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Abstract

On-line measurements of key process variables are restricted by the availability of measurement 

techniques or by the reliability and high installation cost of instruments. Even if appropriate 

instrumentation exists, some measurable variables are only available through off-line analysis in a 

laboratory. Soft sensors are inferential models that provide continuous on-line estimates of 

quality variables from readily available process measurements. This thesis deals with practical 

issues associated with the development of gray box models for soft sensor applications. 

Development and implementation of soft sensors entail many challenges due to the quality of 

collected data. Some of these problems, including measurement noises, missing measurements, 

and outliers, are addressed in this thesis. Different classical treatments are discussed and 

evaluated.

Bayesian models are a compact way to represent probability distributions. They can also be 

extended to dynamic Bayesian models to represent dynamic processes. A Bayesian network is 

flexible in model structure, easy to expand, capable of dealing with irregularly sampled data or 

missing data, and powerful in many applications. In this thesis, soft sensor problem is formulated 

in a Bayesian framework in order to overcome the typical limitations of conventional methods to 

deal with the existing challenges. In addition, the efficiency and effectiveness of the Bayesian 

approach is demonstrated on numerical simulations, a pilot-scale experiment, and an industrial 

case study.
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Chapter 1

Introduction

1.1 Motivation

Models that are entirely based on physical principles including mass, components, and energy 

balances are called first principles models [7,8,9], Since complete knowledge of process behavior 

is required to build first principles models, they can often be expensive and time-consuming. 

Black box modeling is proposed for situations in which physical understanding of the process is 

absent [14,18], Black box models do not use any information about the process and their 

application is limited. In chemical engineering applications, gray box modeling is the most 

commonly used approach; it combines both of the above two approaches in developing an 

industrial model. Gray box models [2,15,17], also called hybrid models, are a useful alternative in 

situations where insight into a system is required but a complete first principles model is difficult 

to construct.

One of the key applications of gray box modeling is in soft sensor development [1,5]. Soft 

sensors are mathematical models that provide on-line estimates of difficult-to-measure variables 

from readily available variables. These sensors are often needed in chemical processes, because 

some important process variables or modes are difficult or expensive to measure on-line. An 

overview of the soft sensors applied in seven different fields of process engineering is given in 

[16], These fields are: 1. Diagnosis of process operations, 2. Monitoring and analysis of process 

trends, 3. Intelligent control, 4. Heuristics and logic in planning and scheduling of process 

operations, 5. Modeling languages, simulation and reasoning, 6. Intelligence in scientific 

computing, and 7. Knowledge based engineering design.

With respect to the application, development of a soft sensor requires following four distinct 

steps:

1
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Introduction 2

1. Problem definition: Based on the requirements, the goal of the soft sensor model is precisely 

formulated.

2. Design: Having formulated the modeling problem, the structure of the model is determined 

and the model parameters are identified.

3. Evaluation: The structure and parameters of the model need to be validated with the real data. 

If the model error is outside the acceptable boundaries, we need to revisit design phase and 

improve the developed model.

4. Application: When the model performance is acceptable, the soft sensor will be put in 

operation.

In gray box modeling, the data quality is crucial for the development of reliable models; 

however, real-world data are commonly contaminated with measurement noises, outliers, and 

missing measurements. As a result, the satisfactory performance of soft sensors can be achieved 

only if we are able to cope with these issues.

As we shall see in Chapter 3, in classical least squares methods it is assumed that the 

independent process variables have been exactly observed and that the only dependent variable is 

noisy. Consequently, these approaches yield biased parameter estimates for most industrial 

applications. The total least squares (TLS) [12], also referred to as classical Errors-in-Variables 

(EIV), is an alternative approach to compensate for the measurement noises. TLS differs 

distinctly from the classical least squares methods, for the reason that measurement errors in both 

dependent and independent variables are taken into account. The key problem with this approach, 

however, is that the underlying assumption in TLS is not necessarily true for real world data and, 

again, the resulting parameter estimates may also be biased [10].

Another aspect to be considered in the soft sensor development is related to outliers and 

missing measurements. There are a variety of methods for handling incomplete and inconsistent 

data [4,6], but many of them are problem specific and problematic. In general, the existing 

treatments of missing values can be classified into two main categories: 1. deletion, and 2. 

imputation methods. The most common approach is to simply exclude the cases with missing 

values from the analysis. However, if we do not want to lose data and, perhaps, information, we 

may try to predict missing items. There are many imputation methods available, such as mean 

substitution, LOCF method, regression imputation, NIPALS algorithm, and EM, each with their 

own advantages and disadvantage; they will be further discussed in Chapter 4.
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Introduction 3

Outliers are observations far from most others in a set of data. They are almost the same kind 

of problem as missing values, but could be worse if not detected and deleted. Box plot is a helpful 

graphical tool that provides criteria for detection of outlying observations. Once outliers are 

detected, one of the missing values treatment approaches is applied. Robust regression [6] is an 

alternative approach to handle outliers. In this approach, a weight is assigned to each observation 

so that outliers are given reduced weight. Many methods have been developed for robust 

regression; M-estimation [11] is the most commonly used one.

Representation of multimodal processes is another issue that may arise in the development 

and implementation of soft sensors [3]. As one might expect, some systems have multiple modes 

or regimes of behaviors, hence multiple models are used to cover all operating conditions. To 

produce valid results, all that remains is to choose the model that best fits the current 

observations. In addition, to perform many other tasks (e.g. fault diagnosis), we need to determine 

which operation mode all components1 in the system are in. To do so, we need to develop 

dynamic models, which are capable of describing the transition of variables with respect to time. 

Static models are often used in design and optimization, while dynamic models are widely 

applied in process control.

This thesis employs a Bayesian approach in addressing the challenges associated with soft 

sensor development and implementation. A Bayesian network [13] is flexible in model structure, 

easy to expand, capable of dealing with irregularly sampled data or missing data, and powerful in 

many applications.

Before explaining the contributions and scope of this thesis in detail, let us take a closer look 

at the Bayesian concept.

1.2 Introduction to the Bayesian method

1.2.1 Notation

A Bayesian network is a graphical model for representing probabilistic relationships between a 

set of random variables in a system. We denote random variables by upper case letters 

(e.g. X , Y ), and signify the actual value of these variables by the corresponding lower case letters

1 These components can for example be actuators, pumps, and any other physical objects.
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Introduction 4

C=Cancer

Figure 1.1. A simple Bayesian network example

(e.g. x, y). Sets of variables are symbolized by bold-face upper case letters (e.g. X , Y ) and their 

values are represented by the corresponding lower case letters (e.g. x, y). We use the notations 

P (X ) and P (X  = x ) to denote the probability distribution for X  and the probability that X  

takes the value x, respectively. Commonly, P (X  \ 7) refers to the conditional distribution of X  

given Y and P (X  | 7  = y) refers to the conditional distribution of X  given 7 = y. Finally, 

E (X ) stands for the expectation of X  when the context has made the corresponding 

distribution clear.

1.2.2 Representation

Bayesian networks are directed graphical models, in which nodes represent random variables and 

the arcs represent conditional dependence/independence assumptions. An example of a Bayesian 

network is presented in Figure 1.1. This network shows the effects of smoking and pollution on 

lung cancer.

Let X  = { X] X N } be a set of random variables, where we topologically order the nodes 

(parents before children) as 1,..., N  in the network. Each node, X t , directly depends on its 

parents P ar{X i) , and a set of Conditional Probability Distributions (CPD.s) parameterizes this

dependency. In the case of discrete variables, this distribution is often stored as the Conditional 

Probability Table (CPT), i.e. a table where the probabilities are given for all the combinations of 

values that the variable and its parents can take. The CPTs of the Bayesian network shown in 

Figure 1.1 are given in Table 1.1 and Table 1.2.
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Introduction 5

According to an alternative definition of independency for Bayesian networks known as the 

Directed Local Markov Property, Pa r ( X j) provides a set of parents of X t that render X :

independent of all its other parents. After giving these specifications, the joint probability 

distribution can be calculated as follows:

P ( X l, L , X H) = P ( X t)P(X1 \ X l)P(Xl \ X l, X 1) . . .P (X„\Xl, . . . ,XN_,)

= n ^ , | A T , ;M)
1= 1

= f [ P i X i \Par(Xl)) (1 .1)
1 = 1

The first line is defined via the Chain Rule of probability and rewritten in the form of the second 

line. Finally, the third line follows because node Xt is independent of all its ancestors, X x j ],

given its parents. The last equation holds only if the network is arranged according to Pearl's 

algorithm, which is discussed next.

Table 1.1. The CPTs for the parent nodes in the Bayesian network presented in Figure 1.1

5 P(S)

True 0.3

False 0.7

P P(P)

True 0.6

False 0.4

Table 1.2. The CPT for the node C in the Bayesian network presented in Figure 1.1

S P C P ( C\ S , P)

True True True 0.8

True True False 0.2

True False True 0.7

True False False 0.3

False True True 0.4

False True False 0.6

False False True 0.1

False False False 0.9
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Introduction 6

1.2.3 Network construction

We are now ready to formally define how to construct a Bayesian model. The condition that 

Par(Xj) cr {X,,...,Jf(. ,}allows us to construct a network from a given ordering of nodes using 

Pearl’s Network Construction Algorithm [13]:

Algorithm 1.1.

1. Choose the set of relevant variables, X , that describe the domain.

2. Choose an ordering for the variables, X  = {X,, . . . ,XN) .

3. While there are variables left:

a. add the next variable, X t , to the network;

b. add arcs to the X t node from some minimal sets of nodes already in the network, 

Par ( Xj),  such that the following conditional independence property is satisfied: 

P ( X j \ X ],...,X i ]) = P ( X t \ Par (X!)) , where X ],. . . ,Xi_] are all the variables 

preceding X t , including Par (Xj);

c. define the CPT for X j .

Pearl’s network-construction algorithm satisfies the Markov property and expresses conditional 

dependencies in probability distributions.

1.2.4 Bayes’ theorem

Bayesian philosophy originated from an interpretation of Bayes’ theorem, which adjusts the 

probability of a hypothesis, h, conditioned upon some evidence, e, in the light of new 

information:

P ( / , | e ) - P ( e | / , > P W  (1.2)
P(e)

Each term in Bayes' Theorem has a conventional name as given below:

-  P(h) is the prior probability, because it does not take into account any information about 

evidence, e.
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Introduction 1

-  P(h\e) is the posterior probability, because it is derived from or depends upon the 

specified value of evidence, e.

-  P(e\h) is the conditional probability of seeing the evidence (e) given that the hypothesis 

(h) is true; as a function of h given e, it is also called the likelihood function.

-  P(e) is the prior or marginal probability of e, and acts as a normalizing constant. It can be

calculated as P(e) = ^  Pie \ hj )P{hi) .
i

Pie  I h)
In addition, the ratio---------- is sometimes called the standardized likelihood.

P{e)

As a simple example, Bayes' theorem helps to show that, for rare conditions, the majority of 

positive results may be false positives, even if the test for that condition is (otherwise) reasonably 

accurate. For instance, a drug test is performed on athletes in Olympic Games. Suppose that the 

test has a reasonable success rate:

if a tested athlete has taken the drug, the test accurately reports this a “positive” 80% of 

the time, and

- if a tested athlete has not taken the drug, the test accurately reports this a “negative” 99% 

of the time.

According to the database, however, only 0.1% of the athletes have taken drugs (z'.e. with 

probability 0.001). Now, these probabilities are sufficient to define joint probability distribution. 

Let h be the event that the athlete has taken the drug, and e be the event that the test returns a 

positive result. Using Bayes' theorem, we are able to calculate the probability that he has taken 

the drug:

P(D = Yes\T = P,s )  -  P(T = PoS \D = YeS)P(D = Yes)
P(T  = Pos |D  = Y)P{D = Y) + P{T = Pos \ D = N)P{D = N)

0.8x0.001
0.8x0.001 + 0.01x0.999 

0.074

Hence the probability that a positive result is a false positive approximately (1-0.074) = 0.926.

The application of Bayes’ theorem to obtaining posterior distributions will be investigated 

further when we discuss Bayesian learning and inference.
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1.3 Contributions

The main contributions of this thesis are listed below.

1. It applies path analysis for optimal selection of soft sensor variables.

2. It develops a hybrid soft sensor for on-line estimation of a quality variable in the froth

treatment process.

3. It develops an EM-based Bayesian framework that is robust to data contaminated with 

measurement noises.

4. It proposes using the Bayesian method as a novel approach for soft sensor development.

5. It formulates a Bayesian EIV framework which detects and handles outliers.

6. It represents temporal models using hybrid dynamic Bayesian networks to estimate model

parameters and to represent multimodal processes.

1.4 Thesis outline

A hybrid soft sensor for on-line estimation of a quality variable in the froth treatment process is 

developed in Chapter 2. Although special attention is given to one industrial case study, this 

chapter will serve as an introduction into soft sensor development in general.

The rest of this thesis is concerned with formulating the soft sensor problem in a Bayesian 

framework in order to overcome the typical limitations of conventional soft sensor development 

methods. These limitations will be addressed in Chapters 3 and 4. Chapter 3 discusses the 

problem of parameter estimation biased by noisy measurements. We provide a brief overview of 

Bayesian learning, and then present an EM-based Bayesian framework which is robust to noise- 

contaminated data sets. This approach is applied to estimating the model parameters of a three- 

tank system, which will serve as an experimental example throughout this thesis. Results are 

compared to the estimates obtained from the classical Least Square Regression and Total Least 

Squares methods. Existence of outliers and missing measurements in data sets are discussed in 

Chapter 4. In that chapter, first we will review some of the existing treatments of outliers and 

missing values. Next, we will define the concept of Bayesian inference and give a quick 

introduction to inference algorithms. The main contribution of this chapter, however, is an
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Introduction 9

explanation of how to deal with outliers and missing values using the Bayesian approach. We 

compare the Bayesian approach with others through experimental and industrial evaluations.

We next turn our attention to Bayesian models which represent dynamic processes. Chapter 5 

provides an overview of learning and inference in dynamic Bayesian models. Later sections of 

this chapter focus on Switching Kalman Filters as an example of a hybrid dynamic Bayesian 

model, i.e. a model that contains both discrete and continuous variables. Further, the problem of 

multimodal processes is solved using switching Kalman filters.

The thesis will conclude in Chapter 6 with a discussion of the most important results and with 

some suggestions for future research.

1.5 A note on software

Most of the algorithms and examples in this thesis have been implemented using Bayes Net 

Toolbox (BNT), which is an open source MATLAB package available at 

http://bnt.sourceforge.net/. Moreover, the probabilistic frameworks for nonlinear systems and 

non-Gaussian variables have been developed in WinBUGS. A free educational version of 

WinBUGS can be downloaded from http://www.mrc-bsu.cam.ac.uk/bugs/.
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Chapter 2

Soft Sensor Development for the Froth 
Treatment Process

This chapter discusses the issue of the hybrid modeling in soft sensor development. The 

theoretical aspects and steps in soft sensing are illustrated through an industrial case study. The 

ultimate goal of this effort is to develop an inferential model for the froth treatment process and to 

enhance on-line estimation of a quality variable through this application. Due to the lack of data 

measurements or some other required information, we are not able to develop a complete first 

principles model. Instead, we use our basic understanding of the process to form the model 

structure for developing a reliable soft sensor. Having selected an appropriate model structure, 

parameter estimation techniques are applied to it to obtain a hybrid inferential model. The 

reliability of developed model is then verified by evaluating its prediction performance on both 

off-line and on-line data of froth treatment process.

2.1 Introduction

The difficulty in monitoring key quality variables is that they are often not available on demand 

due to limitations such as the low reliability or high installation and maintenance cost of the 

equipment. There is a need to develop inferential models to provide continuous on-line 

estimations of the variables that can otherwise be measured only after several hours of lab 

analysis. A soft sensor [1,3] can infer process state and product quality variables from readily 

available process measurements. There are several advantages of soft sensors in comparison with 

traditional instrumentation.

1. They give more insight into process through capturing the information hidden in data.

2. They are emerging technology which allows industrial users to:

12
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Soft Sensor Development for the Froth Treatment Process 13

a) improve productivity [5],

b) become more energy efficient [13],

c) reduce environmental impact [14], and

d) improve business profitability by reducing the production cost associated with off-spec 

products [10].

3. They are easy to maintain.

4. They involve no capital cost.

Since the mid 80’s, there has been growing interest in the use of soft sensor technology for 

industrial applications [15]. The overview of soft computing provided in [15] distinguishes seven 

areas of soft sensor application in process engineering:

Diagnosis of process operations 

Monitoring and analysis of process trends 

Intelligent control

Heuristics and logic in planning and scheduling of process operations 

Modeling languages, simulation and reasoning 

Intelligence in scientific computing 

Knowledge based engineering design

Regardless of the field of application, there are mainly three types of soft sensors available:

1. White box or first principles models: First principles modeling [4,6,8] is based on formulating 

and solving mass or energy balances on chemical process systems. Although first principles 

models have many advantages, they are the least common soft sensors in existence today. 

