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ABSTRACT

Iverscn's original APL differs substantially in some
respects fron inmplemented versions. In the course of
implementing APL deficiencies have crept into the language
in areas such as subscripting, tranching, pixed operators
and functions. The former part of this work is a review of

these deficiencies as well as proposals tc correct then.

The latter part of the thesis examines Abrams' wcrk on
an APL machine and prcposes changes to it. The APL machine
is a stack-oriented machine which can simplify APL
expressions and defer their execution. Simplification is
accomplished by means of transformations to the polynoaial
access functions cf arrays. Deferral allows simplification
to be carried out cver larger exgrescsions as well as
optimizing the use of low speed core memory. The APL
machine is more efficient than current implementations which
impmediately apply operators to their operands creating

temporary results ia low speed memory.
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CHAPTER I

Introduction

The design and implementaticn of programming languages,
such as AFL (2 Prcgramming Language), is a compromise between
design goals and pragmatic considerations in the
implementation. Experience in implementing a language
affects changes in the design of that language as well as
influencing the design of new languages. This feedback
mechanism is a majcr ccmponent in the development of
programming languages. In discussing design criteria
Iverson[14] states that a programming language should be:

nccncise, precise, consistent over a wide area

of applicatior, mnemonic, and economical of

symbols; it shculd exhibit clearly ccanstraints

on the sequence in which operations are

performed; and it shculd permit the

description of a process to be independent of

the particular representation chosen for the

data."
Through the several irplementations tky L. Y. Breed[ 8],
P. S. Atrams[1], P. Berry[5], and others, many concessions
have been made to ease the task of izplementation. Although

~

the results are readily recognizable as AFL the design



criteria set forth by Iverson have nct been rigorocusly
applied tc the alterations made. We will examine the
language and implementation as described by the APL/360
User's Manual[ 12]. It is assumed that the reader has a
reasonable working knowledge of the AFIL language and

programming. Appendix A contains a summary of the operators

in the language.

The utility cf a programming language is dependent to a
significant degree on the consistency of its definition.
APL is a simple and corsistent language that has acjuired
some flaws in the process of irplementing. Chapter II is
concerned only with criticizing scme of the imco~ istencies
of the izplemented language. The criticisms deal with
inconsistencies in the language such as context-dependent
operatcrs, differences Letween functions and orerators,
operators which can be usefully extended to arrays and the
branch operator which violates several of the design

criteria mentioned by Iverson.

By applying the design criteria more rigorously the
power and generality of the language may le increased.
Chapter III attempts to do this. A new data type along with
changes to the syntax and definition of the language is
shown to eliminate scme of the problems described above. A

new operator - Rename - is proposed to make the additioms to



the language more widely applicable. Aan I/0 facility for
sequential files is included and made to resemble thg
present use of variables. Iverson's suggestion that the
sequence cf operations should be clear is used as
justification for eliminating the branch cperator and
replacing it with the syntax IF, THEX, ELSE and REPEAT, END.
The motivations for the changes in Chapter III are increased
consistency and the development of a more powerful and

general programming language.

Cne of the concessions made to case the task of
implementation was the altering of the syntax of Iverson's
APL so that the language became essentially a language of
operators. In Chapter IV a proposal for an implementation
by Abrams is examined. The proposal takes advantage of the
operatcr nature of the language. Abrams[1] shcws that some
expressions in the language can be simplified so that fewer
operations need to be done to execute an expression. In
addition all expressions in the language can be executed
more rapidly if the execution is organized so that slow-
speed memory is referenced as seldom as possible. Abrams®
proposal is descrited in terms of a machine with three
parts. Tte first part is a pseudo-ccmpiler, the second an
algebraic simplifier, and the third an executor. The

pseudo-compiler generates code for the algebraic simplifier



from AFL text. The algebraic simplifier interprets its code
to produce simplified code for ‘the executcr. The simplifier
uses the stack-criented nature of Abrams' machine to

generate executor code that will reference slow-speed memory

efficiently.

The modifications proposed to the language attempt to
retain the simplicity and consistency that APL is known for
while introducing facilities to make it a more powerful and
useful language. Abrans' machine and the modifications
proposed to it form the base for either a software

implementation or a hardware design.



CHAPTER II

Criticism of APL

AFl is usually described as an array-oriented language,

although it could just as well be characterized as a

language cf operatcrs. These two aspects are fundamental to

the formation of AFL expressions. The language is designed

to achieve the following goals:

1.

T0 have a simple and explicit syntax for all the
primitive operators in the language.

Tc extend in an obvious manner the definition of
primitive operators to arrays or cther data types
incorporated in the language.

To be as ccnsistent as possikle without reducing the
power of the language. The consistency should be
such that it enhances the simplicity of the
lanquage. For example, operands should have
consistent conformability requirements, functions
should clcsely parallel operators in their usage,
and added features such as new data types or
improved I/0 facility should be included with as
little change to the framework of the language as

possible.

In the remainder of this Chapter the discussion will centre



on the AFl language - the formation of exrressions - as
distinct from system commands, or function definition

facilities included in implementations.

A variable, a number, a niladic function, and a niladic
operatcr are the simplest APL expressions. More complex
expressions can ke formed from monadic and dyadic functionms
and orerators with expressions as their operands. Functions
differ frcm operators in that they are nct predefined in the
language. This distinction is important in the design of an
implementation but has relatively little effect in the
language. Expressions are interpreted right to left unless
parentheses are used to delimit complex expressions as left
operands. These few simple rules form the basis for
constructing APL statements. Reduction and inner and outer
product are useful features in the language which provide a
flexible means for forming many new monadic and dyadic
operétcrs. Although APL is noted for its consistency{ 4]
there are a few areas which are inconsistent. Scme of these
areas, such as subscripting, functions, specification,
branching and the definition of mixed operators, are covered

in the remainder of this Chapter.



2.1 Subscripting

Subscripting, although classified as a mixed operator,
does not generally allow as an operand an expression that is
valid in any other context except subscripting. It also may
take precedence over other operators, a violation of the
rigkt to left parsing procedure. These discrepancies are a
result of defining subscripting in a manner similar to the
classical form wherein the subscriptee is immediately
followed ty a delimiting pair of brackets which contain the

indices. The indices are separated by delimiters such as

semi-colons.

AEI has generalized the classical definition so that
the subscriptee may ke a variable, a niladic function that
returns a result, or an expression. The individual indices
must be valid expressicns. The number of indices must be
equal to the rank cf the subscripted expression. The rank
of the result is the catenation of the ranks of the indices.
Thus a vector of length one can be subscripted by an n-rank

array to produce an n-rank array.

Despite the generalization of the definition of
subscripting the inccnsistencies inccrporated reduce the
utility of the language. For example, Index is the only

operator which reflects the rank of the operand in the



syntax. 7This incorsistency leads to the following
difficulty. TIf a,dyadic functiecn is to be written vhich has
as a left operand an array of variakle rank and dimens<ions
and as a right operand a vector which specifies a scalar
component of the array to be returned as a result, the
functicn can be defined as:
V Z«ARR SINDEX V

[1] +1+pV,2+10

[2] =+0,0p2«ARRLV]

(3] +0,0pZ«ARRLVI1];¥(2]]

C4]  +0,0p02«ARRIV[1];V[2];V[3]]

[F]  +0,0p2«ARRLV[1]; ... ;VIN1]
v
Examination of SINDEX shows clearly the awkvardness that
results from the definition of subscripting. The definition
of SINDEX could be extended by allowing an array as the

right ofperand.

However the definition of SINDEX cannot be extended so
that it could be used in pPlace of the operator Index. The
protlems inherent in extending SINDEX are demonstrated by

the following examples:



1. A<«B[I]

2. A«ClI;J;K]

3. AlIlecC
In the first case the indexing operation can easily be
replaced by a functicn. However the seccnd case
demonstrates that subscripting accepts as cperands
expressions which are valid omly in the ccntext of
subscripting. The third case demonstrates that subscripting
is really two different operators - if it is an operator -
which is dependent on the syntactic context for the
interpretation of its meaning. It can be an operator which
fetches values frcm an array or inm ccnjunction with
Specification stores values into an array. The second and
third examples demcnstrate that subscripting cannot in
general be replaced by a function. The result is, that when
proposals are made for alternative definitions of

subscripting{7], new primitive operators bave to be added to

the language.

The design of the language should not be such that it
forces a user to irplement primitive operators in crder to
reasonably solve his specific problem. Rather, primitive
operators should be incorporated in the language because of
heavy use or because they introduce a facility that

otherwise could nct ke obtained.
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Functions allce the power of the primitive operators to
be extended[4]. Functions may be classified in six ways.
They are niladic, monadic or dyadic depending on the numter
of operands and they may or may not return an array as a
result. 2 niladic function that returns a result can be
included in an exfpression as if it were a variable. Monadic
and dyadic functions that return results can be considered
as operators in most cases except that present
implementations dc not allow dyadic functions to be used in

reduction, or inner cr outer products.

There are two methods by which arguments may be passed
to an invoked functicn. Two, or fewer, arguments may ke
passed as explicit operands to the invoked function, and a
result may or may not ke returned. The values of the
explicit operands will not ke changed on return frcm the
invoked function. This parallels the definition of scalar
operators. Arguments may also be passed implicitly. 2Any
variable which is defined at the point of function
invocation will be known within that function by the same
name unless it is declared local to that function or has the
same€ name as one cf the explicit operands in the function
header. 1In order to pass three or more distinct arguments

to a function there must be a deliberate correspondence
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between variable names in the called and calling function.
Inadvertent corresgondences can, on occasion, lead to rather

subtle interaction between programs.

Functions and operators differ in the way in which they
pass arguments. A function's arguments are passed by value
while an oferator's arguments are passed by name[3]. In APL
the facility for Fassing arguments by name is different than
ALGOL's facility as expressions are evaluated before
operators are invoked and thus expressions cannot be passed
as arguments. The essential difference between call by name
and call by value is that call by name allows access to the
arguments of a routine as known at the peint of invocation
whereas call be value has duplicated the arguments and these
Dew arguments are kancwn only within the invoked routine. As
a conseguence the Specification operator cannot be replaced
by a function. Thus, it is open to the same criticism as
¥as subscripting. Another aspect ot passing arquments by
value is that expressions can be formed which are valid and
executable, but because of implementation restraints cannot
be replaced by a function. For example:

1o A+T[AT«pB]

2. A«FUNC B
The array B can be made sufficiently large so that example

one will execute and example two will nct. The problem in
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example two is that the array B needs to ke allocated twice

- -

in memory so that it can be passed by value. Although this
is an implementation restriction it is artifically created
by the design of the language. The keneficial aspect of
call by value is that it need not be a matter of comncern for
novice programmers. An implementation designed to serve
this grcup would do well to retain this feature. 1In a more
general environment the facility and efficiency of call by

name is worth having.

2.3 Branching

The definition of a function consists of two parts, the
function header and the body. The body consists of numbered
expressions. In crder to pass contrcl from one exgression
to any other expression a branch operator is available.
Branch is a specialized monadic mixed operator. The
operator is context-~dependent in that it must be the left
most character in the string defining a given line in a
function. It is the only primitive operator that does not
define a result. 1In larger programs careless use of the
Branch operator can eliminate any corresgondence between
flow of execution and physical layout of the program. The

result can be a pregram that is extremely unreadable and

difficult to debug.
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2.4 Mixed Cperators

Two of‘the goals for APL mentioned at fﬁe beginning of
this Chapter were to provide a simple syntax for operators
and an obvious extensicn of the syntax for arrays. The
definition of the scalar operators achieves this goal quite
adequately. The definition of mixed operators and functions
falls short when we consider the constraint of keeping the
language as consistent as possible. However consistency of
the language must yield to the power and facility provided
by the mixed operators. Mixed operators are distinguished
from scalar operatcrs because of the variety of restrictionms
they place on their cperands. For instance, the defipnition
of compression or expansion requires a vector or a scalar as
the left orerand. This precludes conformability
requirements associated with scalar arithmetic operators.
Some of the mixed operators can be extended so as to reduce
the restrictions cn their operands and provide a more

powerful facilitvy.

Encode and Decode can easily be extended to arrays.
This extension exists in some implementations. Any two
arrays are conformable for Encode. The resulting dimension
is the catenation cf the dimensions of the operands. The
original definiticn cf Encode allows a vector as the left

operand and a scalar as the right. This can be extended so
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that colurn vectors from the left operand are aprlied to the
scalar elements of the right operand array. If the left
operand of Encode “is an array them Decode can not be used as
an inverse function. Decode is extended to accept only a
vector or scalar as the left operand and requires the left
operand to be confcrmaktle to the first dimension of the

right ogerand.

