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Abstract  

Data mining and knowledge discovery is a systematic process of identifying useful information 

from a data set where there is no or limited information about the underlying process. In this 

study, data mining and other learning methods are used cohesively to model a low temperature 

visbreaking process. Low temperature visbreaking is the process under investigation for field 

upgrading of oil sands bitumen. The classical visbreaker is operated at a temperature in the range 

of 430 to 500 °C, which would result in the formation of significant visbroken products, 

requiring subsequent hydrotreating.  Due to this reason, several recent investigations have 

focused on finding an optimal operation condition that enables significant reduction of viscosity 

and limit the formation of olefins. These studies have indicated that the operation of a visbreaker 

at a temperature in the range of 150 to 400 °C could significantly decrease the viscosity of 

bitumen, while limiting the formation of cracked products. However, this process is at an 

investigation stage and there is very limited information about the underlying reaction 

mechanism. Spectroscopy is an ideal tool for the identification of such a complex chemical 

process since it provides comprehensive information about the underlying chemical changes at a 

given operation condition. But, the large amount of useful information contained in 

spectroscopic data is often difficult to extract since absorption intensities from individual 

chemical constituents of the sample experience a high degree of overlap, particularly for 

reactions involving chemically complex systems such as reactions involving heavy oils.  

The notion of this thesis is to develop data-driven models that can describe the process well and 

can ultimately be used for real time analysis and optimization of the process of visbreaking in the 

temperature range of 150 to 400 °C using Fourier Transform-Infrared (FTIR) Spectroscopy data.  
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The first part of the research focuses on thermal kinetic modeling from the spectroscopy data 

acquired in the experimental analysis of the process. Obtaining mechanistic and kinetic 

descriptions for the chemistry involved in this process was a significant challenge, because of the 

compositional complexity of bitumen and the associated analytical challenges.  Lumped kinetic 

models for heavy oil cracking can only be useful for describing the process on a preconceived 

reaction network, but are unsatisfactory for developing reaction networks.  This study proposes a 

novel method to derive a reaction network of thermal cracking of oil sands bitumen from FTIR 

spectroscopy data using data mining and other learning methods.  

The development of the kinetic network required implementation of several learning methods, 

including principal component analysis (PCA), data clustering and Bayesian learning. PCA is 

used for variable selection and a Bayesian agglomerative hierarchical cluster analysis was 

employed to obtain groups of pseudo-species with similar spectroscopic properties. Then, a 

Bayesian structure-learning algorithm was used to develop the corresponding reaction network. 

The reaction network derived from the model was compared to the reaction network of thermal 

cracking of model alkyl aromatic compounds proposed in the literature, and the agreement was 

encouraging.  One attractive feature of the model is that it can be embedded into the process 

control system to predict the real-time reaction network and the process need limited or no prior 

description of the reaction network. 

The second part attempts to design a spectroscopy-based online monitoring method for the 

process under consideration. The designed algorithm predicts the chemical rank of the unknown 

chemical mixture; resolves mixture spectra and evaluates the corresponding concentration profile 

of the resolved components so that the effect of different operation condition can be analyzed on 

a real time basis. The model includes several steps to resolve mixture spectra. In the first step, it 
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predicts instrument noise and chemical rank of the system using PCA and Malinowski’s error 

indicator function (IND) respectively. Once the chemical rank is determined, evolving factor 

analysis (EFA) is used to approximate the initial concentration profile. The final resolution of the 

spectra is completed using multivariate curve resolution alternating least squares (MCR-ALS). 