Since the large number of measurements needed are not often available in the industrial 

applications, not all the terms in the macroscopic balances are exactly or even partially 

known. Even when critical information about a process is available, the computation time 

may become excessive for complex chemical systems.

2. Black box models: Black box modeling [12,18] is a purely data-driven approach, in which 

process knowledge is not included in the development of soft sensors. These models are 

useful if a physical understanding of the system is absent or not relevant.

3. Gray box models: If the process knowledge is incomplete, the gray box models [2,13,16] 

combine both first principles and black box modeling. In this approach, also known as hybrid
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modeling, black box models are used only to represent the unknown terms of mass or energy

balances or other first principles equations.

A soft sensor development project is an iterative process consisting of collecting process data, 

cleaning them up, developing a soft sensor model, and evaluating the model performance. If the 

performance is acceptable, the sensor will be placed on-line. A less satisfactory verification may 

require starting over, or at least requires a close examination of each development step.

To illustrate the discussed methodology in on-line estimation of a quality variable using the 

gray box approach, we provide one industrial case study. This chapter will be divided into three 

main sections with the first part containing background on the process. This will include the 

summary of the froth treatment process, an introduction to existing Naphtha to Bitumen ratio 

(N:B) measurements, and evaluation of their performances. The second section will be the 

development of soft sensor including first principles and path analysis. Finally, the prediction 

performance of the developed soft sensor will be compared with the performance of the current 

measurements.

2.2 Process description

2.2.1 The froth treatment process

Hot water is added to oil sands, and the resulting slurry is piped to an extraction plant where it is 

agitated and oil is skimmed from the top. The combination of hot water and agitation releases 

bitumen from the sands, and allows small air bubbles to attach to the bitumen droplets. The 

bitumen froth floats to the top of separation vessels, and is further treated to remove residual 

water and fine solids. Bitumen is much thicker than conventional crude oil, so it must be either 

mixed with lighter petroleum (either liquid or gas) or chemically split before it can be transported 

by pipeline for upgrading into synthetic crude oil [19]. In the froth treatment process the bitumen 

froth is diluted by adding a gasoline-like product called naphtha. Diluted bitumen froth is then fed 

into a combination of Inclined Plate Settlers (IPS) and centrifuges to remove contaminants. 

Generally, the undiluted feed is divided into two parts; one goes through two stages of 

centrifuges, while the other one goes through IPS. The IPS underflows join the froth from the 

froth tank to form the feed to the first centrifuge stages. A schematic figure of the froth treatment 

process is given in Figure 2.1.
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Figure 2.1. Part of a process flow diagram of a froth treatment plant

2.2.2 Existing measurements

It is very important to maintain the Naphtha to Bitumen ratio (N:B) in feed streams at certain 

levels so as to achieve effective and efficient separation at an affordable cost. There exist three 

kinds of Naphtha to Bitumen ratio measurements in diluted froth fed to the first centrifuge stage:

-  Reffactometer: On-line physical instrumentations

-  Calculated Tags: On-line calculation algorithms

- Lab Data: References for N:B estimation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Soft Sensor Development for the Froth Treatment Process 16

Lab data 
Refractometer 
Calculation tag

Lab data

Figure 2.2. Scatter plot comparison of existing N:B measurements

N:B is a key quality variable that is not available “on demand” and is available only after 

several hours of lab analysis. For this reason, refractometer and calculation tags have been used to 

provide on-line N:B estimation and increase control efficiency. Lab data is used to evaluate the 

accuracy of N:B ratios given by refractometers and existing calculation algorithms.

Outputs of refractometer and calculation tags are compared with lab data in Figure 2.2. It is 

clear that existing measurements are not accurate enough. Specifically, the calculation results are 

lower than the lab data, and smaller N:B ratios than true values were used in N:B ratio 

controllers. This under-estimation resulted in the addition of more naphtha than required, and 

consequently increased the operating cost for this plant. As a result, there is a need to improve the 

accuracy of on-line N:B estimation.

2.3 Soft sensor development

Our overall purpose is to increase bitumen production while reducing naphtha usage via better 

N:B measurements. In order to achieve this objective, we. are interested in deploying soft sensor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Soft Sensor Development for the Froth Treatment Process 17

technology to our problem.

Presently, however, due to the complexity of the system and the interrelation of centrifuge 

stages with IPS units, we do not have a fundamental and complete understanding of the process. 

Thus, we are interested in the gray models that use first principles to search for an appropriate 

model structure, while historical data reveal the relationship between N:B ratio and on-line 

measurable process variables to develop soft sensors with improved accuracy. The data collection

process is important because data quality is crucial for the development of reliable models. Our

data was collected by automated data historians. First, our efforts were focused on cleaning and 

preprocessing data in order to achieve a data set which adequately represents the process for the 

normal operation, so that reliable data would be used to develop and validate the sensor.

2.3.1 First principles

To estimate the N:B in the diluted feed to the first centrifuge stage, mass balance equations for

naphtha and dry bitumen are formulated as follows:

F4p 4Wb4 = FxpfVbx+F3p 3Wb3 Dry Bitumen (2.1)
F4p 4Wn4 =F2p 2+F3p3Wn3 Naphtha (2.2)

where:

- F t: Undiluted feed flow rate

-  F2: Under-flow rate from IPS

- F3: Naphtha flow rate

-  F4: Diluted feed flow rate 

p i : Density

Wbj : Weight ratio of dry bitumen 

Wni : Weight ratio of Naphtha.

Combining balance equations we have:

N B -  F2p 2+F3p3Wn3 _ F2p 2 + F3p 3Wn3 
Fxp xWbx+F3p 3Wh3 F4p 4Wb4

In this equation, F2 and F4 are the only variables for which we have measurements. Based on
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some understanding of the physics of the process, we need to make four initial assumptions in 

order to estimate the remaining unknown variables.

1. The Naphtha to Bitumen ratio of the product and underflow streams of the IPS I and EPS II 

are almost the same as the measured N:B’s in the corresponding diluted froth feeds to them.

2. Although we know that the diluted froth density, naphtha density, product density and 

underflow density vary from time to time, we first consider them as being constants. We will 

come back to this assumption and adjust the effects of density changes using correction 

factors.

3. We can estimate the composition of the product streams as follows:

(2 .4 )

(2 .5 )

4. Considering dynamic equations around IPS vessels, the flow rate of the product streams can 

be estimated:

dh'
I x P ' * - F ' > P \ - F \ P \ = A ' — p \

dt
.dh'F'sP'^A'— p'^F' tP ' t -W n

J i P \ i - F " 5p " 5- F " i p " i = A " ^ p " h

(2.6)

dt
.dh"

F f p f = A " — p " in + F" i p ' \ - f p " dil 
dt

(2.7)

Based on these initial assumptions, the amount of Naphtha in the IPS underflow stream is then 

estimated from Equation 2.8:

^ F \ P \ - F \ p \ W n \ + ^ F \ p \ - F \ p \ Wn"i (2.8)

IPS 1 IPS II
where:

*+

T  =  ± J ,
i=\
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Prediction of N:B based on the first-principles model requires the measurement of the 

densities and the exact estimation of Naphtha content in the IPS underflows. In the absence of 

these measurements, gray box modeling of the process is considered where a new function is 

defined to represent the black box part of the model. Combining initial assumptions with 

Equation 2.3, the N:B estimation model is formulated as follows:

We cannot determine how much each variable influences the predicted g, based only on our 

understanding of the process. As a result, the sensitivity of g to each input variable has been

on the accuracy and robustness of the prediction.

2.3.2 Path analysis

The basic idea o f  path analysis

There is an entire methodological/philosophical area of science devoted to causal theory. This 

area of study concentrates on theories regarding how a researcher can conclude whether X 

actually causes Y. Given an output variable, Y, and a list of several input variables, X, 

correlations between variables are calculated by regression analysis. It is known, however, that 

the existence of a causal relationship cannot be concluded from a significant correlation 

coefficient. Path analysis, which is an extension of regression analysis, provides a framework for 

the researcher to think more carefully about how the X and Y variables are related, as well as how 

the X variables are related to each other. Generally, path analysis is the combination of assumed 

causal theory with empirical evidence that can:

]\jg — + F3p fV n  3
F,P,WbA

NB  =
F2 + 0 ^ 3/7 3 ^ 3

(2.9)

It is assumed that g  = FA(^ )WbA is a function of some of the known process variables.

tested by the use of “path analysis” to identify the known variables having the largest influence
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Figure 2.3. An example of path model

1. provide a graphical way to represent the assumed theory;

2 . provide a way to empirically estimate whether the assumed relationships are positive,

negative, and importantly to test whether the relationship is zero and hence not supported by

the data;

3. provide a way to estimate the assumed causal effect that one variable has on another through 

its assumed causal effect on other variables; and

4. prove whether the experimentally changed input actually causes the output changes.

As far as non-experimental data is concerned, however, path analysis has some limitations such 

as:

1. uncertainty whether one input variable actually causes the output,

2 . difficulty in determining the direction of causal order between variables, and

3. inability to distinguish between models that result in identical correlation patterns.

Key terms and symbols

In this section, we first introduce the main concepts which are important to the understanding of 

the path analysis. Key terms and symbols of path analysis are defined as follows:

Path model. A  diagram relating independent, intermediary, and dependent variables as shown in 

Figure 2.3.

Causation: A  straight, single-headed arrow represents the assumption that the variable at the base 

of the arrow is a cause of the variable at the head.

Correlation: A  curved, double-headed arrow represents an unanalyzed (spurious) association 

between two variables. This association is correlation, a result of causal variables that are not 

part of the model of interest.
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Causal paths'. Causal paths to a given variable include the direct paths from arrows leading to it 

and correlated paths from endogenous variables correlated with others which have arrows leading 

to the given variable.

Exogenous variable: A variable whose variability is assumed to be determined by causes outside 

of the model. No attempt is made to explain the variability of exogenous variables or their 

relations with other exogenous variables.

Endogenous variable: A variable whose variability is explained by exogenous or endogenous 

variables in the model.

Path coefficient'. A standardized regression coefficient showing the direct effect of an 

independent variable on a dependent variable in the path model. The symbol, p j t , is the path

coefficient for A. a X } . Thus when the model has two or more causal variables, path

coefficients are partial regression coefficients which measure the extent of the effect of one 

variable on another in the path model, using standardized data or the correlation matrix as input. 

Effect decomposition'. Based on assumed causal relationships, any bivariate correlation between 

two variables can be broken down into a series of effects. Path coefficients may be used to 

decompose correlations in the model into four pieces.

1. Direct Effect is the influence of one variable on another that is unmediated by any other 

variable, i.e. each single-headed arrow represents a direct effect.

2. Indirect Effect is an effect that is mediated by at least one intervening variable.

3. Unanalyzed is a correlation involving unanalyzed associations among predetermined 

variables.

4. Spurious is a correlation due to joint dependence on common or correlated variables.

In general,

-  Total effect = Total causal effect + Non-causal effect

-  Total causal effect = Direct effect + Indirect effect

An illustrative example

To illustrate our discussion of path analysis, we consider the following regression model:

Y — p YlX  i + p Y2X  2 +... + p YnX n + p Yee (2 .10)
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where X t ’s and Y are standardized variables.

The correlation coefficient between Y  and X t can be constructed from the path diagram:

where,

vd : Contribution from direct effects 

v( : Contribution from indirect effects 

vi(: Contribution from unknown sources

Based on variance decomposition, we can define two useful indices:

1. The completeness index of the selected variables is formulated as yc = vd + v(. and bounded 

from 0  to 1. yc indicates the portion of output variance that can be explained by the selected 

input variables.

| V -  |
2. The significance index of the direct effect is formulated as yd = 1 --------- — . yd indicates the

I |

portion of the effects represented by the direct effects[9].

Application o f  path analysis to the identification o f  g  function

Many measured variables should be investigated to identify the ones having the largest influence

n n

(2.11)

We also need to study variance decomposition to gain more information about effects.

1 = Var(Y) = Far £  p YiX i + p Yee

n ni s  PyfikPYk +  P n
i= I  * = I

n n n- 1

X  P r ,  +  2 X  X  P r S i t P n  +  P r e
;'=! k=i+\

=vd +vl + v,u (2.12)
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on accuracy and robustness to predict g, = F4( F y  )Wb4. The output variable g  is estimated as
/  Pi

follows:

Fi +  ( Vo )F,P,Wn, , F2H l/ 0 )F>p , m i
NB =  L E l .------------ => g  = Ft ( p y  )Wb, =  l y - -----------  (2.13)

Ft (P‘/ n )Wb, 7 ' - NB
/  Pi

Using lab data, we calculate the direct path coefficients to find the main contributors to g. It 

can be difficult, however, to select the optimal set of variables to be used as inputs, because there 

are many possible measured variables affecting g. The direct effects on 

g, = g(F 2, F '2, F "2, F3', F3 , F4, NB , NB  , Ww5, Ww"5, ,  7 ,, F^pfTn^) are reported in Table

2.1. According to the coefficients of Table 2.1, we may choose F$ , F ' \ , F4, F2, and F2pfV n2 

as main contributors. Direct path coefficients of the new path diagram, g 2 , are presented in Table

2 .2 .

Table 2.1. Direct effects on gi

Variable Path Coefficient
F '1 2 0 .0 1 1 2

F 'r i -0.1848
NB' -0.0127
Ww'5 0.0335

-0.0321
F^pfVn^ 0.4827

0.8853
f ; 0.0507

F "  3 -0.2237
NB" -0.0477
Ww"5 0.0040

Ji -0.0875

f 2 0.1571
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Table 2.2. Direct effects on g2

Variable Path Coefficient
F '3 -0.2070

F" 3 -0.2642
F3p 3Wn3 0.5175

F< 0.8373

f 2 0.1953

Table 2.3. Summary of indices

7c 7d

gi 0.7502 0.6577

g2 0.7123 0.6362

In order to decide on the most suitable model for on-line implementation, the completeness 

and significance indices of the selected variables for g, and g 2 are calculated and given in Table

2.3. The first column of the table shows that the selected variables for both g, and g 2 can 

explain most of the variability of g  function. The second column indicates that the source of 

variability is isolated and can be identified. In addition, the completeness index related to g, is

not considerably greater than the one corresponding to g 2. These results indicate that the 

variables presented in Table 2.2 are sufficient to explain most of the variability in the g function. 

This way, a trade-off between a low modeling error and model complexity can be made.

2.3.3 The inferential model

We also reap the benefits of our process knowledge to explore the possible structures of g 2:

NB = ----------------F2+ dxF3p 3Wn3----------------
o2f 2+ e3F3p 2wn3+e4F4+ o5f  \ + ebF  n3

Now, data fitting techniques such as direct non-linear regression can be used in Equation 2.14 to 

estimate model parameters.
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2.4 Performance evaluation

2.4.1 Off-line results

Altogether 1751 data points have been used to train and evaluate our soft sensor. The proposed 

method was applied to the timed data sets and the model was developed using 1151 data points 

collected from July 2003 to March 2004. The model performance will be verified using a new set 

of records collected from April 2004 to June 2005. Figure 2.4 presents scatter plot comparisons of 

each N:B measurement in relation to the lab data. The ideal case would be for all the data points 

to lie exactly along the diagonal, indicating that the model and the lab data are exactly the same. 

It is obvious that estimated N:B values from the soft sensor fit the lab data much better than the 

ones from calculation tags. Figure 2.5 depicts a zoomed view of the soft sensor and refractometer 

outputs shown in Figure 2.4. This zoomed figure reveals that the soft sensor provides reasonably 

successful prediction followed by capturing changes in both measured and quality variables.

Figure 2.4. Scatter plot comparison of different N:B measurements in off-line verification

Soft sensor

 Lab data
• Refractometer 
° Calculation tag X

o

Lab data
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Figure 2.5. Zoomed Figure 2.4 around dashed circle

Table 2.4. Mathematical comparison of N:B measurements on off-line testing data

Refractom eter Calculation
Tags

Soft
Sensor

Mean Absolute Error 0.0638 0.2032 0.0269

Standard Deviation 0.0504 0.0409 0.0367

Mean Squared Error 0.0057 0.0434 0.0014

There are two different criteria for evaluating the performance of an instrument: accuracy and 

precision. Accuracy is represented by the average of absolute errors, and precision is usually 

expressed through the standard deviation of errors. Mean absolute error is the extent of agreement 

between an observed variable and the reference value for the parameter being measured. Small 

values, corresponding to high accuracy, can be defined as a combination of high precision and 

low bias. Standard deviation measures how spread the values in a data set are. A large standard 

deviation indicates that the data points are far from the mean and a small standard deviation
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indicates that they are clustered closely around the mean. Besides, mean squared error is 

commonly used to indicate the integrated performance of accuracy and precision.

To analyze the prediction error for each approach one can see their mean absolute error, 

standard deviation, and mean squared errors presented in Table 2.4. Since the soft sensor is both 

more accurate and more precise, according to the results presented in this table, we conclude that 

the developed soft sensor provides better estimation with less mean squared prediction error.