Index Generatcr, momadic IOTA, accepts as an operand a
scalar or one element array. The resulting vector generates
indices for other vectors or by repeated use will generate
indices for arrays of higher rank. Like Encode and Decode
there is a natural extension to Index Generator which allows
it to generate the indices for an n-dimensional array. The
operand is a scalar or vector which has values that set the
upper bourd on values in the rows of the result. If the
operand is a vector V then the result is a ((pV),x/V)
matrix. The columns of the matrTix are the indices of one
scalar element in the array. The extended operator would be
equivalent to the follcwing function:

V Z«INDEXGER V

(1] Z«((pV),x/V)pIORG+VT(1x/V)-IORG
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INDEXGEN 5
1 2 3 4 5 )

INDEXGEN 1 2 3

Tt 11 2 2 2
12 3 1 2 3
Note that the Index Generator used in the definition of
INDEXGEN is intended to be the original rather than the
extended definition. Also IORG represents the value of the
current origin. The result of INDEXGEN is a vector or a
rank two matrix. The rank two matrix cannot be used
directly with the Index operator to obtain the desired
result but can be of use with an INDEX function defined as:
Vv Z<«ARR INDEX IND
[11] Z+(,ARR)[IORG+(pARR)1LIND-IORG]
v
This is one of the simplest of numerous useful definitions
for INDEX. Note that INDEX is an example of a function and

not a suggestion for an extension of a primitive operator.

Index Of, like Index Generator, has a restrictive
definition. The left operand must be a vector. INDEXOF,
shown belcw, is an extension of the operator Index Of that

is consistent with Index Generator.
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vV Z«A INDEXOF B

(1]  2«((ppA),pb)pIORG+(pA)T,((,4A)1B)~IORG

V 2«4 INDEXOF B;T
(1] Z«(2,pA)T,((,A)B)~IORG
[2] 7«Q((+/201;]1),1+ppdlpl,p4
[3] z[;201;]/1x/pBl«T

Cu]l Z«((ppA) ,pB)pIORG+1 042

v

A+2 2p14
B+3 3p14
ArB

1 1 2

2 2 3

3 3 3

1 2 1

2 3 3

3 3 3

The Index Cf operator used above is the restricted and not
the extended definition. Two definitions are given for

INDEXCF. The first illustrates the relevant points of the
algorithm. The additicnal logic of the second is omly for

the purpose of inserting (1+p4) for indices corresponding to
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elements in B which are not in A. The result can be
interpreted as fcllows. If R is the result of A IOTA B and
A and B are rank two matrices then the value of B[BR;BP] can
be found in A with indices R[ ;BR;BP]. For example the value
4 is in B at B[2;1]. R[:2;1] is the vector 2 Z. Therefore
A[2;2] has value 4. The result of this extended Index of
can bte used in the function Index above. The extensions of

Index Cf and Index Generator are therefore ccnsistent.

The criticisms of this chapter pcint out some of the
areas of inconsistency in the current APL. The Subscripting
and Branching operators demonstrate weaknesses in the syntax
while functions, Encode, Decode, and the pixed operators are
examples of weaknesses in the semantics. For the most part
the criticisms indicate the difficulties encountered in
implementing a language that was not specifically designed

to ke implemented.
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CHAPTER II1

Improvements To The Langquage

The improvements proposed in this Chapter are intended
to prcvide partial answers to the adverse criticism of the
previous Chapter. The inclusion of a new data type, the
nixed-data type, ard a new operator, EKename, would solve
some of the difficulties associated with indexing and
functions mentioned previously. The new data type has the
additional benefit of allowing some algorithms to be easily
implemented that could only be done in an awkward and
inefficient manner previously. Scme of the current
implementations have included an I/0 facility through
extended definiticn of operators and functions. Aan
alternate approach that associates symbolic names with files
is suggested as a more consistent extensicn to the language.
The branch operator is replaced by the syntactic ccnstructs

of IF, THEN, ELSE and an iteratiom clause REFEAT, END.

3.1 The Mixed-Data Type

The proposed mixed-data type is a scalar or array in
which each element is a scalar or array of any dimension and
attributes except that cf mixed-data type. From the pcint

of view of the ilsrlementation a mixed-data type vector is



similar to a parameter list in other languages. Thus the
values of a mixed-data vector would ke pointers to other
arrays or scalars. A new dyadic operator for creating
pnixed-data type arrays is ";". The following examples
illustrate its use:

1. A«+I1;I2;13

2. B RENAME I1;I23;I3
The second example will be referred to in the following
section discussing Rename. It can be seen in the first

example that the operator n.n js derived from the present

19

syntax for indexing. It is also used in a rudimentary form

to output values of dissimilar data types. In statement

one, A becomes a three element vector whose scalar elements

are the scalars or arrays I1, 12 and I3. For example, I1,

12 and I3 might be, respectively, a character array, @2

scalar real number, and an empty vector. Other such diverse

combinations are pocssible. The scalar components of A can

subsequently be accessed by indexing A. However the rank

and dimensions of A[ 2] are not necessarily that of a scalar.

In the example above A[2] vould have the same attributes and

dimensions as, and could be used interchangeably for, I2

until a Specification operation changed the values of A{2]

or I2. If I2 is a rank three array then (A[2])[1:2;53] would

select a scalar element from that array. The definition of

the operator ";" rarallels the definition of catenation.
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The essential difference in effect between Catenate and nent
is the data type and dimensicns qf the result. The
expression A;B may be interpreted as one of three
possitkilities:

1. Neither A nor B is mixed-data type. Then the result
is a two element mixed-data vector in which the two
scalar components are identical tc A and B even
though they may be matrices.

2. Only ome of A or B is mixed-data type. If A's type
is not mixed-data then the result will be formed by
making 2 a scalar component and "catenating" it to
the vector B producing a mixed-data vector. If B is
nct a vector then a rank error occurs as the
“catenation" of a scalar and matrix is undefined. 2
similar result occurs if B's type is not mixed~-data.

3. Both A and B are mixed-data type. The result is
mixed-data type and the dimensicns of the result and
the restricticns on the operands are the same as if
the operator had been Catenate.

It is important in the definition of ®“;" that scalar
components of a mixed-data array cannot have the attribute
of mixed-data. A data tvpe with this recursive definition
could ke supported but cannot be handled in a consistent
fashion with just ";" because of point (3) above. The

monadic use of the operator ";" would be similar to ravel.
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If the operand were not mixed-data type then the result
would be a one-elerent mixed-data vector. If the cperand
were mixed-data type then the result wculd be a mixed-data

vector with the scalar elements taken frcm the operand in

row-major order.

All the primitive operators of APL wculd be defined for
mixed-data cperands with the exception of reduction arnd
inner and outer products. Scalar arithmetic operators would
add, suktract, etc. the arrays which are defined by the
scalar elements of the mixed-data operands. Mixed ofperators
would manirulate just the scalar elements of the orerands

without altering the arrays to which thkey refer.

3.2 The Operator Rename

In statement 2 above, B is defined similar to A with
the proposed Rename operator. Rename does not reallocate
the values as does Stecification. 1Instead the operator
allows a value or set of values to be known by two different
names. Changes to the values of I1 are reflected in B, thus
values associated with B are the same values as those
associated with I1, I2 and I3. B differs form A in that the
values of A are equivalent but not the same as those of I1,
IZ and I3. Mixed-data variables are very similar to

parameter lists in other languages. The Fename operator



22

allows these "parameter lists" to be named and manipulated
without unnecessarily having to duplicate the values. The
farilities provided ty Rename do not exist in any form in

the language. Thus Rename would have to bte added as a new

primitive operator.

3.3 Functicns

Function invocation would be changed so that operands
are passed by name rather than by value. This change will
have several effects. Programmers will be alkle to replace
operators such as Specification and Index with functions of
their own definiticn. Implementations wculd make better use
of memory as they would not allocate and move arrays
neecdlessly. Programs will not be recursive by default.

Recursion can be forced as follows:

1. U Z«FAC N 2. v Z«FAC N;T
(1] +0x12+¥N=0 [1] +0x1Z«N=0
[2] NeN-1 (23] T«N-1
£3] Z«NxFAC N £3] Z2«NxFAC T
v v

Both examples are simple functions to calculate the
factorial function. However the first example will evaluate
to zero for all positive values of N. The error occurs

because N is being passed by name and its value is being
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decremented to zero. Thus N x FAC N evaluates to Zero. The

second example uses the local variable T to explicitly force

recursion.

3.4 Subscripting

The operator Index is considered in its two modes,
retrieving values from, and assigning values to arrays. The
retrieval mode A[2;3], would have the paired brackets
replaced ty a single graphic in place of the left bracket.
The result would remain the same only the syntax is changed.
For assigning values the Index operator is eliminated. TIts
function is taken over by Specification. The syntax is:

1. (ARR;I1;I2;...;IN)+B

2. ARR<B
In both statements the left operand of Specification is a
valid data type rerresented by a valid expression. The
Specification operator need no longer be context dependent
to distinguish Letween the two statements as the left
operands are different data types. 1In statement 1. the
array being indexed is the first element of the left operand
and the indices are all the succeeding elements. If any of
the indices I1 through IN are empty vectors(10) then 2ARR
will kave values specified throughout the range of these

indices. This is the equivalent of the expression



ARR[I1
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333]J+B in the present implementation. These changes
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to subscripting have two advantages:

1.

2.

Index is nc lcnger context dependent.

With the changes to function invocation, functions
can be written which subscript arrays in a different
manner than Index[7]. Without these changes the
only methocd of incorporating a different
subscripting facility is to add a new operator to

the implementation.

The disadvantages cf these changes are:

1.

The Index operator does not stand out as clearly as
do bracketed exrressions. Thus ccmplex expressions
Eecome more difficult for people to analyze.

The language beccmes slightly more verbose as an
empty vectcr must be explicitly specified to index

through an entire dimension.

3.5 context-Dependency of Exrressions

In current isplementations there are two types of

statements - specification and branch statements. Neither

of these causes any I/C to be done implicitly. An

expression which cannot be categorized as either

specification or tranch is arbitrarily categorized as a

specification statement with as implicit Guad and
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Specification to the left of the expression. Consider the
" following expressicas:

1. A«S

2. (A<5)
Statement 1. causes no 1/0 whereas statement 2. does. This
context dependency could prove inconvenient in situations
where specification or subscripting has leen replaced by a
function. For example, if a function SPEC has been defined
similar tc the operator Specification, then a statement
consisting of the expression A SPEC B would cause the values
of A to be output. This output should not be forced on the
programmer. Rather, context dependency of expressions
should be eliminated and the programmer must explicitly

indicate at what pcint he wishes I/0O to Le done.

3.6 I/C Facility

I/C facilities are being added to some APL
implementations[9] by extending the definition of some
operators such as Ibeam. These operators are then imbedded
in locked functions to make their use easier. Although
operators are part of the language the result of this ad hoc
approach is that I/0 is being added to the implementation
and not the language. Consequently there is 1iittle

likelihcod of compatibility of programs between
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implementations.

If we analyze the present I/0 facility of APL we fihd
that Cuad has properties of both variables and niladic
functions. (Quad cannot be a niladic function because a
function cannot have values specified to it as in the
following expressicn:

0«4
If ve consider Quad to be a symbolic designation of a
special variable - despite the inconsistencies - we can
expand this primitive facility into a more general form.
This can be done by adding a mechanism to the language which
allows any valid symkolic name to be declared as an I/0
variable. There exists in the language a mechanism for
declaring - defining - symbols to be functions. A similar
mechanism would declare a symbol to be an I/0 variable. 2
symtol could then represent one of three things, a variakle,
an I/C variable, or a function. From the point of view of
the implementation an I/0 variable would be quite distinct
from a variable. However, in the language they should be as

similar and interchangeable as possible.

When defining I/0 variables one of two types, a simple
type and a complex type, would be specified. This
informaticn is primarily for the implementation's i/0

support routines but would have effects in the language. On
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output through a ccmglex type I/0 variable both the data and
its descriptor would be written to the I/C device. Details
concerned with blccking, fhe host operating system, the
machine model, and the format the data is written in wculd
be specific to the implementation. Thus data in this format
is likely to be incompatible with otker implementations and
I/0 devices. On input the data is self-describing and the
I/0 variakle virtually indistinguishable from a variable.
The complex type is intended for data bound for intermediate
mass storage. Arrays of arbitrary rank and attributes can
be output and retrieved without recourse to formatting
schemes and intermediate data forms. As the descriptors are
included in each I/0 operation there is nc necessity for

conformability between two successive I/0 operations.

