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Abstract

Cancer is one of the major causes of death in the world. In the field of On-

cology, clinical trials form the crux of medical effort to find better treatment

schedules. These trials are expensive, time consuming, and carry great risks

for the patients involved. Mathematical models provide a complimentary, non-

invasive tool in the development of improved treatments. Examples of such

modeling efforts are the tumor control probability (TCP), used to measure the

probability of tumor cell eradication; the cumulative radiation effect (CRE)

and the normal tissue complication probability (NTCP), used for quantifying

normal tissue complication.

In this thesis, I begin with a simple Poisson TCP based on mean cell population

dynamics. Optimal treatment schedules are obtained by maximizing this TCP

while constraining the CRE under a given threshold. Some of the optimal

results suggest the usage of hyperfractionated treatments, which are applied

in the treatment of prostate cancer.

A TCP derived from a birth-death process is obtained to include stochastic

effects. The Poisson TCP is suitable for larger tumors whereas the new TCP

is preferable for smaller ones. Furthermore, by using the birth-death process, I

also derive an NTCP model. The calculation of this NTCP model provides an

alternative proof to a formula derived by Hanin [36] to compute the probability

distribution of the tumor size from its generating function. My formula is



computationally more efficient, compared to Hanin’s.

Inspired by Ecology, I also study a third TCP model derived from the first

passage time problem. This problem has been used in animal movement to

find the mean time for a predator to target a motionless prey. I apply this

idea to the radiation treatment of tumors to find the mean time to reduce the

tumor size to zero.

Overall, my main contributions in this thesis are,

• A generalization of the hazard function for radiation induced damage,

which includes various hazard functions from the literature (Chapter 2);

• An optimization of TCP under CRE constraints for realistic treatments

(Chapter 3 and 4);

• A generalization of the birth-death approaches from Zaider-Minerbo and

Dawson-Hillen into one framework (Chapter 5);

• A derivation of a TCP which includes tumor stem cells (Chapter 5);

• A new model for the NTCP which includes logistic growth (Chapter 6);

• A new model for the TCP, based on the first passage time problem

(Chapter 7).
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Chapter 1

Introduction

Cancer, mostly malignant tumor, is a class of diseases characterized by uncon-

trolled growth and the ability to invade into neighboring tissue or metastasize

into distant tissues. It is not until the 18th century that people gained more

knowledge about causes of cancer. Epidemiologic studies show that most hu-

man cancer is developed as the result of exposure to unhealthy environment

or factors, such as chemicals in diet, tobacco, radiation (nature or medical),

etc [22]. There are many types of cancer which affect different parts of human

bodies. Usually, a particular type of cancer is named in conjunction with the

location where it occurs. For example, skin cancer, breast cancer, brain cancer

and prostate cancer. Even after the cancer metastasizes and affects another

part of the body, it is still referred to the organ of origin. For instance, if a

breast cancer spread to the liver, it is called (metastatic) breast cancer rather

than liver cancer. To differentiate from the metastatic cancer, the original

position of cancer is also called a primary cancer [7].

Cancer has brought great burden to the world. Based on a recent report from

World Health Organization (WHO), the diagnosed incidence of cancer in 2004

is 11.4 million [68]. Compared the death rate caused by malignant tumor (per

100,000 persons) in 2000 and 2004 in Canada, it increased from 188.6 to 196.9

for women and from 218.8 to 222.9 for men, respectively. The current cancer

treatment methods include surgery, chemotherapy, radiotherapy, immunother-

apy. Although improvements have been obtained in early cancer diagnosis and

1



in cancer treatment, it is still the second largest cause of death in the world

based on the report of the WHO in 2011 [68].

Therefore, even today, clinical trials still form the crux of medical efforts to

find new or better treatment. Unfortunately, these trials are expensive, time

consuming, and carry risks for the patients involved. Thus mathematical mod-

els provide an alternative, non-invasive tool in the search and development of

new and improved treatment protocols. Example of the clinical trial oriented

by the mathematical models is: in 2003, Citron et al [13] tested the dose den-

sification that is proposed by Norton and Simon in 1986 [66] as a hypothesis

based on mathematical models.

In this thesis, I mainly focus on the mathematical models that can be used to

measure and compare cancer radiation treatment schedules. I will use prostate

cancer as a test example for my models.

Radiotherapy or radiation treatment is a method to use ionizing particles or

waves (such as fast neutrons, X-rays) to transfer energy and kill cancer cells

in the treated area. Over half of all cancer patients receive radiotherapy at

some stage of their diseases, either alone or in combination with other types

of treatment (such as surgery or chemotherapy) [41, 59]. Radiation is energy.

Its original unit is radiation absorbed dose (rad), which is the dose of radiation

needed for deposition of 100 ergs per gram. Now it is replaced by the SI unit

Gray (Gy), or 1 J/kg 1, where 1 Gy = 100 rad.

Two types of radiotherapy methods are available: brachytherapy, where a

radiation probe is inserted into the tumor; and external beam radiotherapy,

in which the tumor is irradiated from outside of the patient. Many tumors

are treated by external beam radiotherapy. Before the treatment is given,

the treatment volume must be determined. There are three levels of volume:

(1) gross tumor volume (GTV) includes visible extent and location of the

malignant tumor; (2) clinical target volume (CTV) contains GTV plus its sur-

rounded area which might have subclinical disease; (3) planning target volume

(PTV) is CTV with another layer of edge surrounded. In most treatments,

11J/kg means the amount of radiation required to deposit 1 Joule of energy in any 1

kilogram matter.

2



1.1. CELL SURVIVAL MODELS

the total dose is split into several smaller fractions to allow normal tissues

to recover between fractions in external beam radiotherapy. For simplicity,

we will use a tuple (d, T, n) to denote the treatment schedules: n fractions of

treatment with dose d; T is a constant or vector to record the time intervals

between each two fractions.

1.1 Cell Survival Models

To understand how the radiation kills the cancer cells, experiments have been

carried out and different cell survival models have been proposed to explain

these data. I review some of these cell survival models in Chapter 2, which

describes the cell surviving as a function of radiation dose. One main such

model is the linear quadratic model (LQ),

σ(D) = e−αD−βD
2

, (1.1)

where α, β are radiosensitivity parameters which depend on the treated tissue

and D is the total dose delivered to the tissue.

A highly related concept to the LQ model is the Biological Effective Dose

(BED). The BED is defined based on the exponent of the fractionated - LQ

model (see (2.44) in Subsection 2.2.3) as follows:

E =
− ln(σ(d))

α
= nd

(
1 +

d

α/β

)
= D

(
1 +

d

α/β

)
, (1.2)

where d is the dose used per fraction, n is the number of fractions, D = nd is the

total dose of the treatment, and α/β is called α/β-ratio of the corresponding

tissue.

Another function which comes from the LQ model is the hazard function. It

describes the death rate caused by radiation. I will review some choices of the

hazard functions and summarize them into one general form in Section 2.3.

1.2 Poissonian Tumor Control Probability (TCP)

Cell survival models can be used to derive the Tumor Control Probability

(TCP) model. It is the probability that no tumor cell exists and can be used

3



1.2. POISSONIAN TUMOR CONTROL PROBABILITY (TCP)

to quantify the effect of the treatments. The simplest TCP models are based

on the linear quadratic survival fraction model (1.1) and the Poisson or the

Binomial distribution. They both assume that the initial number of tumor

cells N0 is large. After one fraction of delivering dose D, the surviving fraction

of tumor cells is σ(D), as described in (1.1). Let X denote a random variable

for the amount of surviving cells. If the deaths of tumor cells are stochastically

independent of each other, and cell survival is a rare event, the probability of

k tumor cells surviving is then,

PP (X = k) =
λke−λ

k!
, PB(X = k) =

(
k

N0

)
pk(1− p)N0−k. (1.3)

where PP is the Poisson distribution and PB is the Binomial distribution. The

parameter λ is the expectation of Poisson distribution and p is the probability

of one cell survival. We could use N0σ(D) and σ(D) to approximate them,

respectively. Therefore we have the two TCPs as

TCPP = p(X = 0) = e−λ = e−N0σ(D). (1.4)

or

TCPB = (1− σ(D))N0 , (1.5)

The Poisson approximation tells us that the Binomial distribution approaches

the Poisson distribution when N0 →∞, σ(D)→ 0 and the product of N0σ(D)

approaches the constant λ (i.e. N0σ(D) → λ). Therefore, both TCP models

are categorized into the Poissonian TCP.

These two Poissonian TCPs do not include tumor regrowth. Usher [89] ex-

tended these models to include regrowth between treatments. He found an

explicit Poissonian TCP formula for the most commonly used growth laws:

exponential growth, logistic growth and Gompertzian growth. It turns out

that these TCP formulae are algebraic function of the treatment protocol

(n, T, d) for uniform treatment (T=constant). I will adapt this approach in

Chapter 3 to include realistic treatments with radiation during the week and

treatment breaks over the weekend.

Usher tried to find optimal treatment schedules by maximizing the Poisson

TCP under the constraint of normal tissue complication. The formula he used

4



1.3. TCP DERIVED FROM A BIRTH-DEATH PROCESS

to quantify the normal tissue complication is the cumulative radiation effect

(CRE). It is defined as

CRE =
ncd

T b
, (1.6)

where (n, T, d) denote the treatment schedule. The exponents b and c depend

on the type of radiation used. They have been found through data fitting to

be c = 0.65, b = 0.11 for X - and γ-rays radiation [45] and c = 0.85, b = 0.11

for fast-neutron radiotherapy [27]. The unit for CRE is radiation effective unit

(reu) with the unit of days for T and rad1 for dose d. The largest CRE value

for normal tissue recommended by clinicians is 1800 reu [89].

However, Usher’s results are not global optimal as he did optimization coor-

dinate by coordinate. In Chapter 4, we verified Usher’s results are not global

optima, although his results are close to the real maxima. We further calculate

Poissonian TCP values and CRE values for ten existent prostate cancer treat-

ment schedules. We find that higher dose treatments result in quicker tumor

killing at risk of more normal tissue complication; and that hyperfractionated

treatments have effective reduction on normal tissue damage compared to their

standard treatments. The success of the simplest TCP model encouraged us

to develop more sophisticated TCP models and models for quantifying normal

tissue complication.

1.3 TCP Derived From a Birth-Death Process

The Poisson TCP model, as described above, is entirely based on the ex-

pected number of surviving cells λ = N0σ(D). This approach is suitable

for large number of tumor cells. However, when tumor cell number is small,

the stochastic effect will dominate. The stochastic process is a description of

random phenomena changing with time [70]. It has been widely applied in

physics, biology, chemistry, economics etc.

In a stochastic process, the variable we are interested in is a random variable

X(t), depending on a parameter t ∈ T . The parameter set T could be an

abstract set. In my thesis, I will choose X to represent the tumor size and

11rad=1cGy, 1Gy=100rad.
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1.3. TCP DERIVED FROM A BIRTH-DEATH PROCESS

t ∈ [0,∞) or t ∈ [0, T ] and interpret t as ’time’. For each time t, the random

variable X(t) has values on a sample space Ω. We could define a Borel set1

R of Ω and a probability measure on R. Therefore, x ∈ Ω is called ’space’ or

’state’ and X(t) = x means X is at position x at time t. The ’space’ could

have different meaning based on the field of study. For example, in population

genetics [87], X(t) is the number of certain genes present at time t; in gamble

ruin problem or stock market, X(t) can be the balance in the account; and

X(t) can be the density of molecules in chemical compounds.

In this thesis, we assume that the stochastic process X(t) has the Markov

property: the probability of the state of X(t) at a future time t + ∆t only

depends on the current time t, there is no memory of states in previous time.

Mathematically, it can be written as: given any finite set of time moments,

t1 < t2 < · · · < tr < t, we will have

Prob{X(t+ ∆t)|X(t), X(tr), · · · , X(t2), X(t1)} = Prob{X(t+ ∆t)|X(t)}.
(1.7)

The stochastic process with Markov property is either called a Markov process

or a Markov chain, depending on whether the state are continuous or discrete.

This transition probability also satisfies the Chapman-Kolmogorov equation

Prob{X(s) = y|X(t) = x}

=

∫

z

Prob{X(s) = y|X(t
′
) = z}Prob{X(t

′
) = z|X(t) = x}dz. (1.8)

or the discrete Chapman-Kolmogorov equation

Prob{X(s) = y|X(t) = x} (1.9)

=
∑

z

Prob{X(s) = y|X(t
′
) = z}Prob{X(t

′
) = z|X(t) = x}. (1.10)

for any t < t
′
< s, where the states X(t) = x represents that the size of the

population at time t is x.

A special case of continuous time Markov chain is a birth-death process [30].

The birth-death process is based on the assumption that only a finite number

1In Measure Theory, Borel sets are elements of a sigma algebra, which is closed with

respect to countable union, countable intersections and relative complement [8].
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1.3. TCP DERIVED FROM A BIRTH-DEATH PROCESS

A TCP Model Derived From a Birth-Death Process

Jiafen Gong

June 25, 2011

The use of differential equation models is appropriate for large numbers of
cells. However, only a small number of cells exist at the end of a successful treat-
ment. In this case, stochastic effects dominate and deterministic models become
inappropriate for predicting the number of surviving cells. In this chapter, we
first briefly review two existent TCP models derived from birth-death processes:
one-compartment model derived by Zaider and Minerbo [4] and two-compartment
model with cell cycle by Dawson and Hillen [1]. Then we introduce the detailed
steps to derive a generalized TCP model which incorporates the stochastic effect,
with the first two models as special cases .

1 Zaider-Minerbo TCP Derived from a Birth-Death Process

Instead of thinking about the mean number of tumor cells, Zaider and Minerbo [4]
considered the probability Pi of i tumour cells surviving at time t. The changes
of the tumor cells are shown in the following diagram

· · ·
&%
'$
i− 1 &%

'$
i

-
birth µ

�
death d &%

'$
i+ 1

-
birth µ

�
death d

· · ·

where µ is the growth rate, d is the natural death rate and h(t) is the hazard
function corresponding to the cell survival model, we discussed various models for
the hazard function in Section ??. Based on the diagram, the master equation to
describe the probabilities Pi(t), i = 0, 1, · · · are

dP0(t)

dt
= (d+ h(t))P1(t)

(1)

dPi(t)

dt
= (i− 1)µPi−1(t)− i(µ+ d+ h(t))Pi(t) + (i+ 1)(d+ h(t))Pi+1(t), i = 1, 2, 3, ...

It is easy to check that the expected number of tumor cells N(t) =
∑∞
i=0 iPi(t)

satisfies the mean filed equation

dN

dt
= (µ− d− h(t))N, N(0) = N0, (2)

1

Figure 1.1: The diagram of birth-death process.

of X(t) are born or die in a given small time interval [30]. Suppose (x, t) are

on the grid

· · · , i− 1, i, i+ 1, · · ·

and

0,∆t, · · · , t−∆t, t, t+ ∆t, · · ·

∆t is small enough such that only one event (either birth or death) will happen

in ∆t. The transition probability of birth-death process is

Prob{X(t+ ∆t) = i+ 1|X(t) = i} = iµ∆t+ o(∆t) (1.11)

Prob{X(t+ ∆t) = i− 1|X(t) = i} = id∆t+ o(∆t) (1.12)

Prob{X(t+ ∆t) = i|X(t) = i} = 1− (d+ µ)i∆t+ o(∆t) (1.13)

Prob{X(t+ ∆t) = i+ k|X(t) = i} = o(∆t), |k| ≥ 2 (1.14)

where µ is the growth rate per capita and d is the death rate per capita. This

could also be displayed as a diagram shown in Figure 1.1.

For a given initial tumor size x0, we abbreviate Prob{X(t) = i|X(t0) = x0} :=

Pi(t), and substituting (1.11)-(1.14) into (1.9), we have

Pi(t+∆t) = (i−1)µ∆tPi−1(t)+(i+1)d∆tPi+1(t)+(1− (d+ µ)i∆t)Pi(t)+o(∆t).

(1.15)

Letting ∆t → 0, we formally obtain an ordinary differential equation system

to describe the evolution of probability of each state. This system is called a

master equation:

dP0

dt
= dP1(t), (1.16)

dPi
dt

= µ(i− 1)Pi−1(t) + d(i+ 1)Pi+1 − (µ+ d)iPi(t), i ≥ 1. (1.17)

7



1.3. TCP DERIVED FROM A BIRTH-DEATH PROCESS

One way to solve the above systems is to use the generating function. The

generating function for this system is

A(s, t) =
∞∑

i=0

Pi(t)s
i. (1.18)

We show later that the generating function will satisfy a hyperbolic equation

∂A(s, t)

∂t
= (s− 1)(ds− µ)

∂A(s, t)

∂s
. (1.19)

Zaider and Minerbo [101] derived a TCP model from the above birth-death

process with the assumption that all the tumor cells are identical. Once they

solve the hyperbolic equation (1.19) by the method of characteristics, they

obtain a TCP formula defined as

TCP = A(0, t). (1.20)

Cell regeneration and tumor regrowth is not only a matter of birth and death.

For cells to multiply, they transit through the cell cycle. The cell cycle, or cell

division cycle, is the process that a cell divides and duplicates into two new

cells, often called ’daughter cells’ [55]. For cells with a nucleus, the cell cycle

includes four phases: G1, S, G2, or M phase. The first three phases are also

called Interphase, during which the cell prepares for the division. Cell size

will increase in the G1 phase, DNA replication occurs during the S phase, cell

continues to increase necessary protein and RNA synthesis in the G2 phase.

When everything is ready, the cell division happens in the M phase and two

daughter cells are generated. Cells could leave the cycle and stop dividing; in

this case, they enter a resting phase which is called G0 phase. Cells in the G0

phase could also return back to the cell cycle and undergo mitosis. Cells in

different stages of the cell cycle show different radiosensitivities. For example,

quiescent cells (G0) are much less radiosensitive than cells in S or M phases.

Dawson and Hillen [20] extended the Zaider and Minerbo model to include

the cell cycle effect and they divide the tumor cells into two compartments:

active (G1, S, G2, M) and quiescent compartment (G0). In Chapter 5, I will

first review these two TCP models, then I will present my contribution to

a TCP model in this category, which is a generalization of the above two

8



1.4. STOCHASTIC NORMAL TISSUE COMPLICATION
PROBABILITY

q: quiescent

G

G

G

S
M

1

2

0

a: active

Figure 1.2: A schematic of cell cycle dynamics. Cells in the G1, S, G2,

and M phases are grouped in one compartment, and labeled as active. Cells in

the G0 phase are grouped in a second compartment, and labeled as quiescent.

Figure redraw from [37].

models, where the Zaider-Minerbo and Dawson-Hillen TCP arise as special

cases. Furthermore, we adapted this approach to derive a TCP model under

the assumption of tumor stem cells.

1.4 Stochastic Normal Tissue Complication Prob-

ability

As mentioned above, not only tumor cells can be killed in the radiation treat-

ment, normal tissue will also be affected by the treatment. In Chapter 6, I

derive a new formula for measuring the normal tissue damage - normal tis-

sue complication probability (NTCP). First I introduce two existent NTCP

models: the Lyman NTCP [53] and the structural NTCP Model. Both above

NTCP models do not consider normal tissue regrowth. I use a birth-death

process to derive a NTCP model characterized by logistic growth. The cal-

culation of NTCP will also provide an alternative proof to the formula pro-

9
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posed by Hanin [36] to compute the probability distribution Pi(t) of tumor

cell amount from the generating function A(s, t). However, our formula leads

to faster computer simulations.

1.5 TCP from First Passage Time Problem

Stochastic Processes can not only be studied by discrete space birth death

processes as shown above, they could also be studied by a diffusion equation

like backward Kolmogorov equation and forward Kolmogorov equation, or

Fokker Planck equations. Inspired by models from Ecology, I finally study a

TCP model based on the backward Kolmogorov equation and the first passage

time problem. The first passage time problem is used to study the probability

that a random variable X arrives at a preset target for the first time. Applying

this idea to the tumor radiation treatment, we want to study the time needed

for the numbers of tumor cells X to arrive the target X = 0 and the probability

that the amount of tumor cells reduces to 0.

Between these three TCP models (Poisson TCP, birth-death TCP, first passage

time TCP), it turns out that the Poisson TCP is the most useful model in daily

practice. The first passage time TCP can only be used for constant treatment,

since the corresponding equations cannot be solved for arbitrary treatments.

The Poisson TCP and birth-death TCP both can be used for any treatments.

However, Poisson TCP is simple, easy to calculate, and the most important

thing is that it can make the same prediction as the complicated birth-death

TCP and Monte Carlo TCP when proper parameters are chosen (see [31]).

10



Chapter 2

Cell Survival Models and

Hazard Functions

As pointed out by Alpen [4], most modern radiobiology theories are based on

the cell survival model. It describes the fraction of surviving radiated cells as

a function of radiation dose. Therefore, in this chapter, I mainly review the

cell survival models that have nice fitting to experimental data done in vitro.

Furthermore, I also review the hazard function related to the cell survival

models, which will be used in differential equations in later chapters.

2.1 Data for Cell Survival Models

In radiobiology, cell death, the converse of cell survival, is defined as cells

losing the reproductive integrity, which is also called reproductive death [34].

By definition, a survivor retains its reproductive capability and is able to grow

indefinitely to form a large colony, which can be seen with the naked eye.

This is also the way that experimentalists determine whether or not a cell is

still alive. Before the late 1950s, experimentalists mainly worked on classic

microbiological organisms that would grow in a petri dish to measure cell

survival after treatment. Examples are Escherichia Coli, Bacteroides subtilis,

Sacbharomycep Sp., Tetrahymena Sp., and many more. In 1955, Puck and

Marcus [72] discovered a method to grow mammalian cells in vitro, which made

11



2.1. DATA FOR CELL SURVIVAL MODELS

these experimental methods available to mammalian cells. Quite often, cells

taken from mammals or other animals which are placed in the petri dish only

grow for a few weeks before they peter out and die. Some cell lines, which pass

through a ’crisis’ become ’immortal’: they could grow for many years. These

’immortal’ cell lines will be preserved and fed regularly, and they are called

established cell lines. Commonly used cell lines are Hela cells from human

cervical cancer; V97 and CHO cells from hamster lung or ovary, respectively;

9L cells from rat glioscarcoma and T1 cells from human kidney [4]. Single cells

can be obtained from the cell lines by the use of an enzyme called Trypsin.

These single cells are then seeded into several cultured dishes. Besides one

unirradiated control dish, each other dish will be radiated by different doses.

Then all the dishes are incubated for several weeks at temperature 37 oC under

the same environment. Figure 2.1 shows how this experiment proceeds.

monolayer
culture

+typsin single
cell

No. of cells n1 n2 n3

Radiation dose 0 Gy 2 Gy 10 Gy

After 1-2 weeks
incubation

b b b
b

b b
b b

bb
b

b

b

b
b

b

b

b b

b
b
b b

b b

b b b b
bb

+trypsin

Figure 2.1: Experiments to generate the cell survival curve. Single cells

are obtained from an ’immortal’ cell line by trypsinization. Then known num-

bers of cells are placed into different petri dishes and irradiated with different

doses, with one unirradiated petri dish as control. All the petri dishes will

be incubated in the same environment until a single cell grows into a colony.

Figure has been redrawn from the original graph in Hall’s book [34].

To calculate the cell survival, we first calculate the plating efficiency (PE) by

counting the visible colonies in the control dish as follows,

PE =
counted colonies in the control dish

cell seeds
.

12



2.2. THEORETICAL MODEL FOR CELL SURVIVAL

Then each dish will receive a survival fraction (σ) at dose D

σ(D) =
counted colonies (after dose D)

cell seeds ∗ PE
.

2.2 Theoretical Model for Cell Survival

There were several theories developed in order to explain these data. One type

of earliest models is the target theory model proposed by Lea in 1955 [48]. The

basic assumption of his model is that there are some critical volumes in a cell,

once all the targets in the critical volumes are inactivated, the cell dies. People

find that the target models have fatal shortcoming when it comes to the data

of mammalian cell lines. Another alternative model, the linear quadratic (LQ)

model, has been developed to solve the problem and is still widely used today

[4]. Many scholars have contributed to the explanation of this model since

its original proposal. The most famous ones include the molecular theory of

radiation action by Chadwick and Leenhouts in 1981 [12], the dual radiation

action proposed by Kellerer and Rossi in 1972 [44], the repair-misrepair model

of cell survival developed by Tobias et al in 1980 [85] and the lethal-potential

lethal model by Curtis in 1986 [16]. We will discuss all these models in the

following subsections.

2.2.1 Target Model

The target theory was developed by Lea [48] using data on microorganism

cells. All the target theories base on the essential assumption that cells will

die as a result of a multi-step process,

(1). Absorbing energy in the cell,

(2). Deposited energy causes ionization and excitation which lead to molec-

ular lesions,

(3). Cells lose reproductive capability.

At the time that Lea published the target theory, the energy absorption was

well understood, but there was only limited understanding in the other two
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2.2. THEORETICAL MODEL FOR CELL SURVIVAL

steps. Although nobody knew the importance of DNA at that time, Lea did

predict the need of inactivating of critical volumes (CV) to kill a cell. Lea

assumes that the critical volume is a discrete target in a cell which is a space-

occupying entity. There might be multiple targets in a single cell, say n targets,

inactivating all the n targets will lead to cell death.

In the model derivation, Lea assumes that the cell population is exposed to low

LET1 radiation (high LET radiation will have similar derivation with rescaled

units), so the interactions of ionizing events are rare. The energy deposition

can produce biological damage which is called active event. Mathematically,

he denotes

• V : the total cell volume =(the average cell volume)*(number of cells);

• ν: the sensitive volume(s) in a cell, an active event happens in this area

is called a hit ;

• D: the density of active events, that is, events occuring per unit volume.

It is assumed to be proportional to the dose.

Therefore, the number of active events in all cells exposed to radiation is

D = V D, the hit probability ρ, or the probability of an active event happening

in sensitive volume, is given by ρ = νD
V D

= ν
V

.

The probability that a cell has k hits is given by the binomial distribution

pk =

(
D

k

)
ρk(1− ρ)D−k. (2.1)

The probability of a cell surviving k hits is called hit-survival function. If we

denoted it as H(k), the survival probability with k hits is given by

p(k,D, ρ) = pkH(k) =

(
D

k

)
ρk(1− ρ)D−kH(k). (2.2)

The total survival probability of a cell, denoted as σ, is given by

σ(D, ρ) =
D∑

k=0

pkH(k) =
D∑

k=0

(
D

k

)
ρk(1− ρ)D−kH(k). (2.3)

1Linear energy transfer (LET), is a measure of the loss of energy per unit distance along

the path of a charged particle [32].
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2.2. THEORETICAL MODEL FOR CELL SURVIVAL

• Single-target Single-hit Model

The Single-target Single-hit (STSH) model assumes that a cell only con-

tains one target and the target will be inactivated if it is hit once or more

times, that means the hit-survival function has the following form

H(k) =

{
0, k ≥ 1

1, k = 0
(2.4)

Therefore the survival model (2.3) is specified as

σ(D, ρ) = p(0,D, ρ) = (1− ρ)D = eD ln(1−ρ) = e−p0D. (2.5)

where p0 = − ln(1− ρ). For small ρ, we approximate p0 by ρ because of

the Taylor expansion ln(1− ρ) = −ρ− 1
2
ρ2 − 1

3
ρ3 − · · · .

Notice that D = V D and denote p = p0V , we have

σ(D, ρ) = e−pD. (2.6)

Recall D is the density of active events, which is proportional to the

dose. We could let the proportional coefficient be combined into the

parameter p and denote D the dose. Therefore p has the unit of 1
dose

.

More generally, p is written as 1
D0

, where D0 is called mean lethal dose

[23] or the average dose absorbed by each cell before it dies because

D0 =

∫ ∞

0

e−pDdD =
1

p
.

The STSH model is also referred as exponential survival function.

• Multi-target Single-hit Model

The Multi-target Single-hit (MTSH) model assumes that there are n

targets, each target is independent of each other and is inactivated once

it receives at least one hit. All the other assumptions are the same as

the STSH model.

From the STSH model, we know each target has a probability e−pD to

survive, so the probability that k targets are hit is

pk =

(
n

k

)
(1− e−pD)k(e−pD)n−k. (2.7)
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2.2. THEORETICAL MODEL FOR CELL SURVIVAL

Similarly, denote H(k) as the hit-survival function, we have the cell sur-

vival as

σ(n, p,D) =
n∑

k=0

pkH(k) =
n∑

k=0

(
n

k

)
(1− e−pD)k(e−pD)n−kH(k). (2.8)

With the assumption that the cell die if and only if all the targets are

hit, that is,

H(k) =

{
0, k = n

1, 0 ≤ k ≤ n− 1
(2.9)

The MTSH model is written as

σ(n, p,D) =
n∑

k=0

pkH(k) =
n−1∑

k=0

(
n

k

)
(1−e−pD)k(e−pD)n−k = 1−(1−e−pD)n.

(2.10)

Similar to the STSH model, sometimes the MTSH model is written as

σ(n,D0, D) = 1−
(

1− exp
(−D
D0

))n
. (2.11)

For any n, we have σ = 1 at dose D = 0. There is a shoulder when dose

D is small for n 6= 1. The bigger n is, the bigger the shoulder. When D is

large, the MTSH curves can be approximated by a straight line as showed

by the solid lines in Figure (2.2). These linear approximations have y-

intercept at n because (2.11) is dominated by σ(n,D0, D) = ne
− D
D0 .

• Other Developments of Target Models

There are other developments of the target models. MTSH model can

be thought of the extension of the STSH model by increasing the target

numbers. If we increase the number of hits that are needed to destroy

a single target, we have the Single-target Multi-hit model. This model

assumes each cell has one target and a cell can be killed only when it

received more than m hits. It is much more complicated than the above

two and not as popular as the two. Hence, for details, I refer the reader

to the book written by Elkind and Whitmore [23].

The MTSH model has a vital shortcoming which is the initial zero slope

(see Figure 2.2), while this is not observed in the experimental data. To
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Figure 2.2: Plot of log(MTSH) as a function of dose for n = 1, 2, 8.

The MTSH curve is a straight line for n = 1 as denoted as solid blue line,

the curved dashed line and dash-dot line are MTSH curves for n = 2 and

n = 8, respectively. The other two solid lines are linear approximation of the

corresponding curved lines at high dose for n > 1. Here, we choose D0 = 4

Gy. When n 6= 1, the survival fraction has a shoulder at low dose. The target

number n are the y-intercept of each linear approximation curve.

solve this problem, a single-hit term is introduced in front of the MTSH

model, which becomes

σ = e−p1D
[
1− (1− e−p2D)n

]
(2.12)

where p1 is the parameter in the STSH model and p2 is the parameter

from the MTSH model. The first term does not change the properties

of the MTSH model except that now it has a non-zero initial slope,

since at high doses, there is an exponential approximation to (2.10) i.e.

σ ≈ ce−pD, where c is a constant.

Another aspect of the target model development comes from the hit-

survival function H(k). The above models all choose a step function for
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2.2. THEORETICAL MODEL FOR CELL SURVIVAL

H(k). Hall [34] has proved that in a homogeneous population, a more

general hit-survival function can also result in the exponential survival

fraction model. i.e.

H(k) = ek ln(h), 0 ≤ h ≤ 1. (2.13)

where h is a parameter between [0, 1]. For the special case h = 0, we

have the same H(k) as that in the STSH model (2.4) because elnhk = 1.

