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ABSTRACT

Discrete event simulation is a powerful modeling tool that has been utilized to 

model numerous construction engineering operations. The role of experts is very 

important in designing and defining many of the simulation model parameters. 

Current simulation modeling practices do not have a methodology for integrating 

experts’ knowledge and opinion. This thesis presents a methodology to 

incorporate experts’ knowledge and opinion within the simulation framework in 

construction engineering applications, in order to enhance discrete event 

simulation modeling capabilities. The concepts of fuzzy set theory are adopted to 

incorporate the experts’ knowledge within the simulation framework, because 

fuzzy set theory is capable of modeling experts’ way of thinking and can easily 

capture their decision-making processes.

The components of fuzzy modeling framework is proposed and integrated within 

the simulation modeling framework. Three main applications of the fuzzy 

modeling framework are identified. The first application is utilizing fuzzy 

numbers in modeling cost range estimating as compared to probabilistic range 

estimating. The second application is utilizing frizzy expert system tools in 

predicting activity behavior within the simulation framework, using the tunnel 

boring machine (TBM) penetration rate prediction as a case study. The third 

application is utilizing fuzzy expert systems in the decision-making process 

within the simulation framework, using the prioritization of modules awaiting 

assembly in a module assembly yard as a case study.
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The integrated fuzzy modeling and discrete event simulation framework has 

proven to be very promising in enhancing the modeling capabilities of discrete 

event simulation. Integrated fuzzy and discrete event simulation modeling is 

capable of explicitly and more confidently predicting the behavior of an activity 

within the simulation framework and incorporating the experts’ decisions while 

simultaneously accounting for the uncertainty embedded within the decision 

making process.
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LIST OF ABBREVIATIONS

AG(A) Ambiguity measure of fuzzy number (A).
AHP Analytic Hierarchy Process.
(A m *); Expected mean value of fuzzy number (i).
(Am*) Faveragc Expected mean value of the average fuzzy number ( F aVerage)-

Avg. Average.
Bsum Bound sum fuzzy result aggregation.
c„ n* decision criterion.
CE Combined effect of relative importance and impact of factors.
COA Center of Area.
CONn Contribution of n111 decision criterion.
COM Center of Maximum.
CR Critical ratio.
E(X) Mean value of a continuous random variable X.
E.(A) Lower expected value of a fuzzy number (A).
E*(A) Upper expected value of a fuzzy number (A).
EI(A) Expected interval of fuzzy number (A).
EV(A) Expected value fuzzy number (A).
EDD Earliest due date.
F(A) Fuzziness measure of fuzzy number (A).
F average Average fuzzy number.
/ r W Probability density function.
FCFS First come, first served.
FNQI Fuzzy Number Quality Index.
Iy Moment of inertia about the vertical centroidal axis.
Max. Maximum.
M A X ra n g e Maximum range.
Min. Minimum.
M IN m n g e Minimum range.
MMC Maximum module cost.
MOPNR Most operations remaining.
MWKR Most work remaining.
Prod. Product fuzzy aggregation operator.
R n n1*1 fuzzy rule combination.
SOM Simphony Object Model
SPT Shortest processing time.
Var(X) Variance of a continuous random variable X.
xo Centroidal distance of a unit area.
y Defuzzified value of fuzzy number.

Aggregated membership function of output variable(x).
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CHAPTER 1-INTRODUCTION

1.1 Uncertainty in construction engineering

Due to the increasing complexity of construction projects, no project can succeed 

by accident. Different factors affect the success or failure of any project in 

construction engineering. Following a good planning and control system is one of 

the factors that can lead to a successful project. Providing accurate quantity, cost, 

and time estimates can also contribute to the project success. In addition, being 

able to successfully predict or measure some factors such as productivity and risk 

can certainly lead to better project performance. However, the aforementioned 

factors are not easy to achieve or accomplish due to unforeseen parameters such 

as weather changes, breakdown of equipment, labour inefficiency, and delayed 

delivery o f resources (Zhang et al. 2003). Consequently, these parameters may 

result in a great deal of uncertainty that can affect the overall construction process 

and may lead to its failure.

Yao and Furuta (1986) associate “uncertainty” with “ambiguity, fuzziness, 

randomness, vagueness, and imprecision of events under consideration”. 

Uncertainty associated with randomness is caused by complex phenomena that 

are random in nature. In addition, all of the other uncertainty terms can be 

associated with subjectivity and imprecise knowledge describing the events which 

result from the use of natural language that is not clearly defined. Therefore, the 

uncertainty terms can be grouped into two main categories: randomness and 

fuzziness.

1
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Several models and systems have been developed in order to deal with the high 

level of uncertainty involved within construction engineering projects. Many 

artificial intelligence models, such as simulation, neural networks and fiizzy logic 

are designed to deal with uncertainty. Simulation techniques are designed to 

model real-world systems. Stochastic simulation based on statistical data is more 

suitable for modeling construction related projects which are very susceptible to 

variation and interruptions (AbouRizk and Halpin 1990). Simulation has been 

successfully used to model many construction related problems. Some of these 

models are simulation analysis of construction site dewatering by Hajjar et al. 

(1998), simulation modeling of tunneling operations by Mohamed and AbouRizk 

(2001), simulation of concrete batch plant production by Zayed and Halpin 

(2001), and simulation modeling o f earth moving operations by Marzouk and 

Moselhi (2003).

Artificial neural networks are capable o f predicting a construction related 

behavior based on historical data. The power of artificial neural networks lies in 

their ability to learn from the different data sets used, which helps to yield more 

effective and reliable models. Neural networks have been used in many 

construction related problems such as the neural network system developed for 

the selection of horizontal formwork by Hanna and Senouci (1993), estimating 

construction formwork labour productivity by AbouRizk and Portas (1997), 

neural network modeling for pavement maintenance decision making system by 

Alsugair et al. (1998), and predicting highway construction costs by Wilmot and 

Mei (2005).

?
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Fuzzy sets and fuzzy logic techniques are capable of dealing with the linguistic 

terms used in modeling construction related problems, and they can effectively 

account for the uncertainty associated with numerous construction problems. 

Many researchers utilized fuzzy modeling concepts to model different 

construction related problems such as tender evaluation using fuzzy set by 

Nguyen (1985), utilizing fuzzy set concepts for project scheduling and network 

analysis by Ayyub and Haidar (1984) and Lorterapong and Moselhi (1996), fuzzy 

decision making system for contractor selection by Singh and Tiong (2005) and 

predicting industrial construction labour productivity using fuzzy expert systems 

by Fayek and Oduba (2005)

The aforementioned artificial intelligence modeling tools have been increasingly 

utilized to model construction engineering problems. Integrating these models 

can yield more powerful systems. This thesis proposes possible methods of 

integrated fuzzy set theory modeling techniques with discrete event simulation.

1.2 Problem Statement

Construction engineering operations are characterized as being cyclic, repetitive, 

and resource intensive in nature (Maio et al. 2000). Hence, simulation models 

have proven to be effective and successful modeling tools for construction 

operations. AbouRizk and Halpin (1992) stated that modeling the random 

simulation inputs is considered the key factor behind the success of the simulation 

construction process. They identified two possible scenarios when modeling 

construction engineering inputs. In the first scenario, the modeling data are either
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observed or provided from historical data. The second scenario represents the 

data-deficient environment. In the latter scenario, AbouRizk and Halpin (1992) 

suggest that the modeler must rely on his or her personal subjective judgment to 

select the appropriate probabilistic distributions that best describe the simulated 

construction process.

In simulation, historical data are used to fit a probabilistic distribution, from 

which the input variable (duration) is randomly sampled. In addition it is known 

that every project is unique. Therefore, conditions such as weather, labour 

experience, interruptions, and equipment conditions should be incorporated in the 

calculation of the activity duration for each project, since they may highly impact 

and change the historical statistical distributions used in modeling the project. 

AbouRizk and Sawhney (1992) showed that the uncertainties encountered in 

construction are usually handled by two approaches in simulation. In the first 

approach, aggregated input-process, the activity duration is represented by one 

statistical distribution that incorporates all the elements of uncertainty in it. The 

conditions affecting the activity duration are modeled implicitly in this approach. 

In the second approach, separate input-process, the influence on duration of the 

uncertainty elements is modeled separately. In addition, the different conditions 

affecting the activity duration are explicitly modeled within the separate input- 

process approach. In both approaches, the effect of the uncertainty elements on 

simulation inputs has to be addressed and modeled.

4
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Probability based modeling techniques, such as simulation, are very effective in 

modeling uncertainty only when enough data sets that describe the uncertainty are 

available. As a result, subjectively selecting a probability distribution that 

approximates and best represents the missing data is not optimal, since it is not 

usually a straightforward and accurate process and can eventually affect the 

simulation output. The difficulty in approximating a probability distribution is 

that experts do not think in probability values, but rather they think in linguistic 

terms such as much, very, high, etc. (Kim and Fishwick 1997).

In conclusion, the following points record some of the limitations identified after 

studying simulation modeling in construction engineering:

1) Simulation modeling is based on the availability of historical data that 

describe the problem being modeled. Problems arise when data are not 

available or do not sufficiently represent the problem being modeled. 

Some current practices use judgment and subjectivity based on experience 

to assume alternative statistical distributions.

2) Construction projects are unique. Many factors have been proven to 

adversely affect project performance and hence, can affect the modeling 

process. However, these factors are usually overlooked when dealing with 

stochastic models and they are usually modeled implicitly.

3) In stochastic models, uncertainty is modeled based only on the frequency 

of occurrence of events. This means that modeling new projects is mainly 

based on the experience with past ones. However, the specific conditions, 

that every project has, require that they be accounted for in order to be

5
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more representative for the changing parameters. Current statistical 

methods do not account for these changing conditions in every project 

since they only deal with past experience.

4) There is not any modeling methodology that comprehensively and 

effectively models uncertainty associated with both randomness and 

fuzziness.

5) The incorporation of experts’ knowledge and information in the discrete 

event simulation modeling is subjectively handled.

Therefore, in light of all the limitations and problems listed, there is a need to 

incorporate the experts’ knowledge and opinion within the simulation framework 

in order to enhance the modeling capabilities of discrete event simulation.

1.3 Research Objectives

Based on the problems discussed in Section 1.2, the research has the following 

objectives:

1) To identify the components of a framework for integrating the expert 

thinking using fuzzy set theory and discrete event simulation.

2) To develop a hybrid input modeling technique that is capable of modeling 

uncertainty caused by randomness and frizziness in the input variables in 

discrete event simulation.

3) To explicitly incorporate and account for the factors affecting the 

simulation inputs into the simulation modeling process.

6
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4) To provide the modeler with different input modeling techniques to 

choose from based on the amount of information available and his or her 

preference.

5) To model the expert thinking and experience using fuzzy set theory for 

better modeling capability of discrete event simulation.

6 ) To extend the applicability and state of the art in fuzzy set research in 

construction by integrating it with simulation modeling techniques.

1.4 Research Summary

In order to achieve the research objectives discussed in Section 1.3, the thesis will 

try to combine different modeling techniques so as to create more comprehensive 

integrated fuzzy-simulation models in order to best model uncertainty in 

simulation. The integration is illustrated using different applications supported by 

case studies. Three main applications are illustrated:

1) Using fuzzy numbers in range estimating, supported by a cost range 

estimating case study.

2) Using a fuzzy expert system as a predictive tool to model the activity input 

in discrete event simulation models. A tunneling operation is used as a 

case study.

3) Using the frizzy if-then rules for decision making in discrete event 

simulation models. The prioritization of modules in module assembly 

yards is used as a case study.

The thesis objectives will be achieved through the following steps:

7
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1) Showing the capabilities of using fuzzy numbers in the cost range 

estimating process by comparing its capabilities with Monte Carlo 

simulation range estimating.

2) Using fuzzy expert system modeling techniques to model the activity 

inputs using the Tunnel Boring Machine (TBM) advance rates as a case 

study and proposing a methodology for integrating the fuzzy expert 

system with discrete event simulation using Simphony.

3) Using fuzzy if-then rules as a decision making tool in module assembly 

yard scheduling. The fuzzy decision making tool will be utilized in 

prioritizing the modules awaiting assembly in assembly yard using 

Simphony®.

4) Developing a fuzzy modeling framework for integrating the fuzzy 

predictive modeling tools and the fuzzy decision making tools within 

discrete event simulation framework.

In conclusion, the proposed integrated framework tries to provide more effective 

models by integrating and incorporating the concepts of fuzzy set theory into 

simulation. More powerful and enhanced simulation models can be generated 

when integrated with fuzzy set theory concepts, which is what this thesis will 

attempt to achieve.

1.5 Thesis Organization

Chapter 1 provides an introduction and background for the research. It explains 

the problem statement and the overall thesis objectives.

8

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 2 provides a methodology for utilizing fuzzy numbers in the cost range 

estimating process.

Chapter 3 introduces fuzzy expert systems as a predictive tool and discusses the 

proposed methodology for generating the rules’ consequences. It also shows how 

fuzzy expert systems can be used to model the tunnel boring machine penetration 

rates in soft ground soils.

Chapter 4 discusses a methodology proposed for integrating fuzzy expert systems 

with discrete event simulation and illustrates the tunneling case study in which the 

fuzzy expert system predictive model is used to predict TBM penetration rate in a 

tunneling simulation model.

Chapter 5 introduces a methodology to use the fuzzy if-then rules as a decision 

making tool. The prioritization of modules awaiting assembly in a module 

assembly yard is used as a case study.

Chapter 6  illustrates the components and steps for the design and development of 

the fuzzy modeling framework which is integrated within the simulation 

framework.

Chapter 7 discusses the conclusions and comments drawn from the thesis, thesis 

contributions, and the future developments.

9
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CHAPTER 2-FUZZY NUMBERS IN COST RANGE
ESTIMATING

2.1 Introduction

Range estimating is one of the most used forms of Monte Carlo Simulation in 

construction practice. This technique is a simple form of simulating a project 

estimate by breaking the project into work packages and approximating the 

variables in each package using statistical distributions. During simulation, these 

distributions are sampled and a total project cost is aggregated, and statistically 

analyzed to derive proper cost indicators with various probabilities of achieving 

them. Such an approach is useful in quantifying uncertainties with high risk 

work packages thus leading to better decisions regarding the project budget.

This chapter explores an alternate approach to range estimating that is grounded 

in fuzzy set theory. The approach addresses two shortcomings of Monte Carlo 

Simulation. The first is related to the analytical difficulty associated with fitting 

statistical distributions to subjective data, and the second relates to the required 

number of simulation runs to establish a meaningful estimate of a given parameter 

at the end of simulation.

Fuzzy set theory enables us to subjectively elicit information about parameters of 

interest in each work package from an estimator without having to sacrifice 

accuracy, as such elicitation is a cornerstone of fuzzy set theory (as opposed to 

approximating a statistical distribution from subjective information).

10
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Fuzzy set theory requires only one path of calculations to establish an estimate of 

the parameter of concern as opposed to the multiple runs required in Monte Carlo 

simulation. The chapter shows that we can achieve comparable results using this 

approach in a more efficient manner.

2.2 Modeling Range Estimating Using Monte Carlo Simulation

Before the emergence of fuzzy set theory as a good tool for modeling uncertainty, 

probability theory was the only well developed mathematical tool for dealing with 

uncertainty (Klir and Folger 1988). One of the probabilistic methods that models 

uncertainty in an estimate (cost or duration) is Monte Carlo simulation. This risk 

analysis process is called range estimating.

Ahuja et al. (1994) define range estimating as a simulation modeling process 

performed after an estimate is made (i.e. estimate of duration or cost) to reflect the 

degree of uncertainty associated with an estimate. Taking cost range estimating 

as the main example, the process can be summarized:

1) Identify the major project or work components in the form of major cost 

packages and their related subcategories, which can be restricted to the 

major items that affect the total cost bottom line by a certain percentage 

(i.e. > 1 %).

2) Identify the uncertain items.

3) Use statistical distributions (i.e. triangular and/or uniform distributions) to 

model the variability of each uncertain item.

4) Use Monte Carlo simulation to provide the final outputs.

11
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5) Collect statistics on the mean, standard deviation and minimum/maximum 

values of the output.

The Monte Carlo simulation technique has been used to model the risk analysis of 

construction operations. Using this technique, the modeled system takes inputs in 

the form of random variables. The process continues by performing experiments 

with many variations of the input and then collects sets of outputs in the form of 

statistical distributions, which are analyzed to provide the measure of uncertainty 

and risk. The main steps followed in Monte Carlo simulation are (Ahuja et al. 

1994):

1) Generate random numbers.

2) Generate random variates reflecting the true nature of the modeled item 

(i.e. duration and cost estimate). This step is referred to as “input 

modeling” which requires the modeled item be modeled by an appropriate 

probabilistic distribution that best represents the item.

3) Run the model and calculate the desired output parameters.

4) Steps 1 to 3 are repeated for a large number of iterations.

5) Terminate after a specified number of iterations and analyze the collected 

output statistics.

Range estimating can be an effective tool for modeling the uncertainty embedded 

within cost or duration estimates. However, this technique is based entirely on 

probabilistic and statistical modeling techniques that model the randomness of the 

problem. In addition, as explained before, the process requires a large number of

12
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iterations in order to reach a reliable output. Selecting the appropriate statistical 

distribution that best models the inputs is an important issue in random modeling.

2.3 Modeling Uncertainty Using Fuzzy Numbers

2.3.1 Introduction to fuzzy numbers

Fuzzy set theory deals with the set of objects with a continuum of grades of 

membership characterized by a membership (characteristic) function that assigns 

to each object a grade of membership ranging between zero (no membership) and 

one (full membership) (Zadeh 1965). The concept of “unsharp boundaries” that 

fuzzy set theory tries to represent mimics the human way of thinking, which 

works with shades of gray rather than black and white. A fuzzy number is a fuzzy 

membership function that is both convex and normal. Fuzzy numbers are written 

in the form of a domain value and its corresponding confidence level. Figure 2.1 

shows an example o f a convex and a normal fuzzy number representing the 

concept of “about 4”. A fuzzy number can be considered a generalization of the 

concept of interval o f confidence. Therefore, the mathematical operations of 

fuzzy numbers (i.e. addition, subtraction, multiplication, and division) can be 

processed using the concepts of the interval of confidence.

Figure 2.1: “About 4” Represented by a Triangular Fuzzy Number

13
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2.3.2 Fuzzy numbers versus probability distributions

Fuzziness and probability represent different aspects of uncertainty. According to 

Kaufmann and Gupta (1985), a fuzzy number is not a random variable. The 

random variable is defined in terms of the theory of probability, whereas a fuzzy 

number is a subjective datum that is defined by the theory of fuzzy sets. In order 

to show the difference between the two types of uncertainty, the summation 

operation is taken as an example. Figure 2.2 shows that the summation of 

probability distributions will eventually achieve a Gaussian shape (normal) that 

obeys the Laplace-Gauss central limit theorem. On the other hand, the addition of 

two constant fuzzy numbers that are similar in shape will result in a larger 

constant fuzzy number that maintains the same shape. This example shows how 

the two approaches differ in the way they process uncertainty.

f(x).f(x). f(x)

 <—►x -----1-----------
X, X,

Probability Distributions

+ x
Xi + X,

* x ♦ x
x, + x2 + . . .  +x,x, + x.

Fuzzy Numbers

Figure 2.2: Comparison between Probability and Fuzzy Convolution

According to Ferson (2002), some of the disadvantages of Monte Carlo methods 

are computational burden, sensitivity to uncertainty about input distribution

14
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shapes, and the need to assume correlations among all inputs. On the other hand, 

modeling uncertainty using fuzzy arithmetic is computationally simple, not very 

sensitive to moderate changes in the shapes of input distributions, and does not 

require the analyst to assume particular correlations among inputs. However, the 

results generated by fuzzy arithmetic are conservative and may overestimate 

uncertainty. As illustrated in Figure 2.2, the summation operation of two fuzzy 

numbers generated an output that is wider in range.

Fuzzy set theory can be used as an effective alternative to the random modeling of 

uncertainty. It is a very attractive alternative because it is more capable of 

extracting and representing the required information from experts by effectively 

capturing their linguistic and subjective evaluations. In addition, the calculations 

involved are much easier and faster compared to the probabilistic approach.

In order to minimize the effect of overestimation in fuzzy modeling, this chapter 

will introduce concepts that must be considered when modeling uncertainty using 

fuzzy arithmetic. The following sections present some of the concepts that need 

to be incorporated and how they will be used to model uncertainty in cost range 

estimating.

2.3.3 Crisp representation of a fuzzy number

It is also important to associate an ordinary or a crisp quantity with the fuzzy 

number. The crisp quantity will represent the “defuzzified” or “expected” or 

value of the fuzzy number. Calculating the “expected value” of the fuzzy number 

will render the fuzzy number ranking and comparison much easier.

15
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Different methodologies have been developed to capture an “expected value” of a 

fuzzy number. Heilpem (1992) introduced the notions of expected interval EI(A) 

and expected value EV(A) of a fuzzy number. According to Heilpem (1992) the 

expected interval is defined as the expected value of an interval random set 

generated by the fuzzy number, and the expected value of this number is defined 

as the centre of the expected interval. In his approach Heilpem proved that the 

expected interval of a fuzzy number is equal to the mean value of this number. 

Heilpem defined a lower and upper expected value o f a fuzzy number as follows: 

The expected interval EI(A) equals:

respectively.

And the expected value EV(A) equals:

[2.2] EV(A)= '/2(E»(A) + E*(A)).

For a trapezoidal fuzzy number (ai, a2, a3, a*),

[2.3] EI(A)=[(a, + a2)/2,(a3 + a4)/2 ]

[2.4] EV(A)= (a, + a2 + a3 + 34 )/4

For more details on the mathematical background of equations 2.1 to 2.4, the 

reader can refer to Heilpem (1992).

One of the most common defuzzification methods is the Center of Area “COA”, 

which is calculated as:

[2.1] EI(A) = [E*(A), E*(A)]

Where E*(A) and E*(A) are the lower and upper expected value of a fuzzy number

16
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where, y* is the defuzzified value, «,(x) is the aggregated membership function 

and x is the output variable. Equation 2.5 represents the centroid of the fuzzy 

number.

In probability theory, the mean value and variance correspond, respectively, to the 

centroidal distance and central moment of inertia of an area (Ang and Tang 1975). 

The centroidal distance (xo) of a unit area is calculated by:

M
j 'xf(x)dx _

[2.6] x0 = — = I V  (x)dx
area J—oo

Refer to Figure 2.3 for the notations of the centroidal distance equation.

y

y = f (x)
e.g.