The simple I«C variable is a more powerful and general
facility but very inflexible in its use. On input or output
the I/0 variable must be a boolean vector. Cn input a block
of data received from an I/0 device will be considered as a
string of bits which will determine the values of a boolean
vector. The length of the string will be determined by the
nunber of bits received from the device. Any communication
control characters in the string would not be stripped by
the I/C support routines. Output must be a boolean vector

whick has any necessary control characters included in the
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string. The primitive I/0 facility is designed to get the
data in and out of memory in a form characteristic of most
digital computers. Formatting functions written in APL can

provide the cransfcrmation of data into a convenient forn.

The appearance of I/0 variables in the language is
similar tc variables. For example:

1. A«FPILEIN

2. FILEQUTB
Assume A and B are variables and FILEIN and FILEOUT are I/0
variables. If FILEIN is simple then A will be specified as
a boolean vector. Otherwise the descriptor of A will be
determined by the descriptor accompanying the data which can
be assumed valid. If FILEOUT is simple then B must be a
boolean vector. If FILEOUT is not simrle then the
descriptor of B will be preserved. Each time an I/0
variable appears as an operand in an expression being
executed an I/0 operation is performed tc transfer the

appropriate values.

1/0 variables differ from variables in that they can
not be sukscripted when they are the left operand of
Specification. The restriction arises in the following
expression:

(FILE;I1;T2)+«A

If, in the process of declaring FILE, it was declared
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"write-only" then an error will be indicated. The indices
are not used to access an "indexed" file as this is not the
interpretation that would be applied if the file were an

input file. If FIIE is “read-only" then a different error

will ke indicated.

3.7 1¥, IBEN, ELSE and REPEAT

The control structures IF, TEEN, ELSE and REPEAT, END
are to be included in the language and the Branch operator
eliminated. There are two reasons for eliminating Branch.
primarily, the alterrative control structures make many
prcgrams easier to understand and detug[ 16], and seccndly,
the syntax of the Branch operator is not consistent with the
rest of the lanquage. Eliminating Branch also eliminates
the possibility of ccnstructing iterative groups of
statements. REPEAT, END replaces this facility with a
syntax that more explicitly defines the group. The syntax
for these control structures is:

1. I¥ (BOOLEANEXP) THEX (EXES1) ELSE (EXPS2) END
2. FEEFEAT (REEEXP)

(EXP1)

(EXP2)

(EXPN)

ENL:LABEL
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The symbols that are not parenthesized are constant and must
appear as shown fcr the syntax to be correct. Parentheses
and parenthesized symktcls are to be replaced by an
expression or expressicns. The results of example 1. are
well kpown from AIGOL. BOOLEANEXP represents a single
expression which evaluates to a scalar or single element
array which is boclean. EXPS1 and EXPS2 represent zZero or
nOore e€xpressions. A null expression results in no
execution. In example 2., REPEXP is a single expression
which evaluates to a scalar or single element array that is
a positive integer. It specifies the number of times the
group of exrressions; EXP1, EXP2, EXEN, will be executed.
END or ENL:LABEL delimits the group. IABEL is a string of
characters that uniquely identifies, within a function, the
END of a REPEAT grocup. The rules for forming strings which
are valid labels are the rules for forming variable nanmes.
Iwo control structures associated with REPEAT are CYCLE and
LEAVE or CYCLE:LABEL and LEAVE:LABEL. CYCILE causes
execution of the next iteration to begin immediately with
the first expressicn in the inner-most REPEAT group in which
CICLE appears. LEAVE causes execution to continue with the
first exrression after the inner-most EKEPEAT group. If a
label is suffixed to the CYCLE or LEAVE then the REPEAT
group that executicn is transferred to is the cne identified

by the lakel. This facility is useful when execution is to
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be transferred out of several nested REPEAT groups{18].

Errors would be indicated if the labél were not defined

within the function or if the CYCLE cr LEAVE was not within

the REFEAT group that the label was attached to. An example

of a butble-sort program illustrates the use of this aew

syntax:

(1]
[2]
(3]
(4]
(5]
(el
(71
[8]
(9]
(101
[11]
{1213
[13]
[14]
v
There are

should be

SORT+GRADEUP V3D;I3d

SORT+\I+pV

REPEAT I+I-1

FLAG+0xJ+pV

REPEAT I

IF VISORTLJ-111>VISORTLI]]
THEN D+«SORTL[J=1]

SORT[J-1]«SORTLJ]

SORT(J1«D
FLAG+1
ELSE END
JeJ=-1
END
I«I-1

IFP FLAG TEEN CYCLE ELSE LEAVE END END

several implicit points in the fprogram above which

stated. One is that repeat groups are independent

of subsequent values of variables that initialize themn.
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Thus when Iine 2 is executed a counter is set up which is
not affected by changes in the value of I. The second point
is the ﬁethod by whichlexpressions are delimited. When
there are several expressicns to be executed the only method
of delimiting them is to list them on separate lines as
shown by lines 6 thrcugh 8. The third point is the
inconsistency of the reserved words added tc the language.
This objection could be overcome by replacing the reserved
words with single character graphics. There would then be
cons:iderable sirilarity between the new control structures
and parentheses. However, a considerable degree of
intuitive appeal is lost by the replacement of well kncwn
symtolic names. As the reserved words have well known
meanings it is suggested that they be retained. The fourth
point is the need for preprocessing of programs. Consider
the fcllowing statement:

IF DIR=0 THEN I+1 ELSE I<ILAST END
This statement cannot be executed right to left as other
stiatements can. Thus a preprocessor must break it up into
three separate parts so it can Le properly executed. 1In
current isplementations this would be awkward. However, if
the implementation is done as suggested in the following
Chapter this preprccessing could easily be incorporated in

the pseudc-compiler stage.
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Any program that will terminate in finite time can be

represented by three tasic control structures[ 16]: .

1. Simple seguencing

2. IF¥, THEN, ELSE

3. REEEAT, ENL
Programs written with these control structures are
characterized by one entry at the start of the program and
one exit at the end. The control structures ensure that
execttion takes a direct path from entry to exit. Thus all
programs written will te very similar to the straight-line
algorithms or methcd of leading decisions that Iverson
advocated in his tcok "A Programming lLanguage.” In addition
all non-recursive programs must terminate in a finite time.
A1l lcops pust use REPEAT which has a finite replication
factor. These factors combine to make prcgrams easier to

understand and detug.

3.8 Survey of Other Improvements

A. L. Anger[2] has suggested the additicn of an
embedded dyadic kranch operator. This would allow
expressions of the following form:

Z+A+J+LABEL
In this expression if LABEL were not iota zero then the

branch would be taken and the left operand of the tranch
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operator would be left unevaluated. If IABEL is iota zero
then the result of the tranch operator is simply the left
operand J. Although this suggestion eliminates the
syntactic weakness cf the branch operator it introduces the

ability to construct APL statements that are very obscure.

J. Ryan[17] has suggested the introduction of lists as
a data type to the language. A ";" operator would be used
to construct the lists. The following expression would
generate a binary tree, T, with leaves A, B, C, and D:

T+((A;B);(C;D))

The data structures that can be created using this operator
are superior to the mixed-data type mentioned above.
However the operator has Leen made context dependent in
order to achieve these structures. The removal of
superflucus parentheses from the above expression changes

the share of the tree obtained.

S. Charmonman[11] has proposed a modification to the
definition of confcrmaktility for the dyadic scalar
arithmetic operators. Charmonman proposed an extended
definition that wculd allow any two operands to be
coaformable. In the case that the ranks of the operands are
not the same then the operand with the smaller rank is
reshaped to the rank and shape of the operand with the

larger rank. If the ranks are identical but the operands
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have different dimensions then the operand with the least
number of elements is reshaped to the rank and shape of the
operand with £he.greatest nﬁmber of elements. If the
dimensions are different but the number of elements in the
operands is the same, thern the left operand is reshaped to
match the right operand. However, as L. Breed[ 10] has
pointed out, this generalization to the definition of
conformability destrcys the properties of associativity and

communtativity.

The AFL PLUS file subsystem was designed by L. Breed[9]
and E. B. Iverson to add I/0 capability to APL. Their
design objectives were:

1. Operation with APL/360 with no changes to the
language.
2. Efficient cperation with arrays as objects of data
transfer.
3. File access does not envclve extralingual system
ccmmands.
4, File sharing and high reliakility.
To achieve these objectives a single primitive operator wuas
introduced. Then, for user's convenience, functiomns FTIE,
FCREATE, FREAD, FAPPEND, FREPLACE, FRDCI and FHOLD were
written all using the new primitive operator. FTIE and

FCREATE associate a file number with the file's nanme.
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FCREATE in addition creates a new file. FREAD retrieves an
indexed component cf a file. - FAPPEND adds a component at
the end of a file and FREPLACE replaces a component. FRDCI
returns component information about a file such as the
accourt number the component was wrCitten under and the tinme
at which it was written. The FHOLD function allows
synchronization between two people updating a file

simultaneocusly.

Compared to other languages it can ke seen that there
are relatively few and simple ccncepts to be mastered in
order to ke able to obtain a sophisticated I/0 capability.
In addition it is relatively simple to add this capability
to current implemerntaticns. However, bty adding the I/0
Capability to the implementation rather than the language,

consistency betweern irrlementations may well be lost.
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CHAPTER IV

Ipprovements To The Implementation

Current implementations of AFL are simple interpreters.
Character strings used to define programs have simple
editing orerations, such as removal of excess tlanks and
some standardizing of format, performed on them before they
are stored. However, a high degree cf visual fidelity is
maintained. The interpreter uses the edited strings for
execution cf programs. It begimns its analysis of the
strings on the left to check for possikle comment statements
or system commands and then continues with a right-to-left
parse and execution of the string. The visual fidelity
retained in the strings{8] used to execute programs results
in extra processing in the identification and resolution of
operands, the identification of operators and the detection
of simple syntactic errors. Preprocessing of text can make
operator identificaticn and operand resolution significantly
more efficient in terms of processing required.

Considerakle efficierncy in memory space and execution speed
can be gained by deferral of operators and simplificaticn of
expressions as proposed bty Abrams[1]. Deferral of operators
results in reduced memcry requirements for temporary results

and less computaticn fcr memory management associated with
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temporary allocaticns. The following expression illustrates
an ideal situation for deferral of operators:

A+B1+B2+ ... +B9+B10
Current icplementations allocate storage for a temporary
result of B9 + B10 and then proceed with the addition.
Allocation of a tepporary result is not needed in this
example. By deferring the add operaticn until the
Specification operator is interpreted all the addresses of
operands cf add can ke resolved. If the interpreter then
adds only one scalar component from each operand and stores
the result in A, temfporary storage for orly cne scalar is
needed. The preocess is repeated for the next scalar
component of the orerands. The scalars are accessed in row-
major crder. After (x/pB10) repetitions A will be
completely specified. As.only one element of temporary
storage is needed, a register can be allocated for this
Furpose with significant savings in frocessing time.
Savings in execution time derived frcm the simplification of
expressions is illustrated by the fcllcwing expression:

A+(1 1 1)8B+C
The result A, is just the diagonal sum of the arrays B and
C. Current implementations in producing the temporary sum
of B + C do much unnecessary processing in summing the off-
diagonal components. Atrams proposed a simplificaticn

scheme, called beating, so that the expression above would
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be calculated as if it were:

A«((1 1 1)&B3)+(1 1 1)&C - .
Beating is the process of determining equivalent expressions
which take fewer oferations to calculate than the original
expressicns. Abrams showed that a subset of APL operators
produced exrressicrs that are beatable. The above exanmple
would require processing time that is expcnentially related
to the number of scalar components of the arrays for current
implementations whereas Abrams' proposal takes processing

time tbat is linearly related.

Abrams stated his proposal as a design for a machine =~
the APL machine or APLM. Although it is not necessary to
consider it in machine-like terms, Atrams' proposal will be
referred in terms ascrited to machines in the following
Chapter. Many of these terms have equivalents in a software
implementation. Fcr instance, registers rather than arréys,

and bits rather than flags will be descrited.

A software igrlementation of Abrams' APLM has been
undertaken by the author and D. A. James. James worked on
the DM and the author on a subset of the EM. The EM was
coded in IEM/360 Assembler language. The implemented suktset
demonstrated that the fundamental design of the EM is
correct by properly executing expressions that confined

their operations tc those of the subset. In addition minor
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discrepancies in the logic as proposed by Abrams were found.