There are more developments on the target models, like population heteroge-

neous situation, we refer readers to the Elkind and Whitmore’s book [23] for

detail. More recently, Dawson and Hillen [20] derived a target survival model

to include cell cycle by first principles. They divided the whole cell population

into active and quiescent cells based on the cell cycle. In their model assump-

tion, each cell includes multiple targets. The differences between the active

and quiescent cells lie in the way to inactivate the targets. For a cell in the

active compartment, part of its targets will die followed by single hit and the

others will die by two hits. All the targets in the quiescent compartment only

need one single hit to inactivate. I will refer readers to [20] for the detailed

model derivation.

2.2.2 Linear Quadratic (LQ) Model

The linear quadratic (LQ) model is a group of models with both linear and

quadratic dose terms in the exponent of an exponential function. The classic

linear quadratic model (LQ) is written as follows,

σ(D) = exp(−αD − βD2). (2.14)

where D is the dose used in the radiation, α (Gy−1), β (Gy−2) are radiosensi-

tivity parameters depending on the tissue type. The ratio α/β characterizes

the sensitivity of tissues to radiation and it can be used to differentiate between

different kind of tissues [94]. The bigger the ratio is, the more sensitive the

tissue is. For fast dividing cells (also called early responding tissue), α/β ≈ 10,

for most normal tissue (or late responding tissue), the ratio is about 3. Ex-

ample values of α/β ratios for human or animal tissues are listed in Table 2.1.
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Tissue/Organ α/β value (Gy) Reference

Spinal Cord

Cervical and thoracic cord 2 Human data by Nieder et al [63]

Lumloar cord 4 Human data by Nieder et al [63]

Lung 1.1-4.3 Human data by Koontz et al [46]

Colon 3.95∗ Human data by Leith et al [49]

Kidney 2-3 Mouse data by Stewart et al [80]

∗ α = 0.281Gy−1, β = 0.0711Gy−2 in original paper.

Table 2.1: Example values of α/β ratios for different tissues.

In what follows I am going to briefly review four popular models where two

of them derive the LQ model, and another two have the LQ model as one of

their special cases.

(1). Molecular Theory of Radiation Action

This model was first introduced by Chadwick and Leenhouts in 1981

[12]. It explicitly states that the radiation energy deposition will result

in damage in the cell through the interaction of DNA breaks, DNA repair

and lack of repair. In contrast to the critical volume considered in the

target models, Chadwick and Leenhouts assume that critical molecules -

double-stranded DNA - are essential for the survival of a cell. The DNA

strand lesions are the ruptures of molecular bonds on a DNA strand. The

damage to the molecular bonds on one DNA strand may cause scission

of the backbone and therefore in a breakage of a single strand, which is

called single-strand breaks (SSB); the damage resulting in the breakage

of both DNA strands is called a double-strand break (DSB).

Chadwick and Leenhouts thought of DSB as the critical damage. They

considered the DSB as a result of two mechanisms: (I) both strands are

broken in one event, or (II) two SSBs happen close to each other in time

and space. The assumptions about the DSB from mechanism one are:

– K is the fraction of DSBs in one event per unit dose.

– These DNA lesions can be repaired under certain condition, the
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2.2. THEORETICAL MODEL FOR CELL SURVIVAL

proportion of repair is r. Therefore f0 = 1− r is the proportion of

DSB unrepaired.

Let n0 be the initial number of critical bonds that are susceptible to

DSB, N(D) be the number of critical bonds remaining intact after any

dose, so N will changes against dose D as follows

dN

dD
= −K∆N, N(0) = n0. (2.15)

where ∆ is the fraction of dose creating DSB in one event. Therefore,

the number of remaining intact critical bonds are N(D) = n0e
−K∆D.

With the consideration of repair of DNA break with rate f0, the number

of DSB created in one event by mechanism I is given by

NdbI = f0(n0 −N(D)) = n0f0(1− e−K∆D). (2.16)

In a similar way, the generation of SSB on each DNA strand can be

considered. Denote n1 be the initial number of critical bonds susceptible

to SSB on one strand and n2 be the corresponding numbers on the other

strand (n1 = n2), f1, f2 be the proportions of repair of the SSB on each

strand, respectively. We still use K to denote the fraction of generation

of SSB in one event per unit dose. By following the above process for

the DSB from the mechanism I, the number of the SSB on each strand

is

nsb1 = n1f1(1− e−KD(1−∆)), nsb2 = n2f2(1− e−KD(1−∆)) (2.17)

Here, we replace ∆ in (2.16) by 1−∆, which is the fraction of the dose

to create SSB. Therefore, the number of DSB generated by mechanism

II is given by

ndbII = Ensb1nsb2f0 = Ef0f1f2n1n2(1− e−KD(1−∆))2. (2.18)

where E is the effectiveness factor for the likelihood of two SSB close to

each other in time and space and f0 is the repair rate of DSB.
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Combining both DSB mechanisms, the total number of lethal DSB is

given by

ndb = p (ndbI + ndbII) = pn0f0(1−e−K∆D)+pEf0f1f2n1n2(1−e−KD(1−∆))2,

(2.19)

where p is the fraction of lethal DSB. Typically the fraction of generating

DSB or SSB per unit dose (K) is very small, so K∆D,K(1 −∆)D are

small. The number of DSB could be approximate by

ndb ≈ pn0f0K∆D + pEf0f1f2n1n2K
2(1−∆)2D2. (2.20)

If we assume the number of lethal DSB (X) satisfying the Poisson distri-

bution (see Equation 1.3) with parameter λ, we could use ndb as estimator

of the expectation λ and have the probability of cell survival P (X = 0)

given by

σ(D) = P (X = 0) = e−ndb = e−(αD+βD2). (2.21)

The radiosensitivity parameters α, β are determined by the parameters

for generation of DSB and DSB repair; i.e. α = pn0f0k0∆ is from lin-

ear generation of DSB and β = pEn1n2f0f1f2K
2(1 − ∆)2 depends on

nonlinear generation of DSB.

(2). Theory of Dual Radiation Action

Kellerer and Rossi [44] derived the dual radiation action theory from their

observation that a linear relation exists between the Relative Biological

effectiveness (RBE) and the dose on the logarithmic scale. A RBE is

defined as

RBE =
Dx

Dn

. (2.22)

where Dx is the dose for X-ray radiation and Dn is the corresponding

dose used in other type of radiations when both radiations have the

same effect. After analyzing several clinical data, they found that on the

logarithmic scale, the RBE of the high LET radiation against its dose is

a straight line with slope −1
2
, that is,

log(RBE) = log

(
Dx

Dn

)
= −1

2
log(Dn) + c. (2.23)
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where c is a constant depending on the type of radiation used. Equiva-

lently, this formula can be written as

Dx

Dn

= RBE =

√
λ

Dn

, λ = e2c. (2.24)

Therefore

Dn =
1

λ
D2
x. (2.25)

This tells us: to obtain the same effect, the dose needed for high LET

radiation is proportional to the square of the dose of X-ray radiation.

They further find that the generation of elementary lesions, denoted as

L, is proportional to the absorbed high LET dose in certain range of

dose,

L = knDn. (2.26)

So the yield of elementary lesions by X-ray will be proportional to the

square of the dose,

L =
kn
λ
D2
x. (2.27)

A more general expression of the yield of lesions is given by

L(D) = k(λD +D2). (2.28)

where k = kn
λ

, and λ depends on radiation quality. For X-ray, λ is very

small such that the linear term can be negligible when D is not too small;

for neutron, λ is so large that the linear term dominates once D is not

too big.

The main part of the dual radiation action model is to derive the param-

eter λ from the aspect of Microdosimetry. The microdosimetry is a field

of physical study without biology. It measures and analyzes the energy

deposition by the radiation within a small volume in an equipment called

Rossi counter.

The Rossi counter is filled with gas at a low pressure so that the mass of

the gas is the same as that of a small sphere of tissue [32]. When a Rossi

counter is exposed to radiation, each interaction of radiation with the

counter gas is called energy deposition event, or event for simplicity. Each
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event generates a measurable pulse. By collecting the pulse intensities,

we could find the probability density distribution of the absorbed energy

z after the usage of doseD, denoted as f(z;D). Let l(z) be the generation

of lesions by absorbed energy z, the experimental data [32] suggested the

form of l(z) = mz2, then the average yield of lesions after dose D is given

by

L(D) = mz2(D) = m

∫ ∞

0

z2f(z;D)dz. (2.29)

Assume the number of events at dose D is a Poission distribution, i.e.,

pi(D) is the probability of i events happening after dose D. Let f1(z) be

the probability density of absorbed energy z deposited in a single event,

f(z,D) has the form of

f(z;D) =
∞∑

i=1

fi(z)pi(D).

where fi(z) are the probability density of deposited energy z happening

in i events and they can be computed as the i-fold convolution of f1(z)

[44]. Kellerer and Rossi wrote the mean number of lesions as

L(D) = mz2(D) = m

(∫∞
0
z2f1(z)dz∫∞

0
zf1(z)

D +D2

)
, (2.30)

For detailed derivation of this formula, we refer the reader to the original

paper [44]. If, once again, we assume that the number of lesions satisfy

the Poisson distribution, the survival of the cells can be given by

σ(D) = e−L(D) = e−(αD+βD2). (2.31)

where α = m
∫∞
0 z2f1(z)dz∫∞

0 zf1(z)
, β = m.

(3). Repair and Misrepair Model (RMR)

This model is derived by Tobias et al in 1980 [85]. It mainly tracks the

number of DNA breaks. In the Molecular theory, Chadwick and Leen-

houts considered the linear and nonlinear generation of DNA breaks to

derive the LQ model. Here in the RMR model, Tobias and his coworker

consider the number of DNA breaks, regardless of their mechanisms of
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generation. It is the different mechanisms of the repair of DNA breaks

that make the model include linear and quadratic terms. Tobias et al

denote U(t) as the DNA breaks, divide the repair of the DNA break into

linear and quadratic process. The repair rates of each process are λ and

k, respectively. Therefore the number of DNA break is governed by

dU

dt
= −λU − kU2, U(0) = U0. (2.32)

Where U0 is the initially generated DNA break after radiation. This

Bernoulli equation has a solution of the form

U(t) =
U0e

−λt

1 + U0

ε
(1− e−λt) .

where ε = λ/k is the repair ratio. We find that the number of unrepaired

DNA break approaches 0 as time goes to ∞.

The total number of linear and quadratic repair, can also be calculated

by

RL(t) =

∫ t

0

λU(s)ds = ε

(
1 +

U0(1− e−λt)
ε

)
;

RQ(t) =

∫ t

0

kU2(s)ds = −ε ln

(
1 +

U0

ε
(1− e−λt)

)
+

(U0 +
U2
0

ε
)(1− e−λt)

1 + U0

ε
(1− e−λt) .

In the assumption of the RMR model, not all the repairs are correct,

those accurate repairs are called ’eurepair’, the unrepaired or misrepaired

DNA break will lead to the death of the cell. If the fraction of linear

eurepair and quadratic eurepair are denoted as φ and δ, respectively, the

cell survival model is given by

σ(t) = e−(U(t)+(1−φ)RL(t)+(1−δ)RQ(t)). (2.33)

A speical case of this model can be obtained under the assumption that

all the linear repair are eurepair and none of the quadratic repair is

eurepair, i.e. φ = 1, δ = 0. The (2.33) becomes

σ(t) = e−(U(t)+RQ(t)) = e−U0

[
1 +

U0

ε
(1− e−λt)

]ε
. (2.34)
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The initial yield of lesions U0 is in general a power series of the dose D,

U0 =
imax∑

i=0

αiD
i.

where αi, i = 1, · · · , imax are constants. In their paper, Tobias et al chose

U0 = kD.

When U0

ε
(1 − e−λt) = kD

ε
(1 − e−λt) is small, we have the logarithm of

(2.34) approximated by

− lnσ(t) = U0 − ε ln
(
1 +

U0

ε
(1− e−λt)

)
≈ ke−λtD +

k2

2ε
(1− e−λt)2D2.

Therefore σ(t) in (2.34) is the LQ model with α = ke−λt and β = k2

2ε
(1−

e−λt)2. Note here both α and β are not constants as those in the first

two models, they vary as time changes.

Another interesting special case of RMR model is that, without the as-

sumption that all linear repairs are eurepair, we have the same form of

the cell survival model as (2.34), except an extra power φ in the second

term.

σ(t) = e−(U(t)+RQ(t)+(1−φ)RL(t)) = e−U0
[
1 +

U0

ε
(1− e−λt)

]εφ
. (2.35)

(4). Lethal and Potentially Lethal Model (LPL)

The former RMR model assumes that all the newly generated DNA

breaks are uniform, it is the repair process of the DNA break that gen-

erates different categories of DNA lesions. Curtis [16] explained the LQ

model by dividing the yield of the DNA lesions into two categories: lethal

lesions and potentially lethal lesions. Yields of both kinds of lesions are

proportional to the applied dose. By tracking the number of both lesions,

Curtis derived the Lethal and Potentially Lethal Model (LPL) model,

one of whose special cases is the LQ model.

This model is based on the diagram shown in Figure 2.3. Here, A de-

notes the number of undamaged critical bonds in the DNA, B and C

represent the potentially lethal and lethal lesions, respectively. Based
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B

A

B C

AC

BC

ABε

ε

ε D
. .
D

B2

εBA

Figure 2.3: The diagram for lethal and potential-lethal (LPL) model.

A denotes the undamaged critical bonds in the DNA, B,C are potential-lethal

and lethal lesions, respectively.

on the assumption of the model, only potentially lethal lesions are re-

pairable by a linear progress, they could transfer to the lethal lesions if

they interact with each other as well. A lethal lesion is permanent and

can not be repaired.

Curtis further assumes that the number of undamaged DNA critical

bonds are way more than the DNA lesions, so the generation of both

categories of lesions are only dependent on the dose rate, denoted as Ḋ.

Therefore the evolution of the number of both lesions can be modeled

by the following equations,

dB

dt
= εABḊ − εBAB − εBCB2, (2.36)

dC

dt
= εACḊ + εBCB

2. (2.37)

with initial condition B(0) = C(0) = 0, and the assumption that dose is

given constantly within the radiation time [0, RT ], i.e.

Ḋ(t) =

{
D
RT
, t within treatment time [0, RT ],

0, t after treatment
(2.38)
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we could solve the above system as follows [16]

B(t) =





2εABḊ(1−e−ε0t)
ε0+εBA+(ε0−εBA)e−ε0t

, 0 < t ≤ RT

NPLe
−εBA(t−T )

1+
NPL
ε

(1−e−εBA(t−T ))
, t > RT

(2.39)

C(t) =





εACD + ε ln
[

2ε0
ε0+εBA+(ε0−εBA)e−ε0t

]

+ (ε0−εBA)2t
4εBC

−B(t), 0 < t ≤ RT

NL +
NPL

[
1+

NPL
ε

]
(1−e−εBA(t−T ))

1+
NPL
ε

(1−e−εBA(t−T ))

−ε ln
[
1 + NPL

ε
(1− e−εBA(t−T ))

]
, t > RT

(2.40)

where ε0 =
√
ε2BA + 4εBCεABḊ, ε = εBA

εBC
, NPL = B(RT ) and NL =

C(RT ). If we assume the number of lesions has Poisson distribution,

the survival model has the form of

σ(t) = e−(B(t)+C(t)). (2.41)

At some time moment t after the treatment, that is, t = RT + tr > RT ,

we have

σ(t) = e
−
(
NL+NPL+ε ln

[
1+

NPL
ε

(1−e−εBAtr )
])

= e−(NL+NPL)
[
1 +

NPL

ε
(1− e−εBAtr)

]ε
. (2.42)

At the special case of high-dose rate Ḋ >>
ε2BA

4εABεBC
, we have ε0 ≈√

4εBCεABḊ and εBA << ε0. Therefore

NPL = B(RT ) =
2εABḊ(1− e−ε0RT )

ε0 + εBA + (ε0 − εBA)e−ε0RT
≈ εABD.

when RT << 2
ε0

. Similarly, NL = C(RT ) ≈ εACD. Then the survival

model is approximated by

σ(t) = e−
(
εAB+εAC

)
D
[
1 +

εABD

ε
(1− e−εBAtr)

]ε
. (2.43)

When it comes to the low dose at high-dose rate (for example, frac-

tionated treatment), the second term in the power function is relatively
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small, by ignoring the higher order terms, we have

− lnσ(t) =
(
εAC + εAB

)
D − ε ln

[
1 +

εABD

ε
(1− e−εBAtr )

]

≈
(
εAC + εAB

)
D − εεABD

ε
(1− e−εBAtr ) + ε

1

2

(εABD
ε

(1− e−εBAtr )
)2

=
(
εAC + e−εBAtrεAB

)
D +

1

2ε
ε2AB(1− e−εBAtr )2D2.

Therefore this special case of the LPL model σ(t) is the LQ model with

α = εAC + εABe
−εBAtr , β =

ε2AB
2ε

(1− e−εBAtr)2. These two parameters are

also time-dependent.

It is worth mentioning that this model can also be used to derive the LQ

model with Lea-Catcheside factor (see (2.47)), where the Lea-Catcheside

factor is given by as (2.48) [19],[75]. In Dawson’s derivation [19], she

assumed the nonlinear term εBCB
2 in (2.36) is negligible, Sachs et al

[75] states that this is a reasonable assumption when the dose D is not

too big, say D < 5 Gy.

Besides the four derivations of the LQ model we reviewed here, there are many

more explanations of the LQ model in the literature. The latter two models,

the RMR and LPL models can be thought of extensions of the LQ model which

include a time factor explicitly. However, because of its simplicity and nice

fitting of data, the LQ model has been widely accepted in this area. As Alpen

[4] pointed out, the LQ model is adequate for the survival fraction larger than

10−3, most of the clinical results are in this range. Therefore, in this thesis,

we are mainly using the LQ model and its extension.

All the models derived above are for a single-dose radiation. In the next

subsection, I will review variations of the LQ formula for the fractionated

treatments and brachytherapy, as well as extensions to include regrowth into

the LQ model.

2.2.3 Other Development of the LQ Models

Fractionated treatment does not give the total dose D to the patient at one

time. It splits the dose D into n fractions of smaller dose d (D = nd) so that
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the normal tissue will have a chance to repair during the intertreatment time.

With the assumption that survival for each fraction is independent, (2.14)

changes into

σ(D(n, d)) = exp(−αd− βd2) · · · exp(−αd− βd2)︸ ︷︷ ︸
n

= exp(−(α + βd)D).

(2.44)

Equations (2.14) and (2.44) assume that there is no regrowth during treatment.

However proliferation plays an important role when the treatment time is long

compared to the tumor doubling time. Travis and Tucker [86] were the first

to include a growth factor into the LQ model. By fitting mouse lung cancer

data of Mah et al [57], they found the regrowth is exponential with parameter

b, and the isoeffect curves E (= − lnS(D)) are constant,

E = βD(α/β +D/n)− bT, (2.45)

where n is the number of fractions and T is the total treatment time. Some

other scholars [56, 83, 98, 99] also study regrowth and they found there is a

regrowth delay in clinical observations. Therefore by using a delay term in the

exponent of the LQ model, we obtain an LQ model as a function of dose and

time-delayed regrowth,

σ(D, t) = e−αD−βD
2/ne

ln(2)
Td

(t−tk)
. (2.46)

where Td = ln(2)/b is the tumor doubling time and tk is a time delay between

the beginning of treatment and measurable re-growth of the tumor.

In brachytherapy, the model is modified using the Lea-Catcheside factor G(t)

[44]

σ(D) = e−αD−βG(t)D2

. (2.47)

The Lea-Catchside factor describes the interaction of past radiation damage

with the current damage. But the interaction probability decays exponentially

with rate γ, the repair rate of the cells. The Lea-Catchside factor is usually

written for time greater than end of the treatment time T (t > T ) as

G(t) =
2

D(t)2

∫ ∞

−∞
Ḋ(τ)

∫ τ

−∞
e−γ(τ−s)Ḋ(s) ds dτ
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or

G(t) =
2

D(t)2

∫ t

−∞
Ḋ(τ)

∫ τ

−∞
e−γ(τ−s)Ḋ(s) ds dτ. (2.48)

where Ḋ(t) is the dose rate, D(t) is the cumulative dose. The Lea-Catchside

factor has a clear physical derivation from the LPL model, where γ here is the

linear repair rate εBA in the LPL model [19].

2.3 Hazard Function Related to LQ Models

This section is adapted from [31].

The number of cancer cells is normally modeled by differential equations. We

can use the hazard function to represent the death caused by radiation in the

differential equations. Based on the limitations of the target methods and

the wide acceptance of the LQ model, here we only write down the hazard

functions corresponding to the LQ models.

From the Survival Analysis in Statistic [3], the hazard function h(t) describes

the decay of survival fraction as

h(t) = lim
∆t→0

Prob(death in [t, t+ ∆t])

Prob(survival in[0, t])∆t

= lim
∆t→0

σ (D(t))− σ (D(t+ ∆t))

σ (D(t)) ∆t
= − 1

σ (D(t))

dσ (D(t))

dt
. (2.49)

Therefore, the hazard function h(t) has relation with the LQ survival fraction

as
dσ(D(t))

dt
= −h(t)σ(D(t)). (2.50)

If the σ(D) is given by the LQ model (2.14), the corresponding hazard function

is

ha(t) := (α + 2βD(t))Ḋ(t), (2.51)

see also Zaider and Minerbo [101]. For the fractionated treatment, if we give

n fractions of dose d, then total dose D = nd and the hazard function corre-

sponding to LQ model (2.44) should be

hb(t) := (α + βd)Ḋ(t). (2.52)
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For the LQ model with Lea-Catchside factor, the hazard function will be

hc(t) := αḊ(t) + β(G(t)D(t)2)′ =
(
α + 2β

∫ t

−∞
e−γ(t−s)Ḋ(s)ds

)
Ḋ(t), (2.53)

In [20], Dawson and Hillen derived a hazard function corresponding to their

target model from first principles. It includes dose interaction within a window

with width ω > 0, that is [t− ω, t]; we denote it as hd:

hd(t) :=
(
α + 2β

(
D(t)−D(t− ω)

))
Ḋ(t), (2.54)

The interaction window ω can be chosen as the time interval that DNA repair

would happen. It is the reciprocal of the repair rate γ [84].

In more generality, we propose an effective interaction dose deff , which will

include all the above hazard functions (2.51), (2.52),(2.53) and (2.54) into one

framework:

heff (t) := (α + βdeff (t)) Ḋ(t), (2.55)

Therefore,

(a) deff (t) = 2D(t) for Zaider-Minerbo’s formula (2.51),

(b) deff (t) = d for fractionated treatments (2.52),

(c) deff (t) = 2
∫ t
−∞ e

−γ(t−s)Ḋ(s)ds for the Lea-Catchside factor,

and

(d) deff (t) = 2(D(t)−D(t− ω)) for the finite interaction window.

The corresponding survival fractions to (2.55) are then

σ(D(t)) = exp

(
−
∫ t

0

heff (s)ds

)
= exp

(
−αD(t)− β

∫ t

0

deff (s)Ḋ(s))ds

)

(2.56)

with each special case as

(a) σa(D(t)) = exp
(
−αD(t)− βD2(t)

)
,

(b) σb(D(t)) = exp (−(α + βd)D(t)) ,

(c) σc(D(t)) = exp
(
−αD(t)− βG(t)D(t)2

)
,with G(t) from (2.48),

(d) σd(D(t)) = exp

(
−αD(t)− β

∫ t

0

2(D(s)−D(s− ω))Ḋ(s)ds

)
.
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There are several interesting special cases:

Case 1 (c → a): If the repair rate γ in (2.55) (c) approaches 0, i.e. γ → 0,

then deff (t) = 2D(t) and we obtain the Zaider-Minerbo formula as shown by

(2.55) (a). We have the same approximation from (2.56) (c) to (2.56) (a) as

G(t)→ 1 when γ → 0.

This tells us that the approach (a) is useful if early lesions are not repaired

and are always able to interact.

Case 2a (d → a): If the interaction window in (d) is large (ω → ∞), we

have D(t)−D(t− ω) = D(t) using the fact that D(−∞) = 0. Therefore deff

is the same as that in (2.55) (a) and the survival fraction (2.56) (d) equals to

(2.56) (a).

Hence once again we find that model (a) implicitly assumes that interactions

of lesions induced by radiation are on a long time scale.

Case 2b (d → b): Let us compute (2.56) (d) for the fractionated treatment.

We assume that the treatment length of each fraction is RT and the interaction

window ω = RT . Calculation tells us survival fraction σd is in agreement with

the fractionated LQ model σb.

Denote ti, i = 1, · · · , n as the beginning time of each fraction, therefore doses

are delivered during the interval [ti, ti+RT ], i = 1, · · · , n. We assume the dose

d is given constantly in each fraction, that is, the dose rate is the step function

as follows

Ḋ(t) =

{
d
RT
, t ∈ [ti, ti +RT ], i = 1, · · · , n

0, else
(2.57)

At a moment between the jth and the j+1th fraction, time t satisfies tj+RT <

t < tj+1 and the total dose is D = jd. Because of choice of Ḋ(t) in (2.57), the

integral in the (2.56) (d) will equal to

∫ t

0

2 (D(s)−D(s− ω)) Ḋ(s)ds = 2

j∑

i=1

∫ ti+RT

ti

(D(s)−D(s− ω))
d

RT

ds

= 2

j∑

i=1

∫ ti+RT

ti

d

RT

(s− ti)
d

RT

ds

=

(
d

RT

)2 j∑

i=1

R2
T = jd2 = dD. (2.58)
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Therefore, after the j-th fraction, the survival fraction σd equals to

σd(D(t)) = exp (−αD(t)− βdD) = exp (−(α + βd)D(t))

which is the same as the survival fraction given by σb. That is to say, when

the interaction window ω = RT and the time t is not the moment to deliver

the dose, the survival fraction σd is consistent to the σb.

However, formula (b) in (2.55) and (2.56) can only be used after finishing of a

fractionated treatments. Formula (d) in (2.55) and (2.56) can also be used even

within the process of dose delivery, i.e. t ∈ [tj, tj+RT ]. Denote Dj−1 = (j−1)d

as the total dose after the first j − 1 fractions. When t ∈ [tj, tj +RT ], besides

the delivered dose in the first j−1 fractions, there is extra dose ≤ d in current

j-th fraction. Let Dcurr = d
RT

(t − tj) be the dose used in the jth fraction up

to time t,

∫ t

0

2 (D(s)−D(s− ω)) Ḋ(s)ds

= 2

j−1∑

i=1

∫ ti+RT

ti

(D(s)−D(s− ω))
d

RT

ds+ 2

∫ t

tj

(D(s)−D(s− ω))
d

RT

ds

=

(
d

RT

)2 j−1∑

i=1

R2
T + 2

∫ t

tj

d

RT

(s− tj)
d

RT

ds

= (j − 1)d2 +

(
d

RT

)2

(t− tj)2

= dDj−1 +D2
curr. (2.59)

plugging into (2.56) (d), we find that during the dose delivery (t ∈ [tj, tj+RT ]),

the cell survival is a combination of fractionated LQ model (2.44) and standard

LQ model (2.14) as follows,

σd(D(t)) = exp (−αDj−1 − βdDj−1) exp
(
−(αDcurr + βD2

curr)
)

Case 2c (d ≈ c): Notice that D(t) = 0 for t < 0, the effective dose (2.55)

(c) could be calculated by integration by parts,

deff (t) = 2 e−γ(t−s)D(s)
∣∣t
0
−2γ

∫ t

0

e−γ(t−s)D(s)ds = 2D(t)−2γ

∫ t

0

e−γ(t−s)D(s)ds.

(2.60)
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In [31], we proved that for brachytherapy, when the repair rate γ is the recip-

rocal of interaction interval ω, the difference between (2.55) (d) and (c) are

negligible. Therefore, for brachytherapy, we could use the easier calculated

form (2.55) (d) to calculate the hazard function.

In the following chapters, I will use the general hazard function (2.55) in my

differential equations. In particular, deff (2.55) (a) and (b) will be used for

deff in a single-dose treatment and fractionated treatment or brachytherapy,

respectively. If the time is within the process of dose delivery, deff (d) will be

used.
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Chapter 3

Poisson TCP Models Based on

Cell Population Models

The tumor control probability (TCP) is defined as the probability of zero

tumor cells. In this chapter, we will give an extension of the Poissonian TCP

(1.4) to include cell population dynamics. The cell population models are

ordinary differential equations (ODE) describing the evolution of the mean

number of surviving cells N(t).

dN(t)

dt
= [µ− h(t)]N(t), N(0) = N0, (3.1)

where µ is the net linear proliferation rate and h(t) is the hazard function

describing death due to the radiation, which is in the form of (2.56) and

relates to the cell survival by σ(D) = e−
∫ t
0 h(s)ds.

Using the mean number of cancer cells N(t) as an estimator of the mean λ of

a Poisson distribution (1.3), then we have the Poisson TCP as

TCPP (t) = p(X = 0) = e−λ = e−N(t) = exp{−N0σ(D)eµt}. (3.2)

It is the original Poisson TCP (1.4) with regrowth factor eµt. Equation (3.1)

only considers the linear regrowth. Wheldon [95] and Usher [89] extended the

Poisson TCP formula for two saturation growth models, the logistic model and

the Gompertzian model. Their formulae are for uniform treatment schedules

(time between two fractions of treatments are the same). In this chapter, we
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3.1. TUMOR GROWTH LAWS

generalize Wheldon’s and Usher’s method to non-uniform clinical treatments

and obtain explicit formula for the TCP.

In what follows, I will first review the tumor regrowth model without radiation

in Section 3.1 and Usher’s TCP iterative derivation for uniform treatment

in Subsection 3.2.1; In Subsection 3.2.2, I will prove that for a short dose

delivery time per fraction, the explicit formula derived in Subsection 3.2.1 is

the approximation of the TCP based on the cell population model. I derive

an explicit TCP for non-uniform treatments by iterative derivation in Section

3.3 and in the last section I will compute TCP values for realistic clinical

treatments.

3.1 Tumor Growth Laws

Suppose N(t) denotes the mean number of tumor cells at time t. Three most

often used ODEs for unirradiated tumor growth are the exponential, the Gom-

pertzian and the logistic growth models.

• Exponential growth model

dN

dt
= µN, (3.3)

where µ is the growth rate. This model is used when the nutrients and

space for cancer cells are unlimited on the timescale of interest. This

is an unbounded model. The model no longer applies if the clonogenic

cell growth rate decreases as the tumour grows because of the limited

resources or other growth inhibiting process.

For large populations, the growth rate decreases to zero due to limited

resources, and a parameter θ is used as carrying capacity of the envi-

ronment. The following two models are self-limited, as we can see from

Figure 3.1.

• Gompertzian growth model

dN

dt
= −µN ln(N/θ). (3.4)
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Figure 3.1: Comparison of three growth models: exponential (solid),

logistic (dashed) and Gompertzian (dash-dot line). The number of

tumor cells N(t) is plotted as a function of time. The initial tumor cell number

is N0 = 105, the growth rate is µ = 0.01 day−1 and the carrying capacity is

θ = 1011.