2.4.2 Implementation results

The developed soft sensor has been undergoing on-line tests since June 9, 2006. Soft sensor and 

refractometer measurements from June 9, 2006 to January 15, 2007 are presented in Figure 2.6 

and Figure 2.7, respectively. The error analyses for this period are presented in Table 2.5. 

Although refractometer and soft sensor are comparable in terms of mean absolute and mean 

square errors, trend comparisons in Figure 2.6 and Figure 2.7 reveal that the refractometer records 

essentially a straight line while the soft sensor does capture significant changes much better.

Lab data 
Soft sensor

CO©3as
>
CD
:z :

Time

Figure 2.6. Trend comparison of lab data and soft sensor measurements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Soft Sensor Development for the Froth Treatment Process 28

Lab data 
Refractometer

CO0)3
OS
>
CD
;z :

Time

Figure 2.7. Trend comparison of lab data and refractometer measurements

Table 2.5. Mathematical comparison of N:B measurements on on-line data

R efractom eter Calculation
Tags

Soft
Sensor

Mean Absolute Error 0.0453 0.1777 0.0394

Standard Deviation 0.0287 0.0603 0.0492

Mean Squared Error 0.0045 0.0366 0.0036

To conclude this section, we summarize the soft sensor development procedure described 

above in the one-step regression flow chart presented in Figure 2.8.

2.5 Conclusion

N:B is a key quality variable that is not available on demand but only after several hours of lab 

analysis. For effective and efficient control, on-line N:B estimation is required. In First Stage 

Centrifuge, Refractometer results are not reliable or accurate enough. In addition, existing
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calculation results are lower than those found in lab data, and smaller N:B ratios have been used 

in N:B ratio controllers. For these reasons, the accuracy of N:B measurements should be 

improved. In order to achieve this objective, we have deployed soft sensor technology to our 

problem. Our soft sensor development project is an iterative process consisting of collecting 

process data, cleaning them up, developing a soft sensor model, and reviewing the model‘s 

performance. By scatter plot comparison and error analysis of the developed soft sensor and 

existing measurements, we have concluded from our test data sets that our developed soft sensor 

does improve the estimation accuracy of N:B.
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Select training data set

Decide on model structure

Do error analysis

Test model on validation set

Make initial assumptions 
o f a model

Estimate model parameters (0i, 02, 03, 
04 , 05, and 06) using one non-linear 

regression step

NB =

Predict N:B for future process data using

02F2 + 0,F,pfVn, + 04F4 + 65Fj + 06F^

Figure 2.8. The flow diagram of the one-step method for soft sensor development
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Chapter 3

Bayesian Modeling for 
Error-in-Variable Problem

This chapter addresses the problem of parameter estimation from noise-contaminated input and 

output data. First, we focus on linear regression methods, since an extension to non-linear 

regression is straightforward using locally weighted learning approaches. Regular least squares 

regression and total least squares (TLS) are presented as classical approaches to estimating 

parameters. In these approaches, the accuracy of the estimated parameters suffers from noisy data 

sets and/or the inequality of the error variances among different variables. We develop a Bayesian 

algorithm that automatically detects measurement noises and improves parameter estimation. We 

then demonstrate the effectiveness of the proposed approach on simulation examples as well as 

through a pilot-scale experiment.

3.1 Introduction

The mathematical modeling of chemical processes is a core aspect of the simulation and 

optimization tools used for design and control purposes. Using appropriate models is necessary in 

optimizing process operating conditions, improving process analysis, and designing control 

strategies. A common problem in the development of process models is determining unknown 

parameters. Reliable data fitting techniques [1] such as regression methods are generally used to 

estimate model parameters on the basis of available laboratory or process data.

In classical least squares methods it is assumed that the independent process variables have 

been exactly observed and that the only dependent variable is noisy. However, the existing 

measurements, from which the parameters are estimated, are often contaminated with instrument 

error, process noise, and unmodeled process characteristics. As a result, the classical least squares

33
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approaches yield biased parameter estimates for most industrial applications. Alternative 

methods, such as the total least squares (TLS) [11] have been applied to compensate for the 

measurement noises. It has been proven that the TLS solution offers optimal parameter estimates 

in models with Gaussian measurement error, also referred to as classical Errors-in-Variables 

(EIV) models. Although TLS addresses input noise, it assumes that the measurement errors are 

independent random variables with zero mean and equal variances. Otherwise, the covariance of 

measurement noise needs to be known. In real world systems, this assumption is not necessarily 

true and, again, the resulting parameter estimates will be biased [10].

Bayesian modeling [3] is a statistical parameter estimation technique that improves the 

reliability of the estimation procedure. The most common approach to learning Bayesian models 

is to estimate the parameters using the Expectation Maximization (EM) algorithm [5,7,16]. The 

EM algorithm estimates parameters by iteratively finding the expectation of the parameters in the 

E step and then computing the maximum likelihood estimates of the parameters in the M step; 

this is done by maximizing the expected likelihood found in the E step. Our main contribution in 

this work is the development of a Bayesian procedure that improves parameter estimation in the 

presence of measurement noise in all variables (i.e. error in variables), and subsequent 

comparative studies using other classical methods. This framework automatically detects noise in 

the measured process data and identifies the model parameters. In addition, the Bayesian network 

is flexible in model structure, easy to expand, capable of dealing with irregularly sampled data or 

missing data, and powerful in many applications [14], This is further discussed in Chapter 4 of 

this thesis.

In this chapter, we first review the concept of Bayesian learning and then provide an 

overview of the learning algorithms. We next develop an algorithm to bring in Bayesian 

modeling as a new approach for coping with measurement noises in model parameter estimation. 

Finally, we evaluate our approach on numerical simulations and a pilot-scale experiment.

3.2 Bayesian learning

A Bayesian approach to building a model can be decomposed into two basic problems. The first 

concerns learning the model structure, M, , while the second concerns learning the parameters, 

0 ,  once the structure of the network has been selected. To define a learning problem, prior

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bayesian Modeling for Error-in-Variable Problem 35

distributions over model structures P (M )  and over the parameters for each model structure 

P (0 1 M )  are assumed. Assume a training data set of independent and identically distributed 

observations 2) = {X,,...,X N} . We can now use Bayes’ theorem to express the posterior 

distribution for 0  as follows:

For notational convenience, we drop the implicit conditioning on the model structure, which will 

not be used from now on. Therefore, Equation 3.1 can be written in the simplified form:

where P(®) is the prior distribution of © and P(3) 10 ) is the likelihood function.

To learn the parameters of a Bayesian model, we start off by defining the prior distribution, 

P (@), of the parameters taking into account all information aside from the data itself. The effect 

of data is then investigated in order to make some values of 0  less likely than others by 

multiplying the prior distribution with the likelihood function, P(2) | 0 ) .  The posterior 

distribution of parameters, P(® \ 5)), is thus more concentrated than the prior. The parameter 

values at the maximum of the posterior distribution are known as the Maximum A Posteriori 

(MAP), and are obtained from the following expression:

Within the limits of the large data set and non-informative priors (e.g. uniform), the MAP 

estimates are identical to the Maximum Likelihood (ML) estimators which can be expressed as 

follows:

The following learning problem demonstrates the advantage of MAP based on Bayesian

P(2) \® ,M )P(® \  M)
(3.1)

P(® 12)) =
P (2 ) 1 0 )P (0 )

p m
(3.2)

e MAP = arg m a x P (0 | 2 >) 
©

(3.3)

®ML = argmax P{fD | 0 )  
0

(3.4)

approach. Suppose that we want to compute the probability distribution of 0  = {#,, 02 }, which is
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a set of independent model parameters. Assume our data set is in fact independent of 02, so that 

P(3)  | 02) = P(S)) . The form of Bayes’ theorem convenient to our purpose of parameter 

learning is introduced as:

p(eve1\D)=aP(D\9ve1)p<fii)P{e1)
= a p ( 2 > \0 , ) p ( e t)p (e2) (3.5)

As discussed above, the ML and MAP estimates are, respectively, calculated as:

{ 3  ’ ' ) u l  =  a r § m a x  I Q \ )
0X,02

= arg max P(S) \ 6X) (3.6)

and,

}MAP = arg max P{01,02 \3>)
6\,Q2

= arg max P(2) 10X )P(6] )P(02) (3.7)
9x,92

Given the prior distribution of parameters, the generic solution of ML and MAP estimators is 

as plotted in Figure 3.1. Since a bound on the prior is computed as well in MAP estimation, a 

feasible region for both Qx and d2 is obtained by MAP estimators. But, 02 is inconclusive from 

ML estimator.

(a) (b)

Figure 3.1. (a) ML estimates, (b) MAP estimates
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3.3 Parameter learning algorithms

This section will focus on the problem of estimating model parameters when the structure of the 

model is given a priori. When learning parameters for a given model structure, two cases are 

usually considered:

1. Training data sets are complete, or

2. Training data sets are incomplete.

3.3.1 Known structure with complete data

Consider 3) = {X ,,.,.,X N} as a set of complete observed variables, each of which can be a

vector. Assume 3) is independently and identically distributed (iid). To compute the posterior 

distribution, P(Q \ 3)) , for a given data set, 3) , the likelihood of the data set needs to be 

formulated as:

N

P(3)\@) = Y l P ( X i |0 )  (3.8)
1=1

The goal of learning in this case is to find the maximum likelihood estimates (MLEs) of the 

parameters. These are obtained by maximizing the likelihood or the log likelihood:

Z(0) = £  log/>(*,. |0 )  (3.9)
;=i

If the observations include all the variables in the Bayesian network, the log likelihood scoring 

function decomposes into a series of terms for each node:

logP(X,  10 )  = log n P{X\-n I Par{X\»),QJ)

^  J (3.10)
= J 4\o g P (X t;J) \ P a r i X f \ 6 j )

J

where 6j are the parameters that define the conditional probability of X (J> given its parents,

P ar(Xu)). Now we need only to specify how to estimate the parameters of each type of CPD

given their local data, { 0 j ( X f \ P a r ( X - J)))} .
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3.3.2 Known structure with incomplete data

Dealing with incomplete data samples is a very common case for machine learning from real 

world. Two kinds of incompleteness need to be considered in Bayesian modeling:

1 . missing values: when the values for some attribute are simply absent from some of the joint 

observations; and

2 . hidden variables: when all the measurements for some relevant variables are completely 

missing.

Missing values in real life data sets are one of the challenges, that pose a serious problem in 

building models. Let Da <z 5) and Dm a  3) denote the observed and unobserved variables in the 

data set, respectively. To deal with missing data, the optimal method for learning probabilities is 

to compute the conditional density, P(@\D0) , where the observed variables, Do a  3), are 

incomplete. There is an exact Bayesian solution which is computationally intractable: the mixed 

densities of multinomial networks, .P(01 Dg) , must be computed over every possible completion

of the set of unobserved attributes, Dm , across all joint samples which are incomplete.

Making the strong simplifying assumption that the missing data are independent of the 

observed data, three useful approximation techniques for parameter estimation can be considered:

1. Expectation Maximization (EM) algorithm, an iterative and deterministic algorithm;

2. Gradient Ascent Training', and

3. Gibbs sampling algorithm, a stochastic sampling technique.

Here, we concentrate on the EM algorithm because of its several advantages listed below [16]:

-  It automatically takes care of parameter constraints.

It can handle priors easily.

-  It can handle deterministic constraints.

-  It is simple to implement.

However, some limiting factors still remain for the EM algorithm.

-  The estimated parameters may be the best locally, but may not be the best globally.

-  Point estimates of the parameters are obtained rather than their probability distributions.
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For incomplete data, the posterior distribution over the parameters of a model is no longer a

where Q is an arbitrary distribution over Dm . Starting from some initial parameters, 0 O, the EM 

algorithm alternates between maximizing F  with respect to Q and 0  , respectively.

Algorithm 3.1. Maximum Likelihood E M

0. Set 0 O arbitrarily; select a desired degree of precision, e , for 0 t+1; while 10t+] — 0^ |> £

complete the following two steps:

1. Expectation step: compute the probability distribution over missing values:

product of independent posteriors. This implies that the log likelihood cannot be decomposed as 

in Equation 3.10. Through marginalization, the log likelihood can be written as:

L (0 ) = logP(D a 10 )  = logY^P{D 0,D m | 0 ) (3.11)
D .

The basic idea behind EM is to apply Jensen’s inequality1 to Equation 3.11 to get a lower bound 

on the log likelihood, and then to iteratively maximize this lower bound [16]:

iOg £ ^ > . > A J © )  = io g X 0 (A .)

(3.12)

^ Q ( D m)P(Do,D m \0 ) - J ^ Q ( D m)lo g Q (D J
D ,

= F(Q, 0 )

argmax F (Q ,Q k) => Qk+f D J  = P(Dm \ Do, 0 k)
Q

(3.13)

2. Maximization step: compute the new ML estimate, 0 i+1, given P{Dm \ Do,& k) ;

arg max F(Qk+}, 0 )  = arg max £  P{Dm \De, 0 k) log P( Dm,D o \ 0 i+1) 0*+1 (3.14)
0 0 A.

j  j
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3.4 An illustrative example of the EM algorithm

In this section, a simple numerical example is presented to give more insight into the EM 

algorithm.1 Suppose X  reports the outcomes of a soft sensor which is used to classify the quality 

of a chemical product. The output of the sensor is divided multinomially into four categories, so 

that the observed data consist of:

Y = (Tp y 2 > T3 > T4) = (40.340> 85,35) (3.15)

To simplify the problem, we also assume that the following model represents the probabilities of 

each zone:

{/? = 1 ( 1 - 0 ) , P2 = 1  + 1 0 ^  = ld ,P A = ^ (1 -0 )}  for 0 < 0 < 1; (3.16)

Therefore, the ML parameter of this model is obtained by maximizing the likelihood function of 

Equation 3.17:

P{Y\0)= (yt+ y2+ y3 + y*V- (i (1 _ e)y  (i  + 1 e y  (i 9y  ( I (1_ e)y< (3.!7)
T,!t 2!t3!T4! 4 2 4 4 4

If we split the second zone into two different quality zones, Y  represents an incomplete data set 

from a five-category multinomial distribution. The new data set is specified as:

X  = (x,,x2,x3,x4,x5) (3.18)

where,

(x,,x4,x5) are known to be (y1, ,y 3,y 4) , and 

(x2, x3) need to be estimated from y 2 = x2 + x3

The posterior distribution over the parameters of the new model, represented by Equation 3.19, 

cannot be calculated as before, because:

p(2f|S) = (fL± ^± 5_ t^± M (I(1_8))».(ly,(Iey ,(le)«.(l(i_e)y, (3.19)
x , ! x 2 ! x 3 ! x 4 ! x 5 ! 4 2 4 4 4

1 The idea o f this example is taken from [5]
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Table 3.1. Parameter estimation in a numerical example using EM algorithm

k qM

0 0.500000

1 0.746622

2 0.782512

3 0.786467

4 0.786887

5 0.786932

6 0.786937

7 0.786937

This model is parameterized from incomplete data via the EM algorithm by alternating between 

the expectation and maximization steps:

0. Start from 0O = 0.5 as an initial guess.

1. Expectation step: compute the probability distribution over missing values:

x k+x = 340
f 1 1 /

■ 1 -
 

05

2 J *+land jc3 = 340 4

+ 1 ~ <55

1
+ - 0 k

2 4 ,2 4 J
(3.20)

2. Maximization step: compute the new ML estimate, 6 , given the estimated complete data

(40, x*+1, x*+1,85,35):

e K+x =
jc*+85

*3 +40 + 85 + 35
(3.21)

Table 3.1 gives the values for 6 after each k iteration, for k= 0,1,... ,7.

3.5 Bayesian modeling for error in variable

The principle and applications of the EM algorithm have been explained in detail. In this section,
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we propose an EM-based Bayesian framework for estimating the variances of measurement noise 

and capturing measurement errors to advance parameter estimation. To do this, we will put 

forward some ideas for improvement of the EM algorithm, based on iteratively freezing some 

parameters. To start with, we will partition the variables into Z  = (X , X ) to distinguish between 

measured and hidden variables of a model. Assume that both input and output measured vectors

are arranged in the rows of the matrix, X={X-[,...,X N\ . The hidden or noise-free variables are 

denoted as X° = |X ]°,...,X ^J , and the measurement noises are given by £■={<?,,...,ev} . Thus, 

we have:

X i ^ X °  + ei for i = (3.22)

The condition that Par{X°) cz { X ° ,. . . ,X f}  allows us to construct a Bayesian model for the

error-in-variable application using Pearl’s network-construction algorithm discussed in Chapter 1. 

While there are variables left:

1. Add the next variables, X t and X ?, to the network;

2. Par(X j ) = X ° ; and then

3. Add arcs to the X °  node from some minimal sets of nodes already in the network, P a r(X °),

such that the following conditional independence property is satisfied:

P (X °\X 'i,...,X'i_l) = P (X °\P a r(X °)), where X ', . . . ,X f  are all the variables preceding

X °, including P a r(X °).

