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Abstract—Owing to the growing size and complexity of power
networks, online monitoring of the power system state is a chal-
lenging computational problem. State estimation is paramount
for reliable operation of large-scale power systems. Even with
modern multi-core processors, the large number of computations
in state estimation are still a burden on time and are highly
memory intensive. In this paper the idea of using massively
parallel graphic processing units (GPUs) for weighted least
squares (WLS) based state estimation is introduced and executed.
The GPU is especially designed for processing large data sets.
A data-parallel implementation of the WLS method is proposed.
The speed of the GPU-based state estimation for several test
systems is compared with a sequential CPU-based program. The
simulation results show a speed-up of 38 for a 4992-bus system.

Index Terms—Data parallelism, Graphic processing units (G-
PUs), Parallel processing, Power system state estimation, Weight-
ed least squares (WLS).

I. INTRODUCTION

State estimation is a key energy management system (EMS)
function, and is a vital part of power system operations in
the control center [1]. The increasing size and complexity
of modern power systems has made state estimation a s-
low and computationally expensive process. Therefore, many
researchers have been motivated to investigate faster and
numerically stable state estimation algorithms.

Among various state estimation methods, the weighted
least squares (WLS) algorithm is the most commonly used
method [2]. The WLS is fundamental for other algorithms, but
for large-scale state estimation can be prohibitively slow and
can be sensitive to measurement errors and noise. Advances
in processor technologies and algorithmic enhancements such
as parallel processing open up the possibility of faster state
estimation for large-scale systems [3,4].

There exist two major processor architectures: the multi core
computer processing unit (CPU) and the many core graphic
processing unit (GPU). The CPU, which is the processor in
most of the computers, is composed of only a few cores that
can handle a few software threads at a time. In contrast, the
GPU which is an energy-efficient processor on the market is
composed of hundreds of cores that can simultaneously handle
thousands of threads [5]. The massively parallel processing
capability of the GPU has already started being exploited for
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power system applications such as power flow analysis [6-8]
and transient stability simulation [9-11].

Utilizing the massively parallel architecture of the GPU,
by assigning separate tasks to individual compute unified
device architecture (CUDA) threads, computationally intensive
sections of the state estimation program can be converted into
a CUDA kernel (functional program which generates a large
number of threads for data parallelism). Therefore, all the task
can be off-loaded and executed in parallel utilizing thousands
of threads, thereby accelerating the process of state estimation
significantly.

In this paper the impact of the GPU thread parallelism on
large-scale power system state estimation is demonstrated. To
the best of our knowledge, such a work has not been reported
in the literature. The WLS method is chosen as a candidate
method for parallel implementation. There are several steps in
each iteration of the WLS method including matrix-vector and
matrix-matrix products which are computationally intensive.
Using synchronized GPU threads, individual tasks in each
iteration are parallelized. To achieve the maximum speed-up,
every step is done on the GPU which significantly reduces the
execution time. In addition, instead of matrix inversion which
is one of the most computationally demanding component
in state estimation, a parallel LU decomposition program is
proposed as a solution for solving the linear equation which is
the final step in state estimation. Comparison with the CPU-
based sequential implementation shows speed-up’s of 0.6 to
38 for different case studies. The results are verified in term
of accuracy considering correlated and uncorrelated Gaussian
noise in measurements.

II. WLS STATE ESTIMATION FORMULATION

The weighted least squares method is a commonly used
method for state estimation which tries to minimize the
weighted sum of the squares of the residuals between the
estimated and actual measurements [11]. Consider the mea-
surement set vector M as:

M = h(x)+ε, (1)

The bold notation refers to arrays; M , h(x) and ε, are the
vectors of measurements, nonlinear measurement functions,
and measurement errors, respectively. For a system with n
buses and m lines, there are 2m + 2n + 1 elements in each
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vector: 2m power flows, 2n power injections, and slack bus
measurements. x is a vector of system states comprising of
voltage magnitudes and phase angles. Since the phase angle
in slack bus is considered 0, there are 2n − 1 states to be
estimated. For simplicity, the error vector ε is assumed to be
an uncorrelated Gaussian noise with zero mean. Substituting
the first-order Taylor’s expansion of h(x) around x0 in (1),
we obtain:

