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Abstract

This thesis is based on three papers on selected topics in Asymptotic Geometric Analysis.

The first paper is about the volume of high-dimensional random polytopes; in particular,

on polytopes generated by Gaussian random vectors. We consider the question of how

many random vertices (or facets) should be sampled in order for such a polytope to capture

significant volume. Various criteria for what exactly it means to capture significant volume

are discussed. We also study similar problems for random polytopes generated by points

on the Euclidean sphere.

The second paper is about volume distribution in convex bodies. The firstmain result is

about convex bodies that are (i) symmetric with respect to each of the coordinate hyper-

planes and (ii) in isotropic position. We prove that most linear functionals acting on such

bodies exhibit super-Gaussian tail-decay. Using known facts about themean-width of such

bodies, we then deduce strong lower bounds for the volume of certain caps. We also prove

a converse statement. Namely, if anarbitrary isotropic convex body (not necessarily sat-

isfying the symmetry assumption (i)) exhibits similar cap-behavior, then one canbound its

mean-width.

The third paper is about random polytopes generated by sampling points according to mul-

tiple log-concave probability measures. We prove related estimates for random determi-

nants and give applications to several geometric inequalities; these include estimates on the

volume-radius of random zonotopes and Hadamard’s inequality for random matrices.
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CHAPTER 1

Introduction

1.1 Asymptotic Geometric Analysis

One does not have to look far to find examples of the peculiar behavior of volume in high

dimensions. For instance, consider then-dimensional cube[−1,1]n and Euclidean ball

Bn
2. The ball has volume vol(Bn

2) = πn/2/Γ(n/2+ 1), which for largen is of the order

(2πe/n)n/2. Though the ball touches the cube in each of its 2n-faces, the proportion of

volumes is a minuscule

vol(Bn
2)

vol([−1,1]n)
≃
(πe

2n

)n/2
, asn→ ∞.

Put another way, if a point is sampled randomly in the cube[−1,1]n, it will miss the ball with

probability about 1− (πe/(2n))n/2. This high-dimensional property is usually incorporated

in a two-dimensional picture by drawing the ball as in Figure1.1.

Where exactly does the volume in the cube concentrate? What about other convex bodies?

The distribution of volume in convex bodies is a well-studied topic inAsymptotic Geometric

Analysis. The latter field is concerned with various aspects of convex bodies and especially

the characteristic behavior that emerges when the dimension tends to infinity.

Probabilistic methods play a key role in the theory. Since V.D. Milman’s seminal use of the

concentration of measure phenomenonin his approach to Dvoretzky’s Theorem [32], so-

phisticated methods have been developed, spawning numerous directions of research (see,

e.g., [34], [19], [28]).

1
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B
n

2

[−1, 1]n

Figure 1.1: The proportion of volume the ball occupies in the cube

Random convex bodies - more precisely, random polytopes - have also played an important

role. E.D. Gluskin was the first to use such bodies in this context, showing that they exhibit

essential differences in shape [20]. Similar probabilistic methods have been used to great

effect (see, e.g., [29]) and random polytopes appear in a variety of contexts.

This thesis is a selection of topics in Asymptotic Geometric Analysis. Each of Chapters

2 to 4 are self-contained papers based on the articles [39], [38], and [37], respectively. A

common thread is the geometry of high-dimensional random polytopes. Thesecan be gen-

erated by samplingN pointsX1, . . . ,XN independently according to a probability measureµ

onRn, and forming their convex hull

KN := conv{X1, . . . ,XN} . (1.1)

Chapter2, loosely speaking, addresses the following problem: How many pointsN = N(n)

are needed forKN to capture significant volume asn → ∞? Of course, the meaning of

“significant volume” depends on the model of randomness and one wants the smallest such

N. This work was motivated by results of Dyer, Füredi and McDiarmid [13] who answered

the question when theXi are drawn independently from the cube[−1,1]n.

Chapter3 is about the distribution of volume in high-dimensional convex bodies. This work

is connected to recent research emanating from J. Bourgain’s approach to a famous problem

about isotropic constants of convex bodies.

In Chapter4, we further explore the relation between the volume of random polytopes in

convex bodies and isotropic constants.

The remainder of this chapter is to serve as an introduction to all three papers. Along the

way, we indicate how some of our results fit within the theory. In Chapter5, we state some
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further developments (current joint work between this author and G. Paouris) and open

problems. Chapter 6 summarizes our main results.

1.1.1 Convex bodies as probability spaces

If A andB are subsets ofRn, theirMinkowski sumis the setA+B := {a+b : a∈ A,b∈ B}
and, ifλ ∈ R, we setλA= {λa : a∈ A}.

The Brunn-Minkowski inequality governs how volume behaves with respect to Minkowski

addition.

Theorem 1.1.1.Let A and B be compact sets inRn and let0≤ λ ≤ 1. Then

vol(λA+(1−λ)B)≥ vol(A)λ vol(B)1−λ . (1.2)

In other words, the logarithm of vol(·) is a concave function. See [14] for an extensive

survey on the latter inequality and its many uses.

If K ⊂ R
n is a convex body with vol(K) = 1, a probability measure can be associated toK

by defining

vol |K(A) := vol(A∩K)

for Borel measurable setsA⊂ R
n. The Brunn-Minkowksi inequality implies that

vol |K(λA+(1−λ)B)≥ vol |K(A)λ vol |K(B)1−λ (1.3)

for any compactA,B ⊂ R
n and 0≤ λ ≤ 1. In fact, (1.3) is a defining property for an

important class of measures.

Definition 1.1.2. A Borel measureµ onRn is said to belog-concaveif for any λ ∈ [0,1],

µ(λA+(1−λ)B)≥ µ(A)λµ(B)1−λ (1.4)

for all compactA,B⊂ R
n.

Many properties of convex bodies also hold for log-concave measuresand some authors

choose to work in this more general setting. For simplicity, we will focus most ofthis

chapter on convex bodies. We discuss properties of log-concave measures in subsequent

chapters, as needed. (See [23] and the references therein for further information on log-

concave measures.)
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Tail-decay of linear functionals

SupposeK is a convex body with vol(K) = 1. From the probabilistic viewpoint, func-

tions f : K → R are viewed as random variables; in particular, the Euclidean norm|x| =√
x2

1+ . . .+x2
n and, for eachθ on the Euclidean sphereSn−1, the linear functional〈·,θ〉,

defined by

〈x,θ〉= x1θ1+ . . .+xnθn (x∈ K).

For bounded measurable functionsf : K → R, define

‖ f‖p := ‖ f‖Lp(K) =

(∫
K
| f (x)|pdx

)1/p

(1.5)

One consequence of the Brunn-Minkowksi inequality is the following proposition (which

follows from Borell’s Lemma, e.g., [34, Appendix III]).

Proposition 1.1.3. Let K⊂ R
n be a convex body withvol(K) = 1 and letθ ∈ Sn−1. Then

vol({x∈ K : |〈x,θ〉| ≥ t‖〈·,θ〉‖2})≤ 2e−t/C, (1.6)

for any t≥ 1, where C> 0 is an absolute constant.

Thus in each directionθ, the volume ofK outside the slab{x∈R
n : |〈x,θ〉|< t‖〈·,θ〉2‖} de-

cays at an exponential rate. This is one reason we often draw convex bodies in a hyperbolic

form, as in Figure1.2(see also [31] for a discussion of such pictures of convex bodies).

t‖〈·, θ〉‖2
θ

K

Figure 1.2: Tail-decay of linear functionals

The estimate from Proposition1.1.3is of the right order for some convex bodies. For in-

stance, consider the cross-polytopeBn
1 = conv{±e1, . . . ,±en}, wheree1, . . . ,en is the stan-
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dard unit vector basis forRn. Let cn be such that vol(cnBn
1) = 1 (thencn/n → 1/2e as

n→ ∞). If θ = en, a routine calculation shows that for eacht ≥ 1,

vol({x∈ cnBn
1 : 〈x,en〉 ≥ t‖〈·,θ〉‖2})≃ e−ct,

wherec > 0 is an absolute constant. (Here the notationA ≃ B meanscA≤ B ≤ CA for

absolute constantsc,C> 0.)

For some convex bodies, the functionals〈·,θ〉 exhibit a Gaussian-type tail-decay. For in-

stance, consider the Euclidean ballBn
2 and letdn be such that vol(dnBn

2) = 1 (thendn/
√

n→
(2πe)−1/2 asn→ ∞). Then for eachθ ∈ Sn−1 andt ≥ 1,

vol({x∈ dnBn
2 : 〈x,θ〉 ≥ t‖〈·,θ〉‖2})≃ e−ct2, (1.7)

wherec> 0 is an absolute constant.

The rate of tail-decay of linear functionals has important consequences for the geometry

of the body, which will be explored in subsequent sections. When studying tail-decay, we

typically assume that the body is in a suitable position.

1.1.2 Isotropic convex bodies and isotropic constants

Definition 1.1.4. A convex bodyK is isotropic if vol (K) = 1, its center of mass is the

origin, i.e., ∫
K
〈x,θ〉dx= 0 for eachθ ∈ Sn−1 (1.8)

and there is a constantLK > 0 such that

∫
K
〈x,θ〉2dx= L2

K for eachθ ∈ Sn−1. (1.9)

In the probabilistic interpretation, all functionals〈·,θ〉 are centered and have the same vari-

ance.

The constantLK is called theisotropic constant. If K ⊂ R
n is a convex body with center of

mass at the origin, then there is a linear imageTK of K such thatTK is isotropic. Moreover,

T is unique up to orthogonal transformations. ThusLK can be defined for any convex body

and it is an affine-invariant.
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Note that (1.9) implies ∫
K
|x|2dx= nL2

K . (1.10)

Put another way, if a vectorx is sampled randomly in an isotropic convex bodyK (according

to the measure vol|K) then its expected length is about
√

nLK . Another important fact is the

following proposition.

Proposition 1.1.5.Let K⊂R
n be a convex body withvol(K) = 1 and center of mass at the

origin. Then K is isotropic if and only if

∫
K
|x|2dx≤

∫
SK
|x|2dx for each S∈ SL(n). (1.11)

As a sample of an isotropic convex body, see Figure1.3.

K

S K

Figure 1.3: A convex bodyK in isotropic position

It is known that the isotropic constants of convex bodies admit a uniform lower bound.

More precisely, for any convex bodyK ⊂ R
n, one has

LK ≥ LBn
2
≥ 1√

2πe
. (1.12)

A uniform upper bound is a long-standing open problem.

Conjecture 1.1.6(Uniform bound for isotropic constants). There exists an absolute con-

stant C such that for any integer n≥ 1 and for any convex body K⊂ R
n,

LK ≤C. (1.13)

Upper bounds for the isotropic constantLK were first studied by J. Bourgain and work on the

conjecture has spawned many directions of research. The latter conjecture is also known as
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the Hyperplane Conjecture or Slicing Problem (due to an equivalent formulation involving

the volume of central sections ofK, first considered by J. Vaaler and studied by K. Ball and

D. Hensley). As all of our relevant results are stated in terms of isotropic constants, we will

not discuss other equivalent formulations beyond this point; we refer thereader to [3], [33]

or [18] and the references therein for further information.

Known results

In [8], J. Bourgain proved that ifK is an isotropic convex body inRn, thenLK ≤Cn1/4 logn.

Presently, the best known result is due to B. Klartag, who has shown thatLK ≤Cn1/4.

There are many classes of convex bodies for which the conjecture has apositive solution,

for instance, unconditional convex bodies [7], [33], zonoids and duals of zonoids [4], unit

balls of Schatten norms [27], ψ2-bodies [9], and others [22], [30]; more recently, for various

random polytopes [26], [11], [1] and polytopes with few vertices [2]. We define and discuss

some of these classes in subsequent sections.

1.1.3 Distribution of volume in isotropic convex bodies

Despite the lack of understanding of the isotropic constantLK , recent years have seen quite

striking results about the distribution of the Euclidean norm on an isotropic convex bodyK;

in particular, on how|·| : K → R deviates from
√

nLK , due to G. Paouris [36].

Theorem 1.1.7. There exists an absolute constant C> 0 such that if K is an isotropic

convex body inRn, then for all t≥ 1,

vol
(
{x∈ K : |x| ≥C

√
nLKt}

)
≤ e−

√
nt. (1.14)

Thus the volume ofK lying outside the Euclidean ballC
√

nLKBn
2 decays exponentially fast.

Another breakthrough concerns how the Euclidean norm concentratesaround
√

nLK , due

to B. Klartag, from [24] (improving upon [23]).

Theorem 1.1.8.Let K be an isotropic convex body inRn and let0≤ ε ≤ 1. Then

vol
(
{x∈ K : ||x|−

√
nLK | ≥ ε

√
nLK}

)
≤Cexp(−cετnκ) , (1.15)

whereτ, κ, c and C are positive absolute constants.
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In other words, ifS(ε) is the shell

S(ε) := {x∈ R
n : (1− ε)

√
nLK ≤ |x| ≤ (1+ ε)

√
nLK}, (1.16)

then Klartag’s theorem implies that, for largen, most of the volume ofK lies insideS(ε).

We have included a diagram to compare the two results, see See Figure1.4.

C
√

nLK B
n

2

K

(a) Large deviations of the Euclidean norm

S (ε)

K

(b) ε-concentration of the Euclidean norm

Figure 1.4: Comparison of the theorems of Paouris and Klartag (right)

1.1.4 Sub-Gaussian tail-decay and its implications

Definition 1.1.9. Let K be a convex body with vol(K) = 1 and center of mass at the origin.

We say thatθ ∈ Sn−1 is asub-Gaussiandirection forK, if there is a constantb such that

vol({x∈ K : |〈·,θ〉| ≥ t‖〈·,θ〉‖2})≤ 2exp
(
−t2/2b2) ∀t ≥ 1. (1.17)

When the bodyK is clear from the context, we simply say thatθ is sub-Gaussian. If

the value of the constantb is important, we say thatθ is sub-Gaussian with constantb.

The terminology comes from the comparison with a standard Gaussian (normal)random

variableγ with mean-zero and variance one. The density corresponding toγ is φ(t) =
1√
2πe−t2/2. One can check thatP(|γ| ≥ t)≤ 2e−t2/2.

A major reason for interest in the sub-Gaussian tail-decay of linear functionals on isotropic

convex bodies is the following theorem due to J. Bourgain, from [9] (based on ideas from

[8]).
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Theorem 1.1.10.Let K⊂R
n be an isotropic convex body and let b> 0. Suppose that each

θ ∈ Sn−1 is sub-Gaussian with constant b as in (1.17). Then

LK ≤Cblogb, (1.18)

where C is an absolute constant.

Recently, N. Dafnis and G. Paouris [12] have shown that (1.18) can be improved toLK ≤
Cb

√
logb.

For an arbitrary convex body, it turns out to be quite difficult to show thatthere is even

onedirectionθ that exhibits sub-Gaussian tail-decay (1.17). More precisely, consider the

following the question, first posed by V.D. Milman.

Question 1.1.11.Is there a constant c> 0 such that for any integer n≥ 1 and any convex

body K⊂ R
n with vol(K) = 1, there is a directionθ ∈ Sn−1 for which

vol({x∈ K : |〈x,θ〉| ≥ t‖〈·,θ〉‖2})≤ 2exp
(
−ct2

)
, ∀t ≥ 1? (1.19)

Up to a logarithmic factor, it was answered in the affirmative by B. Klartag [25].

Theorem 1.1.12.Let K⊂ R
n be an isotropic convex body. Then there existsθ ∈ Sn−1 such

that

vol({x∈ K : |〈x,θ〉| ≥ t‖〈·,θ〉‖2})≤ 2exp
(
−ct2/ logτ(t +1)

)
, (1.20)

for all t ≥ 1, where c andτ are positive absolute constants.

Klartag’s proof gaveτ = 5. A. Giannopoulos, A. Pajor and G. Paouris [16] gave an alternate

proof with τ = 2.

Mean-width of isotropic convex bodies

The search for sub-Gaussian tail-decay of linear functionals is connected to a well-known

problem about the mean-width of isotropic convex bodies. For a convex body K ⊂ R
n,

denote its support function by

hK(θ) := sup
x∈K

〈x,θ〉 , (θ ∈ Sn−1).
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The width ofK in the direction ofθ is the quantityw(K,θ) = hK(θ) + hK(−θ) and the

mean-width ofK is

w(K) =
∫

Sn−1

w(K,θ)dσ(θ) = 2
∫

Sn−1

hK(θ)dσ(θ).

Conjecture 1.1.13.There is an absolute constant C such that for any integer n≥ 1 and for

any isotropic convex body K⊂ R
n,

w(K)≤C
√

nlognLK . (1.21)

Presently, the best known upper bound is the following:

Theorem 1.1.14.Let K⊂ R
n be an isotropic convex body. Then

w(K)≤Cn3/4LK , (1.22)

where C is an absolute constant.

We include a sketch of the proof of the latter theorem and further remarks on the problem

of bounding the mean-width in Chapter3. For now, we mention only the relation with sub-

Gaussian tail-decay. In [35, Lemma 4.2], it is proved that ifK is an isotropic convex body

andθ ∈ Sn−1 is sub-Gaussian with constantb then

max{hK(θ),hK(−θ)} ≤Cb
√

nLK , (1.23)

whereC is an absolute constant. Thus if one could show that “most” directions are sub-

Gaussian (or nearly so), then one would obtain a better bound on the mean-width. As

discussed above, it is non-trivial to establish even the existence of a single suchθ.

1.1.5 Unconditional convex bodies

For convex bodies exhibiting certain symmetries many of the themes discussed above are

well-understood.

Definition 1.1.15.A convex bodyK ⊂R
n is 1-unconditionalif for eachx= (x1, . . . ,xn)∈K

and each choice of signsεi ∈ {−1,1}, i = 1, . . . ,n, the vector(ε1x1, . . . ,εnxn) belongs toK.
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Thus ifK is isotropic and 1-unconditional thenK satisfies the following conditions:

U1) vol(K) = 1.

U2) If x= (xi) ∈ K then[−|x1|, |x1|]× . . .× [−|xn|, |xn|]⊂ K.

U3)
∫

K x2
j dx= L2

K .

It is well-known that isotropic constants of 1-unconditional convex bodies are uniformly

bounded [7], [33]. The following formulation is from [6].

Proposition 1.1.16.If K ⊂R
n is a1-unconditional isotropic convex body then LK ≤ 1/

√
2.

Bobkov and Nazarov [6] initiated the study of sub-Gaussian behavior of functionals on

1-unconditional bodies and proved the following proposition.

Proposition 1.1.17.Let K⊂ R
n be a1-unconditional isotropic convex body and letθd be

the diagonal directionθd =
1√
n(1, . . . ,1). Then for each t≥ 1,

vol({x∈ K : |〈x,θd〉| ≥ t})≤ 2e−ct2, (1.24)

where c> 0 is an absolute constant.

The isotropic constantLK = ‖〈·,θ〉‖2 has been omitted from the statement of the latter

proposition since 1-unconditional bodies have uniformly bounded isotropic constants. In a

subsequent paper, Bobkov and Nazarov studied sub-Gaussian behavior for directions other

than the main diagonal and proved the following theorem (from [5]).

