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Abstract. Partially-observed microstructure models, containing stochastic volatility, dynamic
trading noise and short term inertia, are introduced to address the following questions: (1) Do
the observed prices exhibit statistically significant inertia? (2) Is stochastic volatility (SV) still
evident in the presence of dynamical trading noise? (3) If so, which SV model matches the ob-
served price data best? Bayes factor methods are chosen for determining best-fit to allow volatility
models with very different structures to be considered. Nonlinear filtering techniques are utilized
to compute the Bayes factor on tick-by-tick data and to estimate the unknown parameters. Our
price data sets all exhibit strong evidence of both inertia and Heston-type stochastic volatility.

1. Introduction

Financial analysts list speculation, finiteness of assets, interest rates, tick size, price inertia,

price clustering, belief heterogeneity, asymmetric information, greed and fear, etc.; as causes for

price fluctuations over time. Yet, simple mathematical models like geometric Brownian motion

(GBM) (e.g. Black and Scholes [8], Merton [43]) or the Cox-Ross-Rubinstein model (Cox, Ross and

Rubinstein [13]) lump these factors together resulting in unnatural phenominom like the volatility

smile. Stochastic volatility has been observed in real prices and is often added into the price value

evolution (e.g. Heston [34], Jachwerth and Rubinstein [37], Hull and White [36], Nelson [45])

to handle the volatility smile. However, which stochastic volatility model fits the market data

best? Moreover, even combined stochastic value-volatility models do not address tick size, price

inertia, price clustering and fear-greed cycles. To handle these issues, one is drawn to tick-by-tick
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microstructure models and left with the perplex question: How should one model price inertia in

continuous-time? We are using the term price inertia instead of the related term price momentum

because we are not weighting transaction prices by volume. Fractional Bownian motion (FBM),

best known for its long memory properties, exhibits inertia and has been used successfully to model

markets (Mandelbrot [42], Shiryaev [49]). We speculate that FBM’s success is more attributable to

inertia than long memory, introduce an alternative inertia process and show that this new process

better satisfies the desired properties of inertia than FBM. We then show strong statistical evidence

of price inertia that lasts for hours or days using Bayes estimates and Bayes factor on real price

data.

High frequency data contains complete market-participant trading activities (Engle [24]) and is

modeled using microstructure (Black [7], Chan and Lakonishok [10], Hasbrouck [32], [33], Engle and

Russell [23], Engle [24], Bandi and Russell [4] etc.). Unlike the macrostructure market, the trading

noise in the microstructure market is not negligible; thus, the intrinsic asset value is not readily

discernable. In this paper, we introduce a class of microstructure models where the transaction

price is formulated as a distorted and corrupted variant of the intrinsic asset value with the intrinsic

asset value being a traditional stochastic value-volatility process. Indeed, we view the transaction

price data as random counting measure observations of intrinsic value corrupted by microstructure

trading noise with such things as inertia and fear-greed cycles built in. However, trading noise

sources themselves introduce volatility to transaction price, raising the question: “Do we need to

model stochastic volatility explicitly in the presence of dynamic microstructure trading noise?” We

will give strong evidence of the presence of stochastic volatility through stochastic filtering theory.

Moreover, we also utilize model selection to provide strong evidence of Heston-type volatility over

competing stochastic volatility models based on the observed transaction data in a microstructure
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market. Bayes factor (see e.g. Kass and Raftery [39]) is our preferred model selection method

since it provides statistical comparisons in real time as to which model best fits the market data

while allowing the stochastic value-volatility (signal) models to be singular to one another. Indeed,

to use the Bayes factor method, we need only be able to transform all microstructure asset-price

observation models of interest into the same canonical process via Girsanov-type measure change.

Previously, Zeng [52] studied a filtering equation for inferring the intrinsic value process in a

microstructure model while Xiong and Zeng [51] proposed a branching particle approximation

to this equation. Kouritzin and Zeng [41] derived a Bayes factor equation and discussed the

Bayesian model selection problem to determine if financial data, such as stock price, displays

jump-type stochastic volatility. However, all these works are based on a restricted microstructure

model and, thus cannot be applied to our general setting. Moreover, our problems of proposing a

new inertia process, showing statistical evidence of inertia and determining which of the classical

stochastic volatility models best represents real data in the presence of microstructure noise were

not considered.

Section 2 contains our inertia process and properties, the five standard value-volatility models

(GBM, Hull-White, Log Ornstein-Uhlenbeck, GARCH, Heston) that we use and our novel mi-

crostructure model. Together the value-volatility and microstructure components form our price

evolution model. In Section 3, we introduce a model with dynamic microstructure noise and esti-

mate the parameters in our stochastic volatility (SV) models using Bayes estimation. Furthermore,

we present an evolution equation that characterize the Bayes filter and a novel, efficient particle

filtering algorithm to implement these equations. In Section 4, we establish strong statistical evi-

dence of inertia and Heston-type volatility in all our price data through model selection using the
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Bayes factor method to test which value-volatility model and what amount of inertia best fits the

observed price data.

2. The Partially-Observed Market Model

Let [0, T ] be a fixed time period and (Ω,F , (Ft)0≤t≤T , P) be a complete filtered probability space.

For any stochastic process S, its natural filtration, defined as F S
t , σ{Su : 0 ≤ u ≤ t}, represents

the information in S up to time t. N0 denotes the set of nonnegative integers and for any Polish

space E, B(E) is the set of all bounded measurable R-valued functions on E.

2.1. Construction of Macrostructure State. We introduce the macrostructure model M =

(X, θ) for unobservable intrinsic (or fair) asset value together with its volatility and parameters.

X ∈ Rnx is the macrostructure financial state (value plus volatility) with macrostructure parameter

θ ∈ Rnθ for some nx, nθ ∈ N0. We let µ be a probability distribution on Rnx+nθ , take A to be a

generator with domain D(A) ⊂ B(Rnx+nθ) and assume (X, θ) satisfies the martingale problem:

Definition 2.1. (X, θ) is the unique solution of the Rnx+nθ−valued martingale problem for A with

initial distribution µ. That is,

(1) (i) : µ = P ◦ (X0, θ)−1, and (ii) : M f
t = f(Xt, θ) − f(X0, θ) −

∫ t

0
Af(Xs, θ)ds

is {FX, θ
t }−martingale for each f ∈ D(A). Moreover, if (X̃, θ̃) also satisfies (i) and (ii), then

(X, θ) and (X̃, θ̃) have the same finite dimensional distributions.