To complete the definition of the model, we now need to define the conditional probability 

distributions (CPDs) for each of the nodes. A priori, the following standard assumptions about the 

underlying probability distributions are made:

et ~ N (  0,ef) (3.23)

Z,. ~ N (ji, + WiPar(Z i), a? ) (3.24)

where W is the regression matrix.

Combining Equations 3.23 and 3.24, the general form of CPDs for measured and hidden variables 

can be expressed as follows:
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IX, ~ N(x?,£t)
(3 25)

X ^ N i t f  + W f a r l X ' l l a f

Taking the following iterative steps, the Bayesian framework for error-in-variable applications is 

formulated:

Algorithm 3.2.

0. Start from initial guesses over regression matrices , W1(0), W f ,..., , and conditional mean

values f f f  , f f f  , . . . , j f f  ; Select a desired degree of precision, e, for Wt and jll . While

| - W ^  \> e  and | - j u f  |> £ do:

1. Freeze the regression matrices and conditional mean values; learn the updated model, using 

the EM algorithm to estimate the conditional variances of the noisy measured variables, e f  .

2. Freeze the conditional variances of the noisy measured variables £■'k); learn the updated 

model, using the EM algorithm, to estimate the regression matrices, W f+]), and conditional 

mean values, .

3.6 Simulation example: linear and non-linear models

As an illustration, let’s set out a simple network in which the model equation for noise- 

contaminated input and output variables is expressed as follows:

X ^ X f  + e, i = 1,2,3
' ' (3.26)

X ; = a0+atX° + a2X (;

where,

X x and X 2 are the measured input variables 

X 3 is the output variable 

X ° , X \ , and X 3 are the noise-free variables 

ex, e2, and <?3 are the measurement errors.
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Figure 3.2. Graphical model of Equation 3.26 

Table 3.2. Conditional probability parameters for the simulated linear model

Variable Parents Weight(W) Mean Variance

X ° node - - E (X x) _ o
<*\

X 2 node - - E (X 2) _ 0
2

X" node \ r  0 \ r 0
A . j ,  A  2 {ax,a2} a o ~0

X x node x ° 1 0

X 2 node x 2° 1 0 e2

X } node X I 1 0 £ 3

This structure is captured in the graphical model of Figure 3.2. Conditional probability

parameters for this model are discussed next and summarized in Table 3.2:

1. X x node'. The distribution on X °  is N (E (X x), (T°J .

2. Xj node: With a continuous parent, the conditional distribution of X x on X°  is

X l \X? = x ° ~ N (x ° ,V a r (e f) .

3. X 2 node: The distribution on X 2 is N  (yE{X2) ,0 2^ .

4. X 2 node: With a continuous parent, the conditional distribution of X 2 on X 2 is

X 2 | X °  = x°2 ~ N (x ° , Var(e2)).
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5. node: With continuous parents, the conditional distribution of X 2 on X °  and X 2 is

X 3° | X° = x°,X ° = x2 ~ N ( f ;  + w31x,0 + w32x2°,<7 3°) .

6. X 3 node: With a continuous parent, the conditional distribution of X 3 on X °  is

Z 3 1 X ° = x° ~ N (x°, V ar(e f) .

To provide a numerical example, the discussed model was created for the following specified 

values:

* “ -^ ( 0 ,1 )  e, ~ Af(0,(0.1)2)

X °  ~ N (0 ,2) e2 ~ N {0, (0.15)2) (3.27)

X ;  = 3 + 2X1 + x i e3 ~ N (Q> (°-2)2)

To evaluate the effect of the noise variances, simulation was repeated with ex ~ 7V(0,(0.31)2) , 

e3 ~ N(0,(0.5)2) , and e2 ~ 7V(0,(0.63)2) . The deviations of the estimates from the true values 

are compared among the different estimation techniques:

1. classical regression,

2. error-in-variable (EIV), and

3. Bayesian inference.

The estimated model parameters and error variances are presented in Table 3.3 and Table 3.4. 

Mean squared error (MSE) is commonly used to indicate the integrated performance of accuracy

and precision; therefore, the MSE of the estimates was evaluated and compared to assess the

performance of the estimation techniques under consideration. Results from the numerical 

example that summarize the MSEs of the estimates are compared in Figure 3.3. As expected, the 

MSE of the estimated parameters from the Bayesian approach is lower than those from regression 

and EIV. Under low noise levels, the MSEs are comparable, and the advantage of the Bayesian 

algorithm diminishes; however, under high noise levels, the MSEs of Bayesian estimates are 

significantly lower than those of the others. For low noise data, estimatess can be obtained 

reliably from the measurements alone, and recovering the noise-free variables does not improve 

the estimates further; however, for high noise data, detecting the measurement noises can 

improve the estimates more significantly.
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Table 3.3. Parameters of the simulated linear model

Noise level Method
Coefficients Mean Squared

a0 at a2 Error

True 3 2 1 -

Low
Regression 2.9864 1.9906 0.9748 3.0261e-004

EIV 3.0086 2.0074 0.9775 2.1163e-004

Bayesian 2.9867 2.0068 0.9884 1.1923e-004

True 3 2 1 -

High
Regression 3.0018 1.7915 0.8708 0.0200

EIV 3.1972 1.8904 0.8954 0.0206

Bayesian 2.9937 1.9034 0.9590 0.0037

0.025
I Reg. MSE 
I EIV MSE 

■ 1  Bay. MSE
0.02

0.015

0.01

0.005

Low noise level High noise level

Figure 3.3. The MSEs of the estimates of the simulated linear model
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Table 3.4. Conditional variances of each node in the simulated linear model

Noise level Method Variance o f  ex Variance o f  e2 Variance o f  e3

Low
True 0 .0 1 0.025 0.04

Bayesian 0.0096 0.0384 0.0406

High
True 0.1 0.25 0.4

Bayesian 0.0776 0.2397 0.4667

Next, the non-linear parameter estimation problem is presented. We show how to modify this 

procedure to recover noise-free measured variables and estimate the parameters in a model of 

form 3.28:

I Y = a0 + axX a> 

\Z  = bQ +bxYhl
(3.28)

The Bayesian network representing these equations is plotted in Figure 3.4 Selecting 

parameter vectors as a = {a0, ax, a2} = {5,1,2} and b = {Z>0, bx, b2} = {6, 2,0.5}, our approach is

evaluated through a simulated non-linear model. Since the EIV approach has been formulated 

only for linear relations between variables, we compare the Bayesian algorithm only with the 

classical least squares regression. Note that a novel EIV approach for non-linear parameter 

estimation using interval analysis is presented in [6], in which noise variances need to be assigned 

beforehand. An additional advantage of the presented Bayesian framework is that noise variances 

are also estimated from the measured variables.

Figure 3.4. Graphical model of Equation 3.28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bayesian Modeling fo r  Error-in- Variable Problem 48

0

0
>
2  3 0 
E 
E

CL o

m
aO a1 a2 bO b1 b2

I Model parameters Reg. estimates Bay. estimates

Figure 3.5. The estimates of the simulated non-linear model

As shown in Figure 3.5, the estimates using the Bayesian approach are more accurate than 

those using regression. This visual judgment is confirmed by the statistical comparison of MSEs 

presented in Table 3.5. This table indicates that the MSEs of the classical least squares regression 

are considerably larger than those of the Bayesian algorithm.

Table 3.5. Parameters of the simulated non-linear model

Method
Coefficients Mean Squared

a0 ax a2 bo b, b2 Error

True 5 1 2 6 2 0.5 -

Regression 5.5836 1.1336 1.8855 5.1068 2.2799 0.4872 0.2080

Bayesian 5.2053 1.1415 1.8966 5.8888 2.0803 0.4910 0.01529
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Figure 3.6. The configuration of the three-tank system

3.7 Experimental evaluation: three-tank system

Consider the multi-tank system shown in Figure 3.6 which consists of a number of tanks placed 

above each other. Some of the tanks have a constant cross section, while others are spherical or 

prismatic, therefore having a variable cross section. Liquid is pumped into the upper tank from 

the supply tank by the pump driven by a DC motor. The liquid outflows the tanks only as a result 

of gravity. The output orifices act as flow resistors.

The multi-tank system is related to liquid level control problems which commonly occur in 

industrial storage tanks. For example, steel-producing companies around the world have 

repeatedly confirmed that substantial benefits are gained from accurate mould level control in 

continuous bloom casting. Mould level oscillations tend to stir foreign particles and flux powder 

into molten metal, resulting in surface defects in the final product [8], In order to control the 

liquid levels, it is very important to have accurate measurements of the variables in the system.
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Assuming the laminar outflow of an “ideal fluid” for this three-tank system, the system of 

equations describing the process can be obtained as follows:

^  = C ^ - C 24W 2 (3.29) 
dt

where,

Vt : Fluid volume in the i‘h tank, i = 1,2,3 

-  q: Inflow to the upper tank

I f : Fluid level in the i"' tank, i = 1,2,3

C; : Resistance of the output orifice of ith tank

Liquid levels in the tanks are the state variables of the system. For the tank system there are 

four inputs: liquid inflow, q, and valve settings, C ,, C2,C 3. Therefore, several models of the

tanks system can be analyzed. Let's consider the steady state condition. The basic equation in this 

study is the mass balance equation:

q = C ,//"' = C2H 22 = C3H f  (3.30)

Sometimes, turbulence and acceleration of the liquid in the tube should be taken into account; 

therefore the general flow coefficients ( 0Ci ’s) are applied in Equation 3.30. In the case of laminar

flows, as mentioned above, we assume (Xi — 0.5 according to Bernoulli law. It is, therefore, 

possible to transform the non-linear system to a linear one:

C,2//, = C \H 2 = C3 //3  (3.31)

To formulate the relation between H 2 and the measured variables, Equation 3.31 can be 

rewritten as:

\ H 2 ,h , =  a \ +  a 2 ^ \\ (3.32)
1 H 2 M =b] + b2H 3
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The problem at hand involves parameter estimation of the simplified three-tank system, in 

which (Xj ’s have already been set to some constants. Our Bayesian framework is compared with

the two other parameter estimation techniques on three-tank data as shown in Figure 3.7. Results 

that summarize the values and MSEs of the estimates of various estimation methods are presented 

in Table 3.6. As expected, the Bayesian approach shows better performance in estimating the 

parameters of model 3.32, which partly represents the three-tank system.

Finally, to demonstrate the efficiency of the EM-based Bayesian framework on a real world 

non-linear model, our algorithm is applied to Equation 3.30 for the task of estimating the 

parameters for the non-linear model. The whole set of parameters representing the three-tank 

setup are estimated using classical regression and the Bayesian approach. The estimates are 

compared with values provided by the vendor. In Table 3.7, the estimated parameters and mean 

squared relative error (MSRE) of each method are shown. Since the parameters of this system 

have different orders of magnitude, the MSREs of the estimates are calculated instead of their 

MSEs to provide a fair comparison. Table 3.7 indicates the Bayesian parameter estimation 

approach performed around 10% better than the classical regression, thus validating the 

effectiveness of our de-noising framework. These experimental results are consistent with 

previous simulation results.

(a) EvidenceEvidence

(b) EvidenceEvidence

Figure 3.7. (a) Bayesian or EIV model of the three-tank system, (b) Regression model of the
three-tank system
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Table 3.6. Parameters of Equation 3.32

Method
Coefficients Mean Squared 

Errorax bx b2

True 0 0.7192 0 0.7049 -

Regression 0.0529 0.6165 0.0537 0.4567 0.0195

EIV 0.0218 0.8807 0.0071 0.7537 0.0072

Bayesian 0.0358 0.7611 0.0048 0.7750 0 .0 0 2 0

Table 3.7. Parameters of the three-tank system

Parameters Mean Squared

Method
C, xlO 4 a 2 C2 x lO 4 (X3 C3 x l0 4

Relative Error 

(%)

Vendor 0.5 1.8307 0.5 2.1857 0.5 1.8125 -

Regression 0.2637 1.3626 0.3101 1.4741 0.3329 1.4336 11.42

Bayesian 0.3438 1.6156 0.4896 2.2056 0.4156 1.7044 2.40

3.8 Conclusion

In this chapter, we have explored the problem of model parameter estimation from noisy input 

and output variables. Classical least squares regression and total least squares (TLS) have been 

discussed as traditional parameter estimation approaches. The principle and applications of the 

EM algorithm have been reviewed in detail. The EM-based Bayesian framework has been 

presented that is robust to measurement noise. This algorithm enables us to estimate the data 

noise variances and to recover noise-free variables. Numerical simulations and experimental 

examples have also been presented to demonstrate the efficiency of the techniques proposed. In 

the case of noisy data sets, results from the present study show that the Bayesian approach gives a 

better estimation of a model’s parameters than the regression and classical EIV methods.
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Chapter 4

Bayesian Inference for Outliers and 
________ Incomplete Data________

The objective of this chapter is to study the practical aspects of building and testing soft sensors, 

such as dealing with outliers and incomplete data. The concept of the Bayesian inference is 

introduced as a novel approach for soft sensor development, which can cope with these issues. 

The ordinary least squares (OLS), partial least squares (PLS), and robust regression are presented 

as other soft sensor models, ones which are commonly used in industrial applications.

Reviewing deletion and imputation methods, we show how OLS and PLS regression 

techniques deal with incomplete data sets. A brief introduction to existing outliers detection 

methods such as robust regression and box plot construction criteria are provided as well. 

Through comparison of the parameter estimates, the Bayesian and regression approaches are 

evaluated for their treatment of outliers, missing values, and non-normal measurement errors. The 

feasibility and performance of Bayesian approach is proven by demonstrating how well it can 

handle practical issues associated with various simulation, experimental and industrial cases.

4.1 Introduction

First Principle Modeling (FPM) is the preferred methodology for deriving a soft sensor; however, 

the main drawback of this approach is that it requires an exact knowledge of the process as well 

as accurate process data in order to calibrate the model’s coefficients. As a result, the most 

commonly used strategy for soft sensor development is to combine process knowledge and data 

fitting techniques to obtain empirical models. Statistical methods applied in soft sensor 

development can be broken into two main categories:

1. OLS regression, and

55
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2. Multivariate statistical techniques.

OLS regression is a simple and straightforward approach to explaining the relationship between 

variables. If the model’s error term is normally, independently and identically distributed, OLS 

yields the most efficient unbiased estimators for the model’s coefficients. It suffers from 

numerical problems, however when the input variables are strongly correlated. As a result, 

multivariate statistical methods such as partial least squares (PLS) [12,23] have attracted wide 

interest. PLS is a regression technique applied to linear polynomial models to simultaneously 

explain variations in both input and output variables and to maximize their covariance. This 

approach has been used for many industrial applications in chemical engineering, such as 

estimating distillation compositions and polymer quality variables [18,22].

Typically, a soft sensor model is built to make predictions for future cases in which only the 

inputs are known. Usually, the results of conventional model training techniques are condensed 

into a single set of weights that can be used for making further predictions. For this reason, most 

of the data-driven soft sensor approaches require complete data samples in order to work or 

produce valid results; however, it is common to have blanks in industrial data [17,22], because of 

sensor failure or different sensor acquisition rates. Another issue related to soft sensors is outliers 

[15,22], Outliers, which can be simply regarded as the data points that are located far from the 

rest of the data, are almost the same kind of problem as missing values and could be worse if not 

detected and deleted. Outliers occur frequently in industrial data sets and are harmful to the soft 

sensor models derived by regressions.

There are a variety of methods for handling incomplete and inconsistent data [2,3,15], but 

many of them are problem specific. Applying the Bayesian approach to soft sensors enables us to 

improve prediction results and overcome the problem of outliers and missing values in real world 

data. In contrast to classical statistical techniques, Bayesian modeling results in a posterior 

distribution over network weights [1,21]. If the input variables are set at the values for some new 

cases, the posterior distributions of model weights will give rise to a distribution over the output 

of the model which is known as the predictive distribution for this new case. Although the mean 

of the predictive distribution could be used for a single-valued prediction, the full predictive 

distribution reveals how uncertain this prediction would be. Additionally, Bayesian models 

handle incomplete data sets without difficulty because the dependencies among all variables are 

discovered through modeling [5,7,12,16].
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Figure 4.1. Types of reasoning

This chapter begins with an introduction to Bayesian inference theory and algorithms. Next, 

existing treatments for missing values and outliers are reviewed briefly. We then propose the 

Bayesian method as a novel approach for general problems of modeling and prediction in soft 

sensors. Following this, practical issues in soft sensor development are considered, and treatments 

of outliers and missing values are illustrated through simulations. Finally, the effectiveness of 

Bayesian techniques in comparison with OLS and PLS is verified for the industrial and 

experimental case studies presented in the previous chapters.

4.2 Bayesian inference

The most common task using Bayesian networks is probabilistic inference followed by 

computing the posterior probability distribution for a set of query nodes, given values for some 

evidence nodes. The different types of reasoning that can be performed by Bayesian inference are 

shown in Figure 4.1 and outlined below.

