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Abstract

This thesis is based on three papers on selected topics in Asymptotic Geonmetlsisia.

The first paper is about the volume of high-dimensional random polytopgsarticular,
on polytopes generated by Gaussian random vectors. We considendbgog of how
many random vertices (or facets) should be sampled in order for sualiitage to capture
significant volume. Various criteria for what exactly it means to capturdfgignt volume
are discussed. We also study similar problems for random polytopesagethday points

on the Euclidean sphere.

The second paper is about volume distribution in convex bodies. Therfaist result is
about convex bodies that are (i) symmetric with respect to each of theinats hyper-
planes and (ii) in isotropic position. We prove that most linear functionalsgotinsuch
bodies exhibit super-Gaussian tail-decay. Using known facts aboateha-width of such
bodies, we then deduce strong lower bounds for the volume of certasn \dagpalso prove
a converse statement. Namely, if arbitrary isotropic convex body (not necessarily sat-
isfying the symmetry assumption (i)) exhibits similar cap-behavior, then onbaamd its

mean-width.

The third paper is about random polytopes generated by sampling potoisisng to mul-
tiple log-concave probability measures. We prove related estimates favmaddtermi-
nants and give applications to several geometric inequalities; these inslilates on the

volume-radius of random zonotopes and Hadamard'’s inequality fooramdatrices.
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CHAPTER 1

Introduction

1.1 Asymptotic Geometric Analysis

One does not have to look far to find examples of the peculiar behavialaine in high

dimensions. For instance, consider teimensional cubé—1,1]" and Euclidean ball
B). The ball has volume v@Bj) = 12/ (n/2+ 1), which for largen is of the order

(2Tte/n)”/2. Though the ball touches the cube in each of itsfates, the proportion of
volumes is a minuscule

vol (BY) e /2
vol([—l,l}n)—(%> , ash—e.

Put another way, if a point is sampled randomly in the dutie 1]", it will miss the ball with
probability about 1- (Te/(2n))"2. This high-dimensional property is usually incorporated
in a two-dimensional picture by drawing the ball as in Figlre

Where exactly does the volume in the cube concentrate? What about otivexdodies?

The distribution of volume in convex bodies is a well-studied topisgmptotic Geometric
Analysis The latter field is concerned with various aspects of convex bodiesspedially
the characteristic behavior that emerges when the dimension tends to infinity.

Probabilistic methods play a key role in the theory. Since V.D. Milman’s semirabiithe
concentration of measure phenomernorhis approach to Dvoretzky’s Theoretr®?, so-
phisticated methods have been developed, spawning numerous direétiessarch (see,

e.g., B4, [19], [28]).
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(=L, 1]"

Figure 1.1: The proportion of volume the ball occupies in the cube

Random convex bodies - more precisely, random polytopes - havelajssmn important
role. E.D. Gluskin was the first to use such bodies in this context, showihthiaexhibit
essential differences in shap&)]. Similar probabilistic methods have been used to great
effect (see, e.g.20]) and random polytopes appear in a variety of contexts.

This thesis is a selection of topics in Asymptotic Geometric Analysis. Each oft@tsap
2 to 4 are self-contained papers based on the artid@@f [38], and [37], respectively. A
common thread is the geometry of high-dimensional random polytopes. Tard® gen-
erated by samplinyl pointsX, ..., Xy independently according to a probability meagure
onR", and forming their convex hull

Kn :=conv{Xy,...,Xn}. (1.1)

Chapter2, loosely speaking, addresses the following problem: How many pligtdN(n)
are needed foKy to capture significant volume as— o? Of course, the meaning of
“significant volume” depends on the model of randomness and one wargsdllest such
N. This work was motivated by results of Dyefjfedi and McDiarmid 13] who answered
the question when thé are drawn independently from the cubel, 1]".

Chapter3is about the distribution of volume in high-dimensional convex bodies. Thik wo
is connected to recent research emanating from J. Bourgain’s ajppima famous problem
about isotropic constants of convex bodies.

In Chapter4, we further explore the relation between the volume of random polytopes in
convex bodies and isotropic constants.

The remainder of this chapter is to serve as an introduction to all threespafleng the
way, we indicate how some of our results fit within the theory. In Chaptesre state some
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further developments (current joint work between this author and GuriRa@nd open
problems. Chapter 6 summarizes our main results.

1.1.1 Convex bodies as probability spaces

If AandB are subsets dR", their Minkowski sunis the seA+B:={a+b:ac Abe B}
and, ifA € R, we sehA= {Aa:ac A}.

The Brunn-Minkowski inequality governs how volume behaves with retisjpeMinkowski
addition.

Theorem 1.1.1.Let A and B be compact setsitY and letO <A < 1. Then

vol (AA+ (1—A)B) > vol (A)*vol (B)* . (1.2)

In other words, the logarithm of vél) is a concave function. Sed4] for an extensive
survey on the latter inequality and its many uses.

If K C R"is a convex body with vdlK) = 1, a probability measure can be associateld to
by defining
vol |k (A) := vol (ANK)

for Borel measurable sefsC R". The Brunn-Minkowksi inequality implies that
vol [k ANA+ (1—A)B) > vol |k (A)* vol | (B)* (1.3)

for any compactA,B C R" and 0< A < 1. In fact, (.3 is a defining property for an
important class of measures.

Definition 1.1.2. A Borel measurgionR" is said to bdog-concavef for any A € [0, 1],
HOA+ (1= M)B) > p(A u(B) (1.4)

for all compactA,B C R".

Many properties of convex bodies also hold for log-concave measmeésome authors
choose to work in this more general setting. For simplicity, we will focus moghisf
chapter on convex bodies. We discuss properties of log-concaveurasas subsequent
chapters, as needed. (S&8][and the references therein for further information on log-
concave measures.)
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Tail-decay of linear functionals

SupposeK is a convex body with vdK) = 1. From the probabilistic viewpoint, func-
tions f : K — R are viewed as random variables; in particular, the Euclidean mxjrea
\/X2+...+x2 and, for eactd on the Euclidean sphe@ 1, the linear functional-,6),
defined by

(X,0) =x101+...+%6n  (x€K).

For bounded measurable functiohsK — R, define

1/p
191 = 1l = ( [ 1109170x) as)

One consequence of the Brunn-Minkowksi inequality is the following psdmn (which
follows from Borell's Lemma, e.g. 34, Appendix III]).

Proposition 1.1.3. Let K C R" be a convex body witol (K) = 1 and letd € S'~1. Then
vol ({x € K :(x,8)| > t](-,8) 2}) < 27/, (L.6)

forany t> 1, where C> Qs an absolute constant.

Thus in each directiof, the volume oK outside the slapx € R" : |(x,0)| <t||(-,0),]/} de-
cays at an exponential rate. This is one reason we often draw coad@shn a hyperbolic
form, as in Figurel.2 (see also31] for a discussion of such pictures of convex bodies).

ttll(-ﬁ)”z

K
Figure 1.2: Tail-decay of linear functionals

The estimate from Propositiah1.3is of the right order for some convex bodies. For in-
stance, consider the cross-polytdge= conv{=tey,...,+ey}, whereey,..., &, is the stan-
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dard unit vector basis foR". Let ¢, be such that vdlc,B}) = 1 (thenc,/n — 1/2e as
n— o). If 6 = &,, a routine calculation shows that for each 1,

vol ({x € cnBY : (x,&n) > t[|(-,0)]2}) ~ &,
wherec > 0 is an absolute constant. (Here the notatory B meanscA < B < CA for

absolute constantsC > 0.)

For some convex bodies, the function&l®) exhibit a Gaussian-type tail-decay. For in-
stance, consider the Euclidean ljJland letd, be such that vdid,B5) = 1 (thend,//n—
(2re) /2 asn — o). Then for eact® ¢ S andt > 1,

Vol ({X € dyBY : (x,0) > t]|(-,0)[|2}) ~ e, (1.7)

wherec > 0 is an absolute constant.

The rate of tail-decay of linear functionals has important consequencele geometry
of the body, which will be explored in subsequent sections. When stgdginhdecay, we
typically assume that the body is in a suitable position.

1.1.2 Isotropic convex bodies and isotropic constants

Definition 1.1.4. A convex bodyK is isotropicif vol (K) = 1, its center of mass is the
origin, i.e.,
/ (x,8)dx= 0 for each € "1 (1.8)
K

and there is a constahk > 0 such that

/K (x,8)2dx = L2 for each € S 1. (1.9)

In the probabilistic interpretation, all functionals8) are centered and have the same vari-
ance.

The constanky is called thasotropic constantlf K C R" is a convex body with center of
mass at the origin, then there is a linear imageof K such thafl K is isotropic. Moreover,
T is unique up to orthogonal transformations. Thyscan be defined for any convex body
and it is an affine-invariant.
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Note that (.9) implies
/K!XIZdXZ nLg. (1.10)

Put another way, if a vectoris sampled randomly in an isotropic convex bad{according
to the measure vil) then its expected length is aboyhlk. Another important fact is the
following proposition.

Proposition 1.1.5.Let KC R" be a convex body withol (K) = 1 and center of mass at the

origin. Then K is isotropic if and only if

/K]xyzdxg /SK|x|2dxfor each S SL(n). (1.12)

As a sample of an isotropic convex body, see Fidug

K

SK
Figure 1.3: A convex bod¥ in isotropic position

It is known that the isotropic constants of convex bodies admit a unifornerideund.
More precisely, for any convex bod¢ C R", one has

1

A uniform upper bound is a long-standing open problem.

Conjecture 1.1.6(Uniform bound for isotropic constantsyhere exists an absolute con-
stant C such that for any integera 1 and for any convex body K R",

L <C. (1.13)

Upper bounds for the isotropic constaptwere first studied by J. Bourgain and work on the
conjecture has spawned many directions of research. The latter cogjicalso known as



CHAPTER 1. INTRODUCTION 7

the Hyperplane Conjecture or Slicing Problem (due to an equivalent fatioi involving
the volume of central sections Kf, first considered by J. Vaaler and studied by K. Ball and
D. Hensley). As all of our relevant results are stated in terms of isotrapistants, we will
not discuss other equivalent formulations beyond this point; we refeetduer to 8], [33]

or [18] and the references therein for further information.

Known results
In [8], J. Bourgain proved that K is an isotropic convex body iR", thenLx < Cn'/“logn.
Presently, the best known result is due to B. Klartag, who has showhghatCn'/4,

There are many classes of convex bodies for which the conjecture g@stize solution,
for instance, unconditional convex bodi&, [ 33], zonoids and duals of zonoid4][ unit
balls of Schatten norm&¥], Ww»-bodies P], and others22], [30]; more recently, for various
random polytopes6], [11], [1] and polytopes with few verticeg]. We define and discuss
some of these classes in subsequent sections.

1.1.3 Distribution of volume in isotropic convex bodies

Despite the lack of understanding of the isotropic condtantecent years have seen quite
striking results about the distribution of the Euclidean norm on an isotropicesdodyK;
in particular, on how:| : K — R deviates from/nLg, due to G. Paouris3g].

Theorem 1.1.7. There exists an absolute constantQ0 such that if K is an isotropic
convex body ifR", then for all t> 1,

vol ({x € K : x| > Cy/nlt}) <e V™ (1.14)

Thus the volume oK lying outside the Euclidean ball,/nLx B decays exponentially fast.

Another breakthrough concerns how the Euclidean norm concengnadesd,/nLx, due
to B. Klartag, from R4] (improving upon R3)).

Theorem 1.1.8.Let K be an isotropic convex bodyRi' and let0 < € < 1. Then
vol ({x € K :||x| — v/nLk| > ey/nLg }) < Cexp(—ce'n®), (1.15)

wheret, K, ¢ and C are positive absolute constants.
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In other words, ifS(¢) is the shell
S(e) = {x e R": (1—g)y/nl < |x| < (1+&) Vil ), (1.16)

then Klartag’s theorem implies that, for largemost of the volume oK lies insideS(e).

We have included a diagram to compare the two results, see See Eigure

C \nLgB:

(a) Large deviations of the Euclidean norm (b) e-concentration of the Euclidean norm
Figure 1.4: Comparison of the theorems of Paouris and Klartag (right)

1.1.4 Sub-Gaussian tail-decay and its implications

Definition 1.1.9. LetK be a convex body with v@dK) = 1 and center of mass at the origin.
We say thaB € S'1 is asub-Gaussiaulirection forK, if there is a constarit such that

vol ({x € K 1 |(-,8)] >t[|(-,0)]]2}) < 2exp(—t?/2b%) Vvt >1. (1.17)

When the bodyK is clear from the context, we simply say thats sub-Gaussian. If
the value of the constaitt is important, we say thdl is sub-Gaussian with constaint
The terminology comes from the comparison with a standard Gaussian (neemdm
variabley with mean-zero and variance one. The density correspondirygigap(t) =

_t2 _¢2
\/%[e /2. One can check that(|y| >t) < 2e7 /2,

A major reason for interest in the sub-Gaussian tail-decay of linear furadsi@n isotropic
convex bodies is the following theorem due to J. Bourgain, frehfljased on ideas from

(8]).
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Theorem 1.1.10.Let K C R" be an isotropic convex body and leth0. Suppose that each
8 € "1 is sub-Gaussian with constant b as 7. Then

Lk < Cblogh, (1.18)

where C is an absolute constant.

Recently, N. Dafnis and G. PaouritZ] have shown thatl(18 can be improved thx <
Chy/logh.

For an arbitrary convex body, it turns out to be quite difficult to show thate is even
onedirection® that exhibits sub-Gaussian tail-decdyl(?). More precisely, consider the
following the question, first posed by V.D. Milman.

Question 1.1.11.Is there a constant & 0 such that for any integer & 1 and any convex
body Kc R" with vol (K) = 1, there is a directior® € S"~* for which

vol ({x € K : | (x,8)| > t[|(-,8)||2}) < 2exp(—ct?), Vt>1? (1.19)

Up to a logarithmic factor, it was answered in the affirmative by B. Klargij [

Theorem 1.1.12.Let K C R" be an isotropic convex body. Then there exstsS™ ! such
that
vol ({x € K :|(x,8)| > t](-,8)2}) < 2exp(—ct?/logF(t+1)),  (1.20)

forallt > 1, where ¢ and are positive absolute constants.

Klartag's proof gave = 5. A. Giannopoulos, A. Pajor and G. Paoud$][gave an alternate
proof witht = 2.

Mean-width of isotropic convex bodies

The search for sub-Gaussian tail-decay of linear functionals is ctathéx a well-known
problem about the mean-width of isotropic convex bodies. For a convdyx K C R",
denote its support function by

hc(8) :=sup(x,8), (e S 1)

xeK
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The width ofK in the direction off is the quantityw(K,0) = hk(6) + hx(—8) and the
mean-width oK is

w(K) = / w(K,8)da(8) = 2 / h (6)do ().
Q-1

S]fl

Conjecture 1.1.13.There is an absolute constant C such that for any integerlrand for
any isotropic convex body K R",

w(K) <Cy/nlognlLg. (2.21)

Presently, the best known upper bound is the following:

Theorem 1.1.14.Let K C R" be an isotropic convex body. Then
w(K) <Cn¥/4Lg, (1.22)
where C is an absolute constant.

We include a sketch of the proof of the latter theorem and further remarkseoproblem
of bounding the mean-width in Chapt&rFor now, we mention only the relation with sub-
Gaussian tail-decay. 1185, Lemma 4.2], it is proved that K is an isotropic convex body
and@ € S is sub-Gaussian with constamthen

max{hk (6),h (—6)} < Cby/nLx, (1.23)

whereC is an absolute constant. Thus if one could show that “most” directions &re su
Gaussian (or nearly so), then one would obtain a better bound on the wadtin- As
discussed above, it is non-trivial to establish even the existence ofla singh6.

1.1.5 Unconditional convex bodies

For convex bodies exhibiting certain symmetries many of the themes discussesl are
well-understood.

Definition 1.1.15. A convex bodyK C R" is 1-unconditionalf for eachx = (x1,...,X,) € K
and each choice of sigese {—1,1},i =1,...,n, the vector(€1Xy, . .., €xXn) belongs tK.
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Thus ifK is isotropic and 1-unconditional théfisatisfies the following conditions:

Ul) vol(K)=1.

U2) If x=(x) € K then[—|xq|,|xa|] X ... X [—]Xn|, [X%n]] C K.
It is well-known that isotropic constants of 1-unconditional convex bodie uniformly
boundedT], [33]. The following formulation is from §].
Proposition 1.1.16.1f K ¢ R" is a 1-unconditional isotropic convex body ther K 1/v/2.
Bobkov and Nazarov€] initiated the study of sub-Gaussian behavior of functionals on
1-unconditional bodies and proved the following proposition.

Proposition 1.1.17.Let K C R" be al-unconditional isotropic convex body and & be

the diagonal directior®y = %(1, ...,1). Then for each t 1,
vol ({x € K 1 |(x,64)| >1}) < 26", (1.24)

where ¢> 0is an absolute constant.