4.1 The AEIM

———— - ———

The AFLM consists of three submachines, the C, D, and E
machines. The purgoses of these machines will first be
descrited briefly, and in detail later. The C machine (CH)
"compiles"™ raw APL text into an efficient form for execution
by the D machine (LM). The DM analyzes this code into
beatable and deferratle expressions. When an cperator is
encountered that cannot be teaten or deferred the DM
produces code for the E machine (EM). Tke EM is given
control tc execute the generated code and produce the
result. It is reasonable, although redundant, to have three
versions cf a program as the different versions are expected
to reside in different storage hierarchies. EM code may be
imbedded in several nested loops and therefore resides in
high-speed register storage. DM code is needed cnce for
every invccation of the program in which it belongs and
therefore resides in intermediate core stcrage. CHM code is
only needed once to generate DM code and possibly for the
generaticn of error messages and can therefore be placed on

a mass storage device.

The CK does nct truly compile AFL text as it does nat

resolve the addresses of operands and cnly modifies
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operators to make their identification a rapid process. It
doeg compile in the sense that it reduces text to an opccde,
operand form similar to one and two-address machines. The
DM handles some operatcrs such as monadic RHO by itself, but
it is essentially a run-time "algebraic simplifier". These
simplification processes cannot be done by the CM as they
require the values of variables that are not determined
until run-time. The CM is included as part of the machine,
rather than simply being part of the software, so that the

machine can be used recursively to evaluate an operator such

as Unquote.

4.1.1 kegisters in the APLM

The AFLM ccnsists of stack and scalar registers, core
memory, and the proccessing units for the C, D, and E
machines. The C, L[, and E machines all have access to the
registers and core memory. The registers are as follows:

1. Iteratiomn Stack (IS)
CTR MAX DIR (B MRK
0 5 0 0 1
C 9 0 0 0

3 3 1 1 0 <= Tor Entry

The IS is effectively a set of nested loops. The ISCTR

is the CTF field of the entry at the top of the stack. It
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should support values as large as the largest integer to be
supported.by the inplementation. It should be able to take
on values at least as large as the number of bits in core in
order to effectively index large boclean arrays. ISCTR is
incremented or decremented through the range of values
associated with the locp. ISMAX specifies the initial or
final value to be taken by ISCTR. ISDIR is a boolean value.
If ISPCIEK is zero them ISCTR is initialized to zero and
incremented to ISMAX, ctherwise ISCTR is initialized to
ISMAX and decremented to zero. If the above set of loops
were being used tc¢ access the scalar components of a rank 3
array then the dimensicns of the array as derived frcm the
ISMAX fields are 6, 10, 4. The ISMAX fields are one less
than the dimensions as ISCTR is used tc calculate a
displacement from the origin of the array. ISCH and ISMRK
are boolean values. ISCH is used to reduce the number of
calculaticns required to determine the value of the
polyncreial access function. The details of its function are
explained in the section on the EM. ISMEK is used to
delimit groupings withim the IS. These groupings may
correspond to the dimensions of arrays, reduction operatcrs,
or REFEAT groups. Its function will be mcre clearly

explained under array accessing in the EM section.
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2. Lccation Counter Stack (LS)
FEEL ORG LEN CDE 1S FN NWT P
0 200 50 00 0 O 0 0
0 0 10 01 1 0 1 0 <= Top Entry

The 1S functicns as a location counter that makes DM
and EM code readily relocatable. A segment of DM or EM code
is invcked by pushing a descriptive entry to the LS. LSCDE
specifies which of the three machines to ke given contrcl.

A lcgic unit, called Maincycle, is given control after every
DM or EM instruction executed. Maincycle uses LSCDE to
select the appropriate submachine to receive control.
Depending on which machine has control the application of
LSREL, LSOFG and ISLEN is modified. 1In the DM LSORG
specifies the starting location of a segment of code in
memory, ISLEN delimits the extent of the segment, and LSREL
selects the instruction, relative to 1SORG, to be executed.
In the EM the applicaticn of these fields are similar but
apply tc the Instruction Stack (QS) rather than to core
storage. 1SORG should be capable of specifying any core
address. ISREL and LSLEN need not ccrtain values as large
as LSCEG Lkut smaller values artificially constrain the
maximum size of prcgrams. LSIS, LSFN, and LSNWT are boolean
values that, along with LSQP, preserve information

associated with the prcgram segment. 1SIS has a value of
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one if the program segment is being repeated under the
contrcl of the IS and zero if not. When ISREL equals LSLEN
the 1S entry is popped unless LSIS is one. If LSIS is one,
LSREL is set to zero, the IS is incremented - stepped -~ and
the segment repeated unless the IS has ccopleted -
overflowed - its range of iterations. If the IS overflous
then the top LS entry is popped regardless of LSIS. LSFN is
one if the prograr segment the LS entry defines is an APL
function and zero ctherwise. LSNWT saves the valve of the
scalar register, NEWIT, when another 1S entry is pushed to
the stack. LSQP is a pointer into the QS. It is used in
the evaluation of sukscripted expressions. Its function is
further explained in the EM section under subscripting.

3. 1Irstructicn Stack (QS)

cp ADDR
S 5
JMP 10 <= Top Entry

The LM places the instructions it creates for the EM in
the QS. 1The QS serves as a buffer for the EM instructions
and as a stack for data associated with the EM's Ooferation.
Although some of the ofperations performed on the QS are
stack orerations many are not. Thus its designation as the
Instruction Stack is a misnomer. The instructions shown are

illustrative of FEM instructions. These instructions are
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discussed further in the section on the EM.
4. Value Stack (VS)
TAG  VALUE

R1T 0

ST 5 <= Top Entry

The VS serves a variety of purposes. The DM uses it to
temporarily store program segment descrirtors, addresses,
names, etc. The EM uses it to store temporary results
during the evalnation of expressions. This is the main
stack in the machine and it performs a wide variety of
functions associated with many parts of the machine. Its
basic purpose is the storage of temporary results. VSTAG
specifies an intergretation tc be associated with VSVALUE.

The tag ST identifies 5 as a scalar value.

4.1.2 Core Memory in the APLM

1. Memory

Memory contains arrays, array descriptors, a free pool
area, and freed spaces. Arrays are kept in the low end cf
core with freed arrays in a doukly linked list. Array
descriptors are kert in high core and freeé descriptors
doubly linked. Between the arrays apd array descriptors is

a free pocl area of allocatable storage.
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2. Name Index Table (NIT)

The NIT is a N,3 matrix. Each row of the matrix
represents a symbolic¢ name in the origimal text. A
character vector, that is the concatenaticn of all the
unique syrbolic names encountered in the text, is maintained
in association with the NIT. The first column of a row is
the index in the character vector of thke first character in
the name. The seccnd column is the length of the name and
the third column an INX value to be associated with the
name. INX is the value that will be used in place of the
synbolic name in the DX code. The rows of the NIT are
ordered according to the collating sequence of the names
they represent. When a new symbolic name is encountered in
the text it is concatenated to the character vector and
assigned the next INX value. The INX value is recorded in

the row inserted in the NIT.

3. Name Table (NT)

The NT is an associatively addressed memory. Each
entry has a name, tag and value field. The name field
contains an INX value corresponding to a symkolic name in
the original text. The tag field is similar to the tag
field discussed in connection with the VS. Tags designate
various properties of INX values such as scalar, function,

undefined array, etc. The value field is interpreted
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differently for each tag. Some value fields contain memory
addresses. Others, such as those tagged as scalar, have the
value of the scalar in.the vélue field.‘ Abrams included the
NT with the registers but its relatively infrequent use

suggests it should reside in a lower level of storage.

4.2 The C Machine (CPF)

The CM accepts AFL text and produces DH code in reverse
Polish form. DM ccde has operators coded as fixed length
opcodes which will index the appropriate cperator routines
when applied to a table of addresses. Operands are also
transformed into fixed length codes using the NIT. The
resulting TH code has a format similar to the machine code

of zero and one-address machines.

4.3 The L Machine (DM)

The [M analyzes expressions in reverse Folish ccde
produced by the CM to produce EN code which will be more
efficient than simply executing operatcrs in order of
precedence. A subset cf the DM instructions with a brief
annotation to explain each can be found below. These
instructions are represented by an assembly language format
rather than numeric values the CM generates. All examples

of DM code will use this assembly language.
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» LM Instruction Sct

Load Scalar: 1IDS scalar

The scalar is an immediate operand. This instruction
is used in the exrression X+I+! to indirectly cause the EM
to load the constant 1 to the VS. The DM does this by

generating EM instructions and then passing control to the

EM for execution.

Load Constant Array: LDCON disp

The operand disp represents a displacement from the
beginning of the program that the instruction is in to the
location of a descripter array for the constant. The
constants are pooled at the end of the prcgram. 1In the
expression (2 3 5)+4 the LDCON instruction would be used to
define the left operand of Take. In the expression
(2 3 5)+A the LDCCN instruction would cause the EM tc load

the values of the constant array.

load Name and Fetch Value: LDNF name

The operand name is the INX value assigned by the CHM.
The symbolic name can ke recovered from the NIT. By
searching the NT fcr the INX value it can be determined if

the name is defined. 1If the name is defined the NT entry
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has the information necessary to access the value. In the

expressioﬁ X+I+1 the LDNF I instruction would cause the EM

to load the value c¢cf 1I.

Load Name: LDN name

IDN is similar to LDNF above. 1In the expression X+I+1
the LDN K instruction would cause the EM to load the memory
address of the values of K. This address can then be used

by the Specificaticn operator to do the assignment.

load J-vector: 1LJ len,org,dir
This instruction is defined similar to the function
JFON defined as:
V Z+«JFUN ARG;;LEN;ORG;DIR
1] LEN<«ARG[1]
[2] ORG+ARG[2]
£3l DIR«ARG[3]
(4] IF DIR=0 THEN Z«+ORG+(\LEN)-IORG
£s] ELSE Z«(LEN+ORG-1)-((\LEN)-IORG) END
v
The result of this function is a vector known as a J-vector.
J-vectors are an extension of the operator Index Generator.
In the expression (1 2 3 4)44 the LDJ 4,1,0 instruction
would define the left operand of TAKE. Nctice that the CHM

will have to detect instances of J-vectors. The efficiency
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gained by J-vectors is sufficient to warrant the inclusion

of the 1rCJ instructicr.

Assign: ASGN no operand
In the expression XK+«I+1 the instruction ASGN would

cause the EM to store values in the VS at K. After the

values are stored they are popped frcm the VS.

Assign and Leave Value: ASGNV no operand

In the expression K+I«I+1 the instruction ASGNV would
be used for the assignment of values to I. ASGNV is similar
to ASGN except that values are not popped frcm the VS. ASGN

would then store the values in K.

2dd: ADD no orerand

This instruction generates EM code that will add the
top two entries of the VS and replace the entries by the
result. Add is representative of many other dyadic scalar
arithmetic operators. These should te well known from the
language and will not be repeated here. They are, however,

part of the DM instruction set.

Elus: PLUS no operand
This instruction generates EM code that will perform

the monadic plus operation on top of the VS and replace the
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entry bty the result. Elus is representative of the cther

monadic scalar arithmetic operators.

Take: TAKE no operand

The right and left operands of TAKE have been pushed to
the VS as unevaluated EM program segment descriptors. The
right orerand is inspected to determine if it represents a
deferred Leatable prcgram segment. If the segment is not
beatable it is evaluated to temporary space. The left
operand is then used to beat the descriptor cf the right
operand. The prograg descriptor for the left cperand is
popped from the tog of the VS. Take is a selection operator
and does not generzte any EM code. Take is representative

of the dyadic selectior operators Drop (DEOP) and Transpose

(TRANS) .

Reverse: REV no ogerand

The right operand and the co-ordinate the operation is
to te applied to are defined Ly segment descriptors on the
top of the Vs. If the right operand is not beatable it is
evaluated to temporary space. The descriptor for the right
operand is then beaten. 1ike Take, Reverse is a selection
operator and generates no EM code. Abrams defined Reverse
with an operand K such that the expression ¢[X14 would

generate LM code REV K. This is not sufficiently general.
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The expression ¢$[+/KJ4 can not be handled as expressions can
not be operands cof DM instructions. Cther instructicns that
differ in a similar manner from Abrams' are Laminate.

Compress, Expand, Fotate, and Reduction.

Decode: BASE no operand

The left and right operands are evaluated to temporary
space if they are unevaluated expressions and not variables.
The Decode routine is invoked and the result evaluated to
temporary space. [Lecode is representative of a gicup of
operators that are evaluated immediately. These are Enccde,

Decode, Grade Up, Grade Down, Catenate, Ravel, Dimensicn,

and Restructure.

Index Generator: UIOTA no operand

UIOTA is similar to BASE in that it is evaluated
immediately. It is evaluated to a J-vector rather than
temporary space. After UIOTA has been vevaluated" the J-

vector can be deferred and Lkeaten.