Theorem 1.1.18.There exist positive numerical constants c1, c2 and t0 with the following

property. For any integer n≥ 1 and for any1-unconditional isotropic convex body K⊂R
n,

theσ-measure of the set ofθ ∈ Sn−1 such that

vol({x∈ K : |〈x,θ〉| ≥ t})≤ exp(−c2t
2/ logt), ∀t ≥ t0, (1.25)

is at least1−n−c1. Moreover, c1 can be chosen arbitrarily large at the expense of c2 and t0.

Thus the tail-decay of most〈·,θ〉 are nearly sub-Gaussian.

In Chapter3, we prove a complement to Theorem1.1.18and show that 1-unconditional

isotropic convex bodies have manysuper-Gaussiandirections (analogous to (1.17) but with

the reverse inequality). We also prove related estimates that have implications for the mean-

width of an arbitrary isotropic convex body.
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1.1.6 Random polytopes and isotropic constants

Isotropic constants of random polytopes

As mentioned in the introduction, a major success in Asymptotic Geometric Analysis has

been the use of random polytopes in solutions to various long-standing open problems.

Their potential as counter-examples to Conjecture1.1.6was recently studied by Klartag and

Kozma [26]. As a sample result, we mention the following theorem for polytopes generated

by Gaussian random vectors of the formX = (γ1, . . . ,γn), whereγi are independentN(0,1)

random variables.

Theorem 1.1.19.Let N> n and let X1, . . .XN be independent Gaussian random vectors in

R
n. Set

GN := conv{X1, . . . ,XN} .

Then, with probability at least1−C1e−c1n,

LGN ≤C, (1.26)

where C,C1 and c1 are positive absolute constants.

For polytopes generated by points sampled independently and uniformly on the sphereSn−1,

a similar result was proved by D. Alonso-Gutierrez [1].

Subsequent research has examined random polytopes generated by points in an isotropic

convex bodyK ⊂ R
n. Let X1, . . . ,XN be independent random vectors distributed uniformly

in K andKN their convex hull

KN := conv{X1, . . . ,XN} . (1.27)

In [11], N. Dafnis, A. Giannopoulos and O. Guedon asked the following question about the

relation between the isotropic constants ofKN andK.

Question 1.1.20.Is it true that, with probability tending to1 as n→∞, one has LKN ≤CLK ,

where C> 0 is a constant independent of K,n and N?

They gave an affirmative answer for the class of 1-unconditional isotropic convex bodies.
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Theorem 1.1.21.Let K be a1-unconditional isotropic convex body inRn. For every N> n

consider KN as defined by (1.27) If cn< N ≤ ecn, then

P(LKN ≤C)≥ 1−ec1n (1.28)

If n < N ≤ cn, then

P(LKN ≤C)≥ 1−e−c2n/ logn, (1.29)

where c,c1,c2,C, are absolute constants.

The reason for the two different probabilities is due to the lack of suitable volume estimates

in the casen< N ≤ cn. One of the results in Chapter4 improves on volume estimates used

in the proof of the latter theorem. Volume estimates forKN involve various subtleties and

have direct implications for the boundedness ofLK , which we discuss further in the next

section. Before doing so, we mention also that isotropic constants of arbitrary (non-random)

polytopes were studied in [2]; in particular, the following theorem is proved.

Theorem 1.1.22.Let K⊂ R
n be an n-dimensional polytope with N vertices. Then

LK ≤C

√
N
n
. (1.30)

The volume of random polytopes in isotropic convex bodies

If K ⊂R
n is an isotropic convex body andKN is the random polytope defined in (1.27), then

the precise dependence ofEvol(KN) on the dimensionn, the number of pointsN and the

isotropic constantLK is closely related to the boundedness ofLK .

In a series of papers ([17], [15], [11], and [10]), A. Giannopoulos and various coauthors

studied how the volume ofKN depends onn, N andLK . We summarize their results in the

following theorem.

Theorem 1.1.23.Let K⊂ R
n be an isotropic convex body and let n< N ≤ en. Let KN be

the random polytope defined by (1.27). Then

c1
√

log(2N/n)√
n

≤ Evol(KN)
1/n ≤ C1

√
log(2N/n)√

n
LK . (1.31)
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The
√

log(2N/n)
√

n factor appears in both the upper and lower bound. The crucial differ-

ence is that the isotropic constantLK does not appear in the lower bound. SinceKN ⊂ K

and vol(K) = 1, lower estimates forEvol(KN)
1/n in terms ofLK immediately lead to upper

bounds forLK . (In fact, forN = n+1, it is also well-known that the lower bound includes

LK , which we discuss further in Chapter4).

The conjectured bound (equivalent to Conjecture1.1.6) is the following.

Conjecture 1.1.24.There is an absolute constant c1 > 0 such that

Evol(KN)
1/n ≥ min

{
c1

√
log(2N/n)√

n
LK ,1

}
. (1.32)

Why doesLK disappear in the lower bound in Theorem1.1.23? We will discuss one of the

key ingredients. IfK is a convex body of volume one andp> 0, set

Ep(K,N) =
∫

K
· · ·

∫
K

vol(conv{x1, . . . ,xN})pdxN . . .dx1. (1.33)

Giannopoulos and Tsolomitis [17] (extending a result of Groemer [21]) proved that for each

p> 0,

Ep(K,N)≥ Ep(Bn
2,N), (1.34)

whereBn
2 is the Euclidean ball of volume one. The key element in such arguments isSteiner

symmetrization, which is discussed in the Appendix. Thus by reducing this to the case of

the Euclidean ball, one loses the dependence on the isotropic constant.

Chapter4 is devoted to various related volume estimates.
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CHAPTER 2

Volume threshold problems for random

polytopes1

2.1 Introduction

A remarkable result due to M.E. Dyer, Z. Füredi, and C. McDiarmid gives a threshold

for the expected volume of random polytopes generated by vertices of thecube[−1,1]n.

Specifically, letµbe the uniform probability measure on{−1,1} and letZ=(z1, . . . ,zn) be a

random vector whose coordinates are independent and identically distributed according toµ.

ConsiderN = N(n) independent random vectorsZ1, . . . ,ZN, each with the same distribution

asZ, and form their convex hullCN = conv{Z1, . . . ,ZN}. In [7], a threshold value forN is

established at whichCN captures significant volume in the following sense: for eachε > 0,

we have

E[vol(CN)]

vol([−1,1]n)
−→
n→∞





0 if N ≤ (2/
√

e− ε)n,

1 if N ≥ (2/
√

e+ ε)n.
(2.1)

The corresponding result for the case whenµ is uniform on[−1,1] is also proved. Their

method has since been significantly generalized; namely, D. Gatzouras andA. Giannopou-

los, in [8], obtain analogous results for a large class of compactly supported probability

measuresµ onR.

1A version of this chapter has been published. P. Pivovarov. Volume thresholds for Gaussian and spherical
random polytopes and their duals. Studia Math., 183(1):1534, 2007.

18
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We consider similar problems for Gaussian random polytopes and polytopesgenerated by

random points on the Euclidean sphere.

In the Gaussian case, letγ1, . . . ,γn be independent N(0,1) random variables and letg =

(γ1, . . . ,γn). ConsiderN = N(n) independent copies ofg, say,g1, . . . ,gN and form their

convex hull

KN := conv{g1, . . . ,gN} . (2.2)

For instance, inR2, some samples ofKN are shown in Figure2.1.

Figure 2.1: Sample Gaussian random polytopes inR
2.

The Gaussian measure is not compactly supported and thus if one is to consider the analo-

gous threshold problem, the following question arises.

Question 2.1.1.What does it mean for KN to capture significant volume?

There are are a number of ways of answering the latter question. For instance, the Gaussian

measure is rotationally-invariant and one suitable answer may be to intersectKN with a

Euclidean ball and study the proportion of volume lying inside the ball, as suggested in the

figure.

Figure 2.2: Intersection with a Euclidean ball.
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On the other hand, the Gaussian measure is a product and thus another fitting answer is

to intersectKN with a cube. Of course, there are many other answers - intersecting with

other convex bodies; theGaussian measureof KN is equally natural. In fact, using a recent

concentration result of B. Klartag about log-concave measures, we give a rather satisfactory

answer to this question. Our considerations include intersectingKN with any convex body

in a suitable position. The statement of the main result is §2.2.

Gaussian polytopes can also be generated by random facets, i.e., if thegi ’s are Gaussian

random vectors as above, then we can consider

K′
N := {x∈ R

n : 〈gi ,x〉 ≤ 1 for eachi = 1, . . . ,N}. (2.3)

Such polytopes exhibit similar threshold phenomena, corresponding in a natural way to

those forKN. In this case, our arguments do not invoke duality and use only elementary

properties of the random vectors involved.

We also study the analogous problem for random polytopes generated bypoints on the

Euclidean sphere. The threshold forN in the spherical case is super-exponential in the

dimensionn, which corresponds to known results about approximation of the ball by poly-

topes [3]. The results in [7] are exponential inn and the authors of [8] considered only

measures for which there is an exponential threshold inn.

We follow the same approach as that of Dyer, Füredi and McDiarmid. The tools devel-

oped in [7] have a simple realization in our setting; this simplicity nicely illustrates the

geometry behind the method. The lack of independence of coordinates in thespherical case

presents no difficulty as the argument depends more on geometric considerations than on

probabilistic techniques such as the theory of large deviations, as in [7] and [8].

Lastly, a few words on notation. We shall denote the canonical Euclidean norm onRn by

|·|; Bn
2 the Euclidean ball; Lebesgue measure onR

n by vol(·); the unit sphereSn−1.

Isotropic log-concave measures

We start with a few basic facts about log-concave measures.

A Borel probability measureν onRn is said to belog-concaveif for any λ ∈ [0,1],

ν(λA+(1−λ)B)≥ ν(A)λν(B)1−λ (2.4)
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for all compactA,B ⊂ R
n. HereλA+(1− λ)B := {λa+(1− λ)b : a ∈ A,b ∈ B}. Log-

concave measures have a surprisingly simple characterization.

Definition 2.1.2. A function f : Rn → [0,∞) is log-concaveif for any λ ∈ [0,1] and and

x,y∈ R
n,

f (λx+(1−λ)y)≥ f (x)λ f (y)1−λ.

The next proposition is due to Borell ([5]).

Proposition 2.1.3. Let ν be a Borel probability measure onRn and suppose thatν is not

supported on any proper affine subspace. Thenν is log-concave if and only if there is a

log-concave function g: Rn → [0,∞) such that

ν(B) =
∫

B
g(x)dx.

Basic examples of log-concave measures include the uniform distribution ona convex body

K of vol(K) = 1 and also standardn-dimensional Gaussian measureN(0, In), i.e., the den-

sity of which is

f (x) =
1

(2π)n/2
e−|x|2/2.

A probability measureν onR
n is isotropic if its center of mass is the origin, i.e.,

∫
Rn
〈x,θ〉dν(x) = 0, for eachθ ∈ Sn−1, (2.5)

and ∫
Rn
〈x,θ〉2dν(x) = 1 for eachθ ∈ Sn−1. (2.6)

Note the difference in normalization in (2.6) and that for isotropic convex bodies (cf.1.9).

We are assuming the variance of each functional is 1. This is the standard normalization for

log-concave measures.

We will make essential use of the following theorem due to B. Klartag (the analogue of

Theorem1.1.8for log-concave measures).

Theorem 2.1.4.Let ν be an isotropic log-concave probability measure onR
n. Then for all

0≤ ε ≤ 1,

ν{x∈ R
n : ||x|−

√
n| ≥ ε

√
n} ≤Cexp(−cετnκ) , (2.7)

whereτ, κ, c and C are positive absolute constants.
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2.2 Threshold phenomena for Gaussian random polytopes

As in the introduction, letγ1, . . . ,γn be independent Gaussian N(0,1) random variables.

Denote the standard unit vector basis inR
n by e1, . . . ,en. Consider the random vectorg=

∑n
i=1 γiei ; then g satisfiesE|g| ≈ √

n. Let N = N(n) > n be an integer and considerN

independent random vectorsg1, . . . ,gN, each with the same distribution asg.

In this section, we state and prove the main theorems for Gaussian polytopesKN (generated

by random vertices as in (2.2)) andK′
N (generated by random facets as in (2.3)).

To state the main theorem, we need some relevant notation.

Denote byΦ the cumulative distribution function of a standard N(0,1) random variable,

i.e.,

Φ(a) =
1√
2π

∫ a

−∞
e−x2/2dx (a∈ R), (2.8)

as in the figure.

a

area = Φ(a)

Figure 2.3: Cumulative distribution function of a standard Gaussian.

For simplicity of notation, we denote the reciprocal of 1−Φ by Ψ, i.e.,

Ψ(a) :=
1

1−Φ(a)
. (2.9)

Theorem 2.2.1. Let KN be the random polytope defined in (2.2). Let ν be an isotropic

log-concave probability measure onRn and let0< ε < 1. Then as n→ ∞,

Eν(KN)−→





0 if N ≤ Ψ((1− ε)
√

n),

1 if N ≥ Ψ((1+ ε)
√

n).
(2.10)

Theorem 2.2.2. Let K′
N be the random polytope defined in (2.3). Let ν be an isotropic
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log-concave probability measure onRn. Let0< ε < 1. Then as n→ ∞,

Eν(nK′
N)−→





1 if n < N ≤ Ψ((1− ε)
√

n)

0 if N ≥ Ψ((1+ ε)
√

n).
(2.11)

The proof of Theorem2.2.1is in §2.2.1; Theorem2.2.2in §2.2.2.

2.2.1 Random vertices

Preparatory results

In this section we define some of the tools that are used in [7]; see also [2] for an overview

of related concepts and their use in the study of random polytopes.

Let µ be a probability measure onRn (or Sn−1) and suppose thatX is a random vector

distributed according toµ, (i.e.,P(X ∈ A) = µ(A) for measurable setsA). Forx∈ R
n, set

qµ(x) := inf{P(X ∈ H) : H is a closed halfspace containingx}.

Let X1, . . . ,XN be independent random vectors distributed according toµ and set

KN := conv{X1, . . . ,XN} .

Lemma 2.2.3. Let x∈ R
n. ThenP(x∈ KN)≤ Nqµ(x)

Proof. Let H be a halfspace containingx. If none ofX1, . . . ,XN belong toH thenKN lies in

R
n\H and hencex 6∈ KN. Consequently,

{x∈ KN} ⊂
N⋃

i=1

{Xi ∈ H}.

See Figure2.4. SinceH was an arbitrary halfspace containingx, the result follows.

Before continuing with tools for the Gaussian case, we mention an important connection

whenµ is the uniform measure on a convex body.
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Xi

H

x

Figure 2.4: Estimatingqµ(x)

Remark2.2.4. Supposeµ = µK is the uniform measure on a convex bodyK ⊂ R
n with

vol(K) = 1 and writeq= qµ. Then the set

Kδ := {x∈ K : q(x)≥ δ}. (2.12)

is called thefloating bodyof K. The latter set plays an important role in asymptotic results

concerningEvol(KN) whenN → ∞ andn is fixed; in particular, a well-known result from

[4] is

c1vol
(
K1/N

)
≤ Evol(KN)≤C1(n)vol

(
K1/N

)
(2.13)

for all N ≥ C2(n) (herec1 is an absolute constant andC1(n),C2(n) depend onn); see also

the survey [2]. For recent observations concerning (2.13), in particular, the dependence of

C2(n) onn, see [6, Remark 2.4], which makes use of the results in [10].

Gaussian setting

In this section, we assumeg1, . . . ,gN are Gaussian random vectors andKN = conv{g1, . . . ,gN}.

For the Gaussian measure we can actually calculateq(x). For a closed setA ⊂ R
n and a

pointx∈ R
n, let d(x,A) := inf{|x−a| : a∈ A}.

Lemma 2.2.5. (a) If H is a halfspace with d:= d(0,H)> 0, thenP(g∈ H) = 1−Φ(d).

(b) For each x∈ R
n, we have q(x) = 1−Φ(|x|).

Proof. (a) The density ofg with respect to Lebesgue measure isf (x) := (2π)−n/2e−|x|2/2.
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By rotational invariance we may assume thatH := {x∈ R
n : x1 ≥ d}. Consequently,

P(g∈ H) =
∫

H
f (x)dx=

(
1√
2π

∫
R

e−x2
n/2dxn

)n−1( 1√
2π

∫ ∞

d
e−x2

1/2dx1

)
= 1−Φ(d).

(b) If x = 0 thenq(0) = 1/2 = 1−Φ(0). Suppose thatx 6= 0. Let H(x) be the halfspace

bounded by the tangent hyperplane to|x|Bn
2 atx and which does not contain 0. Then by part

(a) we have

1−Φ(|x|) = P(g∈ H(x))≥ q(x).

Conversely, letH be any halfspace containingx. Setd= d(0,H). If d= 0 thenP(g∈ H)≥
1/2≥ 1−Φ(|x|). If d > 0 then

P(g∈ H) = 1−Φ(d)≥ 1−Φ(|x|)

sinced ≤ |x|. It follows thatq(x)≥ 1−Φ(|x|).

A consequence of Lemma2.2.5is the following simple observation:

RBn
2 = {x∈ R

n : q(x)≥ 1−Φ(R)} (2.14)

for anyR> 0. Equality (2.14) allows us to use an argument from [7] to establish the next

lemma; we include the proof for completeness.

Lemma 2.2.6. Let R> 0. Then

P(RBn
2 ⊂ KN)≥ 1−2

(
N
n

)
(Φ(R))N−n. (2.15)

Proof. For anyJ ⊂ {1, . . . ,N} with |J| = n, the set{g j} j∈J is linearly (hence affinely)

independent almost surely. In particular, the affine hull of{g j} j∈J is a hyperplane almost

surely. Let us now define the eventEJ: one of the two halfspacesH determined by{g j} j∈J

containsKN andP(g 6∈ H)≥ 1−Φ(R).

Supposex ∈ RBn
2\KN. Then there existsJ ⊂ {1, . . . ,N} with |J| = n such that one of the

two half spacesH determined by{g j} j∈J containsKN but excludesx. But thenx belongs

to the complimentary halfspacẽH and so

P(g 6∈ H)≥ q(x)≥ 1−Φ(R)
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since|x| ≤ R. It follows that

{RBn
2 6⊂ KN} ⊂

⋃
J⊂{1,...,n}

|J|=n

EJ.

Thus if we setD = {1, . . . ,n} we have

P(RBn
2 6⊂ KN)≤

(
N
n

)
P(ED) .

Now let us estimateP(ED) by conditioning ong1, . . . ,gn. Let H and H̃ denote the two

halfspaces generated byg1, . . . ,gn. If P(g 6∈ H)≥ 1−Φ(R) then

P(g j ∈ H : j = n+1, . . . ,N)≤ (Φ(R))N−n

and similarly forH̃. It follows that

P(ED|g1, . . . ,gn)≤ 2(Φ(R))N−n.

Now since

P(ED) = E(1ED) = E(E(1ED |g1, . . . ,gn)) = E(P(ED|g1, . . . ,gn)

we obtainP(ED)≤ 2(Φ(R))N−n and hence

P(RBn
2 6⊂ KN)≤ 2

(
N
n

)
(Φ(R))N−n.