The model results agreed well with available experimental data for 1H NMR characterization and 

other measurements such as microcarbon residue content. The model needs negligible 

computational effort and the only input required is the FTIR spectra and the model can be 

suitable for real time monitoring.  
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1. INTRODUCTION 

1.1.  BACKGROUND 

Data mining and knowledge discovery refers to the systematic process of identifying potentially 

useful and ultimately understandable patterns in a given data set1, 2.  Data-based knowledge 

discovery  involves implementation of series of multivariate and/or machine learning methods 3, 

4.  Data mining, a step in the knowledge discovery process, is a search for patterns of interest in a 

particular depictive form 5, 6. Knowledge discovery methods have been used for a long time and 

in an array of disciplines, one of which is in industrial processes to extract knowledge from 

overwhelmingly large volumes of data generated from modern computer process control (DCS) 

and automatic logging systems7-10 as well as in product development, optimization and fault 

detection. For example, Zheng et al., 201411,  used data mining techniques to address critical 

process optimization problem in plasma display panel manufacturing.  In the other study, 

Brudzewski et al., 2006 12, 13, used a combination of data based learning methods including 

principal component analysis (PCA), fuzzy C means (FCM) algorithm, hybrid neural network 

and support vector machines (SVM) to develop a model to predict gasoline quality using gas 

chromatography and Fourier transform infrared (FTIR) spectroscopy data. Some other studies 

focused on using knowledge discovery strategies in process monitoring, fault detection, isolation 

and diagnosis 14, 15. The current study intends to use knowledge discovery technologies for the 

identification of a reaction network for mild thermal cracking process of oil sands bitumen and 

the design of a self-modeling curve resolution based multivariate online monitoring method from 

offline FTIR data.  

The first part of this study focuses on the identification of the topology of the reaction kinetics 

for the mild thermal cracking of oil sands bitumen from FTIR spectroscopy data. Mild thermal 

cracking (visbreaking) is one of the oldest and the most commonly used heavy oil upgrading 

technologies, conducted at  a temperatures in the range 430 to 500 °C16 which usually results in 

the formation of significant cracked products. However, for visbreaking to be used for field 

upgrading of oils sands bitumen it is important to reduce the production of cracked products to 

avoid the need for subsequent hydrotreating of the visbroken product. Recent studies have 

indicated that the operation of a visbreaker at a temperatures in the range of 150 to 400 °C could 

significantly decrease the viscosity of bitumen, while limiting the formation of cracked  
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products17 18.  These findings also suggested that product viscosity could be decreased by 

reactions other than just thermal cracking; hence, it was doubtful that kinetic models for 

conventional visbreaking would provide a reasonable description of the reaction network at 

lower visbreaking temperatures, the range of interest was 150 to 400 °C.  

Lumped kinetics is one of the most commonly used methods for developing reaction network in 

the area of heavy oil cracking when there is enough prior knowledge about the reaction 

mechanism. The challenge in developing a kinetic model for visbreaking of bitumen in the 

temperature range 150 to 400 °C was that the reaction network was unclear. Hence, it was 

necessary to develop a strategy by which the reaction network could be inferred from the 

experimental data. 

The second part of this study focuses on the design of another exploratory method, self-modeling 

curve resolution in order to develop spectroscopy-based online monitoring method for the mild 

thermal cracking process. Most multivariate online process monitoring technologies are designed 

based on principal component analysis (PCA) and partial least squares (PLS) methods19. In 

recent years, real-time spectroscopy based process monitoring has gained increasing acceptance 

as a choice for industrial chemical process control since it provides rapid and representative 

information such as composition and quality information directly for a complex chemical 

process, which otherwise are difficult/hazardous to obtain using direct measurement 20, 21. This 

information is obviously valuable in process and product quality control20, 22-24.  However, the 

large amount of useful information contained in spectroscopic data is often difficult to extract 

mainly because absorption bands from individual chemical constituents often experience a high 

degree of overlap, the samples are often chemically complex (typical example is reactions 

involving heavy oils) and susceptible to a large number of non-chemical interferences. As a 

result, it was important and necessary to design a valid knowledge discovery algorithm to 

enhance the information retrieval process.  

1.2.  RESEARCH OBJECTIVES 

The goal of this research is to develop the reaction network and a multivariate online monitoring 

scheme for investigation of the field upgrading of oil sand bitumen in the temperature range of 

150oC to 400oC. Hence, the main objectives are: 
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 To identify the most plausible reaction network for the mild thermal 

cracking reaction used for oil sands bitumen upgrading, from the FTIR 

data using PCA, data clustering and Bayesian networking learning 

methods. 