The isotropic constantk = ||(-,0)||2 has been omitted from the statement of the latter
proposition since 1-unconditional bodies have uniformly bounded isetogmstants. In a
subsequent paper, Bobkov and Nazarov studied sub-Gaussiavidrer directions other
than the main diagonal and proved the following theorem (frépn [

Theorem 1.1.18.There exist positive numerical constanis @ and t with the following
property. For any integer & 1 and for anyl-unconditional isotropic convex body K R",
the o-measure of the set 6fc S*~1 such that

vol ({x € K : |(x,0)] >t}) < exp(—cot?/logt), VYt >to, (1.25)

is at leastl —n~“. Moreover, ¢ can be chosen arbitrarily large at the expense pand t.

Thus the tail-decay of most, 6) are nearly sub-Gaussian.

In Chapter3, we prove a complement to Theorelrl.18and show that 1-unconditional
isotropic convex bodies have masyper-Gaussiadirections (analogous td (17) but with
the reverse inequality). We also prove related estimates that have implicatidhe mean-
width of an arbitrary isotropic convex body.
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1.1.6 Random polytopes and isotropic constants

Isotropic constants of random polytopes

As mentioned in the introduction, a major success in Asymptotic Geometric Anabsis h
been the use of random polytopes in solutions to various long-standing pblems.
Their potential as counter-examples to Conjecfulie6was recently studied by Klartag and
Kozma R6]. As a sample result, we mention the following theorem for polytopes gemkerate
by Gaussian random vectors of the fokn= (y1,...,Yn), Wherey; are independeri(0,1)
random variables.

Theorem 1.1.19.Let N> n and let X, ... Xy be independent Gaussian random vectors in
R". Set

Gn :=conv{Xy,...,Xn}-

Then, with probability at least — C;e ",
Lg, <C, (1.26)

where CC; and g are positive absolute constants.

For polytopes generated by points sampled independently and uniformlg splier&',
a similar result was proved by D. Alonso-Gutierréf. [

Subsequent research has examined random polytopes generateithtisyinpan isotropic
convex bodyK C R". Let Xy,..., Xy be independent random vectors distributed uniformly
in K andKy their convex hull

Kn :=conv{Xy,...,Xn}. (1.27)

In[11], N. Dafnis, A. Giannopoulos and O. Guedon asked the following questiout the
relation between the isotropic constantXgfandK.

Question 1.1.20.Is it true that, with probability tending th as n— «, one has k, <Clx,
where C> 0 is a constant independent of Kand N?

They gave an affirmative answer for the class of 1-unconditional isictimnvex bodies.
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Theorem 1.1.21.Let K be al-unconditional isotropic convex body Ri'. For every N> n
consider K as defined byl(.27) If cn < N < €°", then

P(Lg, <C)>1—¢€" (1.28)

If n < N <cn, then
P(Lk, <C) > 1— e n/logn, (1.29)

where ¢cy,cp,C, are absolute constants.

The reason for the two different probabilities is due to the lack of suitablen@estimates
in the casen < N < cn. One of the results in Chaptéimproves on volume estimates used
in the proof of the latter theorem. Volume estimatesKqrinvolve various subtleties and
have direct implications for the boundednesd.gf which we discuss further in the next
section. Before doing so, we mention also that isotropic constants of aylfitan-random)
polytopes were studied ir2]; in particular, the following theorem is proved.

Theorem 1.1.22.Let K C R" be an n-dimensional polytope with N vertices. Then

Lk < c\/f. (1.30)

The volume of random polytopes in isotropic convex bodies

If K C R"is an isotropic convex body ar}, is the random polytope defined ih.27), then
the precise dependencelfol (Ky) on the dimensiom, the number of pointdl and the
isotropic constanitk is closely related to the boundedness pf

In a series of papersi¥], [159], [11], and [1Q]), A. Giannopoulos and various coauthors
studied how the volume dfy depends om, N andLx. We summarize their results in the
following theorem.

Theorem 1.1.23.Let K C R" be an isotropic convex body and leknN < €. Let Ky be
the random polytope defined by.27). Then

‘31\/'0\9/%2—'\‘/”) < Evol (Ky) /" < Cl‘/m\%ziwmw (1.31)
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The \/log(2N/n)+/n factor appears in both the upper and lower bound. The crucial differ-
ence is that the isotropic constdn¢ does not appear in the lower bound. SikgeC K

and vol(K) = 1, lower estimates fdt vol (KN)l/” in terms ofLx immediately lead to upper
bounds forLk. (In fact, forN = n+ 1, it is also well-known that the lower bound includes
Lk, which we discuss further in Chapt4y.

The conjectured bound (equivalent to Conjectlik§ is the following.

Conjecture 1.1.24.There is an absolute constant s 0 such that

IElvoI(KN)l/n > min{clvlog([il\l/mLK,l}. (1.32)

Why doesLk disappear in the lower bound in Theordm.23 We will discuss one of the
key ingredients. IK is a convex body of volume one apd> 0, set

Ep(K,N):/K---/Kvol(conv{xl,...,xN})pde...dxl. (1.33)

Giannopoulos and Tsolomitid& ] (extending a result of Groeme2]]) proved that for each
p>0,

whereB] is the Euclidean ball of volume one. The key element in such argumeBtsireer
symmetrizationwhich is discussed in the Appendix. Thus by reducing this to the case of
the Euclidean ball, one loses the dependence on the isotropic constant.

Chapterd is devoted to various related volume estimates.
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CHAPTER 2

Volume threshold problems for random
polytopes:

2.1 Introduction

A remarkable result due to M.E. Dyer, Zifedi, and C. McDiarmid gives a threshold
for the expected volume of random polytopes generated by vertices otitheg—1, 1]".
Specifically, lefube the uniform probability measure ¢r-1,1} and letZ = (z, ...,z,) be a
random vector whose coordinates are independent and identicallyalisttiéccording te.
ConsideN = N(n) independent random vectdts, . . ., Zy, each with the same distribution
asZ, and form their convex hully = conv{Zy,...,Zn}. In [7], a threshold value foN is
established at whic@y captures significant volume in the following sense: for eachO,
we have

(2.1)

E[vol(Cn)] 0 ifN<(2/ve-g)",
vol([=1, 1M n== 11 if N> (2//8+€)"

The corresponding result for the case wheis uniform on[—1,1] is also proved. Their
method has since been significantly generalized; namely, D. Gatzourds @id@nnopou-
los, in [8], obtain analogous results for a large class of compactly supportecimlivp

measurest on R.

1A version of this chapter has been published. P. Pivovarov. Volunestibtds for Gaussian and spherical
random polytopes and their duals. Studia Math., 183(1):1534, 2007.
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We consider similar problems for Gaussian random polytopes and polygepesated by
random points on the Euclidean sphere.

In the Gaussian case, Igi,...,yn be independent (0,1) random variables and lef=
(V1,---,Yn). ConsiderN = N(n) independent copies @, say,di,...,gn and form their
convex hull

Ky :=conv{g,...,On}- (2.2)

For instance, ifR?, some samples dfy are shown in Figurg.1

50

Figure 2.1: Sample Gaussian random polytope&an

The Gaussian measure is hot compactly supported and thus if one is toezdhsidnalo-
gous threshold problem, the following question arises.

Question 2.1.1.What does it mean for\Kto capture significant volume?

There are are a number of ways of answering the latter question. Fardasthe Gaussian
measure is rotationally-invariant and one suitable answer may be to int&sseuith a
Euclidean ball and study the proportion of volume lying inside the ball, asestigd in the
figure.

L XY =

Figure 2.2: Intersection with a Euclidean ball.
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On the other hand, the Gaussian measure is a product and thus anotlgeafittimer is

to intersectky with a cube. Of course, there are many other answers - intersecting with
other convex bodies; theaussian measuref Ky is equally natural. In fact, using a recent
concentration result of B. Klartag about log-concave measures wes@gather satisfactory
answer to this question. Our considerations include intersekingith any convex body

in a suitable position. The statement of the main resulRi2 8§

Gaussian polytopes can also be generated by random facets, i.e.gikthee Gaussian
random vectors as above, then we can consider

Ky = {xeR":(g,x) <1foreach =1,...,N}. (2.3)

Such polytopes exhibit similar threshold phenomena, corresponding itueahevay to
those forKy. In this case, our arguments do not invoke duality and use only elementary
properties of the random vectors involved.

We also study the analogous problem for random polytopes generatpdiritg on the
Euclidean sphere. The threshold fdrin the spherical case is super-exponential in the
dimensiomn, which corresponds to known results about approximation of the balblyy p
topes B]. The results in 7] are exponential im and the authors ofg] considered only
measures for which there is an exponential threshoid in

We follow the same approach as that of Dyeiyddi and McDiarmid. The tools devel-
oped in [/] have a simple realization in our setting; this simplicity nicely illustrates the
geometry behind the method. The lack of independence of coordinatessipitegcal case
presents no difficulty as the argument depends more on geometric catisiderthan on
probabilistic techniques such as the theory of large deviations, &and [8].

Lastly, a few words on notation. We shall denote the canonical Euclidean anR" by
|-|; BY the Euclidean ball; Lebesgue measureRdrby vol(-); the unit spher&™1.

Isotropic log-concave measures

We start with a few basic facts about log-concave measures.

A Borel probability measure onR" is said to bdog-concavef for any A € [0, 1],

VAA+ (1—2)B) > v(A)v(B)1 2 (2.4)
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for all compactA,B C R". HereAA+ (1—-A)B:={Aa+(1—-A)b:ac Abec B}. Log-
concave measures have a surprisingly simple characterization.

Definition 2.1.2. A function f : R" — [0, ) is log-concavef for any A € [0,1] and and
X,y € R",
FX+ (1= N)y) = F M (y)*

The next proposition is due to BorelH]).

Proposition 2.1.3. Letv be a Borel probability measure dR" and suppose that is not
supported on any proper affine subspace. Thés log-concave if and only if there is a
log-concave function gR" — [0, «) such that

v(B) = /Bg(x)dx

Basic examples of log-concave measures include the uniform distributiacamvex body
K of vol (K) = 1 and also standamidimensional Gaussian measiN€0, I), i.e., the den-
sity of which is
1 2
f(x) = ———e X7/2,
( ) (2.,_[>n/2

A probability measure onR" is isotropicif its center of mass is the origin, i.e.,
/ (x,8)dv(x) =0, foreachd e "1, (2.5)

and
/ (x,8)2dv(x) =1 for eachd e S 1. (2.6)
Rn

Note the difference in normalization i2.6) and that for isotropic convex bodies (df.9).
We are assuming the variance of each functional is 1. This is the stanatandlization for
log-concave measures.

We will make essential use of the following theorem due to B. Klartag (the gualof
Theoreml.1.8for log-concave measures).

Theorem 2.1.4.Letv be an isotropic log-concave probability measure®h Then for all
0<e<1],
v{xeR":||x| - v/n| > &y/n} < Cexp(—ce'n"), (2.7)

wherert, K, ¢ and C are positive absolute constants.
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2.2 Threshold phenomena for Gaussian random polytopes

As in the introduction, leys,...,y, be independent Gaussian®1) random variables.
Denote the standard unit vector basisihby e, ...,e,. Consider the random vectgr=
SiLiVvie; theng satisfiesE|g| ~ /n. Let N = N(n) > n be an integer and considét
independent random vectags, . . . ,gn, €ach with the same distribution gs

In this section, we state and prove the main theorems for Gaussian poligegsnerated
by random vertices as i2(2)) andK} (generated by random facets as2n3j).

To state the main theorem, we need some relevant notation.
Denote by® the cumulative distribution function of a standardONL) random variable,

i.e.,
1

~Van

area = O(a) \

a
Figure 2.3: Cumulative distribution function of a standard Gaussian.

®(a) /ame‘xz/zdx (acR), (2.8)

as in the figure.

For simplicity of notation, we denote the reciprocal cf ® by W, i.e.,

Y(a) = . (2.9)

Theorem 2.2.1. Let Ky be the random polytope defined i2.2). Letv be an isotropic
log-concave probability measure @' and letO < € < 1. Then as nr— o,

Ev(Kn) — {0 TN < ®((L-€)vi), (2.10)
1 N> W((14€)yA).

Theorem 2.2.2. Let K{, be the random polytope defined i2.§). Letv be an isotropic
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log-concave probability measure @f'. LetO < € < 1. Then as n— o,

Ev(nk,) — 1 ifn<N<WY((1-¢)yn) (2.11)
0 ifN>WY((1+¢)y/n).

The proof of Theoren2.2.1is in §.2.1, Theoren?2.2.2in §2.2.2

2.2.1 Random vertices
Preparatory results

In this section we define some of the tools that are used]jrsge also 2] for an overview
of related concepts and their use in the study of random polytopes.

Let u be a probability measure dR" (or S™1) and suppose that is a random vector
distributed according tg, (i.e.,P(X € A) = u(A) for measurable sets). Forx € R", set

gu(x) :==inf{P(X € H) : H is a closed halfspace containirg
Let X1,...,Xy be independent random vectors distributed accordinpogiad set
KN = conv{Xq,...,Xn}-
Lemma 2.2.3. Let xe R". ThenP (x € xn) < Ngu(X)

Proof. LetH be a halfspace containing If none ofXy, ..., Xy belong toH thenxy lies in
R™H and hencex ¢ xn. Consequently,

N
{xe xn} C | J{X eH}
i=1
See Figure.4. SinceH was an arbitrary halfspace containixghe result follows. O

Before continuing with tools for the Gaussian case, we mention an importanecton
whenpis the uniform measure on a convex body.
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H

Figure 2.4: Estimatingj,(x)

Remark2.2.4 Supposeu = |k is the uniform measure on a convex bodyc R" with
vol (K) = 1 and writeq = q,. Then the set

Ks:={xe K:q(x) > d}. (2.12)

is called thefloating bodyof K. The latter set plays an important role in asymptotic results
concerningEvol (xn) whenN — o andn is fixed; in particular, a well-known result from
[4]is

cyvol (Kyn) < Evol(xn) < Ci(n)vol (Kyn) (2.13)

for all N > C,(n) (herec; is an absolute constant a@g(n),C,(n) depend om); see also
the survey 2]. For recent observations concernirfji3, in particular, the dependence of
Cz(n) onn, see B, Remark 2.4], which makes use of the resultslié] [

Gaussian setting

In this section, we assungg, ..., gy are Gaussian random vectors &g= conv{gi,...,On}.

For the Gaussian measure we can actually calcajate For a closed seA C R" and a
pointx € R", letd(x,A) :=inf{|x—a| : a€ A}.

Lemma 2.2.5. (a) IfH is ahalfspace with d=d(0,H) >0, thenP (g € H) = 1—®(d).

(b) For each xc R", we have (x) = 1— ®(|x|).

Proof. (a) The density ofj with respect to Lebesgue measure ) := (2m) "/ 2g-Ix?/2,
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By rotational invariance we may assume tHat= {x € R": x; > d}. Consequently,

P(geH) :/H f(x)dx = <\/1271/Re"‘5/2d>q1> v <\/127T[/dwe‘xf/2dxl> =1—d(d).

(b) If x=0 thenq(0) = 1/2=1— ®(0). Suppose that # 0. LetH(x) be the halfspace
bounded by the tangent hyperplanexd? atx and which does not contain 0. Then by part
(a) we have

1-o(|x) =P (g H(x) = a(x).

Conversely, leH be any halfspace containikgSetd =d(0,H). If d=0thenP(ge H) >
1/2>1—-®(|x|). If d > 0 then

P(geH)=1-o(d)>1-®(|x|)
sinced < |x|. It follows thatq(x) > 1 — ®(|x|). O

A consequence of Lemnta2.5is the following simple observation:

RB ={xeR":q(x) >1-d(R)} (2.14)
for anyR > 0. Equality .14 allows us to use an argument froff] fo establish the next
lemma; we include the proof for completeness.

Lemma 2.2.6.Let R> 0. Then
P(RB) C Ky) > 1-2('2) (RN, (2.15)

Proof. For anyJ C {1,...,N} with |J] = n, the set{g;};c; is linearly (hence affinely)
independent almost surely. In particular, the affine hul{@f}<; is a hyperplane almost
surely. Let us now define the evefyj: one of the two halfspacd4 determined by{g; }c)
containKy andP(g¢Z H) > 1— ®(R).