Figure 2.3: Centroid Location of an Irregular Area

Equation [2.6] is also the first moment (about 0) of the irregular-shaped area. The 

moment of inertia about the vertical centroidal axis (/y) is:

[2.7] I v = ] ( x - x 0)2f (x)dx
—©o

In probability, the mean value of a continuous random variable X with a 

probability density function f x {x) is:

17
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[2.8] E { X ) = \ x f x {x)dx
—oo

The variance of a continuous random variable X with a probability density 

function f x (x) is:

[2.9] V a r ( X ) = ] ( x - Mx)2f x (x)dx

When comparing equations 2.6 and 2.7 with 2.8 and 2.9, respectively, it can be 

noticed that the mean value is equivalent to the centroidal distance, whereas the 

variance is equivalent to the centroidal moment of inertia of an area (Ang and 

Tang 1975).

Therefore, since the probabilistic mean value is equivalent to the centroidal 

distance of an area, the “COA” defuzzification method of any fuzzy number will 

generate a defuzzified value which is identical to the probabilistic mean of the 

normalized fuzzy number. It can be concluded that when a fuzzy number 

maintains the same range and the same shape of a bounded or a truncated 

probabilistic distribution, the defuzzified value of the fuzzy number using “COA” 

method will be equivalent to the mean value of the probabilistic distribution. The 

equations for calculating the expected values using the “COA” method of the 

common fuzzy numbers used in the study are as follows (the fuzzy numbers are 

represented by a four element notation (a, b, c, d ) :

a + b
[2.10] Uniform fuzzy numbers (a, a, b, b), EVunjf0rm = ——

a + b + c
[2.11] Triangle fuzzy numbers (a, b, b, c), EV-rriangie = ---- ;----

3
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[2.12] Trapezoidal fuzzy numbers (a, b, c, d), EVrnipczoidai =

2 ac + a2 +cb + ab + b2
a -1------------------------------

3 (a + b)

Equations 2.10, 2.11, and 2.12 calculate the expected values of the uniform, 

triangular, and trapezoidal fuzzy numbers respectively, which are equivalent to 

the mean values of uniform, triangular, and trapezoidal probability distributions 

respectively.

The variances of the common fuzzy numbers used in the study can be calculated 

using the probabilistic definition of variance as follows:

/ L  n \ 2

[2.13] Uniform fuzzy numbers (a, a, b, b), Varianceunif0mi = — ——

[2.14] Triangular fuzzy numbers (a, b, b, c), Variance-Triangular =

a 2 +b2 +c2 - a b  — a c - b c  
18

[2.15] Trapezoidal fuzzy numbers (a, b, b, c), according to Dorp and Kortz 

(200j), Variance Xrapezoidal =

(b — fit) /•!/ I j - ’n 1 / “ z-3 j 3 w
 - ------------- - -------------(—(a + b Y  + —b ' )  + --------------------------------------- ( —  ( cJ - b ' ) )  +
(d + c - b - a )  6 3 (d + c - b - a )  3

( d - c )  .1 , 1 .  ------------- ( - c -  + ~ { c  + d ) ' )
(d + c - b - a )  3 6

Equations 2.13, 2.14, and 2.15 calculate the variances of the uniform, triangular,

and trapezoidal fuzzy numbers respectively, which are equivalent to the variance 

values of uniform, triangular, and trapezoidal probability distributions 

respectively.
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Therefore, when a fuzzy number maintains the same range and the same shape of 

a bounded or a truncated probabilistic distribution, the variance of the fuzzy value 

will be equivalent to the variance of the related probability distribution.

2.3.4 Summation of Fuzzy Numbers

As indicated in Section 2.3.1, the fuzzy numbers are considered a generalization 

of the interval and the mathematical operations on fuzzy numbers (i.e. 

summation) can be processed using the concepts of the interval of confidence. 

Therefore, the methodology adopted for the summation of fuzzy numbers is the a- 

cut method and interval analysis. As shown in Figure 2.4, a-cut (a e [0,1]) is a 

discretization technique applied on the continuous membership functions to 

generate a discrete set of variables in the form of intervals (a, b).

The a-cut technique is based on the “extension principle” which implies that 

algebraic operations on real numbers can be extended to fuzzy numbers (Zadeh 

1975). Interval arithmetic is used to analyze the generated intervals.

The following example illustrates the a-cut calculation process of fuzzy number 

summation using interval arithmetic. Suppose we have two fuzzy numbers A =

---------► x
a b

Figure 2.4: a  -cut Operation on a Triangular Number

a - level cut
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(1, 4, 7) and B = (2, 5, 8, 10). We need to calculate Z = A + B using a-cut 

technique. The calculation process is carried out through the following steps:

1) Select a particular a-cut value (0 < a < 1)

2) Find the corresponding intervals of the selected a-cuts

3) Use the interval operations to calculate the intervals in the output Z

4) Repeat the steps for as many a-cuts as needed.

To calculate Z = A + B, four a-cuts are selected (0,1/3, 2/3, and 1) 

a = 0: [1,7]+ [2,10] = [3,17] 

a =1/3: [2,6] + [ 3, 9.34 ] = [5 ,15.34 ]

a =2/3: [3,5] + [ 4,8.67 ] = [ 7,13.67 ]

a = 1: [4,4] +[5,8]= [9,12]

These a-cut solutions represent the fuzzy output (Z) which is shown in Figure 2.5.

a = I 

P  ( Z )  a  =  2 /3

a = 1/3 

a = 0

Figure 2.5: Solution Of (z = a + b) Using a  -cuts

The a-cut method can be used in the different types and shapes of fuzzy numbers. 

The types of fuzzy numbers used in this study (uniform, triangle, trapezoidal) can 

be considered special cases of trapezoidal. Therefore, they can be represented by 

4 variables; trapezoidal = (a,b,c,d), uniform = (a,a,b,b), and triangular = (a,b,b,d). 

The summation of these numbers can be performed by a-cut method or by direct 

summation since they are all represented by 4 variables.
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23.5 Fuzzy Summation and Probabilistic Central Limit Theorem

According to the central limit theorem, the sum of independent random variables 

tends to the normal distribution as the number of random, variables, regardless of 

their distributions, increases without limit (Ang and Tang 1975).

Therefore, to prove that using fuzzy numbers in range estimating can yield 

comparable results to the probabilistic approach, we need to prove that the 

defuzzified expected value of the fuzzy output using “COA” is comparable to the 

mean of the probabilistic output, which is represented by Gaussian distribution 

based on the central limit theorem, and that the summation of variances of fuzzy 

inputs are comparable to the summation of variances of probabilistic distributions. 

Boswell and Taylor (1987) investigated the concept of fuzzy random variable 

which is a fuzzy set consisting of a membership function and a basic set whose 

components are ordinary mapping (real random variables) from a probability 

space. In addition, the random variables exhibit an infinite number of 

distributional types whose summation or average is a fuzzy random variable with 

a membership function of its own and a basic set of random variables. The 

conclusion of their study is that the summation of independent fuzzy random 

variables converges, in the limit, to a fuzzy Gaussian random variable providing a 

fuzzy equivalence of the central limit theorem of classical probability theory.

Boswell and Tylor’s study (1987) provided a mathematical proof of the similarity 

between the summation fuzzy random variables and central limit theorem of 

classical probabilistic summation. In this study, we are only dealing with fuzzy
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numbers which are not random. Therefore, the analysis is much easier and it is 

considered a special case of the summation fuzzy random variables.

In order to show how the summation of fuzzy numbers behaves, an experiment is 

conducted using Excel and @RISK add-in. The experiment is designed to 

compare the outputs of the summation of fuzzy inputs and probabilistic 

distributions. The experiment is designed using the following assumptions:

1) The two approaches will share the same boundaries. The boundaries are 

randomly created between the following ranges:

a) Minimum range (MINrange) -  Random (0 to 1000).

b) Maximum range (MAXrange) = Random ( [Min+ 100] to [Min+ 

1000]) .

2) Fuzzy numbers used are:

a) Uniform (a, b ) : a = (MINrange), b= (M A X range).

b) Triangular: (a, b, c): a = (M IN range), c= (M A X range), and (b) is 

randomly created between (a) and (c).

c) Trapezoidal (a, b, c, d): a = (MINrange), d= (MAXrange), (b) and (c) 

are randomly created between (MINrangc) and (MAXrange), provided 

that (b) ? (c).

3) Probability distributions used are:

a) Uniform (min., max.): min (continuous boundary parameter) = 

(MINrange), max (continuous boundary parameter) = (MAXrange)-

b) Triangle (min., most likely, max.): min (continuous boundary 

parameter) = (M IN rangc), (max continuous boundary parameter) =
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(M A X range), most likely continuous mode parameter is randomly 

created between (M IN range) and (MAXrangc).

c) PERT (min., most likely, max.), which is an approximation of Beta 

distribution: min (continuous boundary parameter) = (MINrange), 

(max continuous boundary parameter) = (MAXrange), most likely 

continuous parameter is randomly created between (M IN range) and 

(MAXrange).

d) Generalized Beta (a,,ctr2,m in.,m ax.): min (continuous boundary 

parameter) = (M IN range), max (continuous boundary parameter) = 

(MAXrange), and a, (continuous shape parameter) and 

a 2 (continuous shape parameter) are both randomly created 

between (2 and 25). The range of the shape parameters is selected 

between 2 and 25 to restrict the shape of the Beta distributions to 

unimodal distributions. In order to deal with bimodal Beta 

distribution, the distribution must be divided into two distributions 

(each with one local maximum). Two fuzzy numbers are created 

in order to match the parameters of the divided distributions. The 

scope of the experiment only covers the unimodal distributions.

e) Normal truncated (ju,ij ) :  the distribution is truncated between 

(MINrange) and (MAXrange), H (mean) is randomly created between 

(MINrange) and (MAXrange), and <T (standard deviation) is randomly 

created between (MINrange) and (M A X rangc)-
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f) Exponential truncated (/?): the distribution is truncated between 

(M IN range) and (M A X range),/? (continuous scale parameter) is 

randomly created between (M IN range) and (M A X range)-

g) Lognormal truncated (/t,cr): the distribution is truncated between 

(MINrange) and (MAXrange), H (mean) is randomly created between 

(MINrange) and (MAXrange), and a  (standard deviation) is randomly 

created between (MINrange) and (M A X mnge)-

.4) 1000 randomly selected combinations of fuzzy numbers and related 

probabilistic distributions are generated.

5) 6 inputs are used in each of the 1000 combinations.

6) The probabilistic summations of each combination are performed using a 

Monte Carlo simulation that has the following assumptions:

a) Total number of iterations =1000

b) Random generator seed = 1

7) The target of the experiment is to calculate the absolute error between the 

expected values and variances of the outputs:

[2.16] Absolute Error (of expected values E .V .) = 100*(|E .V .fuzzy -E .V .probabiiity|) /

E .V  .probability

[2.17] Absolute Error (of standard deviations)

=100*(| ■^Y_,FuzzyVanances — ProbabilityVariances [)/

.^T  Pr obability Variances

8) Statistics collected for the absolute errors are:
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a) Mean absolute error for all 1000 combinations.

b) Standard deviation of absolute error for all 1000 combinations. 

Refer to Figure 2.6 for a flowchart of the experiment conducted to compare the 

probabilistic and fuzzy approaches in range estimating.

Randomly Selected Fuzzy Shapes and Parameters

« = >
Centroid of the 

fuzzy summation

□
3 ±  4

Randomly created Ranges 
Min= Random (0 to 1000)

Max= Random ( [Min+ 100] to [Min+ 1000])

A

Relative Error (1)

V

1 2 3 4 5 6

Randomly selected probability distributions with randomly
generated parameters:

1) Uniform
2) Triangle
3) PERT
4) Beta General
5) Normal Truncated
6) Exponential Truncated
7) Lognormal Truncated

Summation 
using Monte 

Carlo Simulation 
after 1000 
iterations

Centroid o f the 
fuzzy summation

1000
1 2  3 4 TIt

&

Average 
and 

standard 
deviation of 

the 1000 
cases tested

Relative Error (1000)

K V  +----
1

A------
2 3

A A
4  3

w  
------>

6
« = >

Monte Carlo 
Simulation 

Summation after 
1000 iteration

Figure 2.6: Flowchart of the Experimental Proof Conducted

The following points summarize the results of the experiment:

1) After running the experiment for 1000 iterations:
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a) The mean absolute error of the “expected values” comparison is 5.2 % 

with standard deviation = 4 %.

b) The mean absolute error of the “standard deviation” comparison is 13.5 

% with a standard deviation =11.6 %.

2) When the beta distribution is not included in the analysis, the results after 1000 

iterations have improved:

a) The mean absolute error of the “expected values” comparison is 5.0 % 

with standard deviation = 3.8 %.

b) The mean absolute error of the “standard deviation” comparison is 9.6 

% with a standard deviation = 6.9 %.

From the results generated we can conclude the following:

1) The fuzzy approach generated very comparable results to the 

probabilistic approach. This was proven experimentally when 

bounded and truncated probability distributions were used in the 

analysis.

2) When the beta distribution was removed from the experiment, better 

results were obtained which indicates that the beta distribution in 

general requires some parameter control to obtain better results. The 

shape parameters (a, anda 2) should be carefully selected to obtain the 

required results.

After proving the efficiency of the fuzzy approach in generating comparable 

results to the probabilistic approach, the following sections will show how the 

fuzzy numbers can effectively be used in range estimating.
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2.3.6 Fuzziness and Ambiguity Measures

There are different definitions and terms that describe “uncertainty”. Uncertainty 

definitions can be categorized into two terms, vagueness and ambiguity. 

According to Klir and Folger (1988), vagueness is related to the difficulty of 

providing a sharp and precise distinction o f a specific incident or phenomenon. 

As for the term “ambiguity”, it describes the situation in which there is difficulty 

in making a specific selection or decision between alternatives. In fuzzy set 

theory, the concept of “fuzziness measure” deals with the first type of uncertainty 

(vagueness). The fuzzy measure is related to the degrees to which an arbitrary 

element of the universal set (X) belongs to the individual crisp subsets of X (Klir 

and Folger 1988). The other measure is the “ambiguity measure”, which 

describes the lack of precision in determining the exact value of a magnitude 

(Delgado et al. 1998b). The following paragraphs will attempt to provide some 

details on the two measures and how they are obtained.

The fuzziness measure adopted in this study is the one developed by Klir and 

Folger (1988). Their approach defines the fuzziness of a set in terms of the lack 

of distinction between the set and its complement. That is to say that the more a 

set is different from its complement, the frizzier it is. In order to calculate the 

frizziness measure using this approach, a frizzy complement approach and a 

distance function are utilized. For a given fuzzy set A(x), the measure of 

frizziness, F(A) is obtained using the following equation:
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Equation 2.18 is only applicable to finite fuzzy sets, but it can be modified to 

fuzzy sets defined on infinite but bounded subsets. For example when X = [a, b], 

the measure of fuzziness is then obtained by:

b

[2.19] F(A)=J (l- |2 A (x )-l |)d x
a

b

= b-a - J12A(x) -1 1 dx
a

The fuzziness of a crisp number or a fuzzy uniform number is zero because the 

lack of distinction between a fuzzy uniform number or a crisp number and their 

complements is zero.

As for the ambiguity measure, the approach developed by Delgado et al. (1998a) 

is selected as the ambiguity measure used in this study. According to (Delgado et 

al. 1998a), ambiguity “AG” is obtained by the following formula:

i
[2.20] AG( j u ) =  J r[R(r) — L(r)]dr

o

Where ( ju ) is a fuzzy number with r-cut representation (L(r), R(r)). The term 

[R(r)-L(r)] is the length of the r-cut interval (L(r), R(r)). Therefore, AG (JJ. ) can 

be considered as a “global spread” of the fuzzy number. The ambiguity AG ( f i ) 

can be calculated for some of the most common fuzzy numbers as follows:

1) For a trapezoidal fuzzy number (ai, z.2, a3, a*),

[2.21] AG (  j l  )Trapczoidal =  (&3 — ai)/2 + [ ( 3 4  — a$) +  (&2 -  U] ) ]  /  6

2) For a Triangular fuzzy number ((ai, &2, as,),

[2.22] AG ( jJ. tr ia n g u la r  = [(2-3 — &2) (&2 ~ &1 ) ]  /  6
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3) For a uniform fuzzy number (aj, a2),

[2.23] AG ( /I )uniform =  ( & - &\ )/2

4) For a crisp number (ai),

[2 .2 4 ]  A G  ( JJ. )Crisp =  0

To clarify the difference between the fuzziness and ambiguity measures, Figure 

2.7 provides a comparative illustration of the two measures for three types of 

fuzzy numbers (uniform, triangular, and trapezoidal). For comparative purposes, 

the three fuzzy numbers are defined on the same range. Figure 2.7 shows that the 

uniform fuzzy number has the least fuzziness measure, and the triangular fuzzy 

number has the highest fuzziness measure because the degree of belonging of the 

first is well defined (in terms of intervals) while the latter has a “fuzzily” defined 

degree of belonging depicted from the sloped lines that form the triangle. As for 

the trapezoidal fuzzy number, although it has sloped lines similar to those of the 

triangular fuzzy number, it is less fuzzy than the triangular frizzy number because 

it contains a defined “flat or uniform range”. This unique shape of the trapezoidal 

fuzzy number renders its fuzziness somewhere between that of the uniform frizzy 

number and the triangular fuzzy number.

Most
Ambiguous

Zero
Ambiguity

) <
Least
Fuzz)'

2 ps|p«ip
Average 

u  Spreadu
f f  Minimum 

f i  Spread

"5 i^fmunumfe \ j __________  /  Well
defined

Somehow
Defined

n«s
e

53
o

Least
Ambiguous v

Zero
Fuzziness

Figure 2.7: Fuzziness and Ambiguity Measure Definition
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As for the Ambiguity measure, Figure 2.7 shows that the triangular fuzzy number 

has the least ambiguity measure, and that the uniform fuzzy number is most 

ambiguous. We also notice that the crisp number has zero fuzziness measure and 

zero ambiguity. If we take the crisp number as a reference, we notice that when 

the overall spread of any fuzzy number around this crisp number is minimized, 

the ambiguity is decreased. This explains why the uniform fuzzy number would 

certainly have the highest measure of ambiguity and the triangular fuzzy number 

would have the least. Again, the trapezoidal fuzzy number falls in between the 

two extremes, simply because it possesses, to some extent, the characteristics of 

both of the other fuzzy numbers.

2.4 Proposed Fuzzy Range Estimating Model

In this section, a detailed description of the model developed for fuzzy range 

estimating is provided. The model utilizes the different concepts discussed in the 

previous sections. Figure 2.8 shows a flowchart of the proposed model for 

modeling uncertainty in cost range estimating using fuzzy arithmetic. The 

following points explain the steps of the proposed model:

1) By consulting the experts involved in the process, the problem under 

investigation is identified. In the case of uncertainty in cost estimates, the major 

cost packages and their subgroups have to be clearly identified by the experts.
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Figure 2.8: Flowchart of the Fuzzy Range Estimating Process
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2) Each expert is then required to give his/her best estimate based on his/her 

experience choosing from the different input formats (triangular, trapezoidal, 

uniform, singleton). The logical meaning of these input formats is explained as:

a) Triangular fuzzy numbers: chosen when the expert believes that the 

estimate o f the item has a “most likely” or “most plausible” point that is 

between a maximum and a minimum boundary.

b) Trapezoidal fuzzy number: the expert resorts to this input format when 

he/she believes that the estimate has a “most plausible” range or interval 

that lies between a maximum and a minimum boundary.

c) Uniform fuzzy numbers (sometimes referred to as a “crisp interval”): can 

be selected when the expert believes that the estimate should take the form 

of an interval that has a maximum and a minimum point, and when he/she 

finds it difficult to assign a “most plausible” estimate to a point or a range.

d) Crisp number (singleton): selected when the expert is 100 % certain that 

the estimate is a deterministic one that has zero uncertainty.

3) The next step is to consolidate the experts’ inputs. The consolidation process 

can be done using three different approaches:

a) Consensus: The final estimates are made by consensus between the experts. 

This approach usually involves roundtable discussions between the experts 

involved in the estimation process. Generally, the greater the number of experts 

involved in the process, the more the time required to reach a consensus. This 

approach can be used in the estimation process within the same company or 

entity.
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b) Fuzzy Delphi Approach: The Delphi method is a systemic approach used for 

long range forecasting in which the estimates of experts are made to converge 

using statistical analysis (Kaufmann and Gupta 1988). It is conducted by 

interviewing highly qualified experts to give their opinions regarding specific 

issues such as providing cost and time estimates. Since it is difficult in most cases 

to provide precise and crisp estimates of cost or time, a fuzzy representation of the 

process can model this uncertainty. Fuzzy Delphi method can be an effective 

method for extracting subjective information from experts. However, the process 

can be time consuming. In addition, the way the technique is developed restricts 

the input option to one input type (triangular fuzzy number), which limits the 

expert’s freedom in providing his or her estimate in different formats (i.e. 

trapezoidal fuzzy number).

c) Distance from the Average Approach: This approach is used in the model 

proposed in this paper to consolidate the fuzzy estimates. The consolidated fuzzy 

estimate is generated by averaging the experts’ inputs and assessing them using 

the previously explained fuzzy arithmetic concepts. The process is as follows:

1) Inputs can be represented by a four-element format as follows:

a) Trapezoidal Fuzzy number is (a, b, c, d)

b) Triangular fuzzy number = (a, c, b) can be represented as (a, c, c, b)

c) Uniform fuzzy number = (a, b) can be represented as (a, a, b, b)

d) Crisp number = (a) can be represented as (a, a, a, a)

2) The average fuzzy number (FaVcrage) is calculated as follows:

[2.25] Favcnge = (2(ai+a2+..an)/n ,I(bi+b2+..bn)/n, Z(ci+c2+..cn)/n, S(d]+d2+..dn)/n)
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Where, a, b, c, and d are the first, second, third, and fourth elements of the fuzzy 

numbers respectively, and (n) is the number of fuzzy numbers being averaged. 

Using equation 2.5, the expected mean value of each fuzzy number is calculated. 