Remark 2.1. While θ does not vary in time, we include it in our macrostructure model to be

estimated because it is still unknown. Nevertheless, the operator A does not act on the variable θ

since dθt

dt
= 0 for our fixed parameters.
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The martingale problem formulation (1) (see Stroock and Varadhan [50], Ethier and Kurtz

[27] for more details) is general enough to cover most interesting financial models. In our paper,

the macrostructure state X consists of two components: the intrinsic value S and the stochastic

volatility V (if any). The most common example of (S, V, θ) in finance is the “geometric Brownian

motion” (GBM) utilized in the classical Black-Scholes option pricing formula. Throughout this

section, W and B are two independent standard Brownian motions and (s, v, θ) ∈ Rnx+nθ .

Example 1. (GBM model) (see Black and Scholes [8], Merton [43])

(2)
dSt

St

= µdt + σdWt,

with parameters (µ, σ), corresponds to our martingale problem with the generator

A(1)f =
1

2
σ2s2 d2f

ds2
+ µs

df

ds
.(3)

In GBM model, the volatility σ is a constant. To account for the “volatility smile” commonly

observed in market option prices (see Jackwerth and Rubinstein [37] for a detailed survey), the

GBM model is generalized to stochastic volatility (SV) models, where σ itself is replaced by a

stochastic process {V
1
2

t , t ≥ 0}. Some of the popular SV models include:

Example 2. (Hull-White model ) (see Hull and White [36])

dSt

St
= µdt + V

1
2

t dWt,
dVt

Vt
= νdt + κdBt,(4)

with parameters (µ, ν, κ) and generator

A(2)f =
1

2
vs2 ∂2f

∂s2
+ µs

∂f

∂s
+

1

2
κ2v2 ∂2f

∂v2
+ νv

∂f

∂v
.(5)

Example 3. (Logrithmetic Ornstein-Uhlenbeck model) (see Scott [48])

dSt

St
= µdt + V

1
2

t dWt,
dV

1
2

t

V
1
2

t

= (
1

2
ν2 − %(ln V

1
2

t − $))dt + κdBt,(6)
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with parameters (µ, ν, %,$, κ) and generator

A(3)f =
1

2
v2s2 ∂2f

∂s2
+ µs

∂f

∂s
+

1

2
κ2v2 ∂2f

∂v2
+ v

(
1

2
ν2 − %(ln v − $)

)
∂f

∂v
.(7)

Example 4. (GARCH model) (see Nelson [45])

dSt

St
= µdt + V

1
2

t dWt, dVt = (ν − %Vt)dt + κVtdBt,(8)

with parameters (µ, ν, %, κ) and generator

A(4)f =
1

2
vs2 ∂2f

∂s2
+ µs

∂f

∂s
+

1

2
κ2v2 ∂2f

∂v2
+ (ν − %v)

∂f

∂v
.(9)

Example 5. (Heston model)(see Heston [34])

dSt

St

= µdt + V
1
2

t dWt, dVt = (ν − %Vt)dt + κV
1
2

t dBt,(10)

with parameters (µ, ν, %, κ) and generator

A(5)f =
1

2
vs2 ∂2f

∂s2
+ µs

∂f

∂s
+

1

2
κ2v

∂2f

∂v2
+ (ν − %v)

∂f

∂v
.(11)

GBm (with microstructure) plays a special role in our study as it is our no stochastic volatility

model. We will compare our other models against it on real data to determine if stochastic volatility

is present. In summary, we have

Name Model Macro-State Macro-Parameter Generator

GBM M (1) S (µ, σ) A(1)

Hull-White M (2) (S, V) (µ, ν, κ) A(2)

Log O-U M (3) (S, V) (µ, ν, %,$, κ) A(3)

GARCH M (4) (S, V) (µ, ν, %, κ) A(4)

Heston M (5) (S, V) (µ, ν, %, κ) A(5)

.

Remark 2.2. The GARCH model is the continuous-time limit of many classical GARCH-type

discrete-time processes (Nelson [45], Drost and Werker [18]). We did not consider jumping sto-

chastic volatility models (e.g. Elliot, Malcolm and Tsoi [22], Kouritzin and Zeng [41] Duffie, Pan
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and Singleton [20], Eraker, Johannes and Polson [25], Eraker [26]) or models where W,B are cor-

related, due to our need to dedicate our limited computer resources to handling our complicated

(non-Markov) microstructure with inertia. Still, we want to emphasize that the computational

complexity we experienced is fundmental to the fact that we are using non-Markov (inertia) models

and has little to do with our particular methods. Indeed, our Bayes factor filtering methods are

what make the computations possible on an inexpensive contemporary desktop computer.

2.2. Construction of Microstructure Price. The value-volatility models account for the ran-

dom variances of the intrinsic asset value thus the selection of proper SV model is crucial for the

derivative pricing and hedging. On the other hand, microstructure noise (Black [7], Hansen and

Lunde [31], Duan and Fulop [19], Grothe and Müller [30], etc.), causes random perturbations of

transaction price from its intrinsic value and the disregard of such trading noise introduces severe

bias into stochastic volatility estimation (Duan and Fulop [19]). We incorporate microstructure

trading noise into traditional value-volatility models and use statistical filtering to reveal such

things as short-term inertia and stochastic volatility.

In microstructure markets, the price changes occur only at irregularly spaced transaction times

t1, t2, · · · with total trading intensity a(t) (see Engle [24]). Here, we assume a(t) is just a time-

varying measurable function as the empirical analysis illustrates that there is no need to consider

more general structures. At each transaction time ti, the transaction price Yti is formulated as

(12) Yti = F (Xti , ti),

where F is some nonlinear random field depending on the trading noise to be specified. The

formulation (12) is similar to that of Hasbrouck [32] in which X is the intrinsic and permanent

component while F introduces the transitory component.
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The empirical evidence reported by Hansen and Lunde [31] suggests strongly that the trading

noise is serially correlated. Similar results can be found in Aı̈t-Sahalia, Mykland and Zhang [1],

Barndorff-Nielsen, Hansen, Lunde and Shephard [6]. Indeed, there exist situations in which the

trading noise variance estimate is zero when the trading noise is simply assumed to be independent

(Duan and Fulop [19]). This does not mean there is no trading noise but rather that the trading

noise is autocorrelated. To characterize this correlation, Hansen and Lunde [31] assume the noise

to be some Gaussian random sequence with stationary covariance and finite dependence. However,

this model is most suitable for the low-frequency setup and ignores many crucial microstructure

effects. We build correlation into our microstucture information noise through inertia and mean-

reversion while utilizing microstructure rounding and clustering noise to explain the discreteness

and whole price biasing.