Supposex € RB)\Kn. Then there existd C {1,...,N} with |J| = n such that one of the
two half spacesi determined by{g; }jc; containsKy but excludex. But thenx belongs
to the complimentary halfspa¢¢ and so

P(g¢H) >q(x) > 1-®(R)
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since|x| < R. It follows that

{REZKviC | Es

Jc{1,..,n}
[J[=n

Thus if we seD = {1,...,n} we have

P(RB; ¢ Ky) < <I:>IP’(ED).
Now let us estimaté (Ep) by conditioning ong,...,g,. LetH and H denote the two
halfspaces generated by, ...,gn. If P(¢ H) > 1— ®(R) then
P(gjeH:j=n+1,...,N) < (®R)N™"
and similarly forH. It follows that
P(Ep|g1,.--,0n) < 2(P(R)N.
Now since
P(Ep) = E(1g,) = E(E(1gp(01,---,0n)) = E(P(Ep|d1, .-, On)

we obtainP (Ep) < 2(®(R))N-"and hence

PR S k) < 2( ) ) (OR)V"
O

Lemma 2.2.7. Letv be a Borel probability measure dR" and let B be a Borel subset of
R". Then

v(B)P (B C Kn) <Ev(KnyNB) < Nv(B)supl— d(|x])).
xeB

Proof. Note that

Evol (KyNB) :E/l{XEKN}dx:/]P’(xe Kn)dx.
B B
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The upper bound follows from Lemma2.3and Lemma2.2.5and the lower bound is
obvious. O

Estimates for Gaussian tail-decay

As in 82.2 we shall use the following standard notation:

1 a 2
d)a:—/ e ¥/2dx (acR). 2.16
@=—=/. (acw) (2.16)
Note that fora > —1 we have the approximation (sekS])
2 < /amep@/)(1l-d@) < o 2.17)
a+(a2+4)v2 — = 3at (a218)1/2 :
Recall that¥(a) = W%(a). The following lemma will be useful in subsequent calculations.
Lemma 2.2.8.Leta< b. Then
W(a)(1- d(b)) < 2expa?/2—b?/2) (2.18)
and
W(b)(1—d(a)) > (1/2)exp(b?/2—a?/2). (2.19)

Proof. Applying (2.17), we have

W(a)(1— (b)) < 2AFE L)

= 3b4 (b2 1 8)1/2 exp(a®/2—b*/2) < 2exg(a®/2—b?/2)

and

exp(b?/2—a?/2) > (1/2) exp(b?/2 —a?/2).

2(3b+ (b2 +8)/2)
POI=9@) > G @ a7

Proof of Theoren2.2.1 Lett,=(1—¢/2)/nand letR, = (1+¢/2),/n. Set

B = R,B)\t,BY.
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Assume first thaN < W((1—¢€)4/n)). Observe that
Ev(Kn) < V(t:B3) + Ev(KnNB) +V(R™MR:BY).
By Theorenm2.1.4 it suffices to show that
Ev(KnNB) — 0
asn — oo, To this end, apply Lemma.2.7and Lemm&2.2.3to obtain

Ev(KnNB)

IN

Nv(B)sup1— ®(x))

xeB
< W((1-g)vn)(1-P((1-(g/2))vn)
< 2exp((1—g)’n/2—(1-(g/2))*n/2)),

where we used Lemm2.2.8to obtain the last inequality. The latter term tends to O as

n— oo,

Assume now thalN > W((1+¢€)+/n). Lemma2.2.6implies that

P (RaB3 7 Kn)

IN

2<N> (@(Ra))N " (2.20)

n
2(eN/n)"exp((N—n)In®(R,))
= 2exp(n|n(eN/n) +(N—=n)In dJ(Rn)).

IN

Note that ¥2 < ®(R) < 1 and hence fon > 2ethe latter expression is less than

2exp(nInN +Nin d)(Rn)) < 2exp<n|n N—N(1- dJ(Rn))), (2.21)

where we have used the estimat& o x — 1.

For convenience of notation, sgt= (14 ¢€)/n. Without loss of generality we may assume
thatN = [W(rn) |, where[x]| denotes the smallest integer larger tihaAppealing to .17)
yields

ninN

IN

nin (V217/2) 1+ (r3-+ 4)/%) exp(r2/2))
nin(v2m(r,+1)) +nr2/2

nr2

A

IN
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provided that
In(v2m(ra+1)) <r3/2. (2.22)

Applying Lemma2.2.8gives
N(1-®(Ry) > (1/2)exp((r—Ry)/2).

Thus ifn satisfies 2.22 andn > 2e, we can apply Lemma.2.7to obtain

Ev(Ky) > P(RBj C Ky)V(RiB)) (2.23)
> (1 2 exp(nrﬁ —(1/2) exp(rﬁ/z - Rﬁ/z) )) V(RBY)
= (1— 2exp<(l+a)2n2 —(1/2) exp((1+ £)?n/2— n/2>)> v(R,B%(2.24)
The latter term tends to 1 &is— o, which completes the proof. O

2.2.2 Random facets
In this section we prove Theore?2.2 i.e., the threshold result fer(nKy,), where
Ky = {xeR": (gi,x) <1lforeach =1,...,N}.
Lemma 2.2.9. For each x¢ R™\{0} we have
P (x e K\) = (@(1/]x))".
Proof. By independence and rotational invariance ofdhg we have

P(xeKy) = P((x,g)<1lforeachi=1,...,N)
((x.g1) < 1)"

(a<1/)Y  (va~N(0,1))
®(L/]x)))".

(B
= (}P
(

O

Lemma 2.2.10.Suppose that is a Borel probability measure dR". Let0 <t < R and set



CHAPTER 2. VOLUME THRESHOLD PROBLEMS FOR RANDOM POLYTOPE3)

B = RB)\tB). Then for each n we have
v(B)®(n/R)N < Ev((nK{) NB) < v(B)d(n/t)N. (2.25)

Proof. Argue as in the proof of Lemma.2.7and apply Lemm&.2.9 O

Remark2.2.11 Leta > 0. The identity®(a)N = exp(NIn®(a)) and the estimate

Xx—1—(x—1)2<Inx<x—1 xe[1/2,1] (2.26)
imply that
(@) > exp(—N(1-d(a)) - N(1- d(a))?) (2.27)
and
d(a)N < exp(—N(1—d(a))). (2.28)

These estimates will be used in conjunction with Len#r#10

Proof of Theoren2.2.2 Lets, = (1—¢/2)~ty/nand letr, = (1+¢&/2)~1/n. Set
B = s,B\rnB5
Assume first thalN > W((1+ ¢€),/n). Observe that

Ev(nki) < v(rB3) +Ev((nK{) N1B) +v(R"\$,B3).

By Theorem?2.1.4 it suffices to show that
Ev((nK{)NB) — 0

asn — oo,

By Lemma2.2.1Q

Ev((nKy)NB) < v(B)®(n/ry)" (2.29)
< v(B)exp(—N(1—d(n/rp)). (2.30)
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Without loss of generality, assume tiNit= [W((1+¢€)/n)]. By Lemma2.2.§
N(1-®(n/rn)) > (1/2)exp((1+€)’n/2—(1+¢/2)°n/2) (2.31)

The latter term tends t® asn — o and hencév((nK{,) NB) — 0 asn — .

Assume now thal < W((1—¢),/n). Lemma2.2.8implies that
N(L—®(n/sn)) < 2exp( (1 - £)n/2 (1-/2)°n/2) =0, (2.32)

asn — o and hence
N(1—®(n/s))? — 0, (2.33)

asn — oo,

Therefore, invoking Lemma.2.10and @.27), we get

Ev((nKQ)B) > v(B)(®(n/s)"
> v(B)exp(—N(1— ®(n/s)) —N(1— D(n/s,)?).

The latter term tends to 1 &is— o (2.32 and @.33. This completes the proof. O

2.2.3 Intersecting with Euclidean balls

As mentioned in the introduction, the results of the previous section genetiadige of
[11]. In this section, we state two results from the latter article. The proofs rarteal
because they are similar to those of the last section (and the complete popets @n
[11)).

Theorem 2.2.12.Letk >0, c> 0and letO < € < ¢. Then, as a~ o,

E[vol (Ky NcrBY)] 0 ifN<W((c—¢g)n), (2.34)
vol (cr¥BY) 1 ifN > W((c+e)nv). '
Corollary 2.2.13. Letk > 0,c> 0and letO < € < c. Then, as A~ o,
E[vol (K{ N (crt)~1BY)] 1 ifn<N<W((c—g)n“), (2.35)
vol ((cr®)~1B3) 0 ifN >W((c+e)nk). '
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2.3 Threshold phenomena for random polytopes on the sphere

Let o denote Haar measure &1 and letuy, . ..,uy be independent random vectors dis-
tributed according t@, whereN = N(n) > n and set

Ly :=conv{u,...,un}.

Theorem 2.3.1.Let0< R< 1and letO < € < 1. Then, as n—~ o,

(2.36)

Elvol (LunREY] [0 N <exp((1-g)(n-1)n(1/vI-R)).
vol (RB)) 1 ifN> exp((1+ &)(n—1) |n(1/m)),

One can see that &— 1, more than exponentially many points are needed to capture the
volume of the entire ball.

Theorem 2.3.2.Let0 < € < 1. Then, as n— o,

M . {0 ifN < eXp<(1_8)<n_1)|n\/ﬁ)>7 (237)

vol (B) 1 ifN > exp((1+¢)(n—1)Invn).

The proofs of the above theorems are W31 The complementary results for polytopes
generated by random facets are Theor@mBsl2and2.3.13in Section2.3.2 See also the
comments preceding Theoreh8.13

Related results

Theoremg2.3.1and2.3.2complement existing research on polytopes generated by points
in the ball. In particular, in3] the authors consider the following quantity

V(nN) = max{vol (conv{xy,...,Xn}) : X1,...,Xn € B3}
T vol (BY)

and derive upper and lower bounds ¥6m,N) whenN = N(n) is a function ofn, specifi-
cally whenN is linear, polynomial and exponentialim They also show that for arty > 0,

o nl— 20

<V(n,no-1) < g /2, (2.38)
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Thus half of Theorer2.3.2(i.e., whenN < n(1-8)("-1)/2 follows from the upper estimate in
(2.38. However, we also give a short direct proof. We have chosengdhgsexp notation
because the main calculations in our proof take place “in the exponent£drfguration
of points leading to the lower estimate .88 is non-random. Theore3.2shows that
N > n1+8)("-1)/2 many random points are sufficient to hawgn,N) — 1 asn — .

In [9], Muller derives an asymptotic formula for the difference (Bf) — Evol (Ly); the
asymptotic treatment is far fixed andN — o. A major extension of Nller’s result is in
[12], to which we refer the reader for further results in this direction.

2.3.1 Random vertices
We will use the notation defined in Secti@r8. Forx € B, set

q(x) :==inf{P(ue H):H is a halfspace containing.

Forve S*1and 0< R< 1 set
C(RV):={xe St (x,v) >R}. (2.39)

Since we are interested in surface area, we will omit the referencand writeC(R) :=
C(R,v). Upper and lower estimates fofC(R)) are standard calculations. Such estimates,
however, are not commonly stated in the form that best serves ourgauapad thus we have
included the proofs.

Area of spherical caps

Let a be the angle of the ca@.39, by which we meancas=R. Fix0<t<a. LetH
be a hyperplane at distance ¢dsom the origin. TherB}NH is an(n— 1)-dimensional
Euclidean ball of radius sin Thus if we leto denote Haar measure & then

a i n-1 o :n—2
G(C(R)) = fﬂ volnfz(a(s-mthil))dt _ fons_lﬁ_ztdt.
Jo Voln_2(0 (smth ))dt Jo Si tdt
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Let I, := O"/ZSin”tdt. Integrating by parts givel, = ”%1In_2. The latter recurrence and

Stirling’s formula may be used to verify thgtnl, — /11/2; in fact, forn > 3 we have

Tt
l\/zng/ si2tdt < 2,/ 2" (2.40)
2V n 0 n

Lemma 2.3.3. Let Re (0,1). Then for each 2> 3, we have

(17 RZ)(n—l)/Z
> - :
o(C(R)) > N (2.41)
Proof. Observe that
a a inn—1
/ sin"2tdt > / sin" 2t costdt = sin” a
0 0 n—1
Applying (2.40 and noting that sin = /1 — R? yields the result. O
Lemma 2.3.4.Let Re (0,1). Then for each > 3, we have
o(C(R)) <3(1-R®)("-b/2 (2.42)
Proof. Assume first that 1,/2 < R < 1. Using the inequality
1— cost < 2sirftcost (t € [0,T/4]), (2.43)

and recalling thaR = cosa, we have

a a a
/sin”*ztdt = /sin”*ztcostdw/ sin"~2t(1— cogt)dt
0 0 0

a a
< / sin"?tcostdt + 2/ sin't costdt
0 0
si"ta N 2sim 1o
n-1 n+1
3sil 1o
- n-1 -

Applying again 2.40 and noting that sia = v/1— R? gives the result. Finally, for & R<
1/+/2, one may argue, for example, as in the prooflpilemma 2.2]. O
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Analogues of tools used in the Gaussian case

Lemma2.3.5. a. LetH be ahalfspace with:d=d(0,H). Ifd € (0,1] thenP(ue H) =
o(C(d)).

b. For xe BY, we have ¢x) = a(C(|x|)).

Lemma 2.3.6. Let Re (0,1). For each n> 2e, the inclusion RBC Ly holds with proba-
bility greater thanl — 2exp(nInN — No(C(R))).

Proof. The proof is analogous to that of Lemr@2.6and the estimates starting with.20
and ending with2.21). O

Lemma 2.3.7. Let B be a measurable subset ¢f Bhen

vol (B)P(B C Lny) < Evol(LyNB) < Nvol (B) supa(C(|x|)).

xeB

Proof. Argue as in the proof of Lemnm&a2.7and apply Lemma&.2.3and Lemm&.3.5 [
We now have all the tools for proving Theoreéh8.1

Proof of Theoren2.3.1 Assume first that

N < exp((1-¢)(n—1)In(1/V1-RP)) (2.44)

Lett :=/1—(1-R?)(1-¢/2 sp that 0< t < R. SetB:= RB}\tB} and write
Ly NRB) = (LN mth) U (LNmB).

Since

__vol(tBY) .
Aﬂom = lim (t/R)" =0, (2.45)

we need only show that lig,. Evol (Ly NB) /vol (RB}) = 0.
By Lemmaz2.3.4and the fact thatl — €/2)In(v1— R?) =In(v/1—t?), we have

o(C(t)) < 3exp((n—1)|n(\/ﬁ))
= 3eXp(—(l—8/2)(n—1)|n(1/\/m>)7 (2.46)



CHAPTER 2. VOLUME THRESHOLD PROBLEMS FOR RANDOM POLYTOPE35

foralln> 3.

Thus by Lemma&.3.7and .46), we have

Evol (LyNB) -
“WIRE) S
< 3exp(—(s/2)(n—1)|n(l/ﬂ))—>07 (2.47)

No(C(t))

asn — oo,

Assume now that

N 2exp((l+£)(n—1)In(l/\/l—R2)). (2.48)
Then by Lemm&.3.7we have

Evol (Ly NRB))

vol (RE) > P(RBCLn).

For convenience of notation, let us set v/1— R2. Without loss of generality, we may as-
sume thalN = [exp((1+¢€)(n—1)In(1/r))|, where[x] denotes the smallest integer larger
thanx. Lemma2.3.3implies that

No(C(R)) > exp((1+¢€)(n—1)In(1/r)—(n—1)In(1/r) —In(6\/n))
> exp((e/2)(n—1)In(1/r)),

V

for all n satisfying

In(6y/n) < (g/2)(N—1)In(1/r). (2.49)

Thus ifn satisfies 2.49 andn > 2e, Lemma2.3.6gives us

P(RE} ¢ Ly) < 2exp(2n2|n(1/r) —exp((g/2)(n—1) |n(1/r))) —,0, (2.50)

asn — oo, which completes the proof of Theore2rB8.1

O
Remark2.3.8 The rate of convergence in Theor@n3.1can be obtained from line2 45),
(2.47), and @.50.

Remark2.3.9 In Theoren®.3.1, we may replace by €, where(ep)n>1 C (0,1) with ey — 0
provided thate,) satisfies 2.45), (2.47), (2.49 and @.50. One may verify that, = n~Y,
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for any fixedy € (0,1), serves this purpose.

Proof of Theoren2.3.2 We shall use the following elementary fact:

i _n A2
)

0 ifO<B<1,
1 ifp>1.

Assume first that

N < exp((l—s)(n— 1)In ﬁ)
LetB:=1—¢/2 and seR,:=+/1—nB. LetB:=Bj\R,Bj and write
Ly = (LN mRnt) U (LN mB).

By (2.5)), we have
. vol(R\BY) . B
i, o1~ AmFa =0,
and thus we need only show that }im, Evol (Ly N B) /vol (B}) = 0.

By Lemma2.3.4and the fact that/1— RZ = n=P/2, we obtain
0(C(Ry)) < 3exp<(n— 1) In(ﬁ)>
= 3exp(—(1-¢/2)(n—1)Iny/n)

foralln> 3.