Lemma 2.2.7. Let ν be a Borel probability measure onRn and let B be a Borel subset of

R
n. Then

ν(B)P(B⊂ KN)≤ Eν(KN ∩B)≤ Nν(B)sup
x∈B

(1−Φ(|x|)).

Proof. Note that

Evol(KN ∩B) = E

∫
B

1{x∈KN}dx=
∫

B
P(x∈ KN)dx.
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The upper bound follows from Lemma2.2.3 and Lemma2.2.5 and the lower bound is

obvious.

Estimates for Gaussian tail-decay

As in §2.2, we shall use the following standard notation:

Φ(a) =
1√
2π

∫ a

−∞
e−x2/2dx (a∈ R). (2.16)

Note that fora>−1 we have the approximation (see [13])

2

a+(a2+4)1/2
≤
√

2πexp(a2/2)(1−Φ(a))≤ 4

3a+(a2+8)1/2
. (2.17)

Recall thatΨ(a) = 1
1−Φ(a) . The following lemma will be useful in subsequent calculations.

Lemma 2.2.8. Let a≤ b. Then

Ψ(a)(1−Φ(b))≤ 2exp(a2/2−b2/2) (2.18)

and

Ψ(b)(1−Φ(a))≥ (1/2)exp(b2/2−a2/2). (2.19)

Proof. Applying (2.17), we have

Ψ(a)(1−Φ(b))≤ 2(a+(a2+4)1/2)

3b+(b2+8)1/2
exp(a2/2−b2/2)≤ 2exp(a2/2−b2/2)

and

Ψ(b)(1−Φ(a))≥ 2(3b+(b2+8)1/2)

4(a+(a2+4)1/2)
exp(b2/2−a2/2)≥ (1/2)exp(b2/2−a2/2).

Proof of Theorem2.2.1. Let tn = (1− ε/2)
√

n and letRn = (1+ ε/2)
√

n. Set

B= RnBn
2\tnBn

2.
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Assume first thatN ≤ Ψ((1− ε)
√

n)). Observe that

Eν(KN)≤ ν(tnBn
2)+Eν(KN ∩B)+ν(Rn\RnBn

2).

By Theorem2.1.4, it suffices to show that

Eν(KN ∩B)→ 0

asn→ ∞. To this end, apply Lemma2.2.7and Lemma2.2.3to obtain

Eν(KN ∩B) ≤ Nν(B)sup
x∈B

(1−Φ(x))

≤ Ψ((1− ε)
√

n)(1−Φ((1− (ε/2))
√

n)

≤ 2exp
(
(1− ε)2n/2− (1− (ε/2))2n/2)

)
,

where we used Lemma2.2.8 to obtain the last inequality. The latter term tends to 0 as

n→ ∞.

Assume now thatN ≥ Ψ((1+ ε)
√

n). Lemma2.2.6implies that

P(RnBn
2 6⊂ KN) ≤ 2

(
N
n

)
(Φ(Rn))

N−n (2.20)

≤ 2(eN/n)nexp((N−n) lnΦ(Rn))

= 2exp
(

nln(eN/n)+(N−n) lnΦ(Rn)
)
.

Note that 1/2< Φ(R)< 1 and hence forn> 2e the latter expression is less than

2exp
(

nlnN+N lnΦ(Rn)
)
≤ 2exp

(
nlnN−N(1−Φ(Rn))

)
, (2.21)

where we have used the estimate lnx≤ x−1.

For convenience of notation, setrn := (1+ε)
√

n. Without loss of generality we may assume

thatN = ⌈Ψ(rn)⌉, where⌈x⌉ denotes the smallest integer larger thanx. Appealing to (2.17)

yields

nlnN ≤ nln
(
(
√

2π/2)(rn+(r2
n+4)1/2)exp(r2

n/2)
)

≤ nln(
√

2π(rn+1))+nr2
n/2

≤ nr2
n
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provided that

ln(
√

2π(rn+1))≤ r2
n/2. (2.22)

Applying Lemma2.2.8gives

N(1−Φ(Rn)) ≥ (1/2)exp((r2
n−R2

n)/2).

Thus ifn satisfies (2.22) andn> 2e, we can apply Lemma2.2.7to obtain

Eν(KN) ≥ P(RnBn
2 ⊂ KN)ν(RnBn

2) (2.23)

≥
(

1−2exp
(

nr2
n− (1/2)exp

(
r2
n/2−R2

n/2
)))

ν(RnBn
2)

=
(

1−2exp
(
(1+ ε)2n2− (1/2)exp

(
(1+ ε)2n/2−n/2

)))
ν(RnBn

2).(2.24)

The latter term tends to 1 asn→ ∞, which completes the proof.

2.2.2 Random facets

In this section we prove Theorem2.2.2, i.e., the threshold result forν(nK′
N), where

K′
N = {x∈ R

n : 〈gi ,x〉 ≤ 1 for eachi = 1, . . . ,N}.

Lemma 2.2.9. For each x∈ R
n\{0} we have

P
(
x∈ K′

N

)
= (Φ(1/|x|))N .

Proof. By independence and rotational invariance of thegi ’s, we have

P
(
x∈ K′

N

)
= P(〈x,gi〉 ≤ 1 for eachi = 1, . . . ,N)

= (P(〈x,g1〉 ≤ 1))N

= (P(γ1 ≤ 1/|x|))N (γ1 ∼ N(0,1))

= (Φ(1/|x|))N.

Lemma 2.2.10.Suppose thatν is a Borel probability measure onRn. Let0< t < R and set
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B= RBn
2\tBn

2. Then for each n we have

ν(B)Φ(n/R)N ≤ Eν((nK′
N)∩B)≤ ν(B)Φ(n/t)N. (2.25)

Proof. Argue as in the proof of Lemma2.2.7and apply Lemma2.2.9.

Remark2.2.11. Let a> 0. The identityΦ(a)N = exp(N lnΦ(a)) and the estimate

x−1− (x−1)2 ≤ lnx≤ x−1 x∈ [1/2,1] (2.26)

imply that

Φ(a)N ≥ exp
(
−N(1−Φ(a))−N(1−Φ(a))2) (2.27)

and

Φ(a)N ≤ exp(−N(1−Φ(a))) . (2.28)

These estimates will be used in conjunction with Lemma2.2.10.

Proof of Theorem2.2.2. Let sn = (1− ε/2)−1√n and letrn = (1+ ε/2)−1√n. Set

B= snBn
2\rnBn

2

Assume first thatN ≥ Ψ((1+ ε)
√

n). Observe that

Eν(nK′
N)≤ ν(rnBn

2)+Eν((nK′
N)∩B)+ν(Rn\snBn

2).

By Theorem2.1.4, it suffices to show that

Eν((nK′
N)∩B)→ 0

asn→ ∞.

By Lemma2.2.10,

Eν((nK′
N)∩B) ≤ ν(B)Φ(n/rn)

N (2.29)

≤ ν(B)exp(−N(1−Φ(n/rn)) . (2.30)
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Without loss of generality, assume thatN = ⌈Ψ((1+ ε)
√

n)⌉. By Lemma2.2.8,

N(1−Φ(n/rn)) ≥ (1/2)exp
(
(1+ ε)2n/2− (1+ ε/2)2n/2

)
(2.31)

The latter term tends to∞ asn→ ∞ and henceEν((nK′
N)∩B)→ 0 asn→ ∞.

Assume now thatN ≤ Ψ((1− ε)
√

n). Lemma2.2.8implies that

N(1−Φ(n/sn))≤ 2exp
(
(1− ε)2n/2− (1− ε/2)2n/2

)
→ 0, (2.32)

asn→ ∞ and hence

N(1−Φ(n/sn))
2 → 0, (2.33)

asn→ ∞.

Therefore, invoking Lemma2.2.10and (2.27), we get

Eν((nK′
N)∩B) ≥ ν(B)(Φ(n/sn)

N

≥ ν(B)exp
(
−N(1−Φ(n/sn))−N(1−Φ(n/sn))

2) .

The latter term tends to 1 asn→ ∞ (2.32) and (2.33). This completes the proof.

2.2.3 Intersecting with Euclidean balls

As mentioned in the introduction, the results of the previous section generalizethose of

[11]. In this section, we state two results from the latter article. The proofs are omitted

because they are similar to those of the last section (and the complete proofs appear in

[11]).

Theorem 2.2.12.Let κ > 0, c> 0 and let0< ε < c. Then, as n→ ∞,

E[vol(KN ∩cnκBn
2)]

vol(cnκBn
2)

−→





0 if N ≤ Ψ((c− ε)nκ),

1 if N ≥ Ψ((c+ ε)nκ).
(2.34)

Corollary 2.2.13. Let κ > 0, c> 0 and let0< ε < c. Then, as n→ ∞,

E[vol
(
K′

N ∩ (cnκ)−1Bn
2

)
]

vol((cnκ)−1Bn
2)

−→





1 if n < N ≤ Ψ((c− ε)nκ),

0 if N ≥ Ψ((c+ ε)nκ).
(2.35)
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2.3 Threshold phenomena for random polytopes on the sphere

Let σ denote Haar measure onSn−1 and letu1, . . . ,uN be independent random vectors dis-

tributed according toσ, whereN = N(n)> n and set

LN := conv{u1, . . . ,uN} .

Theorem 2.3.1.Let0< R< 1 and let0< ε < 1. Then, as n→ ∞,

E[vol(LN ∩RBn
2)]

vol(RBn
2)

−→





0 if N ≤ exp
(
(1− ε)(n−1) ln(1/

√
1−R2)

)
,

1 if N ≥ exp
(
(1+ ε)(n−1) ln(1/

√
1−R2)

)
.

(2.36)

One can see that asR→ 1, more than exponentially many points are needed to capture the

volume of the entire ball.

Theorem 2.3.2.Let0< ε < 1. Then, as n→ ∞,

E[vol(LN)]

vol(Bn
2)

−→





0 if N ≤ exp
(
(1− ε)(n−1) ln

√
n)
)
,

1 if N ≥ exp
(
(1+ ε)(n−1) ln

√
n
)
.

(2.37)

The proofs of the above theorems are in §2.3.1. The complementary results for polytopes

generated by random facets are Theorems2.3.12and2.3.13in Section2.3.2. See also the

comments preceding Theorem2.3.13.

Related results

Theorems2.3.1and2.3.2complement existing research on polytopes generated by points

in the ball. In particular, in [3] the authors consider the following quantity

V(n,N) :=
max{vol(conv{x1, . . . ,xN}) : x1, . . . ,xN ∈ Bn

2}
vol(Bn

2)

and derive upper and lower bounds forV(n,N) whenN = N(n) is a function ofn, specifi-

cally whenN is linear, polynomial and exponential inn. They also show that for anyα > 0,

e−n1−2α
<V(n,nα(n−1))< e−n1−2α/2. (2.38)
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Thus half of Theorem2.3.2(i.e., whenN ≤ n(1−ε)(n−1)/2 follows from the upper estimate in

(2.38). However, we also give a short direct proof. We have chosen to use the exp notation

because the main calculations in our proof take place “in the exponent.” Theconfiguration

of points leading to the lower estimate in (2.38) is non-random. Theorem2.3.2shows that

N ≥ n(1+ε)(n−1)/2 many random points are sufficient to haveV(n,N)→ 1 asn→ ∞.

In [9], Müller derives an asymptotic formula for the difference vol(Bn
2)−Evol(LN); the

asymptotic treatment is forn fixed andN → ∞. A major extension of M̈uller’s result is in

[12], to which we refer the reader for further results in this direction.

2.3.1 Random vertices

We will use the notation defined in Section2.3. Forx∈ Bn
2, set

q(x) := inf{P(u∈ H) : H is a halfspace containingx}.

Forv∈ Sn−1 and 0≤ R≤ 1 set

C(R,v) := {x∈ Sn−1 : 〈x,v〉 ≥ R}. (2.39)

Since we are interested in surface area, we will omit the reference tov and writeC(R) :=

C(R,v). Upper and lower estimates forσ(C(R)) are standard calculations. Such estimates,

however, are not commonly stated in the form that best serves our purpose and thus we have

included the proofs.

Area of spherical caps

Let α be the angle of the cap (2.39), by which we mean cosα = R. Fix 0< t < α. Let H

be a hyperplane at distance cost from the origin. ThenBn
2∩H is an(n−1)-dimensional

Euclidean ball of radius sint. Thus if we letσ denote Haar measure onSn−1 then

σ(C(R)) =
∫ α

0 voln−2(∂(sintBn−1
2 ))dt∫ π

0 voln−2(∂
(

sintBn−1
2

)
)dt

=

∫ α
0 sinn−2 tdt∫ π
0 sinn−2 tdt

.
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Let In :=
∫ π/2

0 sinn tdt. Integrating by parts givesIn = n−1
n In−2. The latter recurrence and

Stirling’s formula may be used to verify that
√

nIn →
√

π/2; in fact, forn≥ 3 we have

1
2

√
2π
n

≤
∫ π

0
sinn−2 tdt ≤ 2

√
2π
n
. (2.40)

Lemma 2.3.3. Let R∈ (0,1). Then for each n≥ 3, we have

σ(C(R))≥ (1−R2)(n−1)/2

6
√

n
. (2.41)

Proof. Observe that

∫ α

0
sinn−2 tdt ≥

∫ α

0
sinn−2 t costdt =

sinn−1 α
n−1

.

Applying (2.40) and noting that sinα =
√

1−R2 yields the result.

Lemma 2.3.4. Let R∈
(
0,1
)
. Then for each n≥ 3, we have

σ(C(R))≤ 3(1−R2)(n−1)/2. (2.42)

Proof. Assume first that 1/
√

2< R< 1. Using the inequality

1−cost ≤ 2sin2 t cost (t ∈ [0,π/4]), (2.43)

and recalling thatR= cosα, we have

∫ α

0
sinn−2 tdt =

∫ α

0
sinn−2 t costdt+

∫ α

0
sinn−2 t(1−cost)dt

≤
∫ α

0
sinn−2 t costdt+2

∫ α

0
sinn t costdt

=
sinn−1 α

n−1
+

2sinn+1 α
n+1

≤ 3sinn−1 α
n−1

.

Applying again (2.40) and noting that sinα =
√

1−R2 gives the result. Finally, for 0< R≤
1/
√

2, one may argue, for example, as in the proof of [1, Lemma 2.2].
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Analogues of tools used in the Gaussian case

Lemma 2.3.5. a. Let H be a halfspace with d:= d(0,H). If d ∈ (0,1] thenP(u∈ H) =

σ(C(d)).

b. For x∈ Bn
2, we have q(x) = σ(C(|x|)).

Lemma 2.3.6. Let R∈ (0,1). For each n> 2e, the inclusion RBn2 ⊂ LN holds with proba-

bility greater than1−2exp
(
nlnN−Nσ(C(R))

)
.

Proof. The proof is analogous to that of Lemma2.2.6and the estimates starting with (2.20)

and ending with (2.21).

Lemma 2.3.7. Let B be a measurable subset of Bn
2. Then

vol(B)P(B⊂ LN)≤ Evol(LN ∩B)≤ Nvol(B)sup
x∈B

σ(C(|x|)).

Proof. Argue as in the proof of Lemma2.2.7and apply Lemma2.2.3and Lemma2.3.5.

We now have all the tools for proving Theorem2.3.1.

Proof of Theorem2.3.1. Assume first that

N ≤ exp
(
(1− ε)(n−1) ln(1/

√
1−R2)

)
(2.44)

Let t :=
√

1− (1−R2)(1−ε/2) so that 0< t < R. SetB := RBn
2\tBn

2 and write

LN ∩RBn
2 =

(
LN ∩ tBn

2

)
∪
(

LN ∩B
)
.

Since

lim
n→∞

vol(tBn
2)

vol(RBn
2)

= lim
n→∞

(t/R)n = 0, (2.45)

we need only show that limn→∞Evol(LN ∩B)/vol(RBn
2) = 0.

By Lemma2.3.4and the fact that(1− ε/2) ln
(√

1−R2
)
= ln

(√
1− t2

)
, we have

σ(C(t)) ≤ 3exp
(
(n−1) ln

(√
1− t2

))

= 3exp
(
−(1− ε/2)(n−1) ln

(
1/
√

1−R2
))

, (2.46)



CHAPTER 2. VOLUME THRESHOLD PROBLEMS FOR RANDOM POLYTOPES36

for all n≥ 3.

Thus by Lemma2.3.7and (2.46), we have

Evol(LN ∩B)
vol(RBn

2)
≤ Nσ(C(t))

≤ 3exp
(
−(ε/2)(n−1) ln(1/

√
1−R2)

)
−→ 0, (2.47)

asn→ ∞.

Assume now that

N ≥ exp
(
(1+ ε)(n−1) ln(1/

√
1−R2)

)
. (2.48)

Then by Lemma2.3.7we have

Evol(LN ∩RBn
2)

vol(RBn
2)

≥ P(RBn
2 ⊂ LN) .

For convenience of notation, let us setr =
√

1−R2. Without loss of generality, we may as-

sume thatN = ⌈exp((1+ ε)(n−1) ln(1/r))⌉, where⌈x⌉ denotes the smallest integer larger

thanx. Lemma2.3.3implies that

Nσ(C(R)) ≥ exp
(
(1+ ε)(n−1) ln(1/r)− (n−1) ln(1/r)− ln(6

√
n)
)

≥ exp
(
(ε/2)(n−1) ln

(
1/r
))

,

for all n satisfying

ln(6
√

n)≤ (ε/2)(n−1) ln(1/r). (2.49)

Thus ifn satisfies (2.49) andn> 2e, Lemma2.3.6gives us

P(RBn
2 6⊂ LN)≤ 2exp

(
2n2 ln

(
1/r
)
−exp

(
(ε/2)(n−1) ln(1/r)

))
−→ 0, (2.50)

asn→ ∞, which completes the proof of Theorem2.3.1.

Remark2.3.8. The rate of convergence in Theorem2.3.1can be obtained from lines (2.45),

(2.47), and (2.50).

Remark2.3.9. In Theorem2.3.1, we may replaceε by εn where(εn)n≥1 ⊂ (0,1) with εn → 0

provided that(εn) satisfies (2.45), (2.47), (2.49) and (2.50). One may verify thatεn = n−γ,



CHAPTER 2. VOLUME THRESHOLD PROBLEMS FOR RANDOM POLYTOPES37

for any fixedγ ∈ (0,1), serves this purpose.

Proof of Theorem2.3.2. We shall use the following elementary fact:

lim
n→∞

(1−n−β)n/2 =





0 if 0 < β < 1,

1 if β > 1.
(2.51)

Assume first that

N ≤ exp
(
(1− ε)(n−1) ln

√
n
)
. (2.52)

Let β := 1− ε/2 and setRn :=
√

1−n−β. Let B := Bn
2\RnBn

2 and write

LN =
(

LN ∩RnBn
2

)
∪
(

LN ∩B
)
.

By (2.51), we have

lim
n→∞

vol(RnBn
2)

vol(Bn
2)

= lim
n→∞

Rn
n = 0, (2.53)

and thus we need only show that limn→∞Evol(LN ∩B)/vol(Bn
2) = 0.