 To design a spectroscopy based multivariate online monitoring scheme for 

the cracking reaction by combing PCA, Malinowski’s error indicator 

function (IND), evolving factor analysis, and self-modeling multivariate 

curve resolution (SMCR). 

These objectives are achieved by using FTIR spectroscopy data acquired from the pilot thermal 

cracker where the cracking reaction is conducted at varies reaction time and a temperature range 

of 150 to 400OC. 

This research is significant for the study of mild thermal cracking of bitumen because: (1) The 

reaction mechanism for thermal cracking of bitumen in the temperature range 150oC to 400oC is 

unclear and only limited domain knowledge exists to use the classical lumping methods. The 

model developed in this work requires very limited or no domain knowledge to identify the 

reaction network. The other advantage of this algorithm is that it can readily be deployed online 

and used in the real-time investigation of the reaction network where FTIR is used for 

measurement; a self-updating reaction network will be an invaluable tool in the analysis of the 

process under investigation. (2)  Self-modeling multivariate curve resolution (SMCR)-based 

monitoring methods provides real-time resolution of FTIR spectra of complex chemical mixtures 

encountered in the thermal processing of oil sands derived bitumen; otherwise, the information 

contained in spectroscopic data is often difficult to extract since absorption intensities from 

individual chemical constituents of the sample experience a high degree of overlap.  The method 

also predict the consecration profile of the resolved components.  

1.3.  THESIS OUTLINE 

The thesis consists of four chapters, each of which will contribute to the main goal of the study. 

The second chapter focuses on the identification of a plausible chemical reaction network for 

mild thermal cracking of oil sands derived bitumen. The third chapter details the development of 

a self-modeling multivariate curve resolution-based online monitoring scheme for the thermal 

cracking reaction using FTIR spectroscopy. These two chapters also review the state of the art in 
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modeling the reaction kinetics of heavy oil thermal cracking, theories of the learning algorithms 

implemented and spectroscopy-based monitoring. Chapter 4 presents the conclusions and 

summary of the finding of the study.  
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2.1.  INTRODUCTION 

Mild thermal cracking (visbreaking) is one of the oldest and the most commonly used heavy oil 

upgrading technologies.  The cracking is typically conducted at temperatures in the range 430 to 

500 °C.1  Several studies have indicated that the operation of a visbreaker at a temperatures in the 

range 300 to 400 °C could significantly decrease the viscosity of bitumen, while limiting the 

formation of cracked products.2, 3 These findings suggested that product viscosity could be 

decreased by reactions other than just thermal cracking. Limiting the formation of olefins due to 

cracking is advantageous for field upgrading applications, where subsequent hydrotreating of the 

visbroken product is impractical. It was doubtful that kinetic models that were developed for 

conventional visbreaking would provide a reasonable description of the reaction network at 

lower visbreaking temperatures. The development of a kinetic model to describe visbreaking in 

the temperature range 150 to 400 °C was of interest. 

Modeling of the thermal cracking kinetics of heavy oil has been the subject of numerous studies. 

The most widely used models can be classified into two main groups: mechanistic and empirical. 

The compositional complexity of bitumen and its cracking products made mechanistic modeling 

more difficult and less practically appealing than empirical modeling. Due to their simplicity and 

practical application, models based on empirically lumped kinetics have been the subject of 

various studies. Lumping tries to represent a complex reactive system with a few pseudo-

components by using chemical and/or physical properties, (e.g., boiling point range), to group 

many species together. This is followed by the proposal of a reaction network to relate the 

conversion of the pseudo-components to each other. Experimental data is then fitted to the 

preconceived reaction network, which forms the basis for the lumped kinetic model. However, 

there are many a priori assumptions made in developing lumped models, which could lead to 

inaccurate models for complex systems. 