The expected value of the average fuzzy number (FaVerage) is generated from 

equation 2.6. Another method of comparing the deviation of the fuzzy numbers 

from their calculated fuzzy average is by measuring the distance between their 

expected mean values:

Distance (i) = | ( A m")j - (AmVavcrage I (Using the hamming distance)

[2.26] Closeness Percentage = 100 * [1 — | (Am ); - (Am ) Faverage I /(Am ) Faverage ] 

Where, (AmA); = the expected mean value of fuzzy number (i), (Am") Faverage IS t h e

expected mean value of the average fuzzy number (Faveragc), and “closeness 

percentage” is a measure that calculates how close, by percentage, the value is to 

the reference. Table 2.1 shows the detailed distance calculations of expected 

mean values of different triangular fuzzy numbers and the expected mean value of 

their average (FavCrage)- A closeness percentage can be set as an acceptance 

criterion and all closeness percentages that are equal or above this level are 

accepted.
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Table 2.1: Closeness Percentage of Different Triangular Fuzzy Numbers
from their Average

Parameters of Triangle 
Number (a, c, b) 

a c b

Expected
Values

Distance
from

Average

Closeness
Percentage

12.00 16.00 25.00 17.67 8.36 10.17
5.00 6.00 7.00 6.00 3.31 64.47
4.00 7.00 7.00 6.00 3.31 64.47
7.00 12.00 12.00 10.33 1.03 88.97
9.00 9.00 15.00 11.00 1.69 81.81
4.00 9.00 10.00 7.67 1.64 82.38
6.00 6.00 14.00 8.67 0.64 93.12
7.00 8.00 10.00 8.33 0.97 89.54
6.00 9.00 10.00 8.33 0.97 89.54
5.00 8.00 13.00 8.67 0.64 93.12
8.00 10.00 11.00 9.67 0.36 96.13
4.00 8.00 16.00 9.33 0.03 99.71
6.42 9.00 12.50 931 0.00 100.0

3) In the previous step, the expected mean values of the fuzzy numbers are 

compared to the expected mean value of the average fuzzy number in order to 

check the consistency of the experts’ estimates and determine the estimates 

that are not in agreement with the overall average. This will help improve the 

quality of the average estimate by identifying the estimates that are not in 

harmony with the other estimates. However, the next step is to know what to 

do with these “rejected” or “eliminated” estimates. Two possible options can 

be taken as follows:

Option (1): Reiterate the estimating process by contacting the expert(s) 

who provided the rejected estimated. In this process, the experts are 

provided with all the information (i.e. overall fuzzy average and closeness 

percentage) that explains how deviant their estimates were- from the 

overall average estimate. The contacted experts are then asked to provide

36

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



different estimates that are closer to the average. Then, the averaging 

process is reiterated and the results are rechecked.

Option (2): Delete the “rejected” estimates and then recalculate the 

average. This option is chosen when contacting the experts, who provided 

rejected estimates, is not feasible due to time or other constraints.

The proposed modeling technique is different from the fuzzy Delphi process in 

that only the rejected estimates are returned to the experts for more feedback or 

justification, if  possible, for the reasons behind providing estimates that deviated 

from the global mean. If the experts decide to change their rejected estimates, 

another averaging iteration is carried out using the adjusted estimates. If the 

results are satisfactory, the process moves on to the next step. If no change is 

made to the rejected estimates, they will be eliminated from the process. Another 

averaging will be carried out, and the closeness percentage recalculated and 

rechecked. This process is repeated until all the closeness percentages are above 

the acceptance level.

4) The next step is to evaluate the fuzziness and ambiguity measures of the 

estimates. The comparison in step (2) was necessary to check how precise the 

estimate is by measuring how close its expected value is to the expected value of 

the average. The fuzziness and ambiguity measure will try to check the “quality” 

of the estimates. As explained before, the fuzziness measure evaluates how vague 

the estimate is, and the ambiguity measure calculates the lack of precision in 

determining the exact value of a magnitude. Table 2.2 shows the evaluation 

process of the different measures.
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Table 2.2: Comparison of Fuzziness Measure, Ambiguity Measure, and
Fuzzy Quality Index

Type of 
Fuzzy 

Number

Fuzzy Parameters Fuzziness
Measure

Ambiguity
Measure

Fuzzy
Quality
Indexa b c d

Trapezoidal 2.0 7.0 10.0 20.0 7.5 4.0 5.8
Trapezoidal 3.0 7.0 9.0 15.0 5.0 2.7 3.9
Trapezoidal 10.0 10.0 15.0 18.0 1.5 3.0 2.3
Triangular 12.0 16.0 16.0 25.0 6.5 2.2 4.4
Triangular 7.0 12.0 12.0 12.0 2.5 0.8 1.7
Triangular 7.0 8.0 8.0 10.0 1.5 0.5 1.0
Uniform 6.0 6.0 30.0 30.0 0.0 12.0 6.0
Uniform 2.0 2.0 7.0 7.0 0.0 2.5 1.3
Uniform 6.0 6.0 7.0 7.0 0.0 0.5 0.3

As shown in Table 2.2, depending only on the fuzziness measure to assess the

“quality” of the estimates is not usually enough. Although some fuzzy numbers 

have low measures of fuzziness, they still lack the necessary precision in 

determining the exact value, which renders them “ambiguous”. A good example 

of this is uniform fuzzy numbers (sometimes referred to as crisp intervals). 

Although they will always have a zero measure of fuzziness, they have high 

measures of ambiguity. Therefore, it is important to assess the quality of the 

estimates using two measures (fuzziness and ambiguity). In order to provide a 

measure that combines the effect of both the fuzziness and ambiguity measures, a 

“fuzzy number quality index” is calculated using the weighted average of both 

measures. For a fuzzy set A, the fuzzy quality index can be measured as:

[2.27] FNQI = [WF * F(A) + WAG * AG(A)] / [WF + WAG ]Where WF and WAG 

are the weights of the fuzziness measure and ambiguity measure respectively and 

F(A) and AG(A) are the fuzziness and ambiguity measures of fuzzy number (A) 

respectively.
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In this study, equal weights are assumed for both measures. Since there is no 

reference index against which the fuzzy quality measure can be compared, an 

acceptance level can be set by the user to reject the estimates with clearly high 

(FNQI) compared to the others.

After identifying the rejected fuzzy numbers, the same options explained in step 

(3) are investigated. The process terminates when the averaged fuzzy numbers 

for each item pass the checking and acceptance tests. The successful averaging 

process is the one that has the highest closeness percentages (high precision) and 

the least fuzziness and ambiguity measures (high consistency).

5) The process proposed in this thesis is a structured process for extracting 

information from the experts in the form of fuzzy numbers. Depending on the 

application, the process can work for both cost and activity duration evaluation. 

However, only the cost range estimating application is applied in this study. 

Therefore, in cost range estimating, the next step in the process after extracting 

the necessary information from the experts is to calculate the total estimated cost 

of the problem under consideration, which is performed using simple summation. 

The operation starts by adding up the cost of the sub items for each work package. 

The final total cost estimate is then obtained by adding up the costs of the work 

packages. The final evaluation, representing the total estimated cost of the 

modeled packages, is in the form of a frizzy number. The following information 

will be calculated for the final fuzzy output:

a) Expected mean value of the output

b) Fuzziness measure
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c) Ambiguity measure

d) Fuzzy Number Quality Index (FNQI)

These pieces of information are important in assessing the precision and quality of 

the output when compared to other outputs obtained from different estimating 

techniques. The following section provides an illustrative example comparing the 

fuzzy range estimating process to the Monte Carlo simulation technique.

2.5 Illustrative Example Comparing Fuzzy and Monte Carlo 
Simulation Approaches

The example selected as a case study is the North of Edmonton Sanitary Trunk 

(NEST) project. The budgeted cost of the project was $8.8 million and the 

preliminary estimated cost was $6 million. The City of Edmonton had concerns 

regarding the budget and wanted to know the chances of exceeding the 

preliminary estimated cost and being within the total budgeted cost. The main 

cost packages and their subcategories identified in the study are shown in Table 

2.3.

A Monte Carlo simulation study was conducted to estimate the chances of 

meeting the budgeted cost (AbouRizk et al. 2004). In the study, the authors used 

Simphony’s range estimating template to do the analysis. Simphony® is a 

specialized simulation tool that supports the Monte Carlo simulation technique in 

discrete event simulation and range estimating (AbouRizk and Mohamed, 2000). 

The model inputs are listed in Table 2.3.
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Tabic 2.3: Data for the Case Study Project

Item Description Optimistic Most Likely Pessimistic
1 Main W ork Shaft
1.1.1 Mobilization-Move in $40,000 $70,000 $100,000
1.1.2 Power Installation $89,000
1.1.3 Power-156 Str. $15,000 $50,000
1.2 Excavate work shaft $97,600 $122,000 $146,400
1.3 Excavate undercut $200,000 $269,000 $350,000
1.4 Excavate tail tunnel to east $100,000 $123,000 $150,000
1.5 Form and pour undercut $80,000
1.6 Form and Pour tail undercut $39,000
1.7 Form and Pour Shaft $100,000 $120,000 $150,000
2 Access Manhole
2.1 Excavate access shaft $16,000
2.2 Backfill shaft and install AMH $44,000
3 Tunneling (866m)
3.1 Tunnel and install segments-866m price per in $2,254 $2,474 $3,360
3.2 Patch and rub tunnel crown $80 $134 $140
3.3 Patch and rub tunnel-final cleanup $161 $188 $215
3.4 Spoil removal $5.4 $8.1 $9.7
4 Access manhole shaft $61,000
5 Tunneling (756 m)
5.1 Tunnel and install segments-756m price per m $2,254 $2,474 $3,360
5.2 Patch and rub tunnel crown $80 $134 $140
5.3 Patch and rub tunnel-final cleanup $161 $188 $215
5.4 Spoil removal $5.4 $8.1 $9.7
6 Removal Shaft $101,000



After 500 iterations, the following statistics were collected representing the Monte Carlo

simulation model outputs:

Low estimated cost: S 5,486,345
High estimated cost: $ 6,840,657
Mean estimated cost: S 6,059,263
Standard Deviation: S 280,249.7
80th percentile: $ 6,300,000

In this example, only the comparison between the final outputs of the probabilistic and 

fuzzy approach is performed. Therefore, for the fuzzy range estimating, the inputs 

represented by the fuzzy numbers are given the same shape of probability distributions 

used (i.e. a triangular fuzzy number is used when a probabilistic triangle distribution is 

used). The fuzzy output was generated after one iteration only by summing up all the 

fuzzy inputs involved in the analysis. The fuzzy output is a trapezoidal fuzzy number 

that has the following characteristics:

Fuzzy trapezoidal number parameters: ai= $5038248.8, a3= $5697250.2,
a3= $5732250.2, 34= $7417863.4

Expected mean value: $ 6054474
Standard Deviation: $ 501,046.33
Fuzziness measure: 1172307.1 (11.7 scaled)
Ambiguity measure: 408269.1 (4.08 scaled)
FNQI: 7.89 (scaled)

The fuzziness and ambiguity measures were scaled (divided by 100,000) in order to make 

the comparison more readable and easier to grasp. The quality measures (fuzziness, 

ambiguity and FNQI) will provide more meaningful information when used as relative 

comparative indices, and can not be used to assess the quality of the fuzzy output unless

more alternatives exist. Therefore, when more than one run is done and, hence, more

than one fuzzy output is obtained, the fuzziness and ambiguity measure can be used to 

assess the quality of these outputs and check which one has the least FNQI.
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When comparing both outputs the following observations are made:

1) The difference between the probabilistic mean and the fuzzy expected value is 

0.07% (the fuzzy output is less by 0.07 % only)

2) A unique concept in fuzzy set theory is the law of possibility or possibility 

measure (Kaufmann and Gupta, 1985). Using the possibility measure, one can 

determine which value is more plausible or possible. This type of information 

that fuzzy set theory provides is unique; probability theory does not support this 

concept, because the probability for a specific random variable to take place is 

almost zero (Lorterapong and Moselhi, 1996). Therefore, it is easy to determine 

which specific variable is more possible and plausible using this measure. For 

example, the possibility measure for the $6 million project estimated cost equals 

0.84 which means that the project cost is possible to be $6 million with a 0.84 

possibility. In addition, the most possible and plausible variable in a normal 

fuzzy number is the one that has possibility measure = 1.0. Therefore, the most 

possible and plausible output is ($ 5697250, $ 5732250).

2.6 Recommendations and Conclusions

Modeling uncertainty using fuzzy set theory was shown to be as effective as the 

probabilistic approach. The fuzzy set theory has the advantage of providing easier and 

faster to obtain outputs.

The study presented an effective approach for extracting subjective information from 

experts. Using the approach, the experts are free to express their knowledge in different 

formats (i.e., triangular or trapezoidal fuzzy numbers). The approach tries to combine 

and include the experts’ information that is most consistent and most precise compared to
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their total average. Outliers are either excluded or sent back to the expert for further 

review if  time permits.

Modeling range estimating using fuzzy arithmetic yields very comparable outputs when 

compared to the probabilistic approach. The fuzzy approach has the advantage of being 

faster and easier to process because it only takes one iteration to generate the output, 

while it takes Monte Carlo simulation a number of iterations to generate a reasonable and 

reliable output. When the outputs are compared, the fuzzy expected mean value and the 

mean interval of confidence are found to be very comparable to the probabilistic mean, 

minimum and maximum values.

The possibility measure in fuzzy set theory is considered a unique concept that evaluates 

the plausibility for a specific variable within the fuzzy number to take place. Probability 

theory does not support a similar measure. In probability theory, the probability of 

ranges of variables can be evaluated (i.e. probability that the output is greater than or less 

than a certain value or between two variables).

The focus of this study is modeling cost range estimating using fuzzy set theory. Fuzzy 

range estimating in scheduling can also be investigated. The same methodology 

developed for the fuzzy cost range estimating problem can be utilized in fuzzy scheduling 

range estimating. However, different fuzzy arithmetic operations will be utilized in the 

scheduling calculations. The model developed by Lorterapong and Moselhi (1996) for 

project network analysis using fuzzy set theory is one of the models utilized fuzzy 

numbers in project scheduling. Different fuzzy arithmetic operations were utilized to 

calculate the forward and backward path calculations and criticality measurements.
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However, the model does not explain how the fuzzy numbers representing the activity 

durations are generated. Therefore, using the methodology proposed in this Chapter for 

extracting the fuzzy numbers from experts and a fuzzy scheduling technique similar to 

the one developed by Lorterapong and Moselhi (1996), a fuzzy range estimating 

operation in project scheduling can be developed.
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CHAPTER 3 -  FUZZY EXPERT SYSTEM AS PREDICTIVE TOOLS

3.1 Introduction

In construction engineering projects, estimators and planners are required to provide 

estimates for the project cost items and project activity durations. The soundness and 

reliability of these estimates depend, to a great extent, on the estimator’s intuition, 

judgment and past experience. In addition, there is a lot of uncertainty and subjectivity 

embedded within the process of providing cost and time estimates because there are 

many factors involved in the process which can affect the quality of the estimate if  they 

are unaccounted for. For example, when estimating activity durations in any construction 

project, factors such as weather effect, labor performance, and level of work complexity 

can be taken into consideration in the estimating process. As the complexity of projects 

increases, more factors are involved. Some of these factors are subjective in nature and 

they are more difficult to account for. Even experienced estimators find it difficult to 

account for all the possible factors that can affect their decision. The estimator’s 

decisions are usually based on experience and his/her embedded heuristic way of 

thinking. Therefore, for any estimate to be reasonably precise, the estimator has to have a 

lot o f experience and the ability to account for as many factors that affect his/her decision 

as possible. As discussed in Section 1.1, many models have been developed to help 

minimize the uncertainty embedded within the prediction process. However, in the field 

of construction engineering, successful and reliable models should be able to mimic the 

human way of thinking and make use of historical data related to the problem. In this 

chapter, the utilization of fuzzy expert systems as a predictive tool in construction is
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introduced. In addition, a methodology for developing the if-then rules in a fuzzy expert 

system is proposed.

3.2 Fuzzy Expert Systems

A fuzzy expert system is a fuzzy rule-based system that incorporates fuzzy logic concepts 

and approximates reasoning to reach a decision. A fuzzy inference system works by 

expressing human knowledge in the form of if-then rules so as to mimic the expert way 

of thinking, generalizing and reaching a decision. Both the premise and the conclusion of 

each rule can be expressed in linguistic terms, which are represented by membership 

functions. The structure of a fuzzy inference system is composed of four main 

components as shown in Figure 3.1.

Input i
E = »

Rule BaseDatabase

Fuzzification
Interface

Defuzzification
Interface

Decision- Making Unit

Knowledge base

Figure 3.1: Components of a Fuzzy Expert System (Jang, 1993)

As Jang (1993) indicated, the four main components of a fuzzy inference system are:

1) Knowledge Base: which contains the fuzzy if-then rules, and a database that 

defines the membership functions of the fuzzy sets used in the rules.
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2) Decision-Making Unit: this component performs the inference operations on the 

fuzzy rules.

3) Fuzzification Interface: this part of the model transforms the crisp inputs into 

levels of truth of the linguistic terms, which are represented by fuzzy membership 

functions.

4) Defuzzification Interface: this component transforms the fuzzy results (i.e., 

output) of the model into a crisp value.

The way the system carries out the logic operation is mainly governed by the choice of 

fuzzy reasoning mechanism. The most important mechanisms are illustrated by Jang 

(1993) in Figure 3.2.

As shown in Figure 3.2, the steps of the fuzzy reasoning are (Jang, 1993):

1) Input variables are compared with the membership functions in the premise part 

to get the “level of truth” of each linguistic term (fuzzification).

2) The firing strength of each rule is calculated by combining the membership values 

in the premise part most commonly by multiplication or min (T-norm operators).

3) Depending on the firing strength, the qualified consequence is generated (either 

fuzzy or crisp).

4) The qualified consequent is aggregated to produce a crisp output(defuzzification). 

As for the fuzzy reasoning, it can be classified into three types:

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Premise Part Consequent Part

4̂vO

z l=  ax+by+c

A2
C2C2

z2= px+qy+r
w2w2

MaxMultiplication 
(or inin) Weighted avg. 

z= (wl*zl+w2*z2)/(wl+w2)

^I^L,Weightcd avg. 

z= (w 1 *z 1 +w2 * z2)/(w I +tv2)

Centroid o f area

 v ----
Type 1

v  
Type 2

Y

Type 3

Figure 3.2: Fuzzy Reasoning Mechanisms (Jang, 1993)



Type 1: The overall output of the system is the weighted average of the crisp 

output of each rule which is measured by the rule’s firing strength.

Type 2: The overall fuzzy output, as indicated from Figure 3.2, is generated 

by applying the max operation to the qualified fuzzy outputs. The 

final crisp output is measured by one of several different 

defuzzification schemes (e.g., centroid o f area).

Type 3: The output of each rule in this type is a linear combination of the 

input variables plus a constant term. The final output is then 

calculated by taking the weighted average of the output of each rule.

Figure 3.3 shows a structure o f a typical fuzzy expert system.

Inpu t (1)

Inp u t (2)

In p u t(n )

v  URuIe(1)_
N <  R u le (2)-
/  *Rule(3)_ 

/  *Rule(4)_

^ 7

Rule,'(nr

M-(I)x W(t) 
H(2)X W(2)
H(3)X W (3)
fl (4) X W(4)

H ( n ) x  W(n)

1 A A
/  \  /  \  /  

r \ A
r

Figure 3.3: Structure of a Fuzzy Expert System

As indicated in Figure 3.3, a fuzzy expert system model has a systematic and 

layered structure, which can be explained in the following steps:

1) The first layer in the model is the “fuzzification” layer in which the system 

inputs are represented by linguistic variables in the form of membership 

functions. The membership functions are used to model the uncertainty
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caused by the fuzziness and subjectivity of the input variables. The 

membership functions can take different shapes and numbers depending 

on the input variable being modeled. Triangular and trapezoidal 

membership functions are some of the most commonly used types of 

fuzzy membership functions since they mimic the way most experts think. 

Experts tend to provide their estimates in the form of most possible ranges 

“guess on the low/high and most likely”.

2) The second layer is the fuzzy inference layer. It contains the if-then rules 

that control the fuzzy logic. Each rule has a premise part and a consequent 

part. The former represents the “IF” part of the rules and the latter 

represents the “THEN” part. The following is a sample of a fuzzy if-then 

rule.

IF x, is Mi (AND) (AND) xnis Mn THEN y, is N, (AND) (AND) yn

is Nn

Where (x l....xn) and (yi ....yn) are linguistic variables corresponding to 

input and output, respectively. (Mi-...Mn) and (N]....Nn) are the 

membership functions representing the linguistic terms of input and output 

respectively. (AND) is one of the operators or logical connectives. 

According to Rutkowska (2002), the two main classes of fuzzy operators 

are the intersection and union operators. The first is defined by so called 

triangular norms or T-norms. The latter is defined by the S-norms or T- 

conorms. The triangular norms are applied in fuzzy sets theory as logical 

connective “AND” which depicts the intersection between two terms. On
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the other hand, the S-norms are used to model logical connective “OR”, 

which depicts the union between two terms. The most common forms of 

T-norms and S-norms are explained in the following examples:

For a and b e [0, 1], the T-norms are defined as follows:

a) min (a, b)

b) a b

c) max (a + b-1 , 0 )

And the S-norms are defined as follows:

a) max (a, b)

b) a+b-ab

c) max (a + b, 1)

A combination between minimum and maximum operators with different 

degrees of compensations (parameters) can be a good logical operator. It 

is based on the belief that if  both operators (minimum and maximum) are 

fulfilled, with a degree of compensation between both, it will yield better 

approximation of the logic (Wanous, 2000). The Min-Max operator is 

defined as follows (FuzzyTECH® 5.5 User’s Manual, 2001):

Min-Max(gi to pn) = (1-?) min (pi) + ? (pi)

Where ? is a degree of compensation from (0 to 1), for ? = 0, Min-Max = 

Min denoting AND operator and for ? = 1, Min-Max =Max denoting 

“OR” operator, and (i) is from 1 to n. Another compensatory operator is 

the Min-Avg which is defined as:

n

Min-Avg(pi to pn) = (1-?) min (pi) + ? (pi/n)
/=i
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When ? = 0, Min-Avg. = min operator and when ? =1, Min-Avg = Avg. 

operator, and (i) is from 1 to n.

Another logical operator is “NOT” which is defined as (1-a), for “a” e 

[0,1]. The “NOT” operator depicts the complement of a term.

3) The logic proceeds by calculating the corresponding level of truth of the 

different input variables. The membership level (p) of each input variable 

is first calculated. The membership function(s) used will determine which 

rule(s) will be fired. The operators on the premise part o f the fired rules 

determine the aggregation logic (i.e. min or max) as discussed in step (2 ). 

The degree to which each part of the premise is fulfilled can be referred to 

as the qualified level of truth. Then, on the consequent part of the rule, the 

fired rule’s weight (degree of support) is multiplied by the qualified level 

of truth of the premise part. The multiplied value represents the total level 

of truth of the premise part. When more than one rule has the same 

conclusion, an output aggregation method is used. One of the output 

aggregation methods is the (max) in which the rule that has the maximum 

level of truth of the premise part is considered.

