

 Keeping a project on schedule removes the need for rushing the remainder of the project 

which in turn can lead to a higher repair rate and increased costs associated with overtime 

or lack of productivity resulting from over-sized delivery teams. 

 Staying on budget throughout the project eliminates the need for cost cutting at later 

stages, which affects both product quality and timely delivery. 

The success of a project depends, therefore, in no small measure, on its timely delivery, 

typically defined by an initial or baseline schedule. The baseline schedule, however, is generated 

at the beginning of a project when many details regarding the project execution are still 

uncertain. It is, therefore, difficult to provide an accurate, detailed schedule, and estimators rely 

for the most part on experience to derive activity durations. Being a time-intensive task during 
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project planning, duration estimating is typically performed at an installation or work package 

level, ignoring detailing the plan down to an activity or task level.   

The planning and coordination of each activity and their sequencing depends primarily on 

project coordinators or trade foremen, which use their experience to plan daily work, aiming to 

achieve the overall work package schedule. The estimation of completion percentages or actual 

delivery dates relies therefore upon said coordinators or foremen, which have to use their 

experience to report to project managers. 

As most manufacturing facilities are beginning to pursue lean manufacturing techniques, this 

research can be considered to address two of the most important aspects of the lean process 

implementation, namely, waste elimination and customer satisfaction (Lean Enterprise Institute, 

2016). 

One kind of process waste is time, whereby improvement can be operated either by reducing 

activity times or waiting time between activities; both of these result in a reduction of lead time, 

but by far the most impact can be obtained by controlling the time an item spends waiting for 

work activities. By closely planning the execution process, the throughput of different processes 

can be levelled more efficiently, and the waiting time of products reduced.  

Customer satisfaction is often expressed in terms of the quality of the product but equally as 

important is the timely delivery of products. In construction or fabrication projects, a baseline 

schedule is either imposed by the customer or agreed upon between the client and contractor at 

the beginning of the project. However, given the dynamic nature of material delivery, workforce 

availability and productivity, as well as weather or any other environmental factors, it can be 

very difficult to abide by the baseline schedule if this is not detailed and flexible enough. 

1.1.2 Pipe Spool Fabrication  

In the context of industrial manufacturing, shop fabricated elements are assembled into modules 

before being shipped to site. Some of the module components to be fabricated are in some cases 

pipe spools. Pipe spool fabrication typically happens in a fabrication yard or shop where heavy 

equipment, such as overhead cranes or submerged arc welding machines, is utilized to assemble 

sub-components for on-module or on-site installation (Aecon, 2012). The spools need to be 

ready before they are required for module fabrication, but too large a stock build-up would 
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increase the need for storage and double handling. Since the factors affecting the time required 

for spool fabrication are very diverse, this results in a very uneven distribution of manufacturing 

durations, leading to difficulties in deciding upon the right time to start the work. The process of 

spool fabrication involves several steps as summarised in Figure 1-1 and further explained 

below. The acronyms are explained in the Glossary of Terms. 

 

Figure 1-1 Spool Fabrication Processes 

The Drafting and Engineering process involves preparing the project for fabrication by 

breaking it down into smaller, more manageable segments. The client CAD drawings are 

translated to isometrics with the additional project and manufacturing processes information 

added for ease of referencing. These drawings are then checked for errors and fabrication 

procedure details. The higher level construction schedule is broken down to a manufacturing 

package level. The bill of materials, isometric drawings and other information pertinent to any of 

the fabrication process downstream are put together in a fabrication package. The date the 

material required for each package is reserved for that particular set of spools is recorded as the 

Material Issue Report Date (MIR Date), representing the start of the fabrication processes. 

The Material Supply process begins once all the tasks in the Drafting and Engineering 

category have been completed. The step called “Receive Materials” refers to the process of 
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verifying, storing and recording all the material bulk material shipments that arrive for each 

project. The fabrication package cannot be issued until all the material required for each package 

has a status of available in the material management database.  Once the package has been 

prepared it is passed on to the Material Supply group. A material picker uses the bill of materials 

to assemble on carts or pallets all the non-pipe components such as elbows, valves, supports, etc. 

(called fittings) and identify and cut the required pipe to the specified dimensions using the cut 

summary sheet. Once all the fittings are on pallets or carts and delivered to the fabrication shop, 

and the pipe has been cut and marked with a spool identifier, the remaining documentation, such 

as the isometric drawings and the package schedule, is passed on to the fabrication manager or 

foreman. 

The Fabrication Processes represent the primary component of the value-added work but, 

unfortunately, they rely heavily on the previous stages and do not typically produce goods that 

can be delivered to customers without post-fabrication processes being completed. That being 

said, the fabrication consists of the processes of fitting and welding the components to produce 

the spools. The fitting process involves assembling the pieces according to the drawing and 

specifications; the assembly requires the edge preparation (grinding), alignment and tack welding 

actions to be completed before fixing the spool subassemblies to an electric roller for the roll 

welding process. If the spools are too big to be rolled welded, one or more position welds will be 

required, where the subcomponents are aligned using pipe stands, tack welded and prepared for a 

welder to fill in the gap without moving the spool out of alignment. The process of position 

welding is considerably more time intensive than that of rolled welding; therefore considerable 

efforts are typically taken to reduce the required number of position welds. Research in the area 

of minimizing the number of position welds is already well advanced (Hu & Mohamed, 2014). 

The Quality Control (QC) inspection team might get involved to check the alignment of the 

spools during the set-up process to ensure a quality product that conforms to specifications. 

Once the fabrication processes have been completed, the Post Fabrication checks and 

auxiliary processes begin, starting with a detailed visual inspection of the spool regarding its 

dimensions, alignment, and weld quality. This process is complemented by Non-Destructive 

Examination (NDE) which can be performed either on all the welds or a sample of them, 

depending on project requirements. The NDE testing is typically based around the x-ray 
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technology, used to analyze the quality of the weld throughout its cross section, but other such 

technologies are emerging that aim to eliminate or reduce radiation exposure and increase the 

analysis speed.  

Depending on the type of material and pressures that the spool will be subjected to during its 

operating life, a Post Weld Heat Treatment (PWHT) also known as Stress Relief may be 

required. This process brings the weld and the surrounding area of metal to a temperature point 

designed to relax and harmonizes the internal structure of the metal which has been subjected to 

high temperature gradients during welding.  

The last type of testing performed is called Hydro-Testing and involves pressurizing the 

spool to a factor greater than its design operating pressure (typically around 1.5) to ensure the 

welds can withstand the design pressure loads. Although this test is required for all spools 

subjected to a pressurized environment, the testing can be performed as part of the overall 

fabrication of a spool or after its installation in a module or directly in the facility. Hydro-testing 

is not typically required during fabrication in the case when a number of spools will be welded 

together after being placed in the module or shipped to the assembly site because they will be 

tested together after the final on-site welds have been completed.   

Once all the testing is complete, the spools may undergo sandblasting and coating in a 

process performed by the Paint Shop unit. Each spool has specialized testing and painting 

requirements. In addition, certain post-fabrication process require batching of a group of spools 

before proceeding, leading to further uncertainty being introduced to the process of scheduling. 

The shipping process involves tagging each spool with a unique identifier tag and preparing 

the turnover package which contains copies of all the documentation utilized during fabrication 

or testing. Once the turnover package and the spools themselves are ready, the spools are either 

placed in a piping module in the Module Yard or shipped to the construction site individually 

(also referred to as Ship Loose).  
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1.2 Problem Statement 

In a pipe spool fabrication environment, it is customary to determine the fabrication durations 

heuristically. When estimating activity durations, little or no consideration is given towards the 

implications of shop loading, workforce availability and productivity or number of hours worked 

in a day. It is typically assumed that as long as there is sufficient float allocated in the schedule, 

the fabrication shop managers and coordinators will adjust the aforementioned factors to 

compensate for the variations in the type and volume of spools that need to be fabricated in order 

to meet the construction execution or module assembly schedule. 

One of the management aspects identified as requiring improvement at the Pipe Spool 

Manufacturing Facility is the out of sequence delivery of products, which sometimes results in 

deadlines being missed. From a production standpoint, scheduling is a key to the success of a 

timely project delivery. In addition, it has been identified that the lead time of the spools cannot 

easily be accurately approximated using heuristic rules for estimating fabrication duration. This 

is in part due to the difficulty in considering the impact of workforce availability on fabrication 

duration. These planning errors lead to late delivery of some of the pipe spools and contribute to 

low customer satisfaction while other spools are ready well in advance of their required date and 

put pressure on the storage and handling capacity of the facility. 

Another critical factor that significantly affects the operation of fabrication shops is the 

availability of the required materials. If the materials are not available before the fabrication 

process is scheduled to begin, the disruption in the shop operations will result in overall delays 

for project completion that are more significant than the material delivery delays on their own. 

On the other side, having too many of the materials available too early will overload the capacity 

of the material management and supply group servicing the fabrication shop. This problem is 

harder to quantify but it can be determined with relative ease whether the delays were the 

responsibility of the manufacturing facility or the client procurement and material management 

team. It is, therefore, desirable to have well-defined lead time estimates and be able to quickly 

alter the baseline schedule to reflect delays that can be attributed to the material delivery. Also, if 

several spools are critical to the overall progress of the installation project, identifying them and 

their estimated fabrication duration may allow production managers to change the fabrication 

priorities and compress the lead time of said spools by eliminating waiting times.  
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1.3 Objectives 

The primary objective of this research is to improve the estimate of the duration to be expected 

for the completion of pipe spools before they are being fabricated, with the aim of enhancing the 

accuracy of predicting delivery dates. In addition, the delivery date estimates are expected to be 

more accurate once partial fabrication milestones are reached; therefore, the integration of 

updating these estimates within the fabrication control and reporting system is also pursued. The 

benchmark against which the proposed methods will be compared is represented by a 

heuristically determined fabrication schedule, defined at a task level.  

In order to achieve this objective, the following research questions will be addressed: 

 Can modelling and simulation provide an adequate framework for lead time estimation 

using process modelling and resource constraints? 

 Is it possible to collect fabrication data at a level of detail required by a process 

simulation model?  

 Can data-driven models using instance-based classification provide a verifiable 

improvement in the fabrication duration estimate over the heuristic method?  

 How much improvement can be gained by utilizing instance-based models?  
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1.4 Methodology 

The overall structure of the methodology of this study is summarized in Figure 1-2 with a 

description following thereafter. 

 

Figure 1-2 Study Methodology Summary 

First, a review of the relevant literature was carried out, covering areas related to fabrication 

scheduling, simulation modelling, and data mining methods. Next, the process by which the 

information was compiled, collected, processed and explored is described, followed by the 

investigation into the improvement methods which can be employed to arrive at the study 

objectives. The fabrication processes and their interaction was modeled using Discrete Event 

Simulation (DES) in a fashion that replicates the application using artificial data to show the 

structure and detail of information needed in order to calibrate such a model. A second modelling 

approach that can be integrated with the existing drafting, scheduling and tracking data structure 

was developed and used to show the shortcomings regarding the current quality and composition 

of collected information. Lastly, a knowledge discovery approach based purely on the most 

reliable features of the data was developed which demonstrates that the primary objective can 

still be achieved in spite of the challenges faced.  
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In order to evaluate the performance of the different models and be able to compare them 

against existing fabrication scheduling practices, the output of the improvement efforts needs to 

be evaluated in a consistent way with fabrication tracking data. For the purpose of this 

comparison, the total fabrication duration, defined from the package issue date (MIR date) to the 

delivery date (MTR date), was chosen as the main metric, with the estimate of the delivery date 

as the principal deliverable. The suggested methods also estimate the same total duration as the 

pre-existing heuristic practices and the evaluation is performed based on the closeness of the 

estimate to the observed fabrication duration computed from actual observations. Several 

statistical performance measures such as the relative absolute error and correlation coefficient 

have been considered in order to quantify whether the proposed methods can bring a significant 

improvement to the fabrication duration estimates when compared against the observed 

durations.  
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1.5 Thesis Organization 

The current chapter has presented the background of the identified problems in the spool 

fabrication scheduling and management field tackled by this study, as well as the study objective 

and methodology. 

The second chapter presents a review of the literature that is relevant to the problems, 

methods and means employed in the thesis. It includes sections on stochastic scheduling, the 

integration of scheduling and production tracking, modelling and simulation concepts employed, 

as well as data mining tools and techniques.  

The third chapter showcases the investigation into process driven modelling and simulation, 

as well as a schedule derivation that integrates with the previously developed production 

scheduling and control too. The fabrication process model is detailed to the task and resource 

level that incorporates spool design parameters to determine tool time at each station and waiting 

time for each spool; in addition, this model showcases the potential implementation of different 

fabrication scenarios and the integration of equipment breakdown. 

The fourth chapter begins with the description of a system developed to integrate the 

fabrication shop’s data collection systems with the heuristic schedule. The development of this 

data integration system was a pre-requisite for the achievement of the objectives of this study. 

Besides, it includes a description of the parameters selected for the data-driven knowledge 

discovery and the cleaning and validation of the data itself. 

The fifth chapter addresses the development of a data-driven knowledge discovery 

experiment using instance-based classification, preceded by an investigation into attribute 

selection and shop loading estimation. The classification exercise is designed to evaluate 

different attribute subsets, optimize two types of classifiers of the nearest neighbour family and 

showcase their potential application as a dynamic prediction tool, completed by a feature 

selection investigation. 

The last chapter presents a summary of the thesis, concluding remarks, recommendations, as 

well as limitations and potential applications of this work.  
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CHAPTER 2.   Literature Review 

Creating a schedule for a spool fabrication environment presents unique challenges by 

combining aspects of linear production scheduling within a stochastic environment with high 

product variability. For the purpose of this review, the main problem is split into two distinct 

categories, that of stochastic scheduling on one hand, and spool manufacturing in itself on the 

other. In addition, a review of the literature about the concepts and tools utilized in the study 

such as data mining and simulation concepts is presented herein. 

2.1 Stochastic Scheduling 

Sarin, Nagarajan, & Liao (2010) define stochastic scheduling as “dealing with problems when at 

least one of the parameters is not known with certainty”. Spool fabrication is a prime example of 

an environment where both the processing time of the job and its arrival time are not known with 

certainty. Research in the field of stochastic scheduling can be categorized based on its focus on 

three main categories:  

a) the impact of processing time uncertainty on scheduling 

Determining the starting time of each product is the main goal of scheduling in a 

manufacturing environment. However, complex processes and process interactions with a high 

degree of variability lead to difficulties in estimating processing time with accuracy. The need to 

develop a scheduling strategy to replace a traditional schedule under uncertain conditions has 

been identified in the early days of job-shop scheduling research. McKay, Safayeni, & Buzzacott 

(1988) used a survey of scheduling practitioners to identify the inability of traditional scheduling 

theory to account for extreme variations in processing times. As research progressed, the analysis 

of process scheduling uncertainties did not cease to be an area of interest (Li & Ierapetritou, 

2008). 

b) methodologies to deal with different manufacturing environments 

Most researchers in the area have exemplified their work using a certain type of environment, 

such as: single machine, parallel machine, job shop and flow shop models. For example, Daniels 

and Kouvelis (1995) address the issue of scheduling robustness using a single stage system. 

Beraldi (2006)used a scenario tree to model how uncertain parameters evolve and derive a 
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multistage model for parallel machine environment. Jackman, de Castillo, & Olfasson (2011) 

found similarities between a flow shop machine environment and ship lock operations and 

therefore employed flow shop scheduling to create a model for the Panama Canal.  

Zhu and Wilhelm (2006) have reviewed literature related to the four types of machine 

configurations mentioned above, but their perspective also included lot sizing. Another 

comprehensive review of these methodologies is provided by Sarin, Nagarajan, & Liao (2010), 

together with their comprehensive analysis of schedules for each type of environment. 

c) methods to address the issue of variability of performance measures 

One of the main drawbacks one encounters when evaluating these existing methodologies 

and models is the variability of the performance measures employed. Although it is true that 

different environments or methodologies are better tested using custom performance measures, 

the resulting inconsistency makes comparing these models quite difficult. However, several 

researchers have attempted to solve this problem by suggesting more robust performance 

measures. For example, scheduling robustness has been identified by Daniels & Kouvelis (1995) 

as a more appropriate performance measure than evaluating processing times in a stochastic 

environment while Kempf, Bogza, & Maler (2013) have presented a programming procedure for 

approximating expected durations under stochastic uncertainty. 

2.2 Applications of Stochastic Scheduling and Data Mining in 

Construction 

Data mining approaches have been employed in construction applications for over a decade, for 

example in the work carried out by Soibelman and Kim (2002) towards the identification of 

schedule delays in construction projects. Their work identifies the data preparation step as 

pivotal to the success of the knowledge discovery, stating that “Domain knowledge and a good 

understanding of the data are key to successful data preparation.” 

Knowledge discovery techniques such as the ones presented in this section have been 

employed with various goals in several manufacturing applications. Li et al. (2013) use 

regression models and other similar techniques with the aim of describing relationships between 

dispatching rules and running state of a manufacturing facility. Piroozfard et al. (2014) present 
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the use of a genetic algorithm approach in combination with simulation for solving job shop 

scheduling problems; an example application of this method to a spool fabrication shop is 

presented in the work by Moghadam et al. (2014).  

Chien, Hsu and Chen (2013) employed principal component analysis and data mining 

techniques to extract manufacturing intelligence for use in fault detection and classification at a 

semiconductor manufacturing facility. With an application towards manufacturing flow times 

and process yield, Braha, Elovici and Last (2007) employed the technique of cost-sensitive 

classification to monitor and control a fabrication line.  

The advantage of using a nearest neighbour classification approach to the problem of 

estimating time delays in an industrial processing plant has been presented in the work of 

Stockmann, Haber, & Schmitz (2012), who identified that such a method can be automated. 

The use of simulation with the scope of optimizing production planning has been employed 

in works such as that by Gansterer, Almeder, & Hartl (2014), who aligned their framework with 

the concept of hierarchical planning. Aiming to solve the problem of manufacturing planning 

performance assessment under high product variability conditions, Ponsignon & Mönch (2014) 

introduced a simulation-based approach using both rule-based and genetic algorithm assignment 

procedures.  

2.3 Integration of Scheduling and Tracking  

Due to the nature of the uncertainties that are present in the industrial fabrication environment, a 

good schedule is a dynamic schedule, whereby as soon as uncertainties are reduced or removed, 

estimates are updated to create an improved schedule. Although some authors, such as Rokni & 

Fayek (2010) deal with uncertainties such as processing times and system configurations in a 

comprehensive way, they do not address the issue of the dynamic integration of these and other 

production parameters back into a live manufacturing production schedule. This integration has 

been attempted however in the construction scheduling environment using simulation modelling 

as presented in the research by Xie, AbouRizk, & Fernando (2011) but the work does not 

mention closing the feedback loop back into a dynamic schedule and is applied to a production 

environment (tunneling) where product features do not change or have very little change during 

production. Other research that relates to the integration of progress reporting and schedule 
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updating is found in works such as that of Oliveros & Fayek (2005), where a fuzzy logic model 

is used to integrate monitoring and control in construction projects. 

The scheduling and production control integration in a manufacturing environment has been 

briefly addressed in relation to the concept of reactive scheduling in works such as the one by Li 

& Ierapetritou (2008), but the focus remains around machine breakdowns and change orders and 

does not deal with reacting to other parameter uncertainties such as resource availabilities and 

processing times. Other authors touched upon the issue in research related to operations 

scheduling and production simulation (Pereira & Santoro, 2011). 

Having considered the aspects of stochastic scheduling and outlined the relative lack of 

integration between scheduling and production tracking, the need for further research in the area 

of production integrated stochastic scheduling has been outlined. 

2.4 Modelling and Simulation Concepts 

Modelling is the representation of a system or process for the purpose of investigating it over a 

period of time. Systems or process representations can take a variety of forms and functions, so 

identifying the appropriate method for representation is one of the most challenging aspects of 

modelling. The approach to follow is to first identify the purpose of a model and its desired 

outputs before deciding on an appropriate representation (Birta & Arbez, 2013). In addition, 

from a project collaboration and communication perspective, the most suitable modelling 

concept is the one that can be understood by all the parties involved in the process.  