Thus by Lemm&.3.7and @.54), we have

Evol (Ly N B)

IN

3exp(—(s/2)(n— 1)In \m) 0,

asn — oo,

Let us now assume that
N > exp<(1+s)(n— 1)In ﬁ)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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Lety=1+¢/2 and set, := v1—n~Y. Applying Lemma2.3.7, we get

Evol (L) - Evol (Ly NraB5)
vol(BY) vol (BY)
rm-P(rpB C Ln).

\%

Using 2.51), we have
limrp =1, (2.57)

n—oo
and thus we need only prove th&fr,B C Ln) — 1 asn — . Without loss of general-
ity, we may assume th& = [exp((1+¢€)(n—1)In\/n)|, where[x] denotes the smallest
integer larger tham. Using Lemma2.3.3and the fact that/1—r2 = n~Y/2, we get

No(C(rn)) > exp((l+s)(n—1)Inﬁ+(n—1)Im/1—rﬁ—|n(6ﬁ)>
exp((1+¢€)(n—1)Iny/n—(1+¢/2)(n—1)Iny/n—1In(6/n))
> expl(e/4)(n—1)In Vi),

for all n satisfying

In(6y/N) < (g/4)(n—1)In/n. (2.58)

Thus ifn satisfies 2.58 andn > 2e, LemmaZ2.3.6yields
P(raB) ¢ Ly) < 2exp<2n2In vn—exp((e/4)(n—1)In ﬁ)) — 0, (2.59)
asn — oo, which completes the proof 02(37). O

Remark2.3.10 The rate of convergence in Theor@i3.2can be obtained from line2.63),
(2.55, and @.59.
Remark2.3.11 In Theorem2.3.2 we may replace by €, where(€n)n>1 C (0,1) with

€n — 0 provided thate,) satisfies 2.53, (2.59, (2.57) - (2.59. One can check that, =
1/In(Inn) works.
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2.3.2 Random facets

In this section we discuss counterparts to Theor2rBsland2.3.2for polytopes generated
by random facets. We shall use the notation defined in Se2t®brset

Ni={XeR": (u,x) <1foreachi =1,...,N}.

Theorem 2.3.12.LetO < R< 1 and let0O < € < 1. Then, as n— o,

Elvol (Liy N R18)] - {1 ifn<N< exp((l—e)(n— 1)|n(1/m)>, (2.60)

vol (R"1B3) 0 ifN> exp<(1+s)(n— 1)In(1/vI— R2)>.

Next, we turn our attention to threshold results for the entire HggdySincely D B3, it is

natural to consider the quantity
vol (BY)
Evol (L)

In fact, Evol (Ly) = . To see this, let &=t < s, setB = sB}\ B} and apply Lemm&.3.15
Evol (LynB) > (1/2)Nvol (sB}\BY).

Thus ifnis fixed, Evol (Ly N B) — « ass — «. Nevertheless, we can still prove the fol-
lowing threshold result.

Theorem 2.3.13.LetO< e < 1.
a. There exists a sequen@g);,_; = (tn(€))p_ Withty > 1 andr!im th = 1 such that
— 00

im vol (BY)
n—eo Evol (Ly NtaB5)

=0 ifn<N gexp((l—s)nlnﬁ). (2.61)

b. There exists a sequen@®,);y_; = (Ra(€))_q With Ry > 1 andrI]iLn Ry = o such that

- vol (BY)
n—e Evol (L NRBY)

—1 N> exp((1+s)n|n ﬁ). (2.62)

We prove only Theorerd.3.13(the proof of Theoren2.3.12is similar and appears iif]).

Recall that the notation for a spherical &&(R) was introduced inZ.39).
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Lemma 2.3.14. For each xe R"\B} we have
P(xeLy) = (1—a(C(L/|x))™. (2.63)
Proof. Letx € R"\B5. Observe first that

(0eSox <1} = {8eS1:(0,x/|x) < 1/|X}

SN intC(1/|x], x/|x)), (2.64)

where intA denotes the interior oA.

By independence of thg's, we have

P(xely) = P((u,x)<1lforeach=1,...,N)
P ((u1,%) < 1))"

(
(L—o(C(/x)))".

O

Lemma 2.3.15.Let1 <t < s and set B=sB)\tB5. Then for each n we have
vol (B) (1—a(C(1/s)))" < Evol (LyNB) < vol (B) (1—a(C(1/t)))". (2.65)
Proof. Argue as in the proof of Lemm2.2.7and apply Lemm2.3.14 O

Remark2.3.16 Let 0< a< 1. The identity(1—o(C(a))N = exp(NIn(1—o(C(a)))) and
(2.26 imply that

(1-0(C(a)" > exp(~No(C(a)) — No(C(@))?) (2.66)

and
(1—a(C(@)N < exp(~Na(C(a))). (2.67)

These estimates will be used in conjunction with Lenr&al15
Proof of Theoren2.3.13 Assume first thatZ.52 holds. Without loss of generality we

shall assume thatl = |exp((1—¢€)(n—1)In\/n)|, where|x] denotes the largest integer
smaller tharx.
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Let (th)m_, C (1,0) be any sequence satisfying the following conditions:
() iMooty =1.
(i1) iMooty = 0.
(iii) lim e No(C(1/tn)) = 0.

For instance, let, := 1//1—n-(1-¢/2)_ Thent, > 1,t, — 1 asn — o andt, satisfies
condition (ii) by .52 (in the proof of Theoren2.3.9.

To see that (iii) is satisfied, apply Lemr2a8.4and Iny/1— (1/t;)2 = —(1—¢/2)In\/nto

get
o(Cl1/w) < 3exp((n-1)iny/1-(1/102)
= 3exp(—(1-¢/2)(n—1)Iny/n)
and thus
No(C(1/tn)) < 3exp(—(¢/2)(n—1)Iny/n) — 0 (2.68)
asn — o and hence also
No(C(1/ty))? — 0 (2.69)
asn — oo,
SetB =t,B5\B}. Since
Evol (LyNtyBY)  vol(B3) +Evol(LynNB) .  Evol(LyNB)
voI(B) vol (B) =1 oy (2.70)
it suffices to prove that
Evol (LyNB)
TVl®) (2.71)
asn — oo,
By Lemma2.3.15 we have
Evol(LyNB) n N
— > (1) — — .
VO| (Bg) = (tn l)(l G(C(l/tn)))

The latter term tends t® asn — o by our choice oft,), (2.66), (2.68, and @.69.
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Let us assume now thaf.66 holds. Without loss of generality, we shall assume that
N = [exp((1+¢€)(n—1)In\/n)], where[x] denotes the smallest integer larger thkan

Before defining conditions for choosing the sequeRgewe introduce an auxiliary se-
quence. Letrn)y_, C (1,) be any sequence such that

@) limywrp=1
(b) limperp=1.
(€) limpeNo(C(1/rp)) = oo.
For instance, let, := 1/\/m. Thenr, > 1,r, — 1 asn — o and, by .51), con-

dition (b) also holds. By Lemm2.3.3and the fact that Ij/1— (1/rp)? = —(14+¢/2)In/n,
condition (c) is satisfied since

o(C(1/rn)) > exp<(n—1)|n 1—(1/rn)2—ln(6ﬁ)>
= exp(—(1+¢&/2)(n—1)Iny/n—In(6/n))

and hence
NG(C(1/r)) > exp((e/2)(n—1)Iny/A—In(6y/i))
> exp((e/4)(n—1)In yi) (2.72)
provided that
In(6v/A) < (£/4)(n—1)In V. (2.73)

Now let (Ry);_, C (1,) be any sequence such that

(A) Ry>ryforeachn.
(B) limp_yeo Ry = 00.
(C) limp e RY(1—a(C(1/ra)))N = 0.

For instance, chood&,) such thanIinR, < (1/2) exp((¢/4)(n—1)In/n). In this case, if
n satisfies 2.73, then .67 and .72 imply that

RA(1—0(C(1/rn)))N < exp(ninR, —exp((¢/4)(n—1)Iny/n)) — 0 (2.74)
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asn — oo,

SetB = R,Bj\B}. Since

Evol (Ly NR\Bj)  vol(B}) +Evol (LyNB) Evol (LyNB)
= = : (2.75)
vol (BY) vol (BY) vol (BY)
it suffices to prove that
/
EVOlLNOB) | 626n - o, (2.76)
vol (BY)
Writing B = R,B5\rnB5 Ur,B5\B and applying Lemma.3.15twice gives
Evol(LyNB
EVOULAB) (1o 1) 1 RY(1 - o(C(1/rm)))". @77
vol (BY)

The right-hand side of the latter inequality tends to 0 by our choide9fand(R,). [

REFERENCES
[1] K. Ball. An elementary introduction to modern convex geometry. FlavbSemme-
try, pages 1-58. MSRI Publications, Cambridge University Press, Gage)rl997.

[2] 1. Barany. Random polytopes, convex bodies, and approximatioBtdchastic geom-
etry, volume 1892 of_ecture Notes in Mathpages 77-118. Springer, Berlin, 2007.

[3] I. Barany and Z. Eredi. Approximation of the sphere by polytopes having few ver-
tices. Proc. Amer. Math. Soc102(3):651-659, 1988.

[4] I. Barany and D. G. Larman. Convex bodies, economic cap coverings, mapdty-
topes.Mathematika35(2):274-291, 1988.

[5] C. Borell. Convex set functions id-space. Period. Math. Hungar.6(2):111-136,
1975.

[6] N. Dafnis, A. Giannopoulos, and A. Tsolomitis. Asymptotic shape ofralcen poly-
tope in a convex bodyl. Funct. Anal. 257(9):2820-2839, 2009.

[7] M.E. Dyer, Z. Ruredi, and C. McDiarmid. Volumes spanned by random points in the
hypercube Random Structures and Algorithp&1):91-106, 1992.



CHAPTER 2. VOLUME THRESHOLD PROBLEMS FOR RANDOM POLYTOPE&

[8] D. Gatzouras and A. Giannopoulos. Threshold for the volume sgghby random
points with independent coordinatdsrael J. Math, 169:125-153, 2009.

[9] J.S. Muller. Approximation of the ball by random polytope¥ournal of Approxima-
tion Theory 63:198-209, 1990.

[10] P. Paouris and E. Werner. Relative entropy of cone measuddsyarentroid bodies.
Preprint, available dit t p: / / www. mat h. t anu. edu/ ~grigoris.

[11] P. Pivovarov. Volume thresholds for Gaussian and sphericalara polytopes and
their duals.Studia Math, 183(1):15-34, 2007.

[12] C. Schutt and E. Werner. Polytopes with vertices chosen randomly from thedaoyn
of a convex body. volume 1807 dafecture Notes in Mathematicpages 241-422.
Springer-Verlag, 2001-2002.

[13] S.J. Szarek and E. Werner. A nonsymmetric correlation inequalit$éussian mea-
sure.Journal of Multivariate Analysis68:193-211, 1999.



CHAPTER 3

On the volume of caps and bounding
the mean-width of an isotropic convex
body:

3.1 Introduction

LetK be a convex body ifR" with volume vol(K) = 1 and suppose its center of mass is the
origin. As is commonly done in Asymptotic Geometric Analysis, we tkeas a probability
space. In particular, for each unit vecéyrwe view the linear functiona}, 6) : K — R given
by

(X,8) =x101+ ... +X6n, (x€K),

as arandom variable df. Motivated by Bourgain’s approach to the Hyperplane Conjecture
[4], (cf. 81.1.40f the introductory chapter), recent research has focused on thiwtisn

of the functionalg-,8). In particular, efforts have been made to show that for any &ych
there exists a directiof which exhibitssub-Gaussiamail-decay, meaning that,

vol ({x € K : | (x.8)] > t[[(-,8)2}) < & (31)

1A version of this chapter has been accepted for publication. P. Piwav#®n the volume of caps and
bounding the mean-width of an isotropic convex body. Math. Proc. GidgePhilos. Soc.
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for allt > 1, wherec > 0 is an absolute constant afidl, 6)||3 = [, |(x,8)|?dx. The papers
[7] and [15] contain the latest developments, as well as further motivation and histiory (c
also 8.1.4.

In this paper, we consider bounds involving the reverse inequality, nasupir-Gaussian
estimates of the form
vol ({x € K |(x,8)| > ] (-,8)2}) = e~ (3.2)

fort > 0 in some suitable range. Such estimates are garnering increased atteitigh4p
and 0], and are the starting point for our discussion.
Our first main result concerns super-Gaussian directions for cdrodirs that are isotropic
and 1-unconditional (cf. B1.5. Thus we assume th#& C R" satisfies the following
conditions:

1) vol(K) =1.

2) If x=(x) € K then[—|xq|, |X1|] X ... % [=[Xn|,[X%n] C K.

3) Jixédx=Lg.
For such bodies, there are many super-Gaussian directions, whicluge o terms of the
Haar measure on the spher&1.

Proposition 3.1.1. There exists an absolute constantC such that for any integer i 1,
and any 1-unconditional isotropic convex body KR", thea-measure of the set 6fc S"1
such that

vol ({x € K : |(x,0)| >t}) > exp(—Ct?) (3.3)
whenever A
Csts Clogn’ S

is at leastl — 27",

The isotropic constartx = || (-, 0)||2 has been omitted from the statement since such bodies
satisfy 1/v/2me < Lx < 1/v/2 (see, e.g. J)).

Proposition3.1.1complements a theorem of Bobkov and Naza@wjho treated the case
of sub-Gaussian directions, (cf. Theorém.18 §1.1.5.
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As a corollary, we get lower bounds for the volume of caps defined in tefite width of
the body, measured in terms of the support funcli(B) := sup.x (X, 6).

Corollary 3.1.2. Let > 0. Then there is a constafit = C(B) such that for any integer
n > 1, and any 1-unconditional isotropic convex bodyKR", thea-measure of the set of
8 € S" ! satisfying

vol ({x € K : |(x,8)| > ehk (8)}) > exp(—CCe?nlogn) (3.5)

whenever
C 1

—F— <t ———
A /6n|0gn C\/6|OQ3/2n

is at leastl — 2" —2n~P, whereC = 3(B+ 1) and C is the constant from Propositi6nl.1

(3.6)

For us, the motivation for bounding the volume of the caps3is)(comes from a paper

by Giannopoulos and Milmarip] involving approximation of a convex body by a random
polytope. CorollanB.1.2shows that for 1-unconditional bodies, one has better estimates in
most directions. Such estimates, in turn, are intimately related to mean-width, b

us to the second purpose of this paper.

Finding the correct upper bound for the mean-width o&dpitrary isotropic convex body
(not necessarily 1-unconditional) is a problem well-known to specialistsad numerous
connections and implications (some of which we review below). We connediatter
problem with volume estimates for caps, similar 85, and give a sufficient condition
under which one can bound the mean-width. Our approach may be okindept interest
since it involves approximating a convex body by a random polytope withivela few
vertices.

The paper is organized as follows. The proofs of ProposBidnland Corollary3.1.2are
in 83.2 the first three subsections of which point out the key ingredients. bsereations
about mean-width are contained i8.§ the main result being Propositi@n3.9

Lastly, a few words on notation and viewpoint. Our results are most meamhingien

the dimensiom is large. Throughoutg,c;,C,C/,..., etc. denote absolute constants (in
particular, independent efandK). The symbol-| will serve the dual role of the standard
Euclidean norm ofR" and also the absolute value of a scalar, the use of which will be clear
from the context; fox = (x1,...,%)) € R", |[x||1 = Y{L1|%i| and||X||e = MaX<n|Xi|.
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3.2 Super-Gaussian estimates in 1-unconditional isotropic con-
vex bodies

We begin by isolating the key ingredients in the proof of Proposi8anl Our proof
generalizes an argument due to Schmuckeaggehlp5, Proposition 3.4], who showed that
the diagonal directio®y = \%(1, 1,...,1) is super-Gaussian for the unit ball éf for
1< p<o. Our first step is to pass froly to a large subset of directions with “well-
spread” coordinates.

3.2.1 Well-spread vectors on the sphere

The next lemma identifies the set of directions for which we will establish estiBa8e (
in Proposition3.1.1 Similar facts have been used in various problems (e.g., the use of
“incompressible” vectors as ir2fl]). We include a proof for completeness.

Throughout, we use the following notation

n:={1,...,n}. (3.7)

Lemma 3.2.1. There exist absolute constantg € 0 andk > 0 such that for any integer
n> 1, the set

Q= {9 e Y31 =1(8) C [n with# >kn: \[ <16 < \[ I} (3.8)

haso-measure at least — 2",

For the proof, we will use the following standard facts.

Lemma 3.2.2. There exists an absolute constaht-cO such that for any integer i 1, the
set

@ :={6eS:dVn< |01 < Vn} (3.9)

haso-measure at least — 2",

Lemma3.2.2follows from, e.g., 19, §2.3 & 85.3]; alternatively, one can usz3[ Theorem
6.1].

The second fact we need is the Paley-Zygmund inequality.
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Lemma 3.2.3.If Z is a random variable with finite variance, then

»(EZ)?

P(Z>1EZ) > (1-t) -

(3.10)

For a proof, see, e.g.18, Lemma 3.5].