4) The final aggregated fuzzy output can be defuzzified into a crisp one using 

one of the different defuzzification methods. Some of the most common 

defuzzification methods are (Altrock, 1995):

1) Center of area method: Is sometimes referred to as center of 

gravity. This method calculates the centroid of the area under the 

resulting functions of all the terms which represents the
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compromise value of all the terms. This method can be applicable 

to control and decision making modeling.

2) Center o f maximum method: It also calculates the compromise 

value of all the terms by balancing out the resulting functions. It 

considers the resulting functions as weights at the position of the 

maximum values of the terms. The center of maximum value is 

calculated by multiplying the inference results (or weights) by the 

maximum values of each corresponding term. Similar to the center 

of area method, the center of maximum method is applicable to 

control and decision making modeling.

3) Mean of maximum method: This method is developed to measure 

the “most plausible” result rather than the compromise value that 

the first two methods measure. It calculates the typical value of 

the term that is most valid by selecting the maximum value of a 

membership function that has the maximum resulting weight. This 

method is more applicable for pattern recognition and data 

analysis.

It can be noticed that one of the major steps in developing a fuzzy expert system 

is to generate the if-then rules that encompass all the expert knowledge and 

experience about a specific domain. Therefore, a methodology is proposed to 

maximize the efficiency when generating the if-then rules. The following 

section explains how the methodology can help achieve a better rule developing 

process.
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3.3 A Proposed methodology to Develop Fuzzy Expert System 
Rules’ Consequents

Developing the fuzzy expert system rules is one of the most important steps 

because the rule base represents the reasoning and logic mechanism of the system. 

The rule base is usually determined by the experts subjectively. Therefore, a 

structured methodology is proposed to develop the rule base system and the 

related degrees of support to guarantee better representation of the factors 

included within the rule blocks. The main idea of the methodology is to 

aggregate the effect of the factor’s “relative importance” within the rule block and 

its “impact on the output” being at a specific state (i.e. Medium). The 

methodology is shown in Figure 3.4 and is explained in the following sections.
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When more than one rule block exists, the relative importance of the rule blocks are evaluated using AHP

R,,-> IF F, (state,) AND F: (stated AND,

R]-> IF Fi (statei) AND F: (state,) AND........Fm (statei)
R:-> IF F, (state:) AND F2 (state:) AND........F„, (state:)

Fm (state,)

R,,(Combined Effect) = (F,) Rcblivdmpornmcc X Fi (St2tCx)lmpaet .........(Fm)! Rdativdmporuoicc X Fm (SlUtC/)|nipaa
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Final Ri(Combined Effect) = Ri(Combined Effect) * Rule Block (w,) 
Final R: (Combined Effect) = =R:(Combined Effect) * Rule Block (w2)

Final R,, (Combined Effect) = R,(Combined Effect) * Rule Block (wra)

Final Normalized (CE) of Rn =  [ (CE) of Rn - (CE)min.] /  [(CE)max. -(C E)min.]
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Low > Low = > Medium = J > High = Very _ 
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H —
0.80.0 0.2 0.4 0.6
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1.0

Consequents’ Linguistic Terms are Generated

Figure 3.4: A Methodology to Evaluate Rules’ Consequents
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33.1 Initial Steps

The rules’ antecedents are determined by calculating the total number of possible 

combinations of the factors’ linguistic terms. The number of rules generated is 

determined using the following formula:

No. of Rules = (no. of input terms)(no' ofinpub)

One way to control the exponential growth of rules generated is to group the 

related factors in different “rule blocks”. Factors within rule blocks are grouped 

based on their class commonalities. For example, if wind speed, precipitation and 

average daily temperature are some of the factors that affect an activity duration, 

it can be noticed that these factors belong to the class of “weather factors”. 

Therefore, these factors can be grouped in one rule block since they share 

common characteristics. The rules are then generated using the factors grouped 

within the rule blocks. Fired rules from different rule blocks are then aggregated 

using a specific inference and aggregation operator as discussed in Section 3.2 in 

order to generate the final output of the system. Figure 3.5 shows a schematic 

diagram of the factors being grouped in different rule blocks in a fuzzy expert

system.

Fired Rules 
from All 

Rule Blocks
Output

Inputs

Rule Block # 2

Rule Block # 1

Rule Block # n

Rule Block # 3

Figure 3.5: Rule Blocks in Fuzzy Expert Systems
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After grouping the factors and determining the total number of rules within each 

rule block based on the linguistic term combinations o f the factors, the 

consequents of each rule has to be evaluated. The following sections explain how 

this process can be done in a structured methodology.

3.3.2 Relative Importance of Factors Using AHP

The relative importance or “contribution to the output” of each factor relative to 

the other factor has to be evaluated first. The relative importance of each factor is 

evaluated relative to the factors within the same rule block. One of the 

methodologies used to evaluate the relative importance of a multi-objective 

problem is the Analytic Hierarchy Process (AHP) which was first developed by 

Saaty (1980). In Saaty’s approach, the multi-attribute problem is structured into a 

hierarchy of interrelated elements, and then a pairwise comparison of elements in 

terms of their dominance is conducted. The weights were given by the 

eigenvector associated with the highest eigenvalue of the reciprocal ratio matrix 

of pairwise comparisons. A detailed description of the AHP steps and 

calculations can be can be found in Saaty (1980).

3.3.3 Impact of Factor on Final Output

After evaluating the relative importance of each factor compared to the other 

factors, the next step is to evaluate the impact o f a factor being at a specific state 

(i.e. medium) on the final output. For example, if  factor (x) is high, what would 

be the impact of this state on the final output? The impact is measured by a scale 

ranging from -4 (extremely negative impact) to +4 (extremely positive impact).
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The full adopted scale is shown in Figure 3.6. The following paragraph will 

illustrate how the factors’ impacts on final output are evaluated using the 

proposed scale.

+2 +3 +4+1

Figure 3.6: Impact Scales of Factors on Final Fuzzy Output

Suppose that we are trying to predict the crew’s efficiency by percentage (%). 

Four factors are assumed to be affecting the crew’s efficiency. The first and 

second factors are weather related factors which are the average temperature on 

site (FI) and wind speed (F2). The second and third factors are crew related, 

which are the crew’s average experience (F3) and crew’s skill level (F4). The 

linguistic terms (states) that describe the inputs are High-Medium-Low for both 

factors.

The experts’ role is to evaluate the impact or effect of these linguistic terms on the 

final output (crew’s efficiency) in general as:

1) Average temperature (FI)

IF (FI) is LOW-> impact on crew’s efficiency = -3 (very negative)

IF (FI) is M ED IU M im pact on crew’s efficiency = 3 (very positive)

IF (FI) is HIGH-> impact on crew’s efficiency = -1 (weakly negative)

2) Wind Speed (F2)
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IF (FI) is LOW-> impact on crew’s efficiency = 3 (very positive)

IF (FI) is MEDIUM-> impact on crew’s efficiency = -2 (negative)

IF (FI) is HIGH-> impact on crew’s efficiency = -3 (very negative)

3) Crew’s average experience (F3)

IF (F2) is LOW-> impact on crew’s efficiency = -1 (weakly negative)

IF (F2) is MEDIUM-> impact on crew’s efficiency = 3 (very positive)

IF (F2) is HIGH-> impact on crew’s efficiency = 4 (extremely positive)

4) Crew’s skill level (F4)

IF (F2) is LOW-> impact on crew’s efficiency = -1 (weakly negative)

IF (F2) is MEDIUM-^ impact on crew’s efficiency = 3 (very positive)

IF (F2) is HIGH-> impact on crew’s efficiency = 4 (extremely positive)

3.3.4 Rule Consequents

Once the relative importance of all the factors within the rule block and their 

related impacts on the final output are evaluated, the consequents of the rules and 

the degrees of support can be evaluated. The following steps show the

calculations required to generate the rule consequents and degrees of support:

1) The number of possible rule combinations is determined as explained in

Section 3.7.1. Assume that the total number of rule combinations is Rn.

Ri-> IF Fi (statei) AND F2 (statei) AND Fm (statei)
R2-> IF Fi (state2) AND F2 (state2) AND Fm (state2)

1
1
1
t
1

Rn~> IF Fi (state*) AND F2 (statey) AND Fm (stated
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2) The Combined Effect (CE) of the relative importance and the impacts of the 

factors in the different generated rules as:

Equation [2.1]:

Rl(C E) = (F l)RelativeImportance X F i (statei)impact " F - (F m )  Relativelmportance X Fm  (statej) impact 

R2(CE) = (F,) Relativelmportance X F| (State2)impact"f.-(Fm) Relativelmportance X Fm(state2)Impact

Rn(CE) — (F 1) Relativelmportance X F ] ( s t a t e x)lmpact"'"--(Fm) Relativelmportance X Fm( S t a t e z)Impact

3) When rules are classified into more than one rule block, the importance of 

each rule block representing the contribution of the rules contained within it 

to the final output has to be calculated. Weights or importance of rule blocks 

are evaluated using a scale from 0  (no weight or no importance) to 1 0  (most 

weight or most important). Each weight is then normalized by dividing it by 

the maximum weight given to a rule block. The normalized weights of the 

blocks are then multiplied by the combined effects (CE) of the rules within a 

rule block.

4) The final combined effects of all the rules (irrespective of the rule block) are 

then normalized between 0  and 1 using the following formula:

Equation [2.2]:

Final Normalized (CE) of Rn = [ (CE)of Rn - (CE)min]  / [(CE)max.-(CE)min.]

5) The last step is to estimate the rule consequent using a scale whose 

number and names of linguistic terms are equivalent to that of the system 

output. The scale used ranges from 0 to 1.0. Figure 3.7 illustrates a five- 

term scale ranging from very low to very high.
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Figure 3.7: The Linguistic Term Zones to Evaluate Rules’ Consequences

The main goal of this scale is to cluster the normalized combined effects of the 

rules’ antecedents into the linguistic terms used by the system output.

Let us take the example of crew’s efficiency used in Section 3.7.3 to illustrate 

how the scale is used to evaluate the rules’ consequents. We will assume that the 

number of the linguistic terms of the crew’s efficiency are five and range from 

very low to very high as shown in Figure 3.8.

P(Days)

1.0

Very
Low.

Very
High

Low Medium High

10070 850.0 15 30 35 50 65
Crew’s Efficiency (days)

Figure 3.8: Membership Functions of the Crew’s Efficiency of the Illustrative
Example

The related factors are grouped in two rule blocks (weather related and crew 

related rule blocks). The weather related rule block contains temperature (FI) and 

wind speed (F2). The crew related rule block contains crew’s experience (F3) and 

crew’s skill level (F4). The values of the relative importance of the different 

factors are: 0.67 for temperature (FI), 0.33 for wind speed (F2), 0.67 for crew’s 

experience (F3) and 0.33 for crew’s skill level (F4). . The total number of rule
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combinations in each rule block is 9. The rules’ antecedents of the 18 rules are as

follows:

Ri~> IF Temperature is LOW and Wind speed is LOW 
R2-> IF Temperature is LOW and Wind speed is MEDIUM 
R3-> IF Temperature is LOW and Wind speed is HIGH 
R4 *> IF Temperature is MEDIUM and Wind speed is LOW 
Rs~^ IF Temperature is MEDIUM and Wind speed is MEDIUM 
R6~  ̂ IF Temperature is MEDIUM and Wind speed is HIGH 
R7-> IF Temperature is HIGH and Wind speed is LOW 
Rg-^  IF Temperature is HIGH and Wind speed is MEDIUM 
R9-> IF Temperature is HIGH and Wind speed is HIGH

Ri0-> IF Crews’ Experience is LOW and Crews’ skill Level is LOW 
Ri j-> IF Crews’ Experience is LOW and Crews’ skill Level is MEDIUM 
Ri2"> IF Crews’ Experience is LOW and Crews’ skill Level is HIGH 
Ri3"> IF Crews’ Experience is MEDIUM and Crews’ skill Level is LOW 
Ri4~> IF Crews’ Experience is MEDIUM and Crews’ skill Level is MEDIUM 
Ri5~> IF Crews’ Experience is MEDIUM and Crews’ skill Level is HIGH 
Ri6"^ IF Crews’ Experience is HIGH and Crews’ skill Level is LOW 
Ri7~> IF Crews’ Experience is HIGH and Crews’ skill Level is MEDIUM 
Ris-^  IF Crews’ Experience is HIGH and Crews’ skill Level is HIGH

The weights/importance of each of the rule blocks are assumed as follows: crew 

related = 10  and weather related = 7. After normalization, the weight of the crew 

related rule block = 1 .0  and the weight of the weather related rule block = 0.7. 

The combined effects of each of the rules and the linguistic terms of the 

consequents are shown in Table 3.1.
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Table 3.1: Consequent Linguistic Terms of the Illustrative Example

Rule Factor
Status

Factor
Status

Weight 
of Rule 
Block

(CE) Norm.
(CE)

Output Lingui 
and Degree o1

Stic terms 
’support

VL L M H VH

Weather Related F.ule Block
R. L L

0.7

-0.7 0.23 X
R-> L M -1.9 0.04 X
Rs L H -2.1 0.00 X
R4 M L 2.1 0.69 X
r 5 M M 0.9 0.50 X
r 6 M H 0.7 0.46 X
Rt H L 0.2 0.38 X
Rs H M -0.9 0.19 X
R9 H H -1.2 0.15 X

Crew Related Rule Block
R. L L

1.0

-1.0 0.18 X
R2 L M 0.3 0.40 X
Rs L H 0.7 0.45 X
R4 M L 1.7 0.62 X
Rs M M 3.0 0.84 X
r6 M H 0.89 X
r 7 H L 2.4 0.73 X
Rs H M 3.7 0.95 X
r9 H H 4.0 1.00 X

Section 3.7 has introduced a structured methodology to generate the rule 

consequents based on the relative importance of the system inputs and their 

impact on the system output when being at a specific linguistic term. The 

methodology is designed to minimize the subjectivity involved in developing the 

fuzzy expert system by generating the rules’ consequents in a systematic and 

structured methodology. The following sections will show how the fuzzy expert 

system is utilized to model the Tunnel Boring Machine (TBM) penetration rate in 

soft ground soils.
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3.4 Introduction to Tunneling Operations

Tunnel Boring Machine (TBM) penetration operation is a multi-attribute process 

that involves many quantitative and qualitative factors affecting it. In order to 

model the TBM penetration operation and be able to predict the rate of 

penetration, all the significant factors affecting the operation must be identified 

and modeled. The operation must be developed by a system that is able to handle 

and model both the subjective and quantitative nature of the factors. As explained 

in Chapter 1, the input modeling in discrete event simulation models only account 

for these factors implicitly within the probability distributions. Accordingly, 

many parameters related to these factors will be overlooked. Therefore, other 

modeling techniques should be used to model this type of problems. A fuzzy 

expert system will be used to model the TBM advance rate prediction in soft 

ground soils. The model development steps will follow the same guidelines and 

information introduced Sections 3.2 and 3.3.

In general, tunneling operations in construction engineering involve a number of 

different processes. As shown in Figure 3.9, the tunneling operation involves the 

following major processes:
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Figure 3.9: Cross-Sectional View of a Tunneling Operation

1) Shaft Construction: the excavation and support of a vertical shaft to the 

level of the tunnel.

2) Undercut / Tunnel Tail Construction: the excavation and support of an 

area under the shaft that is used in the processes of dirt removal and 

material handling.

3) Tunnel Construction: the main tunneling operation, which involves three 

main processes: excavation, dirt removal, and tunnel support (lining). 

These components are detailed as follows:

a) Excavation: The main tunneling component that involves digging 

horizontally along the tunnel direction. This process can be done 

using different techniques depending on the tunnel length and 

complexity. Tunnel Boring Machines (TBM) is one of the 

techniques used for excavation. Also, the excavation process can 

be done by hand excavation.
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b) Dirt Removal: Excavation requires a process of dirt disposal from 

the tunnel face. This process includes transferring the dirt to the 

undercut area and hoisting the dirt up to the ground level. This can 

be done using one or two trains of muck cars that move back and 

forth on rail tracks.

c) Tunnel Support (Lining): This process deals with supporting the 

excavated tunnel by an appropriate material. One lining material is 

pre-cast concrete segments, which can be installed by a TBM as it 

advances. Other lining materials are PVC or steel pipes.

4) Removal Shaft: this process is done if  a TBM machine is used in the 

tunneling process. At the end of the excavation, a removal shaft must be 

excavated to hoist the TBM machine up to the ground level so it can be 

used on other projects.

The excavation operation is one of the major controlling operations in tunneling. 

The TBM penetration rate will highly contribute to the final tunneling 

productivity. Faster TBM penetration rates will increase the number o f tunnel 

meters excavated per shift. Therefore, it is important to accurately model the 

TBM penetration rate in order to study and predict the performance of the TBM 

within different conditions. Modeling the TBM penetration rate will help provide 

better planning and decision making in the tunneling operation. The following 

section reviews the different research work developed to model tunneling 

operations. Section 4 introduces the studies conducted on TBM advance rates.
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3.5 Background and Literature Review

No comprehensive study for predicting the TBM penetration rate in soft ground 

soils has been developed yet. Instead, several researchers have studied the TBM 

performance in rock. The studies conducted on TBM performance in rocks can 

be divided into two groups. The first includes the studies conducted based on 

empirical methods. The second group includes the studies that utilized artificial 

intelligence to model the TBM penetration rate in rock. The following paragraphs 

discuss some of the research work conducted on TBM performance prediction in 

rock.

Snowdon et al. (1982) developed an empirical relation between the TBM 

penetration rate and the cutter-head diameter (m), rock uniaxial compressive 

strength (MPa), and TBM thrust force (kN). In another study, Innaurato et al. 

(1988) developed an empirical equation relating the TBM penetration rate 

(mm/round) to the uniaxial compressive strength (MPa) and rock structure rating 

(a rating used to assess the rock quality).

Grima and Bruines (2000) modeled the TBM performance in rock using 

NeuroFuzzy modeling. Based on literature and statistical, analysis, they 

concluded that the most influential factors affecting the TBM penetration rate in 

rock are the rock mass properties, machine characteristics and the geometry of the 

tunnel. They studied 640 TBM projects world wide and concluded using 

statistical analysis that eight factors can be considered for the model development. 

Some of the selected factors were the core fracture frequency (a parameter that 

measures the discontinuity in a rock mass), the unconfined compressive strength,
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tunnel diameter, torque, and revolution per minutes (RPM). By investigating and 

testing several NeuroFuzzy models with different factor combinations, they found 

that a NeuroFuzzy model, based on Takagi-Sugeno method, with five factors 

yielded the best results. The final factors used in the model were the core fracture 

frequency, unconfined compressive strength, RPM, thrust per cutter and cutter 

diameter.

Okubo et al. (2003) developed an expert system model to study the feasibility of 

using tunnel boring machines in certain projects in Japan when limited 

information is available for pre-feasibility studies. The model is divided into 

three stages. In stage (A), the authors developed a set o f conditions or 

requirements above or below which the use of TBM should be reconsidered. For 

example, if  the tunnel length is less than 500 m and if  the excavation is less than 2 

meters or greater than 10 meters, then the TBM will not be feasible to use. In 

stage (B), using an iterative procedure the total advance rate per day is estimated. 

First the value for the penetration rate (m/h) is assumed then used to calculate the 

penetration (m), uniaxial compressive strength and rolling and thrust forces using 

previously developed empirical equations. The calculated values are checked 

against a point system to see whether they are within a reasonable range and if not 

a new estimate of penetration rate is proposed until all calculated parameters are 

within a reasonable range which will be used later to calculate the working 

advance rate (m/day). The final stage (C) was developed to assess the estimates 

generated in step (B) using a knowledge base extracted from different experts.
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Benardos and Kaliampakos (2004) developed a neural network model to predict 

the overall TBM advance rate (m/day). In their model, the authors considered 8 

factors related to the rock properties and geological setting such as the rock mass 

permeability, weathering degree of rock mass, uniaxial compressive strength and 

water table surface. The data used in the analysis were collected from boreholes 

that were spatially modeled so as to identify the properties within the 12 m thick 

stratum along a tunnel selected as a case study. The tunnel was dividend into 11 

control segments, which represent the total number of data set used in training and 

testing the model. The relative testing error of the systems ranged from 6 to 8 %.

3.6 Factors Affecting TBM Penetration Rate

Identifying the key factors affecting TBM penetration rate in soft ground soil is 

considered the most important, yet most time consuming stage for modeling the 

TBM penetration rate. Several methods are adopted to identify the factors that 

highly affect the TBM penetration rate. Literature, previous projects, and experts’ 

opinions are some of the techniques used to identify the factors. The following 

sections elaborate on the different techniques used.

3.6.1 Literature

The following points represent some of the information that can be extracted from 

literature:

a) How the tunneling operations using TBM’s are handled.

b) Types of soft ground soils.

c) Soil properties and behaviors.
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d) TBM types.

e) TBM performance and specifications.

f) TBM penetration mechanism.

These pieces of information can be found in books, machine specification 

documents and previous models developed in the tunneling fields as explained in 

Section 3.4.

3.6.2 Previous Tunneling Projects Using TBM

To develop more efficient and reliable models, a full and clear understanding of 

the process being modeled must be first achieved. Understanding the tunneling 

operation can be achieved by extracting information from literature as indicated in 

section 3.6.1 and reviewing the previous tunneling projects. Previous tunneling 

projects can provide the following types of data:

a) Actual productivity data.

b) Actual TBM performance.

c) Actual soil types encountered and their properties.

d) Problems encountered and sources of delays.

e) Labour and operators performance.

The City of Edmonton is very experienced in the field of utility tunneling. Many 

utility tunneling projects are being handled yearly. More details on the City of 

Edmonton tunneling history can be found in Ruwanpura (2001). Several site 

visits were made to actual tunneling sites. In addition, studies made on actual 

tunneling projects in Edmonton were studied and reviewed. For example, the 

study by AbouRizk et al. (2004) and explained in Section 4.3 is one of the studies

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



used as a review reference.

3.6.3 Experts’ Opinion

The different types of information discussed in sections 3.6.1 and 3.6.2 were used 

to formulate an interview questionnaire that was used to extract the experts’ 

knowledge in the field of tunneling. The experts’ feedback and comments are 

important to validate the information presented and to account for any missing 

piece of information that is deemed essential to the TBM penetration process. 