1. Diagnostic reasoning: Moving in the opposite direction of the network arcs, this typically 

infers causes of problems from past evidences and symptoms.

2. Predictive reasoning: Following the direction of the network arcs, this forecasts future beliefs 

about effects based on new information about causes.

3. Intercausal reasoning: When there are exactly two possible causes for a particular effect, 

represented by a v-structure in the BN, with knowledge of the effect the presence of one 

explanatory cause renders an alternative cause less likely.
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4. Combined reasoning: Performing diagnostic and predictive reasonings simultaneously, this 

predicts a query node whenever both its parents and children are observed.

Inference, or model evaluation, is the process of updating probabilities of outcomes based on 

model parameters and the values for the measured variables. Assume a training data set of 

independent and identically-distributed observations vectors, 3) = {X ,,...,X N} . Once we have

observed a set of evidence variables, X E, Bayesian inference uses the predictive distribution to

predict the variables of interest, X q :

P ( X Q\ X E,2)) = j p ( X Q\ ® , X E) P ( ® \ X E,3)) d® (4.1)

To illustrate this inference problem, we consider the relatively simple, but widely studied, 

problems of linear regression for independent and identically-distributed data. For simplicity, we 

shall consider a single output system as follows:

X N = f ( X n;®) + e  for n = l,...,iV —1 (4.2)

M

/(A r;® ) = £ e ,« > .(X ) = 0 > ( X )  (43)
1=1

where £ : iV(0,<72) is the independent and identically-distributed noise, 0  = ) is the

set of parameters, and O (X  ) = ($  (X  ) ( X )) are the fixed basic non-linear functions.

Least square regression is the classical approach to obtaining single-valued estimates for the 

parameters that minimize the error function defined by:

- E f e ^ X I / A . ; 0 ) - - ^ ! 2  <4 -4 >
^  n=1

To predict new values for X* — ^X"ew,...,X f^x J , the minimizer of error function, ®LS, is used 

to evaluate f { ^ X  ; 0  ̂  j .

The maximum likelihood estimation is another parameter estimation technique which 

maximizesP [ X N \ 3),®,<j2 j . If we assume a normal distribution for the noise term,

£n : vV(0, <72), the likelihood of all the data is given as:
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p f * , ,  I a e , < 7 2) = l * „ o ,< r 2)
n=1

2<72
(4.5)

Thus, the negative logarithm of the likelihood is:

- lo g P (A -„ |» ,e ,t72)=^-d log(2® T ! ) + - i T X { / ( ' V. ; ® ) - X»}2Z LG  n=i
(4.6)

Since the first term on the right hand side of Equation 4.6 is independent of 0  , minimizing the 

negative logarithm of the likelihood function is equivalent to minimizing the squared error 

function in the case of a normally distributed error.

Taking the prior distribution of parameters into account, MAP Bayesian estimates the most

method gives a probability distribution for X n™, it has been shown in [21] that the mean of this 

distribution is identical to the solutions of the penalized least square approach. The classical 

regression and MAP Bayesian predictions do not take into consideration the uncertainty over the 

parameters; however, in the predictive distribution for X f f  obtained from the true MAP 

Bayesian method the uncertain variables, 0 ,  are integrated out:

To conclude this section, we summarize the steps considered necessary in Bayesian inference in 

order to make a prediction:

1. Specifying the prior distribution of parameters,

2. Computing the data likelihood,

3. Computing the posterior distribution of parameters having observed the training data set, and

4. Computing the predictive distribution which will marginalize any uncertain parameters.

probable values for ©under the posterior distribution P (©  | 5),<72) . In terms of prediction, 

MAP Bayesian makes use of 0 MAP to determine P(^X'fK | X \ Q MAf>,(72 j . Although this

P ( X r  \ X \ $ , o 2) = \ p { x nNew \ ® , X \ a 2) p ( ® \ X \ $ , o 2)d® (4.7)
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(a) (b)

Figure 4.2. (a) A two-node chain, (b) A three-node chain

4.3 Inference algorithms

Regardless of the role of an inference system, two types of inference algorithms are applied:

-  Exact inference algorithms: By now, few algorithms have been designed to give an exact 

answer to a probabilistic query.

-  Approximate inference algorithms: For complex networks in which exact inference 

becomes computationally infeasible, approximate inference algorithms must be used.

Both exact and approximate inference algorithms are computationally complex and their 

computation time depends on different factors such as the structure of the network including how 

highly connected it is, how many undirected loops there are, and the locations of evidence and 

query nodes.

This section goes on to present brief descriptions of the main idea behind some of the viable 

exact and approximate inference algorithms; however, complete discussion of these is beyond the 

scope of this chapter.

4.3.1 Exact inference

We begin by considering a very simple inference task in two-node chains. Predictive and 

diagnostic reasoning is represented by the following computation:

1. If we have evidence about the parent node, X  = x, P(Y \ X  -  x) is obtained straight from the 

value in CPT.

2. If we have evidence about the child node, Y = y, a simple application of the Bayes’ theorem

can be used:

P ( X  = x \ Y  = y)  = P(Y = y  \ X  = x )P ( X  = x) 
P(Y = y )

=  a P ( x ) X { x ) (4.8)
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where, a  =    is a normalizing constant and X{x) = P(Y = y  \ X  = x) is the

likelihood.

Applying the same method, the inference task in three-node chains is performed as follows:

1. If we have evidence about the parent node, X  = x, the simple chain rule based on 

independencies implied in the network can be applied:

Now, let us take a look at the slightly more complex model demonstrated in Figure 4.3. This 

network represents a polytree in which we have at most one path between any pair of nodes. 

Assuming X  is the query node and E is some set of evidence nodes, the task is to update the 

conditional probability of X  by computing P ( X  | E ) .

Kim and Pearl’s message passing algorithm [12] is one of the appropriate ones applied to 

these types of singly-connected networks. This algorithm requires different types of parameters to 

be maintained and then used to do local belief updating in the following three steps:

1. Belief updating,

2. Bottom-up propagation, and

3. Top-down propagation.

(4.9)

2. If we have evidence about the child node, Z = z, the combination of Bayes’ theorem and the 

chain rule is applied to obtain:

P{X  = x | Z  = z) =
P(Z = z \ X  = x )P( X  = x)

P(Z  = z)

Y dY=yP{Z = z \Y  = y ,X  = x)P{Y = y \ X  = x ) P( X = x)

P(Z = z) (4.10)

J jy=yP(Z = z \ Y  = y)P (Y  = y \ X  = x )P( X  = x)

P(Z = z)
= aP{x)X{x)
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Figure 4.3. A generic polytree

One of the biggest advantages of Bayesian networks is that they have a bidirectional message 

passing architecture. Since Bayesian networks pass data between nodes and note the expectations 

from the world model, they can be considered bi-directional systems [9].

In the most general case, the Bayesian network has a multiply-connected structure. In 

multiply-connected networks, at least two nodes are connected by more than one path in the 

underlying graph; therefore, the message passing algorithm for polytrees does not work. The 

clustering method [12,16] is one of the most famous methods for dealing with this kind of 

problem. Clustering inference algorithms perform inference in two stages:

1. Transforming the Bayesian network into a probabilistically equivalent polytree by merging 

nodes and removing the multiple paths between two nodes as shown in Figure 4.4, and

2. Performing belief updating on that polytree.

G=B,D

Figure 4.4. Ad hoc clustering of a multiply-connected Bayesian network
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4.3.2 Approximate inference

Despite its benefits, the exact Bayesian inference also has drawbacks. One drawback is the 

difficulty of obtaining accurate conditional probabilities for large or densely connected networks. 

Because of this, approximate algorithms must be used. Stochastic simulation is one of the 

approaches developed to approximate inference for multiply-connected networks. In order to 

estimate the posterior probability of a query node, stochastic simulation uses a network to 

generate a large number of cases from its distribution. Logic sampling (LS), likelihood weighting 

(LW), and Markov Chain Monte Carlo (MCMC) are different types of sampling algorithms. The 

detailed discussion of exact and approximate inference can be found in [12,16],

4.4 Dealing with missing values

4.4.1 Nature of missing data

3) = N) denotes a data set in which some of the values are missing. The observed and

missing parts of 5) are represented by Dg and Dm , respectively. For any data set, a matrix, 

M  = {Mu}, indicates whether D\ is observed, M n = 1, or missing, M a = 0. The missing data 

mechanism is described by the conditional distribution, P{M, | 5), 0 ) ,  where © denotes a set of 

parameters. Based on different conditionality, several mechanisms of missing data have been 

defined by [19]:

1. Missing Completely At Random (MCAR): In this case, the probability that data is missing 

does not depend on any part of 3):

For example, sensor failure results in missing data, yet values of observed variables do not 

fall into a discernible pattern.

2. Missing At Random (MAR): Often data are not missing completely at random, but they may 

be classified as missing at random. In MAR, the probability that data is missing depends on 

observed data:

(4.11)

(4.12)
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In the process industries, sometimes measuring quality variables is costly or time-consuming. 

When this is the case, process variables are monitored through the regularly-measured 

condition variables. That is, quality variables are measured when condition variables indicate 

the process is drifting away from the sphere of normal operations. Thus, the missingness of 

the quality variables is determined by the observed values for condition variables.

3. Not Missing At Random (NMAR): In this case, the missingness depends on both observed 

and missing data. This happens, for instance, when we collect data with a sensor which is not 

able to detect values over a particular threshold.

Since observed data include all information necessary in order to estimate missing data 

distribution in MCAR and MAR cases, the missingness is ignorable.

4.4.2 Existing treatments for missing data

There are two different ways of handling missing data. The most common approach is to simply 

exclude the cases with missing values from the analysis. If we do not want to lose data and, 

perhaps, information, we may try to guess at missing items. The second approach is generally 

called imputation. Six techniques belonging to these classes are presented below.

1. Casewise deletion: We select only cases that do not contain any missing values for any of the 

variables. Under the MCAR assumption, this method leads to unbiased estimates of 

parameters. Nevertheless, a lot of non-missing data will be thrown out resulting in losing 

pieces of informative data.

2. Mean substitution: A  natural method of imputation is to replace all missing values in a

variable by the mean of that variable. Although mean substitution preserves the sample size,

it may considerably change the values of variance, correlations and regression coefficients. 

This method assumes MCAR missingness mechanism.

3. The LOCF method: In the last observation carried forward (LOCF) method, the last measured 

observation before the missing one is imputed. This approach is applicable only to situations 

in which measurements are expected to be constant over time.

4. Regression imputation: A regression model is built to predict the missing value based on

complete cases. This approach is less likely to produces bias, but may still underestimate 

variance. The regression imputation assumes the data are MAR.
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5. NIPALS algorithm: Consider a data matrix, X, having the structure X = TP , where T is a 

matrix of scores and P is a matrix of loadings. Treatment of missing values with PLS- 

NIPALS can be implicitly considered as a simple imputation method, in which PLS loadings 

and components are iteratively calculated as slopes of least squares lines passing through the 

origin of the available data. It is equivalent to setting the residuals for all missing elements in 

the least square objective function to zero in each iteration step.

6. The EM algorithm: The EM is a well-known algorithm for estimating the parameters of the 

probability density function of an incomplete sample. At each iteration step, the missing 

values are replaced by the expected values from the conditional normal distribution given the 

present data and the current estimates of the means and covariances. To illustrate: consider 

having to estimate Y = aX  + b and then use X  to estimate Y  wherever it is missing. We 

would first take estimates of the variance, covariance and mean, perhaps from casewise 

deletion. We would then use these estimated parameters to solve for the regression 

coefficients a and b . Having filled in missing data with these estimates, we would then use 

the complete data to recalculate the regression coefficients. We would continue this process 

until the parameters converged.

4.5 Dealing with outliers

Outliers are observations far from most others in a set of data. Typically, these observations 

represent a random error that we would like to be able to control to obviate the possible harmful 

effects of outliers. That is why the detection of outliers in pre-processing, or applying robust 

methods of parameter estimation which are not sensitive to the presence of outliers, are practical 

issues in soft sensor development. $ome possible approaches to dealing with outliers are listed 

below.

1. Box plot: The box plot is a helpful graphical tool for determining how severe any outlying 

observations are. A box plot is constructed by drawing a box between the upper and lower 

quartiles with a solid line drawn across the box to locate the median. Defining Q 025 and

Q015 to be the first and third quartiles, outlier detection criteria are characterized by the 

following fences:
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- Lower inner fence: Q0 25 -1 .5  x (Q0 75 -  Q0 2S)

-  Upper inner fence: Q01S - \ .5 x ( Q 01s-  Q025)

-  Lower outer fence: Q0 25 -  3 X (Q015 -  QQ 25)

-  Upper outer fence: Q0 75 -  3 x (Q0 75 -  Q() 25)

By definition, a mild outlier is a point beyond an inner fence on either side, while an extreme

outlier is a point beyond an outer fence. Having detected the outliers, data transformation or

deletion is applied to soften their impact.

2. Robust regression: In the OLS regression, it is assumed that the noise term is i.i.d. normal 

(identically and independently distributed normally). This assumption about the noise term is 

not correct, because the presence of outliers causes longer and fatter tails. Robust regression 

is a regression technique designed to limit the effects of outliers. The idea is to assign a

weight to each observation so that outliers are given reduced weight. The most common

method of robust regression is M-estimation, introduced by [10], This solution is called the 

iteratively reweighted least squares (IRLS), because the estimated parameters depend upon 

the weights, while the weights depend upon the residuals, and the residuals depend upon the 

estimated parameters.

3. Bayesian inference: A Bayesian framework for error in variables is constructed and applied 

iteratively to predict the noise-free variables. Algorithm 4.1 shows in detail how the Bayesian 

approach deals with outliers in the training data set.

Algorithm 4.1.

0. Start with a set of measured variables, 3) = {X l,. . . ,X N} , to learn the parameter of the 

Bayesian model.

1. Bayesian diagnostic inference: Predict noise-free variables from the identified model.

2. Bayesian learning: Determine the parameters of the Bayesian model from the new

training data set 3) = { X °,..., X°N }.

Steps 1 and 2 are repeated until parameters of the model converge.
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Figure 4.5. The Bayesian EIV framework for a sequential model

4.6 Bayesian approach for soft sensor development

The main objective in soft sensor development is to find a model that gives the best prediction in 

the application in which it will be implemented. Since the success of an empirical model depends 

totally on the quality of the process data, the pretreatment of data is crucial. Thus, noise 

reduction, outliers detection, and missing values treatment need to be considered in modeling and 

implementing soft sensors.

Chapter 3 discussed the problem of estimating model parameters for noisy data and presented 

an EM-based Bayesian framework for error-in-variable problem. In this chapter, Bayesian 

learning and Bayesian inference are combined to outline a new way of deriving and employing 

soft sensor models. This approach will be illustrated through its application to simulated 

sequential and multiple linear models.

4.7 Simulation example 1: sequential model

Assume that we want to develop a soft sensor corresponding to the model in Figure 4.5 in order 

to predict X 2 whenever a set of measured inputs, {X x, X 3} , is available. As we have already

noted in Chapter 3, X n X °  are measured and noise-free variables. For simulation purposes, the 

associated parameters are specified as follows:
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X ° = aiX °  + a2

x ° = ^ x ; + b2

X ,= X °  + e: e,~iV(0,(0.31)2) 

e2 ~ iV(0,(0.31)2) 

e3~7V(0,(0.5)2)

(4.13)

To compare the Bayesian approach with the OLS regression technique, we first investigate how 

well the former estimates the model parameters, and then we evaluate the prediction results. Here, 

four methods are applied to the soft sensor problem.

1. Ordinary least square (OLS) regression: The system is represented by two sequential models

Each of these models takes a portion of the available measurements into account to estimate 

the entire set of parameters and predict the output.

2. Partial least square (PLS) regression: In order to make use of all information on hand in 

predicting the output variable, the PLS approach is used to model the system in a linear 

polynomial way for prediction purposes:

Both one-component and two-component PLS models are investigated in this example. 

Unless otherwise noted, it is assumed that data is either mean centered or autoscaled prior to 

analysis in PLS.

3. The EIV technique: Once again, parameters for Equations 4.14 and 4.15 are estimated using 

EIV. Since EIV models are useful only when the primary goal is model parameter estimation 

rather than prediction, we do not consider them in our prediction performance comparison.

4. The Bayesian method: The EM algorithm is applied to building a Bayesian network 

representing the model’s structure in a flexible framework. Then Bayesian inference is used 

to infer about the output variables, given new observations for inputs.