Proof of Lemm&.2.1 Fix 6 € @ (from Lemma3.2.9 and writeq; := |6;|y/n. Without
loss of generality, we may assume that there distinct. LeZ be a random variable such
thatP(Z = aj) = 1/n. Then

n n
EZ - ii;ai _ %;ei\

and hence’ < EZ < 1. By Markov’s inequality, for any > 0, we have

P(Z>MN) <P(Z>MAEZ) < %
and hence we obtain
#Hicn:oi <A}>(1-A"Hn (3.11)

Next, observe that

Ez2 - 15 a? = ; 2 =1
ni; I izll '

By the Paley-Zygmund inequality (Lemn3a2.3, we have
P(2>d/2) >P(Z>(1/2)EZ) > (<)?/4.

and therefore
#ien:a>d/2} > (d)n/4 (3.12)

By (3.11) and .12, we conclude the result. O

3.2.2 Main probabilistic ingredients

The symmetries exhibited by 1-unconditional convex bodies have a vefyl psobabilistic
interpretation. Namely, leX = (xg,...,X,) be a random vector distributed uniformly in a
1-unconditional convex body. Leti, ..., &y, be independent Rademacher random variables,
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Plg=1)=P(g=-1)=1/2, i=1,...,n (3.13)

ThenX and(g1xq,...,EnXy) have the the same distribution. The latter fact allows us to use
several properties of Rademacher random variables. The first isoiheaCtion Principle;
see, e.g.,16, Theorem 4.4].

Theorem 3.2.4.Letgy, ..., €, be independent Rademacher random variables. L,et X x,
be elements of a Banach space B andigt . ., a, be real numbers such thad;| < 1 for
alli=1,...,n. Thenforanyt- 0,

n

P(H_iaismll >t> §2P<||_leixi|| >t>. (3.14)

The second ingredient is the following theorem about super-Gaustiarates for Rademacher
sums, which can be found in§, §4.1].

Theorem 3.2.5.There is an absolute constarg € 1 such that ife,, . . ., €, are independent
Rademacher random variables (as 8113) and if s R and§ € R" satisfy

€
Call€le”

ColE| <s< (3.15)

then

P (iﬁizi > S) > exp(—Cos°/[E[°). (3.16)
i
To show that each € © (Lemma3.2.]) satisfies the super-Gaussian estimat8)( Theo-
rem3.2.4will be used to pass to subspadgs= spar{g : i € | } on which we have control
of the coordinates od. To use Theoren3.2.5 we will need volume estimates for certain
sets involving the-| and |- norms on the orthogonal projection Kfonto E;. This is
done in the next section.

3.2.3 Projections and retention of volume

Here we prove a lemma which gives a uniform lower bound for the volumertdio sets
that will be used in conjunction with TheorerB2.4and3.2.5 We emphasize that it is
a general fact, true faarbitrary isotropic convex bodies ararbitrary subspaces (not just
unconditional bodies and coordinate subspaces as we need here).
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For 1< ¢ <n, let gn ¢ denote the set of alldimensional subspaces&f; for E € g, let
Pz be the orthogonal projection onka

Lemma 3.2.6. There exist positive absolute constants@©' and ¢ such that for each in-
teger n> 1, for any isotropic convex body K R", any ¢ € [n] and any Ec G/, the
intersection of the sets

Kg = {x € K: (1/C)VILk < |Pex| <C'ViLg} (3.17)

and
Kg :={x e K:[|Pex||o < C"Lk logn}, (3.18)

say K := KE NKE, has volume greater than c.

The proof relies on two basic facts. See, for instan8ePfoposition 2.5.1] and] Propo-
sition 2.1.1].

Fact 3.2.7. There exists an absolute const@gtsuch that ifn > 1, K ¢ R" is an isotropic
convex body andy is a finite subset oB), then

/ma>¢ (X,08)|dx < CsLg log(#a().
K Ben

Fact3.2.8 There exists an absolute const@psuch that ifn> 1, K C R"is a convex body
of volume one, and if is a semi-norm, then

1/p
(/ fp(x)dx> §C4p/ f(x)dx forall p> 1. (3.19)
K K

Proof of Lemm&8.2.6 LetK C R" be an isotropic convex bod§e [n] andE € Gn. Then

1/2
/!PEx]dxg </|P|5X|2dx> =/ILk.
K K

By Markov’s inequality, for anyt > 0, we have

vol ({xe K : |Pex| gn/ELK}) > 1—%2. (3.20)



CHAPTER 3. VOLUME OF CAPS AND MEAN-WIDTH 52

Settingcy := (2C4) %, whereCy is the constant from Fa@t2.8 we have

1/2
/\PEx\dxz & </ ]PExzdx> — c1V/lL.
K K
Applying the Paley-Zygmund inequality (Lemm3a2.3, we get
vol ({x €K :|Pex > (c1/2)\/ELK}> >c2/4. (3.21)

Taking into account3.20 and @3.21), we determine that there are positive absolute con-
stantsC’ andc > 0 for which

vol (KE) = {x€ K: (1/C")VILk < |Pex| < C'ViLg} > 2c. (3.22)
To conclude, seE” := Cg/c, whereCs is the constant from Fa&2.7. Since
IPEX]| = max((Pex, &)] = maX{x, Pea,)|.
we can apply Markov’s inequality and Fe&R.7to obtain
vol (Kg) = vol ({x € K : ||Pex||o <C"Lklogn}) >1-c.

Thus
vol (Kg) = vol (KENKE) > c,

which concludes the proof. O

3.2.4 Proofs of the cap estimates

Here we combine the results of the previous sections to complete the prdafgpufsition
3.1.1and Corollary3.1.2

Proof of Propositior8.1.1 AssumeK is a 1-unconditional isotropic convex body Rf.
ConsiderCy, kK and®© from Lemma3.2.1 Set/ := |Kkn|, the largest integer less than.
Fix 8 € © so that

1 C
<o <=
n

Civn vhn
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foralli €1, wherel =1(0) C [n] and|l| = ¢. Set
E(l):=spadg:iel},

where theg’s are the standard unit vector basis Blt. By Lemma3.2.6 the intersection
Kgq) NKg () has volume volKg(y) >c.

Let X = (x1,...,X,) be a random vector distributed uniformly Letes, ..., €, be inde-
pendent Rademacher random variables 8f13). ThenX and(g1Xy,...,&nXy) have the
same distribution. Denote the probability measure correspondidgriamely vol-|k ), by
Pk; by Pg the product-measure corresponding te (€1,...,€,). Then

vol({xeK:|(x,8)| >t}) = Px (|_iei>q| >t>

n
= PP || &6ix| >t
E(izll iXi
n
= P €0ix| >t | dx
/<s |iZ\IIX||

(1/2)/KIP’8 (Zsieix@] >t> dx (by Thm.3.2.4

(1/2)/K B <|Zsiei>q| >t> dx (3.23)

Fix x € Kg(), and sey = (6i% )ier- Then, by definition oKg() ando,

Y

v

Clc”LKlogn
[ee] P [oe] - =
¥l < 2 Ml < 2
and Y i
I—K C]_ C]_C/ ELK
< < — < — .
C]_C/\f C \/’|PE | = ‘y| = \m|PE(|)X| = \/ﬁ

SinceK is 1-unconditionallx < 1/\@, (e.g., B]). Moreover, for any convex body, Lk >
Ley > 1/v/2re. Recalling that? = |kn|, we conclude that there exist absolute constants
A; > 1 andA; > 1 such that
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and 1

— <y < Ao

A S [ <A

Let Cy be the constant from TheoreBi2.5 At this point we can determine the constént
asserted in Propositidh1.1 takeC := AjA3C,. Then our assumptior8(4) implies

ly|?

CZ’y’ St S )
Cally/le

making .23 ripe for an application of Theore®2.5

(1/2) /KE“)PE <|;si6ixi| >t> dx > (1/2) /KE<I)eXp(—C2t2/‘y|2)dX

(c/2) exp(—CA3t?)
> (c/2)exp(—Ct?),

Y

where we have used the notatip#a: (8;x;)ic| as above. Since/2 > et fort large enough,
we can recover the proposition as stated simply by adjusting the constants. O

To prove Corollary3.1.2 we will need two additional results.

Lemma 3.2.9. For any M€ (0,1), the set
O;:={6cS" 18]l <M}
haso-measure at least — 2ne "*/2,
Proof. Using the well-known estimate
o0 S L: |(e,0)] > M) < 26 "M/2, (3.24)
(see, e.g.,I, Lemma 2.2]), we have

o(0eSt:Ji<n:|(g,0)>M) < no(8eSt:|(e,0) > M)
< 2ne"™/2,
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Another result, due to Bobkov and Nazar@y Propositions 2.4], will also be of use.

Proposition 3.2.10.Let K be a 1-unconditional isotropic convex bodyRA. Then
K c v/3/2nB].

Proof of Corollary3.1.2 Let 3 > 0. Apply Lemma3.2.9with M, := Z(BL[])'OQ” so that
0(0©1) > 1—-2n"P. By Propositior3.2.10Q

hc (8) < /3/2n(|6][w
for each® € 1. Thus

0(965“‘1:hK(6)§\/3(B+1)nlogn) > 0(0q)

> 1-2nP.

Let © be the set from Lemma.2.1 As the proof of PropositioB.1.1shows, any element
of © satisfies the super-Gaussian estimat8)( Thus if6 € © N ©1, we have

vol ({x € K : |(x,0)| > ehc (8)}) > voI({xeK:\(x,6>|2£«/3([3+1)nlogn}>
> exp(—CCe?nlogn),

(whereC = 3(B+ 1)) provided that

C<ey3(B+1)nlogn< v

Clogn’

whereC is the constant from Propositid@1.1 O

3.2.5 Comparison with recent results

As we mentioned in the introduction, super-Gaussian estimates have reclgtodied
by B. Klartag [L4] and G. PaourisZ0]. We state only the results from Klartag's paper as
the latter is still in preparation.

In [14], a Borel probability measuneon R" is said to bedecentf pu(E) < (1/n)dimE for
any subspacg& C R". In particular, any absolutely continuous probability measur&dn
is decent. The following is froml4, Cor. 1.4].
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Proposition 3.2.11. There exists a sequencg R « with the following property: Let p
be a decent probability measure &'. Then, there exists a non-zero linear functional
¢@: R" — R such that

H({xeR": @(x) >tM}) > cexp(—Ct?) forall 0<t<R,

and
H({xeR": @(x) < —tM}) > cexp(—Ct?) forall 0<t <R,,

where M> 0is a median, that is,
M{x €R@x)| <M})>1/2 and {x€R": [p(x)| > M}) > 1/2

and ¢C > 0 are universal constants. Moreover, one may take-R(logn)¥/4.

If one makes additional assumptions on the “position” of the measure, a sitatament
holds for “most” functionalsp;, we refer the reader to the article for the precise result.

3.3 On the mean-width of an isotropic convex body

For a convex bodK C R", denote its support function by

h(8) :=sup(x,0), (Be S ).

xeK

The width ofK in the direction off is the quantityw(K,8) = hk (8) + hx(—6) and the
mean-width oK is

w(K) = / w(K,8)da(8) = 2 / he (8)da(8).
-1 St

Recall Urysohn’s inequality (see, e.g23[ Corollary 1.4]).

Proposition 3.3.1. Let K C R" be a convex body. Then

vol (K) \ ¥/
Wik 2 2<vol<89>> |
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In particular, ifK ¢ R"is a convex body with vdK) = 1, thenw(K) > ¢/n, wherec > 0
is an absolute constant. On the other hand, the following theorem is ofemeto as a
“reverse-Urysohn inequality”.

Theorem 3.3.2.Let K be a convex body iR". Then there exists an affine image TK of K
of volume one such that
w(TK) < Cy/nlogn, (3.25)

where C is an absolute constant.
The proof is a combination of results due to Figiel and Tomczak-Jaegeri@laund Pisier

[22]. The position associated to the latter fact is referred td-pesition and plays an
important role in Asymptotic Geometric Analysis; see, e.g., the sud/gyg2.3].

In this section, we discuss upper bounds for the mean-width of a comdxib isotropic
position; recall the latter assumption entails @) = 1, the center of mass & is the
origin and
/ (x,8)2dx = L2 for each € S 1. (3.26)
K
Currently, the best-known upper bound is the following.

Theorem 3.3.3.Let K C R" be an isotropic convex body. Then
w(K) <Cn¥/4L, (3.27)

where C is an absolute constant.

The latter estimate follows from Dudley’s entropy estimate a®jiheorem 5.6] and the
covering number bound fromi}¥, Lemma 4]; a proof is in12]. Included below is a sketch
of the proof for the sake of completeness. Before doing so, we williregfe following
fact [13, Theorem 4.1].

Lemma 3.3.4. Let K C R" be an isotropic convex body. Then
LkB5 C K C (n+1)LkBS. (3.28)

Proof of Theoren8.3.3 For eacht > 0, letN(K,tB5) be the smallest number of translates
of tB} whose union coverK, i.e.,

N
N(K,tB)) := min{N|3x1,x2,...,xN eK:Kc|Jx +tBS)} . (3.29)
i=1
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By Dudley’s entropy bound,

C {oe]
w(K) < \m/o /IogN (K, tB)dt, (3.30)

whereC is an absolute constant. Note th(tK,tB5) = 1ift > (n+1)Lk (by Lemma3.3.4.
Thus, sinceK is assumed to be isotropic, we in fact have

C (n+1)LK N
w(K) < \m/o \/IogN (K, tBY)dt. (3.31)

One can bound the covering numhb¥¢(K,tBj) using a special case 017, Lemma 4],
which states that for any convex bolyc R", one has

N(K, tB}) < exp(CinMa(K)/1), (3.32)
where 1
Ma(K) := Vol(K)/nyydx (3.33)

In our caseK being isotropic implies that

1/2
Ma(K) < </K|x|2dx) _ /L. (3.34)

Thus

=
z
IN

(n+1)L
%/ " (CnM(K) /1) 2t
0

(n+1)L
Cont/ALY? / “t-1/2gt
0

Csn¥/*Lk.

IN

IN

O]

Remark3.3.5 The bound8.27) can also be derived easily using more recent tools, namely

results of Paouris ohg-centroid bodies inZ1] (see also 7, 82 (in particular, (2.2) and
Lemma 2.5)].

It is known that sub-Gaussian estimates suck3al &lso have implications for the width
of K (cf. 81.1.4 in particular (.23).
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In the next section, we offer another condition, related to lower boundsafes similar to
(3.5), under which one can bound the mean-width.

3.3.1 Bounding the mean-width via random polytopes

Throughout this section, we assume tKas an isotropic convex body iR" (as in 8.26)),
X1, ..., Xy are independent random vectors distributed uniformbg;iiy their convex hull:

Ky :=conv{Xy,...,Xn}; (3.35)

P the associated product measuresgh, K.

Lemma 3.3.6. Lett> 1 and suppose thata N < eV"/2, Then
]P’(W(KN) gC\/IogNLKt) >1_ g V2 (3.36)
whereC > 0is an absolute constant.

Proof. Let us,...,uy be points on the sphe® 1. Then, using3.24) in a standard way,

we have c N
. 1V109
Lﬂ%(w@wﬁﬁi%, (3.37)

whereCj is an absolute constant.

By [21, Theorem 1.1], we have
P (|%| < Cy/nLkt for eachi = 1,...,N) > 1—e VM2

whereC, is an absolute constant. Assume now that (| < C,/nLgt and writeX/ =
Xi/|%]. Then

w(ky) < 2 [ max(x,0)|do(e)
-1
< 2Ch/nlyt / max(X/,6)|do(6)
g1
< Cy/logNLgt,

where we used3(37) for the last inequality an@ = 2C;C. O
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ABN

Te

0

hg(6)
IShK(G)

K
Figure 3.1: The volume(6,€) of a cap.

Remark3.3.7. See b, Proposition 3.3] for further observations about the mean-width of the
random polytopdy; in particular, the relation to the width &f-centroid bodies.

Next, we use an idea of Giannopoulos and Milman frd®, Lemma 5.1]. For each e
(0,1) andd € "1, let

v(B,¢) :=vol ({xe K: (x,8) > ehx(0)}), (3.38)

as in Figure3.1
Lemma 3.3.8.Lete > 0. Then

P (hk, (8) < €ehk(B)) < exp(—Nwv(6,¢)).
Proof. By definition,
vol({xe K: (x,0) <eh(B)}) =1—v(6,¢),

hence

P (rjn<€;,1\lx<xj,6> < shK(6)> = (1—v(0,e))N < exp(—NV(B,¢)).