The objective of the interview questionnaire is to capture the experts’ ways of 

thinking with respect to the TBM penetration operation. Capturing the experts’ 

knowledge will help develop the rule-base that will be used to model the TBM 

penetration operation. Therefore, to achieve the previously discussed objectives, 

a questionnaire was formulated to collect the participants’ feedback on the factors 

affecting the TBM penetration operation. The complete forms used in the 

interview questionnaire and a description of the factors included in the interview 

questionnaire can be found in Appendix (A). Several qualitative and quantitative 

factors were included in the questionnaire. The interview questionnaire is divided 

into the following three parts:

a) The objective of the first part was to collect information on how 

significant each listed factor is to the TBM penetration operation.

b) The second part was used to help build the rule base o f the fuzzy expert 

system. It is designed to study the effect of each factor on the TBM 

penetration rate. It investigates how positively or negatively each factor 

affects the TBM penetration rate. For example, if the increase of a certain
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factor will cause the overall TBM penetration rate to increase, it implies 

that the factor is positively affecting the TBM penetration rate. If the 

increase of a certain factor will cause the overall TBM penetration rate to 

decrease, it means that the factor is negatively affecting the TBM 

penetration rate.

c) The last part of the survey questionnaire will help develop the fuzzy 

membership functions of the subjective factors. In this part, the expert is 

asked to attach a numerical value of the linguistic term describing each 

subjective factor. For example, for the “Large tunnel diameter”, the expert 

is required to provide his/her numerical representation of the term “Large 

tunnel diameter” in a triangular format (i.e. least possible, most likely, and 

largest possible) or a trapezoidal format (i.e. least possible, a range for the 

most likely, and largest possible).

The factors are divided into the following six sections:

1) Tunnel properties: It lists all the major properties of the tunnel 

such as diameter, depth, and layout.

2) Soil Properties: It includes the factors related to soil such as soil 

type, moisture content, and water level.

3) TBM properties: It lists the TBM properties such as TBM thrust 

and age.

4) Operator’s performance: This section includes the factors that 

assess the operator’s performance such as experience and skill 

level.
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5) Shift related: It includes the factors that describe the way the shift 

is being managed such as shift duration, and day of week.

6) Weather related: This section lists some of the major weather 

factors that can affect the overall work progress such as 

temperature and wind speed.

The experts are given the freedom to add any comments that they deem important 

to the study. In addition, they are free to add any new factor, which they consider 

significant and vital to the TBM penetration operation.

3.6.4 Experts’ Feedback Analysis

Four experts in the field of tunneling were interviewed to identify the factors 

affecting the TBM advance rate in soft ground soils. The experts interviewed 

were experienced foremen whose experiences ranged from 25 to 37 years in the 

field of tunneling in soft ground soils. Table 3.2 shows the results of the experts’ 

responses to the different questions asked. The answers were reached 

consensually. Consensual answers imply high consistency among the experts’ 

opinions. In addition, some factors which were not originally included in the 

forms were added by the experts.

The following points discuss the factors selected and added by the experts which 

are listed in Table 3.2:
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Tabic 3.2: Significant Factors Based on Experts Opinions

Vv,
Tunnel Properties

Tunnel alignment Very Significant Curved is less productive
Soil Properties

Soil Behavior Very Significant Combined properties (type, plasticity, 
moisture content) below and above water 
level

Inclusion of Boulders Very Significant
Contaminated Soil Very Significant Time lost in ventilation, testing and safety
Inclusion of cobbles Somewhat Significant

TBM Properties
TBM age (in meters) Very Significant
TBM type Very Significant Use the right machine for the right soils 

(slurry/EPB)
TBM boring diameter Somewhat Significant Only when tunneling in rock

Operator’s Properties
Operator’s experience (in meters) Very Significant How many meters excavated

SHIFT RELATED
Shift Type (Day vs. Night) Very Significant Less productive in night shifts
Shift duration(8,10,12) Somewhat Significant 12 hr shift is less productive when working 2 

weeks non stop



1) Tunnel Properties: The most significant factor in this category is the tunnel 

alignment. It has been indicated by the experts that the TBM penetration rate 

is less productive at the curved sections of the tunnel.

2) Soil properties: The experts have indicated that the most important issue 

within the soil properties is the behavior o f the soft ground soils below and 

above the water table level. Therefore, the classification developed by 

Terzaghi (1950) in his tunnelman’s ground classification system which was 

later modified by Heuer (1974) was adopted in the model because it 

investigates the behavior of the soft ground soils below and above the water 

table. The classification is regenerated in Figure 3.10 based on Heuer’s 

modified classification.

The different soil behaviors are explained as (Heuer, 1974)):

a) Firm: the tunneling can advance without initial support and the lining 

can be constructed before the ground starts to move.

b) Slow raveling: chunks or flakes o f material begin to drop out the arch 

or walls.

c) Fast raveling: due to loosening or overstress, ground separates or 

breaks along distinct surfaces. In fast raveling ground, the process 

starts within a few minutes; otherwise the ground is slow raveling.

d) Cohesive running: granular materials without cohesion are unstable at 

a slope grater than their angle of repose (+/- 30° -  35°)

e) Running: when exposed at steeper slopes, they run like granulated 

sugar or dune sand until the slop flattens to the angle of repose.
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f) Flowing: a mixture of soil and water flows into the tunnel like a 

viscous fluid. The materials can completely fill the tunnel in some 

cases.

Above Water Table

Grouped Behaviors of 
Soft Ground Soil

CL-Inorganic Clays (low to medium plasticity) 

► CH-Inorganic Clays (high plasticity, fat clay) 

“OH-Organic clay (medium to high plasticity)

I
Slo w-Fast Raveling

-► SC-CIayey sands (plastic fines) 

-►OL-Organic silts (clay o f low plasticity)

-►ML -Inorganic silts (slight plasticity)

-►MH-Inorganic silts (elastic silts)

-►GC-CIayey gravels (plastic fines)

I
Cohesive Running - Running

-►GW-Well-graded gravels 

-►GP-Poorly graded gravels 

-►SW-Wcll graded sand 

-►SP -Poorly graded sand 

-►SM -Silty sand (nonplastic fines)

-►CM- Silty gravels (nonplastic fines)

Below Water Table

Firm
► CL-Inorganic Clays (low to medium plasticity)

► CH-Inorganic Clays (high plasticity, fat clay) 

►OH-Organic clay (medium to high plasticity)

Slow-Fast Raveling

-► SC-Clayey sands (plastic fines) 

-►GC-Clayey gravels (plastic fines)

1

CohesiveRunning - Flowing

-► GW-Well-graded gravels 

-►GP-Poorly graded gravels 

-►SW-Wcll graded sand 

-► SP -Poorly graded sand 

-►SM -Silty sand (nonplastic fines) 

-►GM- Silty gravels (nonplastic fines)

-►ML -Inorganic silts (slight plasticity) 

-►MH-Inorganic silts (elastic silts) 

-►OL-Organic silts (clay of low plasticity)

Figure 3.10 Soft Ground Soil Behaviors Above and Below Water Table 
Adapted from (Heuer, 1974)

3) Inclusion of boulders is considered a very significant factor that affects the 

TBM performance. In addition, the inclusion of cobbles, which are smaller in
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size than boulders (Appendix A), is considered a concern but with a lower 

significance compared to effect that boulders make. The other very 

significant factor in this category is the soil contamination. When 

contaminated soils exist, they cause safety concerns that involve dealing with 

harmful gases. Therefore, dealing with contaminated soils affects the 

productivity of the TBM machines because a lot of time is wasted in 

ventilation and safety precautions.

4) TBM properties: It contains 3 subcategories which are:

a) The TBM age which is measure by the total tunneling distance 

excavated by the TBM machine was considered a very significant factor. 

Newer machines are believed to perform better than older ones.

b) The experts indicated that TBM type is another very significant factor 

which was not listed in the questionnaire. According to (Milligan, 

2000), in soft ground tunneling, there are two major types of TBM 

machines which are the slurry machine and Earth Pressure Balancing 

(EPB) machine. The two types are suited for less stable ground, such as 

softer clays, cohesionless soil or highly fractured rocks. The main 

function of the two types is to support the tunnel face while excavation 

proceeds. In slurry machines, the tunnel face is supported by pressure 

from a fluid, usually either a bentonite slurry or slurry formed from 

water mixed with some of the excavated spoil. The excavated material is 

transported away from the face to the ground surface in the supporting 

slurry; and the spoil is then separated from the slurry so that the slurry
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may be re-used. In EPB machines the tunnel face is supported by 

pressure from excavated material within the working chamber o f the 

shield. The spoil is extracted from the pressure chamber by a screw 

conveyor and removed in muck wagons or by a conveyor system. 

According to Milligan (2000), slurry machines can be used in a wider 

range of soils when compared to the EPB machines. The EPB machines 

are limited to relatively soft and fine-grained soils (when soil additives 

are not used). The slurry machines, on the other hand, can be used in all 

soils except for those containing numerous and large rocks. Therefore, 

both types are assumed to be functioning with the same degree of 

efficiency. However, the slurry type machines will be less efficient than 

the EPB machines when boulders exist in the soil. This fact will be 

reflected in the developed model by giving less efficiency and negative 

impact for the slurry type machines when boulders exist,

c) The TBM diameter is considered somewhat significant only when the 

excavation is performed in rocks. Since we are only dealing with soft 

ground soils, this factor is not included in the analysis.

6) Operator’s properties: The operator’s experience was considered the most 

significant factor in this category. The operator’s experience is measured by 

how many years of experience the operator has as a direct TBM operator.

7) Shift Related: The shift type whether it is a day or night shift was considered 

very significant. The TBM operator is believed to be less productive during 

night shifts. In addition, the duration of the shift was considered somewhat
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significant only when the shift is a 12-hour shift that extends for two 

consecutive weeks or more. It was anticipated that the productivity of the 

operator will be less if  he/she works for a 12-hour shift for extended 

continuous weeks.

3.7 Development of Fuzzy Expert System for Predicting TBM 
Penetration Rate

Based on the analysis made in Section 3.6, the factors affecting the TBM 

penetration rate in soft ground soils are identified. Using the same development 

steps introduced and explained in Sections 3.2 and 3.3, the fuzzy expert system 

can be now developed. The development steps are explained in the following 

sections.

3.7.1 Initial Model Structure

An initial model is first developed based on the information collected in Section 

3.6. Figure 3.11 shows the initial model structure using a fuzzy expert system 

commercial package called FuzzyTECH® (FuzzyTECH, 2002). Related factors 

are grouped into rule blocks. A total of 5 rule blocks were generated representing 

the different factors listed and grouped in Table 3.2.
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Figure 3.11 Fuzzy Expert System Initial Model

The model inputs are represented using the following input types depending on 

the nature of the factor:

1) Categorical inputs: Most of the model inputs are represented by this type of 

input. The inputs are listed as follows:

a) Tunneling alignment (1= Straight, 0 = Curved)

b) Boulder inclusion (1= No, 0 = Yes)

c) Cobble inclusion (1= No, 0 = Yes)

d) Soil contamination (1= No, 0 = Yes)

e) Soil behavior

0= Firm above water table

1= Slow-fast raveling above water table

2= cohesive running-running above water table
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3= Firm below water table

4= slow-fast raveling below water table

5= Cohesive running-flowing below water table

f) TBM type (1= Slurry, 0 = EPB)

g) Shift duration (1=8/10 hours, 0 = 12 hours)

h) Shift type (1= Day, 0 = Night)

2) Fuzzy inputs: Two inputs are represented by three membership functions for 

each. The first input is the TBM age in meters and the second is the operator’s 

experience. Each input is represented by Low, Medium, and High linguistic 

terms. The two inputs are shown in Figure 3.12

• . . .

|  C:. x  'V :
Xeim

S  i v a ) T B M A g e

A- -  jV 1 *!-
low nediur.t high

A*/; X  T  - w  y f l X t '  S  y
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1 .U
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n i l m e d iu m  f t Q v  • ' '  ys ' \  y  $1 h ig h \  \  y
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Figure 3.12 TBM Age and Operator’s Experience Membership Functions

The model’s main output is the TBM penetration rate in meters/hour and it is 

represented by five membership functions as shown in Figure 3.13.

P e n tr a t io n R a te

Term very_low  tow medium high very_hich
1.0

0.8

0.S

low
medium
high
we ry _ h ig h

0.4

0.0

Unite

Figure 3.13 Membership Functions of the Model’s Output
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There are five rules blocks grouping the related factors together. The generation 

of the rules is considered one of the key components for developing the fuzzy 

expert system model as indicated in Section 3.2. Adopting the methodology 

explained in Section 3.3, the rules antecedent and consequents are generated using 

the knowledge gained in the experts’ interview. The ranking weights of factors 

within the different rule blocks and their related impact on output are shown in 

Table 3.3.
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Table 3.3: Factors’ Ranking Weights within the Rule Blocks and Impacts

Rule Block Block
Weight Factor Ranking

Weight
Factor
State

Factor
Impact

0 4
1 2

Soil Behavior 0.49 2 -1
3 3

SOIL 4 -4
1 5 -4

PROPERTIES Inclusion of 0.12
Yes -3

Boulders No 0

Inclusion of Cobbles 0.04 Yes _2
No 0

Contaminated Soil 035
. Yes -4

No 0

TUNNEL 0.56 Tunnel Alignment 1.0
Straight 0

PROPERTIES Curved -2

OPERATOR’S
PROPERTIES

Operator’s
Experience

High 4
0.78 1.0 Medium 2

Low -1
Slurry
with

Boulders
-3

TBM Type 0.5

Slurry
without
Boulders

3

TBM
PROPERTIES 0.56

EPB
with

Boulders
-1

EPB
without

Boulders
3

High 4
TBM Age 0.5 Medium 2

Low _2

Shift Type .0.67
Day 3

SHIFT RELATED 
PROPERTIES

Night _2
0.33

Shift Duration 033
8 to 10 

hrs 3

12 hrs -1
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The complete rule base generated is shown in Table 3.4.

Table 3.4: Model’s Generated IF-THEN Rules

Rule
Rule block: Soil Properties

Number Rule *  In 
rule block

Factor 1 Factor2 Factor 3 Factor 4 Rule Consequent
Soil Type Boulder Cobble Contaminate VL L M H VH

1 1 1 V V v 0.58 X
2 2 1 V V n 0.79 X
3 3 1 V n V 0.59 X
4 4 1 n V V 0.62 X
5 5 1 V n n 0.79 X
6 6 1 n n V 0.62 X
7 7 1 n V n 0.82 X
8 8 1 n n n 0.83 X
9 9 2 V V V 0.44 X
10 10 2 V V n 0.64 X
11 11 2 V n V 0.44 X
12 12 2 n V y 0.47 X
13 13 2 V n n 0.65 X
14 14 2 n n V 0.48 X
15 15 2 n V n 0.68 X
16 16 2 n n n 0.68 X
17 17 3 V v y 0.15 X
18 18 3 V V n 0.35 X
19 19 3 V n V 0.15 X
20 20 3 n V V 0.18 X
21 21 3 V n n 0.36 X
22 22 3 n n V 0.19 X
23 23 3 n V n 0.39 X
24 24 3 n n n 0.39 X
25 25 4 V V V 0.44 X
26 26 4 V V n 0.64 X
27 27 4 V n V 0.44 X
28 28 4 n V v 0.47 X
29 29 4 v n n 0.65 X
30 30 4 n n V 0.48 X
31 31 4 n V n 0.68 X
32 32 4 n n n 0.68 X
33 33 5 V V V 0.00 X
34 34 5 V V n 0.21 X
35 35 5 V n V 0.01 X
36 36 5 n V V 0.04 X
37 37 5 V n n 0.21 X
38 38 5 n n V 0.04 X
39 39 5 n V n 0.24 X
40 40 5 n n n 0.25 X
41 41 6 V V v 0.00 X
42 42 6 v V n 0.21 X
43 43 6 V n V 0.01 X
44 44 6 n y V 0.04 X
45 45 6 V n n 0.21 X
46 46 6 n n V 0.04 X
47 47 6 n V n 0.24 X
48 48 6 n n n 0.25 X

\ Rule block: TBM Properties

\ Rule Factor 1 Factoc2 Factor 3 Factor 4 Rule Consequent
\ Age Type \ \ VL L M H VH

49 L E PB n 0.83 X
50 2 M E PB n \ 0.70 X
51 3 H E PB n \ 0.58 X
52 4 L Slurrv n 0.83 X
53 5 M S turrv n 0.70 X
54 6 H S lurrv n 0.58 X
55 7 L E P B n 0.66 X
56 8 M E PB n 0.54 X
57 9 H E PB n \ 0.42 X
58 10 L Slu rry n \ 0.58 X
59 11 M Slurrv n \ 0.46 X
60 12 H Slu rry n \ 0.33 X
\ Rule block: Shift
\ Factor 1 Faetor2 Factor 3 Factor 4 Rule Consequent
\ Rule Age Type \ \ VL L M H VH

62 O av 8 to 10 \ \ 0.70 X
63 2 D av 12 \ \ 0.66 X
64 3 N ioht 8to 1 0 \ \ 0.51 X
65 4 N iqht 12 \ \ 0.46 X

\ Rule block: Tunnel Properties
\ - Factor 1 Factor2 Factor 3 Factor 4 Rule Consequent
\ Rule

Alignment \ • v -• - . \  ■ • VL L M H VH
66 1 S tra ia t \ \ \ 0.87 X
67 2 C u rv ed \ \ \ 0.29 X

\ Rule block: Operator
\ . . Factor! ■ Faetor2 Factor 3 Factor 4 Rule Consequent
\ . . . R u l e ,

Experience \ ' I : •• VL L M H VH
68 1 HiQh \ \ \ 1.00 X
69 2 M edium \ \ \ 0.77 X
70 3 Low \ \ \ 0.42 X
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The initial model assumptions are chosen as follows:

1) Input aggregation is min.

2) Output aggregation is max.

3) Fuzzification method is center of area method (COA).

4) It is assumed that the experts are confident about the rules they provided 

and they are 100% certain about the information provided. The degrees 

of support are interpreted as the weight of each rule and its contribution 

to the output. Two degrees of support are tested. The first degrees of 

support are set to 1 for all rule blocks which means that all rules 

contribute by the same weight to the output. The second degrees of 

support are set to the weights generated in Table 3.4 which means that 

some rule blocks will have more weight or contribution to the final 

output. Both cases are tested in section 4.5.2 to study which one is able 

to capture most of the variation within the rule base.

3.7.2 System Stability Testing

After the model is built, the system needs to be tested by checking its stability. 

One way of verifying the system’s stability is to study the behavior of the system 

under different model parameters (i.e. input aggregation parameter) and different 

input variations. This verifying methodology will show whether each of the 

factors is behaving as expected or not and will help select the model parameters 

under which the system is behaving reasonably. The methodology is explained as 

follows:
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3) A base case (case # 1) is selected by setting all the factors at their

best possible status (i.e. shift type = Day and TBM age = 0)

4) 27 scenarios are created by changing the status of each factor at a 

time at different increments

5) Factors in scenarios 22-27 are all set to the lowest possible status 

(i.e. shift type = Night). Soil Behaviors in these scenarios are 

changed from Soil 1 to 6.

6) Different model parameter combinations are tested. Input 

aggregations, output aggregation, and fuzzification method are all 

changed.

7) Two different degrees of support are tested. The first degrees of

support are set to the weights of the rules blocks. The second

degrees o f support are all set to one.

Table 3.5 shows the different scenarios tested and the system outputs for each 

scenario. Figures 3.14 and 3.15 show a graphical representations of all the 

scenarios tested for the two cases o f degrees of support.

The following points are observed when studying the results of the scenarios:

1) Some scenarios were not able to capture the input variation and generated

relatively constant output such as:

a. Max-Max-COA

b. Min/Max (0.5)-Max-COA
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Different Scenarios Tested for the Developed Model (Degrees of Support Match Block Weights)
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Figure 3.14 Graphical Representation of Some of the Scenarios Tested (Degrees of Support Match Block Weights)
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Figure 3.15 Graphical Representation of Some of the Scenarios Tested (All Degrees of Support Equal 1)



c. Average-Max-COA

d. Min/Average(0.5)-Max-COA

Therefore, these scenarios were excluded from the analysis.

2) Some scenarios were able to capture the model input variations which are:

a. Min-Max-COA

b. Min-Bsum-COA

c. Min-Max-COM

d. Prod.-Max-COA

e. Gamma (0.5)-Max-COA

f. Gamma (1 )-Max-COA

3) Relatively similar output trends were generated for both cases of degrees 

of support. However, the case where the degrees of support were set to 

the weights of the blocks captured more input variations when compared 

to the case where all weights are set to 1. However, both cases were very 

comparable.

4) The output trends of the scenarios listed in point # 2 show that the factors 

generated consistent behaviors in response to the changes made.

5) For the scenarios listed in point # 2, the system is considered reasonably 

stable and is not highly sensitive to the degrees of support selected or the 

fuzzification method used.

Any of the scenarios listed in point # 2 can be selected since they all behave in a 

similar manner. It is important to mention that any selection made is totally based 

on trial and error and it can only indicate the soundness of the model parameters
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based on the assumptions and feedback of the experts. The selection of the model 

is made based on the stability indicators observed when different scenarios were 

tested by trial and error. In order to test and check the accuracy of the model 

output, different methodologies are required which are discussed in the following 

section.

3.8 System Accuracy and Fine-Tuning

Section 3.7.2 showed how the system model can be checked for stability and 

consistency. As for the prediction accuracy, it can be verified by the experts’ 

testing and feedback and by checking the soundness of the system against actual 

data. When system accuracy is not accepted, an optimization method can be 

utilized. One of the methods that has recently gained a lot of research attention is 

NeuroFuzzy optimization tools.

3.8.1 Testing System Accuracy

As mentioned before, testing can be done using the experts’ opinion and feedback 

or by comparing the system outputs with the outputs of the data related to the 

modeled problem. Some of the data of a City of Edmonton tunneling project 

called NEST tunnel was used to compare the outputs. NEST tunnel data are 

shown in Appendix 2 representing 63 data points of the TBM penetration rate 

(m/hr) at different conditions. When outputs are compared, it is found out that the 

total average absolute error between the outputs equals 83 %. Therefore, the 

selected model is predicting higher rates than the actual in this specific project. 

By reducing the maximum limit of the “Very High” advance rate linguistic term
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of the output shown in Figure 3.15 from 12 m/h to 10 m/h, it was found that the 

total average absolute error dropped to 53 %. The next step is to utilize the 

available NEST data to optimize the system parameters using the NeuroFuzzy 

optimization technique which will be introduced in the next section.