By Lemma2.3.4and the fact that
√

1−R2
n = n−β/2, we obtain

σ(C(Rn)) ≤ 3exp

(
(n−1) ln

(√
1−R2

n

))

= 3exp
(
−(1− ε/2)(n−1) ln

√
n
)

(2.54)

for all n≥ 3.

Thus by Lemma2.3.7and (2.54), we have

Evol(LN ∩B)
vol(Bn

2)
≤ Nσ(C(Rn))

≤ 3exp
(
−(ε/2)(n−1) ln

√
n
)
−→ 0, (2.55)

asn→ ∞.

Let us now assume that

N ≥ exp
(
(1+ ε)(n−1) ln

√
n
)
. (2.56)
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Let γ = 1+ ε/2 and setrn :=
√

1−n−γ. Applying Lemma2.3.7, we get

Evol(LN)

vol(Bn
2)

≥ Evol(LN ∩ rnBn
2)

vol(Bn
2)

≥ rn
n ·P(rnBn

2 ⊂ LN) .

Using (2.51), we have

lim
n→∞

rn
n = 1, (2.57)

and thus we need only prove thatP(rnBn
2 ⊂ LN) → 1 asn → ∞. Without loss of general-

ity, we may assume thatN = ⌈exp((1+ ε)(n−1) ln
√

n)⌉, where⌈x⌉ denotes the smallest

integer larger thanx. Using Lemma2.3.3and the fact that
√

1− r2
n = n−γ/2, we get

Nσ(C(rn)) ≥ exp

(
(1+ ε)(n−1) ln

√
n+(n−1) ln

√
1− r2

n− ln(6
√

n)

)

= exp
(
(1+ ε)(n−1) ln

√
n− (1+ ε/2)(n−1) ln

√
n− ln(6

√
n)
)

≥ exp((ε/4)(n−1) ln
√

n),

for all n satisfying

ln(6
√

n)≤ (ε/4)(n−1) ln
√

n. (2.58)

Thus ifn satisfies (2.58) andn> 2e, Lemma2.3.6yields

P(rnBn
2 6⊂ LN)≤ 2exp

(
2n2 ln

√
n−exp

(
(ε/4)(n−1) ln

√
n
))

−→ 0, (2.59)

asn→ ∞, which completes the proof of (2.37).

Remark2.3.10. The rate of convergence in Theorem2.3.2can be obtained from lines (2.53),

(2.55), and (2.59).

Remark2.3.11. In Theorem2.3.2, we may replaceε by εn where(εn)n≥1 ⊂ (0,1) with

εn → 0 provided that(εn) satisfies (2.53), (2.55), (2.57) - (2.59). One can check thatεn =

1/ ln(lnn) works.
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2.3.2 Random facets

In this section we discuss counterparts to Theorems2.3.1and2.3.2for polytopes generated

by random facets. We shall use the notation defined in Section2.3. Set

L′
N := {x∈ R

n : 〈ui ,x〉 ≤ 1 for eachi = 1, . . . ,N}.

Theorem 2.3.12.Let0< R< 1 and let0< ε < 1. Then, as n→ ∞,

E[vol
(
L′

N ∩R−1Bn
2

)
]

vol(R−1Bn
2)

−→





1 if n < N ≤ exp
(
(1− ε)(n−1) ln(1/

√
1−R2)

)
,

0 if N ≥ exp
(
(1+ ε)(n−1) ln(1/

√
1−R2)

)
.

(2.60)

Next, we turn our attention to threshold results for the entire bodyL′
N. SinceL′

N ⊃ Bn
2, it is

natural to consider the quantity
vol(Bn

2)

Evol(L′
N)

.

In fact,Evol(L′
N) = ∞. To see this, let 1= t < s, setB= sBn

2\Bn
2 and apply Lemma2.3.15:

Evol
(
L′

N ∩B
)

≥ (1/2)N vol(sBn
2\Bn

2) .

Thus if n is fixed,Evol(L′
N ∩B) → ∞ ass→ ∞. Nevertheless, we can still prove the fol-

lowing threshold result.

Theorem 2.3.13.Let0< ε < 1.

a. There exists a sequence(tn)∞
n=1 = (tn(ε))∞

n=1 with tn > 1 and lim
n→∞

tn = 1 such that

lim
n→∞

vol(Bn
2)

Evol(L′
N ∩ tnBn

2)
= 0 if n < N ≤ exp

(
(1− ε)nln

√
n
)
. (2.61)

b. There exists a sequence(Rn)
∞
n=1 = (Rn(ε))∞

n=1 with Rn > 1 and lim
n→∞

Rn = ∞ such that

lim
n→∞

vol(Bn
2)

Evol(L′
N ∩RnBn

2)
= 1 if N ≥ exp

(
(1+ ε)nln

√
n
)
. (2.62)

We prove only Theorem2.3.13(the proof of Theorem2.3.12is similar and appears in [11]).

Recall that the notation for a spherical capC(R) was introduced in (2.39).
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Lemma 2.3.14.For each x∈ R
n\Bn

2 we have

P
(
x∈ L′

N

)
= (1−σ(C(1/|x|)))N. (2.63)

Proof. Let x∈ R
n\Bn

2. Observe first that

{θ ∈ Sn−1 : 〈θ,x〉 ≤ 1} = {θ ∈ Sn−1 : 〈θ,x/|x|〉 ≤ 1/|x|}
= Sn−1\ intC(1/|x|,x/|x|), (2.64)

where intA denotes the interior ofA.

By independence of theui ’s, we have

P
(
x∈ L′

N

)
= P(〈ui ,x〉 ≤ 1 for eachi = 1, . . . ,N)

= (P(〈u1,x〉 ≤ 1))N

= (1−σ(C(1/|x|)))N .

Lemma 2.3.15.Let1≤ t < s and set B:= sBn
2\tBn

2. Then for each n we have

vol(B)(1−σ(C(1/s)))N ≤ Evol
(
L′

N ∩B
)
≤ vol(B)(1−σ(C(1/t)))N. (2.65)

Proof. Argue as in the proof of Lemma2.2.7and apply Lemma2.3.14.

Remark2.3.16. Let 0≤ a≤ 1. The identity(1−σ(C(a))N = exp(N ln(1−σ(C(a)))) and

(2.26) imply that

(1−σ(C(a)))N ≥ exp
(
−Nσ(C(a))−Nσ(C(a))2) (2.66)

and

(1−σ(C(a)))N ≤ exp(−Nσ(C(a))) . (2.67)

These estimates will be used in conjunction with Lemma2.3.15.

Proof of Theorem2.3.13. Assume first that (2.52) holds. Without loss of generality we

shall assume thatN = ⌊exp((1− ε)(n− 1) ln
√

n)⌋, where⌊x⌋ denotes the largest integer

smaller thanx.
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Let (tn)∞
n=2 ⊂ (1,∞) be any sequence satisfying the following conditions:

(i) limn→∞ tn = 1.

(ii) lim n→∞ tn
n = ∞.

(iii) lim n→∞ Nσ(C(1/tn)) = 0.

For instance, lettn := 1/
√

1−n−(1−ε/2). Thentn > 1, tn → 1 asn → ∞ and tn satisfies

condition (ii) by (2.51) (in the proof of Theorem2.3.2).

To see that (iii) is satisfied, apply Lemma2.3.4and ln
√

1− (1/tn)2 =−(1− ε/2) ln
√

n to

get

σ(C(1/tn)) ≤ 3exp

(
(n−1) ln

√
1− (1/tn)2

)

= 3exp
(
−(1− ε/2)(n−1) ln

√
n
)

and thus

Nσ(C(1/tn))≤ 3exp
(
−(ε/2)(n−1) ln

√
n
)
−→ 0 (2.68)

asn→ ∞ and hence also

Nσ(C(1/tn))
2 −→ 0 (2.69)

asn→ ∞.

SetB= tnBn
2\Bn

2. Since

Evol(L′
N ∩ tnBn

2)

vol(Bn
2)

=
vol(Bn

2)+Evol(L′
N ∩B)

vol(Bn
2)

= 1+
Evol(L′

N ∩B)
vol(Bn

2)
, (2.70)

it suffices to prove that
Evol(L′

N ∩B)
vol(Bn

2)
−→ ∞ (2.71)

asn→ ∞.

By Lemma2.3.15, we have

Evol(L′
N ∩B)

vol(Bn
2)

≥ (tn
n −1)(1−σ(C(1/tn)))

N.

The latter term tends to∞ asn→ ∞ by our choice of(tn), (2.66), (2.68), and (2.69).
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Let us assume now that (2.56) holds. Without loss of generality, we shall assume that

N = ⌈exp((1+ ε)(n−1) ln
√

n)⌉, where⌈x⌉ denotes the smallest integer larger thanx.

Before defining conditions for choosing the sequenceRn, we introduce an auxiliary se-

quence. Let(rn)
∞
n=2 ⊂ (1,∞) be any sequence such that

(a) limn→∞ rn = 1.

(b) limn→∞ rn
n = 1.

(c) limn→∞ Nσ(C(1/rn)) = ∞.

For instance, letrn := 1/
√

1−n−(1+ε/2). Thenrn > 1, rn → 1 asn→ ∞ and, by (2.51), con-

dition (b) also holds. By Lemma2.3.3and the fact that ln
√

1− (1/rn)2 =−(1+ε/2) ln
√

n,

condition (c) is satisfied since

σ(C(1/rn)) ≥ exp

(
(n−1) ln

√
1− (1/rn)2− ln(6

√
n)

)

= exp
(
−(1+ ε/2)(n−1) ln

√
n− ln(6

√
n)
)

and hence

Nσ(C(1/rn)) ≥ exp
(
(ε/2)(n−1) ln

√
n− ln(6

√
n)
)

≥ exp
(
(ε/4)(n−1) ln

√
n
)

(2.72)

provided that

ln(6
√

n)≤ (ε/4)(n−1) ln
√

n. (2.73)

Now let (Rn)
∞
n=2 ⊂ (1,∞) be any sequence such that

(A) Rn > rn for eachn.

(B) limn→∞ Rn = ∞.

(C) limn→∞ Rn
n(1−σ(C(1/rn)))

N = 0.

For instance, choose(Rn) such thatnlnRn ≤ (1/2)exp((ε/4)(n−1) ln
√

n) . In this case, if

n satisfies (2.73), then (2.67) and (2.72) imply that

Rn
n(1−σ(C(1/rn)))

N ≤ exp
(
nlnRn−exp((ε/4)(n−1) ln

√
n)
)
→ 0 (2.74)
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asn→ ∞.

SetB= RnBn
2\Bn

2. Since

Evol(L′
N ∩RnBn

2)

vol(Bn
2)

=
vol(Bn

2)+Evol(L′
N ∩B)

vol(Bn
2)

= 1+
Evol(L′

N ∩B)
vol(Bn

2)
, (2.75)

it suffices to prove that
Evol(L′

N ∩B)
vol(Bn

2)
−→ 0asn→ ∞. (2.76)

Writing B= RnBn
2\rnBn

2∪ rnBn
2\Bn

2 and applying Lemma2.3.15twice gives

Evol(L′
N ∩B)

vol(Bn
2)

≤ (rn
n−1)+Rn

n(1−σ(C(1/rn)))
N. (2.77)

The right-hand side of the latter inequality tends to 0 by our choice of(rn) and(Rn).
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CHAPTER 3

On the volume of caps and bounding

the mean-width of an isotropic convex

body1

3.1 Introduction

Let K be a convex body inRn with volume vol(K) = 1 and suppose its center of mass is the

origin. As is commonly done in Asymptotic Geometric Analysis, we treatK as a probability

space. In particular, for each unit vectorθ, we view the linear functional〈·,θ〉 : K →R given

by

〈x,θ〉= x1θ1+ . . .+xnθn, (x∈ K),

as a random variable onK. Motivated by Bourgain’s approach to the Hyperplane Conjecture

[4], (cf. §1.1.4of the introductory chapter), recent research has focused on the distribution

of the functionals〈·,θ〉. In particular, efforts have been made to show that for any suchK,

there exists a directionθ which exhibitssub-Gaussiantail-decay, meaning that,

vol({x∈ K : |〈x,θ〉|> t‖〈·,θ〉‖2})≤ e−ct2 (3.1)

1A version of this chapter has been accepted for publication. P. Pivovarov. On the volume of caps and
bounding the mean-width of an isotropic convex body. Math. Proc. Cambridge Philos. Soc.

45
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for all t ≥ 1, wherec> 0 is an absolute constant and‖〈·,θ〉‖2
2 =

∫
K |〈x,θ〉|2dx. The papers

[7] and [15] contain the latest developments, as well as further motivation and history (cf.

also §1.1.4).

In this paper, we consider bounds involving the reverse inequality, namelysuper-Gaussian

estimates of the form

vol({x∈ K : |〈x,θ〉|> t‖〈·,θ〉‖2})≥ e−ct2, (3.2)

for t > 0 in some suitable range. Such estimates are garnering increased attention, as in [14]

and [20], and are the starting point for our discussion.

Our first main result concerns super-Gaussian directions for convexbodies that are isotropic

and 1-unconditional (cf. §1.1.5). Thus we assume thatK ⊂ R
n satisfies the following

conditions:

1) vol(K) = 1.

2) If x= (xi) ∈ K then[−|x1|, |x1|]× . . .× [−|xn|, |xn|]⊂ K.

3)
∫

K x2
j dx= L2

K .

For such bodies, there are many super-Gaussian directions, which we gauge in terms of the

Haar measureσ on the sphereSn−1.

Proposition 3.1.1.There exists an absolute constant C≥ 1 such that for any integer n≥ 1,

and any 1-unconditional isotropic convex body K⊂R
n, theσ-measure of the set ofθ∈Sn−1

such that

vol({x∈ K : |〈x,θ〉| ≥ t})≥ exp(−Ct2) (3.3)

whenever

C≤ t ≤
√

n
C logn

, (3.4)

is at least1−2−n.

The isotropic constantLK = ‖〈·,θ〉‖2 has been omitted from the statement since such bodies

satisfy 1/
√

2πe≤ LK ≤ 1/
√

2 (see, e.g., [3]).

Proposition3.1.1complements a theorem of Bobkov and Nazarov [2] who treated the case

of sub-Gaussian directions, (cf. Theorem1.1.18, §1.1.5).
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As a corollary, we get lower bounds for the volume of caps defined in termsof the width of

the body, measured in terms of the support functionhK(θ) := supx∈K 〈x,θ〉.

Corollary 3.1.2. Let β > 0. Then there is a constant̃C = C̃(β) such that for any integer

n≥ 1, and any 1-unconditional isotropic convex body K⊂ R
n, theσ-measure of the set of

θ ∈ Sn−1 satisfying

vol({x∈ K : |〈x,θ〉| ≥ εhK(θ)})≥ exp(−CC̃ε2nlogn) (3.5)

whenever
C√

C̃nlogn
≤ ε ≤ 1

C
√

C̃ log3/2n
(3.6)

is at least1−2−n−2n−β, whereC̃= 3(β+1) and C is the constant from Proposition3.1.1.

For us, the motivation for bounding the volume of the caps in (3.5) comes from a paper

by Giannopoulos and Milman [10] involving approximation of a convex body by a random

polytope. Corollary3.1.2shows that for 1-unconditional bodies, one has better estimates in

most directions. Such estimates, in turn, are intimately related to mean-width, whichleads

us to the second purpose of this paper.

Finding the correct upper bound for the mean-width of anarbitrary isotropic convex body

(not necessarily 1-unconditional) is a problem well-known to specialists. It has numerous

connections and implications (some of which we review below). We connect the latter

problem with volume estimates for caps, similar to (3.5), and give a sufficient condition

under which one can bound the mean-width. Our approach may be of independent interest

since it involves approximating a convex body by a random polytope with relatively few

vertices.

The paper is organized as follows. The proofs of Proposition3.1.1and Corollary3.1.2are

in §3.2, the first three subsections of which point out the key ingredients. The observations

about mean-width are contained in §3.3, the main result being Proposition3.3.9.

Lastly, a few words on notation and viewpoint. Our results are most meaningful when

the dimensionn is large. Throughout,c,c1,C,C′, . . ., etc. denote absolute constants (in

particular, independent ofn andK). The symbol|·| will serve the dual role of the standard

Euclidean norm onRn and also the absolute value of a scalar, the use of which will be clear

from the context; forx= (x1, . . . ,xn) ∈ R
n, ‖x‖1 = ∑n

i=1|xi | and‖x‖∞ = maxi≤n|xi |.
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3.2 Super-Gaussian estimates in 1-unconditional isotropic con-

vex bodies

We begin by isolating the key ingredients in the proof of Proposition3.1.1. Our proof

generalizes an argument due to Schmuckenschläger [25, Proposition 3.4], who showed that

the diagonal directionθd = 1√
n(1,1, . . . ,1) is super-Gaussian for the unit ball ofℓn

p for

1 ≤ p ≤ ∞. Our first step is to pass fromθd to a large subset of directions with “well-

spread” coordinates.

3.2.1 Well-spread vectors on the sphere

The next lemma identifies the set of directions for which we will establish estimate (3.3)

in Proposition3.1.1. Similar facts have been used in various problems (e.g., the use of

“incompressible” vectors as in [24]). We include a proof for completeness.

Throughout, we use the following notation

[n] := {1, . . . ,n}. (3.7)

Lemma 3.2.1. There exist absolute constants C1 > 0 and κ > 0 such that for any integer

n≥ 1, the set

Θ :=

{
θ ∈ Sn−1|∃I = I(θ)⊂ [n] with #I ≥ κn :

1
C1

√
n
≤ |θi | ≤

C1√
n
∀ i ∈ I

}
(3.8)

hasσ-measure at least1−2−n.

For the proof, we will use the following standard facts.

Lemma 3.2.2. There exists an absolute constant c′ > 0 such that for any integer n≥ 1, the

set

Θ′ := {θ ∈ Sn−1 : c′
√

n≤ ‖θ‖1 ≤
√

n} (3.9)

hasσ-measure at least1−2−n.

Lemma3.2.2follows from, e.g., [19, §2.3 & §5.3]; alternatively, one can use [23, Theorem

6.1].

The second fact we need is the Paley-Zygmund inequality.
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Lemma 3.2.3. If Z is a random variable with finite variance, then

P(Z ≥ tEZ)≥ (1− t)2(EZ)2

EZ2 . (3.10)

For a proof, see, e.g., [18, Lemma 3.5].

Proof of Lemma3.2.1. Fix θ ∈ Θ′ (from Lemma3.2.2) and writeαi := |θi |
√

n. Without

loss of generality, we may assume that theαi are distinct. LetZ be a random variable such

thatP(Z = αi) = 1/n. Then

EZ =
1
n

n

∑
i=1

αi =
1√
n

n

∑
i=1

|θi |

and hencec′ ≤ EZ ≤ 1. By Markov’s inequality, for anyλ > 0, we have

P(Z > λ)≤ P(Z > λEZ)≤ 1
λ

and hence we obtain

#{i ∈ [n] : αi ≤ λ} ≥ (1−λ−1)n. (3.11)

Next, observe that

EZ2 =
1
n

n

∑
i=1

α2
i =

n

∑
i=1

θ2
i = 1.

