
Chase-Based Ontology Mediated Query Answering:
Increasing Expressiveness and Performance

by

Arash Karimi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Arash Karimi, 2020



Abstract

In this dissertation we consider the problem of ontology-based data access

when the underlying ontology language is represented using tuple-generating

dependencies (a term used in theory of databases), also known as existential

rules (in the artificial intelligence literature). This problem is prominent and

challenging in knowledge representation and reasoning, as it allows one to gain

semantic knowledge in the presence of unknown entities that are not explicitly

defined in the database. Unsurprisingly, the problem of query answering with

these rules is undecidable, which means that there is no algorithm in general

for which queries can be answered using finite resources. In this dissertation

we build on top of the state of the art and introduce classes of rules for which

the above problem is decidable with the goal of increasing expressiveness as

well as improving performance.

The chase procedure provides a bottom-up method in dealing with the

above problem, which comes in many variants. Toward achieving expres-

siveness improvements for reasoning with existential rules as the underly-

ing ontology language, in this investigation we consider the restricted variant

of the chase procedure. This procedure is an indispensable tool for several

database applications, where its termination guarantees decidability of these

tasks. Most previous studies have focused on the Skolem chase variant and

its termination analysis. It is known that the restricted chase variant is a

more powerful tool in termination analysis provided a database is given. But

all-instance termination (termination for any database) presents a challenge

ii



since the critical database and similar techniques developed for the Skolem

chase variant do not work for restricted chase. In the first part of this dis-

sertation, we develop a novel technique to characterize the activeness of all

possible cycles of a certain length for the restricted chase, which leads to the

formulation of a framework of parametrized class of the finite restricted chase,

called k-safe(Φ) rule sets. This approach is applicable to any class of finite

Skolem chase identified with a condition of acyclicity. More generally, we show

that the approach can be extended to the hierarchy of bounded rule sets previ-

ously only studied for Skolem chase. Experiments on a collection of ontologies

from the web show the applicability of the proposed methods on real-world

ontologies.

For the direction of performance improvements for query answering based

on the chase algorithm, we study the problem of distributed reasoning over

connected database components. Again, distributability over connected com-

ponents is in general undecidable. We introduce the class of what we call

restricted weakly-linear disjunctive tuple-generating dependencies as well as

what is known as generalized regular Datalog queries. The former extends a

syntactic subset of linear tuple-generating dependencies as well as that of lin-

ear disjunctive Datalog. The latter is the most expressive subset of Datalog

with a decidable containment problem with which transitive closure can be

expressed.

Distributed reasoning is key to unleashing the power of ontology-mediated

queries constructed from these rules. We provide the first distributability

results on the above classes of queries. To evaluate the practical implications

of the proposed approach, we conduct experiments using real-world ontology

benchmark suites. Our experimental results suggest that the performance

of chase engines can be improved for query answering tasks over real-world

ontologies for a subset of expressive rule languages.

iii



Acknowledgements

Captain’s Log, Stardate 2013.01. We have entered a spectacular planetary

system in the Orion Arm, on the most critical mission of astrocomputational

research. Our eminent guest, Arash Karimi, will attempt to study the power

of knowledge representation systems.

He has a DNA based on Carbon, similar to what we found on our life

readings on Earth! Fascinating! Moreover, he seems to be fascinated by the

curiosity to search for unknown and to boldly go where no one has gone before.

The unconventional nature of research and his passion for adventure were the

reasons he was chosen to pursue a Ph.D. on planet Earth in the Solar system,

which is the closest we could find in our search for extraterrestrial intelligence

in the Orion Arm. His goal in this mission is to design an M6 Multitronic

unit, The Ultimate Computer.

Soon after the mission started, we realized that we had chosen a wrong

planet! Nobody there had a clue about M5 or even its predecessors (M1-

M4). This does not seem to be the usual artificial intelligence that is taught

and practiced today on planet Earth. Maybe this is the characteristics of

an organism with a Carbon-based DNA to only learn and not to reason in

their decision-making procedures the way we do. It then appeared to us, i.e.,

organisms with a Silicon-based DNA, that what seems to be a little challenging

but doable in our binary-star system, is called undecidable in the Solar system!

We were there to solve and implement what we call ℵωω non-recursively

enumerable class of problems, which was way beyond their reach. So, we

decided to call off the mission.

But at the last minute, while visiting the Department of Computing Science

at the University of Alberta, known for its world-class AI research, Arash was

iv



lucky to find Prof. Jia You who came to the rescue. He became the captain

(Arash’s supervisor) to take over my role and changed the mission to make

it more realistic according to Earth’s human measures. Although his mission

is not as ambitious as creating M6 anymore, it is ambitious in its own ways.

Dr. You was one of the very few people on Earth who could help him handle

the new mission successfully. He helped Arash in this critical mission in every

way with his patience while listening to Arash’s convoluted explanations, and

many hours of supervision, writing, typesetting atomic flaws and giving greatly

useful comments on various drafts. Arash couldn’t have done this without his

help, insight, and encouragement. Thank you, Dr. You.

This journey was as much rewarding as it was challenging and some of the

related questions touch based on some of the most fundamental problems of

mathematics and computer science human philosophers and mathematicians

were stumbling upon. This startled Arash frequently, even though he was

focused on such a teeny-tiny research area.

Arash wants to thank Dr. Heng Zhang for his useful insights and comments

and to find some of the key problems which lead to his topic of research.

On a personal note, Arash would like to thank his parents and sister for

their wise counsel, a sympathetic ear, patience, love, and support. Getting

success in such a long mission would be impossible without them. He couldn’t

be luckier to have them.

Thank you Peyvand to give Arash the courage to move on with listening

and advising wisely. You always inspired Arash along the way. Although you

joined in the middle of the mission, it would be impossible to finish it without

you.

Captain’s Log, supplemental. Arash’s mission to get a Ph.D. is accom-

plished. Good luck Dr. Karimi in your future missions.

v



Contents

1 Introduction 1
1.1 K-Safe and Bounded Hierarchy of Terminating Ontologies under

Restricted Chase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Distribution over Components for Restricted Weakly Linear Rules 9
1.3 Distribution over Components for Generalized Regular Datalog

Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Introduction to Complexity Theory 15
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Boolean Formulae and the CNF Form . . . . . . . . . . . 16
2.2 Polynomial Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Oracle Characterization of Polynomial Hierarchy . . . . 19
2.3 Sub-polynomial Classes of Complexity . . . . . . . . . . . . . . . 20

2.3.1 Circuit Complexity Model . . . . . . . . . . . . . . . . . . 21
2.4 Reducibility and Completeness . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Complete Problems in Polynomial Hierarchy . . . . . . . 28

2.5 ELEMENTARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Background, Motivations, and Previous Developments 30
3.1 The Landscape of Ontology-Mediated Query Answering . . . . 30

3.1.1 Ontologies versus Database Schemata . . . . . . . . . . . 33
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Ontology Modelling . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Semantic Big Data Warehousing . . . . . . . . . . . . . . 45
3.2.4 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . 47
3.2.5 Disjunctive Reasoning . . . . . . . . . . . . . . . . . . . . 49
3.2.6 Reasoning at Scale . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Previous Work on the Chase Termination . . . . . . . . . . . . . 53
3.3.1 Terminating Classes of Existential Rules . . . . . . . . . 53
3.3.2 Other Results Related to Chase Termination . . . . . . . 57
3.3.3 Complexity Analysis of Rules . . . . . . . . . . . . . . . . 60

4 Restricted Chase Termination 61
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Chase Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 A Concrete Example . . . . . . . . . . . . . . . . . . . . . 72
4.3 Finite Restricted Chase by Activeness . . . . . . . . . . . . . . . 75

4.3.1 Restricted Critical Databases and Chained Property . . 75
4.3.2 Activeness for Simple Rules . . . . . . . . . . . . . . . . . 80
4.3.3 Activeness for Arbitrary Rules . . . . . . . . . . . . . . . 83

4.4 K-Safe(Φ) Rule Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



4.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 Implementation Setup . . . . . . . . . . . . . . . . . . . . 97
4.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 100

5 Extension of Bounded Rule Sets 107
5.1 Bounded Rule Sets Under the Restricted Chase and Their Con-

nection to K-Safe Hierarchy . . . . . . . . . . . . . . . . . . . . . 107
5.2 Complexity Analysis for δ-bounded Rule Sets . . . . . . . . . . . 109
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Distributed Reasoning for Restricted Weakly-Linear Disjunc-
tive Tuple-Generating Dependencies 119
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Distribution over Components . . . . . . . . . . . . . . . 124
6.2 Restricted Weakly-Linear Disjunctive Tuple-Generating Depen-

dencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Bidirectionally-Guarded Queries . . . . . . . . . . . . . . . . . . . 131
6.4 The Problem of Distribution over Components for Bidirectionally-

Guarded Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Deciding Distributability via Rewriting . . . . . . . . . . . . . . 135
6.6 Relation to other Formalisms . . . . . . . . . . . . . . . . . . . . 138
6.7 Experiments on OMQs Based on Linear Disjunctive TGDs . . . 139

7 Distributed Reasoning for Generalized Regular Queries 143
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 Generalized Regular Query Languages . . . . . . . . . . . . . . . 144

7.2.1 Pseudo-Guarded Generalized Regular Queries . . . . . . 146
7.3 Distribution over Components for GRQ and PG2RQk . . . . . . 149
7.4 Deciding Distributability of PG2RQk and GRQ via Containment 154
7.5 The Landscape of Distributable OMQs . . . . . . . . . . . . . . . 158

7.5.1 Datalog with Negation . . . . . . . . . . . . . . . . . . . . 158
7.5.2 Distribution of Logics without Transitivity . . . . . . . . 160
7.5.3 Distribution of Logics Combined with Transitivity . . . 163

7.6 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.7 Experiments on PG2RQk queries . . . . . . . . . . . . . . . . . . 169

8 Conclusion and Future Directions 175
8.1 Restricted Chase Termination . . . . . . . . . . . . . . . . . . . . 175
8.2 Distribution over Components for Ontology-Mediated Query

Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.2.1 Distribution over Components for Restricted Weakly Lin-

ear Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2.2 Distribution over Components for Generalized Regular

Datalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.3.1 Restricted Chase Termination . . . . . . . . . . . . . . . . 178
8.3.2 Distribution over Components . . . . . . . . . . . . . . . 179

References 181

vii



List of Tables

3.1 A hospital database . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Summary of complexity of acyclicity conditions . . . . . . . . . 60

4.1 Complexity of membership checking for different variants of chase 71
4.2 Membership among 700 ontologies in the collected corpora . . . 101
4.3 Average time analysis for membership testing of terminating

ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Statistical results of chained TGD generator for k-safe(ΦWA)

membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Statistical results of discrete TGD generator for k-safe(ΦWA)

membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Statistical results for distributability membership checking . . . 141
6.2 Statistics of distributed versus centralized chase schemes . . . . 142

7.1 Containment problem for the logics considered in this chapter . 161
7.2 Statistical results for distributability membership checking . . . 170
7.3 Statistics of distributed versus centralized query answering . . . 171
7.4 Optimization results for query answering (Graal) . . . . . . . . . 174

viii



List of Figures

3.2.1 Datalog example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Data exchange setting . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Answering queries in data exchange . . . . . . . . . . . . . . . . . 43

4.2.1 Data transmission scenario . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Skolem chase on R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Restricted chase on R2. . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5.1 Distribution checking for different logics . . . . . . . . . . . . . . 164
7.5.2 Distribution checking for different logics combined with transi-

tivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

ix



Chapter 1

Introduction

This dissertation is concerning an investigation of two problems.

The first one is the termination problem of the restircted chase procedure.

This is given in Chapters 4 and 5 in which we introduce parametrized classes

of ontology languages with finite chase which can model real-world scenarios

that cannot be expressed by the known classes of finite chase in the literature.

The second one is the problem of distributed reasoning over components.

This is the topic of Chapters 6 and 7 in which for the first time, we study this

problem for a number of query languages and obtain promising theoretical and

practical results.

This dissertation is organized as follows:

In the current chapter, we briefly introduce the research conducted in this

dissertation for each of the two main topics, we provide a relatively detailed

summary of the technical development.

Chapter 2 reviews some background on the theory of computational com-

plexity relevant to our dissertation. In the rest of this thesis, we frequently

refer to the materials of this chapter to establish our technical results on com-

plexity analyses of our proposed algorithms, as well as on reasoning and data

complexities.

In Chapter 3, we present the state of the art in different aspects that are

affected by the results of this dissertation. In future chapters we establish our

contributions on top of what is presented in this chapter.

The topic of Chapter 4 is our contribution on classes of rule sets with finite

1



restricted chase, which we call k-safe rule sets, along with some experiments

conducted on real-world ontology benchmarks targeted at membership and

chase computation analysis with k-safe(Φ∆) for different acyclicity conditions

∆.

Chapter 5 continues its predecessor by applying our ideas which lead to

the introduction of k-safe rules to extend bounded hierarchy of ontologies with

finite Skolem chase. Then, for the hierarchy introduced in this chapter, we

conduct membership and reasoning complexity analyses.

In Chapter 6, we present our results on distribution over components for

a class of queries we introduce in this work which are based on what we

call restricted weakly-linear (RWL) rule sets. This class of rules extend a

syntactic subset of linear existential tuple-generating dependencies as well as

that of linear disjunctive Datalog. Experiments are conducted to assess the

theoretical results on distribution over components provided in this chapter

as well as the performance of chase-based query answering on distributable

queries.

Chapter 7 continues the contributions of its predecessor by studying the

problem of distribution over components for a class of queries constructed

from what is known as generalized regular Datalog queries. In this chapter,

we identify a syntactic subclass of these queries, which we call pseudo-guarded

generalized Datalog queries, and show that the problem of distribution over

components for these queries is decidable. This paves the way to improve the

query answering performance when utilizing these queries. The experiments

we conduct at the end of this chapter evaluate our theoretical contributions

on real-world ontology benchmarks.

Finally, in Chapter 8, we conclude this dissertation, summarize it and show

directions for the future work related to our results.

We organize the rest of this chapter as follows. In Section 1.1 we introduce

the formalism of existential rules and the chase procedure, and illustrate our

technical contributions of Chapters 4 and 5. Section 1.2 gives an introduction

to our contributions to be reported in Chapter 6. Finally, in Section 1.3, we

summarize our contributions of Chapter 7.

2



1.1 K-Safe and Bounded Hierarchy of Termi-

nating Ontologies under Restricted Chase

The advent of emerging applications of knowledge representation and onto-

logical reasoning has been the motivation of recent studies on rule-based lan-

guages, known as tuple-generating dependencies (TGDs) [24], existential rules

[18] or Datalog± [45], which are considered as a powerful modelling language

for applications in data exchange, data integration, ontological querying, and

so on. A major advantage of using these languages is that the formal semantics

based on first-order logic facilitates reasoning in an application, where answer-

ing conjunctive queries over a database extended with a set of existential rules

is a primary task, but unfortunately an undecidable one in general [25]. The

chase procedure is a bottom-up algorithm that extends a given database by ap-

plying specified rules. If such a procedure terminates, given an input database

I, a finite rule set R and a conjunctive query, we can answer the query against

R and I by simply evaluating it on the result of the chase. In applications such

as in data exchange scenarios, we need the result that the chase terminates for

all databases. Thus, determining if the chase of a rule set terminates is crucial

in these applications.

Existential rules in this context are implications of the form

∀x∀y (φ(x,y)→ ∃z ψ(x,z))

where φ and ψ are conjunctions of atoms.

For example, that every student has a classmate who is also a student can

be expressed by

Student(x)→ ∃z Classmate(x, z),Student(z)

where universal quantifiers are omitted.

We can remove existential quantifiers by Skolemization where existential

variables are replaced by Skolem terms. For the above example, the resulting

Skolemized rule is

Student(x)→ Classmate(x, fz(x)),Student(fz(x))
3



where fz is a Skolem function. Given a database, say I = {Student(a)}, the

atom in it triggers the application of the rule, which will first add in I the atoms

Classmate(a, fz(a)), Student(fz(a)); repeated applications will further add

Classmate(fz(a), fz(fz(a))), Student(fz(fz(a))), and so on. In this example,

the chase produces an infinite set.

Note that a set of Skolemized rules is a Horn logic program.

Four main variants of the chase procedure are considered in the literature,

which are called oblivious [66], Skolem [113] (semi-oblivious),1 restricted (a.k.a.

standard) [66], and core chase [61].

What is common to all these chase variants is the property that, for any

database instance I, a finite rule set R and a Boolean conjunctive query q,

q is entailed by R and I if and only if it is entailed by the result of the

chase on R and I. However, these chase variants behave differently concerning

termination. The oblivious chase is weaker than the Skolem chase, in the sense

that whenever the oblivious chase terminates, so does the Skolem chase, but

the reverse does not hold in general. In turn, the Skolem chase is weaker than

the restricted chase, which is itself weaker than the core chase.

The core chase is defined based on the restricted chase combined with the

notion of cores of relational structures [91]. This variant of chase is theoret-

ically interesting as it captures all universal models of a given rule set and

instance.2 Given a rule set R and an instance I, whenever there is a universal

model of R and I, the core chase produces such a model.

As the cost of each step of the core chase is DP-complete, this chase variant

is a bit more complicated than the other main chase variants and to the best

of our knowledge, there are no known efficient algorithms to compute the core

when the instances under evaluation are of nontrivial sizes.

In Chapters 4 and 5, we will be focusing on the Skolem and the restricted

1The chase using Skolemized rules can be expressed equivalently by introducing fresh
nulls. The chase under these two different notations are considered equivalent due to a
one-to-one correspondence between generated Skolem terms and introduced fresh nulls.

2Given an instance I and a rule set R, an instance J is a model of R and I if J satisfies
all rules in R and there is a homomorphism from I to J . Moreover, a model U is universal
for R and I if it has homomorphism into every model of R and I. Models of R and I are
not unique, but universal models of R and I are unique up to homomorphism.

4



versions of the chase, which are the most investigated in the literature, as the

core chase is computationally costly in practice (cf. [31] for more details).

Despite the existence of many notions of acyclicity in the literature (cf. [56]

for a survey), there are natural examples from real-world ontologies that are

nonterminating under the Skolem chase but terminating under the restricted

chase. However, finding a suitable characterization to ensure restricted chase

termination is a challenging task, and in the last decade, to the best of our

knowledge, only a few conditions are discovered. In [49], the classes of re-

stricted joint acyclicity (RJA), restricted model-faithful acyclicity (RMFA),

and restricted model-summarizing acyclicity (RMSA) are introduced for the

restricted chase which generalize the corresponding classes under the Skolem

chase, namely (by removing the letter R in the above names) joint-acyclicity

(JA) [105], model-faithful acyclicity (MFA), and model-summarizing acyclicity

(MSA) [56], respectively. Intuitively, the classes for the restricted chase intro-

duce a blocking criterion to check if the head of each rule is already entailed

by the derivations when constructing the arena for checking the corresponding

acyclicity conditions for JA, MFA, and MSA, respectively. Here, we extend

their work in two different directions. First, we provide a highly general theo-

retical framework to identify strict superclasses of all existing classes of finite

Skolem chase that we are aware of, and second, we show a general critical

database technique, which works uniformly for all bounded finite chase classes.

With the curiosity on the intended applications of some of the practical

ontologies that we collected from the web (which will be used in our exper-

imentation to be reported later in this chapter) and the question why the

restricted chase may help identify classes of terminating rule sets, we analyze

some of them to get an understanding. Here, let us introduce a case study of

policy analysis for access control, which is abstracted from a practical ontology

from the considered collection. This example shows how the user may utilize

the approach we develop in this chapter to model and reason with a particular

access policy.

Consider a scenario involving several research groups in a given lab located

in a department. Each one of these groups may have some personnel working

5



in labs. Also, each person may possess keys which are access cards to the labs

of that department. The set of rules R = {r1, r2, r3, r4, r5} below is intended to

model the access policy to the labs: any member of any research lab must be

able to enter his or her lab that is assigned to the research group (r1); for each

person x who has a key to a room y, there is a lab u such that x can enter u

and the key y opens the door of that lab (r2); and if a person can enter a lab,

he or she must have a matching key that opens the lab (r3).

An employee of the department is responsible for granting the keys to labs

(r4). Once an employee grants a key to a person, the grantee is assumed to be

in the possession of the key (r5).

r1 ∶ MemOf(x, y)→ Enters(x, y)
r2 ∶ HasKey(x, y)→ ∃u Enters(x,u),KeyOpens(y, u)
r3 ∶ Enters(x, y)→ ∃v HasKey(x, v),KeyOpens(v, y)
r4 ∶ HasKey(x, y)→ ∃w Grants(w,x, y),Emp(w)
r5 ∶ Grants(t, x, y)→ HasKey(x, y)

The intended meanings of the predicates are: MemOf(x, y) represents that

x is a member of (lab) y; Enters(x, y) says that (person) x enters (lab) y;

HasKey(x, y) affirms that (person) x has a key card to (room) y; KeyOpens(y, u)

means that the key to (room) y opens (lab) u; Furthermore, by Grants(w,x, y),

we declare that (employee) w grants (person) x access to (room) y; finally,

Emp(w) confirms that w is an employee of the department.

The rules in R can be applied cyclically. For example, an application of

r4 triggers an application of r5 which triggers r4 again. But even under the

Skolem chase variant, these two rules do not produce an infinite derivation

sequence. Let us consider the path π1 = (r4, r5) (a path is just a sequence of

rules) and show the Skolem chase derivations of sk(π1) (the Skolemized version

of rules in π) from {HasKey(a, b)}. Recall that the Skolem chase considers the

Skolemized version of the rules. In the following, Skolem functions are written

as fz for existential variable z and
⟨sk(r),τ⟩
ÐÐÐÐ→ denotes that rule sk(r) is applied

using substitution τ .

I0 = {HasKey(a, b)}
⟨sk(r4),{x/a,y/b}⟩ÐÐÐÐÐÐÐÐÐ→

I1 = I0 ∪ {Grants(fw(a, b), a, b),Emp(fw(a, b))}
⟨sk(r5),{t/fw(a,b),x/a,y/b}⟩
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

I2 = I1

6



The sequence of derivations for the path π2 = (r5, r4) can be obtained similarly.

From these derivations, we can observe that any path of rules that only consist

of r4 and r5 is terminating under the Skolem chase.

However, the cyclic applications of r2 and r3 lead to an infinite Skolem

chase. To illustrate, let us construct a Skolem chase sequence starting from the

application of r2 on a singleton database {HasKey(a, b)} as follows (where the

existential variable u in r2 is Skolemized to fu(x, y) and v in r3 is Skolemized

to fv(x, y)):

I0 = {HasKey(a, b)}
⟨sk(r2),{x/a,y/b}⟩ÐÐÐÐÐÐÐÐÐ→

I1 = I0 ∪ {Enters(a, fu(a, b)),KeyOpens(b, fu(a, b))}
⟨sk(r3),{x/a,y/fu(a,b)}⟩ÐÐÐÐÐÐÐÐÐÐÐÐ→

I2 = I1 ∪ {HasKey(a, fv(a, fu(a, b))),KeyOpens(fv(a, fu(a, b)), fu(a, b))}
⟨sk(r2),{x/a,y/fv(a,fu(a,b))}⟩ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→
I3 = I2 ∪ {Enters(a, fu(a, fv(a, fu(a, b)))),

KeyOpens(fv(a, fu(a, b)), fu(a, fv(a, fu(a, b))))}
. . .

On the other hand, in each valid derivation of a restricted chase sequence, we

must ensure that each rule ri that is used in the derivation is not already satis-

fied by the current conclusion set, which is the set of all derivations generated

so far right before application of ri.

Though the Skolem chase leads to an infinite sequence, the restricted chase

does terminate. Utilizing fresh nulls, denoted by ni, for the representation of

unknowns,3 we have the following sequence of restricted chase derivations for

this rule set, where θ is a substitution which maps n3 to n1 and other symbols

to themselves. From this derivation sequence, it can be seen that I3 is not a

new instance, and therefore, (r2, r3, r2) is not an active path, i.e., the one that

leads to a (valid) restricted chase sequence.

I0 = {HasKey(a, b)}
⟨r2,{x/a,y/b}⟩ÐÐÐÐÐÐÐ→

I1 = I0 ∪ {Enters(a,n1),KeyOpens(b, n1)}
⟨r3,{x/a,y/n1}⟩ÐÐÐÐÐÐÐÐ→

I2 = I1 ∪ {HasKey(a,n2),KeyOpens(n2, n1)}
⟨r2,{x/a,y/n2}⟩ÐÐÐÐÐÐÐÐ→

I3 = I2 ∪ {Enters(a,n3),KeyOpens(n2, n3)}
θ={n3/n1}ÔÔÔÔ⇒ θ(I3) ⊆ I2

3For the clarity of illustration, we use fresh nulls instead of Skolem terms – there is a
one-to-one correspondence between these two kinds of representations of unknown elements.

7



From the above sequence of derivations, it can be seen that when we at-

tempt to apply r2 on I2, its head can be instantiated to Enters(a, ) and

KeyOpens(n2, ), where we place an underline to mean that the existential

variable v in r3 can be instantiated to form atoms that are already in I2,

which halts the derivation under the restricted chase.

In Chapter 4, we will show that we can run such tests on cyclic rule ap-

plications of a fixed nesting depth, which we call k-cycles (k > 0), with the

underlying databases, which we call restricted critical databases, to define a

hierarchy of classes of the finite restricted chase.

In addition, we show how to extend δ-bounded ontologies, which were intro-

duced in the context of the Skolem chase variant [144], uniformly to δ-bounded

rule sets under the restricted chase variant, where δ is a bound function for the

maximum depth of chase terms in a chase sequence. Furthermore, as a con-

crete case of δ, we consider functions constructed from an exponential tower

of the length κ (called expκ in Chapter 5), for some given integer κ, and then

we obtain the membership as well as reasoning complexities with these rule

sets.

The main contributions of Chapters 4 and 5 are as follows:

1. In termination analysis for the Skolem chase, a major advance is the

so called critical database technique [113], which says that the termi-

nation of Skolem chase w.r.t. all databases can be faithfully simulated

by termination of Skolem case w.r.t. a single database called the critical

database. We show that while the traditional critical database technique

does not work for the restricted chase, a kind of “critical databases” exist

by which any finite restricted chase sequence can be faithfully simulated.

This is shown by Theorem 33 for rules whose body contains no repeated

variables (called simple rules) and generalized by Theorem 34 for arbi-

trary rules.

2. As the above results provide sufficient conditions to identify classes of

the finite restricted chase, we define a hierarchy of such classes, which

can be instantiated to a concrete class of finite chase, given an acyclic-

8



ity condition. This is achieved by Theorem 40 based on which various

acyclicity conditions under the Skolem chase can be generalized to in-

troduce classes of finite chase beyond finite Skolem chase.

3. Our experimental results on a large set of ontologies collected from the

web show practical applications of our approach to real-world ontologies.

In particular, in contrast with the current main focus of the field on

acyclicity conditions for termination analysis, our experiments show that

many ontologies in the real-world involve cycles of various kinds but

indeed fall into the finite chase.

Furthermore, built on top of k-safe rules, our contributions in Chapter 5

are as follows:

1. We show that the hierarchy of δ-bounded rule sets under the Skolem

chase [144] can be generalized by introducing δ-bounded sets under the

restricted chase.

2. Then for the resulting rule sets we find the membership as well as data

and combined complexities. These results show that without any ex-

ponential increase in the abovementioned complexities, we are able to

obtain increased expressiveness for the introduced languages.

1.2 Distribution over Components for Restricted

Weakly Linear Rules

Ontology-based data access (OBDA) has recently emerged as a set of technolo-

gies facilitating access to heterogeneous and incomplete data in knowledge

management systems [124]. Ontologies provide a key formalism that enables

effective access to such data with a unified conceptual view of various data

sources and paves the way for enriching user queries with domain knowledge.

Due to the presence of an ontology along with user queries in OBDA tasks,

the two can be seen as components of one composite query, known as an

ontology-mediated query (OMQ) [33].

9



To extract implicit knowledge from an OBDA system, reasoning is re-

quired. From a broader perspective in artificial intelligence scenarios, where

even small errors are not tolerable during a decision-making process, such as

a diagnosis or writing a prescription, reasoning is indispensable in providing a

verifiable and easily explainable solution to interpret the results from a user

query. Answering OMQs is a particular instance of reasoning in the presence

of ontologies. Therefore, finding efficient ways to answer OMQs contributes to

all the great capabilities that reasoning can bring in knowledge management

and artificial intelligence systems.

The quest for more expressive OMQ languages has spurred major inter-

ests in existential rule languages which extend Datalog, a renowned query

language for deductive databases. These languages enable reasoning in the

presence of unknown entities. Unfortunately, answering OMQs for existential

rule languages and conjunctive queries is an undecidable problem in general.

To remedy this situation, many syntactic and semantic conditions were iden-

tified to make this problem decidable at the expense of limiting expressivity

offered by these languages. As a result of this endeavour, fragments with var-

ious restrictions were discovered such as MFA, linear, guarded, sticky, and so

on (cf. [56]).

A prominent application of these expressive OMQ languages is in declara-

tive networking using which distributed computations are modeled. In these

applications, queries are computed by multiple nodes over which the input

database is distributed. Each node performs a local computation and the

results of these computations are communicated in a master machine. A ma-

jor challenge related to efficiency of these systems is provisioning of efficient

reasoning.

This challenge is tackled in recent years by minimizing synchronization in

computing the result of queries. In this regard, a declarative networking system

is called coordination-free if for all input databases D there is a distribution on

which the system computes Q(D) without any need to do communication [8].

A central notion for provisioning coordincation-free systems is called query

distribution over components. The question is: given an OMQ Q, whether

10



for every database D the answer to Q over D, denoted Q(D), coincides with

⋃1≤i≤nQ(Di), where D1, . . . ,Dn are the (maximally connected) components of

D.

The problem of checking whether an OMQ is distributable is undecidable

for ontology-mediated queries based on Datalog [8]. However, for some frag-

ments of existential rule languages, such as linear, guarded, and sticky, this

problem is shown to be decidable for conjunctive queries [32].

Despite this, the scope of current decidability results is limited due to the

lack of support to represent even simple constructs such as disjunctive axioms.

In particular, disjunction, with which one can model classification, is a useful

property in the biology domain among many others for which the importance

of reasoning with a huge volume of the input data is most apparent.

Consider, for instance, an ontology in the domain of biological sciences

which is specified by the following set of disjunctive existential rules that are

studied in this chapter, which describes different types of organisms in terms of

their effect on their victim. In particular, if an organism x with a weak immune

system (WeakImmune(x)) hosts a parasitic prokaryote (Parasitic(y)), it gets

sick by it (GetsSickBy(x, y)). If x gets sick by y, then y harms x (Harms(y, x))

and y is parasitic. The rest of the rules are self-explanatory.

σ1 ∶ Organism(x)→ Eukaryote(x) ∨Prokaryote(x)
σ2 ∶ Prokaryote(x)→ Bacteria(x) ∨Archaea(x)
σ3 ∶ Parasitic(x)→ ∃yHosts(y, x),Harms(x, y)
σ4 ∶ Hosts(x, y)→ Organism(x),DependsOn(y, x)
σ5 ∶ Parasitic(y),Hosts(x, y),WeakImmune(x)→ GetsSickBy(x, y)
σ6 ∶ GetsSickBy(x, y)→ Parasitic(y),Harms(y, x)
σ7 ∶ Bacteria(x),Harms(x, y)→ Infectious(x),Victim(y)

In this chapter, first, we introduce a class of ontology-mediated queries con-

structed from what we call restricted weakly-linear disjunctive tuple-generating

dependencies with some subsets of conjunctive queries. These rules extend a

subclass of weakly-linear disjunctive Datalog introduced in [97] which we call

restricted, as well as linear tuple-generating dependencies. Then we study the

problem of distribution over components for ontology-mediated queries con-

structed from these queries and show positive results to answer this problem

for some of its nontrivial fragments which we characterize in this chapter.

11



In particular, we provide semantic characterizations for the fragment of

the above queries which distributes over connected components of the ini-

tial database. However, we show that the decidability of this problem over

components for these queries cannot be established in general. Therefore we

identify syntactic fragments for the aforementioned query languages for which

we can establish 2ExpTime decision procedures for deciding distribution over

components.

We summarize the contributions of this chapter as follows.

1. We introduce the class of restricted weakly-linear disjunctive tuple-generating

dependencies which extends the classes of linear tuple-generating de-

pendencies as well as weakly-linear disjunctive Datalog under a certain

syntactic restriction.

2. We establish the first results on decidability of distribution over com-

ponents for OMQs including restricted weakly-linear disjunctive tuple-

generating dependencies and some subsets of conjunctive queries.

3. We empirically evaluate the distributability checking performance on

real-world ontologies and compare the performance of forward chaining-

based query answering for centralized and distributed scenarios on real-

world ontology benchmarks.

1.3 Distribution over Components for Gener-

alized Regular Datalog Queries

The class of generalized regular (Datalog) queries (GRQ) was introduced in

[126]. This class of queries allows us to represent the transitive closure (TC)

operator using which asking reachability queries can be made possible. On

the other hand, adding TC to most fragments leads to undecidability of many

reasoning problems in the resulting language, including equivalence of queries

which is a key tool in distribution characterization. Therefore, in order to have

a decidable equivalence problem, recursion is limited in this language, and it

can only occur in TC rules. In fact, GRQ is shown to be the most expressive

12



fragment of Datalog which has a decidable equivalence problem and at the

same time allows to express path queries [139].

This fragment of Datalog queries belongs to the NC class of highly paral-

lelizable problems and possesses a decidable problem of query containment. In

fact, recently it is identified as the solution to the long standing open prob-

lem of finding a graph query language that balances out expressiveness and

tractability [126]. More recently, formal frameworks for evaluation of graph

queries using regular Datalog as the query language is developed in [34, 35].

Due to forbidding recursion in GRQ queries (unless it is for expressing TC),

these queries may appear to be restricted in modelling real-world databases

and ontologies. However, as shown by [34, 35, 68], and as discussed by [139],

we are convinced that there are a sheer number of real-world applications for

which even RQs (which are GRQs restricting the maximum arity of rules to

2) are suitable modelling languages.

As an example, consider the following set Σ2 = {σ1, σ2, σ3} of regular Dat-

alog rules consisting of transitive predicates that describes part of a simple

Bio-domain ontology, in which each predicate P + represents the (nonreflexive)

transitive closure of P where definitions of P + are omitted.

σ1 ∶ Animal(x),Animal(y),Attacks+(x, y)→ PVulnerableTo(y, x)
σ2 ∶ PVulnerableTo+(x, y),StrongerThan+(y, x)→ DistinctsEarlierThan(x, y)
σ3 ∶ DistinctsEarlierThan+(x, y)→ EvolvesLongerThan(y, x)

The above rules describe what it means for an animal Y to be potentially

vulnerable to another animalX in the animal kingdom (pVulnerableTo(Y,X)).

Furthermore, what it means for an animal to distinct earlier than another as

well as the meaning of evolving longer are specified with the second and the

last rules, respectively.

In this chapter, we provide fundamental underpinnings to decide distributabil-

ity over components for ontology-mediated queries constructed from fragments

of generalized regular Datalog rules. Then, we show that the techniques we

exploited to handle the above problem can be uniformly applied to a number

of other query languages known in the literature.

We provide semantic characterizations for the fragment of the above queries

13



which distributes over connected components of the initial database. However,

we show that the decidability of this problem over components for none of

these queries can be established in general. Therefore we identify syntactic

fragments for all the aforementioned query languages for which we can estab-

lish elementary decision procedures for deciding distribution over components.

We summarize the contributions of this chapter as follows.

1. The first results on decidability of distribution over components for

OMQs including a syntactic fragment of generalized regular Datalog

queries which we call PG2RQ are established. We then utilize the tools

developed for the above OMQs in order to extend our results to a number

of known query languages in the literature. Furthermore, we study the

problem of distribution over components for the above query languages

with the addition of transitive closure operator.

2. Then, the distributability checking performance is empirically evaluated

on real-world ontologies.

14



Chapter 2

Introduction to Complexity
Theory

Our primary purpose in this chapter is to lay theoretical backgrounds for

discussing our results in this dissertation. In future chapters we will build

upon this foundation to draw our results on complexity of different problems

we have defined. In Section 2.1, we present the preliminaries and some basic

definitions. Section 2.2 reviews the notion of polynomial hierarchy along with

some of its relevant classes. In Section 2.3, some known complexity subclasses

of polynomial time are introduced. Section 2.4 presents the notion of reduction

and completeness. Finally, in Section 2.5, the class of ELEMENTARY is

introduced. An interested reader is refered to [123] for more details.

2.1 Preliminaries

A complexity class is a set of functions that can be computed within a given

resource. Let us now recall the complexity classes that we encounter in our

complexity results. Before we proceed, let us introduce some basic concepts.

In the computational complexity analysis it is conventional to compute

functions whose input and output are finite strings of bits. The set of all

strings of length n is denoted by {0,1}n, while the set of all strings is denoted

by {0,1}∗ = ⋃
n≥0

{0,1}n. One special case of functions that map strings to

strings is that of Boolean functions, for which the output is a single bit. Such

a function f is defined as the set Lf = {x ∣ f(x) = 1} and we call these sets

15



languages or decision problems. The problem of computing the output of f(x)

given x is identified with the problem of deciding the language Lf which is

interpreted as deciding whether x ∈ Lf , for some given x.

A decision problem P is called decidable or effectively solvable if P is a

recursive set. Furthermore, recursively enumerable (RE) is the class of decision

problems for which a “Yes” answer can be verified by a Turing machine in an

arbitrary but finite amount of time. This means that for any RE problem there

exists an algorithm that eventually halts when the answer is “Yes” but may

run forever if the answer is “No”. Similarly, coRE is the set of all languages

that are complements of a language in RE. In other words, the membership

of all languages in coRE can be disproved in a finite amount of time, however,

proving membership may not halt. Recursively enumerable problems and any

other problems that are not decidable are called undecidable.

2.1.1 Boolean Formulae and the CNF Form

A Boolean formula over the variables u1, . . . , un consists of the variables and

the logical operators AND (∧), NOT (¬) and OR (∨). For example, (a ∧ b) ∨

(a ∧ c) ∨ (b ∧ c) is a Boolean formula that is True iff the majority of a, b, c

are True. If φ is a Boolean formula over variables u1, . . . , un, and z ∈ {0,1}n,

then φ(z) denotes the value of φ when the variables of φ are assigned the

values z (1 means True and 0 means False). A formula φ is satisfiable if there

exists some assignment z such that φ(z) is True. Otherwise, φ(z) is said to

be unsatisfiable.

A Boolean formula over variables u1, . . . , un is in CNF form (conjunctive

normal form) if it is an AND of ORs of variables or their negations. A CNF

formula has the form ⋀
i
(⋁
j
vij), where each vij is either a variable uk or to

its negation ¬uk. The terms vij are called the literals of the formula and the

terms (⋁
j
vij) are called its clauses. A kCNF is a CNF formula in which all

clauses contain at most k literals. Let SAT be the language of all satisfiable

CNF formulae.

The concepts of polynomial and exponential hierarchy are the pillars of our

reasoning complexities that will follow in the next chapters.

16



2.2 Polynomial Hierarchy

In what follows, we assume familiarity with Turing machines (denoted TMs);

and denote the set of all decision problems solvable in polynomial time by

PTime. More formally,

Definition 1. (PTime or P) Let t ∶ N ↦ N be some function. We define

DTime(t(n)) to be the set of all Boolean functions that are computable in

time c× t(n), for some constant c > 0. Then, we let: PTime ∶= ⋃
c≥0

DTime(nc).

Definition 2. (NP) A language L is in NP if for any x ∈ {0,1}∗, there exists

a TM M and a polynomial p(.):

x ∈ L⇐⇒ ∃u ∈ {0,1}p(∣x∣) s.t. M(x,u) = 1

Definition 3. (coNP) The class coNP is the complementary class of NP, in

which “Yes” and “No” instances are interchanged. In other words, a language

L is in coNP if for any x ∈ {0,1}∗, there exists a TM M and a polynomial p:

x ∉ L⇐⇒ ∃u ∈ {0,1}p(∣x∣) s.t. M(x,u) = 1

or equivalently, a language L is in coNP if for any x ∈ {0,1}∗, there exists a

TM M and a polynomial p:

x ∈ L⇐⇒ ∃u ∈ {0,1}p(∣x∣) s.t. M(x,u) = 0

Definition 4. (DP) A language L is in the class DP if and only if there are

two languages L1 ∈ NP and L2 ∈ coNP such that L is the intersection of L1

and L2.

Definition 5. (PSpace) Let us denote by Space(t(n)), the set of all (deci-

sion) problems that are solvable by Turing machines using O(t(n)) space for

some function t of the input size n. Similarly, NSpace(t(n)) denotes the set

of all problems that are solvable by nondeterministic Turing machines using

O(t(n)) space. Then we define: PSpace = ⋃
k∈N

Space(nk). Note that as a

corollary to Savitch’s theorem, it is known that PSpace =NPSpace.

17



Definition 6. (ΣP
2 ) A language L is in ΣP

2 if for any x ∈ {0,1}∗, there exists

a TM M and two polynomials p and q:

x ∈ L⇐⇒ ∃u ∈ {0,1}p(∣x∣) ∀v ∈ {0,1}q(∣x∣) s.t. M(x,u, v) = 1

Note that for any language L, (i) if L ∈ NP, then L ∈ ΣP
2 , and (ii) if

L ∈ coNP, then L ∈ ΣP
2 .

Definition 7. (ΠP
2 ) A language L is in ΠP

2 if for any x ∈ {0,1}∗, there exists

a TM M and two polynomials p and q such that:

x ∈ L⇐⇒ ∀u ∈ {0,1}p(∣x∣) ∃v ∈ {0,1}q(∣x∣) s.t. M(x,u, v) = 1

Definition 8. (ΣP
i ) For every i ≥ 1, a language L is in ΣP

i if there exists a TM

M computable in polynomial-time and a polynomial p(.):

x ∈ L⇐⇒ ∃u1∀u2 . . .Qiui M(x,u1, . . . , ui) = 1

where for all i, ui ∈ {0,1}p(∣x∣) and Qi = ∀ if i is even (resp. Qi = ∃ if i is odd).

Definition 9. (ΠP
i ) For every i ≥ 1, a language L is in ΠP

i if there exists a

TM M computable in polynomial-time and a polynomial p:

x ∈ L⇐⇒ ∀u1∃u2 . . .Qiui M(x,u1, . . . , ui) = 1

where for all i, ui ∈ {0,1}p(∣x∣) and Qi = ∀ if i is odd (resp. Qi = ∃ if i is even).

Definition 10. (Polynomial Hierarchy (PH)) Based on the above-defined com-

plexity classes, we have the following definition for the polynomial hierarchy:

PH =⋃
i≥0

ΣP
i

where ΣP
0 = ΠP

0 = P. One can immediately observe that: ΣP
1 = NP and ΠP

1 =

coNP. Furthermore, we have ΠP
i = coΣP

i = {L̄ ∶ L ∈ ΣP
i } and the following two

inclusion properties: (i) ΣP
i ⊂ ΣP

i+2 and (ii) ΣP
i ⊂ ΠP

i+1.

It is believed that P ≠NP and NP ≠ coNP. An interesting generalization

of these two conjectures is that for every i, the class ΣP
i is strictly contained

18



in ΣP
i+1. This is called the conjecture that the polynomial hierarchy does not

collapse. If the polynomial hierarchy collapses this means that there is an i

such that ΣP
i = ⋃

j
ΣP
j = PH. In this case, we say that the polynomial hierarchy

has collapsed to the i-th level. The smaller i, the weaker, and hence more

plausible, the conjecture that PH does not collapse to the i-th level.

In the following, we show two collapsing results in PH.

1. If PTime=NP, then PH=PTime i.e., the hierarchy collapses to PTime.

2. If ΣP
i = ΠP

i for some i ≥ 1, then for any j ≥ 1, ΣP
j = ΠP

j = ΣP
i .

2.2.1 Oracle Characterization of Polynomial Hierarchy

We can alternatively, define PH with oracle machines. Before we proceed, let

us define oracle Turing machines.

Oracle machines are machines that are given access to an oracle which

can magically solve the decision problem for some language L ⊆ {0,1}∗. This

machine has a special oracle tape on which it can write a string l ∈ {0,1}∗ in

one step, to get an answer to the following question: Is l in L?. Notice that we

can repeat this arbitrarily often with different queries. In complexity theory,

a difficult language is the one which cannot be decided in polynomial time. If

a language L is of this kind, then this oracle provides an additional power to

the TM.

Definition 11. (Oracle Turing Machines) An oracle Turing machine is a TM

M that possesses a special read/write tape, which is called M ’s oracle tape,

and three special states qquery, qyes, qno. To execute M , in addition to the

input, a language L ⊆ {0,1}∗ is specified that is used as the oracle for M .

During the execution of this TM, whenever M enters the state qquery, if q ∈ O,

then the Turing machine moves into the state qyes and if q ∉ O, then it moves

into qno in which q denotes the contents of the special oracle tape. No matter

what the choice of O is, a query that asks the membership in O counts only

as a single computational step. If M is an oracle machine, O ⊆ {0,1}∗ is a

language, and x ∈ {0,1}∗, then the output of M on input x and with oracle O

is denoted by MO(x). We define nondeterministic oracle TMs similarly.

19



Definition 12. For every O ⊆ {0,1}∗, PTimeO is the set of languages decided

by a polynomial-time deterministic TM with oracle access to O and NPO is

the set of languages decided by a polynomial-time nondeterministic TM with

oracle access to O.

Definition 13. Let φ be a Boolean formula and for all i ≥ 1, ui be a vector

of Boolean variables, and Qi = ∃ if i is an odd number and Qi = ∀, otherwise.

We define the problem ΣiSAT as follows:

∃u1∀u2∃u3 . . .Qiuiφ(u1, . . . , ui) = 1

Recall that we execute oracle machines given access to queries of the fol-

lowing form: “is q ∈ O for some language O?”. For every O ⊆ {0,1}∗, an oracle

machine M and input x, by MO(x) we denote the output of M on x with

access to oracle O. We have the following characterization of the polynomial

hierarchy:

Proposition 14. For every i ≥ 2, ΣP
i is defined to be NPΣi−1SAT which is the

class of languages decided by polynomial time nondeterministic Turing ma-

chines with access to oracle Σi−1SAT.

Clearly, if we have oracle access to the hardest problems of a class C, we

can solve all problems in C. Therefore, in some texts, the class names are used

in the oracle notation. For example, NPΣ1SAT is denoted NPNP, etc. We use

the latter convention in our notations of this dissertation.