3.8.2 Optimize the Developed Model Using NeuroFuzzy Technique

NeuroFuzzy technique combines the explicit knowledge representation of fuzzy 

expert systems with the learning powers of adaptive neural networks that are used 

to fine-tune the system. The learning capabilities of the adaptive neural networks 

are used to fine time and optimize the parameters of the fuzzy rule-based models 

in order to improve the predictive performance and reliability of the model. The 

NeuroFuzzy optimization capabilities have proven to be very effective in 

optimizing the fuzzy expert system’s parameters. Detailed description of the 

NeuroFuzzy tools with case studies can be found in the work of Altrock (1995), 

Boussabaine, (2001a and 2001b) and Rutkowska (2002). In the next paragraphs, 

the NeuroFuzzy tools are introduced and utilized to optimize the fuzzy expert 

system developed for the TBM advance rate prediction.

Neural networks are adaptive networks that have the ability to leam and 

generalize from examples. Neural networks have many advantages that make 

them very good modeling tools. As discussed by Lisboa and Vellido (2000), 

neural networks can approximate complex non linear mapping with reasonably 

high accuracy. In addition, neural networks perform quite efficiently with 

incomplete and nosy data sets, which make them very noise tolerant. Updating
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neural networks with fresh and new data is relatively easy which makes them very 

flexible in a dynamic environment.

However, neural networks still suffer some disadvantages that limit their powerful 

modeling capabilities. According to Lisboa and Vellido (2000), neural networks 

are considered “black boxes” due to their poor transparency. In addition, the 

neural networks require relatively large amounts of data to generate reasonable 

and reliable results. Another problem that neural networks may suffer is losing 

the ability to generalize due to over-fitting in the training stage. The previously 

discussed disadvantages encouraged the users to seek other modeling techniques 

that do not suffer from similar problems.

Therefore, when incorporating fuzzy expert systems with the neural networks in 

the form of NeuroFuzzy models, the generated system can offer a good modeling 

alternative to neural networks. NeuroFuzzy technique offers a modeling tool that 

is explicit and easy to interpret. In addition, the learning power of neural 

networks renders the fuzzy expert systems adaptive to real world data. In other 

words, NeuroFuzzy models are developed to combine the best of both fuzzy 

expert systems and neural networks.

Real world data sets related to the problem being modeled are used in the training 

and optimizing of the fuzzy expert system parameters. The parameters that are 

subject to tuning and optimizing are: the rule degree of support (rule weight) and 

the input and output membership functions. Figure 3.16 shows a structure of a 

typical NeuroFuzzy model and the parameter that can be optimized.
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Figure 3.16 Structure of a NeuroFuzzy Model

The following paragraphs give some more details about the optimization of the 

model parameters.

The rule’s weight or degree of support (DoS), as introduced by Kosko (1992), 

represents the influence and contribution of a rule to the output, for example:

IF X! is M, (AND) x2 is M2 THEN y is N (0<=DoS <=1)

Where DoS is the degree of support, which takes a value between 0 (no 

contribution) to 1 (full contribution). The (DoS) is one of the parameters that can 

be optimized within the fuzzy expert system The process starts by calculating the 

error generated by comparing the model output (predicted) with the actual output 

(expected). Then the system error is back-propagated using the gradient descent 

algorithm to tune the rule weights. The process is iterative and is terminated 

when the overall system error reaches a specific threshold specified by the 

modeler. More details about how the fine tuning process works can be found in 

Rutkowska (2002).

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The other component in the NeuroFuzzy model that can be optimized and tuned is 

the parameters of the membership functions that are used to model the input and 

output variables. Any membership function is characterized by a set of 

parameters that control its shape. For example, a triangle membership function 

can be characterized by three parameters (center, left width, and right width) and 

a bell-shaped membership function is characterized by two parameters (c, a). 

Figure 3.17 shows the key parameters of a triangle and a Gaussian membership 

functions.

C en ter c

X

a c a>

Triangle Membership Function Gaussian Membership Function

Figure 3.17 Parameter Tuning of Two Different Membership Functions

The membership parameters can be optimized using the same learning algorithm 

utilized in training the rules’ weights. The error generated by comparing the 

model output (predicted) with the actual output (expected) is back-propagated to 

fine tune the membership parameters using the gradient descent method 

explained. The training process terminates when the overall output error equals a 

predefined threshold. Again, more details about how the optimization process is 

handled can be found in Rutkowska (2002).
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The optimization process is an iterative operation that utilizes portion of the data 

as a training set and the other portion as a testing set in order to check the system 

behavior.

The following paragraphs show how the NeuroFuzzy techniques are utilized to 

fine tune the model parameters of the fuzzy expert system developed for 

predicting the TBM advance rate.

The first step is to prepare the data used in optimization process. Appendix 2 

shows the data table used in the process. Unfortunately, the data are collected 

from one type of project that utilized a TBM machine of the Earth Pressure 

Balancing (EPB) type and shows two soil behaviors only. In order for the 

optimization process to be very effective and comprehensive, data that covers 

most of the input variables must be available. However, in this particular project, 

the data listed in Appendix 2 will be used to optimize the system for illustrative 

purposes and to show how the system is being optimized using real data.

The optimization process is summarized in the following points:

1) The first step of the optimization process is to prepare the data used in 

training the model and the data used in testing. As a general rule of 

thumb, 80% of the data is used in training and 20% will be used in testing. 

The total number of data used is equal to 63 data points. Therefore, 50 

data points are randomly selected form the 63 data points and used to train 

the system and the remaining 13 points will be used to test it.

2) Different model parameters, including the scenarios generated in Section 

3.7.2, are experimented with and the parameters that will generate the
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lowest average training and testing absolute error will be used as the final 

optimized system. A total of 27 scenarios were generated and 

experimented with.

3) 300 iterations were used in training the different scenarios.

4) Only the degrees of support of the rules are optimized because the fuzzy 

membership functions of the inputs and output require more data that 

cover the different linguistic terms in order to optimize their parameters. 

However, the data available only cover some linguistic terms which makes 

the fine tuning process less effective.

Table 3.6 shows the different scenarios studied and the generated results.

Table 3.6: Different Scenarios Tested and Results of Optimization

Scenario
Number

Input
Aggregation Param eter

Output
Aggregation Defuzzification

Training 
Average 

Absolute Error

Testing 
Average 

Absolute Error

Average 
Training 

and Testing 
Error

1 Min 1 Max COA 8.26 19.03 13.64
2 Min 1 Bsum COA 9.53 22.97 16.25
3 Prod. 1 Max COA 8.59 19.34 13.97
4 Gamma 0.5 Max COA 9.01 21.42 15.21
5 Gamma 1 Max COA 9.56 19.04 14.30
6 Min/Max 0.1 Max COM 8.57 21.26 14.91
7 Min/Max 0.2 Max COA 7.59 19.08 13.33
8 Min/Max 0.3 Max COA 7.74 18.16 12.95
9 Min/Max 0.5 Max COA 7.49 19.16 13.33

10 Min/Max 0.7 Max COA 7.66 18.53 13.10
11 Min/Max 0.9 Max COA 7.49 16.89 12.19
12 Min/Max 0.8 Max COA 7.7 18.24 12.97
13 Min/Max 0.85 Max COA 7.79 17.15 12.47
14 Min/Max 0.95 Max COA 7.79 17.78 12.78
15 Min/Max 0.9 Bsum COA 7.84 17.71 12.77
16 Min/Avg 0.1 Max COA 9.83 18.75 14.29
17 Min/Avg 0.2 Max COA 8.35 18.92 13.63
18 Min/Avg 0.5 Max COA 7.48 19.16 13.32
19 Min/Avg 0.7 Max COA 7.4 18.74 13.07
20 Min/Avg 0.9 Max COA 7.43 16.57 12.00
21 Min/Avg 0.95 Max COA 7.44 18.87 13.15
22 Min/Avg 0.85 Max COA 7.45 19.28 13.36
23 Gamma 0.1 Max COA 8.87 2209 15.48
24 Gamma 0.3 Max COA 9.28 22.65 15.97
25 Gamma 0.7 Max COA 9.32 20.41 14.86
26 Gamma 0.9 Max COA 9.5 20.11 14.81
27 Min/Avg 0.9 Bsum COA 7.84 17.71 12.77
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The following points conclude the optimization process using NeuroFuzzy

techniques:

1) Most of the scenarios generated very close results because the data do not 

cover all the input variations.

2) The scenario that had the lowest average training and testing error has the 

following parameters:

a. Input aggregation Min/Average with parameter 0.9

b. Output aggregation Max.

c. Defuzzification COA

3) The optimization process o f the fuzzy expert system model for predicting 

the TBM advance rate is incomplete due to lack of sufficient data. When 

more data that cover the different input variations are available, the 

optimization process can be expected to yield better results.

3.9 Summary and Conclusions

The chapter has illustrated the development cycle of the fuzzy expert system for 

predicting the TBM advance rate. Figure 3.20 shows a flowchart that summarizes 

the developed cycle of a fuzzy expert system as proposed in this Chapter. Based 

on the analysis and discussions in Chapter 3, the following conclusions can be 

drawn:
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Figure 3.18: Development Flowchart of a Fuzzy Expert System

100

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1) The design and development of a predictive fuzzy expert system is a 

cyclic and iterative process that is mainly based on the feedback and 

knowledge of the experts. The experience of the experts and their 

certainty in the knowledge they provide are the key factors for developing 

an effective fuzzy expert system.

2) A systematic and structured methodology was proposed to help extract the 

related knowledge and information from the experts to develop the fuzzy 

expert system. Due to the complexity and multi-attribute nature of the 

problems modeled, the methodology tries to minimize the current 

subjectivity and ad hoc manner of developing the fuzzy if-then rules by 

the experts by allowing the experts to evaluate and assess the importance 

and impact of the factors on the final output systematically.

3) The experts will also be consulted to validate the system. Optimizing the 

system and fine tuning its parameters for better predictive power is a very 

important step which can be accomplished using the optimizing powers of 

NeuroFuzzy technique. However, the data used in optimizing the system 

should cover the different input domains for more comprehensive and 

effective fine tuning process.

Chapter 4 will show a methodology for integrating fuzzy expert systems with 

discrete event simulation to improve the input modeling process in simulation. In 

addition, the integration is illustrated using the fuzzy expert system of the TBM 

advance rate developed in this Chapter.
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CHAPTER 4 -A  METHODOLOGY FOR INTEGRATING 
FUZZY EXPERT SYSTEM AND DISCRETE EVENT 

SIMULATION 

4.1 Introduction

This chapter will show how the fuzzy expert system modeling concept will be 

incorporated with discrete event simulation to model some of the simulation 

inputs as compared to the current practices in discrete event simulation.

4.2 Current Discrete Event Simulation Methodology

According to Halpin and Riggs (1992), simulation is an abstraction of a real- 

world system. It includes examining the interaction between flow units (i.e. 

activities), determining the idleness of productive resources, and estimating 

production of the system as constituted. When movements o f units (i.e. activities) 

in simulation take place at discrete points in time which means that any activity in 

the system is defined in terms of its starting and end events, the system is referred 

to as “discrete event simulation”. The duration of the activities in the simulation 

model are usually randomly sampled from probability distributions that represent 

the randomness of the system activity durations. Construction engineering 

projects are usually modeled using the discrete event simulation method because 

activities in construction engineering projects are usually defined in terms of their 

start and end events.

There are different simulation strategies in discrete-event simulation modeling 

that guide the modeling process and control it (Martinez et al. 1999). One of
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these strategies is called “activity scanning” (AS), which is controlled by the start 

and end events of an activity. Halpin and Riggs (1992) explain that the way 

discrete event simulation works is by arranging the entire scheduled event 

chronologically into a “scheduled events list”. Then a simulation clock 

(Sim_Clock) keeps track of the simulation time (Sim_Time). The Sim_Clock is 

advanced based on the scanning of end-event times of the activities. The process 

contains two main lists that organize the advancement of events: event list and 

chronological list. The generated event times are listed in the event list and then 

recorded in order on the chronological list when they occur. The last entry o f the 

chronological list represents time now (T_Now) in the simulation and refers to an 

event the already took place. The event time is transferred to the chronological 

list and is then crossed off the event list. Finally, Sim_Time is updated with every 

transfer to the cumulative simulation time at this moment. Refer to Figure 4.1 for 

an example of the event and chronological lists.

&
7)

Event List Chronological List
E Activity T_NOW Duration E.ET." Activity Sim_Time

V 2 0.0 3.0 3.0 - *  2 3.0
V 2 3.0 4.9 7.9 \ 5 4.0
V 5

Ocn 1.0 4.0 \  2 7.9
V 6 4.0 4.5 8.5 -► 6 8.5

"E.E.T. = End Event Time

Figure 4.1: An excerpt of Event and Chronological Lists of a Project (Halpin
and Riggs 1992)

As indicated by Halpin and Riggs (1992), the two major phases that control and 

manage the simulation of discrete event systems are the “event generation” phase 

and “advance” phase. Figure 4.2 shows a flowchart of the discrete event
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simulation phases. The parts that explain the “event generation” phase and 

“advance” phase in the flowchart are taken from Halpin and Riggs (1992). The 

following paragraphs will explain the two major discrete event simulation phases.
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Figure 4.2: Integrated Fuzzy-Simulation Model Flow Diagram



The “event generation” phase starts by identifying the work tasks that can start. 

Once a task is determined to start, the flow units that transit the work task to the 

graphical element representing it are moved. The next step is to generate the 

activity delay time.

The different possible delay time generation methods are:

1) Deterministic: Selected when the work task has a constant duration value 

that never changes through all the simulation runs.

2) Random: Selected when the task delay is random. A random variate is 

generated from the corresponding cumulative probability distribution. 

Figure 4.3 shows a flowchart of the procedure for generating random 

variates according to Halpin and Riggs (1992).

3) Fuzzy expert system: The time delay is generated using a fuzzy expert 

system. Section 4.2 elaborates on the fuzzy expert system method.

After the time delay is generated using one of the three methods previously 

introduced, the next step in the even generation phase is to calculate the event 

times corresponding to the termination of these work task. As shown in Figure 

4.2, the end event time (E.E.T.) is calculated by adding the simulated time now 

(T_Now) to the event time delay. The last step in the event generation phase is to 

record the end event times of the work tasks in the event list.
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Figure 4.3 Generating Random Variates Flowchart (Halpin and Riggs, 1992)

By listing all the events that can start at T_NOW in the event list, the “advance” 

phase is now ready to start. By advancing the simulation clock (Sim_Clock), the 

next earliest scheduled event is moved from the event list to the chronological list. 

The simulation clock (Sim_Clock) is then advanced from its previous setting to 

the simulation time of the transferred event, which is (T_Now). All the activities 

that can be terminated when Sim_Clock is advanced are ended and corresponding 

units held in transits are released (i.e. resources). After the release of all units, the 

event generation phases start again. The simulation process continues between 

the two phases until a stopping criterion is applied. For example, the simulation 

will be terminated if  it reaches a predetermined maximum simulation time or 

when no more units are transferred from a scheduled event (i.e. all resources used 

up).
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4.3 Input Modeling Using Fuzzy Expert System

As discussed in Section 4.2, input modeling using probabilistic methods will only 

implicitly account for the changing conditions, factors and circumstances 

affecting the input model (i.e. activity). Probabilistic methods are capable of 

handling and modeling the randomness and stochastic nature of some of these 

surrounding conditions and factors. Therefore, modeling methods that account 

for all the different surrounding conditions and changes o f an input are required 

for better modeling process in discrete event simulation. As introduced in full 

detail in Chapter 3, fuzzy expert systems are capable of efficiently modeling the 

input accounting for the different factors and conditions affecting the process. In 

addition, it was shown that the fuzzy expert system is capable o f handling the 

subjectivity and linguistic terms that describe the modeled process. The fuzzy 

expert system works best when enough expert knowledge describing the modeled 

process is available. The following paragraphs will explain how fuzzy expert 

systems are integrated with the discrete event simulation.

As explained in Chapter 3, when fuzzy expert system is used to model an activity 

input, the following steps are considered:

1) The modeled input is first studied and analyzed (identify the factors 

affecting the input.

2) The experts are consulted to refine and determine the best factors.

3) A fuzzy expert system is developed which can be then incorporated with 

the discrete event simulation model to predict the delay time of the 

activity.
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4) If model optimization is necessary, related data are collected to optimize 

the system using NeuroFuzzy tools.

5) The final optimized model is then integrated with the discrete event 

simulation model.

As shown in Figure 4.2, when the fuzzy expert system is selected to model the 

input, the first step is to update the system inputs. Figure 4.4 shows the event

generation phase using fuzzy expert system.
Delay is generated using

fuzzy expert system

l A tT  Now

Analyze Inputs

Is input 
dynamic

Update Dynamic 
factors at T  Now

Yes

No

Input Input 2 Input n

Obtain degree of membershipI Optimize Fuzzy i 
[ Expert System I

Record E.E.T. in the event
Fuzzy If-Then Rules

End event time (E.E.T.) 
= T_Now +  Delay

Dcfuzzificd
Output

Time delay = dcfuzzificd output

Figure 4.4: Event Generation Using Fuzzy Expert System

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The first step of the fuzzy event generation is to update the input status of the 

model used. Two types of inputs are identified; “static inputs” and “dynamic 

inputs”. The first refers to the inputs that do not change in time. Regardless of 

being fuzzy or non-fuzzy, the “static inputs” do not change their value with 

simulation time. For example, it is assumed that the laborers’ experience is a 

factor that affects the duration of an activity and that this factor is represented by 

fuzzy membership functions. If it is determined that the modeler will only run the 

simulation model using laborers that have an average of 20 years of experience, 

the labors’ experience input will be a “static input” in this case. Therefore, the 

degree o f membership value for that input will remain the same during the 

simulation time and there is no point for updating its status each time the model is 

invoked during the simulation runs. The modeler is free to rerun the simulation 

model with different average experience (i.e. 10 years). Again, because of the 

static nature of the factor, the new degree of membership value will remain 

constant during the simulation time.

On the other hand, “dynamic inputs” are the input whose values and 

corresponding degrees of membership are expected to change during the 

simulation time. A good example of a “dynamic input” is the temperature. If the 

average temperature, in degrees Celsius, is assumed to be a fuzzy factor that 

affects the duration of an activity, it is expected that the temperature will 

definitely change during the simulation run. Therefore, each time the frizzy 

model is invoked to predict the activity duration, the temperature input is updated 

to find out the temperature at T_Now. The main criteria that determine the type
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of an input, being “dynamic” or “static”, are the nature o f the modeled process 

(i.e. activity duration), the factors affecting it and the design of the simulation 

model. The modeler’s preference and assumptions are also major criteria.

After updating the status of the “dynamic inputs”, the next step is to run the fuzzy 

expert system model to predict the activity duration. The first stage, as shown in 

Figure 4.4 and explained earlier in Chapter 3, is to measure the membership 

degree for each input. Then the if-then rules are run and the activated rules are 

fired. The last stage is the output calculation. The output is first generated in the 

form of a fuzzy number, which will be defuzzified to a crisp output using the 

defuzzification method utilized. The next step in the event generation phase using 

fuzzy expert system is to calculate the end event time (E.E.T.) by adding the 

defuzzified output to the value of the (T_Now). The last step is to list the 

calculated (E.E.T.) o f the task in the event list ready for the next phase as 

explained in Section 5.6. In case some data are or will be available with time, 

they can be used to optimize the parameters of the developed fuzzy expert system 

for more accurate and efficient predictive capabilities. This optimization can be 

accomplished using the NeuroFuzzy modeling technique, which was discussed in 

Chapters.

An example o f how the inputs are handled in a typical fuzzy expert model is 

shown in Figure 4.5. In this hypothetical example, it is assumed that the delay 

time of an activity is controlled by four factors, two of which are fuzzy and the 

other two are non fuzzy. The two fuzzy factors are the temperature and laborers’ 

average experience, and the non-fuzzy factors are the project location and the day
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of the week. As indicated in Figure 4.5, the temperature and day of the week are 

designed as dynamic inputs, and the average experience and project location are 

static inputs. When the fuzzy expert system is initiated, the first step performed is 

to capture the model inputs at T_Now. The dynamic inputs are updated at 

T_Now. The day of the week and the temperature are recorded at T_Now. When 

the day of the week at T_Now is, for example, “Monday” , the “day of the week” 

input is recorded as “Monday”. In addition, when the “temperature generation 

model” at T_Now generates, for example, a 30.5° C temperature, the 

“temperature” input is recorded as “30.5° C”. As for the static
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inputs, they are delivered directly to the next step without updating. When all 

inputs are recorded at T_Now, the next step starts as described previously in 

Figure 4.5. Each time the fuzzy expert system is initiated, the dynamic input 

updating process continues until the simulation is terminated.

The following Sections will show how the integration between fuzzy expert 

systems and simulation models is performed using the TBM advance rate model 

developed in Chapter 3 as a case study.

4.4 Simulation Modeling of Tunneling Operations

In general, the information generated from the simulation modeling can be used in 

planning the tunneling projects before actual work starts. In addition, simulation 

modeling can be used to test different work scenarios and check their effect on the 

overall productivity and performance. Several researchers have studied tunneling 

operations in construction engineering using several simulation modeling tools. 

Some of the research achievements in the tunneling simulation are listed in 

Ruwanapura et al. (2001). For example, Touran and Asai (1998) predicted the 

advance rate of a small-diameter tunnel in soft rock using CYCLONE, a general 

purpose simulation modeling system developed by Halpin (1977). Another model 

using CYCLONE was developed by Tanaka (1993) to model the tunneling 

operation using shielded tunnel boring machines.

Simphony® is a simulation program developed to build special and general 

purpose simulation models (Simphony, 2000). Special purpose simulation is “a 

computer based environment built to enable a practitioner who is knowledgeable
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in a given domain, but not necessarily in simulation, to model a project within that 

domain in a manner where symbolic representations, navigation schemes within 

the framework, creation of model specifications, and reporting are completed in a 

format native to the domain itself’ (AbouRizk and Hajjar, 1998). In other words, 

the special purpose simulation (SPS) models are built for a specific domain and 

target group, which can only be used within the intended application domain 

(AbouRizk and Hajjar, 1998).

An example o f a special purpose simulation model of a tunneling operation is the 

model developed by Ruwanapura et al. (2001). The developed tool is used for the 

analysis of tunnel construction projects. Two templates were developed: one for 

one-way tunneling using one TBM and the other for two-way tunneling using two 

TBM’s. The template consists of several modeling elements. For example, the 

main tunnel parent element contains the general tunnel information such as tunnel 

length, TBM type, shift length and cost information on i.e. labor and equipment. 

The muck car element contains information about the number of trains and muck 

cars used and their capacities. In addition, the TBM element includes information 

on the TBM diameter and liner installation time. The information that the 

templates generate are the tunnel advance rate, productivity, cost, schedule and 

resource utilization based on the simulation analysis.

The second concept of simulation is the general purpose simulation. In 

Simphony®, common template is a general purpose simulation tool that enables 

the user to model a system using process interaction concepts (Simphony, 2000). 