• Verhulst (logistic) growth model

dN

dt
= µN(1−N/θ). (3.5)

In Figure 3.1, we show the number of tumor cells N(t) plotted as a function

of time for exponential (solid), logistic (dashed) and Gompertzian (dash-dot)

growth. The initial tumor cell number is N0 = 105, the growth rate is µ = 0.01

day−1 and the carrying capacity is θ = 1011. We can see the exponential growth

will grow unlimited, logistic and Gompertzian growth will be saturated by the

environment (denoted by the carrying capacity θ in the model). Notice that

initially the logistic model grows exponentially before going into saturation.

The Gompertzian model, however, initially grows much quicker than the ex-

ponential growth.
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3.2. POISSON TCP MODEL FOR UNIFORM TREATMENT

The above three models are all special cases of a so called Richard’d differential

equation or generalized logistic differential equation,

dN

dt
=
µN

a

[
1−

(
N

θ

)a]
. (3.6)

Where the parameters a (≥ 0), µ, θ (> 0) are determined from the growth

characteristics of the cells. We can easily see that exponential growth model

arises when a→ 1 and θ →∞. The Gompertzian growth model follows when

a→ 0 and the logistic growth model follows when a→ 1. Equation (3.6) is a

Bernoulli Equation, its solution is

N(t) =
N(0)

[(
N(0)
θ

)a
+ e−µt

(
1−

(
N(0)
θ

)a)]1/a
. (3.7)

We will use formula (3.7) to derive the TCP formula for uniform and non-

uniform treatment in the following subsections.

3.2 Poisson TCP Model for Uniform Treat-

ment

3.2.1 Iterative Derivation for Uniform Treatment [89]

Uniform treatments refer to those fractionated treatments with constant in-

tertreatment time T (days). We write a uniform treatment as the tuple

(d, T, n), meaning n fractions of treatments with dose d are separated by

a time interval T . Let us review the model of Usher [89] in this subsection.

Usher split time into two parts: the treatment time and the intertreatment

time. He assumed that the treatment time is so small compared to the in-

tertreatment time T that the regrowth during treatment is not important.

Therefore, he considered a series of uncoupled events with period of 2: radia-

tion, growth, radiation, growth, · · · , radiation.

Denote by Ni, N
′
i the number of cancer cells before and after the i-th radiation,

respectively. For convenience, he assumed N(0) = N1. After n fractions, the
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3.2. POISSON TCP MODEL FOR UNIFORM TREATMENT

number of cancer cell changes as:

N1
σ−−→
rad

N
′
1

T−−−−→
growth

N2
σ−−→
rad

N
′
2

T−−−−→
growth

. . .
T−−−−→

growth
Nn

σ−−→
rad

N
′
n

The ’rad’ below the arrow stands for radiation and σ above the arrow is the

corresponding survival fraction. The ’growth’ is for regrowth and T for the

growth time between fractions. From Chapter 2, we know

N
′

i = σ(d)Ni, i = 1, 2, · · · , n. (3.8)

where σ(d) is the survival fraction model introduced in Chapter 2. One exam-

ple for the surviving fraction is the linear quadratic (LQ) model in (2.14).

Lemma 3.2.1. Ni+1 and Ni have the following relations

1.

Ni+1 =
N
′
i[(

N
′
i

θ

)a
+ e−µT

(
1−

(
N
′
i

θ

)a)]1/a
, i = 1, 2, · · · , n. (3.9)

2.

Ni+1 =
Ni

(ANa
i +B)1/a

, i = 1, 2, · · · , N (3.10)

where A =
(
1− e−µT

)
/θa, B = e−µT/σa. According to Usher, σ = σ(d) is

in the form of Multitarget Single-hit (MTSH) model (2.11) or the LQ model

(2.44).

Proof. 1. Ni+1 is the i-th T days growth with initial cell number N
′
i , (3.9) is

a direct result from formula (3.7).

2. From formula (3.8) and (3.9), we have

Ni+1 =
N
′
i[

(
N
′
i

θ
)a + e−µT

(
1−

(
N
′
i

θ

)a)]1/a

=
σNi[(

σNi
θ

)a
+ e−µT

(
1−

(
σNi
θ

)a)]1/a

=
Ni

(ANa
i +B)1/a

.

where A = (1− e−µT )/θa, B = e−µT/σa.
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3.2. POISSON TCP MODEL FOR UNIFORM TREATMENT

Then by induction, we find the number of cancer cells just before the n − th
treatment as follows

Nn =
Nn−1

(ANa
n−1 +B)1/a

=
Nn−2[

(A+ AB)Na
n−2 +B2

]1/a
= · · · =
=

N1[
A1−Bn−1

1−B Na
1 +Bn−1

]1/a (3.11)

So after n fractions of radiation, the mean tumor cell number and the Poisson

TCP will be

N
′

n = σ(d) ∗Nn, TCPp = e−N
′
n . (3.12)

The Poisson TCP formula could be very complicated, in order to simplify

our formula, we instead think of another measurement of the effect of each

treatment schedule, the total survival fraction (TSF )

TSFn = N
′

n/N1. (3.13)

The TSF is related to the Poisson TCP as

TCPP = e−N1∗TSFn . (3.14)

The smaller the total survival fraction, the larger the Poison TCP (3.14) is

and therefore the better the treatment.

Theorem 3.2.2. (see Usher [89]) The total survival fraction of cancer cells

after the n− th treatment for the three growth laws are

TSFn,e(d, T, n) = σneµ(n−1)T , (3.15)

TSFn,g(d, T, n) = N−1
1 exp

{
ln(σ)

1− e−µnT
1− eµT + ln(θ)(1− e−µ(n−1)T )

+ ln(N1)e−µ(n−1)T
}
, (3.16)

TSFn,l(d, T, n) =
σ

A1−Bn−1

1−B N1 +Bn−1
, (3.17)

where A = 1−e−µT
θ

, B = e−µT

σ
and we use the additional subscript index e, g, l

to denote the exponential, Gompertzian and logistic growth, respectively. Dose

per fraction d is included in cell survival model σ, Usher considered both MTSH

(2.11) and LQ survival model (2.44).
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3.2. POISSON TCP MODEL FOR UNIFORM TREATMENT

Proof. Formula (3.13) can be obtained by (3.11) and (3.8), then (3.15)-(3.17)

can be received by taking different limits on a and θ.
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Figure 3.2: Sequences of Number of cancer cells Ni, N
′
i under one

treatment. The treatment schedule is (d, T, n)=(2.6 Gy, 4 days, 15 frs).

Parameters for regrowth are: µ = 0.01 day−1, N0 = 105, θ = N0 ∗ e28.5 and for

cell survival model are n = 2, D0 = 1.5Gy, α = 0.2Gy−1, β = 0.04Gy−2. The

top, middle and bottom graphs show the number of cancer cells as function of

time for exponential, logistic and Gompertzian growth, respectively. In each

graph, the dashed line with stars are for LQ surviving fraction and the solid

lines with diamonds are for MTSH survival fraction (MT in the graph).

In Figure 3.2 we plot the sequence of N1, N
′
1, · · · , Nn, N

′
n by choosing the

growth law parameters as µ = 0.01 day−1, N0 = 105, θ = N0 × e28.5. The

schedule is chosen as (d, T, n)=(2.6 Gy, 4 days, 15 frs). We find that numbers

of tumor cells with the exponential growth and logistic growth decrease quickly

for this schedule, but for the Gompertzian growth with the MTSH cell survival,

the number of cancer cells increases rather than decreases.
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3.2. POISSON TCP MODEL FOR UNIFORM TREATMENT

We can find an explanation for the behavior of the Gompertzian model by

looking at the mathematical properties of equation (3.4). The right hand side

of equation (3.4) is not Lipschitz continuous at 0. Hence the cancer growth

rate is over proportionally large for N close to 0, leading to instantaneous

tumor regrowth. It should be noted that the Gompertzian model has been

derived in the context of tumor growth experiments and it is quite successful

in predicting tumor sizes [94],[81]. However, the model was not designed for

small tumors, where the singularity at 0 becomes dominating. Since we are

interested in small tumor cell numbers as a result of radiation treatment, we

are skeptical in using the Gompertzian model. We believe that it overestimates

the growth rate close to 0. Therefore, for the following content, we will just

focus on exponential and logistic growth laws.

3.2.2 Poisson TCP Derived from Continuous Popula-

tion Models

The above derivation gives an explicit formula, however, time was split into two

separate series of intervals: radiation and regrowth time. In this subsection,

we are going to think of the time as a continuous variable.

With radiation included, the number of tumor cells can be governed by

dÑ(t)

dt
=

[
µ

a

(
1− (

Ñ

θ
)a

)
− h(t)

]
Ñ(t), Ñ(0) = N0. (3.18)

where µ, a, θ are parameters for the growth law and h(t) is the hazard function

describing death due to radiation, which is normally related to cell survival

model σ(D) by

σ(D(t)) = exp

(
−
∫ t

0

h(s)ds

)
. (3.19)

Equation (3.18) is still a Bernoulli type differential equation dy
dt

+p(t)y = q(t)yn

with p(t) = h(t)− µ
a
, q(t) = − µ

aθa
and n = a+ 1. Its solution is

Ñ(t) =

[
Na

0 e
a
∫ t
0
µ
a
−h(s)ds

1 +Na
0
µ
θa

∫ t
0
ea
∫ τ
0
µ
a
−h(s)dsdτ

]1/a

. (3.20)
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Theorem 3.2.3. Assume there are n fractions of dose d with the intertreat-

ment time T . Death in each fraction is independent of the other fractions. Let

RT denote the time that radiation is applied in a single fraction.

(1). (Exponential growth) For exponential growth tumor, i.e., a = 1, θ →
∞ in (3.18), when taking the limit of RT → 0, we have t = (n−1)(RT +

T ) → (n − 1)T and the continuous formula (3.20) coincides with the

discrete case from Subsection 3.2.1 and

Ñ(t)

N0

RT→0−−−−−−−→ TSFn,e from (3.15),

(2). (Logistic growth) For logistic growth tumor, i.e., a → 1, when taking

the limit of RT → 0, the discrete and continuous formulas coincide and

Ñ(t)

N0

RT→0−−−−−−−→TSFn,l in (3.17). (3.21)

Proof. (1). By taking limit of a→ 1, θ →∞ in (3.20), we have

Ñ(t) = N0e
∫ t
0 µ−h(s)ds = N0e

µtσ(D), (3.22)

where we use (3.19) in the last equality. Because death in each fraction is

independent of the other fractions, we could use fractionated LQ model

(2.44) for our cell survival, i.e.,

σ(D) = σ(d)n := σn. (3.23)

Plugging (3.23) into (3.22) and divide N0 on both side, we have (3.15)

when t→ (n− 1)T .

(2). When a→ 1, (3.20) is

Ñ(t) =
N0e

∫ t
0 µ−h(s)ds

1 +N0
µ
θ

∫ t
0
e
∫ τ
0 µ−h(s)dsdτ

=
N0e

µtσ(D(t))

1 +N0
µ
θ

∫ t
0
eµτσ (D (τ)) dτ

. (3.24)

Let N0 = N1, by using (3.17) we have

N(t) = TSFn,l ∗N0 =
N0σ

A1−Bn−1

1−B N0 +Bn−1
=

N0σ
neµ(n−1)T

1 + eµT−1
θ

eµ(n−1)Tσn−σ
σeµT−σ N0

.

(3.25)
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When t = (n − 1)(T + RT ) → (n − 1)T , σ(D) = σn, (3.24) and (3.25)

have the same numerator, but (3.24) differs from (3.25) by the integral

term in the denominator.

Assume each treatment happened at Ti, i = 1, 2, · · · , n, i.e., Ti = (i −
1)(RT + T ). Therefore if we split the time into treatment time and

intertreatment time, the integral in (3.24) would be written as

∫ t

0

eµτσ(D(τ))dτ =
n∑

i=1

∫ Ti+RT

Ti

eµτσ(D(τ))dτ

︸ ︷︷ ︸
A

+
n−1∑

i=1

∫ Ti+1

Ti+RT

eµτσ(D(τ))dτ

︸ ︷︷ ︸
B

.

(3.26)

Notice that when τ ∈ [Ti + RT , Ti+1], σ(D(τ)) = σi, therefore part B

can be calculated by

n−1∑

i=1

∫ Ti+1

Ti+RT

eµτσ(D(τ))dτ =
n−1∑

i=1

σi
∫ Ti+1

Ti+RT

eµτdτ

=
1

µ

n−1∑

i=1

σi
(
eµ(Ti+1) − eµ(Ti+RT )

)

=
1

µ

n−1∑

i=1

σi
(
eµi(T+RT ) − eµ(i−1)(T+RT )+µRT

)

=
1

µ

n−1∑

i=1

σieµ(i−1)(T+RT )eµRT
(
eµT − 1

)

=
(eµT − 1)eµRTσ

µ

n−1∑

i=1

σi−1(eµ(i−1)(T+RT ))

=
(eµT − 1)eµRTσ

µ

1−
(
σeµ(T+RT )

)n−1

1− σeµ(T+RT )

When RT → 0 as what we assumed in the derivation of (3.17), the above

equation has the following approximation

n−1∑

i=1

∫ Ti+1

Ti+RT

eµτσ(D(τ))dτ → (eµT − 1)σ

µ

1− (σeµT )n−1

1− σeµT . (3.27)

The integrand in the part A of (3.26) is bounded, because σi ≤ σ(D(τ)) ≤
1 when τ ∈ [Ti, Ti +RT ], we have

eµτσi ≤ eµτσ(D(τ)) ≤ eµτ .
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Therefore when RT → 0, each integrand approaches 0 and thereafter

part A of (3.26) approaches 0 as well. Hence, (3.24) changes into the

following when RT → 0

Ñ(t)→ N0e
µ(n−1)Tσn

1 +N0
µ
θ

(eµT−1)σ
µ

1−(σeµT )n−1

1−σeµT
=

Na
0 e

µ(n−1)Tσn

1 +N0
(eµT−1)

θ
σneµ(n−1)T−σ

σeµT−1

.

(3.28)

which is exactly the same as (3.25).

That is to say, when the dose delivery time RT for a single fraction is small, we

could use the iterative method to derive the Poisson TCP models. Therefore, I

will use the iterative method to derive the Poisson TCP model for non-uniform

treatments.

3.3 TCP Formula for Non-uniform treatment

In clinical practice, radiotherapy schedules normally have a break during the

weekend. Yurtseven [100] summarized ten clinical treatment schedules in her

thesis, where she extended or cut some treatments to make the total dose

uniform to 72 Gy. Here we update her table by newly reported protocols

with no extension or truncation in Table 3.1. The schedules labeled by capital

letters from ’A’ to ’E’ are known as standard treatments, given one fraction

per day, while the lower case letters from ’a’ to ’e’ are the corresponding

hyperfractionated schedules, given half the radiation dose twice per day with

a 6 hour break in between.

Obviously the schedules have different intertreatment times for weekdays and

weekends. Suppose we have p days with radiation each week. For standard

treatment, there are two values for intertreatment time, i.e, T = (T1, T2),

where T1 = 1 day for weekdays and T2 = 7 − p + 1 for weekends. For hyper-

fractionation treatment, we have T = (T1, T2, T3) with T1 = 1/4, T2 = 3/4

for weekdays and T3 = 7 − p + 3/4 for weekends. In this section, we extend

the previous TSF calculations to non-uniform treatments.
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Protocol Reference Dose/fx.(Gy) days/week T-days fx./day T-dose

A [74] 2 5 53 once 78

B [28] 2 5 47 once 70

C [1] 3 5 26 once 60

D Corresponding to ’d’ 2.4 5 44 once 76.8

E [50] 4.3 5 16 once 51.6

a Corresponding to ’A’ 1 5 53 twice 78

b Corresponding to ’B’ 1 5 47 twice 70

c Corresponding to ’C’ 1.5 5 26 twice 60

d [90] 1.2 5 44 twice 76.8

e Corresponding to ’E’ 2.15 5 16 twice 51.6

Table 3.1: Ten treatment schedules. The protocols labeled by capital

letters are known as standard treatment, given once per day; the protocols

labeled by lower case letters are hyperfractionated, i.e. given twice per day.

The only change we made from the cited report is the hyperfractionation

protocol ’d’ and its corresponding standard treatment ’D’[90]. The paper

mentioned a total dose exceeded 72 Gray are applied, here we choose total

dose of 76.8 Gray. ‘T-’in columns ‘T-day’ and ‘T-dose’ means total, ‘fx’ in

columns ‘Dose/fx.(Gy)’ and ‘fx./day’ means fraction.

Note that we do not apply radiation every day. The day on which the i-th

radiation is given is not the same as the i-th day since the beginning of the

treatment. Here we are tracking the days that doses are delivered. Because

there are p days with radiation each week, the i-th radiation can be written as

i = kp+ q, 1 ≤ q ≤ p, k = 0, 1, 2 · · ·

that means it is the q-th treatment in week k+1. Once again we denote Ni, N
′
i

the number of cancer cells before and after the i− th radiation, respectively.

In what follows we study standard treatment ’A−E’ with one treatment per

day on weekdays in detail. Denote N1 the initial number of cancer cells before

the first treatment, Nkp+1 the number of cancer cells before the first treatment

of week k + 1, and N
′

kp the number of cancer cells after the last treatment of

k-th week. Their relations are
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N1
σ,T1−−−−−→

1st week
N
′
p

T2−−−−→
growth

Np+1
σ,T1−−−−−→

2nd week
N
′
2p

σ,T1,T2−−−−→
···

Nkp+1
σ,T1−−−−−→

last week
N
′

kp+q

Lemma 3.3.1. 1. Denote A1 = (1−e−µT1)/θa, B1 = e−µT1/σa, the number

of cancer cells on days in the same week have the following equation

Nkp+q =
Nkp+1[

A1
1−Bq−1

1

1−B1
Na
kp+1 +Bq−1

1

]1/a
, 1 < q ≤ p. (3.29)

2. Denote A2 = (1−e−µT2)/θa, B2 = e−µT2/σa and C = A2+A1B2
1−Bp−1

1

1−B1
,Γ =

Bp−1
1 B2, the number of cancer cells on days that cross the weekend have

the following relation

Nkp+1 =
Nkp[

A2Na
kp +B2

]1/a =
N(k−1)p+1[

CNa
(k−1)p+1 + Γ

]1/a
. (3.30)

3. The first day of the last week has relation with the initial tumor cell

number as

Nkp+1 =
N1[

C 1−Γk

1−Γ
Na

1 + Γk
]1/a

. (3.31)

where C,Γ are the same as that in case 2.

4. Before the last fraction (i = kp + q), the tumor cells number Ni has

relation with N1

Nkp+q =
N1[

(A1
1−Bq−1

1

1−B1
+ CBq−1

1
1−Γk

1−Γ
)Na

1 + ΓkBq−1
1

]1/a
. (3.32)

where Ai, Bi, i = 1, 2 and C,Γ are the same as that in case 1 and 2.

Proof. 1. During the weekdays of one week, the intertreatment time remains

the same as T1, so (3.29) can be obtained by using (3.11) with intertreatment

time T1.
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2. The first equation in (3.30) can be obtained by using (3.10) directly,

Nkp+1 =
Nkp[

A2Na
kp +B2

]1/a =
N(k−1)p+p[

A2Na
(k−1)p+p +B2

]1/a

=

N(k−1)p+1[
A1

1−Bp−1
1

1−B1
Na

(k−1)p+1
+Bp−1

1

]1/a
[

A2Na
(k−1)p+1

A1
1−Bp−1

1
1−B1

Na
(k−1)p+1

+Bp−1
1

+B2

]1/a

=
N(k−1)p+1[

A2Na
(k−1)p+1 +B2

(
A1

1−Bp−1
1

1−B1
Na

(k−1)p+1 +Bp−1
1

) ]1/a

=
N(k−1)p+1[

CNa
(k−1)p+1 + Γ

]1/a
.

where in the second row we use equation (3.29) and C = A2 + A1B2
1−Bp−1

1

1−B1

and Γ = Bp−1
1 B2.

3. By induction and (3.30) , we have

Nkp+1 =
N(k−1)p+1[

CNa
(k−1)p+1 + Γ

]1/a

=
N(k−2)p+1[

(C + CΓ)Na
(k−2)p+1 + Γ2

]1/a

= · · · = N1[
C 1−Γk

1−Γ
Na

1 + Γk
]1/a

.

4. Equation (3.32) can be easily obtained by (3.29) and (3.31)

Nkp+q =
Nkp+1[

A1
1−Bq−1

1

1−B1
Na
kp+1 +Bq−1

1

]1/a

=
N1[

(A1
1−Bq−1

1

1−B1
+ CBq−1

1
1−Γk

1−Γ
)Na

1 + ΓkBq−1
1

]1/a
.

where we use (3.29) in the first equation and (3.31) in the second one.
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Similar to the case of uniform treatment, the total survival fraction can be

calculated explicitly

Theorem 3.3.2. For a standard treatment given by (d, (T1, T2), i) (i = kp+q),

the total survival fraction for exponential and logistic growth models are

TSFi, e(d, T, i) = σieµ((i−k−1)T1+kT2), (3.33)

TSFi, l(d, T, i) = σ

[
A1

1−Bq−1
1

1−B1

N1 + (A2 + A1B2
1−Bp−1

1

1−B1

)Bq−1
1

1− (Bp−1
1 B2)k

1−Bp−1
1 B2

N1 +Bi−k−1
1 Bk

2

]−1

, (3.34)

where Ai = (1− e−µTi)/θ,Bi = e−µTi/σ, i = 1, 2.

It is obvious that when T1 = T2 = T , (3.33) goes back to (3.15) if i = n. For

(3.34), it is not hard to verify that it is the same as (3.17) when T1 = T2 = T .

A1
1−Bq−1

1

1−B1

+

(
A2 + A1B2

1−Bp−1
1

1−B1

)
Bq−1

1

1− (Bp−1
1 B2)k

1−Bp−1
1 B2

= A1
1−Bq−1

1

1−B1

+

(
A1 + A1B1

1−Bp−1
1

1−B1

)
Bq−1

1

1− (Bp−1
1 B1)k

1−Bp−1
1 B1

= A1
1−Bq−1

1

1−B1

+ A1

(
1 +B1

1−Bp−1
1

1−B1

)
Bq−1

1

1−Bpk
1

1−Bp
1

= A1
1−Bq−1

1

1−B1

+ A1
1−B1 +B1 −Bp

1

1−B1

Bq−1
1

1−Bpk
1

1−Bp
1

= A1
1−Bq−1

1

1−B1

+ A1
Bq−1

1 −Bpk+q−1
1

1−B1

= A1
1−Bi−1

1

1−B1

For hyperfractionation treatment, we use a similar construction and have the

following result.

Theorem 3.3.3. Given hyperfractionated treatment schedule (d, (T1, T2, T3), 2i),

the total survival fraction for exponential and logistic growth laws are

TSF2i, e(d, T, 2i) = σ2ieµ(iT1+(i−k−1)T2+kT3), (3.35)

TSF2i, l(d, T, 2i) = σ

[(
A1 + F12B1

1−Bq−1
12

1−B12

)
N1 +Bq−1

12 B1
1− (Bp−1

12 B13)k

1−Bp−1
12 B13(

F13 + F12B13
1−Bp−1

12

1−B12

)
N1 +Bi

1B
i−k−1
2 Bk

3

]−1

, (3.36)
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Figure 3.3: The total survival fraction (TSF) as a function of time.

Here we only use the linear quadratic survival model. For the radiosen-

sitivity parameters α, β, we use two sets of values - one from Usher [89]:

α = 0.2Gy−1, β = 0.04Gy−2 (left) and those from Nahum et al [62]: α =

0.26Gy−1, β = 0.031Gy−2 (right).

where Ai = (1 − e−µTi)/θ,Bi = e−µTi/σ, i = 1, 2, 3 and B1j = B1Bj, F1j =

Aj + A1Bj, j = 2, 3.

When T1 = T2, formulae (3.35) and (3.36) go back to (3.33) and (3.34), re-

spectively.

3.4 Results for Prostate Cancer Treatments

For the ten protocols in Table 3.1, we compute their total survival fraction

(TSF) through formulae (3.33)-(3.36) in a logarithmic plot. As a first quality

measure, we look at the final TSF at the end of treatment and report them in

Table 3.2. We calculate the TSF for two groups of radiosensitive parameters:
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3.4. RESULTS FOR PROSTATE CANCER TREATMENTS

one from Usher [89] and one from Nahum et al [62]. Although values of TSF

for these two groups of parameters are different, they both tell us that the

higher the dose per fraction d is, the more effective a treatment to kill cancer.

For example: the treatment labeled as ‘D’ has smaller TSF value in Table 3.2

than other treatments in both columns.

Protocols α/β = 5 (E-07) α/β = 8.387 (E-08)

A 0.006 0.002

B 0.049 0.026

C 0.059 0.081

D 0.002 0.001

E 0.054 0.178

a 0.127 0.024

b 0.815 0.230

c 2.177 1.337

d 0.084 0.019

e 4.563 5.602

Table 3.2: TSF values for the ten protocols in Table 3.1. Two

choices of α/β-ratios used for tumor are α/β = 5 Gy−1 from Usher [89]

and α/β = 8.387 Gy−1 from Nahum et al [62]. Values in brackets beside

the α/β values (E-07 and E-08) are the order of each number in that

column.

Figure 3.3 and 3.4 plot the total survival fraction (TSF) and tumor control

probability (TCP) as a function of time, respectively. Both Figure 3.3 and

3.4 tell us the same as Table 3.2 about the higher the dose per fraction d is,

the more effective a treatment to kill cancer. Also, we find that the standard

treatments kill more cancer cells than their corresponding hyperfractionated

treatments. However, we can not apply too high dose rate in practice because

of the normal tissue complication. In Chapter 4, we will maximize the Pois-

son TCP in this chapter to find the optimal treatment schedules, under the

constraint of a normal tissue complication model- Cumulative Radiation Ef-

fect (CRE). The CRE values for the above ten treatment schedules also tells

us the standard treatments kill more cancer cells at the risk of more normal
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tissues damage.
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Figure 3.4: The tumor control probability (TCP) as a function of

time. We use formula (3.14) to calculate the TCP values. In Figure 3.3, we

only use the linear quadratic survival model. The values for α, β are α =

0.2Gy−1, β = 0.04Gy−2 (left) and α = 0.26Gy−1, β = 0.031Gy−2 (right).
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Chapter 4

Optimization Based on TCP

and Cumulative Radiation

Effect

Usher [89] tried to find optimal treatment schedules based on his total sur-

vival fraction (TSF) formulae (3.15-3.17) and the cumulative radiation effect

(CRE) model (1.6). But his work has two shortcomings: i) his treatments are

all uniform; ii) his results are not global optima as he did optimization coor-

dinate by coordinate. I extended his formula for clinically used non-uniform

treatments in Table 3.1 in Chapter 3. In this chapter, I will first extend the

CRE formula for non-uniform treatments in Section 4.1 and briefly introduce

a numerical algorithm - genetic algorithm - which I will use for optimization

in Section 4.2. Then I do optimization in two ways: one is to find the critical

points of the TCP formula, the other is to do optimization by the genetic

algorithm. I will compare results with Usher’s in Section 4.3 and report some

optimization results on treatment schedules simulated within reliable inter-

vals. Finally, combined the TCP and CRE calculation, we found that higher

dose treatments result in quicker tumor killing at a risk of more normal tissue

complication; the hyperfractionated treatments have effective reduction on the

normal tissue complication compared to their standard treatments.
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4.1. CUMULATIVE RADIATION EFFECT MODEL

4.1 Cumulative Radiation Effect Model

So far the CRE model CRE = ncd
T b

defined in (1.6) has only been developed

for uniform treatment, i.e., T is constant.

We find that the components b, c of the number of fraction n and intertreat-

ment time T is the sensitivity of CRE with respect to n or T . Recall that the

sensitivity of a model f(x) with respect to variable x is defined as

S(f, x) =
df(x)
dx
f(x)
x

, (4.1)

Therefore,

S(CRE, n) =
dCRE(d,T,n)

dn
CRE(d,T,n)

n

=
cnc−1d
T b

ncdT−b

n

= c. (4.2)

Similarly, S(CRE, T ) = b.

As mentioned in Introduction, the units of CRE are arbitrary units denoted

by reu, which stands for radiation effect unit. Fowler [28] criticized the CRE

model with these components b and c as they only depend on the type of

radiation. He suggested the CRE model should no longer be used, because

it does not include accelerated re-growth during treatment, it underestimates

the time factor for acute reacting tissues and overestimates the time factor for

late reacting tissue, such as healthy tissue. We agree with Fowler and we are

well aware of these shortcomings. However, we are not ready to dismiss the

idea of a CRE entirely. Based on the above interpretation we suggest to write

the CRE as a general power law of the form:

CRE = da1T a2na3 (4.3)

where a1 = S(CRE, d), a2 = S(CRE, T ) and a3 = S(CRE, n) are the sensitiv-

ities of the CRE with respect to the treatment variable (d, T, n), respectively.

More detailed data are needed to estimate the above sensitivities.

Here, in order to compare our results to Usher’s results, we still use the CRE

model with exponents a1 = b, a2 = 1 and a3 = c and extend it for nonuniform

treatment (d, T, n), where T is a vector for the intertreatment times. We

introduce an index i to the CRE-value, indicating the number of fraction:

CREi =
icd

T b
. (4.4)
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4.1. CUMULATIVE RADIATION EFFECT MODEL

For uniform treatment, the difference of the CRE between two consecutive

fractions i− 1 and i is

∆CREi = CREi − CREi−1 =
icd

T b
− (i− 1)cd

T b
=: f(i)

d

T b
(4.5)

where, f(i) = ic − (i− 1)c has the following properties:

• f(1) = 1. This means that the first radiation will contribute a damage

value of d/T b,

• f(i) is a decreasing function of i for c < 1. Hence each newly added frac-

tionation has a slightly reduced effect and the newly added contribution

to the CRE is less than d/T b.

The observation that the CRE increment is decreasing during the progression

of treatment is plausible for the following reasons:

1) The healthy normal tissue will be reduced due to the damage made by the

former radiations, so less normal tissue is available for further damage;

2) Even if the newly produced damage is the same for each time, the damage

caused by the former radiation will have some repair during the time

between (i− 1)-th and i-th fraction. This will make the increment from

CREi−1 to CREi less than d/T b.

We use this incremental interpretation to define the CRE for non-uniform

treatments.

Definition 4.1.1. The CRE for non-uniform treatment with variable inter-

treatment time T is given by:

CRE1 =
d

T b1
, CREi = CREi−1 + f(i)

d

T bi
, i = 2, · · · , n. (4.6)

where f(i) = ic − (i − 1)c and Ti denotes the time between fraction i − 1 and

fraction i.

If Ti = T constant, then (4.6) goes back to model (1.6).
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4.2. GENETIC ALGORITHM (GA)

Additionally, Fowler [28] warned that if we had to use CRE, it should not be

used solely, as its significance is questionable. To make up for the shortcom-

ings of the CRE model, we compute the normal tissue complication by the

Biological Effective Dose (BED) (1.2) as well.

Usher’s optimization methods are quite ad hoc and do not necessarily lead to

the global optimum (see Section 4.3). We are going to use genetic algorithm

to do the optimization properly.

4.2 Genetic Algorithm (GA)

Genetic Algorithm is a generic population-based heuristic optimization algo-

rithm [61]. A Genetic Algorithm uses some mechanisms inspired from biolog-

ical evolution: reproduction, mutation, recombination (or crossover), natural

selection and survival of the fittest. Typical crossover acts on two selected

DNA (called parents) to get one or two new candidates (see Figure 4.1 (a)),

while mutation usually acts on only one parent as shown in Figure 4.2 (a)-(d).