On the other hand, the process of simulation typically refers to the implementation of the 

output of the modelling exercise as a computer program in order to study how it responds over a 

period of time. Estimating project completion time using simulation modelling has been applied 

to stochastic resource–constrained project networks in works such as that by Sadeghi, Fayek, & 

Ingolfsson (2012). In the field of Pipe Spool Fabrication, simulation has been employed 

effectively with respect to different objectives, such as 

 studying the impact of changes in process flow and experiment with different production 

systems to evaluate their performance before any physical changes would be made in the 

fabrication shop itself (Wang, Mohamed, Abourizk, & Rawa, 2009). 
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 using simulation experiments to evaluate the impact of automating the process of 

identifying the optimal fabrication sequencing by assessing effectiveness against the 

traditional shop foreman approach (Hu & Mohamed, 2014). 

 evaluating the development of a framework for optimizing shop scheduling using 

concepts such as fuzzy set theory and multi-objective optimization (Rokni & Fayek, 

2010). 

2.5 Data Mining 

Data mining can be defined as “the study of collecting, cleaning, processing, analyzing, and 

gaining useful insights from data” (Agarwal, 2015, p. 1). Advances in technology and 

computerization resulted in the collection of increasingly large amounts of raw data from every 

aspect of life. This abundance of collected data however does not yield any insights into the 

system from which they were derived without significant processing of the information. Data can 

come in a multitude of formats, sizes or dimensions, all of which must be understood and 

carefully considered when selecting the appropriate steps along the data mining process. Data 

structure design, as well as data collection and storage typically happen before the mining 

process but a feedback loop can be created in order to facilitate the extraction of knowledge from 

a system.  

The process of analyzing the available collected data begins with a two stage preprocessing 

phase, namely: a) extracting the data from all the available sources, combining it all in a 

structured format that is suitable for computing, followed by determining the required features 

for analysis and b) a data cleaning stage which consists of checking the data for errors and 

dealing with missing or incomplete values and outliers. Reducing the data to a compact, 

workable set containing only the required dimensions and complete set of records is very 

important in order to ensure a consistent analysis phase. The data cleaning and feature extraction 

is application specific and as such will be discussed separately, but the outlier detection and 

removal stage of data preprocessing is described further below. 

2.5.1 Outlier Detection and Removal 

In order to ensure the data to be analyzed is consistent, it will be necessary to investigate whether 

it contains records that vary significantly from the rest of the data, called outliers, which may 
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indicate data that has been recorded erroneously. Evaluating the results of a normality test of the 

data should provide a good indication regarding the level of confidence in outlier detection 

methods that rely heavily on the assumption that the data follows a normal behavior. In addition, 

the selection of an appropriate outlier identification method involves some assumptions about the 

type of distribution the data will follow. Since at this stage the distribution has not been 

determined, a method that relies on the normality assumption as little as possible should be 

employed.  

It is common practice to identify possible outliers using the Z-Scores and testing against a 

threshold. However, in many cases this method does not provide a robust enough detection and 

may identify too many or too few records as outliers. It has been suggested that modified Z-

scores provide a more robust method for outlier identification (e-Handbook of Statistical 

Methods, 2015). A modified Z-score proposed by Iglewicz & Hoaglin (1993), as presented in 

Equation 1 has been utilized for the data set at hand, with an upper limit for the absolute Z-scores 

of 3.5 

 
Mi=

0.6745(xi-x̃)

MAD
 

Equation 1 

where MAD = mean absolute deviation 
 

x̃ = median 

 

The method presented above will be implemented to all the fields that will be deemed to 

require an outlier detection method, whether that may result in the removal of records from the 

analysis or just their identification. 

2.5.2 Types of Mining Algorithms 

Depending on the domain and type of data upon which the analysis is performed, as well as the 

desired outcome, different mining techniques are suitable to different situations. Association 

pattern mining and data clustering methods have at their core the analysis of similarities between 

instances with the goal of finding potentially useful patterns. Data classification, on the other 

hand is used to predict the class or label of a multi-dimensional record based on a training data 

set (Agarwal, 2015, p. 285). Here, a test record with an unknown class is compared to the records 

in a training set and classified based on similarity. Algorithms used in data classification are also 
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referred to as supervised learning methods as the evaluation of a test record is being carried out 

comparatively to other previously classified instances. The mathematical algorithms for 

classification are typically designed around two stages, called training and testing. The training 

stage is the construction of a mathematical model based on the labelled groups in the training 

data set, whereas the testing stage is that of assigning a test instance with one of the class labels. 

Classification algorithms, also known as classifiers, come in different shapes, such as 

decision trees, rule-based classifiers, probabilistic classifiers, neural networks or instance-based 

classifiers. Selecting which type of classifier to use for a particular problem depends on the type 

(numeric or nominal) and number of attributes to be classified and whether or not distinct and 

accurate relationships between data can be derived.  

Lazy Learning Classifiers 

A particular type of classifiers, also called lazy learners, differentiate themselves by not 

constructing a classification model up front based on the training set, but instead simply 

analyzing similarities between a test instance and the available training instances and deciding on 

a class based on similarities (Witten, Frank, & Hall, 2011). Variations of this type of classifiers 

are based on how an algorithm determines the distance between similar instances, also referred 

to as nearest neighbours, as well as how many instances (k) the algorithm will consider and how 

the results will be aggregated to decide on the class of the test instance. The general notation for 

this type of classifiers is KNN and variations of this algorithm are commonly referred to as K 

Star (also seen written K*). 

In order to determine proximity to the test instance a distance function is required, and as 

identified by Witten, Frank, & Hall (2011) “most instance-based learners use Euclidean 

distance”. Euclidean distance between 2 instances x and y with n attributes is represented by 

Equation 2. Since Euclidean distance is a second degree Lp-norm distance, the most common 

variations involve changing the powers to which the numerical difference between attributes is 

raised. It is also worth noting that the Lp-norm distance degree also refers to the degree of the 

root for the sum (Agarwal, 2015). Some attribute weighting coefficients can also easily be 

implemented in the distance function, in case certain attributes should be given more importance 

over others. 
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Dist(x,y) =  √(x1-y
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Equation 2 

To avoid some attributes from dominating the distance computation because of scale 

differences, the attribute values need to be normalized so their values lie between 0 and 1 as per 

Equation 3. For nominal attributes, the distance to be considered is 0 if the values are the same 

and 1 if they are different (Witten, Frank, & Hall, 2011). 

 
norm(xi)=

xi-min(xi)

max(xi)-min(xi)
 

Equation 3 

The K Star Classification Algorithm 

At the base of this clustering algorithm sits the implementation of entropy as a distance measure 

between instance attributes (Cleary & Trigg, 1995). In essence, entropy as a distance measure 

involves determining the probability of transforming one instance to another over the shortest 

path (Horibe, 1973). The concept can be extended to a measure of the interdependence between 

finite probability spaces (Guiasu & Reischer, 1979). Further manipulating this concept, the K 

Star algorithm employs as a distance measure the negative logarithm of the sum of probabilities 

of transforming over all possible paths, as expressed in Equation 4. This particular distance 

computation was developed in order to avoid sensitivity to small changes in the instance space. 

 K∗(b|a) = − log2 P
∗(b|a) Equation 4 

In addition, the authors of the K* algorithm attempt to deal with both real and nominal values 

by expanding the method above two-fold: first, devising a function to compute the distance 

between integers, and then modifying it to work with real numbers. Given that the data set of this 

application will only have symbolic and integer attributes, the algorithm expansion to real 

numbers will not be described herein. 

Furthermore, the method of dealing with missing attribute values can either be selected by 

the user or the program defaults to a setting treating missing data as a random value – this does 

not add inaccuracies in the computation because of how the algorithm utilizes the probability of 

transforming from on instance to another as a distance, rather than the distances between values 

themselves. Another benefit of the K Star algorithm is the ability to assign different weights to 

neighbouring instances based on their influence on the instance to be classified. 
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2.5.3 Feature Selection 

Although domain knowledge is the main factor in deciding the set of attributes in the data to be 

analyzed, each attribute’s weight in a machine learning algorithm varies primarily with the class 

to be analyzed. Features may present interdependence which can be exploited to derive 

conjunctive features that have the potential to enhance the performance of certain algorithms. On 

the other hand, certain variables might not be relevant at all to the certain searches and as such 

they may introduce unwanted noise in the data that will reduce the performance of the analysis. 

Decreasing the computation time is another benefit of reducing a dataset to its most relevant 

components, as is the identification of attributes that may have a significant contribution to 

overfitting.  These are only but a few of the potential benefits of a feature selection exercise 

(Guyon & Elisseeff, 2003). 

Several algorithms have been developed independently in order to identify the interaction 

between features and their correlation with the analyzed class in works such as that of Zhao & 

Liu (2007), with significant breadth and depth of implementation of such algorithms in works 

such as the University of Waikato’s machine learning group (Hall, et al., 2009). The process of 

selecting attributes can be performed either independent of the classification method at the pre-

processing stage, or specifically for certain classes or types of classifiers (Brownlee, 2014). The 

implementations of such feature selection algorithms aim to improve the performance of learning 

methods by reducing the dimensionality of the data either independent of the scheme selection or 

specifically for a particular classification method. When working independently of the classifier 

scheme the filter method is applied for dimensionality reduction or other types of data cleaning 

such as replacing the missing attribute values with the median or mean of the population. On the 

other hand, the wrapper method is a dedicated feature selection tool customizable in order to take 

into account the particular machine learning algorithm that will be used for learning. 

2.5.4 Model Evaluation 

In order to compare different learning methods to each other certain systematic techniques need 

to be employed to determine the performance of a model and its capability to reliably evaluate 

new information once it has been created. Statistical tools that represent the performance 

measures are presented in the following subsection, followed by a discussion on assessing a 

model’s validity and prediction capabilities. 
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Performance Measures 

In order to evaluate the performance of a numeric prediction for a set of values – be it a heuristic 

estimate, classification output or any other type of duration estimation – various measures and 

statistical tools can be employed, as presented in equations 5 through 9. Here, the actual 

observed value is represented by the x variable and the predicted value by the y variable, with n 

the number of instances present. 

The Mean Absolute Error (or MAE for short in Equation 5) is the average of the magnitude of 

the individual errors without taking account of their sign. In the case of predicting the spool 

fabrication durations, the lower the value of MAE the better the result is. However, this 

performance measure is not easily assessed or intuitive unless one has knowledge of the typical 

or average duration of fabrication.  

 
MAE =

∑ |yi − xi|
n
i=1

n
 

Equation 5 

The Relative Absolute Error (or RAE for short) provides an easier to evaluate performance 

measure as the number is a percentage of the mean absolute error relative to the mean of the 

observed duration values. 

 
RAE =

∑ |yi − xi|
n
i=1

∑ |xi − x̅|n
i=1

 
Equation 6 

The Root Mean Squared Error (or RMSE) is one of the most commonly used error measures 

in statistics because of its advantage in ease of mathematical manipulation. It takes higher values 

than the Mean Absolute Error, being especially vulnerable when the data has a few outliers that 

are very far from the mean. 

 

RMSE = √
∑ (yi − xi)2
n
i=1

n
 

Equation 7 

The Root Relative Squared Error (or RRSE), just like the Relative Absolute Error, is just an 

easier to evaluate expression of the Root Mean Squared Error with respect to the mean values of 

the observations. 
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RRSE = √
∑ (yi − xi)2
n
i=1

∑ (xi − x̅)2n
i=1

 

Equation 8 

The Correlation Coefficient, presented in Equation 9, measures the statistical correlation 

between the predicted and actual values. It ranges from 0 for results that are not correlated to -1 

or +1 for results that are perfectly correlated negative or positive respectively. For predictions of 

fabrication durations, such as those that this thesis is aiming to improve, the correlation should 

be positive and as high as possible, as opposed to the other error measures where the lower their 

value, the better the prediction. This measure differs from all the other by being scale 

independent on the number of instances or any other constant that the predictions may be 

multiplied by. 

 
CorrelationCoefficient =

∑ {(xi − x̅)(yi − y̅)}n
i=1

√∑ (xi − x̅)2∑ (yi − y̅)2n
i=1

n
i=1

 
Equation 9 

Validation Methods 

In order to rely on the performance measures of learning schemes, one needs a systematic way to 

evaluate the reliability of a model’s output. The data available to build a model might have 

significant features that do not appear very frequently, and before a model can be relied upon it 

needs to be able to deal as robustly as possible with the particularities of the data (Witten, Frank, 

& Hall, 2011). Another reason a systematic evaluation method is required is driven by the 

limited amount of available data itself and the quality of its structure. The main model validation 

methods for model development are: 

a) Using the entire data set – this method does not involve using any means of actually 

validating a model using previously unseen information, focusing instead on the use all of the 

available data in order to create the best matching model using the features presented. Using this 

method may be appropriate only in the case when the data set presents with a very large number 

of records with well-defined attributes that are able to capture all the features of the data. The 

performance measures computed using the entire dataset for training are not typically reliable for 

predicting the performance of the classifier on future data, given the uncertainty that the future 

will be an exact replica of the past. 
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b) Training and Testing – represents splitting the data set in two parts, one used for creating a 

model, called a training test, and another for testing it with previously unseen information, called 

a testing set, essentially emulating the future use of a learning method. This represents the main 

true model validation technique that predicts how a classifier will perform given new data. The 

main shortfall of this method is that it relies on the assumption that both the training and the 

testing set are representative samples of the underlying features of the data, which may be 

difficult to determine when the supply of data is not very large, given that a typical training set 

uses only up to two thirds of the data. The dilemma with this validation method is that in order to 

find a good classifier we want to use as much of the data for training as possible, but that would 

leave a testing set that may not be sufficient to provide a reliable error estimate; this is the 

problem that cross-validation attempts to solve. 

c) K-fold cross-validation – represents the repletion of the training and testing method for a k 

number of times in order to reduce the variability introduced by sampling training and testing 

subsets. The number of times the method is repeated represents the number of folds of the 

method. According to Witten, Frank, & Hall (2011), “Extensive tests on numerous different 

datasets, with different learning techniques, have shown that 10 is about the right number of 

folds to get the best estimate of error, and there is also some theoretical evidence that backs this 

up”. This method is likely to yield the most reliable results but there is still some randomness and 

sampling involved. In order to assess the level of confidence in the reliability of the 10-fold 

cross-validation, the validation method should be employed several times and the deviation of 

the performance measures analyzed. A typical procedure that yields reliable classification 

performance estimates is to repeat the 10-fold cross-validation 10 times, therefore running the 

algorithm through the training and testing phases 100 times. 

Comparing Different Data Mining Schemes 

Once a few data mining schemes have been identified as having promising results, they need to 

be compared in order to determine which one should be carried forward towards implementation. 

Comparing between the different performance measures previously presented may sometimes be 

sufficient, but when the difference becomes smaller, it needs to be determined if it is within the 

estimation margins or a clear performance advantage. Using the cross-validation technique for 

error estimating multiple times improves the reliability in a performance measure, but a 

statistical tool is required to determine the confidence bounds and statistical significance of the 
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difference. A common tool is the t-test and it is best to be applied on the pair of results from the 

cross-validation runs. Because of issues introduced by splitting the same data set multiple times 

into training and testing sets, a modified version of the statistical t-test that is not sensitive to the 

number of sampling repetitions is required. The solution suggested by Witten, Frank, & Hall 

(2011), presented in Equation 10, is to use a corrected paired t-statistic. 

 

t=
d̅

√(
1
k

+
n2

n1
) σd

2

 
Equation 10 

where t = Corrected paired t-statistic 

 

d̅ = Mean of the difference between observations 

k = Number of error samples 

n1 = Number of instances used for training 

n2 = Number of instances used for testing 

σd
2 = The variance of the samples 

 

  



 

24 

CHAPTER 3.   Process Simulation Modelling 

This chapter presents a detailed, task-level modelling of the spool fabrication process, 

accompanied by a simulation implementation that includes a sample application of such a model 

for comparison between push and pull scenarios. In addition, efforts of integrating the simulation 

model with the fabrication planning and tracking data are presented. The intent is that the 

simulation model should be automatically triggered to run at discrete time intervals (i.e. once a 

day) and update the schedule and the delivery date estimate of spools every time new 

information is available. The proposed approach is summarized in Figure 3-1 below, which 

shows that the process simulation model, which handles scheduling under resource constraints, is 

to be nested within a dedicated schedule Information Management System (IMS) that handles 

the communication with a database. 

 

Figure 3-1 Process Simulation Modelling Methodology 

The factors affecting the time required for spool fabrication are of a very diverse nature, 

resulting in a very uneven distribution of manufacturing durations which in turn leads to 

difficulties in deciding upon the right time to start the work (Mosayebi, Fayek, Yakemchick, & 

Watters, 2012). This problem lends itself well to the concept of discrete event simulation that can 

be used to improve predictability of fabrication duration requirements. This is particularly useful 

given the high product variability characterizing pipe spool fabrication, and therefore, it is 

expected that simulating the fabrication process may lead to a more accurate estimate of the 

delivery date of spools. Although the author has only visited one fabrication shop, efforts have 

been made to generalize the process and model it in such a way that its application can be 
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considered universal for any facility employing a standardized station approach as suggested by 

lean manufacturing concepts. 

The modelling work was performed using the General Purpose Simulation template within 

the Simphony.NET framework provided by the Hole School of Construction at the University of 

Alberta (AbouRizk & Mohamed, 2000). Since the platform allows for a graphical 

implementation of the process flow, efforts have been made to make use of the template’s 

capabilities before using code to generate specialized behavior. 

3.1 Fabrication Process Modelling and Simulation 

In order for the spool fabrication manufacturing facility to meet the required deadlines, it needs 

to estimate how long a spool will spend within each station of the fabrication shop. This time is 

influenced by the spool design characteristics and work procedure requirements, as well as the 

available shop resources and the work method employed. It is expected that a significant 

difference in shop performance arises from the way and frequency that spools are released for 

fabrication. 

The initial modelling approach consisted of an implementation of the fabrication processes 

outlined in Figure 1-1 presented in Section 1.1.2, with the main aim being to develop a model 

that can evolve into a tool used for deriving project durations at a highly detailed level using 

information that describes the individual requirements of each spool. Although in the 

implementation presented in the following pages the characteristics of each spool are assigned 

based on distributions selected using the author’s heuristic estimates, it is believed that given a 

commercial project, the simulation approach presented can be translated and used with actual 

pipe spools parameters and requirements. The design characteristics of the spool that were 

considered to be related to the activity durations are the material type, pipe diameter, overall size, 

complexity, number of welds and number of parts.  

Work procedure requirements refer to the type of welding and testing that is required for 

each spool. These requirements are usually project specific or module specific, and can also 

include information with regards to the paint, non-destructive examination or post-weld heat 

treatment of the spool. The modelling approach presented herein aims to consider these aspects 

but the author chose not to go into the details of each procedure, but instead sample durations 
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from a distribution scaled with respect to the overall size of the spool expressed in Diameter 

Inches (DI).  Just as was the case for the activity duration derivation approach, when given a real 

project, these requirements will be provided by the engineering team and will not need to be 

artificially created. 

Resource availability refers to both human and machine/shop resources. A resource pool will 

be created for each type of worker, i.e. Cutter, Fitters, Welders, Wheel Loaders, as well as for 

Cranes available in a typical fabrication shop. Tools and other machines such as stands, grinders 

and welding machines will not be modeled as resources, but instead it will be assumed they will 

be assigned to each worker or station. 

3.1.1 Spool Fabrication Process Description and Abstraction 

The intent is to mimic the work required to be performed by a manufacturing facility including 

processing of spool information encapsulated in the client ISO drawings, preparation of 

materials, spool fitting, welding, and post-fabrication. The general approach to fabrication was 

considered to be that of processing a group of spools at a time as a shop package rather than all at 

once or one by one. In the authors’ opinion this approach is the most common one and it allows 

for the balancing of resource loading within a manufacturing facility.  

For the purpose of this analysis, the preparation of shop drawings has not been modelled as a 

process, but rather as a computation definition of the requirements for each spool. As such, the 

modelled entities were the pipe spools which are all created at the same time, when a project is 

awarded to a company. These entities are assigned properties that would individualize them just 

as pipe spools are unique in the field. 

The first set of activities to be modelled for analysis are related to the preparation of 

materials for fabrication, which includes pipe cutting and pulling the required fittings from the 

warehouse and grouping them onto a cart specific for each package of spools. The activity 

durations are derived as a function of the number of pieces and pipes and fittings required.  

Once all the materials have been prepared, they are transferred to the first stage of fabrication 

which is the Fitting of the pipes and accessories together according to specifications. The 

implementation presented herein does not differentiate between rolled or position welding and as 

such it regards each spool as a unit, and models the process of fitting and welding and entire 
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spool as whole. In reality, however, complex spools that require a higher percentage of position 

fitting will take longer to complete than those that can be set-up for rolled fitting and welding 

only. However, the model does take some of this complexity into account when deriving activity 

durations by relating them to the number of fittings and pipe pieces required for each spool. 