By the Paley-Zygmund inequality (Lemma3.2.3), we have

P
(
Z ≥ c′/2

)
≥ P(Z ≥ (1/2)EZ)≥ (c′)2/4.

and therefore

#{i ∈ [n] : αi ≥ c′/2} ≥ (c′)2n/4. (3.12)

By (3.11) and (3.12), we conclude the result.

3.2.2 Main probabilistic ingredients

The symmetries exhibited by 1-unconditional convex bodies have a very useful probabilistic

interpretation. Namely, letX = (x1, . . . ,xn) be a random vector distributed uniformly in a

1-unconditional convex body. Letε1, . . . ,εn, be independent Rademacher random variables,
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i.e.,

P(εi = 1) = P(εi =−1) = 1/2, i = 1, . . . ,n. (3.13)

ThenX and(ε1x1, . . . ,εnxn) have the the same distribution. The latter fact allows us to use

several properties of Rademacher random variables. The first is the Contraction Principle;

see, e.g., [16, Theorem 4.4].

Theorem 3.2.4.Letε1, . . . ,εn be independent Rademacher random variables. Let x1, . . . ,xn

be elements of a Banach space B and letα1, . . . ,αn be real numbers such that|αi | ≤ 1 for

all i = 1, . . . ,n. Then for any t> 0,

P

(
‖

n

∑
i=1

αiεixi‖> t

)
≤ 2P

(
‖

n

∑
i=1

εixi‖> t

)
. (3.14)

The second ingredient is the following theorem about super-Gaussian estimates for Rademacher

sums, which can be found in [16, §4.1].

Theorem 3.2.5.There is an absolute constant C2 ≥ 1 such that ifε1, . . . ,εn are independent

Rademacher random variables (as in (3.13)) and if s∈ R andξ ∈ R
n satisfy

C2|ξ| ≤ s≤ |ξ|2
C2‖ξ‖∞

, (3.15)

then

P

(
n

∑
i=1

εiξi ≥ s

)
≥ exp(−C2s2/|ξ|2). (3.16)

To show that eachθ ∈ Θ (Lemma3.2.1) satisfies the super-Gaussian estimate (3.3), Theo-

rem3.2.4will be used to pass to subspacesEI := span{ei : i ∈ I} on which we have control

of the coordinates ofθ. To use Theorem3.2.5, we will need volume estimates for certain

sets involving the|·| and‖·‖∞ norms on the orthogonal projection ofK onto EI . This is

done in the next section.

3.2.3 Projections and retention of volume

Here we prove a lemma which gives a uniform lower bound for the volume of certain sets

that will be used in conjunction with Theorems3.2.4and3.2.5. We emphasize that it is

a general fact, true forarbitrary isotropic convex bodies andarbitrary subspaces (not just

unconditional bodies and coordinate subspaces as we need here).
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For 1≤ ℓ≤ n, letGn,ℓ denote the set of allℓ-dimensional subspaces ofR
n; for E ∈ Gn,ℓ, let

PE be the orthogonal projection ontoE.

Lemma 3.2.6. There exist positive absolute constants C′, C′′ and c such that for each in-

teger n≥ 1, for any isotropic convex body K⊂ R
n, any ℓ ∈ [n] and any E∈ Gn,ℓ, the

intersection of the sets

K′
E := {x∈ K : (1/C′)

√
ℓLK ≤ |PEx| ≤C′√ℓLK} (3.17)

and

K′′
E := {x∈ K : ‖PEx‖∞ ≤C′′LK logn}, (3.18)

say KE := K′
E ∩K′′

E, has volume greater than c.

The proof relies on two basic facts. See, for instance, [8, Proposition 2.5.1] and [8, Propo-

sition 2.1.1].

Fact 3.2.7. There exists an absolute constantC3 such that ifn≥ 1, K ⊂ R
n is an isotropic

convex body andN is a finite subset ofBn
2, then

∫
K

max
θ∈N

|〈x,θ〉|dx≤C3LK log(#N ).

Fact3.2.8. There exists an absolute constantC4 such that ifn≥ 1, K ⊂R
n is a convex body

of volume one, and iff is a semi-norm, then

(∫
K

f p(x)dx

)1/p

≤C4p
∫

K
f (x)dx for all p≥ 1. (3.19)

Proof of Lemma3.2.6. Let K ⊂R
n be an isotropic convex body,ℓ ∈ [n] andE ∈ Gn,ℓ. Then

∫
K
|PEx|dx≤

(∫
K
|PEx|2dx

)1/2

=
√
ℓLK .

By Markov’s inequality, for anyτ > 0, we have

vol
(
{x∈ K : |PEx| ≤ τ

√
ℓLK}

)
≥ 1− 1

τ2 . (3.20)
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Settingc1 := (2C4)
−1, whereC4 is the constant from Fact3.2.8, we have

∫
K
|PEx|dx≥ c1

(∫
K
|PEx|2dx

)1/2

= c1

√
ℓLK .

Applying the Paley-Zygmund inequality (Lemma3.2.3), we get

vol
(
{x∈ K : |PEx| ≥ (c1/2)

√
ℓLK}

)
≥ c2

1/4. (3.21)

Taking into account (3.20) and (3.21), we determine that there are positive absolute con-

stantsC′ andc> 0 for which

vol
(
K′

E

)
= {x∈ K : (1/C′)

√
ℓLK ≤ |PEx| ≤C′√ℓLK} ≥ 2c. (3.22)

To conclude, setC′′ :=C3/c, whereC3 is the constant from Fact3.2.7. Since

‖PEx‖∞ = max
i≤n

|〈PEx,ei〉|= max
i≤n

|〈x,PEei〉|,

we can apply Markov’s inequality and Fact3.2.7to obtain

vol
(
K′′

E

)
= vol

({
x∈ K : ‖PEx‖∞ ≤C′′LK logn

})
≥ 1−c.

Thus

vol(KE) = vol
(
K′

E ∩K′′
E

)
≥ c,

which concludes the proof.

3.2.4 Proofs of the cap estimates

Here we combine the results of the previous sections to complete the proofs ofProposition

3.1.1and Corollary3.1.2.

Proof of Proposition3.1.1. AssumeK is a 1-unconditional isotropic convex body inRn.

ConsiderC1, κ andΘ from Lemma3.2.1. Setℓ := ⌊κn⌋, the largest integer less thanκn.

Fix θ ∈ Θ so that
1

C1
√

n
≤ |θi | ≤

C1√
n
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for all i ∈ I , whereI = I(θ)⊂ [n] and|I |= ℓ. Set

E(I) := span{ei : i ∈ I},

where theei ’s are the standard unit vector basis forR
n. By Lemma3.2.6, the intersection

K′
E(I)∩K′′

E(I) has volume vol
(
KE(I)

)
≥ c.

Let X = (x1, . . . ,xn) be a random vector distributed uniformly inK. Let ε1, . . . ,εn be inde-

pendent Rademacher random variables (cf. (3.13)). ThenX and(ε1X1, . . . ,εnXn) have the

same distribution. Denote the probability measure corresponding toX, namely vol(·|K), by

PK ; by Pε the product-measure corresponding toε = (ε1, . . . ,εn). Then

vol({x∈ K : |〈x,θ〉|> t}) = PK

(
|

n

∑
i=1

θixi |> t

)

= PK ⊗Pε

(
|

n

∑
i=1

εiθixi |> t

)

=
∫

K
Pε

(
|

n

∑
i=1

εiθixi |> t

)
dx

≥ (1/2)
∫

K
Pε

(
|∑
i∈I

εiθixi |> t

)
dx (by Thm.3.2.4)

≥ (1/2)
∫

KE(I)

Pε

(
|∑
i∈I

εiθixi |> t

)
dx. (3.23)

Fix x∈ KE(I), and sety= (θixi)i∈I . Then, by definition ofKE(I) andΘ,

‖y‖∞ ≤ C1√
n
‖PE(I)x‖∞ ≤ C1C′′LK logn√

n

and √
ℓLK

C1C′√n
≤ 1

C1
√

n
|PE(I)x| ≤ |y| ≤ C1√

n
|PE(I)x| ≤

C1C′√ℓLK√
n

.

SinceK is 1-unconditional,LK ≤ 1/
√

2, (e.g., [3]). Moreover, for any convex bodyK, LK ≥
LBn

2
≥ 1/

√
2πe. Recalling thatℓ = ⌊κn⌋, we conclude that there exist absolute constants

A1 > 1 andA2 > 1 such that

‖y‖∞ ≤ A1 logn√
n
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and
1
A2

≤ |y| ≤ A2.

Let C2 be the constant from Theorem3.2.5. At this point we can determine the constantC

asserted in Proposition3.1.1: takeC := A1A2
2C2. Then our assumption (3.4) implies

C2|y| ≤ t ≤ |y|2
C2‖y‖∞

,

making (3.23) ripe for an application of Theorem3.2.5:

(1/2)
∫

KE(I)

Pε

(
|∑
i∈I

εiθixi |> t

)
dx ≥ (1/2)

∫
KE(I)

exp(−C2t
2/|y|2)dx

≥ (c/2)exp(−C2A2
2t

2)

≥ (c/2)exp(−Ct2),

where we have used the notationy= (θixi)i∈I as above. Sincec/2≥ e−t2
for t large enough,

we can recover the proposition as stated simply by adjusting the constants.

To prove Corollary3.1.2, we will need two additional results.

Lemma 3.2.9. For any M∈ (0,1), the set

Θ1 := {θ ∈ Sn−1 : ‖θ‖∞ ≤ M}

hasσ-measure at least1−2ne−nM2/2.

Proof. Using the well-known estimate

σ(θ ∈ Sn−1 : |〈e1,θ〉|> M)≤ 2e−nM2/2, (3.24)

(see, e.g., [1, Lemma 2.2]), we have

σ
(
θ ∈ Sn−1 : ∃i ≤ n : |〈ei ,θ〉|> M

)
≤ nσ

(
θ ∈ Sn−1 : |〈e1,θ〉|> M

)

≤ 2ne−nM2/2.
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Another result, due to Bobkov and Nazarov [3, Propositions 2.4], will also be of use.

Proposition 3.2.10.Let K be a 1-unconditional isotropic convex body inR
n. Then

K ⊂
√

3/2nBn
1.

Proof of Corollary3.1.2. Let β > 0. Apply Lemma3.2.9with Mn :=
√

2(β+1) logn
n so that

σ(Θ1)≥ 1−2n−β. By Proposition3.2.10,

hK(θ)≤
√

3/2n‖θ‖∞

for eachθ ∈ Sn−1. Thus

σ
(

θ ∈ Sn−1 : hK(θ)≤
√

3(β+1)nlogn
)

≥ σ(Θ1)

≥ 1−2n−β.

Let Θ be the set from Lemma3.2.1. As the proof of Proposition3.1.1shows, any element

of Θ satisfies the super-Gaussian estimate (3.3). Thus ifθ ∈ Θ∩Θ1, we have

vol({x∈ K : |〈x,θ〉| ≥ εhK(θ)}) ≥ vol
(
{x∈ K : |〈x,θ〉| ≥ ε

√
3(β+1)nlogn}

)

≥ exp(−CC̃ε2nlogn),

(whereC̃= 3(β+1)) provided that

C≤ ε
√

3(β+1)nlogn≤
√

n
C logn

,

whereC is the constant from Proposition3.1.1.

3.2.5 Comparison with recent results

As we mentioned in the introduction, super-Gaussian estimates have recently been studied

by B. Klartag [14] and G. Paouris [20]. We state only the results from Klartag’s paper as

the latter is still in preparation.

In [14], a Borel probability measureµ onR
n is said to bedecentif µ(E)≤ (1/n)dimE for

any subspaceE ⊂ R
n. In particular, any absolutely continuous probability measure onR

n

is decent. The following is from [14, Cor. 1.4].
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Proposition 3.2.11. There exists a sequence Rn → ∞ with the following property: Let µ

be a decent probability measure onRn. Then, there exists a non-zero linear functional

φ : Rn → R such that

µ({x∈ R
n : φ(x)≥ tM})≥ cexp(−Ct2) for all 0≤ t ≤ Rn

and

µ({x∈ R
n : φ(x)≤−tM})≥ cexp(−Ct2) for all 0≤ t ≤ Rn,

where M> 0 is a median, that is,

µ({x∈ R
n|φ(x)| ≤ M})≥ 1/2 and µ({x∈ R

n : |φ(x)| ≥ M})≥ 1/2

and c,C> 0 are universal constants. Moreover, one may take Rn = c(logn)1/4.

If one makes additional assumptions on the “position” of the measure, a similar statement

holds for “most” functionalsφ; we refer the reader to the article for the precise result.

3.3 On the mean-width of an isotropic convex body

For a convex bodyK ⊂ R
n, denote its support function by

hK(θ) := sup
x∈K

〈x,θ〉 , (θ ∈ Sn−1).

The width ofK in the direction ofθ is the quantityw(K,θ) = hK(θ) + hK(−θ) and the

mean-width ofK is

w(K) =
∫

Sn−1

w(K,θ)dσ(θ) = 2
∫

Sn−1

hK(θ)dσ(θ).

Recall Urysohn’s inequality (see, e.g., [23, Corollary 1.4]).

Proposition 3.3.1. Let K⊂ R
n be a convex body. Then

w(K)≥ 2

(
vol(K)

vol(Bn
2)

)1/n

.
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In particular, ifK ⊂ R
n is a convex body with vol(K) = 1, thenw(K)≥ c

√
n, wherec> 0

is an absolute constant. On the other hand, the following theorem is often referred to as a

“reverse-Urysohn inequality”.

Theorem 3.3.2.Let K be a convex body inRn. Then there exists an affine image TK of K

of volume one such that

w(TK)≤C
√

nlogn, (3.25)

where C is an absolute constant.

The proof is a combination of results due to Figiel and Tomczak-Jaegermann[6] and Pisier

[22]. The position associated to the latter fact is referred to asℓ-position and plays an

important role in Asymptotic Geometric Analysis; see, e.g., the survey [11, §2.3].

In this section, we discuss upper bounds for the mean-width of a convex body in isotropic

position; recall the latter assumption entails vol(K) = 1, the center of mass ofK is the

origin and ∫
K
〈x,θ〉2dx= L2

K for eachθ ∈ Sn−1. (3.26)

Currently, the best-known upper bound is the following.

Theorem 3.3.3.Let K⊂ R
n be an isotropic convex body. Then

w(K)≤Cn3/4LK , (3.27)

where C is an absolute constant.

The latter estimate follows from Dudley’s entropy estimate as in [9, Theorem 5.6] and the

covering number bound from [17, Lemma 4]; a proof is in [12]. Included below is a sketch

of the proof for the sake of completeness. Before doing so, we will require the following

fact [13, Theorem 4.1].

Lemma 3.3.4. Let K⊂ R
n be an isotropic convex body. Then

LKBn
2 ⊂ K ⊂ (n+1)LKBn

2. (3.28)

Proof of Theorem3.3.3. For eacht > 0, letN(K, tBn
2) be the smallest number of translates

of tBn
2 whose union coversK, i.e.,

N(K, tBn
2) := min

{
N|∃x1,x2, . . . ,xN ∈ K : K ⊂

N⋃
i=1

(xi + tBn
2)

}
. (3.29)
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By Dudley’s entropy bound,

w(K)≤ C√
n

∫ ∞

0

√
logN(K, tBn

2)dt, (3.30)

whereC is an absolute constant. Note thatN(K, tBn
2) = 1 if t ≥ (n+1)LK (by Lemma3.3.4).

Thus, sinceK is assumed to be isotropic, we in fact have

w(K)≤ C√
n

∫ (n+1)LK

0

√
logN(K, tBn

2)dt. (3.31)

One can bound the covering numberN(K, tBn
2) using a special case of [17, Lemma 4],

which states that for any convex bodyK ⊂ R
n, one has

N(K, tBn
2)≤ exp(C1nM2(K)/t) , (3.32)

where

M2(K) :=
1

vol(K)

∫
K
|x|dx (3.33)

In our case,K being isotropic implies that

M2(K)≤
(∫

K
|x|2dx

)1/2

=
√

nLK . (3.34)

Thus

w(K) ≤ C√
n

∫ (n+1)LK

0
(C1nM2(K)/t)1/2dt

≤ C2n1/4L1/2
K

∫ (n+1)LK

0
t−1/2dt

≤ C3n3/4LK .

Remark3.3.5. The bound (3.27) can also be derived easily using more recent tools, namely

results of Paouris onLq-centroid bodies in [21] (see also [7, §2 (in particular, (2.2) and

Lemma 2.5)].

It is known that sub-Gaussian estimates such as (3.1) also have implications for the width

of K (cf. §1.1.4, in particular (1.23)).
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In the next section, we offer another condition, related to lower bounds for caps similar to

(3.5), under which one can bound the mean-width.

3.3.1 Bounding the mean-width via random polytopes

Throughout this section, we assume thatK is an isotropic convex body inRn (as in (3.26)),

X1, . . . ,XN are independent random vectors distributed uniformly inK; KN their convex hull:

KN := conv{X1, . . . ,XN} ; (3.35)

P the associated product measure on⊗N
i=1K.

Lemma 3.3.6. Let t≥ 1 and suppose that n< N ≤ e
√

nt/2. Then

P

(
w(KN)≤C

√
logNLKt

)
≥ 1−e−

√
nt/2, (3.36)

whereC> 0 is an absolute constant.

Proof. Let u1, . . . ,uN be points on the sphereSn−1. Then, using (3.24) in a standard way,

we have ∫
Sn−1

max
i≤N

|〈ui ,θ〉|dσ(θ)≤ C′
1

√
logN√
n

, (3.37)

whereC′
1 is an absolute constant.

By [21, Theorem 1.1], we have

P
(
|Xi | ≤C′

2
√

nLKt for eachi = 1, . . . ,N
)
≥ 1−e−

√
nt/2,

whereC′
2 is an absolute constant. Assume now that 0< |Xi | ≤ C′

2
√

nLKt and writeX′
i =

Xi/|Xi |. Then

w(KN) ≤ 2
∫

Sn−1

max
i≤N

|〈Xi ,θ〉|dσ(θ)

≤ 2C′
2
√

nLKt
∫

Sn−1

max
i≤N

|
〈
X′

i ,θ
〉
|dσ(θ)

≤ C
√

logNLKt,

where we used (3.37) for the last inequality andC= 2C′
1C

′
2.
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εhK(θ)

hK(θ)

0

K

θ

v(θ, ε)

Figure 3.1: The volumev(θ,ε) of a cap.

Remark3.3.7. See [5, Proposition 3.3] for further observations about the mean-width of the

random polytopeKN; in particular, the relation to the width ofLq-centroid bodies.

Next, we use an idea of Giannopoulos and Milman from [10, Lemma 5.1]. For eachε ∈
(0,1) andθ ∈ Sn−1, let

v(θ,ε) := vol({x∈ K : 〈x,θ〉 ≥ εhK(θ)}) , (3.38)

as in Figure3.1.