M − h(x0) =Hδ(x) + ε, (2)

where H = ∂h
∂x is the (2m + 2n + 1) × (2n − 1) Jacobian

matrix and δ(x) = x−x0 is the (2n− 1)× 1 state mismatch
vector. The objective function J(x) to be minimized by the
WLS formulation can be expressed as:

J(x) =
2m+2n+1∑

k=1

(Mk − hk(x))
2R−1

kk ,

= [M − h(x)]TR−1[M − h(x)],

(3)

where R is the (2m+2n+1)×(2m+2n+1) covariance matrix.
Index k refers to the kth measurement. The following equation
satisfies the first-order optimality condition at the minimum of
J(x):

g(x) =
∂J

∂x
=HT (x)R−1[M − h(x)] = 0, (4)

where g(x) is the (2n − 1)× 1 matrix of gradient of the ob-
jective function. Substituting the first-order Taylor’s expansion
of g(x) in (4), the following equation is solved iteratively to
find the solution which minimizes J(x):

G(x)δ(x) =HT (x)R−1[M − h(x)], (5)

where G(x) = ∂g
∂x is (2n − 1) × (2n − 1) gain matrix. The

WLS state estimation algorithm given by (1)-(4) can be solved
iteratively until convergence of δ(x).

III. GRAPHICS PROCESSING UNIT

GPU is specially designed to address mathematically ex-
pensive data-parallel problems. Since the GPU cannot work
as a stand-alone processor, in most applications the CPU
cooperates with the GPU.

A. GPU Architecture

The GPU is composed of hundreds of computational cores
known as stream processors (SPs), unlike the CPU with a
limited number of arithmetic cores. A multi-core CPU has
6 to 7 times larger cache than the GPU’s cache system.
On the other hand, the GPU has many more cores than the
CPU. Owing to the fact that more transistors are devoted to
data processing than caching and flow control, the GPU has
significantly larger computational power compared to a multi-
core CPU [12].

Fig. 1. CUDA thread organization for data-parallel processing [14].

B. CUDA Program Structure

A CUDA program consists of multiple phases that are
executed on either the CPU (host) or the GPU (device). The
sequential parts are implemented on the host, and intensive
parallel phases are performed on the device. The GPU runs
its own CUDA kernel independently under the CPU’s con-
trol [13]. The execution starts with the host and moves to
device after a kernel function is invoked. All the kernels have
their own unique coordinates to distinguish themselves, and
to identify the specific portion of the data to process. There
is a two-level hierarchy in each thread named, blockId and
threadId. The top level is a two dimensional array of blocks
which is organized as a grid. All blocks in a grid have the
same dimensions and share the same blockId values. Fig. 1
shows a grid of four blocks [14].

To ensure all threads in a block have completed a stage of
their execution, syncthreads() is used to stop all threads until
every thread in the block reached the same location.

C. Hardware Setup

The hardware used in this work is the Fermi GPU from
NVIDIA. It has 512 cores which deliver up to 256 Gigaflops
of double-precision peak performance. This device contains
16 streaming multiprocessor (SM), 32 cores, an instruction
unit, and on-chip memory that come in three types: registers,
shared memory, and cache [15]. The CPU is the Intel Xeon E5-
2620, hexa-core with 2.0 GHz core clock and 32 GB memory,
running 64-bit Windows 7 operating system.

IV. MASSIVELY PARALLEL WLS STATE ESTIMATOR

Although classical sequential state estimation methods re-
sult in a reliable and accurate estimation, their weakness is the
long execution time which motivated the need for investigating
options for acceleration in this work.
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Fig. 2. GPU implementation of the WLS algorithm.