The modeling elements in the general purpose simulation common template are
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tools that can be used to model any type of problem which require the user to 

have background in simulation techniques. Some of the elements included in the 

common templates are entity creation and routing, recourses, statistics, activities, 

and tracing (Simphony, 2000). These modeling elements and many others can be 

used in conjunction with elements from other templates to add certain behaviors 

to the developed model. An example of a tunneling simulation model using 

common template was created by Mohamed and AbouRizk (2001). Figure 4.6 

shows some snapshots of the major modeling elements of the tunneling template 

developed suing the common template in Simphony®. The major modeling 

elements in the template, as shown in Figure 4.6, are the shaft/undercut, the soil 

segment, and the removal shaft elements. The shaft/undercut element includes 

the operations that take place at the shaft and undercut locations. For example, 

the dirt hoisting using the crane, the dirt dumping, the material hoisting, and the 

train switching tracks at the undercut area are some of the operations modeled in 

the shaft/undercut element. In addition, the soil segment element includes the 

major tunneling operations taking place at the tunnel face. The excavation 

operation, the lining of concrete segments, the dirt removal and TBM resetting are 

some of the operations modeled in the soil segment element. The last element, 

removal shaft, is considered a minor element because it only models the TBM 

removal operation when the major tunneling work is terminated.
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Figure 4.6: Snapshots of the Tunneling Model Using Common Template 
(Mohamed and AbouRizk S 2001)

AbouRizk et al. (2004) used the developed model in the analysis of one the major

tunneling projects in the City of Edmonton. In their model, they investigated

different modeling scenarios. One-train and two-train setups and 8-hour and 10-

hour shifts were studied. Other scenarios included minimizing some of the delay

times of some of the activities such as dirt removal and surveying. The overall

tunnel advance rate and the total project durations are some of the important

information generated from the tunneling model.

One of the major differences between the special purpose simulation tunneling 

model developed by Ruwanapura et al. (2001) and the tunnel template developed
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using the common template modeling tools is the flexibility in adding new 

modeling constructs to the system. In both systems, adding new modeling 

elements require a good simulation backgrounds and skills. However, adding 

new modeling elements using the common template will not usually require 

changing the way the other elements are programmed or structured. In other 

words, adding new modeling elements in the common template will not require 

major editing or programming work. On the other hand, the special purpose 

simulation models require more changes and editing in order to accommodate any 

new modeling elements. A good example showing the flexibility of the common 

template modeling environment is discussed in Section 4.5.

4.5 Common Template Capabilities in Handling Several Modeling 
Scenarios

One of the advantages of the common template is its capabilities and flexibility in 

handling several modeling scenarios. In the common template modeling 

environment, several modeling scenarios can be created and investigated. This 

advantage helps the modeler investigate how effective and productive some 

scenarios are. As explained in Section 3.4, the tunneling operation is performed 

through a set of repetitive activities that involves major components such as 

excavation of shaft and undercut, dirt removal, and tunnel supporting. Sometimes 

the engineer desires to change, by adding or canceling, some activities to improve 

on the tunneling process. One of the most effective and least costly methods to 

improve on the tunneling operation and increase the productivity is to model the 

process using discrete event simulation. The powerful modeling environment of
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the discrete event simulation introduced in Section 4.4 can help achieve the goal 

of enhancing the tunneling process. To illustrate the capabilities of the discrete 

event simulation, a tunneling scenario provided by the City of Edmonton is 

modeled using the common template in Simphony®. In a study made by 

AbouRizk et al. (2004), the authors developed a common template model in 

Simphony® modeling the original tunneling operation described in Section 4.4. 

The new scenario suggests running the tunneling operation without the undercut 

as to minimize the total construction cost. Consequently, the dirt removal cycle 

will change:

1) Two trains will be used in the dirt removing process.

2) Due to space limitations underneath the shaft, only one train is 

allowed to travel back and forth from the shaft to the tunnel face.

3) When the train arrives at the shaft filled with dirt, the crane will be 

used to hoist the muck cars up one by one until all of them are 

located above ground. Then the material car will be hoisted up.

4) Finally, the tugger will be hoisted up in order to reposition it 

towards the tunnel face.

5) The filled material car is then hoisted down.

6) The other empty muck cars of the second train will be hoisted 

down one by one. When they are all down, the second train is 

ready to travel to the tunnel face.

7) The dirt removal cycle continues from point # 3 to point # 6.

Figure 4.7 shows snapshots of the developed model elements.
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Figure 4.7 Modeling Elements Added to Model No-Undercut Scenario9  9
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The results of the new scenario compared to the base case scenario developed by 

AbouRizk et al. (2004) are shown in Table 4.1. It can be noticed from Table 4.1 

that the values of productivity and total duration scenario a compromise between 

the results of the base case scenarios.

The values of the new scenario lie between those of the base case scenario for 

one-train and two-train options and 8-hour and 10-hour shifts. Therefore, 

modeling the new scenarios revealed to the decision maker the effect of removing 

the undercut from the tunneling operation on the overall productivity and 

duration. The generated information will help the decision maker plan for future 

operations based in terms of time and cost.

This example shows the importance of discrete event simulation. Running

(8)models in discrete event simulation environments such as Simphony saves time 

and effort. Without the aid o f discrete event simulation, it would have been 

difficult to obtain the information listed in Table 4.1 without practically doing the 

work in reality to see what the outcome would be.

Table 4.1: Comparison between Base Case Model and New Scenario

Base Case Scenario (W ith Undercut)
2 Trains

Shift Productivity (m/shift) Project Duration (Days)
8 hrs 7.59 90

10 hrs 10.21 69

1 Train

Shift Productivity (m/shift) Project Duration (Days)
8 hrs 5.38 127

10 hrs 7.45 95

N ew  Scenario (No Undercut)

2 Trains ■

Shift Productivity (m/shift) Project Duration (Days)

8 hrs 6.53 108

10 hrs 8.83 80
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4.6 The Need to Enhance the Discrete Event Simulation 
Capabilities

As discussed before in Section 4.4, discrete event simulation is a powerful 

modeling tool that models the randomness in the process under study. According 

to AbouRizk and Halpin (1992), modeling the random simulation inputs is 

considered the key factor behind the success of the simulation construction 

process. When a specific statistical distribution is used to model an activity, it 

incorporates all the elements of uncertainty in it. In addition, the conditions 

affecting the activity are modeled implicitly (AbouRizk and Sawhney, 1992). In 

case of data limitation, selecting the probability distribution that best represents 

the missing data is not as effective and easy. The difficulty in approximating a 

probability distribution is that experts do not think in probability values, but rather 

they think in linguistic terms such as much, very, high, etc. (Kim and Fishwick 

1997). Therefore, the modeling capabilities of discrete event simulation need to 

be enhanced by incorporating more modeling techniques which will help model 

uncertainty explicitly and more effectively.

To illustrate the importance of providing more explicit and comprehensive 

modeling tools in discrete event simulation, the tunneling model discussed in 

Section 4.4 is taken as an example. One of the most important modeling 

parameters in the tunneling operation is the tunnel boring machine (TBM) rate or 

productivity. The modeler has to provide a value representing the TBM advance 

rate which is defined as the speed at which the TBM penetrates the different soil
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layers encountered. In the current models, the TBM penetration rate is usually 

represented by a probabilistic distribution as shown in Figure 4.8.
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a  probabilistic 

d istribu tion

Figure 4.8: TBM Advance Rate Representation in the Current Simulation
Model

The problem arises when there is not enough data to provide a more reliable 

estimate of the advance rate. Consequently, the modeler will subjectively 

estimate the probabilistic distribution of the advance rate. To illustrate the effect 

of selecting a specific advance rate value on the overall model output, a sensitivity 

analysis is made using the developed tunnel simulation model in Simphony by 

AbouRizk et al. (2004). In this analysis, the model is run using different values of 

TBM advance rate starting from 1 meter per hour to 12 meters per hour. The final 

results of the analysis are shown in Figures 4.9 and 4.10.
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Figure 4.9: Sensitivity Analysis Productivity Outputs

Effect of TBM Advance Rate Change on Total Duration
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Figure 4.10: Sensitivity Analysis Duration Outputs

The curves shown in Figures 4.9 and 4.10 show the effect TBM advance rate 

change on the overall model productivity (meter /shift) and duration (days), 

respectively. It can be noticed from the generated curves that the value of TBM
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advance rate can highly affect the overall model productivity and duration for the 

different scenarios investigated (one train versus two and 8-hour shift versus 10). 

Therefore, selecting the TBM advance rate value that best models the activity will 

help generate more realistic and reliable results.

Therefore, to achieve the goal of generating more reliable and realistic results in 

discrete event simulation, the following section will show how fuzzy expert 

system developed in Chapter 3 for predicting the tunnel boring machine advance 

rate can be and will be used to enhance the modeling process. The tunneling 

template developed by Mohamed and AbouRizk (2001) and analyzed by 

AbouRizk et al. (2004) and discussed in Section 4.4 will be used as the main 

research modeling reference in this chapter and the following chapters.

4.7 TBM Advance Rate Case Study

This section shows how the TBM advance rate model developed using fuzzy 

expert system in Chapter 4 will be integrated with the discrete event simulation 

tunneling model.

4.7.1 Fuzzy Expert System Inputs Representation in Tunneling Template

One of the advantages of integrating the fuzzy expert system mode is to allow the 

user to explicitly test different input conditions. Figure 4.11 shows the form that 

the user will use to input the conditions of different factors affecting the TBM 

advance rate.
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Figure 4.11: Fuzzy Expert System Input Form in Tunneling Template

The user will be able to change the conditions of the factors affecting the TBM 

advance rate to study the effect of these factors on the final simulation output. 

For the TBM advance rate model, the only input that needs to be updated as 

simulation time advances is the TBM age (in meter) which is a function of the 

total number of meters excavated.

4.7.2 Simulation Output Analysis Using Fuzzy Expert System to Predict 

Advance Rate

The study conducted by AbouRizk et al. (2005) on the simulation analysis of 

North Edmonton Sanitary Trunk (NEST) tunnel is used as a case study to show 

how the fuzzy expert system model is used to predict the TBM penetration rate in
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the simulation model. Table 4.2 shows the actual soil data used in the NEST 

tunnel.

Table 4.2: Actual Soil Data Used in Simulation Template

Soil Length (m) Soil Number Penetration Rate (m/h)

Soil Segment 1 486 5 Beta (3.48,2.90,1.00,8.08)

Soil Segment 2 45 6 Triangular (2.82,5.24,8.20)

Soil Segment 3 213 7 Beta (2.89,2.41,0.90,7.97)

Soil Segment 4 132 4 Triangular (0.73,5.39,7.95)

Soil Segment 5 350 5 Beta (3.48,2.90,1.00,8.08)

Soil Segment 6 174 o Beta (1.96,2.01,2.72,9.00)

Soil Segment 7 54 2 Beta (1.63,1.31,1.21,5.63)

Soil Segment 8 22 4 Triangular (0.73,5.39,7.95)

The shift duration adopted for the NEST project was 10 hours per shift. 

According to the actual data studied by AbouRizk et al. (2005), the actual 

construction productivity achieved for the NEST tunnel was 8.87 meters per shift 

and the simulation model was able to estimate productivity rate of 9.31 meters per 

shift (averaging 10 simulation runs). The fuzzy expert system model developed 

will be used to predict the TBM penetration rate as simulation time advances. 

The fuzzy expert system inputs that are common among all the soil elements 

based on the actual tunnel conditions are:

1) TBM Type = EPB

2) Shift Type = Day

3) Shift Duration =10 hours

4) Contaminated Soil = No
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5) Operator’s experience =12 years

6) Initial TBM age = 4.5 Km.

The TBM age will change as the excavation advances. Table 4.3 shows the inputs 

that are used for the different soil segments reflecting the actual conditions of the 

soil segments.

Table 4.3: Some of the Soil Inputs to the Fuzzy Expert System Model

Soil Soil
Behavior

Inclusion
of

Boulders

Inclusion
of

Cobbles

Tunnel
Alignment

Length
(m)

Soil Segment 1 0 No Yes Straight 84

Soil Segment 2 0 No Yes Curved 56

Soil Segment 3 1 Yes No Curved 45

Soil Segment 4 0 No Yes Curved 181

Soil Segment 5 0 No Yes Straight 378

Soil Segment 6 1 No No Straight 132

Soil Segment 7 0 Yes No Straight 433

Soil Segment 8 Yes No Straight 48

Soil Segment 9 3 No No Straight 124

Figure 4.12 shows the soil segments used in the simulation template.

';■&v x a
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Figure 4.12: Soil Elements Used in the simulation template
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After 10 simulation runs, the average productivity rate was 9.75 meters per shift. 

The estimated productivity rate is 4.7 % higher than the probabilistic approach 

which is relatively close. However, the productivity rate generated using the 

integrated fuzzy expert system and simulation model is still higher than the actual 

productivity rate (8.87 meter per shift). This can be attributed to the fact that the 

system is optimized using little data, and it needs more data to generate better 

results as indicated in Section 3.8. In addition, according to AbouRizk et al. 

(2005), the difference between the probabilistic simulation (9.31 meter /shift) and 

the actual one can be attributed to the combined effect o f some insignificant delay 

factors that are not accounted for, such as muck cars and crane breakdown and 

TBM teeth changes. These delays can be modeled using fuzzy expert systems. 

However, modeling the delays is not within the scope of the study.

The comparable productivity rate that the integrated system generated indicated 

that the fuzzy expert system can be a very effective predictive tool within the 

simulation framework as long as it is well designed and optimized.

4.8 Conclusions

The integration of the fuzzy expert system predictive tool and discrete event 

simulation adds a lot of modeling features to the simulation modeling. Based on 

the analysis and discussions in Chapters 4, the following conclusions can be 

drawn:

1) The integration of fuzzy expert systems within the discrete event 

simulation framework will provide more input modeling features to the
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simulation models. The fuzzy expert system can be utilized to predict the 

behavior of some of the simulation elements (i.e. activity duration, 

productivity rates, etc.) explicitly utilizing the experts’ knowledge and 

expertise in the problem domain.

2) Modeling the experts’ knowledge and feedback within a specific problem 

domain while accounting for the uncertainty embedded within the 

knowledge provided is made possible by the powers of fuzzy expert 

system. Integrating the fuzzy expert system within the simulation 

modeling will make the input modeling process of some activities more 

realistic since it accounts for the different factors affecting its 

performance.

3) The integrated fuzzy expert system and discrete event simulation model 

provides an interactive modeling scheme that allows the activity duration 

to get updated with the change of simulation time. Adding the time 

dimension to the input modeling process makes it more realistic.

130

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 5 -FUZZY EXPERT SYSTEM AS A DECISION 
MAKING TOOL 

5.1 Introduction

This Chapter discusses how fuzzy expert systems can be used as decision making 

tools. When fuzzy decision making tools are used in simulation models, they will 

add more modeling features to the simulation modeling.. Chapter 4 showed how 

fuzzy expert systems are used as predictive tools within the simulation 

frameworks. This Chapter will show how fuzzy expert systems can be used as 

decision making tools within the simulation framework, using the scheduling of a 

module assembly yard process as a case study.

5.2 Fuzzy Expert Systems as Decision Making Tools

5.2.1 The Need for Fuzzy Expert Systems in Decision Making

As indicated in Chapter 3, fuzzy expert systems were developed using the 

experts’ knowledge and expertise in a specific problem domain. The design and 

development process of the predictive models is cyclic and requires the experts’ 

involvement and verification throughout the different stages. In addition, 

predicting a specific phenomenon and behavior requires verification and 

validation in order to check whether the prediction is within the expected range. 

Also, the predictive model may require some optimization in order to fine-tune 

the parameters of the model for better and more accurate prediction. All o f these 

requirements were fully outlined and illustrated in Chapter 3. On the other hand, 

using the fuzzy rule based systems for decision making purposes has different
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requirements and limitations. In construction engineering, some problems require 

that the experts make a fast and reliable decision to meet a specific set of 

objectives. Some of the decisions required in construction engineering are 

complex, multi-objective, and non linear in nature. In addition, the domain within 

which the decision is made, is highly uncertain and adds to the complexity of the 

decision making process. Therefore, to help reach fast and reliable decisions 

within a specific problem domain, the experts’ way of thinking towards the 

problem under study and the uncertainty surrounding this decision need to be 

captured and modeled. To meet all of these requirements, fuzzy expert systems 

can be utilized as effective decision making tools. In fuzzy expert systems, the 

experts’ way of thinking is captured and modeled using rules. The uncertainty is 

accounted for using fuzzy set theory which accounts for the uncertainty embedded 

with the linguistic terms normally used by experts to describe some attributes 

such as “HIGH temperature” and “LOW productivity”.

Figure 5.1 shows the characteristics of the decision making process in the domain 

of construction engineering.

Uncertainty Make a 
Decision

Multi-Attribute

Construction
Engineering

Domain

Multi-Objective

Does it account for all the attributes? 
Does it meet the objective(s)?
Does it account for uncertainty?

Decision

Expert

Figure 5.1: Decision Making Constraints in Construction Engineering
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5.2.2 Structure of Fuzzy Decision Making System

Chapter 3 introduced fuzzy expert systems. The fuzzy decision making system 

shares the same guidelines as the fuzzy expert system but differs in the structure 

of the model, which is explained in the following paragraphs. Figure 5.2 shows a 

structure of a typical fuzzy decision making system.

Aggregate 
Fired Rules Decision

Rule Block # n

C2

C3

CON

CON,

Rule Block # 3

Rule Block # 2

Rule Block #1

Decision
Criteria

Cn = decision criterion (n)
CONn = contribution o f  Criterion (n)

Figure 5.2: Structure of Fuzzy Decision Making System

The system consists o f the following components:

1) The first stage is to identify the different decision criteria that contribute to 

the decision objective(s). In this stage, uncertainty is accounted for by 

representing the criteria (inputs) and the decision (output) by membership 

functions (fuzzification).

2) The next step is to evaluate the contribution of each of the criterion to the 

decision objective(s). The contribution or weight of each criterion 

represents the strength and effect of a specific criterion on the final 

decision. If the expert decides to reach a specific objective, he/she will 

give more weight to the criteria that they believe contribute more toward 

achieving this objective. In a multi-objective decision making situation,
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the weights of the criteria represent the expert’s preference toward 

realizing a specific objective by adding more weight to the criteria 

contributing to the desired objective to make this objective more 

dominant. Evaluating the contribution of the criteria is done using a scale 

from 0 (no contribution) to 10 (highest contribution). It is important to 

note that giving (0) contribution to a specific criterion means that the 

criterion is excluded from the decision making process. The weights or 

contributions are then normalized by dividing by the maximum weight.

3) The next step is to develop the rule base. The experts will determine the 

effect of each of the criteria being at a specific state (i.e. high or low) on 

the final decision. The rule base represents the core of the decision 

making process because it captures the way the experts think about a 

specific problem. If more than on decision criterion is included within a 

rule block, the methodology developed in Section 3.7 can be adopted to 

develop the rule base.

4) The final step is the output aggregation and the decision making stage. 

Similar to what had been explained in detail in Chapter 3 for fuzzy expert 

systems, the fired rules are aggregated using an output aggregation (i.e. 

Maximum). The final decision is made by defuzzifying the fuzzy output 

using a proper defuzzification method. As shown in Chapter 3, Center of 

Area (COA) defuzzification method was used in the predictive model 

developed. According to Altrock (1995), Center of Area (COA) and 

Center of Maximum (COM) defuzzification methods are very applicable
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to control and decision making problems. However, COM is easier in 

calculations compared to the (COA) method.

The following sections will show how the fuzzy rule based systems can be 

effectively used as decision making tools in simulation models within the 

construction engineering domain.

5.2.3 Fuzzy Decision Making in Simulation Models

As mentioned before, construction engineering related problems require decisions 

that may be multi-criteria and complex in nature. As introduced in Chapter 4, 

simulation is an abstraction of a real-world system. Therefore, many decisions 

have to be modeled in simulation mimicking the real-world system. Chapter 4 

showed how fuzzy expert systems can be integrated with the simulation 

framework to predict behaviors such as activity durations using the expertise and 

knowledge of the experts. The TBM advance rate prediction was taken as a case 

study. The integration of fuzzy decision making system with simulation modeling 

can help incorporate the experts’ knowledge and way of thinking towards a 

specific decision within the simulation framework. The integration between the 

fuzzy decision making system and simulation framework will be similar to the 

integration methodology adopted between the fuzzy expert system and simulation, 

except for some minor differences. Figure 5.3 shows the integration between the 

fuzzy decision making system and the simulation framework.
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Figure 5.3: Sample Integrated Fuzzy Decision Making System and
Simulation Model

When a decision is modeled using fuzzy decision making system in simulation it 

is run when the model is triggered. Once the model is triggered, it first checks the 

status of the inputs and updates them if  they are “dynamic”. The system activates 

the rule base and the fired rules are used to generate the final decision. The 

applications o f the fuzzy decision making system within the simulation 

framework are many. Some of the applications can be:

1) Prioritization of simulation units. The system can be used to prioritize 

units competing for the same resource or waiting to be processed.

2) Studying the effect of certain actions. The system can be used to test the 

effect o f some decisions that are usually controlled and determined by 

experts such as resource allocations.

One of the applications of the fuzzy decision making system that will be 

illustrated in this Chapter is the prioritization of module assembly yard scheduling 

using simulation, which is discussed in the following section.
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5.3 Decision Making in Module Assembly Yard Scheduling

5.3.1 Introduction

The fuzzy decision making system presented is integrated with the simulation 

model developed by Borrego (2004) to schedule module assembly yards. 

Borrego’s simulation model is used to schedule pipe spool modules assembly 

operation in assembly yards. The simulation based scheduling was adopted in 

Borrego’s model to account for the different physical and logical constraints 

controlling the scheduling process. The simulation based scheduling will also 

allow the user to experiment with certain scheduling scenarios by changing some 

of the control parameters. The yard is divided into different bays that are grouped 

in four main bay areas. The capacity of these bays differs based on the sizes of 

the modules assembled. Modules are classified into 5 types (cable tray, 

equipment, pipe rack, structural, and miscellaneous). The modules are routed to 

the areas based on their types (for example, all cable tray modules are routed to 

area A). The priority of module assembly is based on the module float (F) and it 

is calculated using the following equation:

[5.1] P (priority) = 500 -  (F+ abs (min(F)))

Where F (float) = PSD -ESD-D , where PSD = planned shipment date and ESD = 

early start date, and D = duration.

Once routed to a specific bay, the module undergoes a set of processing activities 

(structure, piping, cable tray, electrical heat tracing, insulation, and fireproof). 