The following properties are known to hold for the above-defined classes:

ΣP
0 = ΠP

0 = PTime (2.2.1)

ΣP
i ⊆ ΣP

i+1 (2.2.2)

ΠP
i ⊆ ΠP

i+1 (2.2.3)

ΣP
i = coΠP

i (2.2.4)

2.3 Sub-polynomial Classes of Complexity

In this section, we briefly review the sub-polynomial classes of complexity:

AC and NC which are the classes of efficiently parallelizable problems, and

20



LogSpace and NLogSpace which are the deterministic and nondeterminis-

tic classes of problems that are efficiently solvable with low resources on space.

In addition to their theoretical significance, these complexity classes play a key

role in real-world applications due to the efficiency benefits they offer for par-

allelizability of computational tasks to solve problems that belong to these

classes. As we will see in Chapter 7 of our dissertation, the high level of paral-

lelizability offered by these classes can help us establish practical benefits for

query answering using the query languages introduced therein which have the

above complexities of reasoning.

2.3.1 Circuit Complexity Model

Circuit complexity is an area with a long history which starts in the 1940’s.

Loosely speaking, it is a branch of computational complexity theory in which

we classify Boolean functions according to the size or the depth of the Boolean

circuits that compute them.

An n-bit Boolean function is a Boolean function that has domain {0,1}n

and co-domain {0,1}. The basic question circuit complexity is trying to answer

is: given a collection of “simple functions” F and a target Boolean function g,

how efficiently can one compute g on all inputs using F? We usually measure

efficiency using the “size” of computation which asks how many copies of F

are necessary to compute g?

Let F be a set of Boolean functions, which in this setting we call a basis set.

The fan-in of some f ∈ F is the number of inputs that f takes. Unbounded

fan-in means that f can take any number of inputs. We define a Boolean

circuit C with n inputs x1, . . . , xn and size s over a basis F as a directed

acyclic graph which consists of n sources (aka inputs x1, . . . , xn) and one sink

or output node (which is the sth node in some fixed topological order on the

nodes). The nodes are also called gates. Input gates are x1, . . . , xn in which xi

is associated with the ith input bit. Additionally, we label the gates numbered

j = n + 1, . . . , s in a fixed topological order with a function fj ∈ F .

The size of C is the number of AND and OR gates it contains. The depth

of C is the longest path from any source to the sink. The fan-in of some f ∈ F
21



is the number of inputs that f takes. The most popular basis only uses AND,

OR, and NOT gates, where NOT gates are not counted toward size.

Definition 15. (AC) Let ACi for some integer i ≥ 0 denote the languages

recognized by Boolean circuits of depth O(logi n) and a polynomial number

of unlimited fan-in AND and OR gates. Then, we define AC = ⋃
i≥0

ACi.

As a particular subclass of the AC hierarchy, AC0 is appealing as it corre-

sponds to first-order logic in the model checking setting. More precisely, the

evaluation of the first-order logic (i.e., SQL) queries over relational databases,

with only database as the input, belongs to AC0. Intuitively, a problem be-

longs to AC0 if it can be decided in constant time using a polynomial number

of processors in the size of the input.

We will provide backgrounds on the first-order logic and relational databases

in more details in Chapter 3.

Definition 16. (NC) Let us define NCi as the fan-in 2 version of ACi. Then,

analogous to the ACi hierarchy, we define NC = ⋃
i≥0

NCi.

Equivalently, a problem P is in NC if there exist a pair of constants c and

k such that P can be solved in time O(logc n) using O(nk) parallel processors.

It is not hard to see that NC is a subset of PTime. The reason is that we

can always simulate polylogarithmic parallel computations by polynomial-time

sequential ones. However, it is highly suspected to be false, it is still unknown

whether NC = PTime. If the above equality can be established, it implies

that there are tractable problems that are inherently sequential and cannot be

therefore significantly sped up using parallelism.

Definition 17. (LogSpace and NLogSpace) The set of all problems that

are solvable by deterministic (resp. nondeterministic) Turing machines us-

ing a logarithmic amount of space is called LogSpace (resp. NLogSpace).

Formally, LogSpace = Space(logn) and NLogSpace =NSpace(logn).

The following inclusion relationships are known from the literature for the

sub-polynomial complexity classes:

NC0 ⊆AC0 ⊂NC1 ⊆ LogSpace ⊆NLogSpace ⊆AC1 ⊆ ⋅ ⋅ ⋅ ⊆NC =AC ⊆ PTime

22



In particular, it is known that AC0 is strictly contained in LogSpace, while

it is open whether the other inclusions are strict. The problem of undirected

graph reachability is an example of a problem that belongs to LogSpace but

not in AC0 [125].

2.4 Reducibility and Completeness

In theory of computational complexity, a reduction is a transformation of one

problem into another. Depending on the transformation used, this can be used

to define complexity classes on a set of problems.

Roughly speaking, if a problem A reduces to a problem B, this means that

A is no harder than B, and equivalently B is no easier than A. A ≤ B is

written, usually with a subscript on ≤, to indicate the type of reduction being

used. More formally we have:

Definition 18. Given two subsets A and B of N and a set of functions F from

N to N which is closed under composition, A is called reducible to B under F

if:

∃f ∈ F ∀x ∈ N x ∈ A⇔ f(x) ∈ B

which is written as A ≤F B.

Definition 19. Let S be a subset of P (N) and let ≤ be a reduction. S is

called closed under ≤ if:

∀s ∈ S ∀A ∈ P (N) A ≤ s⇒ A ∈ S

A subset A of N is called hard for S if ∀s ∈ S s ≤ A. In addition, a subset A

of N is called complete for S if A is hard for S and A is in S.

2.4.1 Reductions

The two main types of reductions that are used in the literature of computa-

tional complexity are many-one and Turing reductions. Many-one reductions

map instances of one problem into instances of another. On the other hand,

Turing reductions compute the solution to one problem, assuming the other

23



problem is easy to solve. Many-one reductions are weaker than Turing reduc-

tions.

A problem P is said to be complete for a complexity class C if every problem

in C reduces to P , and P itself is also in C. As in this case any solution to the

problem, in combination with the reductions, can be used to solve each and

every problem in the class, the problem in this sense represents the class.

To show that a decision problem P is undecidable we need to find a reduc-

tion from a decision problem, already known to be undecidable, to P . Note

that the reduction function must be computable (i.e., there must be some Tur-

ing machine which computes the reduction in finite time). In the following,

we introduce the most common reductions in the literature.

Turing Reduction

In computational complexity theory, a Turing reduction from a problem A to

a problem B is intuitively, a reduction which can easily solve B, given the

assumption that A is easy to solve. More formally, a Turing reduction is a

function which is computable by an oracle machine using an oracle for A. In

this case, if it is shown that such a reduction exists, then every algorithm

to solve M immediately yields an algorithm which solves L. This solution is

formed by inserting a call to that algorithm at each place which is used by the

oracle machine.

Notice that since there is a possibility that the oracle machine invokes

the algorithm many times, the resulting algorithm may asymptotically require

more time to be solved than either the oracle machine or M . Further, it could

require as much space as both algorithms combined. It is known that Turing

reductions can be applied to both decision as well as function problems.

It is known that many important complexity classes, such as NP are not

closed under Turing reductions. In particular, any decision problem can be

Turing-reduced to its complement. This can be done by simply solving the

original problem and inverting the answer. Using this fact, we can show that

any complexity class which is not closed under its complement is also not closed

under Turing reductions. However, it can be shown that some classes within

24



PTime (such as LogSpace, NLogSpace, and PTime itself) are closed under

Turing reductions.

There are indeed situations where Turing reductions are too powerful. In

this case, we need to utilize a special case of these reductions instead. One

well known special case of these reductions is known in the literature as many-

one reductions. In fact it can be shown that most natural complexity classes

are closed under the latter class of reductions. Informally speaking, many-one

reductions can be seen as Turing reductions where the oracle can be invoked

only once at the end of the processing of the oracle machine.

Often times, additional resource restrictions are taken into account for

Turing reductions. As instances of these restrictions one can say that the

oracle machine runs in polynomial time or logarithmic space; see polynomial-

time reduction and logspace reduction which follow, for details.

Many-One Reduction

In computational complexity theory, a many-one reduction is a reduction

which converts instances of a decision problem A into instances of a deci-

sion problem B. To denote that there is a many-one reduction from A to B,

we write A ≤m B, or in other words A is many-one reducible to B. If an algo-

rithm N solves instances of a problem B, we can exploit N to solve instances

of A in the time (or the space) that is needed to run N plus the time needed

to apply the reduction.

More formally, suppose A and B are formal languages over the alphabets Σ1

and Σ2, respectively. A many-one reduction from A to B is a total computable

function f ∶ Σ∗1 → Σ∗2 that has the following property: If such a function f

exists, then it is said that A is many-one reducible to B.

Further, a class C of languages is said to be closed under many-one reduc-

tion if there exists no reduction from some language in C to a language outside

of C. If a class is closed under many-one reduction, then many-one reduction

can be used to show that a problem is in C by reducing a problem in C to it.

Many-one reductions are important classes of reductions as most well stud-

ied complexity classes are indeed closed under some type of many-one reduc-

25



tion. These classes include, but not limited to, PTime, NP, LogSpace,

NLogSpace, coNP, PSpace, ExpTime, etc. Recall that many-one reduc-

tions are a special case and a weaker form of Turing reductions as in the former

only one invocation of the oracle is allowed, which happens only at the end.

It turns out that in many cases Turing reductions are more convenient

for designing reduction algorithms. However, their power also forbids several

important classes such as NP to be closed under these reductions. On the other

hand, in many cases many-one reductions are subjected to additional resource

restrictions. As instance of these restrictions one can consider the function to

be computable in polynomial time or logarithmic space; see polynomial-time

reduction and logspace reduction for details.

Polynomial-Time Reduction

In computational complexity theory, a polynomial-time reduction is a reduction

which is computable by a deterministic Turing machine which runs in poly-

nomial time. Depending on the type of reduction used, it is called differently.

If it is a many-one reduction, then it is called a polynomial-time many-one

reduction, polynomial transformation, or Karp reduction. Unless otherwise

stated, in this dissertation, any reduction that is mentioned or proved is a

Karp reduction. To denote the fact that there is a polynomial-time reduc-

tion from instances of a decision problem A to instances of a decision problem

B, we usually write A ≤p B. If it is a Turing reduction, then it is called a

polynomial-time Turing reduction, which is also known as Cook reduction.

Be it a Cook or a Karp reduction, polynomial-time reductions are signifi-

cant and widely-used, as that they offer a balance: they are powerful enough

to perform many transformations between important problems, however, they

are weak enough in a sense that polynomial-time reductions from problems in

NP or coNP to problems in PTime are considered unlikely to exist. This

is the notion of reducibility that is used in the standard definitions of sev-

eral complete complexity classes, including, but not limited to, NP-complete,

PSpace-complete, and ExpTime-complete.

Note that indeed, it is inappropriate to consider and apply polynomial-

26



time reductions within the class PTime. The reason is that any problem

in PTime can be polynomial-time reduced (for both many-one and Turing

variants) to any other problem in PTime. Thus, for classes within PTime such

as LogSpace, NLogSpace, and PTime itself, we use logspace reductions

instead. It is known that if a problem has a Karp reduction to a problem in NP,

the problem is in NP. Cook reductions are known to be more powerful than

Karp reductions. For instance, any problem in coNP has a Cook reduction to

a problem in NP. While it is useful to exploit this power to design reductions,

there is one downside too: classes such as NP are not closed under Cook

reductions, and so they are not useful for proving that a problem is in NP.

However, they are useful for showing that problems are in PTime.

Logspace Reduction

In computational complexity theory, a logspace reduction is a reduction which

is computable by a deterministic Turing machine using logarithmic space. In

a conceptual level, this means that these reductions can keep a constant num-

ber of points into the input, along with a logarithmic number of integers that

are of a fixed size. Notice that for such a machine there are polynomially-

many configurations, and for this purpose, logspace reductions are also triv-

ially polynomial-time reductions. It is widely conjectured that logspace re-

ductions are weaker than polynomial-time reductions; while any language in

PTime is polynomially reducible to any other language in PTime, a logspace

reduction between a language in NLogSpace and a language in LogSpace,

which are both subsets of PTime, would imply the equality: LogSpace

= NLogSpace which indeed, seems unlikely to hold. It is an open ques-

tion whether NP-complete problems behave differently under logspace and

polynomial-time reductions. Often times, logspace reductions are used on lan-

guages inside the class of PTime, in which case it usually does not matter

whether many-one or Turing type of these reductions are used. The reason

is that it is known that LogSpace, NLogSpace, and PTime are all closed

under Turing reductions which means that Turing reductions can be used to

show that a problem belongs to any of these languages. However, there are

27



other subclasses of PTime which are not known to be closed under Turing

reductions, and therefore for these subclasses many-one reductions need to

be used instead. As much as polynomial-time reductions are useless within

PTime and its subclasses, logspace reductions are useless to distinguish prob-

lems in LogSpace as well as its subclasses. In particular, every problem in

LogSpace is trivially LogSpace-complete under logspace reductions. While

even weaker reductions are known to exist, they are not often used in prac-

tice, because languages smaller than LogSpace receive little attention in the

literature.

Note that the complexity classes PTime, NP and PSpace are closed under

polynomial-time reductions. Furthermore, it is known from the literature that

the complexity classes LogSpace, NLogSpace, PTime, NP and PSpace

are closed under logspace reduction.

2.4.2 Complete Problems in Polynomial Hierarchy

Based on Definition 19, we have the following definition for completeness of

different levels of polynomial hierarchy.

Definition 20. For all i ≥ 0, a language L is ΣP
i -complete if L ∈ ΣP

i and for

all L′ ∈ ΣP
i , L′ ≤p L. ΠP

i -completeness is defined similarly.

Proposition 21. If there is a language L that is PH-complete, then there

exists some i ≥ 0 such that PH = ΣP
i , i.e., the hierarchy collapses to its i-th

level.

2.5 ELEMENTARY

The complexity class ExpTime is the class of all problems that are solvable by

a deterministic Turing machine in O(2p(n)) time, where p(n) is a polynomial

function of input n. Similarly, the complexity class NExpTime is the set of

problems that can be solved by a nondeterministic Turing machine using time

2n
O(1)

. Formally, NExpTime = ⋃
k∈N

NTime(2nk), where NTime(t(n)) is the

class of all problems that are solvable by nondeterministic Turing machine in

time c × t(n), for some constant c.

28



More generally, for all i ≥ 1, we define:

iExpTime = ⋃
k∈N

DTime(22⋰
2n
k

)

where the number of exponentials in the above equation is i. Similarly, for all

i ≥ 1,

N iExpTime = ⋃
k∈N

NTime(22⋰
2n
k

)

Now, we let the complexity class ELEMENTARY of elementary recursive

functions be the union of iExpTime classes as follows:

ELEMENTARY ∶= ExpTime ∪ 2ExpTime ∪ 3ExpTime ∪⋯

Furthermore, coN iExpTime is the complementary class of N iExpTime,

in which “Yes” and “No” instances are interchanged.

In summary, the following inclusion relationships are known between the

discussed complexity classes:

NP, coNP ⊂ ΣP
2 ,Π

P
2 ⊂ PSpace ⊂ ExpTime ⊂NExpTime,

coNExpTime ⊂ 2ExpTime ⊂N2ExpTime,coN2ExpTime

29



Chapter 3

Background, Motivations, and
Previous Developments

In this chapter we go over state of the art in this area and review some of the

work related to this dissertation. Later, in the next chapters we will build on

top of the state of the art in our development. In Section 3.1, we lay out the

landscape of ontology-mediated query answering along with its comparison

with other formalisms. Section 3.2 reviews some of the related work along

with applications of the languages introduced in this dissertation. Finally, in

Section 3.3, we discuss the previous work on chase termination.

The informed readers can read this chapter selectively, or skim it in the

first reading.

3.1 The Landscape of Ontology-Mediated Query

Answering

Since the seminal work of [124], there has been a surge of growing interest

both in academia and from industry in ontology-mediated query answering

(OMQA). It is a new paradigm in data management the purpose of which is

to exploit the semantic knowledge provided by an ontology to improve query

answering. Ontology is a way to express the semantic connections between

different pieces of data which is expressive enough to capture complicated

relationships in the data while at the same time mathematically formalized

and restrictive enough to allow software as well as humans to make inferences

30



and provide reasoning.

There are certain advantages in adding ontologies which are summarized

below:

• It provides an enriched vocabulary that matches closely the conceptual-

ization of users in the given application domain. This way, an ontology

facilitates query formulation of users.

• In addition, the ontology can be used to integrate different data sources

through a single conceptual model. This makes it easy for them to be

accessed in a uniform and intuitive manner.

• Furthermore, OMQA can help to support automated reasoning with

which one can uncover implicit connections between terms; and also

it aids in detecting modelling errors.

• Last but not least, OMQA can provide users with more complete answers

to their queries. This can mean unveiling hidden connections in the data

which is not known using any other way. OMQA can provide this by

taking into account not only the facts explicitly stored in the data, but

also facts that are implicit consequences in the data as well as the domain

knowledge.

For the sake of illustration, let us consider an example of an OMQA scenario

in medicine. The patient data of hospitals is usually recorded in databases.

For this purpose, a standard medical ontology is used as a terms repository.

One may represent the domain knowledge that a patient suffers from acute

lymphoblastic leukemia and has been prescribed a drug for hypertension. If

an administrator queries the system to find all cancer patients that are being

treated for high-blood pressure, in the absence of an ontology, this query may

show no results. The reason is that in many real-world cases, the generic terms

‘cancer’ and ‘high blood pressure’ do not appear in the records of patients,

explicitly.

However, the ontology defines a hierarchy of terms from specialized to

generic ones and clarifies the semantic relationships between them and in or-

31



der to answer a query, an OMQA system will perform the necessary inferences

given the knowledge base (including ontology and fact base). In this exam-

ple, it can infer that acute lymphoblastic leukemia is a type of cancer and

hypertension is the same as high blood pressure.

Note that OMQA is not limited to medical data and can be broadly applied

to scientific data (e.g ., chemistry, biology), bibliographical data, governmental

open data, etc.

In spite of all advantages that are provided by OMQA, enriching data with

domain knowledge has its cons. In particular, it makes the task of query

answering significantly more difficult, both conceptually and algorithmically.

This also depends on which language is used to express the ontological knowl-

edge.

Fortunately, there are known classes of ontologies for which the task of

query answering is easy. However, to achieve this goal, the syntax of the

language that describes the ontology needs to be severely restricted and this

may lead to a considerable loss of expressiveness in the domain ontology.

Another challenge that arises when enriching data with ontologies is the

increasing volume of data. This increases the complexity of query answering

and renders this task infeasible in reality even for very simple queries. In this

dissertation we provide solutions for both of the above mentioned challenges.

In what follows, we further elaborate on ontologies as compared to tradi-

tional database systems. Using our settings, a knowledge base is defined as

a pair consisting of a database and an ontology where ontologies model some

aspects of a particular domain of interest.

Ontologies do this by introducing the vocabulary that is relevant to the

particular domain of interest we are modelling. This vocabulary typically

includes classes, relations and hierarchies. In the above example, classes are:

cancer, acute lymphoblastic luekemia, hypertension, high blood pressure. Fur-

thermore, relations are: same-as and is-a. In addition, hierarchies are: Acute

lymphoblastic luekemia ≤ Cancer.

On top of domain vocabulary, ontologies formally specify rich semantics

and meaning to the vocabulary. These semantics are typically represented in

32



terms of rules. For the above example, this translates to the following sentences

in plain English: “Every Acute lymphoblastic luekemia is-a Cancer”;

“Hypertension is the same-as High blood pressure”.

3.1.1 Ontologies versus Database Schemata

In this section, we compare an ontology and database schema briefly.

As for similarities, they both describe the structure and constraints on data.

However, they are different in the following aspects: (i) While ontologies entail

implicit facts, database schemata define legal database states; (ii) Although

ontologies may severely influence query answering (QA), database schemata

do not influence QA. In addition, in many database applications, a closed

world assumption (CWA) is made, which means that the information that is

missing from the database is assumed to be false. For ontologies, however,

open world assumption (OWA) is made in which the missing information is

unknown (i.e., neither assumed to be true nor false).

The ontology languages that are frequently used in OMQA are description

logics and existential rules languages. In what follows, we demonstrate a logical

view of database related to the above example.

Example 1. Consider the following tables that belong to a hospital database.

Table 3.1: A hospital database
Is-Diagnosed-with

Ada Cancer

Linus Cancer

Ada High Blood Pressure

Richard High Blood Pressure

Andy z0

Patient

Ada

Linus

Alice

Richard

Bob

One can represent the above tables using the language of first-order logic

as follows:

∃z0(is-diagnosed-with(Ada,Cancer) ∧ patient(Ada) ∧

is-diagnosed-with(Linus,Cancer) ∧ patient(Linus) ∧

is-diagnosed-with(Ada,High-Blood-Pressure)∧patient(Alice)∧

33



is-diagnosed-with(Richard,High-Blood-Pressure)∧patient(Richard)∧

is-diagnosed-with(Andy, z0) ∧ patient(Bob))

For example, consider the following relational algebra operations on the

above tables.

1. π[1](Is-Diagnosed-with) & Patient

2. π∅(σ[1=Andy]Is-Diagnosed-with)

These queries will be translated to FO logic queries as shown below in the

same order.

1. Q() = ∃x∃y(is-Diagnosed-with(x, y) ∧ Patient(x))

2. Q() = ∃x(Is-Diagnosed-with(Andy, x))

More formally, it was shown by Codd that every relational algebra expres-

sion can be translated to one in FO logic [2].

Theorem 22. Relational algebra is equivalent to FO without function symbols.

It can also be shown that answering queries in this setting is seen as finding

homomorphisms from the query atoms to set of facts in the database as is

demonstrated in the following example.

Example 2. Consider the queries of Example 1. Let

Q1 = ∃x∃y(is-Diagnosed-with(x, y) ∧ Patient(x))

Then answering Q1 is equivalent to finding all variable substitutions h from

the variables of Q1 to the constants of the database such that h(Q1) ⊆ F , where

F is the set of database facts. This is equivalently denoted as: F ⊧ Q1. For

Q1, we can find the following substitutions:

h1 = {x↦ Ada, y ↦ Cancer}
h2 = {x↦ Linus, y ↦ Cancer}
h3 = {x↦ Ada, y ↦HighBloodPressure}
h4 = {x↦ Richard, y ↦HighBloodPressure}

34



The same argument holds for Q2 = ∃x(Is-Diagnosed-with(Bob, x)) and we

find the following substitution for Q2: h5 = {z0}. Therefore, we can compute

the following answers to Q1 and Q2: Answer(Q1, F ) = {(Ada), (Linus), (Richard)}

and Answer(Q2, F ) = “Y es”.

Conjunctive queries form the sub-language of relational algebra which are

obtained using the only following operations: projection, Cartesian product,

and selection with equality. Q1 and Q2 in Example 1 are two examples of

conjunctive queries.

These languages may be further extended, to get a more expressive sub-

language of union of conjunctive queries, by adding union operation to them.

Unions of conjunctive queries are therefore defined as unions of a finite number

of conjunctive queries.

Note that relational algebra and relational calculus have substantial expres-

sive power. In particular, they can express natural join, unions of conjunctive

queries, etc. However, they cannot express recursive queries (in which roughly,

the definition of the query, directly or indirectly, depends on itself).

Beyond First-Order Logic: Transitive Closure

The transitive closure (TC) of a binary relation R is the smallest (binary)

relation S for which R ⊆ S and S is transitive. As a particular example of

recursion, it was shown by Fraisse, that there does not exist any expression in

relational algebra that defines the TC of a given binary relation E (for more

information cf. e.g., [2]). This means that one cannot write an FO formula

using predicate symbols R and T that will be satisfied in any model if and

only if T is the TC of R.

In order to express TC of a relation R one needs an infinite formula:

{(x, y) ∣R(x, y) ∨ ∃z(R(x, z) ∧R(z, y)) ∨ ∃z, v(R(x, z) ∧R(z, v) ∧R(v, y))∨
∃z, v,w(R(x, z) ∧R(z, v) ∧R(v,w) ∧R(w, y)) ∨ . . .}

The intuition behind inability of relational calculus to express TC is that it

can only express “local” properties. Locality informally means that in order to

check if a tuple belongs to the result of a query, only a certain predetermined

portion of the input need to be looked at.

35



To overcome the limitations of relational calculus in terms of expressive

power, two approaches can be considered. The first is to embed relational

calculus commands inside a conventional programming language. The other

approach is to augment relational calculus with a high-level mechanism for

recursion to keep declarative nature of this language. Due to keeping the

declarative nature of relational calculus the latter approach is a better solution.

Datalog language was an answer to this shortcoming of relational algebra

which augments the language of conjunctive queries with a recursion mech-

anism. This language gained traction in the past few years due to many

applications even outside database community including networking, access

control strategies, business analytics, etc. It is a truly declarative language

and is syntactically a subset of Prolog. Note that it is not Turing complete as

it belongs to the function free fragment of Prolog.

The languages that have been considered for expressing ontologies in the

literature are in two main categories of description logics (DLs) and positive

existential rules. For the former, the most prominent subcategories are of DL-

Lite, EL and OWL2 profiles. The latter family of languages that are the focus

of this dissertation are known as tuple-generating dependencies (TGDs) (also

known as Datalog∃) that generalize Horn DLs.

The main notion central to this research, the chase, is an algorithmic tool

for constructing universal models that repeatedly applies a series of steps in

order to accomplish certain tasks, such as reasoning under the presence of

ontologies, repairing inconsistent database instances, etc. Utilizing the chase

algorithm for OMQA is also known as saturation or materialization approach.

Each chase step takes a TGD (aka a dependency) that is not satisfied by

the database instance, a set of tuples (relational instances) that violate the

dependency and changes the database instance so that the resulting instance

satisfies the dependency for the given set of tuples.

As an example, consider a database instance D containing tuples P (a, b)

and Q(a, a) and a dependency specified by the following rule

∀x∀yP (x, y)→ Q(y, x)

36



which intuitively says that for each tuple P (x, y) there needs to be a corre-

sponding tuple of the form Q(y, x). The given dependency is not satisfied for

the tuple P (a, b), because there does not exist a corresponding tuple Q(b, a)

in D as specified by the dependency. In this case, the chase step will sim-

ply add the missing tuple Q(b, a) to D and the resulting instance will be

D′ = {P (a, b),Q(a, a),Q(b, a)}. It is easy to see that the resulting instance

satisfies the dependency for the tuple P (a, b), and that it actually satisfies the

dependency for all sets of tuples in D′.

The problem becomes more challenging when existential quantification is

allowed in the head of a rule, e.g.,

∀xPerson(x)→ ∃yFriend(x, y)
∀x∀yFriend(x, y)→ Person(y)

which says every person has a friend and a friend is a person. Given a database

with some individual persons, chase is nonterminating, as with an instance of

x, ∃yFriend(x, y) does not tell us any concrete individual that can serve as

a substitute for existential variable y, which can thus only be an unknown

individual.

The chase procedure has its origins in two seminal papers of 1979, one by

Aho et al . [6] and the other by Maier et al . [111]. Maier et al . used chase

as a tool to check if a set of embedded dependencies Σ, specified by a set of

functional dependencies (FDs) and join dependencies (JDs), logically implies

a given join dependency ξ. For this, they represented ξ as a tableau chased

with Σ and checked if the resulting tableau represents the identity mapping

for all instances that satisfy Σ. Also, the chase was reformulated for other

types of dependencies [140].

In [24], a unified treatment was proposed for the implication problem by

extending the chase procedure for classes of tuple-generating and equality-

generating dependencies. These two classes of dependencies were shown to be

expressive enough to capture all the previous classes.

More recently, the chase procedure has gained a lot of attention due to its

usefulness in: data integration [44, 108], data modelling and ontologies [42,

43], inconsistent databases and data repairs [4, 10, 86], data exchange [66],

37



peer data exchange [69], and data correspondence [86].

Since the evaluation of chase might not terminate and it is undecidable

whether it terminates for any given database and also for all databases 1 [74,

87], the problem of defining (decidable) sufficient conditions ensuring termi-

nation has received a great deal of interest in recent years. In this regard,

several termination criteria have been proposed. One of the main weaknesses

of current approaches is that they are limited in scope as they mostly focus

on Skolem chase and there is no systematic analysis of termination under the

restricted variant of the chase.

Inspired by applications of chase algorithm in the aforementioned database

problems, the goal of the first technical part of this dissertation is to tackle

the hard problem of finding conditions for chase termination for all database

instances under the standard chase variant, which is in general strictly more

powerful than Skolem chase. This leads to devising systematic algorithms

for discovering classes of tuple generating dependencies with finite universal

models beyond finite Skolem chase.

3.2 Related Work

In this section, we review some of the most recent literature that are relevant

to our research.

3.2.1 Ontology Modelling

Ontologies are fundamental and key concepts in the semantic web. Also they

are proved to be useful in databases, because of their flexibility and expressive

power, most prominently in data modelling and data integration. Among

ontology formalisms, description logics (DLs) have been playing a key role in

research in semantic web much of which directed toward scalable and efficient

query answering over ontologies. In particular, the DLs of the DL-Lite family

1Note that in case of any given database, database is part of the input but when we
say for all databases, database is not given in input. In the above cited papers, different
undecidability results have been derived for these cases for standard and core variants of
the chase.

38



[48] are the most common DLs in the semantic web and databases that allow

for tractable query answering.

In the next section, we introduce another ontology modelling formalism

introduced recently which is known to be more expressive than most DLs for

ontological modelling.

Datalog±

Datalog± is a rule-based formalism, introduced by Cali, et al . in [43], that

combines the advantages of logic programming (LP) in Datalog with features

for expressing ontological knowledge like adding key modelling features includ-

ing existential quantification in rule heads (TGDs), constraints of the form:

body →X = Y (equality generating dependencies or EGDs) and constraints of

the form: body → �. The sign “+ ” in Datalog± is due to additionally allowing

existentially quantified variables in the head of rules (for increasing expres-

siveness), and the sign “ − ” is due to restrictions enforced on rule bodies to

guarantee decidability and tractability properties. First, we say a few words

about the old (plain) Datalog.

Datalog is a recursive database query language defined in the 1980s [70]. It

provides a simple but useful framework for inductive definitions. Datalog can

be considered as function-free Prolog with fully declarative semantics. Plain

Datalog serves as a basis for knowledge representation (KR) languages (such

as the popular OWL 2 RL profile of the web ontology language) and also is

seen as a common subsumer for a variety of very expressive query languages

(cf. [36, 37]).

Moreover, Datalog is quite often used as a target for knowledge compila-

tion from much more expressive KR languages for instance, a recent topic of

research has been to show how tractable description logics or classes of exis-

tential rules can be reformulated using Datalog for query answering purposes

[56, 81, 97, 122].

In the past few years Datalog has gained a renewed interest due to its

successful usage in recent applications in web data extraction, code querying,

modelling and automation and in fact many large projects and some companies

39



are “Datalog-based” (e.g ., [54, 62, 127]);

Datalog is composed of a finite number of rules of the following form:

⟨condition1⟩, ⟨condition2⟩, . . . , ⟨conditionN⟩→ ⟨result⟩

where the right hand side is an atom, called the head of the rule, and the

left hand side is a conjunction of atoms called the body of the rule. An atom

is a predicate, or relation name with arguments. Also, extensional database

predicates (or EDBs) are considered source tables and intensional database

predicates (or IDBs) derived tables. As an example of Datalog rules, consider

the following where IDB is the set of atoms derivable from the given rule set

and the given EDB.

Figure 3.2.1 shows a Datalog program where the EDB includes a number

of facts about employees’ names (represented by emp/1 predicates) and a list

of reports from/to (represented by reports/2 predicates) and the IDB includes

derived facts from the given EDB and rule set.

Figure 3.2.1: Datalog example

Datalog has recently been subject to different theoretical analyses such

as [128, 129] where a complete picture for expressiveness of Datalog and its

extensions by input negation (semi-positive Datalog) and/or a linear order

(order-invariant Datalog) have been considered.

40



There are many applications of Datalog± family of languages among which

are data exchange, data extraction, ontology-based data access, ontology query-

ing, querying the semantic web, etc. In the following, we explain data ex-

change.

3.2.2 Data Exchange

Data exchange is an old database problem that only recently earned more

formal treatment. More precisely, it is the problem of transforming data

structured under a source schema to data structured under a different tar-

get schema.

The leading project for data exchange and data integration was Clio project

[64], developed at the IBM Almaden research center since 1999 aiming for a

working system for schema-mapping generation and data exchange.

Clio pioneered the use of schema mappings, specifications that describe the

relationship between data in two heterogeneous schemata. From this high-

level, nonprocedural representation, it can automatically encode, to transform

data from one representation to another for data exchange or for generating

either a view or to reformulate queries against one schema into queries on

another for data integration purposes.

Formally, a schema mapping is defined as a triple M = (S,T,Σ), where

S is a source schema and T is a target scheme and Σ is composed of high-

level, declarative assertions to specify the relationship between S-instances

and T -instances.

Ideally, schema mappings must be expressive enough to specify data in-

teroperability tasks and also simple enough to be efficiently manipulated by

tools.

A natural specification language for schema mappings is the language of

first-order logic. However, since the problem of satisfiability of first-order logic

sentences is undecidable in general, using this language, checking solutions of

schema mapping is undecidable as well. So, we need to restrict ourselves to

well behaved fragments of first-order logic as our specification language. Each

schema-mapping specification language must support the following properties:

41



Copying: Each source table must be able to be copied to a target table and

renamed:

∀x1, ..., xn P (x1, ..., xn)→ Q(x1, ..., xn)

Projection: A target table can be formed by deleting one or more columns of

a source table:

∀x1, x2, x3 P (x1, x2, x3)→ Q(x1, x2)

Column Addition: A target table can be formed by adding one or more

columns to a source table:

∀x1, x2 P (x1, x2)→ ∃zQ(x1, x2, z)

Decomposition: A source table can be decomposed into two or more target

tables:

∀x1, x2, x3 P (x1, x2, x3)→ Q1(x1, x2) ∧Q2(x2, x3)

Join: A target table can be formed by joining two or more source tables:

∀x1, x2, x3 P1(x1, x3) ∧ P2(x3, x2)→ Q(x1, x3, x2)

All of these features can be found in TGDs as a specification language

and in fact, they can be specified using a special class of TGDs known as

source-to-target TGDs (s-t TGDs) which are in the following form: ∀xφ(x)→

∃yψ(x,y), where φ(x) (resp. ψ(x,y)) is a conjunction of atoms over the

source (resp. target) schema. In addition to source-to-target dependencies,

we also consider target dependencies which are defined in the same format of

s-t TGDs with the difference that the body and the head are both over target

schema.

Data exchange via the schema mapping M = (S,T,Σ) is to transform a

given source instance I to a target instance J , such that (I, J) satisfies the

specifications Σ of M .

More formally, data exchange setting is a quadruple (S,T,Σst,Σt), where

S represents the source schema, T represents the target schema, Σst is a

set of constraints representing the relationship between the source and target

42



schema, and Σt represents a set of constraints over the target schema. Given a

data exchange setting (S,T,Σst,Σt) and the instance I over the source schema

S, the data exchange problem is to find instances J over the target schema T ,

such that I ∪ J is a model for D and Σst ∪Σt. An instance J with the previ-

ous properties is called a solution to the data exchange problem, or simply a

solution. This problem was first formalized by Fagin et al . in [65].

Most of the data exchange problems consider Σst to be a set of TGDs and

Σt to be a set of TGDs and EGDs. The data exchange setting we consider

here is of this format.

Figure 3.2.2 demonstrates a graphical representation of data exchange

problem in which S and T represent source and target schemata, I and J

are the source and target instance, Σst is the set of source-target TGDs and

Σt is the set of target TGDs.

Figure 3.2.2: Data exchange setting

Figure 3.2.3: Answering queries in data exchange

Note that given a source instance, there may exist multiple solutions.

For example, considering the following data exchange setting specified by

43



(S,T,Σst,Σt) where:

S = {P}, T = {Q},Σst = {P (x, y)→ ∃zQ(x, z) ∧Q(z, y)},Σt = ∅

and the source instance is I = {P (a, b)}, there are countably infinitely many

solutions as shown below:

J1 = {Q(a, b),Q(b, b)}

J2 = {Q(a, a),Q(a, b)}

J3 = {Q(a,n1),Q(n1, b)}

J4 = {Q(a,n1),Q(n1, b),Q(a,n2),Q(n2, b)}, etc.

Where n1, n2, ... are labeled nulls and a and b are constants. So, now the

question is: which solutions are better than others? and how can we com-

pute the best answer? Answer to this question defines the semantics of data

exchange.

This question was answered by Fagin et al . in [65] by introducing a univer-

sal solution which is a solution that has homomorphisms to all other solutions

(thus, being the most general solution). Roughly, a homomorphism h ∶ J1 → J2

between two target instances is a structure-preserving mapping from domain

of J1 to domain of J2 that maps constants to themselves and furthermore, if

R(a1, . . . , an) is in J1, then R(h(a1), . . . , h(an)) is in J2. Looking at the pre-

vious example, we find out that J1 and J2 are not universal but J3 and J4 are

universal solutions. Note that if J1 and J2 are universal solutions for I, then

they are homomorphically equivalent, which is not the case.

Based on their notion, Fagin et al . defined universal solutions as the pre-

ferred solutions in data exchange.

As an example, consider the following data exchange setting: (S,T,Σst,Σt)

where:

S = {Employee}, T = {EmpDept},Σst = {Employee(x)→ ∃zEmpDept(x, z)},
44



Σt = ∅ and the source instance is: I = {Employee(mia),Employee(liz)}.

For this example, the following instances over target schema represent so-

lutions:

J1 = {EmpDept(mia, dept1),EmpDept(liz, dept1)}

J2 = {EmpDept(mia, dept1),EmpDept(liz, dept2)}

J3 = {EmpDept(mia, dept1),EmpDept(liz, dept1),EmpDept(ben, dept1),

EmpDept(john, dept3)}

J4 = {EmpDept(mia, dept3),EmpDept(sam,dept1),EmpDept(liz, dept2),

EmpDept(sally, dept1)}

On the other hand, we notice that the instance J5 = {EmpDept(mia, dept1)}

is not a solution since the information that liz must be given a department is

not reflected in J5. For this example, we find out that if z is replaced with any

null values (say z1 and z2 which can be a placeholder for department names), we

can come up with instance J6 on the target schema which is indeed a solution

for the given source instance I: J6 = {EmpDept(mia, z1),EmpDept(liz, z2)}.

Based on the above informal definitions, we find out that this solution is

universal since for any solution K, we can construct instance JK by replacing

nulls z1 and z2 in J6 with some constants or nulls such that JK ⊆K.

In the following, we introduce more recent applications of (some fragments

of) the languages we introduce in this dissertation. Note that the technical

development of this work does not depend on these issues and the reader can

safely skip Sections 3.2.3 and 3.2.4.

3.2.3 Semantic Big Data Warehousing

Combining data from various sources let us create a more informative picture

of a domain of interest. Data integration is the way to achieve this goal. A

45



data warehouse is an example of data integration for analytical purposes. It

is constructed by integrating data from multiple heterogeneous sources that

support analytical reporting, query answering services, and decision making.

The evolution of data storage techniques and architectures, swayed the

direction of research in data warehousing and integration as well.

Unfortunately, semantic data integration, particularly for scientific data,

is a very challenging topic. The first challenge is accessing the data in the

first place. Data can be in different forms and in different locations which

include files on a computer, or in tables within PDF documents. In addition,

these data may be inconsistent. Moreover, there may be access restrictions

as some of the repositories may be accessible via websites or structured query

mechanisms while others may need usage of secure file modifications (e.g .,

edit, copy or transfer). Last but not least, Some data might be stored in

proprietary databases or require special and expensive software to access the

materials. Linked Open Data was an endeavor to address these issues.

As an example, consider a scenario in the medical domain. During a visit

to a doctor, a patient is assigned a primary diagnostic of “Acute upper respi-

ratory infection” using ICD-102, which is the 10th revision of the global health

information standard for mortality and morbidity statistics.

Now, assume the lab test results of that patient be: “Virus is identified

in Nose by Culture” which is encoded using LOINC, a database and univer-

sal standard for identifying medical laboratory observations. Given the above

information, how can we understand relevance of the above result to the diag-

nosis of the patient?

This is where semantic data integration techniques fits in to help in complex

analysis and querying.

Ontologies have been proposed as a way to express the semantic connec-

tions between different pieces of data in a way that is both machine and human

readable. However, the challenges still exist when ontologies are taken into ac-

count, in particular when the datasets are large and complex. Moreover, big

data introduces challenges which complicates data warehousing. A compre-

2https://www.who.int/classifications/icd/factsheet/en/

46



hensive list of challenges of the semantic data integration can be found in

[53].

3.2.4 Knowledge Graphs

Following the trend of large technological giants like Google, LinkedIn, Ama-

zon, and Facebook, it is becoming common for enterprises to integrate their

heterogeneous sources of information into a unified structure known as a knowl-

edge graph. A knowledge graph typically consists of graph-structured data to

allow for seamless accommodation of changes in the structure of the data that

is used for the validation and also enrichment of data and knowledge extrac-

tion from data by uncovering of hidden insights from it. NELL [117], DBpedia

[107], YAGO [135] and Wikidata [143] are some of the most well known knowl-

edge graphs.

Different models and standards of graph data structures are deployed in

industrial-grade applications. For example, triple stores utilize RDF3 which

are deployed in e.g ., GraphDB4, AllegroGraph5, AnzoGraph6, Apache Jena7,

etc.

In particular, GraphDB has clients like AstraZeneca and the well known

news agency BBC, with a focus on publishing data and data integration sce-

narios, where RDF shines the most. These corporations demand 500 million

to 1 billion RDF facts for their purposes. Furthermore, the biggest cluster

installations go up to 15 billion RDF facts. On the other hand, all structured

knowledge in e.g ., Wikipedia is less than 800 million facts. Although the prob-

lem of scalability has been mostly addressed in successful triple stores, but it

certainly remains a challenge when querying in the presence of ontologies.

Property graphs are another form of graph structured data. They are used

3https://www.w3.org/RDF
4http://graphdb.ontotext.com/
5http://www.franz.com/agraph/allegrograph
6http://www.cambridgesemantics.com/product/anzograph/
7http://jena.apache.org

47



by graph database vendors such as Neo4j8, OrientDB9, Amazon Neptune10,

etc.

As opposed to (RDF) triple stores (or quad stores), that are edge-centric,

graph databases are node, or property, centric. On the other hand, triple-

store can handle trillions of records and support inferencing on data, making

them great to provisioning analytics. They utilize URIs (uniform resource

identifiers), which provide support for querying and reasoning about the Se-

mantic Web. This is in contrast with graph databases which do not support

inferencing. Note that inferencing is supported by ontologies.

As an example for comparison of graph databases and RDF stores, let us

consider a knowledge representation scenario in which we want to represent

the fact that a person named “Alice” knows a person named “Bob”. In RDF,

it is demonstrated as:

<http://example.org/person/1> :hasName "Alice".

<http://example.org/person/1> foaf:knows <http://example.org/

person/2>.

<http://example.org/person/2> :hasName "Bob".

while in the graph database Neo4j it is written as:

(a:Person {name: "Alice"})-[:KNOWS]->(b:Person {name: "Bob"})

Graph-structured data may also derive from relational or semi-structured

data which exhibits graph structure. Each knowledge graph comes equipped

with a query language. In particular, Neo4j uses Cypher11, SPARQL12 is used

to query RDF datasets, etc. This enriched knowledge graph can then be the

input of any data science toolkit for graph data processing and computing

which may apply statistical and machine learning techniques on it to provide

graph analytics.

8http://https://neo4j.com/
9https://orientdb.com/graph-database/

10http://aws.amazon.com/neptune/
11https://neo4j.com/developer/cypher-query-language/
12https://www.w3.org/TR/rdf-sparql-query/

48



New ontology languages might develop into suitable formalism for express-

ing views and logical relationships over knowledge graphs, but providing the

required integration with other artificial intelligence approaches is in its in-

fancy.

MARPL is a prominent ontology language recently introduced for knowl-

edge graphs [114]. MARPL theories are in what is known as multi-attributed

predicate logic (MAPL) with the ExpTime-complete data complexity. In

[144], it is shown that the data complexity of the Skolem chase is PTime-

complete. Therefore, MARPL theories cannot be encoded in any Skolem chase

terminating rule set. On the other hand, in [104] it is shown that the restricted

chase allows encoding of problems with data complexities higher than PTime

and even nonelementary. It is conjectured that there is a translation from

MARPL theories to existential rules and based on what was discussed above,

they require restricted chase reasoning and they cannot be encoded in any

Skolem chase terminating rule set. Note that as of March 2020, MARPL

offers no support for integration with other AI techniques [103].

The Vadalog system is another prominent ontology language for knowledge

graphs [26]. It is a Datalog-based reasoning system which utilizes Warded

Datalog± as a decidable fragment of Datalog±. This language captures Datalog

as well as SPARQL queries under OWL 2 QL entailment regime and it allows

integration of big data processing techniques into one unified system.

The Vadalog ontology language has a PTime data complexity, while al-

lowing ontological reasoning. DeepReason13 is a recent industrial spinout that

provides explainable reasoning services on knowledge graphs based on Vadalog.

3.2.5 Disjunctive Reasoning

Disjunctive rules extend Datalog by allowing uncertainty in reasoning in sit-

uations where the exact reasoning is not possible. However, a closed set of

alternatives are given for each predicate. This knowledge can be represented

using disjunction operator. For example, any person can be identified as a male

or a female. This knowledge can be represented using the following disjunctive

13http://deepreason.ai/

49



Datalog rule.

person(x)→male(x) ∨ female(x)

This is useful when modelling classification tasks. Since this construct is

a very useful one, a flurry of activity has been done toward understanding

semantics and complexity of rules that include disjunction in the consequent

of rules. Disjunctive Datalog rules were first introduced in [63]. Complexity

of ontological reasoning under disjunctive existential rules has been addressed

in [82].

3.2.6 Reasoning at Scale

More recently, the issue of scalability of OMQA (aka rule-based reasoning) has

been brought into attention due to the large volume of data produced as a

bi-product of big data movement.

The current approaches for rule-based scalable reasoning based on mate-

rialization are divided into the two categories of centralized and distributed

materialization. The former provides scalability of reasoning on a single ma-

chine using in-memory architectures. The latter, on the other hand, deploys

multiple machines for provisioning scalability.

Distributed materialization is further divided into inter-rule and intra-rule

distribution architectures. In the former, the input data is replicated on each

machine and each rule is executed concurrently. In the latter, the data is

partitioned and the full set of rules are executed only on the data that be-

longs to that particular partition (which is locally available). Each one of

these approaches has its own pros and cons for different situations. In general,

developing technologies that enable in-memory computing and parallel pro-

cessing is highly challenging, even for current database architecture systems

[94].

There has been a lot of effort for scaling reasoning tasks in the realm of the

Semantic Web. For instance, WebPIE [138] is a MapReduce-based reasoner

based on intra-rule approach.