2.2.1. Inertia and Information Noise. The idea of momentum or inertia has been used in many

studies (see [38], [44], [29], [28], etc.). Basically, it is the tendency for a stock to continue to move

in one direction. To make our presentation manifest, we formalized this idea:

Definition 2.2. A process (Zt) is said to have stochastic inertia if

IZ
t , lim

u↘t

d

dt

d

du
E[ZuZt] ∈ (0,∞](13)

for all t. IZ
t is called the inertia function.
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The idea behind our definition is that for inertia we should expect Zu+h − Zu and Zt − Zt−k to

have the same sign for u > t close and h, k > 0 small. We strengthen this condition to

lim
u↘t

lim
k→0

lim
h→0

E[(Zu+h − Zu)(Zt − Zt−k)]

kh
> 0(14)

↔ lim
u↘t

lim
k→0

[
lim
h→0

E[(Zu+h − Zu)Zt]

hk
− lim

h→0

E[(Zu+h − Zu)Zt−k]

hk

]
> 0

↔ lim
u↘t

∂

∂t

∂

∂u
E[ZuZt] > 0.

Many processes have inertia; however, we prefer ones with the following five properties: (1) V ar(Z t)

should be proportional to t so it grows in a similar way as Brownian motion; (2) IZ
t is finite not

infinite, indicating that the influence of past values on immediate future is not too strong; (3) Zt

make senses from informational and hidden liquidity points of view. More precisely, it can well

explain the price effects of diffusion and assimulation of information and rumor as well as the

purchases or sales of a large agent changing his/her position over time; (4) Z is easy to simulate;

(5) Z is easy to analyze.

Brownian motion B does not have inertia since IB
t ≡ 0. For fractional Brownian motion (FBM)

Bh,

E[Bh
t Bh

u ] =
1

2
(t2h + u2h − |u − t|2h),

where h ∈ (0, 1) is the Hurst parameter. Therefore,

lim
u↘t

d

dt

d

du
E[Bh

t Bh
u ] = lim

u↘t

(
(2h − 1)h(u − t)2h−2

)
= ∞ if h >

1

2
.

Thus, the inertia function of Bh is infinity for all t if h > 1
2 (and is −∞ if h < 1

2). Neither case

satisfies our five properties. Our stochastic inertia process is

ξh
t =

√
h

∫ t

0
tanh((t − s)/∆)dBξ

s +
√

1 − hW ξ
t(15)

where (Bξ,W ξ) is a 2-dimensional standard Brownian motion, ∆ > 0 and 0 ≤ h ≤ 1.
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Remark 2.3. The inertia in ξh
t is introduced through a weighted average (by the choice of h) of the

historical information (the first term) and fundamental information (the second term). In fact, the

tanh(t/∆) can be viewed as the impulse response on price created by market participants receiving

and assimulating the “information” dBξ
t so ∆ determines the diffusion speed in the market. This

formulation captures the idea that news or rumor and its ramifications can require time to be

fully disseminated and understood. h = 1 then represents the case of only historical information

resulting in the strongest short-term inertia in prices. Further, we can use this explanation to

explain “hidden liquidity”. If everybody knew that an agent was going to make a big change in a

position, then the price would immediately jump. However, if the agent breaks up the desired change

into small transactions, then it takes time for this extra buying or selling pressure to be recognized

in the market. In this case, h = 1 represents the case where all changes in position are done over

a period of time and ∆ represents the time to effect 58% of the positional change.

ξh
t is a centered Gaussian process such that for any u ≥ t

E[ξh
t ξh

u] = h

∫ t

0
tanh((t − s)/∆) tanh((u − s)/∆)ds + (1 − h)t.

In particular,

V ar(ξh
t )

t
=

h

t

∫ t

0
tanh2((t − s)/∆)ds + (1 − h) = 1 − h∆

tanh(t/∆)

t

thus
V ar(ξh

t )
t

converges to 1 with speed determined by ∆. Moreover,

d

dt

d

du
E[ξh

t ξh
u] =

h

∆2

∫ t

0
sech2((t − s)/∆)sech2((u − s)/∆)ds

and using standard antiderivatives

lim
u↘t

d

dt

d

du
E[ξh

t ξh
u ] =

h

∆2

∫ t

0
sech4(s/∆)ds =

h

3∆
[cosh(2t/∆) + 2] tanh(t/∆)sech2(t/∆).
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Note that

lim
t→∞

h

3∆
[cosh(2t/∆) + 2] tanh(t/∆)sech2(t/∆) =

2h

3∆

and this happens quickly for small ∆. We can thus verify ξh, defined in (15), satisfies our five

desired properties. One can also look upon ∆ as the time for new information to be disseminated

to fifty-eight percent of the market. Below, we consider three different dissemination times: ∆ = 40

minutes, ∆ = 2 hours and ∆ = 1
2 day on real stock data.

Hitherto, we have focused on constructing inertia processes. Now, we include all informational

noise into asset prices. Information noise is introduced to represent trading noises due to things like

inertia, fear-greed cycles, belief heterogeneity and asymmetric information. For the ith−transaction

occurring at ti, the intermediate price Yti is defined by

lnYti =

{
lnSti + Zh,∆

ti
+ εζi, dynamical microstructure

lnSti + εζi, non-dynamical
(16)

dZh,∆
t = −αZZh

t dt + dξh
t , Zh,∆

0 = z0,(17)

where X = (S, V ) and Zh,∆ is the dynamical part of the microstructure. The case Zh,∆ ≡ 0 is of

particular importance in the sequel as it represents the non-dynamical microstructure case and is

used as a calibration model.

The information noise consists of two parts: ζ = {ζi}∞i=1 is a sequence of independent standard

Gaussian random variables, ε > 0; Zh is a Ornstein-Uhlenbeck (O-U) like inertia velocity process

with mean-reverting parameter αZ > 0. Here, ξh, ζ and X are independent and z0 is a constant. Zh

provides an intuitive continuous-time model that accommodates the joint presence of the inertia

and mean-reversion. Our information noise is more reasonable than that of Zeng [52] in that:

(1) We preclude the possibility of negative prices by using multiplicative noise; (2) The stochastic

inertia process ξh captures the empirical feature of the inertia observed in transaction prices (e.g.
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Jegadeesh and Titman [38]); (3) The mean-reverting structure of Zh when combined with the

inertia we incorporated captures the cyclic property of prices (e.g. Black [7]). Z h is not a Markov

process so we introduce its historical process as

Ẑh
t (τ) , Zh

t∧τ ,(18)

which is Markov. Moreover, Ẑh
t ∈ C[0, T ], the space of all continuous functions on [0, T ], since

the paths of Zh are continuous. Consequently, we generalize the state vector to be (X, θ, ϑ, Ẑh),

where ϑ = (ε, αZ) is the microstructure noise parameter set. The advantage of this formulation is

that we can estimate Ẑh thus Zh jointly with other components using particle filtering methods.