A. Parallel Kernel Structure

Generally, matrix-vector and matrix-matrix product is time
consuming for large data-sets. In the WLS method, the com-
putation of HT (x)R−1[M − h(x)] and HT (x)R−1H can
take a long time to complete even on CPU clusters. The
matrix-vector multiplication to calculate R−1[M − h(x)]
takes about one order of magnitude less execution time than
that of HT (x)R−1[M−h(x)] or HT (x)R−1H but still can
be a significant burden under emergency situations. Matrix-
matrix and matrix-vector products contains several for loops
in their implementation, which are the best candidates for
parallelization utilizing GPU threads. Since all iterations of the
loop can be executed in parallel, by assigning each iteration in
a loop to individual CUDA threads, the task can be converted
into a CUDA kernel [17].

In addition, solving G(x)δ(x) = g(x) by inversion of
G(x) is considerably expensive due to the sheer size of
the inverted matrix. As an alternative method, dense LU
decomposition is used in this work.

B. GPU Implementation

Although GPUs are well suited for large-scale data-parallel
processing, writing efficient code for them is not without its
difficulties. One of the most important bottleneck in parallel
GPU programming is the overhead in data transfer between
host and device and vise versa across a PCIe bus. The size
and frequency of data transfers can create a bottleneck which
significantly impacts the execution time of an algorithm. To

achieve the most efficient result, all of these factors are
considered in proposed GPU implementation.

Fig. 2 illustrates the implementation of WLS state es-
timator on the GPU. Initialization was done in Stage 1.
After transferring the data from CPU to GPU, all the oth-
er steps were executed in the GPU. Stage 2 contains the
main parts of the parallel kernel. All the vector products
for the computation of admittance matrix Y , measurement
function h(x) and Jacobian function H(x) were done in
parallel utilizing CUDA kernels. The transpose of H(x) or
the computation of residual r are not intensive tasks like
matrix or vector products, however for large-scale systems
it can take significant execution time which is here reduced
using parallel implementation. To compute the gain matrix
G(x) and the gradient of the objective function g(x), the
matrix-matrix multiplication HTR−1 was partitioned into a
series of independent operations HT

i R
−1
j where HT

i and
R−1

j refer to the ith row and jth column in HT and R−1

matrices, respectively. The vector inner product of HT
i R

−1
j

was defined as the sum of the elements of HT
iaR

−1
jb

where
HT

ia and R−1
jb

are ath and bth element of the HT
i and R−1

j ,
respectively. These independent operations are simultaneously
executed by individual CUDA threads. In total w × z single
threads were needed for product of HT with w rows and R−1

with z columns. Using CUDA basic linear algebra subroutines
(CUBLAS) library, G(x) was decomposed in parallel. Code
for LU decomposition and for solving δ(x) was prepared
utilizing cublasSscal(), cublasSswap() and cublasStrsv() func-
tions. After updating δ(x) in Stage 3, convergence check was
done in Stage 4.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the results of the GPU implementation of the
parallel WLS method are discussed for several case studies.

A. Test System

Large-scale systems were constructed to explore the effi-
ciency of the GPU based state estimation simulations. Case 1
is the IEEE 39-bus system which was duplicated several times
and interconnected via appropriate number of transmission
lines to create large-scale systems [10]. Voltage magnitudes
and angles of all buses are set to 1∠0 p.u. for flat start. The
inputs to the GPU-based WLS state estimator are the power-
flow results from PSS/E corrupted with noise which are used
as Pseudo-measurements. Therefore, to assess the accuracy of
the state estimator, its output was compared with the original
power-flow results from PSS/E.

B. Efficiency Evaluation

To demonstrate the efficiency of the GPU parallel code for
WLS state estimation, the results are compared with the CPU
simulations. Experiments are based on two separate simulation
codes: one which ran sequentially on the CPU is in C++, and
the other which is the integration of C++ and CUDA was
prepared to be run on the GPU simulator. In most power
system applications, and especially in state estimation, the
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TABLE I
SUMMARY OF SIMULATION RESULTS

Case No. of No. of Jacobian Gain Single GPU GPU Speed-up
Buses Measurements matrix matrix thread Comm. Comp.