The challenge in developing a kinetic model for visbreaking of cold lake bitumen in the 

temperature range 150 to 400 °C was that the reaction network was unclear.  Assuming a 
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reaction network, which might not be representative of the actual reaction network, could render 

the model fundamentally unsound. It was necessary to develop a strategy by which the reaction 

network could be inferred from the experimental data. Furthermore, the bitumen feed and the 

visbroken bitumen product are both compositionally complex.  These materials precluded 

compound-based separation and analysis.  

Spectroscopy provided information about chemical identity of species in the feed and the 

products, and was employed to identify groups of pseudo-species to create meaningful lumps for 

modelling. Chemometric and machine learning methods were applied to the spectroscopic data, 

and provided a way to derive a plausible reaction model from the experimental data.   

2.2. BACKGROUND 

2.2.1 Major functional groups in oil sands-derived bitumen 

A knowledge of the major functional groups present in bitumen is important for the 

understanding of the reaction products and expected reaction mechanism in its processing. Based 

on Strausz et al.,4  the major organic functional groups in bitumen can be classified into saturates 

and aromatics.  Though alkyl groups attached to cyclic rings represent substantially the weight of 

bitumen, normal alkanes and low boiling single monocyclic alkanes are negligible in bitumen, 

constituting only about 0.66 wt% and 4.82 wt%, respectively.  The majority of the saturate class 

is made up of poly-cycloalkanes and/or alkyl cycloalkanes. The alkyl substitutes in the structure 

represent either an open chain, acyclic or aromatic hydrocarbon free radicals. Most of the ring 

structures including pure hydrocarbons bear at least one-alkyl substitutes. 

The second major organic functional group consists of aromatics. Bitumen has an abundance of 

aromatics compounds ranging from alkyl benzenes to condensed polyaromatic molecules that are 

alkyl and naphthenic substituted.  Strausz et al. 4 also state that Cold Lake bitumen contains 

about 8.1, 3.6 and 23.9% of monoaromatics, diaromatics and polyaromatics, respectively. Mixed 

naphthene and aromatic rings5 such as perylene are other significant constituents. 

Heteroatoms such as sulfur, oxygen and nitrogen are present in a variety of forms, but not in 

elemental form; also, hydrogen sulfide is not present.6 Sulfur exists mainly in two forms, organic 
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sulfides and in aromatic rings. Cold Lake bitumen contains 1.86% wt. of its sulfur in the form of 

aliphatic sulfides and about 3.05% wt. as thiophene7.  

2.2.2 Thermal processing of bitumen 

The primary objective of thermal processing (dominated by cracking) is carbon number 

(molecular size) reduction and the main chemical bonds of interest are C-C, C-S, C-O and C-H, 

with C-S being the easiest bond to break since it has the lowest bond dissociation energy. Studies 

have shown that the estimated amount of highly reactive types of sulfur compounds in bitumen 

and asphalts ranges up to 50% of the corresponding total sulfur content and the ease of fracture 

of sulfide bonds has been postulated as a major mechanism for the thermal cracking of bitumen 

6. The  chemistry of cracking of side chains and bridges on or between cycloalkanes and 

aromatics for bitumen is found to be similar to the mechanism of thermal cracking of normal 

alkanes, β-scission being the most important C-C bond breaking 6, 8. For example, under 

favorable conditions, thermal cracking of alkylaromatics produces a mixture of alkenes, alkane, 

aromatics (or alkylaromatics with shorter chains) 6. 

In using visbreaking as a primary upgrading technology, thermal conversion can lead to 

hydrogen disproportionation and eventually to the formation of coke, which is hydrogen 

deficient, and a hydrogen-rich group of compounds 9, 10.  

2.2.3 Spectroscopic identification 

Fourier transform infrared (FTIR) spectrometry is one of the most commonly used analytical 

tools in the identification of unknown materials11-17; bitumen characterization 18, 19; and real time 

reaction monitoring20-25. A review of the spectroscopic identification of organic compounds is 

presented  in Wong26.  

The classical method of spectroscopic identification of materials is based on the use of 

commercial IR libraries where a large number of reference IR spectra of pure compounds are 

available, or by qualitatively monitoring the change in the shape and position of the peaks 27. 