Except for a few recent works regarding in-memory reasoning engines which

50



handle existential rules [30, 120, 137], we are not aware of any practical attempt

for scalable reasoning using existential rule languages.

OMQA Based on DLs

Recently there has been a surge of interest in effective reasoning on scale in

the semantic web. For reasoning with large ABoxes when DLs are used as the

underlying ontology language, the abstraction refinement approach has been

introduced in [72]. The goal of this method is to speed up reasoning using an

abstract small ABox. This approach is shown to be sound and complete for

Horn ALCHOI [73] as well as Horn SHOIF DLs. Even though this approach

is shown to be sound for more expressive ontologies such as SROIQ, it is

not complete for such ontologies. This will help speed up the materialization

computation for less expressive ontologies. DLs restrict the maximum arity

size of rules to be 2. Therefore, the expressiveness is limited when this language

is considered for the purpose of OMQA.

OMQA Based on Existential Rules

Distributed reasoning involving existential rules is extremely challenging due to

introduction of fresh nulls (aka Skolem terms) during the process of reasoning

which may lead to the nontermination of corresponding computation. In the

literature, many sufficient conditions have characterized existential rules for

which the computation of chase termination or checking if there is an answer

to a given query is decidable (cf. [88]). These conditions impose sometimes

strict syntactic restrictions on rules. Moreover, the complexity of checking

some of these conditions can go up to 2ExpTime-complete or more.

Chase engines compute the set of derived atoms (i.e., conclusions of a

given existential rule set and a given database). The state of the art chase en-

gines such as RDFox [120], Graal [17], VLog [137], PEGASUS [116], PDQ [30]

have been optimized to handle large databases in different ways. They apply

centralized materialization through the use of shared-memory architectures in

order to provide scalability.

For example, RDFox utilizes a multicore architecture to avoid any locking

51



mechanism that prevents parallelism. For this purpose, RDFox utilizes hash

tables to store the database and the derived facts. VLog, on the other hand,

uses a number of optimizations including deploying columnar layout rather

than conventional row-by-row architectures for data storage which makes it

easy for implementation of compression techniques such as Run Length En-

coding (RLE), etc.

As an instance of such optimizations, consider the following set of relations

are stored in the database: {R(a1, b1),R(a1, b1),R(a1, b2)}. The columnar

layout would store these relations using two columns: c1 = ⟨a1, a1, a1⟩ and

c2 = ⟨b1, b1, b2⟩. After performing RLE on c1 and c2, we have: c′1 = ⟨a1,3⟩ and

c′2 = ⟨b1,2, b2⟩, respectively. Note that the number which follows a constant

in the database represents the number of occurrences of that constant in the

relation that corresponds with the column. An interested reader can find a

comprehensive comparison analysis on different chase engines and a number

of benchmarks in [31], which is the first benchmark on the chase to date.

On the other hand, currently, the study on distributed materialization for

OMQA based on existential rules is lacking in the literature. The theoretical

problem of distributed query answering using existential rules has been con-

sidered for the first time in [32]. It has been shown that the decision problem

of checking whether a set of existential rules is distributable is undecidable in

general.

However, distribution over components can be decided for guarded and

sticky existential rules is decidable and the underlying problems are ELEMEN-

TARY and coNExpTime-complete, respectively. So, this approach, although

theoretically possible, seems to be of a very high complexity to be applicable

in practice.

Moreover, on the practical side, no previous work on reasoning with existen-

tial rule ontologies has evaluated distributed reasoning focusing on existential

rule sets.

On the second part of this dissertation, we consider the problem of dis-

tributed OMQA and develop theoretical and practical techniques for OMQAs

based on some fragments of disjunctive TGDs.

52



3.3 Previous Work on the Chase Termination

Since our technical development is often related to, or compared with, the

state of the art, let us introduce some key classes of the finite chase here and

comment on the latest developments related to our work conducted in Chapters

4 and 5. Note that all acyclicity conditions that are given below ensure the

termination of the Skolem chase, and therefore, of the restricted chase, except

for RMFA and RJA which ensure the termination of the restricted chase and

allow to identify more terminating rule sets.

We introduce the following notations: Given a rule set R, for each predicate

P which occurs in the schema of R (the set of predicates appearing in R), let

us denote the ith argument of P with P [i]. For all predicates P occurring

in a given rule set R and all integers i ∈ {1, . . . , arity(P )} (where arity(P ) is

the number of arguments of P ), let us call each P [i] a position. Furthermore,

for each variable x which occurs in R, let posB(x) (resp. posH(x)) denote

the set of body (resp. head) positions in which x occurs. Every time a rule

which consists of at least one existential variable in a given rule set is applied,

it generates what is known as a new Skolem term or a fresh null in each

application. Let r ∈ R be a rule in a given rule set R. We denote the set of all

existentially (resp. universally) quantified variables of r with varex(r) (resp.

varu(r)). The set of all existentially (resp. universally) quantified variables of

a given rule set R, denoted varex(R) (resp. varu(R)) is the union of varex(r)

(resp. varu(r)) for all rules r ∈ R.

3.3.1 Terminating Classes of Existential Rules

In this part, we introduce some of the key classes of terminating chase intro-

duced in the literature. The discussion here is technical in nature.

Weakly-acyclic (WA) [66], roughly speaking, tracks the propagation of

terms in different positions. A rule set is weakly acyclic (WA) if there is no

position in which Skolem terms including Skolem functions can be propagated

cyclically, possibly through other positions.

More formally, given a rule set R, the (position) dependency graph WA(R)

53



for R contains positions as vertices. Moreover, for each existential rule r ∈ R,

each universal variable x which occurs in R, each position P [i] ∈ posB(x),

and each existential variable y which occurs in R, WA(R) has a normal edge

from P [i] to each Q[j] ∈ posH(x) and a special edge from P [i] to each Q[j] ∈

posH(y). A rule set R is WA if WA(R) does not have a cycle which involves

a special edge. Consider the following rule set R1 = {r}

r ∶ P (x, y)→ ∃z P (y, z)

It is easy to verify that WA(R1) involves a special edge from P [2] to itself.

Indeed, R1 may lead to the construction of an infinite P -chain of new elements

(i.e., Skolem terms).

Now, consider the following rule set R2 = {r}, where r ∶ B(y), P (x, y) →

∃z P (y, z). The dependency graph of R2 contains the same cycle as before.

However, R2 cannot be applied recursively. The reason is that invented terms

(fresh nulls or new Skolem terms) do not need to belong to B.

In fact, weakly acyclicity overestimates the chase termination as it may

introduce fake cycles which may not cause infiniteness of the chase procedure

for the given rule set like the above example demonstrates. To rule out such

fake cycles, more general conditions have been introduced.

Joint-acyclic (JA) [105] generalizes WA as follows. Let R be a rule set.

For each variable y ∈ varex(R), let Move(y) be the smallest set of positions

such that

(i) posH(y) ⊆Move(y); and

(ii) for each rule r ∈ R that varex(r) ≠ ∅ and for all variables x ∈ varu(r), if

posB(x) ⊆Move(y), then posH(x) ⊆Move(y).

The JA dependency graph JA(R) of R is defined as: the set of vertices of

JA(R) is varex(R), and there is an edge from y1 to y2 whenever the rule that

contains y2 also contains a variable x ∈ varu(R) such that posH(x) ≠ ∅ and

posB(x) ⊆ Move(y1). R ∈ JA if JA(R) does not have a cycle. It is easy to

verify that R2 belongs to JA.

54



Acyclic graph of rule dependencies (aGRD) A rule set R belongs to

the acyclic graph of rule dependencies (aGRD) class of acyclic rules if there

is no cyclic dependency relation between any two (not necessarily different)

rules of R, possibly through other dependent rules of R. To define the rule

dependency graph [12, 18] of a rule set R, we introduce the rule dependency

relation ≺ ⊆ R × R as follows. Consider two rules r1, r2 ∈ R such that r1 =

body(r1) → ∃z1 head(r1) and r2 = body(r2) → ∃z2 head(r2). Let sk(r1) =

body(r1)→ sk(head(r1)) and sk(r2) = body(r2)→ sk(head(r2)). Then, r1 ≺ r2

if and only if there exists an instance I, substitutions θ1 (resp. θ2), for all

variables in sk(r1) (resp. sk(r2)) such that θ1(body(r1)) ⊆ I, θ2(body(r2)) ⊆

I ∪ θ1(sk(head(r1))), and θ2(body(r2)) ⊈ I. R has an acyclic graph of rule

dependencies if ≺ on R is acyclic. In this case, R is called aGRD.

Note that the original definition of aGRD in [12] considers fresh nulls as

opposed to Skolem terms, which based on [88] does not change the resulting

relation ≺.

Model-faithful acyclic (MFA) [56] is a semantic acyclicity class of the

Skolem chase which generalizes all the Skolem acyclicity classes mentioned

above. A rule set R is MFA if in the Skolem chase of R w.r.t. the critical

database of R (i.e., the database which contains all possible ground atoms

based on predicates of R and the single constant symbol ∗ without any occur-

rence inR), there is no cyclic Skolem term (a term with at least two occurrences

of some Skolem function).

Restricted joint acyclicity (RJA) [49] (originally defined for disjunctive

existential rules) generalizes JA and is defined using what is known as the

restricted dependency graph G of a rule set R. To the best of our knowledge,

this condition was the first notion for restricted chase termination defined in

the literature. Intuitively, similar to JA, RJA is based on checking acyclicity

of a graph constructed from the existentially quantified variables of the given

rule set R. However, in addition to checking the condition as required by JA to

evaluate whether there is an edge from a node to another, RJA checks another

condition called nonblocking, which intuitively evaluates if the head of a rule

is satisfiable or not.

55



More formally, consider a graph G, called the restricted graph of a given rule

set R, constructed from R in which the set of nodes of G are the existentially

quantified variables of R. Let Rdng(F) denote the set of facts obtained from

a given set of facts F by exhaustive application of all rules of R without

existential quantifiers. Let further, Bn and Hn denote body and the head of

the rule n ∈ {n1, n2} occurs in and µ the substitution that replaces all variables

z by fresh constants ⟨z,∗⟩. There is an edge from n1 to n2 if n2 occurs in an

existential rule r ∈ R with a frontier variable x ∈ x, such that the following

conditions hold: (i) all body positions of x occur in n1; and (ii) for the set

F = µ(Bn2∪Hn1[n1/x]∪Bn1), we have Rdng(F) /⊧ µ(Hn2). R is called restricted

jointly acyclic (RJA), if the restricted dependency graph of R does not have

any cycle.

Restricted model-faithful acyclicity (RMFA) [49] generalizes MFA

as follows. Let R be a non-disjunctive rule set. For each rule r ∈ R and

each homomorphism h such that h is a homomorphism on body(r), Ch,r is

defined as the union of h(body(r)), where each occurrence of a constant is

renamed so that no constant occurs more than once, and Ft for each Skolem

term t in h(body(r)), where Ft is the set of ground atoms involved in the

derivation of atoms containing t. Let RMFA(R) be the least set of ground

atoms such that it contains the critical database of R and let r ∈ R be a

rule and h a homomorphism from body(r) to RMFA(R). Let v ∈ varex(r) be

some existential variable of r. If ∃v.h(head(r)) is not logically entailed by the

exhaustive application of non-generating (Datalog) rules on the set of atoms

Ch,r, then h(sk(head(r))) ⊆ RMFA(R). We define R ∈ RMFA if RMFA(R)

contains no cyclic Skolem terms.

In this dissertation we show the set of all terminating rule sets under some

condition C with C. Then, the following inclusions are known from the lit-

erature: WA ⊂ JA, JA ⊂ MFA, aGRD ⊂ MFA, JA ⊂ RJA, MFA ⊂ RMFA.

Furthermore, WA and aGRD are not comparable.

56



3.3.2 Other Results Related to Chase Termination

In [49], a notion known as restricted model-faithful cyclicity (RMFC) has been

introduced which provides a sufficient condition for deciding nontermination

of the restricted chase of a given rule set for all databases. Intuitively, RMFC

is based on detecting cyclic functional terms in the result of the exhaustive ap-

plication of unblockable rules on the grounded version of body(r)∪sk(head(r))

for some generating rule r, such that in the mapping used for the grounding,

each variable x is replaced by some fresh constant cx.

To characterize a sufficient condition of termination of a given rule set for

arbitrary databases, for any chase variant, it would be useful to have a special

database that can serve as a witness for proving termination. Let us refer to it

as a critical database I∗. Having such a critical database in place guarantees

that given a rule set R, if there is some database that witnesses the existence

of an infinite chase derivation of R, then I∗ is already such a witness database.

If we know that such a critical database exists for some chase variant, then we

can focus on sufficient conditions to decide the chase termination of a rule set

w.r.t. I∗.

From [113], it is known that such a critical database exists for the oblivious

and Skolem chase variants. The construction of such a critical database for

those chase variants is also easy: Let R be a rule set. Let C denote the set of

constants appearing in R and let ∗ be a special constant with no occurrence

in R. A database is a (Skolem) critical database if each relation in it is a

full relation on the domain C ∪ {∗}. With this measure in place, it is then

easy to show why all the known classes of terminating rule sets under Skolem

and oblivious chase variants (such as the aforementioned acyclicity conditions)

work well. The reason is that they rely on this critical database.

However, for the restricted chase, no critical database exists. Note that for

the terminating conditions of RJA and RMFA [49] that are the only known

concrete criteria for the termination of restricted chase rules, the introduced

“critical databases” are ad hoc in that they do not provide a principled way to

construct such a database that may lead to more general classes of terminating

57



rule sets under the restricted chase. In fact, due to the nature of the problem,

which is not recursively enumerable [85], as also pointed out in [75], finding

such a critical database even for subsets of rules with syntactic (or semantic)

restrictions is very challenging. More recently, termination of linear rules under

the restricted chase has been considered in [106], where the body and the head

of rules are composed of singleton atoms (called single-body and single-head

rules). As part of this work, the existence of such a critical database is proved

by simply showing a database consisting of a single atom.

Also, for single-head guarded and sticky rules, the same problem has been

considered in [75], where the authors characterize nontermination of restricted

chase sequences constructed from the aforementioned rule sets using sophis-

ticated objects known as chaseable sets which are infinite in size. For this

purpose, they show that the existence of an infinite chaseable set character-

izes the existence of an infinite restricted chase derivation. In particular, for

guarded rule sets, the latter can be strengthened with the fact that we can

focus on acyclic databases to show the decidability of restricted chase termi-

nation for guarded TGDs.

Furthermore, for sticky TGDs, this is shown via the existence of a finitary

caterpillar which is an infinite path-like restricted chase derivation of some

database the existence of which can be checked via a deterministic Büchi

automaton. Their work is focused only on single-head rules and, to the best of

our knowledge, no characterization exists for multi-head rules. This is unlike

the Skolem chase for which the notion of δ-bounded ontologies have been

defined uniformly using the (Skolem) critical database technique [144].

The decision problem of termination of the oblivious and the Skolem chase

variants have been considered for linear and guarded rules in [40], and this

problem is shown to be PSpace-complete and 2ExpTime-complete, respec-

tively, for linear and guarded rules. More recently, the same problem has

been considered for sticky rules in [41], and it has been shown to be PSpace-

complete. This shows that for these rules, sufficient and necessary conditions

can be established to decide termination.

It is worth mentioning that similar to our work, in [15], a tool was intro-

58



duced to extend different (Skolem) acyclicity conditions ensuring chase termi-

nation. However, unlike our approach, their extension never extends a Skolem

chase terminating rule set to a terminating one under the restricted chase.

Also related to the work of Chapters 4 and 5, the notion of k-bounded rules

was introduced in [60] for oblivious, Skolem, and restricted chase variants.

The k-boundedness problem they considered in that work checks whether,

independently from any database, there is a fixed upper bound of size k on the

number of breadth-first chase steps for a given rule set, where k is an integer.

For arbitrary values of k, this problem is already known to be undecidable

for Datalog rules (TGDs without existential variables, also known as range-

restricted TGDs [2]), as established in [92] and [112].

The breadth-first chase procedure in [60] refers to chase sequences in which

rule applications are prioritized. Their prioritization is in a way that those rule

applications which correspond to a particular breadth-first level occur before

those that correspond to a higher breadth-first level. Under the assumption

that k is excluded from the input, and only the rule set is given as the input,

they prove an ExpTime upper bound for checking k-boundedness for the

oblivious and the Skolem chase variants and 2ExpTime upper bound for the

restricted chase.14

Notice that as discussed in [60], TGDs with k-boundedness property are

union of conjunctive queries-rewritable (or UCQ-rewritable, also known to be-

long to finite unification sets of TGDs (or fus) [18]). It is worth mentioning

that this latter work has a different scope from ours in that, unlike k-bounded

TGDs of [60], the k-safe(Φ∆) rule sets that is our contribution in this chapter,

where ∆ is some Skolem acyclicity condition, already generalize Datalog rule

sets (for any value of k ≥ 0), and therefore, are not UCQ-rewritable. Besides,

there is no characterization of any critical database for the restricted chase

variant in [60] which is a key issue and the focus of the current chapter and

then one that follows.

14Note, however, that if k is part of the input, i.e., when the problem is: given a rule
set R and a unary-encoded integer k, whether R is k-bounded for the considered chase, the
complexity of the problem is in 2ExpTime and 3ExpTime for the aforementioned chase
variants, respectively.

59



Acyclicity
Condition

Membership checking
complexity

Data
complexity

Combined
complexity

WA PTime PTime-c 2ExpTime-c
JA PTime-c PTime-c 2ExpTime-c

aGRD coNP-c PTime-c 2ExpTime-c
MFA 2ExpTime-c PTime-c 2ExpTime-c
RJA ExpTime-c PTime-c coN2ExpTime-c

RMFA 2ExpTime-c PTime-c coN2ExpTime-c

Table 3.2: Summary of complexity of acyclicity conditions

3.3.3 Complexity Analysis of Rules

In this section, we present different complexity results about query answering

under existential rules. Data complexity is the complexity of query answering

when both the query and the set of existential rules are fixed and only the

data is given. On the other hand, the combined complexity (of query answer-

ing) is when the data, the query and the rule set are given. Moreover, the

complexity of membership checking in a certain class of existential rules or a

certain condition C is for checking whether C holds given a set of existential

rules for an arbitrary database as input.

Table 3.2 summarizes the complexity results related to the above conditions

in which c is shorthand for complete.

For example, the hardness result associated with the combined complexity

of existential rules that are WA in Table 3.2 is obtained by simulating the

behaviour of a 2ExpTime Turing machine by means of a weakly-acyclic set of

existential rules. This will immediately lead to 2ExpTime-hardness of BCQ

answering under WA sets of existential rules in combined complexity.

60



Chapter 4

Restricted Chase Termination

In this and the next chapter, we present our first contribution regarding novel

classes of decidable rule sets for which the restricted chase terminates. The

materials of these two chapters are published in the following venues: Descrip-

tion Logics 2017 [99], International Joint Conference on Rules and Reasoning

(RuleML+RR) 2018 [100], and the journal, Theory and Practice of Logic Pro-

gramming (TPLP) 2020

(invited submission from RuleML+RR 2018).

This chapter is organized as follows. Section 4.1 provides the preliminaries

of the chapter, including notations, some basic definitions, and a motivating

example. Section 4.2 describes previous work on chase termination, which al-

lows us to compare with the work of the current and the next chapter during its

development. Then Section 4.3 sets up the foundation of this work, namely on

how to simulate restricted chase for any database by restricted chase with re-

stricted critical databases. We then define in Section 4.4 a hierarchy of classes

of finite restricted chase, called k-safe(Φ) rule sets for a given cycle function

Φ, by testing cycles of increasing nesting depths. We implemented member-

ship checking and a reasoning engine for k-safe(Φ) rule sets and conducted

experiments. These are reported in Section 4.5.

4.1 Preliminaries

We assume the disjoint countably infinite sets of constants C, (labelled) nulls

N, function symbols F, variables V and predicates P. A schema is a finite set

61



R of relation (or predicate) symbols. Each predicate or function symbol Q is

assigned a positive integer as its arity which is denoted by arity(Q). Terms

are elements in C ∪N ∪ V. An atom is an expression of the form Q(t), where

t ∈ (C∪V ∪N)arity(Q) and Q is a predicate symbol from R. A general instance

(or simply an instance) I is a set of atoms over the schema R; term(I) denotes

the set of terms occurring in I. A database is a finite instance I where terms

are constants from C. A substitution is a function h ∶ C ∪ V ∪ N → C ∪ V ∪ N

such that (i) for all c ∈ C, h(c) = c; (ii) for all n ∈ N, h(n) ∈ C ∪N, and (iii) for

all v ∈ V, h(v) ∈ C ∪N ∪V.

Let S1 and S2 be sets of atoms over the same schema. A substitution

h ∶ S1 → S2 is called a homomorphism from S1 to S2 if h(S1) ⊆ S2 where h

naturally extends to atoms and sets of atoms. In this dissertation, when we

define a homomorphism h ∶ S1 → S2, if S1 and S2 are clear from the context,

we may just define such a homomorphism as a mapping from terms to terms.

A rule (also called a tuple-generating dependency) is a first-order sentence

r of the form: ∀x∀y (φ(x,y)→ ∃z ψ(x,z)), where x and y are sets of univer-

sally quantified variables (in writing, we often omit the universal quantifier)

and φ and ψ are conjunctions of atoms constructed from relation symbols

from R, variables from x ∪ y and x ∪ z, and constants from C. The formula φ

(resp. ψ) is called the body of r, denoted body(r) (resp. the head of r, denoted

head(r)). In this chapter and the next chapter, a rule set is a finite set of

rules. These rules are also called non-disjunctive rules as compared to studies

on disjunctive rules (see, e.g., [38, 49]).

We implicitly assume all rules are standardized apart so that no variables

are shared by more than one rule, even if, for convenience, we reuse variable

names in examples provided in this dissertation. A rule is simple if variables

do not repeat locally inside the body of the rule. A simple rule set is a finite

set of simple rules.

Given a rule r = φ(x,y) → ∃zψ(x,z), a Skolem function symbol fz is in-

troduced for each variable z ∈ z, where arity(fz) = ∣x∣. This leads to the

consideration of complex terms, called Skolem terms, built from Skolem func-

tions and constants. However, in this dissertation, we will regard Skolem terms

62



as a special class of nulls (i.e., Skolem terms will be seen as a way of naming

nulls).

Ground terms in this context are constants from C or Skolem terms, and

atoms in a general instance may contain Skolem terms as well. A ground

instance in this context is a general instance involving no variables. The func-

tional transformation of r, denoted sk(r), is the formula obtained from r by

replacing each occurrence of z ∈ z with fz(x). The Skolemized version of a

rule set R, denoted sk(R), is the set of rules sk(r) for all r ∈ R.

Given a rule r = φ(x,y) → ∃zψ(x,z), we use varu(r), varfr(r), varex(r),

and var(r), respectively, to refer to the set of universal (x ∪ y), frontier (x),

existential (z), and all variables appearing in r. Given a rule set R, the schema

ofR is denoted by sch(R). Given a ground instance I and a rule r, an extension

h′ of a homomorphism h from body(r) to I, denoted h′ ⊇ h, is a homomorphism

from body(r)∪head(r) to I, that assigns, in addition to the mapping h, ground

terms to existential variables of r. A position is an expression of the form

P [i], where P is an n-ary predicate and i (1 ≤ i ≤ n) is an integer. We

are interested only in positions associated with frontier variables – for each

x ∈ varfr(r), posB(x) (resp. posH(x)) denotes the set of positions of body(r)

(resp. head(r)) in which x occurs.

We further define that a path (r1, r2, . . . ) (based on R) is a nonempty (finite

or infinite) sequence of rules from R; a cycle (r1, . . . , rn) (n ≥ 2) is a finite path

whose first and last elements coincide (i.e., r1 = rn); a k-cycle (k ≥ 1) is a cycle

in which at least one rule has k + 1 occurrences and all other rules have k + 1

or less occurrences. Given a path π, Rule(π) denotes the set of distinct rules

appearing in π.

For a set or a sequence W , the cardinality ∣W ∣ is defined as usual. The size

of an atom p(x) is ∣x∣ and given a rule set R, with ∣∣R∣∣, we denote the sum of

the sizes of atoms in R.

63



4.2 Chase Variants

The chase procedure is a construction that accepts as input a database I and

a rule set R and adds atoms to I which are resulted from applications of rules

in R. In this dissertation, our main focus is on the Skolem and the restricted

chase variants. However, for the sake of comparison, we introduce the two

other main chase variants as well.

We first define triggers, active triggers, and their applications. The Skolem

chase is based on triggers, while the restricted chase applies only active triggers.

Definition 23. Let R be a rule set, I an instance, and r ∈ R. A pair (r, h) is

called a trigger for R on I (or simply a trigger on I, as R is always clear from

the context) if h is a homomorphism from body(r) to I. If in addition there is

no extension h′ ⊇ h, where h′ ∶ body(r) ∪ head(r) → I, then (r, h) is called an

active trigger on I.

An application of a trigger (r, h) on I returns I ′ = I ∪h(sk(head(r))). We

write a trigger application by I⟨r, h⟩I ′, or alternatively by I
⟨r,h⟩
ÐÐ→ I ′. We call

atoms in h(body(r)) the triggering atoms w.r.t. r and h, or simply triggering

atoms when r and h are clear from the context.

Intuitively, a trigger (r, h) is active if given h, the implication in r cannot

be satisfied by any extension h′ ⊇ h that maps existentially quantified variables

to terms in I.

Definition 24. Given a database I and a rule set R, we define the Skolem

chase based on a breadth-first fixpoint construction as follows: we let chase0
sk(I,R) =

I and, for all i > 0, let chaseisk(I,R) be the union of h(head(sk(r))) and

chasei−1
sk (I,R) for all rules r ∈ R and all homomorphisms h such that (r, h)

is a trigger on chasei−1
sk (I,R). Then, we let chasesk(I,R) be the union of

chaseisk(I,R), for all i ≥ 0.

Sometimes we need to refer to a Skolem chase sequence, which is a sequence

of instances that starts from a database I0 and continues by applying triggers

for the rules in a given path on the instance constructed so far. The term

Skolem chase sequence, in this case, is independent of whether such a sequence

64



can be extended to an infinite sequence or not. We can also distinguish the

two cases where the chase is terminating or not.

A finite sequence of rule applications from a path (r1, . . . , rn) produces a

finite sequence of instances I0, I1, . . . , In such that

(i) Ii−1⟨ri, hi⟩Ii, where (ri, hi) is a trigger on Ii−1 for all 1 ≤ i ≤ n;

(ii) there is no trigger (r, h) on In such that (r, h) ∉ {(ri, hi)}1≤i≤n; and

(iii) for each 1 ≤ i < j ≤ n, assuming that Ii−1⟨ri, hi⟩Ii and Ij−1⟨rj, hj⟩Ij, ri = rj
implies hi ≠ hj (i.e., homomorphism hi is different from hj).

The result of the chase sequence is In.

An infinite sequence I0, I1, . . . of instances is said to be a nonterminating

Skolem chase sequence if

(i) for all i ≥ 1, there exists a trigger (ri, hi) on Ii−1 such that Ii−1⟨ri, hi⟩Ii;

(ii) for each i, j ≥ 1 such that i ≠ j, assuming that Ii−1⟨ri, hi⟩Ii and Ij−1⟨rj, hj⟩Ij,

ri = rj implies hi ≠ hj.1

In this case, the result of the chase sequence is ⋃i≥0 Ii.

From [113], we know that if some Skolem chase sequence of a rule set R

and a database I0 terminates, then all instances returned by any Skolem chase

sequence of I0 and R are terminating and are the same.

Although our technical development does not depend on the oblivious and

the core chase which is defined below, we introduce them for a complete back-

ground which the reader can safely skip in the first reading.

Before we proceed with the definition of the next chase variant, let us define

a notion. The purpose of this notion is to suitably define this version of chase

based on Skolemization.

1In the literature, in addition to (i) and (ii), another condition known as the fairness
condition for the Skolem chase is imposed: for each i ≥ 0, and each trigger (ri, hi) on Ii−1,
there exists some j ≥ i such that Ij−1⟨ri, hi⟩Ij . This last condition guarantees that all the
triggers are eventually applied. We remove this requirement, as for the case of the Skolem
chase, this condition is immaterial, cf. [75].

65



Definition 25. Let r = φ(x,y)→ ∃zψ(x,z) be an existential rule. The obliv-

ious functional transformation of r, denoted skO(r), is the formula obtained

from r by replacing each occurrence of zi ∈ z with f rzi(x,y). The oblivious

Skolemized version of a rule set R, denoted skO(R), is defined as: ⋃
r∈R

skO(r).

Let I be an instance and h a homomorphism. An oblivious application of a

trigger (r, h) on I returns I ′ = I∪h(skO(head(r))) and is denoted by I⟨r, h⟩OI ′,

or alternatively by I
⟨r,h⟩OÐÐÐ→ I ′.

The difference between functional transformation of a rule with its oblivious

version is that in the former the Skolem function is applied only to frontier

variables while in the latter it is applied to universal variables of the rule.

Now, we are ready to define the oblivious chase sequence.

Definition 26. Let R be a rule set and I0 a database. A finite sequence

I0, I1 . . . , In, where n ≥ 0, is called a terminating oblivious chase sequence of I0

w.r.t. R if

(i) for all 0 ≤ i < n, there exists a trigger (r, h) for R on Ii s.t. Ii⟨r, h⟩OIi+1;

(ii) for each 0 ≤ i < j < n, assuming Ii⟨ri, hi⟩OIi+1 and Ij⟨rj, hj⟩OIj+1, ri = rj
implies hi ≠ hj; and

(iii) there is no trigger (r, h) for R on In s.t. (r, h) ∉ {(ri, hi)}1≤i≤n.

The result of the oblivious chase of I0 w.r.t. R is In.

An infinite sequence I0, I1 . . . , of instances is called a nonterminating obliv-

ious chase sequence of I0 w.r.t. R if

(i) for all i ≥ 0, there exists a trigger (r, h) for R on Ii s.t. Ii⟨r, h⟩OIi+1;

(ii) for each i, j > 0 s.t. i ≠ j, assuming that Ii⟨ri, hi⟩OIi+1 and Ij⟨rj, hj⟩OIj+1,

ri = rj implies hi ≠ hj.2

The result of the oblivious chase of R and I0 is ⋃
i≥0
Ii.

2Again, in the literature, the fairness condition is additionally defined for the oblivious
chase similar to that of the Skolem chase.

66



As opposed to the oblivious chase, the Skolem chase avoids the application

of some superfluous triggers. Roughly, if two triggers (r, h1) and (r, h2) agree

on frontier variables of a given rule r, i.e. h1∣varfr(r) = h2∣varfr(r), then they

are indistinguishable in the Skolem chase. More formally, let us first define

the binary relation ∼r on the set of homomorphisms Hr = {h ∣ h ∶ varu(r) →

(C ∪T)}, where T is the set of all Skolem terms, in a way that h1 ∼r h2 iff

h1∣varfr(r) = h2∣varfr(r). Then, ∼r is an equivalence relation on the elements of

Hr. So, an oblivious chase sequence I0, I1, . . . is a Skolem chase sequence if

for each i, j ≥ 0, where i ≠ j, assuming that Ii⟨ri, hi⟩OIi+1 and Ij⟨rj, hj⟩OIj+1,

ri = rj = r implies hi ≁r hj.

On the other hand, the restricted chase is known to be order-sensitive. For

this reason, it is defined only on sequences of rule applications.

Similar to a Skolem chase sequence, the main idea of a restricted chase

sequence (based on a given rule set R) is starting from a given database and

applying triggers for the rules in a path based on R on the instance constructed

so far. However, unlike the Skolem chase sequence, only active triggers are

applied. Similar to the case of the Skolem chase, we distinguish the two cases

where the chase is terminating or not.

Definition 27. Let R be a rule set and I0 a database. A finite sequence

I0, I1, . . . , In of instances is called a terminating restricted chase sequence (based

on R) if

(i) for each 1 ≤ i ≤ n there exists an active trigger (ri, hi) on Ii−1 such that

Ii−1⟨ri, hi⟩Ii; and

(ii) there exists no active trigger on In.

The result of the chase sequence is In.

An infinite sequence I0, I1, . . . is called a nonterminating (or infinite) restricted

chase sequence (based on R) if

(i) for each i ≥ 0, there exists an active trigger (ri, hi) on Ii−1 such that

Ii−1⟨ri, hi⟩Ii; and

67



(ii) it satisfies the fairness condition: for all i ≥ 1 and all active triggers

(ri, hi) on Ii−1, where ri ∈ R, there exists j ≥ i such that either Ij−1⟨ri, hi⟩Ij
or the trigger (ri, hi) is not active on Ij−1.

The result of the chase sequence is ⋃i≥0 Ii.

Example 3. Let us consider instance I = {P (a, b), P (b, c), P (c, a),Q(a, b)}

and rule r:

r ∶ P (x, y), P (y, z), P (z, x)→ ∃uQ(x,u)

Homomorphism h1 = {x/a, y/b, z/c} maps body(r) to I. The pair (r, h1) is

a trigger on I and I⟨r, h1⟩I ∪ {Q(a, fu(a))} where fu is a Skolem function

constructed from u. However, (r, h1) is not active for I. On the other hand,

homomorphism h2 = {x/c, y/a, z/b} maps body(r) to I and (r, h2) is an active

trigger on I since there is no extension h′2 of h2 such that h′2(head(r)) ⊆ I.

So, we have I⟨r, h2⟩I ∪ {Q(c, fu(c))}. Therefore, (r, h1) can be applied for the

Skolem chase but not for the restricted chase, while (r, h2) can be applied for

both chase variants.

Note that the fairness condition essentially says that any active trigger

is eventually either applied or becoming inactive. Furthermore, an infinite

restricted chase sequence I cannot be called nonterminating if the fairness

condition is not satisfied for I. Recently, in [75], it has been shown that for

rules with single heads (i.e., where the head of a rule consists of a single atom),

the fairness condition can be safely neglected.

A rule set R is said to be (all-instance) terminating under the restricted

chase, or simply restricted chase terminating if it has no infinite restricted

chase sequence w.r.t. all databases; otherwise, R is nonterminating under the

restricted chase; this is the case where there exists at least one nonterminating

restricted chase sequence w.r.t. some database.

The classes of rule sets whose chase terminates on all paths (all possible

derivation sequences of chase steps) independent of the given databases (thus

all instances) are denoted by CT△∀∀, where △ ∈ {sk, res} (sk for the Skolem

chase and res for the restricted chase).

68



Since a chase sequence is generated by a sequence of rule applications,

sometimes it is convenient to talk about a chase sequence in terms of a sequence

of rules that are applied. On the other hand, each path can be assigned a chase

sequence (which is not unique).

For convenience, given a finite path π = (r1, . . . , rn) based onR and database

I0, we say that π leads to a weakly restricted chase sequence (of R and I0) if

there are active triggers (ri, hi) on Ii−1 (1 ≤ i ≤ n) such that Ii−1⟨ri, hi⟩Ii. Note

that the condition is independent of whether there exists an active trigger on

In or not; so, we do not qualify the sequence I0, I1, . . . , In as terminating or

nonterminating. Furthermore, the condition only requires the existence of ac-

tive triggers and does not mention whether the fairness condition is satisfied

or not in case the sequence can be expanded to an infinite one. By abuse of

terminology, we will drop the word weakly in the rest of this dissertation when

no confusion arises; this is not a technical concern related to deciding on the

finite restricted chase in our approach since our approach is based on certain

types of terminating restricted chase sequences.

In what follows, we formally define the core chase.

Definition 28. [61] Let R be a set of rules and I an instance. A parallel

chase step is defined from I to some instance J if (i) I /⊧ R; and (ii) J =

⋃
r∈R,∃h∶var(r)→term(I) s.t. I⟨r,h⟩K

K. We write it as: I
RÐÐ→ J . A core chase step is

defined from I to I ′ if I
RÐÐ→ J and I ′ = core(J). A core chase sequence is a

sequence of instances I0, I1, . . . such that every instance Ii+1 in it is obtained

from Ii by a core chase step. If a core chase sequence I0, I1, . . . , In is finite,

then the result of the chase is In.

Intuitively, an instance J is obtained from I by simultaneous application

of all restricted chase steps and then a core chase step is defined as a parallel

chase step, followed by a core computation.

The following inclusion relationships hold for rules with terminating chase

written as CTXY1Y2 , where X ∈ {obl, sk, res, core} denotes different variants of

chase (oblivious, Skolem, restricted and core, respectively) and Y1 (resp. Y2)

is the quantification over source databases (resp. different chase sequences)

69



for which the rule set is terminating under X chase.

CT obl∀∀ ⊂ CT sk∀∀ ⊂ CT res∀∀ ⊂ CT res∀∃ ⊂ CT core∀∀

Note that all the above inclusions are proper. The following four examples

show why this claim holds for each inclusion, respectively, from left to right.

Example 4. Let R1 = {r1}, where:

r1 ∶ P (x, y)→ ∃zP (x, z)

For I = {P (a, b)}, the oblivious chase of I and R1 does not terminate as

witnessed by the following chase sequence: I0 = I = {P (a, b)}
⟨r1,{x/a,y/b}⟩OÐÐÐÐÐÐÐÐ→

I1 = I0 ∪ {P (a, f(a, b))}
⟨r1,{x/a,y/f(a,b)}⟩OÐÐÐÐÐÐÐÐÐÐ→ I2 = I1 ∪ {P (a, f(a, f(a, b)))} . . . .

On the other hand, the Skolem chase of I and R1 terminates trivially.

Example 5. Let R2 = {r1, r2}, where:

r1 ∶ R(x)→ ∃y C(y), P (x, y)
r2 ∶ C(x)→ ∃z R(z), P (z, x)

For I = {R(a)}, the Skolem chase of I and R2 does not terminate and the

following chase sequence serves as a witness:

I0 = I = {R(a)}
⟨r1,{x/a}⟩SÐÐÐÐÐÐ→ I1 = I0 ∪ {C(f r1y (a)), P (a, f r1y (a))}

⟨r2,{x/f
r1
y (a)}⟩SÐÐÐÐÐÐÐÐÐ→

I2 = I1 ∪ {R(f r2z (f r1y (a))), P (f r2z (f r1y (a)), f r1y (a))}
⟨r1,{x/f

r2
z (fr1y (a))}⟩SÐÐÐÐÐÐÐÐÐÐÐ→

I3 = I2 ∪ {C(f r1y (f r2z (f r1y (a)))), P ((f r2z (f r1y (a))), f r1y (f r2z (f r1y (a))))} . . . .

However, the restricted chase of I and R2 terminates for all databases.

Example 6. Let R3 = {r1, r2}, where:

r1 ∶ P (x, y)→ P (y, x)
r2 ∶ P (x, y)→ ∃z P (y, z)

For I = {P (a, b)}, if (r1, ⟨x/a, y/b⟩) is chosen as the first trigger, the atom

P (b, a) is added to I to form I1 = I ∪ {P (b, a)} = {P (a, b), P (b, a)}. From this

point on, we can see that there is no active trigger on I1 and the following

path: P = (r1, r2) is not a restricted chase path as P (b, a) blocks further active

triggers in any restricted chase sequence.

On the other hand, if (r2, ⟨x/a, y/b⟩) is chosen at the outset, the following

infinite (fair) restricted sequence can be constructed:

70



I0 = I = {P (a, b)}
⟨r2,{x/a,y/b}⟩ÐÐÐÐÐÐÐ→ I1 = I0 ∪ {P (b, f r2z (b))}

⟨r1,{x/a,y/b}⟩ÐÐÐÐÐÐÐ→

I2 = I1 ∪ {P (b, a)}
⟨r1,{x/b,y/f

r2
z (b)}⟩

ÐÐÐÐÐÐÐÐÐÐ→ I3 = I2 ∪ {P (f r2z (b), f r2z (f r2z (b)))}
⟨r1,{x/b,y/f

r2
z (b)}⟩

ÐÐÐÐÐÐÐÐÐÐ→ I4 = I3 ∪ {P (f r2z (b), b)}
⟨r1,{x/b,y/f

r2
z (b)}⟩

ÐÐÐÐÐÐÐÐÐÐ→

I5 = I4 ∪ {P (f r2z (f r2z (b)), f r2z (f r2z (f r2z (b))))} . . . . Therefore, R3 belongs to CT res∀∃

and not to CT res∀∀ .

Example 7. Let R4 = {r1}, where:

r1 ∶ P (x)→ ∃y P (y),Q(x)

For I = {P (a)}, the restricted chase of I and R3 does not terminate as demon-

strated by the following chase sequence:

I0 = I = {P (a)}
⟨r1,{x/a}⟩ÐÐÐÐÐ→ I1 = I0 ∪ {P (f r1y (a)),Q(a)}

⟨r1,{x/f
r1
y (a)}⟩

ÐÐÐÐÐÐÐÐ→

I2 = I1 ∪ {P (f r1y (f r1y (a))),Q(f r1y (a))}
⟨r1,{x/f

r1
y (fr1y (a))}⟩

ÐÐÐÐÐÐÐÐÐÐÐ→

I3 = I2 ∪ {P (f r1y (f r1y (f r1y (a)))),Q(f r1y (f r1y (a)))} . . . .

Additionally, the core chase of I and R4 terminates for all databases.

In Table 4.1, complexity of membership checking for different variants of

chase is demonstrated [87], in which I denotes a given database instance (i.e.,

assumes that the input database is given); the first ∀ (resp. ∃) shows for all

(resp. for some) database(s). Furthermore, the second quantification is on

chase sequences. From this table, we can observe that membership checking

for the restricted (and the core) chase for all database instances is not an

RE-complete problem. So, in general, we cannot verify its membership in the

corresponding class using a database or a finite set of databases.

∆ CT∆
I∃ CT∆

I∀ CT∆
∀∀ CT∆

∀∃

Core
coRE-complete

Restricted

Skolem RE-complete

Oblivious

Table 4.1: Complexity of membership checking for different variants of chase

71



Finally, a conjunctive query (CQ) q is a formula of the form q(x) ∶=

∃y Φ(x,y), where x and y are tuples of variables and Φ(x,y) is a conjunction

of atoms with variables in x∪y. A Boolean conjunctive query (BCQ) is a CQ

of the form q(). It is well known that, for all BCQs q and for all databases I,

I∪R ⊧ q (under the semantics of first-order logic) if and only if q is entailed by

the result of the chase on R and I for either the semi-oblivious or the restricted

chase variant [66].

4.2.1 A Concrete Example

To illustrate the practical relevance of the restricted chase and also use it as a

running example, let us consider modelling a secure communication protocol

where two different signal types can be transmitted: type A for inter-zone

communication and type B for intra-zone communication. Let us consider a

scenario where a transmitter from one zone requests to establish secure com-

munication with a receiver from another zone in this network. We assume that

the number of trusted servers is unknown. Before a successful communication

between two users can occur, following a handshake protocol, the transmitter

must send a type A signal to a trusted server in the same zone and receive an

acknowledgment back. Then, that trusted server sends a type B signal to a

trusted server in the receiver zone.

Figure 4.2.1 illustrates the above data transmission scenario where there

are just two cells in each of which there are several users (solid dark circles)

and base stations (under blue boxes). If a transmitter t in cell 1 requests

to transmit a data message to a receiver r in cell 2, then t must establish a

handshake protocol to some base station (e.g., b1) in the same cell (sending

and receiving to/from b1). After a handshake protocol is established, b1 sends

a data message to some base station in cell 2 (b2 in the figure) to complete

the required communication before t sends a data message to r.

Below, we use existential rules to model the required communication pro-

tocol (the modeling here does not include the actual process of transmitting

signals). Let us assume by default that every server is trusted.

72



Figure 4.2.1: Data transmission scenario.

Example 8. Consider the rule set R1 = {r1, r2} below and its Skolemization,

where TypeA(x, y) denotes a request to send a type A signal from x to y and

TypeB(x, y) a request to send a type B signal from x to y.

r1 ∶ TypeB(x, y)→ ∃uTypeA(x,u),TypeA(u,x)
r2 ∶ TypeB(x, y),TypeA(x, z),TypeA(z, x)→ ∃vTypeB(z, v)

sk(r1) ∶ TypeB(x, y)→ TypeA(x, fu(x)),TypeA(fu(x), x)
sk(r2) ∶ TypeB(x, y),TypeA(x, z),TypeA(z, x)→ TypeB(z, fv(z))

where fu and fv are Skolem functions constructed from u and v, respectively.

With database I0 = {TypeB(t, r)}, after applying sk(r1) and sk(r2) under

the restricted chase, we get:

I0 = {TypeB(t, r)}
⟨sk(r1),{x/t,y/r}⟩ÐÐÐÐÐÐÐÐÐ→

I1 = I0 ∪ {TypeA(t, fu(t)),TypeA(fu(t), t)}
⟨sk(r2),{x/t,y/r,z/fu(t)}⟩ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

I2 = I1 ∪ {TypeB(fu(t), fv(fu(t)))}

That is, path π1 = (sk(r1), sk(r2)) leads to a restricted chase sequence. But this

is not the case for the path π2 = (sk(r1), sk(r2), sk(r1)), since the trigger for

applying the last rule on the path is not active – with TypeB(fu(t), fv(fu(t)))

as the triggering atom for the body of rule sk(r1), its head can be satisfied

by already derived atoms in I2, namely, TypeA(fu(t), t) and TypeA(t, fu(t))

(i.e., the existential variable u in sk(r1) can be instantiated to t so that the

rule head is satisfied by I2).

73



To illustrate more subtleties, let us consider a slightly enriched rule set R2 =

{r3, r4}. The difference from R1 is that here we use a predicate TrustedServer(a)

to explicitly specify that a is a trusted server.

r3 ∶ TypeB(x, y)→ ∃uTrustedServer(u),TypeA(x,u),TypeA(u,x)
r4 ∶ TypeB(x, y),TypeA(x, z),TypeA(z, x)→ ∃vTrustedServer(v),TypeB(z, v)

sk(r3) ∶ TypeB(x, y)→ TrustedServer(fu(x)),TypeA(x, fu(x)),TypeA(fu(x), x)
sk(r4) ∶ TypeB(x, y),TypeA(x, z),TypeA(z, x)→
TrustedServer(fv(z)),TypeB(z, fv(z))

With the same input database I0, we can verify that any nonempty prefix

of the 2-cycle σ = (sk(r3), sk(r4), sk(r3), sk(r4), sk(r3)) leads to a restricted

chase sequence except σ itself. Let us provide some details.