H(x) G(x) CPU

1 39 171 171× 77 77× 77 0.031s 0.017s 0.033s 0.6
2 78 347 347× 155 155× 155 0.18s 0.041s 0.069s 1.6
3 156 699 699× 311 311× 311 0.39s 0.08s 0.11s 2.05
4 312 1421 1421× 623 623× 623 2.7s 0.13s 0.38s 5.3
5 624 2865 2865× 1247 1247× 1247 16.5s 0.34s 1.56s 8.7
6 1248 5825 5825× 2495 2495× 2495 59.1s 0.86s 4.34s 11.4
7 2496 11553 11553× 4991 4991× 4991 195s 2.81s 10.19s 15
8 4992 23151 23151× 9983 9983× 9983 1577s 6.51s 34.99s 38

Fig. 3. Execution time and speed-up for various case studies.

matrices are highly sparse. To reduce the computation burden,
all matrices and vectors are stored in compressed row format.
The simulations were done using the test data sets listed in
Table 1, with a tolerance of 0.0001 for convergence of the
estimated parameters.

Fig. 3 show the results of comparison between the CPU
and the GPU simulators along with the speed-up of the parallel
code. Although the proposed parallel simulator worked slower
for small data sets, however, the advantages of utilizing the
GPU in parallelization is significant when the size of the
system increased. The reason is that for small size of data the
communication overhead between host and device takes more
time than the execution time in the CPU. With growing system
size, the CPU is barely able to handle the computation tasks
in a reasonable time. Unlike the CPU, the GPU is especially
designed to handle large data processing. For Case 1 and Case
2, the speed of the GPU is not much more than that of the
CPU which is what we expected to see. In contrast, for Case
3 and larger systems, the GPU’s speed increases significantly,
and for Case 8 the GPU was found to be 38 times faster than
the CPU.

Since the programming structure is one of the most impor-
tant factors which affects the processing time, it is probable
to achieve faster results by multi-thread CPU programming.
Nevertheless, the speed-up shown in Table 1 would still be

Fig. 4. Percentage of time used for various steps in Stage 2 (Fig. 2).

valid for increasing system size although with a slightly lower
numerical value.Fig. 4 illustrates the percentage of time taken
by various steps in Stage 2 of Fig. 2 for Case 4. The results
verify that for both the sequential CPU program and the data-
parallel GPU program, the 3 most computationally demanding
steps are the LU decomposition, computation of gain matrix
G(x) and the solution of state mismatch vector δ(x).

Based on Amdahl’s law [16], even with many-core proces-
sors such as GPU, the maximum achievable speed-up utilizing
parallel processing is limited by the time needed for the
sequential part of the program. Gustafson’s law which is a
refined version of Amdahl’s law argues that as the size of the
problem increases, the inherently serial part of the program
takes less portion in the overall problem. Since almost all the
steps of our program is running on GPU, as the size of the
system increases the parallel portion of GPU code expands
faster than the serial portion. Based on Gustafson’s law if X
is a non-parallel fraction of a program, the highest possible
speed-up using N processors is given as [17]:

Sp = N −X(N − 1), (6)

X can be calculated using the measured speed-up (Sm) on
a specific number of processors (Np) using

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 30,2022 at 22:16:12 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



X =
Sm −Np

(1−Np)Sm
. (7)

In GPU programming the number of threads are changing in
each step. Therefore, it is difficult to calculate the number of
processors. For simplicity, it is assumed that given any number
of GPU cores, all of them will be used to maximum capacity.
The value of X for all of the case studies is calculated and
the average value is used in Gustafson’s law. In our case
the average value of X is 0.39. Gustafson’s law predicted
a maximum speed-up of 312.7 using all 512 cores, which
verifies the 38 speed-up in our case studies. Since the power of
GPU will increase as the size of data increases, it is possible
to achieve faster results up to predicted speed-up. Based on
the results of Table 1, we believe that the maximum speed-up
predicted by Gustafson’s law is achievable for power systems
with greater than 10000 buses.