3.3.2 Sufficient conditions for bounding the mean-width

In this section, we prove that one can bound the mean-width of an isotropiex body
under a certain hypothesis; namely, that in “most” directiBnshe volume of the caps
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v(6,¢€) (cf. (3.38) is suitably large. “Most” in this case is meant with respect to the Haar
measures on the spher&1, and is quantified by a certain constant; expresslyCidie
the smallest constant such that for any positive integand any isotropic convex body
K CR",
2 1/2
(/SH <ma (X, e>y> do(G)) <G max(x, 0)|do(8), (3.39)

xeK -1 xeK

By Fact3.2.8 Cp is an absolute constant. It will play a role in the formulation of the
proposition.

Proposition 3.3.9. Let n be a positive integer and K an isotropic convex bodR'in Let
a>1e€(0,1) and pe [1,2]. Let (6,¢€) be the volume of the cap defined 8138 and
Cpasin 3.39. If 4aePy/n> 1 and

1

— 3.40
o (3.40)

o ({6 eSS 1:v(,e) > e‘“sp”}) >1—
then
W(K) < Ga®2e%/2- 1L, (3.41)

whereC is an absolute constant.

Before proving the proposition, we give several remarks to illustrate tengial utility and
emphasize the important ranges éoe andp.

Remark3.3.10 The argument from10, Lemma 5.1] shows that faevery® € S™! and

everye € (0,1), one has
c

ve.E) >

(1 - 8)n7

wherec > 0 is an absolute constant. Bia/n?)(1—¢)" > e 3" provided that logn?/c) /n <
£ <1/2. Hence 8.40 holds witha = 3,& = n~%/2, andp = 1, in which case the proposition
recovers the known estimate:

w(K) <Cn¥/4Lg,

with C an absolute constant.

Remark3.3.11 If (3.40 holds with

1

S — =2 3.42
4 l0g 2’ p=2 (3.42)

a =Cjlogn, €=
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one would obtain the optimal bound

w(K) <Cy/nlognlLg,

whereC is an absolute constant.

Remark3.3.12 Corollary 3.1.2shows that3.40 holds witha, € andp as in the previous
remark 8.42 for all 1-unconditional isotropic convex bodies (with a stronger mesassiti-
mate). Note, however, that we have used Proposgiarl0(the upper-bound on the width)
to prove Corollarnyd.1.2 Nevertheless, this shows th&t40 holds with the values ir(42
for a large class of convex bodies.

Proof of Propositior8.3.9 Lett = 4agP,/n so that (by assumption)> 1. SetN = ev/2
and suppose tha, ..., Xy are independent random vectors distributed uniformbg end,
as in B.39, Ky is their convex hull. By Lemm&.3.6 we have

W(KN) < 6\/ logN Lkt (3.43)

with probability at least - e V/2,

On the other hand, we can use LemB8&.8and an approximation argument, as |
Theorem 5.2], to bound the width &f by that ofKy. For convenience, denote the set
appearing in3.40 by A(a, €, p). A standard volume argument shows that for grey (0, 1),
there exists an-netal C A(a, &, p), i.e., a finite set satisfying the condition

VB € A(a, €, p),300 € AC such thatd — 6| < n,

with cardinality #\0 < (3/n)". In particular, forn = ¢/4(n+ 1), let us fix one sucln-net
A C A(a, g, p) with cardinality

#0 < (12(n+1)/e)". (3.44)
Claim 3.3.13.
P (36 € Alc,e,p) : iy (6) < %hK(e)) <P (360 € A : iy (80) < ek (60)).  (3.45)
Proof of Claim3.3.13 Suppose that there exidis A(a, g, p) such that

hk, (8) < (¢/2)hk (B).
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Choosey € A such thatb — 6p| < n. The claim then follows from

hicy (B0) < hiy (6) + hky (B0 — 6)
(

)hic(
< (/2)hk (80) + (£/2)hk (8 — Bo) + hi (B0 — 6)
< (8/2)hk(80) +2(n+1)Lkn (by (3.28))
< (&/2)hk (8o) +2(n+1)nhk (€o) (by (3.28))
< ehk (6o (n=¢/(4(n+1))).

Claim 3.3.13and Lemm&3.3.8yield

IN

#. maxexp(—Nv(0p,€))
BoeN

12(n+1) ! oePn/2
< <8> exp(—e )

At this point a remark on the possible rangeeofs in order. Our desired conclusion
(3.4)) is a triviality if a%/2¢3P/2-1 > 1 (by the diameter boun®(28); hence we may as-
sumea®/2e3P/2-1 < 1, in which case our assumptiomeP./n > 1 yields the restriction

£ > 1/(8n%%). Thus the latter probability is at most

P (3 0 e Ala,g,p):hgy(B) < ghK(9)>

(96(n+1))>" exp(—e“sp”/2> < exp(2n|og(96(n +1)) - eﬁ/8>
exp(—(1/2)e"%)

A

provided than satisfies 2log(96(n+ 1)) < (1/2)ev"/8. Therefore
hk (8) < 2 thk, (8) for each® € A(a, €, p) (3.46)

with probability at least 1- exp(—e\m/S/Z).
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Thus ifKy satisfies both3.43 and @3.46), we have

N

“1
/ ooy K(@00O) < 2 /A ey (01000
< 2etw(Ky)

< 2¢71C\/logNLkt.

While on the complimeni(a, g, p)¢ = S 1\A(a, g, p),

1/2
(g/ max(x, 6)| do(e)) o(A(a,€, p)°)

A0, p)°)

IN

| h(@)doe)

Ala.e,p)°

IN

IN

W(K)/4.
Combining the latter estimates,
wK) = 2 / h (6)do(8) + 2 / he (6)da(8)
Ala,g,p) a.€,p)°
< 4¢71Cy/logNLgt +w(K)/2
hence
w(K) < Ca%2e3/21n1,,

with C an absolute constant. O
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CHAPTER 4

On determinants and the volume of
random polytopes:

4.1 Introduction

Recent research in the theory of high-dimensional convex bodiesohased on random
polytopes generated by points in an isotropic convex body. Recall thathaex body
K C R"is isotropic if it has volume one, center of mass at the origin and there is tacbns
Lk such that

/K (x,8)%dx=L2 foreachd e S" . (4.1)

Any convex bodyK c R" has an affine image which is isotropic and the isotropic constant
Lk is an affine-invariant (see, e.g2(]; cf. also 8..1.2. We generate a random polytope
in K by sampling independent random vectors uniformliKirsayXs, ..., Xy, and forming
their (absolute) convex hull:

Kn :=conv{£Xy,...,£Xn}. 4.2)

The volume oKy has been studied in several articles; for the most recent developrents, s
[5] and the references cited therein. There is also recent interest in thapiscconstants
Lk, of such polytopes4] in which estimates for vdlKy ) play an important role (cf. 81.6.

1A version of this chapter has been accepted for publication. P. Pivav@n determinants and the volume
of random polytopes in isotropic convex bodies. Geom. Dedicata.

67
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Our first result involves lower bounds for the volume {§}) whenN = n. This case is
treated in f]]. The approach taken in the latter article is to reduce the problem to the case
whenK is the Euclidean ball (via Steiner symmetrization). Our first proposition goas in
different direction and involves more general random polytopes.

Proposition 4.1.1. Let K@, ... K™ be isotropic convex bodies &". Let X, ..., X, be
independent random vectors such thatiskuniformly distributed in K) fori = 1,...,n.
Then with probability at least —e™",

vol (conv{x. .. +%,}) > (2)"° [t (4.3)

where g is a positive absolute constant.

There are three improvements &l Proposition 2.2(ii)]: the vectors need not be sampled
in the same body, the isotropic constants appear in the lower bound andith&e®n the
probability is stronger. Lower bounds involvirig are of interest because of the potential
implications for the boundedness bf; at present it is unknown whether or niog is
bounded above by an absolute constant (independetanfd the dimensiom); for the
most recent developments on this problem, 4&pdnd the references therein (cflL.8.2.

The proof of Propositiod.1.1linvolves a novel way of bounding the determinant/dgt. . Xy
and we give several applications.

Firstly, in the special case when ea$hs sampled in the Euclidean ball, we get an imme-
diate proof of a known formula fdEvol (conv{£Xy,...,+X,})% for -1 < q < .

A second application involves zonotopes, i.e., Minkowski sums of line segmehthe

form
N

Zy = ;[—Xi,xi],

|
where theX; are independent random vectors such ais distributed uniformly in an
isotropic convex bodyK () and[—X;,X] := {AX : —1 <A < 1}. The volume ofZy is
considered in3] and the argument also involves a reduction to the Euclidean ball via Steiner
symmetrization; another example in which information about the isotropic cdastdast.
We give an elementary direct estimate for the expected vo[ﬁmrle(ZN)l/ " which retains
information about the isotropic constarig: and improves a result fron3].

Our last application concerns the sharpness of Hadamard’s deterrimaguoality for ran-
dom matrices.
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As with many results concerning convex bodies, our results actually hole@ imtre gen-
eral setting of log-concave measures. We briefly recall the relevdimitotas in $4.2
The analogue of Propositich1.1in the log-concave case is proved iA.8.1 A similar
result holds for random simplices, i.e., for cdiXi,...,Xn+1}, See Propositiod.3.6 be-
low. &4.3.2contains the special case of the Euclidean ball48&. 4.5treat the volume of
zonotope¥y and Hadamard’s inequality, respectively.

Lastly, we mention some notation and conventions. Our results are most mieanihgn
the dimensiom is large. Throughoutg,c;,C,C/,..., etc. denote absolute constants (in
particular, independent of and the given measures). The symboWwill serve multiple
roles, including the standard Euclidean normRihand the absolute value of a scalar, the
use of which will be clear from the context.

4.2 Isotropicity and marginals of log-concave measures

Here we list some definitions and basic facts concerning log-concaveiresagVe refer the
reader to the introductory pages &3] and the references listed there for a more complete
treatment.

Recall that a measugeonR" is said to be log-concave if for anye [0, 1],
MAA+ (1—M)B) > p(A) ' u(B)** (4.4)

for all compactA,B C R". HereAA+ (1—-A)B:={Aa+ (1—A)b:ac A be B}.

Similarly, a functionf : R" — [0, «) is log-concave if for any € [0,1] and andx,y € R",

FX+(L=M)y) = F0 M ()

Basic examples of log-concave measures include Lebesgue measndardt&aussian
measure and, most importantly for us, uniform distribution on a convex KodyR":

~ vol (ANK)
HA) = =01

for any measurablé c R". A theorem of Borell 2] characterizes log-concave measures
that are not supported on any proper affine subspace as thoseethltalutely continuous
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with respect to Lebesgue measure and have log-concave densitiPsqgfsition2.1.3in
Chapter?).

A probability measur@tonR" is isotropic if its center of mass is the origin, i.e.,
/ (x,8)du(x) =0, foreachfe S 1, (4.5)
RI’]
and
/ (x,0)2du(x) =1 for eachd € S 1. (4.6)
Rn

In particular, ifu is isotropic then for any subspaBec R",

/., JPexPai) = dim(E). 4.7)

wherePe denotes the orthogonal projection oo

It is known that for any probability measupeon R" that is not supported on a proper affine
subspace there exists an affine nfapR"” — R" such thatio T~1 is isotropic.

Suppose now that is a log-concave probability measure BA. If E is a subspace dk",
then the marginal ofi with respect tcE is the measurgo Pz on E defined by

Ho P2 (A) = p({x € R : Pex € AY)

for measurablé C E. One can check thaito PE‘1 is itself log-concave and, i is isotropic
then so too igto P ™.

We will also make use of the following lemma.

Lemma 4.2.1. Let p be an isotropic log-concave probability &. Let0 < s<t and let
8c 9L Then
H{xeR":s< (x,0) <t})<t-—s

The proof can be found irlp, §2].

Remark4.2.2 Note the difference between the definitions of isotropicity for convex lsodie
(cf. (4.1) and for probability measures (cf4.g)). In particular, ifX is a random vector
distributed uniformly in an isotropic convex bo#lyC R" (as defined by4.1)), thenX/Lk

is distributed according to an isotropic log-concave probability measure.
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Moment comparisons

We will use some well-known facts about comparison of moments.

Lemma 4.2.3. Let p be a log-concave probability measure®h Suppose thaf:| is a
norm onR"and—1<g< 0< p<c. Then

1 1/p e 1/q
cp </Rn”x”pd“<x>> < [ Ixlduoo < 75 </Rn||x||qdu(x)> VR

where C > 1is an absolute constant.

The left-most inequality is standard (it can be proved by applying Boreiftsra, e.g.,21,
Appendix Ill]; in fact, it holds for semi-norms). The right-most inequalitgise to Guedon
[10Q]. For related developments on negative moments, Beje[[L6] and [23)].

For the reader’s convenience, we isolate a particular case of Leh#r@used below.

Lemma 4.2.4.Let X be a random vector distributed according to an isotropic log-coacav
probability measure p oR". Let1l </ < nand let EC R" be a subspace withimE = /.
Then the random variable

|PEX|
Yi=—+
i
satisfies
E[Y|""2<C, (4.9)

where C> 0is an absolute constant.
Proof. Observe that
[ JPex 20 = [ 1x¥2dpe Pt
RN E
-1/2
< (8e)Y2 (/ |X|dpo PEl(x)> (by Lemma4.2.3)
E

~1/4
<C </ [x|?dpo PE_l(X)> (by Lemma4.2.3)
E

=C(vV) 2. (by the isotropicity ofuo Pz 1)

HereC is an absolute constant that depends @ilfrom Lemma4.2.3 O
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4.3 Random determinants

We begin with an elementary lemma about determinants of random matrices with inde-
pendent columns distributed according to isotropic probability measures&umption of
log-concavity).

Lemma4.3.1.Let ,..., U, be isotropic probability measures @f' (as in @.5) and @.6)).
Let X, ..., X, be independent random vectors such thasXlistributed according to;ifor
each i=1,...,n. Suppose also that;X..,X, are linearly independent with probability
one. Then

E|defXy, ..., X2 =n!. (4.10)
Proof. Set
Vo := {0}, andVk :=span{Xy,..., X} fork=1,...,n—1. (4.11)
Note that
|det[Xy, ..., X]| = |X1|]PV1LX2| e ]Pvnizxn,luPVn{an]. (4.12)

Apply Fubini's Theorem iteratively, integrating first with respectdg thenX,_; and so
on. At each stage, use the isotropicity conditidrv). O]

Remark4.3.2 In the case when aj}; are equal to the uniform measure on a convex body
K c R", the latter lemma is a well-known fact attributed to Blaschke (see, &]y.,Qur
argument is somewhat shorter as we avoid brute-force expansion ddtidreninant.

4.3.1 Random cross-polytopes and simplices

We now formulate and prove the analogue of Propos#idnlfor log-concave measures.

Proposition 4.3.3. Let 1, .. ., I, be isotropic log-concave probability measuresih Let
X1,...,%Xn be independent random vectors such thatsXdistributed according to jufor
i =1,...,n. Then with probability at least—e™",

C1\n/2
vol (conv{£Xy,...,£Xn}) > (ﬁ) , (4.13)
where g is a positive absolute constant.

Propositiord.1.1in the introduction follows immediately by Remak?.2
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Proof. For eachk =0,1,...,n—1, letV, be as in 4.11). LetT : R" — R" be the linear
operator mapping the standard unit vector basigto (X;), i.e.,Tg =X fori=1,...,n.
Then con{£Xy,...,+£X,} = T[conv{tey,...,+e,}] and

2n
vol (conv{£Xy,...,£Xy}) = ﬁ]detT|. (4.14)
Foreactk=1,...,n, set
R Xd
K /n—k+1l

Note thatYy > 0 with probability 1. Suppose now tha, Xp,..., Xx_1 are fixed. Let
Ex denote expectation iRy (with Xq,...,Xx_1 fixed). LettingC denote the constant from

Lemma4.2.4 we have

1/2

Applying Fubini’s Theorem iteratively (integrating first with respec®g thenX,_; and
so on, as in the proof of Lemm&3.1), we obtain

n
E[ Y r<cn, (4.15)
k=1
Settingc; := (eC)~2 and using 4.12, we have

P (|detT| < cgm) —Pp (@P\,ﬁlm < c&‘ﬂ)

n
:IP’(HYk<c2>
k=1

n
=P <|_| Y, s CI”/2>
k=1

<e ™",

where the inequality follows from Markov4(15 and our choice ot;. The proof now
follows from (4.14). O

Remark4.3.4 By Lemma4.3.1and @.14), the lower bound4.13 captures the correct
dependence on

For subsequent use, we isolate one consequence of the bound[¥r, de, X,] given in
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latter proof.

Corollary 4.3.5. Let , ..., s be isotropic log-concave probability measures®h Let
X1,...,%Xn be independent random vectors such thatsxdistributed according to jfor
i=1,...,n. Then

E|det[Xy,...,Xy)|Y" > ¢ /n,

where ¢ is a positive absolute constant.

In the case when all; are equal to the uniform distribution on a convex bédy R", the
latter corollary appears ir2p, 83.7]. The benefit of our argument is that we avoid direct
expansion of the determinant.

There is an analogue of Propositir8.3for random simplices.