I0 = {TypeB(t, r)}
⟨sk(r3),{x/t,y/r}⟩ÐÐÐÐÐÐÐÐÐ→

I1 = I0 ∪ {TypeA(t, fu(t)),TypeA(fu(t), t)}
⟨sk(r4),{x/t,y/r,z/fu(t)}⟩ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

I2 = I1 ∪ {TypeB(fu(t), fv(fu(t)))}

Observe that at this stage, since t is not known as a trusted server (i.e., we

do not have TrustedServer(t) in the given database), unlike the case of R1, we

are not able to instantiate the existential variable u to t to have the rule head

satisfied. Thus, the restricted chase continues

I3 = I2 ∪ {TrustedServer(f 2
u(t)),TypeA(fu(t), f 2

u(t)),TypeA(f 2
u(t), fu(t))}

⟨sk(r4),{x/fu(t),y/fv(fu(t)),z/f2u(t)}⟩ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→
I4 = I3 ∪ {TrustedServer(fv(f 2

u(t)),TypeB(f 2
u(t)), fv(f 2

u(t)))}

Now, the pair (sk(r3),{x/f 2
u(t), y/fv(f 2

u(t))}) is a trigger on I4. However,

since the existential variable u in r3 can be instantiated to the Skolem term

fu(t) so that the head of r3 is satisfied, the trigger is not active on I4 and thus

the chase terminates.

Figures 4.2.2 and 4.2.3 illustrate the Skolem and the restricted chase on the

rule set R2, where an arrow over a relation symbol indicates a newly derived

atom, or an existing atom used to satisfy the rule head so that the restricted

chase terminates. In contrast, while R2 is nonterminating under the Skolem

chase, it can be shown that it is all-instance terminating under the restricted

chase.

74



Figure 4.2.2: Skolem
chase on R2.

Figure 4.2.3: Re-
stricted chase on R2.

4.3 Finite Restricted Chase by Activeness

In this section, we tackle the question of what kinds of tests we can do to pro-

vide sufficient conditions to identify classes of the finite restricted chase. With

this goal in mind, we present the notion of the restricted critical database for a

given path and show that any “chained” restricted chase sequence for a given

path w.r.t. an arbitrary database can be simulated using the restricted critical

database for simple rules and using an updated restricted critical database via

renaming for arbitrary rules.

4.3.1 Restricted Critical Databases and Chained Prop-
erty

A primary tool for termination analysis of the Skolem chase is the technique of

critical database [113]. Recall that, given a rule set R, if C denotes the set of

constants which occur in R, the critical database (or Skolem critical database)

of R, denoted IR, is a database defined in a way that each relation in IR is

a full relation on the domain C ∪ {∗}, in which ∗ is a special constant with

no occurrence in R. The critical database can be used to faithfully simulate

termination behavior of the Skolem chase – a rule set is all-instance terminating

if and only if it is terminating w.r.t. the Skolem critical database. However,

75



this technique does not apply to the restricted chase.

Example 9. Given a rule set R = {E(x1, x2) → ∃z E(x2, z)} and its critical

database IR = {E(∗,∗)}, where ∗ is a fresh constant, the Skolem chase does not

terminate w.r.t. IR, which is a faithful simulation of the termination behavior

of R under the Skolem chase. But the restricted chase of R and IR terminates

in zero step, as no active triggers exist. However, the restricted chase of R

and database {E(a, b)} does not terminate.

The above example is not at all a surprise, as the complexity of mem-

bership checking in the class of rule sets that have a finite restricted chase,

namely whether a rule set is in CTres
∀∀, is coRE-hard [85], which implies that in

general there exists no effectively computable (finite) set of databases which

can be used to simulate termination behavior w.r.t. all input databases, as oth-

erwise the membership checking for CTres
∀∀ would be recursively enumerable, a

contradiction to the coRE-hardness result of [85].

To check for termination, one natural consideration is the notion of cycles

based on a given rule set. Firstly, a chase that terminates w.r.t. a database I

on all k-cycles implies chase terminating w.r.t. I on all k′-cycles, for all k′ > k.

This is because a chase that goes through a k′-cycle must go through at least

one k-cycle. Secondly, since a nonterminating chase must apply at least one

rule infinitely many times, if the termination is guaranteed for all k-cycles for

a fixed k, then an infinite chase becomes impossible. Thus, testing all k-cycles

can serve as a means to decide classes of the finite chase. Furthermore, cycles

are recursively enumerable with increasing lengths and levels of nesting. We

can test (k+1)-cycles for a possible decision of the finite restricted chase when

such a test failed for k-cycles. We therefore may find larger classes of termi-

nating rule sets with an increased computational cost. We have demonstrated

this approach in Example 8, where the rule set R2 is terminating on all 2-cycles

but not on some 1-cycles. However, a challenging question is which databases

to check against. In the following, we tackle this question.

Given a path, our goal is to simulate a sequence of restricted chase steps

with an arbitrary database by a sequence of restricted chase steps with a fixed

76



database. On the one hand, since in general we can only expect sufficient

conditions for termination, such a simulation should at least capture all infinite

derivations by a rule set with an arbitrary database. On the other hand,

we only need to consider the type of paths that potentially lead to cyclic

applications of the chase. In the following, we will address this question first.

Example 10. Consider the singleton rule set R with rule r ∶ T (x, y), P (x, y)→

∃z T (y, z) and its Skolemization sk(r) ∶ T (x, y), P (x, y) → T (y, fz(y)). With

I0 = {T (a, b), P (a, b)}, we have: chasesk(I0,R) = I0 ∪ {T (b, fz(b))}. After one

application of r, no more triggers exist and thus the Skolem chase of R and

I0 terminates (so does the restricted chase of R and I0). This is because the

existential variable z in the rule head is instantiated to the Skolem term fz(b),

which is passed to variable y in the body atom P (x, y). As the Skolem term

fz(b) is fresh, no trigger to P (x, y) may be available right after the application

of r.

Note that r in Example 10 depends on itself based on the classic notion of

unification. To rule out similar false dependencies, we consider a dependency

relation under which the cycle (r, r) in the above example is not identified as a

dangerous one. Toward this goal, let us recall the notion of rule dependencies

[12]3 and contrast it with its strengthened version for this section.

Definition 29. Let r and r′ be two arbitrary rules. Recall that sk(r) and

sk(r′) denote their Skolemizations.

(i) Given an instance I, we say that r′ depends on r w.r.t. I if there is a ho-

momorphism h ∶ varu(r)→ term(I) and a homomorphism g ∶ varu(r′)→

term(I) ∪ term(h(head(sk(r)))), such that g(body(r′)) /⊆ I.

(ii) We say that r′ depends on r if there is an instance I such that r′ depends

on r w.r.t. I.

If the condition in (ii) is not satisfied, we then say that r′ does not depend

on r, or there is no dependency from r′ to r. Similarly, if the condition in (i)

3which was provided earlier for the definition of aGRD in Section 3.3 of Chapter 3.

77



is not satisfied, we then say that r′ does not depend on r w.r.t. I, or there is

no dependency from r′ to r w.r.t. I.

The definition in (ii) is adopted directly from [12], which is what a general

notion of rule dependency is expected, independent of any instance: r′ depends

on r if there is a way to apply r to derive some new atoms that are used as part

of a trigger to r′. That g is not a homomorphism from body(r′) to I requires

at least one new atom derived by r, given I. Since instance I can be arbitrary

while satisfying the stated condition, no dependency from r′ to r means that

no matter what the initial database is and what the sequence of derivations

is, up to the point of applying r, such an I that satisfies the stated condition

does not exist.

By employing an extended notion of unification, the notion of piece-unification

allows removal of a large number of k-cycles as irrelevant. We will discuss the

details in Section 4.5 when we present our experimentation.

The technical focus of rule dependency in this section is the definition in (i),

which is strengthened from (ii) by fixing instance I. This is needed because

our simulations of the restricted chase are generated from some particular,

fixed databases.

Next, we extend the relation of rule dependency to a (nonreflexive) tran-

sitive closure. This is necessary since a termination analysis often involves

sequences of derivations where rule dependencies yield a transitive relation.

Given a path π = (r1, . . . , rn), we are interested in a chain of dependencies

among rules in π such that the derivation with rn ultimately depends on a

derivation with r1, possibly via some derivations from rules in between. As

a chase sequence may involve independent derivations from other rules in be-

tween, in the following, we define the notion of projection to reflect this.

Terminology: Given a tuple V = (v1, . . . , vn) (n ≥ 2), a projection of V

preserving end points, denoted V ′ = (v′1, . . . , v′m), is a projection of V (as de-

fined in usual way), with the additional requirement that the end points are

preserved (i.e., v′1 = v1 and v′m = vn). By abuse of terminology, V ′ above will

simply be called a projection of V .

78



Definition 30. Let R be a rule set, π = (r1, . . . , rn) (n ≥ 2) a path, and

I0 a database. Suppose that I ∶ I0, I1, . . . , In is a sequence of instances and

H = (h1, . . . , hn) is a tuple of homomorphisms such that Ii−1⟨ri, hi⟩Ii (1 ≤ i ≤ n).

I is called chained for π if there exists a projection I ′ ∶ I0, I ′1, . . . , I
′
m of I, along

with the corresponding projections H ′ = (h′1, . . . , h′m) of H and π′ = (r′1, . . . , r′m)

of π, such that for all 1 ≤ i <m, r′i+1 depends on r′i w.r.t. I, where I = I0 if i = 1

and I = I ′i ∖h′i(head(sk(r′i))), otherwise. If I is chained for π, we also say that

I has the chained property; for easy reference, we sometime also associate the

chained property with the corresponding H and say H is chained, or H is a

chained tuple of homomorphisms, w.r.t. I0.

Note that in the definition above, by I = I ′i ∖ h′i(head(sk(r′i))), the trig-

gering atoms to r′i+1 must include at least one new head atom derived from

r′i.

We now address the issue of which databases to check against for termina-

tion analysis of the restricted chase. For this purpose, let us define a mapping

ei ∶ V∪C→ ⟨V, i⟩∪C, where constants in C are mapped to themselves and each

variable v ∈ V is mapped to ⟨v, i⟩.

Definition 31. Given a path π = (r1, r2, . . . , rn) of a simple rule set, we define:

Iπ = {ei(body(ri)) ∶ 1 ≤ i < n + 1}, which is called a restricted critical database

of π.

A pair ⟨x, i⟩ in Iπ is intended to name a fresh constant to replace variable

x in the body of a rule ri. The atoms in Iπ that are built from these pairs

and the constants already appearing in the body of a rule are independent

of any given database. The goal is to use these atoms to simulate triggering

atoms when necessary, in a derivation sequence from a given database. Let us

call these pairs indexed constants and atoms with indexed constants indexed

atoms. Let us use the shorthand vi for ⟨v, i⟩.

Note that due to the structure of Iπ, a trigger for each rule in π is auto-

matically available and therefore, without the notion of chained property, a

path can rather trivially lead to a restricted chase sequence. To see this, we

can construct a restricted chase sequence I0, I1, . . . , In based on R as follows.

79



For each 1 ≤ i ≤ n, we construct a trigger (ri, hi), where for each variable

v ∈ var(body(ri)), we have hi ∶ v → ⟨v, i⟩. Since indexed constants are fresh,

such a trigger is active.

Example 11. Consider the rule set R of Example 10 and a path π = (r, r). For

this rule set, we have Iπ = {T (x1, y1), P (x1, y1), T (x2, y2), P (x2, y2)}. We see

that there does not exist any chained tuple of homomorphisms for π w.r.t. Iπ.

In fact, the claim holds for any instance I since there is no rule dependency

from r to r (cf. Definition 29).

In a restricted critical database that we have seen so far, each body variable

is bound to a distinct constant indexed in the order in which rules are applied.

Later on, we will motivate and introduce the notion of updated restricted

critical databases, where distinct indexed constants may be collapsed into the

same indexed constant.

4.3.2 Activeness for Simple Rules

We are ready to define the notion of activeness and show its role in termination

analysis for simple rules.

Definition 32. (Activeness) Let R be a rule set and I0 a database. A path

π = (r1 . . . , rn) based on R is said to be active w.r.t. I0, if there exists a chained

restricted chase sequence I ∶ I0, . . . , In for π.

The activeness of a path π requires two conditions to hold. First, π must

lead to a restricted chase sequence and second, the sequence must have the

chained property. In other words, if π is not active w.r.t. I0, then either some

rule in π does not apply due to lack of an active trigger, or the last rule in π

does not depend on the first in π transitively in all possible derivations from

I0 using rules in π in that order.

Our goal is to simulate a given chained restricted chase sequence w.r.t. an

arbitrary database by a chained restricted chase sequence w.r.t. some fixed

databases, while preserving rule dependencies. Such a simulation is called

tight or dependency-preserving. For presentation purposes, we will present the

80



results in two stages, first for simple rules for which the restricted critical

database Iπ for a path π is sufficient. Then, in the next subsection, we present

the result for arbitrary rules using updated restricted critical databases.

Theorem 33. Let R be a rule set with simple rules and π = (r1, . . . , rn) a path

based on R. Then, π is active w.r.t. some database if and only if π is active

w.r.t. the restricted critical database Iπ.

Proof. (⇐) Immediate since Iπ is such a database.

(⇒) Let I be a database w.r.t. which π is active, i.e., there exists a chained

tuple of homomorphisms H = (h1, . . . , hn) for π such that (ri, hi) (0 < i ≤ n) is

an active trigger on Ii−1 and Ii−1⟨ri, hi⟩Ii. So, there exists a sequence

A ∶ I = I0, I1, . . . , In (4.3.1)

satisfying the condition: for all 1 ≤ i ≤ n, there is a homomorphism hi ∶

varu(ri)→ term(Ii−1), where ri ∈ R, such that

hi(body(ri)) ⊆ Ii−1, (4.3.2)

∀h′i ⊇ hi ∶ h′i(head(ri)) ⊈ Ii−1, and (4.3.3)

Ii = Ii−1 ∪ h′i(head(ri)). (4.3.4)

We will construct a chained restricted chase sequence of R w.r.t. Iπ based on

a simulation of derivations in A. Let us denote this sequence by

B ∶ Iπ = I∗0 , I∗1 , . . . , I∗n . (4.3.5)

Then, we need to have properties (4.3.2), (4.3.3), and (4.3.4) for B with hi and

Ii−1 replaced by some homomorphism gi and instance I∗i−1, respectively, for all

1 ≤ i ≤ n.

To show the existence of such a sequence B, we show how to construct a tu-

ple of homomorphisms G = (g1, g2, . . . , gn) inductively, such that I∗i−1⟨ri, gi⟩I∗i ,

for all 1 ≤ i ≤ n. This ensures that B is a Skolem chase sequence. We will

then show that all the triggers are active, and along the way, show that G is

a chained sequence. We then conclude that B is, in fact, a chained restricted

chase sequence.

81



Note that instances Ii contain constants from the given database I and

instances I∗i contain indexed constants. Both may contain some constants

appearing in rules in π.

We construct gi along with the construction of a many-to-one function h

that maps indexed constants appearing in gi to constants appearing in hi.

This provides a relation between gi and hi. For any atom a ∈ body(ri), we

call atom hi(a) an image of gi(a). The function h is many-to-one because

distinct indexed constants in gi may need to be related to a constant in hi in

simulation (in generating sequence A, distinct variables may be bound to the

same constant; but in generating sequence B, distinct variables can only be

bound to distinct indexed constants).

For i = 1, we let g1(body(r1)) ⊆ Iπ with the index in indexed constants

being 1. Such g1 uniquely exists. As (r1, g1) is clearly a trigger, we have

I∗0 ⟨r1, g1⟩I∗1 under the Skolem chase. For function h, clearly we can let h be

such that h(g1(a)) = h1(a) for each atom a ∈ body(r1).

For any 1 < i ≤ n, we construct gi as follows. Let a ∈ body(ri). If hi(a) ∈ I,

i.e., the triggering atom hi(a) is from database I, then we let gi map a to the

corresponding indexed atom in Iπ with index i. If hi(a) /∈ I, i.e., hi(a) is a

derived atom, we then let gi(a) be any atom whose image is hi(a).4 Then, we

can extend function h by h(gi(a)) = hi(a). Note that this is always possible

for simple rules since body(ri) has no repeated variables. By construction, that

(ri, hi) is a trigger on Ii−1 implies that (ri, gi) is a trigger on I∗i−1.

We now show that all triggers (ri, gi) (1 ≤ i ≤ n) are active, i.e.,

∀g′i ⊇ gi ∶ g′i(head(ri)) ⊈ I∗i−1, 1 ≤ i ≤ n (4.3.6)

To relate homomorphisms gi with B to hi withA, from above we have h(gi(x)) =

hi(x), for all x ∈ varu(ri). Then, it follows

h(I∗i−1) ⊆ Ii−1, 1 ≤ i ≤ n (4.3.7)

which can be shown by induction: for the base case, we have h(I∗0 ) ⊆ I0 by

4Recall that h is in general many-to-one. So, we may have multiple atoms whose image
is hi(a). Since the rules are assumed to be simple, choosing any of these atoms can lead to
the construction of a desired tuple of homomorphisms G as well as the function h.

82



definition, and for the induction step, for each k ≥ 1, that h(I∗k−1) ⊆ Ik−1 implies

h(I∗k ) ⊆ Ik is by the construction of homomorphism gk in B.

To prove (4.3.6), for the sake of contradiction, assume that it does not

hold, i.e., ∃g′i ⊇ gi s.t. g′i(head(ri)) ⊆ I∗i−1. This together with (4.3.7) im-

plies h(g′i(head(ri))) ⊆ h(I∗i−1) ⊆ Ii−1. Now let h′i(x) = h(g′i(x)). It follows

h′i(head(ri)) ⊆ Ii−1, a contradiction to (4.3.3). Therefore, all triggers applied

in B are active and π thus leads to a restricted chase sequence of R and Iπ.

Finally, B is chained because the depends-on relation in A is preserved

for B. For the path π = (r1, . . . , rn), assume that rj depends on ri w.r.t.

Ii−1 (1 ≤ i < j ≤ n). As A is a restricted chase sequence, we have homo-

morphisms hi ∶ body(ri) → Ii−1 and hj ∶ body(rj) → Ij−1. That rj depends

on ri w.r.t. Ii−1 ensures that hj is not a homomorphism from body(rj) to

Ij−1 ∖ hi(head(sk(ri))). We have already shown the existence of homomor-

phisms gi ∶ body(ri) → I∗i−1 and gj ∶ body(rj) → I∗j−1. Since hj is not a homo-

morphism from body(rj) to Ij−1 ∖ hi(head(sk(ri))), it follows by construction

that gj is not a homomorphism from body(rj) to I∗j−1 ∖ gi(head(sk(ri))). We,

therefore, conclude that rj depends on ri w.r.t. I∗i−1 (1 ≤ i < j ≤ n). We are

done.

4.3.3 Activeness for Arbitrary Rules

For non-simple rules, a tight simulation using the restricted critical database Iπ

for a given path π is not always possible. The following example demonstrates

that not all active paths can be simulated.

Example 12. Consider the following rule set R = {r1, r2, r3}, where

r1 ∶ P (x, y)→ Q(x, y)
r2 ∶ R(x, y)→ T (x, y)
r3 ∶ Q(x, y), T (x, y)→ ∃z P (z, x),R(z, x)

R is not all-instance terminating since for database I = {P (a, b),R(a, b)},

there is a nonterminating restricted chase sequence starting from I (assuming

that the existential variable z is Skolemized to fz(x)):

I0 = I I1 = I0 ∪ {Q(a, b)}
I2 = I1 ∪ {T (a, b)} I3 = I2 ∪ {P (fz(a), a),R(fz(a), a)}
......

83



where the corresponding active triggers (r1, h1), (r2, h2), (r3, h3) can be easily

identified. However, as illustrated below, a tight simulation for any path π =

(r1, r2, . . . ) is not possible for the restricted critical database Iπ. For example,

given π1 = (r1, r2, r3), with restricted critical database

Iπ1 = {P (x1, y1),R(x2, y2),Q(x3, y3), T (x3, y3)}

, it is easy to verify that π1 is not active w.r.t. Iπ1. To see why this is the

case, consider the following derivation which is obtained after having applied

the triggers (r1, g1) and (r2, g2) to produce

I∗0 = Iπ1 , I∗1 = I∗0 ∪ {Q(x1, y1)}, I∗2 = I∗1 ∪ {T (x2, y2)}

The reason that π1 is not active w.r.t. Iπ1 is that multiple occurrences of

constants a and b in the triggering atoms on I2, i.e., Q(a, b) and T (a, b),

are originated from the given database from different sources (atoms). For

termination analysis, we must provide a simulation of any restricted chase

sequence. Below, we discuss two possible solutions using the above example.

• Solution 1: Trigger (r3,{x/x3, y/y3}) on I∗2 is already available since

Q(x3, y3), T (x3, y3) ∈ I∗2 , which can be applied to continue the chase.

• Solution 2: Let rn be a renaming function that renames indexed constants

x2 and y2 appearing in Iπ1 to x1 and y1, respectively, i.e., rn(Iπ1) =

{P (x1, y1),R(x1, y1),Q(x3, y3), T (x3, y3)}, so that (r3,{x/x1, y/y1}) is a

trigger on rn(I∗2 ).

Solution 1 is rather weak since it allows the simulation of a chained sequence

to be “broken” without preserving rule dependency, whereas Solution 2 leads

to a tight simulation, i.e., a simulation that preserves the dependency relation

of the sequence being simulated. In this chapter and the one that follows, we

formalize and develop results for Solution 2.

Given a path π and critical database Iπ, let ΠIπ be the set of indexed

constants appearing in Iπ. We define a renaming function for Iπ to be a map-

ping from ΠIπ to ΠIπ . For technical clarity, we eliminate symmetric renaming

84



functions by imposing a restriction: an indexed constant with index i can only

be renamed to an indexed constant with index j, where 1 ≤ j < i. In other

words, an indexed constant with index i in Iπ can only be renamed to one

which appears in a rule in π earlier than ri.

Theorem 34. Let R be a rule set and π = (r1, . . . , rn) a path based on R.

Then, π is active w.r.t. some database if and only if there exists a renaming

function rn∗ for Iπ such that π is active w.r.t. rn∗(Iπ), where rn∗ is composed

of at most n renaming functions.

Proof. (⇐) Immediate since rn∗(Iπ) is such a database.

(⇒) The proof follows the same structure as for Theorem 33 except for the

case where the tight simulation of a chase step fails to provide a trigger due

to repeated variables in a rule body.

As in the proof of Theorem 33, we assume that path π = (r1, . . . , rn) is active

w.r.t. some database I, so that there is a chained restricted chase sequence

A ∶ I = I0, I1, . . . , In (4.3.8)

generated by active triggers (r1, h1), . . . , (rn, hn). We show that there exist a

renaming function rn∗ for Iπ and a chained restricted chase sequence w.r.t.

rn∗(Iπ)

B ∶ rn∗(Iπ) = rn∗(I∗0 ), rn∗(I∗1 ), . . . , rn∗(I∗n). (4.3.9)

generated by active triggers (r1, rn∗ ○ g1), . . . , (rn, rn∗ ○ gn)). We prove the

existence of B by constructing gi’s (and its renamed counterparts) along with

the construction of a many-to-one function h that relates indexed constants

in gi (and its renamed counterparts) to constants in hi. We apply the same

argument repeatedly to show the existence of a composed renaming function

rn∗. Let us start by constructing the first renaming function, rn1.

The construction of g1 is the same as in the proof of Theorem 33 – we

let g1(body(r1)) ⊆ Iπ with the index in indexed constants being 1 and let

h(g1(body(r1))) = h1(body(r1)). For the inductive case (1 < i ≤ n), we con-

struct gi as follows. Let a ∈ body(ri). If hi(a) ∈ I, i.e., the triggering atom

85



hi(a) is from database I, then we let gi map a to a corresponding indexed

atom in Iπ with index i. If hi(a) /∈ I, i.e., hi(a) is a derived atom, we then

consider all body atoms of ri including a that form a connected component in

that any two of which share at least one variable. There are in general one

or more such connected components in body(ri). For simplicity and w.l.o.g.,

let us assume that body(ri) consists of only one such connected component. If

body(ri) for some 1 ≤ i ≤ n consists of more than one connected component,

then we can apply the same techniques used below to construct a sequence of

renaming functions – as long as the required properties for the construction

of these functions are met for each component (cf. Case (ii) below), the same

argument is applicable.

Now let us attempt to construct a mapping gi by letting gi(body(ri)) be

the set of atoms whose images are precisely those in hi(body(ri)). There are

two cases.

Case (i) gi is a homomorphism from body(ri) to I∗i−1. In this case, function h

can be extended by h(gi(body(ri))) = hi(body(ri)). By construction, (ri, gi) is

a trigger on I∗i−1, and the proof that (ri, gi) is active remains the same as for

Theorem 33.

Case (ii) Otherwise gi fails to be a homomorphism from body(ri) to I∗i−1.

Assume gi is the first such failure in the construction of sequence B so far.

Note that the failure is because gi constructed this way must be a one-to-

many mapping – gi must map a variable to distinct indexed constants because

multiple occurrences of a variable in body(ri) are instantiated to a common

constant by hi but to simulate that, gi must map the same variable to distinct

indexed constants.

The failure can be remedied by a renaming function for Iπ, denoted rn1, by

which some different indexed constants are renamed to the same one so that

(ri, rn1 ○gi) is a trigger on rn1(I∗i−1). Clearly, such a renaming function exists.

We require that rn1 be minimal in that the number of indexed constants that

are renamed to different ones is minimized.5 It is easy to see that the existence

5In other words, that an indexed constant is renamed to a different one only when it is

86



of a renaming function for Iπ implies the existence of such a minimal renaming

function for Iπ. We now want to show that the sequence

rn1(Iπ) = rn1(I∗0 ), rn1(I∗1 ), . . . , rn1(I∗i−1), rn1(I∗i ) (4.3.10)

is a chained restricted chase sequence generated by triggers (r1, rn1 ○ g1), . . . ,

(ri, rn1 ○ gi). The function h that relates indexed constants to constants in hj

(1 ≤ j ≤ i) is updated correspondingly as h(rn1 ○ gj(body(rj))) = hj(body(rj)).

That (ri, rn1 ○ gi) is a trigger on rn1(I∗i−1) is by the construction of rn1.

For each rn1 ○ gj (1 ≤ j < i), since for rn1 ○ gj the only update of gj is that

some different indexed constants are replaced by the same one; that gj is a

homomorphism from body(rj) to I∗j−1 implies that rn1 ○gj is a homomorphism

from body(rj) to rn1(I∗j−1). We now show that triggers (rj, rn1○gj) (1 ≤ j ≤ n)

are all active.

The intuition behind this part of the proof is that in case (i) when we

use distinct indexed constants for distinct variables, we do not introduce any

possibility of “recycled” atoms (i.e., atoms which can also be used in later

derivations). Therefore, the activeness of (rj, hj) implies activeness of (rj, gj).

On the other hand, although the above statement may not hold for case (ii),

a renaming function that is minimal ensures that we do not introduce more

than what is needed, i.e., rn1 ○ gj requires no more mappings to the same

constants than hj. This again ensures that the activeness of trigger (rj, hj)

implies activeness of trigger (rj, rn1 ○ gj).

More formally, the activeness of (rj, rn1 ○ gj) (1 ≤ j ≤ n) means that the

following conditions hold: for each 1 ≤ j ≤ n

∀g′j ⊇ rn1 ○ gj ∶ g′j(head(rj)) ⊈ rn1(I∗j−1), 1 ≤ j ≤ i (4.3.11)

We let h(rn1 ○gj(x)) = hj(x), for all x ∈ varu(rj). Then, by induction we show

that

h(rn1(I∗j−1)) ⊆ Ij−1, 1 ≤ j ≤ i (4.3.12)

For the base case, we have h(rn1(I∗0 )) ⊆ I0, which holds due to the minimal-

ity of rn1. For the induction step, for each k ≥ 1, let us assume h(rn1(I∗k−1)) ⊆

necessary.

87



Ik−1. Then we need to show h(rn1(I∗k )) ⊆ Ik. The latter can be done by the

construction of rn1 ○ gk in (4.3.10).

We then proceed to prove (4.3.11). For this purpose, assume that it

does not hold, i.e., ∃g′j ⊇ rn1 ○ gj s.t. g′j(head(rj)) ⊆ rn1(I∗j−1). This to-

gether with (4.3.12) implies h(g′j(head(rj))) ⊆ h(rn1(I∗j−1)) ⊆ Ij−1. Now let

h′j(x) = h(g′j(x)). It follows h′j(head(rj)) ⊆ Ij−1, which is a contradiction to

our assumption that (rj, hj) for 1 ≤ j ≤ i active. This shows that all triggers

applied in (4.3.10) are active.

We then apply the same argument to continue the construction of sequence

B of (4.3.9):

rn1(Iπ) = rn1(I∗0 ), rn1(I∗1 ), . . . , rn1(I∗i−1), rn1(I∗i ), . . . (4.3.13)

generated by active triggers (rj, rn1○gj) (1 ≤ j ≤ i) from the updated restricted

critical database rn1(Iπ). If case (i) applies for the simulation of a chase

step in A, then let us use the identity renaming function (which is minimal

by definition). Thus, the simulation of each chase step results in a minimal

renaming function. It follows that rn∗ = rnn ○ ⋅ ⋅ ⋅ ○ rn1 and, as the chained

property immediately holds by construction, sequence B is indeed a chained

restricted chase sequence. We then conclude that π is active w.r.t. the updated

restricted critical database rn∗(Iπ). We are done.

In the sequel, given a path π, Iπ, and rn∗(Iπ) for all renaming functions

rn∗ are all called a restricted critical database. For clarity, we may qualify the

latter as an updated restricted critical database.

The development of this section leads to the following conclusion, which

can be considered the foundation of our approach to defining classes of the

finite restricted chase in this chapter.

Theorem 35. Let R be a rule set. For any k > 0, if no k-cycle σ is active

w.r.t. rn∗(Iσ), for all renaming functions rn∗ for Iσ, then R is all-instance

terminating under the restricted chase.

Proof. Assume that R is not all-instance terminating under restricted chase.

Then for some database I0 there is a nonterminating restricted chase sequence

88



I ∶ I0, . . . , Ij, .... Since I0 is finite, there can only be a finite number of inde-

pendent applications of any rule. It follows that I must contain one chained

restricted chase sequence for some k-cycle σ. W.l.o.g., assume that σ ap-

pears immediately after an initial, finite segment of I, say I0, . . . , Ii. It fol-

lows that the nonterminating sequence I without this initial finite segment

I ′ ∶ Ii, . . . , Ij, ... is a nonterminating chained restricted chase sequence.

By the contraposition of the only if statement of Theorem 34, the assump-

tion that σ is not active w.r.t. rn∗(Iσ) for all renaming function rn∗ for Iσ,

implies that σ is not active w.r.t. any database, i.e., a chained restricted chase

sequence for σ does not exist, for any database, which results in a contradic-

tion.

As we have seen up to this point that renaming enables a tight simulation

for termination analysis based on testing k-cycles. A question is whether

renaming is a necessary condition in general for our termination analysis. The

question is raised due to the following observation.

Example 13. Consider Example 12 again. We have seen that path π1 =

(r1, r2, r3) requires renaming in order to obtain a tight simulation. Now con-

sider π2 = (r3, r2, r1), which is a permutation of π1. It can be shown that unlike

π1 which is not active w.r.t. restricted critical database Iπ1, π2 is active w.r.t.

restricted critical database Iπ2. According to Theorem 35, as long as there is

one k-cycle that is active, we do not conclude that the given rule set is all-

instance terminating. For this example, since the 1-cycle σ = (r3, r2, r1, r3) is

active w.r.t. the restricted critical database Iσ, there is no conclusion that R

is all-instance terminating. This may suggest that if we test all k-cycles, the

mechanism of renaming may be redundant. However, the next example shows

that this is not the case in general.

Example 14. Consider the following rule set R′ = {r1, r2, r3} modified from

rule set R of Example 12, where

r1 ∶ P (x, y, z),K(z)→ Q(x, y, z)
r2 ∶ R(x, y, z)→ T (x, y, z)
r3 ∶ Q(x, y, z), T (x, y, z)→ ∃v P (v, x, z),R(v, x, z)

89



R′ is not all-instance terminating which can be verified using the database

I0 = {P (a, b, c),K(c),R(a, b, c)}

We have the following chase sequence starting from database I0 (assuming that

fv is used to Skolemize the existential variable v) by applying the rules in the

path (r1, r2, r3) repeatedly.

I1 = I0 ∪ {Q(a, b, c)}, I2 = I1 ∪ {T (a, b, c)},
I3 = I2 ∪ {P (fv(a, c), a, c),R(fv(a, c), a, c)}, I4 = I3 ∪ {Q(fv(a, c), a, c)},
......

The question is: by testing all 1-cycles, can we capture this nonterminating

behavior without using renaming? As we show below, the answer is negative.

Similar to the rule set of Example 12, a tight simulation is not possible for

any path of the form π = (r1, r2, . . . ) w.r.t. the restricted critical database Iπ.

However, unlike the rule set of Example 12, no permutation π′ of π may lead to

a tight simulation for π′ w.r.t. the restricted critical database Iπ
′
. For example,

consider the path π2 = (r3, r2, r1) which is a permutation of π1 = (r1, r2, r3). The

restricted critical database of π2 is as follows:

Iπ2 = {Q(x1, y1, z1), T (x1, y1, z1),R(x2, y2, z2), P (x3, y3, z3),K(z3)}

and we derive the following restricted chase sequence:

I∗0 = Iπ2 , I∗1 = I∗0 ∪ {P (fv(x1, z1), x1, z1),R(fv(x1, z1), x1, z1)}, (4.3.14)

I∗2 = I∗1 ∪ {T (fv(x1, z1), x1, z1)}, I∗3 = I∗2 ∪ {Q(x3, y3, z3)}

It is easy to check that after derivation of I∗2 , no trigger for r1 exists that

uses atoms derived in I∗2 . Therefore, to derive I∗3 , we have no choice but

to pick homomorphism h = {x/x3, y/y3, z/z3} to construct trigger (r1, h) to

derive Q(x3, y3, z3). Therefore, the restricted chase terminates since there is

no trigger from I∗3 . A similar argument applies to other permutations of π1.

If we conclude that R′ is all-instance terminating based on testing all 1-cycles

without renaming, we would get a wrong conclusion.

On the other hand, given a (finite) path π, if it leads to a chained restricted

chase sequence, starting from the updated restricted critical database rn∗(Iπ)
90



for some renaming function rn∗, then there is a tight simulation so that π is

shown to be active. For example, for π2 = (r3, r2, r1) above we can find an

updated restricted critical database of π2 as follows:

rn∗(Iπ2) = {Q(x1, y1, z1), T (x1, y1, z1),R(x2, y2, z2), P (x1, y1, z1),K(z1)}

where indexed constants with index 3 are renamed to those with index 1, so

that π2 is active w.r.t. rn∗(Iπ2).

4.4 K-Safe(Φ) Rule Sets

We now apply the results of the previous section to define classes of the finite

restricted chase. The idea is to introduce a parameter, which we call cycle

function, to generalize various acyclicity notions in the literature. The advan-

tage of this approach is that we can test a path only when it fails to satisfy

the given acyclicity condition.

Definition 36. Let R be a rule set and Σ the set of all finite cycles based on

R. A cycle function is a mapping ΦR ∶ Σ → {T,F}, where T and F denote

true and false, respectively.

Let Φ be the binary function from rule sets and cycles such that Φ(R,σ) =

ΦR(σ), where R is a rule set and σ is a cycle. By overloading, the function Φ

is also called a cycle function.

We now address the question of how to obtain a cycle function for an

arbitrary rule-based acyclicity condition of finite Skolem chase e.g., JA [105],

aGRD [12], MFA [56], etc.

Definition 37. Let ∆ denote an arbitrary acyclicity condition of finite Skolem

chase (for convenience, let us also use ∆ to denote the class of rule sets that

satisfy the acyclicity condition expressed by ∆). We define a cycle function

Φ∆ as follows: for each rule set R and each cycle σ based on R, if the acyclicity

condition ∆ holds for rules in Rule(σ),6 then Φ∆ maps (R,σ) to T ; otherwise

Φ∆ maps (R,σ) to F .

6Recall that Rule(C) is the set of distinct rules in C.

91



That is, Φ∆ maps (R,σ) to T whenever the acyclicity condition ∆ for the

rule set Rule(σ) is satisfied and to F otherwise. Since any nonterminating

restricted chase sequence must involve a cycle of rules, any sufficient condition

for acyclicity by definition already guarantees restricted chase termination.

In the sequel, we will use RS(∆) to denote the class of rule sets that satisfy

the acyclicity condition ∆. Also, according to Definition 37, we will feel free

to write Φ∆(R,Rule(σ)) for Φ∆(R,σ).

Example 15. Consider the rule set R1 from Example 8 and assume ∆ = aGRD

in Definition 37. Recall that a rule set R belongs to aGRD (acyclic graph of rule

dependencies) if there is no cyclic dependency relation between any two (not

necessarily different) rules from R, possibly through other dependent rules of R.

Clearly, the corresponding cycle function Φ∆ maps both cycles σ1 = (r1, r2, r1)

and σ2 = (r2, r1, r2) to F .

We are ready to present our hierarchical approach to defining classes of

the finite restricted chase. In the following, we may just write Φ for Φ∆ as a

parameter for cycle functions, or as some fixed cycle function, in particular in

a context in which an explicit reference to the underlying acyclicity condition

∆ is unimportant.

Definition 38. (k-safe(Φ) rule sets) Let R be a rule set and σ a k-cycle (k ≥

1). We call σ safe if for all databases I, σ is not active w.r.t. I. Furthermore,

R is said to be in k-safe(Φ), or to belong to k-safe(Φ) (under cycle function

Φ), if for every k-cycle σ which is mapped to F under ΦR, σ is safe.

For notational convenience, for k = 0 we may write 0-safe(Φ∆) for RS(∆).

For example, it can be verified that the rule set R1 in Example 8 is in k-

safe(Φ∆) for any k ≥ 1 and any cycle function Φ∆ based on some Skolem

acyclicity condition ∆ in the literature such as weak-acyclicity (WA) [66],

Joint-acyclicity (JA) [105], and MFA [56], etc. It is also not difficult to see

that the rule set R2 in the same example belongs to 2-safe(ΦaGRD) as well as 2-

safe(ΦWA) (but note that they do not belong to 1-safe(ΦaGRD) or 1-safe(ΦWA)).

However, we stress that R2 does not belong to any known class of acyclicity,

92



including RMFA and RJA. That is, rule sets like R2 are recognized as a finite

chase only under the hierarchical framework proposed in the current and the

next chapter.

By Theorem 34, k-safe(Φ) can be equivalently defined in terms of restricted

critical databases.

Proposition 39. For any cycle function Φ, a rule set R is in k-safe(Φ) if

and only if every k-cycle σ which is mapped to F under φR is not active

w.r.t. rn∗(Iσ), for all renaming functions rn∗.

We are now in a position to show the following theorem.

Theorem 40. Let Φ∆ be a cycle function. For all k ≥ 1, (k − 1)-safe(Φ∆) ⊆

k-safe(Φ∆) ⊆ CTres
∀∀.

Proof. For the first subset relation, let us first consider the base case where

k = 1. Since any nonterminating Skolem chase goes through at least one

1-cycle based on R, if none of the 1-cycles on R violates the corresponding

acyclicity condition, i.e., Φ∆ maps any 1-cycle σ to T , then R trivially belongs

to RS(∆). Thus, RS(∆) = 0-safe(Φ∆) ⊆ 1-safe(Φ∆). Then, for all renaming

functions rn∗, if there is no chained restricted chase sequence of R and rn∗(Iσ)

for a k-cycle σ, then there is no chained restricted chase sequence of R and

rn∗(Iσ′) for any (k + 1)-cycle σ′, since the latter goes through at least one

k-cycle. This shows the first subset relation.

To show the second subset relation, let R ∈ k-safe(Φ∆), for any fixed k ≥ 1.

For all k-cycle σ, if (R,σ) is mapped to T by Φ∆ for every k-cycle σ, then

by definition R ∈ CTsk
∀∀ ⊂ CTres

∀∀. If for some k-cycle σ such that (R,σ) is

mapped to F by Φ∆, then by Proposition 39, R ∈ k-safe(Φ∆) implies that

σ is not active w.r.t. rn∗(Iσ) for all renaming functions rn∗ for Iσ. It then

follows from inactiveness (Definition 32) and Proposition 39 that there are no

chained restricted chase sequences of R and rn∗(Iσ). Thus, by Theorem 35,

R is restricted chase terminating w.r.t. rn∗(Iσ). By the first subset relation,

for all k′ > k, all k′-cycles are terminating. Therefore, we have k-safe(Φ∆) ⊆

CTres
∀∀.

93



Algorithm 4.1 k-safe Algorithm
Input: A set of rules R; An integer k ≥ 0; A cycle function Φ
Output: Boolean value IsAcyclic;

1: procedure k-safe(R,Φ)
2: end procedure
3: bool IsAcyclic← true;
4: for each k-cycle σ based on R do
5: if Φ(R,Rule(σ)) = F then
6: Find the restricted critical database Iσ;
7: for each renaming function rn∗ do
8: if σ is active w.r.t. rn∗(Iσ) then
9: return ¬IsAcyclic;

10: end if
11: end for
12: end if
13: end for
14: return IsAcyclic;

Finally, we present Algorithm 4.1 to determine whether a rule set belongs

to the class k-safe(Φ∆). The procedure returns true if it is and false otherwise.

Proposition 41. Given a rule set R, a cycle function Φ∆ and an integer

k ≥ 1, R belongs to k-safe(Φ∆) if and only if Algorithm k-safe returns true.7

Proof. (⇒) Based on Definition 38, if R is in k-safe(Φ∆), then for all k-cycles

σ either Φ(R,Rule(σ)) = T , or for all renaming functions rn∗ for Iσ, σ is not

active w.r.t. restricted critical database rn∗(Iσ). Therefore, Algorithm 4.1

returns T .

(⇐) By Proposition 39, for all k-cycles σ and for all renaming functions rn∗ for

Iσ, if σ is not active w.r.t. restricted critical database rn∗(Iσ), then the given

rule set belongs to k-safe(Φ∆), and by Theorem 40, is all-instance terminating.

Theorem 42. Let R be a given rule set and k ≥ 0 be a unary-encoded integer.

Assuming that checking ∆ can be done in PTime, the complexity of checking

membership in k-safe(Φ∆) is in PSpace.
7The algorithm can be improved by considering only minimal renaming functions, which

however would not lower the complexity upper bound. For this reason, we do not pursue
the improvement at this level of abstraction.

94



Proof. Given a rule set R and an acyclicity condition ∆, let us first guess a k-

cycle σ = (σ1, . . . , σ(k+1)×∣R∣−1) based on R, and then check whether Rule(σ) ∉ ∆.

The guessing part can be done using a nondeterministic algorithm. Further-

more, based on our assumption, the checking part can be done in PTime.

For the guessed k-cycle σ, we then proceed by guessing a renaming function

rn∗ and a restricted chase sequence I ∶ rn∗(Iσ), . . . , I(k+1)×∣R∣−1 constructed

from σ using a tuple of chained homomorphisms H = (h1, . . . , h(k+1)×∣R∣−1), and

verifying whether I is chained by checking whether σ is active w.r.t. rn∗(Iσ),

which gives us the complement of the desired membership checking problem.

An iterative procedure is required to construct I. In each step i > 0 of

this procedure we need to remember each instance Ii−1 in the constructed

sequence, guess a homomorphism hi, and proceed to derive I(k+1)×∣R∣−1. For this

purpose, we need NSpace(((k + 1) × ∣R∣ − 1) × β) memory space to remember

intermediate instances, where β is the maximum number of head atoms of

rules in σ. In addition, guessing each homomorphism hi can be done using

an NP algorithm and having access to an NP-oracle, verifying if hi can be

extended a homomorphism h′i and leads to a chained tuple of homomorphisms

is NP-complete [130]. All these tasks can be maintained within the same

NSpace(((k+1)× ∣R∣−1)×β) complexity bound, giving us a coNSpace(((k+

1) × ∣R∣ − 1) × β) upper bound for the complexity of membership checking.

As a corollary to Savitch’s theorem [131], we have PSpace=NPSPace.

Also, based on Immerman–Szelepcsényi theorem [95], nondeterministic space

complexity classes are closed under complementation. Therefore, based on

the above analysis, the complexity upper bound for the membership checking

problem is in PSpace.

Remark 1. Based on Theorem 42, it can be seen that for ∆ ∈ {WA,JA,SWA},8

the complexity of checking k-safe(Φ∆) is in PSpace. This shows that our

conditions, when considering Skolem acyclicity criteria for which membership

checking can be done in PTime, are easier to check than even the easiest

known condition of the restricted chase in the literature (i.e., RJA) for which

8SWA denotes the super-weak acyclicity condition of Skolem chase terminating rule sets
[113].

95



the complexity of membership checking is ExpTime-complete.

In addition, for semantic conditions of terminating Skolem chase, such as

MSA (respectively, MFA), checking ∆ cannot be done in PTime and a worst-

case complexity of ExpTime-complete (respectively, 2ExpTime-complete) can

be computed [88]. It follows that for the membership checking problem of

k-safe(Φ∆), where ∆ is MSA (respectively, MFA), an ExpTime-complete (re-

spectively, 2ExpTime-complete) complexity can be computed. The hardness

proof can be established from the membership checking problem of the corre-

sponding class with terminating Skolem chase since this problem cannot be

easier than that in general.

4.5 Experimentation

To evaluate the performance of our proposed methods for termination analy-

sis, we implemented our algorithms in Java on top of the Graal rule engine

[17]. Our goal was twofold: (1) to understand the relevance of our theoretical

approach with real-world applications, and (2) to understand the computa-

tional feasibility – even though the problem of checking semantic acyclicity

conditions, such as checking activeness of all k-cycles w.r.t. restricted criti-

cal databases have a high theoretical worst-case complexity, it may still be a

valuable addition to the tools of termination analysis in real-world scenarios.

We looked into a random collection of 700 ontologies from The Manchester

OWL Corpus (MOWLCorp) [115], which is a large corpus of ontologies on

the web. This corpus is a recent gathering of ontologies through sophisticated

web crawls and filtration techniques. After standard transformation into rules

(see [56] for details),9 based on the number of existential variables occurring

in transformed ontologies, we picked ontologies from two categories of up to

5 and 5–200 existential variables with equal probability (350 from each). We

ran all tests on a Macintosh laptop with 1.7 GHz Intel Core i7 processor, 8GB

of RAM, and a 512GB SSD, running macOS Catalina.

9Due to limitations of this transformation, our collection does not include ontologies with
nominals, number restrictions or denial constraints.

96



4.5.1 Implementation Setup

Here, we provide the details on our implementation to identify k-safe(Φ∆) rule

sets.

For a given k ≥ 0 and a class ∆ (which also denotes the corresponding

acyclicity condition) of finite Skolem chase, to start, the candidate pool of

ontologies which is considered for membership in k-safe(Φ∆) is the collection of

all ontologies. The ontologies that fail our tests for membership in k-safe(Φ∆)

will be removed. Then at the end of this process, we obtain a set of terminating

ontologies.