These operators will create a set of new candidates which are called offsprings.

Mathematically, each candidate solution consists of all the variables of a prob-

lem. Compared to the biological terminology, all the variables of a candidate

solution are considered as the DNA, each variable is thought as genes of that

DNA, for example, a vector (d, T, n) to indicate the treatment schedule.

There is also an objective function, also called fitness function to determine

which solution will survive during the selection.

Usually, a randomly generated population forms the first population and we

will keep the size of the population as a constant number. Reproduction

is applied to the current population based on their fitness: individuals with

higher fitness have a bias to be chosen as parents for crossover and mutation.

As the size of the population is constant, offsprings compete with the existing

individuals for their places in the next generation based on the principle of

the survival of the fittest. The algorithm will end when some satisfactory

candidates for the problem are found.

Typical crossover in genetic algorithm are shown in Figure 4.1 (1) and (2).
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Children:
X =(1.2, 3.4, 5.7)1

X =(3.1, 5.9, 9.9)2

X1
’ =

0< <1a 

(a)

1
=(1.2, 3.4, 5.7)

X2 =(3.1, 5.9, 9.9)

(1)

X =(1.2, 3.4, 9.9)

=(3.1, 5.9, 5.7)

X1

X2
’

’

(2)

a X1 +(1−α)X2

Figure 4.1: Crossover in Biology and genetic algorithm. In Biology,

crossover needs two parents to generate new individuals. The top two rectan-

gles in (a) represent the DNA of two parents, once a crossover point is chosen,

they will interchange part of their DNA to generate two offsprings as shown

in (a). The two candidates solution in Genetic Algorithm could also generate

two new candidates by crossover as shown in (1). In addition, the crossover

can also be extended by linear combination of two parents to generate new

children by changing the weight α in front of one parent.

Figure 4.1 (1) is also called single point crossover. It is analog to crossover in

biology: once a crossover point is chosen, genes on one side of the crossover

point will interchange to generate two new DNAs. Figure 4.1 (2) is called

arithmetic crossover. Geometrically, given two parents X1, X2, we know the

children from the arithmetic crossover αX1 + (1 − α)X2 are all situated on

the line connecting X1 and X2. In our algorithm here, we use the extended

crossover operator proposed by T. Gao et. al. [33], which is called GT algo-

rithm. It is a multi-parents crossover, extending the search area from a line to a

polygonal area withM vertices. Suppose we haveM parentsXi, i = 1, · · · ,M ,

then the children are formed by:

C =
M∑

i=1

αiXi, αi ∈ [0, 1], i = 1, · · · ,M. (4.7)

The mutation is shown in Figure 4.2. Compared to the crossover, mutation

could happen based on one single individual. The four types of mutation based

on one DNA are deletion, duplication, inversion and transition as shown from

(a) - (d). However, deletion and duplication will change the length of the

DNA, therefore we mainly use the mutation corresponding to inversion and
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’
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Figure 4.2: Mutation in Biology and genetic algorithm. The top row

show four different kinds of mutation based on one parent in Biology: depletion

(a), duplication (b), inversion (c) and transition (d). Deletion and duplication

will change the length of the DNA, which is not suitable for our problem

here. Inversion is applicable when all the variables have the same unit for

the numbers which is not the case of our problem. Therefore, I only use

the mutation corresponding to transition in my simulation as shown in (4): I

randomly choose a variable, generate a small perturbation to it to obtain a

new candidate.

transition in the genetic algorithm. In Figure 4.2 (3), two genes are inversed

to generate a new DNA. This mutation method is eligible when all the genes

have the same unit of numbers. In Figure 4.2 (4), a perturbation is given to a

randomly chosen gene. Because we have integers for the number of treatments

n and real numbers for dose d in our problem, they have different units. It

is not proper to use mutation (3). Therefore, I only use mutation (4): give a

small perturbation to a randomly chosen variable for this problem.
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4.3 Optimization of Poisson TCP with the Con-

strain of CRE

Wheldon and his coworkers [96, 97] gave some optimal schedules for exponen-

tial tumor growth by only minimizing the total survival fraction (TSF). Usher

[89] found that the CRE values for their results are greater than 1800 reu, the

recommended maximal value of the CRE. Usher [89] therefore improved the

results for exponential and Gompertzian tumor growth by limiting CRE=1800

reu. However Usher’s schedules are not necessarily the global optimal solu-

tions, as he did optimization coordinate by coordinate.

In the following section, we will derive optimal schedules by two different meth-

ods: one is to find the critical points of the function TSF (d, T, n). The other

is to minimize the three-variable function TSF (d, T, n) under the constraint

CREn = ncd/T b ≤ 1800 reu by a genetic algorithm. We find that these two

methods arrive at the same optimal schedules. To compare with Usher’s re-

sults, we also run the genetic algorithm by restricting n to be an integer. We

find that Usher’s results are close to the optima. Finally, we also simulate our

algorithm within a realistic domain for (d, T, n).

4.3.1 Results for Uniform Treatment

Case 1: Exponential Growth with MTSH Survival

The constant growth rate µ of the exponential growth model can be related

to the tumor doubling time τ by

µ = ln(2)/τ.

Usher [89] uses doubling time τ rather than the growth rate µ to calculate

TSF, hence we rewrite the TSFe (3.15) in terms of tumor doubling time as

TSFe(d, T, n) = σ(d)ne
ln(2)
τ

(n−1)T (4.8)

where σ(d), is now given through the multitarget singlehit (MTSH) model

(2.11). We find that the optimal solution depends on the doubling time τ . The
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results for exponential growth with MTSH survival are presented in Table 4.1.

The parameters for MTSH survival fraction models are the same as Usher’s

[89]: n = 2, D0 = 1.5 Gy. The columns labeled by (1) refer to the results of

Usher [89], columns labeled by (2) are the optimization results of a genetic

algorithm with integer constraint on the number of treatment n. We also

search for the critical point of TSFe(d, T, n) without integer constraints on

n. These are quite close to those of column (2) and are not shown in Table

4.1. For implementation of the genetic algorithm, we restrict the domain for

the three treatment variables as follows: dose d ∈ [0.01, 5] Gy, inter-treatment

time T ∈ [1, 300] days and the number of fractions n ∈ [4, 60]. The number

of fractions is restricted in [4, 60] because the CRE is well documented for

treatment fractions only in this interval [89].

We can see from Table 4.1 that the results from the two methods are quite

close to each other because our global maximal schedules also make the CRE

equal to the maximal allowed value, i.e. CRE = 1800 reu. Furthermore,

noticing the TSF values in both columns share the same order as shown in

column (2), we find that the longer the doubling time of cells, the smaller

the total survival fraction. This is consistent with common sense: the more

time needed for cancer cell number doubling, the slower the cells grow between

treatments resulting in a smaller survival fraction after n fractions.

Moreover, we find the optimal dose d∗ per fraction is independent of the dou-

bling time and lies at around 3.5 Gy. But the inter-treatment time becomes

quite large for a slowly growing tumor. For example, the inter-treatment time

T ∗ is more than 40 days for a doubling time of 110 days. In fact it appears that

the optimal inter-treatment time is about 1/3 of the tumor doubling time.

Case 2: Expential Growth with LQ Survival

Here, we use TSF for exponential growth formula (4.8) but now with LQ

surviving fraction (2.14). We set our domain for the three variables according

to Usher’s choices as d ∈ [0.01, 20] Gy, T ∈ [1, 800] days and the number of

fractions n ∈ [4, 60]. The radiosensitivity parameters are the same as Usher’s:

α = 0.2 Gy−1, β = 0.04 Gy−2, α/β = 5 Gy−1. The results are reported in Table
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doubling Optimal Result

time τ dose d∗ (Gy) intertreatment time T ∗ (days) fx. n∗ TSF ∗

(days) (1) (2) (1) (2) (1) (2) (1) (2)

10 3.59 3.59 3.84 3.88 15 15 1.7310 1.7308E-10

30 3.60 3.60 11.57 11.52 18 18 1.8509 1.8509E-12

50 3.55 3.55 18.99 18.77 20 20 1.6539 1.6535E-13

70 3.57 3.57 26.66 26.38 21 21 2.9933 2.9926E-14

90 3.55 3.55 33.34 33.72 22 22 7.8248 7.8230E-15

110 3.53 3.53 41.19 40.75 23 23 2.5714 2.5708E-15

Table 4.1: Results for exponential growth with MTSH survival frac-

tion. The columns labeled by (1) refer to the results of Usher [89], columns

labeled by (2) are the results of genetic algorithm with integer restriction on n.

The two columns for TSF have the same order as shown in the second column.

The parameters for MTSH survival fraction models are: n = 2, D0 = 1.5 Gy.

4.2. Once again, we find the two columns (1) for Usher, (2) for the genetic

algorithm, are close to each other. We observe that the optimal number of

fractions n∗ is always on the boundary of the domain we preset (n∗ = 4),

and the optimal doses d∗ are very high, almost all above 10 Gy. The optimal

dose d∗ and inter-treatment time T ∗ increase as the doubling time increases.

However, some of these results are impractical, as they suggest, for example,

that treatment of 14.92 Gy is given every other year for the doubling time

τ = 150 days. We study more realistic scenarios in Section 4.3.2.

Case 3: Logistic Growth with MTSH or LQ Survival

Usher did not study the logistic growth model in his paper [89], but he used

the Gompertzian law. As mentioned in Chapter 3, Gompertzian law is not

applicable for the tumor eradication. To stay close to Usher’s results we choose

his carrying capacity θ for the logistic model.

θ = N1e
28.5.

We do not have Usher’s results for comparison, so we present our results in

Table 4.3 for logistic growth with MTSH survival model in column (1) and
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doubling Optimal Result

time τ dose d∗ (Gy) intertreatment time T ∗ (days) fx. n∗ TSF ∗

(days) (1) (2) (1) (2) (1) (2) (1) (2)

1 7.51 7.51 1.28 1.27 4 4 4.22E-06 4.22E-06

10 10.28 10.28 22.18 22.25 4 4 1.23E-09 1.23E-09

30 11.96 11.96 87.82 87.82 4 4 3.54E-12 3.54E-12

70 13.44 13.44 253.65 253.90 4 4 1.22E-14 1.13E-14

100 14.12 14.12 397.28 397.23 4 4 6.73E-16 16.73E-16

150 14.92 14.93 659.67 661.04 4 4 1.97E-17 1.97E-17

Table 4.2: Results for exponential growth with LQ survival fraction.

(d, T, n) describe the uniform treatment schedule, TSF stands for the total survival

fraction. The columns labeled by (1) refer to the results of Usher [89], columns la-

beled by (2) are our results of genetic algorithm. The parameters for linear quadratic

survival fraction models are: α = 0.2 Gy−1, β = 0.04 Gy−2.

logistic growth with LQ survival model in column (2). We set the domain of

the three variables as dose per fraction d ∈ [0.01, 15] Gy, inter-treatment time

T ∈ [0.002, 1000] days and the number of fractions n ∈ [4, 60]. All the results

make the CRE to be the maximal allowed value of CRE = 1800 reu. It is

interesting to observe that for the MTSH cell survival, the optimal dose d∗

is independent of the growth rate (around 3.5 Gy). The inter-treatment time

and the total survival fraction show the same trend as for the exponential cases

(actually also the same as for Gompertzian growth, see [89]): the smaller the

growth rate µ (or the bigger the doubling time τ), the larger the optimal inter-

treatment time and the tumor control probability (smaller of the total survival

fraction).

For linear quadratic survival fraction, the optimal number of fractions n∗ al-

ways arrives at the boundary of the domain which we preset for the genetic

algorithm, i.e. n∗ = 4, and the optimal dose per fraction d∗ are much higher

than that for MTSH cell survival.

Many of the above protocols are impractical. Therefore, we try to find some

more practical potentially suboptimal uniform treatment protocols.
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Growth Optimal Result for Logistic Growth

growth doubling dose d∗ (Gy) time T ∗ (days) fx. n∗ TSF ∗

rate µ time τ (1) (2) (1) (2) (1) (2) (1) (2)

0.001 693 3.55 15 256.17 688.33 31 4 1.314E-20 1.124E-20

0.005 139 3.52 14.77 51.24 598.70 24 4 6.795E-16 4.036E-17

0.01 69 3.56 13.42 26.09 250.79 21 4 3.150E-14 1.212E-14

0.05 14 3.57 10.76 5.31 33.456 16 4 4.898E-11 2.538E-10

0.1 7 3.62 9.78 2.72 14.090 14 4 6.578E-10 6.201E-9

Table 4.3: Results for logistic growth. The columns labeled by (1) are for

logistic growth with MTSH survival and the columns labeled by (2) are for

logistic growth with LQ survival. The values in the ’doubling time’ have units

of ’days’.

4.3.2 Realistic Optimal Uniform Treatments

In this section we restrict our schedule variables (d, T, n) to realistic intervals

as follows: dose per fraction d ∈ [1, 4] Gy, the number of fractions n ∈ [1, 100]

and inter-treatment time T ∈ [1/2, 7] days. To be able to include hyperfrac-

tionation, the increment of our T is 1/2 day from 1/2 to 7 days.

Above we saw that the predictions between MTSH model and LQ model are

quite different. The LQ model is a well established model and it is the stan-

dard model for cell survival. Many experimentalists have measured α and β

sensitivities for various cell lines. Hence we choose the LQ surviving fraction

from now on (and do not study the MTSH survival fraction any further).

Usher studied prostate cancer, hence we use it here as well. For the linear-

quadratic model, we choose radio-sensitivity parameters as measured by Chap-

man’s group [62]: α/β = 8.373 Gy−1 with α = 0.26 Gy−1, β = 0.031 Gy−2.

At the same time, we keep Usher’s parameters for comparison, whose radio-

sensitivity ratio is α/β = 5 Gy−1 with α = 0.2 Gy−1, β = 0.04 Gy−2. It is

worthy to note that there are reports about an α/β ratio for prostate cancer

less than 3 [18]. But whether the ratio is really less than 3 or not is still under

debate since the reported low values have very wide confidence intervals so

that high α/β ratio values cannot be excluded. We assume the parameters
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for growth laws are N1 = 105, θ = N1 e
28.5 and study various growth rates.

We find that the optimization results for exponential and logistic growth with

linear-quadratic survival fraction, as reported in Table 4.4, are identical. This

arises due to the very large carrying capacity. All these schedules in Table 4.4

maximize CRE = 1800 reu.

Growth Nahum α, β, α/β = 8.387Gy−1 Usher α, β, α/β = 5Gy−1

doubling dose/fx. time T ∗ fx. dose/fx. time T ∗ fx.

time τ d∗ (Gy) (days) N∗ TSF ∗ d∗ (Gy) day N∗ TSF ∗

693 1.117 7 100 1.00E-14 1.117 7 100 2.66E-12

139 1.117 7 100 1.61E-13 1.117 7 100 4.26E-11

69 1.051 4 100 2.34E-12 1.018 3 100 4.44E-10

14 1.003 1 85 1.13E-9 1.008 0.5 75 8.22E-8

7 1.008 0.5 75 1.11E-8 1.008 0.5 75 5.23E-7

1.4 3.998 0.5 9 7.38E-6 4.000 0.5 9 1.75E-5

Table 4.4: Exponential growth with LQ model within reasonable do-

main. The radiosensitivity parameters are α = 0.26 Gy−1, β = 0.031 Gy−2

given by Nahum et al [62] and α = 0.2 Gy−1, β = 0.04 Gy−2 by Usher. Values

in the column of doubling time have the unit of days. For logistic growth,

quite close results are obtained.

f

Table 4.4 suggests that, for both choices of α/β ratios, low-frequency low dose

treatments are recommended for a slow growing cancer; high frequency (up

to hyperfractionated) treatments with low dose per fraction are required for

moderately growing cancer and hyperfractionation with high dose per fraction

treatments are good for fast growing cancer.

The optimal treatment schedule for µ = 0.1 is a hyperfractionation of 1 Gy,

twice per day for 75 fractions, which is already quite close to the realistic

schedules which reported in Table 3.1. Schedule ’a’ in Table 3.1 uses hyper-

fractionation of 1 Gy twice per day with weekend off for a total of 78 fractions

and schedule ’b’ uses hyperfractionation of 1 Gy, twice per day during week

days with weekends off and a total of 70 fractions.
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4.4 Optimization of Nonuniform Treatment for

Prostate Cancer

To study optimization of non-uniform treatments, we consider the 10 realistic

treatments of Table 3.1 and compute the TCP, TSF, BED and CRE at the

end of treatment.

4.4.1 Tumor Control Probability

In Figures 3.3 and 3.4, we presented the TSF (3.33, 3.35) and their corre-

sponding TCP (3.14) for an exponentially growing tumor as a function of time

in a logarithmic plot, respectively. In Table 4.5, besides the TSF values that

we already reported in Table 3.2, we also calculated the CRE (4.6) and BED

(1.2) values for both groups of α/β ratios. Only based on TSF values, we find

the ranking:

D > A > B > E > C > d > a > b > c > e. (4.9)

for Usher’s α/β value and

D > A > d > a > B > C > E > b > c > e. (4.10)

for Nahum’s α/β value.

These rankings just mean that schedule ’D’ with 32 fractions of 2.4 Gy will

kill more tumor cells than schedule ’A’ with 39 fractions of 2 Gy etc. If we

look at the ordering of only standard or only hyperfractionation treatment,

they basically coincide, i.e.

D > A > B > C > E, and d > a > b > c > e. (4.11)

The switch of ’C’ and ’E’ in (4.9) is insignificant as we can see from Figure 3.3

and Table 4.5 since the TSF values are very close.

The interesting thing is that the hyperfractionated protocols ’d’ and ’a’ are

more efficient for larger α/β-ratio (α/β = 8.387) than standard treatments

’B’ and ’C’, which favors the lower-dose treatments. The TSF graphs and

rankings for logistic growth are identical and are not shown here.
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The TCP for the ten protocols give the same relative order for the ten treat-

ments, since the TCP is a monotonic transformation of the TSF

TCP = e−TSF∗N1 .

The TCP basically tells us that the higher the dose per fraction is, the quicker

the treatments show the killing effect (from TCP=0 to TCP=1), but the final

tumor killing results also depend on the total dose.

The Biological Effect Dose can also be used to measure the effect of protocols.

We calculate the BED values for our two α/β-ratios in the two columns named

’BED’ of Table 4.5.

tumor

α/β = 5 (Usher) α/β = 8.387 (Nahum) normal tissue

Protocols TSF (E-07) BED5 TSF (E-08) BED8.387 CRE

A 0.006 109.20 0.002 96.60 2125

B 0.049 98.00 0.026 86.69 1982

C 0.059 96.00 0.081 81.46 2072

D 0.002 113.66 0.001 98.78 2242

E 0.054 95.98 0.178 78.05 2131

a 0.127 93.60 0.024 87.30 1831

b 0.815 84.00 0.230 78.35 1709

c 2.177 78.00 1.337 70.73 1789

d 0.084 95.23 0.019 87.79 1932

e 4.563 73.79 5.602 64.83 1841

Table 4.5: TSF, BED and CRE values for the ten protocols in

Table 3.1. Two choices of α/β-ratios used for tumor are α/β = 5 Gy−1

from Usher [89] and α/β = 8.387 Gy−1 from Nahum et al [62]. Values

in brackets in two ’TSF’ columns (E-07 and E-08) are the order of each

number in that column. Parameter used in CRE are c = 0.65, b = 0.11.

We can also use these BED values to make a ranking for efficiency. The BED

rankings show the same tendency as the TSF ranking with an insignificant

switch from ’C > E’ for α/β = 5 Gy−1 and ’b > E’ for α/β = 8.387 Gy−1.

This is a bit surprising, since the BED is based on a simple formula (1.2),

which only depends on d,D and n, but does not include re-growth between
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Figure 4.3: CRE for the ten protocols (X-ray). (a) CRE as function

of time for the ten protocols, for X-ray radiation, i.e. c=0.65, b=0.11. The

horizontal line denotes the threshold of CRE = 1800 reu. (b) shows the

difference CRE(I)-CRE(i) between standard fractionation I ∈ {A,B,C,D,E}
and hyperfractionation i ∈ {a, b, c, d, e}.

treatment and inter-treatment times. It somehow confirms why the BED has

been so useful in treatment planning.

4.4.2 Late Effects on Normal Tissue

To estimate the late effects on normal tissue, we calculate the final CRE val-

ues for the ten treatment protocols and present them in the last column of

Table 4.5. The left panel in Figure 4.3 shows the CRE as function of time

for the ten treatment protocols, where we used the parameters for X-ray ra-

diation, i.e. c=0.65, b=0.11. The right panel shows the difference between

standard treatments and their corresponding hyperfractionations. Most pro-

tocols have CRE > 1800 reu, only hyperfractionated treatments come close

to 1800 reu where treatments ’b’ and ’c’ are the only two below the thresh-

old. Furthermore, the differences between the standard and hyperfractionated
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treatments in CRE values are always about 250-300 reu, hence hyperfraction-

ation is clearly beneficial to reduce late effects.
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Figure 4.4: CRE as function of log(TSF) at the end of treatment. The

horizontal line denotes the threshold of CRE = 1800 reu. Left: α/β = 5 Gy,

right: α/β = 8.387 Gy.

In Figure 4.4 we plot the log(TSF) and the CRE at the end of treatment into

one graph. It is clear to see that smaller values of TSF have higher CRE

values and does not seem to depend much on the α/β ratio. It is exciting

that for the protocols labeled by ’b’ and ’c’, their CRE values are always less

than 1800 reu. That gives us an explanation why in clinic, oncologists discuss

hyperfractionated treatments as a way to reduce normal tissue complication.

4.5 Conclusion

In this Chapter, we optimize the Poisson TCP with the constraint of CRE value

smaller than 1800 reu. The work in this Chapter tells us that the higher dose
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treatments can kill tumor cells quicker at the risk of more normal tissue late

effects; and that the hyperfractionated treatments have effective reduction on

normal tissue damage compared to their standard treatments. These positive

results motivate me to explore more sophisticated models for the TCP and

models to measure normal tissue complications.
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Chapter 5

Stochastic TCP Models Derived

from a Birth-Death Process

The use of differential equation models is appropriate for large numbers of

cells. However, only a small number of cells exist at the end of a successful

treatment. In this case, stochastic effects dominate and deterministic models

become inappropriate for predicting the number of surviving cells. In this

chapter, we first briefly review two existent TCP models derived from birth-

death processes: a one-compartment model derived by Zaider and Minerbo

[101] and a two-compartment model with cell cycle by Dawson and Hillen

[20]. Then we introduce the detailed steps to derive a generalized TCP model

which incorporates the stochastic effect, with the first two models as special

cases. Furthermore, we adapted this approach to derive a TCP model under

the assumption of tumor stem cells, where one compartment is cancer stem

cells with unlimited growth potential and no death, the other are transient or

differentiated cancer cells with limited growth potential and death.

5.1 Zaider-Minerbo TCP Derived from a Birth-

Death Process

Instead of thinking about the mean number of tumor cells, Zaider and Minerbo

[101] considered the probability Pi of i tumour cells surviving at time t. The
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changes of the tumor cells are shown in the following diagram in Figure 5.1.

A TCP Model Derived From a Birth-Death Process

Jiafen Gong

June 25, 2011

The use of differential equation models is appropriate for large numbers of
cells. However, only a small number of cells exist at the end of a successful treat-
ment. In this case, stochastic effects dominate and deterministic models become
inappropriate for predicting the number of surviving cells. In this chapter, we
first briefly review two existent TCP models derived from birth-death processes:
one-compartment model derived by Zaider and Minerbo [4] and two-compartment
model with cell cycle by Dawson and Hillen [1]. Then we introduce the detailed
steps to derive a generalized TCP model which incorporates the stochastic effect,
with the first two models as special cases .

1 Zaider-Minerbo TCP Derived from a Birth-Death Process

Instead of thinking about the mean number of tumor cells, Zaider and Minerbo [4]
considered the probability Pi of i tumour cells surviving at time t. The changes
of the tumor cells are shown in the following diagram
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where µ is the growth rate, d is the natural death rate and h(t) is the hazard
function corresponding to the cell survival model, we discussed various models for
the hazard function in Section ??. Based on the diagram, the master equation to
describe the probabilities Pi(t), i = 0, 1, · · · are

dP0(t)

dt
= (d+ h(t))P1(t)

(1)

dPi(t)

dt
= (i− 1)µPi−1(t)− i(µ+ d+ h(t))Pi(t) + (i+ 1)(d+ h(t))Pi+1(t), i = 1, 2, 3, ...

It is easy to check that the expected number of tumor cells N(t) =
∑∞
i=0 iPi(t)

satisfies the mean filed equation

dN

dt
= (µ− d− h(t))N, N(0) = N0, (2)

1

Figure 5.1: The diagram of the state change for the Zaider-Minerbo

TCP model. During a small time interval, the number of cells can jump to

its neighboring number.

where µ is the growth rate, d is the natural death rate and h(t) is the hazard

function corresponding to the cell survival model, which is in the form of (2.51)

as we discussed in Section 2.3. Based on the diagram in Figure 5.1, the master

equation to describe the probabilities Pi(t), i = 0, 1, · · · are

dP0(t)

dt
= (d+ h(t))P1(t)

(5.1)

dPi(t)

dt
= (i− 1)µPi−1(t)− i

(
µ+ d+ h(t)

)
Pi(t) + (i+ 1)

(
d+ h(t)

)
Pi+1(t),∀i.

It is easy to check that the expected number of tumor cells N(t) =
∑∞

i=0 iPi(t)

satisfies the mean field equation

dN

dt
=
(
µ− d− h(t)

)
N, N(0) = N0, (5.2)

provided that the sum
∞∑

i=0

iPi(t) converges. As we mentioned above, the mean-

field description (5.2) of tumour cell evolution is a reasonable approach when

the number of cells is large. However, for a relatively small cell-population

(e.g., at the end of the treatment), the average behavior is no longer appro-

priate as probabilistic or stochastic noise becomes dominant. That is our

motivation to introduce system (5.1).

A generating function A(s, t) has been introduced to solve system (5.1), which

is defined as

A(s, t) =
∞∑

i=0

Pi(t)s
i. (5.3)

Again, we assume that the series converges for 0 ≤ s ≤ 1. According to

Zaider and Minerbo [101], the generating function A(s, t) satisfies the following

71



5.2. DAWSON-HILLEN TCP INCLUDING CELL CYCLE

hyperbolic equation

∂

∂t
A(s, t) = (µs− d− h)(s− 1)

∂

∂s
A(s, t), A(s, 0) = sN0 . (5.4)

which is solved by the method of characteristics. Then, they obtained an

explicit expression for the TCP,

TCPZM(t) = P0(t) = A(0, t) =

[
1− Sh(t)e

µt

1 + µSh(t)eµt
∫ t

0
dr

Sh(r)eµr

]N0

, (5.5)

where

Sh(t) = exp

(
−
∫ t

0

d+ h(r) dr

)
(5.6)

is the probability of cell survival for a given hazard function h(t) and natural

death rate d. In [20], Dawson and Hillen simplified (5.5) into

TCPZM(t) =

[
1− N(t)

N0 + µN0N(t)
∫ t

0
dr
N(r)

]N0

, (5.7)

where N(t) solves the mean field equation (5.2). Note that when µ = 0, the

Zaider-Minerbo TCP reduces to the binomial TCP. For simplicity, we will re-

fer this TCP formula as ZM TCP later.

5.2 Dawson-Hillen TCP including Cell Cycle

Dawson and Hillen [20] extended the model of Zaider and Minerbo by including

cell cycle dynamics. Their idea is based on the fact that a typical tumour

consists of cells which are actively proliferating (cells in the G1, S, G2, or M

phase) and cells which are quiescent (cells in the G0-phase). Since actively

proliferating cells are more sensitive to radiation than the quiescent cells [71],

one must keep track of these two subpopulations separately to predict the

total cell population. The two compartments are called active and quiescent

compartment, respectively, which is shown in Figure 1.2.

Cells in the active compartment will divide once they finish the cell cycle

G1 → S → G2 → M phases. In [20], it was assumed that all newly gener-

ated daughter cells directly enter the quiescent compartment. Quiescent cells
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cannot duplicate themselves, but may come back to the active compartment

to enter the cell cycle process as denoted in Figure 1.2. Let a(t) denote the

population of active cells and q(t) the population of quiescent cells. The two-

compartmental mean field population model is governed by

d

dt
a = −µa+ γq − ha(t)a, a(0) = a0, (5.8)

d

dt
q = 2µa− γq − hq(t)q, q(0) = q0, (5.9)

where the parameter µ > 0 denotes a constant per-capita birth rate. Note that

the population of active cells divides at a rate of µa, giving rise to 2µa daughter

cells, which all move into the quiescent compartment (the first term in (5.9)).

With birth, there is the loss of the mother cells, represented by the term −µa
in (5.8). The parameter γ > 0 denotes the rate at which quiescent cells become

active. ha(t) and hq(t) are the hazard functions due to radiation treatment for

active and quiescent cells with natural death term da, dq, respectively, given

by

ha(t) = da + αa ˙D(t) + 2βa ˙D(t)(D(t)−D(t− ω)), (5.10)

hq(t) = dq + αq ˙D(t) + 2βq ˙D(t)(D(t)−D(t− ω)), (5.11)

as proposed by Dawson and Hillen in [20]. The parameters αa, βa and αq, βq are

the radiosensitivities for active and quiescent cells, respectively. As mentioned

in Chapter 2, the parameter ω represents the mean repair time of DSB. In the

limit as ω → ∞, the hazard functions have the same form as that given by

Zaider and Minerbo, with natural death rate included.

Denote Pi(t) and Qj(t) as the probabilities that i active cells and j quiescent

cells are present at time t, respectively. The state changes of tumor cells are

described in Figure 5.2, and the corresponding master equations are

dPi(t)

dt
=

(
µ+ ha

)
(i+ 1)Pi+1 + γ

∞∑

j=0

jQjPi−1 −
(
µ+ ha

)
iPi − γ

∞∑

j=0

jQjPi,(5.12)

dQj(t)

dt
= (γ + hq)(j + 1)Qj+1 + µ

∞∑

i=0

iPiQj−2 − (γ + hq)jQj − µ
∞∑

i=0

iPiQj ,(5.13)

whose mean field equations are (5.8, 5.9).
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(t) µ + ha(t)µ 

+ h (t) + h (t)q qγ γ
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µ 
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Figure 5.2: Diagram of the state change for the Dawson-Hillen TCP

model. The two compartments are active cells (a) and quiescent cells (q),

respectively. During a really small time interval, the number of cells in the

active compartment can change to its neighboring number. However, in the

quiescent compartment, the number of cells will reduce by one from a higher

number because of the death, but it increases by two each time because two

new born cells transfer into the quiescent compartment.