Using these methods, the parameters of this model are estimated and presented in Table 4.1. The 

mean square errors of estimates are also given in Figure 4.6. Comparison of MSEs tells us that 

the Bayesian model fits the training data much better than the other models do.

as follows:

^2,Xt ~ + a2 (4.14)

(4.15)

^ 2 , PLS ~  C \ ^ \  +  C2 X ^ (4.16)
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Table 4.1. Estimated parameters for three-variable network example

Method
Coefficients Mean Square 

Errora\ a2 b2

Actual

OLS

EIV

Bayesian Inference

1

0.9095

0.9577

0.9825

1

1.0013

1.0681

0.9988

2

2.1076

2.0646

1.9810

0

-0.135

0.0977

0.0003

0.0095

0.0050

1.6719e-004

0.01

C lass ica l R e g ress io n  EIV B a y es ia n

Figure 4.6. The MSEs of the estimates of the simulated sequential model

Although X 2 is assumed to have been observed during model identification, for soft sensor

applications the derived model is used to predict X 2 given only the measurements for A, and

X 3. X 2 x and X 2 x result from OLS, X 2 PLSi from one-component PLS, X 2 PLS2 from two-

component PLS and X °  from Bayesian inference; all are presented in Figure 4.7 and compared 

in Table 4.2. Since the classical regresion models represent only parts of the system, they do not 

make use of all the available data. Hence, their prediction performances are poorer than those of 

the two-component PLS and Bayesian models which take into account all the variables. 

According to Table 4.2, the solution given by the two-component PLS is the same as the solution 

given by the Bayesian model. These results are not surprising,
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Figure 4.7. Scatter plot comparison of different estimated X° in the simulated sequential
model
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because we did not quantify any prior knowledge about parameter values. As mentioned before, 

the MAP predictions are identical to the maximum likelihood predictions with non-informative 

prior. In addition, the maximum likelihood results are as same as least squares results in the case 

of normally distributed error. It is notable that the two-component PLS performs better than one- 

component PLS; this is because it captures a greater percentage of the variances.

Since we have just seen that the Bayesian inference and PLS perform the same with regard to 

prediction, we might conclude that the Bayesian framework is just a probabilistic interpretation of 

regression methods. Its advantages will become apparent, however, in treatments of missing 

values, as well as the non-normal errors in the next example.

Table 4.2. Mathematical comparison of different predicted X" in the simulated sequential
model

Absolute Error 
Average

Standard
Deviation

Mean Square 
Error

OLS Regression 
(Based on X ,) 0.2184 0.9422 0.0779

OLS Regression 
(Based on X 3) 0.1962 1.0056 0.0599

PLS Regression 
(1 Component) 0.1758 0.9897 0.0485

PLS Regression 
(2 Components) 0.1461 1.0040 0.0342

Bayesian Inference 0.1461 1.0040 0.0342

Table 4.3. Mathematical comparison of measured and recovered noise-free variables in the 
simulated sequential model (Given X, and X 3)

x , X° X t, X 3°
Absolute Error 0.2501 0.1531 0.3958 0.3029Average
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Table 4.4. Mathematical comparison of measured and recovered noise-free variables in the 
simulated sequential model (given X ,, X 2, and X 3)

A A A
x ; X 3 X 3° X 2 X 2°

Absolute Error 
Average 0.2501 0.1332 0.3958 0.2627 0.2469 0.132

In this example, the information provided is sufficient to recover noise-free measured inputs, 

given as X °  and X3; this is considered to be diagnostic reasoning. As presented in Figure 4.8 

and Figure 4.9, if only the values for X, and X 3 are available, the Bayesian framework is able 

to capture the measurement noises. Taking X °  and X 3 as references, we evaluate the accuracy 

of X,° and X° in comparison with X, and X 3 in Table 4.3. As presented in Table 4.4, much 

more noise can be captured if X 2 has also been observed.

3

2

1

0

1

■2
X  ♦

1,hat
3

2 3■3 ■2 1 0 1
A c tu a l V ariab le

Figure 4.8. Scatter plot comparison of measured and recovered X° in the simulated
sequential model
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Figure 4.9. Scatter plot comparison of measured and recovered X°  in the simulated
sequential model

4.8 Simulation example 2: A multiple linear model

4.8.1 Missing values

In soft sensor applications, it is common to represent a model in a multiple linear way as follows:

x n = a o + ̂ X 2 + a 2X 2 +... + amX m (4.17)

Here, we shall see how the Bayesian approach can be applied to handling the issues that come up 

in deriving a multiple linear soft sensor. As an example, consider the network presented in Figure 

4.10, with the following model expressions:

X ° ~ N( 0 , l )  e, ~ 7V(0,(0.31)2)

X ° ~ N (  0,2) e2 ~ N (  0,(0.5)2)

X 3° = 3 + 2X° + X°  e, ~ N( 0, (0.63)2)

(4.18)
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Figure 4.10. The Bayesian EIV framework for a multiple linear model

First, we generate a complete data set and then randomly hide a pre-determined percentage of 

values to simulate partially observed measurements. In keeping with the MAR mechanism, data 

are deleted randomly with missing value probabilities of 5%, 10%, 20%, 30% and 50% applied 

equally to the input variables. This procedure is repeated 5 times for each level of missing data. 

Applying Bayesian learning, we can fit the specified model and estimate its parameters in a 

maximum likelihood sense, using the EM algorithm as explained before.
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Figure 4.11. The MSREs of the estimates of the multiple linear model for different levels of

missing values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bayesian Inference for Outliers and Incomplete Data 75

0.9 0.9
0 50 0 50

1

0 50

20

0 50
Regression-Deletion Regression-Substitution Regression-LOCF PLS-NIPALS

0.85

0.75

0.7

0.80.65

0 50 0 50

0.14

0.12

0.08
50 500 0

ElV-Deletion ElV-Substitution EIV-LOCF Bayesian

Figure 4.12. 100xMSRE of estimates by various techniques under different levels of

missing data

The Bayesian approach is compared with the following methods:

1. OLS regression ,

2. EIV,

3. The partial least square regression-NIPALS algorithm.

Since incomplete data are not allowed in the OLS regression and EIV, these methods handle 

missing values by using casewise deletion, mean substitution, and LOFC technique. Nevertheless, 

PLS regression in its standard form involving the use of the NDPALS algorithm can deal with 

missing values. Figure 4.11 and Figure 4.12 show the performance of all approaches based on 

mean square relative error of the estimated parameters. The Bayesian approach performs best for 

all levels of missing data. OLS, EIV, and PLS are comparable for complete data sets; however, 

the performance of PLS deteriorates significantly as the percentage of missing values increase. 

Clearly, the NEPALS algorithm is sensitive to missing values. If NIPALS algorithm be replaced
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with casewise deletion or mean substitution, PLS estimates converge to the OLS regression 

solution. LOCF also performs poorly in both OLS and EIV. The performance of casewise 

deletion and mean substitution are acceptable and comparable. This is not surprising, because the 

measured variables are distributed normally. As a result, it is highly likely that the values for 

missing observations will equal to the population mean. The effect of the prior distributions will 

be studied in detail later in this chapter. The main drawback of casewise deletion is that, with a

high number of variables, the probability that a case ^ X f . . . , X JN J will be completely measured

is low, and therefore X 0 may be empty. One of the interesting features of Figure 4.12 is the

analogous trend of MSREs when parameter estimates are obtained by OLS and EIV. It is notable, 

however, that the overall performance of EIV is better than that of the OLS regression for each of 

the presented missing values techniques.

Let us now compare the conventional methods for outlier detection using the Bayesian 

framework. We first generate a complete data set representing the model described by Equation

4.17. The outliers’ samples are also simulated according to the six-sigma rule:

where ju.° and o° are the mean and variance o f the X °  variable so that X °  is distributed

We evaluate the performance of the following parameter estimation methods in the presence 

of outliers:

1. OLS regression,

2. PLS regression,

3. EIV,

4. OLS regression and Box plot technique1,

1 We first remove the outliers from training data set followed by the box plot outlier detection criteria. 
Next, the OLS regression is performed on the new set o f data. The fences used to investigate the presence 
of outliers in our data set are presented in Table 4.5.

4.8.2 Outliers

(4.19)
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5. Robust regression,

6. Bayesian learning/inference (algorithm 4.1).

Table 4.6 reports the numerical values of estimated parameters and MSREs of the estimates. 

The MSREs are also plotted in Figure 4.13.

Table 4.5. Criteria for outlier detection

Outlier Detection 

Criteria

Specification

X 2 ^3

Median 0.0850 -0.0268 3.1158

Lower quartile -0.6511 -1.0214 1.4284

Upper quartile 0.7788 1.0608 4.9519

Lower inner fence -2.7961 -4.1447 -3.8568

Upper inner fence 2.9238 4.1840 10.2371

Lower outer fence -4.9411 -7.2680 -9.1420

Upper outer fence 5.0688 7.3073 15.5223

0 .14  |---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- r

OLS PLS-1 PLS-2 EIV OLS-Box Robust Bayesian

Figure 4.13. The MSREs of the estimates of the multiple linear model in the presence of

outliers
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Table 4.6. Parameters of the simulated multiple linear model in the presence of outliers

Method
Coefficients Mean Squared 

Relative Errorao a2

True 3 2 1 -

OLS 3.0142 1.2019 0.5347 0.1253

PLS-1 Comp. 3.0137 1.2202 0.5091 0.1310

PLS-2 Comp. 3.0142 1.2019 0.5347 0.1253

EIV 4.2064 1.4261 0.596 0.1358

OLS-Box Plot 3.0883 1.7491 0.8258 0.0157

Robust 3.0023 1.7822 0.8366 0.0129

Bayesian 2.9731 1.8695 1.0754 0.0033

It is obvious that OLS and PLS are not efficient parameter estimation techniques in the 

presence of outliers; however, if we first use Box plot criteria to detect outliers and then remove 

them from the training data set, the performance of OLS improves. Since robust regression 

automatically detects outliers and downweighs them, the associated MSRE of estimates is also 

reasonable. If outliers represent the random measurement errors, EIV and Bayesian inference are 

applied to compensate for the noise. Yet, Figure 4.13 shows that EIV fails in parameter 

estimation, if a data set contains any outliers. Applying the Bayesian EIV framework not only 

captures the relatively large errors corresponding to outliers, but also preserves the size of the 

training data set. Comparing MSREs of the methods included in this study, it confirms that the 

Bayesian learning/inference algorithm is able to deal with outliers much better than other 

techniques can.

4.8.3 Lognormal errors

So far, we have considered only the case where measurement errors are normally distributed. The 

normal distribution assumption may not always be realistic for industrial data. To argue against 

unconditional reliance on the assumption of error term’s normality in OLS and PLS regressions,
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we assume that measurement errors have a lognormal distribution. It is well known that the 

lognormal distribution has the probability density function:

f ( x  \p,(T) =
1

(a4l7t
exp

[ ln x - / / ]  
2cr2

for x  > 0 (4.20)

Given Equation 4.20, it follows that the expected values and variance are obtained from:

-2 \cr
m * t\ /

E (X )  = exp
V

Var(X)=  exp(<72) - l jx e x p ( 2 / /  + <72)

Suppose the model structure of Equation 4.23 is considered to be:

2f,°~iV(10,l)

X°2 ~ iV(10,2)

Xj = 3 + 2X° + X °

(4.21)

(4.22)

(4.23)

The prior probabilities used to simulate lognormal distributions for measurement errors are 

given in Table 4.7. Due to the limitations of the available Bayesian software, we investigate only 

the case in which the error distribution is well-known. The estimated model parameters from 

classical regression and Bayesian method are compared in Table 4.8. The MSRE of estimates 

provides an illustration of the potential of the Bayesian method to improve parameter estimation 

when the measurement error is not normally distributed.

Table 4.7. Parameters of lognormal measurement errors

Measurement Error M a

ex 0.001 0.35

e2 0.001 0.35

e3 0.001 0.4
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Table 4.8. Parameters of the simulated multiple linear model with lognormal errors

Method
Coefficients Mean Squared 

Relative Errora0 a, a2

True 3 2 1 -

Regression 6.6191 1.7262 0.9132 0.4839

Bayesian 3.6118 2.0795 1.0166 0.0145

In conclusion, Bayesian inference helps us to attain increased performance by improving the 

efficiency in the treatment of outliers, missing values, and non-normal errors. It is noteworthy 

that the performance of the Bayesian approach can be further improved if we consider the 

following issues:

1. Increasing the size of the training data set,

2. Decreasing the number of hidden variables,

3. Increasing the number of iterations in EM algorithm, and

4. Using informative priors, e.g. identifying the variances of measurement errors [16].

4.9 Experimental evaluation: the three-tank system

In this section, we perform an experimental evaluation of Bayesian inference for a sequential 

model and then briefly discuss the results.

Consider the linear model representing the liquid level in the middle tank of the three-tank

system presented in Chapter 3. Once the model has been identified, the aim is to predict H° from

a new set of observations. To investigate the prediction performance of the Bayesian approach on 

real data, the Bayesian technique is compared with PLS for both complete and incomplete 

samples. A training data set consisting of 851 steady state points is used to derive the Bayesian 

and PLS models. The PLS formulation is presented in Equation 4.24 as:

H 2 ,Pl s  = 0.6061 x H, + 0.0887 x H 3 (4.24)
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Figure 4.14. Trend comparison of prediction results obtained from the PLS and Bayesian 

models using a completely observed testing data set

The fitted models are then applied to performing prediction on 52 different observed cases. 

The prediction results for completely observed testing data are plotted in Figure 4.14. As 

mentioned earlier, PLS and Bayesian have the same prediction performance under linear noise 

and complete data conditions. In the next step, we remove part of the measurements from the 

testing data set as if they had not been observed. Two partially observed testing data sets are 

constructed. Without loss of generality, the missing values for the upper tank level can be taken 

as being the first half elements of the correlated data vector. At the same time, the last half 

elements of the data vector associated with lower tank level are also deleted. In the second data 

set, the last half of the upper tank level measurements and the first half of the lower tank level 

measurements are taken out. For each data set, the predicted values obtained from both models 

are shown in Figure 4.15 and Figure 4.16. When the upper tank level is not measured, it is 

obvious that the prediction performance of the PLS model deteriorates. On the other hand, 

missing the lower tank level does not seriously affect the prediction performance of PLS. 

Studying the PLS model, we see that very little weight is given to the lower tank level in 

comparison with the upper tank level.
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Figure 4.15. Trend comparison of prediction results obtained from the PLS and Bayesian 

models using the first partially observed testing data set
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Figure 4.16. Trend comparison of prediction results obtained from the PLS and Bayesian 

models using the second partially observed testing data set
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As a result, the fact that PLS fails to handle the missing values is much clearer when the 

upper level is not observed. Consequently, PLS does not capture the significant changes of the 

level in the middle tank from incomplete data set. In contrast, Figure 4.15 and Figure 4.16 reveal 

that the absence of either upper or lower tank level measurements does not influence the 

performance of the Bayesian model in predicting the level of the middle tank.

4.10 Industrial evaluation: the froth treatment process

We now turn to the application and evaluation of Bayesian inference in the context of soft sensor 

implementation for the froth treatment process discussed in Chapter 2. To improve the 

performance of the developed soft sensor, we need to handle the problem of missing and 

unreliable values. To do so, a probabilistic framework is applied to the investigation of the 

distribution of input variables. Applying a Bayesian way of thinking in the implementation, 

outliers and missing values in a variable will be replaced by the most probable value of that 

variable. The performance of the soft sensor models is reviewed using a testing set of records 

collected from April 2004 to December 2006.

Lab d a ta  

Old soft se n so r  
New soft se n so r

CO

c
CD
E8>3
CO
cC
CD2

x i*  x .

Lab d a ta

Figure 4.17. Scatter plot comparison of Bayesian and non-Bayesian N:B soft sensors
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Scatter plot comparisons of each N:B soft sensors vis-a-vis the lab data are presented in Figure

4.17. It is obvious that unreliable measurements result in over-estimation of NB values in non- 

Bayesian soft sensor model; however, we are able to handle unreliable or missing input variables 

in the new soft senor. Figure 4.18 depicts a comparison of soft sensor and refractometer outputs. 

This figure demonstrates that the soft sensor provides reasonably successful prediction as a result 

of capturing changes in both measured and quality variables. To analyze the prediction error for 

each approach, their mean absolute errors, standard deviations, and mean squared errors are also 

presented in Table 4.9.

O
COcQ)
CO %+ ♦
o
CO

£
CDZ

♦  ♦

&
CD

E0
1 ♦  ♦  ♦

a>
DC

Lab data

Figure 4.18. Scatter plot comparison of Refractometer Bayesian N:B soft sensor

Table 4.9. Mathematical comparison of N:B Measurements

Refractom eter New Soft 
Sensor

Mean Absolute Error 0.0731 0.0392

Standard Deviation 0.0689 0.0531
Mean Squared Error 0.0098 0.0038
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4.11 Conclusion

In this work, the practical issues of soft sensor development have been studied. To derive a soft 

sensor model from industrial data, it is important to deal with missing measurements and outliers. 

Several approaches for handling incomplete data sets have been reviewed: casewise deletion, 

mean substitution, LOFC, regression imputation, NIPALS algorithm, and EM algorithm. Robust 

regression and box plot criteria were also presented as the most commonly used techniques for 

detecting and dealing with outliers.