For each given ontology, we transform it to a rule set R. In our ex-

periments, we consider extending four classes of finite Skolem chase, Ψ =

{WA,JA,aGRD,MFA}. For each k-cycle σ based on R, first using the tech-

nique of piece-unification, we may eliminate R from the candidate pool. If

not removed, we then check whether Rule(σ) satisfies the acyclicity condition

∆ ∈ Ψ. If not, we run experiments to check whether σ is active w.r.t. its

restricted critical databases.

Let us first introduce the technique based on piece-unification.

Definition 43. (Piece-unification [16]) Given a pair of rules (r1, r2), a piece-

unifier of body(r2) and head(r1) is a unifying substitution θ of var(B)∪var(H)

where B ⊆ body(r2) and H ⊆ head(r1) which satisfies the following conditions:

(a) θ(B) = θ(H), and

(b) variables in varex(H) are unified only with those occurring in B but not

in body(r2) ∖B.

Condition (a) gives a sufficient condition for rule dependency, but it may

be an overestimate, which is constrained by condition (b). Note that in Ex-

ample 10, condition (a) holds for B = {T (x, y)} and H = {T (y, z)} where

θ = {x/y, y/z}, and condition (b) does not, since varex(H) = {z} and z unifies

with y which occurs in both B and body(r) ∖ B = {P (x, y)}. Therefore, no

piece-unifier of body(r) and head(r) exists.

97



Piece-unification is known to provide a necessary condition for rule depen-

dencies in that for any two rules r and r′, if body(r) and head(r′) are not

piece-unifiable, then no trigger (r, h) exists that relies on some atom derived

from head(r′) (cf. Property 18 of [18]). Below, given a substitution θ, dom(θ)

denotes the domain of θ, which is the set of substituted variables in θ, and

codom(θ) denotes the co-domain of θ, which is the set of substitutes in θ. For

technical reasons, if θ is a piece-unifier of body(r) and head(r′), then dom(θ)

refers to the subset of substituted variables which also appear in body(r) and

codom(θ) refers to the subset of substitutes which appear in body(r) as well.

If the set of all sequences of piece-unifiers that can be constructed from

a path π is nonempty, then for each sequence of piece-unifiers that can be

formed in π, we need to check whether this sequence leads to a restricted

chase sequence or not.

To show whether each sequence of piece-unifiers leads to a sequence of

rules which are transitively dependent, checking if they only satisfy condi-

tions (a) and (b) above is not sufficient. Indeed, as shown in [18], given

two rules r1 and r2, r2 depends on r1 if and only if there is a piece-unifier θ

of body(r2) with head(r1) such that θ satisfies the following conditions: (i)

atom-erasing and (ii) productive (a.k.a. useful, cf. [19]). The former con-

dition checks that θ(body(r2)) is not included in θ(body(r1)). In addition,

the productivity condition for θ means that θ(head(r2)) is not included in

θ(body(r1)) ∪ θ(head(r1)) ∪ θ(body(r2)). Note that the above two conditions

can naturally be extended to sequences of piece-unifiers. Therefore, in order

to show that each path π does not lead to a chained sequence, it suffices to

show that each sequence of piece-unifiers constructed from π (if any), does not

satisfy either atom-erasing or productive condition.

The goal of this part is to present how we can eliminate the irrelevant

k-cycles in our analysis. For this purpose, we utilize the notion of piece-

unification as follows, for a given k > 0.

• For each k-cycle σ, if the set of sequences of piece-unifiers is ∅, then

σ will be removed from consideration of further checks since σ trivially

98



leads to a terminating Skolem chase before all the rules in σ are applied

(and therefore, a terminating restricted chase).

• For each k-cycle σ, if none of the sequences of piece-unifiers that can be

constructed from σ satisfy both conditions of atom-erasing and produc-

tive, then σ is removed from our analysis.

We call each k-cycle which has not been removed during the above-mentioned

steps, relevant.10

In our experiments, we performed the following steps:

1. Transforming ontologies in the considered corpus into the normal form

using standard normalization techniques (cf. [50]). This will ensure that

concepts do not occur nested in other concepts and also each functional

symbol introduced during normalization depends on as few variables in

the rule as possible. It takes an input ontology path that can be parsed

by the OWL API (which is in OWL/XML, OWL Functional Syntax,

OBO, RDF/RDFS or Turtle format) (cf. [93]) and produces a normalized

ontology; we filter out the following axioms of input ontology: those

that are not logical axioms and those containing datatypes, datatype

properties, or built-in atoms as the conventional normalization methods

are unable to handle them;

2. Rewriting axioms to get first-order logic rules and writing them in the

dlgp format (for “Datalog+” [14]);

3. Forming all relevant k-cycles Σ constructed from each transformed rule

set and for each σ ∈ Σ, where σ = (r1, . . . , rn), we check if Rule(σ) ∈ ∆,

for each ∆ from {WA, JA, aGRD, MFA};

4. For each ∆ from {WA, JA, aGRD, MFA} and for each relevant k-cycle

σ such that Rule(σ) ∉ ∆, we check the activeness of σ w.r.t. Iσ, i.e., we

10Note that the notion of compatible unifiers is introduced in [15] in which piece-unification
has been relaxed to take into account arbitrary long sequences of rule applications. This is
similar to our goal. In fact, compatible unifiers provide a tighter notion which can help in
removing more irrelevant k-cycles.

99



check if there exists a chained tuple of homomorphisms H = (h1, . . . , hn)

for σ at each step (1 ≤ i ≤ n). We implemented a chained homomorphism

checker to accomplish this task;

• During the above check, whenever a relevant k-cycle σ is determined

to be active w.r.t. Iσ, the rule set R is removed from the candidate

pool;

• If every k-cycle σ is not active w.r.t. Iσ, we check the reason for

the failure, say for rule ri (1 ≤ i ≤ n). If the failure is due to lack

of a trigger which is caused by mapping multiple occurrences of a

body variable of ri to distinct indexed constants, then we know, by

Theorem 34, that for some minimal renaming function rn for Iσ,

a trigger exists so that there is a chained restricted chase sequence

from rn(Iσ) up to (and including) ri. However, we examined all

the cases of failure and did not find any failure was caused this

way. Therefore, there is no need to continue experiments using the

updated restricted critical database as laid out in Theorem 34. This

is to say that the phenomenon illustrated in Example 14 did not

show up in our collection of practical ontologies.

5. Ontologies in the remaining candidate pool are decided to be terminat-

ing.

4.5.2 Experimental Results

For each ontology, we allowed 2.5 hours to complete all of these tasks. In case

of running out of time or memory, we report no terminating result. For the

first experiment, we considered k-safe(Φ∆) rule sets for four different cycle

functions Φ∆ based on WA, JA, aGRD and MFA conditions, respectively, for

different values of k.

We consider WA since its acyclicity condition is the easiest to check. We

consider three popular syntactic acyclicity conditions WA, JA, and aGRD be-

cause the main cost of checking k-safe(Φ∆) is then on the extension provided in

this chapter. Additionally, we consider MFA, a well known semantic condition

100



Table 4.2: Membership among 700 ontologies in the collected corpora

k k-safe(ΦaGRD) k-safe(ΦWA) k-safe(ΦJA) k-safe(ΦMFA)

k = 0 163 248 299 483
k = 1 171 258 310 495
k = 2 177 264 316 501
k = 3 182 269 321 506
k = 4 187 274 326 511
k = 5 190 277 329 514
k = 6 192 279 331 516

for checking the Skolem chase termination, which is based on forbidding cyclic

functional terms in the chase. Note that all other (syntactic) conditions con-

sidered in this chapter are subsets of MFA. Besides, it is known that WA ⊂ JA,

and aGRD is not comparable to either WA or JA. We are interested to know

whether the high worst-case complexity of our extension prohibits applications

in the real world.11

In Table 4.2, the results of these experiments are summarized where the

values of columns 2–5 denote numbers of ontologies with properties provided

in their first row.

Average time analysis for k = 6

Classes Avg. time (s) T.W.A.T. (#) Terminating (%)

6-safe(ΦaGRD) 4139 125 27.4
6-safe(ΦWA) 3556 164 39.8
6-safe(ΦJA) 3231 183 47.2

6-safe(ΦMFA) 4923 282 73.7

Table 4.3: Average time analysis for membership testing of terminating on-
tologies

Consider the case k = 0. This is the case where we identify rule sets that are

Skolem chase terminating under three acyclicity conditions aGRD, WA, and

JA as well as under the MFA condition. First, it is not surprising to observe

that among 700 ontologies, the first three syntactic conditions identify only a

11For both MFA and RMFA, the complexity of membership checking is already higher
than that of Algorithm 1 (assuming checking ∆ is in PTime, cf. Remark 1 in Section 4.4).

101



small subset of terminating ontologies. However, when considering the MFA

condition, we are able to capture many more rule sets as terminating in this

collection. Second, for our collection of practical ontologies, the gap between

the terminating classes under aGRD and WA conditions is indeed nontrivial.

Interestingly, this appears to be the first time that these three syntactic classes

of terminating rule sets are compared for practical ontologies. This shows

that the theoretical advance from aGRD to WA may have significant practical

implications.

As can be seen in Table 4.2, in all of the considered classes, by increasing

k, the number of terminating ontologies increases. This is consistent with

Theorem 40. Our experiments stopped at k = 6 as we did not find more

terminating rule sets by testing k = 7.

We applied some optimizations in our implementation which will follow.

Before proceeding further, let us define some notions. Given a rule set R,

consider the graph of rule dependencies GR of R in which the set of nodes is R,

and there is an edge from some node ri to a node ri if rj depends on ri. If there

is a path from some rule ri to a rule rj, then ri is called to be reachable from

rj. If each node in GR is reachable from each other node, then GR is connected.

A component of GR is a maximal connected subgraph of GR (i.e., a connected

subgraph of GR with node set X for which no larger set Y containing X is

connected).

For each rule set R, we find the maximal connected subgraphs of GR de-

fined as above. Given an acyclicity condition ∆, for each maximal connected

subgraph S of GR, we check whether S ∈ ∆ returns true. If that is the case,

then we do not need to check any path based on any nonempty subset of S for

activeness. The reason is that if S ∈ ∆, then any subset S ′ of S also satisfies ∆.

Therefore, any cycle σ based on S ′ is safe. This helped us remove irrelevant

subsets of rules in 83 (11.8%) of ontologies in our collection.

Given an acyclicity condition ∆, by Φ∆ let us denote the cycle function

constructed from ∆. Then a notable subclass of 1-safe(Φ∆) rules is called

∆≺ introduced in [88] which is defined as the set of rules R in which each

simple cycle in the graph of rule dependencies GR of R belongs to ∆. In our

102



collection, it can be seen that only one ontology is WA≺ (and therefore, JA≺),

which belongs to 1-safe(ΦWA) but not in 1-safe(ΦaGRD) in Table 4.2.

When k grows from 0, an interesting observation is that for each pair of

acyclicity conditions ∆1 and ∆2 such that ∆1 ⊂ ∆2, the rate of increase in the

number of terminating rules under Φ∆2 is faster than that of terminating rules

under Φ∆1 when k grows from k = 0 to k = 1. Then, for all k > 1 the increase

of terminating rule sets from (k − 1)-safe(Φ∆) to k-safe(Φ∆) is the same for

each of the four acyclicity conditions.

Let us see what happens for k = 1. Let R be a rule set and ∆1 and ∆2

be any pair of acyclicity conditions where ∆1 ⊂ ∆2. Then there may be some

active k-cycles σ based on R such that Rule(σ) ∈ ∆2∖∆1. If for all such cycles

based on R the above condition holds, then R is in 1-safe(Φ∆2) but not in

1-safe(Φ∆1). Hence, for different columns, we see some differences between

the numbers added to the first row of Table 4.2 in a way that for any pair of

acyclicity conditions ∆1 and ∆2 such that ∆1 ⊂ ∆2, more rules are added as

terminating to k-safe(Φ∆2) compared to k-safe(Φ∆1), when k increases from 0

to 1.

When k > 1, we observe an interesting phenomenon – the same number of

terminating rule sets, in fact, the same rule sets, are added. Consider any pair

of acyclicity conditions ∆1 and ∆2 such that ∆1 ⊂ ∆2. For any rule set R,

assume it is determined to be terminating by ∆2. In general, more k-cycles

based on R need to be checked for the analysis of Algorithm 4.1 in the case

of ∆1 than ∆2, due to the weaker acyclicity condition in ∆1. For each such

k-cycle σ, since Rule(σ) ∈ ∆2, it cannot be active w.r.t. rn∗(Iσ) for any

renaming function rn∗ (otherwise it would contract Theorem 34). Therefore,

it must pass the activeness checking of Line 7 in Algorithm 4.1. Consequently,

just like how R is determined to be terminating by ∆2, R is determined to

be terminating by ∆1. Conversely, since the set of k-cycles tested for ∆1 is

a superset of those tested for ∆2, a rule set R which is determined to be

terminating by ∆1 must also be determined to be terminating by ∆2. This

explains why the number of increases of terminating rule sets for different

acyclicity conditions is a constant.

103



This observation leads to a choice of strategy for testing of k-safe(Φ∆) for

an expensive acyclicity condition ∆. After failing the check of 1-safe(Φ∆),

we can check k-safe(Φ∆′) for k > 1, where ∆′ is a weaker but easy-to-check

acyclicity condition, with the understanding that the same terminating rule

sets will be discovered.

Also, it is clear that if ∆1 ⊂ ∆2, then for all k ≥ 0, k-safe(Φ∆1) ⊂ k-

safe(Φ∆2). In Table 4.2, since WA ⊂ JA ⊂ MFA, the same inclusion relation

holds for k-safe(Φ∆) rules constructed from each acyclicity condition ∆ for all

integers k ≥ 0.

In order to compare our results with those of [49], we checked the set of

terminating ontologies under our conditions for membership in RMFA intro-

duced therein. As a result, it was observed that all the tested rule sets, except

for 2 of them, already belong to RMFA. In fact, those two rule sets belong to

6-safe(ΦMFA).

Additionally, we checked the tested corpora for membership in RMFC (cf.

[49]). It was observed that 165 (23.6%) of the ontologies belong to RMFC

(i.e., for each rule set R in this category, there is a database I0 for which the

restricted chase of R and I0 is infinite). Based on the above results we find

that the termination status of 19 (2.71%) ontologies in the collection is open

(i.e., they do not belong to 6-safe(ΦMFA) or RMFC or RMFA). We conducted

our tests for membership in RMFA and RMFC using VLog [51].

For the second experiment, we performed time analysis for the tested on-

tologies for different cycle functions by fixing k to 6. The results are reported

in Table 4.3, where the average running time, as well as the number of ontolo-

gies terminating within the average running time (abbreviated as T.W.A.T.)

for that particular cycle function, are reported. It can be seen that in all

tested conditions more than half of the terminating ontologies can be deter-

mined within the average time. Note that the average times of the table are

in seconds.

From our experiments we can see that there is no one-number-fits-all k

for which any ontology belongs to k-safe(Φ∆). However, as observed in our

experiments, for real-world ontologies, this number can be indeed small.

104



TGD generator: For adequately evaluating our approach and also for scal-

ability testing, we implemented a TGD generator on top of [31]. Our goal

was to check the performance of implemented classes on large instances with

large sets of chase atoms. Our generator can generate custom TGDs while

controlling their complexity. It supports an arbitrary number of body atoms.

Also, a parameterized total number of predicates and arity of atoms is defined.

Furthermore, a parameter is used to control the maximum number of repeated

relations in the formula. Each TGD is generated by creating conjunctions and

then selecting the subset of atoms that form the head of each TGD.

In our experiments, we generated 500 linear source-to-target TGDs, and

200 linear target TGDs. The reason that we picked linear rules was to control

one parameter at a time and also to take the complexities of membership

checking under control by focusing on the head atoms to have a better analysis

on the restricted chase, as checking activeness of paths is the key here.

For the generated scenarios, we precomputed restricted critical databases

for each path based on TGDs resulting from our TGD generator and then,

to manage the structure of our TGDs, we tested two different forms of TGD

heads: (1) those that have three relations joined in a chain (i.e., the last

variable of an atom is joined with the first variable of the next atom which we

refer to as chained TGDs) and (2) those in which three relations of the head

do not share variables (which we refer to as discrete TGDs).

In all experiments, each atom has a fixed arity of four, and moreover, each

TGD can have up to three repeated relations. The 3 head predicates and the

body predicate have been chosen randomly out of a space of 20 predicates.

After the generation of each TGD, we check its membership in k-safe(ΦWA)

for k = {0,1,2}; keep only those TGDs for which this test returns true and

discard the rest. Results of different properties in the tested TGDs have been

recorded in Tables 4.4 and 4.5.

The results of Tables 4.4 and 4.5 demonstrate that the average running

times of membership checking in k-safe(ΦWA) for chained TGD generator is

more than that of discrete TGD generator. The reason could be in the active-

ness checking module which takes more time in the rules in which (derived)

105



Statistics of chained TGD generator
for membership in k-safe(ΦWA)

k
Avg.

time (s)
Terminating

(%)
Timeout

failure (%)
Memory

failure (%)

k = 0 54 81 4 0
k = 1 135 83.3 6 0.2
k = 2 474 86.2 7 0.3

Table 4.4: Statistical results of chained TGD generator for k-safe(ΦWA) mem-
bership

Statistics of discrete TGD generator
for membership in k-safe(ΦWA)

k
Avg.

time (s)
Terminating

(%)
Timeout

failure (%)
Memory

failure (%)

k = 0 43 89 2 0
k = 1 94 92 4 0.11
k = 2 341 92 4.2 0.16

Table 4.5: Statistical results of discrete TGD generator for k-safe(ΦWA) mem-
bership

atoms share variables. In addition, in both TGD generators, there are far

lesser memory failures than timeout failures.

We performed the same check as detailed in the previous subsection re-

garding the need for utilizing updated restricted critical databases for rules

outputted from our TGD generator, and similar to ontologies in the consid-

ered corpora in that section, we did not find any ontology for which we need to

run experiments to check activeness with updated restricted critical databases.

106



Chapter 5

Extension of Bounded Rule Sets

In this chapter, we apply an idea similar to what was introduced in the previous

chapter to δ-bounded rule languages of [144], and then, we study membership

checking and reasoning complexities. We organize this chapter as follows. In

Section 5.1, we define bounded rule sets under the restricted chase variant

and compare it with k-safe sets of rules. Then, in Section 5.2, we provide

our membership and reasoning complexity analyses for δ-bounded rule sets

under the restricted chase. Finally, a discussion regarding relations of our

contribution with the most recent papers in this area in the literature along

with pointers of how to extend the k-safe hierarchy are presented in Section

5.3.

5.1 Bounded Rule Sets Under the Restricted

Chase and Their Connection to K-Safe Hi-

erarchy

In [144], a family of existential rule languages with finite Skolem chase based on

the notion of δ-boundedness is introduced and the data and combined complex-

ities of reasoning with those languages for k-exponentially bounded functions

are obtained. Utilizing a parameter called bound function, our aim in this sec-

tion is to show how to extend bounded rule sets from the Skolem to restricted

chase. In particular, we show that for any class ∆ of terminating rule sets

under the Skolem chase, there exists a more general class of terminating rule

sets under the restricted chase that extends ∆. We show how to construct such

107



an extension, and we analyze the membership and reasoning complexities for

extended classes. First, let us introduce some terminologies.

A bound function is a function from positive integers to positive integers. A

rule set R is called δ-bounded under the Skolem chase for some bound function

δ, if for all databases I, ht(chasesk(I,R)) ≤ δ(∣∣R∣∣), where ∣∣R∣∣ is the number

of symbols occurring in R. Given an instance I, ht(I) denotes the height (i.e.,

maximum nesting depth) of terms that have at least one occurrence in I, if

it exists, and ∞ otherwise. In this chapter, when we mention δ as a bound

function, we assume that δ is computable.

Let us denote by δ-Bsk the class of δ-bounded rule sets under the Skolem

chase. For the restricted case, the definition is similar.

Definition 44. Given a bound function δ, a rule set R is called δ-bounded

under the restricted chase,1 denoted δ-Bres, if for all databases I and for any

restricted chase sequence I of R and I, ht(I) ≤ δ(∣∣R∣∣).

Example 16. For the rule set R1 of Example 8, it can be seen that the height

of Skolem terms in all restricted chase sequences is 3. Therefore, R1 is δ-

bounded under the restricted chase variant for some bound function δ for which

δ(∣∣R1∣∣) = 3. It is worth noting that R1 does not belong to δ-bounded rule sets

for any computable bound function δ under the Skolem chase.

Before diving into more details, let us first demonstrate the relationship

between δ-bounded rule sets and k-safe(Φ∆) rule sets as given in Proposition

45 below.

Proposition 45. Let R be a k-safe(Φ) rule set in which k is a unary encoded

integer computable in O(P (n)), for some function P (n). Then R is δ-bounded

under the restricted chase for some function δ that is computable in O(P (2 ×

log ∣∣R∣∣)).2

1Note that by definition, the fairness condition is a requirement for a nonterminating
restricted chase sequence.

2Here n denotes the size of representation for the parameter of k. We say that k can
be computed in DTime(P (n)) if: There is a deterministic Turing machine M such that,
given an integer l > 0, M outputs k(l) in P (log l) stages. Note that log l is the size of binary
representation of l.

108



Proof. Let R be k-safe(Φ). Based on Definition 38, for each k-cycle σ which

is mapped to F under Φ, σ is safe (i.e., for all databases I, σ is not active

w.r.t. I). Each rule application in a chained sequence can increase the depth

of a Skolem term at most by one. Henceforth, the longest possible chained

sequence provides an upper bound for the term depth. We show this upper

bound is k × (k + 2).

This is because the length of the longest such sequence for a k-cycle is upper

bounded by k × (k + 1), and therefore, any sequence of length k × (k + 2) must

contain at least one k-cycle. Since no k-cycle is active w.r.t. any database,

the depth of any Skolem term generated by the longest chained sequence is

less than k × (k + 2). Thus R is k × (k + 2)-bounded, which gives a quadratic

bound in k. Since k is computable in O(P (n)) and it is unary represented,

then k2 is computable in O(P (2× log ∣∣R∣∣)), where log ∣∣R∣∣ is the size of binary

representation of ∣∣R∣∣. Based on the above argument, we conclude that such

a bound function always exists, and O(P (2 × log ∣∣R∣∣)) is an upper bound for

the cost of computing the bound function.

5.2 Complexity Analysis for δ-bounded Rule

Sets

In what follows, we present our results on the membership of δ-bounded rule

sets under the restricted chase variant. Before we proceed, let us define what

we mean by membership in the context of this chase version. The problem

of membership for the Skolem chase is to check if all Skolem chase sequences

halt (terminate) before the maximum height of Skolem terms in each sequence

reaches δ(∣∣R∣∣) for all databases. As described in [144], checking membership

for δ-bounded rules under the Skolem chase can be precisely characterized

using only one chase sequence and utilizing the Marnette’s critical database

technique [113], on a single database which is constructed from the given rule

set only once.

On the other hand, one cannot determine the membership in the δ-bounded

rules under the restricted chase using a single chase sequence. For this purpose,

109



all possible restricted chase sequences need to be considered. Furthermore,

restricted critical databases introduced in Definition 31 can help us determine

whether a possible chase sequence constructed from a given rule set witnesses

the nonterminating status of the rule set under the restricted chase.

In what follows, we propose a procedure for membership checking of δ-

bounded rule sets under the restricted chase. Given a rule set R and a bound

function δ, the procedure MembCheck(R, δ) is defined as follows:

• Check whetherR is δ-bounded under the Skolem chase using the (Skolem)

critical database constructed from R, denoted IR. If true, returns T .

• Otherwise, for some i > 0, the height of chaseisk(IR,R) is δ(∣∣R∣∣) + 1; for

each Skolem chase sequence generated by a path π = (r1, . . . , rn) that

reaches the height of δ(∣∣R∣∣)+ 1, we check whether π is active w.r.t. the

restricted critical database rn∗(Iπ) for all renaming functions rn∗. If the

answer is no for all such paths π, then the procedure returns T , otherwise

it returns F (false).

A T answer means that R is δ-bounded under the restricted chase and an F

answer means that it is unknown whether R is δ-bounded under the restricted

chase or not. The reason for the latter case is that when the Skolem chase

reaches the height of δ(∣∣R∣∣) + 1 by a path π = (r1, . . . , rn), although we can

check activeness of π w.r.t. restricted critical databases, we may not be able

to determine whether such a path leads to at least one fair sequence.

Proposition 46. Let δ be a bound function and R an arbitrary rule set. Then

MembCheck(R, δ) is sound, i.e., if it returns T , then R is δ-bounded under

the restricted chase. Furthermore, if R consists of rules with single head, then

MembCheck(R, δ) is sound and complete.

Note that the completeness problem is as follows: MembCheck(R, δ) is

complete if for any given rule setR and bound function δ, ifMembCheck(R, δ) =

F , then R is not δ-bounded under the restricted chase.

Proof. Let δ be a bound function. By [113], it suffices to use the Skolem crit-

ical database IR to capture all Skolem chase sequences w.r.t. any database I,

110



so that ht(chasesk(I,R)) ≤ δ(∣∣R∣∣) only if ht(chasesk(IR,R)) ≤ δ(∣∣R∣∣). Conse-

quently, if R is δ-bounded under the Skolem chase w.r.t. IR, it is δ-bounded

under the Skolem chase w.r.t any database I, and by the relationship between

the Skolem and restricted chase, R is δ-bounded under the restricted chase

w.r.t any database I.

Otherwise, for each path π that leads to some Skolem chase sequence that

reaches the height of δ(∣∣R∣∣) + 1, π being not active w.r.t. rn∗(Iπ) for all re-

naming function rn∗ for Iπ implies, by Theorem 34, that π is not active w.r.t.

any database. When all chained sequences of path π fail to reach the height of

δ(∣∣R∣∣)+1, no restricted chase sequence of π can reach that height because an

unchained sequence does not expand Skolem terms cumulatively throughout.

It follows that the largest height by any database is bounded by δ(∣∣R∣∣). This

gives the desired conclusion for the soundness of MembCheck for arbitrary

rules.3

For any single head rule set R, from [75], we know that the fairness con-

dition can be safely neglected, i.e., the existence of a (possibly unfair) infinite

restricted chase sequence implies the existence of a fair one. Therefore, R is

not δ-bounded.

Proposition 47. Let R be a rule set and δ a bound function computable in

DTime(P (n))4 for some function P (n). Then, it is in

coNTime(Cδ + ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)))

to check if MembCheck(R, δ) returns T , where Cδ = P (log ∣∣R∣∣)O(1).

Proof. For the Skolem chase with Skolem critical database, from Proposition

6 of [144] we know that using the critical database technique of [113], the max-

3If there exists such a path π that is active and leads to a restricted chase sequence, which
by default must be fair, then we can decide that R is not δ-bounded under the restricted
chase (again, the fairness condition must be satisfied). In this case, the procedure is complete
by returning F . On the other hand, if all such paths π lead only to unfair restricted chase
sequences (i.e., infinite chase sequences generated by active triggers in Definition 27 without
requiring the fairness condition), then no restricted chase sequence has reached beyond
the bound and in this case, that our procedure returns F shows its incompleteness. But
in general, the problem of whether such a π leads only to unfair chase sequences may be
undecidable.

4The class of complexity languages decidable in time P (n) using a deterministic Turing
machine. NTime is defined similarly but using a nondeterministic Turing machine.

111



imum number of atoms generated in a Skolem chase sequence is bounded by

∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)) , which is also an upper bound for the number of atoms generated

in a restricted chase sequence.

From [113] we know that in the case of the Skolem chase if any sequence

terminates on a rule set R and a database I, then the instances returned

by all sequences are isomorphically equivalent. So, for δ-boundedness for the

Skolem chase, it suffices to consider only one sequence. But for the case of the

restricted chase, we need to consider all such sequences.

Given a rule setR and a bound function δ, the procedureMembCheck(R, δ)

first checks whether R is δ-bounded under the Skolem chase.

For the complexity of this check, we need to consider the size of each

Skolem chase sequence to produce the height of O(δ) that is upper bounded

by ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)) , which can be computed in DTime(∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣))). In ad-

dition, an upper bound for the chase of size ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)) can be computed

in DTime((∣∣R∣∣ + P (log ∣∣R∣∣))O(1)). Therefore, according to [144], the overall

complexity of this check is: DTime((P (log ∣∣R∣∣))O(1) + ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣))).

If the above condition is not satisfied (i.e., some R is not δ-bounded under

the Skolem chase), for some i ≥ 1, the height of chasesk(I
R,R) is δ(∣∣R∣∣) + 1.

So, for each Skolem chase sequence that is generated by a path π = (r1, . . . , rn)

which reaches the height of δ(∣∣R∣∣) + 1, for all renaming functions rn∗ for Iπ,

we check whether π is active w.r.t. rn∗(Iπ). A no answer to the above check

yields a T output from MembCheck(R, δ).

Based on the above argument, to proceed, using a nondeterministic al-

gorithm we first guess a sequence of triggers ⋃Ni=1(ri, hi), where N is upper

bounded by ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)+1) = ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)) that can lead to the construction

of a Skolem chase sequence I, and a renaming function rn∗.

Then we need to verify if I is active w.r.t. rn∗(Iπ), where π is the path

constructed from the guessed ri’s. For the latter, for each projection π′ of π,

first, to verify the chained property, we determine if each rule in π′ depends

on some previous rule in the path. The complexity of this latter verification

task is quadratic in the size of the guessed chase sequence.

Furthermore, given path π, the maximum number of chained restricted

112



chase sequences is bounded by ∣∣R∣∣O(δ(∣∣R∣∣)), and since the length of the guessed

sequence is bounded by O(∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣))), verifying if I is active w.r.t. rn∗(Iπ)

is at most polynomial in ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)) which can be implemented in

NTime(∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣))). Similar to the proof of Theorem 42, the construction

of renaming functions can take at most polynomial in the size of π which can

be done in NTime(∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣))). So, clearly, all the above tasks can be

maintained in NTime((P (log ∣∣R∣∣))O(1) + ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣))).

The membership is complement to the above problem, and therefore, be-

longs to coNTime(Cδ + ∣∣R∣∣∣∣R∣∣O(δ(∣∣R∣∣)) as desired.

Next, we investigate membership and reasoning complexities of bounded

rule sets under what is called exponential tower functions, which are defined

as follows:

expκ(n) =
⎧⎪⎪⎨⎪⎪⎩

n κ = 0

2expκ−1(n) κ > 0

Since the complexity of checking δ-bounded property of Proposition 47 is

dominated by the second term inside coNTime, if δ(n) = expκ(n), then its

overall complexity increases by two exponentials. We thus have

Corollary 48. Given a rule set R checking if MembCheck(R, expκ) returns

T is in coN(κ + 2)-ExpTime.

Example 17. Based on the observation made in Example 16, the rule set R1

in Example 8 is exp0-bounded under the restricted chase; however, it does not

belong to expκ-bounded ontologies under the Skolem chase for any computable

κ.

Data and Combined Complexity:

Now, let us investigate the reasoning complexities. The problem under

consideration is Boolean Conjunctive Query (BCQ) answering which is defined

as follows. Given a rule set R, a database I and a Boolean query q, decide

if I ∪ R ⊧ q. The complexity of this problem is also known as combined

complexity since the input size is the combined size of all I, R, and q. In the

113



BCQ answering problem if R and q are fixed and only I changes, then it is

called data complexity. Focusing on expκ-bounded rule sets under the restricted

chase variant, we have the following results on reasoning complexities.

Theorem 49. The problem of Boolean conjunctive answering for expκ-bounded

rule sets under the restricted chase variant is (κ + 2)-ExpTime-complete for

combined complexity and PTime-complete for data complexity.

Proof. Let R be an expκ-bounded rule set under the restricted chase variant

and I be a database. Then, let us guess a restricted chase sequence I nonde-

terministically. With an argument similar to that of the proof of Proposition

47 in which δ(n) = expκ(n), we know that the number of atoms of I is bounded

by ∣∣R∣∣∣∣R∣∣expκ(∣∣R∣∣) = O(expκ+2(∣∣R∣∣)).

The membership follows since the entailment of a BCQ q can be shown by

finding such a sequence I ∶ I = I0, . . . , In based on R such that In satisfies q

according to the following fact from [65]: Let J and K be two finite instances

returned by the restricted chase of an expκ-bounded rule set R and a database

I. Then K and J are homomorphically equivalent. Based on the above fact

and the homomorphic equivalence classes, in the rest of this proof, we let

chaseres(I,R) denote one representative of the equivalence class for all results

of the restricted chase of R and I. In addition, based on [65], it is known that

chaseres(I,R) ⊧ q, and also there is a homomorphism from I to chaseres(I,R).

Furthermore, I ∪R ⊧ q if and only if chaseres(I,R) ⊧ q.

Let k and n denote the number of relation symbols and the maximal arity

of relation symbols appearing in R, respectively. Let further l and m represent

the number of function symbols, and the maximal arity of function symbols

appearing in sk(R), respectively. In addition, let c denote the number of

constants appearing in I, and Q(t) be a fact in chaseres(I,R). It is easy to

verify that the number of symbols in each constituent t ∈ t is upper bounded

by ∑expκ(∣∣R∣∣)
i=0 mi = mO(expκ(∣∣R∣∣)). Also, it is clear that each symbol is either a

constant or a function symbol. Therefore, the number of facts in chaseres(I,R)

is upper bounded by (c + l)mO(expκ(∣∣R∣∣))×n × k. Since k,n, l,m ≤ ∣∣R∣∣, and c =

∣dom(I)∣, the following upper bound is derived for the number of facts in

114



chaseres(I,R): (∣dom(I)∣+ ∣∣R∣∣)∣∣R∣∣O(expκ(∣∣R∣∣))×∣∣R∣∣O(1) , which can be computed in

DTime((∣dom(I)∣ + ∣∣R∣∣)∣∣R∣∣O(expκ(∣∣R∣∣))).

To compute the reasoning complexity involving a BCQ q, it is now sufficient

to evaluate q on chaseres(I,R) directly.5 To continue the analysis, we only

need the number of existential variables occurring in q, which we denote by

v. Then we need to check whether there is a substitution h which maps

every existential variable in q to a ground term of height less than expκ(∣∣R∣∣),

such that h(q) ⊆ chaseres(I,R). From the previous analysis, it is clear that

(∣dom(I)∣+ ∣∣R∣∣)∣∣R∣∣O(expκ(∣∣R∣∣))×v substitutions need to be checked. Since v ≤ ∣∣q∣∣,

the evaluation of checking whether h(q) ⊆ chaseres(I,R) can be done in

DTime((∣dom(I)∣ + ∣∣R∣∣)∣∣R∣∣(expκ(∣∣R∣∣)×∣∣q∣∣O(1))

Hence, a (κ + 2)-ExpTime upper bound can be computed for the combined

complexity, as desired.

We can use a construction similar to that of [144] for the hardness proof.

We briefly sketch it here. Let us consider a deterministic Turing machine M

which terminates in expκ+2(n) number of steps on any input of length n. Let

us assume that the query and data schema is a singleton set {Accept} and

∅, respectively, where Accept is a nullary relation symbol. We need to show

that for each input x that is a binary string of length n, there is an expκ-

bounded rule set under the restricted chase variant such that M terminates

on x if and only if ∅ ∪ R ⊧ Accept. To construct the rule set R, we need

to define a linear order of length expκ+2(n) on integers which are represented

in binary strings from 0 to expκ+2(n). Once a linear order is defined, we

can construct a set of existential rules to encode the Turing machine M and

the input x. Once we have such a construction, we can establish the lower

bound on the combined complexity of reasoning with existential rules under

the restricted chase. This lower bound combined with the upper bound derived

above provides the exact bound for the combined complexity of expκ-bounded

rule sets under the restricted chase.

Furthermore, the data complexity of query answering with expκ-bounded

5Without loss of generality, we assume that q is in prenex normal form.

115



rule sets under restricted chase is PTime-complete. The PTime upper bound

for the data complexity can be derived from the above analysis, and the hard-

ness follows from the PTime-completeness of data complexity of Datalog, cf.

[59].

5.3 Discussion

In this section, we introduce some more recent papers in this area and then

show how to leverage them to extend our proposed k-safe(Φ) classes uniformly.

In [104], it is shown that there are examples of TGDs for which the data com-

plexity of the restricted chase can reach nonelementary upper bounds. Note,

however, that as shown in [144], given any κ > 0, for any expκ-bounded rule

set R under the Skolem chase variant, the Boolean query answering problem

is PTime-complete for the data complexity. Therefore, the restricted chase

can realize queries which are out of the reach for the Skolem chase variant.

Let us define the notion of a strategy as a plan of choosing paths based on

a given rule set. Utilizing this notion allows us to focus on a concrete plan for

path selection in the course of our termination analysis for the restricted chase

to extend the set of terminating rules under the restricted chase. Exploiting

the above terminology, CTres
∀∀ can be alternatively defined to be the set of rules

with terminating restricted chase for all strategies and all instances.

On the other hand, from [121] it is known that CTres
∀∀ ⊂ CTres

∀∃, where CTres
∀∃

denotes the class of rule sets R such that for all instances I there exists at

least one restricted chase sequence of I and R that is finite. Similarly, we can

define CTres
∀∃ to be the set of rules with terminating restricted chase for some

strategy and all instances.

Recently, a chase variant known as the Datalog-first chase has been intro-

duced in [49] and subsequently in [104], which extends all-path restricted chase

by focusing on a particular class of strategies that prioritizes the application

of non-generating (Datalog) rules in any considered restricted chase sequence.

Let CTdlf
∀∀ denote the set of rules with a terminating Datalog-first chase for

116



all strategies (paths) and all instances.6 Then we have CTres
∀∀ ⊂ CTdlf

∀∀ ⊆ CTres
∀∃.

Note that although the first inclusion is strict, at the time of writing this dis-

sertation, it is not known whether the second inclusion above is also strict or

not.

Based on what was discussed above, we can extend the set of δ-bounded

rules under the restricted chase variant as well as k-safe(Φ) rules for a given

bound function δ, integer k and cycle function Φ by considering the Datalog-

first chase. For this purpose, we only need to focus on cycles in which appli-

cations of Datalog rules are prioritized. Given a bound function δ, let us call

any rule set R that is δ-bounded under the above condition δ-bounded under

the Datalog-first chase. We can define k-safe(Φ) rules under the Datalog-first

chase similarly.7

Example 18. Let R = {r1, r2} (adopted from [75]), where

r1 ∶ Q(x, y, y)→ ∃uQ(x,u, y),Q(u, y, y)
r2 ∶ Q(x, y, z)→ Q(z, z, z)

Note that in this rule set the fairness condition requires application of r2

in any (fair) sequence of the restricted chase and after r2 is applied, the next

application of r1 is not active and therefore, any (fair) restricted chase sequence

terminates. The following derivation starting from {Q(a, b, b)} demonstrates

such a sequence in which fresh nulls zi are used to instantiate the existential

variable u:

I0 = {Q(a, b, b)}
⟨r1,{x/a,y/b}⟩ÐÐÐÐÐÐÐ→

I1 = I0 ∪ {Q(a, z1, b),Q(z1, b, b)}
⟨r1,{x/z1,y/b}⟩ÐÐÐÐÐÐÐ→

I2 = I1 ∪ {Q(z1, z2, b),Q(z2, b, b)}
⟨r1,{x/z2,y/b}⟩ÐÐÐÐÐÐÐ→

I3 = I2 ∪ {Q(z2, z3, b),Q(z3, b, b)}
⟨r1,{x/z3,y/b}⟩ÐÐÐÐÐÐÐ→

. . .

Ij−1 = Ij−2 ∪ {Q(zj−2, zj−1, b),Q(zj−1, b, b)}
⟨r2,{x/a,y/b,z/b}⟩ÐÐÐÐÐÐÐÐÐ→

Ij = Ij−1 ∪ {Q(b, b, b)}
6Note that by strategy in the Datalog-first chase we mean a plan for choosing the appli-

cation order of Datalog rules which must always occur before the application of generating
rules (i.e., non-full TGDs).

7In this case, R is said to be in k-safe(Φ) under the Datalog-first chase, or to belong
to k-safe(Φ) under the Datalog-first chase (given a cycle function Φ and an integer k), if
for every k-cycle σ which prioritizes Datalog rules (except the last rule of the cycle), and is
mapped to F under ΦR, σ is safe.

117



Note that in the above sequence of derivations, the following step:

Ij⟨r1,{x/zj−1, y/b}⟩Ij+1 does not exist, and any valid restricted chase sequence

terminates. However, the fairness condition needs the existence of some j to

apply some active trigger involving r2 (i.e., ⟨r2,{x/a, y/b}⟩ in this example).

But due to the nondeterministic nature of this process, j can be chosen any-

where in the sequence.

As discussed above, the rule set R in this example is not δ-bounded under

the restricted chase for any computable bound function δ. However, starting

from any database I, no (fair) infinite restricted chase sequence can be con-

structed from R and I.

On the other hand, it is not hard to see that R belongs to 1-safe(ΦWA)

under the Datalog-first chase. The reason is that this chase variant requires

the application of r2 before r1 in any valid chase sequence. Therefore, all 1-

cycles in which the application of Datalog rules are prioritized (i.e., (r2, r1, r2))

are safe. The following sequence of derivations shows why this is the case.

I ′0 = {Q(a, b, c)}
⟨r2,{x/a,y/b,z/c}⟩ÐÐÐÐÐÐÐÐÐ→

I ′1 = I ′0 ∪ {Q(b, b, b)}
⟨r1,{x/b,y/b}⟩ÐÐÐÐÐÐÐ→

I ′2 = I ′1 ∪ {Q(b, z1, b),Q(z1, b, b)}
θ={z1/b}ÔÔÔ⇒ θ(I ′2) ⊆ I ′1

Notice that as recently shown in [75], if the given rule set is single head

(i.e., all rules in it are single head), then the fairness for the restricted chase

termination is irrelevant. However, unlike the Skolem chase variant for which

there is a straightforward termination-preserving translation from any rule set

to a single head rule set (cf. [18]), no such termination-preserving translation

exists for the restricted chase.

Clearly, given an integer k and a cycle function Φ, any rule set that is

k-safe(Φ) under the restricted chase is also k-safe(Φ) under the Datalog-first

chase. Example 18 shows that this inclusion relation is indeed strict. The same

argument holds for δ-bounded rules under the restricted versus the Datalog-

first chase using the same example to demonstrate that the inclusion is strict.

118



Chapter 6

Distributed Reasoning for
Restricted Weakly-Linear
Disjunctive Tuple-Generating
Dependencies

In this chapter we present our contributions regarding theory and practice of

the problem of distributed reasoning over database components for a number

of query languages. A condensed version that gives these results is to appear

in the International Joint Conference on Rules and Reasoning (RuleML+RR)

2020.

This chapter concerns the problem of querying incomplete data in the

presence of an ontology. In this setting, the term ontology-mediated query

is attributed to a database query along with an ontology. On aspect critical

in answering ontology-mediated queries, specially in scenarios where there are

database sources of high volume, is the problem of distributed reasoning which

asks whether the query workload can be distributed among different machines,

i.e., whether the answer to a query in the presence of an ontology can be

computed by parallelizing it over the connected components of the database.

If the answer to this problem is positive for a given ontology-mediated query,

then we can compute the query in a coordination-free and distributed manner.

Note that the above problem is in general undecidable when the database

query is conjunctive and the ontology is defined by a set of Datalog rules [8].

In this chapter, on the theoretical side, we present our contributions on the

119



problem of distributed reasoning for the class of disjunctive tuple-generating

dependencies and we identify a fragment of ontology-mediated queries con-

structed from this class and conjunctive queries, for which the above problem

is decidable.

To the best of our knowledge, this is the first time the problem of distribu-

tion over connected database components is studied for this class of dependen-

cies. Though the theory and framework of distributed reasoning with OMQs

appeared in [32], to the best of our knowledge, there is no practical evaluation

of the theory for any class of OMQs in the literature. To address this issue, we

conduct experiments to evaluate the performance gain of reasoning with dis-

tributable ontology-mediated queries for the classes of linear as well as linear

disjunctive tuple-generating dependencies.

The rest of this chapter is organized as follows. In Section 6.1, the no-

tions and notations used for understanding our contributions of this chapter

are introduced. We introduce the class of restricted weakly-linear disjunctive

tuple-generating dependencies, which is a new class of rule sets that extends

the classes of linear tuple-generating dependencies as well as weakly-linear

disjunctive Datalog under a certain syntactic restriction, in Section 6.2.

Then, a class of OMQs, constructed from a subset of the above TGDs,

which we identify as bidirectionally-guarded (BG) OMQs is introduced in Sec-

tion 6.3. This class is interesting in a sense that for which one can establish

characterizations of distribution over components that lead to decidable pro-

cedures for this purpose. The results of these characterizations are presented

in Section 6.4. The procedures introduced in this section lead to 2ExpTime

algorithms to decide distribution over components for BG queries.

Then, in Section 6.5, we introduce a syntactic subset of these queries for

which the above problem can be done in ExpTime. For this purpose, we

utilize UCQ-rewritability of these queries to achieve our goal. Relations to

some other fragments are presented in Section 6.6.

Finally, in Section 6.7, we empirically evaluate the performance of dis-

tributability checking on real-world ontologies and compare forward chaining-

based query answering for centralized and distributed scenarios on these on-

120



tology benchmarks.

Note that, in this and the next chapter, our theoretical results are obtained

mainly by building on existing techniques from the literature. Though the

techniques we use are not completely original, the smart application, combi-

nation, and adaption for our need allowed us to derive new knowledge, namely

some classes of OMQs that support disjunctioin (and the construct of transi-

tive closure given in the next chapter) are indeed distributable and distribution

can improve query answering, sometimes substantially.

6.1 Preliminaries

Let C and V be pairwise disjoint countably infinite sets of constants and vari-

ables. A schema is a finite set S of predicate symbols where each symbol

R ∈ S has an arity, denoted arity(R). We introduce special predicate symbol

⊺. Terms are elements in C ∪ V. An atom over S is an expression of the form

R(t), where R ∈ S and t ∈ (C ∪ V)arity(R). A fact is an atom where terms are

constants from C. An instance over a schema S is a set of atoms. A database

over S is a finite instance that contains only facts over S. The active domain

of an instance I, denoted adom(I), is the set of all terms occurring in I.

A substitution from a set of symbols U to another set of symbols W is a

function h ∶ U →W defined as: ∅ is a substitution, and for all t ∈ U and t′ ∈W ,

if h is a substitution, then so is h ∪ {t→ t′}.

We write h(t) = t′ if t → t′ ∈ h. The restriction of h to a subset D ⊆ U ,

denoted h∣D, is the substitution h′ = {t→ h(t) ∣ t ∈D}.

Given two instances I and J (over the same schema), a homomorphism

h ∶ I → J is a substitution on terms that is identity on constants and for every

atom R(t) of I we have that R(h(t)) ∈ J which may be alternatively written

as h(R(t))) is an atom of J .

A query over S is a mapping q that maps every database D over S to a set

of answers q(D) ⊆ adom(D)n, where n ≥ 0 is the arity of q. If n = 0, then q is

a Boolean query.