FTIR library search methods treat the unknown mixtures as a linear combination of the spectra in 

the library. While this works well for small libraries of 10 or less spectra, it is usually unable to 

deconvolving the species involved in larger libraries containing spectra of similar compounds 
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because of the overlap in their spectroscopic signatures, these difficulties are very significant for 

complex samples like bitumen 28.  

In such cases, chemometric methods such as principal component analysis (PCA), cluster 

analysis (HCA) are often used 13, 14, 29. The advantage of data mining techniques is that they need 

minimal expert knowledge to extract information contained in the spectra of complex mixture of 

samples30-32.  

2.3. DATA ACQUISITION 

2.3.1 Origin of liquid samples 

The data for this study was obtained from experimental investigations into the thermal cracking 

of Cold Lake bitumen.2, 3, 33The thermally processed bitumen samples were produced by 

performing the thermal cracking in small batch reactors with fast heat-up and cool-down (6 min) 

times.  Each product sample was filtered through a 0.22 μm filter in order to obtain the solids 

yield and the liquid product that was analyzed by Fourier transform infrared (FTIR) 

spectroscopy.  The Cold Lake bitumen feed contained suspended mineral matter: 0.9 ± 0.1 wt.%.  

The solids yield measured by filtration therefore contained both mineral matter and organic 

matter. 

Experiments were conducted for various combinations of temperature and time.  The range of 

temperatures covered was 150 to 400 °C, with reaction times varying from 0 to 8 hours.  The 

products produced at a reaction time of 0 hours were obtained by heating the bitumen to the 

reaction temperature and immediately cooling it down again.  The properties of these products 

were different to that of the Cold Lake bitumen feed.   

A total of 42 thermally processed liquid samples were considered in this study. 

2.3.2 Spectroscopic analysis 

The infrared spectra of the liquid samples were collected using an ABB MB 3000 FTIR 

spectrometer.  The spectra were collected at 2 cm-1 resolution over the spectral range 4000 to 600 

cm-1.  Each spectrum was the average of 120 scans.  The analyses were performed on the neat 

liquids using a Pike MIRacle™ attenuated total reflectance attachment. 
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2.4. METHODS 

2.4.1  Data preprocessing 

The collection of experimental data is not flawless.  Principal component analysis (PCA) can be 

used to detect atypical observations or outliers. 34 The general notion of PCA is to replace a large 

number of correlated variables with a smaller number of uncorrelated variables, which are linear 

combinations of the observed variables, while capturing as much information in the original 

dataset as possible.  These derived variables are called principal components35  PCA was 

performed on the FTIR dataset to determine outliers beforehand.  There are two possible ways to 

deal with outliers. The first option is to remove or replace with predicted value and the other 

method is to select a robust learning method. The second option was followed in this study. 

Bayesian agglomerative hierarchical clustering, which we have employed, is effective in down-

weighting the effect of outliers36 and the clusters were also represented by the averaged intensity 

for Bayesian learning, which will also can reduce the effect of outliers. 

The data was smoothed, scaled and centered before cluster analysis. 

2.4.2 Cluster analysis: Bayesian hierarchical clustering  

 Cluster analysis divides observations into clusters (groups) based on the information found in 

the data matrix or their relationships such that observations belonging to the same group are 

more similar than observations belonging to different groups37. The matrix of data consists of 

samples that are characterized by multiple factors (variables). While there are different ways of 

classifying clustering methods, two broad categories can be identified: distance-based (also 

called nonparametric) and model-based (parametric) techniques 38. In this section, we focus only 

on the aspects relevant to the choice of methods for the problem of interest, i.e., grouping 

thermal processing of bitumen.  

In general, distance-based methods can often take advantage of optimization techniques but 

model-based methods can often find clusters of arbitrary shape and which makes them more 

flexible. Model-based methods also require less computational effort relative to distance-based 

methods. Studies have shown that as the number of variables (dimensionality) increases, the 
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effectiveness of the distance-based methods to obtain optimum solution decreased significantly 

39; also, the notion of distance as a similarity metric becomes meaningless for high-dimensional 

data 40. On the other hand, in model-based algorithms, which depend on the ratio of probability 

densities, the probability that the two close individuals end up in the same cluster approaches 

zero as number of variables greatly exceeds the number of samples41-43.   