Index: SUBS K
The operand on the top of the VS must be a rank K
array. The next K entries in the VS represent the

subscripts. The DM generates EM code to fetch the operands.



53

It should be remembered that DM instructions need
interpreting. For example, the instructicns LDNF I and LDN
J appear simiiar to>the IBM 360 instruction L 9, NAME.
However the latter instruction will have the memory address
of MNAME resolved when it is executed. The former
instructions need interpretation to resolve their memory
locations. The operand must ke searched for in the NT and

found kefore a value can be accessed.

These instructions can be used to represenmt an APL

program as shown in the following examfles:

LM Code
KeJ+«TI+1 Ke(J+I)+2
Address Operation Operand Address Operation Orerand

5C0 LDS 1 600 LDS 2
501 LDNF I 601 LDNF I
502 ATD 602 LDN J
503 LDN J 603 ASGNY
504 ASGNYV 604 ADD
505 LDN K 605 LDN K
€06 ASGN 606 ASGN

Example 1 Example 2

The DM code above is just recoded representations of the
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original expressions. Notice that the CM must te sensitive
to context in assenbling these instructions. In assigning
values to J an ASGNV instruction is used. ASGNV creates EM
code which will leave values in the VS for further use - in
this case for assignment to K. 1In assigning values to K
there is no further need for these values and the ASGN
instruction will cause them to ke popped. The CM must also
be atle to detect the double occurrence of J in the
following expressicn:

Ke($J)+J+T
If the CM uses ASCNV for J«I rather than ASGN then erroneous
values of (¢J) will be used. The need for the CM to be
examine the context is due to the design cf LM code and not
inherent in the source language of AFL. Making DM code

contextually dependant results in more efficient execution

of expressicns.

Most LM instructions facilitate either the fetching and
storing of variables or operations corresponding to the
primitive operators in the language. Instructions which
store or fetch variables are used to construct EM
instructions which will store and fetch values to and frcm
memory. The DM builds the EM instructions in the ¢S and
pushes a segment descriptor - a location and length

description - to the VS. When the DM enccunters an
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instruction corresponding to a primitive operator it finds
the operands at the tcp of the VS and checks them for
conformability. If the operands are conformable for the
operatcr then the cperator is classed as cne of immediately

evaluated, deferrakle or beatable.

An orerator is immediately evaluated if it can not ke
deferred or beaten. The operators that are evaluated
immediately are Lecode, Encode, Grade Up, Grade Down,
Catenate, Ekavel, Timension, and Restructure. Some
operators, such as Base, are immediate because they need
access to all the values of their operands before any part
of the result can be specified. Catenate and Ravel are
immediate because of restrictions in the method by which
array accessing is done. The accessing method is logically
similar tc a set of nested loops. Catenate needs two
consecutive sets c¢f loccps and Ravel needs two parallel
loops. Without comsiderable modification to the APLM these

facilities can not be rrovided.

An expression is deferred by creating the EM code in
the QS for later execution. Any expressicn can be deferred
but the benefits cf deferral may be negated by the cost of
deferring them. Thus expressions are deferred until:

1. 1The expression is exhausted and nust be executed.

2. 1 function is encountered. Xiladic functions are
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treated as variables by the CM. The DM must detect
niladic furnctions and cause execution of the
expression up to the point where the function was
encountered. The niladic function can then be
evaluated to temporary space so that the result can
be treated as a variable. The function cannot be
evaluated sooner as illustrated by the following
expression:

A«NF+B«L/V
If NF represents a niladic function which alters the
variables E or V then evaluation cf NF before B is
specified will likely cause an error. Monadic and
dyadic functions must have their orerands evaluated
tefore the functions are invoked for similar
reasons.
Specification or one of the operators that is
ihmediately evaluated is encountered. Specification
is not deferred if it has been coded as ASGNV rather
than ASGN. This is context dependent.
A General Dyadic Form (GDF) operator is encountered.
GLFs are a result of inner and outer product
operators occurring in the source. 1In this case the
right operand is evaluated to temporary space. 1If
GLF's were deferred then each element of the right

operand would be calculated as many times as there
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are elements in the left operand. This needless
Iepetition obviously should ke avoided.

5. 1he deferred code exceeds some implementation
limits. The size of the QS is likely to be the most
restricting limit. Multi-dimensicnal arrays, even
though they may contain only a few elements, require
considerable space in the QS relative to scalar
operands.

6. The result of an expression is needed for the
process of beating. For exaszgle:

BeS5+A«(T1+T2+T3) +Mx¥N
Selection operators such as Take are evaluated by
the DM by the process of beatirg. The left operand
of Take can not be used for Feating until it is
evaluated. The expression (T1+72+73) is not
deferred. The expression Mx¥N is however deferred
until the DM encounters the specification of B. 1If
the right cperand of a selection operator is not
beatable then it is not deferred. The method for

determining beatable expressicns is explained below.

The operators that can bke beaten are the dyadic
selection operators Take, Drop, and Transpose and the
moradic selection operator Reverse. Index can be beaten if

the indices of the array are scalars or J-vectors. We would
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expect arrays indexed by scalars and J-vectors to be
beatable as the same result can be obtained by replacing
Index by a combination of.Take, prop, Transpose, and
Reverse. For examgle, if A is a 10 by 10 by 10 array, the
following two expressicms are equivalent:
AL13;,634+14] (M
(0,5,4)+(3,6,8)4+4 (2)

The DM Leats operators ty changing the pclyncmial access

function of the right operand. For exanmple if A is defined

as atove:
Expression Polynomial Access Function
.A AV (P,R,C) = 100F + 10R + C
(T2,3,75)%4 AV (P,R,C) = 100P + 108R + 8C + 805
(2,3,5)+4 AV(P,R,C) = 100F + 10R + C + 235
$l114 AV ¢P,R,C) = -100E + 10R + C + 90
214 AV (P,R,C) = 100F - 10R + C + 90
(1,1,1)84 AV (C) = 100C + 10C + C
= 111C
(2,1,2)84 AV (R,C) = 100C + 10R + C
(1,2,1)84 AV (R,C) = 100R + 10C + R
P - Plane R - Row C - Cclumn

P, R, C are zero origin indices
AV <= ,A

The EM does not calculate the polyncmial access function in
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an obvious fashion. The mechanism used is computationally
more efficient and provides better error checking than the
evaluation of a polyromial function. As a conseguence the
beating process by the DM is more involved. All the data
involved in beating is contained in the descriptors of
arrays. For every variable there is a Name Table (NT) entry
which contains the pcinter to a descrigtor. A descriptor or

descriptor array (LCA) contains the following information

about arrays:

DATYPE - the implementation tyre, integer, bcolean,
real, etc., of the values described.

DALEN - the amcunt of memory allocated to this
descriptor.

DAFILL - the amount of memory unused by the
descriptor.

CAREFCNT - the numker of references tc this descriptor.
Multiple references may stem frcm the NT or
EM code.

DAVEASE - the memory location where the values are
stored.

DAABASE - the displacement from VBASE to the first

value. ABASE is generally zero unless
beating alters it. Its value is the constant

shcwn in the polyncmial access functions

above.
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DARANK - the rank of the array.
DADIMEN - the dimen#ioﬁs of the array. There are
DARANR of these.
DALEL - the coefficients of the pclyncmial access
function. There are LARANK of these. The
location of an element of an array is given
by VBASE+(DADELxINDICES)+ABASE
In beating an operator the descriptor of the right operand
is altered. Beating constitutes the execution of the
operator by the DM. It generates no code in the QS for the
EM. The algorithms for changing the descriptors are:
1. @*4
DAABASE+«DAABASFE+DADEL+ .x(Q3<0)xDADIMEN=~|2
DADIMEN+|Q

2. Q+A
DAABASE«DAABASE+DADEL+.x(Q>0)x |Q
DADIMEN<«DADIMEN-|Q

3. ¢LJs14
DAABASE«DAABASE+DADEL{JI*DADIMEN[J ] -1
DEL[J)+-DELLJ]

4. Q84
DARANK«1+[ /4
R«DADIMEN
D+«DADEL

DADEL+DARANK+DADEL
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DADIMEN<«DARANK4DADIMEN
I+0 ’
REPEAT (DARANK)
DADIMENLIJ«L/(I=Q)/R
DADEL[I]++/(I=Q)/D
I+I+1
END
5. Sukscripting by a scalar
Let K denote that the scalar is the Kth subscript
(zero origin)
DAABASE+DAABASE+DADELIKIxSCALAR
DADEL+(K=\DARANK)/DADEL
DADIMEN<«(K=#\DARANK)/DADIMEN
DARANK+DARANK-1
6. Subscriptirg by a J-vector
Let K denote that the J-vector is the Kth
subscript (zero origin)
let the argument for JFUN, mentioned above, be
1EN, CRG, S
DAABASE+DAABASE+DADEL[X]xORG+LEN-1
DADIMEN[K]«LEN
IF S=1 THEN DEL[KXJ«-DEL[KX]

The mechanism the DM uses to sipplify expressions like

is shown above. How this mechanism is extended to
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handle exrressions in which A is replaced by a complex

eXpression is shown belcw:

APL Exrression: A+(3441+442)-(7+B1xB2)

LM Code EM Code

Address Operation Operand QSADDR Creration Orerand

250 LDNF B2 0 IFA @B2

21 LDNF B1 1 IFaA @B1

282 MULT 2 oP MULT

253 LDs 7 3 IFA ?A2

254 DROP 4 IFA dA1

255 LDNF A2 5 oP ADD

256 LDNF 21 6 MINUS

257 ALD 7 OoP ASGN

258 LDs 3 8 PopP

259 TAKE

260 MINUS

261 LDN Z

262 ASGN

When the LM encounters the DROP instruction it can determine
the operands of the instrﬁction by inspecting the VS. The
top entry of the VS indicated a segment of code, a Load
Scalar 7 instructicn, in the EM. This segment evaluates to
the left operand of DROP - which was overwritten

subsequently by the IFA @22 instruction. The entry second
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from tcp of the VS indicated a segment of code, QS addresses
0 through 2, which is the right operacd of DROP. In ordec
to keat DFOP the LM scanned for IFA instructions in the code
for the right operand in the QS. It changed the descriptor
corresponding to the operand of the IFA imstruction using
the values of the left operand as described in the
algorithms above. The operand of an IFA instruction, @B2
for instance, is the address of the descriptor for aB2Z.
Having teaten all descriptors it found by means of IFA
instructions the DM pops the top entry off the VS and

continues processing CM code.

The teating fprocess described akove can be applied only
if the right operand of the selection operator is beatable.
If the operand is not beatable it is evaluated to temporary
space and then keaten. The operands that are beatable are:

1. Variables cr expressions that the DM has reduced to
a J-vector.

2. Expressions formed from a dvadic or monadic scalar
arithmetic operator with beatakle operands.

3. FEeduction with a beatable expression as an operand.
4. The General Dyadic Form. Both operands are always
evaluated to temporary space and are therefore

beatable.

5. Expressicns c¢f the form NpS1 where S1 is a scalar or
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one element array. Restructure is nocrmally
evaluated immediately but this special case can be
deferred in the QS as:

S S1

IRD O@TEMP,MASK=X
The beating process is applied to the descriptor
cTEMP.
Subscripted expressions when the the subscriptee and
the indices satisfy particular conditions. The
method of teating selection operators when the right
operand is a subscripted expression is shown by the
equivalence of expressions below. The expressions
are listed in pairs; each pair is egquivalent.