Similarly, the generating functions

X(s, t) =
∞∑

i=0

Pi(t)s
i, Z(s, t) =

∞∑

j=0

Qj(t)s
j

satisfy

∂

∂t
X(s, t) + (µ+ ha(t))(s− 1)

∂

∂s
X(s, t) = γq(t)(s− 1)X, (5.14)

∂

∂t
Z(s, t) + (γ + hq(t))(s− 1)

∂

∂s
Z(s, t) = µa(t)(s2 − 1)Z, (5.15)

with initial conditions X(s, 0) = sa0 , Z(s, 0) = sq0 . After solving the equations

by the method of characteristics, the TCP is

TCPDH = P0(t)Q0(t) = X(0, t)Z(0, t)

=

(
1− 1

Λa(t)

)a0 (
1− 1

Λq(t)

)q0
exp

{
−γ
∫ t

0

q(z)
Λa(z)

Λa(t)
dz+

µ

[∫ t

0

a(z)
Λq(z)2

Λq(t)2
dz − 2

∫ t

0

a(z)
Λq(z)

Λq(t)
dz

]}
, (5.16)
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where

Λa(t) = e
∫ t
0 (µ+ha(z))dz and Λq(t) = e

∫ t
0 (γ+hq(z))dz. (5.17)

We will refer to this TCP formula as DH TCP from now on. In the next

section, we are going to explain in detail how to derive the TCP model from

the mean field equations.

5.3 Generalized TCP Model Derived from a

Birth-Death Process

This section is adapted from the published paper Hillen et al [37], where the

results of this section were derived by myself.

DH TCP assumes that all daughter cells enter into the quiescent compart-

ment, whereas ZM TCP can be considered that all daughter cells stay in the

active compartment and no quiescent compartment exists. If we loosen the

assumption and allow the newly generated cells to become either active or

quiescent, the assumption of the above two TCPs are the special cases of the

more general assumption. As shown in Figure 5.3, we assume a fraction of f

newly born cells remain in the active compartment, the other 1 − f fraction

newly generated daughter cells transfer into the quiescent compartment. To

make it comparative with DH TCP, we again include the natural death terms

in the hazard function as (5.10, 5.11).

Denote again a(t), q(t) by the population of the active cells and quiescent cells,

respectively. We will have the cell population model given by [37]

d

dt
a = 2µfa− µa+ γq − ha(t)a, (5.18)

d

dt
q = 2µ(1− f)a− γq − hq(t)q, (5.19)

where the parameters µ, γ, ha(t), hq(t) have the same meaning as the ones in

(5.8, 5.9). Notice that compared to (5.8, 5.9), the new system has an extra

term 2µf in (5.18), and an extra fraction 1− f in the first term of (5.19). In

particular, system (5.18, 5.19) reduce to (5.8, 5.9) when f = 0; equation (5.18)

is the same as (5.2) when f = 1 and q = 0.
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A

Zaider−Minerbo Model

A Q

μ

New Model μf

f=1

A Q
μ(1−f)

γ

f=0

Dawson−Hillen Model

μ

γ Q

Figure 5.3: Relation between Generalized TCP, ZM TCP and DH

TCP. In the generalized TCP, only 1− f fraction of newly born cells transfer

to the quiescent compartment, the other f fraction of newly born cells remain

in the active compartment. Therefore, the generalized TCP arrives at the DH

TCP when f = 0, and reduces to the ZM TCP when f = 1, with additional

assumption that the number of quiescent cells is zero.

As we can see from the two earlier subsections, in order to incorporate the

stochastic effect, we need to do the following

• Find the master equations corresponding to the mean field equations

(5.18, 5.19),

• Formulate the generating functions for these master equations,

• Solving the hyperbolic system of these generating functions,

• Find the TCP formula.
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In the mean time, we need to verify that the two special cases arrive in each

step for f = 1 and f = 0, respectively.

In order to verify the two special cases in each step, we re-arrange the first

two terms in equation (5.18), and rewrite (5.18, 5.19) as follows:

d

dt
a = µfa− µ(1− f)a+ γq − ha(t)a (5.20)

d

dt
q = µ(1− f)a+ µ(1− f)a− γq − hq(t)q. (5.21)

The proliferation terms in (5.18, 5.19) can be understood as a loss term −µa in

(5.18) for the mother cells which undergo mitosis, and two gain terms +2µfa

in (5.18) and +2µ(1−f)a in (5.19) for new daughter cells which choose active

or quiescent compartment, respectively. The birth terms in (the equivalent)

system (5.20, 5.21) allow a different interpretation: here a mother cell is only

discarded from the active compartment, if it switches to the quiescent state,

expressed through −µ(1−f)a in equation (5.20) and one component of +µ(1−
f)a in (5.21). The additional daughter cell has the choice between active

and quiescent compartment, which is modeled through +µfa in (5.20) and

+µ(1 − f)a in (5.21). Formulation (5.18, 5.19) allows us to systematically

derive the corresponding birth-death process in a consistent way.

In what follows I will derive the TCP formula step by step.

Step 1: Master equations corresponding to (5.20, 5.21).

Once again, let Pi(t) and Qj(t) denote the probabilities that i active cancer

cells and j quiescent cells are present at time t, respectively. We assume that

initially we have a0 active cells and q0 quiescent cells, and Pi(t) = 0, Qj(t) = 0

for i, j < 0, i.e.

Pa0(0) = 1, Pi(0) = 0 for i 6= a0, (5.22)

Qq0(0) = 1, Qj(0) = 0 for j 6= q0. (5.23)

The master equations describing the dynamics of these probabilities are
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dPi(t)

dt
= (µ(1− f) + ha) (i+ 1)Pi+1 + µf(i− 1)Pi−1 + γ

∞∑

j=0

jQjPi−1

− (µ(1− f) + ha) iPi − µfiPi − γ
∞∑

j=0

jQjPi. (5.24)

dQj(t)

dt
= (γ + hq)(j + 1)Qj+1 + µ(1− f)

∞∑

i=0

iPiQj−2

−(γ + hq)jQj − µ(1− f)
∞∑

i=0

iPiQj. (5.25)

When f = 1 and Qj = 0, j = 0, 1, · · · , then the above system coincides with

(5.1) given by Zaider-Minerbo. On the other hand, when f = 0, (5.24, 5.25) go

back to the master equation (5.12, 5.13) given by Dawson-Hillen, as expected.

We can also verify by direct computation that the expected values

a(t) =
∞∑

i=0

iPi(t), q(t) =
∞∑

j=0

jQj(t). (5.26)

satisfy equations (5.20) and (5.21) provided the series converge. Hence (5.20,

5.21) is the system of mean field equations for the above birth-death process.

Step 2: Formulating the generating functions.

The birth-death process in (5.24, 5.25) can be solved using the generating

functions. We assume the generating functions

V (s, t) =
∞∑

i=0

siPi(t), W (s, t) =
∞∑

j=0

sjQj(t). (5.27)

exist for 0 ≤ s ≤ 1. To derive the differential equations of V (s, t), W (s, t),

denote

b = µf, δ = µ(1− f) + ha(t). (5.28)

Equation for function V . Notice

∂V (s, t)

∂s
=
∞∑

i=0

si−1iPi =
∞∑

i=1

si−1iPi. (5.29)
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The partial derivative of V (s, t) with respect to t can be obtain by using (5.24)

∂V (s, t)

∂t
=

∞∑

i=0

si
dPi(t)

dt

=
∞∑

i=0

si

[
δ(i+ 1)Pi+1 + b(i− 1)Pi−1 + γ

∞∑

j=0

jQjPi−1

−δiPi − biPi − γ
∞∑

j=0

jQjPi

]

= δ
∞∑

i=0

si(i+ 1)Pi+1 + bs2

∞∑

i=0

si−2(i− 1)Pi−1 + γq(t)s
∞∑

i=0

si−1Pi−1

−δs
∞∑

i=0

si−1iPi + bs
∞∑

i=0

si−1iPi − γq(t)
∞∑

i=0

siPi

= δ
∂V

∂s
+ bs2∂V

∂s
+ γq(t)sV − δs∂V

∂s
+ bs

∂V

∂s
− γq(t)V, (5.30)

where we use the index shifting in the last equation. Therefore, after reorga-

nizing the terms, we obtain the hyperbolic equation for V (s, t),

∂V

∂t
+ (s− 1) (δ − bs) ∂V

∂s
= γq(t)(s− 1)V, V (s, 0) = sa0 . (5.31)

Equation for function W . The derivation of the equation for W (s, t) is

similar. Following the above process, we obtain a hyperbolic partial differential

equations for W as well,

∂W

∂t
+ (γ + hq(t)) (s− 1)

∂W

∂s
= µ(1− f)a(t)(s2 − 1)W,W (s, 0) = sq0 .(5.32)

These equations for the generating functions coincide with those in Zaider and

Minerbo [101] when f = 1, q(t) =
∑∞

j=0 jQj = 0, and with those in Dawson

and Hillen [20] when f = 0.

Step 3: Solving the system of generating functions.

We will use the method of characteristics to solve the above system, first for

V and then for W .

Solution of function V . The equation (5.31) has the characteristic
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equations

ds

dt
= (1− s)(bs− δ), s(0) = s0, (5.33)

dV

dt
= γq(s− 1)V, V (s0, 0) = sa00 . (5.34)

We introduce y(t) = 1
1−s to transform equation (5.33) into a linear equation

for y(t):

dy

dt
=

1

(1− s)2

ds

dt
= (b− δ)y(t)− b, y(0) =

1

1− s0

. (5.35)

The solution is

y(t) = Λ−1
a (t)

(
y(0)− b

∫ t

0

Λa(y)dy

)
,

where

Λa(t) = e−
∫ t
0 (b−δ(z))dz. (5.36)

Therefore,
1

1− s(t) = Λ−1
a (t)

(
1

1− s0

− b
∫ t

0

Λa(y)dy

)
. (5.37)

Consequently,

s0 = 1− 1
Λa(t)
1−s(t) + b

∫ t
0

Λa(y)dy
. (5.38)

Equation (5.34) is linear in V and can be solved directly

V (s(t), t) = sa00 exp

(
γ

∫ t

0

q(z)
(
s(z)− 1

)
dz

)
. (5.39)

Since the right-hand side depends on the full characteristic path s(z), we need

to replace s(z) through the end point s(t). To do this, we observe from (5.38)

that

s0 = 1− 1
Λa(t)
1−s(t) + b

∫ t
0

Λa(y)dy
= 1− 1

Λa(z)
1−s(z) + b

∫ z
0

Λa(y)dy
. (5.40)

Hence

s(z)− 1 = − Λa(z)
Λa(t)
1−s(t) + b

∫ t
z

Λa(y)dy
. (5.41)

Using this expression in (5.39), we get an explicit solution for V , namely

V (s, t) =

(
1− 1

Λa(t)
1−s + b

∫ t
0

Λa(y)dy

)a0
exp

(
−γ
∫ t

0

q(z)
Λa(z)

Λa(t)
1−s + b

∫ t
z

Λa(y)dy
dz

)
. (5.42)
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Again, we confirm that for f = 1, we have b = µ, δ = ha(t), when q = 0,

V (s, t) is consistent with the results of A(s, t) in Zaider and Minerbo [101].

Similarly, for f = 0, we obtain b = 0, δ = µ + ha, V (s, t) is the same as the

generating function X(s, t) for Pi(t) found in Dawson and Hillen [20].

Solution of function W. For solving W , we notice that equation (5.32)

has the characteristic equations

ds

dt
= (s− 1)(γ + hq(t)), s(0) = s0, (5.43)

dW

dt
= µ(1− f)a(s2 − 1)W, W (s0, 0) = sq00 . (5.44)

Therefore, by using the integrating factor method to the second equation, W

has solution

W (s(t), t) = sq00 exp{
∫ t

0

µ(1− f)a(y)(s(y)2 − 1)dy}. (5.45)

The initial condition s0 can be expressed by s(t) as

s0 = 1 + (s− 1)e−
∫ t
0 (γ+hq(z))dz. (5.46)

If we let

Λq(t) = e
∫ t
0 (γ+hq(z))dz, (5.47)

then s0 = 1− 1−s(t)
Λq(t)

. Therefore W (s(t), t) can be expressed as

W (s(t), t) =
(

1− 1− s(t)
Λq(t)

)q0
exp{

∫ t

0

µ(1− f)a(y)(s(y)2 − 1)dy}. (5.48)

Here we use the fact that s0 = 1− 1−s(t)
Λq(t)

= 1− 1−s(y)
Λq(y)

, and obtain the relations

s(y)− 1 =
(s(t)− 1)Λq(y)

Λq(t)
, (5.49)

s(y)2 − 1 =
(s(t)− 1)2Λ2

q(y)

Λ2
q(t)

+ 2
(s(t)− 1)Λq(y)

Λq(t)
. (5.50)

Then W (s, t) can be expressed as

W (s, t) =
(

1− 1−s
Λq(t)

)q0
exp

{
µ(1− f)

∫ t
0
a(y)

(s−1)2Λ2
q(y)

Λ2
q(t)

dy

+ 2µ(1− f)
∫ t

0
a(y) (s−1)Λq(y)

Λq(t)
dy
}
.

(5.51)
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When f = 0, this solution is the same as the solution of Z(s, t) found by

Dawson and Hillen [20].

Step 4: TCP Formula.

Based on the explicit solution formulas for V in (5.42) and W in (5.51), the

TCP is

TCP = P0(t)Q0(t) = V (0, t) ·W (0, t)

=

(
1− 1

Λa(t) + µf
∫ t

0
Λa(z)dz

)a0 (
1− 1

Λq(t)

)q0
·

exp

{
−γ
∫ t

0

q(z)
Λa(z)

Λa(t) + µf
∫ t
z

Λa(y)dy
dz + (1− f)

[
µ

∫ t

0

a(z)
Λq(z)2

Λq(t)2
dz − 2µ

∫ t

0

a(z)
Λq(z)

Λq(t)
dz

]}
, (5.52)

where Λa is given by (5.36) and Λq by (5.47). When f = 1, q = 0 we recover

the TCP formula given by Zaider and Minerbo [101], as stated in equation

(5.5). Similarly, when f = 0, we recover the TCP formula of Dawson and

Hillen [20], namely (5.16).

5.4 TCP Formula for Cancer with Stem Cells

The traditional theory on cancer growth is that all the cancer cells have uncon-

trolled proliferation capability and are able to invade to neighboring tissues.

Therefore, cancer treatment is based on the idea that cancer will be controlled

by killing as many cancer cells as possible. However, it is now understood

that not all the cells in a tumor function equally. In many cancers there exists

a small population of cells which initiate and control the tumor. These cells

are known as cancer stem cells (CSC). So far there is much evidence of the

existence of CSC in leukaemias [9], brain cancer [78], prostate [15], liver [54]

and other cancers.

Stem cells in normal tissue develop into differentiated cells through cell lin-

eages, which begins at a self-renewing stem cell, progresses through transient

and progenitor cells until finally producing fully differentiated cells. Cancer
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stem cells are similar and they produce progenitor and transient cells which, in

the case of cancer, will not fully differentiated into functioning tissue cells. For

our modelling purpose we denote the cancer stem cells by CSC and the follow-

ing lineage as TC (transient cancer cells). The cancer stem cell hypothesis [14]

says that a small subpopulation of cells in a tumor consist of the cancer stem

cells. Compared to the transient cancer cells (TC) with limited proliferation

property, the cancer stem cells have infinite potential to self-renewal and dif-

ferentiated into the heterogeneous cancer cells which consist of the bulk of the

tumor. It is assumed that the stem cells can divide either symmetrically into

two CSCs or two TC, or asymmetrically into one CSC and one TC. As proved

by Hillen et al [39], this is mathematically equivalent to the assumption that

a fraction f of daughter cells are stem cells and the other fraction 1 − f of

daughter cells are TC.

Evidence showed the CSC can arise from the mutations of normal stem cells.

There are several stages for the early progenitors of the CSC to undergo mu-

tation until their progeny mature and form a tumor. Several researchers have

studied this process by mathematical models, for example Ganguly and Puri

[29], Marciniak-Czochra et al [58], Lo et al [51]. To simplify, Enderling et al

[25] used an agent-based computer model to study the tumor with stem cells,

they divided all the tumor cells into two compartments: one is CSC without

death and the other is differentiated cancer cells with death. They found that

the increased death rate of the differentiated cancer cells will result in the

bigger tumor cluster, which is named as paradox of the tumor growth. Hillen

et al [38] uses a pair of integro-differential equations to explain this paradox.

Here, we consider a simplified two-compartment CSC model: one compartment

for the CSC and the other for transient cancer cells (TC). The CSC can grow

infinite times with rate µ and no natural death, while TC only have limited

growth capability with rate ν and have death rate ρ. We assume that the CSC

have self-renew fraction f , i.e., after each mitosis, a fraction f of daughter cells

will stay in the CSC compartment and the other fraction 1 − f of daughter

cells are differentiated into TC. Denote a(t), q(t) as the population of CSC and
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TC, the mean field equations for these two compartments are

da(t)

dt
= 2fµa− µa (5.53)

dq(t)

dt
= 2(1− f)µa+ νq − ρq (5.54)

When radiation treatment is applied to this tumor bulk, the mean field equa-

tions for this system are

da(t)

dt
= 2fµa− µa− ha(t)a (5.55)

dq(t)

dt
= 2(1− f)µa+ νq − h̃q(t)q (5.56)

where h̃q is defined as (5.11) with natural death rate dq = ρ and ha is defined

as (5.10) with da = 0.

We will now derive a TCP formula following the steps we have done in Sec-

tion 5.3. Let Pi(t) and Qj(t) denote the probabilities that i CSC and j TC

are present at time t, and their initial sizes are a0 and q0, respectively. The

master equations describing the dynamics of these probabilities are

dPi(t)

dt
= (µ(1− f) + ha) (i+ 1)Pi+1 + µf(i− 1)Pi−1

− (µ(1− f) + ha) iPi − µfiPi, (5.57)

dQj(t)

dt
= h̃q(j + 1)Qj+1 + ν(j − 1)Qj−1 + µ(1− f)

∞∑

i=0

iPiQj−2

−(h̃q + ν)jQj − µ(1− f)
∞∑

i=0

iPiQj. (5.58)

It is easy to verify by direct computation that the expected values

a(t) =
∞∑

i=0

iPi(t) and q(t) =
∞∑

j=0

jQj(t) (5.59)

satisfy equations (5.55) and (5.56) provided the series converge.

Notice (5.57) is a special case of (5.24) with γ = 0. Assume generating function

V (s, t) =
∑∞

i=0 s
iPi(t) exists for 0 ≤ s ≤ 1, by results of steps 2 and step 3 in
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Section 5.3, V (s, t) satisfies

∂V

∂t
+ (s− 1) (µ(1− f) + ha(t)− µfs)

∂V

∂s
= 0, V (s, 0) = sa0 . (5.60)

with solution

V (s, t) =

(
1− 1

Λa(t)
1−s + µf

∫ t
0

Λa(y)dy

)a0

(5.61)

where

Λa(t) = e−
∫ t
0 (µf−(µ(1−f)+ha(z)))dz. (5.62)

As for the generating function for Qj(t), assume W (s, t) =
∑∞

j=0 s
jQj(t) exists

for 0 ≤ s ≤ 1. Similar mathematical calculation as in Section 5.3 tell us that

W (s, t) satisfies

∂W

∂t
+
(
h̃q − νs

)
(s− 1)

∂W

∂s
= µ(1− f)a(t)(s2 − 1)W, (5.63)

with initial condition W (s, 0) = sq0 . Notice that equation (5.63) differs from

(5.32), since we have an additional birth term in (5.56) which is not present

in (5.19).

Equation (5.63) has characteristic equation as

ds

dt
= (1− s)(ν − h̃q)− ν(1− s)2, s(0) = s0, (5.64)

dW

dt
= µ(1− f)a(t)(s2 − 1)W, W (s0, 0) = sq00 . (5.65)

The equation (5.64) is the same as (5.33) for ν = b, h̃q = δ. Therefore, using

the result of (5.38) from the previous section, we have

s0 = 1− 1
Λq(t)

1−s(t) + ν
∫ t

0
Λq(y)dy

, (5.66)

where

Λq(t) = e−
∫ t
0 ν−h̃q(z)dz. (5.67)

Equation (5.65) has the solution

W (s(t), t) = sq00 exp

{∫ t

0

µ(1− f)a(y)(s(y)2 − 1)dy

}
. (5.68)
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The term s(y) in the integral depends on the values in the middle of the path

which we do not know. Using the same trick as in Section 5.3, we rewrite

s(y)− 1 and (s(y)− 1)2 as

s(y)− 1 = − Λq(y)
Λq(t)

1−s(t) + ν
∫ t
y

Λq(z)dz
, (5.69)

s(y)2 − 1 =

(
Λq(y)

Λq(t)

1−s(t) + ν
∫ t
y

Λq(z)dz

)2

− 2
Λq(y)

Λq(t)

1−s(t) + ν
∫ t
y

Λq(z)dz
. (5.70)

Then W (s, t) can be expressed as

W (s, t) =

(
1− 1

Λq(t)

1−s(t) + ν
∫ t

0
Λq(z)dz

)q0

exp



µ(1− f)

∫ t

0

a(y)

(
Λq(y)

Λq(t)

1−s(t) + ν
∫ t
y

Λq(z)dz

)2

− 2µ(1− f)

∫ t

0

a(y)
Λq(y)

Λq(t)

1−s(t) + ν
∫ t
y

Λq(z)dz
dy

}
. (5.71)

Based on the explicit solution formulas for V in (5.61) and W in (5.71), the

TCP for cancer with stem cells is

TCPstem = P0(t)Q0(t) = V (0, t) ·W (0, t)

=

(
1− 1

Λa(t) + µf
∫ t

0
Λa(z)dz

)a0 (
1− 1

Λq(t) + ν
∫ t

0
Λq(z)dz

)q0

·

exp



µ(1− f)



∫ t

0

a(y)

(
Λq(y)

Λq(t) + ν
∫ t
y

Λq(z)dz

)2

− 2

∫ t

0

a(y)
Λq(y)

Λq(t) + ν
∫ t
y

Λq(z)dz

]
dy

}
, (5.72)

where Λa,Λq are defined as in (5.62) and (5.67), respectively. We will show

simulations in Section 5.5.2.
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Model Cell-Cycle Model CSC model

Active Quiescent CSC TC

Init.M1 = 106 a0 + q0 = M1 a0 + q0 = M1

Radio- α(Gy−1) αa = 0.145 αq = 0.159 αa = 0.159 αq = 0.145

sensitivity β(Gy−2) βa = 0.0353 βq = 0 βa = 0 βq = 0.0353

Growth rate µ = 0.0655 γ = 0.0476 µ = 0.0476 ν = 0.0655

(day −1) (transition rate)

Table 5.1: Parameters for simulation. ‘Cell-Cycle Model’ is the generalized

TCP model and ‘CSC model’ stands for the model with CSC. We switch the

radiosensitivity parameter of the active and quiescent compartments to obtain

those of CSC and TC compartments.

5.5 Numerical Simulations

5.5.1 Simulation for the Generalized Cell Cycle Model

In [20], Dawson and Hillen calculated the DH TCP with the choices of values

for radiosensitive parameters: αa = 0.145 Gy−1, βa = 0.070646/2 Gy−2 for

active cells and αq = 0.159 Gy−1, βq = 0 for quiescent cells. In addition, the

growth rate is µ = 0.0655 day−1 and transition rate γ = 0.0467 day−1.

As we mentioned earlier, the cells in the quiescent compartment are less sensi-

tive to the radiation, we expect that after the same treatment protocol, more

cells will be left if more quiescent cells exist. When f = 1, all the cells are

active, the TCP values should be bigger than those for other values of f , if

the other parameters are the same. The smaller the values of f is, the smaller

the TCP value should be.

To see this, we calculate the TCP for f = 0, 0.5 and 1 for fractionated

treatment A and C in Table 3.1, where the doses delivered to the patient in

each fraction are d = 2 Gy and d = 3 Gy, respectively. We run our simulation

until Day 100. The simulations do match our expectations, as shown in Figure

5.4. Here we only show the graph for d = 3 Gy, similar results are obtained

for d = 2 Gy.

However, this is not the case for the hyperfractionated treatment. We simulate
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Figure 5.4: TCP calculation for standard treatment ‘C’ in Table 3.1

(d = 3 Gy). We calculate the values for f = 0 (DH TCP), f = 0.5 and f = 1

(ZM TCP) until Day 100. All the simulations have the same parameters:

αa = 0.145 Gy−1, βa = 0.070646/2 Gy−2 for active cells and αq = 0.159

Gy−1, βq = 0 for quiescent cells. The birth rate for active cells is µ = 0.0655

day−1 and transition rate for quiescent cells is γ = 0.0467 day−1. The initial

number of total cells M1 = 106: for f = 1, a0 = M1, q0 = 0, the other two

fs have a0 = γ
µ+γ

M1 and q0 = µ
µ+γ

M1. The other choices of fraction of the

a0 + q0 = M1 have similar results.

the hyperfractionated treatment d (d=1.2 Gy) and represent the results in

Figure 5.5. A similar graph is obtained for treatment c (d = 1.5 Gy). We find

that f = 0 (DH TCP), f = 0.5 and f = 1 (ZM TCP) have quite a similar

TCP prediction.

Therefore, ZM TCP will overestimate the tumor killing when the dose per

fraction is high (like 2Gy and 3Gy), but for a lower dose or proper choice of

parameters, the three TCP models are equivalent.

In Hillen et al [37], we also compared the ZM TCP and DH TCP, we found

that the ZM TCP model has a much bigger TCP value after the same treat-
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Figure 5.5: TCP calculation for hyperfractionated treamtment ‘d’ in

Table 3.1 (d = 1.2 Gy). We calculate the values for f = 0 DH TCP, f = 0.5

and f = 1 ZM TCP. All the parameters are chosen the same as those used in

Figure 5.4.

ment, this happens because we have different choices of hazard function in our

simulation, where we use hazard function (2.51) for ZM TCP and (2.52) for

DH TCP.

In Gong et al [31], we summarized the hazard function in one framework

and also simulated the ZM TCP with a weighted growth rate based on the

mean time that a cell spends in active compartment 1/µ or 1/γ in quiescent

compartment (see Thieme [84] for the mean time derivation). Similar results

as Figure 5.5 are obtained: ZM TCP has the same result as DH TCP if cells

in ZM model take the weighted growth rate and radiosensitivity parameters.

5.5.2 Simulation for Cancer with Stem Cells

In this subsection, we simulate the TCP for cancers with stem cells. Cancer

stem cells are less sensitive to radiation than the transient cancer cells. There-

fore, we switch the radiosensitive parameters of the active cells and quiescent

compartments to obtain those for CSC and TC (see Table 5.1): αa = 0.159
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Figure 5.6: TCP calculation for various initial fraction of CSC within

106 cells. We calculate five initial fractions of CSC in a tumor cluster with

106 cells: from right to left, we have a0 = p∗M1 for p = 0.1 (green solid), 0.001

(red solid), 5 · 10−4 (blue solid) and 10−5 (purple dashed) and 0 (black dash-

dot). Parameters chosen here are: self-renewal fraction is f = 0.5, birth rate

and radiosensitive parameter are listed in Table 5.1. This is for the result for

the standard treatment ‘C’ (d = 3 Gy) in Table 3.1. For the other treatments,

we have similar graphs.

Gy−1, βa = 0 for CSC and αq = 0.145 Gy−1, βq = 0.0353 Gy−2 for TC. Vil-

ladsen et al [91] showed, through the study of adult human breast, the cancer

stem cell in ducts are essentially quiescent while the progenitor cells in the

lobules divide more actively. Here, we choose the growth rate as µ = 0.0467

day−1 and ν = 0.0655 day−1, respectively.

Enderling et al [25] found the inclusion of CSC is necessary for the tumor

cluster to grow. Therefore, we first study the effect of varying initial fraction

of CSC in the tumor cluster consisting of M1 = 106 cells in Figure 5.6. For the

same initial tumor size, we find that the smaller numbers of CSC in the tumor,

the easier the tumor can be treated. Figure 5.6 is for standard treatment

‘C’(d = 3 Gy) in Table 3.1. We have similar results for other treatment

schedules.
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Figure 5.7: TCP calculation of CSC for various death rate for treat-

ment ‘B’ in Table 3.1 (d = 2 Gy). From right to left, we calculate the

death rates ρ = 0, 0.03, 0.08, 0.15 day −1. Parameters chosen are the same

as those in Figure 5.6 except f = 0.5, a0 = 0.01M1.

Enderling et al [25] also found a paradox of tumor growth: a larger death rate

of transient cancer cells will result in a bigger tumor cluster. The effect of

the death rate in our simulations is reported in Figure 5.7. Here we choose

the same parameters as the Figure 5.6, except we fix the initial fraction of

CSC as 0.01 and consider variable death rates. A higher death rate of TC

makes the tumor easy to be killed. This effect is less pronounced when the

dose per fraction is high as shown in Figure 5.8. We do not observe the

same paradox as Endering et al [25] reported, since the tumor growth paradox

arises as a result of competition for space in a fully populated tumor. Through

radiation treatment the tumor density is small and space-restrictions are no

longer relevant. Hence the tumor growth paradox is not observed here.

Figure 5.9 and 5.10 report the effect of the self-renewal fraction f of CSC to

the calculation of TCP for standard treatment ‘C’ (d = 3 Gy) and hyperfrac-

tionated treatment ‘d’ (d = 1.2 Gy) in Table 3.1, respectively. Here we fix

the initial CSC a0 = 0.01M1, the death rate of TC is ρ = 0.03 day−1. We

can see from Figure 5.9 that a smaller self-renewal fraction f of CSC makes
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Figure 5.8: TCP calculation of CSC for various death rate for treat-

ment ‘C’ in Table 3.1 (d = 3 Gy). From right to left, we calculate the

death rates ρ = 0, 0.03, 0.08, 0.15 day −1. Parameters chosen are the same

as those in Figure 5.6 except f = 0.5, a0 = 0.01M1.

it easier to control the cancer for treatment ‘C’. The similar graph is found

for treatments ‘A, B’ (d=2 Gy)in Table 3.1. However, for hyperfractionated

treatment ‘d’ with d = 1.2 Gy, the different self-renewal fractions f have no

effect on the TCP values, as we can see in Figure 5.10. That is, the effect of

the differentiation of cancer cells becomes dominant for large dose per fraction.

These simulations confirm the general trend that was found for the cell cycle

model: the inclusion of quiescent cells leads to different simulations for large

dose per fraction.
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Figure 5.9: TCP calculation of CSC for various self-renewal fraction

for standard treatment ‘C’ in Table 3.1 (d = 3 Gy). From left to right,

we calculate the self-renewal fractions f = 0, 0.5, 1, respectively. Parameters

chosen are the same as those in Figure 5.6 except a0 = 0.01M1.
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Figure 5.10: TCP calculation of CSC for various self-renewal fractions

for hyperfractonated treatment ‘d’ in Table 3.1 (d = 1.2 Gy). From

left to right, we calculate the self-renewal fraction f = 0, 0.5, 1, respectively.

Parameters chosen are the same as those in Figure 5.6 except a0 = 0.01M1.
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Chapter 6

Normal Tissue Complication

Probability Model

Generally speaking, normal tissues will inevitably be damaged during the tu-

mor external beam radiotherapy. Oncologists need to quantify the normal tis-

sue complication of a treatment to make sure those complications are bearable

for the patients. The cumulative radiation effect (CRE) model has been sug-

gested by Fowler [28] not to be used any more. Another kind of model to mea-

sure the complication is the normal tissue complication probability (NTCP),

which is defined as the probability that normal tissues cannot function prop-

erly after radiation exposure. The existent NTCP models are quite few. In

this chapter, I will first review two existent NTCP models in Section 6.1 and

6.2. Then, in Section 6.3, I use a birth-death process to derive a NTCP model

characterized by logistic growth. The calculation of NTCP will also provide an

alternative proof to the formula proposed by Hanin [36] to compute the prob-

ability distribution Pi(t) of tumor cell amount from the generating function

A(s, t). Simulations are given in Section 6.4.