The activities performed within the welding station have been abstracted in a similar fashion 

to the ones required for fitting, with the exception that uncertainty has been introduced for the 

duration of some activities by means of sampling a distribution. This is meant to replicate the 

different welding procedures required by each client. However, the parameters of this 

distribution have been approximated based on best estimates and do not reflect a specific set of 

data of any project or company.  

With regards to the post-fabrication activities that a manufacturing facility is required to 

perform before a spool is released, only the painting process has been considered in this model. 

Non-Destructive Examinations, Post Weld Heat Treatments and other such processes are project 

specific and it is understood that each fabrication shop approaches them in different ways. As 

such, they do not form part of this analysis. For the modelling of the painting activities, it was 

assumed that an entire shop package shall be processed at once. 

Resource Modelling Assumptions 

A single fabrication area or bay was considered in this exercise, and as such, resources that 

author considers typical for one such bay were modeled. These are the workers such as the pipe 

cutter, fitters, welders and wheel loaders and the main large equipment such as the overhead 

cranes, the welding rolling wheels and the paint shop. Two fitters and two welders are 

considered to be employed by the fabrication shop initially, supported by two wheel loaders and 

a cutter. It is assumed that the fabrication shop will have three overhead cranes and two rolling 

wheels, one for each welder. 

A distinction needs to be made between each overhead crane based on capacity and their use. 

As such, the first one may be used by the cutter and fitters, the second by the fitters and wheel 

loaders  and the third only operated by wheel loaders for the welding station and paint shop 

loading and unloading. Since the spool components are not as heavy as a completed spool, crane 

1, used at the beginning of the process, may have a lower lifting capacity than the other two.  
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The reliability of some of the resources can also be incorporated in a simulation model, and 

as such breakdown events have been defined for cranes 2 and 3. This behavior can be switched 

on and off, allowing for the analysis of the impact that such events may have on the fabrication 

durations and efficiencies. The time between breakdowns has been modelled as an exponential 

distribution, with a mean of 3000 hours for Crane 2 and 2000 hours for Crane 3. When the 

breakdown occurs, the time to repair the crane was considered to be a constant of 24 hours for 

Crane 2 and 30 hours for Crane 3. These repair durations and breakdown intervals are selected 

purely for demonstration purposes bearing no reflection of any particular fabrication shop. The 

mean time between breakdowns in particular is believed to be grossly exaggerated; however, 

these values were selected to demonstrate the impact that such an event might have on the 

operation of a manufacturing facility. 

Defining Spools 

In order to achieve the spool definition and randomness required, a number of characteristics 

have been considered for modelling. These are the pipe diameter, material type, number of 

fittings and pieces of pipes required by each spool. Because the modelling work presented in this 

chapter has happened in parallel with the analysis of the data collection structures of the 

fabrication shop, assumptions regarding spool characteristics had to be made at this modelling 

stage. The type of distribution and their parameters are only an example and are to be replaced 

with actual spool parameters once this process simulation model is integrated with the database 

connection model which will provide this information as read from the drafting software 

database.  

The example distributions for the spool characteristics mentioned are presented in Table 3-1 

below. Triangular distributions are used to model each of these, with parameters selected to 

reflect what the author considers to be a typical project. When sampling values for the pipe 

diameter, number of fittings and pipes the number used was the integer closest to the sampled 

value. 
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Table 3-1 Spool Characteristics Sample Distributions 

Characteristic Type of Distribution 

Pipe Diameter Triangular  (2,32,16) 

Material Type Triangular (0,20,10) 

Number of Fittings Triangular  (0,6,4) 

Number of Pipes Triangular (1,4,2) 

 

Three types of materials have been considered, Carbon Steel (CS), Stainless Steel (SS) and 

Galvanized Steel (GS). These are the most common materials that spool fabrication shops will 

come across and there are significant differences between them with regards to fabrication time. 

The distribution presented in Table 3-1 for Material Type has been split into three zones for each 

of the material type as follows:  

 For a number from 0 to 10 (50% probability), the assigned material will be CS. 

 For a number from 10 to 14 (20% probability), the assigned material will be SS. 

 For a number from 14 to 20 (30% probability), the assigned material will be GS. 

Once the spool characteristics have been defined, the total amount of weld diameter-inches is 

computed. Although it is recognized that each fitting and spool configuration is different, in 

order to abstract this complex situation it was assumed that each fitting and each pipe will 

require one weld. Therefore the sum of the number of pipes and fittings was multiplied by the 

pipe/fitting diameter in order to derive the spool DI.  

After all the spool characteristics are assigned, the spools are filed in a database waiting for 

release for fabrication. A fabrication package consisting of five spools is released when 

requested. This batching method is intended to mimic the practice of issuing spools by package. 

Model Activity Duration Assumptions 

As previously mentioned, fabrication activity durations have been heuristically derived for this 

implementation to showcase the process modelling approach, with the intent that the derivations 

can be adjusted to represent a particular fabrication shop given sufficient data in the correct 

format. These assumptions are presented below for each of the fabrication processes. The 



 

30 

presented breakdown of activities into tasks represents the result of an in-depth investigation of 

the fabrication process performed by the author. 

Preparing Materials 

When a shop package is released for fabrication, a pick ticket for the fittings is generated and 

passed on to the materials warehouse, while a cut sheet is released to the cutting station. The 

main activities undertaken by the warehouse personnel are to locate the required fittings and 

prepare a cart specific for each spool. It is assumed that each of these activities is limited to one 

server and the durations are related to the number of fittings required and their diameter. As 

such, it is considered that it takes 12 minutes to locate each fitting; since moving heavy and/or 

large diameter fittings requires more time; this is reflected by modelling the duration of the cart 

preparation activity as requiring 12 minutes for fittings with a diameter less than 24̎ and 20 

minutes for larger ones. 

For pipe cutting, a sequence of six tasks has been identified; these are: locate pipe; place pipe 

on table; measure, mark and position; preheat; cut; and unload pipe. All these require a pipe 

cutter, which is modelled as a resource and captured for each spool for the entire time the cutting 

related activities are undertaken. Some of these activities, such as the placing of pipe on the 

cutting table and its unloading might require a crane if the pipe has a large diameter (considered 

here to be over 24 inches) and as such those activities will capture Crane 1 but release it as soon 

as they are finished. The following durations have been assumed for the activities mentioned 

above: 

 Locate Pipe: 20 min per pipe. 

 Place on Table: if pipe diameter is less than 24̎, 6 minutes per pipe; otherwise, 12 minutes 

per pipe. 

 Measure, Mark and Position: 6 minutes per pipe. 

 Preheat: only required if pipe diameter is more than 5 inches; 1 minute per pipe per DI 

(i.e. 48  min for a spool with two 24̎ pipes). 

 Cut: if pipe diameter is less than 5̎, 3 minutes per pipe; otherwise, 1 minute per pipe per 

DI plus 6 minutes. 
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 Unloading Pipe: if pipe diameter is less than 24̎, 3 minutes per pipe; otherwise, 12 

minutes per pipe. 

Pipe Fitting 

Although all the pipes and fittings required for a spool are provided to the fitting station, they 

need to be moved again by the fitters and the pipe ends need to be grinded before the spool can 

be assembled and tack welded. Following the spool assembly, it needs to be checked, marked 

and moved to the welding area. The durations assumed for each task and the resources required 

are as follows: 

 Move Pipe and Fittings: 10 min for each pipe and fitting; requires the first fitter and 

Crane 1. 

 Grind Pipe Ends: 2 minutes per diameter for each pipe and fitting (i.e. 120 minutes for a 

12̎ spool with 2 pipes and 3 fittings); requires Fitter 1. 

 Set-up Spool: 20 minutes for each pipe and fitting; requires Fitter 1 for all spools and 

Fitter 1 and 2 for spools with more than 24̎ diameter. 

 Tack-Weld: 10 min for each pipe and fitting; requires the first fitter. 

 Check and Mark Spool: 6 min for each part; requires Fitter 2 

 Move spools to welding area: 10 minutes plus 2 minutes per spool DI (i.e. 130 minutes 

for a 12̎ spool with 2 pipes and 3 fittings); requires Fitter 2 and Crane 1 if the pipe 

diameter is less than 24̎; Fitter 2, Crane1 and Crane 2 if the pipe is larger 

As it can be observed, some activities only require Fitter 1 whereas others only require Fitter 

2; however, these activities have similar duration so the resource loading is expected to be 

balanced to a reasonable degree. 

Rolled Welding 

The general approach with respect to the welding station is that a wheel loader will move the 

fitted spool to the welding area and secure it to a rolling wheel; the operation was assumed to 

take 10 minutes per spool plus 2 minutes for each DI (i.e. 290 minutes for a 140 DI Spool). The 

wheel loader will need only Crane 2 for spools with less than 100 DI; both cranes are required 

for larger spools. Following loading, the welder prepares for welding (which is assumed to be an 
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activity with a constant duration of 12 minutes) and performs the welding operation, before the 

loader and crane are required again to unload the wheel.  

The welding operation can be modeled very specifically depending on the procedure required 

by each project but since the object of this approach was to provide a project-independent model, 

no such particulars have been implemented. However, the present abstraction samples a 

triangular distribution and scales it according to the total amount of welding required for each 

spool to produce a sample duration for the welding activity. The parameters of the distribution 

are (DI/20, DI/7, DI/10) – this can be translated, for a spool with 140 DI for example, into (7, 20, 

14) which represent the low, high and mod parameters that can be sampled which are equal to an 

activity duration, expressed in hours. 

As mentioned before, no differentiation is made between rolled and position welding. In 

reality, the time required for a position weld is somewhere between 2 and 3 times longer than 

that of a similar rolled weld. It is considered that the scaled duration distribution employed is 

enough to capture the variation in activity durations that spools with different geometrical 

arrangement have.  

When the welding is complete, the loader will unload the wheel and transfer the spool to the 

post-fabrication area. This activity was assumed to take 10 minutes per spool plus 1 minute for 

each DI (i.e. 150 minutes for a 140 DI Spool). The wheel loader will need only Crane 3 for 

spools with less than 100 DI; both cranes are required for larger spools. 

Post-Fabrication 

As mentioned previously, of the post-fabrication activities typically performed by a 

manufacturing facility, only the painting process has been considered within this 

implementation. This is due to the different approaches that manufacturing facilities have, some 

choosing to sub-contract them, others performing them in-house if required. However, they can 

be analyzed and simulated independently of the main spool fabrication.  

Once a spool is completed, it is moved to the paint shop by the wheel loader; the activity has 

been modeled as having the same duration and requiring the same resources as the activity of 

unloading the rolling wheel following welding. The painting operation duration is proportional to 
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the total amount of welds on each spool but the ratio is dependent on the material type. As such, 

a CS Spool requires 3 min per DI, a SS Spool requires 2 min per DI and a GS Spool requires 5 

minutes per DI. 

3.1.2 Simphony.net Implementation 

Simphony.NET supports the implementation of the process previously described using primarily 

the General Template elements available to the user. Modelling elements designed for defining, 

capturing and releasing resources have been used to model the workers and major shop 

components, as well as their breakdown. The resources described in Section 3.1.1 have been 

modeled as shown in Figure 3-2 below. Since it was desired to distinguish between Fitter 1 and 

Fitter 2 within the model, the two workers have been modeled separately but are waiting within 

the same queuing file when idle. The same approach has been employed for the modelling of the 

cranes. Since the breakdown of cranes 2 and 3 is also modeled, a Preemption File has been added 

in order to allow for this later. 

 

Figure 3-2 Modelling of Resources 

Composite elements have been employed to represent each work station described in 

Section 3.1.1 and keep the model easily customizable and traceable. This high level abstraction 

of the fabrication process has been implemented as shown in Figure 3-3. The entities are created 

within the Define Spools element and a Destroy element has been used to simulate the shipping 

of the spools. The spool properties have been set using Set Attribute elements whereas work 

activities have been modeled using Task elements that encapsulate the desired behavior of each 

task. Statistics collected within the composite elements with regards to the fabrication duration 

are easy to observe using the Statistic element presented at the high level of the model. 



 

34 

 

Figure 3-3 High Level Representation of Spool Fabrication 

Example Model Application 

Provided that the model presented above can be calibrated and validated using real data to 

replace the heuristic duration assumptions, the model can serve to evaluate different what-if 

scenarios regarding resource availability, equipment breakdowns or shop layout changes. The 

following discussion presents the description of such example model implementations, focused 

around the objective of improving predictability of fabrication duration requirements under 

different working conditions. This has been achieved by creating two scenarios using the model 

in order to simulate a push and a pull behavior, as well as the impact of crane breakdowns.  

Manufacturing facilities are mostly operating using a push scenario, where fabrication 

packages are released for fabrication as soon as the fitting of the last spool is complete, in order 

to avoid long idle times for the cutter and fitters. This operating mode will, however create 

clustering within the facility and give rise to queuing situations for some of the spools that often 

involve utilizing the limited floor space for longer periods of time than necessary. In addition, 

double handling of these spools is also required, which is wasteful and therefore seeks to be 

eliminated when implementing lean fabrication concepts. A way to manage this situation is to 

ensure resources are balanced within the facility and activities taking place towards the end of 

the process do not create significant bottle necks. However, some resources cannot be balanced 

as easily, an example of this being the number of welding rolling machines, which are a function 

of the available floor space within a shop, sometimes regardless of the dimensions of a spool. 

In order to avoid these issues, a pull behavior can be employed, where each package is 

released for fabrication when the manufacturing facility has nearly finished the previous one. 

More specifically this is achieved when the welding of the last spool within a package is 

complete. An operation of this type will ensure the critical space limited resources are available 
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before a new package is released. However, this involves operating the cutting and fitting 

stations at less than maximum capacity. One way to avoid this issue may be to group similar 

spools together when releasing the shop package.  

The scenarios described herein have been implemented using a valve method whereby all the 

spools are stored and released in packages of five when requested from other stages in the model. 

For the push scenario, the valve is opened when the fitting of package has finished, whereas for 

the pull scenario this is further delayed until all welding is complete for a given assembly of 

spools. Special emphasis has been placed on developing a comprehensive trace output of the 

model that allows for the observation of each spool’s behavior, potentially useful in scheduling 

their release for manufacturing. 

One of the limitations of the present implementation is that grouping spools together in the 

order they have been created introduces high variability between the packages and between 

spools within the package is highly likely.  

Example Application – Results Discussion 

Each scenario was simulated 100 times in order provide accurate results that are not influenced 

by random sampling of distributions. The most relevant results to be compared are the waiting 

times for each of the resource queues. A summary of the average waiting times for resources 

compiled for all scenarios is presented in Table 3-2.  

Table 3-2 Comparison of Waiting Times for Different Simulation Scenarios (in hours) 

Resource type Push Scenario Pull Scenario 
Pull Scenario 

With Breakdowns 

Cranes 1.30 0.62 0.68 

Wheel 65.58 1.56 1.79 

Paint Shop 15.11 3.38 3.41 

Cutter 5.66 4.54 4.56 

Fitters 4.97 3.38 3.49 

Loaders 0.38 0.14 0.16 

Welders 0.00 0.00 0.00 
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The waiting times for the Pull scenario are smaller than those for the Push scenario for all of 

the resources modelled. A significant difference is observed in the case of the rolling wheel, 

where a reduction in waiting time by a factor of 40 is noticed. The waiting times for other 

resources are significantly different too, such as a factor of 2 differences in the average waiting 

time for the cranes. 

Introducing the crane breakdown events for the Pull scenario shows slight increases in the 

waiting times, in the region of 5-10%. However, as previously discussed this impact can be 

observed in more detail only if the breakdown behavior is modeled using historical data. 

The waiting time for the welders queue is zero for all scenarios because no welder is captured 

before a spool is on a wheel, therefore no spools are waiting specifically for welders. The wheel 

waiting times can be an indication of the welder waiting time. 

An important aspect to be analyzed is the distribution of fabrication times and the differences 

that arise between scenarios. This is of particular importance when trying to assess the 

implementation of lean manufacturing system that employ a pull rather than a push system. 

The figures below are histogram representations of the fabrication duration as reported by the 

“FabricationDuration” statistic element. This statistic represents the time it took for the 

completion of one spool from the time it was released for fabrication to the time it was 

transferred out of the welding area. Figure 3-4 depicts the histogram for the Push Scenario, 

whereas Figure 3-5 presents the pull scenario. 
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Figure 3-4 Fabrication Duration Distribution for the Push Scenario 

 

Figure 3-5 Fabrication Duration Distribution for the Pull Scenario 
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As it can be observed, the mean fabrication duration for the push scenario is 91 hours per 

spool, with a standard deviation of approx. 26 hours. Of significant importance to the 

predictability of the fabrication duration requirements is the high variance of this distribution, as 

well as the very large maximum, of 158 hours.  

The mean duration for the pull scenario, on the other hand, is approx. 48 hours, nearly half 

that required when employing a push operation. Also, the maximum duration of the fabrication is 

reduced to 97 hours. Although the  standard deviation of this distribution is 17 hours, smaller 

than that of the push scenario, the histogram shows a more even duration distribution. 

Some of the variability can be attributed to the randomness of the spools, as well as their 

different characteristics, but an important conclusion can still be drawn due to the high variation 

between the two scenarios, which is that releasing a spool for fabrication too early will increase 

its waiting time for resources and therefore its total completion time, as well as reduce the 

chance that it will be completed in the estimated time.   
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3.2 Database Connection Model 

This section aims to describe how a simulation model that is designed to derive a fabrication 

production schedule can be linked with a fabrication planning and tracking database. To allow 

for the previously investigated process simulation model to be implemented, first the fabrication 

tracking and scheduling user interface presented in Section 4.1 and currently developed in 

Microsoft Excel needs to be connected to the simulation engine. Since the Excel interface is 

already a very complex file, it was decided to convert the primary production scheduling and 

tracking data sheet to a flat table that can be opened using Microsoft Access. This conversion 

will also make the connection to the Simphony program easier to achieve while at the same time 

providing a common place for the simulation engine to deliver its outputs. 

3.2.1 Connecting to the Database 

In order to set-up a connection between the simulation model and a database, a “Database” 

element, found in Simphony.General  Miscellaneous needs to be set-up using the particular 

details of the machine where the Simulation is being run.  

The first step is to specify the connection provider. When working with a Microsoft Access 

Database, this provider is called “Microsoft Office 12.0 Access Database Engine OLE DB 

Provider”. For the provider to be available in the Simphony element, first the Microsoft Access 

Database Engine (Microsoft, 2015) needs to be installed on the local machine. 

Next, a connection string for the Data Source needs to be specified in the Connection tab. 

This is a local address of the database on the machine where the simulation is being run. Lastly, 

the connection needs to be tested to ensure the simulation model will run without issues. 

3.2.2 Model Description 

The model consists of 3 execute elements, a Trace element and a Destroy element, as pictured 

below in Figure 3-6. The functions of the execute elements will be described below with the 

visual basic formatted code presented in Appendix 1. The Trace element is used only when the 

Update element is bypassed for debugging or code altering. The Destroy element erases the 

entities from the memory of the simulation engine.  
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Figure 3-6 Initial Scheduling Engine 

The structure of the simulation has been determined based on the consideration that reading 

from and writing to a complex database using an external application is a time-consuming 

process and therefore it is desired to limit the application to only open the database twice: once 

to read from it and another to write to it. 

“Read and Assign” Element 

The first execute element, is named Read and Assign, and it handles the task of reading from the 

database and creating each spool in Simphony as an entity. It will assign attributes to each entity 

corresponding to each spool that is found in the database. 

Being the first element in the series and tasked with creating the entities, the entire coding 

work will be in the Initialize expression of the element. To keep this description fluent, the code 

is provided in Appendix 1a). 

Firstly, the database connection element is called upon to open a reading link between the 

database and the simulation engine. An SQL string is used to list all the parameters that need to 

be retrieved and read. Particular attention needs to be exercised when developing or modifying 

this string as it will need to contain the required column names in the database in the correct 

order and with the correct spelling. 

Secondly, this element’s code loops the read command for all the records found in a 

database; once each record is read, the information is stored in the local entity properties as 

either numbers of type Float or character strings of type String. When modifying this part of the 

code to add or subtract attributes to be recorded, it is important to keep in mind the sequence in 

which the attributes are listed in the SQL command. For better visualization, numbers to keep 

count of the attribute order have been added on the line immediately bellow the SQL query. 
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Once the code has looped through all the records in the databased and created entities with 

the information stored locally, the database connection is closed and the simulation engine is 

instructed to proceed to the next element in the simulation. 