Proposition 4.3.6. Let 1, ..., 1 be isotropic log-concave probability measures®h
Suppose that ..., X, 1 are independent random vectors such thatsXdistributed ac-
cording to i for each i= 1,...,n+ 1. Then with probability at least —Ce ™",

6 n/2
vol o, X)) (2
wherecy, C and ¢ are absolute constants.

For the proof, we follow the argument given i, [Proposition 2.2(ii)], which is based on
[14, Lemma 3.3].

For clarity of exposition, we will prove two lemmas about the volume of arbit(apn-
random) simplices involving a reduction to the symmetric case. The first is @goasce
of the Rogers-Shepard difference body inequal]] for any convex bodK c R",

vol (K —K) < <2nn> vol (K). (4.16)
Lemma4.3.7.Let x,..., X, 1 € R" be affinely independent points. Then

vol (conv{Xy, ..., Xn+1}) > 4 "vol (conv{=(X — Xns1) L {) - (4.17)
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Proof. SetW = {0,X1 — Xn+1,.-.,% — Xn+1}. Then by 4.16), we have

vol (conv{xy,...,Xn+1}) = vol (conWV)
> 47 "vol (conwV — conwV)
= 4""vol (conyW —W))

> 4~"vol (conv{=(x — Xn11)}1).-

O]

Lemma 4.3.8. Suppose thatsx. .., X, 1 are affinely independent. Suppose also thafR/
satisfies)v,x;) = 1 foreach i=1,...,n. Then

vol (conv{Xy, ..., Xns1}) > 47 "|1— (v, X1 1) | vol (conv{=xq,..., 4% }). (4.18)
Proof. LetF : R" — R" be the linear map defined By(x) = X — (V,X) Xn+1. Then

Flconv{=£xy,...,4Xn}] = conv{=£(X —Xn11)} 4

and hence
|detF)|vol (conv{=£x4,...,£X}) = vol (conv{=(x —Xn11) };) - (4.19)
The proof now follows from Lemma4(3.7) the fact thatdet(F)| = |1 — (V,Xn+1)]. O

Proof of Propositiord.3.6 With probability one, Xy, ..., X, are linearly independent and
Xi,...,%Xn11 are affinely independent. Thus we can define V(Xy,...,X,) by (V,X) =1
foreachi=1,...,n.

By Paouris’ theoremZ2, Theorem 1.1 & 88] (cf. Theorer.1.7) formulated for log-
concave measures, we have

P(]X1| <Con) > 1—e ",

whereCp andcy are positive absolute constants. Next, note that(V, X;) < |V||X;| and
hence
P(|V|>1/(Con)) >1—e @ (4.20)
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Observe that

P(I1— (V. X1)| <€) = Ex xPx.(1-€"<(V,X1) <1l+e™")
1-¢" 1+e™"
= Exp.. xPx1 <M <(V/|V[, %n11) < M)

< 2Cone " e N

where the inequality follows from Lemm&2.1and @.20.

Thus by Lemmat.3.7, we have
vol (conv{Xy, ..., Xni1}) > 47" |1—(V,Xnr1)|vol (conv{£Xy, ..., £X}). (4.21)
By Propositior4.3.3 we have
P (vol (conv{£Xy,...,£X.}) > (cl/n)”/2> >1-e "
Thus with probability at least+ e " — 2Cyne " — e~ %", we have

n/2
vol (conv{X,...,Xns1}) > ((4;%) ) (4.22)

Finally, choose absolute consta@tandc’ such thag "+ 2C,ne "+e %" < Ce ", [

4.3.2 Moment formulas for random cross-polytopes in the ball

Since the Euclidean ball plays a unique role in volume estimates for randortopesdy
(as in, e.g., 4]), we give an elementary direct proof of the special case of Proppsitio
4.1.1when eaclK is the Euclidean ball of volume or). Our argument improves the
estimate on the probability given id,[ Proposition 2.2(ii)] and unifies the approach for
such volume problems. In the process, we also get a short proof avankformula for
Evol (conv{£X }! ;)% where thex; are independent random vector8hand—1 < q < «.

As usual, we will denote the volume of the Euclidean ball of radius ori@"iby wy; the
Haar measure 08" 1 by o.

Lemma 4.3.9.Let1 < k < n. Suppose that E R" is a subspace of dimension k and let P
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denote the orthogonal projection onto E. Then for ary G-k, «),

S+
) (1+

)

: 4.23
) (4.23)

/.. IPe8Ido(®) =
g1

—
=]

N+ [N
o

NIxX (NS

The proof involves a standard rotational-invariance argument.

Proof. By rotational invariance ob, we may assume th& = span{ey,...,e&}. Using
polar coordinates, we have

1 e 1 »
(21'[)”/2/Rn|PEX|qe X/2qx = (Zl_[)k/Z/Rk’qu x| /Zka...dxl
B (Zl;t(;t/z e ar
0
2r(1+%)

but also

(2"1)n/2/ Pex(e M /2gx — % / r”*q‘le"z/zdr/IpEelqu(G)
Rn

(22 Jo

29/2nr (29
- W/ IPEQ[dor(®).
]

Proposition 4.3.10.Let X,..., X, be independent random vectors uniformly distributed in
the Euclidean ball of volume orig. Then for any ¢ (—1, ),

g (TN T+ )\ o)
Evol(conv{ix.}i_l)q< n”/znlz > (I‘(1+”i2q)> n ré) : (4.24)

Similar facts have appeared in the literature in several places (via varidhedsg see,
e.g., B9, [29], [17], [18]. The important range for us € (—1,0).

Proof. Let E ¢ R" be a subspace of dimensién Integrating in polar coordinates and
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applying Lemma&.3.9 we have
0.);1/”
/7|PEx|qu — o / (a1 / IP:6|%da (6)
BJ 0 g-1
gn_k T(GOM(A+3)
nN+ar(fHHr(1+3)

The proposition follows from the determinant formuldsl@), (4.14) and Fubini’s theorem
(integrating first with respect t&,, thenX,_1 and so on). O

Proposition 4.3.11.Let X, ..., X, be independent random vectors uniformly distributed in
BJ. Then with probability at least —e™",

ICONV{Xa, ..., X} | > (%)n/z, (4.25)
where ¢ is a positive absolute constant.
Proof. By Propositior4.3.1Q Stirling’s formula and the fact that
imj rX(GXrJE)g) =1 (aeR),
there is an absolute constahisuch that
Evol (conv{£X }" ) 2 < (Cn)V/4. (4.26)

Setc, := (6*C)~L. Then

F (VOI (conv{Xi}Ly) < (c2/) 2) = P <V0| (conv{X 1) 2 > (cp/ n)*”/“)
(C2/n)"*Evol (conv{+X }I',) "2

e "

IN

IN
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4.4 Zonotopes and a geometric inequality

Definition 4.4.1. A Minkowski sum of line segments;,..., Sy inR", Z:= ZiN:13 is called
azonotope

We will consider zonotopes generated by line segments of the fersyx] = {ax: —1 <
a <1} or[0,x] = {ox:0<a <1}, wherex e R".

If X1,...,xn € R", andM : RN — R" is the linear operator defined byle = x; for i =
1,...,N, then the zonotopg = z{\‘zl[—xi,xi] is the image of the cubB}, underM since

N

MBY = {Zl)\.x. A=(N) e BN} — {i)\ixi SN < 4, :1,...,N} :_;[—xi,xi].

In this section we discuss the volume of random zonotopes and their applitaanulti-
integral norm first considered by Bourgain, Meyer, Milman, and P&rJince the latter
article deals with convex bodies, we will work exclusively with convex bsdier ease

of comparison with the results fron8][and to make clear the exact dependence on the
isotropic constants of the associated convex bodies, which are “hidldlém® log-concave
setting).

LetVs,...,Vn be convex bodies of volume onelif? whereN > n. Forp> 0, letz,(Vy,..., W)
be the expecteg@-th power of the volume of the zonoto;{é\‘zl[o,xi], where theX’s are
independent random vectors wi¥hdistributed uniformly inv;, i.e.,

Ip(Vi,.. / /vol( Ox.) dxg...dxy.

If Vi =V for eachi =1,...,N, we will use the notatiom,(V,N) instead ofrp(V1,...,W).

In[3, Theorem 1.3], itis proved, via Steiner symmetrization (see Appendixift¥at ..,V
are convex bodies of volume one, then for epch 0,

1p(V1,... ;W) > Ip(B3,N); (4.27)

also, (B, Lemma 2.6]) forp=1/n,

csN

Il/n(BZvN) el Wa
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where¢; > 0 is an absolute constant (here, as ab@feis the Euclidean ball of volume
one).

If we assume that eashis isotropic, we can use Corolla#y3.5to estimater; /n(V1, ..., W)
directly; we thus retain information about the isotropic constants.

Proposition 4.4.2. Let \, ...,V be isotropic convex bodies IR". Then

wherec, > 0is an absolute constant.
Proof. Let Xy,...,Xy be independent random vectors such ¥as distributed uniformly

in'V; for eachi = 1,...,N. For eachl C {1,...N} with |[I| = n, setd, := |detX]ic||. By
Corollary4.3.5(and Remarld.2.2, we have

1/n
Ed)/" > €v/n (r, Lvi> , (4.28)
IS

wherec, is an absolute constant. Using the zonotope volume formula

N
vol (Zl[o,xo = Y |defXial (4.29)
i= IC«\{II‘;HN}

(see, e.g.,70, pg 73]), together with concavity of— x>/, we have

Iijn(Va,... W) = E<zd|>l/n

1/n-1
> <N> "y g
n
[F]=n
N csN <N>_1 < L >1/n
= T = Vi
\m n Ic{1,...N} "1e
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Remark4.4.3 In the latter proposition, it =V for eachi = 1,...,N, thenry/n(V,N) >
¢aNLy/+/n. On the other hand, setting = {1,...,n}, and applying Jensen’s inequality,
we have

v =5( 5 0)"" ()" e <G

[I=n

whereC, is an absolute constant (for the second inequality, we have used Ldn3nia
Remark4.2.2and Stirling’s formula).

A multi-integral norm

Suppose now thaty, ...,V andK are centrally-symmetric convex bodiesif, i.e.,V; =
—V;, andK = —K. ForA = (Aj) € RN, let

M= ikm

In [3, Theorem 1.4], it is proved that, in the case=n, if \V; =V for eachi = 1,....n,
vol (V) =vol(K) =1 and ifX = (R",||-||x) has cotypey, then

dxy...dx. (4.30)
K

n 1/n
Al = cqv/n (]]D\i !) Lv, (4.31)

wherecq is a constant that depends on the cotgmnstant ofX.

For more recent developments, s8g here a lower’, bound for||-|| is established (not
involving the isotropic constari,); see alsoT].

Using our Propositio®.4.2 we can prove4.31) without the cotype assumption o=
(R"]|-||)- For the proof, we use the following propositio3,(Proposition 2.1]).

Proposition 4.4.4. Let K C R" be a centrally symmetric convex body withl (K) = 1 and
let xq,...,xn € R". Letes,...,en be independent random variables witig; = 1/2) =
P(gi =—1/2). Then

N
Zleixi
i=

wherecs is an absolute constant.

. 1/n
Ee > C5‘mvol ( S [—xi,xi]> ,
SN
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Proposition 4.4.5. Let 4, ...,V and K be centrally-symmetric convex bodies of volume
one inR". Suppose also that 6 isotropic for each i= 1,...,N. Then for each € RN,

IIA\IZC\N((':)l 3 ( ’Ai\)l/n<DLvi>l/n>7

Ic{L. N} ‘i€
[t=n

where c is a positive absolute constant.

Proof. Fix A € RN. LetX; ..., Xy be independent random vectors such ¥has distributed
uniformly inV; for eachi = 1,...,N. Let E denote expectation Xy, ..., Xy. Letes,... &N
be independent random variables (also independeMt of ., Xy) such thatP (g, =1) =

P(ei = —1) = 1/2 and letE¢ denote expectation igy,...,en. For eachH C {1,...N} with
[l =n, setd,  := |defAiXJici|. Then
K>

N
=E[Eg|) &AiX
K ( iZi
~ 1/n
= CT/\QE <V0| <_§l[—)\ixia7\ixi]>> (by Prop.4.4.4)

" 1/n
2G5/
=N E <| _ndm> (cf. (4.29)

N

5

E

265,/N (N) 1/n-1 1/n , 1
> Ed concavity ofx —s x/"

ch((':) h 5 ( |Ai|)1/"(|" Lvi)l/”>, (cf. (4.28)

[l]=n "1 le
wherecCs andc are positive absolute constants.
O

Corollary 4.4.6. Let \,...,V,, and K be centrally-symmetric convex bodies of volume one
in R". Suppose also that 6 isotropic for each i= 1,...,n. Then for any\ € R",

A > oy (fl'“') " (ﬂw) "

where ¢c> 0 is an absolute constant.
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Remark4.4.7. In the latter corollary, iV =V for eachi = 1,...,n, then the isotrop-
icity assumption o’/ may be dropped (since, fofy,..., X, € V, [defTXy,...,TX)]| =
|detX; ..., Xy]| foranyT € SL(n)).

4.5 Hadamard’s inequality for matrices with independent log-
concave columns

Let A be a matrix with columngy, ..., A,. Hadamard’s inequality states that
n
|detA| < rl\Ai|; (4.32)
i=

when eaclh; is non-zero, equality holds if and only if thég are orthogonal. The ratio

h(A) :— |detA|

= AT (4.33)

has been studied for various random matriéet.g., [L1], [6], [1]). For instance, the
case when thé; are uniformly distributed 08" ! is examined by Dixon in€], where he
computes the mean and variance offi6g) and proves that for each> 0,

lim P (n‘l/“‘se‘”/2 < h(A) < n‘1/4+5e—”/2) —1

N—sco

In this case, of course Lemmnda3.9above and the determinant formutal2 give

a_n(ra+p\ o r)
A n“(r(”;q) W ry (439

for —1 < g < . One can also calculaielogh(A) by using @.34) and the fact that

exp(Elogh(A)) = éiLno(Eh(A)q)l/q.

More generally, suppose thatis a log-concave probability measure 8A with center of
mass at the origin. L&k € GL(n) be such thapio T~ is isotropic and ses= T /|detT |¥/".
Then, as in20, pg 70] (cf. 8.1.2 Propositionl.1.5, we have

/\x\zdposrl(x)g/ X 2d(x).
Rn Rn
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ThusifAy,..., A, are independent random vectors distributed accordipgttoen
n n
E|detA]? = E|det(SA|?> < E |‘l|sA|2 <E |_||Ai 2.
= =

In other words, Hadamard’s inequality will give the best bound i§ isotropic. As in
Propositior4.3.3 we can also consider the case whenAhare not necessarily identically
distributed.

Proposition4.5.1.Let |, ..., 4y be isotropic log-concave measures. Suppose that AA,
are independent random vectors such thasAlistributed accordingjfor eachi=1,...,n.
Let A be the matrix A= [A;---Aq] and let H{A) be as defined in433. Then

P (h(A)l/” e [d, dz]) >1- 27N (4.35)
where0 < ¢; < ¢, < 1and ¢ > 0 are absolute constants.

Proof. LetC’ be the constant from Lemn#h2.3and set
B:=2(4C’)?\/nBY.

By Markov's inequality, we have

W(R™\B) < 4(461)4 (4.36)

LetE C R" be a subspace of dimensiktior somek € {0,...,n—1}. Then

/RH\B|PEX|2d W(X) < p(RM B)Y/2 (/RH|PEX|4d|J.(X)) 1/2

< u(R™\B)Y2(4C")%k (by Lemma4.2.3)
<k/2, (by (4.36))
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and hence

[Pex|?

R0 X2

1
) > g PN

— 4(401/)410 (/Rn|PEX|2d|,l(X)—/RH\B|PEX|2dP-(X)>
k

> -
= 8(4C')n

Thus settingC; = 8(4C)*, we have

2 2
‘PELX| dp(x / ‘PE ‘ du ) 1_L

R X2 Can

As in the proof of Lemmat.3.1(cf. (4.12), we apply Fubini’'s theorem (integrating first
with respect toX, thenX,_1 and so on) to obtain

-1 n—-1 n n
|‘L1 k/(Czn)) (ikzo(l—k/(an))> (1-4&) .

Setcy := 1— 1/(4C3) and observe that for any<4 a < ¢, 1, we have

P (h(A) > (ac4)”/2) <a™. (4.37)

We know turn our attention to the reverse bound. Let@rmgnote the constant from Lemma
4.2.4and applying the Cauchy-Schwarz inequality, we get

x4 1/2 1/2 Y2
/RH‘PELXde(x </ XY 2dp(x) > </ IPe. x|~ /du(x))

1/8
< (/ \x\zdu(x)> CY2(n—k)~Y/8 (cf. proof of Lemma4.2.4)
Rn

1/8
12( N
<c (n k) .