6.1 Lyman NTCP Model

The simplest NTCP model is Lyman NTCP proposed by Lyman in 1985 [53],

in which it describes a sigmoidal dose-response curve of normal tissue as a
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6.1. LYMAN NTCP MODEL

function of given dose D delivered on a fractional volume v,

NTCPLyman(D) =
1√
2π

∫ z

−∞
e−s

2/2ds, (6.1)

where the upper limit z is determined by

z =
D − TD50(v)

m · TD50(v)
, (6.2)

Here TD50(v) is the tolerance dose for a given partial volume (v) so that the

NTCP = 0.5, it relates the tolerance dose for whole organ TD50(1) as

TD50(v) = TD50(1)v−n, 0 < n ≤ 1. (6.3)

m,n are two parameters depending on the type of tissues. Equation (6.3)

comes from the power law of the isoeffect dose [76]: the multiplication of the

n-th power of the radiated fractional volume v and the dose delivered on it Dv

remains constant. If Dv1 , Dv2 , Dwhole are delivered to a partial volume of v1, v2

and the whole organ, respectively, this power law says,

vn1Dv1 = vn2Dv2 = Dwhole1
n. (6.4)

Equation (6.1) can also be written as an integral over the normal distribution

with mean value TD50 and standard derivation m · TD50,

NTCPLyman(D) =
1√

2πm · TD50

∫ D

−∞
e
− 1

2

(
D
′
−TD50

m·TD50

)
dD

′
. (6.5)

This allows an interpretation of m as the ratio of the standard derivation and

mean-value.

This NTCP model is only applicable for a uniformly distributed treatment,

that is the dose D is uniformly delivered to the volume fraction of v. How-

ever, in daily practice, three dimensional (3D) CT scanned images are used

in computerized treatment planning systems to generate a 3D non-uniformly

distributed dose. In order to make the 3D image easy to read, the dose-volume

histogram (DVH) is used to reduce the 3D treatment planning dose distribu-

tions into a one dimensional graph of dose D, which is a function of fractional
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volume v against delivery dose D, representing that fractional volume v re-

ceives total dose D.

The DVH can be represented in two ways: differential DVH or cumulative

DVH. In both DVH graphs, the x-axis denotes the dose delivered and the y-axis

denotes fraction of volume, but the meanings of the y-coordinate are different:

in the differential DVH, the height of each point shows the fraction of volume

that receives the particular dose denoted by the x-coordinate; while in the

cumulative DVH, each height represents the fraction of volume which receives

greater than or equal to a dose given by the x-coordinate. The cumulative

DVH is more often used and a typical cumulative DVH is displayed in Figure

6.1.

Figure 6.1: An example of dose-volume histogram (DVH) for prostate.

The green line is planning target volume, blue line is for rectum, brown is for

bladder and the purple lines are for right and left femurs. The bottom x-

axis is relative dose and the top x-axis is the total dose (cGy). This figure is

generously provided by Dr. Colin Field and Prof. Matthew Parliament from

Cross Cancer Institute at University of Alberta.

In order to reduce the nonuniform dose distribution into an equivalent uni-

form dose, several methods exist and one widely used method is proposed by

Kutcher and Burman [47]. They first approximated the irregular shaped DVH
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graph by some step functions (see Figure 6.2). The area underneath the step

functions could be divided into several rectangles with height ∆vi and length

Di (see area shaded by back slashes). The longest rectangle has length Dmax,

the maximal dose in the DVH graph (e.g. 7600 cGy in Figure 6.1), it is also

called the reference dose. For each rectangle with height ∆vi, it is equivalent to

the treatment of delivering Dmax uniformly onto a fractional volume of ∆vieff

(shaded by forward slashes in Figure 6.2),

∆vieff = ∆vi

(
Di

Dmax

)1/n

, (6.6)

that means, delivering dose Di to a fraction volume of ∆vi has the same dose

effect as the treatment of delivering dose Dmax to a fraction volume of ∆vieff.

The total effective treatment volume is given by the summation of all these

∆vieff,

max
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Figure 6.2: DVH approximation by step function and calculation of

effective volume. The step functions are first used to approximate the DVH

graph. As denoted above, areas below the step functions can be divided into

rectangles with height ∆vi and length Di (area shaded by back slashes). The

treatment denoted by rectangle with height ∆vi can be reduced to an equiva-

lent treatment of delivering Dmax onto fractional volume of ∆vieff (shaded by

forward slashes). The summation of these fractional volumes results in veff.

Graph redrawn from [47].
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veff =
M∑

i

∆vieff =
M∑

i

∆vi

(
Di

Dmax

)1/n

=

∫ vmax

vmin

(
d(v)

Dmax

)1/n

dv. (6.7)

where in the last equation, we give a mathematical calculation for veff which

does not need all these step functions. This can be easily done by data fitting

to obtain the function of dose against fraction volume d(v) and then integrate

at interval [vmin, vmax].

Using this method, the dose distribution represented by the DVH graph has

been switched to an equivalent uniform treatment of delivering Dmax into a

partial volume veff. The upper limit z in (6.1) can now be determined from

the DVH as

t =
Dmax − TD50(veff)

m · TD50(veff)
, (6.8)

where Dmax are given from the DVH graph and veff is calculated by (6.7) from

the DVH graph and TD50(veff) = TD50(1) · v−neff , 0 < n ≤ 1. This model is

also referred as Lyman-Kutcher-Burman NTCP model. Besides this method,

Niemierko [64] proposed the idea of reducing DVH dose distribution into an

uniform treatment of delivering the equivalent uniform dose (EUD) to the

whole organ. But whether to choose Dmax delivered onto effective volume veff,

or EUD onto the whole organ, or any other combination of dose and volume,

it does not matter because Luxton et al [52] proved that the result of the

Kutcher-Burman reduction is independent of the choice of the reference dose.

This model is simple, only three parameters m,n and TD50(1) need to be

determined. These three parameters have been estimated for a number of

organs in Burman et al [10] by fitting data summarized by Emami et al [24].

One main criticism of these parameters is that many data in Emami et al [24]

are based on the clinical prediction or experience, rather than experimental

or clinical data. Afterwards, people continue to work on the parameter fitting

based on clinical data, examples are Semenenko et al [77] for pneumonitis and

xerostomia, Peeters et al for prostate cancer [69], Dawson et al for liver [20].

However, recently Daly et al [17] pointed out that it cannot be used for the

spinal cord.
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4

2 Structural Normal Tissue Complica-

tion Probability Model

Compared to Lyman NTCP, this type of NTCP model is more mech-
anistic model because it includes the tissue structure in the model.
The spatial distributions of normal tissues are divided into two cat-
egories: parallel or serials. For a parallel structure organ, it consists
of cells that simultaneously maintain their function, therefore, the
organ can still function after a significant fraction of the tissue are
damaged. Instead, a small damage to serial structural organ will
result in compromising its functions [3].
The Critical Volume NTCP cosider the parallel organ structure in
its model derivation [7, 9]. The basic assumption of the model is
that organs are composed of functional subunits (FSU), the smallest
tissue element capable of performing biological function. Examples
of FSUs are renal tubules in kidney and lobules in liver. Therefore,
any damage to an organ have a three-level hierarchy:

Cell killing
in the FSUs

- Damage to
FSUs

- Organ failure to
function

To simplify the model, they again assume that

• An organ is damaged only when a critical number of such FSU
are damaged, for example, L.

• The probability of damaging one FSU is PFSU(D) after applied
dose D.

• FSU could be regenerated from a single surviving cell, therefore
to defunction an FSU, all of its cells need be inactivated.

• FSUs are identical and uniformally distributed through the or-
gan.

So the critical volume NTCP model is determined by survival number
of FSUs. Take a homogenous tissue with N numbers of such FSU
for example, assume that the probability that M FSU are damaged
obey binomial distribution,

P (M) =

(
N
M

)
PFSU(D)M(1− PFSU(D))N−M . (2.8)

Based on the assumption, the probability of complication to the organ
is

NTCP =
N∑

M=L

P (M). (2.9)

Figure 6.3: The steps for the organ to be damage.

6.2 Critical Volume NTCP Model

Compared to the Lyman NTCP, the critical volume NTCP model is more

mechanistic because it includes the tissue structure in the model. The spatial

distributions of normal tissues are divided into two categories: parallel or

serial [11]. A parallel structure organ consists of cells that simultaneously

maintain their function. Therefore, the organ can still function correctly after

a significant fraction of the organ is damaged. Instead, a small damage to

serial structural organ will result in losing its functions [11].

The critical volume NTCP considers the parallel organ structure in its model

derivation [40, 65]. The basic assumption of this model is that organs are

composed of functional subunits (FSU), the smallest tissue element capable of

performing biological function. Examples of FSUs are renal tubules in kidney

and lobules in liver. Therefore, any damage to an organ has a three-level

hierarchy as shown in Figure 6.3.

To simplify the model, authors in [40, 65] further assumed that

(1). An organ is damaged only when a critical number of such FSUs is dam-

aged. We denote this number as L.

(2). The probability of damaging one FSU after applied dose D is PFSU(D).

(3). FSU could be regenerated from a single surviving cell, therefore to make

an FSU lose its function, all the cells in the FSU need to be inactivated.

(4). FSUs are identical and uniformly distributed through the organ.

Based on the assumption (2) to (4), if we use LQ survival fraction for each cell,

and assume each FSU is composed of N0 independent cells, then the PFSU has

the form of

PFSU(D) = (1− e−αD−βD2

)N0 . (6.9)
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where α, β are the radiosensitivities of the healthy organ cells.

The critical volume NTCP model is determined by survival number of FSUs.

Take a homogeneous tissue with N numbers of such FSU for example, as-

sume that the probability of the damaged numbers of FSU obeys a Binomial

distribution, then the probability that M FSUs are damaged are

P (M) =

(
N

M

)
PFSU(D)M(1− PFSU(D))N−M . (6.10)

Based on the assumption (1), the probability of complication to the organ is

NTCPcv =
N∑

M=L

P (M). (6.11)

If the total number of FSU in the tissue, N , is quite large, we can use Normal

distribution to approximate binomial distribution by the central limit theorem,

i.e.,

NTCPcv =
N∑

M=L

P (M) ≈
∫ ∞

L

Pnorm(M)dM, (6.12)

where

Pnorm(M) =
1√

2π var(M)
exp

(−(M −M)2

2 var(M)2

)
,

with M = NPFSU(D) and var(M)2 = NPFSU(D) (1− PFSU(D)). The critical

volume NTCP has the same form as Lyman NTCP after rescaling of t = M−M
var(M)

.

NTCPcv =
1√
2π

∫ ∞
L−M
var(M)

e−t
2/2dt =

1√
2π

∫ M−L
var(M)

−∞
e−t

2/2dt = Φ

(
M − L
var(M)

)
.

(6.13)

If an organ survives only when all the FSUs function properly, that is a serial

structural organ and L = 1, the model is called critical element NTCP,

NTCPce =
N∑

M=1

P (M) = 1− P (0) = 1− (1− PFSU)N . (6.14)

Stavrev et al [79] generalized the critical volume model, critical element model

and the tumor control probability into one frame work.
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In addition, Kallman et al [42] derived an NTCP model to consider the normal

tissue as a combination of serial and parallel structures. In their model, an

organ consists of n parallel structures, each parallel structure is a m-subunit

serial structure. A parameter ’relative seriality’ s = m
m∗n = 1

n
is used to

describe the volume dependence of the normal tissue. For more details, I refer

to the original paper [42].

6.3 NTCP Model Derived From a Birth-Death

Process

Here we use the idea from Chapter 5 to derived a NTCP model from a birth

death process. We assume all the cells are identical and independent, an organ

works properly if more than L cells exists. Denote Pi(t) the probability of i

normal cells at time t, the normal tissue complication is defined as a probability

NTCP (t) =
L∑

i=0

Pi(t) (6.15)

By the first principle, the master equation that describes the change of normal

cells is

dP0

dt
= h(t)P1, (6.16)

dPi
dt

= µi−1(i− 1)Pi−1 − (µi + h(t))iPi + h(t)(i+ 1)Pi+1, i ≥ 1,(6.17)

with µi, i ≥ 1 are birth rate depending on the states of the normal tissue and

h(t) is death rate chosen the same as (5.10) including both natural death and

death induced by radiation.

It should be noted that here we model the regrowth of a population of healthy

cell using one compartment only. In future studies we can include stem cells,

differentiated cells and other cells of the corresponding cell lineage.

6.3.1 Birth Rate µi

Cell growth will decrease as the population increases because of depletion of

growth factors and space limitation. Here, we choose the birth rate µi as a
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decreasing function of state i,

µi =

{
µ(1− i

M
), i = 1, 2, · · · ,M

0, otherwise.
(6.18)

where M is the carrying capacity and µ is a constant maximal growth rate.

This choice of µi will make the number of the normal tissue cells stay below

or equal to the carrying capacity M .

Lemma 6.3.1. Assume µi is given by (6.18). If Pi(0) = 0, i ≥ M + 1, then

Pi(t) = 0, i ≥M + 1,∀t > 0.

Proof. Define Rj(t) =
∑∞

i=j Pi(t), j ≥M + 1. Then Rj(0) = 0, j ≥M + 1.

dRM+1(t)

dt
=

∞∑

i=M+1

dPi
dt

= µMMPM − h(t)(M + 1)PM+1(t) ≤ 0.

thereforeRM+1(t) ≤ 0 butRM+1(t) ≥ 0 as the sum of probability, soRM+1(t) =

0. Similarly, Rj(t) = 0, j > M + 1.

Pj(t) = Rj(t)−Rj+1(t) = 0, j ≥M + 1.

This choice of µi can be considered as the nonlinear extension of those in

Chapter 5, where the linear birth rate results in the mean field function satis-

fying exponential growth. We can prove that this µi will make the mean field

function obeys logistic growth under certain assumption.

Theorem 6.3.2. Assume µi is given by (6.18). Provided the series

N(t) =
∞∑

i=0

iPi(t).

converges, then N(t) is the mean field function of system (6.16, 6.17) and

satisfies a differential equation:

dN(t)

dt
= µN(t)

(
1− N(t)

M

)
− h(t)N(t) +

µ

M
· Var(X). (6.19)

where Var(X) is the variance of normal tissues defined by Var(X) = E ((X −N(t))2).
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Proof. Taking derivative of N(t) with respective to time t, we have

dN

dt
=

∞∑

i=0

i
Pi(t)

dt

=
∞∑

i=0

[
µi−1i(i− 1)Pi−1 − (µi + h(t))i2Pi(t) + h(t)i(i+ 1)Pi+1(t)

]

=
∞∑

i=0

(i+ 1)iµiPi(t)−
∞∑

i=0

(µi + h(t)) i2Pi(t) +
∞∑

i=0

h(t)i(i− 1)Pi(t)

=
∞∑

i=0

(µi − h(t)) iPi(t)

=
∞∑

i=0

(
µ(1− i

M
)− h(t)

)
iPi(t)

= µN(t)− h(t)N(t)− µ

M

∞∑

i=0

i2Pi(t)

= µ

(
1− N(t)

M

)
N(t)− h(t)N(t) +

µ

M
· Var(X),

where in the last equation, we use the identity Var(X) = E(X2) − E(X)2.

Note: For Var(X)→ 0, we formally obtain the mean field logistic equation.

6.3.2 Numerical Solution for Finite Dimensional Sys-

tem

We proved our choice of birth rate will guarantee a finite number of normal

tissue cells. Let P (t) = (P0(t), P1(t), · · · , PM(t))T , then the system (6.16, 6.17)

can be written as:
dP

dt
= AP. (6.20)

where matrix A is given by

A =



0 h(t) 0 · · · 0 0

0 −(µ1 + h(t)) 2h(t) · · · 0 0

0 µ1 −2(µ2 + h(t)) · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −(M − 1)(µM−1 + h(t)) Mh(t)

0 0 0 · · · (M − 1)µM−1 −M(µM + h(t))


(6.21)
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Figure 6.4: NTCP as a function of dose. NTCP is calculated by (6.15)

and Pi(t) are solution of system (6.20). (a) is NTCP figures for five different

dose per fraction d = 1.5, 2, 2.5, 3, 3.5 Gy, respectively, (b) and (c) are for the

two dose d = 1.5 and d = 2 Gy in (a) which we cannot see clearly. We choose

radiosensitivity parameters α/β = 3 for normal tissue with α = 0.06, threshold

of normal tissue complication as 5% of carrying capacity, i.e. L = 5%M, the

maximal birth rate µ = 5E−005 day−1 and the carrying capacity is M = 500.

We can see from matrix A that 0 is an absorbing state. when we have radi-

ation, h(t) includes both natural death rate and death induced by radiation,

the same as (5.10) whereas h(t) only contains natural death if no radiation is

given to patients.

We solve this system numerically, and draw the NTCP with respect to dose.

The results are reported in Figure 6.4.

Restricted by the performance of the computer, we could only simulate NTCP

for small number of carrying capacity M . In the next subsection, we will find

a way to approximately calculate NTCP for large value of M .
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6.3.3 Analytical Solution of Pi(t)

The system of (6.16, 6.17) can be solved analytically by introducing the gen-

eration function

A(s, t) =
∞∑

i=0

Pi(t)s
i,

which satisfies the following equation,

∂A

∂t
= µ

(
1− 1

M

)
s(s− 1)

∂A

∂s
+ (1− s)h(t)

∂A

∂s
+
µs2

M
(1− s)∂

2A

∂s2
,

(6.22)

When M →∞, we have the approximation

∂A

∂t
= µs(s− 1)

∂A

∂s
+ (1− s)h(t)

∂A

∂s
, (6.23)

which is the same type of equation as that in (5.31) in Chapter 5 with γ =

0, µ = b and h(t) = δ. It has a solution

A(s, t) =

[
1− 1

Λ(t)
1−s + µ

∫ t
0

Λ(y)dy

]N0

=

[
Λ(t) + µ(1− s)

∫ t
0

Λ(y)dy − 1 + s

Λ(t) + µ(1− s)
∫ t

0
Λ(y)dy

]N0

.

(6.24)

where Λ(t) = exp
(
−
∫ t

0
(µ− h(y))dy

)
and N0 = N(0) is the initial number of

normal cells. In Chapter 5, we only calculate P0(t) = A(0, t) for tumor control

probability. Here, in order to find NTCP, we need to find the distribution of

Pi(t), 0 ≤ i ≤ L, which can be derived from A(s, t) as well by

Pi(t) =
1

i!

∂iA(s, t)

∂si

∣∣∣∣
s=0

, i = 0, 1, · · · . (6.25)

Therefore NTCP (t) is

NTCP (t) =
L∑

i=0

Pi(t). (6.26)

Before we write down the formula for Pi(t), we rewrite the (6.24) as follows

A(s, t) =

[
a(t)− b(t)s
c(t)− d(t)s

]N0

. (6.27)
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where

a(t) = Λ(t) + µ

∫ t

0

Λ(y)dy − 1, (6.28)

b(t) = µ

∫ t

0

Λ(y)dy − 1, (6.29)

c(t) = Λ(t) + µ

∫ t

0

Λ(y)dy, (6.30)

d(t) = µ

∫ t

0

Λ(y)dy. (6.31)

In the following, we will use a, b, c, d to denote a(t), b(t), c(t), d(t) for short.

Reorganizing A(s, t) as follows for further computation of Pi(t),

A(s, t) =

[
a− bs
c− ds

]N0

=

[
b

d
+
ad− bc

d
(c− ds)−1

]N0

=
[
r + δ(c− ds)−1

]N0 .

where r = b
d

and δ = ad−bc
d
.

Lemma 6.3.3. ∀k ≥ 1, the k-th derivative of A(s, t) with respect to s is

∂kA

k! ∂sk
=

[
r + δ(c− ds)−1

]N0−k dk
k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)
δk−j

(c− ds)−2k+j
[
r + δ(c− ds)−1

]j
. (6.32)

Proof. First it is easy to check that (6.32) is right for k = 1.

∂A

∂s
= N0

[
r + δ(c− ds)−1

]N0−1
δ(−1)(c− ds)−2(−d)

=
[
r + δ(c− ds)−1

]N0−1
d

0∑

j=0

(
N0

1

)(
0

0

)
δ(c− ds)−2.

Suppose (6.32) holds for k = m, that is

∂mA

m! ∂sm
=

[
r + δ(c− ds)−1

]N0−m dm
m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)

δm−j(c− ds)−2m+j
[
r + δ(c− ds)−1

]j
, (6.33)
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Taking derivative on both sides of (6.33), we have,

∂m+1A

m! ∂sm+1

= (N0 −m)
[
r + δ(c− ds)−1

]N0−m−1
δd(c− ds)−2dm

m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)
δm−j(c− ds)−2m+j

[
r + δ(c− ds)−1

]j

+
[
r + δ(c− ds)−1

]N0−m dm
m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)
δm−j

[
(−2m+ j)(c− ds)−2m+j−1(−d)

(
r + δ(c− ds)−1

)j

+(c− ds)−2m+jj
(
r + δ(c− ds)−1

)j−1
δd(c− ds)−2

]

=
[
r + δ(c− ds)−1

]N0−(m+1)
dm+1




m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)
(N0 −m)δm+1−j(c− ds)−2m−2+j

[
r + δ(c− ds)−1

]j

︸ ︷︷ ︸
A

+

m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)
(2m− j)δm−j(c− ds)−2m+j−1

(
r + δ(c− ds)−1

)j+1

︸ ︷︷ ︸
B

+
m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)
jδm+1−j(c− ds)−2m+j−2

(
r + δ(c− ds)−1

)j

︸ ︷︷ ︸
C




Combining Part A and part C, we have

m−1∑

j=0

(
N0

m− j

)(
m− 1

j

)
(N0−m+j)δm+1−j(c−ds)−2m−2+j

[
r + δ(c− ds)−1

]j
(6.34)

After shifting the index, part B changes into
m∑

j=1

(
N0

m− j + 1

)(
m− 1

j − 1

)
(2m− j + 1)δm+1−j(c− ds)−2m−2+j

[
r + δ(c− ds)−1

]j

(6.35)

Equations (6.34) and (6.35) both contain term

δ(m+1)−j(c− ds)−2(m+1)+j
[
r + δ(c− ds)−1

]j
,

107



6.3. NTCP MODEL DERIVED FROM A BIRTH-DEATH
PROCESS

only the coefficients and index are different. Now we check the coefficients for

j = 0, j = m and 1 ≤ j ≤ m separately.

When j = 0, the coefficient of ∂m+1A
m! ∂sm+1 only comes from equation (6.34) and

can be rewrite as(
N0

m− 0

)(
m− 1

0

)
(N0 −m+ 0) =

(
N0

m

)
(N0 −m)

=

(
N0

m+ 1

)
(m+ 1),

which is the binomial coefficients
(
N0

k−j
)(
k−1
j

)
in (6.32) for k = m+1 and j = 0,

multiplied by a factor of m+ 1.

For j = m, (6.35) contributes the coefficient of ∂m+1A
m! ∂sm+1 as

(
N0

m−m+ 1

)(
m− 1

m− 1

)
(2m−m+ 1) =

(
N0

1

)
(m+ 1);

which is the binomial coefficients in (6.32) for k = m+ 1 and j = m, with an

extra multiplier m+ 1 as well.

For j = 1, · · · ,m − 1, coefficients are the summation of those in (6.34) and

(6.35):
(

N0

m− j

)(
m− 1

j

)
(N0 −m+ j) +

(
N0

m− j + 1

)(
m− 1

j − 1

)
(2m− j + 1)

=
N0!(N0 −m+ j)

(m− j)!(N0 −m+ j)!

(m− 1)!

j!(m− 1− j)!

+
N0!(2m+ 1− j)

(m+ 1− j)!(N0 −m− 1 + j)!

(m− 1)!

(j − 1)!(m− j)!

=
N0!(m− 1)! [(m+ 1− j)(m− j) + j(2m+ 1− j)]

(m− j)!(N0 −m+ j − 1)!j!(m+ 1− j)!

=
N0!(m− 1)!m(m+ 1)

(m− j)!(N0 −m+ j − 1)!j!(m+ 1− j)!

=
N0!

(N0 − (m+ 1) + j)!(m+ 1− j)!
m!

(m− j)!j! (m+ 1)

=

(
N0

m+ 1− j

)(
m

j

)
(m+ 1).

which is identical to the binomial coefficients in (6.32) times m + 1 when

k = m+ 1.

Therefore, we proved (6.32) holds for any k ≥ 1 by induction.
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Theorem 6.3.4. The distribution of the normal tissue numbers can be calcu-

lated by the following

Pk(t) =
(a
c

)N0−k
(
d

c

)k k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)(
ad− bc
dc

)k−j (a
c

)j
, (6.36)

for k ≥ 1 and P0(t) =
(
a
c

)N0. where a, b, c, d are all function of t which are

defined as (6.28-6.31).

Proof. Recall that r = b
d

and δ = ad−bc
d

, therefore by (6.32)

Pk(t) =
1

k!

∂kA(s, t)

∂sk

∣∣∣∣
s=0

=

[
r +

δ

c

]N0−k (d
c

)k k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)(
δ

c

)k−j [
r +

δ

c

]j

=
(a
c

)N0−k
(
d

c

)k k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)(
δ

c

)k−j (a
c

)j
.

replacing δ by ad−bc
d

, we obtain (6.36).

In [35], L. Hanin derived a formula for Pk(t), k ≥ 1 for the distribution of

tumor cell numbers from the k-th derivative of a rational function
[
a−bs
c−ds

]N0 ,

where his formula is

Pk(t) =
(a
c

)N0
(
b

a

)k k∑

j=1

(
N0 + j − 1

j

)(
k − 1

k − j

)(
ad− bc
bc

)j
. (6.37)

The two formulas (6.36) and (6.37) look quite different from each other. But

we could prove that the two formulas are equivalent to each other by the

following Lemma.

Lemma 6.3.5. Formula (6.36) and (6.37) are equivalent to each other.

Proof. (6.36) could be written as

Pk(t) =
(a
c

)N0
(
d

a

)k k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)(
ad− bc
dc

)k−j (a
c

)j
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Times
(
b
d

)k
to
(
d
a

)k
,
(
d
b

)k−j
to
(
ad−bc
dc

)k−j
and

(
d
b

)j
to
(
a
c

)j
, we have,

Pk(t) =
(a
c

)N0
(
b

a

)k k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)(
ad− bc
bc

)k−j (
ad

bc

)j

=
(a
c

)N0
(
b

a

)k 1∑

l=k

(
N0

l

)(
k − 1

k − l

)(
ad− bc
bc

)l(
ad

bc

)k−l
. (6.38)

Equation (6.38) has the same multipliers as (6.37) prior to the summation

notation. We are going to only calculate the summation terms of (6.38).

Denote ∆ = ad−bc
bc

, ad
dc

= ∆ + 1, the summation in (6.38) changes into

k∑

l=1

(
N0

l

)(
k − 1

k − l

)
∆l (∆ + 1)k−l

=
k∑

l=1

(
N0

l

)(
k − 1

k − l

)
∆l

k−l∑

i=0

(
k − l
i

)
∆i

=
k∑

l=1

(
N0

l

)(
k − 1

k − l

) k−l∑

i=0

(
k − l
i

)
∆i+l

In order to compare (6.38) and (6.37), we need to check the coefficients of the

term of ∆i+l = ∆j. The coefficient ∆j of in the above equation is

j∑

l=1,i=j−l

(
N0

l

)(
k − 1

k − l

)(
k − l
i

)

=

j∑

l=1

(
N0

l

)(
k − 1

k − l

)(
k − l
j − l

)

=

j∑

l=1

(
N0

l

)
(k − 1)!

(k − l)!(l − 1)!

(k − l)!
(j − l)!(k − j)!

=

j∑

l=1

(
N0

l

)
(k − 1)!

(j − 1)!(k − j)!
(j − 1)!

(j − l)!(l − 1)!

=

(
k − 1

k − j

) j∑

l=1

(
N0

l

)(
j − 1

j − l

)
(6.39)

while in (6.37), the coefficient of ∆j is
(
N0 + j − 1

j

)(
k − 1

k − j

)
(6.40)
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By Chu-Vandermonde’s identity [6], we have

j∑

l=1

(
N0

l

)(
j − 1

j − l

)
=

(
N0 + j − 1

j

)
(6.41)

because when l = 0,
(
j−1
j−l
)

= 0. This complete the proof that the two formulas

are equivalent.

Simulations in Figure 6.5 also show that we have the same probability distri-

bution as what Hanin obtained by using the parameter values listed in [35].

However, our formula take less time for the computation.
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Figure 6.5: Comparison of simulation by formula (6.37) and (6.36).

a, b, c, d are chosen the same as in Hanin [35] rather than calculated by (6.28-

6.31).

It is obvious that we have formula for NTCP based on (6.26) and (6.36).

Theorem 6.3.6. The Normal Tissue Complication Probability is

NTCP =
L∑

k=0

Pk(t). (6.42)

where Pk(t) is in the form of (6.36).
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6.4 Numerical Simulation

In this section, we are going to give some examples to calculate NTCP. We use

formula (6.36) here. When the number of initial cells are large, the multipli-

cations in formula (6.36) are huge. To reduce the number of multiplications,

we rewrite it for the sake of efficient computation:

Pk(t) =
(a
c

)N0
(
ad− bc
ac

)k k−1∑

j=0

(
N0

k − j

)(
k − 1

j

)(
ad

ad− bc

)j
(6.43)

Another challenge of the calculation by computer is that when N0 is large, the

binomial coefficient
(
N0

k−j
)

is out of the range that our computer can store, and

the N0 power of a smaller number a
c

will be close to 0. We are grateful for the

advice from Professor L. G. Hanin at Idaho State University, and store the

number and power separately. For example, f =
(

1000
3

)
= 166167000, we store

this number by f1 = 0.166167 with power f2 = 9, then instead of f , we use

f110f2 .

We calculate the NTCP for the standard treatment of d = 2 Gy with N0 = 105

in Figure 6.6. The parameters we used are birth rate µ = 0.0655 Day−1,

radiosensitive parameters α = 0.145 Gy−1, β = 0.0353 Gy−2.
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Figure 6.6: NTCP calculation for initial normal cells N0 = 105. The

treatment is standard treatment with dose d = 2 Gy, we calculate only until

day around 45 days.
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Chapter 7

TCP Based on the First

Passage Time Problem

I modeled a stochastic process as a birth-death process to derive a TCP model

in Chapter 5. In this Chapter, I study a stochastic process by its advection-

diffusion equations: the backward Kolmogorov equation and the first passage

time problem. I got inspired by the Ecology where this method was used to

estimate the time taken for an animal to reach a specified site for the first time

by McKenzie et al [60].

The first passage time problem is used to study the probability and the time

that a random variable X arrives at a preset target for the first time. Applying

this idea to tumor radiation treatment, I want to study the time needed for the

numbers of tumor cells X to arrive at the target X = 0 and the probability that

the number of tumor cells reduces to 0, which is the tumor control probability

(TCP).

The Kolmogorov equation is a partial differential equation (PDE) of advection-

diffusion type which describes the time evolution of the probability density

function (p.d.f) of the position of the random variable. It is used as forward

or backward Kolmogorov equation, where forward means future in time evo-

lution, it is used to find a future time p.d.f, given the current position and

backward refers to an earlier time, it is used to find a p.d.f at a previous

time if current position is known. I will review the classical theory of both
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Kolmogorov equations in Section 7.1.