Bayesian inference theory and algorithms have been discussed in detail. Since the Bayesian 

approach enables us to cope with missing values, it is tempting to formulate the soft sensor 

problem in a Bayesian framework. A Bayesian learning/inference algorithm (algorithm 4.1) has 

also presented for dealing with outliers. Simulated data sets, designed specifically to accentuate 

the presence of outliers, missing values, and lognormal errors, have been used to assess the 

performance of each different approach in soft sensor development and implementation. 

Experimental and industrial case studies have also been analyzed in order to show the 

effectiveness of Bayesian soft sensor on real data sets.
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Chapter 5

Dynamic Bayesian Models and 
Multimodal Processes

This chapter introduces dynamic Bayesian networks (DBNs) as an alternative for modeling 

dynamic processes that evolve with time. We begin with a short review of the theory behind 

dynamic Bayesian representation, learning, and inference. The review demonstrates the power of 

DBNs to model dynamic processes and shows that DBNs are useful for a wide range of 

applications. This chapter will then focus on switching Kalman filter (SKF) models that represent 

switching dynamics in multimodal processes as an approximation of non-linear processes. The 

application of SKF models to estimating the model parameters and determining the operating 

mode is then demonstrated on the three-tank system.

5.1 Introduction

Thus far, we have considered only static systems; however, temporal data arises in many areas of 

science and engineering. As a result, many real-world processes need to be naturally modeled as 

dynamic systems in order to express their behavior over time. In soft sensor applications, this 

reflects both the static and dynamic characteristics of the process and provides more flexibility for 

the developed soft sensor.

State-space models are among the formulations extensively used to represent, and hence 

model, dynamic systems [3]. In a state-space model, we assume that a sequence of real-valued 

observations has been generated from a sequence of hidden-state variables. Furthermore, the 

models take the first-order Markovian assumption that the present state is conditionally 

independent of the entire past, given the immediately-preceding state. Hidden Markov models 

(HMMs) [9] and Kalman filter models (KFMs) [12] are the two most common types of state-

88
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space models. In HMMs, a sequence of either continuous or discrete observations is modeled by 

assuming that each observation depends on a discrete hidden variable. HMMs have been applied 

in a wide variety of fields including speech recognition, modeling protein and DNA sequences in 

Bioinformatics, and fault diagnosis [9,2,13], The KFMs are analogous to HMMs, the key 

difference being that the hidden-state variables are continuous.

Dynamic Bayesian networks (DBNs) [7], a more general type of state-space models, are an 

extended form of static Bayesian models. A DBN is composed of identical sub-models duplicated 

over each time-slice. Each time-slice is linked to others through a set of inter-slice connections. 

Many time series models, including HMMs and KFMs, are just special cases of DBNs. KFMs 

assume that the hidden state must be unimodal, an assumption which is inappropriate for many 

soft sensor problems. It is well-known that soft sensors are valid for only the particular region in 

which the data are collected. If a process operation condition changes significantly, the system 

has multiple modes or regimes of behavior and the soft sensor should switch between different 

models. A switching linear dynamic (SLD) model is an example of a hybrid DBN that can 

capture richer structure than KFMs for addressing the multimodal processes [6],

The novelty of this chapter is soft sensor development by representing a dynamic process as 

an SLD. This innovation proves useful in the development of soft sensors for multimodal 

systems. In particular, we are interested in applying SLDs to modeling piecewise linear behavior 

in order to approximate non-linear models. Once a multimodal system is represented as an SLD, 

learning algorithms can be applied to the estimation of model parameters. Applying inference 

algorithms, we are able to determine the operating regime and predict hidden variables.

This chapter first provides a brief overview of dynamic Bayesian models. Subsequently, it 

discusses the problem of learning the parameters of DBNs using the EM algorithm and reviews 

the main kinds of inference we might want to perform using a DBN. We next turn our attention to 

the applications of dynamic Bayesian modeling, focusing on SKF models that represent switching 

dynamics. To illustrate this approach, an SKF model is developed to represent the piecewise 

linear behavior of the top tank of the three-tank system discussed in Chapter 3. Finally, dynamic 

modeling of this tank is applied to determining its operating mode and estimating noise-free 

liquid level.
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5.2 Representation

A dynamic Bayesian model is one that represents sequences of variables as they evolve over time. 

Depending on the types of variables, a DBN can be continuous, discrete, or hybrid, i.e. can 

contain continuous variables as well as discrete ones. Suppose that a set of variables 

are of interest at each time step. These variables typically represent the input

( V ), hidden variables ( X ), and outputs { Y ) of a state-space model. Assigning a time index to 

each variable, a DBN for modeling dynamics can be constructed:

The current time step is represented by Z' = |Z I/, . . . ,Z ' | .

The previous time step is represented by Z <_1 = j z , '1,..., Z '_I j .

The future time step is represented by Z ,+1 =  j Z,,+1,..., Z '+I J .

In a DBN, relationships between variables within a time-slice are represented by intra-slice 

connections, Z ]  —> Z j , while the relationships between variables at successive time steps are

J '  T  r , T \ \represented by inter-slice connections, Z( —> Z; and Z; —> Z . . The relationships within

and between time-slices are quantified by the conditional probability distribution associated with 

each variable. The CPDs within and between slices are repeated for each t > 0, so that DBNs are 

time-invariant. Although it is not a requirement, it is also assumed that the states of a DBN satisfy 

the first-order Markov condition, which is defined as follows:

(5.1)

The joint probability distribution of the DBN is then defined as:

where Par (Z\ j are the parents of node Z(. As mentioned earlier, the parents of a node can be 

either in the current time-slice or in the previous time-slice.
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© >

Figure 5.1. A dynamic Bayesian network representing a state-space model

5.3 Learning in dynamic Bayesian models

The purpose of learning in a DBN is to estimate the parameters of P |Z °  j and P ^ Z 1 \Z ‘

given a number of sequences of observations. The techniques for parameter estimation in a 

dynamic Bayesian model are straightforward extensions of the learning algorithms applied in 

Bayesian models such as EM and gradient descent algorithms which have been discussed in 

Chapter 3. To illustrate the use of EM algorithm in learning DBNs from a single run of output 

observations, we formulate and solve the problem of ML parameter estimation for a linear system 

driven by white Gaussian noise.

Assume that a sequence of observations, , is generated by the finite dimensional

linear-Gaussian state-space model (also known as Kalman filter model) as shown in Figure 5.1 

and formulated by:

where

- A is a AT dimensional hidden state variable,

- A is the state transition matrix,

- B is the observation matrix, and

- v, and w, are uncorrelated, zero-mean random noise vectors.

The probability of the hidden states and observations for this model can be written as:

(5.3)

T

P{X,,Y'} = P (X 0)P(Y0 \X 0) \ \ P { X t | X,_x)P(Yt | X t) (5.4)
/= !
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Thus

T T

iog (P {jf„i;} ) = iog(/> (x„))+ £iog(i> (> ; i x , ) ) + £ i o g (/>(A', I* ,.,) ) (5.5)

The joint log likelihood of Equation 5.5 is a sum of quadratics:

l (x , r,e) = ~  iog|Z|-i(Jr0-//)'x-,(x0- / i)

- I i o g l e l - i  - a x , J q -‘(x , - A x , y
2  2  t=i

(5.6)

rp |  i  -• y

 log |/?| —  X  ( -  BXt j  /T 1 (Yt -  BX t ) + constant
2 2 ,=n

where

R is the covariance of the observation noise v,

Q is the covariance of the states noise w,

For the complete data, , the ML parameters can be solved by

maximizing log L with respect to the free parameters A , B , Q , and R . Therefore, the ML 

estimates are1:

(5.10)

(5.7)

(5.8)

(5.9)

where the sufficient statistics are,

Please see [1] for derivations. Here, the final results are stated without proof.
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Since the states are hidden variables, we consider applying the EM algorithm to estimate the 

expected values:

0. Start from initial guesses for the desired parameters.

1. Expectation Step: In this case, the conditional distributions of the states given the 

observations are Gaussian, because the process disturbances are assumed to be Gaussian:

expectations. These terms have been calculated using the fixed-interval Kalman smoothing 

algorithm in [1].

2. Maximization Step: compute the new ML estimates for the system parameters from 

Equation 5.7 to Equation 5.10; these estimates maximize the following quantity:

P ( X , \Y ) ~ N ( X ,IT\I .nT) (5.11)

It follows that the sufficient statistics for maximizing Q {dk+x \ 6 k j can be computed from:

E<f {rX  I r ]  = 57 /

Note that the subscript 0 k represents the parameter vector that is used in calculating the
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Q(Gk+i \d k) = Egk [ L ( x ,Y ,0 k ) | Y] (5.12)

Other efficient methods for learning the parameters and structure of dynamic Bayesian networks 

can be found in [7],

5.4 Inference in dynamic Bayesian networks

The general inference problem in DBNs is to compute P j-Z7 | Y*' ,...,Y  j j , where Z k

t. t.
represents the i output or hidden variable at time tk and Y ' Y J denote all the observations 

between times ti and t j . The main inference tasks that we might want to perform in DBNs can be 

usually categorized as one of four possible types of query:

1. Filtering'. The most common inference problem is to estimate the belief state, which is 

defined as P [ x f |F ° , . . . , f ') .

2. Smoothing Given a sequences of observations, {Y ° ,...,Y 1} , we can also estimate the states

of the hidden variables at previous time-slices, i.e., compute P ^ X 1  ̂ | F°,..., Y l j . As 

mentioned in the previous section, smoothing is important for parameter learning.

3. Prediction: Given all the observations up to the current time, sometimes we want to predict 

future outputs or hidden variables, i.e., compute P ^ X t+^ \ Y ° ,...,Y t j or

p [ Y t+h \Y ° , . . . ,Y ty

4. Viterbi decoding Another interesting inference problem is to compute the most likely 

sequence of hidden variables based on data from past observations, i.e., compute

argmaxPfAT0, . . . , ^  |y ° ,.. . ,y ^ ) .
x°,...,x‘

For a detailed discussion of inferences in DBNs readers are referred to [5,7,14].
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Figure 5.2. A switching Kalman filter model

5.5 Switching Kalman filters

The remainder of this chapter is devoted to a discussion of applying DBNs to representing 

multimodal dynamic processes. We shall consider hybrid models, i.e. models that contain both 

discrete and continuous variables. Consider the model in Figure 5.2, which shows a generic 

switching Kalman filter (SKF). The discrete variables in this network are represented by 

rectangles and the continuous variables are represented by circles. The CPDs for this model are as 

follows:

One of the most important applications of switching dynamics is for modeling multimodal 

processes in general and piecewise linear systems in particular. To illustrate the concept of hybrid 

dynamic Bayesian modeling, an SKF model will be developed to represent the piecewise linear 

behavior of the top tank in the three-tank setup; this setup was introduced in Chapter 3.

5.5.1 Modeling the piecewise linear behavior of the top tank in the 

three-tank setup

Consider the three-tank system discussed in Chapter 3. Under normal operating conditions, the 

liquid level in each tank is assumed to be constant if the inlet flow to the top tank is constant or

P { Q l = j \ Q , - i  = i )  = A ( i , j ) (5.13)

(5.14)

(5.15)
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subject to very little variation. The measured variables are contaminated, however, by 

measurement noises, so that:

where,

q is the measured inflow to the first tank,

H° is the noise-free liquid level in the first tank,

A is the cross sectional area of the first tank, and 

C is the resistance of the output orifice of the first tank.

If the system operates around an equilibrium point and if the perturbations involved are small, 

then it is possible to approximate this non-linear system by a linear system. Hence, the linearized 

equation is obtained by the Taylor expansion of Equation 5.18 around an equilibrium state. If the

normal operating condition corresponds to q 2 and H , then Equation 5.18 is linearized about

these points as follows:

H ,= H ° + e 

q = q° + v

(5.16)

(5.17)

In this study, we focus on the top tank, which is represented by the following non-linear model1:

(5.18)

dH° 'H°=H°,q=q

(5.19)

Thus, the noise-free level at time t + 1, which is H °+x, can be calculated as:

(5.20)

where At is the sampling time and £t is the noise term.

For simplicity, henceforth, we will drop the index 1 that denotes the first tank.
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Figure 5.3. The top tank of the three-tank system modeled as an SKF model

We can model all of this using an SKF model as shown in Figure 5.3. In this model, each 

steady state value of the inflow corresponds to a nominal operating mode. The sampling time is

20s and two nominal steady state values considered here are q m = 50 cm3 / s and 

q {2) = 80 cm3 / s , respectively. The prior probabilities and the transition probabilities used in 

simulation are given in Table 5.1 and Table 5.2, respectively.

First, we develop an SKF model based on simulated data. The rationale is that both algorithm 

performance and model inaccuracies cause errors in real data. Using simulated data, however, 

only the second type of error presents and we can better evaluate the performance of our 

approach. A set of 21 cases containing 19 time-slices is generated from the three-tank simulated 

model. The magnitude of inflow varies between two steady state values resulting in a standard 

deviation of 5.55 for measured liquid level. Therefore, it is assumed that the measurement noise is

distributed as £ ~ N ^0,(0.56)2 j .

Table 5.1. Prior probabilities of the operating modes

q m q (2)

Prior Probability 0.4 0.6

Table 5.2. Transition probabilities of the operating modes

q (l) q (2)

0.97 0.03

q (2) 0.01 0.99
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Table 5.3. Parameters of the SKF model obtained from simulated data

Parameters o f  interest

« (,) — ( 2 ) a ’

True 0.2339 0.5212

SKF 0.2504 0.5172

First, we assume that the prior probabilities and the transition matrix between the two 

equilibrium points are known a priori. The model representing the piecewise linear behavior of 

the tank is identified as follows:

First operation level: H°+l = 0.2504x H °  + 0.0571 

Second operation level: H°+] = 0.5172 x H° + 0.0914

The estimated parameters together with their true values are presented in Table 5.3. 

Comparing these with the true parameters, it is obvious that the SKF model effectively estimates 

model parameters. The most interesting feature of representing the liquid tank as an SKF model, 

however, is that it enables us to determine its operating mode and estimate the noise-free liquid 

level on-line, i.e. as a dynamic soft sensor. In this respect, both filtering and smoothing task can 

be performed. Since our interest is in the dynamic estimation problem, we apply moving-horizon 

strategy and estimate the filtered estimates. Figure 5.4 shows the estimated operating mode. This 

figure proves that the SKF model does an excellent job to capturing the operating mode. In 

addition, the changes in operating mode are detected at very latest after two time steps. To 

investigate the effect of noise level on the performance of the SKF model, standard deviation of 

the measurement noise associated with liquid level increases from 0.56 to 1.78 and 2.87. The 

confusion matrices, which show actual vis-a-vis predicted group membership, are reported in 

Table 5.4.

Given these data, the error rates are then easily calculated (see Table 5.5). Error rate 

represents the percentage of misclassification followed by the incorrect estimation of operating 

mode. As shown in Table 5.5, our SKF model has a near perfect performance in determining the 

level of operation. Although the error rate becomes larger as the noise variance increases, the 

detection performance is still satisfactory.
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200 210 220 230 240 250 260 270 280 290 300
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Time

True Mode ♦ Estimated Mode

Figure 5.4. Estimated level of operation with a measurement noise distributed as

£ ~Af(0,(0.56)2)

Table 5.4. Confusion matrices of operating mode estimation for different levels of
measurement noise

Standard Deviation o f Actual Predicted Membership

Measurement Noise Membership 1st Mode 2nd Mode

0.56
1st Mode 

2nd Mode

146 6 

5 243

1.78
1st Mode 

2nd Mode

145 7 

9 239

2.87
Is* Mode 

2nd Mode

143 9 

10 238
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Table 5.5. Error rate in estimating operating modes for different levels of noise

Standard Deviation o f  

Measurement Noise
Error Rate (%)

0.56 2.75

1.78 4

2.87 4.75

Next, we are interested in evaluating the performance of the SKF model in estimating the 

noise-free liquid level. The measured values are compared with the estimated ones for

£  ~ jv|o,(l .78)2 j and £ ~ i v |o , (2.87)2 j, respectively, in Figure 5.5 and Figure 5.6. Taking

H° as a reference, we can calculate the accuracy of H° and H . The results of our mathematical 

comparison are summarized in Table 5.6. Both trend and mathematical comparison reveal that the 

estimates are closer to the true noise-free liquid levels than are the measurements; therefore, the 

proposed representation of the liquid tank is able to recover noise-free variables from the 

measurements. It is noteworthy that the Bayesian EIV framework proposed in Chapter 3 needs 

more than one variable in order to be able to capture measurement noises.

Hitherto, we assumed that the prior probabilities and the transition matrix are known as a 

priori. It is also interesting to investigate how an SKF model handles the unknown probabilities. 

An SKF model is built in the absence of prior knowledge. The estimated prior probabilities and 

the transition probabilities, respectively, for different levels of measurement noise are reported in 

Table 5.7 and Table 5.8.

Table 5.6. Mathematical comparison of measured and recovered noise-free variables

Standard Deviation o f  

Measurement Noise

Absolute Error Average

X?