ACQL134r1;QC2]14I2; ... 3;QIN]I+IN]

Q+ALT13T2; oo 3IN]
ACQL1]4I1:Q[20+4I2; ... ;QL[N]+IN]

$LQJALIL1;T2; ... 3IN]
ACT13T2; voo 39IQ; ... 3IV]

QRACT1:I2; oo 3IN]
(QRA)I[J13J2; oo 3JN]

It is assumed here that the definition of Take and
Drop is such that v/(1Q)>pA is always zero. If the
extended definition of Take and Drop is used then
this condition would be tested for before the
equivalent expression could ke beaten. The indices

for Take and Drop must te beatakle expressions. The
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Cth indicy must be beatable for EKeverse. Transpose
° requires A tc ke beatable as~well as Q being a
rermutaticn of (1pQ@). The subscript J1 is identical
tc In where n is (Qi11). 1In general Jm is identical
tc In where n is (Qim). For exanmple, the follcwing
three expressions are equivalent:
1 2)QA[I1;12;I3]

(3
((3 1 2)84)[J1;72;J3]
((3 1 2)R4)[r2;r3;r1]

4.4 The E Machine (EF)

The organization and operation of the EM more closely
resembles conventicnal computers than any other component of
the AFLM. The EM moves scalar values between registers and
memory, performs various primitive orerations, such as add,
on the values in the registers, and conticls the mechanism
for the indexing ¢f arrays. A subset of EM instructions

with a brief annotaticn to explain each follows:
EM Instruction Set

Load Scalar: S scalar

The scalar is an immediate operand of the instruction.
The scalar cperand is pushed to the VS with the tag ST

denoting it is a scalar value.
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Initialize Fetch Array: IFA descriptcr, MASK=00011

This instructicn creates an FA instruction and replaces
itself with the new instruction. FA instructions are not
generated directly by the DM as IFA instructions are much
more e€asily beaten. The DM instruction LDNF causes the
creation of IFA instructions. The descriptor from the NT
associated with the cperand of the LDNF instruction is
inserted into the IFA instruction, and the descriptors
reference ccunt incremented. Subsequent teating of the IFA
instruction will cause a copy of the descriptor to be made
and the operand of IFA changed to pcint to the new
descriptor. To execute the IFA instruction the EM accesses
the information in the descriptor as well as the IS to build
an iteration contrel block, (ICB) at thke top of the QS. The
entries in the ICE are explained below. 1The EM pushes an
entry to the ICB for every omne value it finds in the
boclean, vector MASK. MASK determines by bit position which
entries of the IS will be used in building the ICB. The
right-most value ir MASK corresponds to the bottom entry in

the stack.

Fetch Array: FA LINK=10,VBASE=700, SUM=164
This instruction is used to fetch elements from arrays
and pushk thenm to the VS with the tag ST. LINK is the

displacement from the FA instruction to the ICE. VBASE is
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added to SCM to generate the memory address from which a

value will ke fetched.

Initialize Array Address: IA descriptor,MASK=00011
IA instructions are very similar to IFA instructions.
They differ in that the DM instruction LDN generates thenm

and that they in turn generate A instructions.

Fetch Array Address: A LINK=20,VBASE=950,SUM=164
This instruction generates a memory address and pushes

it to the VS with the tag AT. Its operands are the same as

the FA instruction.

Initialize J-Vector: IJ len,org,dir,MASK=00010

This instruction creates a J instruction and replaces
itself with the new instruction. MASK is used to link the J
instruction with an entry in the IS. The IS entry will have
an ISMAX field equivalent to the operand len. The org and
dir operands of IJ beccme the incr and dir operands of J.

The curr cprerand of J is initialized to zero.

Fetch J-Vectcr: J curr,incr,dir,INX=2Z
The J instruction generates the scalar component of the
J-vector it defines and pushes this value to the VS with tag

ST. To generate the value the instruction tests the ISCH
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field c¢f the IS entry indexed by INX. If ISCH is one then
ISCTE revlaces curr and curr plus ipncr is pushed to the VS.
If ISCH is zero then curr plus incr is pushed to the VS
which is the same value as was previously pushed to the VS.
The incresenting cf J-vectors is linked to the VS to

facilitate the generation of indices for subscripted arrays.

Crerator: OP =ao

The operand is cne of the momadic or dyadic scalar
arithmetic operators. The operation is applied to the top
one or two values on the VS and the result left in place of

the operand or operands.

FEesult Dimension: IRD descriptor,MASK=00011

This EM instruction is really a LM tag denoting that
the dimensicn of a result can be fourd by inspecting the
operands. Segment descriptors in the VS define for the DM
deferred segments c¢f code. The dimensions tc be associated
with these segments can be found by scanning backwards
thrcugh them searching for IRD, IA or IFA instructions. IRD
instructions are inserted when the IA or IFA instructions
are not indicative of the resulting dimension. For
instance, inner and cuter products, reduction, compression
and expansion are examples of operatiors in which the

operands dc not have the same dimension as the result. The
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EM changes an IRD to a NIL instructicn.

load Segment [escriptor: SGV org,len,mode

The operands org, len, and mode describe an EM segment
of code. C(Crg is relative to the SGV instruction. It
represents a displacement that must be subtracted from the
current instruction address. Org is made ipco an absolute

QS address and the segment descriptor pushed tc the VS with

the tag ST.

Jump: JMP link
The 1ISREL field is incremented by the amount link.

Iink is a signed integer.

Jupp Zero: J0 link
The ISREL field is incremented by the amount link if
the value on the top of the VS is zero. The VS is popped.

JNC is a similar instruction kut the VS is nct popred.

Jump One: J1 1link
Similar to JO but the VS must bte one. JN1 is similar

to J1 kut the VS is not popped.
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Reduction: RELC link

Fush an entry to the VS with tag RT. The value field
of the VS entry is irrelevant. #hen cne of the operands of
OP is applied to the VS and a VS entry has the tag RT the
operation is not applied. The entry without the RT tag is
used as a result. Effectively an RT entry is a place holder
for dyadic operators. Once the reduction has started the RT
entry will disappear. 1In the case where the expression,
(+/10), is encountered the DM takes the appropriate action
as (10) can not be handled by the EM. After pushing the
entry to the VS a jump is made by incrementing LSREL by the

value cf 1link.

Mark and Iterate: MIT no operand

This instruction adds entries to the IS. Scalar
values, marked by the tag ST, are popped from the VS. The
absolute value minus cne of each scalar is used to srecify
ISMAX in a pew IS entry. ISCH is set to one and ISMRK to
zero. If the VS value was positive then ISCTR and ISDIR are
set to zero. 1If the value is negative then ISDIF is set to
one and ISCTR to ISMAX. The value of ISMRK in the first
entry created is changed to one. When an entry is popped
from the VS and the tag is not ST then it must be SGT - a
segment descriptor created by a SGV instruction. MIT uses

the segment descriptor to push a new entry to the LS. The
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1SIS is set to one so that the newly created IS will be

iterated tkrough and pcpped form the IS.

Fop: EOP no operand

The top element is popped from the VS.

Initialize Segment Conditional:
ISC crg,len,mode,MASK=00010

ISC initializes tc an SC instruction. The operands

org, len, and mode describe an EM segment of code similar to

the SGU instruction. The MASK will have cnly one non-zero
bit. 9The position of this bit will determine the LINK

value.

Segment Conditional: SC org,len,mcde,LINK=3

The instruction uses the LINK value to test the
relevant ISCH bit. If the bit is one then an entry is
pushed to the LS envoking the segment of code specified Ly
the other operands. The LINK operand is alsc a relative
backward displacement to a group of XT entries in pushing
the entry to the LS the LINK operand is made absolute and
specifies the LSQP field. The LSCP field will be used by
the Index Unit to locate the XT entries. If ISCH is zero

then the following instruction is inspected. If it is one

71

of XS cr XC the ILSEEI is incremented so the instruction will



72

not be executed. Also the LINK field of the XS or XC
instruction is fcllowed to an XT entryj. An XT entry is a
pseudo-IS entry used for indexing sutscripted arrays. The
CH kit in the XT erptry is set to zero indicating that the

corresponding IS entry has ISCH set to zero.

Initialize Index load: IXL MASK=00001
IXL initializes tc an XL instruction. The MASK is
applied to the IS and an INX value generated in the sane way

an INX value is generated for an ICB.

Index Load: XI INX=3

The INX value is used to access an IS entry. The ISCTR

field is pushed to the VS with the tag ST.

Index Store: XS LINK=5

The IINK field is a relative backward displacement to
an XT entry in the QS. The VS is popped and its value
pushed to the index field of the XT entry. XT entries are

explained under sukscripted arrays.

Activate Segment: SG org,len,mode,LlINK=3
The operands of SG are the same as those for SC. SG
unconditionally pushes an entry to the LS similar to SC.

The other functiors done by SC are nct done by SsG.
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The operation of the EM will be explained by examining the

example below.

The explanation will consist of two parts.

In the first part, the simplest paxt, A and B will be one-

element arrays.

element arrays.

In the second part A and B will be multi-

Details relevant to indexing will be

excluded from the first part and be the scle concern of the

second.

Address Operation Operand QSADDR Cperation

300
301

310

LM Code

IDS
1LDs
LDNF
ECWER
I0S
LDNF
EOWER
ADD
EOWER
LDN

ASGN

«5
2

B

Z«((A%2)+(B*2))x,5

0
1
2

10
11

EM Ccde

S

S

IFA

OF

IFa

OP

OP

oP

Ia

op

POP

Operands

.5

2

@B, MASK=00111
PWR

2
@A,MASK=00111
PRR

ADD

PRR
@Z,MASK=00111

ASGN
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Assume A and B to ke one-element, three-dimensional
arrays. The DM envokes the EM by pushing the following
entry tc the top of the LS:

REL ORG LEN CDE IS FN NWRT QP

0 0 12 01 1 0 0 0
This entry initiates execution of the EM code in the example
above. The first three instructions of EM code push .5,
then 2, and finally B to the top of the VS. 1In the process
of being executed the IFA instruction for B has been changed
to an FA instruction. This transformation facilitates
indexing. Initialization instructions, such as IFA, do not
cause the LSREL field to be incremented. Consequently the
FA instructicn that replaces IFA is executed following the
completion of the IFA instruction. It is the FA instruction
whick fetches the value of B. The following OF instruction
pops the top two elements from the VS, Ferforms the
operation power, and pushes the result to the top of the
stack. The next five instructions push values to the VS or
perform the indicated arithmetic operation. The Ia
instruction is executed and changed to A. Again, 2 is
executed immediately after IA. The A instruction pushes the
memory address of Z to the VS. The fcllowing OP instruction
pops the VS and uses the address to store the value now cn
the top of the VS. The stored value is left on top of the

VS as the result of the operation ASGN. The following
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instructicn, POP, clears the value off of the VS. Following
the execution of POP the LS overtflows; that is, ISREL equals
LSLEN and the top entry is popped frcm the 1S. The AFLM

then returns contrcl to the DM and continues execution.

For the second part assume A and B are three-
dimensicnal arrays with dimensions 3, 5, 11. To calculate
the result the EM code is embedded in a set of nested loops.
Each loop is an entry in the IS. For the above example the
iS would be initialized by the DM to:

CTIR MAX ©DIR CE MERK

0 2 0 1 1

0 4 0 1 0
TOE => C 10 0 1 0
As in the first part when the EM code shown above has been
completely executed conce, the LS overflows. At this point
the IS field of the LS register is tested. If LSIS is zero
then the 1S is popred as the segment of EM code described by
this LS entry is nct embedded in an IS lcop. If LSIS is omne
then LSREL is set to zero preparatory to reactivation of the
segment of EM code. The IS is then stepred. To step the IS
all the ISCH fields are zeroed. Then the CIR field ¢f an IS
entry is incremented bty one and tLe CH field set to one. If
the entry cverflows - ISCTR equals ISMAX - then ISCTR is set

to zero and the next lcwer entry in the stack stepped. The
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stepping process starts with the entry at the top of the
stack "and continues down until an entry does nct overflow or
ISMRK is turned on in the entry. ISMRK marks the outermost
loop. 1If this entry overflows then the IS overflows and the
1S is popped. 1If, in stepping the IS, it does not overflow
then the LS will cause the EM code tc ke re-executed.

Notice that the ISCTR fields could be used as arguments to

the pclyncmial access functious for the arrays A and B.

If we use the ISCTEK fields to evaluate the pclyncmial
access function in the above example we will find the
difference between any two successive evaluatiocns of the
polynomial to be cne. This suggests incrementation as a
simpler and more efficient method of evaluating the
polynomial. Incrementing by one is sufficient to index
deferred expressions but not for beaten expressions. A more
general method is evident in the executicn of EM IFaA

instructions.