Moreover, I will review the survival probability and mean first passage time

problem related to the backward Kolmogorov equation in Section 7.2. In

Section 7.3, I will extend the survival probability and the mean first passage

time problem to tumor radiation treatment. Here I study two special cases

where in both cases the tumor size X is in a finite domain [0,M0]. The first

case assumes that tumor can exit this domain either by treatment success at

x = 0 or at x = M0. This case results in a homogeneous boundary parabolic

equation which can be solved using splitting probability which is the probability

of exiting one boundary before hitting the other boundary. The other case

supposes the tumor size at x = M0 is uncontrollable: once the tumor reaches

size x = M0, it will persist until the patient dies, we call this no hope boundary.

This case leads to an interesting and new boundary condition for the mean

exit time equation. We will study this new problem in detail and we will show

that the eigenfunction expansion of the tumor persistent probability results in

the unbounded mean exit time. We finally give a conclusion in Section 7.4 for

this method.

7.1 Backward and Forward Kolmogorov Equa-

tion

Suppose X(t) is the random variable of positions (also called states) of the

particle we are interested in. The allowable set of states of the random variable

is the whole real line and the initial state is X(t0) = x0. For simplicity, we

denote p(x, t) as the probability density function (p.d.f ) of the random variable

X(t): we define it as the conditional probability of a particle to stay at x at

time t if a given initial state is X(t0) = x0, that is,

p(x, t) = p(x, t;x0, t0) = Prob{X(t) = x|X(t0) = x0}, t > t0.

More generally, we can define the transition probability density function (p.d.f )

of X as the probability of a particle to stay at y at time s if it is at x at an
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earlier time t:

p(y, s;x, t) = Prob{X(s) = y|X(t) = x}, s > t

The p.d.f is a special case of the transition p.d.f.

Besides the property of Markov chain (1.7) and Chapman-Kolmogorov equa-

tion

p(y, s;x, t) =

∫

z

p(y, s; z, τ)p(z, τ ;x, t)dz, s > τ > t. (7.1)

we further assume that the transition probability density function satisfies the

following properties:

(1). The transition p.d.f p(y, s;x, t) is continuously differentiable with respect

to both space x, y and time t, s.

(2). Particles will always go somewhere. Therefore the transition p.d.f satis-

fies the following normalization equation,∫

y

p(y, s;x, t)dy = 1, s > t. (7.2)

(3). For physical reason, p(y, s;x, t) and all of its derivatives need to vanish

at infinity [43].

It is sufficient to assume that p(y, s;x, t) ≥ 0, p ∈ C1 and
∫
x
p(y, s;x, t) <

∞, Then limx→∞ p(y, s;x, t)dx = 0. The same arguments hold for the

other three variables.

Let us start with the backward Kolmogorov equation. Suppose ∆t is a small

time interval,

p(y, s;x, t)− p(y, s;x, t−∆t)

= p(y, s;x, t)−
∫

z

p(y, s; z, t)p(z, t;x, t−∆t)dz

= p(y, s;x, t)

∫

z

p(z, t;x, t−∆t)dz −
∫

z

p(z, t;x, t−∆t)p(y, s; z, t)dz

=

∫

z

p(z, t;x, t−∆t) [p(y, s;x, t)− p(y, s; z, t)] dz

= −
∫

z

p(z, t;x, t−∆t)

[
∂p(y, s;x, t)

∂x
(z − x) +

∂2p(y, s;x, t)

∂x2

(z − x)2

2

]
dz

+

∫

z

p(z, t;x, t−∆t)o
(
(z − x)3

)
dz.
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Here we use Chapman-Kolmogorov equation (7.1) in the first equality and

property (2) in the second equality. Divide ∆t on both sides and take the

limit of ∆t approaching 0, we have

∂p(y, s;x, t)

∂t
= −a(x, t)

∂p(y, s;x, t)

∂x
− b(x, t)

2

∂2p(y, s;x, t)

∂x2
. (7.3)

where the drift coefficient is given by

a(x, t) = lim
∆t→0

1

∆t

∫

z

(z − x)p(z, t;x, t−∆t)dz, (7.4)

and the diffusion coefficient given by

b(x, t)

2
= lim

∆t→0

1

2∆t

∫

z

(z − x)2p(z, t;x, t−∆t)dz. (7.5)

Note:

• Equation (7.3) is called backward Kolmogorov equation, which is normally

used to solve the following problem: If we know that the position of the

particle is at y at time s, what is the probability that it begins from x

at a former time moment t. The initial condition of (7.3) is normally

chosen as

p(y, s;x, s) = δ(y − x). (7.6)

where δ(x) is the Dirac delta distribution, which is defined by its action

on continuous function as,
∫

R
δ(x)f(x)dx = f(0), ∀f ∈ C0(R). (7.7)

Based on this definition, it is easy to see the following properties:

∫ ∞

−∞
δ(x)dx = 1 (7.8)

∫

y

f(y)δ(y − x)dy = f(x) (7.9)

f(t)δ(t− a) = f(a)δ(t− a). (7.10)

For other properties of the Dirac δ−function, please see Evans [26].
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• In the definition of a(x, t) and b(x, t), they both include the first order

time step ∆t, a(x, t) includes the first order spatial moment, while b(x, t)

includes the second order spatial moment. Therefore a(x, t) can be ex-

plained as the expected value of displacement of a particle in one step

jump, b(x, t) is the second moment of displacement of the particle in one

step jump, characterizing the variance of each jump.

• The definition of a(x, t) and b(x, t), together with the following assump-

tion,

0 = lim
∆t→0

1

∆t

∫

z

(z − x)δp(z, t;x, t−∆t)dz, δ > 2.

make this Markov Process a diffusion process (see the books of L. Allen

[2] and C. Gardiner [30]).

• Time Homogeneous Case: We say the transition p.d.f p(y, s;x, t) is

time homogeneous, if it only depends on the time interval and indepen-

dent of the beginning and ending time moments, i.e.,

p(y, s;x, t) = p(y, 0;x, t− s) = p(y, s− t;x, 0), (7.11)

The semigroup property (7.11) allows us to write a backward Kolmogorov

equation (7.3) in a different way. We introduce τ := s − t ≥ 0 and

write p(y, s;x, t) = p(y, 0;x, t − s) = p(y, s − t;x, 0) = p(y, τ ;x, 0), then
∂
∂τ

= − ∂
∂t

and the backward Kolmogorov equation (7.3) becomes

∂p(y, τ ;x, 0)

∂τ
= a(x)

∂p(y, τ ;x, 0)

∂x
+
b(x)

2

∂2p(y, τ ;x, 0)

∂x2
. (7.12)

Note: This equation looks like forward in time as τ > 0, but the space

derivative is with respect to the position x of the earlier time.

A closely related equation is the forward Kolmogorov equation. It is used to

solve the following problem: given the state of the particles at a earlier time

t, what is the probability distribution at a later time moment s. Therefore we

need to find the transition p.d.f to solve it. The forward Kolmogorov equation

can also be derived from the Chapman-Kolmogorov equation by using equation
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(7.3).

p(y, s+ ∆s;x, t)− p(y, s;x, t)

=

∫

z

p(y, s+ ∆s; z, s)p(z, s;x, t)dz − p(y, s;x, t)

=

∫

z

[p(y, s+ ∆s; z, s)− δ(y − z)] p(z, s;x, t)dz

=

∫

z

[p(y, s+ ∆s; z, s)− p(y, s+ ∆s; z, s+ ∆s)] p(z, s;x, t)dz

= −
∫

z

[
∂p(y, s+ ∆s; z, t)

∂t

∣∣∣∣
t=s

∆s+ o(∆s)2

]
p(z, s;x, t)dz (7.13)

Using equation (7.3) for ∂p(y,s+∆s;z,t)
∂t

∣∣∣
t=s

and integrating by parts

p(y, s+ ∆s;x, t)− p(y, s;x, t)

= ∆s

∫

z

[
a(z, s)

∂p(y, s+ ∆s; z, s)

∂z
+
b(z, s)

2

∂2p(y, s+ ∆s; z, s)

∂z2

]
p(z, s;x, t)dz

+∆s

∫

z

o(∆s)p(z, s;x, t)dz

= ∆s

∫

z


−∂ (a(z, s)p(z, s;x, t))

∂z
+
∂2
(
b(z,s)

2
p(z, s;x, t)

)

∂z2


 p(y, s+ ∆s; z, s)dz

+

[
a(z, s)p(z, s;x, t)p(y, s+ ∆s; z, s) +

b(z, s)

2
p(z, s;x, t)p(y, s+ ∆s; z, s)

−
∂
(
b(z,s)

2
p(z, s;x, t)

)

∂z
p(y, s+ ∆s; z, s)



∣∣∣∣∣∣
z=±∞

+ o(∆s)2 (7.14)

the non-integral terms will disappear in the last equation because of the prop-

erty (3) that the transition p.d.f p(z, s;x, t) and its derivative vanish at infin-

ity. By dividing ∆s on both sides and taking the limit of ∆s → 0, we have

lim∆s→0 p(y, s+ ∆s; z, s) = δ(y − z) and

∂p(y, s;x, t)

∂s
= −∂

(
a(y, s)p(y, s;x, t)

)

∂y
+

1

2

∂2
(
b(y, s)p(y, s;x, t)

)

∂y2
. (7.15)

where a(y, s), b(y, s) are the same as in definition (7.4) and (7.5). Equation

(7.15) is known as Fokker-Planck Equation, or forward Kolmogorov equation.
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7.1.1 The Drift and Diffusion Coefficients Derived from

a Discrete Random Walk

This derivation is given in A. Okubo and S. A. Levin in Chapter 5 [5].

In the following we will derive a(x, t) and b(x, t) from a discrete random walk.

A random walk is a discrete space Markovian chain, i.e. X(t) can only stay

on the lattice · · · , x−∆x, x, x+ ∆x, · · ·. Suppose the transition probability

is defined as follows,

p(x+ ∆x, t+ ∆t;x, t) = xµ(t)∆t, (7.16)

p(x−∆x, t+ ∆t;x, t) = xh(t)∆t, (7.17)

p(x, t+ ∆t;x, t) = 1− (h(t) + µ(t))x∆t, (7.18)

p(x+ k∆x, t+ ∆t;x, t) = o(∆t)2, |k| ≥ 2. (7.19)

where µ(t), h(t) represent the birth rate and death rate per capita, respectively,

and x is denotes a population size. Define

R(x, t) := p(x+ ∆x, t+ ∆t;x, t) = µ(t)x, (7.20)

L(x, t) := p(x−∆x, t+ ∆t;x, t) = h(t)x. (7.21)

Therefore, R(x, t), L(x, t) are the birth rate and death rate of the whole popu-

lation, respectively. We have, by the discrete Chapman-Kolmogorov equation

p(x, t+ ∆t; y, τ) = R(x−∆x, t)∆tp(x−∆x, t; y, τ) + o(∆t)

+L(x+ ∆x, t)∆tp(x+ ∆x, t; y, τ)

+ (1− (L(x, t) +R(x, t)) ∆t) p(x, t; y, τ). (7.22)

Expanding the both sides at p(x, t; y, τ) by Taylor series and taking ∆t → 0,

we have

∂p(x, t; y, τ)

∂t
= −∂ (∆x (R(x)− L(x)) p(x, t; y, τ))

∂x

+
1

2

∂2 ((∆x)2 (R(x) + L(x)) p(x, t; y, τ))

∂x2
(7.23)

If a(x, t) and b(x, t) are

a(x, t) = ∆x(R(x)− L(x)) = (µ(t)− h(t))x∆x. (7.24)
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and

b(x, t) = (∆x)2(R(x) + L(x)) = (µ(t) + h(t))x(∆x)2. (7.25)

then (7.23) is the Fokker-Planck Equation (7.15).

The above advection-diffusion equation has been used in Ecology for the mod-

eling of distribution of the species [88]. Recently, the mean first passage time

problem has been used to study the movement of red fox by McKenzie et al

[60].

7.2 Survival Probability and the Mean First

Passage Time Problem

The material in this part is mainly from the book written by Gardiner [30].

The First Passage Time Problem is also called the first exit time, or persistent

time problem, it is the time needed for a random variable to arrive at a certain

predefined end position from its initial position [73]. Suppose the state of a

stochastic process X(t) is restricted in some bounded domain (xl, xr) ⊂ R and

X(0) = x, xl < x < xr. Let Txlxr(x) be the time moment that a particle

starting at x exits the domain for the first time, that is the predefined ending

points are {xl, xr}. Mathematically it is defined as

Txlxr(x) = sup{t|xl < X(τ) < xr, 0 ≤ τ < t,X(0) = x ∈ (xl, xr)}. (7.26)

If xl, xr are fixed, we write T (x) for short. If we assume that once a particle

arrives at the boundary, it stays at the boundary or exits the system, then the

boundary is called absorbing. T (xl) = 0 or T (xr) = 0 means the left or right

boundary is an absorbing boundary. If both boundaries are absorbing, then

T (xl) = T (xr) = 0.

Normally, T (x) is not easy to find, but the probability density function of T (x)

is easy to find, denoted as g(x, t). When the both boundaries are absorbing,

∀x ∈ (xl, xr), we consider the probability of mean exit time T (x) is greater

than t, i.e. at time t, the particle is still within the domain (xl, xr):

P (T (x) > t) =

∫ xr

xl

p(y, t;x, 0)dy := G(x, t). (7.27)
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G(x, t) is called survival probability (see [73]), it has the following properties:

• G(x, 0) = 1, xl < x < xr,

• G(x,∞) = 0, xl < x < xr because of the property (3) of p(y, s;x, t),

• G(x, t) = P (T (x) > t) =
∫∞
t
−Gt(x, s)ds. Therefore, g(x, t) = −Gt(x, t)

is the probability density function of T (x).

The boundary condition of G(x, t) depends on the physical properties of the

boundaries. For absorbing boundaries,

G(xl, t) = 0, G(xr, t) = 0, ∀t ≥ 0.

Integrating the backward Kolmogorov equation (7.3) by y from xl to xr, we

obtain an equation for the survival probability G(x, t)

∂G(x,t)
∂t

= −a(x, t)∂G(x,t)
∂x
− b(x,t)

2
∂2G(x,t)
∂x2

, ∀x ∈ (xl, xr)

G(x, 0) = 1, x ∈ (xl, xr),

G(xl, t) = 0, G(xr, t) = 0,∀t > 0.

(7.28)

The mean first exit time, denoted as T̃ (x), could be derived from the survival

probability,

T̃ (x) = E(T (x)) =

∫ ∞

0

tg(x, t)dt =

∫ ∞

0

G(x, t)dt. (7.29)

Here we use the integration by parts with assumption limt→∞tG(x, t) = 0. We

can solve for G(x, t) first and then integrate with respect to t to receive T̃ (x).

Normally, it is not easy to find an explicit formula for G(x, t), not to mention

for T̃ (x). However, for some special cases, we could simplify the equation for

T̃ into a second order ODE and find an explicit solution.

Time-homogeneous Case: For the time homogeneous case, a(x, t) = a(x),

b(x, t) = b(x), the equation for the survival probability G(x, t) in (7.28) can

be written as

∂G(x, t)

∂t
= a(x)

∂G(x, t)

∂x
+
b(x)

2

∂2G(x, t)

∂x2
, ∀x ∈ (xl, xr) (7.30)

with the boundary and initial conditions given in (7.28).
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Then we can integrate (7.30) by time t to receive an ordinary differential

equation for T̃ (x).

−1 = a(x)T̃
′
(x) +

b(x)

2
T̃
′′
(x). (7.31)

with absorbing boundary condition T̃ (xl) = T̃ (xr) = 0. Here the ′ is the

derivative with respect to x. This ordinary equation can be solved explicitly

by integrating twice with respect to x [30],

T̃ (x) =

∫ xr
xl

dz
A(z)

∫ z
xl

2A(y)
b(y)

dy
∫ xr
xl

dy
A(y)

∫ x

xl

dy
′

A(y′)
−
∫ x

xl

dz

A(z)

∫ z

xl

2A(y)

b(y)
dy

= 2

∫ xr
xl

dz
A(z)

∫ z
xl

A(y)
b(y)

dy
∫ x
xl

dy
′

A(y′ )
−
∫ xr
xl

dy
A(y)

∫ x
xl

dz
A(z)

∫ z
xl

A(y)
b(y)

dy
∫ xr
xl

dy
A(y)

.(7.32)

where A(y) = exp{
∫ xr
xl

2a(s)
b(s)

ds}.
First passage time analysis has a long history in physics and chemistry [82]

[73] [92] [30], and it has been recently been introduced into Ecology, to study

the animal movement and the impact of environment on the animal movement

distribution. For example, McKenzie et al [60] used it to study red fox arriving

a certain position (static prey) for the first time.

In the following, I will use this idea to study the tumor control probability

(TCP), given the predefined target of no tumor, we ask what is the probability

of an initial tumor to arrive at this target after treatment.

7.3 Tumor Control Probability

When it comes to radiation treatment of tumor, we let X(t) denote the number

of tumor cells at time t. The tumor control probability could be solved from the

survival probability G(x, t) (of tumor). To avoid the confusion of the survival

probability of patients, we will call G(x, t) as tumor persistent probability in

the following sections.

Now, let us assume that the number of tumor cells is in the interval of [0,M0]

(M0 could be chosen, for example, the uncontrolled tumor size). The transition

p.d.f p(y, s;x, t) is the probability to have y tumor cells at time s, given x tumor
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cells at time t; T̃ (x) = T̃0,M0(x) is the mean time to first exit the tumor size

domain [0,M0].

We are going to study the parabolic equation in (7.28), the required Mathe-

matical background regarding to parabolic problem is reviewed in Appendix

A, all the results are from Evans [26]. Parabolic equation in (7.28) with both

absorbing boundary condition has been studied in Redner [73]. To distinguish

the probability of the particle to exit on the left or right boundary, respec-

tively, Redner studied the splitting probability which is defined on exit from

one boundary before hitting the other. In Section 7.3.1, we will study the

treatment success probability that tumor exit x = 0 before hitting x = M0

and the mean time needed for treatment success. We use the method of eigen-

function expansion to solve the corresponding boundary problem. The related

Mathematical results are listed in Appendix B, which are from Walter [93] and

Duffy [21].

Besides, we study the parabolic equation in (7.28) with no hope boundary

condition at x = M0, we call it treatment failure problem in Section 7.3.2. In

this problem, we let x = M0 be the uncontrollable tumor size: once the tumor

arrive this size, it will persist until the patient dies. This treatment failure

problem results in an interesting boundary problem for the mean treatment

success time. Eigenfunction expansion of the treatment failure problem shows

that the mean treatment success time will be unbounded. We will study this

problem in detail in Section 7.3.2 and Section 7.3.3.

7.3.1 Two-side Absorbing Boundary Problem

In the following, we study the time-homogeneous case (7.30). This corresponds

to the case of constant treatment, where the birth rate and death rate per

capita are independent of time and a(x, t) = a(x), b(x, t) = b(x). Including

the boundary and initial condition, we have





∂G(x,t)
∂t

= a(x)∂G(x,t)
∂x

+ b(x)
2

∂2G(x,t)
∂x2

, ∀x ∈ (0,M0)× (0, T ].

G(0, t) = 0, G(M0, t) = 0, ∀t ∈ [0, T ].

G(x, 0) = 1,∀x ∈ (0,M0).

(7.33)
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Based on the Theorems in Appendix A, our problem (7.33) has U = (0,M0) ⊂
R, and differential operator LG = − b(x)

2
∂2G
∂x2
− a(x)∂G

∂x
. From (7.25), we know

that the coefficient of the second derivative c(x, t) = b(x, t) > 0, which means

that our problem (7.33) is parabolic. Because the coefficients a(x), b(x) ∈
L∞(UT ), the known functions f = 0 ∈ C∞(UT ), g = 1 ∈ C∞(U), based on the

note after Theorem A.2, we have the tumor persistent probability G(x, t) in

the constant treatment is C∞(UT ).

Theorem 7.3.1. There is a unique solution for the tumor persistent probabil-

ity G(x, t) ∈ C∞(UT ) to solve the time homogeneous problem (7.33).

Because the boundary condition is 0 and initial condition is 1, by the Maximum

Principle Theorem, G(x, t) has values between 0 and 1, ∀(x, t) ∈ UT .

We simulate the tumor persistent probability G(x, t) and draw the contour

lines for G(x, t) in Figure 7.1 (left), the x-axis is the initial number of tumor

cells and the y-axis is the time. The right graph plots G(x, t) as a function of

t for three chosen initial tumor cells x = M0/4, M0/2,
3
4
M0. We can see from

Figure 7.1 (right) that G(x, t) stays in the interval of [0, 1].

We could continue to compute the mean first exit time T̃ (x), which is not a

useful quality for our problem, since it describes the mean time that tumor

’exits’ the domain [xl, xr] = [0,M0] either by treatment success from ’0’ or

from ’M0’. We are more interested in the probability of treatment success, so

we look at the probability of exit from x = 0 before hitting x = M0.

Probability of Treatment Success

We study this problem based on the personal communication with Professor

Mark Lewis at the Center for Mathematical Biology, at the University of Al-

berta. Related background can be found in the book of Redner [73], where

instead of splitting probability, we give it a name of probability of treatment

success here.

Denoted E−(x) as the probability of exit from x = 0 before hitting x = M0

with x the initial tumor cell numbers. Denote

PT−(x) := {all paths that a particle goes from x to 0 before hitting M0}.
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Figure 7.1: Tumor persistent probability with two absorbing bound-

ary conditions. The left graph is the contour of G(x, t) as a function of num-

ber of tumor cells x and time t, the right graph plot G(x, t) as a function of time

t when the initial number of tumor cells x is fixed to x = M0/2,M0/4,
3
4
M0.

Note that the set of possible paths might be uncountable. If this is the case,

more formal probability arguments need to be used (see Dynkin’s formula

[67]). Here we only present the formal derivation where we implicitly assume

that PT− is countable.

Pp−(x) the probability of a path p− ∈ PT−(x). Therefore,

E−(x) =
∑

p−

Pp−(x). (7.34)

We assume the time step ∆t is small enough such that, if the initial number

of tumor cells is x, after one time step ∆t, it will be either x+ 1 or x− 1 or x
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with probability of R(x), L(x) and 1− (R(x) + L(x)), respectively. We derive

a recursive relation for E−(x):

E−(x) =
∑

p−∈PT−(x+1)

R(x)∆tPp−(x+ 1) +
∑

p−∈PT−(x−1)

L(x)∆tPp−(x− 1)

+
∑

p−∈PT−(x)

(1−R(x)∆t− L(x)∆t)Pp−(x)

= R(x)∆tE−(x+ 1) + L(x)∆tE−(x− 1) + (1−R(x)∆t− L(x)∆t)E−(x)

= E−(x) + a(x)∆tE
′
− + b(x)

2
∆tE

′′
− + h.o.t.

(7.35)

where we use Taylor expansion theorem in the last equation and a(x), b(x) are

defined by (7.24, 7.25). So for the leading order we have boundary problem

for E− as following 



b(x)

2
E
′′

−(x) + a(x)E
′

− = 0,

E−(0) = 1,

E−(M0) = 0.

(7.36)

Example. For constant treatment, a(x) = (µ−h)x and b(x) = (µ+h)x, define

α = 2(µ − h)/(µ + h), the first equation of problem (7.36) is E
′′
− + αE

′
− = 0.

Denote p(x) = eαx, problem (7.36) changes into



(
p(x)E

′
−(x)

)′
= 0,

E−(0) = 1,

E−(M0) = 0.

(7.37)

It can be solved by integrating twice:

E−(x) =
e−αM0 − e−αx
e−αM0 − 1

. (7.38)

E− is a decreasing function of x, that means, the larger the initial tumor, the

harder it is to kill the tumor. We plot the probability of treatment success

E− as a function of α in Figure 7.2. We find that when α = 2(µ−h)
h+µ

< 0, E− is

a concave down function and when α > 0, E− is concave up. That is to say,

when the birth rate µ is bigger than the death rate h induced by radiation

(α > 0), then the probability of treatment success is small for larger initial

tumor size; however, when the birth rate µ is smaller than the death rate h,

the tumor is easier to treat, so for most of initial tumor cells, E− remains at a

number close to 1.
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Figure 7.2: The left exit probability before hitting the right boundary

for four choices of α value. When α > 0, the probability of treatment

success is quite small, while α < 0 brings the probability of treatment success

to a high level near 1.

Mean Time of Treatment Success

Next we compute the time needed to exit the left boundary before hitting the

right boundary.

Assume we initially have x tumor cells, denote tp−(x) as the time for each

path in PT−(x) to exit from the left boundary x = 0 before touching the right

boundary x = M0. Define the mean exit time from the left boundary as

t−(x) =

∑
p−
tp−(x)Pp−(x)

∑
p−
Pp−(x)

=

∑
p−
tp−(x)Pp−(x)

E−(x)
. (7.39)
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Similarly as the the derivation of E−, we have

t−(x)E−(x) =
∑

p−∈PT−(x)

tp−(x)Pp−(x)

=
∑

p−∈PT−(x+1)

R(x)∆tPp−(x+ 1)
[
tp−(x+ 1) + ∆t

]

+
∑

p−∈PT−(x−1)

L(x)∆tPp−(x−∆x)
[
tp−(x− 1) + ∆t

]

+
∑

p−∈PT−(x)

(1− (R(x) + L(x)) ∆t)Pp−(x)
[
tp−(x) + ∆t

]

= R(x)∆t [t−(x+ 1)E−(x+ 1)] + (∆t)2R(x)E−(x+ 1)

+L(x)∆t[t−(x− 1)E−(x− 1)] + (∆t)2L(x)E−(x− 1)

+ (1− (R(x) + L(x)) ∆t) [t−(x)E−(x)] + (1− (L(x) +R(x)) ∆t) ∆tE−(x)

= t−(x)E−(x) + (R(x)− L(x))∆t (t−(x)E−(x))
′

+ (R(x)+L(x))∆t
2

(t−(x)E−(x))
′′

+ ∆tE−(x) + h.o.t.

where we use Taylor expansion and (7.36) in the last equation. We can further

simplify it as follows,





(R(x)+L(x))
2

(t−(x)E−)
′′
(x) + (R(x)− L(x))(t−(x)E−)

′
= −E−(x), in J = (0,M0)

t−(0)E−(0) = 0

t−(M0)E−(M0) = 0.

(7.40)

Note, the first boundary condition follows because t−(0) = 0 and the second

comes from E−(M0) = 0. The treatment success probability E−(x) is known

from (7.38). We know that R(x)−L(x) = a(x) = (µ−h)x, R(x)+L(x)
2

= b(x)
2

=
h+µ

2
x. Let α = a(x)/b(x), we can obtain an equation for w(x) := t−(x)E−(x)

as follows




w
′′
(x) + αw

′
(x) = −E−(x)

b(x)
= − e−αx−e−αM0

(1−e−αM0 )b(x)
= θ e

−αM0−e−αx
x

:= g(x),

w(0) = 0,

w(M0) = 0.

(7.41)

where θ = − 2
(1−e−αM0 )(h+µ)

.

Let us study the eigenvalue problem corresponding to (7.41),

w̃
′′

+ αw̃
′
= −λw̃, in J = (0,M0), w̃(0) = w̃(M0) = 0.
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Lemma 7.3.2. When ∆ = α2−4λ ≥ 0, the above problem only has the trivial

solution. When ∆ = α2 − 4λ < 0, the above problem has nontrivial solutions

at some particular values of λ, denoted as λk and called eigenvalues, their

corresponding eigenfunction wk as follows,

λk =
(kπ/M0)2 + α2

4
, wk(x) = e−

α
2
xsin(

kπ

M0

x), k = 1, 2, · · · . (7.42)

and wk, k ≥ 1 are orthogonal to each other by a weighted inner product in L2,

i.e.,

< wk, wm >ρ=

∫ M0

0

eαxwk(x)wm(x) =

{
0, k 6= m
M0

2
, k = m.

(7.43)

By the superposition principle, w̃(x) =
∑n

k=1 ckwk is also a solution of the

above problem, where ck are any constants. We use the method of eigenfunc-

tion expansion to solve (7.41).

Theorem 7.3.3. The solution of semihomogeneous problem (7.41) is

w(x) = −
∞∑

k=1

gk
λk
wk(x). (7.44)

where wk, λk are defined as (7.42) and gk are the coefficients of Fourier expan-

sion of g(x) corresponding to wk, i.e.,

gk(x) =
< g,wk >ρ

< wk, wk >ρ

=

∫M0

0
eαxg1(x)wk(x)dx

∫M0

0
eαxwk(x)wk(x)dx

=
2θ

M0

[
e−αM0

∫ M0

0

e
α
2
x

x
sin

(
kπ

M0

x

)
dx

−
∫ M0

0

e−
α
2
x

x
sin

(
kπ

M0

x

)
dx

]
, (7.45)

where θ = − 2
(1−e−αM0 )(µ+h)

.

Notice that sin(x)
x

is continuous and integrable at x = 0, hence there is no

singularity in the integral of (7.45).

In the left of Figure 7.3 and 7.4, we plot the Fourier series (7.44) up to Kmax =

700 for α = 0.02 and α = −0.02, respectively. We find in Figure 7.3 that w has
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Figure 7.3: The computation of w (left) and time t− for α = 0.02.

Calculation is up to Kmax = 700.

values of near zero for x ≥ 300, since E− is close to zero in that region. The

oscillation of w(x) in Figure 7.4 comes from the sin
(
kπ
M0
x
)

in the eigenfunction

wk and our truncation of calculation to Kmax = 700. When we increase this

Kmax into a higher number, the amplitude of oscillation will decrease and

eventually disappear.

Once w(x) is found, we could solve the mean time to kill the tumor as

t−(x) =
w(x)

E−
=

w(x)
e−αM0−e−αx
e−αM0−1

. (7.46)

We show t−(x) in the right panel of Figure 7.3 and Figure 7.4. Because of the

oscillations of the w below zero at the right boundary, we only calculate the

corresponding t−(x) for w > 0. The time t−(x) shows a hump: it increases

for a small initial tumor sizes and then decreases for larger initial tumor size.

This happens because t−(x) is the expected time for tumor cells to die before

treatment failure over all the paths that tumor cells die out. When the tumor

cell numbers become large enough, the number of paths that reach zero before

hitting x = M0 decrease quickly such that the mean time for tumor to die,

over all successful treatment paths, decreases.
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Figure 7.4: The computation of w (left) and time t− for α = −0.02.

Calculation is up to Kmax = 700.

7.3.2 Treatment Failure Problem

Here we still consider the domain as [xl, xr] = [0,M0], but we assume that

tumor can only exit the domain from xl = 0, which means successful treatment.

This problem is not derived from the definition of tumor persistent probability;

instead we study this problem for the sake of mathematical curiosity, because

it leads to an interesting mathematical problem. Now we have the survival

probability satisfies:





∂G(x,t)
∂t

= a(x)∂G(x,t)
∂x

+ b(x)
2

∂2G(x,t)
∂x2

. (x, t) ∈ (0,M0)× (0,∞)

G(x, 0) = 1,∀x ∈ [0,M0]

G(0, t) = 0,∀t ∈ [0,∞).

G(M0, t) = 1,∀t ∈ [0,∞).