The generalized state incorporates value, volatility, parameters and the historical trading noise Ẑh

while keeping the tractability of a Markovian framework.

Remark 2.4. We include neither h nor ∆ into the model parameters but rather consider different

models corresponding to different values of h and ∆ as well as different SV models 1-5. Indeed, we

will provide evidence of inertia in the sequel by using Bayesian methods to select a model with a

large value of h based upon tick-by-tick stock data.

2.2.2. Rounding and Clustering Noise. While Yti can take any value, the trading price Yti is re-

stricted to multiples of the tick, {y0 = 0, y1 = 1
M

, · · · yj = j
M

, · · · }, for some positive integer M .

The tick size in New York Stock Exchange (NYSE) was switched to $ 1
16 from $1

8 in June 24, 1997

and then further adjusted to $0.01 beginning from January 29, 2001. The empirical studies suggest

that the tick size 1
M

plays an important role in microstructure market analysis (e.g. Huang and

Stoll [35]). As we are concerned with price clustering for post-decimal pricing in stock markets, we

let M = 100.
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Figure 1: Clustering for 3 NYSE stocks in April
2010.

Figure 2: Inter-trade Time Frequencies in sec-
onds.

It is well documented that there exists price clustering to more whole prices. To quantify this

price clustering, we examine the tick price behavior for three NYSE listed stocks over April 2010:

NYSE Stock Ticker Symbol
Morgan Stanley MS

International Business Machines Corporation IBM
PepsiCo Inc. PEP

The transaction data of these stocks shows there is modest clustering at multiples of 5 cents as

shown in Figure 1, plotted in terms of pennies. Suppose the intermediate price Yti falls in the

interval [yj − 1
2M

, yj + 1
2M

), then if there was no clustering noise, the trading price Yti would just

be yj. Thus, the probability of trading at yj with no clustering noise given Xti = x, Zti = z would

be

R(yj|x, z, ϑ) , P (Yti = yj|Xti = x,Zti = z, ϑ)(19)

=





∫ ln

„

yj+ 1
2M

x·ez

«

ln

„

yj−
1

2M
x·ez

«

1√
2πε

e−
u2

2ε2 du dynamical microstructure

∫ ln

„

yj+ 1
2M

x

«

ln

„

yj−
1

2M
x

«

1√
2πε

e−
u2

2ε2 du non-dynamical

.
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Equivalently, we can write R in terms of the historical process as

R(yj |Xti ,Πti Ẑ
h
ti
, ϑ) =

∫ ln

0

@

yj+ 1
2M

Xti
e
Πti

bZh
ti

1

A

ln

0

@

yj−
1

2M

Xti
e
Πti

bZh
ti

1

A

1√
2πε

e−
u2

2ε2 du,(20)

where Πti is the projection onto time ti, i.e.,

ΠtiẐ
h
ti

= Ẑh
ti
(ti) = Zh

ti∧ti
= Zh

ti
.(21)

Clearly, R(yj |x, z, ϑ) is a smooth function of (x, z, ϑ) for each fixed yj. Since M = 100, it is

convenient to introduce the following notation:

D1 = {The integers in (0, 100] that are not multiples of 5},

D2 = {The integers in (0, 100] that are multiples of 5 but not of 25},

D3 = {25, 75}, D4 = {50}, D5 = {100}.

If the fractional part of the price y is in D1, then it will stay in the same level with probability

1−α or move to the closest multiple of 5 cents, that is, the closest tick level in D2 ∪D3 ∪D4 ∪D5

with probability α. Then, if the fractional part of the price y is in D2, it will stay in the same level

with probability 1−β or move to the closest tick level in D3 ∪D4 ∪D5 with probability β. Finally,

if the fractional part of the price y is in D3, then it will stay in the same level with probability

1 − γ1 − γ2 or move to the closest tick level in D4 with probability γ1 and the closest tick level in

D5 with probability γ2. In summary, the transition probability function is obtained iteratively by

Case 1. If the fractional part of yj belongs to D1,

p(yj|x, z, ϑ) = R(yj|x, z, ϑ)(1 − α).(22)
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Case 2. If the fractional part of yj belongs to D2,

p(yj|x, z, ϑ) = R∗(yj|x, z, ϑ)(1 − β),(23)

where

R∗(yj |x, z, ϑ) , R(yj|x, z, ϑ) + α (R(yj−1|x, z, ϑ) + R(yj−2|x, z, ϑ))(24)

+ α (R(yj+1|x, z, ϑ) + R(yj+2|x, z, ϑ))

Case 3. If the fractional part of yj belong to D3,

p(yj|x, z, ϑ) = R∗∗(yj |x, z, ϑ)(1 − γ1 − γ2),(25)

where

R∗∗(yj|x, z, ϑ) , R∗(yj|x, z, ϑ) + β(R∗(yj−5|x, z, ϑ) + R∗(yj−10|x, z, ϑ))(26)

+ β(R∗(yj+5|x, z, ϑ) + R∗(yj+10|x, z, ϑ)).

Case 4. If the fractional part of yj belong to D4,

p(yj |x, z, ϑ) = R∗∗(yj|x, z, ϑ) + γ1(R
∗∗(yj−25|x, z, ϑ) + R∗∗(yj−25|x, z, ϑ)).(27)

Case 5. If the fractional part of yj belong to D5,

p(yj |x, z, ϑ) = R∗∗(yj|x, z, ϑ) + γ2(R
∗∗(yj−25|x, z, ϑ) + R∗∗(yj+25|x, z, ϑ)).(28)

Moreover, we have to handle the case j = 0 separately since there are no negative prices

Case 6. For j = 0,

p(y0|x, z, ϑ) = R(y0|x, z, ϑ) + α(R(y1|x, z, ϑ) + R(y2|x, z, ϑ))(29)

+ β(R∗(y5|x, z, ϑ) + R∗(y10|x, z, ϑ)) + γ2R
∗∗(y25|x, z, ϑ).
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Remark 2.5. Our clustering setup is designed to work well for intrinsic prices over $1. For real

penny stocks our setup would introduce positive bias and should be modified slightly.