The instruction of QSADDR 2 in the example above is:
IFA @B, MASK=00111
The @B orerand is a pcinter to the descriptor for B. MASK
is a lcgical vector. Although cnly five of its values are
shown there should be as many as the bhighest rank the
implementation supports - generally 32. The one values

select entries from the IS that are involved in indexing the
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array E. In this example it selects the top three IS
entries. MASK performs a, useful function when the arrays
are operands of the Cuter Product operaticn. An IFA
instruction is only executed once. In the process of
executing, IFA the opcode and operands are changed. The
instruction beconmes:

Fa LINK=10,VBEASE=700,SUM=1€U
The 1link field is a relative displacement to an iteration
contrcl block (ICB) pushed to the top of the QS. VBASE is
the memory address of the values of B. SUM is the
displacement from VBASE to the value indexed. All these
fields are set up Lty the execution of the IFA instruction.
The values for VBASE and the ICB were ottained from the MASK
and the descriptor for B. The ICB contains values which are
added to or subtracted from SUM. Using the ICE we can
implement the more generalized incrementing function

mentioned above. The ICB entries contain the following

values:
CSATLE Operaticn Operands
12 NT 01=110,02=55,INX=0
13 NT Q1= 44,02=11,INX=1
14 NLT Q1= 10,02= 1,IKX=2

NT and NLT are not opcodes but rather tags which identify
the ICER entries as being associated with the IS. The

alternative is QT and CIT tags that are used for subscripted
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arrays which will be explained later. The INX operands
index the Nth entry frcm the bottcm cf the IS. Thus INX=2
would index the entry marked TOP in the IS shown above and
INX is relative to the bottom of the IS as the displacement
from the bottom to any given entry remains constant. As
entries may be pushed to the top of the IS after am INX
value is set it must te relative to the bottom of the IS.
INX=0 indexes the entry with ISMRK set to one. The C2
operands are the ccefficients of the polyncmial access
function. The Q1 crerand is the product cf Q2 and the ISMAX
field selected by using the INX operand. Q1 and Q2 have
more intuitively understandable interpretaticns. Q2 is the
increment in the displacement needed to access a value whose
indices differ frcm a previous value's by one in only one of
the dimensicns. Fcr example the increment in displacement
tetween B[0;0;0] and B[0;0;1) is 1, Letween B[0;0;0] and
B{0;1;0] is 11, and Ltetween B[0;0;0] and B[ 1;0;0] is 55. Q2
is the decrement ir displacement needed when the indices
differ in cnly one dimension but take on their extreme
values in that dimensicn. For example the decrement in
displacement between B[0;0;10] and B[0;0;0] is 10, between
B{O;4:;0] and B[0;0;0] is 44, between B[2;0;0] and B[0;0;0]
is 110, and between B[2;4;10] and B[0;0;0] is 110 + 44 + 10
= 164. Notice that the operand SUM in the F3 instruction

above bas an initial value of 164. 1The purpose of this
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initialization will beccme apparent in the explanation of

the F2A instructioz belcw,

All EM instructions with mnemonics that start with an
"I" such as IFA, are initialization instructions. When
executed they initialize an associated instruction and
suppress the incrementation of the LS. Thus the next

instruction executed is the newly initialized instruction.

When the FA instruction is executed it invokes the
Index Unit. The Index Unit alters the value of SUM and
returns. The FA instruction then adds VEASE and SUM to
generate a memory address from which it fetches a value.

This value is then pushed to the top of the VS.

The Index Unit used the LINK operand to access the ICB.
It uses the INX orerand of the first entry - QSADDR 12 - to
index an entry of the IS. As ISCH is one in this entry, the
Iindex Unit will use the ICB entry to increment or decrement
SUM. As the IS entry appears to have overflowed, ISCTR is
zero, €1 is subtracted from SUM. The Index Unit continues
with the cther ICE entries in a similar manner. On
termination it has decremented SUM tc zero. Before this Fa
instruction is executed again the 1S will have overflowed
and the IS stepped. 1In stepping the IS all the ISCH entries

will have been zerced. The IS entry at the top of the stack
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will then Le stepped and only this ISCH field reset to one.
Thus the Index Unit will do nothing with first two ICB
entries as ISCH is zerc. The third entry, for which ISCH is

one and ISCTR is nct zero, will cause the incrementation of

SUM Lty €2.

A question remains as to why SOUHM was initialized to 164
rather than zero. By initializing in this fashion the lcgic
to handle subscripted arrays is simpler. For the array
A[I1;I2] the values cf I1 or I2 are fetched if the
associated ISCH is ome. By initializing all the ISCH fields
to one the indices are fetcked oa the first pass through the
EM code by the Index Unit. Thus the lcgic to fetch indices
in the Index Unit need not be duplicated in the IFA

instructicon.

4.4.1 Subscripted Arrays

The handling cf subscripted arrays ky the EM is
intended to parallel as closely as possikle that of ncn-
subscripted arrays. The array accessing mechanism will have
to be augmented so that the indices are used as arguments to
the pclyncmial access functiosn rather than the values of
ISCTR. However the IS still remains as an integral part of
the accessing mechanism. Its functica is illustrated with

the aid of the following expression:
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T + A[B[C[I;]51):]
Assume that T is nct a2 scalar or one-elerzent array and that
the dimension of I is 1, of C is 2 3, of E is 4 5, and of A
is 6 7. If the add operation has ccnformable cperands then
T must have dimension 1 3 5 7. The values of T would be

fetched using the IS which would have the following entries:

IS: CTR MAX DIR CH MRK ENTREY NC.
0 0 0 0 1 1
0 2 C 0 0 2
C 4 ¢ 0 0 3
0 6 0 0 0 4

Note: The Entry Number shown is fcr ease of reference in
the text below and is not part cf the IS.

Notice that the values of I can be accessed using the first
IS entry and that when this entry overflows we will have
fetched all the values of I necessary. The IS can not be
used to access C[I;] directly but the dimension of C[I;] is
1 2 which is the same as the first two entries of the 1IS.
Thus when the first two entries of the IS overflow all the
values of C[I;] will have been fetched. When the first
three entries overflcw B[C[I; };] will have been fetched and
when all four entries cverflow A[B[C[I;];];] will have been

fetched. The IS will perform two functions in the accessing

of arrays:
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1. When the relevant ISCH field is one a new value will
te fetched frcm a subscript.
2. When all the values of a subscript have been fetched

the relevant IS entry will overflcw.

The function cf the ISCTR and ISMAX fields of the IS
are replaced by 3T or pseudo-IS entries in the QS for
subscripted arrays. XTI entries have the following fields:

X1 index,limit,change,GN=3
The first three operands parallel the ISCTR, ISMAX and ISCH
fields of the 1IS. Group Number (GN) arpears only in the
first entry in a group of entries and determines the numkber
of entries in the grougp. XT is used in ccnjunction with the
ICB to access array elements. When the Index Unit (IU) is
invoked it finds that the LSQP field is non-zero. The IU
uses LSCF as a pointer to the XT entries. The IU accesses
the first 1ICB entry and uses the INX value to select the
relevant XT entry. If the change field of the XT entry is
zero the IU goes cntc the next ICB entry. Otherwise it
suktracts from the operand SUM in the FA instruction which
invoked the IU the Q1 value. It then adds to SUM the
product of Q2 and the index field of the XT entry. This
product is then used to respecify Q1. Ccnsider what cccurs
when the IU is first invoked for an FA instruction. SUM has

beepr initialized to the displacement of the last elenment of
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the array. Subtracting the Q1 values will decrement SUM to
zero. Adding the prcduct increments SUM to elenment

specified by the indicy. Replacing C1 by the product is the
simplest way of having SUM reset to zero next time the IU is

invoked. The IU frocesses the remaining entries in the ICB

in a similar fashicn.

EM instructions are used to alter the values of index
and change in XT entries. The two pairs of instructions
used are:

1. 1ISC org,len,rode,MASK=00001
XS INX=4
2. IX1 MASK=0C010
Xs INX=4
The first pair is used for fetching and storing subscripts
in XT entires. The second pair is used tc retrieving ISCTR
and storing it in XT. This will occur when there is an
enpty subscript such as the first dimensicn in the
exrression A[I;]. An ISC instruction is used rather than
IFR as the subscripts may be expressions rather thamn siiafple
operands. In additicn ISC provides fcr the specifying of

the LSCF so that the IU will function correctly.

Referring to the expression above, A[B{C[I;];];], the

EM code to fetch the values of I is:
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CSADDE Operation Operands
-1 IFa @1,MaS5K=00001
The EM code to fetch the values of C[I;] is:
CSALLE Operation Operands

* Code to fetch the value of I

i IFA @C,MASK=00011

K X1 0,1,1,GN=2

4 XT 0,2,1

£ Isc 4,1,1,MASK=00001
6 XS LINR=3

7 IXL MASK=00010

8 XEs LINK=4

S SG 7,1,1,1LINK=6

To invoke this segment of code an entry is pushed to the LS
which defines QS addresses 5 through 9. The ISC imstruction
at CSALDR Z causes the IFA instructicn at QSADDR 1 to be
executed. The following XS instruction stores the value of
I in tke XT entry at QSADDR 3. Notice that the index fields
of the XT entries are zero prior to XS instructions being
executed. The following IXL, XS pair push the value of
ISCTR to the XT entry at CSADDR 4. The SG instruction at
QSADDR 9 executes the IFA instruction at ¢SADDER 2 and a

value ¢f C is pushed to the VS, The EM ccde to fetch the

values of B[C[I;];] is:



CSADDE Operation

*
10
11
12
13
14
15
16

17

Operands

Code to fetch C[I;]

IFA

XT

X1

IsC

IXL

XS

SG

@B, MASK=00111
0,3,1,G8=2

0,4,1
8,5,1,MAS5K=00001
LINK=3
MASK=00100
LINEK=4

7,1,1,LINK=6
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This segment of code executes similar to the above segment.

However, the ISC instruction at QSADDE 13 invokes the

segment cf code at QS addresses 5 through 9.

fetch the values of A[B[C[I;];];] is:

CSADDE Operaticn

C
*
18

19

Ny Ny
N Y

Y]
(¥

Ny
tn

JMP

Operand

21

Ccde to fetch B[C[I; ];]

IFa

X1

Xs

SCG

@A ,MASK=01111
0,5,1,G8=2

0,6,1
8¢5,1,MASK=00001
LINK=3
MASK=01000
LINK=4

7,1,1,LINK=6

The EM code to
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The LS entry which invoked this segment has LSCRG set to
zero and LSLEN set toc 25. The LSIS kit is oné, thus this
segment will be repeated until the IS overflows. The first
dimension of A[B{C[I;];];] is 7. Thus the instructicns at
¢S addresses 0, 21, 22, 23, 24, 25 are executed 7 times

before the IS overflowuws.

4.4,2 FEeduction

An expression containing a Reduction operator produces
a result of rank one less than the operand cf the Reduction.
The DM initializes the IS to represeant the rank and
dimensicns of the result. Thus, in crder to use the IS to
access the operand of Reduction, instructions are inserted
in the EM program segment to push an entry tc the IS. This
is illustrated by the following example:

APL Expressicn: A-+/B

CSALDR Operation Operands
0 RED LINK=3
1 IFa ®B,MASK=00111
z CE ADD
k! SGV 2,2,1
4 S =5
£ MIT

€ IRD @TEME,MASK=00011
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7 IFA @A ,MASK=00011

g CE SUg
Assume A has dimensicns 2 3 and B 2 3 5. The 1S entry for
this segment invckes the instructions at CS addresses 0
through €. The first instruction pushes an entry to the VS
with tag FT and branches to QSADDR 3. The SGV instruction
pushes a segment descriptor for QS addresses 1 and 2 to the
VS with tag SGT. The fcllowing instructicns pushes value
minus five to the VS with tag ST. Five is the value of the
third co-ordinate in the dimension of B. The minus sign
will indicate to the following MIT instruction that the
ISDIR field is to ke one and consequently the reduction
process will decrement along the third co-ordinate of B.
The MIT instructicn pops all entries with tag ST from the
VS. As it pops these values it uses thenm to specify ISMAX
in IS entries it is constructing. MIT then pops the SGT
entry from the VS and uses it to push an entry to the LS.
The new LS entry under IS control iterates through the
instructions at QS addresses 1 and 2 five times and is then
popped as the IS cverflows. This calculates one scalar
component of +/B. This scalar component is then subtracted
from a scalar component of A. The LS iterates through the
QS addresses 0 through 8 six times before the IS overfloyvs

and A-+/B is calculated.
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In the more general case where an index is included in
the Reduction expression such as +/[K]B the DM constructs EM
code to calculate a differenmt but equivalent expression. If
B is a rank 4 array then the expressions telow are

equivalent:

+/(1]B is equivalent to +/(4 1 2 3)&F
+/[21B is equivalent to +/(1 4 2 3)&8
+/[31]B is eguivalent to +/(1 2 4 3)4&B
+/[u4lB is equivalent to +/(1 2 3 4)&3
+/[4]B is equivalent to +/3

In general +/[X1B is equivalent to +/A8B where A is:
(1X-1), (I /vppB),((K-1)+1(ppB)-K)
As the Transpose cperator is beaten by the DM the general

case is equivalent tc the particular case illustrated above.