Several methods have been suggested to overcome the curse of dimensionality40, 44, 45. For 

example, Bayesian hierarchical clustering was found to be effective in clustering high 

dimensional datasets such as DNA microarray data39, 46-48. This algorithm uses a Bayesian 

approach to clustering, with priors for model parameters and for the allocation of samples to 

groups, with the priors chosen so that the marginal posterior is analytically tractable. The 

marginal posterior is used as the natural measure of similarity or dissimilarity, i.e., the 

appropriateness of grouping. The clustering that maximizes the marginal posterior is taken to be 

optimal. In order to simplify the computational burden, the maximum a posteriori clustering 

over all possible partitions is estimated using the agglomerative path; this also provides a visual 

guide to some of the other possible data allocations through a dendrogram (Nia et al.38).  

In the Bayesian clustering paradigm, the allocation of a variable to a given cluster is viewed as a 

statistical parameter; hence, with a Bayesian model for the data conditioned on the grouping 

structure and a prior distribution for the clusters, a search algorithm can be applied to obtain  the 

maximum a posteriori grouping 49, 50. 

IF a data allocation, K, clusters the individual samples into K groups of sizes  𝑇1 , … ,  𝑇𝑘,  there 

is a total of 𝑇 = ∑ 𝑇𝑘
𝐾
𝑘=1  clustering individuals.  Then, assuming a multinomial-Dirichlet 

distribution as a location prior 51, 

 𝑓(𝐾) ∝
(𝐾−1)!𝑇1! ,   .  .  ,𝑇𝑘!

𝑇!(𝑇+𝐾−1)!
             (2-1) 

The clustering posterior, which is the grouping criterion for clustering, is 

𝑓(𝑥⃓ 𝐾) =
𝑓(𝑥⃒ 𝐾)𝑓(𝐾)

𝛽
             (2-2) 

where 𝑓 (𝑥⃒ 𝐾)  is the marginal density of the data for the known allocation K,  𝛽 is the 

normalization constant that plays no role in agglomerative clustering and can be omitted, and 𝑥 

denotes the vector of data. 
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In the first step in Bayesian agglomerative clustering, we start with each individual sample as a 

single cluster. Then, all pairwise merges are considered followed by calculation of the posterior 

for each pairwise merge (equation 2-2). The merge that maximizes the posterior is applied. The 

log posterior for the best merge having k clusters, 𝑃𝑘 = log𝑓 (𝑥⃒ 𝐾), is used as the dendrogram 

height. If the best merge according to equation 2 is to join cluster 𝑘1 to 𝑘2 to create the new 

cluster k, then of course 𝑇𝑘 = 𝑇𝑘1
+ 𝑇𝑘2

. 

The algorithm then considers all pairwise merges again, and continues until all clusters are 

merged and all individuals are in one cluster39, 46. The best grouping found using the posterior as 

the objective function on the agglomerative path is the one that maximizes 𝑃𝑘 across k = 1, … , 

K. The groupings associated with 𝑃𝑘 are sorted in agglomerative order with increasing c, so a 

dendrogram representation is possible 51. 

2.4.3 Causality detection: Bayesian learning approach 

Causality detection and analysis has become an important tool in process monitoring for the 

detection and diagnosis of plant-wide abnormalities and disturbances 52; it has also found use in 

other fields such as forensic science 53. The most commonly used methods for causality detection 

are Granger causality, transfer entropy and Bayesian networks54-56. The transfer entropy method 

measures the amount of directed information transferred from the cause variable to the effect, so 

the direction of information transfer dictates the direction of causality and the amount indicates 

the strength of the causal link57. In the Granger causality detection approach, the improvement 

gained in predicting the effect due to the incorporation of the cause variable as a predictor is used 

as indication of a causal relationship 58. The Bayesian approach, on the other hand, measures the 

conditional probability of the effect given the occurrence of the cause59, 60. Studies indicated that 

Bayesian method outperforms the other two approaches when the data length is short (i.e., with a 

smaller number of samples);61, 62 this better suits our case.  