VI. ACCURACY ANALYSIS OF THE GPU-BASED STATE
ESTIMATOR

This section concentrates on the performance analysis of
the GPU-based state estimator considering correlated and
uncorrelated Guassian noise in measurement error.

A. Floating Point Precision

Due to the limitation in the number of bits for data storage
and manipulation, it is necessary to round numbers when they
cannot be adequately represented by a floating point number. It
is possible that small inaccuracies due to rounding might result
in an inaccurate final result. In addition, the outcome of the
entire calculation is dependent on the order of basic arithmetic
operations. The numerical operations on a GPU are performed
in an environment that is much different from that on the
CPU. Such aspects should be considered by the programmer
to ensure accuracy of the simulation results. Depending on
the efficiency of the written code, a GPU based program may
produce results that differ from the CPU based code in an
equivalent mathematical calculation [18].

B. Performance Analysis on GPU

There are two formats for representing floating point num-
bers: single precision and double precision format. Double
precision numbers are double the size of single precision
numbers and can present more range of numbers with more
precision. In an application using floating point numbers the
performance using a double precision format compared to the
single precision format is slightly different. Since the proposed
program is dealing with a lot more floating point numbers
than integer numbers, the single precision format is used in
programming. For applications that require accuracy greater
than what can be given by single precision arithmetic, it is
necessary that double precision numbers are used.
The results of Case 1 in Fig. 5 and Fig. 6 show that using single
precision format the results are accurate enough. There are
small differences in the result which are justifiable considering
the fact that the order of blocks execution in each grid is

Fig. 5. Voltage magnitudes for Case 1.

Fig. 6. Voltage angles for Case 1.

undefined in kernel definition. Therefore, it leads to slightly
different results if different blocks perform calculations on
overlapping portions of data [18]. The estimation error for
voltage magnitude and voltage angle in all of the case studies
is less than 0.001 p.u. and 0.002 rad, respectively.

C. Effect of Measurement Errors on the GPU-based Estimator

The WLS method is based on the assumption that measure-
ment errors are statistically distributed with zero mean. Apart
from the technology used for measurements, it is important
to examine whether there is bias in the measurements. Both
uncorrelated Gaussian noise (UGN) and correlated Gaussian
noise (CGN) which considers the affect of all other lines in
the network in the measured value for a specific line, are
considered. In the original WLS formulation, measurements
error are uncorrelated and covariance matrix R is diagonal.
With correlated Gaussian noise, R changes to a dense matrix.
Therefore, all the matrix products of R contain larger values
which leads to larger error in the final result.
As expected, the results in Fig. 7 and Fig. 8 show significant
differences between the values of voltage magnitudes and
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Fig. 7. Effect of correlated Gaussian noise on voltage magnitudes.

Fig. 8. Effect of correlated Gaussian noise on voltage angles.

angles using correlated and uncorrelated Gaussian noise. Both
the GPU and the CPU programs have the same amount of
error which verifies the accuracy of the GPU-based estimator
in presence of noise. The results also prove that the WLS
method is sensitive to noise and the effect of different type of
noises should be considered in the formulation.

VII. CONCLUSION

This paper explored the process of accelerating the WLS-
based state estimation for large-scale power systems using
massively parallel graphic processing unit. Independent steps
were conducted in parallel employing the GPU. Numerical
experiments in this work proved that successful parallelization
resulted in a notable reduction in execution time; 38 times
faster state estimation for a 4992-bus power system is reported.
In addition, the accuracy of the proposed method considering
correlated and uncorrelated Gaussian noise is investigated.
The results verify the accuracy of GPU-based estimator and
sensitivity of the WLS method to noise.
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