4.4.3 Inner and Outer Products

An expression containing an Cuter Product produces a
result of greater rank than either of the operands. Like
Reduction the IS is initialized to represent the rank and
dimension of the result. As the dimension of the result is
the catenation of the dimensions of the operands the entries
in the IS can be used directly to fetch the operands. a1l
that is needed is to alter the masks of the IFA instructions

that fetclk the operands. Consider the fcllowing example:



AFL Expressicn: A<«Bo.x(C

QSADDE
0
1

9}

4

&
-~

Operation

IFA
IFA
OF
12
ASGN

PCP

Operands
@C,MASK=00011
@B,MASK=01100
MOLT

@A, MASK=01111

Assume the dimension of B is 3 5 and C is 7 9. The

dimensicn of A is then 3 5 7 9. The IS will contain:

1S: CTR MAX

0
0
0

0

4
6
8

DIR CH
¢ 0
0 0
0 0
c 0

HRK ENTRY NO
1 1

0 2

0 3

0 4
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The MASK for array C selects IS entries 3 and 4 to fetch the

values of C.

C thus selecting entries 1 and 2.

The MASK for A is the

The MASK for B is shifted left by the rank of

logical or of the masks of the operands and thus selects all

the entries of the IS.
times and each value of B is fetched x/pC times, if the

operands are expressions they are calculated to temporary

As each value of C is fetched x/pB

space before the Outer Product is deferred.

To calculate Inner Products the DM constructs EM code
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to calculate a different but equivalent expression. If the
- original expressicn is B+.xC then, the eguivalent expresion
is +/A8Beo.xC where A is the following:

(1"14ppB), (20T /1 (ppB)+(ppC)-1),(T1+ppB)+1 14ppC
For example if the dimension of B is 2 3 4 and C is 4 5 6
then the LM generates the expression:

+/((1 2),(5 5),(3 4))QBo.xC
This expression is beaten then handled in the same manner as

the Reduction expressicns discussed above.

The purpose of the APLM is to achieve efficiency in the
execution of APL expressions by beating and defferal.
Beating reduces the number of operations required to
evaluate an expressicn. Deferral makes mcre efficient use
of low speed core memory. To achieve these ends the

hardware design is made to closely resemble the design of

the language.
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CHAPTER V

Conclusion

This Chapter reviews the main pcints of the previous

Chapters and analyzes the result.

Iverson[ 14] originally designed APL to be a language
for the descripticn and communication of algorithms. 1In
implementing APL thke I/0 facility, tree structures, and many
of the operaﬁors were omitted. In addition much of tkhe
notation and character set were altered. Despite these
omissicns the resulting language is a highly coansistent,
mathematically oriented language. However there are faults.
Subscripting was nct fully generalized to arrays and the
syntax is context dependent. Subscripting can be
generalized to arrays by the addition of a mixed-data type.
The mixed-data type, being similar tc parameter lists in
other languages, will also allow more than two operands to
be explicitly passed to a function. Orerands were not
passed to functions ky the same mechanism as orerands are
passed to primitive operators. By passing operands to
functions bty name we can make consistent the facility of
functions augmenting the primitive functicn set. The Branch
operator was deleted because its function could better

served ty the control structures IF, THEN, ELSE and REPEAT,
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END. The new syntax adheres to Iverson's criteria of
cleariy exhibiting the constrfaints on the sequence’in which
operations are performed. 1In addition it implements the
pmethod of leading decisions and allows nc alternatives. The
operators Encode, Decode, Index Generator and Index Cf are
extended to arrays from their previously restricted

definitions.

A new operator, Rename, and the additiom of an I/0
facility were discussed in Chapter III. Rename was added to
allow variables, especially "parameter lists" or variatles
of type mixed-data, to Le renamed and manipulated without
the necessity of duplicating the arrays involved. The
facility provided Lty Rename is consistent with the facility
provided by functicn invocation - that of values being known
by ancther pname. An I/0 facility for seguential files was
added to increase the usefulness of the language. It
satisfies Iversont's criteria that it be concise, consistent,
mnemonic and economical of symbols to a greater degree than
the ad hoc implementing of I/0 functions and operators. The
T/0 facility was designed to be reasonably simple and
straight-forward to implement. It does nct provide the full
complement of facilities such as indexed or shared files

that would be useful.

Improvenents to the implementaticn consist of
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modifications to Atrams proposal for an AFL machine.

Abrams' AEINM is a stack oriented machine divided into three
parts. The CM converts APL text to a more readily
interpreted DM code. DM code is in an opcode-operand form
that resembles the machine ccde of many ccmputers. The DM
interprets the DM code, analyzing it into deferrable and
beatable expressicns. The results of the analyses is
executable EM code. The EM code has well defined operations

and operands and is executed directly.

A subset of the EM was implemented in IEM/360 Assenbler
langauge. The subset worked and demcnstrated that the

fundamental design of Abrams' machine is valid.

The advantages of the AFPLM are the following:

1. DM code can te interpreted efficiently.

2. TLeferred expressions reduce the number of references
to intermediate speed storage.

3. Beating reduces the numter of computations necessary
to evaluate an expression.

4. The stack discipline of the APLM organizes
frequently used data into the high speed storage or
stacks.

The fourth point needs some gqualification. If the high
speed storage is an crder of magnitude faster than

intermediate speed storage then the stack discipline 1is
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clearly advantageous. However the advent of scratch-rad

memories and other technological advances reduces the

advantage of the AELM. In the simelation of the APLM on a

machine with no stack hardware deferred expressions are a

disadvantage, unless beating occurs tc reduce the number of

calculations so as to gain an overall advantage. Some of
the disadvantages cf the APLM are:

1. The generation cf a precise error indicaticm for
errors such as division by zerc in a deferred
expression is an involved procedure.

2. The number and size of the various registers makes

task switching in a multi-prcgramming environment

ucattractive.

3 In order to gain the advantages mentioned above the
Is, LS, 0S, and VS should ke implemented in high
speed register storage which may ke costly. 1In
addition the logic of the DM and EM wculd be
microprogrammed using a considerable amount cf
storage.

The overall advantage of the APLM is dependent on changing

technology. The intrcduction of scratch-pad memories to

conventional implementations may reduce the advantage of the

APIM¥ to the point where its extra cost is unwarranted.



Aprendix A

Summary of APL Operators
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Monadic form f£3 £ Dyadic form AfB
Definition Name Name Definition
or example or example °
4B ++ 0+B Plus + | Plus 2¢43.2 «» 5,2
-B «+ 0-B Negative - | Minus 2-3.2 «+ T1.2
xB ++ (B>0)=(B<0) Signum x | Times 2%x3.2 ++ 6.4
$3 «+ 1B Reciprocal + | Divice 2+3,2 ++ 0,625
B l rBl LB Ceiling [ | Maximum 3[7 «» 7
3.141 4 3
T3.14|73 [Ty Floor { [ Minimum 3L7 ++ 3
*B «+> (2,71828..)*B|Exponential | » | Power 2%3 ++ 8
exN «+ N «+ xa) Natural e | Logarithm |AeB ++ Log B base 4
logarithm A®B <+ (@B)ieA
173,14 «» 3,14 Magnitude | | Residue Case | 418
A=0 B-(1A4)xLB+| A
A=0,B20]8B
A=0,B<0|Domain error
10 «» 1 Factorial ! | Binomial A'B «=+ (!B):(!A)x!B-A
!B ++ Bx!B-1 coefficient {215 «+ 10 3!5 «+ 10
or !B +» Gamma(B+1) _
?B «+ Random choice|Roll ? | Deal A Mixed Function (See
from 3 Table 3.8)
OB ++ Bx3,1415¢9,., |Pi times o { Circular See Table at lsft
~1 «+ 0 ~0 +>1 Not ~
A | ana alBlanslavelane]aws
(~4)0B A AoB v | Or ojoj o 0 1 1
(1-B*x2)*.5 0] (1-Bx2)=%,5 ~ { Nand o111 © 1 1 0
Arcsin B |(1{ Sine B » | Nor 110y 0 1 1 0
Arccos B |2 | Cosine B 111] 1 1 ] 0
_ Arctan B | 3| Tangent B
( 14B%2)%x.5 |4 | (14B%x2)*.5 < | Less Relations
Arcsinh B {5] Sinh B < | Not greater Result is 1 if the
Arccosh B |[6| Cosh B = | Equal relation holds, ¢
Arctanh B | 7] Tanh B8 2 | Not less if it does not;
> | Greater 357 ++ 1
Table of Dyadic o Functions = | Not Equal 783 «+ 0

APL Scalar Functions



Conformability Definition
pA |oB |o4f.gB|requireménts Z+Af.gB
2«£/AqB
v Z+f/AgB
U Z«£/AgB
ulv Uu=v Z+«£/AqB
vV Wl W Z[I11«£/AgBL;I]
TU T 2{I1]«f/A[I;]gB
Ulv wi{ w u=v Z(I)«£/AgBL;I]
T UV T U=v 2[I)«£/A0I;1gB
TUlv Wl TW Uu=v 2(T;J1+£/A[I;1gB[;J]
APL Inner Products
Definition
pA |pB jpA°.gB Z+«A°.gB
2+«AgB
4 4 Z[IJ«AgBLI]
U U Z2[rl)«AlI]gB
uiv /84 2[LI;J1«ALT1gBLJ]
vV W{V W 2LI;J]«AgB[I;J]
TU TU 2[I;0]«ALI;J1gB
Ulv wio v v 20I;J;K1+«ATIIgBLJ ;K]
T UV TUV Z20I;J3K1«AlI;J1gBLK]
TU|VWITUYVY 20I;J3;K;L01«AlI;J1gBLK;L]

APL Outer Products

S7



Name Sign' | Definition or example?
» - . -
Size pA pP «=+ 4 pE «+ 3 4 p5 «+ 10
Reshape VoA Reshape 4 to dimension V 3 4p112 «+ E
12pE +~» 112 0pE «+ 10
Ravel » A LA «+ (x/pA)pA LE ++12 P,5 =+ 1
Catenate V,V P,12 «+ 2 3 5 7 12 't tHTS! > 'THIS!
VLAl P[2] «~»3 Plu 32 1] «+7 5 3 2
Index34 M[A;4] EC1 3;3 2 1] «» 3 2 1
11 10 9
Lt[AG. . E{1;] «+ 1 2 3 & ABCD
.34 E[:1] «» 1 5 9 ' ABCDEFGRHIJKXL'[E] «+ EFGH
IJXKL
Index ) First S integers 14 «+ 12 3 4
generator3 10 ++ an empty vector
Index of3 {4 Least index of 4 P13 =2 $125
in V, or 1+pV ) P\E «+ 3 54 5
4 4y «-»> 1 5 55 5
.Take V+4 Take or drop [V[I] first 2 3%+X ++ ABC
} (V[ I320) oxr last (V{Il<0) EFG
Drop V4 elements of coordinate I T24P €+ 5 7
“Grade up35 |4 The permutation which - 23 5§ 32 «+ 4132
would order 4 (ascend-
Grade down33|¥4 ing or descending) 3 5 3 2 «» 2 1 3 4
1 3
CompressS v/A 1010/P «+ 25 1010/E « 5 7
9 11
10 1/01]1E «» 1 2 3 4 ++ 1 0 14F
g 10 11 12
A BCD
Expand® \4 10 1\12 «> 1 0 2 1011 1\X «> E FGH
I JXL
DCBA IJKL
Reverse® b4 $X «+ HGFE $C11X +~ ©X +» EFGH
LKJT ¢P «+ 7 5 3 2 ABCD
BCDA
Rotate® AGA 30P «+» 7 2 3 5 +> "16P 1 0 ~1¢Xx ++ EFGH
. LIJK
AET
VRA Coordinate I of 4 2 18X «=+ BFJ
becomes coordinate . CGX
Transpose V[{I] of result 1 18E «=» 1 6 11 DHL
QA Transpose last two coordinates RE +» 2 1QF
0110
Membership |Ae4 pWeY <+ oW EeP «+ 1 0 10
Per1l4 «» 1 1 0 0 0000
Decode v, v 1011 7 7 6 <+=+ 1776 24 60 6011 2 3 ++ 3723
Encode V1$ 24 60 6073723 ++ 1 2 3 60 6073723 ++ 2 3
Deal? 528 w77 +- Random deal of ¥ elements from 1Y

APL Mixed Functions

98
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Restrictions on argument ranks are indicated by: S for
scalar, V¥ for vector, M for matrix, 4 for Any. Except as
the first argument of 514 or S[4], a scalar may be used
instead of a vector. A one-element array may replace any
scalar.

Arravs used 1 2 3 4 ABCD
in examples: F s+ 2 357 E «+5 6 7 8 X <+ EFGH
9 10 11 12 ITJKL

Function depends on index origin.
Elision of any index selects all alcng that coordinate.

The function is applied along the last coordinate; the
symbols #, %, and o are equivalent to /, \, and ¢,
respectively, except that the function is applied along the
first coordinate. If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

Notes for Mixed Functions
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