“Schedule” Element 

The main function of the Schedule element is to compute durations between fabrication 

milestones based on the specific routing and requirements of each pipe spool. The method 

employed is incremental and additive, meaning the duration is always in reference to the 

completion date. These durations are working days and will need to be processes over a working 

day calendar in order to create a schedule that shows milestone dates for each spool. The most 

convenient application for this conversion is Microsoft Excel, given that the software already has 

ready to use functions for adding and subtracting dates over a custom working day calendar.  

The results of the calculation of the Schedule element are stored internally as attributes of 

the simulation entity, which represents a spool. This element is executed each time an entity 

passes through it and therefore does not employ any looping technique in the code. For reader 

reference, the code for this element is provided in Appendix 1b). 

The detailed simulation model of the fabrication process complete with resource 

requirements presented in Section 3.1 shall replace the coded Schedule element once it has been 

validated. 

“Update” Element 

The function of this Execute element is to put together all the computed information into an 

Update SQL query, which will then be executed in order to write the information into the 

database. Just as was the case with the database reading function performed by the “Read and 

Assign” element, particular attention needs to be exercised when building the update SQL string 

in order to reflect the correct column names and their order. 

This Execute element works by using a string builder to add each column name followed 

by a value stored in the local memory of the simulation entity. Once the string for the update 

query is completed, the database connection is called and employed to execute the update. For 

reader reference, the code for this element is provided in Appendix 01c). 
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3.3 Limitations and Remarks 

The simulation components presented in the two previous sections of this chapter, namely the 

process simulation model and the database connection model, could not be completed to function 

as intended due to significant functionality limitations, addressed in the following paragraphs.  

Discrete Event Simulation is a tool very well suited to simulating industrial manufacturing 

activities such as pipe spool fabrication. Depending on the modelling approach, various aspects 

of these processes can be investigated. The model presented in Section 3.1 of this chapter aims to 

aid project planners in understanding how different approaches to executing a project can impact 

its overall duration and timely delivery. However, because validating the model requires activity 

duration information at a level of detail much higher than that present in existing fabrication 

tracking structures at the manufacturing facility, the description of potential applications of this 

model are presented solely for demonstration purposes.  

Even though the process simulation model may be converted to reflect the spool variability 

of any particular project by updating the Define Spools composite element to accept parameters 

from the Read and Assign element in the database connection model. However, the two models 

have not been integrated as originally intended. This development step has been omitted because 

of the lack of a validation procedure for the process simulation model as a result of the difference 

in data structure between available and required information. 

While improvements in the accuracy of predicting fabrication durations and predicted 

completion dates are expected to be achieved using the fabrication process modelling approach 

presented, obtaining the data required to calibrate and validate an implementation with this level 

of data is extremely challenging and time-consuming. Some of the data required has to be 

collected from multiple projects and by various departments, which adds to the complexity of the 

data collection efforts. 

Although it is believed that the detailed trace output of the process simulation model can be 

used by experienced operations managers to derive yet more significant conclusions than those 

presented, the simulation results cannot be relied upon until the process has been sufficiently 

validated. Such findings may include, for example, deriving a relationship between spool 
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complexity and fabrication duration, as well as allowing for experimentation with different 

resource availabilities and equipment breakdowns. 

The implementation of the database connection model presented in Section 3.2 is mainly a 

showcase of the potential integration of an existing fabrication scheduling and tracking system 

with a simulation engine derived schedule. It is limited in functionality mainly because it 

requires a clean set of data with a fixed structure and data types, as well as a consistent approach 

to dealing with missing and incorrect information at the fabrication tracking stage. As such, the 

current implementation contains a link to a database containing only an example dataset which 

has been cleaned to present the consistency required by the model. 

The development efforts presented in this chapter, although not fruitful, led the author to the 

conclusion that different duration prediction and schedule derivation avenues need to be 

explored, focused on the structure and composition of the existing data collection practices, 

which are presented in the following chapter. 
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CHAPTER 4.   Data Collection and Exploration 

This chapter presents the description of a system developed to integrate the fabrication shop’s 

data collection systems with heuristic scheduling rules provided by the manufacturing facility 

professionals working in an Alberta fabrication shop. This system, developed by the author, was 

required in order to achieve a platform that can be used to plan and control production 

sequencing while at the same time collecting data for analysis. This tool has been operational in 

the fabrication shop in the form presented for various tasks including spool package issuing 

decision making, fabrication prioritization according to the schedule and spool status reporting. 

The scope, requirements, mode of operation and reporting functions of the system were 

developed working very closely with manufacturing facility planning and execution control 

professionals. The resulting integrated tracking and scheduling data that has been captured 

during approximately one year of operations has been made available for analysis. A data 

cleaning and validation exercise that was performed prior to the investigation of the potential 

schedule improvement methods is also presented in this chapter 

4.1 Integrating Fabrication Tracking and Scheduling 

In order to address some of the above issues, the manufacturing facility needs to have a reliable 

and realistic schedule that incorporates and disseminates all available information in order to 

estimate the fabrication duration. In addition, integrating the schedule with the tracking system 

can provide the base of an evaluation platform that could be used to analyze the impact of 

process changes or workforce availability to the overall project delivery performance. 

A multi-level spreadsheet-based system has been developed to integrate, enhance and 

facilitate the access to the above-mentioned information which will be further referred to as the 

“Scheduling and Tracking System”. The number of formulas in each of the three spreadsheets is 

very high, resulting in a relatively slow updating time; in addition, the updating procedure is 

complex and any missed step will lead to errors of scheduling. For these reasons, the entire 

updating procedure of the Scheduling and Tracking System has been automated using Visual 

Basic code. A  Data Flow Diagram of the system is presented in Figure 4-1 with a description of 

the functions of each of its parts in the following paragraphs. Complementing the summarized 
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description of the system presented in this section is a more detailed design and usage manual 

developed for the industrial partner presented in Appendix 2. 

 

Figure 4-1 Scheduling and Tracking System Data Flow Diagram 

The information required was scattered across three different data sources managed by 2 

databases, as presented in the “Data Sources” part of Figure 4-1. Both the drafting and the 

material management software systems have proprietary, custom-built databases with tables that 

contain information regarding spool characteristics, milestone tracking, material management 

and much more. For the fabrication analysis, the drafting database provides spool characteristics 

and some milestone tracking information in the form of a “Spool Information” table. The 

material management database is used to generate a “Material Forecast” containing material 

availability information and a “Fabrication Tracking” table that stores milestone tracking 

information additional to that found in the drafting database. 

The first level of functionality is managed in a “Data Spreadsheet”, where the information 

exported from the databases in the tables mentioned above is cleaned and concatenated. Three 
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files are created for each of the several projects that are to be included in the Production 

Schedule in an automated stage of extracting information from the previously mentioned data 

sources, called “FabShortage, “FabTrack” and “FabStatus”. A unique identifier of the spool is 

created using the “Control Number” and last 3 digits of a project number and represents a 

primary key for each spool. All redundant and repeated fields are removed at this stage and the 

material availability, number of items and highest item diameter of each spool is determined by 

consolidating information available at a component level. These files are combined in a single 

table containing all pertinent information with a line associated with each pipe spool.  

The compiled data is passed on to a “Scheduling Spreadsheet” where a fabrication schedule 

is calculated based on heuristically determined durations. The derivation of fabrication durations 

has been performed at the planning and drafting stages, and the results are included in the Spool 

Information “FabStatus” table. Two types of schedules are created using finish-to-start 

relationships between activities and a 5 day working week calendar with custom holidays. The 

first, called the “As Planned” schedule, is a backward pass calculation starting at the required 

completion date providing a required start date each spool. The second, called the “As Issued” 

Schedule, is a forward pass calculation starting at the package issue date and providing an 

expected completion date based on the tracked progress of achieved milestones. Actual 

fabrication process durations are also calculated in this spreadsheet using the fabrication tracking 

information.  

The resulting schedule is transferred to the user accessible spreadsheet called the “Production 

Schedule” which includes the functionality of generating production reports and allowing for 

quick fabrication schedule referencing and evaluation at an individual spool level. This 

spreadsheet employs conditional cell formatting to highlight whether the progress of a certain 

spool is on track or has been delayed based on a comparison of the actual fabrication progress 

and the scheduled date, for both the “As Planned” and the “As Issued” Schedule. In addition, 

various standardized filter options and reports have been created in order to facilitate production 

planning, monitoring and progress reporting. These functions have been developed with the help 

of manufacturing facility planning and production management team and tailored specifically for 

the requirements of each function. A sample of the resulting “As Planned” schedule is presented 
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in the following subsection, together with a discussion of the selection of the information that 

will be used in the data analysis. 

4.1.1 Description of Collected Data 

In order to perform the required investigation of fabrication duration and delivery dates estimate 

improvements, data regarding fabrication progress milestones that have been tracked for a year 

in an Alberta fabrication shop has been made available for analysis. It is expected that by looking 

at past fabrication durations, useful relationships can be derived to estimate the scheduling of 

future projects. A snapshot of the above mentioned “As Planned” sheet of the Production 

Schedule was provided by the partner company for data analysis in order to allow for the 

identification of possible fabrication duration patterns and enhance the process of fabrication 

scheduling. Most of the processes and milestones presented are considered to be self-explanatory 

for a reader with a background in industrial fabrication. In the interest of completeness; however, 

the terms which the author believes are less trivial or critical for understanding of the work 

presented in this thesis are included in the Glossary of Terms. 

 The “As Planned” sheet of the “Production Schedule” has 68 fields of data that has been 

combined and processed as previously described. The sheet’s headers are presented in Table 4-1 

organized by category and accompanied by a short description. The scheduling headers for the 7 

fabrication processes are repeated, but are shown in full in order to present the complete 

composition of the data scheduling and tracking system. The scheduled dates are computed from 

the RAS Date, whereas the actual dates are brought in from the tracking databases. A few 

example records with data from the Spool Information, Fabrication Details and Issue Scheduling 

categories are presented overleaf in Table 4-2, Table 4-3 and Table 4-4 respectively. The Fit 

Schedule and the transfer report dates (MRR and MTR) for the example records are presented in 

Table 4-5. 
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Table 4-1 Production Schedule – As Planned Sheet Headers 

Category Schedule Heading Description 

Spool 

Information 

Control Number Unique identifier of the spool 

Project The project that the spool is part of 

FIWP The Field Installation Work Package that the spool is part of 

Priority The project schedule assigned priority order of the FIWP 

Diameter Inches The sum of the Diameter Inches to be welded 

Maximum Size The diameter of the biggest item that is part of the spool 

Material Grade  The code for the material grade or type for the spool 

Weight The total weight of the spool, computed at the drafting stage 

Surface Area The surface area that a spool occupies 

N0/ of items Total number of items (pieces of pipe and fittings) of a spool 

Fabrication 

Details 

Status The fabrication status of a spool (i.e. On Hold or In Fab) 

Bay # Number of the  shop bay where the spool is fabricated 

ECN Column Engineering Change Notice (contains Subcontractor Info) 

Hold Details Any details regarding a client hold 

Drawing Check Date The date the spool drawing has been checked 

Issue 

Material Available? A Yes/No attribute derived using Material Management Data 

RAS Date Required At Site Date - Spool completion deadline 

Expected Ship Date Date computed after a spool fitting has been completed 

MIR Number Material Issue Report Number 

Planned MIR Date Required package issue date of the spool, based on RAS Date 

Actual MIR Date Actual package Issue Date of the Spool 

Planned Matl Issue Date Date when material is required to be prepared by 

Actual Matl Issue Date Actual date when material preparation was complete 

Location 
The spool fabrication location (either a Bay# or Sub-

Contractor) 

Fit Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Fitting process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 

Weld 

Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Welding process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 
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Category Schedule Heading Description 

Visual 

Inspection 

(QC) 

Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Visual Inspection 

process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 

PWHT 

Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Post-Weld Heat 

Treatment process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 

NDE 

Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Non-Destructive 

Examination process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 

MRR MRR Date 
Material Receiving Report - represents a transfer of the spool 

between business units 

Hydro-

Testing 

Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Hydro-Testing 

process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 

Paint 

Schedule 

Scheduled Duration 

The scheduling and tracking headers for the Painting process 

Scheduled Start Date 

Actual Start Date  

Scheduled Finish Date  

Actual Finish Date 

Actual Duration 

MTR MTR Date 

Material Transfer Report - represents a transfer of the spool to 

the client and is considered to be the completion date of the 

spool. 
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Table 4-2 Spool Information Example Records 

Control 

Number 
Project FIWP Priority 

Diameter 

Inches 

Max 

Size 

Material 

Grade 
Weight 

Surface 

Area 

No. of 

Items 

130 - 010011 3215130 MD-02-51 06 37 4 G 915.88 75.74 8 

140 - 030166 3215140 MD-02-51 09 14 4 A 92.72 5.93 8 

290 - 090078 3215290 MD-02-51 36 72 36 G 3354.34 79.75 3 

 

Table 4-3 Fabrication Details Example Records 

Status Bay # ECN Column Hold Details 
Drawing Check 

Date 

F Fabrication Bay # 2 / / 3/25/2014 

F Fabrication Bay # 3 Company X / 9/25/2014 

F / / / 7/15/2014 

 

Table 4-4 Issuing Schedule Example Records 

Material 

Available? 
RAS Date 

 Expected 

Ship Date  

MIR 

Number 

Planned 

MIR Date 

Actual 

MIR Date 

Planned 

Material 

Issue Date 

Actual 

Material 

Issue Date 

Location 

Y 7/4/2014 6/10/2014 MIR-130036 5/20/2014 5/9/2014 5/27/2014 5/12/2014 Bay # 2 

Y 10/1/2014 1/21/2015 MIR-140143 8/21/2014 10/31/2014 8/28/2014 12/20/2014 Bay # 3 

Y 9/1/2014 10/17/2014 MIR-290182 6/27/2014 8/26/2014 7/8/2014 9/18/2014 / 
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Table 4-5 Fit Schedule and Transfer Dates Example Records 

Scheduled 

Duration 

Scheduled 

Start Date 

Actual Start 

Date 

Scheduled 

Finish Date 

Actual Finish 

Date 

Actual 

Duration 
MRR Date MTR Date 

7 6/3/2014 5/14/2014 6/11/2014 5/20/2014 4 5/23/2014 5/29/2014 

5 9/5/2014 / 9/11/2014 12/31/2014 / 1/21/2015 1/21/2015 

6 7/15/2014 9/22/2014 7/22/2014 9/22/2014 1 1/14/2015 11/28/2014 
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Out of the available data fields previously presented only some were selected for analysis 

from each of the categories mentioned. The main reason for omitting certain fields was the lack 

of data or lack of consistency in the data collection. It is of utmost importance to identify 

unreliable or inconsistent data and carefully work around it, avoiding as much as possible 

including the affected fields in automated analysis or reporting functions. Identifying such data 

fields required careful examination of the data and close collaboration with the fabrication 

personnel in order to understand what information was recorded in each database field and 

whether the data collection was consistent over time between different projects. This process 

begun during the development of the integrated fabrication scheduling and tracking system and 

provided the author with a solid understanding of the shortcomings of collected data. In order to 

avoid analyzing fields with incomplete or incorrect information, once certain columns have been 

removed based on heuristic methods, a comprehensive data cleaning and validation exercise was 

performed as described in the following section. 

4.2 Data Cleaning and Validation 

In order to make the most use of the information available, a data cleaning exercise was deemed 

necessary. The main issues surrounding the available information regard the completeness of the 

records, in particular with regards to the tracked fabrication milestone dates. Other criteria to be 

considered when selecting the data for analysis include: 

 Client holds during the fabrication process 

 Missing records of fabrication milestones 

 Incomplete fabrication progress at the time of the data collection 

 Removing outliers for increased data consistency. 

The process to be followed is described in the following subsections begins with the 

presentation of the descriptive statistics of the total fabrication duration, continues with an outlier 

detection and removal exercise and concludes with a logical validation of the data based on the 

comparison of recorded fabrication milestones. 
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4.2.1 Descriptive Statistics 

The initial fabrication duration data is characterized by the descriptive statistics presented in 

Table 4-6. The data these statistics are based upon is the total fabrication duration and it reflects 

all the records available where this information is valid. 

Table 4-6 Descriptive Statics for Fabrication Duration 

 

 

An initial graphical representation of the data can be a useful tool to evaluate it. Using the 

Normal Inverse function, expected duration values have been derived based on the Cumulative 

Distribution Function of a normal distribution with the same mean and standard deviation. This 

graph, presented in Figure 4-2, can be used to conclude that the data does not closely follow a 

normal behavior. This is due to the lack of a “tail” to the left of the duration spectrum and a 

concentration of the values towards to the mid-low values (i.e. 15 to 45 days).  

Descriptive Statistics 

Mean 42.6 

Standard Error 0.25 

Median 40 

Mode 30 

Standard Deviation 22.3 

Sample Variance 498.0 

Kurtosis 1.67 

Skewness 0.98 

Range 201 

Minimum 1 

Maximum 202 

Sum 336597 

Count 7905 

Confidence Level (95.0%) 0.492 
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Figure 4-2 Fabrication Duration Data 

In order to further assess how closely the data follows a normal distribution, a normality test was 

performed based on the Fabrication Duration Data. The test, presented in Figure 4-3 below, 

shows that the original data matches the expected values only for the central part of the graph, 

whereas the values towards the ends of the data diverge from the normality plot. As mentioned in 

(Brown, 2015), when the ratio of the skewness to Standard Error of Skewness (SES) expressed 

as presented in Equation 11 is higher than 2, then the sample is positively skewed. This is the 

case for the present data set. 

 

SES=√
6n(n-1)

(n-2)(n+1)(n+3)
 Equation 11 
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Figure 4-3 Normality Plot for Fabrication Durations 

4.2.2 Logical Data Validation 

In addition to statistical validation, a logical data validation exercise was performed in order to 

identify records that do not reflect the expected fabrication process. For example, a considerable 

number of records were affected by a data collection issue whereby the Material Issue Date 

column contains a later date than that of the completion of the fitting process. This cannot 

happen in practice since all the material has to be available for fabrication to begin. Given that a 

significant amount of data has been found to be affected by this issue (Over 15%) it had to be 

inferred that this information does not accurately reflect the fabrication process and therefore it 

cannot be used reliably. The amount of data affected may be considerably greater when one 

considers that the test has been performed using Fit Complete instead of Fit Start Dates, and the 

fitting process itself is estimated to take between a few days and a couple of weeks. 
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Although technically the fabrication process begins once material has been delivered to the 

fabrication shop, the Material Issue date could not be used for a reliable data analysis because of 

the aforementioned issue regarding data validity. The date when the fabrication package has been 

created, the Package Issue Date, had to be used instead since the data is considered to be more 

reliable. This process of issuing the package happens typically about a week before the material 

is delivered to the shop. However, if a particular package or set of packages need to be rushed, 

they can become available for fabrication in as little as 2 days from the Package Issue Data. 

Conversely, if the warehouse backlog is significant, lower priority packages can end up waiting 

to be delivered for up to 2 weeks. This variation in warehouse processing time is therefore 

included in the analysis if the Package Issue Date is considered as representing the start of the 

fabrication process. 

To perform this data validation exercise, formulas to compare the logical sequencing of the 

fabrication dates were employed using Microsoft Excel. The results of this exercise, together 

with information regarding the normality behavior of the data and the outlier percentage, have 

been tabulated and are presented in Table 4-7 below. The information is expressed in terms of 

the number of records available, and the data validity increases with each scenario. 

Table 4-7 Data Availability Summary 

Scenario 

No. 
Criteria 

Number of 

Records 

Of which 

Normal 

(median/MAD) 

Outlier Percentage 

(median/MAD) 

i) Initial  7,911 7,840 0.90% 

ii) MIR to MTR Valid 7,906 7,836 0.89% 

iii) 
MIR to FitC to MTR 

Valid 
7,773 7,705 0.87% 

iv) 
MIR to FitC to QCC to 

MTR Valid 
7,099 7,040 0.83% 

v) 
MIR to FitS to FitC to 

QCC to MTR Valid 
2,735 2,735 0.00% 

vi) 

MIR to FitS to FitC to 

QCS to QCC to MTR 

Valid 

2,512 2,512 0.00% 
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Although it is desired to use a data set that is as clean and consistent as possible, as it can be 

seen from the summary presented in the table above, progressively more records need to be 

removed in order to achieve higher levels of data completeness. It is, therefore, impractical to use 

the highest level of logical data validation since the lack of consistency in recording the Fit 

Complete Date means that only approx. 40% of the records include this information. It was 

decided to proceed with the data available after performing validation scenario iv), which 

represents the best compromise between data validity and availability. Once the invalid and 

outlier records are removed, the remaining 7,040 records are carried over to perform the next 

stages of the study, namely the investigation of the fabrication schedule improvement methods. 