A conjunctive query (CQ) q over S is a formula of the form q=∃yφ(x,y),

121



where x and y are tuples of variables in V and φ(x,y) is a conjunction of

atoms over S with variables in x ∪ y. A CQ is answer-guarded if it has an

atom that contains x, and it is acyclic if its hypergraph is α-acyclic (cf. [79]).

Furthermore, it is quantifer-free if y = ∅.

The free variables of q are called answer variables. The evaluation of a CQ

q over an instance I, denoted q(I), is defined as the set of all tuples h(t) of

constants such that h is a homomorphism from q to I. A union of conjunctive

queries (UCQ) is a disjunction of CQs that share the same answer variables.

With CQ (resp. UCQ), we denote the class of all queries definable by some

CQ (resp. UCQ).1

A disjunctive tuple-generating dependency (DTGD, also called a rule) σ is

a first-order (FO) formula ∀x(φ(x) →
n

⋁
i=1
∃yi ψi(xi,yi)), where φ and ψi for

each i ∈ {1, . . . , n} are conjunctions of atoms, and
n

⋃
i=1

xi ⊆ x and x ∪
n

⋃
i=1

yi ⊂ V.

We call x,
n

⋃
i=1

xi, and
n

⋃
i=1

yi the set of universal, frontier and existential variables

of σ, respectively.

The formula φ (resp.
n

⋁
i=1
ψi) is called the body of σ, denoted body(σ) (resp.

the head of σ, denoted head(σ)). We define σ to be satisfied by an instance

I, written as I ⊧ σ, if the following condition holds: whenever there exists a

homomorphism h such that h(φ(x)) ⊆ I, then there exists a homomorphism

h′ ⊇ {x → t ∈ h∣x ∣ t ∈ C ∪ N}, such that at least one disjunct ψi of ψ is

mapped into I by h′. An instance I satisfies a set Σ of DTGDs, denoted

I ⊧ Σ, whenever for all σ ∈ Σ, we have I ⊧ σ.

The set of predicates appearing in Σ is called the schema of Σ, denoted

sch(Σ). For brevity, in the rest of this chapter, we will omit universal quanti-

fiers in front of DTGDs, and instead of ∧, use a comma for conjoining atoms.

A DTGD without any disjunction is called a tuple-generating dependency

(TGD). Let us denote by TGD the set of all TGDs. A Datalog rule is a TGD

without existential variables. A finite set of Datalog rules is called a Datalog

1Let Q be a class of query language. A query Q is definable by some query Q′ ∈ Q if
Q can be rewritten into Q′ ∈ Q while preserving the answers of Q to all databases. As an
example, consider the query Q = ∃xy A(x, y, z) ∨A(y, x, z) ∈ UCQ. Then, Q is definable by
the CQ Q′ = ∃xy A(x, y, z) ∈ CQ.

122



rule set. A disjunctive Datalog rule is a DTGD without existential variables.

We denote by Dat∨ the set of all finite disjunctive Datalog rules.

We introduce another special symbol � as a blank symbol.2 Each disjunc-

tive Datalog rule set Σ considered in this chapter is assumed to contain the

set Σ⊺ which is the union of the following sets {Q(x1, . . . , xn)→ ⊺(x1,�)}, . . . ,

{Q(x1, . . . , xn)→ ⊺(xn,�)} for each predicate Q ∈ sch(Σ), where ⊺ is a special

predicate of arity 2.3 We assume that � only occurs inside ⊺ which does not

occur in the head of any rule in Σ.

We say a TGD set Σ′ is a rewriting of a CQ q w.r.t. a set of DTGDs Σ

if there exists a predicate Pq such that for each database D over the schema

of Σ, and for each tuple of constants a, we have D ∪ Σ ⊧ q(a) if and only if

D ∪ Σ′ ⊧ Pq(a). A set Σ′ of TGDs is a rewriting of Σ if it is a rewriting of

every atomic query over sch(Σ).

A rule σ is linear if it has at most one body atom. A rule set Σ is linear

if all rules of Σ are linear. The set of all linear TGDs (resp. linear DTGDs)

is denoted by L (resp. L∨). Furthermore, LDat∨ denotes the set of all linear

disjunctive Datalog rules.

An ontology-mediated query (OMQ) over S is a triple Q = (S,Σ, q) in which

S is called the data schema, Σ is a finite set of DTGDs and q is a CQ over

S ∪ sch(Σ). The semantics of Q can be given in terms of certain answers.

Given an OMQ Q = (S,Σ, q) and a database D where arity(q) = n, we define

the certain answers to Q over D as: ans(D,Σ, q) = {a ∈ Cn ∣ D∪Σ ⊧ q(a)}, and

semantically interpret Q by assigning Q(D) = ans(D,Σ, q) for all databases D.

Let D be a database. Each OMQ as defined above can be seen as a query over

S such that for all databases D the evaluation of that query over the canonical

instance of D and Σ (which can be constructed by the chase algorithm [65])

coincides with the certain answers to Q over D.

Given two queries Q and Q′ over S, Q ⊆ Q′ if for every S-database D,

Q(D) ⊆ Q′(D). Two queries Q and Q′ over S are equivalent, denoted Q ≡ Q′,
2This symbol is introduced to ensure that our setting work for the problem of deciding

distribution over components.
3These rules are added to support a key transformation that our approach relies on

(Definition 52).

123



if Q ⊆ Q′ and Q′ ⊆ Q. A query language Q′ is at least as expressive as another

query language Q, denoted Q ⪯ Q′, if for every S-query Q ∈ Q, one can find

another S-query Q′ ∈ Q′ such that Q ≡ Q′. Q and Q′ are equi-expressive,

denoted Q = Q′, if Q ⪯ Q′ and Q′ ⪯ Q. For an OMQ Q = (S,Σ, q), if Σ belongs

to a class C, we then say that Q belongs to C.

6.1.1 Distribution over Components

From [8, 32], we know that connectedness is a key notion for characterizing

the distributable fragments of TGDs.

Definition 50. A finite instance I is called connected if for all x, y ∈ adom(I),

there exists a sequence β1, . . . , βn of atoms in I such that a) x ∈ adom(β1)

and y ∈ adom(βn), and b) for each 1 ≤ i < n, adom(βi) ∩ adom(βi+1) ≠ ∅.

Furthermore, I ′ ⊆ I is called a component of I if I ′ is connected and for every

α ∈ I ∖ I ′, I ′ ∪ {α} is not connected. The set of all components of such an

instance I is denoted co(I).

A TGD σ is connected if so is its body, and a TGD set Σ is connected if

every TGD in Σ has this property.

Let C be a class of TGDs. We denote by conC the set of all rules that

belong to C and that are connected. Similarly, conCQ is the class of all queries

definable by some CQ that is connected. Also, conUCQ denotes the class of

all queries definable by a union of connected CQs.

Let D be a database over the schema S. A query Q over S is said to

distribute over components if Q(D) = ⋃D′∈co(D)Q(D′). For simplicity, we call

such a query distributable. If a query is distributable, then centralized evalu-

ation of Q over a database D can be equivalently computed by evaluating Q

over components of D in a communication-free fashion.

6.2 Restricted Weakly-Linear Disjunctive Tuple-

Generating Dependencies

In this section, we introduce the class of restricted weakly-linear disjunctive

TGDs and show a technique of rewriting for the preparation of the connect-

124



edness results later in this chapter

Definition 51. The labelled dependency graph GΣ = (N,E,µ) of a disjunctive

TGD set Σ is the smallest labelled digraph such that:

1. N contains all predicates that occur in Σ;

2. for two nodes P,Q ∈ N , and a rule σ ∈ Σ∖Σ⊺ if P and Q occur in body(σ)

and head(σ), respectively, then σ ∈ µ(P,Q); and

3. (P,Q) ∈ E whenever µ(P,Q) is nonempty.

A predicate Q depends on a rule σ ∈ Σ if GΣ has a path which ends in Q and

involves an edge labelled with σ. A predicate Q is called non-disjunctive if

it only depends on non-disjunctive rules, and otherwise, it is disjunctive. An

atom is disjunctive if its predicate is, and otherwise it is called non-disjunctive.

A rule set Σ is weakly-linear (WL) if each rule in Σ has at most one occurrence

of a disjunctive predicate in the body.

For technical reasons, in the rest of this section, we focus on a particular

subset of weakly-linear TGDs, which we call restricted, that satisfies a syntactic

condition as follows. Let Σ be a WL rule set. For each rule σ ∈ Σ ∖Σ⊺ of the

form χ∧Q(t)→
n

⋁
i=1
Pi(xi), in which χ is a conjunction of non-disjunctive atoms

and Q(t) is a disjunctive atom, let t′ = t∖ (
n

⋃
i=1

xi ∪ var(χ)), i.e., t′ is the set of

all variables which occur in Q but neither in χ nor in the head of σ. We call

Σ restricted weakly-linear (RWL), if for all rules σ ∈ Σ∖Σ⊺ of the above form,

we have t′ = ∅. The set of all restricted weakly-linear DTGDs is denoted by

RWL.

Let us first consider the subset of RWL rules without existential rules. In

the following, we write RWL∩Dat∨ to denote the set of all RWL rules that are

disjunctive Datalog. In [97], it was shown that there is a polynomial rewriting

from any WL disjunctive Datalog to a set of (non-disjunctive) Datalog rules.

We use this transformation for a proper subclass, RWL disjunctive Datalog rule

sets, with a slight modification to make it suitable for establishing our results

125



on distribution over components. In the sequel, when we make a reference to

Ξ, we are talking about this particular Datalog rewriting.

Briefly, in this transformation fresh binary predicates are introduced for

each disjunctive pair of predicates of the given rule set to prove facts about

them. In addition, new rules are introduced to initialize the extension of these

fresh predicates to ensure that all head variables also occur in the body of

rules. Then, the direction of all rules of the original rule set is flipped by

moving all atoms from the head to the body and the other way around.

We now define Ξ transformation for RWL ∩Dat∨ rule sets.

Definition 52. Let Σ ∈ RWL ∩ Dat∨. Denote by Disj(Σ ∖ Σ⊺) the set of all

disjunctive predicates occurring in Σ∖Σ⊺. For each pair (P,Q) ∈ Disj(Σ∖Σ⊺)2,

we define a fresh predicate PQ whose arity is arity(P ) + arity(Q). We define

Ξ(Σ) as the union of rules (1-5) below, where Pi ∈ Disj(Σ∖Σ⊺) for all 1 ≤ i ≤ n,

where n ≥ 2; furthermore, y and z are vectors of fresh variables such that

y ∩ z = ∅:

1. a rule ⊺(x1,�), . . . ,⊺(xn,�)→ RR(y,y) for each R ∈ Disj(Σ∖Σ⊺), where

y = {x1, . . . , xn};

2. a rule χ ∧
n

⋀
i=1
PR
i (xi,y) → QR(t,y) for each rule χ ∧Q(t) →

n

⋁
i=1
Pi(xi) ∈

Σ ∖Σ⊺ and every R ∈ Disj(Σ ∖Σ⊺), where χ is a conjunction of Datalog

atoms (the same below);

3. a rule χ ∧
n

⋀
i=1
PR
i (xi,y) → R(y) for each rule χ →

n

⋁
i=1
Pi(xi) ∈ Σ ∖Σ⊺ and

every R ∈ Disj(Σ ∖Σ⊺);

4. a rule Q(z) ∧QR(z,y)→ R(y) for each pair (Q,R) ∈ Disj(Σ ∖Σ⊺)2; and

5. each rule σ of Σ with no occurrence of disjunctive predicates.

A predicate of the form PQ in the transformation means that, given database

D and vectors of constants a and b, if PQ(a,b) holds in D∪Ξ(Σ), then prov-

ing P (a) suffices for proving Q(b) in D ∪Σ, i.e., D ∪Σ ⊧ P (a)→ Q(b). This

is explicitly encoded in group 4 of rules.

126



The group 1 of rules in Definition 52 (to derive facts of the form RR(y,y))

are used to initialize the extension of auxiliary predicates. The group 2 of

rules say that if for all 1 ≤ i ≤ n, proving Pi(xi) suffices to prove R(y) and χ

holds, then proving Q(t) suffices to prove R(y). Since for R(y) to be proved

from proving Pi(xi) we need to ensure this is the case for every 1 ≤ i ≤ n, the

disjunction in the given rule is transformed to a conjunction in the transformed

rule.4 Group 3 of rules are defined similarly.

As can be seen, the above transformation is quadratic and in addition, the

arity of predicates is doubled at most. The Ξ transformation of Definition

52 is similar to that of Kaminski et al. [97]. The difference of Ξ with their

transformation is in the way we have defined ⊺ predicates as compared to

theirs: unlike our definition of ⊺ predicates which has arity 2, the arity of ⊺

predicates in [97] is 1.

Theorem 53. Let Σ be an RWL disjunctive Datalog rule set. Ξ(Σ) is a

polynomial Datalog rewriting of Σ.

Proof. Let Σ ∈ RWL∩Dat∨. By construction, Ξ(Σ) is a Datalog rule set of size

quadratic in the size of Σ. The correctness of Ξ transformation can be shown

by induction on hyperresolution derivations of facts which are entailed by the

rules in Σ from a given database D. By replacing occurrences of ⊺(x) in their

proof with ⊺(x,�) and making proper adjustments, the proof of Theorem 2

of [97] can be directly adopted.

Example 19 illustrates a RWL rule set and its transformation under Ξ.

Example 19. Let us consider the following set of Datalog rules Σ = {σ1, σ2, σ3}

in which {A,E} and {C,B} are sets of Datalog and disjunctive predicates of

Σ, respectively.
σ1 ∶ A(x, y)→ B(x, y) ∨C(x, y)
σ2 ∶ C(y, z),E(x, y)→ B(x, z)
σ3 ∶ B(y, z),E(x, y)→ C(x, z)

4Suppose we have P1(a) ∨ P2(b) in the head of a given rule. Suppose further that in
one model M , P1(a),R(c) ∈M and P2(b) /∈M , and in another model M ′, P2(b) ∈M

′ and
P1(a),R(c) /∈ M

′, then R(c) cannot be derived even though the given rule is satisfied by
both.

127



It is easy to verify that Σ is RWL. For such a rule set, in order to prove facts

on Datalog predicates, we only rely on the input database D. Furthermore,

Ξ is defined such that to prove facts about disjunctive predicates C and B,

auxiliary fresh predicates of the form XY are introduced, where X,Y ∈ {B,C}.

The way facts about these disjunctive predicates are proved is as follows: if a

fact XY (a, b, c, d) holds in D ∪ Ξ(Σ) then it suffices to prove X(a, b) in order

to prove Y (c, d) in D ∪Σ.

In addition, these fresh predicates are initialized by rules of the following

form: ⊺(x,�),⊺(y,�)→XX(x, y, x, y) for X ∈ {B,C}. Then, the rules which

involve B or C are flipped by moving all disjunctive atoms from the head to the

body, and the other way around, while their predicates are replaced by auxiliary

predicates. Therefore, the transformed rule set will be:

Ξ(Σ) =

{σ′1 ∶ ⊺(x,�),⊺(y,�)→ BB(x, y, x, y),
σ′2 ∶ ⊺(x,�),⊺(y,�)→ CC(x, y, x, y),
σ′3 ∶ A(x1, y1),BB(x1, y1, x2, y2),CB(x1, y1, x2, y2)→ B(x2, y2),
σ′4 ∶ A(x1, y1),BC(x1, y1, x2, y2),CC(x1, y1, x2, y2)→ C(x2, y2),
σ′5 ∶ BB(x1, z1, x2, y2),E(x1, y1)→ CB(y1, z1, x2, y2),
σ′6 ∶ BC(x1, z1, x2, y2),E(x1, y1)→ CC(y1, z1, x2, y2),
σ′7 ∶ CB(x1, z1, x2, y2),E(x1, y1)→ BB(y1, z1, x2, y2),
σ′8 ∶ CC(x1, z1, x2, y2),E(x1, y1)→ BC(y1, z1, x2, y2),
σ′9 ∶ B(x1, y1),BB(x1, y1, x2, y2)→ B(x2, y2),
σ′10 ∶ B(x1, y1),BC(x1, y1, x2, y2)→ C(x2, y2),
σ′11 ∶ C(x1, y1),CB(x1, y1, x2, y2)→ B(x2, y2),
σ′12 ∶ B(x1, y1),BC(x1, y1, x2, y2)→ C(x2, y2)}

Based on the meaning of fresh predicates of the form XY , e.g., intuitively,

σ′4 states that if we can establish that proving B(x1, y1) and C(x1, y1) suffices

to prove C(x2, y2), and A(x1, y1) holds, then C(x2, y2) must hold. It can be

seen that this transformation is quadratic and therefore polynomial in the size

of Σ.

Now let us turn our attention to DTGDs. For technical reasons, we consider

a syntactically-restricted fragment of restricted weakly-linear DTGDs known

as guarded.

Definition 54. (Guarded) Given a set A of atoms, an atom α ∈ A is called a

guard w.r.t. A if adom(α) = adom(A). If the set of guard atoms w.r.t. A is

128



nonempty, then A is called guarded. A set Σ of DTGDs is called guarded (G)

if the body of σ when seen as a set of atoms, for each rule σ ∈ Σ, is guarded.

We denote the set of all G rules by G.

In the rest of this chapter, we focus on disjunctive TGDs under a restricted

syntax known as normal form.

Definition 55. (Normal form) Let Σ be a set of DTGDs. Let further B

and H be atoms, and φ and ψ disjunctions of atoms. We say that Σ is in

normal form if each σ ∈ Σ is of the form, B → ∃zH or φ → ψ. For notational

convenience, we denote the set of rules of the form (1) (resp. (2)) with Σ∃

(resp. Σ∀).

Given a set of DTGDs Σ, it is known that such a normal form transfor-

mation θ always exists, which partitions Σ into a set of linear TGDs and a

disjunctive Datalog rule set and preserves certain answers for acyclic as well

as quantifier-free conjunctive queries (cf. Proposition 2 of [5]). Their result

applies to our case of rule sets Σ ∈ RWL ∩ G, as it is easy to see that if Σ is

RWL, so is θ(Σ), and if Σ is guarded disjunctive, so is θ(Σ). The reason is

that for any rule set Σ ∈ RWL∩G, the body of any disjunctive Datalog rule in

θ(Σ) is the body of some rule in Σ. Therefore, by definition, these rules are

in RWL ∩G. Moreover, any TGD in θ(Σ) is linear, which by definition makes

it belong to RWL ∩G.

In the sequel, we will assume that all DTGDs are in normal form. Notice

that for the certain answer preservation under the normal form transforma-

tion, the restriction to acyclic or a quantifier-free conjunctive queries is essen-

tial for our techniques to work, and this is the very reason why the related

distributability results later in this chapter have these restrictions as well.

Proposition 56. Let Σ = Σ∀ ∪ Σ∃ ∈ RWL ∩ G. Then, ans(D,Σ∀ ∪ Σ∃, q) =

ans(D,Ξ(Σ∀) ∪Σ∃, q), where q is an atomic query.

Proof. (sketch) Let Σ∀ ∈ Dat∨ be a disjunctive Datalog rule set. From Theorem

53, Ξ(Σ∀) is a polynomial rewriting of Σ∀.

129



It follows that for all atomic queries q over S ∪ sch(Σ∀), ans(D,Σ∀, q) =

ans(D,Ξ(Σ∀), q). To show that adding Σ∃ to Σ∀ does not change certain

answer semantics, we construct a model Dc of D and Σ∀ known as a core

instance [5], which intuitively extends D while ensuring satisfaction of Σ∀

only. Since Σ∀ is guarded, Dc can be extended to also satisfy Σ∃, while Σ∀ is

satisfied. When Dc is extended, the entailment of facts are preserved. This

will ensure satisfaction of D as well as q. For details of this construction,

consult [5].

Note that by the definition of Datalog rewriting, the Ξ transformation

of Definition 52 only preserves fact entailment (or, equivalently, the answers

to all atomic queries). However, for arbitrary CQs we may not be able to

find query-independent rewritings. In fact as implicitly shown in [109], for

an arbitrary disjunctive Datalog rule set Σ which has at least one disjunctive

rule, there cannot exist any Datalog rewriting of Σ that preserves answers to

all CQs (even acyclic or quantifier-free ones). In spite of this, in the following,

we show that by restricting to a fixed query of a certain type, we are able

to compute Datalog rewritings. Our rewriting is a special case of Datalog

rewriting on what is known as markable rule sets introduced in [98].

Next, we show how to extend the result of Proposition 56 to work for

acyclic and quantifier-free CQs. For this purpose, regarding acyclic CQs we

exploit the fact that any acyclic CQ can be rewritten into a guarded CQ (cf.

Corollary 3 of [78]). Moreover, as we will show in Proposition 57, quantifer-free

CQs have a particular syntactic restriction which makes it possible to extend

the above result.

In the rest of this chapter, w.l.o.g., we assume that any given acyclic query

is guarded.

Proposition 57. Let Σ = Σ∀ ∪Σ∃ ∈ RWL ∩G and q = ∃yφ(x,y) be a CQ.

(i) If q is acyclic, and involves at most one disjunctive atom from Σ∀, then

for all S-databases D, ans(D,Σ∀ ∪ Σ∃, q) = ans(D,Ξ(Σ∀ ∪ {φ(x,y) →

W (x)}) ∪Σ∃,W ), where W is a fresh predicate of arity ∣x∣.

130



(ii) If q is quantifier-free, i.e., q = φ(x), and involves at most one disjunc-

tive atom from Σ∀, then for all S-databases D, ans(D,Σ∀ ∪ Σ∃, q) =

ans(D,Ξ(Σ∀ ∪ {φ(x) → W (x)}) ∪Σ∃,W), where W is a fresh predicate

of arity ∣x∣.

Furthermore, for either (i) or (ii), Ξ produces a rule set, as its output, that is

polynomial in the size of its input.

Proof. Let Σ = Σ∀ ∪ Σ∃ ∈ RWL ∩ G and W be a fresh predicate. We first

prove (i). Since q is acyclic, by our previous assumption, q is guarded. In

addition, since q consists of at most one disjunctive atom from Σ∀, then,

Σ∀∪{φ(x,y)→W (x)})∪Σ∃ is in RWL∩G. The rest of the proof follows from

Proposition 56. In order to prove (ii), we utilize the fact that the syntactic

restriction of quantifier-free queries ensures that the required variable assign-

ments for answering queries are such that they only map into the constants

of the input database. This fact combined with Proposition 56 leads to the

desired conclusion.

6.3 Bidirectionally-Guarded Queries

In this section we introduce the class of bidirectionally-guarded queries: A new

class of queries that consists of rule sets that extend subclasses of existential

rules as well as linear disjunctive Datalog rules.

We consider the class of OMQs where a query q involves at most one

disjunctive atom from the underlying Σ∀. Let us denote this class by (RWL ∩

G,Q), where Q is the class of queries definable by answer-guarded CQs that

are either acyclic or quantifier-free. In general, it is unknown whether the

problem of distribution over components for this class of OMQs is decidable.

In this chapter, we show that we can characterize and decide the problem

of distribution over components for a subclass which we call bidirectionally-

guarded. Intuitively, decidability can be achieved by imposing the guardedness

condition for the transformed rule set under the Ξ transformation.

131



Definition 58. Let Q = (S,Σ = Σ∀ ∪ Σ∃, q) ∈ (RWL ∩ G,Q) in which q =

∃yφ(x,y) ∈ Q. Q is called bidirectionally-guarded if Ξ(Σ∀) is guarded. We

denote the set of bidirectionally-guarded queries by BG.

The following lemma can be verified using the definition of the Ξ transfor-

mation.

Lemma 59. A query Q = (S,Σ, q) ∈ (RWL∩G,Q) is bidirectionally-guarded if

it satisfies the following conditions:

1. for each rule χ ∧ Q(t) →
n

⋁
i=1
Pi(xi) ∈ Σ ∖ Σ⊺, we have: (i) var(χ) ⊆

n

⋃
i=1

xi; and (ii)
n

⋀
i=1
Pi(xi) has a guard atom, i.e., ∃ i s.t., var(Pi(xi)) =

var(
n

⋀
i=1
Pi(xi));

2. for each rule χ→
n

⋁
i=1
Pi(xi) ∈ Σ∖Σ⊺, we have: (a) var(χ) =

n

⋃
i=1

xi; and (b)

n

⋀
i=1
Pi(xi) has a guard atom, i.e., ∃ i s.t., var(Pi(xi)) = var(

n

⋀
i=1
Pi(xi)).

3. The maximum arity of all disjunctive predicates occurring in Σ ∖ Σ⊺ is

1.

Note that the restriction imposed on the arity of disjunctive predicates is

to ensure that the output of Ξ on Σ∀ is guarded. Moreover, the requirement

that the rule sets in BG queries are guarded guarantee that the certain answers

are preserved.5 This condition is needed in establishing the main results of

this chapter.

Example 20. Consider the rule set of Σ1 of the introduction section. It can be

verified that any query Q = (S,Σ, q) ∈ (RWL ∩G,Q) is bidirectionally-guarded.

where Σ = {σ1, . . . , σ7}.

Based on Definition 58, it is clear that BG ⪯ (RWL∩G,Q). In what follows,

we study the problem of membership checking in BG queries.

Proposition 60. Given a query Q = (S,Σ, q) ∈ (RWL∩G,CQ), the membership

problem of Q in BG is in PTime.

5Note that guardedness here refers to the given DTGDs.

132



Proof. We need to do the following: (i) checking whether q has at most one

disjunctive atom, (ii) applying Ξ transformation on Σ∀ ∪ {φ(x,y) → W (x)},

and (iii) checking whether Ξ(Σ∀∪{φ(x,y)→W (x)}) is guarded. It is easy to

see that (i) can be done within a PTime upper bound. According to Propo-

sition 57, task (ii) can be done in PTime. In addition, from the conditions

of Lemma 59, it is easy to verify that checking (iii) can be done in PTime as

well.

Then, we need to see if the given query q ∈ CQ is answer-guarded which

can be done in LogSpace. Moreover, we construct the hypergraph of q and

check whether it is acyclic. The latter two tasks can be done in SL (Symmetric

LogSpace)6 [79], which based on [125] is equal to LogSpace.

The same statement of above also holds true for the answer-guarded qunatifier-

free CQs. Therefore the overall complexity upper bound of checking member-

ship of Q in BG is in PTime.

6.4 The Problem of Distribution over Compo-

nents for Bidirectionally-Guarded Queries

A key property of the rule sets of BG queries is that they are connected since

they are guarded. Another useful property of BG queries is presented in Lemma

61 below which states that the problem of containment checking for these

queries is decidable.

Lemma 61. Given two queries Q1,Q2 ∈ BG, the problem of checking whether

Q1 ⊆ Q2 is decidable, and is in 2ExpTime.

Proof. Given two queriesQ1,Q2 ∈ BG, as the rule sets ofQ1 andQ2 are guarded

TGDs, the problem of checking whether Q1 ⊆ Q2 is an instance of the problem

of checking the containment of guarded TGDs with answer-guarded (acyclic or

quantifier-free) queries. Such queries can be naturally translated into GNFO

6Recall that SL is the complexity class of problems which are logspace reducible to
undirected s-t connectivity, that is the problem of determining whether there exists a path
between two vertices in an undirected graph.

133



OMQs [21], and the containment problem for GNFO OMQs is known to be in

2ExpTime [21] which gives an upper bound for the desired problem.

Now, we get back to the problem of distribution analysis over components

for (RWL ∩ G,CQ) queries. Let DIST be the class of queries that distributes

over components. We can show

Theorem 62. BG ∩DIST = conBG.

Proof. The proof proceeds by establishing the following results: (1) BG ∩

DIST ⪯ conBG; (2) For Q = (RWL ∩ G,Q), conQ ⪯ Q ∩ DIST; and (3) BG ⪯

(TGD,CQ). For (1), we fix an arbitrary query Q = (S,Σ, q) ∈ BG, where q is

defined by ∃yφ(x,y). Let A = {φ1, . . . , φk} be the set of connected components

of q, and qi be the CQ that is obtained from q by keeping only the component

φi. Since Qi = (S,Σ, qi) ∈ conBG, it is sufficient to prove that Qi is equivalent

to Q. This proof utilizes the fact that Σ is connected. Furthermore, evaluat-

ing equivalence of queries involves containment checking which is proved for

BG in Lemma 61. Claim (2) is already proved in [32] (which even works after

relaxing the answer-guardedness requirement of queries), and (3) is trivial.

We will now consider a subset of BG queries, denoted BGS. A query Q =

(S,Σ = Σ∀ ∪Σ∃, q) ∈ BG is in BGS, called singly bidirectionally-guarded (hence,

S in the superscript of the class notation) if Σ∀ ∈ L.

There are two reasons why we consider this fragment: (1) in the next sec-

tion we show that by focusing on this syntactic restriction, we can substantially

reduce the complexity of distribution checking compared to that of BG; and

(2) in our experiments we use this class of queries.

Example 21. Let Σ1 = {σ1, σ2, σ3, σ4} be the first four rules of the rule set of

the introduction section. Then, each query Q = (S,Σ1, q) for q ∈ Q belongs to

BGS. This can be verified by applying the transformation Ξ.

As a corollary to Theorem 62, we have:

Corollary 63. BGS ∩DIST = conBGS.

134



To summarize this section, con(RWL ∩ G,Q) provides an effective syntax

for (RWL ∩ G,Q) queries that distribute over components, while the problem

of deciding whether such a query distributes over components may be unde-

cidable. As a sufficient condition to guarantee decidability, we introduced a

subclass BG of these queries that guarantee decidability of the above prob-

lem using a decision procedure on the membership of distributable queries as

sketched in the proof of Theorem 62. Then, to tame the high complexity of

this problem, we introduced a subclass BGS of BG queries.

6.5 Deciding Distributability via Rewriting

In Theorem 62 and Corollary 63, we provided semantic characterizations for

checking membership in DIST for queries consisting of BG and BGS queries,

respectively. Recall that these queries are subsets of (RWL,Q). Our semantic

characterization was based on decidability of the containment problem for the

latter queries. Therefore, the procedure provided in the proof of Theorem 62,

which is based on Lemma 61, runs in 2ExpTime, already provides a decision

algorithm to decide membership of these queries in DIST.

In this section we show that this result can be strengthened to provide

decision procedures for the above problem in the case of BGS queries while

reducing the complexity upper bound for membership checking to single ex-

ponential time.

The key tool in establishing distributability results for BGS queries is what

is known as UCQ rewritability which was originally introduced in the context

of description logics [48]. This property guarantees high tractability of data

complexity and makes the reasoning feasible by relational query engines as

the evaluation of UCQ queries is in the (highly tractable) class AC0 in data

complexity [141]. In more details, if Q = (S,Σ, q(x)) is an OMQ, then Q is

UCQ-rewritable if there exists a (finite) UCQ QΣ(x) over S, known as the

perfect rewriting [80], that is equivalent to Q, i.e., for every S-database D, we

have Q(D) = QΣ(D). In this case, QΣ(x) is called a UCQ-rewriting of Q. The

notion of UCQ-rewritability of an OMQ naturally extends to a class of OMQs.

135



In this section, we show how to utilize UCQ-rewritability of OMQs com-

posed of linear disjunctive TGDs with conjunctive queries, as reported in [38],

to characterize distribution over components for BGS queries. Throughout

this section, we will exploit a perfect rewriting algorithm for our purpose.

Roughly speaking, given a rule set Σ and a conjunctive query q(x), a per-

fect rewriting algorithm rewrites q(x) into a UCQ, called UCQ rewriting, of

minimal cardinality (i.e., the number of conjunctive queries in the resulting

UCQ is minimum), using the rules in Σ such that for any S-database D, the

answers to q(x) over the OMQ (S,Σ, q(x)) can be computed by evaluating

the rewritten query directly over D.

Given an OMQ Q, let Dist(Q) denote the decision problem of distribution

over components for Q. Our rewriting-based checking mechanism to decide

Dist(Q), where Q ∈ BGS, is presented in Algorithm 6.1. We will use the

following notations. Let Q = (S,Σ, q(x)) ∈ BGS. Denote by RW (Q) the UCQ

rewriting result of Q using some perfect rewriting algorithm RW. To proceed,

as discussed above, for each answer-guarded (acyclic or quantifier-free) CQ q,

we can rewrite q using any given Σ into a UCQ, or in other words, construct

RW (Q) and then continue with the approach described in Algorithm 6.1.

Algorithm 6.1 takes as input a query Q ∈ BGS which consists of a rule set

Σ and an answer-guarded (acyclic or quantifier-free) conjunctive query q, and

returns true if Q is distributable and false, otherwise. It computes a UCQ-

rewriting Q′ of Q. Once a UCQ-rewriting Q′ of a given query Q is computed,

it is clear that Q ∈ DIST if and only if Q′ ∈ DIST. In the rest of the algorithm,

a mechanism to decide Dist(Q′) is presented. However, as observed in [32], we

cannot proceed by just checking if disjuncts of Q′ distribute over components.

The reason is that some disjuncts which are not distributable may be subsumed

by the others which are distributable. Lemma 64 was proposed in [32] as a

solution to the above problem.

Let us define a mapping e ∶ V ∪ C → ⟨V,∗⟩ ∪ C, where constants in C

are mapped to themselves and each variable v ∈ V is mapped to ⟨v,∗⟩, where

⟨v,∗⟩ is a fresh constant constructed from v. Given a conjunctive query q(x) =

∃y(⋀ni=1Ri(x,y)), let D[q] be the transformation of q after applying mapping

136



e to q. Therefore, we define D[q] = e(q(x)) = ⋀ni=1Ri(⟨x,∗⟩, ⟨y,∗⟩). Since each

query Q ∈ BGS can be rewritten into a UCQ, then the following lemma applies

to these queries and leads to a concrete decision procedure for membership of

these queries in DIST.

Lemma 64. For Q(x) ∈ UCQ, Q ∈ DIST if and only if for each q ∈ Q, there

exists D′ ∈ co(D[q]) such that ⟨x,∗⟩ ∈ Q(D′).

Algorithm 6.1 Checking membership of Q ∈ BGS in DIST

Input: An OMQ Q ∈ Q = BGS;
Output: Boolean value IsDistributable;

1: procedure Dist(Q), where Q ∈ Q
2: end procedure
3: IsDistributable← true; Temp← false;
4: Construct the UCQ Q′(x)← RW (Q);
5: for each CQ q′ ∈ Q′(x)
6: for each D′ ∈ co(D[q′])
7: if ⟨x,∗⟩ ∈ Q(D′)
8: Temp← true; break;
9: if Temp == false

10: IsDistributable← false; break;
11: return IsDistributable

It is not hard to see that the procedure Dist(Q), for each Q ∈ Q, always

terminates, since for all the given OMQs the size of rewritten UCQ is always

finite [13, 38, 96].

To conclude this section, let us present the complexity results for member-

ship checking in DIST for OMQs consisting of the above introduced fragments

of (RWL ∩G,Q).

Theorem 65. Dist(BGS) is in ExpTime. Furthermore, Dist(BG) is in 2Ex-

pTime.

Proof. The combined complexity of evaluation of L∨ rules, which is known to

be in ExpTime [82], combined with Lemma 64, gives us the desired upper

bound for BGS queries. Regarding Dist(BG) queries, refer to the procedure

detailed in the proof of Theorem 62.

137



6.6 Relation to other Formalisms

In [8], it was shown that the problem of deciding whether a Datalog query dis-

tributes over components is undecidable. Furthermore, the fragment of Data-

log combined with conjunctive queries in which all rule bodies are connected,

characterizes all those queries that distribute over components. Additionally,

in [32], this problem was considered for ontology-mediated queries with classes

of finite sets of TGDs (TGD) as well as linear (L), (weakly) guarded ((W)G),

(weakly) sticky ((W)S) sets of TGDs and conjunctive queries. It was shown

that the fragment of OMQs Q = (C,CQ) that are distributable over compo-

nents, in which C belongs to the above-mentioned group of TGDs is precisely

the one in which C and CQ are connected.

In addition, when C belongs to the set: {L,S} (resp. {G}), then Dist((C,CQ))

(resp. Dist((C,AGCQ))) is decidable where AGCQ denotes the class of all

queries definable by some answer-guarded CQ.

Guarded OMQs Note that guarded OMQs are not UCQ-rewritable, and

thus, do not belong to the FUS sets of ontology languages. On the other

hand, to the best of our knowledge, the decidability of Dist((G,CQ)) is still

open. However, more recently, in [23], it was shown that there is a UCQ-

rewritable fragment within (G,CQ) and its membership decision problem is

2ExpTime-complete. So, this leads to decidability of Dist for this fragment

and additionally, one can use Algorithm 6.1 for checking membership in DIST

for it. Finally, by definition, (G,AQ) queries are all distributable over compo-

nents, where AQ is the class of all queries definable by some atomic query.

Frontier-Guarded (FG) OMQs FG TGDs extend guarded fragment by

requiring each TGD σ to have at least one guard atom that contains all frontier

variables (rather than all universally-quantified variables) of σ. Unlike guarded

TGDs, frontier-guarded TGDs are not connected in general. So, Theorem 62

does not hold for FG TGDs, even with Q = AQ. However, from [23] and [32],

we have the following corollary.

Corollary 66. We have (i) (FG,CQ) ∩ DIST = (conFG, conCQ), and (ii) for

Q ∈ (FG△, conCQ), Dist(Q) is decidable, in which FG△ ⊂ FG is the fragment of

138



FG which is UCQ-rewritable.

DL-Litebool OMQs Fact entailment w.r.t. data for DL-Litebool logics are

shown to be tractable in [11]. It is known that certain DL-Litebool logics can be

rewritten as linear DTGDs. So, our results on distributability of distribution

over components for BGS queries can be applied to these logics as well.

6.7 Experiments on OMQs Based on Linear

Disjunctive TGDs

The experiments of this section are designed for two purposes. First, after

the publication of the theoretical work of distribution [32], there has been no

practical evaluation whether query answering can be improved by distribution.

For this, we select some ontologies that can be translated into linear rules and

conduct experiments. The second objective is to evaluate practical relevance of

our theoretical results for disjunctive rules. We test both decidability checking

and answering queries.

We conducted two experiments. The first one concerns the evaluation of

our distributability checking algorithm and in the second, we evaluate the

performance of forward chaining for distributed versus centralized schemes.

Both experiments were done on three different ontology benchmarks.

A master-slave architecture was adopted where each slave machine runs

a chase engine (for the second experiment) and the partial query results are

aggregated back in the master machine to answer the query posed by any client

(the first experiment). All experiments were done on a private cluster and on

the Amazon EC2 platform. For this purpose, we utilized EC2 instances of

type a1.2xlarge. The physical cluster is managed with VMware Fusion version

11.5.3 and a virtual cluster of 8 Virtual Machines (VMs) is provisioned to

run the experiments. Each VM is located on a separate physical host and

configured with 4 vCPUs, 8GB of RAM and 128GB of local disk. The software

on each VM is 64-bit macOS Catalina.

For the second experiment, we compared different statistics derived from

our distributed approach, using chase engines RDFox [119] and Graal [17],

139



against centralized approaches for query processing.

Experimented Ontologies: The first benchmark in our experiments is

LUBM∃
20 [110], for which we generated instances with 100K, 500K, and 1M

facts with the data generator and singled out axioms that correspond to linear

rules.

All manually curated queries are CQs in SPARQL 1.0 syntax. We added

30 more handcrafted queries to the available query pool. Thus, forming 50

overall OMQs up for evaluation.

The second benchmark concerns linear rules from Open Biomedical Ontol-

ogy (OBO) corpus [134]. For this benchmark, we ended up with 50 terminating

linear ontologies for which we handcrafted acyclic CQs and created an initial

database for each.

The last benchmark is MOWLCorp corpus [115], which was selected for

evaluations on linear disjunctive rules. For the last two corpora, our selected

ontologies were those for which the number of their existential axioms was 10.

This gives us 41 and 73 linear ontologies from a total of 125 and 132 ontologies

from OBO and MOWLCorp corpora, respectively.

For each considered ontology, we perform standard transformation to ex-

tract the corresponding DTGDs.7 For each OMQ Q = (S,Σ, q) as constructed

above and targeted query q, we performed the following tasks: (i) acyclicity

checking of Σ and q; (ii) membership checking about whether it belongs to

BGS, (iii) checking whether it is distributable, and (iv) distributed reasoning

with it.

For testing the acyclicity conditions considered in this chapter for the rule

sets, following [38], we replace all occurrences of ∨ with ∧, and then check rules

for membership in WA [65] and aGRD [12].

To check whether Q belongs to BGS (for the MOWLCorp corpus), we first

find the normalized form for the given rule set (Σ) as described in Definition

55. This can be done by introducing fresh predicates. Then, we apply our

implementation of transformation Ξ of Definition 52 on the resulting rule set.

7We refer to [89] for details on this standard normalization procedure. Our normalized
forms follow their Table 1, but with an additional form A1 ⊓ ⋅ ⋅ ⋅ ⊓An ⊑ B1 ⊔ ⋅ ⋅ ⋅ ⊔Bm.

140



Ontology
# Total
OMQs

# Dist.
OMQs

Avg. dist.
checking time (s)

Avg. query
rewriting time (s)

LUBM∃
20 50 37 31.5 25.3

OBO 50 42 56.6 43.3

MOWLCorp 100 40 63.2 29.9

Table 6.1: Statistical results for distributability membership checking

Finally we check the conditions for BGS, manually, on the transformed OMQ.

We implemented a module to track dependencies of Σ to output disjunctive

atoms. Also, while ensuring all CQs involve at most one occurrence of these

atoms, we check acyclicity of CQs manually or handcraft them to be acyclic.

For (iii), since at the time of writing this dissertation, we could not find

any implemented approach that can handle rewriting DTGDs, we perform

UCQ-rewriting of Ξ(Σ) instead. Then, we apply Algorithm 6.1 on Q as a

decision module for distributability checking on the master machine for both

BGS queries as well as those consisting of only linear TGDs. We utilize the

piece-based query rewriting technique known as pure (piece unification based

rewriting) [102] which outputs a sound and complete UCQ-rewriting of both

query types as mentioned above.

For (iv), for each distributable OMQ Q = (S,Σ, q) from step (iii), we per-

form the chase performance experiments on Ξ(Σ), the results of which are

depicted in Table 6.2.

After preprocessing and acyclicity checking, for the collection of ontologies

from the MOWLCorp, 10 were found to be terminating under tested acyclicity

conditions, for each of which we handcrafted 10 acyclic CQs and an initial

database for each OMQ was considered. Thus, overall, 100 OMQs were tested

from the last corpus.

Table 6.1 shows statistics on distributability checking of the considered

corpora. Overall, 50 linear OMQs from the LUBM∃
20 benchmark suite have

been tested for distributability and 37 (74%) of them satisfied distributability

condition of Algorithm 6.1 and the other 13 did not. For the OBO ontology

benchmark, the same number were considered for distributability checking and

141



Table 6.2: Statistics of distributed versus centralized chase schemes

Ontologies

Centr. Distr.
Avg. #

componentsRDFox Graal RDFox Graal

Restr. Sk. Restr. Sk. Restr. Sk. Restr. Sk.

LUBM∃
20 65.2 72.3 2375.8 2450.2 24.9 26.7 338.0 343.1 8

OBO 261.4 264.3 4223.0 4264.4 75.1 77.8 904.9 903.4 5

MOWLCorp 342.4 351.6 4237.0 4243.9 58.2 63.7 631.5 640.0 4

42 (84%) satisfied this condition. Furthermore, among 100 OMQs considered

from the MOWLCorp corpus, we found 60 (60%) that belong to BGS. Of these

OMQs, 40 (67%) passed the distributability test of Algorithm 6.1 which form

40% of the total number of considered OMQs for this corpus.

The second experiment is conducted over distributable queries. Given a

database D which is the result of transforming the input RDF store, the

number of components of D for each Q ∈ DIST gives us the number of cluster

machines needed for our next evaluation.

Node i of the cluster network corresponds to each component Di of the

database D. Then at each node i, we deployed Graal and RDFox chase engines

to compute chase(Di,R) (local materialization) in parallel, considering both

the Skolem and the restricted variants of chase for each engine. Then all the

results of local computations will be sent and aggregated at the master node.

Table 6.2 gives the statistics related to this operation (including comparisons

of the chase performance for centralized and distributed schemes as described

above) for these two chase engines regarding the evaluation time on the master

node for the considered OMQs Q ∈ DIST. All the averages in the table that

represent numbers for which the domain is the set of integers are rounded

down in Table 6.2. Note that all computation times are based on the average

measure in seconds.

142



Chapter 7

Distributed Reasoning for
Generalized Regular Queries

In this chapter, we study the problem of distributed reasoning as introduced

in the previous chapter for a class of queries known as generalized regular

(ontology-mediated) queries (GRQs), where rules are Datalog rules in which

no recursion is allowed except for the rules that express transitive closure. The

language of GRQs was shown to be the most expressive fragment of Datalog

with a decidable problem of containment checking with which one can express

transitive closure constructs [139].

We prove that the distribution problem for the language of GRQs is de-

cidable with the complexity of distribution checking that is upper bounded

by 2ExpSpace. In order to reduce this complexity, we introduce a sub-

class of these queries that we call k-pseudo-guarded generalized regular queries

(PG2RQk), where k is a fixed integer, for which we prove an ExpSpace upper

bound for the complexity of distribution checking.We further extend this result

to different classes of queries defined in the literature. Finally, we conduct ex-

periments to verify our theoretical results on real-world ontology benchmarks.

This chapter is organized as follows. In Section 7.1, we introduce the neces-

sary mathematical notions and terms required to grasp this chapter. Section

7.2 defines the class of GRQs. The connected fragment of GRQs provides

an effective syntax for these queries that are distributable over components.

Then, we introduce the class of PG2RQk queries.

Section 7.3 is devoted to characterizations for distribution over components

143



of GRQ and PG2RQk queries. Using these characterizations, in Section 7.4,

we introduce concrete algorithms for checking distributability of GRQs and

PG2RQk queries.

Then, in Section 7.5, we show how the approach provided in Section 7.4

can help us establish decidable characterizations for checking distribution over

components on a number of fragments introduced in the literature. This sec-

tion is divided into two subsections. The first subsection studies distribu-

tion over components for these fragments without involving transitivity. In

the second subsection, transitivity axioms are combined with the fragments

introduced in the first subsection, and then we show how distribution over

components is affected by this combination.

A case study for a real-world scenario which falls into the class of PG2RQs

is introduced in Section 7.6. Finally, in Section 7.7, we report the results of

our experiments for checking distribution over components as well as query

answering performance for distributable PG2RQk queries for a fixed value of

k which is reported in that section.

7.1 Preliminaries

For the preliminaries of this chapter, we refer the reader to those of the previous

chapter which is complemented with the following notion. Let Σ be a Datalog.

The head predicates of Σ are called intensional (IDB) and all other predicates

of Σ are called extensional (EDB); an atom is called intensional (IDB) (resp.

extensional (EDB)), if so is its predicate.