Lemma 3.3.8. Let ε > 0. Then

P(hKN(θ)< εhK(θ))≤ exp(−Nv(θ,ε)) .

Proof. By definition,

vol({x∈ K : 〈x,θ〉< εhK(θ)}) = 1−v(θ,ε),

hence

P

(
max
j≤N

〈
Xj ,θ

〉
< εhK(θ)

)
= (1−v(θ,ε))N ≤ exp(−Nv(θ,ε)).

3.3.2 Sufficient conditions for bounding the mean-width

In this section, we prove that one can bound the mean-width of an isotropic convex body

under a certain hypothesis; namely, that in “most” directionsθ, the volume of the caps
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v(θ,ε) (cf. (3.38)) is suitably large. “Most” in this case is meant with respect to the Haar

measureσ on the sphereSn−1, and is quantified by a certain constant; expressly, letC0 be

the smallest constant such that for any positive integern and any isotropic convex body

K ⊂ R
n, (∫

Sn−1

(
max
x∈K

|〈x,θ〉|
)2

dσ(θ)

)1/2

≤C0

∫
Sn−1

max
x∈K

|〈x,θ〉|dσ(θ), (3.39)

By Fact 3.2.8, C0 is an absolute constant. It will play a role in the formulation of the

proposition.

Proposition 3.3.9. Let n be a positive integer and K an isotropic convex body inR
n. Let

α ≥ 1, ε ∈ (0,1) and p∈ [1,2]. Let v(θ,ε) be the volume of the cap defined in (3.38) and

C0 as in (3.39). If 4αεp√n≥ 1 and

σ
(
{θ ∈ Sn−1 : v(θ,ε)≥ e−αεpn}

)
≥ 1− 1

16C2
0

, (3.40)

then

w(K)≤ Ĉα3/2ε3p/2−1nLK , (3.41)

whereĈ is an absolute constant.

Before proving the proposition, we give several remarks to illustrate its potential utility and

emphasize the important ranges forα,ε andp.

Remark3.3.10. The argument from [10, Lemma 5.1] shows that foreveryθ ∈ Sn−1 and

everyε ∈ (0,1), one has

v(θ,ε)≥ c
n2(1− ε)n,

wherec> 0 is an absolute constant. But(c/n2)(1−ε)n≥ e−3εn provided that log(n2/c)/n≤
ε≤ 1/2. Hence (3.40) holds withα= 3, ε= n−1/2, andp= 1, in which case the proposition

recovers the known estimate:

w(K)≤Cn3/4LK ,

with C an absolute constant.

Remark3.3.11. If (3.40) holds with

α =C′
4 logn, ε =

1

n1/4 log1/2n
, p= 2, (3.42)
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one would obtain the optimal bound

w(K)≤C
√

nlognLK ,

whereC is an absolute constant.

Remark3.3.12. Corollary3.1.2shows that (3.40) holds withα, ε andp as in the previous

remark (3.42) for all 1-unconditional isotropic convex bodies (with a stronger measure esti-

mate). Note, however, that we have used Proposition3.2.10(the upper-bound on the width)

to prove Corollary3.1.2. Nevertheless, this shows that (3.40) holds with the values in (3.42)

for a large class of convex bodies.

Proof of Proposition3.3.9. Let t = 4αεp√n so that (by assumption)t ≥ 1. SetN = e
√

nt/2

and suppose thatX1, . . . ,XN are independent random vectors distributed uniformly inK and,

as in (3.35), KN is their convex hull. By Lemma3.3.6, we have

w(KN)≤C
√

logNLKt (3.43)

with probability at least 1−e−
√

nt/2.

On the other hand, we can use Lemma3.3.8and an approximation argument, as in [10,

Theorem 5.2], to bound the width ofK by that ofKN. For convenience, denote the set

appearing in (3.40) by A(α,ε, p). A standard volume argument shows that for anyη∈ (0,1),

there exists anη-netN ⊂ A(α,ε, p), i.e., a finite set satisfying the condition

∀θ ∈ A(α,ε, p),∃θ0 ∈ N such that|θ−θ0|< η,

with cardinality #N ≤ (3/η)n. In particular, forη = ε/4(n+1), let us fix one suchη-net

N ⊂ A(α,ε, p) with cardinality

#N ≤ (12(n+1)/ε)n. (3.44)

Claim 3.3.13.

P

(
∃θ ∈ A(α,ε, p) : hKN(θ)<

ε
2

hK(θ)
)
≤ P(∃θ0 ∈ N : hKN(θ0)≤ εhK(θ0)) . (3.45)

Proof of Claim3.3.13. Suppose that there existsθ ∈ A(α,ε, p) such that

hKN(θ)< (ε/2)hK(θ).
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Chooseθ0 ∈ N such that|θ−θ0|< η. The claim then follows from

hKN(θ0)≤ hKN(θ)+hKN(θ0−θ)

≤ (ε/2)hK(θ)+hK(θ0−θ)

≤ (ε/2)hK(θ0)+(ε/2)hK(θ−θ0)+hK(θ0−θ)

≤ (ε/2)hK(θ0)+2(n+1)LKη (by (3.28))

≤ (ε/2)hK(θ0)+2(n+1)ηhK(θ0) (by (3.28))

≤ εhK(θ0) (η = ε/(4(n+1))).

Claim 3.3.13and Lemma3.3.8yield

P

(
∃ θ ∈ A(α,ε, p) : hKN(θ)<

ε
2

hK(θ)
)

≤ #N max
θ0∈N

exp(−Nv(θ0,ε))

≤
(

12(n+1)
ε

)n

exp
(
−eαεpn/2

)
.

At this point a remark on the possible range ofε is in order. Our desired conclusion

(3.41) is a triviality if α3/2ε3p/2−1 > 1 (by the diameter bound (3.28)); hence we may as-

sumeα3/2ε3p/2−1 ≤ 1, in which case our assumption 4αεp√n ≥ 1 yields the restriction

ε ≥ 1/(8n3/4). Thus the latter probability is at most

(96(n+1))2nexp
(
−eαεpn/2

)
≤ exp

(
2nlog(96(n+1))−e

√
n/8
)

≤ exp
(
−(1/2)e

√
n/8
)
,

provided thatn satisfies 2nlog(96(n+1))≤ (1/2)e
√

n/8. Therefore

hK(θ)≤ 2ε−1hKN(θ) for eachθ ∈ A(α,ε, p) (3.46)

with probability at least 1−exp
(
−e

√
n/8/2

)
.
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Thus ifKN satisfies both (3.43) and (3.46), we have

∫
A(α,ε,p)

hK(θ)dσ(θ) ≤ 2ε−1
∫

A(α,ε,p)
hKN(θ)dσ(θ)

≤ 2ε−1w(KN)

≤ 2ε−1C
√

logNLKt.

While on the complimentA(α,ε, p)c = Sn−1\A(α,ε, p),

∫

A(α,ε,p)c

hK(θ)dσ(θ) ≤




∫

Sn−1

(
max
x∈K

|〈x,θ〉|
)2

dσ(θ)




1/2
√

σ(A(α,ε, p)c)

≤ C0w(K)
√

σ(A(α,ε, p)c)

≤ w(K)/4.

Combining the latter estimates,

w(K) = 2
∫

A(α,ε,p)
hK(θ)dσ(θ)+2

∫
A(α,ε,p)c

hK(θ)dσ(θ)

≤ 4ε−1C
√

logNLKt +w(K)/2,

hence

w(K) ≤ Ĉα3/2ε3p/2−1nLK ,

with Ĉ an absolute constant.
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CHAPTER 4

On determinants and the volume of

random polytopes1

4.1 Introduction

Recent research in the theory of high-dimensional convex bodies has focused on random

polytopes generated by points in an isotropic convex body. Recall that a convex body

K ⊂ R
n is isotropic if it has volume one, center of mass at the origin and there is a constant

LK such that ∫
K
〈x,θ〉2dx= L2

K for eachθ ∈ Sn−1. (4.1)

Any convex bodyK ⊂ R
n has an affine image which is isotropic and the isotropic constant

LK is an affine-invariant (see, e.g., [20]; cf. also §1.1.2). We generate a random polytope

in K by sampling independent random vectors uniformly inK, sayX1, . . . ,XN, and forming

their (absolute) convex hull:

KN := conv{±X1, . . . ,±XN} . (4.2)

The volume ofKN has been studied in several articles; for the most recent developments, see

[5] and the references cited therein. There is also recent interest in the isotropic constants

LKN of such polytopes [4] in which estimates for vol(KN) play an important role (cf. §1.1.6).

1A version of this chapter has been accepted for publication. P. Pivovarov. On determinants and the volume
of random polytopes in isotropic convex bodies. Geom. Dedicata.
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Our first result involves lower bounds for the volume vol(KN) whenN = n. This case is

treated in [4]. The approach taken in the latter article is to reduce the problem to the case

whenK is the Euclidean ball (via Steiner symmetrization). Our first proposition goes ina

different direction and involves more general random polytopes.

Proposition 4.1.1. Let K(1), . . . ,K(n) be isotropic convex bodies inRn. Let X1, . . . ,Xn be

independent random vectors such that Xi is uniformly distributed in K(i) for i = 1, . . . ,n.

Then with probability at least1−e−n,

vol(conv{±X1, . . . ,±Xn})≥
(c1

n

)n/2 n

∏
i=1

LK(i) , (4.3)

where c1 is a positive absolute constant.

There are three improvements on [4, Proposition 2.2(ii)]: the vectors need not be sampled

in the same body, the isotropic constants appear in the lower bound and the estimate on the

probability is stronger. Lower bounds involvingLK are of interest because of the potential

implications for the boundedness ofLK ; at present it is unknown whether or notLK is

bounded above by an absolute constant (independent ofK and the dimensionn); for the

most recent developments on this problem, see [12] and the references therein (cf. §1.1.2).

The proof of Proposition4.1.1involves a novel way of bounding the determinant det[X1 . . .Xn]

and we give several applications.

Firstly, in the special case when eachXi is sampled in the Euclidean ball, we get an imme-

diate proof of a known formula forEvol(conv{±X1, . . . ,±Xn})q for −1< q< ∞.

A second application involves zonotopes, i.e., Minkowski sums of line segments, of the

form

ZN :=
N

∑
i=1

[−Xi ,Xi ],

where theXi are independent random vectors such thatXi is distributed uniformly in an

isotropic convex bodyK(i) and [−Xi ,Xi ] := {λXi : −1 ≤ λ ≤ 1}. The volume ofZN is

considered in [3] and the argument also involves a reduction to the Euclidean ball via Steiner

symmetrization; another example in which information about the isotropic constants is lost.

We give an elementary direct estimate for the expected volumeEvol(ZN)
1/n which retains

information about the isotropic constantsLK(i) and improves a result from [3].

Our last application concerns the sharpness of Hadamard’s determinantinequality for ran-

dom matrices.
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As with many results concerning convex bodies, our results actually hold in the more gen-

eral setting of log-concave measures. We briefly recall the relevant definitions in §4.2.

The analogue of Proposition4.1.1in the log-concave case is proved in §4.3.1. A similar

result holds for random simplices, i.e., for conv{X1, . . . ,Xn+1}, see Proposition4.3.6be-

low. §4.3.2contains the special case of the Euclidean ball. §4.4& 4.5 treat the volume of

zonotopesZN and Hadamard’s inequality, respectively.

Lastly, we mention some notation and conventions. Our results are most meaningful when

the dimensionn is large. Throughout,c,c1,C,C′, . . ., etc. denote absolute constants (in

particular, independent ofn and the given measures). The symbol|·| will serve multiple

roles, including the standard Euclidean norm onR
n and the absolute value of a scalar, the

use of which will be clear from the context.

4.2 Isotropicity and marginals of log-concave measures

Here we list some definitions and basic facts concerning log-concave measures. We refer the

reader to the introductory pages of [13] and the references listed there for a more complete

treatment.

Recall that a measureµ onRn is said to be log-concave if for anyλ ∈ [0,1],

µ(λA+(1−λ)B)≥ µ(A)λµ(B)1−λ (4.4)

for all compactA,B⊂ R
n. HereλA+(1−λ)B := {λa+(1−λ)b : a∈ A,b∈ B}.

Similarly, a functionf : Rn → [0,∞) is log-concave if for anyλ ∈ [0,1] and andx,y∈ R
n,

f (λx+(1−λ)y)≥ f (x)λ f (y)1−λ.

Basic examples of log-concave measures include Lebesgue measure, standard Gaussian

measure and, most importantly for us, uniform distribution on a convex bodyK ⊂ R
n:

µ(A) =
vol(A∩K)

vol(K)

for any measurableA ⊂ R
n. A theorem of Borell [2] characterizes log-concave measures

that are not supported on any proper affine subspace as those that are absolutely continuous
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with respect to Lebesgue measure and have log-concave densities (cf.Proposition2.1.3in

Chapter2).

A probability measureµ onRn is isotropic if its center of mass is the origin, i.e.,

∫
Rn
〈x,θ〉dµ(x) = 0, for eachθ ∈ Sn−1, (4.5)

and ∫
Rn
〈x,θ〉2dµ(x) = 1 for eachθ ∈ Sn−1. (4.6)

In particular, ifµ is isotropic then for any subspaceE ⊂ R
n,

∫
Rn
|PEx|2dµ(x) = dim(E), (4.7)

wherePE denotes the orthogonal projection ontoE.

It is known that for any probability measureµ onRn that is not supported on a proper affine

subspace there exists an affine mapT : Rn → R
n such thatµ◦T−1 is isotropic.

Suppose now thatµ is a log-concave probability measure onRn. If E is a subspace ofRn,

then the marginal ofµ with respect toE is the measureµ◦P−1
E onE defined by

µ◦P−1
E (A) = µ({x∈ R

n : PEx∈ A})

for measurableA⊂ E. One can check thatµ◦P−1
E is itself log-concave and, ifµ is isotropic

then so too isµ◦P−1
E .

We will also make use of the following lemma.

Lemma 4.2.1. Let µ be an isotropic log-concave probability onRn. Let 0< s< t and let

θ ∈ Sn−1. Then

µ({x∈ R
n : s< 〈x,θ〉< t})≤ t −s

The proof can be found in [13, §2].

Remark4.2.2. Note the difference between the definitions of isotropicity for convex bodies

(cf. (4.1)) and for probability measures (cf. (4.6)). In particular, ifX is a random vector

distributed uniformly in an isotropic convex bodyK ⊂ R
n (as defined by (4.1)), thenX/LK

is distributed according to an isotropic log-concave probability measure.
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Moment comparisons

We will use some well-known facts about comparison of moments.

Lemma 4.2.3. Let µ be a log-concave probability measure onR
n. Suppose that‖·‖ is a

norm onRn and−1< q< 0< p< ∞. Then

1
C′p

(∫
Rn
‖x‖pdµ(x)

)1/p

≤
∫
Rn
‖x‖dµ(x)≤ 4e

1+q

(∫
Rn
‖x‖qdµ(x)

)1/q

, (4.8)

where C′ ≥ 1 is an absolute constant.

The left-most inequality is standard (it can be proved by applying Borell’s lemma, e.g., [21,

Appendix III]; in fact, it holds for semi-norms). The right-most inequality isdue to Guedon

[10]. For related developments on negative moments, see [15], [16] and [23].

For the reader’s convenience, we isolate a particular case of Lemma4.2.3used below.

Lemma 4.2.4.Let X be a random vector distributed according to an isotropic log-concave

probability measure µ onRn. Let1≤ ℓ≤ n and let E⊂ R
n be a subspace withdimE = ℓ.

Then the random variable

Y :=
|PEX|√

ℓ

satisfies

E|Y|−1/2 ≤C, (4.9)

where C> 0 is an absolute constant.

Proof. Observe that

∫
Rn
|PEx|−1/2dµ(x) =

∫
E
|x|−1/2dµ◦P−1

E (x)

≤ (8e)1/2
(∫

E
|x|dµ◦P−1

E (x)

)−1/2

(by Lemma4.2.3)

≤C

(∫
E
|x|2dµ◦P−1

E (x)

)−1/4

(by Lemma4.2.3)

=C(
√
ℓ)−1/2. (by the isotropicity ofµ◦P−1

E )

HereC is an absolute constant that depends onlyC′ from Lemma4.2.3.
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4.3 Random determinants

We begin with an elementary lemma about determinants of random matrices with inde-

pendent columns distributed according to isotropic probability measures (noassumption of

log-concavity).

Lemma 4.3.1.Let µ1, . . . ,µn be isotropic probability measures onRn (as in (4.5) and (4.6)).

Let X1, . . . ,Xn be independent random vectors such that Xi is distributed according to µi for

each i= 1, . . . ,n. Suppose also that X1, . . . ,Xn are linearly independent with probability

one. Then

E|det[X1, . . . ,Xn]|2 = n!. (4.10)

Proof. Set

V0 := {0}, andVk := span{X1, . . . ,Xk} for k= 1, . . . ,n−1. (4.11)

Note that

|det[X1, . . . ,Xn]|= |X1||PV⊥
1

X2| · · · |PV⊥
n−2

Xn−1||PV⊥
n−1

Xn|. (4.12)

Apply Fubini’s Theorem iteratively, integrating first with respect toXn, thenXn−1 and so

on. At each stage, use the isotropicity condition (4.7).

Remark4.3.2. In the case when allµi are equal to the uniform measure on a convex body

K ⊂ R
n, the latter lemma is a well-known fact attributed to Blaschke (see, e.g., [8]). Our

argument is somewhat shorter as we avoid brute-force expansion of thedeterminant.

4.3.1 Random cross-polytopes and simplices

We now formulate and prove the analogue of Proposition4.1.1for log-concave measures.

Proposition 4.3.3.Let µ1, . . . ,µn be isotropic log-concave probability measures onR
n. Let

X1, . . . ,Xn be independent random vectors such that Xi is distributed according to µi for

i = 1, . . . ,n. Then with probability at least1−e−n,

vol(conv{±X1, . . . ,±Xn})≥
(c1

n

)n/2
, (4.13)

where c1 is a positive absolute constant.

Proposition4.1.1in the introduction follows immediately by Remark4.2.2.
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Proof. For eachk = 0,1, . . . ,n− 1, letVk be as in (4.11). Let T : Rn → R
n be the linear

operator mapping the standard unit vector basis(ei) to (Xi), i.e., Tei = Xi for i = 1, . . . ,n.

Then conv{±X1, . . . ,±Xn}= T[conv{±e1, . . . ,±en}] and

vol(conv{±X1, . . . ,±Xn}) =
2n

n!
|detT|. (4.14)

For eachk= 1, . . . ,n, set

Yk :=
|PV⊥

k−1
Xk|

√
n−k+1

.

Note thatYk > 0 with probability 1. Suppose now thatX1, X2,. . . , Xk−1 are fixed. Let

Ek denote expectation inXk (with X1, . . . ,Xk−1 fixed). LettingC denote the constant from

Lemma4.2.4, we have

EkY
−1/2
k ≤C.

Applying Fubini’s Theorem iteratively (integrating first with respect toXn, thenXn−1 and

so on, as in the proof of Lemma4.3.1), we obtain

E

n

∏
k=1

Y−1/2
k ≤Cn. (4.15)

Settingc1 := (eC)−2 and using (4.12), we have

P

(
|detT|< cn

1

√
n!
)
= P

(
n

∏
k=1

|PV⊥
k−1

Xk|< cn
1

√
n!