0.56 0.0046 0.0027
1.78 0.0145 0.0078
2.87 0.0234 0.0126
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Figure 5.5. Trend comparison of measured liquid level and estimated noise-free liquid level

with e  ~7V(0,(1.78)2)
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Figure 5.6. Trend comparison of measured liquid level and estimated noise-free liquid level

with £ ~ iv (0 , (2 .87 )2)
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Table 5.7. Prior probabilities of the operating modes for different levels of noise

Standard Deviation o f  

Measurement Noise

Prior Probability

q m q (2)

0.56 0.4053 0.5947

1.78 0.4116 0.5884

2.87 0.4019 0.5981

Table 5.8. Transition probabilities of the operating modes for different levels of noise

Standard Deviation o f  

Measurement Noise

Transition Probability

t l) q (2)

q m 0.9719 0.0158
0.56

q (2) 0.0281 0.9842

q m 0.9741 0.0259
1.78

q (2) 0.0143 0.9857

q " 0.9556 0.0444
2.87

q (2) 0.0322 0.9678

Comparing the estimates with the true values (see Table 5.1 and Table 5.2), we conclude that 

prior information about prior and conditional probability distributions of the mode transition 

between equilibrium points are not required to develop a SKF model. It is obvious that the SKF 

representation is capable of estimating these probabilities in the modeling phase.

We now turn our attention to experimental data obtained from the three-tank setup. As 

before, inflow to the top tank varies between the two steady state values of 50 and 80. First, the 

parameters of the SKF model are estimated from collected data. These estimates are presented in 

Table 5.9. It is clear that the estimated values are close to the values provided by vendor; yet, the 

estimates obtained from simulation data are more accurate.
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Table 5.9. Parameters of the SKF model obtained from experimental data
Parameters o f  interest

d m — ( 2 ) a y ’

Vendor 0.2339 0.5212

SKF 0.2706 0.4653

Table 5.10. Confusion matrix of operating mode estimation obtained from experimental

data

Actual

Membership

Predicted Membership

Is* Mode 2nd Mode

1st Mode 

2nd Mode

145 7 

8 240

In the next step, we estimate the mode of operation from the SKF model. The results are 

summarized in the confusion matrix reported in Table 5.10. According to Table 5.10, the error 

rate is 3.75%, which once again shows the SKF model’s good ability to detect operating mode. 

As verified by simulated data, we are also able to estimate the noise-free variables from a 

sequence of measurements. The estimated noise-free and the measured liquid levels are plotted in 

Figure 5.7. In the case of experimental data, there is no reference available to us by which to 

determine the accuracy of estimated noise-free variables. From our experience, however, we 

know that our setup produces valid results only under high pump speed conditions. Nevertheless, 

the first steady state value of inflow, q il>, corresponds to a low pump speed. It is therefore 

expected that the measurements collected under the first operating mode will be highly affected 

by noise. Hence, the values for the noise-free liquid level should be greater than the observed 

values. As presented in Figure 5.7, this fact has been detected by our SKF model.

5.6 Conclusion

The focus of this chapter has been to illustrate the potential of the dynamic Bayesian 

networks (DBNs) to represent dynamic systems and multimodal processes. The fundamentals of
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dynamic Bayesian modeling have been reviewed and the learning and inference in DBNs have 

been discussed. We concentrated on switching Kalman filter (SKF) model as an example of a 

hybrid DBN. We proposed an SKF representation for multimodal dynamic processes and 

illustrate this representation by modeling the piecewise linear behavior of the top tank of the 

three-tank system. The SKF model has been developed from both simulated and experimental 

data. It has been verified that such a representation enables us to determine operating modes and 

estimate noise-free variables solely from measured variables. Our conclusion is that DBNs not 

only have the same strengths as Bayesian models, they also offer more advantages in some 

circumstances due to temporal aspects.

0.2

0.14

0.12

• y

'■3 0.08

0.06

0.04

0.02 Measured Level 
Estimated IMoise-Free Level

300 4000 100 150 200 250 35050
Time

Figure 5.7. Trend comparison of measured liquid levels and estimated noise-free liquid

levels for experimental data
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Chapter 6

Conclusions and Future Work

In the previous chapters, the applications of Bayesian approach in soft sensor development and 

implementation have been illustrated. This chapter discusses the main conclusions and gives 

some suggestions for future research.

6.1 Summary

In this thesis, we have tried to achieve two main goals: develop a better understanding of soft 

computing and Bayesian method, and show that Bayesian models can be useful for soft sensor 

applications.

First, background material about soft sensors and Bayesian networks was presented in 

Chapter 1. It was shown that a Bayesian probabilistic framework can represent real-world 

systems, i.e. variables are described by prior distributions and dependencies are formulated by 

conditional distributions. We next developed a soft sensor that aimed to provide online estimation 

of a quality variable in the froth treatment process in Chapter 2. To do so, we combined our basic 

understanding of the process and non-linear regression technique to develop a gray box model. 

The goal was to give an introduction into soft sensor development and illustrate theoretical 

aspects and steps in soft sensing through the industrial case study.

Development and implementation of soft sensors entail many challenges due to the quality of 

collected data. Some of these problems, including measurement noises, missing measurements, 

and outliers, have been discussed in Chapters 3 and 4. We have demonstrated that formulating the 

soft sensor problem in a Bayesian framework enables us to solve these problems. The price to be 

paid is increased computational time due to iterative nature of Bayesian learning and inference 

algorithms. Chapter 3 addresses the problem of parameter estimation from noise-contaminated
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conclusions and Future Work 108

input and output data. Classical least squares regression and TLS have been reviewed as 

traditional parameter estimation approaches. Based on the available literature, classical least 

squares regression is not robust to data contaminated with measurement noise. Besides, the 

satisfactory performance of TLS is only obtained under a limiting assumption that measurement 

errors are independent random variables with zero mean and equal variances; otherwise, the 

covariance of measurement noise needs to be known. We have provided an introduction to 

Bayesian learning and have proposed the EM-based Bayesian algorithm (algorithm 3.2) that is 

robust to noisy data. The presented Bayesian-EIV framework overcomes the typical limitations of 

conventional parameter estimation methods. In addition, the proposed algorithm has put forward 

some ideas for improvement of the EM algorithm, based on iteratively freezing some parameters. 

The efficiency and effectiveness of the Bayesian-EIV framework have been demonstrated on 

numerical simulations and a pilot-scale experiment.

Chapter 4 began with an introduction to Bayesian inference theory and algorithms. Since that 

chapter deals with incomplete and inconsistent datasets, some of the existing treatments of 

missing values such as deletion and imputation methods have been reviewed. It was shown how 

OLS and PLS regression techniques handle missing measurements with the use of these 

techniques. In addition, advantages and disadvantages of each of these approaches have been 

discussed. A brief introduction to existing outliers detection methods such as robust regression 

and box plot construction criteria are provided as well. Next, Bayesian learning and Bayesian 

inference are combined to outline a new way of deriving and employing soft sensor models. On 

the other hand, we have proposed a Bayesian learning/inference algorithm (algorithm 4.1) which 

improves treatment of outliers. If outliers represent the random measurement errors, our 

algorithm is applied to compensate for the noise. Finally, the feasibility and performance of 

Bayesian approach was proven by demonstrating how well it can handle practical issues 

associated with various simulation, experimental and industrial cases. We believe that these 

evaluations have verified that the Bayesian approach has some real advantages over the others. 

Note that a Bayesian soft senor is able to address the discussed issues altogether.

Up to this point in the thesis, we have concentrated on static models. In many soft sensor 

applications, however, we need to model dynamic behavior of the system. We therefore turned 

our attention to temporal models. In Chapter 5, dynamic Bayesian networks were introduced as 

an alternative for modeling dynamic processes. We provided an overview of DBNs representation
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and briefly discussed parameter learning and probabilistic inference in these models. Next, we 

concentrated on SKF models that represent switching dynamics in multimodal processes as an 

approximation of non-linear processes. To illustrate this approach, a SKF model has been 

developed to represent the piecewise linear behavior of the top tank in the three-tank setup 

discussed in Chapter 3. It has been verified that such a representation enables us to determine 

operating modes and estimate noise-free variables solely from measured variables. This case 

study may prove of use in the development of soft sensors for multimodal systems.

6.2 Limitations of Bayesian modeling

In spite of the remarkable potential of Bayesian models in soft sensor development, there are 

some limitations to their application as listed below.

1. All conclusions drawn from the posterior distribution depends on the quality and extent of the 

prior probability used in Bayesian inference processing. As a result, a Bayesian network is 

only as useful as this prior knowledge is reliable. Nevertheless, the more data that are 

collected, the less influence the prior distribution has on the posterior distribution.

2. Bayesian theory and software are well-established for handling discrete variables. However, 

they are not as mature in dealing with continuous variables.

3. Once a Bayesian model is developed, it might be unable to respond to some previously 

unforeseen cases. This limitation should be carefully considered in soft sensor applications 

including fault diagnosis.

6.3 Future works

It is our hope that this thesis demonstrates the effectiveness of Bayesian modeling in soft sensor 

applications and provides useful algorithms and frameworks to address some of the practical 

issues of soft sensor development. However, there are several open issues to be investigated to 

further extend the applicability of the Bayesian models in soft sensors. Here, we summarize some 

of the potential future works as follows.

Some of the practical issues in soft sensor development have been identified and a Bayesian 

approach has been applied to deal with them. Clearly much more needs to be done along these 

lines. For instance, it has been shown that the proposed EM-based Bayesian algorithm is robust to
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noisy measurements under a normal error assumption. However, it would be more practical to 

also consider the case in which measurement noises have non-Gaussian distributions. In addition, 

the performance of the presented algorithms and frameworks can be further evaluated through 

their applications on more complex models.

DBNs are presented as an alternative for modeling dynamic processes. It would be interesting 

to compare performance of DBNs with other representations of dynamic systems such as 

unscented Kalman filters (UKF) and particle filters.

Further, the use of hybrid dynamic Bayesian models in fault diagnosis is an attracting area of 

application. We believe that the case study presented in Chapter 5 will serve as a motivation for 

other researches to pursue the use of Bayesian modeling in this field.
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Appendeix A
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D„
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F>
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N (0 ,£l) 

P (X )  

P (X  I Y )

Nomenclature

Cross section of the BPS I vessel

Cross section of the IPS II vessel

Resistance of the output orifice of ith tank

Set of independent and identically distributed observations

Unobserved variables in a data set

Observed variables in a data set

Expectation of X

Undiluted feed flow rate

Under-flow rate from IPS

Naphtha flow rate

Diluted feed flow rate

Total feed flow rate to IPS I

Fluid level in the i‘h tank

Diluted feed flow rate to the first IPS I

Diluted feed flow rate to the first IPS II

Model structure

Normal Gaussian distribution

Probability distribution of X

Conditional distribution of X  given Y
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P ( X  | Y  — y) Conditional distribution of X  given Y = y  

P {X  — x ) Probability that X  takes the value x

Pa r (X ) Set of parents of X

0 Covariance of the state noise

Q).25 First quartiles

0o.75 Third quartiles

R  Covariance of the observation noise

T  Total feed flow rate to IPS II

^  Fluid volume in the ith tank

^  Regression matrix

^  Weight ratio of dry bitumen

Wn Weight ratio of Naphtha

Ww Weight ratio of water

X °  Noise-free X

ei Noise associated with the measured variable X j

Pji Path coefficients for X i a X j

Q Inflow to the top tank

rn Correlation coefficient between Y  and X t

vd Contribution from direct effects

vi Contribution from indirect effects

vt Observation noise

Contribution from unknown sourcesv,

w‘ States noise

^  sampling time

® Model parameters

a  Normalizing constant

£i Variance of X,
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7c Completeness index

Y d  Significance index

M Mean of X t

P  Density
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Appendeix B

Algorithm Description of Total Least 
Squares (TLS)

This appendix provides a brief overview of the total least squares algorithm used in Chapter 3. 

For detailed discussion of this method the reader is referred to [1].

The total least square (TLS) method is the extension of the classical regression technique that 

has been applied to compensate for variable noises. Under specific conditions, the TLS solution 

computes optimal parameter estimates in classical EIV models. These models are represented by 

exact linear relations of form (B.l):

where,

-  Z„ is a vector that corresponds to m measurements sampled at time n

- / plays the role of an unknown parameter vector that characterizes the special model

- r(n) denotes a linear combination of the measurement noises and the other disturbances

Z rJ  = r(n) (B.l)

In order to identify the true parameters of the models, the sum of squared of the equation error 

need to be minimized:

subject to I71 = I (B.2)

Thus, we have

(B.3)
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1 NV  '  T  iThe TLS estimates, say /0, are given by the eigenvector of — > ZnZn / which corresponds to the
N  n .=I

smallest eigenvalue, say A0 :

77 i  Z,Z.rto = V o  => = 77'» X  Z,Z.r/, (B.4)
Z* n=l -W n=l

The above stated algorithm corresponds to EIV regression model with the restrictive condition

that the measurement errors are independent random variables with zero mean and equal

variances.
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Appendeix C

Comments on Bayesian Software

This appendix comments on particular features of some of the major Bayesian software. The 

software package names, their authors, and their web locations are given in Table C.l. Note that 

we have personal experience, through this research project, with the following software: BNT, 

WinBUGS, and Netica. A resource guide to the other Bayesian packages can be found in [1],

C .l Netica

Netica is a user-friendly Bayesian tool that is commercially available since 1995. It can be used to 

build and learn Bayesian networks, as well as perform different types of inference tasks. It is also 

capable of representing Dynamic Bayesian networks. Netica can learn probabilistic relations from 

data through the application of Spiegelhalter & Lauritzen parameterization, EM, or gradient 

descent algorithms; missing values are allowed. In addition, the relationships between variables 

may be entered as individual probabilities or in the form of equations. However, only parameter 

learning is supported by this package. Netica discretizes the continuous variables by partitioning 

their domain into some finite number of subsets. Since the representation of the resulting 

discretized model is exponential in the number of variables, this approach becomes problematic 

in large or complex networks. For example, the number of parameters represent a Gaussian

distribution over N  variables is 0 ( N 2) .If we discretize these variables into m ranges, then this 

approach requires 0 (m N ) elements to be learnt and stored.

Netica’s exact general probabilistic inference is based on the message passing in a junction 

tree of cliques, which is the fastest available algorithm. Once a Network is created, we can 

answer queries or find optimal decisions. Given a case of new observations, both posterior
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probability of queries and most probable explanation (MPE) can be found. Netica has facilities to 

enter and update only individual cases, and it does not handle sets of cases.

In conclusion, Netica is suitable for application in the following areas: diagnosis, prediction, 

decision analysis, sensor fusion, expert system building, probabilistic modeling, and certain kinds 

of statistical analysis [3],

C .l  Bayesian Net Toolbox (BNT)

Bayes Net Toolbox (BNT) is the other Bayesian modeling and inference packages. Taking 

advantages of MATLAB features, BNT has become a widely used and powerful Bayesian 

software since 2002. BNT suffers from the lack of GUI, which is currently made up by MATLAB 

visualization tools; a preliminary attempt to make a GUI has been done by Philippe LeRay [2], It 

can build and learn static and dynamic Bayesian networks, as well as answer queries or find 

optimal solutions using its powerful inference engine. BNT does not allow the entry of 

probabilistic relations by equation. BNT supports both parameter learning and structure learning 

by several learning algorithms such as EM and MCMC algorithms. BNT treats continuous 

variables as continuous without trying to discretize them. It allows only linear relations between 

the continuous variables and does not allow discrete nodes to have continuous parents. In 

addition, non-Gaussian probability distributions of continuous variables are not supported. 

Inference task in static and dynamic Bayesian networks are performed by many different exact 

and approximate inference algorithms.

Finally, BNT is applicable for implementation of the following probabilistic models: linear 

regression, logistic regression, mixtures of Gaussians, DBNs (such as HMM, Kalman filters, 

switching Kalman filters and ARMAX models), factor analysis, probabilistic PCA, and many 

others [2],

Table C .l. The Bayesian software packages experienced through the course o f this thesis

Name Webpage Author

BNT

Netica

WinBUGS

htto://bnt. sourceforee.net/ 

http://www.norsvs.com/ 

http://www.mrc'bsu.cam.ac.uk/bues/

Murphy 

Norsys 

MRC/Imperial College
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C.3 WinBUGS

WinBUGS is the most advanced version of BUGS (Bayesian Inference Using Gibbs Sampling) 

that provides Bayesian analysis of statistical models using MCMC. Since MCMC is inherently 

less robust to the prior information than analytic statistical methods, prior knowledge plays an 

important role in the accuracy of a Bayesian model identified by WinBUGS. A wide range of 

non-Gaussian probability distributions for discrete and continuous variables is provided. 

WinBUGS allows the entry of probabilistic relations by equation, and supports nonlinear 

relations between the continuous variables. If model parameters are strongly related, however, the 

model convergence may be very slow. Therefore, this program is inefficient for time series 

structures such as HMM. A new observation can be predicted by specifying it as missing in the 

data set and assigning it a uniform prior.
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