The main distributivity results are obtained by applying existing construc-

tions as well as some novel ones by the author of the thesis.

7.2 Generalized Regular Query Languages

Modern graph query languages are gaining increasing attention due to their

usefulness in modelling, navigating and reasoning with interconnected data

which is ubiquitous in different applications including, but not limited to, se-

mantic web, social network analysis, ontology-mediated query answering, etc.

144



Note that there is no single standard language for querying graph databases.

In fact, regular path query language (RPQ) [67] is the basic language for graph

databases [1, 3, 39] which asks for paths given by a regular expression over

a given alphabet. This allows a controlled form of recursion to be expressed

over binary predicates.

RPQs allow for navigation of the edges of a graph database only in the

forward direction. When RPQs are enriched to have the ability to navigate

the edges of graph databases in a backward direction as well, the resulting

queries are called two-way regular path queries (2RPQs) [47].

The language of conjunctive 2RPQs (C2RPQs) [47] is introduced as an

analogue to CQs for graph databases. A C2RPQ is a conjunctive query in

which atoms are the form P (x, y) where P is a 2RPQ. Also similar to union

of conjunctive queries or UCQs which extend CQs by incorporating the union

operation, UC2RPQs are the class of unions of C2RPQs. On the practical

side, the shift is happening from the class of conjunctive queries (CQs) as the

fundamental language which corresponds to atomic relational queries closed

under selection, conjunction, and projection to more expressive ones. In par-

ticular, the core query languages in SPARQL 1.1 which is a more recent W3C

standard for querying RDF data has been updated to include C2RPQs. It is

known that C2RPQs extend both CQs and RPQs.

It is worthy to note that UC2RPQs extend UCQs, and are therefore closed

under the operations of union, selection, projection, and conjunction, but they

are not closed under the transitive closure (TC) operation. In fact, TC only

occurs inside 2RPQs. Therefore, many natural queries cannot be expressed in

UC2RPQs. As an example, the query P (x, y), P (y, z), P (z, x) → Q(x, y) on

a graph database G, where P represents edges of G, asks whether there is a

triangle in G. This query belongs to C2RPQs. However, the transitive closure

Q+ of Q does not belong to UC2RPQ. Ideally, we are looking for a query

language which (1) is closed under certain operations useful in navigating

graph databases including TC; (2) allows for querying over hypergraphs like

RDF fact bases or sets of facts with an arbitrary predicate arity; and (3) is

tractable.

145



For this purpose, the class of generalized regular queries is introduced in

[126] which satisfies all the above properties of a query language for navigating

(hyper)graph databases. This language can be defined as UC2RPQs which are

closed under TC.

Although GRQs do not allow to express full recursion, to the best of our

knowledge, generalized regular queries are the most expressive fragment of

first-order logic with transitive closure which is known to have an elementary

containment problem [126]. Furthermore, they offer additional properties over

(full) Datalog, some of which are summarized as follows: (1) The complexity

of evaluation of GRQ queries is NLogSpace-complete which puts them in the

NC class which consists of highly parallelizable problems; (2) query contain-

ment checking of GRQ queries is decidable with a tight bound, and belongs

to 2ExpSpace-complete [126].

The importance of the language of GRQs motivites the question of whether

the corresponding queries are distributable and if yes, whether distribution

generates practical gains in query answering, which we will address in this

chapter.

7.2.1 Pseudo-Guarded Generalized Regular Queries

In this section we present the theory of generalized regular queries, and fur-

thermore, we introduce a novel class of queries which we call k-pseudo-guarded

generalized regular that is a syntactically connected subset of GRQs, and then

we study the theory of these queries.

Previous work [8, 32] show positive results on checking distribution over

components for guarded, linear and sticky rules, and negative results for Data-

log rules. However, none of the abovementioned sets of rules is able to express

transitive closure (TC) which is a basic construct in e.g., graph database ap-

plications.

The class of generalized regular queries allows us to incorporate transitive

closure while ensuring that distributability checking remains decidable. The

idea is to have an expressive yet distributable fragment of Datalog by (1)

limiting recursion in a way that it is used only to express TC; and (2) restricting

146



body of rules to guarantee their connectedness.

Before we present our rule fragments let us introduce some notions. Let Σ

be a Datalog rule set over schema S. A predicate P ∈ S depends on a predicate

Q ∈ S if Q occurs in the body of some rule σ ∈ Σ and P is the predicate that

occurs in the head of σ. Furthermore, the dependency graph G = (N,E) of

Σ is a directed graph in which N is the set of predicates of Σ and there is an

edge e ∈ E from Q to P if P depends on Q. A rule set Σ is nonrecursive if the

dependency graph of Σ is acyclic, i.e., no predicate of Σ recursively depends

on itself. We denote the class of all finite sets of nonrecursive Datalog rules

by NRDat.

Given a Datalog rule set Σ, let Q(x, y) be an IDB occurring in Σ. Then,

the following rules define the transitive closure of Q denoted by Q+.

Q(x, y)→ Q+(x, y)
Q(x, y)+,Q(y, z)→ Q+(x, z)

Definition 67. Generalized regular Datalog (GRD) is the fragment of Datalog

in which recursions are restricted to transitive closure. The class of all finite

sets of GRD rules is denoted by GRD.

We are now ready to define generalized regular queries (GRQs).

Definition 68. A generalized regular OMQ Q = (S,Σ, q) defined over S is a

tuple consisting of a set S that represents the schema of the input database, a

GRD rule set Σ, and a CQ q which is a conjunction of atoms of Σ. We write

GRQ for the class of all queries definable by some GRQ query.

Note that in the rest of this chapter, to say that a query Q is a generalized

regular query, we may use the notations of Q ∈ GRQ, and Q ∈ (GRD,CQ),

interchangeably since they are the same.

Notice that as the following example illustrates, GRD rules may not be

connected.

Example 22. Consider the OMQ Q = (S,Σ, q) ∈ GRQ, where Σ = {σ1, σ2},

and q = P (x1, y1):

σ1 ∶ P (x1, y1),Q+(x2, y2), P (x3, y3)→ R(x1, y2)
σ2 ∶ R(x3, y3)→ S(x3, x3)

147



It is easy to verify that Q ∈ GRQ. Furthermore, Σ is not connected.

In what follows, we introduce a syntactic subset of these rules, which we call

k-pseudo-guarded generalized regular Datalog, that is connected by definition,

and also offers some computational properties in terms of the complexity of

distribution checking. Later in Theorem 82, we exploit these properties to

establish the decidability result for checking distribution over components.

Before we proceed to define the class of PG2RQk queries, let us introduce the

novel class of PG rule sets.

Definition 69. (Pseudo-Guarded) Given a set A of atoms, an atom α ∈ A is

called guard w.r.t.A if adom(α) = adom(A). If the set of guard atoms w.r.t.A

is nonempty, thenA is called guarded. Furthermore, A is called pseudo-guarded

if there is a partition {A1, . . . ,An} of A such that for each i ∈ {1, . . . , n}, Ai is

guarded. We call a set Σ of Datalog rules pseudo-guarded (PG) if (i) for each

rule σ ∈ Σ the set of EDB atoms that occur in the body of σ, when seen as

a set of atoms, is pseudo-guarded; and (ii) the body of σ is connected. We

denote the class of all finite sets of PG rules by PG.

According to Definition 69, a rule set Σ is PG if the EDB atoms occurring

in the body of each rule σ ∈ Σ consists of partitions each one of which has a

guard atom and furthermore, body(σ) is connected. It is clear that PG does

not require a single guard for all variables occurring in the body of each rule.

However, any guarded rule set is PG.

Definition 70. A finite set Σ of Datalog rules defined over schema sch(Σ) is

said to belong to pseudo-guarded generalized regular Datalog (PG2RD) if Σ

consists of a set Σ1 of PG rules and a set Σ2 of rules such that:

(i) The EDB predicates of Σ1 (and therefore Σ) belong to sch(Σ);

(ii) The dependency graph of Σ1 is acyclic;

(iii) Σ2 is a set of rules of the following form: {R(x, y)→ S(x, y);S(x, y),

R(y, z)→ S(x, z)} where R ∈ sch(Σ1) is a predicate of Σ1 of arity 2.

148



We define the set of pseudo-guarded generalized regular ontology-mediated

queries similar to Definition 68 as follows.

Definition 71. A pseudo-guarded generalized regular ontology-mediated query

Q = (S,Σ, q) is a tuple consisting of a data schema S, a PG2RD rule set Σ,

together with a CQ q defined over S∪sch(Σ), which is a conjunction of atoms

of Σ over S∪ sch(Σ). We write PG2RQ for the class of all queries definable by

some PG2RQ query.

From Definition 69, it is clear that GRD extends NRDat.1 Furthermore, it

is clear that GRQ is at least as expressive as PG2RQ.

Remark 2. From Definition 70 it can be observed that we can introduce rule

sets that belong to PG2RD which are neither guarded nor sticky. As an exam-

ple, consider the rule set Σ2 of the Introduction Chapter (Chapter 1) which is

in PG2RD but is neither guarded nor sticky.

We are now in a position to formally introduce the intended class of k-

pseudo-guarded generalized regular queries.

Definition 72. Let Q = (S,Σ, q(x)) ∈ PG2RQ where q(x) = ∃yφ(x,y) ∈ CQ,

and Σ′ = Σ ∪ {φ(x,y) → Ans(x)}, in which Ans is a fresh predicate of arity

n = ∣x∣. Assume that the maximum length of a directed path from some EDB

predicate E ∈ sch(Σ′) to the Ans predicate in the dependency graph of Σ′ is a

fixed integer k. Let us call the above length minus 1, the depth of Q. Then, we

call such a query Q with the depth of k, k-pseudo-guarde generalized regular

(PG2RQk). We write PG2RQk for the class of all queries definable by some

PG2RQk query.

7.3 Distribution over Components for GRQ and

PG2RQk

In this section we dive into the theory of distribution over components for

GRQ and PG2RQk fragments. Notice that the characterization provided in

1Recall that NRDat is the class of all finite sets of nonrecursive Datalog rules.

149



this section is of a semantic nature, and does not directly lead to an algorithm

to decide whether a query in either GRQ or PG2RQk is distributable or not.

However, as we will explain in the next section, using semantic characteriza-

tions provided in this section we will be able to construct algorithms to decide

whether a given OMQ which belongs to GRQ or PG2RQk, distributes over con-

nected components of the input database. To start, we need to proceed with

the following proposition for which the proof of Proposition 3 of [32] can be

directly adopted. In fact, as shown therein, this proposition can be generalized

to all OMQs composed of the class of all finite sets of TGDs and the class of

all queries definable by some conjunctive query.

Proposition 73. For Q ∈ {GRQ,PG2RQk}, conQ ⪯ Q ∩DIST.

Proof. (sketch) Let Q = (S,Σ, q) ∈ Q. The claim holds because we can always

partition the result of the chase of a given S-database D with m partitions

D1, . . . ,Dm and Σ, such that each partition Ii (1 ≤ i ≤m) of the result depends

only on Di.

Proposition 73 implies that connectedness for an OMQ Q ∈ {GRQ,PG2RQk}

ensures that Q distributes over components.

In order to establish semantic characterizations on distribution over com-

ponents for GRQ queries, we adopt the transformation used in the connect-

ing operator originally introduced in [8] in the context of Datalog queries

with stratified negation (cf., Algorithm 7.1). This operator takes as input an

OMQ Q = (S,Σ, q) belonging to a particular class, and outputs another OMQ

Q′ = (S,Σ′, q′) which is defined as follows. Σ′ is the union of the connected

version of Σ and some auxiliary rules to annotate each atom of each compo-

nent α of the input database with all the constants occurring in it. Moreover,

q′ is the connected version of q.

For the purpose of constructing auxiliary rules, as illustrated in Algorithm

7.1 (lines 4-11), we introduce a fresh binary predicate con with arity two which

returns true if its arguments belong to the same component. It is clear that

con is transitive and symmetric. This fact is reflected in the transitivity and

symmetry rules which define con. Additionally, con(x1, v),R(x1, . . . , xn) →
150



R∗(v, x1, . . . , xn) is added to annotate each atom of each component A of the

input database with all constants in A.

We construct the connected version of each rule σ ∈ Σ in lines 12-19 of

Algorithm 7.1, in which each atom R(x1, . . . , xn) ∈ σ ∈ Σ is replaced by a fresh

atom R(vσ, x1, . . . , xn) specific to σ.

Finally, we construct the connected version of q in line 21 of Algorithm 7.1.

Overall, Qc is the connected version of Q. This means that whether Q

consists of either a single or multiple components, when Q is closed under

connecting, Qc always involves a single component. This task is done by in-

troducing fresh predicates which are obtained by adding fresh variables specific

to each rule σ ∈ Σ or query q to the predicates of σ or q to ensure all rules and

the query of the resulting OMQ Qc are connected by means of the introduced

fresh variables. Then, for such an input query Q, if the resulting query Qc is

equivalent to Q, we can conclude that Q is distributable, as it is equivalent to

a connected one.

It was shown in [32] that the membership of an input query Q in DIST

implies the equivalence of Q and Qc. For all rule sets Σ ∈ C and for some class

C of rules that are closed under this operator, i.e., c(Σ) ∈ C, Proposition 74

holds.

Proposition 74. [32] For any C ⊆ TGD such that C is closed under connecting

operator, (C,CQ) ∩DIST ⪯ (conC, conCQ).

Proposition 74 intuitively says that distribution over connected components

of the input database for any OMQ which is closed under the connecting

operator, and consists of a rule set Σ ∈ TGD and a conjunctive query q implies

connectedness for (S,Σ, q).

By following Algorithm 7.1, it can be seen that GRQ is closed under the

connecting operator. Therefore, according to Propositions 73 and 74, we can

establish distributability result for GRQ queries as follows.

Proposition 75. (GRD,CQ) ∩DIST = (conGRD, conCQ).

On the other hand, PG2RQk queries are not closed under connecting. How-

ever, we can still establish the same result of Proposition 75 for this class of

151



Algorithm 7.1 Connecting Operator for GRQ queries

Input: An OMQ Q = (S,Σ, q) ∈ GRQ;
Output: The transformed OMQ Qc = (S, c(Σ), c(q)); A Boolean value
IsClosed;

1: procedure Qc

2: end procedure
3: bool IsClosed← False;
4: c(Σ) = ∅;
5: for each predicate R ∈ S with arity n do
6: for each i, j ∈ {1, . . . , n} do
7: c(Σ) = c(Σ) ∪ {R(x1, . . . , xn) → con(xi, xj)}, where con is a fresh

binary predicate;
8: end for
9: c(Σ) = c(Σ) ∪ {con(x1, v),R(x1, . . . , xn) → R∗(v, x1, . . . , xn)}, where
v ∉ {x1, . . . , xn} and R∗ is a fresh predicate of arity n + 1;

10: end for
11: c(Σ) = c(Σ) ∪ {con(x, y)→ con(y, x); con(x, y), con(y, z)→ con(x, z)};
12: Σ′ = ∅;
13: for each σ ∈ Σ do
14: for each atom R(x1, . . . , xn) ∈ σ do
15: Replace R(x1, . . . , xn) with R∗(vσ, x1, . . . , xn), where vσ ∉

{x1, . . . , xn};
16: end for
17: Denote the resulting rule by σ′;
18: Σ′ = Σ′ ∪ {σ′};
19: end for
20: c(Σ) = c(Σ) ∪Σ′;
21: For each query q, construct c(q) by replacing each atom R(x1, . . . , xn) with

R∗(vq, x1, . . . , xn);
22: Qc ← (S, c(Σ), c(q));
23: if c(Σ) ∈ GRD then
24: return ¬IsClosed;
25: end if
26: return IsClosed;

queries. This exploits the fact that rules in PG2RQk queries are connected by

definition. Let us prove a lemma.

Lemma 76. PG2RD = conPG2RD.

Proof. From Definition 70, any given rule set Σ ∈ PG2RD consists of a set

Σ1 of nonrecursive PG rules and a set Σ2 of TC rules. Σ2 is connected by

152



definition. Therefore it remains to show the connectedness of rules in Σ1.

Based on Definition 69, for a rule set Σ to belong to PG, the bodies of all

rules σ ∈ Σ must be pseudo-guarded. This means that for each such rule σ

there must be a partition {A1, . . . ,An} of body(σ) such that each partition Ai

is guarded, and every pair of partitions share at least one variable. Based on

the definition of the partition, it is clear that
n

⋃
i=1
Ai = body(σ), and therefore

n

⋃
i=1
var(Ai) = var(body(σ)). Since each partition Ai has (at least) one guard

atom, each Ai is connected for i ∈ {1, . . . , n}. Let us denote a guard atom

of each partition Ai with Agi . Since for each pair of guard atoms Agi and Agj

(of two different partitions), var(Agi ) ∩ var(A
g
j) ≠ ∅, for each rule σ ∈ Σ there

is a sequence of atoms in body(σ) (namely Ag = {Ag1, . . . ,A
g
n}) which covers

all terms of body(σ), and each pair of atoms of Ag share at least one term.

Therefore, Σ is connected.

Remark 3. From Definition 72, it is clear that each PG2RQk query is com-

posed of a PG2RD rule set and a CQ which satisfies the particular depth

requirement as defined therein. Alternatively, (PG2RD,CQ)k is the class of all

queries definable by some PG2RQk query.

From Lemma 76, PG2RD rules are connected. Moreover, from Remark 3,

connectedness of PG2RD rules can help us establish the same result for the

rules of PG2RQk queries.

Next, we show another result which along with Lemma 76 can help us

establish distributability results for PG2RQk queries.

Lemma 77. ([32]) For all subsets C of Datalog rule sets that are connected,

(C,CQ) ∩ DIST ⪯ (C, conCQ) (i.e., distribution over components for (C,CQ)

implies connectedness of these queries).

By exploiting Lemmas 76 and 77, we can establish distributability results

for PG2RQk queries as follows.

Proposition 78. (PG2RD,CQ)k ∩DIST = (PG2RD, conCQ)k.

153



7.4 Deciding Distributability of PG2RQk and

GRQ via Containment

In previous sections, we provided a semantic characterization for determining

the distributable fragments of OMQs consisting of GRQ as well as PG2RQk

queries. Note that this does not directly lead to a concrete algorithm for

deciding distribution over connected components of databases for all fragments

of these queries. The reason is that to show the following direction: (C,CQ)∩

DIST ⪯ (conC, conCQ), i.e., (conC, conCQ) for C ∈ {GRD,PG2RD} is at least

as expressive as (C,CQ) ∩ DIST, we need to prove that for each query q1 ∈

(C,CQ) ∩ DIST, there is some query q2 ∈ (conC, conCQ), such that q1 and q2

are equivalent, i.e., for every database D, q1(D) = q2(D).

Therefore, if we find a procedure which solves the latter problem in a finite

amount of time, then that procedure leads to a concrete algorithm. Note that

finding such an algorithm hinges on the decidability of the query equivalence

problem which is a known undecidable problem for arbitrary Datalog queries

[133].

In this section, we provide mechanisms to decide the membership in DIST

for the above query fragments. For this purpose, we distinguish the two cases

of GRQ and PG2RQk queries, as they have different properties.

Let us start with GRQ queries. In the previous section we showed that

these queries are closed under connecting. Therefore, for each OMQ Q =

(S,Σ, q) ∈ GRQ, the transformed OMQ Qc = (S, c(Σ), c(q)), as obtained in

Algorithm 7.1, belongs to GRQ.

For all distributable OMQs Q ∈ GRQ∩DIST, we have Q ≡ Qc, i.e., distribu-

tion over components for GRQ queries implies connectedness of these queries.

Furthermore, based on Proposition 73, connectedness of GRQ queries implies

their distribution over components. Therefore, if we can show that Q and Qc

are equivalent, then, Q is distributable, and any procedure to solve the above

equivalence problem leads to a decision problem for membership checking of

GRQ in DIST. From [126], it is known that the equivalence problem for GRQ

queries is decidable in 2ExpSpace. Henceforth, given that the size of Qc

154



as computed by Algorithm 7.1 is polynomial in the size of the given OMQ

Q ∈ GRQ, checking whether Q belongs to DIST remains within 2ExpSpace

too.

Theorem 79. Given a query Q ∈ GRQ, the complexity of checking whether

Q ∈ DIST is upper bounded by 2ExpSpace.

For testing query containment of GRQ queries or any of its subsets consid-

ered in this chapter we apply the algorithm provided in Section 4.2 of [126] to

check the containment of Q,Qc ∈ GRQ, and answer membership of Q in DIST

positively, if Q ≡ Qc (i.e., Q is contained in Qc, and Qc in Q).2

Let us turn our attention to PG2RQk queries. First, note that since these

queries are not closed under connecting, therefore, for these queries we cannot

utilize the approach of GRQ. From [2], it is known that for each NRDat rule set

there is a query answering-preserving transformation to a UCQ, or in other

words each rule set in NRDat is UCQ-rewritable. Using this fact, in [32]

it was shown that checking distribution over components is decidable (and

coNExpTime-complete) for NRDat, even for fixed schema arity.

It is not hard to establish that the data complexity of reasoning with

PG2RQk queries is NLogSpace-complete. The upper bound comes from that

of GRQ queries which is known to be in NLogSpace [126]. Moreover, to

prove the hardness, we utilize a reduction from the evaluation problem for

linear Datalog which is a NLogSpace-complete problem [55]. Since (i) the

evaluation problem of all UCQ-rewritable queries is in AC0 in data complexity;

and (ii) AC0 is strictly contained in NLogSpace, we conclude that PG2RQk

queries cannot be UCQ-rewritable. For more information, cf., [11].

Therefore, we cannot conduct our distribution analysis for these rules via

the rewriting approach as established in the previous chapter.

For any class of queries Q, let Dist(Q) denote the problem of checking

membership of Q ∈ Q in DIST. In this section, we show that Dist(PG2RQk)
2Note that in [126] it is assumed that each GRQ query is encoded in an equivalent query

language known as the nested union of conjunctive two-way regular path query (nUC2RPQ)
since there are well established automata-theoretic techniques for the latter class of queries
that can be applied to obtain containment results for GRQs.

155



is decidable, and then, we elaborate on how to decide whether Dist(PG2RQk)

returns a true/false answer. To tackle the distribution problem for OMQs

consisting of these fragments, we exploit the fact that as argued in Lemma 76,

the rules of PG2RQk queries are by definition connected.

Recall that Proposition 78 shows that distribution over components implies

connectedness for PG2RQk queries.

Consider an OMQ Q = (S,Σ, q) ∈ PG2RQk ∩ DIST, where q in defined by

the following CQ: ∃yφ(x,y). Obviously, Q is either unsatisfiable or satisfiable.

The former means that for all databases D defined over S, Q(D) = ∅. For this

case, this proposition holds trivially as we can choose an arbitrary unsatisfiable

query from conPG2RQk to verify the claim.

For the latter case (i.e., when Q is satisfiable), let us denote the set of

components of q with {φ1, . . . , φm}. If m = 1, the claim holds trivially as in this

case, connectedness holds for PG2RQk unconditionally, and so does the claim.

So, to proceed, let us focus on m ≥ 2. We claim that one can focus on only

one single component of q in order to construct an OMQ which is equivalent

to Q. Let us denote this component using qi for some i ∈ {1, . . . ,m}, for which

we can construct Qi = (S,Σ, qi). Then since Qi is connected by definition, this

particular Qi satisfies Proposition 78.

To proceed further, let us consider two cases for the CQ: q is either Boolean

or nonBoolean. In the former, for the arity n of q we have: n = 0, and in the

latter, n > 0.

In the latter case since Σ is connected, it can be shown that all answer

variables of q must occur in a single component as otherwise, Q will be unsat-

isfiable which contradicts our initial assumption. This leads to the conclusion

that we can focus on the single component qx of q which possesses all answer

variables of q. Let Qx = (S,Σ, qx). Based on what was argued above we

conclude that Qx ∈ conPG2RQk, and we have: Q ≡ Qx as desired.

In the former case where q is Boolean, we proceed by following the same

goal: To show that there is a component qi of q, in which i ∈ {1, . . . ,m} such

that Qi = (S,Σ, qi) ≡ Q. This can be done by finding an integer i ∈ {1, . . . ,m}

such that Qi ⊆ Q−i , where Q−i is the query obtained from Q by removing the

156



component φi of q. Then (i) Qi ⊆ Q−i ; (ii) Q−i ⊆ Q; and (iii) Q ⊆ Qi, lead to

the conclusion that Q and Qi are equivalent, or in other words, there is an

integer i ∈ {1, . . . ,m} such that Q ≡ Qi. Finally, since this Qi is connected by

definition, it satisfies Proposition 78 as desired.

Based on the above arguments, it is easy to show the following Lemma.

Lemma 80. Given an OMQ Q = (S,Σ, q) ∈ PG2RQk, let {q1, . . . , qm} be the

set of components of q. We have Q ∈ DIST if and only if one of the following

conditions holds:

(i) Q is not satisfiable;

(ii) There is an integer i ∈ {1, . . . ,m} such that Qi = (S,Σ, qi) ∈ PG2RQk, and

Qi ⊆ Q.

Notice that checking condition (i) of Lemma 80 boils down to checking the

containment problem for PG2RQk queries. Therefore, if we solve the query

containment problem for any query Q ∈ PG2RQk, then, we have a decision

algorithm for checking distributability ofQ. In the sequel, we present a positive

answer to the containment problem of these queries.

Given a query languageQ, the containment problem forQ, denoted Cont(Q),

takes as input two queries Q1,Q2 ∈ Q, and checks whether for all databases D,

Q1(D) ⊆ Q2(D), where queries in Q1 and Q2 are of the same arity.3

Proposition 81. Cont(PG2RQk) is decidable.

Proof. The above result is shown by a reduction to the containment of the

bounded depth GRQ queries as studied in [126]. It is known that the query

containment problem for these queries is ExpSpace-complete. We utilize

the same construction provided in [139] for rewriting a query Q ∈ GRQ into

an equivalent Datalog query QDat = (Π,Ans), where Π is a set of standard

nonrecursive Datalog rules of arbitrary arity with some additional rules that

define transitive closure of binary relations.

3Recall that each OMQ Q = (S,Σ, q) is interpreted as a query over S the arity of which
is that of q.

157



Notice that as discussed in [139], this restriction of recursion in Datalog

is the basis for the decidability of query containment for GRQ. Furthermore,

GRQ generalizes the class of regular queries RQ in which the queries are de-

fined on graph databases, and therefore all rules of Π are binary. However,

this restriction does not change the complexity of containment checking for

these queries, since relations of arbitrary arity can be easily encoded to binary

relations [126]. This immediately leads to the conclusion that bounding the

maximum arity of rules does not change the complexity of the corresponding

containment problem.

Exploiting Proposition 81, we are now ready to present the main result of

this section.

Theorem 82. The complexity of checking Dist(PG2RQk) is in ExpSpace.

7.5 The Landscape of Distributable OMQs

The fragments we investigate in this chapter for checking distributability over

connected components so far belong to the following two general categories:

(1) Those for which the corresponding fragment is UCQ-rewritable; and (2)

Those with decidable problem of equivalence (i.e., decidable OMQ containment

problem).

In the sequel, we show that the decidability of the problem of checking dis-

tribution over components can be ubiquitously applied to OMQs constructed

from other query languages which belong to the first or the second category

above. In case the query is not UCQ-rewritable, but the problem of equiv-

alence of the query language is decidable, we show that there is a fragment

in that language which has a decidable problem of checking distribution over

components. Before we proceed, let us introduce an auxiliary notion.

7.5.1 Datalog with Negation

A Datalog rule with negation is a rule σ of the form φpos(x,y) ∧ φneg(x,y)→

ψ(x) in which φpos(x,y) and φneg(x,y) are conjunctions of atoms, and ψ(x) is

158



an atom. We call ψ(x) the head of σ, and φpos(x,y) and φneg(x,y) are called

positive body atoms and negative body atoms, respectively. We only consider

rules σ in which each variable of ψ(x) and φneg(x,y) also occurs in φpos(x,y).

Let φpos = {A1, . . . ,An} and φneg = {B1, . . . ,Bm} and ψ = H. Then a rule σ as

defined above may be written in a conventional syntax as follows:

A1(x,y), . . . ,An(x,y),¬B1(x,y), . . . ,¬Bm(x,y)→H(x)

We say that a Datalog rule with negation σ is over a schema if all of its

atoms be over that schema. A Datalog with negation Σ over a schema sch(Σ)

is a set of Datalog rules with negation over sch(Σ).

The notions of intensional/extensional predicates and atoms of a Datalog

with negation are defined analogous to those of a Datalog. A stratification of a

Datalog with negation Σ is a partition of Σ into a set {Σ1, . . . ,Σm} of Datalog

rules such that the following conditions are satisfied:

1. All rules σ ∈ Σ that have the occurrence of the same IDB predicate in

head(σ) are in the same partition;

2. If an IDB predicate R1 occurs positively in the body of a rule with head

R2, R1 should occur in the head of a rule which appears in a partition

with index smaller than or equal to where R2 is defined;

3. If an IDB predicate R1 occurs negative in the body of a rule with head

R2, R1 should occur in the head of a rule which appears in a partition

with index smaller than where R2 is defined;

A Datalog with negation is called stratified if there is a stratification for

it. Sometimes we call such a set Datalog with stratified negation. We write

DatalogStrNeg for the class of all finite sets of Datalog rules with stratified

negation.

Let Σ be a DatalogStrNeg rule set, and Σ′ be Σ with all the negative body

atoms removed. Σ is called connected if Σ′ is connected.

Let C be a subclass of DatalogStrNeg rules. We denote by conC the class of

all finite sets of rules that belong to C and that are connected.

159



In the following two subsections we introduce these logics along with results

on their combination with transitive closure.

7.5.2 Distribution of Logics without Transitivity

In this section we lay down the landscape of distributability of different logics

that are well known in the literature over connected database components,

and we derive new results regarding OMQ distribution for these fragments.

In order to achieve decidability for all of these fragments, we exploit the tools

that were developed in previous sections. Warning and apology: in the rest

of this chapter we may use the terms OMQs, logics, fragments, and (query)

languages interchangeably.

The logics we consider in this chapter are as follows: Unary-Negation

Fragment of First-Order logic (UNFO) [136], Guarded fragment (GFO) [9],

Monadic Datalog (MDL) [77], Least Fixpoint Logic (LFP) [142], Monadically

Defined Queries (MODEQ) [37], Guarded Negation Datalog (GNDatalog) [21],

Guarded Negation Fixpoint Logic (GNFP) [22], Guarded Negation Fixpoint

Logic with unrestricted parameters (GNFP-UP) [28], C2RPQ [46], UC2RPQ,

GRQ [126], RQ [126], frontier-1 TGD (fr-1), FGTGD [18], and First-order

Logic (FO). We adopt the convention similar to the previous classes of OMQs

we considered in this chapter to denote the sets of each one of these languages,

e.g., GFO is used to denote the sets of GFO OMQs.

For any of these logics, we distinguish the notions of ontologies and queries

constructed from them as follows: For each class X above, an X ontology is

specified by a finite set of formulas of X. Moreover, an X query is a pair

(Σ,Ans), where Σ is an X ontology and Ans is a union of conjunctive queries

over the schema of Σ.

The containment problem is known to be decidable for the queries con-

structed from all of these logics with the complexities as listed in Table 7.1

in which decidability results for all queries constructed from ontologies with

⋆ are established only in the presence of answer-guarded conjunctive queries

(AGCQs). The same assumption is made to establish all results concerning

these fragments in the rest of this chapter. Furthermore, the expressiveness

160



relations that exist between these logics among others are shown in Figure

7.5.1.

Table 7.1: Containment problem for the logics considered in this chapter

Language Complexity of the Containment Problem

GNDatalog⋆ 2ExpTime [21]
LFP Undecidable

GFO⋆ 2ExpTime [84]
GNFO⋆ 2ExpTime [20]
UNFO⋆ 2ExpTime [136]
MDL 2ExpTime [29, 52]

MODEQ 2ExpTime [37]
GNFP⋆ 2ExpTime [20]

GNFP-UP⋆ Nonelementary [28]
fr-1⋆ 2ExpTime [136]

FGTGD⋆ 2ExpTime [136]
C2RPQ ExpSpace [46]

UC2RPQ ExpSpace
GRQ 2ExpSpace [126]
RQ 2ExpSpace [126]
FO Undecidable

Datalog Undecidable [133]

Definition 83. Each Q′ = (S′,Σ′, q′) ∈ Q′ is called a standard Q′ translation of

an OMQ Q = (S,Σ, q) ∈ Q if (1) Q ⪯ Q′, and (2) Q′ preserves certain answers

of Q, i.e., Q ≡ Q′. The notion of standard Q′ translation can be extended to

sets of OMQs in a natural way.

There are known standard DatalogStrNeg translations of Q ∈ {GFO, fr-1,MDL,

FGTGD,UNFO,GNFO,GNDatalog,MODEQ,C2RPQ,UC2RPQ,RQ,GRQ} queries.

For a recent survey, refer to [27]. Without loss of generality, in the rest of this

chapter, we assume that each query Q = (S,Σ, q) ∈ Q where Q is as listed

above, is already in the standard translation to DatalogStrNeg queries.

Note that with an exception of the following classes: {GRQ,RQ}, the other

classes are not closed under connecting operator. Therefore, for these classes

we can establish distribution results similar to that of GRQ queries of the

previous section.

161



On the other hand, the following classes of queries: {GFO,MODEQ, fr-1,MDL

C2RPQ,UC2RPQ,FGTGD,UNFO,GNFO,GNDatalog} are not closed under con-

necting, and therefore, Proposition 74 is not applicable for them. However, if

we focus on the connected fragment of the above ontologies, we can establish

such result. Then, we can prove the following theorem with a proof similar to

that of Lemma 80 and Proposition 75.

Theorem 84. Let C1 ∈ {GFO,FGTGD,UNFO,GNFO,GNDatalog,MDL,C2RPQ,

fr-1,MODEQ,UC2RPQ} be a class of ontologies. Then we have: (i) (conC1,CQ)∩

DIST = (conC1, conCQ); and (ii) if C2 ∈ {GRQ,RQ}, then (C2,CQ) ∩ DIST =

(conC2, conCQ).

Theorem 84 states that for all queries listed therein, their connected frag-

ment effectively provides a fragment for which the problem of distribution over

components is decidable. Before establishing the main result of this section,

let us present a lemma.

Lemma 85. For each query language Q ∈ {GFO, fr-1,FGTGD,UNFO,GNFO,

GNDatalog,MDL,MODEQ,C2RPQ,UC2RPQ,RQ,GRQ}, Cont(Q) is decidable.

It is not hard to see that Lemma 80 can be generalized to any query

Q = (S,Σ, q) ∈ (conDatalogStrNeg,CQ). The proof is similar to that of Lemma

80. Note that this generalization does not necessarily lead to any decidable

procedure for these queries. However, when combined with Lemma 85, the

decidability results can be established for the queries mentioned in that lemma.

Theorem 86. For each class of ontologies C1 and C2 as listed in Theorem 84,

the membership checking problem of (i) (conC1,CQ); and (ii) (C2,CQ) queries

in DIST is decidable, and is in elementary for all of the above queries. The

exact complexity upper bound for each language is summarized in Figure 7.5.1.

In Figure 7.5.1, the considered classes of OMQs with the complexity of

deciding distribution over components for each fragment is demonstrated. The

lines in the figure represent containment at the level of expressiveness.

For each query Q1 ∈ {GFO, fr-1,FGTGD,MODEQ,C2RPQ,UC2RPQ,UNFO,

MDL,GNFO,GNDatalog}, based on Theorem 86, there is a fragment for which

162



the problem of checking distribution over components has the same complexity

upper bound as that of the containment checking problem for the correspond-

ing fragment Q1. Moreover, for Q2 ∈ {RQ,GRQ}, the same argument holds for

the entire fragment.

For any query language Q with ** as a superscript (i.e., Q∗∗) in Figure

7.5.1, its connected fragment has a decidable problem of distribution over

components according to the proof technique of Theorem 86. In addition, for

those logics without **, the above problem has a complexity upper bound

shown below its name for all OMQs constructed in that language. The tech-

niques developed in this chapter cannot provide any result for the problem of

distribution over components for fragments with “?” under their name.

Bidirectional lines in Figure 7.5.1 are to denote that the languages they con-

nect are equi-expressive. In particular, NRDat = UCQ [2], and TGD with FC =

Datalog, where FC stands for the finite chase, and TGD with FC is the class

of all finite sets of TGDs that have finite chase (aka finite expansion sets, or

FES), cf., [18]. The latter is a recent result shown in [104].

7.5.3 Distribution of Logics Combined with Transitivity

A serious weakness of most logics that we studied in the previous section, with

regard to their expressive power, is their inability to express transitivity of a

binary relation. In previous sections, we discussed the consequences of this

limitation in the knowledge representation or databases applications in which

relations such as part-of or stronger-than occurs frequently.

As a notational convention, for each class of OMQs Q with Q+TC, we

denote combination of the transitivity operator with Q. It is known from the

literature that adding transitivity to most logics leads to undecidability of the

satisfiability and containment problem of the underlying logics.

We show how this will affect the problem of distribution over components,

and then we single out classes of OMQs for which this problem is decidable.

Before we can present the results of this section, let us introduce some notions.

A transitivity rule is a Datalog rule of the form P (x, y), P (y, z)→ P (x, z).

A predicate is called transitive if it appears in a transitivity rule.

163



Figure 7.5.1: Distribution checking for different logics.

Let Q = (S,Σ, q) ∈ Q be such that Q ⪯ DatalogStrNeg. Let Σ+TC∣P denote

the rule set which is the result of combining Σ with transitivity rules for some

binary predicates in P ⊆ sch(Σ). We define:

Q+TC = { ⋃
∀Σ∈Q

[Σ+TC∣P ] for some binary predicates P ⊆ sch(Σ)}

i.e., Q+TC denotes the class of OMQs obtained by adding zero or more tran-

sitivity rules to rule sets Σ in Q.

For each class of queries Q we studied in the previous section, it is clear

that

Q ⪯ Q+TC ⪯ DatalogStrNeg+TC = DatalogStrNeg (7.5.1)

Note that adding TC to RQ and GRQ does not increase expressivity of the

language, as the original fragments already allow for transitivity, i.e., GRQ =

GRQ+TC.

Based on (7.5.1), exploiting the fact that transitivity rules are connected by

definition, it is clear that combining any query language Q with TC does not

164



change the syntactic connectivity status of Q. On the other hand, since adding

TC to any query language may result in undecidability of the satisfiability and

equivalence problem of the resulting language, it turns out that for all of the

studied query languages where the combination is undecidable, the problem of

distribution over connected components will be undecidable too. This holds

for the following fragments and all other ones that are strictly more expressive

than these classes:

{GFO+TC,GTGD+TC,GNFO+TC,StickyTGD+TC}

On the other hand, the problem of containment is known to be decidable

for the following fragments which permit transitivity, as well as any other class

of languages that is not strictly more expressive than the following:

{UNFO+TC [58],RQ,GRQ [126]}

Since adding transitivity does not change the syntactic connectivity of the

queries, we can exploit the same tools that were used in the previous section

for the new fragments. Therefore, we have similar results with the previous

section which is stated in the following Theorem.

Theorem 87. For Q ∈ {UNFO+TC,RQ,GRQ}, case (ii) of Theorems 84 and

86 holds. The exact complexity upper bounds for the resulting languages are

summarized in Figure 7.5.2.

In Figure 7.5.2, different classes of query languages along with their com-

plexity of membership checking in DIST is demonstrated. When compared

to Figure 7.5.1, it can be seen that for most of OMQs in the figure without

transitivity, adding TC leads to undecidability of the problem of checking dis-

tribution over components. This holds in particular for the guarded fragment.

However, for the unary negation fragment the above statement does not hold.

In addition, based on Theorem 87, the problem of checking distributability

over components has the same complexity upper bound of the same problem

for the fragment without transitivity.

165



Figure 7.5.2: Distribution checking for different logics combined with transi-
tivity.

7.6 A Case Study

Consider the following rule set Σ = {σ1, . . . , σk+4} for some integer k ≥ 1 which

models a secure multi-party computation (MPC) network that involves a group

of n parties who want to compute a function together.

The MPC scenario we are modelling is based on Shamir’s secret sharing

scheme (sss) [132], which is common in the MPC literature (cf. [76], and [57]

for an implementation of MPC based on sss). In this threshold-based model,

a secret is divided into parts giving each party its own unique part (share).

A minimum number of shares, called the threshold value, is then needed to

reconstruct the original secret.

We make the following assumptions in our model:

1. If some party (also called node in the MPC network) xi is going to com-

municate a secret message to another party xj for some i, j ∈ {1, . . . , n}

166



where i ≠ j, a secure channel must be established from xi to xj

(Schannel(xi, xj));

2. There exists an adversary who is corrupted. A corrupted party xi may

corrupt some other party xj in the network (Corrupts(xi, xj));

3. A threshold is an integer denoted by ti for i ∈ {1, . . . , k} where 1 ≤

ti ≤ n, and k represents the number of different secrets. For different

secrets different thresholds apply. This number represents the number

of shares of some secret among parties. We assume that an adversary

acts rationally by trying to corrupt as many parties as possible, but only

those with whom she shares the ith secret, until she ensures that at least

ti parties with this constraint are corrupted (the fact that Eve shares the

ith secret with Alice is denoted by SharesSecri(Eve,Alice)).

x corrupts y if x is corrupted and furthermore, there is a secure channel

via which it can connect through a chain of intermediate nodes that can pass

the messages using trusted third-party message-passing nodes (σ2). In order

to establish a successful trusted third-party message passing protocol from a

node x to another node y, there must be a secure channel from x to y and a

trusted third-party z which acts as an intermediary node to receive messages

from x and then deliver them to y (σ3). Further, such a trust can only be

established from x to y if both of these nodes are corrupted and they are

connected with the same person via a chain of good friends (σ4).

If any of Compromi(x1, . . . , xn, ti) for i ∈ {1, . . . , k} is true which means

that Compromised(x1, . . . , xn) returns true, at least ti parties are corrupted

where ti is the threshold for the ith secret (σ1). This implies that our MPC

network with k secrets and n parties is compromised. Note that σ1 is equivalent

to k rules of the form Compromi(x1, . . . , xn, ti) → Compromised(x1, . . . , xn)

(1 ≤ i ≤ n). The disjunctions used there are only for the convenience.

Finally, if there is a chain of ti parties that corrupt each other and share the

ith secret among one another, then the ith secret is compromised (σ5-σk+4).

167



σ1 ∶ (Comprom1(x1, . . . , xn, t1) ∨ ⋅ ⋅ ⋅ ∨Compromk(x1, . . . , xn, tk))→
Compromised(x1, . . . , xn)

σ2 ∶ Corrupted(x),Schannel(x, z1),TMPassing+(z1, z2),Schannel(z2, y)→
Corrupts(x, y)

σ3 ∶ Schannel(x, y),Trusts(x, z),MPassing+(x, z),MPassing+(z, y)→
TMPassing(x, y)

σ4 ∶ Corrupted(x),Corrupted(y),GoodFriends+(x, z),GoodFriends+(y, z)→
Trusts(x, y)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ5 ∶ SharesSecr+1(x1, x2),
Corrupts+(x1, x2),SharesSecr+1(x2, x3),Corrupts+(x2, x3), . . . ,
SharesSecr+1(xt1−1, xt1),Corrupts+(xt1−1, xt1)→ Comprom1(x1, . . . , xn, t1)
⋮

σk+4 ∶ SharesSecr+k(x1, x2),
Corrupts+(x1, x2),SharesSecr+k(x2, x3),Corrupts+(x2, x3), . . . ,
SharesSecr+k(xtk−1, xtk),Corrupts+(xtk−1, xtk)→ Compromk(x1, . . . , xn, tk)

Notice that for each binary predicate P , P + is the transitive closure of P ,

and the TC rules are not explicitly written for this example. It is not difficult

to show that Σ ∈ GRD. Furthermore, Σ does not belong to RD due to the

presence of predicates of arity greater than 2.

Moreover, let Q = (S,Σ, q) be a query of depth c, where c is a constant

and q is a CQ. Then, Q is equivalent to another query Q′ = (S′,Σ′, q) that

belongs to PG2RQc. Q′ is constructed as follows. Σ′ = Σ ∪ {CorruptedE(x) →

Corrupted(x); SchannelE(x, y)→ Schannel(x, y)} and S′ = S∪{CorruptedE/1,

SchannelE/2}, where we write R/n to denote that R has arity n.

It is not hard to show that given a (syntactically) connected query Q ∈ GRQ

of depth k,4 where k is an integer, we can always find a query Q′ such that

(i) Q ≡ Q′, and (ii) Q′ ∈ PG2RQk+1. The construction of such a query is based

on introducing a fresh EDB predicate PE for each EDB predicate P of arity

n that occurs in the rule set of Q and add {PE(x) → P (x)} to the rule set of

Q to obtain that of Q′, where ∣x∣ = n.

4The depth of GRQ queries is defined analogous to that of PG2RQ queries.

168



7.7 Experiments on PG2RQk queries

The goal of this section is multi-fold: First, we construct OMQs that belong

to PG2RQk queries. In the next step, we analyze these queries for membership

in DIST, i.e., whether they are distributable over components. Finally, we

evaluate the performance of the task of query answering for those queries

which are distributable: we establish several optimizations for these queries to

improve the above task.

We analyzed 120 (non-Horn) ontologies from the following corpora: Bio-

Portal, the Protege library, Gardiner ontology corpus [71], as well as a num-

ber of ontologies from Open Biomedical Ontology (OBO) corpus. In order

to transform ontologies into Datalog rules we used KAON2 tool [118]. As

a first preprocessing step, we discarded the translated ontologies with those

constructs outside of SHIQ, which are therefore outside of what KAON2 can

support. As a second preprocessing step we discarded all ontologies with con-

structs that correspond to disjunctive as well as recursive Datalog.

We ended up with 105 ontologies for which KAON2 succeeded in producing

Datalog.

We fixed k to be 10, and then we doctored the resulting ontologies for those

without transitive predicates, by adding transitive axioms on top of the those

ontologies, randomly, for 3 different IDB predicates in all of the considered

corpora.

Among the resulting ontologies we handcrafted conjunctive queries and

input databases while ensuring that the depth of these OMQs is bounded by

10. Then, in order to check the membership of each OMQ Q in PG2RQ10,

we removed the restriction of the rules that occur in Q to satisfy Condition

(i) of Definition 69.

After removing this condition, we end up with connected GRQ queries

of bounded depth. Note that this can be done without loss of generality,

since, as illustrated in the example of Section 7.6, for each connected OMQ

Q ∈ GRQ with depth k, one can always find an equivalent OMQ which be-

longs to PG2RQk+1 for a fixed value of k. Then, we proceeded with checking

169



Table 7.2: Statistical results for distributability membership checking

# Total queries
# PG2RQ10

queries
# Dist. queries

Avg. dist.
checking time (s)

105 96 62 242.7

membership of the resulting OMQs in DIST according to Algorithm 7.2.