4.3 Conclusions and Recommendations 

In order to arrive at a data set that is suitable for analyzing the fabrication durations across the 

complete fabrication process, a thorough understanding of each activity and the planning and 

control methods employed at each stage was required. This was achieved by working closely 

with the fabrication management personnel while providing them with a map of the data 

collection structures and developing a system that can present all of the available information in 

an easily accessible and comprehensive system. The integration of a scheduling component with 

the spool drafting, material management and fabrication tracking information was found to add 

value to the management process even at a stage when the schedule was heuristically derived.  

The consolidated output of the scheduling and tracking system represented a suitable dataset 

for analysis because of its composition and completeness. However, certain validation and 

cleaning steps were required, dependent mostly on heuristic rules and knowledge obtained 

directly from the fabrication management personnel with regards to the actual use of the data 

collection structures. Although it was desired to use a dataset with as many tracked milestones as 

possible, gaps in the available data identified during the cleaning and validation stage led to the 

conclusion that a simpler dataset should be further analyzed in order to maintain the majority of 

the available records. 
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CHAPTER 5.   Data Driven Models 

Once the data has been cleaned and validated, the total fabrication duration has been plotted 

again to produce an updated frequency distribution histogram, as presented in Figure 5-1 below; 

this exercise is mainly for visualization purposes and not for analysis at this stage. However, 

some preliminary observations can be made based on this data, as mentioned below. 

 

Figure 5-1 Complete Fabrication Duration Histogram 

Based on the histogram presented in Figure 5-1, it can be observed that: 

 The fabrication duration varies relatively widely, from a few days to about six weeks; 

 The histogram is not smooth, presenting peaks and troughs that may be associated with 

certain criteria or spool characteristics; 

 Relationships must be drawn to dissect and classify the data in order to obtain more 

meaningful correlations between fabrication parameters and duration. 

 The histogram has a significant tail to the right, which does not taper off, suggesting a 

good fit will be hard to determine at this level. 
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A data exploration exercise has been performed using Weka Explorer (Hall, et al., 2009). The 

data utilized contains 7,040 records filtered following Logical Data Validation exercise presented 

in Section 4.2.2, and the fields arrived at following the Attribute Selection exercise in 

Section 5.1.The file has been formatted with the ARFF extension, which allows for the attributes 

properties to be read before reading the data itself. 

The exploration and analysis exercise has several phases, namely: 

 Attribute Selection – the stage where the available data fields are analyzed and 

reduced to a relevant dataset based on heuristic rules 

 Instance-Based Classification – this type of classifiers have been evaluated in more 

detail because their performance on this data set is significantly improved over the 

other types of classification. The sub-section contains several stages: 

o an evaluation of the data subset using a simple KNN classifier  

o a fine-tuning of the algorithm parameters on this data set  

o a discussion on applications of the classifier at different stages of the 

planning process 

o a feature selection stage where the available attributes are evaluated for their 

impact towards classification algorithms and several attributes are removed 

 Conclusions and Recommendations derived from this analysis. 

The details and outcomes of each of these phases are further explained in the following 

sections.  
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5.1 Attribute Selection 

In order to perform an efficient exploration and analysis exercise, it is important that the data to 

be analyzed contains only relevant fields, leaving out information that can obscure a good 

analysis. It is, therefore, desirable to keep only the fields that are expected to lead to the creation 

of a relationship tree between design parameters and fabrication duration. Information such as 

milestone completion dates is not relevant compared to the fabrication duration between these 

milestones. Also, the unique identifier of the spool and fields that are constant or blank will be 

removed as well. Also, due to concerns related to the accuracy of the information available, 

fabrication location information (the bay number where the spool was fabricated) will be 

omitted.  

Processes that are only required for certain spools before they leave the fabrication shop, 

such as Painting, Hydro-Testing and Post Weld Heat Treatment are included in the investigation 

but only as Boolean attributes and not as a fixed duration allocation as they are initially 

available. Furthermore, the fabrication duration has been split into 3 segments according to the 

selection made in the logical data validation, namely, MIR to Fit Complete, Fit Complete to QC 

Complete and QC Complete to MTR. This operation was performed with the aim of identifying 

fabrication durations trends for each segment of the fabrication, and not only for the entire 

duration.  

Although not readily available, information regarding the loading of the fabrication shop is 

believed to have a significant impact on the overall fabrication time by affecting fabrication 

priorities and waiting time between stages, as well as the congestion levels in the fabrication 

process. As such, it is desired to compute a measure of the shop utilization that reflects the 

volume of work to be performed. Based on the available fields described so far, the Diameter 

Inches to be welded was used in conjunction with the fabrication tracking (and hence duration 

information) to derive a Shop Loading parameter (or SL) that represents the shop utilization at 

the start date of fabrication, henceforth named Shop Utilization Index (or SUI). This index is a 

ratio between shop loading and a theoretical maximum capacity, referred to as Max Daily 

Loading, arbitrarily set to 8,000 DI/day for the fabrication shop where the data was obtained 

from. 



 

61 

To clarify, the following shop loading derivation was implemented, computed by adding the 

DI of all the spools that were still in fabrication at the issue date of a new spool, to derive the 

Shop Loading at Start Date (SLStartp) presented in Equation 12. 

 

SLStartp= ∑∑DIti

n

i

Ftp

t=Stp

,Sti≤Stp and Fti≥Stp Equation 12 

where SLStartp = Shop Loading at Stp for Spool p 

 

Stp = Start time for spool p 

Sti = Start time for spool i 

Fti = Finish time for spool i 

DIti = Diameter Inches for spool i on shop floor at time t 

 

In addition, a modified version of this index called SUI Sum represents an integration of the 

Shop Loading Sum over the fabrication lifespan of a spool. Firstly, the equation for Shop 

Loading at Start Date was modified in order to reflect a sum of welded DI in the Shop over the 

fabrication lifetime of each spool p in order to compute the SLSump (Equation 13). 

 

SLSump= ∑∑DIti

n

i

Ftp

t=Stp

,Sti≤Ftp and Fti≥Stp Equation 13 

where SLSump = Shop Loading Sum for Spool p 

 

Stp = Start time for spool p 

Sti = Start time for spool i 

Ftp = Finish time for spool p 

Fti = Finish time for spool i 

DIti = Diameter Inches for spool i on shop floor at time t 

 

Next, a theoretical maximum fabrication capacity computed over the same duration was 

calculated based on the previously defined Max Daily Loading (Equation 14). It should be noted 

that the Max Shop Loading at Start and Max Loading Sum will not be utilized in the analysis 

directly, but are just used in order to derive the Shop Utilization Indices (SUI’s).   
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SLSummax = DImax×(Ftp-Stp) Equation 14 

where SLSummax = Maximum Shop Loading Sum 

 
DImax = Maximum Daily Diameter Inches 

Ftp = Finish time for spool p 

Stp = Start time for spool p 

 

Lastly, the Shop Utilization Index Sum (SUI Sum) is computed simply by dividing the Shop 

Loading Sum by the Max Loading Sum. 

Two variations of the Shop Loading Sum have been computed, using the planned durations 

and the historical average of actual durations in order to calculate an estimated completion date 

for each spool. They have been named Planned SL Sum and Mean SL Sum respectively. These 

variations represent alternatives to the Actual SL Sum that can be estimated more realistically. 

The remaining spool information fields to be investigated, together with the duration and SUI 

attributes are presented in Table 5-1 below. The table also contains basic descriptive statistics for 

each numeric attribute. The 21 attributes can be divided into 4 distinct categories, namely: 

 Spool Information Attributes, which are used to describe the spool that needs to be 

fabricated; these attributes are mostly numeric, with the exception of the material 

grade which is nominal and can take four values; 

 Fabrication Details Attributes, which contain information regarding Paint, Hydro-Test 

and PWHT requirements in a Boolean format; and 

 Shop Loading Attributes for both the start date of each spool’s fabrication as well as 

the integration over the fabrication duration (sum), together with the SUI indices 

computed as previously described. 

 Fabrication Duration Attributes, where the total fabrication duration and its 

comprising subcomponents are found. Since the total duration (MIR to MTR) is 

going to be the class attribute for most experiments, it has been placed at the end.  
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Table 5-1 Data Exploration Information Fields 

Category Attribute Type Min Max Mean StdDev 

Spool 

Information 

Attributes 

Diameter Inches Numeric 0 552 19.4 25.1 

Weight Numeric 0 26,305 419.3 1129.5 

Surface Area Numeric 0 763 28.0 52.1 

Nr  of Items Numeric 1 24 4.5 2.9 

Maximum Size Numeric 1 36 4.6 4.6 

Material Grade {A,G,E,D}     

Fabrication 

Details 

Attributes 

Paint {No,Yes}     

Hydro-Test {No,Yes}     

PWHT {No,Yes}     

Shop 

Loading 

Attributes  

Shop Loading at Start Numeric 161 43,572 30,195 13,272 

SUI at Start Numeric 0.02 5.447 3.774 1.659 

Shop Loading Sum Numeric 1257 109,541 57,963 23,943 

SUI Sum Numeric 0.005 1.391 0.202 0.118 

Planned SL Sum  Numeric 764 75,073 46,814 14,896 

Mean SL Sum Numeric 2,073 78,607 59,339 17,330 

Fabrication 

Duration 

Attributes 

MIR to FitC (A*) Numeric 1 86 15.4 12.1 

FitC to QCC (B) Numeric 1 82 8.1 8.8 

QCC to MTR (C) Numeric 1 99 20.3 17 

FitC to MTR (B&C) Numeric 1 106 27.4 18.8 

MIR to QCC (A&B) Numeric 2 93 22.6 16.4 

MIR to MTR (A&B&C) Numeric 2 110 41.9 20.9 

*where A, B and C and combinations thereof in the brackets of the Fabrication Duration 

Attributes are just names for the duration segments that will be used in following sections. 

While experimenting with the distance measure of the KNN classifier, a pre-processing filter 

was required to be applied in order to be able to use a tree type search algorithms; the filter 

replaced the missing values with the mean for that respective attribute. Although changing the 

search algorithm was found not to change the results by itself, the pre-processing filter did have 

an impact on the results of all the other various optimization runs. There is only one attribute 

with a significant percentage of missing records, and that is the Number of Items attribute with 

11% of the records missing a value. The filter mentioned replaced the missing values with the 

mean of the available ones. The K* classifier results are reported using the original dataset and 

applying this filter does not seem to impact the results. That is because, as explained in 2.5.2 

regarding The K Star Classification Algorithm, this functionality of replacing missing values 

with the mean is embedded in the K* algorithm. 
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5.2 Instance-Based Classification  

Using instance-based classifiers, a set of experiments have been performed with the aim of 

selecting an optimal classification method, each of them representing a stage in the classification 

exercise, summarized as follows: 

1. The performance of attribute subsets with various levels of available information has been 

evaluated. The expected outcome of this selection of datasets is to determine how significant 

different metrics related to shop loading information are to the performance of the classifiers. 

The most promising attribute set and relevant performance measures will be carried forward. 

2. Several parameters of the available nearest neighbour type classifier implementations have 

been optimized with the goal of improving classification performance using the selected 

attribute set. 

3. Using the optimized classifier parameters with the most promising set of attributes, partial 

fabrication durations have been added to the attribute set in order to emulate the classification 

at different stages in the fabrication process as milestones are reached. 

4. The optimized classifier has been employed as an evaluator in a wrapper type feature 

selection exercise, aimed at eliminating attributes that have a negative contribution on overall 

performance. 

5. Various other promising classifiers have been evaluated using the resulting reduced attribute 

set in order to reinforce the conclusion of the experiment. 

 Instance-based classification was selected over the other types of classification algorithms 

such as functions, rules, and trees, because of its promising results on this dataset. An evaluation 

of other data mining methods has also been conducted but given the lower performance the 

results are presented in Appendix 3. 

5.2.1 Attribute Subset Evaluation 

Subset Selection 

A total of 7 subsets have been selected for experimentation with the main differentiating factor 

being which of the shop loading measures – or combination thereof – they utilize. Each data set 

combination has been assigned an experiment number, as presented in Table 5-2. A brief 

description of each subset is included in the table.  
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Table 5-2 Attribute subset experimentation 
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1 

Reference set without Shop 

Loading parameters (Core 

Set) 

X X X X X X X X X       X 

2 

Set with only the Shop 

Loading at the start of 

fabrication available 

X X X X X X X X X X      X 

3 

Set with only Actual SL Sum 

available – this attribute has a 

0.7 correlation to the actual 

duration by itself  

X X X X X X X X X   X    X 

4 

Set with both SL at Start and 

Actual SL Sum included – 

expected to perform best 

X X X X X X X X X X  X    X 

5 
Set with both Shop 

Utilization Indices present 
X X X X X X X X X  X  X   X 

6 

Set with SL at Start and 

Planned SL Sum estimated 

using heuristic durations 

X X X X X X X X X X    X  X 

7 

Set with SL at Start and SL 

Sum estimated using the 

mean of actual durations 

(Base Set) 

X X X X X X X X X X     X X 

 

Baseline Schedule Evaluation 

The performance measures have been computed for the existing fabrication scheduling approach 

in order to provide a benchmark for comparing the results of this subset selection exercise. The 

equations implemented are the ones presented in Section 2.5.4 where the observed fabrication 
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duration was compared to the heuristically derived computation. The values for these metrics can 

be found in the row corresponding to subset number 0 in Table 5-3. 

Subset Evaluation 

In order to evaluate these various combination of attributes defined as subsets in Table 5-2, all of 

the performance measures presented in Section 2.5.3 have been retained for comparison using a 

linear search algorithm nearest neighbour classifier with k=1 neighbour; they are summarized in 

Table 5-3.  

Table 5-3 Performance Metrics of the Attribute Subsets 

Subset 

No. 

Correlation 

Coefficient 

Mean Abs. 

Error 

Root Mean 

Square Error 

Relative 

Abs. Error 

Root Relative 

Squared Err. 

0* 0.215 17.4 23.4 105.4% 112.1% 

1 0.398 14.4 22.1 96.4% 106.1% 

2 0.608 10.9 18.4 65.9% 87.9% 

3 0.853 6.4 11.3 38.7% 54.2% 

4 0.913 4.2 8.7 25.4% 41.6% 

5 0.824 5.7 12.4 34.6% 59.2% 

6 0.621 10.3 18.0 62.6% 86.4% 

7 0.635 10.0 17.8 60.8% 85.1% 

*values reported as subset 0 correspond to the benchmark scheduling approach. 

It can be observed that the performance measures are, for the most part, consistent for each 

subset (i.e. they are correlated to each other); therefore it is possible to use any one of them for 

comparison purposes. The error related performance measures do in fact exhibit an almost exact 

negative correlation with the correlation coefficient, that is, they move together with 

performance in an inversely proportional fashion. This behavior can also be observed by 

examining the bar chart presenting the correlation coefficient and the percentage measures for 

each of the attribute subset presented in Figure 5-2. Therefore, in the interest of rigor, both the 

correlation coefficient and the relative absolute error will be used henceforth in order to evaluate 

the performance of various other classifiers.  
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Figure 5-2 Comparison of Performance Measures for the Attribute Subset Experiment 

The first observation based on the results in Table 5-3 is that the existing method for 

scheduling presented in Section 4.1, the one represented by Subset 0, exhibits a very poor 

behaviour with very high errors; a relative absolute error of over 100% is poorer performance 

than a simple average of historical fabrication durations would produce. Looking further at 

Subset 1, the first where a classification algorithm was applied, the performance is already 

improved but not significantly. Adding a level of Shop Loading information brings more 

significant improvements to the duration estimates. 

The Actual SL Sum, attribute which is added by itself to the core set in Subset 3, produces 

the first significant improvement, bringing the correlation coefficient above 0.8, much better than 

the Shop Loading at Start can improve the performance by itself (Subset 2). Using them together 

in Subset 4 raises the performance to its peak but, as mentioned earlier, one should be careful 

when utilizing the Actual SL Sum attribute because it is a very difficult parameter to estimate. 

Using the Shop Utilization Indices in lieu of their shop loading counterparts in Subset 5 exhibits 

a decrease in performance compared to heir shop loading counterparts, but these indices might 

be easier to approximate than the loading itself. 

In order to provide a similar Shop Loading attribute to the Actual SL Sum, two types of 

estimates have been employed: the Planned SL Sum and Mean SL Sum; they are both computed 
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with information readily available before the start of the fabrication process and therefore can be 

relied upon. They have been used in conjunction with the Shop Loading At start in Subsets 6 and 

7 in order to compare their performance. As expected based on the poorer than average 

performance of the existing fabrication plan, the Mean SL Sum performs slightly better.  

Based on these observations, Subset 7 will be selected as the best compromise between 

performance and estimation availability for further investigations. It has a good base 

performance with a correlation coefficient of 0.58 and a relative absolute error of approx. 67% 

5.2.2 Classifier Optimization 

For Subset 7, which includes the Shop Loading at Start and Mean SL Sum, several variations of 

the nearest neighbour algorithm have been applied in order to fine-tune the classification results. 

The performance of the KNN classifier was found to vary with distance weighting and with the 

number of neighbours; therefore the optimization exercise was focused on selecting the best 

possible combination of these parameters. A number of observations can be made based on the 

results of the optimization exercise. These are explained in the following sections. 

A summary of the classifiers’ outputs expressed in terms of the correlation coefficient and 

relative absolute error is presented in Table 5-4. There are 2 main parts to this table according to 

the type of classifier implementation chosen, either the KNN or K*. The optimization then 

branches out for each of them according to different parameters that were varied. For the KNN 

these are the Distance Weighting method and the Number of Neighbours (k) and for the K* it 

was the blending parameter b, which has a similar function to selecting the number on 

neighbours in KNN and therefore was placed in the same column.  

The observations regarding the optimization experiment are presented following the data 

table. The results are also visually represented in the figures presented on the following pages for 

easier visual comparison. Figure 5-3 shows all the results of the KNN classifier optimization part 

with k on the horizontal axis plotted on a logarithmic scale with base 3. The K* optimization 

results are presented in Figure 5-4 with the blending parameter on the horizontal axis.  
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Table 5-4 Classifier Optimization Experiment 

Classifier 

Type 

Parameters Performance Measures 

Distance 

Weighting 

Number of 

Neighbours (k) 

Correlation 

Coefficient 

Relative 

Absolute Error 

KNN 

No 

distance 

weighting 

1 0.6532 60.82% 

3 0.6696 62.90% 

10 0.6599 67.02% 

30 0.6037 73.06% 

1/distance 

1 0.6532 60.82% 

3 0.6880 59.36% 

4 0.6963 59.20% 

5 0.6999 59.23% 

6 0.7009 59.52% 

10 0.7078 60.24% 

30 0.6414 68.98% 

1-distance 

1 0.6532 60.82% 

3 0.6700 62.85% 

10 0.6610 66.91% 

30 0.6062 72.87% 

K* 

 
 

b=10% 0.6718 57.07% 

b=15% 0.6813 56.51% 

b=20% 0.6896 56.11% 

b=25% 0.6979 55.72% 

b=30% 0.7049 55.39% 

b=35% 0.7106 55.22% 

b=40% 0.7151 55.25% 

b=45% 0.7188 55.39% 

b=50% 0.7213 55.66% 

b=60% 0.7227 56.57% 

 

KNN Classifier Results 

The first observation to be made regarding the optimization of the KNN classifier is that when 

the number of Neighbours k is equal to 1, the distance weighting does not affect the result; this is 

because this algorithm parameter is used to weigh the contribution of each neighbour and when 

there is only one neighbouring instance it is irrelevant. As the number of neighbours increases so 

does the correlation coefficient, but only up to a certain maxima point, after which it declines 

again. The relative absolute error, on the other hand, tends to be lower with fewer neighbours. 
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The next set of observations regard the distance weighting method; using no distance 

weighting yields the poorest performance, regardless of the number of neighbours used. 

Marginal improvements are observed by changing to 1-distance as a method, which are so 

insignificant in fact that the points overlap when plotted, as shown in Figure 5-3. However, when 

using a distance weighting method of 1/distance, significant improvements can be observed with 

increasing number of neighbours. As such, at k=3 the improvement in relative error is of 3.5 

percentage points, whereas at k=30 the improvement is of 4 percentage points between no 

distance weighting and 1/distance weighting. 

After asserting that 1/distance was the best performing distance measure with the highest 

correlation coefficient at k=10 and the lowest relative error at k=3, a fine-tuning was performed 

for the number of neighbours in that region. As it can be observed from Figure 5-3, the 

difference is not significant – being in the region of 0.2 percentage points – but is an 

improvement nevertheless. A number of k=4 neighbours produces the lowest relative absolute 

error and is therefore the selected setting for future exercises, despite the fact that best correlation 

coefficient is achieved when k=10. 