Using relative frequency analysis on the aggregate of our three stocks, we found

Clustering Parameters Estimate
α 0.060475
β 0.046883
γ1 0.03883
γ2 0.16525

.

The large degree of clustering exhibited, especially to the whole dollar, might be considered sur-

prising. However, earlier studies of Huang, Stoll [35], Chung, Van Ness [12], Chung, Kim and

Kitsabunnarat [11] also showed significant clustering. Moreover, the degree of price clustering in

NYSE is weaker than that of NASDAQ. For example, Barclay [5] examined 472 stocks from NAS-

DAQ before and after their listing in NYSE or American Stock Exchange (AMEX): before the

listing, the average fraction of even-eigthes is 78% while after, it drops to about 56%.

2.3. Nonlinear Filtering Model. Our price process can be formulated as a marked point process

−→
Y : a sequence of random vectors

−→
Y = (ti, Yti , i ≥ 1), where ti ∈ [0, T ] denotes the time of

ith−trade and Yti the corresponding trading price. Accordingly, the mark space of
−→
Y is (E, E)

where E = N0 and E is all its subsets. Here, j ∈ E corresponds to the j th−tick level j
M

. For each

A ∈ E , we associate the counting process Yt(A)

(30) Yt(A) ,
∑

i≥1

1{Yti
∈A}1{ti≤t}

to count the trades in tick level set A up to time t. In particular, for j ∈ E

Yj(t) , Yt({j}) =
∑

i≥1

1{Yti
=j}1{ti≤t}
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denotes the total trades at jth−tick level j
M

until time t. Equivalently, we can introduce the random

counting measure Y (dz × dt) on E ⊗ B[0, T ] by

(31) Y (ω,A × (s, t]) , Yt(ω,A) − Ys(ω,A), ∀ω ∈ Ω, s ≤ t ∈ [0, T ], A ∈ E .

The natural filtration, i.e. information content, of Y is

(32) FY
t , σ(Ys(A), 0 ≤ s ≤ t, A ∈ E).

Now we assume:

A 1. The total trade process Yt = Yt(E) admits an intensity a(t) for some measurable function a.

Therefore, Yj(t) has intensity

(33) λj(Xt, Z
h
t , ϑ, t) = a(t) · p(yj|Xt, Z

h
t , ϑ).

To simplify the notation, we rewrite (33) as λj = a · pj.

A 2. There exists some positive constants δ, C such that δ ≤ a(t) ≤ C for all t.

Based on representation (30), (33), (X, Ẑh, θ, ϑ;Y ) is framed by a partial-observation model,

where (X, Ẑh, θ, ϑ) is the state (signal) which is partially observed through the infinite dimensional

counting process Y. One difficulty in calibrating these models is that their transition probability

functions are usually unknown in closed form so maximum likelihood estimation (MLE) methods

are difficult to use as explained in Aı̈t-Sahalia and Kimmel [2]. Instead, we use Bayesian filtering

because: (1) Bayes estimates do not require the availability or regularity of the full likelihood

functions. (2) Bayes estimates can be computed recursively for our tick-by-tick data. (3) Bayesian

hypothesis tests can be conducted through Bayes factor, which is the ratio of marginal likelihoods

and is easily computed.
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3. Calibration through Nonlinear Filtering

3.1. Nonlinear Filtering and Particle Filter. The available information about (Xt, θ, ϑ, Ẑh
t ) is

the observation filtration FY
t ⊂ Ft, defined in (32), and the primary goal of nonlinear filtering is

to characterize the conditional distribution

(1) πt(·) = P[(Xt, θ, ϑ, Ẑh
t ) ∈ · |FY

t ]

or equivalently,

(2) πt(f) = E[f(Xt, θ, ϑ, Ẑh
t )|FY

t ]

for f ∈ B(Rnx+nθ+2×C[0, T ]). Here, ϑ = (ε, αZ), Ẑh is the long memory portion of our information

noise and (X, θ) is the state and parameter of our value-volatility martingale problem.

Remark 3.1. Actually, we only want to estimate P[(Xt, θ) ∈ · |FY
t ] but there is no simple recursive

formula for this marginal. The filter is naturally model dependent so we produce different filtering

processes for each model, that is, for each SV choice 1-5, each value of ∆ and each value of h.

Suppose ∀z ∈ N0, κz is a constant such that κ ,
∑∞

z=0 κz < ∞, and consider the continuous-time

likelihood function

(3) Lt = exp

(∫ t

0

∫

E

ln
λz(Xs, Z

h
s , ϑ, s)

κz

Y (dz, ds) −
∫ t

0
(a(s) − κ)ds

)
.

Lt is a martingale under Condition A 2 and Q, defined by

(4)
dQ

dP

∣∣∣
FT

= L−1
T (i.e. Q(A) =

∫

A

L−1
T dP for A ∈ FT ),

is called the reference measure. Bayes Theorem (see Bremaud [9, p. 165]) links the desired (real-

world) conditional distribution πt with the unnormalized filter σt by

(5) πt(f) =
σt(f)

σt(1)
,
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where the unnormalized filter σt is defined by

(6) σt(f) , EQ[f(Xt, θ, ϑ, Ẑh
t )Lt|FY

t ]

for all f ∈ B(Rnx+nθ+2 ⊗ C[0, T ]). Under Q, the state vector (X, θ, ϑ, Ẑh) is independent of the

observation Y and we have:

Theorem 3.1. Under A 1 and A 2, the unnormalized filter σt is the unique measure-valued solution

of the stochastic filtering equation

(7) σt(f) = σ0(f) +

∫ t

0
σs

(
(Ā − a(s) + κ)f

)
ds +

∫ t

0

∫

E

σs−

((
λz(s−)

κz
− 1

)
f

)
Y (dz, ds),

for t > 0 and f ∈ D(Ā).