After accomplishing the above tasks, we found 96 (91.4%) OMQs that

belong to PG2RQ10.

Algorithm 7.2, which is based on Lemma 80, takes as input, an OMQ Q

that belongs to PG2RQk, and outputs a Boolean value that evaluates to true

when Q is distributable and false, otherwise.

Algorithm 7.2 Checking membership of Q = (S,Σ, q) ∈ PG2RQk in DIST

Input: An OMQ Q ∈ Q = PG2RQk;
Output: Boolean value IsDistributable;

1: procedure Dist(Q), where Q ∈ Q
2: end procedure
3: IsDistributable = false;
4: {q1, . . . , qm}← Components of q;
5: if Q is unsatisfiable then
6: IsDistributable = true;
7: return IsDistributable;
8: end if
9: for Each integer i ∈ {1, . . . ,m} do

10: if Qi = (S,Σ, qi) ∈ PG2RQk and Qi ⊆ Q then
11: IsDistributable = true;
12: return IsDistributable;
13: end if
14: end for
15: return IsDistributable;

In the corpora under consideration we discovered 62 ontologies (64.6%)

that were distributable. Statistics related to this analysis is summarized in

Table 7.2.

Additionally, for distributable queries we evaluated the performance of

query answering using two Datalog engines of RDFox and Graal. The results

of this evaluation is summarized in Table 7.3.

170



Table 7.3: Statistics of distributed versus centralized query answering

# Experimented queries
Centr. Distr. Avg. # of

components
RDFox Graal RDFox Graal

62 73.2 248.1 27.3 86.6 3

Query answering optimization

In a nutshell, a query Q ∈ PG2RQk that is distributable lends itself to query

optimizations that are available for free. For a simple explanation, notice that

for such queries, according to Lemma 80, one is able to exploit the (query)

results of only one component Qi of Q to answer Q. This can be a huge

advantage for answering queries with many components.

In this section by focusing on dyadic OMQs,5 we establish a number of fur-

ther optimizations which can be applied during the course of query answering

for queries which conform to particular characteristics which we describe in

the next lemma. This way, one is able to improve the performance of query

answering even further.

Lemma 88. Let Q1 = (S,Σ, q1), Q2 = (S,Σ, q2), and D be a S-database.

Let q1
e and q2

s denote the resulting and starting set of q1 and q2, respectively.

Furthermore, let Q3 = Q1 ∧ Q2. If q1
e ∩ q2

s ≠ ∅, then Q3(D) is the union of

vertices in paths in Q1(D) ∪Q2(D) which pass through q1
e ∪ q2

s , i.e., the set of

queries for which the starting and the ending points are known, is closed under

conjunction.

Let q be a regular path query corresponding to a regular expression rq,

where the latter is over an alphabet of edge symbols E. Since regular lan-

guages are closed under the operation of reversal, reverse(rq) is also a regular

expression which corresponds to query qreverse in a way that reverse(rq) is

isomorphic to qreverse.

Let I be an instance over S. Let us define mappings f from the strings

generated by rq to all paths in I. Similarly, let f r be a mapping from strings

5An OMQ Q = (S,Σ, q) is dyadic if the maximum arity of all predicates in S, Σ and q is
2.

171



generated by reverse(rq) to all paths in I. Since the edges of q and qreverse

are the same, it can be concluded that f = f r. Based on the above argument,

it is clear that q(I) = qreverse(I), i.e., any query is contained in its reverse.6

Given a query Q = (S,Σ, q) ∈ PG2RQk, for each component qi of q, let

Qi = (S,Σ, qi) be the OMQ which corresponds to qi. If Q is distributable, then

based on Lemma 80, there is some Qi which is contained in Q. Moreover, as a

corollary to Lemma 88, if Qi is reversible, then (i) Qi is contained in Qreverse
i ,

i.e., Qi ⊆ Qreverse
i , and (ii) if Q′ is a reversible query, then Q′′ = Qi ∧Q′ is also

reversible, and Q′′ ⊆ Q′′reverse.

In our test corpora we evaluate the performance of query answering for

distributable queries with/without reversal. It was observed that in many

cases, evaluation of Qreverse
i , i.e., the reversal of the ith component of Q (Qi),

is easier than evaluation of Qi itself. Furthermore, similar to [68] we conducted

redundancy analysis for the ontologies in our collection in which we utilized

the results of Lemma 88. Before we present our results on this analysis, let us

recall the notion of redundancy from [68] which is applied to PG2RQk queries

in Definition 89.

Definition 89. [68] Let Q = (S,Σ, q) ∈ PG2RQk, where q ∶ Vs → Ve in which

Vs is a known S-database and Ve is a known answer set. The redundancy of

Q is defined as the number of atoms which are reachable from nodes of Vs for

which there is no path to Ve unless it requires going back along an edge that

is already traversed.

Another optimization which we utilize is minimization of redundancy, which

are intuitively the number of dead-ended paths from the source. In order to

evaluate the direction of edges to traverse, we need to choose a direction with

the lowest redundancy. In our collection, we came across some redundancies

in answering some queries such as the following.

From OBO: An ontology describing amphibian taxonomy consists of

part of(x, y) predicate which evaluates to true if x is a part of y. For instance,

6Note that here we do not consider the case of folded queries, where the conjunction of
queries with their inverse may collapse into identity edges.

172



x can be lamina anterior of maxilla that is the anterior part of the maxilla

which is in contact with the premaxilla7 which is part of maxilla.8

It is known that part of is a transitive predicate. It can be seen that part of

may connect different parts of the body. Each part of the body may be part of

multiple body parts, and at the same time, there may be multiple y for each

part of the body x such that part of(x, y) holds true. Therefore, part of is a

many-to-many mapping in general. In our collection, we discovered that for

each x there are far more y such that part of(x, y) holds true, than there are

x for each y to satisfy part of(x, y).

According to what argued above, we can define the inverse of part of(x, y)

as has part(y, x), and whenever the given query is reversible and only consists

of part of predicates, we prefer has part to part of, as the former possesses

a lower redundancy as defined in Definition 89. Furthermore, as a corollary

to Lemma 88, if a query is a conjunction of two reversible queries, it is also

reversible and the above optimization to minimize redundancy can be applied.

For example, we may query all amphibian body parts which are part of upper

jaw while being located posterior to maxilla, and the answer will not include

premaxilla as it is located anterior to maxilla in dorsal view.9 It can be seen

that the above query is the conjunction of part of and posterior to queries,

both of which are reversible. This sets it in a position to be optimized by

computing its reverse which is the conjunction of has part and anterior to

queries. The results of this optimization are summarized in Table 7.4. Notice

that the numbers of this table include the reverse of conjunctive queries as

Lemma 88 suggests.

Exploiting parallelism in answering acyclic queries

Recall that the data complexity of query evaluation of GRQ and therefore

PG2RQk belongs to NLogSpace, and therefore it is highly parallelizable. In

general, a problem is called highly parallelizable if it can be solved in polylog-

arithmic time utilizing a polynomial number of processors that are exploited

7http ∶ //purl.org/obo/owl/AAO#AAO 0000651 > lamina anterior of maxilla.
8http ∶ //purl.org/obo/owl/AAO#AAO 0000285 >maxilla, defined as paired, intramem-

branous bone located on the lateral sides of the skull, posterior to the premaxillae.
9Derived from Latin dorsum which means ’back’.

173



Table 7.4: Optimization results for query answering (Graal)

# Evaluated
queries

# Reversible
queries

Avg. QA time
(Direct) (s)

Avg. QA time
(Reverse) (s)

62 41 71.0 32.8

in parallel [90].

Note that the computation of acyclic conjunctive queries (ACQs) is also

highly parallelizable. An parallel algorithm for evaluation of ACQs is proposed

in Section 7.3 of [79]. Therefore, the evaluation of OMQs that result from

combining GRD rule sets and ACQs can be further optimized using the high

parallelizability inherent in ACQs. We have not conducted experiments for

this combination as it requires a new algorithm for optimizing these queries

which is beyond the focus of the current work and is left as a future work.

For the future work, we can also consider the effect of increasing k on

the performance of distribution checking over components and on the query

evaluation.

174



Chapter 8

Conclusion and Future
Directions

8.1 Restricted Chase Termination

In the first part of the contributions of this dissertation (i.e., Chapters 4 and

5), we introduced a general framework to extend classes of chase terminating

rule sets. We formulated a technique to characterize finite restricted chase

which can be applied to extend any class of finite Skolem chase identified by a

condition of acyclicity. The main strength of our work, which is also the main

distinction from almost all previous work on chase termination, is its gener-

ality. Then, we showed how to apply our techniques to extend δ-bounded

rule sets. Our theoretical results for complexity analyses showed that in gen-

eral this extension indeed increases the complexities of membership checking

and the complexity of combined reasoning tasks for δ-bounded rule sets under

the restricted chase compared to the Skolem chase. However, by implemen-

tation and experimentation, we showed that this increase does not prohibit

the applicability of our work in real-world ontologies. Our experimental re-

sults discovered a growing number of practical ontologies with finite restricted

chase obtained by increasing the length of cycles as well as changing the under-

lying cycle function. They also showed evidence that existential rules provide

a suitable modelling language for ontological reasoning.

175



8.2 Distribution over Components for Ontology-

Mediated Query Answering

The topic of chapters 6 and 7 is related to the problem of distributed query

answering of incomplete data in the presence of ontologies. This is indispens-

able in applications where the data is heterogeneous and comes from different

sources in massive volumes. This problem asks whether it is possible to dis-

tribute the query workload among different machines, i.e., whether we can

compute the answer to a database query in the presence of an ontology by

parallelizing it over the connected components of the database.

Only if the answer to the above problem is positive for a given ontology-

mediated query belonging to a particular class, then we can compute the query

in a coordination-free and distributed manner. From the literature, it is known

that this problem is in general undecidable when the database query belongs

to the class of conjunctive queries and the ontology belongs to that of Datalog.

In chapters 6 and 7, we present our contributions on the above problem for

two main classes of ontology-mediated queries. The first class, that is the topic

of Chapter 6, is constructed from disjunctive tuple-generating dependencies

and conjunctive queries. In the second class which is presented in Chapter

7, we study distributed reasoning for the class of ontology-mediated queries

formed from generalized regular queries and conjunctive queries.

The above classes of ontology-mediated queries involve useful language con-

structs for navigation of (hyper)graph databases as well as disjunction with

which nondeterminism can be modelled. However, to the best of our knowl-

edge, this is the first time the problem of distributed reasoning is theoretically

studied for these two classes of ontology-mediated queries.

Additionally, we are not aware of any empirical analysis of any kind to

evaluate the practical benefits of distribution over connected components of

databases. Therefore, our experiments to evaluate the performance gain of

reasoning with distributable ontology-mediated queries for the classes of linear

and linear disjunctive tuple-generating dependencies are the first of its kind.

176



8.2.1 Distribution over Components for Restricted Weakly
Linear Queries

In Chapter 6, we studied distributed reasoning for a class of disjunctive TGD

we introduced as restricted weakly-linear disjunctive tuple-generating depen-

dencies. We discovered sufficient conditions for OMQs based on restricted

weakly-linear disjunctive tuple-generating dependencies to be distributable

over connected database components. In particular, for the OMQs based on

these tuple-generating dependencies with acyclic and quantifier-free conjunc-

tive queries we characterized a subclass called bidirectionally-guarded that has

a decidable problem of distribution over components, and for which one can

characterize distributable fragments.

Lifting the guardedness property of the input ontology, we further identi-

fied some fragments of the resulting ontologies combined with answer-guarded

CQs which yield decidable distribution problem. Our analyses demonstrate

that for this problem the complexity upper bounds ranging from ExpTime to

2ExpTime can be obtained when applied to these fragments.

The experiments demonstrate that query answering computation times

computed using state of the art chase engines can be significantly improved

in selected ontology benchmarks for distributable ontology-mediated queries.

The results of this chapter can benefit chase-based and rewriting-based query

answering approaches alike.

8.2.2 Distribution over Components for Generalized Reg-
ular Datalog

In Chapter 7, we studied the same problem of distribution over components

considered in Chapter 6 by focusing on generalized regular Datalog ontology-

mediated query answering. We introduced sufficient conditions for ontology-

mediated queries based on generalized regular Datalog to be distributable over

connected database components.

As opposed to the case of RWL ontology-mediated queries, the results

of this chapter shows that we can semantically characterize the fragment of

177



these queries that distributes over components uniformly for the whole frag-

ment. Moreover, we identified a syntactic subset of these queries called pseudo-

guarded generalized regular queries (PG2RQ) that restricts generalized regular

Datalog rules to be syntactically connected, where each component has a guard

atom for which the above problem is shown to be decidable. Our complex-

ity results for deciding distribution over connected components for PG2RQ

queries yields an upper bound of 2ExpSpace.

The latter result has been extended to uniformly cover a wide range of

query languages known in the literature, along with their combination with

transitive closure using the same techniques developed therein.

Our experiments evaluate the query answering performance gain achieved

by focusing on distributable PG2RQ ontology-mediated queries along with

different optimizations performed to improve query answering. Notice that

similar to the previous chapter, the results of this chapter benefits non-chase

based algorithms for query answering as well.

8.3 Future work

In this section we list a number of possible directions of future research which

can be pursued from the work we conducted in this thesis and beyond.

8.3.1 Restricted Chase Termination

To speed up membership checking of k-safe rules, it is an interesting open

problem whether there exist conditions for subclasses of these rule sets while

reducing the cost of checking. One idea is to investigate syntactic conditions

under which triggers to a rule are necessarily active. The current implementa-

tion of our system is relatively slow, particularly for nonlinear rules. It often

requires long chase times to check membership in k-safe(Φ) even for small val-

ues of k. In order to tackle this problem, we can consider two options which

can also be combined toward a more efficient implementation. The first option

is considering k-safe(Φ) under a particular path selection strategy such as the

Datalog-first approach. This way, we can filter out a subset of paths in our

178



membership analysis.

Additionally, adding negative constraints (rules with empty head) and

negations under different semantics to the body of rules presently poses chal-

lenge to the reasoning/termination of the chase. An open problem is how

adding the above constructs generally affect reasoning/chase termination for

different variants of the chase. In particular, in [83], query answering under

the stable model semantics has been studied for guarded existential rules with

negation in which rule bodies may contain negated atoms.

More recently, in [7], the stable model semantics has been considered for

normal tuple-generating dependencies (NTGDs), which are existential rules

enriched with default negation (also known as negation as failure). In this

regard, the query answering is shown to be decidable for the class of weakly-

acyclic NTGDs. However, the same problem is shown to be undecidable for

sticky and guarded NTGDs.

Given the power of the restricted chase recently obtained in [104] which

show that terminating restricted chase can achieve nonelementary data com-

plexity bounds, it is an interesting open problem to study stable model se-

mantics for different classes of terminating NTGDs under the restricted chase

and to see how reasoning/termination is affected in this setting.

8.3.2 Distribution over Components

Recently, a number of FO-rewritable fragments for existential rules have been

characterized [23]. For the future work, it is worthwhile to study distributabil-

ity over components for more expressive languages such as (frontier-) guarded

(disjunctive) rules. Also another challenging problem is distributability of lin-

ear disjunctive TGDs in the presence of (the more general) conjunctive queries.

In Chapter 6, we found a way to handle disjunctive TGDs for our purpose

using the transformation of a fragment of disjunctive TGDs which is Datalog-

reducible. However, a general reasoner that can handle these rules is currently

missing in the literature. Such a reasoner can be specifically optimized for

query answering with these rules.

Moreover, we can extend our experiments to check distribution over compo-

179



nents with bidirectionally-guarded TGDs and answer-guarded acyclic (as well

as quantifier-free) CQs. As shown in Section 6.4, the theoretical complexity

upper bound for this check will be higher than that of singly bidirectionally-

guarded considered in our experiments of Section 6.7. However, it is an inter-

esting problem to evaluate the expressiveness/complexity/practicality balance

in this setting.

In Section 7.4 of Chapter 7, we showed a concrete algorithm to decide

distribution over components for GRQ queries. The algorithm presented over

there was based on applying the connecting operator on these queries to obtain

another query on which we can mount our equivalence checking algorithm that

is the basis of our implementation. Given that the class of these ontology-

mediated queries is more expressive, as a future work, one can focus on these

queries and evaluate the performance of distributability checking with them.

This may have substantial implications in big graph database applications

where this language is known to be a suitable for expressive query evaluation

involving graph paths.

Besides, the language of Monadic Datalog (MDL) shown in Table 7.1 is

considered as a primary language for web information extraction (wrapping)

in [77]. Due to the limited expressiveness of this language, and as a substitute

for it, one can consider the language of GRQ queries with potentials in the

task of automated web data extraction. Our results on the distribution over

components using these two fragments may improve the performance of data

extraction or be integrated into a domain-specific language (DSL) which may

involve sophisticated querying mechanisms.

180



References

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:
from relations to semistructured data and XML. Morgan Kaufmann,
2000.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases:
the logical level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[3] Serge Abiteboul and Victor Vianu. “Regular path queries with con-
straints”. In: Journal of Computer and System Sciences 58.3 (1999),
pp. 428–452.

[4] Foto N Afrati and Phokion G Kolaitis. “Repair checking in inconsistent
databases: algorithms and complexity”. In: Proceedings of the Twelvth
International Conference on Database Theory. ACM. 2009, pp. 31–41.

[5] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus. “Rewrit-
ing guarded existential rules into small datalog programs”. In: Proceed-
ings of the Twenty-First International Conference on Database Theory.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[6] Alfred V Aho, Catriel Beeri, and Jeffrey D Ullman. “The theory of joins
in relational databases”. In: ACM Transactions on Database Systems
(TODS) 4.3 (1979), pp. 297–314.

[7] Mario Alviano, Michael Morak, and Andreas Pieris. “Stable model se-
mantics for tuple-generating dependencies revisited”. In: Proceedings of
the 36th ACM SIGMOD Symposium on Principles of Database Systems.
2017, pp. 377–388.

[8] Tom J Ameloot et al. “Datalog queries distributing over components”.
In: ACM Transactions on Computational Logic (TOCL) 18.1 (2017),
p. 5.

[9] Hajnal Andréka, István Németi, and Johan van Benthem. “Modal lan-
guages and bounded fragments of predicate logic”. In: Journal of Philo-
sophical Logic 27.3 (1998), pp. 217–274.

[10] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. “Consistent
query answers in inconsistent databases”. In: Proceedings of the Eigh-
teenth ACM Symposium on Principles of Database Systems. ACM.
1999, pp. 68–79.

181



[11] Alessandro Artale et al. “The DL-Lite family and relations”. In: Journal
of Artificial Intelligence Research 36 (2009), pp. 1–69.

[12] Jean-François Baget. “Improving the forward chaining algorithm for
conceptual graphs rules.” In: Proceedings of the Ninth International
Conference on Principles of Knowledge Representation and Reasoning.
AAAI Press, 2004, pp. 407–414.

[13] Jean-François Baget et al. “Combining existential rules and transitivity:
Next steps”. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence. 2015.

[14] Jean-François Baget et al. “Datalog+, RuleML and OWL 2: Formats
and translations for existential rules.” In: Proceedings of the RuleML
2015 Challenge (Challenge+ DC@ RuleML). Vol. 1417. CEUR Work-
shop Proceedings. CEUR-WS.org, 2015.

[15] Jean-François Baget et al. “Extending acyclicity notions for existential
rules.” In: Proceedings of the 21st European Conference on Artificial
Intelligence. IOS Press, 2014, pp. 39–44.

[16] Jean-François Baget et al. “Extending decidable cases for rules with
existential variables”. In: Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence. 2009, pp. 677–682.

[17] Jean-François Baget et al. “Graal: A toolkit for query answering with
existential rules”. In: Proceedings of the International Symposium on
Rules and Rule Markup Languages for the Semantic Web. Vol. 9202.
LNCS. Springer. 2015, pp. 328–344.

[18] Jean-François Baget et al. “On rules with existential variables: Walking
the decidability line”. In: Artificial Intelligence 175.9 (2011), pp. 1620–
1654.

[19] Jean-François Baget et al. “Revisiting chase termination for existential
rules and their extension to nonmonotonic negation”. In: Proceedings of
the 15th International Workshop on Non-Monotonic Reasoning (NMR
2014). 2014.

[20] Vince Bárány, Balder Ten Cate, and Luc Segoufin. “Guarded negation”.
In: Journal of the ACM 62.3 (2015), p. 22.

[21] Vince Bárány, Balder Ten Cate, and Martin Otto. “Queries with guarded
negation”. In: Proceedings of the VLDB Endowment 5.11 (2012), pp. 1328–
1339.

[22] Vince Bárány, Balder Ten Cate, and Luc Segoufin. “Guarded nega-
tion”. In: Proceedings of the International Colloquium on Automata,
Languages, and Programming. Springer. 2011, pp. 356–367.

182



[23] Pablo Barceló et al. “First-order rewritability of frontier-guarded ontology-
mediated queries”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence. AAAI Press. 2018, pp. 1707–
1713.

[24] Catriel Beeri and Moshe Y Vardi. “A proof procedure for data depen-
dencies”. In: Journal of the ACM 31.4 (1984), pp. 718–741.

[25] Catriel Beeri and Moshe Y Vardi. “The implication problem for data
dependencies”. In: Proceedings of the 8th International Colloquium on
Automata, Languages, and Programming. Vol. 115. LNCS. Springer.
1981, pp. 73–85.

[26] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. “The Vada-
log system: Datalog-based reasoning for knowledge graphs”. In: Pro-
ceedings of the VLDB Endowment 11.9 (2018), pp. 975–987.

[27] Michael Benedikt. “How can reasoners simplify database querying (and
why haven’t they done it yet)?” In: Proceedings of the 37th ACM Sym-
posium on Principles of Database Systems. ACM. 2018, pp. 1–15.

[28] Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. “A step
up in expressiveness of decidable fixpoint logics”. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science.
IEEE. 2016, pp. 1–10.

[29] Michael Benedikt, Pierre Bourhis, and Pierre Senellart. “Monadic dat-
alog containment”. In: Proceedings of the International Colloquium on
Automata, Languages, and Programming. Springer. 2012, pp. 79–91.

[30] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. “PDQ: Proof-
driven query answering over web-based data”. In: Proceedings of the
VLDB Endowment 7.13 (2014), pp. 1553–1556.

[31] Michael Benedikt et al. “Benchmarking the chase”. In: Proceedings of
the 36th ACM Symposium on Principles of Database Systems. ACM,
2017, pp. 37–52.

[32] Gerald Berger and Andreas Pieris. “Ontology-mediated queries dis-
tributing over components”. In: Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence. 2016, pp. 943–
949.

[33] Meghyn Bienvenu et al. “Ontology-based data access: A study through
disjunctive datalog, CSP, and MMSNP”. In: ACM Transactions on
Database Systems (TODS) 39.4 (2014), p. 33.

[34] Angela Bonifati and Stefania Dumbrava. “Graph queries: From theory
to practice”. In: ACM SIGMOD Record 47.4 (2019), pp. 5–16.

[35] Angela Bonifati, Stefania Dumbrava, and Emilio Jesús Gallego Arias.
“Certified graph view maintenance with regular datalog”. In: Theory
and Practice of Logic Programming 18.3-4 (2018), pp. 372–389.

183



[36] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. “How to
best nest regular path queries”. In: Informal Proceedings of the Twenty-
Seventh International Workshop on Description Logics. 2014.

[37] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. “Reason-
able highly expressive query languages”. In: Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence. 2015.

[38] Pierre Bourhis et al. “Guarded-based disjunctive tuple-generating de-
pendencies”. In: ACM Transactions on Database Systems 41.4 (2016),
27:1–27:45.

[39] Peter Buneman. “Semistructured Data”. In: Proceedings of the Six-
teenth ACM Symposium on Principles of Database Systems. PODS ’97.
Tucson, Arizona, USA: ACM, 1997, pp. 117–121. isbn: 0-89791-910-6.
doi: 10.1145/263661.263675. url: http://doi.acm.org/10.1145/
263661.263675.

[40] Marco Calautti, Georg Gottlob, and Andreas Pieris. “Chase termina-
tion for guarded existential rules”. In: Proceedings of the 34th ACM
Symposium on Principles of Database Systems. ACM. 2015, pp. 91–
103.

[41] Marco Calautti and Andreas Pieris. “Oblivious chase termination: The
sticky case”. In: Proceedings of the Twenty-Second International Con-
ference on Database Theory. Vol. 127. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019, 17:1–17:18.

[42] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. “A general
datalog-based framework for tractable query answering over ontolo-
gies”. In: Web Semantics: Science, Services and Agents on the World
Wide Web 14 (2012), pp. 57–83.

[43] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. “Datalog±: a
unified approach to ontologies and integrity constraints”. In: Proceed-
ings of the Twelvth International Conference on Database Theory. ACM.
2009, pp. 14–30.

[44] Andrea Cal̀ı et al. “Data integration under integrity constraints”. In:
Proceedings of the Seminal Contributions to Information Systems En-
gineering. Springer, 2013, pp. 335–352.

[45] Andrea Cali et al. “Datalog+/-: A family of logical knowledge repre-
sentation and query languages for new applications”. In: Proceedings
of the Twenty-Fifth Annual IEEE Symposium on Logic in Computer
Science. IEEE. 2010, pp. 228–242.

[46] Diego Calvanese, Giuseppe De Giacomo, and Moshe Y Vardi. “Decid-
able containment of recursive queries”. In: Theoretical Computer Sci-
ence 336.1 (2005), pp. 33–56.

184

https://doi.org/10.1145/263661.263675
http://doi.acm.org/10.1145/263661.263675
http://doi.acm.org/10.1145/263661.263675


[47] Diego Calvanese et al. “Query processing using views for regular path
queries with inverse”. In: Proceedings of the Nineteenth ACM Sympo-
sium on Principles of Database Systems (PODS 2000). 2000, pp. 58–
66.

[48] Diego Calvanese et al. “Tractable reasoning and efficient query answer-
ing in description logics: The DL-Lite family”. In: Journal of Automated
Reasoning 39.3 (2007), pp. 385–429.

[49] David Carral, Irina Dragoste, and Markus Krötzsch. “Restricted chase
(non) termination for existential rules with disjunctions”. In: Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. ijcai.org, 2017, pp. 922–928.

[50] David Carral et al. “EL-ifying Ontologies”. In: Proceedings of the 7th
International Joint Conference on Automated Reasoning. Vol. 8562.
LNCS. Springer. 2014, pp. 464–479.

[51] David Carral et al. “VLog: A rule engine for knowledge graphs”. In: Pro-
ceedings of the16th International Semantic Web Conference. Vol. 11779.
LNCS. Springer. 2019, pp. 19–35.

[52] Surajit Chaudhuri and Moshe Y Vardi. “On the equivalence of recur-
sive and nonrecursive datalog programs”. In: Journal of Computer and
System Sciences 54.1 (1997), pp. 61–78.

[53] Michelle Cheatham and Catia Pesquita. “Semantic Data Integration”.
In: Handbook of Big Data Technologies. Springer, 2017, pp. 263–305.

[54] Concept Base.cc: A system for metamodeling and method engineering.
http://conceptbase.sourceforge.net. Accessed: 2016-11-24.

[55] Mariano P Consens and Alberto O Mendelzon. “GraphLog: a visual for-
malism for real life recursion”. In: Proceedings of the ninth ACM SIG-
MOD Symposium on Principles of Database Systems. 1990, pp. 404–
416.

[56] Bernardo Cuenca Grau et al. “Acyclicity notions for existential rules
and their application to query answering in ontologies”. In: Journal of
Artificial Intelligence Research 47 (2013), pp. 741–808.

[57] Ivan Damg̊ard et al. “Multiparty computation from somewhat homo-
morphic encryption”. In: Proceedings of the Annual Cryptology Confer-
ence. Springer. 2012, pp. 643–662.

[58] Daniel Danielski and Emanuel Kieronski. “Finite satisfiability of unary
negation fragment with transitivity”. In: arXiv preprint arXiv:1809.03245
(2018).

[59] Evgeny Dantsin et al. “Complexity and expressive power of logic pro-
gramming”. In: ACM Computing Surveys 33.3 (2001), pp. 374–425.

185

http://conceptbase.sourceforge.net


[60] Stathis Delivorias et al. “On the k-boundedness for existential rules”.
In: Proceedings of the 2nd International Joint Conference on Rules and
Reasoning. Vol. 11092. LNCS. Springer. 2018, pp. 48–64.

[61] Alin Deutsch, Alan Nash, and Jeff Remmel. “The chase revisited”. In:
Proceedings of the Twenty-Seventh ACM Symposium on Principles of
Database Systems. ACM. 2008, pp. 149–158.

[62] DLV system: A system for metamodeling and method engineering. http:
//www.dlvsystem.com. Accessed: 2016-11-24.

[63] Thomas Eiter, Georg Gottlob, and Heikki Mannila. “Disjunctive data-
log”. In: ACM Transactions on Database Systems (TODS) 22.3 (1997),
pp. 364–418.

[64] Ronald Fagin et al. “Clio: Schema mapping creation and data ex-
change”. In: Proceedings of the Conceptual Modeling: Foundations and
Applications. Springer, 2009, pp. 198–236.

[65] Ronald Fagin et al. “Data exchange: Semantics and query answering”.
In: Proceedings of the 9th International Conference on Database Theory.
Vol. 2572. LNCS. Springer. 2003, pp. 207–224.

[66] Ronald Fagin et al. “Data exchange: Semantics and query answering”.
In: Theoretical Computer Science 336.1 (2005), pp. 89–124.

[67] Daniela Florescu, Alon Levy, and Dan Suciu. “Query containment for
conjunctive queries with regular expressions”. In: Proceedings of the
Seventeenth ACM Symposium on Principles of Database Systems. 1998,
pp. 139–148.

[68] Darius Foo et al. “SGL: A domain-specific language for large-scale anal-
ysis of open-source code”. In: Proceedings of the IEEE Cybersecurity
Development (SecDev). IEEE. 2018, pp. 61–68.

[69] Ariel Fuxman et al. “Peer data exchange”. In: ACM Transactions on
Database Systems (TODS) 31.4 (2006), pp. 1454–1498.

[70] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. “Logic and databases:
A deductive approach”. In: ACM Computing Surveys 16.2 (1984), pp. 153–
185.

[71] Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. “Framework for an
automated comparison of description logic reasoners”. In: Proceedings
of the International Semantic Web Conference. Springer. 2006, pp. 654–
667.

[72] Birte Glimm, Yevgeny Kazakov, and Trung-Kien Tran. “Ontology ma-
terialization by abstraction refinement in horn SHOIF”. In: Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence. 2017.

[73] Birte Glimm et al. “Abstraction refinement for ontology materializa-
tion”. In: Proceedings of the International Semantic Web Conference.
Springer. 2014, pp. 180–195.

186

http://www.dlvsystem.com
http://www.dlvsystem.com


[74] Tomasz Gogacz and Jerzy Marcinkowski. “All–instances termination of
chase is undecidable”. In: Proceedings of the International Colloquium
on Automata, Languages, and Programming. Springer. 2014, pp. 293–
304.

[75] Tomasz Gogacz, Jerzy Marcinkowski, and Andreas Pieris. “All-instances
restricted Chase termination: The guarded case”. In: arXiv preprint
arXiv:1901.03897 (2019).

[76] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any
mental game”. In: Proceedings of the Nineteenth Annual ACM Sympo-
sium on Theory of Computing. ACM. 1987, pp. 218–229.

[77] Georg Gottlob and Christoph Koch. “Monadic datalog and the expres-
sive power of languages for web information extraction”. In: Journal of
the ACM 51.1 (2004), pp. 74–113.

[78] Georg Gottlob, Nicola Leone, and Francesco Scarcello. “Robbers, mar-
shals, and guards: game theoretic and logical characterizations of hyper-
tree width”. In: Journal of Computer and System Sciences 66.4 (2003),
pp. 775–808.

[79] Georg Gottlob, Nicola Leone, and Francesco Scarcello. “The complexity
of acyclic conjunctive queries”. In: Journal of the ACM 48.3 (2001),
pp. 431–498.

[80] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. “Ontological queries:
Rewriting and optimization”. In: Proceedings of the IEEE Twenty-
Seventh International Conference on Data Engineering. IEEE. 2011,
pp. 2–13.

[81] Georg Gottlob, Sebastian Rudolph, and Mantas Simkus. “Expressive-
ness of guarded existential rule languages”. In: Proceedings of the Thirty-
Third ACM Symposium on Principles of Database Systems. ACM. 2014,
pp. 27–38.

[82] Georg Gottlob et al. “On the complexity of ontological reasoning under
disjunctive existential rules”. In: Proceedings of the International Sym-
posium on Mathematical Foundations of Computer Science. Springer.
2012, pp. 1–18.

[83] Georg Gottlob et al. “Stable model semantics for guarded existential
rules and description logics”. In: Proceedings of the Fourteenth Interna-
tional Conference on the Principles of Knowledge Representation and
Reasoning. 2014.

[84] Erich Grädel. “On the restraining power of guards”. In: The Journal of
Symbolic Logic 64.4 (1999), pp. 1719–1742.

[85] Gösta Grahne and Adrian Onet. “Anatomy of the chase”. In: Fun-
damenta Informaticae 157.3 (2018), pp. 221–270. doi: 10.3233/FI-
2018-1627. url: https://doi.org/10.3233/FI-2018-1627.

187

https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.3233/FI-2018-1627


[86] Gösta Grahne and Adrian Onet. “Data correspondence, exchange and
repair”. In: Proceedings of the Thirteenth International Conference on
Database Theory. ACM. 2010, pp. 219–230.

[87] Gosta Grahne and Adrian Onet. “The data-exchange chase under the
microscope”. In: arXiv preprint arXiv:1407.2279 (2014).

[88] B Cuenca Grau et al. “Acyclicity notions for existential rules and their
application to query answering in ontologies”. In: Journal of Artificial
Intelligence Research 47 (2013), pp. 741–808.

[89] Bernardo Cuenca Grau et al. “Computing datalog rewritings beyond
horn ontologies”. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence. 2013.

[90] Raymond Greenlaw, H James Hoover, Walter L Ruzzo, et al. Limits to
parallel computation: P-completeness theory. Oxford University Press
on Demand, 1995.

[91] Pavol Hell and Jaroslav Nešetřil. “The core of a graph”. In: Discrete
Mathematics 109.1-3 (1992), pp. 117–126.

[92] Gerd G Hillebrand et al. “Undecidable boundedness problems for data-
log programs”. In: Journal of Logic Programming 25.2 (1995), pp. 163–
190.

[93] Matthew Horridge and Sean Bechhofer. “The OWL API: A java API
for OWL ontologies”. In: Semantic Web 2.1 (2011), pp. 11–21.

[94] Yin-Fu Huang and Wei-Cheng Chen. “Parallel query on the in-memory
database in a CUDA platform”. In: Proceedings of the 10th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Comput-
ing (3PGCIC). IEEE. 2015, pp. 236–243.

[95] Neil Immerman. “Nondeterministic space is closed under complemen-
tation”. In: SIAM Journal on Computing 17.5 (1988), pp. 935–938.

[96] David S Johnson and Anthony Klug. “Testing containment of conjunc-
tive queries under functional and inclusion dependencies”. In: Journal
of Computer and system Sciences 28.1 (1984), pp. 167–189.

[97] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. “Datalog
rewritability of disjunctive datalog programs and its applications to
ontology reasoning”. In: Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence. AAAI Press. 2014, pp. 1077–1083.

[98] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. “Datalog
rewritability of Disjunctive Datalog programs and non-Horn ontolo-
gies”. In: Artificial Intelligence 236 (2016), pp. 90–118.

[99] Arash Karimi, Heng Zhang, and Jia-Huai You. “Beyond skolem chase:
A study of finite chase under standard chase variant”. In: Proceedings
of the 30th International Workshop on Description Logics, Montpellier,
France, July 18-21, 2017. Vol. 1879. CEUR-WS.org, 2017.

188



[100] Arash Karimi, Heng Zhang, and Jia-Huai You. “Restricted chase ter-
mination: A hierarchical approach and experimentation”. In: Proceed-
ings of the 2nd International Joint Conference on Rules and Reasoning.
Vol. 11092. LNCS. Springer. 2018, pp. 98–114.

[101] Arash Karimi, Heng Zhang, and Jia-Huai You. “Restricted chase ter-
mination for existential rules: A hierarchical approach and experimen-
tation”. In: CoRR abs/2005.05423 (2020). arXiv: 2005.05423. url:
https://arxiv.org/abs/2005.05423.

[102] Mélanie König et al. “Sound, complete and minimal UCQ-rewriting for
existential rules”. In: Semantic Web 6.5 (2015), pp. 451–475.

[103] Markus Krötzsch. “Too much information: Can AI cope with modern
knowledge graphs?” In: Proceedings of the International Conference on
Formal Concept Analysis. Springer. 2019, pp. 17–31.

[104] Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph. “The
power of the terminating chase”. In: Proceedings of the Twenty-Second
International Conference on Database Theory. Vol. 127. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 3:1–3:17.

[105] Markus Krötzsch and Sebastian Rudolph. “Extending decidable exis-
tential rules by joining acyclicity and guardedness”. In: Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelli-
gence. IJCAI/AAAI, 2011, pp. 963–968.

[106] Michel Leclère et al. “A single approach to decide chase termination
on linear existential rules”. In: Proceedings of the Twenty-Second In-
ternational Conference on Database Theory. Vol. 127. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 18:1–18:19.

[107] Jens Lehmann et al. “DBpedia–a large-scale, multilingual knowledge
base extracted from Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167–
195.

[108] Maurizio Lenzerini. “Data integration: A theoretical perspective”. In:
Proceedings of the Twenty-First ACM Symposium on Principles of Database
Systems. ACM. 2002, pp. 233–246.

[109] Carsten Lutz and Frank Wolter. “Non-uniform data complexity of query
answering in description logics”. In: Proceedings of the Thirteenth In-
ternational Conference on the Principles of Knowledge Representation
and Reasoning. 2012.

[110] Carsten Lutz et al. “The combined approach to OBDA: Taming role
hierarchies using filters”. In: Proceedings of the International Semantic
Web Conference. Springer. 2013, pp. 314–330.

[111] David Maier, Alberto O Mendelzon, and Yehoshua Sagiv. “Testing im-
plications of data dependencies”. In: ACM Transactions on Database
Systems (TODS) 4.4 (1979), pp. 455–469.

189

https://arxiv.org/abs/2005.05423
https://arxiv.org/abs/2005.05423


[112] Jerzy Marcinkowski. “Achilles, turtle, and undecidable boundedness
problems for small datalog programs”. In: SIAM Journal on Computing
29.1 (1999), pp. 231–257.

[113] Bruno Marnette. “Generalized schema-mappings: from termination to
tractability”. In: Proceedings of the Twenty-Eighth ACM Symposium
on Principles of Database Systems. ACM, 2009, pp. 13–22.

[114] Maximilian Marx, Markus Krötzsch, and Veronika Thost. “Logic on
MARS: ontologies for generalised property graphs”. In: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence. 2017, pp. 1188–1194.

[115] Nicolas Matentzoglu and Bijan Parsia. The Manchester OWL Corpus
(MOWLCorp), original serialisation. July 2014. doi: 10.5281/zenodo.
10851. url: https://doi.org/10.5281/zenodo.10851.

[116] Michael Meier. “The backchase revisited”. In: The VLDB Journal—The
International Journal on Very Large Data Bases 23.3 (2014), pp. 495–
516.

[117] Tom Mitchell et al. “Never-ending learning”. In: Communications of
the ACM 61.5 (2018), pp. 103–115.

[118] Boris Motik. “Reasoning in description logics using resolution and de-
ductive databases”. PhD thesis. Karlsruhe Institute of Technology, Ger-
many, 2006.

[119] Boris Motik et al. “Parallel materialisation of datalog programs in cen-
tralised, main-memory RDF systems”. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence. 2014.

[120] Yavor Nenov et al. “RDFox: A highly-scalable RDF store”. In: Pro-
ceedings of the International Semantic Web Conference. Springer. 2015,
pp. 3–20.

[121] Adrian Onet. “The chase procedure and its applications in data ex-
change”. In: Data Exchange, Integration, and Streams. Vol. 5. Dagstuhl
Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013,
pp. 1–37.

[122] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. “Worst-case
optimal reasoning for the Horn-DL fragments of OWL 1 and 2”. In:
Proceedings of the Twelfth International Conference on the Principles
of Knowledge Representation and Reasoning. 2010.

[123] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994, pp. I–XV, 1–523. isbn: 978-0-201-53082-7.

[124] Antonella Poggi et al. “Linking data to ontologies”. In: Journal on Data
Semantics X. Springer, 2008, pp. 133–173.

[125] Omer Reingold. “Undirected connectivity in log-space”. In: Journal of
the ACM 55.4 (2008), p. 17.

190

https://doi.org/10.5281/zenodo.10851
https://doi.org/10.5281/zenodo.10851
https://doi.org/10.5281/zenodo.10851


[126] Juan L Reutter, Miguel Romero, and Moshe Y Vardi. “Regular queries
on graph databases”. In: Theory of Computing Systems 61.1 (2017),
pp. 31–83.

[127] REWERSE: Reasoning on the Web with Rules and Semantics. http:
//rewerse.net. Accessed: 2016-11-24.

[128] Sebastian Rudolph and Michaël Thomazo. “Characterization of the ex-
pressivity of existential rule queries”. In: Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence. 2015,
pp. 3193–3199.

[129] Sebastian Rudolph and Michaël Thomazo. “Expressivity of datalog
variants–completing the picture”. In: Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence. 2016.

[130] Vladislav Rutenburg. “Complexity of generalized graph coloring”. In:
Proceedings of the International Symposium on Mathematical Founda-
tions of Computer Science. Vol. 233. LNCS. Springer. 1986, pp. 573–
581.

[131] Walter J Savitch. “Relationships between nondeterministic and deter-
ministic tape complexities”. In: Journal of Computer and System Sci-
ences 4.2 (1970), pp. 177–192.

[132] Adi Shamir. “How to share a secret”. In: Communications of the ACM
22.11 (1979), pp. 612–613.

[133] Oded Shmueli. “Equivalence of datalog queries is undecidable”. In: The
Journal of Logic Programming 15.3 (1993), pp. 231–241.

[134] Barry Smith et al. “The OBO Foundry: coordinated evolution of ontolo-
gies to support biomedical data integration”. In: Nature biotechnology
25.11 (2007), p. 1251.

[135] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: a
core of semantic knowledge”. In: Proceedings of the 16th International
Conference on World Wide Web. ACM. 2007, pp. 697–706.

[136] Balder Ten Cate and Luc Segoufin. “Unary negation”. In: Logical Meth-
ods in Computer Science 9.3 (2013).

[137] Jacopo Urbani et al. “Efficient model construction for horn logic with
VLog”. In: Proceedings of the International Joint Conference on Auto-
mated Reasoning. Springer. 2018, pp. 680–688.

[138] Jacopo Urbani et al. “WebPIE: A web-scale parallel inference engine
using MapReduce”. In: Web Semantics: Science, Services and Agents
on the World Wide Web 10 (2012), pp. 59–75.

[139] Moshe Y Vardi. “A theory of regular queries”. In: Proceedings of the
Thirty-Fifth ACM Symposium on Principles of Database Systems. ACM.
2016, pp. 1–9.

191

http://rewerse.net
http://rewerse.net


[140] Moshe Y Vardi. “Inferring multivalued dependencies from functional
and join dependencies”. In: Acta Informatica 19.4 (1983), pp. 305–324.

[141] Moshe Y Vardi. “On the complexity of bounded-variable queries”. In:
Proceedings of the Fourteenth ACM Symposium on Principles of Database
Systems. 1995, pp. 266–276.

[142] Moshe Y Vardi. “The complexity of relational query languages”. In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing. ACM. 1982, pp. 137–146.

[143] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative
knowledge base”. In: (2014).

[144] Heng Zhang, Yan Zhang, and Jia-Huai You. “Existential rule languages
with finite chase: Complexity and expressiveness”. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI Press,
2015, pp. 1678–1685.

192


	Introduction
	K-Safe and Bounded Hierarchy of Terminating Ontologies under Restricted Chase
	Distribution over Components for Restricted Weakly Linear Rules
	Distribution over Components for Generalized Regular Datalog Queries

	Introduction to Complexity Theory
	Preliminaries
	Boolean Formulae and the CNF Form

	Polynomial Hierarchy
	Oracle Characterization of Polynomial Hierarchy

	Sub-polynomial Classes of Complexity
	Circuit Complexity Model

	Reducibility and Completeness
	Reductions
	Complete Problems in Polynomial Hierarchy

	ELEMENTARY

	Background, Motivations, and Previous Developments
	The Landscape of Ontology-Mediated Query Answering
	Ontologies versus Database Schemata

	Related Work
	Ontology Modelling
	Data Exchange
	Semantic Big Data Warehousing
	Knowledge Graphs
	Disjunctive Reasoning
	Reasoning at Scale

	Previous Work on the Chase Termination
	Terminating Classes of Existential Rules
	Other Results Related to Chase Termination
	Complexity Analysis of Rules


	Restricted Chase Termination
	Preliminaries
	 Chase Variants
	A Concrete Example

	Finite Restricted Chase by Activeness
	Restricted Critical Databases and Chained Property
	Activeness for Simple Rules
	Activeness for Arbitrary Rules

	K-Safe() Rule Sets
	Experimentation
	Implementation Setup
	Experimental Results


	Extension of Bounded Rule Sets
	Bounded Rule Sets Under the Restricted Chase and Their Connection to K-Safe Hierarchy
	Complexity Analysis for -bounded Rule Sets
	Discussion

	Distributed Reasoning for Restricted Weakly-Linear Disjunctive Tuple-Generating Dependencies
	Preliminaries
	Distribution over Components

	Restricted Weakly-Linear Disjunctive Tuple-Generating Dependencies
	Bidirectionally-Guarded Queries
	The Problem of Distribution over Components for Bidirectionally-Guarded Queries
	Deciding Distributability via Rewriting
	Relation to other Formalisms
	Experiments on OMQs Based on Linear Disjunctive TGDs

	Distributed Reasoning for Generalized Regular Queries
	Preliminaries
	Generalized Regular Query Languages
	Pseudo-Guarded Generalized Regular Queries

	Distribution over Components for GRQ and PG2RQk
	Deciding Distributability of PG2RQk and GRQ via Containment
	The Landscape of Distributable OMQs
	Datalog with Negation
	Distribution of Logics without Transitivity
	Distribution of Logics Combined with Transitivity

	A Case Study
	Experiments on PG2RQk queries

	Conclusion and Future Directions
	Restricted Chase Termination
	Distribution over Components for Ontology-Mediated Query Answering
	Distribution over Components for Restricted Weakly Linear Queries
	Distribution over Components for Generalized Regular Datalog

	Future work
	Restricted Chase Termination
	Distribution over Components


	References