After the module is finished, it can only be shipped when the space in front of it in 

the bay is empty. The finished modules can wait a maximum of 5 days for
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shipment and the total number of shipments per day is six modules only. These 

constraints and limitations are all captured using the simulation based scheduling 

developed by Borrego (2004). The main components of the models are:

1) The database that contains the attributes of the modules (type, size, 

durations, early start, planned shipment date and calculated priorities).

2) Simulation model using Simphony that reads the module attributes from 

the database, simulates the assembly process, then generates the results in 

a tabular form.

More details on the model and how it is developed using Simphony can be found 

in Borrego (2004).

In spite of the tremendous advantages that the simulation based scheduling 

provide including evaluations of different scheduling scenarios by controlling the 

modeled constraints, it still lacks the transparency and flexibility in developing 

the desired scenarios. The flexibility in changing and experimenting with the 

model constraints is limited to what the developer outlined. For example, the 

prioritization of the modules is a very important scheduling aspect and needs to be 

well accounted for to achieve the desired objective(s). The current simulation- 

based scheduling model only accounts for one prioritization method or 

dispatching rule, which is based on the least float. Therefore, a decision making 

system needs to be incorporated within the simulation model to provide the user 

with the flexibility of utilizing different dispatching rules and accomplishing a 

multi-objective scheduling process. The following sections will show how the 

frizzy decision making system can be incorporated with the simulation model to
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provide more transparent and flexible controlling of the module prioritization 

process.

5.3.2 Background on Dispatching/ Priority Rules

There are different priority and dispatching rules to control the job shop 

scheduling process. Some of these rules are designed to meet a specific 

scheduling objective. According to Kiran (1998), some of the priority rules are as 

follows:

1) Critical ratio (CR): it is based on the critical ratio index calculated as lead 

time (due date -time now) / remaining operation time;

2) Earliest due date (EDD): it processes the jobs with the earliest due date;

3) First come, first served (FCFS): priority is given to the job that arrives 

into particular queue earliest;

4) Shortest processing time (SPT): the job with the longest processing time is 

selected.

Other priority rules can be found in Kiran (1998). Each priority rule meets a 

specific set of objectives. The shortest processing time (SPT) tries to reduce the 

average flow time (completion time- release time) of the jobs. (SPT) is also good 

at reducing the average lateness (completion time -due date) o f the jobs 

processed. The critical ratio (CR) and the earliest due date (EDD) rules minimize 

the average tardiness (number of late jobs). More details on the different 

objectives that different priority rules meet can be found in Kiran (1998). 

According to Kiran (1998), the function categorization of the different rules can 

be as follows:
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1) Simple priority rules: used when one priority rule is used to prioritize all 

of the jobs.

2) Combinations of rules: used when two or more rules are utilized at a 

specific time being a function of the queue and order characteristics.

3) Weighted priority rules: involve the utilization of rules in (1) and/or (2) 

combined with different weights.

Extensive research work has been conducted on the priority or dispatching rules

studying the different function categorization of rules. Barman (1997) studied the

combination of simple priority rules to improve the flow time and tardiness in a

flow shop with three work centers. Barman studied the combination of 4 priority

rules at the three work centers of the flow shop generating 64 priority rule

combination schemes. The rules studied are first in queue rule, shortest

processing time, earliest due date, and critical ratio. Barman used the mean flow

time, mean tardiness, and percentage of tardy jobs performance criteria to study

the relative advantage of the rule combinations. He concluded that the combining

(SPT) and (EDD) rules generated excellent results. Subramaniam et al. (2000)

proposed an analytic hierarchy process (AHP) that dynamically selects a

dispatching rule from several candidate rules based on job shop conditions. In

their system, they used (AHP) to help select the appropriate dispatching rule to

use from three candidates which are shortest processing time (SPT), most work

remaining (MWKR), and most operations remaining (MOPNR). These rules are

selected because they minimize the makespan of the system, which is the main

objective of the study. The selection is made based on the existing job shop

conditions or performance metrics, which include the availability of machines,
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number of jobs in the queue, and type of jobs remaining. With the use of AHP, 

the user updates the status of the performance metrics suggesting the appropriate 

dispatching rule based on the dominant performance.

Canbolat and Gundogar (2004) proposed a fuzzy priority rule for job shop 

scheduling. In their study, they proposed a fuzzy rule based system that accounts 

for multi-objective scheduling. In their model, they developed a fuzzy logic 

system that calculates priority by considering the shortest processing time (SPT), 

critical ratio (CR), and next machine load (NML) priority rules. The inputs and 

outputs are represented by fuzzy membership functions. The rule base is 

developed by studying the effect of fuzzy input on the final priority. The inputs 

are weighted to provide more importance to the criterion that meets the required 

objective. The developed system is very effective in satisfying multi-criteria 

prioritization process.

The previously discussed studies motivated the utilization of a multi-attribute 

decision making system using fuzzy rule based modeling in prioritizing the 

module assembly yard scheduling within the simulation framework. The 

following section explains the details of the proposed system.

5.3.3 Using Fuzzy Decision Making System in Simulation-Based Scheduling

Figure 5.4 shows the details of the proposed fuzzy decision making system within 

the simulation framework. The components of the model follow the structure of 

the model explained in Section 5.2.2, which has the following components:
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Figure 5.4: Fuzzy Decision Making Model Used in Module Assembly Yard Simulation Model



1) The user starts by adding the desired attribute/input variables that 

contribute to the final decision.

2) The expert provides the contribution (weight/importance) of each attribute 

to the final decision. The contribution scale is from 0 (no contribution) to 

10 (highest contribution). Each input then has a normalized contribution 

after dividing by the maximum contribution.

3) The fuzzification process of input variables is done based on the nature of 

the variable and the user’s preference. For the module yard assembly 

process, the inputs are represented by normalizing their values for all the 

modules awaiting using the following equation:

[5.2] (Xi)nomaIized = ((Xi) -(Xi)max) / = ((Xi)max -(X  i)min)

Where (Xi) is the value of the ith input.

After normalization, the membership values of these normalized values 

are calculated using the membership functions shown in Figure 5.5. This 

fuzzification scheme is adopted because the nature of the inputs is 

comparative, which can be compared using fuzzified normalization.

Input Normalized Value
0.5

Figure 5.5: Sample Membership Function for the Fuzzy Decision Making
Model

The fuzzy membership functions provide a better representation of the 

decision criteria because they capture the gradual membership of an input
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to a specific state (i.e. high processing time) rather than representing it as a 

crisp value being either a full member or not a member to a specific state. 

This is how fuzzy membership functions deal with the subjectivity and 

fuzziness o f the decision criteria. The fuzzy membership functions are 

more realistic representation of the inputs because they capture the way 

experts think toward a specific behavior.

4) The rules are developed for each input mapping the effect of the inputs on 

the final priority output.

5) The output is represented by the membership functions shown in Figure 

5. 6.
VHVL

Priority (%)
100

Figure 5.6: Fuzzy Membership Functions of the Fuzzy Decision Making
Output

6) The output aggregation of the model is selected to be the Maximum.

7) As discussed in Section 5.2.2, the center of maximum defuzzification 

method is used for the decision making purpose.

8) The defuzzified output represents the priority of the module, which is used 

in the scheduling process using the developed simulation model by 

Borrego (2004).
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Using Simphony® (Simphony, 2000), a fuzzy decision making model template is 

developed to be used in the decision making process and linked to simulation 

models. Figure 5.7 shows the elements of the fuzzy decision making template 

developed in Simphony®.

; .1  ■ n le  Edit View R un T ools W indow Help

I FuzzyDecisionMaking

r a m  I N  UUT 
UiNJ PU T PUT

Model
Output

Decision
Making

Elements

Model
Inputs

Figure 5.7: Elements of the Fuzzy Decision Making Template In
Simphony

Three main elements are included in the fuzzy decision making which are:

1) The “MainWind” element refers to the main window element which is the 

parent element that contains the different model components. The input 

window of the “MainWind” element prompts the user to specify the 

number of inputs that the user will be creating and the source of the 

database in which the data of the inputs are stored.

2) The “Input” element allows the user to create the different decision 

criteria. Figure 5.8 shows the input window for the “Input” element in 

which the user inputs the different membership parameters for a decision
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criterion. In addition, the riser is prompted to input the “contribution” or 

weight of the decision input.
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Figure 5.8: Input Window for the “Input” Element in the Fuzzy Decision
Making Template

3) The “Output” element allows the user to create the decision output. The 

input window for the “Output” element is similar to the one shown in 

Figure 5.8 in which the user inputs the different membership parameters 

for the output.

4) The rule base is developed using the input window of the “Input” element. 

Each “Input” element forms a separate rule block. The number of rules 

will be matching the number of membership functions of the decision 

criterion assuming that there is no interaction between the different 

decision criteria.

The current fuzzy decision making template has some limitations that can be 

resolved in future improvement of the template. The template is designed to be
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employed in the prioritization of the module assembly yard scheduling problem 

which will be illustrated in Section 5.3.4. However, it can be used in other 

decision making applications within the simulation framework provided that the 

following template limitations are accounted for:

1) Inputs are created separately assuming no interaction or rule combination 

between inputs.

2) Only one output can be created.

3) The maximum number of the membership functions of each input is 5 

(very low, low, medium, high, and very high).

4) The maximum number of the output membership functions is 5 (very low, 

low, medium, high, and very high).

5) The input aggregation operator adopted is “Maximum”.

6) The defuzzification method adopted is the “Center of Maximum”.

7) The template is designed to read the different data of the decision criteria 

created from a database in which the different decision making outputs are 

saved.

Section 5.3.4 shows how the decision making template is utilized within the 

simulation framework using the module assembly yard problem as a case study

5.3.4 Running the Fuzzy Decision Making Template in Simulation

In this section, the developed fuzzy decision making template is used to 

prioritized the modules scheduled using the simulation model developed by 

Borrego (2004). A case study is designed to illustrate how the fuzzy decision
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making template is used. The following assumptions are made for the illustrative 

case study:

1) Fifty modules are generated. Detailed information on all the modules is 

listed in Appendix C. The different module parameters listed in Appendix 

are randomly generated.

2) There are 4 types of modules (1,2,3 and 4) that are routed based on type to 

four different locations as follows:

a) Modules of type 1 (cable tray) are routed to bay area 1 (total 

capacity of 16 modules)

b) Modules of type 2 (equipment) are routed to bay area 2 (total 

capacity of 16 modules)

c) Modules of type 3 (pipe rack) are routed to bay area 3 (total 

capacity of 16 modules)

d) Modules of type 4 (structural) are routed to bay area 4 (total 

capacity of 16 modules)

3) It is assumed that the finished modules are shipped directly without 

waiting.

4) Each module undergoes one type of activity whose duration is listed in 

Appendix C.

5) The prioritization of the modules is based on the following criteria:

a) Shortest processing time (SPT)

b) Earliest due date (EDD)

c) Maximum module cost (MMC)

d) Combination of 1,2, and 3 using fuzzy decision making.
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Three rule blocks are created representing the three main criteria or decision 

attributes. Table 5.1 shows the rule base within each rule block and the fuzzy 

decision making parameters.

Table 5.1: Fuzzy Decision Making Parameters

Rule Block Rule Base Attribute
Contribut.

Output
Aggreg.

Deffuz.
Method

Rule Block 
(1)

SPT

IF SPT Low THEN High 
IF SPT Medium THEN Medium 
IF SPT High THEN Low

(Oto 1) Max. COM

Rule Block 
(2) 

EDD

IF EDD Low THEN Very High 
IF EDD Medium THEN Medium 
IF EDD High THEN Very Low

(0 to 1) Max. COM

Rule Block 
(3) 

MMC

IF MMC Low THEN Low 
IF MMC Medium THEN Medium 
IF MMC High THEN High

(0 to 1) Max. COM

The contributions of the attributes are changed based on the user’s preference. 

Different scenarios are tested. Each attribute is first used as the main 

prioritization criterion by setting the other two attributes to zero. Then, 

combinations of all attributes are tested to show how the fuzzy decision making 

tool can be used to provide a multi-attribute and multi-objective decision. Table

5.2 shows the results of the different scenarios tested.

149

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 5.2 Different Prioritization Scenarios Tested

Prioritization
Criterion

Number of 
tardy 

Modules

%
Tardiness

Average
Flow
Time

Average
Waiting

Time

Average
Lateness

Average
Earliness

Total Cost of 
Delayed 

Modules
Minimum Float 28 56 79.56 16.16 14.86 -6.08 962857
Earliest Due Date 23 46 76.28 12.58 12 -6.6 767854
SPT 26 52 81.2 17.5 16.52 -6.2 869222
MMC 26 52 81.64 17.94 17.3 -6.54 822726
Contribution = 
SPT =1.0 
EDD =1.0 
MMC = 1.0

24 48 80.16 16.46 15.86 -6.58 756780

Contribution = 
SPT =0.5 
EDD =1.0 
MMC = 0.5

23 46 78.26 14.56 14.02 -6.64 726319

Contribution = 
SPT =1 
EDD =0.5 
MMC = 0.

25 50 84.74 21.04 20.18 -6.32 816104

Contribution = 
SPT =0.5 
EDD =0.5 
MMC = 1.0

24 48 81.02 17.32 16.7 -6.56 756780

Different performance criteria were used to evaluate the effect of the prioritization 

criteria on the final schedule. Criteria based on due dates are calculated as:

a) The number of tardy jobs and percentage of tardiness, where tardiness =

lateness if lateness > 0.

b) Average lateness, where lateness = completion time -  due date.

c) Average earliness, where earliness = lateness if lateness < 0 

Criteria based on module completion times are calculated as follows:

a) Average flow time, where flow time = completion time -  release time

b) Average waiting time, where waiting time = completion time -release 

time — process time.

Criterion based on module cost is the calculated as follows:
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a) Total cost of delayed modules which is calculated by summing up the 

costs of the late modules.

Table 5.2 shows a comparison between the base case scenario where prioritization 

is done by processing modules of least float as introduced in Section 5.3.1 and 

other prioritization criteria. The following observations are made based on the 

results of Table 5.2:

1) When one prioritization criterion is utilized, it usually meets a single 

scheduling objective. For example, EDD and SPT rules minimized the 

number of tardy jobs. In addition, MMC rule generated one of the lowest 

total costs of delayed modules.

2) When scheduling rules or prioritization criteria are combined together by 

providing different contribution values to each, results generated illustrate 

some kind of compromise between more than one scheduling objective. 

For example, when all criteria are weighted one (means all receive 10/10 

in the contribution scale), the number of tardy modules decreased and the 

total cost of delayed modules also decreased.

3) The best performance was achieved when contribution of EDD was set to 

1 (10/10) and when the other two criteria were set to 0.5 (5/10). One of 

the lowest numbers of tardy modules was generated and the lowest cost of 

delayed modules was achieved. The other performance criteria also 

achieved good results.

The fuzzy decision making tool provides a great deal of control flexibility and 

explicitness of the prioritization process of the module assembly operation. It is
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important to note that the optimization of the prioritization criteria is beyond the 

scope of this study. The study shows, however, the importance of providing a 

decision making tool within the simulation framework. The case study provided 

shows the importance of having such a decision making system that accounts for 

both multi-attributes and multi-objectives within the decision making process, 

while accounting for the uncertainty caused by the fuzziness of the decision 

making criteria or attributes.

5.4 Conclusions

This chapter illustrates how a fuzzy rule based system can be used as a decision 

making tool within the simulation framework. The following points are 

concluded based on the results generated:

1) The fuzzy decision making model helped provide explicit control and 

decision making tool within the simulation model using the module 

assembly yard scheduling as a case study. In the case study, the user uses 

the fuzzy decision making tool to control the prioritization process of the 

modules awaiting assembly in the yard.

2) The integration and incorporation of a multi-attribute and multi-objective 

fuzzy decision making tool within the simulation framework will help 

make the control and decision making process within simulation models 

very explicit and more effective. Using this tool, the experts can test 

numerous decision scenarios within the simulation framework, which 

enhances the capabilities of the simulation modeling.
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3) The explicit fuzzy decision making tool will also help in minimizing the 

user’s need to make changes within the simulation framework in order to 

account for his/her decision preferences.

4) The application of the fuzzy decision making tool to other decision 

making points within the simulation framework is very promising and can 

enhance the capabilities of the simulation models.
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CHAPTER 6 -INTEGRATED FUZZY MODELING AND 
SIMPHONY OBJECT MODEL FRAMEWORK

6.1 Introduction

Chapters 4 and 5 showed how some of the fuzzy set theory tools can be integrated 

with discrete event simulation modeling tools to provide better modeling 

capabilities. As demonstrated in Figure 6.1, the two major fuzzy tools integrated 

with the discrete event simulation model are the fuzzy predictive tool and fuzzy 

decision making tool.

Discrete
Event

Simulation
Model

Enhanced 
Discrete Event 

Simulation 
Modeling 

Capabilities

Fuzzy Decision 
Making Tool

Fuzzy Predictive Tool

Figure 6.1: Integrated Fuzzy Tools with Discrete Event Simulation

The fuzzy predictive tool was integrated with the discrete event simulation model 

in Chapter 4 using the tunneling simulation template and fuzzy expert system for 

TBM advance rate prediction as a case study. The fuzzy decision making tool
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was integrated with the simulation framework in Chapter 5 using the prioritization 

of module assembly yard scheduling simulation as a case study.

Chapter 2 presented fuzzy numbers as a comparable uncertainty modeling tool to 

the range estimating element using the probabilistic approach. This study was not 

integrated with the discrete event simulation framework. However, it was 

compared to the uncertainty range estimating tool which is part of Simphony 

Object Model (SOM) as introduced and presented by Hajjar (1999). In addition, 

the fuzzy numbers in range estimating is a component of an integrated fuzzy 

modeling framework which will be introduced in this chapter. All of the studies 

conducted throughout the thesis were performed within SOM developed by Hajjar 

(1999). Therefore, these studies initiated the need to present an integrated 

modeling that links the fuzzy modeling tools and the SOM. In order to integrate 

both systems, a fuzzy modeling framework is formulated and integrated within 

the framework of SOM. Section 6.2 provides an overview of the object-oriented 

frameworks development. In addition, the components of the fuzzy modeling 

framework and the proposed integration within the SOM are introduced and 

outlined in Section 6.3.

6.2 Overview of Object-Oriented Frameworks

The design and development of object oriented application frameworks are 

discussed and outlined by Froehlich et al. (1998a and 1998b). The development 

of the fuzzy modeling framework in this thesis is based on the work of Froehlich 

et al. (1998a and 1998b). A framework is defined as a combination of multiple 

objects used in conjunction to perform one or more tasks. Frameworks are
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developed to provide a generic solution for a set of related problems within a 

specific domain. The following sections explain the different steps for designing 

and developing a framework.

6.2.1 Analysis

The first step of designing a framework is the analysis and definition of the 

problem domain. Defining the size of the domain will help define the scope and 

the applications that the framework will cover. The analysis of the framework 

domain will determine the key abstraction comprising the core of the framework. 

One approach of domain analysis is to examine existing applications within the 

problem domain and identify the different abstractions. In addition, developing 

different scenarios for the framework will help define the requirements of the 

framework and the primary abstractions and interaction patterns. The analysis 

will help identify the general areas of variability within the framework, referred to 

as “hot spots”, which are the places in the framework that can be customized. In 

addition, the areas that the intended user has little or no control over, referred to 

as “frozen spots”, can also be identified.

6.2.2 Design and Implementation

Constructing the abstractions, frozen spots, and hot spots is part of the design 

stage. In addition, the “hooks” which are connected to the “hot spots” and 

through which the framework is adapted and extended are designed and specified. 

Frameworks contain a core of abstract classes which embody the main 

architecture and interaction among the different framework classes. The
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frameworks also contain a number of “concrete classes” forming the framework 

library. The concrete classes inherit from the abstract classes and provide specific 

functionality without modification. Hooks are provided into the framework either 

by composition or inheritance. In composition, the framework classes are adapted 

by filling in parameters that provide specific functionality. Inheritance involves 

adding functionality to an abstract in which the developer can easily add 

completely new functionality to a subclass of an existing class. Composition is 

usually utilized when framework interfaces and uses are well defined. On the 

other hand, inheritance is used when the full range of framework functionality is 

not fully anticipated.

6.2.3 Testing

Framework testing can be done by developing applications to help identify the 

areas where the framework requires modifications and enhancement. Another 

method is to test the framework by itself without any application extensions in 

order to avoid the errors that might be caused by the applications and help detect 

the defects within the framework itself.

6.2.4 Deployment

Once the framework is designed and tested, it needs to be deployed by the 

application developers. Some issues need to be considered when deploying a 

framework. First, the framework should be introduced gradually to the users for 

better learning of its basic components and requirements. This objective can be 

achieved through sessions, example applications and reference documentation.
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Second, the distribution form that the framework will take has to be defined (i.e. 

source code). Third, collecting the users’ feedback, comments, and requests is 

very important for future change and enhancement.

6.3 Fuzzy Modeling Application Framework Design

6.3.1 Framework Scope and Purpose

The domain of the designed framework is modeling construction engineering 

problems. The fuzzy modeling framework is used in modeling uncertainty in 

construction cost using fuzzy numbers, predicting construction related behaviors, 

and incorporating expert decisions in construction related problems. Chapters 2, 

3 and 4 provided examples of the previously mentioned uses of fuzzy modeling 

framework. The fuzzy modeling framework will work as a support framework 

for SOM framework developed by Hajjar (1999). Figure 6.2 shows the domain of 

the fuzzy modeling framework.

DOMAIN CONSTRUCTION ENGINEERING APPLICATIONS

Simphony Object 
Model /I

Fuzzy Modeling

Application
Framework

/  Support Application
FrameworkN

Figure 6.2: Fuzzy Modeling Application Framework Domain

The SOM is a simulation object-oriented application framework based on a 

unified modeling methodology achieved through the formalization of a generic
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base modeling element. The generic base modeling element is used in the 

development of a special purpose simulation template in a specific construction 

domain. The generic base modeling element was implemented as a parameterized 

class which is customized through composition in which developers create objects 

based on the generic class (Hajjar, 1999). One way of customizing a specific 

modeling element is by defining its attributes. This methodology simplifies the 

development of new construction simulation tools.

63.2 Fuzzy Modeling Framework Components

Figures 6.3 and 6.4 show the different views of the fuzzy modeling framework. 

The framework is divided into three main unified components:

1) Fuzzy numbers in cost range estimating.

2) Fuzzy prediction.

3) Fuzzy decision making.

The last two components of the framework are directly integrated with SOM 

simulation framework. The output of the fuzzy modeling framework is the input 

to the SOM. The following paragraphs explain the details of the framework 

components.
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