This theorem is a modest generalization of prior results and can be obtained in much the same

manner as results in Kouritzin and Zeng [41] and Xiong and Zeng [51]. Here, Ā is the generator

of the joint martingale problem to (X, θ, ϑ, Ẑh) obtained from A, the generator of state (X, θ) and

AZ , the generator of the historical process Ẑh. We do not need an explicit formula for Ā. Instead,

to implement the evolution equation (7), we apply the following novel particle filter that can be

thought of as a generalization of Del Moral, Noyer and Salut [16]. For some large N ∈ N0 the

particle system {P k
t }N

k=1 is constructed as follows:

3.1.1. Initialization. At the initial time 0 we generate independent particles {P k
0 }N

k=1 from the joint

prior distribution π0(·) of (X0, θ, ϑ, Ẑh
0 ) ∈ Rnx+nθ+2 × C[0, T ]. The empirical measure at 0 is

ϕN (0) =
1

N

N∑

k=1

δP k
0
(·),

where δx(·) is the Dirac measure at x. By the strong law of large numbers,

lim
N−→∞

(ϕN (0), f) = π0(f) ∀f ∈ B(Rnx+nθ+2 ⊗ C[0, T ]).
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Here, (µ, f) ,
∫

f(y)µ(dy) for measures µ so

(ϕN (0), f) =
1

N

N∑

k=1

f(P k
0 ).

Remark 3.2. Note that L0 = 1 so π0(f) = σ0(f). When there is no special information, it is

convenient to assign uniform distributions to (X0, θ, ϑ, Ẑh
0 ). Note that Ẑh

0 is a constant function

defined on [0, T ].

3.1.2. Evolution. Between observations all particles move independently as samples from the tran-

sition probability of (X, θ, ϑ, Ẑh). In particular, we use the Euler scheme (Kloeden and Platen [40])

to evolve the dynamics Examples 2.2-2.6 and (17).

3.1.3. Particle Weights. At the ith observation (ti, Yti), each particle is given a weight observation

ωk
i = ωk

i (ti) , exp

(∫ ti

ti−1

∫

E

ln
λz(P

k
s , s)

κz
Y (dz, ds) −

∫ ti

ti−1

(a(s) − κ)ds

)
.

ωk
i depends on the observation Y and the likelihood ratio of measure P over measure Q defined by

(3) given the simulated particle path realized on the interval [ti−1, ti). These weights are stored

along with the states of particles before re-sampling.

3.1.4. Re-sampling. The average particle weight at ti is

(8) ωi ,
1

N

N∑

k=1

ωk
i .

If a particle has a weight ωk
i = rkωi + zk, where rk ∈ {0, 1, 2, · · · } and zk ∈ [0, ωi) before the re-

sampling, then there will be rk or rk+1 particles at this state after the re-sampling with a probability

selected in order to leave the system unbiased, meaning there will rk + 1 particles with probability

zk

ωi
. In particular, the extra particles can be placed according to a

(
N −∑N

k=1 rk; z1

ωi
, z2

ωi
, ..., zN

ωi

)
-

multinomial distribution. It is this average-weight usage in our resampling that differentiates this
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procedure from the earlier, popular one of Del Moral, Noyer and Salut [16]. This simple change

leads to dramatic outperformance (see Del Moral, Kouritzin and Miclo [15] for an illustration of

how resampling can change performance).

3.1.5. Bayesian Estimation. By the strong law of large numbers and (5), the particle approximation

of the normalized filter π(·) is

πN, t(f) =
1
N

∑N
k=1 f(P k

t ) exp(
∫
E

ln(λz

κz
)(P k

t , t))Y (dz, t))

1
N

∑N
k=1 exp(

∫
E

ln(λz

κz
)(P k

t , t))Y (dz, t))

for all f ∈ B(Rnx+nθ+2 × C[0, T ]).

3.2. Calibration and Historical Training. To keep the problem size manageable, we just used

the clustering parameter estimates given above as the actual values throughout our simulations.

We also took the total intensity function a(t) to be the hazard function

a(t) = − d

dt
ln P(T > t).

Here, T represents the inter-trade duration of the tick data. Figure 2 is the inter-trade duration

histogram of our 3 NYSE-listed stocks from which the hazard rate was estimated.

One is always faced with the problem of estimating initial distributions for value, volatility and

the parameters prior to filtering over the time interval of interest (April 2010 here). Our approach

was to make arbitrary uniform assignments very far in the past (January 3, 2000 to be precise) and

then do an excessive amount of prior particle filtering, relying on the ability of the filter to forget

its starting point and to produce reasonable distributions at a much later point, April 1, 2010.

(See e.g. Ocone and Pardoux [47], Delyon and Zeitouni [17], Atar [3] for mathematical results

regarding this phenomenon.) This had to be done for every model, namely, every combination

of our three stocks, five SV models and multiple microstructure models, characterized by inertia



22 MICHAEL A. KOURITZIN

Figure 3: Longterm Value Estimation of PEP.

parameters. Our main purpose in this historical training was to get a starting joint distribution for

(X, θ, ϑ, Ẑh) as of April 1, 2010 under each model combination. Due to the large number of cases

this produced, we first display and discuss two models: the non-dynamical microstructure Heston

case and the median inertia dynamical case where h = 1
2 and ∆ = 7200 s (i.e. 2 hrs.) in the inertia

microstructure model. Also, to ensure that θ and ϑ did not converge to a single value, we made

them vary slightly in a random manner, e.g. we replaced the equation dθ = 0 with dθt = dvt for a

very low variance Brownian motion v.

In Figure 3, we illustrate our prior filtering of Pepsi. The choppiest curve is the actual stock price

while the smoothest curve is the filter’s value estimate E[St|FY
t ] using the Heston SV model with

(median) microstructure inertia. The middle curve is the filter’s value estimate E[St|FY
t ] using the



MICROSTRUCTURE MODELS WITH SHORT-TERM INERTIA AND STOCHASTIC VOLATILITYRUNNING TITLE = MICROSTRUCTURE MODELS23

Heston SV model without dynamics in the microstructure, i.e. Zh = 0. These curves go beyond

April 1, 2010. However, the required initial distributions were taken from the filter at that point.

Notice from Figure 3 that the value process estimate is far less volatile in the pressence of

dynamical microstructure than without. This indicates dynamical microstructure (with inertia)

can replace much of what stochastic volatility tries to do and leads to one of our central questions

addressed below: Is stochastic volatility necessary in the presence of dynamical microstructure?