 

Figure 5-3 KNN Classifier Optimization Results 
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K Star Classifier Results 

The more complex K Star algorithm exhibits better performance with this dataset regardless of 

the blending parameter value than even the most finely tuned KNN classifier. Optimizing for the 

blending parameter in 5% increments leads to the observation that the 35% global blend yields in 

a minimum relative error before the performance according to this measure begins to steadily 

deteriorate. The correlation coefficient however keeps increasing further with increasing values 

for the blending parameter, but this may be an indication of data overfitting behaviour. The best 

performing blending parameter for the K* algorithm with a value of  35% presents an 

improvement of 4 percentage points in relative absolute error when compared to the algorithm 

performance with a blending parameter of 5%.  

Figure 5-4 presents the results of the K* classifier optimization exercise with the results of 

the KNN with 1/d as a distance weighting superimposed for ease of comparison. Although a 

clear improvement is observed based on this graphical representation, due to the nature of the 

test, which was performed on a particular set of data features, and the nature of the experiment 

validation itself, which uses a 10 fold hold 1 out cross validation to produce the reported results, 

it is believed necessary to analyze the statistical significance of this difference in the context of 

the standard deviation of these results. 

 

Figure 5-4 K Star Classifier Optimization Results 
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Evaluating the Significance of the Performance Difference 

An experiment was set up in order to evaluate the significance of the performance advantage of 

the best K* algorithm (with b=35%) versus the best KNN classifier (1/d, k=4). The experiment 

comprises of 10 repetitions of the algorithm runs, each with 10-fold cross-validation. The results 

for each fold of each repetition were saved as a csv file in order to perform a statistical analysis 

using a paired corrected T-test. Two comparison fields have been selected, the correlation 

coefficient and the relative absolute error, in order to remain consistent with the performance 

measures previously selected. The T-test compares the distributions of each of the 10 repetitions 

once the results of the 10 folds for each repetition have been averaged. The significance factor 

was selected to be 0.05. 

Using the relative absolute error as a comparison field, the K* algorithm with b=35% 

performs significantly better than the KNN algorithm with k=4 and 1/d as distance weighting. 

The average of the 10 repetitions is 59.43%  for the KNN and 54.97% for the K* algorithm. The 

correlation coefficient average is 0.70 for the KNN and 0.72 for K*. For both measures the 

paired corrected T-Test categorized the difference as significant in favour of the K* algorithm. 

Although it has been shown that the K* algorithm outperforms the optimized KNN algorithm 

in a statistically significant fashion, both classifiers will continue to be employed side by side in 

the following investigations. This is because the classifier optimization exercise focuses on a 

particular set of attributes and the performance gain of K* over KNN, although statistically 

significant, is relatively small and may potentially be reversed when testing with other subsets. 

5.2.3 Applying the Classifiers  

For each classifier type (KNN and K*) the settings that yield lowest Relative Absolute Error 

were applied to variations of the data set that contain different levels of fabrication duration 

information upon milestones being reached, in order to investigate if they can further improve 

the prediction performance. This exercise is aimed to emulate a real world application where the 

estimates need to be updated and refined as fabrication progresses. The base data subset was 

Subset 7 as described in Table 5-2, namely the one including the Shop Loading at Start and the 

Mean SL Sum. The attributes of the base Subset 7 are still being shown in full below for 

reference purposes. Combinations with different fabrication duration segments have been set-up 
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in order to evaluate the increase in accuracy of estimation for later stages of fabrication. The 

class attribute was also varied from the total fabrication duration to the remaining duration 

segments and for each class a control run with the base subset and no additional partial durations 

was carried out. 

The attribute selection matrix, together with the results reported in terms of the relative 

absolute error and correlation coefficient for each of the classifier types (KNN and K*), are 

presented in Table 5-5. The performance measures have also been plotted in the graph presented 

in Figure 5-5 for more convenient comparison and visualization. For reference purposes each 

subset was assigned a letter in the first column next to the radical of the base Subset 7. The class 

attribute was also highlighted in dark grey. Comments regarding the findings and their 

interpretation are presented following the table and figure showing the results. 

Table 5-5 Investigation of Improvement with Added Duration Information 
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7a X X X X X X X X X X X      X 59.2% 0.696 55.2% 0.711 

7b X X X X X X X X X X X X     X 47.9% 0.776 48.2% 0.758 

7c X X X X X X X X X X X   X   X 39.3% 0.835 42.6% 0.797 

7d X X X X X X X X X X X     X  60.3% 0.680 57.4% 0.696 

7e X X X X X X X X X X X X    X  56.4% 0.726 52.4% 0.724 

7f X X X X X X X X X X X    X   58.8% 0.686 56.1% 0.704 

7g X X X X X X X X X X X X   X   53.7% 0.719 52.2% 0.726 

7h X X X X X X X X X X X   X X   48.9% 0.752 49.2% 0.747 
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Figure 5-5 Investigation of Improvement with Added Duration Information 

As expected, the result of the classification does improve significantly with added 

information. In the case where the class attribute remains the total duration (Subsets 7a, 7b and 

7c), the improvement in relative absolute error after the first milestone, that of Fit Complete, is 

reached is of 11 percentage points for the KNN classifier. Once the second milestone is reached, 

the completion of the Quality Control, a relative absolute error improvement of a further 8 

percentage points is observed for the KNN classifier. Relative absolute error improvements using 

the KNN classifier are not as high when classifying for the remaining segments, such as FitC to 

MTR (Subsets 7d and 7e) and QCC to MTR (Subsets 7f, 7g and 7h), but they are still present 

and significant. 

For the K* algorithm computations, it can be observed that although it performs better for the 

base Subset 7a, its relative performance to the KNN algorithm deteriorates when adding 

information regarding partial fabrication completion when the class attribute is the total duration 

(i.e. in Subsets 7b and 7c). When the class attribute is changed to the FitC to MTR  (Subsets 7d 

&7e), the K* algorithm maintains its advantage over the simpler KNN. For the prediction of the 

duration of the last fabrication segment, that of QCC to MTR, the K* algorithm continues to 

perform better using the base set (Subset 7f) but again loses its competitive edge when the 

previous duration segments are added  (Subsets 7g and 7h).  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

7a 7b 7c 7d 7e 7f 7g 7h

Subset Number 

KNN Relative Absolute Error

K* Relative Absolute Error

KNN Correlation Coefficient

K* Correlation Coefficient



 

75 

An improvement in performance still exists when additional information becomes available, 

but the competitive advantage of the K* algorithm over its more basic cousin, the KNN 

algorithm, becomes less significant in most cases except for the FitC to MTR class when the 

advantage is maintained. 

5.2.4 Feature Selection 

Using the wrapper method for attribute selection described in Section 2.5.3 – that is, specifying 

the nearest neighbour classification algorithm as an evaluation method – and with the aim of 

finding the best set of attributes that can predict the fabrication duration before the execution has 

begun, a feature selection exercise has been performed. While keeping the attribute evaluators 

unchanged, namely the best performing KNN and K* algorithms optimized in Section 5.2.2, 

variations of the core subset (Subset 1 in Table 5-2) and the base subset (Subset 7 in Table 5-2) 

were investigated. New dataset numbers were assigned for comparison purposes, keeping the 

radical of the original subset numbering. The Results are presented in Table 5-6 below, which 

shows the attributes selected for each subset, as well as the performance of both classifiers, using 

both previously selected performance measures, namely the Relative Absolute Error and the 

Correlation Coefficient. The results are also plotted in the chart presented in Figure 5-6 for visual 

representation and ease of comparison. The interpretation of the results is presented following 

the table and figure.  
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Table 5-6 Feature Selection Investigation 
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Figure 5-6 Bar Chart for Feature Selection Results 
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Reducing the number of attributes from the core subset (Subset 1-1) does not improve the 

classification performance. Subset 1-4 is the one arrived at using a genetic algorithm search 

method in a KNN-wrapped feature selection, whereas subsets 1-2 and 1-3 represent a heuristic 

selection of the core set based on the category of attribute. The behaviour exhibited by the K* 

classifier for this family of subsets (from 1-1 to 1-4) is similar to that produced by the KNN 

classifier, namely a decrease in performance is observed with reduced features. Also of note is 

that for the core subset 1-1, the optimized KNN classifier is slightly better than its K* sibling 

which provided a statistically significant improvement for the base subset 7-1. 

An attempt to reduce the number of features starting with base subset (Subset 7-1) selected in 

the evaluation process presented in Section 5.2.1 does yield improvements following the feature 

selection using a genetic search algorithm (Subset 7-2). The improvement observed has a 

magnitude of 2.8 percentage points in relative error using the KNN Classifier with the best 

settings resulting from the optimization exercise in Section 5.2.2. Since removing the Diameter 

Inch attribute is counter intuitive considering how widely used it is in practice, it was 

reintroduced following the feature selection, together with the PWHT attribute which completes 

the picture of testing and pre-processing requirements. The augmented Subset 7-3 and was found 

to actually contribute to a further 0.6 percentage points reduction in the relative absolute error for 

the KNN classifier. Therefore, for base Subset 7, the attributes found to introduce more “noise” 

than useful information were: Surface Area, Number of Items, Maximum Size and PWHT. 
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5.3 Conclusions and Recommendations 

Although the K* classifier performed statistically better on the base attribute subset (Subset 

7-1) compared to the optimized KNN classifier, its performance declined during the feature 

selection exercise. Subset 7-3, which saw the best improvement compared to the base Subset 7-1 

got to a relative absolute error of 55.8%, very close to the K* classification using the base Subset 

7-1 with a relative absolute error of 55.2%. It can therefore be concluded that the K* classifier 

tends to find the global best result without a reduction in the number of attributes, being able to 

more accurately represent their influence in the classification exercise.  

A recommendation based on these findings is that a K* classifier, although more 

computationally demanding, tends to yield improvements that are similar to a highly customized 

and feature sensitive KNN classifier. It is therefore recommended that a K* classifier be 

employed to estimate fabrication durations and its output used in calculating the estimated 

delivery date for each spool.  

In addition, the classifier should be employed a second time once the first reliably tracked 

fabrication milestone, that of Fit Complete, has been reached. This will significantly improve the 

accuracy of the duration estimate, reducing the relative absolute error in the total duration 

classification by approximately 7 percentage points.  
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CHAPTER 6.   Conclusion 

6.1 Summary 

This thesis began with the hypothesis that the scheduling process of pipe spool fabrication, and 

by implication the estimation of the delivery date, can be improved by making use of process 

interaction modelling and fabrication tracking data. The approach, presented herein, was to begin 

the investigation using a discrete event simulation model created based on typical fabrication 

processes and practices employed in an Alberta Manufacturing Facility. It was intended that the 

process simulation model will be linked to a real-time integrated production scheduling and 

tracking system, developed closely with the fabrication management team, once fabrication data 

required for the model calibration became available. 

However, as was presented in the chapter describing the Data Collection and Exploration, the 

fabrication tracking processes and infrastructure available at the time in the manufacturing 

facility did not provide enough level of detail to calibrate the process simulation model and 

pursue its further development and validation. It was decided that the continued investigation 

towards fabrication duration improvements should make use of the existing fabrication tracking 

infrastructure while pursuing improvements towards data collection reliability with fabrication 

management personnel. Concurrently, the collaboration was extended towards making the 

integrated fabrication scheduling and tracking system as user-friendly as possible. Filtering 

functions were developed for the use in production control, and summary reporting functions 

were created aimed at improving management’s visibility into the fabrication progress. 

After a year of close work with the manufacturing facility personnel, the collected data was 

made available for further analysis, which began with a data cleaning and validation process in 

order to evaluate the validity and composition of the captured fabrication tracking information. 

This dataset was found to be less suited to the calibration of the process simulation modelling 

previously developed. Alternatively, an investigation using data mining techniques was 

performed. The aim was to improve the fabrication duration estimating process, which in turn 

leads to an improvement and more accurate estimates of the delivery date of pipe spools. This 

data mining exercise focused on the application of instance-based classification methods, which 

showed promising results on this dataset, especially when associating a shop loading or shop 
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utilization component to the dataset. Since the estimation of shop loading is rather difficult, 

various types of estimates were added to the analysis and their contribution to the prediction of 

fabrication duration was discussed in the context of their expected estimation ease and accuracy. 

Although the initial improvements in duration estimation were found to be significant, fine-

tuning the classification algorithms brought further incremental improvements. 

6.2 Conclusions 

The key findings based on the analysis and study methodology for each of the main parts of this 

research are presented herein. 

Process Simulation 

Although well suited for representing a process as complex as spool fabrication at a very detailed 

level, discrete event simulation was found to require validation data at a level of details that is 

very challenging to collect in a fast-paced manufacturing environment. However, a model such 

as the one presented in CHAPTER 3.  , can provide project planners and fabrication managers 

with useful information about potential fabrication output and resource utilization under different 

operational conditions prior to the commencement of a project. In addition, it has been shown 

that such a simulation model can be linked with production planning and tracking data if the data 

structures were consistent and presented at the right level of details. 

Data Collection and Exploration 

The information collected by the manufacturing facility regarding spool drafting, material 

delivery, scheduling, and fabrication tracking was found to be structured around each process or 

business unit. The available data across these processes has been consolidated in order to allow 

visibility of the entire process at once and provide a base for scheduling improvement analysis. A 

data cleaning and validation exercise identified that record completeness is one of the main 

reasons why from a total 7,905 spool fabrication records provided by the partner manufacturing 

facility, only 7,040 were considered viable for analysis. This stage was selected as it provided a 

balanced outcome between data reliability and availability since aiming for a more complete 

dataset, such as one that also provided the Fit Complete date would reduce the available records 

to only 2,512.  
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KNN Methods 

Instance-based classification algorithms were applied to the available dataset with the aim of 

predicting the fabrication duration of a spool based on its similarities with other spools with 

regards to its attributes. Deriving a measure of the shop utilization was found to bring significant 

performance improvements, although a compromise had to be made between performance gain 

and derivation accuracy. The dataset that contained the shop loading at start and the shop loading 

sum derived using the mean of past fabrication durations was selected based on the consideration 

that it is realistic and easy to estimate, while at the same time bringing a performance 

improvement of 36% decrease in relative absolute error over the reference set without shop 

loading parameters. 

Once the suitable attribute subset was selected based on the performance/availability 

compromise, an optimization of the nearest neighbour algorithm parameters was performed. The 

findings reflect that the performance gain from fine-tuning the KNN algorithm is only in the 

region of 1% reduction in relative absolute error. However, employing a modified nearest 

neighbour algorithm that utilizes entropic blending was found to bring an improvement of a 

further 4% reduction in relative absolute error over the best KNN results. This improvement was 

found to be statistically significant using a corrected paired T-test, leading to the 

recommendation that this K* algorithm be employed. 

Following the determination of the best performing nearest neighbour algorithm on this 

particular dataset, it was found that the relative absolute error of the total fabrication duration 

estimate can be further reduced, down to 48%, once other reliably tracked fabrication milestones, 

namely Fit Start, QC Start, QC Complete etc. are achieved.  

A feature selection exercise performed on the dataset that yielded the best results led to the 

conclusion that certain attributes (Surface Area, Number of Items, Maximum Size, and PWHT) 

were introducing more noise to the total duration prediction than their positive contribution. 

Although they only affect the basic KNN algorithm and not the recommended K* variation, this 

reduced attribute set can be utilized when computation time is a priority since it provides results 

within 1% relative absolute error to the K* with a complete attribute set. 
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6.3 Contributions 

6.3.1 Academic Contributions 

The work presented herein contributes to the body of knowledge mainly through the unique 

application of advanced data mining techniques to the problem of pipe spool fabrication 

scheduling. The instance-based approach presented, that of nearest neighbour classification with 

the aim of predicting fabrication duration, can be further generalized to other industrial 

applications where the main characteristics of the sub-components to be fabricated are known 

and a measure of shop loading or utilization can be either measured or computed from the 

available data. This generalization can be made on the basis of similarities of this spool 

manufacturing environment with other highly dynamic industrial manufacturing processes such 

as the fabrication of structural steel components. 

 In addition to the main academic contribution presented above, a secondary contribution 

results from the conclusion that process modelling and simulation, although theoretically suited 

to such environment, is significantly more difficult to calibrate if one models the application with 

a high level of detail. The author considers this conclusion a valuable contribution to the 

industrial construction simulation domain, which recommends that future studies should not fully 

develop simulation models of a production system prior to the analysis of the data collection 

practices and resulting information structures in that particular system. 

6.3.2 Industrial Contributions 

The most significant research contribution from an industrial application perspective is the 

development of a successful data classification methodology that can be employed by the 

manufacturing facility without further modification. The improvements to the fabrication 

duration prediction accuracy are significant and will lead to better planning and sequencing of 

the manufacturing scope of work with a relatively simple implementation. The future 

implementation of this work will be facilitated by the author’s efforts to integrate the data 

collected between the different data sources into a unified data warehouse that has already been 

tested for use within the production control of the facility.  
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6.4 Recommendations 

Given the outcome of the work presented in this thesis and summarised above, the author 

recommends that the output of the instance-based classification applied to the dataset with 

estimated shop loading (Subset 7 in Table 5-2) be used as an estimate of fabrication duration and 

to predict the delivery date of a spool once the issuing process has triggered its fabrication. In 

addition, this estimate should be updated once further information becomes available as the 

fabrication process progresses. This update is recommended because, as detailed in 

Section 5.2.3, not only does the prediction of fabrication duration improves but predicting the 

remaining duration makes use of the certainty of achieved partial fabrication process. 

With regards to the fabrication tracking process, it has been shown that the fabrication 

duration estimates improve with increased levels of details. It is therefore recommended to the 

manufacturing facility that more efforts to capture additional information be carefully weighed 

against their benefits. This is particularly applicable with reference to the reliability and process 

definition of fabrication dates already collected. 

The process simulation modelling, although not recommended to be utilized in its current 

format without additional calibration, is believed to be able to provide further improvements in 

process interaction prediction and fabrication duration estimation once further data becomes 

available for its verification and validation.  
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6.5 Limitations and Future Work 

Although efforts have been made to generalize the applicability of the research presented herein 

to any spool manufacturing facility through process literature review, the author’s experience 

with only one such facility might present limitations in the transferability of this research to a 

different spool fabrication facility. This limitation is particularly relevant in the case of the 

fabrication scheduling and tracking system developed with the partner company, as well as the 

analysis of the data made available. 

In order to apply the results of the instance-based classification exercise, further work is 

required to integrate the data mining algorithm with the production scheduling and tracking 

system in order to allow new spool records to be classified as their fabrication begins and new 

training data to be incorporated once it becomes available. In addition, an integration of the 

output of the classifier with the scheduling will enable these duration predictions to be utilized in 

the derivation of delivery date estimates. 

The process simulation model is believed to require the most significant amount of further 

work, both with regards to the collection of fabrication shop data at a more detailed level and 

with regards to the model development, calibration and validation once this data becomes 

available. However, the real value that this modelling approach brought extends far beyond its 

limitations: the data requirements of this model represented the trigger point behind the efforts to 

integrate the fabrication planning and scheduling process with the manufacturing tracking and 

control. It was this integration that the partner company found most valuable and encouraged 

them to continue efforts to improve their fabrication tracking processes and data collection 

structures independently of this investigation towards improving delivery date estimates.   
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Appendix 1 Database Connection Code 

1a) Read and Assign Initialize Code 

Imports System.Data.OleDb 

Imports Simphony.General 

Imports Simphony.Simulation 

 

Public Partial Class Formulas 

 Public Shared Function Formula(ByVal context As Simphony.General.Execute) 

As System.Boolean 

 

  'Get a reference to the database element. 

  Dim DB As Database = context.Scenario.GetElement(Of 

Database)("Database") 

   

  'Open a connection to the database. 

  Using Connection As OleDbConnection = DB.GetConnection() 

   

   'Create the command to execute against the database. 

   Using Command As New OleDbCommand("SELECT JobNrCN, JobNumber,  

   '           0    1   

   CONTROLNO, USER20, USER3, INFABDATE, DIAINCH, USER12, PRIORITY, 

   '   2   3    4  5     6       7     8   

MatlIssueDate, BayNo, USER50, COMPLDATE, USER43, USER51, 

' 9      10 11     12    13    14  

USER17, USER44, USER52, USER6, USER45, USER54, STRSRDATE, 

USER53, 

' 15     16 17   18    19      20    21 

 22 

USER18, RecvDate, HTPRESSURE, USER31, USER32, USER46, 

USER55, USER8, 

' 23  24     25    26     27 28   29     

30  

ShippedDate, USER47, STATUS FROM SubsetA", Connection) 

'    31    32  33 

    

   'Execute the command against the database. 