(7.47)

We choose the right hand side boundary condition as G(M0, t) = 1, because

we consider the situation that once the number of tumor cells arrive the size

M0, the tumor is out of control, and tumor will persist until the patient dies;

we also name this boundary as no hope boundary condition.
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Compared to the parabolic problem (A.1), problem (7.47) has an inhomoge-

neous boundary condition. We could easily find a C∞ function φ(x, t) such

that φ(0, t) = 0, φ(M0, t) = 1, for example φ(x, t) = x
M0

. Define u(x, t) =

G(x, t)− φ(x, t), then

ut = Gt,
∂u

∂x
=
∂G

∂x
− 1

M0

,
∂2u

∂x2
=
∂2G

∂x2
.

and u(x, t) satisfies




∂u(x,t)
∂t

= a(x)∂u(x,t)
∂x

+ b(x)
2

∂2u(x,t)
∂x2

+ a(x)
M0

. (x, t) ∈ (0,M0)× (0,∞)

u(x, 0) = 1− x
M0
, ∀x ∈ [0,M0]

u(0, t) = 0, ∀t ∈ [0,∞).

u(M0, t) = 0, ∀t ∈ [0,∞).

(7.48)

Using theorems as in Appendix A, we can prove the existence of solutions in

UT = [0,M0]× [0, T ] and the solution is in C∞(UT ) provided a(x), b(x) ∈ C∞.

Also, by the Maximum Principle, G(x, t) has values between 0 and 1. Then

we can extend the problem to [0,M0]× [nT, (n+ 1)T ], n ≥ 1 and use the same

theorems to prove the existence of the solution for G(x, t) in (0,M0)× (0,∞).

The tumor control probability can be defined as TCP (x, t) = 1−G(x, t). We

can solve for the G(x, t) function to receive TCP and integrate by t to receive

mean exit time T̃ (x).

Example. We choose the birth rate µ as a constant. In Dawson et al [20],

they choose birth rate for active and quiescent cells as µa = 0.0655 day −1

and µq = 0.0476 day −1 respectively. Here we just have one compartment, we

choose µ = µq
µa+µq

µa, and for death rate, h(t) only comes from the radiation

treatment as we assume the natural death is negligible. We take the effective

hazard function with finite window (see [20]), i.e.

h(t) = (α + 2β (D(t)−D(t− ω)) Ḋ(t).

where Ḋ(t) is the dose rate, ω is the interaction window that two DSB can

interact with each other, and α, β are radiosensitivity parameters. We choose

α = 0.26 Gy−1 and β = 0.031 Gy−2 the same as Nahum et al [62].

These choice of parameters makes a(x) in (7.24) < 0 and b(x) in (7.25) > 0,

equation (7.47) is a advection-diffusion problem, and values of a(x), b(x) allow
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us to solve the problem by a forward-center scheme. We calculate the problem

(7.47) in the domain [0,M0], and draw TCP (x, t) = 1 − G(x, t) values for

initial tumor cell numbers x = M0/2 as a function of time t on the left of

Figure 7.5. We also compute the mean time for treatment success T̃ (x) from

its definition (7.29). Instead of the integral, we sum up all the discrete values

of G(x, t) up to our simulation time T and plot T̃ (x) as a function of initial

tumor cell numbers x on the right of Figure 7.5.
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Figure 7.5: TCP for treatment failure problem. On the left, we compute

the TCP as a function of time with initial tumor cell numbers of x = M0/2;

on the right, we calculate the mean treatment success time T̃ (x) as a function

of initial tumor cell numbers up to our simulation time T = 421.8 hours.

Note we can also derive the ODE for mean exit time T̃ (x) with interesting

boundary conditions. The right hand side boundary has changed into T̃ (M0) =
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∞. i.e. 



a(x)dT̃ (x)
dx

+ b(x)
2

d2T̃ (x)
dx2

= −1, x ∈ (0,M0)

T̃ (0) = 0

T̃ (M0) =∞.
(7.49)

Mathematically this is a very interesting boundary value problem. To see

whether a solution to this problem exists, we go back to study the problem

(7.48). This problem could have a Fourier series solution. To make things

easier, we first look at the constant coefficients a, b, then the time-homogeneous

coefficients a(x), b(x).

7.3.3 Green Function For Parabolic Equation (7.48)

To solve equation (7.48), we use the method of eigenfunction expansion. We

first look at the corresponding homogeneous equation and look for a non-trivial

solution in a form of u(x, t) = V (x)T (t), which gives

V T
′
= aV

′
T +

b

2
V
′′
T,

by dividing V (x)T (t) on both sides, we have

T
′

T
=
aV

′
+ b

2
V
′′

V

The first term of the above equation is a function of time t and the second

term is a function of x, the only situation which make them equal is when they

are constants, denoted as -λ. We end up with a problem of V (x) as




aV
′
+ b

2
V
′′

= −λV (x, t) ∈ (0,M0)

V (0) = 0

V (M0) = 0.

(7.50)

This problem has a non-trivial solution when a2

b2
< 2λ

b
, there are infinitely

many such λ and corresponding V (x), we denote each one with a subscript n

as

λn =
µ2
nb

2 + a2

2b
, n = 1, 2, · · · (7.51)

Vn(x) = e−
a
b
xsin(µnx), n = 1, 2, · · · (7.52)
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where µn =
√

2bλn−a2
b2

= nπ
M0

. Note Vn(x) are orthogonal to each other with a

weight

ρ(x) = e
2a
b
x

i.e.,

∫ M0

0

ρ(x)Vn(x)Vm(x)dx =

∫ M0

0

sin(µnx)sin(µmx)dx =

{
0, m 6= n

M0

2
, m = n.

(7.53)

We denote the ρ-weighted inner product in L2
ρ([0,M0]) as

< f, g >ρ=

∫ M0

0

ρ(x)f(x)g(x)dx (7.54)

and the corresponding norm as

‖ f ‖2
ρ=< f, f >ρ .

Theorem 7.3.4. Let a(x) = a, b(x) = b be constants, given eigenvalue and

eigenfunction pair (λn, Vn(x)) as defined in (7.51,7.52), denote

g(x) := 1− x

M0

=
∞∑

n=1

gnVn(x), (7.55)

h(x) :=
a

M0

=
∞∑

n=1

hnVn(x). (7.56)

where gn =
< g(x), Vn(x) >ρ

‖ Vn ‖2
ρ

and hn =
< h(x), Vn(x) >ρ

‖ Vn ‖2
ρ

.We have the follow-

ing results,

(1) ū(x, t) =
∞∑

n=1

gne
−λntVn(x) is the solution of the homogeneous BVP cor-

responding to (7.48), i.e.





∂ū(x,t)
∂t

= a∂ū(x,t)
∂x

+ b
2
∂2ū(x,t)
∂x2

, (x, t) ∈ (0,M0)

ū(x, 0) = g(x), ∀x ∈ [0,M0]

ū(0, t) = ū(M0, t) = 0, ∀t ∈ [0,∞)

(7.57)
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(2) We can write down the Green function for the linear operator L = ∂
∂t
−

a ∂
∂x
− b

2
∂2

∂x2
as

Φ(x, t; ξ, s) =
∞∑

n=1

e−λn(t−s)

‖ Vn ‖2
ρ

Vn(x)Vn(ξ)H(t− s), t, s > 0;x, ξ ∈ [0,M0].

(7.58)

where H(t− s) is the Heaviside step function. H(t) is defined as

H(t) =

{
1, t ≥ 0

0, t < 0
(7.59)

and its derivative is a δ-distribution, i.e., Ht(t) = δ(t). In this case,

ū(x, t) in item (1) can be written as

ū(x, t) =
∞∑

n=1

gne
−λntVn(x) =

∞∑

n=1

< g(x), Vn(x) >ρ

‖ Vn ‖2
ρ

e−λntVn(x)

=
∞∑

n=1

1

‖ Vn ‖2
ρ

e−λntVn(x)

∫ M0

0

ρ(ξ)g(ξ)Vn(ξ)dξ

= < Φ(x, t; ξ, 0), g(ξ) >ρ (7.60)

(3) The solution of the inhomogeneous problem (7.48) is

u(x, t) =< Φ(x, t; ξ, 0), g(ξ) >ρ +

∫ t

0

< Φ(x, t; ξ, s), h(ξ) >ρ ds. (7.61)

When the coefficients a(x), b(x) are not constant, the eigenvalue problem is

{
a(x)V

′
+ b(x)

2
V
′′

= −λV (x, t) ∈ (0,M0)

V (0) = 0 = V (M0).
(7.62)

This divergent form can be written as the self-adjoint form as

L̂ =
(
p(x)V (x)

′
)′

= −λ 2

b(x)
p(x)V, (7.63)

where p(x) = e
∫ x
0

2a(s)
b(s)

ds. By Sturm-Liouville Theorem B.7, we know there

exist real value eigenvalue λ̃n and their corresponding eigenfunctions Ṽn(x).

Replacing λn, Vn(x) by λ̃n and Ṽn(x), we have a similar result.
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7.3. TUMOR CONTROL PROBABILITY

Now let us go back to the inhomogeneous problem (7.47). Notice

x

M0

= 1− g(x, t) =
M0

a
h(x, t)− g(x, t) =

∑

n

(
M0

a
hn − gn

)
Vn(x)

Therefore, the solution of (7.47) is

G(x, t) = u(x, t) +
x

M0

=
∞∑

n=1

un(t)Vn(x) +
∞∑

n=1

(
M0

a
hn − gn

)
Vn(x)

=
∞∑

n=1

[
gne
−λnt +

hn
λn

(1− e−λnt) +
M0

a
hn − gn

]
Vn(x) (7.64)

Integrating of the above G(x, t) with respect to time t from 0 to ∞ will result

in the mean first exit time T̃ (x) to be unbounded.

Corollary 7.3.5. The solution T̃ (x) of (7.49) satisfies

T̃ (x) =

{
0, for x = 0,

∞, for x 6= 0.
(7.65)

Proof. Assume T̃ (x) < ∞ for 0 < x < ∞. Then T̃ (x) =
∫∞

0
G(x, t)dt < ∞.

Since the solution G(x, t) exists, its integral needs to coincide with T̃ (x).

Now we consider G(x, t) = u(x, t) + x
M0

with u(x, t) ≥ 0 and study

∫ R

0

G(x, t)dt =

∫ R

0

u(x, t)dt+

∫ R

0

x

M0

dt ≥ xR

M0

R→∞−−−−−−−→∞for x 6= 0

which contradicts the assumption of T̃ (x) <∞.

Therefore, we restrict to our treatment period to the interval [0, T ]. The mean

first exit time T̃ (x) =
∫ T

0
G(x, t)dt can be solved explicitly





a(x)dT̃ (x)
dx

+ b(x)
2

d2T̃ (x)
dx2

= −1, x ∈ (0,M0)

T̃ (0) = 0

T̃ (M0) = T.

(7.66)

which has the solution

T̃ (x) =
T +

∫M0

0
dz
A(z)

∫ z
0

2A(y)
b(y)

dy
∫M0

0
dy
A(y)

∫ x

0

dy
′

A(y′)
−
∫ x

0

dz

A(z)

∫ z

0

2A(y)

b(y)
dy (7.67)

where A(y) = exp{
∫ y

0
2a(s)
b(s)

ds}.
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7.4. CONCLUSION

7.4 Conclusion

In this chapter, we use two methods to study the tumor control probability.

These two methods cannot be compared. The method in Section 7.3.1 studies

the probability of tumor treatment success, under the assumption that treat-

ment will eventually succeed. Therefore, this treatment success E−(x) is just

a function of initial tumor size rather than time. In contrast, the method in

Section 7.3.2 is a function of both time and initial tumor size.

This chapter is full of mathematical results. To make it more clear, in this

section, we are going to clarify the process how to use the above models to

calculate the TCP for a given treatment.

We first need the information for the initial tumor size x0, and determine the

fatal tumor size M0 such that x0 ∈ [0,M0] for a treatable tumor.

Then we need to know the birth rate µ per capita, α, β values in the Linear

Quadratic (LQ) model and the treatment schedule, such that we could calcu-

late R(x), L(x) as a random walk and therefore the advection-coefficient a(x)

and the diffusion coefficient b(x)
2

in equation (7.47).

After all the information has been given, we could solve the parabolic problem

(7.47) to calculate the tumor persistent probability G(x, t), then we could find

the tumor control probability TCP (x0, t) = 1−G(x0, t), and we could compute

the average time all the tumor cells are killed T̃ (x0) =
∫ T

0
G(x0, t)dt.
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Chapter 8

Conclusion

Radiotherapy has become an effective method to treat cancer. In this thesis,

I mainly studied mathematical models to quantify radiation treatment sched-

ules, for both cancer cell-killing and normal tissue complication. These models

are extensions of classic cell survival models and are based upon ordinary dif-

ferential equations (ODEs) and birth-death processes. I first reviewed classical

cell survival models and generalized the hazard functions to include various

formulations into one general framework. The hazard function describes the

death rate caused by radiation and can be used within population models to

describe radiation-induced cell death.

The tumor control probability (TCP) is a mathematical model to quantify the

probability of tumor eradication. I began my analysis with the simple Poisson

TCP where I included regrowth for realistic treatment schedules. I argued

that the Gompertzian model is not useful for the study of tumor extinction

since it overestimates the growth rate for small tumor size. Hence, I focused

my optimization studies on exponential and logistic regrowth. I optimized the

TCP under the constraint of limited cumulative radiation effect (CRE) onto

normal tissue. My results support the usage of hyperfractionated treatments

to reduce damage to healthy tissue. The Poisson model for the TCP and the

CRE model are relatively simple models. They do not include many effects;

for example, stochastic effects, which might be important for small tumor

sizes. Motivated by extinction studies from Ecology, I considered models for
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TCP and Normal tissue complication probability (NTCP) which are based on

stochastic processes.

The first non-Poisson TCP I studied was the TCP from a birth-death process.

First, I reviewed the models of Zaider-Minerbo [101] and Dawson-Hillen [20].

The Zaider-Minerbo model is the first TCP model that allows for arbitrary

treatment schedules and it had a huge impact in this field. The Dawson-

Hillen model is an extension to include cell-cycle dynamics. I generalized these

two models into one framework and proposed a general algorithm to derive a

TCP model from birth-death processes. Simulations of this generalized TCP

model show that the Zaider-Minerbo model makes the same predictions as the

more complicated Dawson-Hillen model and my general model for low dose

rate, whereas the predictions differ for higher dose per fraction. Compared

to the Zaider-Minerbo model, a large quiescent compartment requires more

treatment dose or treatment time to cure the tumor. This result is confirmed

by another project in which I was involved, but it is not included in this thesis.

In that project with two other students, M. dos Santos and C. Finlay, and with

Prof. T. Hillen, we compared six TCP models: Poisson TCP, birth-death

TCP, and Monte-Carlo TCP with one and two compartments. We confirmed

that the more complicated models indeed make the same predictions as the

simplest Poisson TCP for a slow-growing tumor. When tumor cells have a

shorter doubling time, however, the difference between non-Poisson TCP and

Poisson TCP will increase. We presented these results in a paper appearing

in Mathematical Medicine Biology, a journal of the IMA [31].

Furthermore, I was able to use the general algorithm from above to derive a

TCP model for a tumor with tumor stem cells. This is, to my knowledge, the

first time that tumor stem cells were included in a TCP model. I found that

the proportion of the stem cells in a tumor cluster will affect the treatment:

the less stem cells in the cluster, the easier the tumor is treated. In Hillen et al

[38], the stem cell model has been used to explain the tumor growth paradox.

It says that a partially treated tumor might grow bigger than it was before

the treatment. Using my stem-cell TCP, I did not observe this paradox, since

I am looking at the tumor eradication and not relapse.
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Besides the TCP models mentioned above for tumor cells, I also derived a

model for normal tissue complication probability (NTCP) from a birth-death

process. The existent NTCP models do not consider the growth of the normal

tissue. The new NTCP model, which I derived, includes growth and its mean

field equation is characterized by logistic growth. Incidently, the calculation

of the NTCP also provided an alternative proof to the formula proposed by

Hanin [36] to compute the probability distribution Pi(t) of tumor cells from the

generating function A(s, t). The formula provided here is faster in simulations.

Finally, I studied a TCP model based on the backward Kolmogorov equation

and the first passage time problem. The first passage time problem is used to

study the probability that a stochastic process X arrives at a preset target for

the first time. Applying this idea to the tumor radiation treatment, I studied

the time needed for the numbers of tumor cells X to arrive at the target X = 0,

i.e., the probability that the tumor cell amount reduces to 0. For this model,

I studied two special cases where, in both cases, the tumor size X is in a finite

domain [0,M0]. The first case assumes that the tumor can exit this domain

either by treatment success at x = 0 or patient death at x = M0. This case

results in an estimation of treatment success as a function of the initial number

of tumor cells. We solve it by the method of eigenfunction expansion. The

other case has a no hope boundary at x = M0: once the tumor reaches size

x = M0, it will persist until the patient dies. This case leads to an interesting

and new boundary condition for the mean exit time equation. I studied this

new problem by Green’s function method and I showed that the eigenfunction

expansion of the tumor persistent probability results in an unbounded mean

exit time.

The use of the CRE model has been discouraged by Fowler in 1989, and since

then it has not been used extensively. I found that Fowler’s criticism with

the CRE might be related to the weak fitting of the corresponding exponents.

Yet I think that there is still merit in the CRE model, if it assumes a gen-

eral power-law relation between treatment dose, numbers of treatment, and

intertreatment time with the damage on healthy tissue. I suggest that clini-

cal data should be collected and fitted to the general power law CRE model
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(4.3). It might be a good model for daily treatment planning because of its

simplicity.

In my studies, I found that the Poisson TCP does a remarkably good job in es-

timating the TCP. This can potentially be seen in the wider context of cancer

growth and treatment. Cancer growth is a very complex phenomenon, which

includes various cell types, such as stem cells, transient cells, quiescent cells,

invading cells, metastasis, and other genetic variants All of these cells inter-

act with each other and with the healthy surrounding tissue in a complicated

fashion (competition for nutrients, competition for space, interaction with the

immune system, etc.). In addition, each tumor is different. A liver tumor of

one patient might be quite different from a liver tumor of another patient.

Hence it cannot be expected that a one-for-all treatment from the shelf would

do an equally good job on all patients. More and more effort is focused on

the design of individual treatment schedules, and I hope that my thesis can

contribute to the individual treatment design. Mathematical Models, as dis-

cussed here, typically depend on a number of parameters, for example the α

and β sensitivities. These could be measured individually. Hence, individual

treatment can be designed.

A fully accurate model for cancer growth would need to include all the effects

which are mentioned above. But this is not possible and also not quite useful.

A good mathematical model should focus on the relevant issues and ignore the

irrelevant issues. In the context of optimal radiation treatment, we showed that

the Poisson model covers most of the complexity that is relevant in every day

radiation treatment planning. It seems that inclusion of further complexities

in these models is only warranted if absolutely necessary. Hence we might

decide that the Poisson TCP is good enough and focus our efforts on other

complexities, such as cell-immune interactions, volume constraints, cell-cell

competitions and genetic instabilities.

Future research could study the optimization of treatment based on the Poisson

TCP and NTCP from the birth-death process. All the models in this thesis

only consider the change of the numbers of tumor cells. It would be interesting

to study the spatial heterogeneous effects and the effect of the treatment on
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these models.
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Appendix A

Results for Parabolic Equations

Evans [26] proved, in his book, the unique existence of the weak solution for

an initial-boundary-value (IBV) parabolic problem defined as (A.1-A.3) on a

domain UT = U× (0, T ], where U is an open, bounded subset of Rn and T > 0

is some fixed time. The IVB problem is read as




∂u(x,t)
∂t

+ Lu = f in UT

u = 0 on ∂U × [0, T ]

u = g on U × {t = 0}
(A.1)

here f : UT → R and g : U → R are given, and u : ŪT → R is unknown.

The operator L denotes a second-order partial differential operator in the

divergence form

Lu = −
n∑

i,j=1

(ci,j(x, t)uxi)xj +
n∑

i=1

di(x, t)uxi + e(x, t)u (A.2)

Definition A.1. Assume L is given by (A.2). We say the differential operator
∂
∂t

+ L is (uniformly) parabolic, if there exists a constant θ > 0 such that

n∑

i,j=1

ci,j(x, t)ξiξj ≥ θ|ξ|2, ∀(x, t) ∈ Ut, and ξ ∈ Rn. (A.3)

We also say the differential operator L is (uniformly) elliptic.

Theorem A.2. (See Evans [26]) When ci,j(x, t), di(x, t), e(x, t) ∈ L∞(UT ), i, j =

1, · · · , n, f ∈ L2(UT ), g ∈ L2(U) and ci,j = cj,i, i, j = 1, · · · , n, considering

[u(t)](x) := u(x, t), and [f(t)](x) := f(t, x), x ∈ U, 0 ≤ t ≤ T,
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then there is an unique function u ∈ L2(0, T ;H1
0 (U)) with u

′ ∈ L2(0, T ;H−1(U))

which is a weak solution of (A.1) satisfying

< u
′
, v > +B[u, v; t] = (f , v),∀v ∈ H1

0 (U) and a.e. 0 ≤ t ≤ T (A.4)

u(0) = g. (A.5)

where <,> is the pairing of H−1(U) and H1
0 (U) and B[u, v; t] is a bilinear

operator defined as

B[u, v; t] :=

∫

U

n∑

i,j=1

ci,j(·, t)uxivxj +
n∑

i=1

di(·, t)uxiv + e(·, t)uvdx, (A.6)

∀u, v ∈ H1
0 (U) and a.e. 0 ≤ t ≤ T. (f , v) denotes the inner product in L2(U),

(f , v) =

∫

U

f(·, t)vdx, ∀v ∈ H1
0 (U) and a.e. 0 ≤ t ≤ T.

Note: The proof of this theorem uses the method of Galerkin approximations

in Sobolev spaces. Furthermore, when the regularities of f, g increase, the regu-

larity of u will also increase correspondingly. Especially, when ci,j(x, t), di(x, t),

e(x, t) ∈ L∞(UT ), i, j = 1, · · · , n, if g ∈ C∞(Ū), f ∈ C∞(ŪT ) and compatibil-

ity conditions

g0 := g ∈ H2
0 (U), gm :=

dm−1

dtm−1
f(0)− Lgm−1 ∈ H2

0 (U), m = 0, 1, 2, · · ·

hold, then the solution for (A.1) is infinitely times differentiable, i.e. u ∈
C∞(UT ). I will refer to Chapter 7 of Evans’s book [26] for details.

Theorem A.3. (Maximum Principle, see Evans [26]) Assume u ∈ C2
1(UT ) ∩

C(ŪT ) and e(x, t) ≡ 0 in L, denote ΓT = ŪT − UT , then

If ut + Lu ≤ 0 in UT , then max
ŪT

u = max
ΓT

u,

If ut + Lu ≥ 0 in UT , then min
ŪT

u = min
ΓT

u.

There is also Maximum Principle for e(x, t) > 0 in Evans [26], but we only

need the case of e ≡ 0.
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Boundary Value Problem of

Sturm-Liouville Type

The result of this subsection comes from the book of Walter [93] in Chapter

27 and this method is also called Sturm-Liouville method. Here we mainly list

the results for a Sturm-Liouville form operator L̂

L̂v(x) =
(
p(x)v

′
(x)
)′

+ q(x)v, ∀x ∈ J = (0,M0) (B.1)

with two boundary operators

R1v(x) := α1v(0) + α2p(0)v
′
(0), (B.2)

R2v(x) := β1v(M0) + β2p(M0)v
′
(M0). (B.3)

and assumption

p(x) ∈ C1(J), q(x), g(x) ∈ C0(J) are real functions,

p(x) > 0 in J, α2
1 + α2

2 > 0, β2
1 + β2

2 > 0. (B.4)

Note: A more general form of L̂ is written as L̃u = c(x)u
′′

+ d(x)u
′
+ e(x),

this two forms are equivalent under the condition of (B.4) and c(x) 6= 0.

If p(x) ∈ C1(J),
(
p(x)u

′
(x)
)′

+ q(x)u = p(x)u
′′
(x) + p

′
(x)u

′
(x) + q(x)u is in

the form of L̃u; on the other hand, when c(x) 6= 0, dividing c(x) on both

sides of equation L̃u = f , then multiplying the integrating factor p(x) =

exp{
∫ x

0
d(s)
c(s)

ds} > 0, we obtain a Sturm-Liouville operator L̂.

158



REFERENCES

The following theorems tell us whether the inhomogeneous boundary value

problem (BVP)

L̂u = g(x) in J, R1u = η1,R2u = η2. (B.5)

has unique solution or not, depends on the solution of the homogeneous BVP

L̂u = 0 in J, R1u = 0,R2u = 0. (B.6)

Theorem B.4. The inhomogeneous BVP (B.5) has unique solution , if and

only if, the homogeneous BVP (B.6) has only zero solution u ≡ 0. The latter is

true, if and only if, the Wronskian of the boundary operator of u1, u2 satisfies

∣∣∣∣∣
R1u1 R1u2

R2u1 R2u2

∣∣∣∣∣ 6= 0 (B.7)

where u1(x), u2(x) are fundamental system of solution to the homogeneous dif-

ferential equation L̂u = 0 and (B.7) is independent of the choices of u1, u2.

This theorem tells us, once the fundamental system of differential equation

L̂u = 0 is known, we know whether the inhomogeneous BVP (B.5) exists an

unique solution or not; Moreover, we could use this fundamental system to

construct the solution for (B.5). Now we assume homogeneous BVP (B.6) has

only trivial solution in the following.

Definition B.5. (Green function) A continuous function Γ(x, ξ) defined in a

square of xξ-plane (Q = J × J) is called a Green function of problem (B.6)

[21], if

(i) L̂Γ(x, ξ) = δ(x− ξ), ∀x, ξ ∈ J ,

(ii) ∀ fixed ξ ∈ J0 := (a, b), R1Γ(a, ξ) = R2Γ(b, ξ) = 0,

(iii) Γx,Γxx exist and are continuous in Q1 : a ≤ ξ ≤ x ≤ b and Q2 : a ≤ x ≤
ξ ≤ b,

(iv) On the diagonal of Q (x = ξ), Γx(x+, x) − Γx(x−, x) = 1
p(x)

, ∀x ∈ J =

(a, b).

159



REFERENCES

Here Γx(x+, x) and Γx(x−, x) are the right sided derivative and left sided

derivative of Γ with respect to x, respectively.

A Green function is very useful to solve a differential equation. The following

theorem provides us a method to construct a Green function and to find the

solution of an inhomogeneous equation.

Theorem B.6. Suppose (B.4) and (B.7) hold.

(i) The Green function for the homogeneous BVP (B.6) uniquely exists. It

is symmetric (Γ(x, ξ) = Γ(ξ, x)) and defined by

Γ(x, ξ) =
1

c

{
u1(ξ)u2(x), 0 ≤ ξ ≤ x ≤M0

u1(x)u2(ξ), 0 ≤ x ≤ ξ ≤M0

(B.8)

where c = p(x)
(
u1u

′
2 − u

′
1u2

)
6= 0 is a constant, u1, u2 are a fundamental

system of L̂ui = 0 in J .

(ii). The semihomogeneous BVP

L̂v = g(x) in J, R1v = 0,R2v = 0. (B.9)

has a unique solution given by

v(x) =

∫ b

a

Γ(x, ξ)g(ξ)dξ. (B.10)

where Γ(x, ξ) is defined in (B.8).

(iii). For the inhomogeneous BVP (B.5), we could easily find function ψ ∈
C2(J) such that Riψ = ηi, i = 1, 2. Define v = u− ψ, then v satisfying

a semihomogenous BVP

L̂v = L̂u− L̂ψ = g(x)− L̂ψ in J, R1v = 0,R2v = 0. (B.11)

therefore by part (ii),

u(x) = v(x) + ψ(x) =

∫ b

a

Γ(x, ξ)
(
g(ξ)− L̂ψ(ξ)

)
dξ + ψ(x). (B.12)
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The construction of a fundamental system u1, u2 of differential equation L̂u =

0 can be done as follows.

Notice R1 = α1u(0) + α2p(0)u
′
(0), we know (α1, α2) 6= 0, or else α2

1 + α2
2 = 0.

We could always find a pair of constants (c1, c2), such that

α1c1 + α2c2 = 0

u1 could be received by solving

L̂u1 = 0 in J, u1(0) = c1, p(0)u
′

1(0) = c2. (B.13)

That is, u1 satisfies the differential equation and the first boundary condition.

Similarly, find (d1, d2) such that β1c1 + β2c2 = 0 and solve u2 from

L̂u2 = 0 in J, u2(0) = d1, p(0)u
′

2(0) = d2. (B.14)

It could be proved that u1, u2 are linear independent, please see Walter [93].

Another way to construct the Green function is to solve the eigenvalue problem

corresponding to (B.6). The following theorem states the existence of the

eigenvalue and eigenfunction for the Sturm-Liouville eigenvalue problem

L̂u = −λρ(x)u it J = (a, b), R1u = R2u = 0 (B.15)

where L̂,R1 and R2 defined as (B.1-B.3).

Theorem B.7. (see Walter [93]) When p(x) ∈ C1(J), q(x), ρ(x) ∈ C0(J), p(x) >

0, ρ(x) > 0 in J ;α2
1 + α2

2 > 0, β2
1 + β2

2 > 0, the eigenvalue problem (B.15) has

infinitely many simple real eigenvalues

λ1 < λ2 < · · · , λn →∞, n→∞

and no other eigenvalues. The eigenfunction un(x) corresponding to λn has

exactly n zeros in the open interval J0 = (a, b) and orthogonal to each other

in the sense of ∫

x

ρ(x)un(x)um(x)dx = 0, m 6= n. (B.16)

Any function f(x) ∈ C2(J) that satisfies the homogeneous boundary conditions

can be expanded in terms of the eigenfunctions in a series

f(x) =
∞∑

n=1

cnun(x).
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where cn, n ≥ 1 are uniquely calculated from cn =
∫
x ρ(x)un(x)f(x)dx∫
x ρ(x)u2n(x)dx

.

For semihomogeneous problem (B.9), we expand both u(x) and g(x) in series

in terms of un(x), the coefficients of u(x) can be uniquely determined from

the coefficients of g(x). Use the same trick in Theorem B.6 to reduce the

inhomogeneous boundary conditions into homogeneous boundaries, we could

solve the inhomogeneous problem (B.5).

The construction of the Green function from the eigenfunctions are easy to

be extended into time evolution operator ∂
∂t

+ L after Laplace transformation

(see Duffy [21]).

Definition B.8. (Green function for parabolic problem.) For any x, ξ ∈ J and

t, τ > 0, a function Φ(x, t; ξ, τ) is called a Green function of problem (A.1) on

UT = (a, b)× (0, T ], if it is continuous on both space and time, and Φ satisfies

the following conditions with regards to the equation and boundaries

(i) ∂Φ
∂t

+ LxΦ(x, t; ξ, τ) = δ(x− ξ)δ(t− τ),

(ii) ∀ fixed ξ ∈ J and τ > 0, R1Φ(a, t; ξ, τ) = R2Φ(b, t; ξ, τ) = 0,

(iii) Φ(x, 0; ξ, τ) = 0.

Theorem B.9. (see Duffy [21]) Assume a parabolic problem is defined as

(A.1), Φ(x, t; ξ, τ) is its Green function satisfying all conditions in Definition

B.8. The solution of (A.1) u(x, t) can be obtained by

u(x, t) =

∫ t

0

∫ b

a

f(ξ, τ)Φ(x, t; ξ, τ)dξdτ +

∫ b

a

g(ξ)Φ(x, t; ξ, 0)dξ. (B.17)
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