)

= P

(
n

∏
k=1

Yk < cn
1

)

= P

(
n

∏
k=1

Y−1/2
k > c−n/2

1

)

≤ e−n,

where the inequality follows from Markov, (4.15) and our choice ofc1. The proof now

follows from (4.14).

Remark4.3.4. By Lemma4.3.1and (4.14), the lower bound (4.13) captures the correct

dependence onn.

For subsequent use, we isolate one consequence of the bound for det[X1, . . . ,Xn] given in
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latter proof.

Corollary 4.3.5. Let µ1, . . . ,µn be isotropic log-concave probability measures onR
n. Let

X1, . . . ,Xn be independent random vectors such that Xi is distributed according to µi for

i = 1, . . . ,n. Then

E|det[X1, . . . ,Xn]|1/n ≥ c′′
√

n,

where c′′ is a positive absolute constant.

In the case when allµi are equal to the uniform distribution on a convex bodyK ⊂ R
n, the

latter corollary appears in [20, §3.7]. The benefit of our argument is that we avoid direct

expansion of the determinant.

There is an analogue of Proposition4.3.3for random simplices.

Proposition 4.3.6. Let µ1, . . . ,µn+1 be isotropic log-concave probability measures onR
n.

Suppose that X1, . . . ,Xn+1 are independent random vectors such that Xi is distributed ac-

cording to µi for each i= 1, . . . ,n+1. Then with probability at least1−Ce−c′n,

vol(conv{X1, . . . ,Xn+1})≥
(

c̃1

n

)n/2

,

wherec̃1, C and c′ are absolute constants.

For the proof, we follow the argument given in [4, Proposition 2.2(ii)], which is based on

[14, Lemma 3.3].

For clarity of exposition, we will prove two lemmas about the volume of arbitrary(non-

random) simplices involving a reduction to the symmetric case. The first is a consequence

of the Rogers-Shepard difference body inequality [24]: for any convex bodyK ⊂ R
n,

vol(K−K)≤
(

2n
n

)
vol(K) . (4.16)

Lemma 4.3.7. Let x1, . . . ,xn+1 ∈ R
n be affinely independent points. Then

vol(conv{x1, . . . ,xn+1})≥ 4−nvol(conv{±(xi −xn+1)}n
i=1) . (4.17)
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Proof. SetW = {0,x1−xn+1, . . . ,xn−xn+1}. Then by (4.16), we have

vol(conv{x1, . . . ,xn+1}) = vol(convW)

≥ 4−nvol(convW−convW)

= 4−nvol(conv(W−W))

≥ 4−nvol(conv{±(xi −xn+1)}n
i=1) .

Lemma 4.3.8.Suppose that x1, . . . ,xn+1 are affinely independent. Suppose also that v∈R
n

satisfies〈v,xi〉= 1 for each i= 1, . . . ,n. Then

vol(conv{x1, . . . ,xn+1})≥ 4−n|1−〈v,xn+1〉|vol(conv{±x1, . . . ,±xn}) . (4.18)

Proof. Let F : Rn → R
n be the linear map defined byF(x) = x−〈v,x〉xn+1. Then

F [conv{±x1, . . . ,±xn}] = conv{±(xi −xn+1)}n
i=1

and hence

|det(F)|vol(conv{±x1, . . . ,±xn}) = vol(conv{±(xi −xn+1)}n
i=1) . (4.19)

The proof now follows from Lemma (4.3.7) the fact that|det(F)|= |1−〈v,xn+1〉|.

Proof of Proposition4.3.6. With probability one,X1, . . . ,Xn are linearly independent and

X1, . . . ,Xn+1 are affinely independent. Thus we can defineV =V(X1, . . . ,Xn) by 〈V,Xi〉= 1

for eachi = 1, . . . ,n.

By Paouris’ theorem [22, Theorem 1.1 & §8] (cf. Theorem1.1.7) formulated for log-

concave measures, we have

P(|X1| ≤C0n)≥ 1−e−c0n.

whereC0 andc0 are positive absolute constants. Next, note that 1= 〈V,X1〉 ≤ |V||X1| and

hence

P(|V| ≥ 1/(C0n))≥ 1−e−c0n. (4.20)
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Observe that

P
(
|1−〈V,Xn+1〉|< e−n) = EX1,...,XnPXn+1(1−e−n < 〈V,Xn+1〉< 1+e−n)

= EX1,...,XnPXn+1

(
1−en

|V| < 〈V/|V|,Xn+1〉<
1+e−n

|V|

)

≤ 2C0ne−n+e−c0n,

where the inequality follows from Lemma4.2.1and (4.20).

Thus by Lemma4.3.7, we have

vol(conv{X1, . . . ,Xn+1})≥ 4−n|1−〈V,Xn+1〉|vol(conv{±X1, . . . ,±Xn}) . (4.21)

By Proposition4.3.3, we have

P

(
vol(conv{±X1, . . . ,±Xn})≥ (c1/n)n/2

)
≥ 1−e−n.

Thus with probability at least 1−e−n−2Cone−n−e−c0n, we have

vol(conv{X1, . . . ,Xn+1})≥
(

c1

(4e)2n

)n/2

. (4.22)

Finally, choose absolute constantsC andc′ such thate−n+2Cone−n+e−c0n <Ce−c′n.

4.3.2 Moment formulas for random cross-polytopes in the ball

Since the Euclidean ball plays a unique role in volume estimates for random polytopes

(as in, e.g., [4]), we give an elementary direct proof of the special case of Proposition

4.1.1when eachK(i) is the Euclidean ball of volume oneBn
2. Our argument improves the

estimate on the probability given in [4, Proposition 2.2(ii)] and unifies the approach for

such volume problems. In the process, we also get a short proof of a known formula for

Evol(conv{±Xi}n
i=1)

q, where theXi are independent random vectors inBn
2 and−1< q<∞.

As usual, we will denote the volume of the Euclidean ball of radius one inR
n by ωn; the

Haar measure onSn−1 by σ.

Lemma 4.3.9.Let1≤ k≤ n. Suppose that E⊂R
n is a subspace of dimension k and let PE
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denote the orthogonal projection onto E. Then for any q∈ (−k,∞),

∫
Sn−1

|PEθ|qdσ(θ) =
kΓ( k+q

2 )Γ(1+ n
2)

nΓ(n+q
2 )Γ(1+ k

2)
. (4.23)

The proof involves a standard rotational-invariance argument.

Proof. By rotational invariance ofσ, we may assume thatE = span{e1, . . . ,ek}. Using

polar coordinates, we have

1

(2π)n/2

∫
Rn
|PEx|qe−|x|2/2dx =

1

(2π)k/2

∫
Rk
|x|qe−|x|2/2dxk . . .dx1

=
kωk

(2π)k/2

∫ ∞

0
rk+q−1e−r2/2dr

=
2q/2kΓ( k+q

2 )

2Γ(1+ k
2)

but also

1

(2π)n/2

∫
Rn
|PEx|qe−|x|2/2dx =

nωn

(2π)n/2

∫ ∞

0
rn+q−1e−r2/2dr

∫

Sn−1

|PEθ|qdσ(θ)

=
2q/2nΓ(n+q

2 )

2Γ(1+ n
2)

∫

Sn−1

|PEθ|qdσ(θ).

Proposition 4.3.10.Let X1, . . . ,Xn be independent random vectors uniformly distributed in

the Euclidean ball of volume oneBn
2. Then for any q∈ (−1,∞),

Evol(conv{±Xi}n
i=1)

q
=

(
2nΓ(1+ n

2)

πn/2n!

)q
(

Γ(1+ n
2)

Γ(1+ n+q
2 )

)n
n

∏
k=1

Γ( k+q
2 )

Γ( k
2)

. (4.24)

Similar facts have appeared in the literature in several places (via various methods); see,

e.g., [19], [25], [17], [18]. The important range for us isq∈ (−1,0).

Proof. Let E ⊂ R
n be a subspace of dimensionk. Integrating in polar coordinates and
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applying Lemma4.3.9, we have

∫
Bn

2

|PEx|qdx = nωn

∫ ω−1/n
n

0
rn+q−1dr

∫
Sn−1

|PEθ|qdσ(θ)

= ω−q/n
n

k
n+q

Γ( k+q
2 )Γ(1+ n

2)

Γ(n+q
2 )Γ(1+ k

2)
.

The proposition follows from the determinant formulas (4.12), (4.14) and Fubini’s theorem

(integrating first with respect toXn, thenXn−1 and so on).

Proposition 4.3.11.Let X1, . . . ,Xn be independent random vectors uniformly distributed in

Bn
2. Then with probability at least1−e−n,

|conv{±X1, . . . ,±Xn}| ≥
(c2

n

)n/2
, (4.25)

where c2 is a positive absolute constant.

Proof. By Proposition4.3.10, Stirling’s formula and the fact that

lim
x→∞

Γ(x+α)
xαΓ(x)

= 1 (α ∈ R),

there is an absolute constantC̃ such that

Evol(conv{±Xi}n
i=1)

−1/2 ≤ (C̃n)n/4. (4.26)

Setc2 := (e4C̃)−1. Then

P

(
vol(conv{±Xi}n

i=1)< (c2/n)n/2
)

= P

(
vol(conv{±Xi}n

i=1)
−1/2

> (c2/n)−n/4
)

≤ (c2/n)n/4
Evol(conv{±Xi}n

i=1)
−1/2

≤ e−n.
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4.4 Zonotopes and a geometric inequality

Definition 4.4.1. A Minkowski sum of line segmentsS1, . . . ,SN in R
n, Z :=∑N

i=1Si is called

azonotope.

We will consider zonotopes generated by line segments of the form[−x,x] = {αx : −1 ≤
α ≤ 1} or [0,x] = {αx : 0≤ α ≤ 1}, wherex∈ R

n.

If x1, . . . ,xN ∈ R
n, andM : RN → R

n is the linear operator defined byMei = xi for i =

1, . . . ,N, then the zonotopeZ = ∑N
i=1[−xi ,xi ] is the image of the cubeBn

∞ underM since

MBN
∞ =

{
N

∑
i=1

λixi : λ = (λi) ∈ BN
∞

}
=

{
N

∑
i=1

λixi : |λi | ≤ 1, i = 1, . . . ,N

}
=

N

∑
i=1

[−xi ,xi ].

In this section we discuss the volume of random zonotopes and their application to a multi-

integral norm first considered by Bourgain, Meyer, Milman, and Pajor [3]. Since the latter

article deals with convex bodies, we will work exclusively with convex bodies (for ease

of comparison with the results from [3] and to make clear the exact dependence on the

isotropic constants of the associated convex bodies, which are “hidden”in the log-concave

setting).

LetV1, . . . ,VN be convex bodies of volume one inRn whereN≥ n. Forp≥ 0, letI p(V1, . . . ,VN)

be the expectedp-th power of the volume of the zonotope∑N
i=1[0,Xi ], where theXi ’s are

independent random vectors withXi distributed uniformly inVi , i.e.,

I p(V1, . . . ,VN) :=
∫
Rn

· · ·
∫
Rn

vol

(
N

∑
i=1

[0,xi ]

)p

dx1 . . .dxN.

If Vi =V for eachi = 1, . . . ,N, we will use the notationI p(V,N) instead ofI p(V1, . . . ,VN).

In [3, Theorem 1.3], it is proved, via Steiner symmetrization (see Appendix) thatif V1, . . . ,VN

are convex bodies of volume one, then for eachp≥ 0,

I p(V1, . . . ,VN)≥ I p(Bn
2,N); (4.27)

also, ([3, Lemma 2.6]) forp= 1/n,

I1/n(B
n
2,N)≥ c̃3N√

n
,
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wherec̃3 > 0 is an absolute constant (here, as above,Bn
2 is the Euclidean ball of volume

one).

If we assume that eachVi is isotropic, we can use Corollary4.3.5to estimateI1/n(V1, . . . ,VN)

directly; we thus retain information about the isotropic constants.

Proposition 4.4.2. Let V1, . . . ,VN be isotropic convex bodies inRn. Then

I1/n(V1, . . . ,VN)≥
c̃4N√

n




1(N
n

) ∑
I⊂{1,...,N}

|I |=n

(
∏
i∈I

LVi

)1/n


 ,

wherec̃4 > 0 is an absolute constant.

Proof. Let X1, . . . ,XN be independent random vectors such thatXi is distributed uniformly

in Vi for eachi = 1, . . . ,N. For eachI ⊂ {1, . . .N} with |I | = n, setdI := |det[Xi ]i∈I |. By

Corollary4.3.5(and Remark4.2.2), we have

Ed1/n
I ≥ c̃4

√
n

(

∏
i∈I

LVi

)1/n

, (4.28)

wherec̃4 is an absolute constant. Using the zonotope volume formula

vol

(
N

∑
i=1

[0,Xi ]

)
= ∑

I⊂{1,...,N}
|I |=n

|det[Xi ]i∈I | (4.29)

(see, e.g., [20, pg 73]), together with concavity ofx 7→ x1/n, we have

I1/n(V1, . . . ,VN) = E

(
∑
|I |=n

dI

)1/n

≥
(

N
n

)1/n−1

∑
|I |=n

Ed1/n
I

≥ c̃4N√
n



(

N
n

)−1

∑
I⊂{1,...,N}

|I |=n

(
∏
i∈I

LVi

)1/n


 .
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Remark4.4.3. In the latter proposition, ifVi = V for eachi = 1, . . . ,N, thenI1/n(V,N) ≥
c̃4NLV/

√
n. On the other hand, settingI0 = {1, . . . ,n}, and applying Jensen’s inequality,

we have

I1/n(V,N) = E

(
∑
|I |=n

dI

)1/n
≤
(

N
n

)1/n

(EdI0)
1/n ≤ C̃4NLV/

√
n,

whereC̃4 is an absolute constant (for the second inequality, we have used Lemma4.3.1,

Remark4.2.2and Stirling’s formula).

A multi-integral norm

Suppose now thatV1, . . . ,VN andK are centrally-symmetric convex bodies inRn, i.e.,Vi =

−Vi andK =−K. Forλ = (λi) ∈ R
N, let

‖λ‖ :=
∫

V1

· · ·
∫

VN

∥∥∥∥∥
N

∑
i=1

λixi

∥∥∥∥∥
K

dxN . . .dx1. (4.30)

In [3, Theorem 1.4], it is proved that, in the caseN = n, if Vi = V for eachi = 1, . . . ,n,

vol(V) = vol(K) = 1 and ifX = (Rn,‖·‖K) has cotypeq, then

‖λ‖ ≥ cq
√

n

(
n

∏
i=1

|λi |
)1/n

LV , (4.31)

wherecq is a constant that depends on the cotype-q constant ofX.

For more recent developments, see [9], where a lowerℓ2 bound for‖·‖ is established (not

involving the isotropic constantLV); see also [7].

Using our Proposition4.4.2, we can prove (4.31) without the cotype assumption onX =

(Rn,‖·‖K). For the proof, we use the following proposition ([3, Proposition 2.1]).

Proposition 4.4.4. Let K⊂ R
n be a centrally symmetric convex body withvol(K) = 1 and

let x1, . . . ,xN ∈ R
n. Let ε1, . . . ,εN be independent random variables withP(εi = 1/2) =

P(εi =−1/2). Then

Eε

∥∥∥∥∥
N

∑
i=1

εixi

∥∥∥∥∥
K

≥ c̃5
√

n√
N

vol

(
N

∑
i=1

[−xi ,xi ]

)1/n

,

wherec̃5 is an absolute constant.
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Proposition 4.4.5. Let V1, . . . ,VN and K be centrally-symmetric convex bodies of volume

one inRn. Suppose also that Vi is isotropic for each i= 1, . . . ,N. Then for eachλ ∈ R
N,

‖λ‖ ≥ c
√

N

((
N
n

)−1

∑
I⊂{1,...,N}

|I |=n

(
∏
i∈I

|λi |
)1/n(

∏
i∈I

LVi

)1/n
)
,

where c is a positive absolute constant.

Proof. Fix λ ∈R
N. Let X1 . . . ,XN be independent random vectors such thatXi is distributed

uniformly inVi for eachi = 1, . . . ,N. LetE denote expectation inX1, . . . ,XN. Let ε1, . . . ,εN

be independent random variables (also independent ofX1, . . . ,XN) such thatP(εi = 1) =

P(εi =−1) = 1/2 and letEε denote expectation inε1, . . . ,εN. For eachI ⊂ {1, . . .N} with

|I |= n, setdI ,λ := |det[λiXi ]i∈I |. Then

E

∥∥∥∥∥
N

∑
i=1

λiXi

∥∥∥∥∥
K

= E

(
Eε

∥∥∥∥∥
N

∑
i=1

εiλiXi

∥∥∥∥∥
K

)

≥ c̃5
√

n√
N

E

(
vol

(
N

∑
i=1

[−λiXi ,λiXi ]

))1/n

(by Prop.4.4.4)

=
2c̃5

√
n√

N
E

(

∑
|I |=n

dI ,λ

)1/n

(cf. (4.29))

≥ 2c̃5
√

n√
N

(
N
n

)1/n−1

∑
|I |=n

Ed1/n
I ,λ (concavity ofx 7→ x1/n)

≥ c
√

N

((
N
n

)−1

∑
|I |=n

(
∏
i∈I

|λi |
)1/n(

∏
i∈I

LVi

)1/n
)
, (cf. (4.28))

wherec̃5 andc are positive absolute constants.

Corollary 4.4.6. Let V1, . . . ,Vn and K be centrally-symmetric convex bodies of volume one

in R
n. Suppose also that Vi is isotropic for each i= 1, . . . ,n. Then for anyλ ∈ R

n,

‖λ‖ ≥ c
√

n

(
n

∏
i=1

|λi |
)1/n(

n

∏
i=1

LVi

)1/n

,

where c> 0 is an absolute constant.
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Remark4.4.7. In the latter corollary, ifVi = V for each i = 1, . . . ,n, then the isotrop-

icity assumption onV may be dropped (since, forX1, . . . ,Xn ∈ V, |det[TX1, . . . ,TXn]| =
|det[X1 . . . ,Xn]| for anyT ∈ SL(n)).

4.5 Hadamard’s inequality for matrices with independent log-

concave columns

Let A be a matrix with columnsA1, . . . ,An. Hadamard’s inequality states that

|detA| ≤
n

∏
i=1

|Ai |; (4.32)

when eachAi is non-zero, equality holds if and only if theAi are orthogonal. The ratio

h(A) :=
|detA|

∏n
i=1|Ai |

(4.33)

has been studied for various random matricesA (e.g., [11], [6], [1]). For instance, the

case when theAi are uniformly distributed onSn−1 is examined by Dixon in [6], where he

computes the mean and variance of logh(A) and proves that for eachε > 0,

lim
n→∞

P

(
n−1/4−εe−n/2 ≤ h(A)≤ n−1/4+εe−n/2

)
= 1.