    Using Reader As OleDbDataReader = Command.ExecuteReader() 

     

     'Loop through the records that were returned. 

     While Reader.Read() 

'Create the appropriate number of 

entities, initialize their attributes, 

and transfer them out of the element. 

       

      Dim Entity As New GeneralEntity 

' This line changes the size of the local 

Strings and Floats arrays so that they 

each have 61 elements, indexed 0 through 

60. 

      Redim Entity.Floats(60) 

      Redim Entity.Strings(60) 

       

      Dim JobCN as String = Reader.GetString(0) 
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      'Entity.Strings(0) = Reader.GetString(0) 

      Entity.Strings(0) = JobCN 

      Dim JobN As Double = Reader.GetDouble(1) 

      Entity.Floats(1) = JobN 

      Dim Spool As String = Reader.GetString(2) 

      Entity.Strings(1) = Spool 

      Dim FIWP As String = Reader.GetString(3) 

      Entity.Strings(2) = FIWP 

      Dim MIRNo As String = Reader.GetString(4) 

      Entity.Strings(3) = MIRNo 

      Dim MIRdate As Double = Reader.GetDouble(5) 

      Entity.Floats(11) = MIRdate 

      Dim DiaInch As Double = Reader.GetDouble(6) 

      Entity.Floats(0) = DiaInch 

      Dim RASDate As Double = Reader.GetDouble(7) 

      Entity.Floats(10) = RASDate 

      Dim Priority As String = Reader.GetString(8) 

      Entity.Strings(4) = Priority 

      Dim MatlDate As Double = Reader.GetDouble(9) 

      Entity.Floats(12) = MatlDate 

      Dim BayNo As String = Reader.GetString(10) 

      Entity.Strings(5) = BayNo 

      Dim FitStartDate As Double = 

Reader.GetDouble(11) 

      Entity.Floats(13) = FitStartDate 

      Dim FitComplDate As Double = 

Reader.GetDouble(12) 

      Entity.Floats(14) = FitComplDate 

      Dim WeldDur As Double = Reader.GetDouble(13) 

      Entity.Floats(4) = WeldDur 

      Dim WeldStartDate As Double = 

Reader.GetDouble(14) 

      Entity.Floats(15) = WeldStartDate 

      Dim WeldComplDate As Double = 

Reader.GetDouble(15) 

      Entity.Floats(16) = WeldComplDate 

      Dim QCDur As Double = Reader.GetDouble(16) 

      Entity.Floats(5) = QCDur 

      Dim QCStartDate As Double = 

Reader.GetDouble(17) 

      Entity.Floats(17) = QCStartDate 

      Dim QCComplDate As Double = 

Reader.GetDouble(18) 

      Entity.Floats(18) = QCComplDate 

      Dim PWHTDur As Double = Reader.GetDouble(19) 

      Entity.Floats(6) = PWHTDur 

      Dim PWHTStartDate As Double = 

Reader.GetDouble(20) 

      Entity.Floats(19) = PWHTStartDate 

      Dim PWHTComplDate As Double = 

Reader.GetDouble(21) 

      Entity.Floats(20) = PWHTComplDate 

      Dim NDEDur As Double = 5 

      Entity.Floats(6) = NDEDur 

      Dim NDEStartDate As Double = 

Reader.GetDouble(22) 

      Entity.Floats(21) = NDEStartDate 
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      Dim NDEComplDate As Double = 

Reader.GetDouble(23) 

      Entity.Floats(22) = NDEComplDate 

      Dim MRRDate As Double = Reader.GetDouble(24) 

      Entity.Floats(23) = MRRDate 

      Dim Hydrotest As String = Reader.GetString(25) 

      Entity.Strings(8) = Hydrotest 

      Dim HydroStartDate As Double = 

Reader.GetDouble(26) 

      Entity.Floats(24) = HydroStartDate 

      Dim HydroComplDate As Double = 

Reader.GetDouble(27) 

      Entity.Floats(25) = HydroComplDate 

      Dim PaintDur As Double = Reader.GetDouble(28) 

      Entity.Floats(9) = PaintDur 

      Dim PaintStartDate As Double = 

Reader.GetDouble(29) 

      Entity.Floats(26) = PaintStartDate 

      Dim PaintComplDate As Double = 

Reader.GetDouble(30) 

      Entity.Floats(27) = PaintComplDate 

      Dim MTRDate As Double = Reader.GetDouble(31) 

      Entity.Floats(28) = MTRDate 

      Dim ShipDuration As Double = 

Reader.GetDouble(32) 

      Entity.Floats(2) = ShipDuration 

      Dim Status As String = Reader.GetString(33) 

      Entity.Strings(6) = Status 

       

      context.Engine.ScheduleEvent(Entity, AddressOf 

context.OutputPoint.TransferOut, 0) 

       

     End While 

     

    End Using 

    

   End Using 

   

  End Using 

  

  'Return True to indicate that simulation should proceed. 

  Return True 

   

 End Function 

End Class 

 

1b) Schedule Function Code 

Imports System.Data.OleDb 
Imports Simphony.General 
Imports Simphony.Simulation 
Imports Microsoft.VisualBasic 
 

Public Partial Class Formulas 
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 Public Shared Function Formula(ByVal context As Simphony.General.Execute) 

As System.Boolean 
  ' Determine Hydro Duration 
  IF 

Microsoft.VisualBasic.Strings.Left(context.CurrentEntity.Strings(8),1) = "H" 
   Context.CurrentEntity.Floats(8)=5 
  Else context.CurrentEntity.Floats(8) = 0 
  End IF 
  ' Determine Fit Duration (Weld -1 day) 
  context.CurrentEntity.Floats(3) = context.CurrentEntity.Floats(4)-1 
   

  'RAS to PaintC 
  context.CurrentEntity.Floats(47)= context.CurrentEntity.Floats(2) 
  'RAS to PaintS 
  context.CurrentEntity.Floats(46)= 

context.CurrentEntity.Floats(47)+context.CurrentEntity.Floats(9)-1 
  'RAS to HydroC 
  context.CurrentEntity.Floats(45)= context.CurrentEntity.Floats(46)+1 
  'RAS to HydroS 
  context.CurrentEntity.Floats(44)= 

context.CurrentEntity.Floats(45)+context.CurrentEntity.Floats(8)-1 
  'RAS to NDEC 
  context.CurrentEntity.Floats(42)= context.CurrentEntity.Floats(44)+1 
  'RAS to NDES 
  context.CurrentEntity.Floats(41)= 

context.CurrentEntity.Floats(42)+context.CurrentEntity.Floats(7)-1 
  'RAS to PWHTC 
  context.CurrentEntity.Floats(40)= context.CurrentEntity.Floats(41)+1 
  'RAS to PWHTS 
  context.CurrentEntity.Floats(39)= 

context.CurrentEntity.Floats(40)+context.CurrentEntity.Floats(6)-1 
  'RAS to QCC 
  context.CurrentEntity.Floats(38)= context.CurrentEntity.Floats(39)+1 
  'RAS to QCS 
  context.CurrentEntity.Floats(37)= 

context.CurrentEntity.Floats(38)+context.CurrentEntity.Floats(5)-1 
  'RAS to WeldC 
  context.CurrentEntity.Floats(36)= context.CurrentEntity.Floats(37)+1 
  'RAS to WeldS 
  context.CurrentEntity.Floats(35)= 

context.CurrentEntity.Floats(36)+context.CurrentEntity.Floats(4)-1 
  'RAS to FitC 
  context.CurrentEntity.Floats(34)= context.CurrentEntity.Floats(36)+1 
  'RAS to FitS 
  context.CurrentEntity.Floats(33)= 

context.CurrentEntity.Floats(34)+context.CurrentEntity.Floats(3)-1 
  'RAS to MatlDate (5 working days between MatlDate and FitS) 
  context.CurrentEntity.Floats(32)= context.CurrentEntity.Floats(33)+5 
  'RAS to MIRDate (5 working days between MIRDate and MatlDate) 
  context.CurrentEntity.Floats(31)= context.CurrentEntity.Floats(32)+5 
   

  Return True 
 End Function 
End Class 
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1c) Update Function Code 

Imports System.Data.OleDb 
Imports System.Text 
Imports Simphony.General 
Imports Simphony.Simulation 
 

Public Partial Class Formulas 
 Public Shared Function Formula(ByVal context As Simphony.General.Execute) 

As System.Boolean 
  Dim DB As Database = context.Scenario.GetElement(Of 

Database)("Database") 
  Dim Builder As New StringBuilder 
  Builder.Append("UPDATE [Output]") 
  Builder.AppendLine 

  Builder.Append("SET JobNumber=") 
  Builder.Append(context.CurrentEntity.Floats(1))  
  Builder.Append(", ControlNr='") 
  Builder.Append(context.CurrentEntity.Strings(1)) 
  Builder.Append("', FIWP='") 
  Builder.Append(context.CurrentEntity.Strings(2))  
  Builder.Append("', MIRNo='") 
  Builder.Append(context.CurrentEntity.Strings(3))  
  Builder.Append("', Priority='") 
  Builder.Append(context.CurrentEntity.Strings(4))  
  Builder.Append("', BayNo='") 
  Builder.Append(context.CurrentEntity.Strings(5))  
  Builder.Append("', Status='") 
  Builder.Append(context.CurrentEntity.Strings(6))  
  Builder.Append("', RAStoMIR=") 
  Builder.Append(context.CurrentEntity.Floats(31))  
  Builder.Append(", RAStoMatl=") 
  Builder.Append(context.CurrentEntity.Floats(32))  
  Builder.Append(", RAStoFitS=") 
  Builder.Append(context.CurrentEntity.Floats(33))  
  Builder.Append(", RAStoFitC=") 
  Builder.Append(context.CurrentEntity.Floats(34))  
  Builder.Append(", RAStoWeldS=") 
  Builder.Append(context.CurrentEntity.Floats(35))  
  Builder.Append(", RAStoWeldC=") 
  Builder.Append(context.CurrentEntity.Floats(36))  
  Builder.Append(", RAStoQCS=") 
  Builder.Append(context.CurrentEntity.Floats(37))  
  Builder.Append(", RAStoQCC=") 
  Builder.Append(context.CurrentEntity.Floats(38))  
  Builder.Append(", RAStoPWHTS=") 
  Builder.Append(context.CurrentEntity.Floats(39)) 
  Builder.Append(", RAStoPWHTC=") 
  Builder.Append(context.CurrentEntity.Floats(40))  
  Builder.Append(", RAStoNDES=") 
  Builder.Append(context.CurrentEntity.Floats(41)) 
  Builder.Append(", RAStoNDEC=") 
  Builder.Append(context.CurrentEntity.Floats(42)) 
  Builder.Append(", RAStoHydroS=") 
  Builder.Append(context.CurrentEntity.Floats(44)) 
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  Builder.Append(", RAStoHydroC=") 
  Builder.Append(context.CurrentEntity.Floats(45)) 
  Builder.Append(", RAStoPaintS=") 
  Builder.Append(context.CurrentEntity.Floats(46)) 
  Builder.Append(", RAStoPaintC=") 
  Builder.Append(context.CurrentEntity.Floats(47)) 
     

  Builder.AppendLine 

  Builder.Append("WHERE JobNrCN='") 
  Builder.Append(context.CurrentEntity.Strings(0)) 
  Builder.Append("';") 
  Dim Querry As String 
  Querry = Builder.ToString 

  context.CurrentEntity.Strings(11) = Querry 
  Using Connection As OleDbConnection = DB.GetConnection() 
   Using Command As New OleDbCommand(Querry, Connection) 
    Command.ExecuteNonQuery() 

   End Using 
  End Using 
 

  Return True 
 End Function 
End Class 
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Appendix 2 Scheduling and Tracking System Manual 

The Scheduling and Tracking System calculates required activity start and finish dates, both as a 

backward pass (from the RAS date) for the “As Planned” sheet, and as forward one (from the 

Package Issue Date) for the “As Issued” sheet. In addition, it displays actual progress dates next 

to the planned ones, for comparison purposes. 

The RAS dates used are the ones saved in the Acorn Fabrication Status file. These dates are 

entered at the drafting stage, and therefore need to be updated if the FIWP level schedule 

changes for any reason. Managing and updating the RAS information at a spool level can be 

cumbersome, but it provides great advantages, mainly the flexibility of changing the schedule 

only for specific spools within an FIWP. 

The main objectives of the Production Schedule include: 

 To provide a tool for convenient planning and controlling the execution of pipe spools; 

 To allow easier tracking of spool progress; 

 To provide an estimate of the Planned Ship Date based on the actual Fit Complete Date; 

Data Sources 

The production schedule draws information from the existing databases (Acorn, Smart Plant 

Materials) and re-displays the spool and schedule-related information.   A diagram of the flow of 

data is presented below in Figure A21-1. The information regarding the file name and location 

for each of the required files is required from the user in the “Source” sheet of the production 

schedule. This information is passed on to the Scheduling Spreadsheet, and then to the Data 

Sheet. The code in the “Data” file deals with locating those files, making local copies of them 

before cleaning and consolidating the date. More details on the data consolidation and cleaning 

part can be found in the Data Cleaning and Consolidation . Once the information is in a single 

table it is passed on to the Scheduling Spreadsheet (called “SCHEDULE”), where all the 

formulas for pulling the required data fields and performing the necessary schedule and data 

comparison calculations are found. Once the two schedules are calculated (the “As Planned” and 

the “As Issued”), the information is passed back to the User Spreadsheet (“PRODUCTION 

SCHEDULE Version 2.xx”) as values. This method enables quick data queries, filters and 

reporting as the schedule calculations are only performed once. 
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Figure A2 1 - Production Schedule Data Flow 

The main data sources for the schedule are as follows: 

Acorn Fabrication Status File (FabStatus.dbf) 

This is the file from which most of the information is drawn from. This includes general 

information regarding each spool, such as the work package (FIWP) it is part of, the fabrication 

package (MIR) it was assigned to, fabrication durations for most of the stages, as well as most of 

the actual progress dates, which are currently recorded in the Acorn database.  

Fabrication Tracking (FabTrack.csv Export) 

Some Progress Monitoring is kept in the Smart Plant database, and as such this needs to be 

brought into the scheduling system. A direct connection to the Oracle database management 

system was attempted but because of issues such as licencing and dedicated software required 
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led to the decision to use an existing daily export. This is considered to be reliable enough, and 

the 1 day delay between the data being captured and the export becoming available was deemed 

acceptable. 

Material Forecast (Shortage Report) 

As is the case with the fabrication tracking, the material availability information cannot be easily 

obtained from the Oracle managed Smart Plant database without the need of special software or 

licencing. It was therefore decided to use an existing report that is prepared twice a week for 

each project, and includes detailed information regarding each item of material required for the 

fabrication of a spool.  

Functions 

The scheduling system has 3 main functions: Data Consolidation, Scheduling and Reporting; in 

version 2, these functions are handled within a separate file for each one. This allows for a 

lightweight, easy to use and reliable front end of the schedule. 

Data Cleaning and Consolidation  

Since the schedule has 3 data sources, and each project has a different file for each of them, it 

was decided that the consolidation and cleaning of the data should be handled within a stand-

alone, purpose-built file. The information is first copied to local records, and then cleaned to 

remove duplicates and other fields not needed in the schedule, before it is aggregated for all the 

projects.  The project number is also added as a field together with a unique identifier composed 

of the project number last 3 digits and the control number. 

This function is handled by the code in the “Data” file found in the “Supporting Files” folder, 

which receives the table with the file name and location for each project. It should be noted that 

this function limits the capacity of the schedule to 5 projects with a total of maximum 20,000 

spools.  
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Data Cleaning 

A local copy is made from each data source, saving the file with a name that is always consistent. 

Then data cleaning is performed for each of these files as follows: 

Each of the Acorn Fab Status files is first converted from a .dbf format to a .xlsx format. 

Then 2 extra columns are added to the left of the data, one for the project number and another to 

create a unique identifier for each spool, with the structure JobNr-CN where JobNr stands for the 

last 3 digits of a job number and CN for the control number as it appears in Acorn (always a 6 

digit identifier). No fields are deleted nor altered from this file 

The Fabrication Tracking exports are left in their .csv format, but significant data cleaning is 

performed.  The source file has data saved in 379 columns, of which only 5 are needed for the 

schedule. All unnecessary columns are deleted in order to minimize the file size. In addition to 

the required fields, a Job Number and JobNr-CN field needs to be added in order to identify the 

information later on. One of the challenges of processing this data is that the required fields are 

not always in the same position within the file, therefore a search needs to be performed based on 

the field headers. Since the name of these fields has been added to the code, this represents a 

point of inflexibility of the current development. 

The Material Forecast (Shortage Reports) are left in their .xlsx format but a couple of 

separate sheets are added to the local copy in order to perform some data manipulation. First, the 

data needs to be filtered to keep only the information regarding material applicable to the “FAB 

SPOOL” Discipline. At this stage the Job Number and the JobNr-CN fields are added to the left 

side of the data. Next, in another sheet, the information is processed to keep only the fields 

required for the schedule. A shortage calculation also needs to be performed because of the way 

information is conveyed in this report; if a material item has been ordered but has not been 

received yet, the report will show a shortage number of zero, but a value in the PO # (Purchase 

Order Number) column. However, for the purpose of deciding if fabrication can be started or not 

that material item is not yet available.  
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Data Consolidation 

Once all the data has been cleaned, it is aggregated or consolidated in a single file. This is a 

process of merging the information found in 15 files (for 5 projects) into one single data sheet. 

First, the data in each category is aggregated per project. This means, for example, that all the 

Fab Status files will become one sheet, as will all the Fab Track files and the cleaned sheets of 

the Shortage Report files. In Addition to the “Source” sheet where the file location information is 

stored, the “Data” file has a sheet for each of the 3 data aggregated data sources.  

Next, these tabs are combined in a single table, called the “Data” sheet. The Fab Status file is 

copied first. Then, based on the JobNr-CN unique identifier, the extra fields from the Fab Track 

sheet are added to the right hand side. Some spools that have been deleted will no longer appear 

in the Fab Track sheet but they will still be in the Fab Status file. However, the data aggregation 

is reliable since it is handled by code. Next, information regarding material availability needs to 

be calculated. Note that a simple aggregation is no longer enough as the information is stored at 

an item level and needs to be rolled up to a spool level. A sum of the shortage number is 

therefore calculated for each spool and added to the shortage column. This is handled by a 

formula that is added in the required cells using code. 

Scheduling and Tracking  

The calculations that are part of this function are handled by the “SCHEDULE” sheet found in 

the “Supporting Files” folder. All the formulas are found in this file only and it is here that any 

changes should be made if needed. The structure of this file should not be changed without 

checking the code of its source and destination files, as some of them anticipate a certain 

structure. 

Using the cleaned and consolidated data, the “As Planned” and “As Issued” schedules are 

created. These are the main 2 components of the scheduling system and are described in more 

details in the Components section. The calculations that are performed regard pulling some select 

fields regarding general information for a spool, together with the activity durations and dates 

that have been tracked using the different systems. Using the RAS date, a backwards scheduling 
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pass is performed in the “As Planned” sheet. A forward scheduling pass is performed in the “As 

Issued” sheet using the package issue (MIR) date. 

The calculations are performed over a 5 working day calendar with custom holidays. Some 

of the activity durations that are not found in the data are stored, together with the official 

holidays, in the “Holidays” sheet. Here, the user should specify the dates within the cells 

highlighted in green. 

The main advantage of performing the calculations in a back end file is related to the speed 

of operation. Since a significant number of sometimes complex formulas is required for the 

correct operation of the schedule, it is best that these are only performed once, at the time of an 

update, when some of the information changes. 

These files are limited to handle up to a maximum of 20,000 spools. This limit has been 

applied in order to reduce computation time. It is extremely cumbersome to create a dynamic or 

unlimited number of spools allowed, but it is fairly simple to extend this limit to a higher 

capacity in the future. When modifying or extending the capacity of this file, the code of the file 

and its source and dependant files needs to be checked in order to maintain the system reliability. 

Reporting  

A simple Summary Report was developed, that shows the most important information for each 

project aggregated on a single Letter sized sheet. The user can specify a querying period, and the 

cumulative progress is also displayed. More details can be found in the “Components” section 

under “Spool Manufacturing Summary Report”. 

Adding or Removing Projects 

The schedule supports as many projects as required; the only limitation is with regards to the 

number of spools, which up to version 2.09 it is set to a maximum of 20,000 lines. The 

Information that needs to be provided is the Job Number, Client Name and the location and file 

names for the Acorn FabStatus, FabTrack and Material shortage files. Also, whatever fill color is 

used for the Job Number and Client name fields in this sheet will be the one that appears in the 

“As Planned”, “As Issued” and “Summary Report” sheets. 