3.3. Numerical Results. The data is one month (April, 2010) of transaction prices of our three

NYSE-listed stocks. Our filter produces Bayes estimates (in seconds) to the macro- and mirco-

parameter vectors θ and ϑ respectively. These estimates in the non-dynamical microstructure case

for PepsiCo are as follows:

PEP GBM HW LOU Nelson Heston
µ 1.51E − 06 1.47E − 06 1.52E − 06 1.44E − 06 1.49E − 06
ν σ = 2.86E − 06 1.17E − 09 9.55E − 06 1.06E − 10 1.07E − 11
κ − 1.59E − 03 1.80E − 03 1.94E − 03 2.58E − 07
% − − 4.75E − 03 6.51E − 03 6.02E − 03
$ − − 4.84E − 06 − −

All parameters are estimated using time in seconds. Our Pepsico Bayes estimates in the median

inertia case are as follows:

PEP GBM HW LOU Nelson Heston
µ 1.05E − 06 1.02E − 06 9.92E − 07 1.03E − 06 1.01E − 06
ν σ = 2.21E − 06 5.50E − 10 5.13E − 06 6.32E − 11 5.94E − 12
κ − 2.18E − 03 1.87E − 03 2.12E − 03 2.26E − 07
% − − 2.25E − 03 2.90E − 03 3.23E − 03
$ − − 2.60E − 06 − −
ε 2.43E − 09 2.05E − 09 2.33E − 09 2.31E − 09 2.46E − 09

αZ 2.13E − 09 2.31E − 09 2.23E − 09 2.33E − 09 2.31E − 09

While it is difficult to read much from these numbers, we can see that the main volatility param-

eters ν, κ, % are mostly smaller when dynamics is included in the microstructure further justifying

our conjecture that at least some stochastic volatility is better replaced by microstructure with

dynamics.
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MS : S_t of various models (* indicates models without dynamics) 
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Figure 4: Value Estimation of MS, April 2010.

Figures 4−5 show the conditional expectation value estimation for Morgan Stanley and PepsiCo

respectively in the cases of no dynamics and median-inertia dynamics for each of our SV models.

There are a total of eleven curves on each of three graphs. The most volatile curve is the stock

price itself over this month. The smoothest curves somewhat separated from the stock price are

the value estimates using the five SV models with (median inertia) dynamical microstructure. The

remaining five curves (that hug the stock price) are our value estimates for our five SV models with

non-dynamical microstructure. In this last case, the microstructure does not have the power to

separate the value and actual stock price to any large degree.

It is important to realize that these pictures are really just a one month snapshot of a much

bigger multi-year filtering process. This explains why many of the value processes are significantly
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PEP : S_t of various models (* indicates models without dynamics) 
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Figure 5: Value Estimation of PEP, April 2010.

different than the actual stock price on April 1, 2010: The filter is estimating that the difference is

due to the microstructure. It is apparent that adding dynamics into the microstructure allows the

estimated value process really to differ from the stock price. Indeed, there is a significant correction

of all three stock prices (especially Morgan Stanley) towards estimated value of the models with

(median inertia) dynamical microstructure. This produces a compelling reason to use models with

microstructure dynamics: You would be estimating that the stocks were significantly overvalued

before the correction if you used the model with microstructure dynamics but otherwise would have

had no such warning. It is an interesting to ponder what this possible discrepancy would mean to

option prices.
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The filters provide conditional distributions and estimates for more than just value and param-

eters. Table 1 shows the volatility estimates with (median) microstructure inertia and without

without dynamics with dynamics
PEP (2 Hrs., h = 0.6) 1.58416E-09 1.01312E-11
MS (1/2 Day, h = 0.4) 4.14645E-08 4.3005E-10
IBM (1/2 Day, h = 1) 8.21731E-10 4.03211E-11

Table 1: Volatility Estimation, April 2010

microstructure dynamics using the Heston SV model. We only highlighted Heston here because:

1) We will show evidence below that Heston performs the best and 2) The volatility estimates of

the other SV models behave similarly. The amount of stochastic volatility estimated when there

is (median inertia) dynamics in the microstructure shrank to a couple of percent of what it was

without. This really suggest that by far the primary use of stochastic volatiliy is as a proxy for mi-

crostructure with dynamics and further raises the question about the need for stochastic volatility

in the presence of microstructure dynamics.

The final and most difficult quantity the filter estimates (in the dynamical microstructure case)

is the historical noise. For practical purposes, we can not let the historical path go back all the

way to year 2000 but found that there is not much loss if we just update discrete samples over

the previous three years, which is still a tremendous amount of data. Also, we can not plot these

historical path so we just plot the projection onto the current time, i.e. we just plot Z h
t even though

we must propagate the Markov process Ẑh
t in the filter. Figures 6 shows the noise estimate for

Pepsico. In this graph, we look at the effect of inertia. The curves where h = 0 represent the no

inertia case so Z0
t is just an Ornstein-Uhlenbeck process. Conversely, the case h = 1 represents

the one hundred percent inertia case and Z1
t is not Markov. We see from these graphs that the
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Figure 6: Noise Process Estimation of PEP, April 2010.

amount of estimated noise is very similar indicating that the amount of inertia modeled might not

be that significant. However, the noise processes where h = 1 are far smoother due to the inertia.

Below, we will produce strong evidence that inertia is important and find that the best h is in the

range [0.4, 1], depending upon the stock. We compare the behavior of our models in terms of the

SV models and the inertia parameters h and ∆ within the Bayesian model selection framework in

the following section.

4. Selecting the Best Volatility Model by Bayes Factor

4.1. Model Selection and Bayes Factor. The main objective of this section is to use Bayes

factor to investigate the model selection in microstructure markets. To use the Bayes factor method,
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we need only be able to transform all observation models of interests into the same canonical process

via Girsanov measure change. The signal models can be singular to one another. Kouritzin and

Zeng [41] discuss the Bayesian model selection problem. However, their equations do not apply

to our models. The available information in microstructure market is the observation process

Y , which represents the cumulative transaction records throughout all tick price levels. The Bayes

factor determines which model best fits this observed data by doing pairwise comparisons. Consider

our 5 SV macrostructure value-volatility models

M (k) , (X(k), θ(k)) ∈ Rn
(k)
x +n

(k)
θ ,

where the generators of the martingale problem to M (k) are respectively A(k) for k = 1, 2, 3, 4, 5.

The likelihood of Y at time t is

L
(k,h,∆)
t = 1 +

∫ t

0

∫

E

(
λz(X

(k)
s , Zh,∆

s , ϑ, s)

κz

− 1

)
L

(k,h,∆)
s− (Y (dz, ds) − κzm(dz)ds) .