In this case, of course Lemma4.3.9above and the determinant formula (4.12) give

Eh(A)q =
n!
nn

(
Γ(1+ n

2)

Γ(n+q
2 )

)n
n

∏
k=1

Γ( k+q
2 )

Γ(1+ k
2)

(4.34)

for −1< q< ∞. One can also calculateE logh(A) by using (4.34) and the fact that

exp(E logh(A)) = lim
q→0

(Eh(A)q)1/q.

More generally, suppose thatµ is a log-concave probability measure onRn with center of

mass at the origin. LetT ∈ GL(n) be such thatµ◦T−1 is isotropic and setS= T/|detT|1/n.

Then, as in [20, pg 70] (cf. §1.1.2, Proposition1.1.5), we have

∫
Rn
|x|2dµ◦S−1(x)≤

∫
Rn
|x|2dµ(x).
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Thus ifA1, . . . ,An are independent random vectors distributed according toµ, then

E|detA|2 = E|det(SA)|2 ≤ E

n

∏
i=1

|SAi |2 ≤ E

n

∏
i=1

|Ai |2.

In other words, Hadamard’s inequality will give the best bound ifµ is isotropic. As in

Proposition4.3.3, we can also consider the case when theAi are not necessarily identically

distributed.

Proposition 4.5.1.Let µ1, . . . ,µn be isotropic log-concave measures. Suppose that A1, . . . ,An

are independent random vectors such that Ai is distributed according µi for each i= 1, . . . ,n.

Let A be the matrix A= [A1 · · ·An] and let h(A) be as defined in (4.33). Then

P

(
h(A)1/n ∈ [c′1,c

′
2]
)
≥ 1−2e−c′3n (4.35)

where0< c′1 < c′2 < 1 and c′3 > 0 are absolute constants.

Proof. Let C′ be the constant from Lemma4.2.3and set

B := 2(4C′)2√nBn
2.

By Markov’s inequality, we have

µ(Rn\B)≤ 1
4(4C′)4 . (4.36)

Let E ⊂ R
n be a subspace of dimensionk for somek∈ {0, . . . ,n−1}. Then

∫
Rn\B

|PEx|2dµ(x)≤ µ(Rn\B)1/2
(∫

Rn
|PEx|4dµ(x)

)1/2

≤ µ(Rn\B)1/2(4C′)2k (by Lemma4.2.3)

≤ k/2, (by (4.36))
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and hence

∫
Rn

|PEx|2
|x|2 dµ(x) ≥ 1

4(4C′)4n

∫
B
|PEx|2dµ(x)

=
1

4(4C′)4n

(∫
Rn
|PEx|2dµ(x)−

∫
Rn\B

|PEx|2dµ(x)

)

≥ k
8(4C′)4n

.

Thus settingC3 = 8(4C′)4, we have

∫
Rn

|PE⊥x|2
|x|2 dµ(x) = 1−

∫
Rn

|PEx|2
|x|2 dµ(x)≤ 1− k

C3n
.

As in the proof of Lemma4.3.1(cf. (4.12)), we apply Fubini’s theorem (integrating first

with respect toXn thenXn−1 and so on) to obtain

Eh(A)2 ≤
n−1

∏
k=0

(1−k/(C3n))≤
(

1
n

n−1

∑
k=0

(1−k/(C3n))

)n

≤
(

1− 1
4C3

)n

.

Setc4 := 1−1/(4C3) and observe that for any 1< α < c−1
4 , we have

P

(
h(A)> (αc4)

n/2
)
≤ α−n. (4.37)

We know turn our attention to the reverse bound. LettingC denote the constant from Lemma

4.2.4and applying the Cauchy-Schwarz inequality, we get

∫
Rn

|x|1/4

|PE⊥x|1/4
dµ(x)≤

(∫
Rn
|x|1/2dµ(x)

)1/2(∫
Rn
|PE⊥x|−1/2dµ(x)

)1/2

≤
(∫

Rn
|x|2dµ(x)

)1/8

C1/2(n−k)−1/8 (cf. proof of Lemma4.2.4)

≤C1/2
(

n
n−k

)1/8

.

Integrating as above, we conclude that

Eh(A)−1/4 ≤Cn/2(nn/n!)1/8 ≤ (e1/8C1/2)n.
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Finally, for anyβ > 1, we have

P

(
h(A)< (βe1/2C2)−n

)
= P

(
h(A)−1/4 > (β1/4e1/8C1/2)n)

)
≤ β−n/4.

This concludes the proof of the proposition.
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CHAPTER 5

Concluding remarks and open problems

5.1 Concluding remarks

A common thread in Asymptotic Geometric Analysis is the use of probabilistic methods,

especially in proving existence theorems. The key to using such methods often lies in

deducing useful information from “average behavior.” Milman’s proofof Dvoretzky’s The-

orem, and the use of concentration of measure, is the archetypal example.

We conclude this thesis with several general comments on how we have effectively used

averaging techniques, especially in the context of isotropic convex bodies. While these may

be transparent to experts, we point out several examples for the benefit of the non-specialist

reader.

Deducing useful information from average behavior is ubiquitous in Chapter3, especially in

the proof of Proposition3.1.1. For instance, in the notation of said proposition, one trans-

fers a question about a 1-unconditional isotropic convex bodyK to Rademacher random

variablesεi by averaging overK (see steps in §3.2.4)

vol({x∈ K : |〈x,θ〉|> t}) =
∫

K
Pε

(
|

n

∑
i=1

εiθixi |> t

)
dx. (5.1)

To get the strongest result, one wants (a) the largest range oft and (b) the largest set of

θ ∈ Sn−1 for which a super-Gaussian estimate holds.

In order to use Theorem3.2.5, one needs to compare theℓn
2 andℓn

∞ norms for a “typical”
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vector of the formy = (θixi). To satisfy the assumption (3.15) from Theorem3.2.5one

essentially wants

|y| ≥ f (n)‖y‖∞,

for “most” y with f (n) as large as possible. How do each ofx∈ K andθ ∈ Sn−1 behave on

average? Well, ∫
Sn−1

‖θ‖∞dσ(θ)≈
√

logn√
n

.

In this case, the average of‖θ‖∞ is a bit too large. By passing to coordinate subspaces of

the formEI = span{ei}i∈I , we can in fact guarantee‖PEI θ‖∞ ≈ 1/
√

n, while still ensuring

that suchθ occupy a significant portion of the sphere. This is the content of Lemma3.2.1

(the proof of which also involves deducing information from the average of the ℓn
1 norm on

the sphere).

On the other hand, introducing the projectionPEI , we must determine the effect onx∈ K.

Of course, we have plenty of information about the behavior on average; namely, isotropic

position entails ∫
K
|PEx|2dx= dim(E)L2

K (5.2)

for anysubspaceE ⊂ R
n. Thus by Fact3.2.7and (5.2), one should have

∫
K
|PEx|dx≥ f (n)

∫
K
‖PEx‖∞dx

for any proportional dimensional subspaceE with f (n) about
√

n/ logn. Passing from the

average is then done precisely in Lemma3.2.6. Thus most steps in the proof are done by

first asking how the quantity under question behaves on average and transferring properties

accordingly.

Of course, Chapter4 contains many more examples of deducing information from average

behavior.

5.2 Recent developments

In this thesis we mentioned two results in which Steiner symmetrization (see Appendix) is

used. In particular, in the notation of Chapter4, letV1, . . . ,VN be convex bodies of volume
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one. Then for eachp≥ 0, the expectedp-th power of the volume of the random zonotope

I p(V1, . . . ,VN) :=
∫
Rn

· · ·
∫
Rn

vol

(
N

∑
i=1

[0,xi ]

)p

dx1 . . .dxN

is minimized when eachVi = Bn
2, the Euclidean ball of volume one; i.e.,

I p(V1, . . . ,VN)≥ I p(Bn
2, . . . ,B

n
2). (5.3)

Similarly, for the expected volume of a random polytope in a convex bodyK ⊂ R
n,

Ep(K,N) =
∫

K
· · ·

∫
K

vol(conv{x1, . . . ,xN})pdxN . . .dx1,

one has

Ep(K,N)≥ Ep(Bn
2,N). (5.4)

These two formulas have since been unified in current joint work by G. Paouris and this

author. For the reader’s interest, we will state the generalization.

Forx1, . . . ,xN ∈ R
n, let M = M(x1, . . . ,xN) : RN → R

n be the operator defined by

Mei = xi for eachi = 1, . . . ,N,

where theei ’s are the standard unit vector basis forR
N. Thus the matrix ofM with respect

to {ei} hasxi as itsi-th column.

Let B⊂ R
N be an arbitrary compact, convex set. Forp> 0, let

Ep(K,N,B) :=

(∫
K
. . .

∫
K

vol(M(x1, . . . ,xN)B)
pdxN . . .dx1

) 1
pn

. (5.5)

Theorem 5.2.1.With the preceding notation, we have

Ep(K,N,B)≥ Ep(Bn
2,N,B). (5.6)

Thus ifN > n and andB= conv{e1, . . . ,eN}, then

M(x1, . . . ,xN)B= conv{x1, . . . ,xN} . (5.7)
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In this case, inequality (5.6) is just (5.4).

If N ≥ n andB= BN
∞, then

M(x1, . . . ,xN)B=
N

∑
i=1

[−xi ,xi ],

and hence inequality (5.6) recovers (5.3).

5.3 Further research

Let KN be the random polytope

KN = conv{X1, . . . ,XN} , (5.8)

whereX1, . . . ,XN are independent random vectors distributed uniformly in an isotropic con-

vex bodyK. We close with a few remarks on Conjecture1.1.24mentioned in the introduc-

tory chapter, namely, estimatingEvol(KN)
1/n from below.

A problem at the heart of this research involves the volume of the convex hull of N arbitrary

(non-random) points inRn. Sharpupperbounds have been known for almost twenty years

now. (e.g., [3], [4], [1]; see also [2]).

Theorem 5.3.1. If x1, . . . ,xN ∈ R
n and|xi | ≤ α

√
n, then

vol(conv{x1, . . . ,xN})1/n ≤ Cα
√

log(2N/n)√
n

, (5.9)

where C is an absolute constant.

The only known examples that illustrate the sharpness for the full range ofn< N ≤ en are

random (as far as I know); for instance, ifx1, . . . ,xN are sampled uniformly in the Euclidean

ball Bn
2 or if they are Gaussian vectors, then the lower bound for vol(conv{x1, . . . ,xN})1/n

is of the same order as the upper bound (5.9). Finding a suitable characterization for the

convex hull of arbitrary points to have the maximum possible volume would complement

the current literature and may lead to insights for the random polytopeKN ⊂ K as defined

above; in particular, in understanding the proper dependence on the isotropic constantLK .
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Perhaps placing the volume problem for the random polytopeKN in a more general frame-

work will yield new insights. For convenience, letKN now denote the symmetric polytope

KN = conv{±X1, . . . ,±XN} . (5.10)

Let BN
p is the unit ball inℓN

p . Let M : RN → R
n be the random matrix defined byMei = Xi ,

i = 1, . . . ,N (where theei ’s are the standard unit vector basis inRN). ThusKN = MBN
1 .

How does vol
(
MBN

p

)
behave asp → 1? SinceMBN

1 = KN ⊂ K, we have vol(MBn
1) ≤ 1

and any lower bound for vol
(
MBN

1

)
in terms ofLK leads to an immediate upper bound for

LK . On the other hand, the upper bound vol
(
MBN

p

)
≤ 1 is not necessarily true forp > 1.

In particular, the implications for the boundedness ofLK are not as strong; hence this may

be a more tractable problem. This is related to estimates for the volume of (non-random)

p-zonotopes in [5].
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CHAPTER 6

Thesis summary

In this thesis we considered various problems inAsymptotic Geometric Analysis. The main

focus of the field is the geometry of convex sets inn-dimensional space. In contrast to Clas-

sical Geometry, which usually involves the familiar two and three dimensional spaces, the

main interest here is geometry in higher dimensions. The key focus is onhigh-dimensional

phenomena- where the characteristic behavior reveals itself only when the dimension is

suitably large (hence the use of the termasymptotic). High-dimensional systems are ubiq-

uitous in mathematics and applied fields and precise descriptions of high-dimensional phe-

nomena are of broad interest. Understanding and, more importantly,quantifyingsuch phe-

nomena can be a challenge as our low-dimensional intuition is of little use. One such topic,

with highly counter-intuitive results, is thedistribution of volume in convex sets. In the

introductory chapter, we surveyed recent developments and outlined how the results of this

thesis fit within the theory. Chapters2 to 4 are self-contained papers based on the arti-

cles [6], [5] and [4], respectively. Each paper addresses a certain aspect of the behavior of

volume in high-dimensional convex sets. In this chapter, we summarize our mainresults.

A common theme underlying all papers in this thesis is the geometry of high-dimensional

random polytopes. One way to generate such objects is to sampleN points independently

according to a probability measure onn-dimensional Euclidean space and form their convex

hull. Sample polytopes, generated by randomly selecting vertices of the three-dimensional

cube, are shown in Figure6.1. Chapters 2 and 4 are largely devoted to understanding

properties of polytopes. In Chapter3, random polytopes are used more as a tool to analyze

the geometry of general convex bodies.
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Figure 6.1: Sample random polytopes generated by vertices of the cube.

Chapter2 addresses the following (somewhat loosely stated) question.

Question 6.0.2.How many points N should be sampled for a random polytope to capture

significant volume?

Of course, the meaning of “significant volume” depends on the model of randomness and

one wants the smallest suchN, typically a critical threshold value. Here the interest is when

the dimensionn is large andN depends onn. This work was motivated by results of Dyer,

Furedi and McDiarmid [2] (who answered the question when the points are drawn from the

n-dimensional cube) and a subsequent generalization due to Gatzouras and Giannopoulos

[3]. Both of the latter papers consider random models with particular characteristics (the

random vectors involved have compact support and independent coordinates). In Chapter

2, we treat random models that lack these features. For instance, if one samples according

to n-dimensional Gaussian measure, i.e., multi-variate normal distribution (which is not

compactly supported), the corresponding polytopes are not uniformly bounded. In this

case, there are a number of possible criteria for capturing volume. For example, “How

many points should be sampled to capture the volume of a Euclidean ball?” (a natural

choice as Gaussian measure is invariant under rotations). For clarity, wehave included

sample two-dimensional polytopes and the portion of volume of a ball that they capture

in Figure6.2. On the other hand, one can ask, “How many points are needed to capture

the volume of a cube?” (Gaussian measure is, after all, a product-measure.) Of course,

there are many possible answers, e.g., capturing volume in other convex bodies; taking

the Gaussian measure of the polytope is equally natural. Theorem2.2.1provides a rather

satisfactory answer, including all of the aforementioned criteria; in fact, we determine the

number of Gaussian vectors needed to capture not only different volumes but more general

notions of size (according to log-concave measures). In §2.3, we also consider polytopes

generated by sampling vertices from then-dimensional sphere. In this case, the coordinates

of the random vectors lack independence. We also provide a natural complement to the
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Figure 6.2: Sample Gaussian polytopes and the portion of volume inside Euclidean
balls.

latter results by proving corresponding theorems for polytopes generated by random faces

(as opposed to just random vertices).

Chapter3 is devoted to the distribution of volume in convex bodies. Fundamental questions

in the theory can be loosely stated as (i) What parts of a high-dimensional convex body

account for its size? (ii) Why does volume seem to concentrate in places thatcontradict

our low-dimensional intuition? IfK is a convex body inn-dimensional space, we can

measure the distribution of volume by considering caps as shown in Figure6.3. The cap

t

θ

K

V(θ, t)

Figure 6.3: A capV(θ, t) in K for gauging decay of volume.

V(θ, t) of heightt in the direction ofθ gauges how the volume ofK decays ast increases.

Preciseupper boundsfor the volume ofV(θ, t) are closely connected to several difficult

open problems. Perhaps the most famous is Conjecture1.1.6(on the uniform boundedness

of isotropic constants, discussed in §1.1.2). Motivated by Fields Medalist J. Bourgain’s

approach to the latter conjecture, there has been much research on upper bounds for the

volume of the capsV(θ, t). Chapter3 is somewhat of a departure from previous research
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in that we show that thereverseestimates, i.e.,lower boundsfor the volume of such caps

are also important. The first proposition in Chapter3 involves sharp lower bounds for the

volume ofV(θ, t) whenK is a convex body exhibiting certain symmetries (symmetric under

coordinate reflections). In §3.3, we discuss the problem of bounding the mean-width of an

isotropic convex body, a natural question about a classical parameter.Proposition3.3.9, the

main result of §3.3, reveals that cap-estimates similar to those forV(θ, t) are at the heart of

the problem. The proof is of independent interest as it involves approximation of a convex

body by a random polytope with relatively few vertices.

Chapter4 further explores the volume of random polytopes. In this case, the polytopes are

generated by sampling pointsX1, . . . ,XN (independently) in an arbitrary isotropic convex

bodyK and forming their convex hull, say,KN = conv{X1, . . . ,XN} as shown in Figure6.4.

Rather than calculating threshold values as in Chapter2, the focus is on precise estimates

Figure 6.4: A random polytopeKN in K.

for the expected volume ofKN in terms of three parameters: the dimensionn, the number

of pointsN, and the isotropic constantLK of K. Determining the correct dependence is gen-

uinely difficult; in fact, equivalent to resolving Conjecture1.1.6(mentioned in the previous

paragraph). The difficulty lies in capturing the correct dependence onall three parameters,

n, N, andLK , simultaneously. Giannopoulos and his coauthors [1] have sharp results inn

andN but at the expense ofLK . In Chapter4 we obtain the correct dependence on all three

parameters but only whenN is small relative ton. Our results improve on previous esti-

mates in several ways. Firstly, the model considered in §4.3allows one to sample the points

from multiple convex bodies (or log-concave measures). Surprisingly, themore general

model yields cleaner proofs and more accurate estimates. The results can also be phrased in

terms of determinants of random matrices and thus have applications to several geometric

inequalities, e.g., the volume of zonotopes and Hadamard’s inequality for random matrices.
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In Chapter5, we conclude with recent developments and open problems. In particular,we

discuss placing the volume problem for the random polytopeKN (mentioned in the previous

paragraph) in a more general framework.
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CHAPTER 7

Appendix: Steiner symmetrization

In this appendix we discuss Steiner symmetrization, which is used in the proofsof several

theorems mentioned in previous chapters.

Definition 7.0.3. Let K be a convex body andH a hyperplane. TheSteiner symmetral

SH(K) of K with respect toH is defined by the following procedure: For each straight line

L orthogonal toH such thatK∩L 6= /0, shift the line segmentK∩L along the lineL until its

midpoint is inH. The union of all such line segments isSH(K); see Figure7.1.

H

K

SH(K)

Figure 7.1: Steiner symmetrization

The key fact in proving (1.34) and (4.27) is that both quantities decrease under Steiner

symmetrization of the associated convex bodies.
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One can then invoke a classical fact, due to Gross [1].

Theorem 7.0.4.Let K⊂ R
n be a convex body of volume one. Then there is a sequence of

successive Steiner symmetrizations of K which converges to the Euclideanball of volume

oneBn
2 in the Hausdorff metric.

We refer the reader to [2] for further information on Steiner symmetrization.
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