 

102 

When adding or removing the information with regards to a project, DO NOT use the Insert 

or Delete Column functions. These will result in the dashboard and report no longer working. 

You shall operate on the cells only instead. The same applies when trying to re-arrange the 

projects – DO NOT use the Cut Column method 

Current limitations regard the number of projects that the “Dashboard” and the “Summary 

Repot” can handle, which is 6 and 5 respectively. These are the first projects from left to right as 

they appear in the “Source” sheet. 

Updating Procedure 

One of the major updates of version 2 involved the simplification of the updating procedure; the 

user only has to provide updated network file locations and file names for the 3 data sources 

(Acorn, Fab Tracking and Material Shortage Reports) in a “Source” sheet and click the “Update” 

button. The information is sent to the data file, where custom VBA code deals with gathering, 

cleaning and consolidating the data. The new information is processed to reflect the updated data 

and its results sent to the Production Schedule for the user to access and review. 

 Step 1: For each job, update the location and file name for the Fab Track and the Material 

Forecast report files. The information needs to be provided in the “Source” Sheet, in the cells 

highlighted in Green. For the location, it is better to use a network address, not a mapped 

driver. i.e. \\[...]\share\[...] 

 Step 2: Run the Update Macro. Once all the files address and names have been updated, run 

the Update Macro by clicking the “Update” button in the “Source” sheet. It will take approx. 

9 min to run so it’s a good idea to do this while on your coffee break. Also, it will work faster 

if you are not running any other MS Office applications on your computer. 

Components 

There are two main sheets available for scheduling and controlling the fabrication 

 The “As Planned”, where the schedule is derived from the Required at Site (RAS) dates 

 The “As Issued”, where the schedule is derived from the Drawing Issue Date (MIR Date) 

recorded in acorn  
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As Planned Sheet 

The As Planned scheduling sheet allows for a comparison against the planned progress of the 

spool and can be used to sequence, prioritize and coordinate the fabrication both within a project 

and between all projects. It can also be used to determine the sequence in which drawings should 

be issued as it reflects material availability information based on the latest inventory forecasts. 

As Issued Sheet 

The As Issued sheet can be used to control the fabrication progress as the schedule is re-

calculated once the material is issued for fabrication, therefore allowing for a view that is not 

skewed by one of the most common cause from delays, the material delivery. Once the fitting for 

a spool is complete, a new estimated completion date is computed using the available durations. 

Spool Manufacturing Summary Report 

The Summary Report provides a high level view of the fabrication status for each project, as 

compiled from the Production Schedule. The data in the report reflects the information stored in 

the main fabrication tracking data sources, namely: 

 The Acorn “Fab Status” file 

 The “SPMat Fab Tracking Data” daily export 

 The “SPM Shortage Report”   

 The “DI Status Report” 

The accuracy of the data entered is very important to ensure the accuracy of the report. 

Remember: “Garbage In, Garbage Out”. 

The report can be ran to show the progress over any period of time (last week, last month or 

historical) while showing the cumulative project progress. 

It comprises of 3 main parts: 

1. Scope and Material Availability – in DI – only one value per project 

a. Total Scope (DI):  projected scope for each project as reflected in the “DI Status 

Report” (entered manually) 

b. Material Available (DI):  summary of the information found in the latest “SPM 

Shortage Report” 
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2. Fabrication progress and backlog, expressed in DI per Period and Cumulative, including 

a. Package Issued (DI):  the sum of DI for the packages prepared for fabrication 

(information reflected from the latest Acorn “Fab Status”) 

b. Material Pulled (DI):  the sum of DI of the spools for which material has been 

pulled (information reflected from the latest “SPMat Fab Tracking Data” export) 

c. Warehouse Backlog (DI):  The difference between the Package Issued (DI) and 

Material Pulled (DI); 

d. QC Complete (DI):  the sum of DI of the spools for which the visual inspection 

has been completed (information reflected from the latest Acorn “Fab Status”) 

e. Shop Backlog (DI):  the difference between Material Pulled (DI) and QC 

Complete (DI) 

f. Remaining Work (DI): The difference between Total Scope (DI) and QC 

Complete (DI) (Cumulative values only) 

3. Number of required and shipped spools 

a. Spools Required  

i. The “Period” value reflects the number of spools with the RAS date 

between the period start and finish date selected, as recorded by the Acorn 

“Fab Status” file; 

ii. The cumulative value shows the number of spools with the RAS date 

between the project start date to the date the report was printed; 

b. Shipped Spools 

i. The “Period” value reflects the number of spools with the MTR date 

between the period start and finish date selected, as recorded in the latest 

“SPMat Fab Tracking Data” export; 

ii. The cumulative value shows the number of spools with the MTR date 

between the project start date to the date the report was printed; 

Warehouse Schedule 

The Warehouse Schedule provides a summary of the Production Schedule, keeping only the 

information needed to sequence the material pulling sequence by the Warehouse group. This is a 

stand-alone excel file that can be updated from the “PRODUCTION SCHEDULE Version 2.xx”. 

The data in the Schedule reflects the information stored in the main fabrication tracking data 

sources, namely: 

 The Acorn “Fab Status” file 

 The “SPMat Fab Tracking Data” daily export 

 The “SPM Shortage Report”   
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The information reflected is summarized at Package level, and shows all packages (complete 

or partial) where the drawings have been issued but the material issue date is missing from 

“SPMat Fab Tracking Data” – In other words, these pick tickets and cut sheets are still with the 

warehouse group or have been transferred over but not posted. 

It is therefore possible that the schedule will show very old pick tickets, if these have been 

pulled but not posted. If identified, these packages should be addressed and the relevant 

information posted in Smart Plant. 

There are 2 categories of columns in the Warehouse Schedule 

1. Automatically Populated from the Schedule 

a. MIR #  

b. Actual Drawing Issue Date (MIR Date) 

c. Planned Matl Issue Date (calculated from the RAS Date and fabrication 

durations) – this is the earliest any spool from that package should have started 

fabrication. If this date has passed it needs to be addressed as soon as possible. 

This is the date by which the schedule will be sorted to get the sequence required 

for pulling material. Some dates might be missing here, in which case the 

production coordinator should be contacted to address the issue.  

d. DI – the sum of Diameter Inches that require welding within that MIR . 

2. Manual Entry fields that need to be added to a data store 

a. Bay # 

b. Received 

c. Pulled 

d. Heat# Checked 

e. Ready for Issue 

f. Comment 

Operation  

The schedule allows the visualization of data from three different sources in one place, and 

enables the user to filter and sort this data based on any criteria deemed necessary. All current 

projects are implemented and they can be easily identified as the required data sheet tabs and 

control number cells in the schedule are colored with the assigned color for each project at a 

global fabrication level (i.e. the same color that is painted on the pipe and fittings). 

The main scope coverage of calculations performed within the sheet includes: 



 

106 

 Aggregation of  the data; 

 Schedule dates calculation based on a 5 day working week calendar with custom 

holidays 

 Cell lookups used to show only spool identification and collected dates 

 Conditional formatting used to compare actual execution dates and durations to planned 

ones.  

 Spool counts at various stages between two given dates selected using the Dashboard 

Some of the features of the scheduling spreadsheet include: 

• Highlighting late spools for each station, compared to either As Planned or As Issued 

Schedules 

• Highlighting Spools that are on hold 

• Enabling tracking by Priority, RAS (Required at Site) Date or Expected Finish Date 

• Can be used for batching spools by MIR (Material Information Request) Number or 

FIWP (Field Installation Work Package) 

The convention used for conditional formatting is that red colored dates are late compared to 

the scheduled ones and green colored ones are on time or earlier. Same goes for durations, the 

actuals are colored red if activities took longer than planned, and green if their duration was less 

than or equal to the planned one. Spools that are on hold are highlighted orange with red text. 

Filters 

The following filters are an example of what a user can obtain from the schedule. The steps 

presented can be performed manually or developed as a one-click button. The first two are 

implemented in the current version while the others were present in previous iterations and are 

no longer live, but their specifications are included in this this description. 

• The “Clear” Filter is present on both sheets and will: 

– Shows All columns 

– Shows all drafted spools for all projects 

– Removes spools not allocated to an FIWP 

– Sorts results by: 

• Control Nr 

• The Issue Filter  

– Hides All rows to the right of the Planned Matl Issue Date (except for Paint 

Duration and MTR Date) 

– Only shows spools that have not been issued AND have material Available 
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– Sorts results by: 

• Planned MIR Date, then by 

• Control Nr. 

• The “Fab Track” Filter  

– Shows all spool information and all collected actual dates 

– Hides spools that have not been Issued (MIRed) or those that have been shipped 

(MTRed) 

– Sorts results by: 

• Project, then by 

• RAS Date, then by 

• MIR Number, then by 

• Control Number 

• The Shop Filter 

– Hides the Weld, NDE, PWHT, Paint, MTR columns 

– Shows only spools that have had material issued but are not Fit Complete 

– Sorts results by: 

• RAS Date, then by 

• Priority, then by 

• MIR Number 

• The FIWP Filter  

– Hides the Weld, NDE, PWHT, Paint columns 

– Shows only spools that have been issued (MIRed) and not shipped (MTRed) 

– Sorts results by: 

• FIWP, then by 

• Expected Ship Date 

– Can show results aggregated at an FIWP level. 

Challenges and Lessons Learned 

Challenges 

 Getting information from the drafting (Acorn) and materials (Smart Plant) databases is 

currently only possible via data exports, as opposed to using an SQL connection. This 

means the schedule relies on the exports constantly being updated. 

 Consolidating the data for different projects is cumbersome and involves copying the 

information multiple times in order to manipulate it. 

 Project files or data exports are not all in the same place, and their location can change 

without notice. 

 As projects develop, the number of items can be in excess of 5000. The spreadsheet 

therefore can become very slow and crush unexpectedly. 
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 Computation time is very slow as all the data needs to be stored in one file and formulas 

re-calculate when changes such as filters are applied. 

 Activity durations are heuristic, and do not consider resource availability. 

 The file needs continuous maintenance as bespoke formulas or methods were developed. 

For example, if the location of particular information changes within a sheet it can impact 

the entire system.  

Lessons Learned 

 A spreadsheet provides and easy and quick to learn development platform. It allows all 

the required data to be imported and manipulated, and some reports to be developed. 

 As data gets added and the spreadsheet gets bigger, it gets slower to operate and less 

reliable. 

 Because many data sources are used, the operation of the spreadsheet requires a long time 

to upgrade and maintain. 

 Complex formulas are needed for data manipulation. They are difficult to document and 

debug. 
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Appendix 3 Additional Data Classification 

Using the core data set (Subset 1 in Table 5-2), a broader classification exercise was performed 

using the Weka Explorer tool (Hall, et al., 2009). The aim of this exercise is to search for a 

correlation between the spool information parameters and the fabrication duration using 

functions, rules, and tree type classifiers. Since the class of the duration data is numeric, the 

number of classifiers available is more limited than the availability of nominal classifiers.  

The inputs to the model will be: 

 Total weld diameter-inches 

 Spool Weight 

 Surface area of the spool 

 Total number of items to be assembled 

 Maximum diameter of any element in the spool 

 Material grade 

 The requirement for Paint, Hydro-Testing or Post Weld Heat Treatment (as a Yes/No 

Attribute) 

The test method used for this exercise is the 10 folds cross-validation on the full training set, 

and will be kept consistent for all tests. At this stage the data has not been split into training and 

testing sets because it is not intended to keep any of the models, but only to compare how they 

perform against each other. For the comparison, the following classifier performance will be 

stored: 

 Correlation Coefficient 

 Mean Absolute Error 

 Root Mean Squared Error 

 Relative Absolute Error 

Before proceeding with the classification exercise, the dataset has been reduced for each of 

the Fabrication Duration Attributes (see Table 5-1), such as the only one available at any one 
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time was the one being investigated, with the other ones removed. This essentially resulted in the 

dataset being split into 4 subsets, one for each of the fabrication duration attributes. 

Firstly, the desired output of the attribute classification is the total fabrication duration, 

defined from the Package Issue (MIR) date to the Spool Transfer (MTR) date. The summary of 

the classifier evaluation is presented in Table A3-1 below. The choice of classifiers presented 

was made with the following considerations in mind: 

 The correlation coefficient was to be positive 

 The models had to be implementable, visible in the report and non-constant 

 The classification program was able to build a model and test it within 30 minutes. 

Table A3-1 Classifier evaluation for the total fabrication duration 

Type Classifier 

Name 

Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Implementation 

Difficulty 

Function Least Median 

Squared 

0.3774 14.96 19.52 90.62% Easy 

Function Linear 

Regression  

0.382 15.19 19.29 92.02% Easy 

Function Multilayer 

Perceptron 

0.3494 15.98 20.12 96.76% Difficult 

Function SMO 

Regression 

0.3798 14.92 19.67 90.38% Medium 

Rule M5Rules 0.4263 14.67 18.89 88.87% Difficult 

Tree M5P Tree 0.4453 14.43 18.70 87.40% Very Difficult 

Tree REP Tree 0.4346 14.38 19.0 87.08% Extreme 

 

All classifiers presented above have a correlation coefficient of less than 0.5, suggesting a 

very poor classification of the data; an acceptable coefficient would be higher than 0.7 and as 

close to one as possible. If one was to make a choice based on these models, the implementation 

difficulty of the model would be one of the most important factors to consider, given the very 

close performance results. 

The Mean Absolute Error is not a very good measure by itself unless the Mean and Standard 

Deviation of the data are considered. For the case of the total fabrication duration, these 

parameters are 41.9 and 20.9 days respectively (see Table 5-1). The Root Mean Squared Error 
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provides an indication of the sensitivity of the deviation but again for it to be easier to analyze it 

shall be evaluated against the Mean Absolute Error. For ease of assessment, the Relative 

Absolute Error is a better measure to look at without having to compare against the original 

distribution parameters.  

Considering how much simpler the Linear Regression function is compared to the other 

classifiers, its performance is quite remarkable, being only in the region of 15% less accurate 

than the best performing but most complex classifier, the M5P Tree.  

In addition to the search for a correlation of the total fabrication duration, the classification 

exercise has also been applied to the search for the duration of each main segment of the 

fabrication process, namely: 

i. MIR to Fit Complete 

ii. Fit Complete to QC Complete 

iii. QC Complete to MTR;  

Although the first two segments of the fabrication process are not related to the requirement 

of Painting, Hydro-Testing or Post Weld Heat Treatment for the spools, it is the author’s belief 

that the fabrication shop might rush spools that require some of these processes in order to keep 

total fabrication times low. In addition, the more attributes are made available for the classifiers, 

the better the resulting model should be. However, in order to prove these suspicions, the 

classification exercise has been performed for each of these stages on two types of data: 

 A complete set with all the Spool Information Attributes and the Fabrication Details 

Attributes (see Table 5-1) 

 A reduced set where all the Fabrication Details Attributes have been removed, 

keeping only the Spool Information Attributes. 

The complete results tables of the classification exercise performed for each of the 3 

duration segments both either the complete and the reduced datasets can be found in Tables A3-2 

to A3-7. A few general trends may be observed if looking a little closer at these results side by 

side: 
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 Firstly, the correlation coefficients drop from around 0.4 for the complete durations 

classifications down to even the region of 0.1 for the Fit Complete to QC Complete 

duration (see Table A3-3 and Table A3-6)  

 Using the complete data sets (including Fabrication Details Attributes) tends to yield 

better classifiers than the reduced data sets, as expected. The one exception here is the 

Linear Regression classifier for the MIR to Fit Complete duration, where the reduced 

data classifier has a higher value for the correlation coefficient than the one that uses the 

complete data set; however, as previously mentioned, the correlation coefficient is not the 

only nor the single best measure of classifier performance. The other classifier markers 

reinforce the trend that using the data sets with more attributes yields better results. 

 When looking at the correlation coefficients, the overall performance of the classifiers 

tends to follow the mean durations of each of 3 fabrication segments. For example, 

although the classification for the Fit Complete to QC Complete duration has the poorest 

performance (around 0.1-0.2 for the correlation coefficients), its mean duration is also the 

shortest at 8.1 days versus the 15.4 days and 20.3 days for the MIR to Fit Complete and 

QC Complete to MTR durations respectively. 

Given this analysis, it is recommended that if one were to use a classifier for implementation 

in a scheduling system, the choice should be made not only based on classifier performance, but 

also on the implementation difficulty of the resulting function, rule or tree. As one of the 

simplest of the selected classifiers, the Linear Regression function proves to be not too far behind 

the more complex rules or trees investigated, and would therefore be the classifier of choice for 

pursuing further analysis. 

With regards to the decision of implanting either a classifier based on the complete fabrication 

duration or segments thereof, one would not be able to determine at this stage which approach 

would be better unless using a different analysis technique. 
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Table A3-2 Reduced classifier evaluation for the MIR to Fit Complete duration 

Type Classifier Name Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Function Least Median Squared 0.2113 8.60 12.81 91.5% 

Function Linear Regression  0.328 9.02 11.72 95.96% 

Function Multilayer Perceptron 0.176 10.05 12.43 106.95% 

Function SMO Regression 0.2352 8.47 12.32 90.18% 

Rule M5Rules 0.2996 8.57 11.51 91.21% 

Tree M5P Tree 0.3163 8.49 11.45 90.34% 

Tree REP Tree 0.3316 8.38 11.51 89.17% 

 

Table A3-3 Reduced classifier evaluation for the Fit Complete to QC Complete Duration 

Type Classifier Name Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Function Least Median Squared 0.1038 4.871 9.41 86.99% 

Function Linear Regression  0.1258 5.52 8.71 98.63% 

Function Multilayer Perceptron 0.0418 6.39 9.43 114.25% 

Function SMO Regression 0.1047 4.84 9.25 86.36% 

Rule M5Rules 0.1936 5.43 8.63 96.96% 

Tree M5P Tree 0.2045 5.40 8.61 96.36% 

Tree REP Tree 0.2208 5.39 8.68 96.37% 

 

Table A3-4 Reduced classifier evaluation for the QC Complete to MTR Duration 

Type Classifier Name Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Function Least Median Squared 0.2905 11.46 17.06 87.81% 

Function Linear Regression  0.2988 11.94 16.23 91.53% 

Function Multilayer Perceptron 0.1757 13.50 18.24 103.49% 

Function SMO Regression 0.2963 11.34 16.78 86.91% 

Rule M5Rules 0.3593 11.56 15.88 88.58% 

Tree M5P Tree 0.3636 11.50 15.86 88.12% 

Tree REP Tree 0.3575 11.45 16.01 87.71% 
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Table A3-5 Complete classifier evaluation for the MIR to Fit Complete duration 

Type Classifier Name Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Function Least Median Squared 0.2423 8.53 12.72 90.80% 

Function Linear Regression  0.2805 8.8654 11.58 94.33% 

Function Multilayer Perceptron 0.2164 9.86 12.32 104.91% 

Function SMO Regression 0.2762 8.38 12.13 89.21% 

Rule M5Rules 0.372 8.26 11.20 87.94% 

Tree M5P Tree 0.38 8.19 11.17 87.10% 

Tree REP Tree 0.3863 8.12 11.25 86.41% 

 

Table A3-6 Complete classifier evaluation for the Fit Complete to QC Complete Duration 

Type Classifier Name Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Function Least Median Squared 0.1357 4.85 9.39 86.62% 

Function Linear Regression  0.1604 5.48 8.67 97.95% 

Function Multilayer Perceptron 0.0876 6.36 9.37 113.61% 

Function SMO Regression 0.1459 4.80 9.17 85.80% 

Rule M5Rules 0.2181 5.38 8.58 96.16% 

Tree M5P Tree 0.1984 5.41 8.65 96.66% 

Tree REP Tree 0.2659 5.33 8.56 95.18% 

 

Table A3-7 Complete classifier evaluation for the QC Complete to MTR Duration 

Type Classifier Name Correlation 

Coefficient 

Mean 

Abs. Err 

Root Mean 

Sq. Err. 

Relative 

Abs Err. 

Function Least Median Squared 0.3849 10.73 16.4 82.19% 

Function Linear Regression  0.3953 11.12 15.63 85.82% 

Function Multilayer Perceptron 0.3271 12.51 16.96 95.91% 

Function SMO Regression 0.3938 10.57 16.16 80.97% 

Rule M5Rules 0.4766 10.52 14.96 80.66% 

Tree M5P Tree 0.4889 10.49 14.84 80.40% 

Tree REP Tree 0.4798 10.39 15.02 79.65% 
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