Integrating as above, we conclude that

Eh(A)71/4 < Cn/2(nn/n!)l/8 < (e1/8C1/2)n'
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Finally, for anyp > 1, we have

P <h(A) < (Bel/ZCZ)—n> —p (h(A)_1/4 > (B1/4e1/8cl/2)n)> < B—n/4‘

This concludes the proof of the proposition. O
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CHAPTER 5

Concluding remarks and open problems

5.1 Concluding remarks

A common thread in Asymptotic Geometric Analysis is the use of probabilistic methods,
especially in proving existence theorems. The key to using such methodsliefen
deducing useful information from “average behavior.” Milman’s probDvoretzky’s The-
orem, and the use of concentration of measure, is the archetypal example.

We conclude this thesis with several general comments on how we hacévetie used
averaging techniques, especially in the context of isotropic convexfiddikile these may
be transparent to experts, we point out several examples for thétludrtee non-specialist
reader.

Deducing useful information from average behavior is ubiquitous in @n8pespecially in

the proof of Propositior3.1.1 For instance, in the notation of said proposition, one trans-
fers a question about a 1-unconditional isotropic convex Hdy Rademacher random
variablesg; by averaging oveK (see steps in32.9

vol({xe K:[(x,8)| >t}) = /KIP’S <|ieieix;| >t> dx. (5.1)

To get the strongest result, one wants (a) the largest rangeard (b) the largest set of
8 € S"1 for which a super-Gaussian estimate holds.

In order to use Theorer.2.5 one needs to compare tigand /g, norms for a “typical”

89
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vector of the formy = (6;x). To satisfy the assumptior3.(l5 from Theorem3.2.50ne
essentially wants

Yl = F(n) 1Yl

for “most” y with f(n) as large as possible. How do eachxaf K and6 € S'~! behave on
average? Well,
viogn
/ |8]l=00(8) ~ .
g1 Vvn

In this case, the average 8| is a bit too large. By passing to coordinate subspaces of
the formE, = span{e },,, we can in fact guarante, 6||. ~ 1/1/n, while still ensuring
that suchB occupy a significant portion of the sphere. This is the content of Le@i&\4
(the proof of which also involves deducing information from the averddlea¥’! norm on
the sphere).

On the other hand, introducing the projectigf, we must determine the effect are K.
Of course, we have plenty of information about the behavior on avenageely, isotropic
position entails

/K|PExy2dx: dim(E)L2 (5.2)

for anysubspac& c R". Thus by Fac8.2.7and 6.2), one should have
/K|PEx|dx2 f(n)/KHPEmedx

for any proportional dimensional subspdeavith f(n) about,/n/logn. Passing from the
average is then done precisely in LemBa.6 Thus most steps in the proof are done by
first asking how the quantity under question behaves on average astetring properties
accordingly.

Of course, Chaptetf contains many more examples of deducing information from average
behavior.

5.2 Recent developments

In this thesis we mentioned two results in which Steiner symmetrization (see Aigpend
used. In particular, in the notation of Chapfiglet Vs, . ..,V be convex bodies of volume
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one. Then for eacp > 0, the expecteg-th power of the volume of the random zonotope

Ip(V1,.... M / /vol( Ox.> dxg...dxy
R" R" i:

is minimized when eaclf = Bj the Euclidean ball of volume one; i.e.,

Similarly, for the expected volume of a random polytope in a convex lbodyR",
Ep(K,N) = / / vol (conv{xy,...,xn})Pdxy...dxq,
K K

one has
Ep(K,N) > Ep(gg, N). (5.4)

These two formulas have since been unified in current joint work by Gui&aand this
author. For the reader’s interest, we will state the generalization.

Forxy,...,xn € R", letM = M(xq,...,xn) : RN — R" be the operator defined by
Mg =% foreachi=1,... N,

where theg’s are the standard unit vector basis ®¥. Thus the matrix oM with respect
to {e} hasx; as itsi-th column.

Let B RN be an arbitrary compact, convex set. far 0, let

1
Ep(K.N,B) </ /vol (Xt N)B)pde...dx1>p. (5.5)
Theorem 5.2.1. With the preceding notation, we have

EP(K7NaB> ZED(@anB) (56)

Thus ifN > nand andB = conv{e,...,ex}, then

M(Xq,...,Xxn)B=conv{xi,...,xn}. (5.7)
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In this case, inequality5(6) is just 6.4).
If N> nandB=BY, then

M(Xl,...,XN>B:.i[—Xi;Xi]7

and hence inequalityb(6) recovers %.3).

5.3 Further research

Let Ky be the random polytope
Kn = conv{Xy,...,Xn}, (5.8)

whereXy, ..., Xy are independent random vectors distributed uniformly in an isotropic con-
vex bodyK. We close with a few remarks on Conjectdrd.24mentioned in the introduc-
tory chapter, namely, estimatirigyvol (KN)l/” from below.

A problem at the heart of this research involves the volume of the conukafiN arbitrary
(non-random) points iiR". Sharpupperbounds have been known for almost twenty years
now. (e.g., B, [4], [1]; see also?)]).

Theorem 5.3.1.1f x1,...,xy € R"and x| < ay/n, then

1/n < CO(— Vkigﬁ(]m/mv (5.9)

vol (conv{xy,...,xn})
where C is an absolute constant.

The only known examples that illustrate the sharpness for the full rangedfl < € are
random (as far as | know); for instancexit . .., xy are sampled uniformly in the Euclidean
ball B] or if they are Gaussian vectors, then the lower bound fofamiv{x;, ... ,xN})l/n

is of the same order as the upper boubd®) Finding a suitable characterization for the
convex hull of arbitrary points to have the maximum possible volume would cangpie
the current literature and may lead to insights for the random polygpe K as defined
above; in particular, in understanding the proper dependence on thapisaconstant k.
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Perhaps placing the volume problem for the random polykgpe a more general frame-
work will yield new insights. For convenience, Iét, now denote the symmetric polytope

Kn = conv{£Xg,..., =X\ }. (5.10)

Let BY is the unit ball in/y. LetM : RN — R" be the random matrix defined ibje = X,

i =1,...,N (where theg’s are the standard unit vector basis®f). ThusKy = MB}.
How does vo(MB}) behave ap — 1? SinceMB}' = Ky C K, we have vo[MB]) < 1
and any lower bound for chM B’I‘) in terms ofLk leads to an immediate upper bound for
Lk. On the other hand, the upper bound QMIB’F\,‘) < 1 is not necessarily true fqu > 1.

In particular, the implications for the boundednesé pfare not as strong; hence this may
be a more tractable problem. This is related to estimates for the volume of (ndorng
p-zonotopes ing].
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CHAPTER 6

Thesis summary

In this thesis we considered various problemagaymptotic Geometric Analysi§he main
focus of the field is the geometry of convex setgdidimensional space. In contrast to Clas-
sical Geometry, which usually involves the familiar two and three dimensioaaksp the
main interest here is geometry in higher dimensions. The key focustigybrdimensional
phenomena where the characteristic behavior reveals itself only when the dimension is
suitably large (hence the use of the teasymptoti¢. High-dimensional systems are ubig-
uitous in mathematics and applied fields and precise descriptions of high-dimaizhe-
nomena are of broad interest. Understanding and, more importqaégtifyingsuch phe-
nomena can be a challenge as our low-dimensional intuition is of little use. ©@héaic,
with highly counter-intuitive results, is thdistribution of volume in convex sets$n the
introductory chapter, we surveyed recent developments and outlimethiaesults of this
thesis fit within the theory. ChapteBsto 4 are self-contained papers based on the arti-
cles [], [5] and [4], respectively. Each paper addresses a certain aspect of thadretfa
volume in high-dimensional convex sets. In this chapter, we summarize ouresailts.

A common theme underlying all papers in this thesis is the geometry of high-dimeahsio
random polytopesOne way to generate such objects is to sampfmints independently
according to a probability measure orlimensional Euclidean space and form their convex
hull. Sample polytopes, generated by randomly selecting vertices of thedimneasional
cube, are shown in Figuré.1 Chapters 2 and 4 are largely devoted to understanding
properties of polytopes. In Chaptgrrandom polytopes are used more as a tool to analyze
the geometry of general convex bodies.
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N

Figure 6.1: Sample random polytopes generated by vertices of the cube.

Chapter2 addresses the following (somewhat loosely stated) question.

Question 6.0.2.How many points N should be sampled for a random polytope to capture
significant volume?

Of course, the meaning of “significant volume” depends on the model dbraness and
one wants the smallest subh typically a critical threshold value. Here the interest is when
the dimensiom is large andN depends om. This work was motivated by results of Dyer,
Furedi and McDiarmidZ] (who answered the question when the points are drawn from the
n-dimensional cube) and a subsequent generalization due to Gatzadr&amnopoulos
[3]. Both of the latter papers consider random models with particular chasdict (the
random vectors involved have compact support and independerttiicats). In Chapter

2, we treat random models that lack these features. For instance, if mméesaaccording

to n-dimensional Gaussian measure, i.e., multi-variate normal distribution (whicbtis n
compactly supported), the corresponding polytopes are not uniformipdsal. In this
case, there are a number of possible criteria for capturing volume. RonpEg, “How
many points should be sampled to capture the volume of a Euclidean ball?” ¢alnatu
choice as Gaussian measure is invariant under rotations). For clarityavesincluded
sample two-dimensional polytopes and the portion of volume of a ball that tyetyire

in Figure6.2 On the other hand, one can ask, “How many points are needed to capture
the volume of a cube?” (Gaussian measure is, after all, a product-mgag8ifreourse,
there are many possible answers, e.g., capturing volume in other congi®sbtaking

the Gaussian measure of the polytope is equally natural. The®:2ihprovides a rather
satisfactory answer, including all of the aforementioned criteria; in faetdetermine the
number of Gaussian vectors needed to capture not only different velbatenore general
notions of size (according to log-concave measures).218, 8ve also consider polytopes
generated by sampling vertices from tikdimensional sphere. In this case, the coordinates
of the random vectors lack independence. We also provide a naturgdl@ment to the
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Figure 6.2: Sample Gaussian polytopes and the portion of volume inside Eurclide
balls.

latter results by proving corresponding theorems for polytopes geddrgteandom faces
(as opposed to just random vertices).

Chapter3is devoted to the distribution of volume in convex bodies. Fundamental questions
in the theory can be loosely stated as (i) What parts of a high-dimensionatxdody
account for its size? (ii) Why does volume seem to concentrate in placesamaadict

our low-dimensional intuition? IK is a convex body im-dimensional space, we can
measure the distribution of volume by considering caps as shown in FégBird he cap

A

V(0,1

K
Figure 6.3: A cap/(6,t) in K for gauging decay of volume.

V(6,t) of heightt in the direction of® gauges how the volume &f decays as$ increases.
Preciseupper bounddor the volume ofV(6,t) are closely connected to several difficult
open problems. Perhaps the most famous is Conje&tdr6(on the uniform boundedness
of isotropic constants, discussed ifh.8.2. Motivated by Fields Medalist J. Bourgain’s
approach to the latter conjecture, there has been much research erbappds for the
volume of the cap¥ (6,t). Chapter3 is somewhat of a departure from previous research
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in that we show that theeverseestimates, i.elpwer bounddor the volume of such caps
are also important. The first proposition in Cha@envolves sharp lower bounds for the
volume ofV(6,t) whenK is a convex body exhibiting certain symmetries (Symmetric under
coordinate reflections). In33, we discuss the problem of bounding the mean-width of an
isotropic convex body, a natural question about a classical paraebd@osition3.3.9 the
main result of 8.3 reveals that cap-estimates similar to those/f(8,t) are at the heart of
the problem. The proof is of independent interest as it involves appréwimaf a convex
body by a random polytope with relatively few vertices.

Chapters further explores the volume of random polytopes. In this case, the pelytae
generated by sampling poinkg, ..., Xy (independently) in an arbitrary isotropic convex
bodyK and forming their convex hull, sal{y = conv\{Xy, ..., Xy} as shown in Figuré.4.
Rather than calculating threshold values as in Chahtdre focus is on precise estimates

Figure 6.4: A random polytopiéy in K.

for the expected volume d€y in terms of three parameters: the dimensipthe number

of pointsN, and the isotropic constabk of K. Determining the correct dependence is gen-
uinely difficult; in fact, equivalent to resolving Conjectutel.6(mentioned in the previous
paragraph). The difficulty lies in capturing the correct dependenedl three parameters,
n, N, andLg, simultaneously. Giannopoulos and his coauthéf$ifve sharp results in
andN but at the expense &f. In Chapted we obtain the correct dependence on all three
parameters but only whel is small relative ton. Our results improve on previous esti-
mates in several ways. Firstly, the model considered!i &llows one to sample the points
from multiple convex bodies (or log-concave measures). Surprisinglymtire general
model yields cleaner proofs and more accurate estimates. The resulisacha phrased in
terms of determinants of random matrices and thus have applications tol gga@reetric
inequalities, e.g., the volume of zonotopes and Hadamard’s inequality ftomamatrices.
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In Chapter5, we conclude with recent developments and open problems. In partimalar,
discuss placing the volume problem for the random polytpémentioned in the previous
paragraph) in a more general framework.

REFERENCES
[1] N. Dafnis, A. Giannopoulos, and A. Tsolomitis. Asymptotic shape ofrelcan poly-
tope in a convex bodyd. Funct. Anal. 257(9):2820-2839, 2009.

[2] M. E. Dyer, Z. Riredi, and C. McDiarmid. Volumes spanned by random points in the
hypercube Random Structures Algorithm3(1):91-106, 1992.

[3] D. Gatzouras and A. Giannopoulos. Threshold for the volume sghiy random
points with independent coordinatdsrael J. Math, 169:125-153, 2009.

[4] P. Pivovarov. On determinants and the volume of random polytopestiofsc convex
bodies.Geom. Dedicatal4 pages, to appear.

[5] P. Pivovarov. On the volume of caps and bounding the mean-widtm a$aropic
convex bodyMath. Proc. Cambridge Philos. Sot5 pages, to appear.

[6] P.Pivovarov. Volume thresholds for Gaussian and sphericdbrarpolytopes and their
duals. Studia Math, 183(1):15-34, 2007.



CHAPTER 7

Appendix: Steiner symmetrization

In this appendix we discuss Steiner symmetrization, which is used in the misésveral
theorems mentioned in previous chapters.

Definition 7.0.3. Let K be a convex body anHl a hyperplane. Th&teiner symmetral
$4(K) of K with respect tdH is defined by the following procedure: For each straight line
L orthogonal tdH such thaK NL # 0, shift the line segmer{ NL along the lineL until its
midpoint is inH. The union of all such line segmentsSs(K); see Figureér.1

NEREEP,

Su(K)
Figure 7.1: Steiner symmetrization

The key fact in proving .34 and @.27) is that both quantities decrease under Steiner
symmetrization of the associated convex bodies.
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One can then invoke a classical fact, due to Graks [

Theorem 7.0.4.Let K C R" be a convex body of volume one. Then there is a sequence of
successive Steiner symmetrizations of K which converges to the Eudtidéanf volume
oneBj in the Hausdorff metric.

We refer the reader t@] for further information on Steiner symmetrization.

REFERENCES

[1] W. Gro3. Die Minimaleigenschaft der KugeMonatsh. Math. Phys28(1):77-97,
1917.

[2] P. M. GruberConvex and discrete geometrplume 336 ofsrundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Scjer®@snger,
Berlin, 2007.



	Introduction
	Asymptotic Geometric Analysis
	Convex bodies as probability spaces
	Isotropic convex bodies and isotropic constants
	Distribution of volume in isotropic convex bodies
	Sub-Gaussian tail-decay and its implications
	Unconditional convex bodies
	Random polytopes and isotropic constants

	REFERENCES

	Volume threshold problems for random polytopes
	Introduction
	Threshold phenomena for Gaussian random polytopes
	Random vertices
	Random facets
	Intersecting with Euclidean balls

	Threshold phenomena for random polytopes on the sphere
	Random vertices
	Random facets

	REFERENCES

	Volume of caps and mean-width
	Introduction
	Super-Gaussian estimates in 1-unconditional isotropic convex bodies
	Well-spread vectors on the sphere
	Main probabilistic ingredients
	Projections and retention of volume
	Proofs of the cap estimates
	Comparison with recent results

	On the mean-width of an isotropic convex body
	Bounding the mean-width via random polytopes
	Sufficient conditions for bounding the mean-width

	REFERENCES

	Random determinants
	Introduction
	Isotropicity and marginals of log-concave measures
	Random determinants
	Random cross-polytopes and simplices
	Moment formulas for random cross-polytopes in the ball

	Zonotopes and a geometric inequality
	Hadamard's inequality for matrices with independent log-concave columns
	REFERENCES

	Concluding remarks and open problems
	Concluding remarks
	Recent developments
	Further research
	REFERENCES

	Thesis summary
	REFERENCES

	Appendix: Steiner symmetrization
	REFERENCES