Here, m(dz) is the counting measure on E and the same observations and observation rate infor-

mation is used for all models. (L
(k,h,∆)
t )−1 then transforms the observations into the same Poisson

measure with intensity measure µ(A) =
∫
A

kzm(dz). The normalized filter π
(k,h,∆)
t , k = 1, 2, 3, 4, 5;

h ∈ [0, 1]; ∆ > 0 satisfies

π
(k,h,∆)
t (fk) =

σ
(k,h,∆)
t (fk)

σ
(k,h,∆)
t (1)

where fk ∈ B(Rn
(k)
x +n

(k)
θ

+2 ⊗ C[0, T ]) for k = 1, 2, 3, 4, 5, the unnormalized filter σ
(k,h,∆)
t is

σ
(k,h,∆)
t (fk) , EQ[fk(X

(k)
t , θ(k), ϑ, Ẑh,∆

t )L
(k,h,∆)
t |FY

t ]

and σ
(k,h,∆)
t (1) is the integrated (or marginal) likelihood of Y . Now, we use Bayes factor to compare

models. To calculate the Bayes factor, we select two complete models characterized by (k1, h1,∆1)

and (k2, h2,∆2), calculate the integrated likelihoods σ1
t (1) = σ

(k1,h1,∆1)
t (1), σ2

t (1) = σ
(k2,h2,∆2)
t (1)
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and then take the Bayes’ factor ratios:

B12(t) =
σ1

t (1)

σ2
t (1)

, B21(t) =
σ2

t (1)

σ1
t (1)

.(1)

σ1
t and σ2

t are computed by the unnormalized filtering equation. Kass and Raftery [39] demonstrate

how to interpret Bayes factor:

B12 Evidence against Model 2
1 − 3 Barely mentionable
3 − 12 Positive

12 − 150 Strong
> 150 Decisive

.

Now, we consider the problem of selecting the best of our five value-volatility models:

M (k) , (X(k), θ(k))

and the resulting partially-observed market models:

(X(k), Ẑh,∆, θ(k,h,∆), ϑ;Y ).

We compare these five models to determine which can best represent the market data. More

precisely, we run all unnormalized filters as explained in Section 3.1 with the optimal parameters

discovered and reported earlier. Then, we choose Model i if σ
(i,h,∆)
T is the largest. Naturally, this

corresponds to the model whose Bayes’ factor ends up greater than one when compared to any

other model. While we have five basic models, we also consider different market ingestion times ∆

and inertia magnitude parameters h for each model.

4.2. Numerical Results. Using GBM with non-dynamic microstructure (i.e. Z h = 0) as the

benchmark, we determine which combination of SV model and inertia parameters outperforms

GBM most. We first focus on the candidate models (Examples 2.2−2.6). In each case, we pick the

inertia parameters from the sets ∆ ∈ {30 mins, 2 hrs, 1/2 day} and h ∈ {0, 0.1, 0.2, ..., 0.9, 1} that

would yield the highest Bayes factor against the calibration model. The data is the transaction price
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PEP : 2Hrs. & h=0.6 : Bayes with & without dynamics
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Figure 7: Bayes Factor for PEP SV Model Determination, April 2010

of Pepsi, IBM and Morgan Stanley, April, 2010. Table 2 summarizes the Bayes factor performance.

The Bayes factors computed in this table gives strong evidence for the Heston model based on only

Heston GARCH LogOU HW GBM
PEP (2 Hrs., h = 0.6) 27.30 25.23 21.31 17.04 6.08
MS (1/2 Day, h = 0.4) 19.14 18.91 18.77 18.59 10.18
IBM (1/2 Day, h = 1) 49.94 45.43 40.75 37.07 16.16
PEP* (2 Hrs., h = 0.6) 1.08 1.07 1.06 1.04 1.00
MS* (1/2 Day, h = 0.4) 1.06 1.04 1.06 1.06 1.00
IBM* (1/2 Day, h = 1) 1.06 1.04 1.06 1.03 1.00

Table 2: Bayes Factor for Model Determination, April 2010
∗ indicates without dynamics

one month of real stock price data. Indeed, as we will see below, there would still be strong evidence

supporting Heston if we used different values of h and ∆. It is also interesting that the order of
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PEP : Bayes for Heston Model with h=0.6 (* indicates without dynamics)
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Figure 8: Bayes Factor for PEP Ingestion Time Determination April 2010.

the models did not change over our three stock selections, with Heston always being preferred and

GBM always performing the worst.

Next, we look at the ingestion time ∆ using non-dynamic microstructure Heston as the calibration

model. Figure 8 and Table 3 show the effect of varying ∆ over {30 mins, 2 hrs, 1/2 day} for the

Heston∗ 40 Mins. 2 Hrs. 1/2 Day
MS (h = 0.4) 1.000 15.083 17.578 18.100
PEP (h = 0.6) 1.000 19.066 25.259 24.187
IBM (h = 1) 1.00 31.152 42.744 46.988

Table 3: Bayes Factor for Ingestion Time Determination, April 2010
∗ indicates without dynamics

h ∈ {0, 0.1, 0.2, ..., 0.9, 1} fixed to give the highest Bayes factor. There is a drop in the Bayes factor
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Figure 9: Bayes Factor for PEP Inertia Determination April 2010.

values from the model determination experiment which is entirely due to the change of calibration

model from GBM with non-dynamic microstructure to Heston with non-dynamic microstructure.

Our results show that the best ingestion times for Morgan Stanley, PepsiCo and International

Business Machines stocks are respectively: 1/2 day, 2 hours and 1/2 day. The fact that the data

supports long time ingestion might add merit to the case of the momentum trader.

Finally, we investigate the optimal amount of inertia. Figure 9 and Table 4 show the effect of

varying the amount of inertia h over {0, 0.1, 0.2, ..., 0.9, 1} for the ∆ ∈ {30 mins, 2 hrs, 1/2 day}

fixed to give the highest Bayes factor. The table shows inertia is important. In fact, the best h

was always at least h = 0.4 and was even h = 1 in the case of IBM so all microstructure dynamics

should be driven by the inertia process.
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h ∗ 0 0.1 0.2 0.3 0.4
PEP (2 Hrs.) 1.00 3.745 5.875 6.950 11.693 16.733
MS (1/2 Day) 1.00 11.578 13.507 16.194 17.746 18.100
IBM (1/2 Day) 1.00 3.822 7.100 8.816 10.927 13.522
h 0.5 0.6 0.7 0.8 0.9 1.0
PEP (2 Hrs.) 23.524 25.259 24.386 22.322 19.347 17.548
MS (1/2 Day) 17.878 17.184 16.515 16.225 16.008 15.612
IBM (1/2 Day) 16.707 20.611 25.388 31.225 38.345 46.988

Table 4: Bayes Factor for Inertia Determination, April 2010
∗ indicates without dynamics

Here, we considered five popular SV models for illustration purpose. More complicated SV

models can be investigated in our future work. One could also postulate more complicated mi-

crostructure dynamics.
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