The first step in causality detection in a Bayesian framework is learning the topology of the 

causal network, commonly called the Bayesian network (BN), followed by parameter learning. 

The basic assumption behind Bayesian structure learning is that the data is assumed to be 

generated from an underlying probability distribution and this distribution in turn is induced by 

some Bayesian network structure63. The learning objective is to determine how to accurately 
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recover the underlying causal map or BN. There are two fundamental problems in finding the 

correct network structure. The first issue is that there are many perfect structures for a probability 

distribution; thus, the best we can hope for is to get the method that enables us to recover the 

equivalence class for the structure64. The second problem is that data comes rarely without noise, 

which means that we need to consider trade-offs between the fit and generalizability.  

A number of algorithms have been proposed in the literature for recovering structure learning 

from data. Despite the range of theoretical backgrounds and terminology, they fall under two 

major broad categories: constraint-based and score-based. Alternatively, the network structure 

can be built manually from the domain knowledge of a human expert and prior information 

available on the data.  

The constraint-based approach attempts to recover a network structure that best captures the 

dependencies in the domain. The literature indicates that this approach can accurately capture the 

underlying model structure when the data has few variables, large samples and the variables are 

strongly dependent63. However, a single misleading independence test result can produce 

multiple errors. Besides, the algorithm is and is strongly dependent on the independence tests and 

can run in to trouble when the independence test results are less pronounced63, 65.   

On the other hand, score-based algorithms view structure learning as a general heuristic 

optimization problem or alternatively as a model selection problem. This approach hypothesizes 

that there is a space of possible candidate structures for a given set of data and a scoring function 

that measures the how well the model/structure fits the data63, 66, 67.  Compared to the constraint-

based algorithm, the score-based algorithms are less sensitive to individual failure and can also 

compromise between fit the data and scalability. Hence, we focus on this approach. 

A detailed review of the various score based algorithms was presented in Russell and Norvig68. 

The most widely used score-based algorithms are the greedy search algorithms such as hill-

climbing with random restarts or tabu-search. They explore the search space starting from a 

network structure, usually the empty graph, and adding, deleting, or reversing one arc at a time 

until the score can no longer be improved 69, 70. The selection of the score function is the most 

important component in score based learning. The most commonly used score functions are the 

maximum log-likelihood and Bayesian score or the Bayesian information criterion (BIC). The 

maximum log-likelihood is often effective fitting the data but prone to overfitting63,76, while the 
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Bayesian score can enable trade-offs between the likelihood of fitting the data and model 

complexity (equation 2-3).  

𝑠𝑐𝑜𝑟𝑒𝐵𝐼𝐶 = ∑ 𝑙𝑜𝑔𝑓𝑋𝑖
(𝑋𝑖⃒𝛱𝑋𝑖

)𝑛
𝑖=1 −

𝑀

2
log (𝑛)          (2-3) 

 where M is the number of parameters in the network and n is the sample size. 

 The first term on the right hand side of the equation is the marginal likelihood and the second 

term controls the complexity of the structure and provides the trade-off between fit and 

complexity.  

2.4.4 Overall procedure for modeling  

Figure 2-1 describes the steps used for the developing Bayesian network structure and the 

information used for validation of the models. The first step in the learning process was to 

perform data preprocessing which includes smoothing, scaling, centering and detecting outlying 

samples using principal component analysis (PCA). Then Bayesian agglomerative hierarchical 

clustering was used for clustering preprocessed data into similar functional groups, hence the 

name group is used instead of cluster.  Once clustering was performed, the groups were checked 

for within-group similarity and intergroup dissimilarity using information from standard 

spectrometric identification handbooks 71, 72, 73. This was used as a reality check for the 

validation of the results of the cluster analysis.  

Each group is a node in Bayesian learning framework, but there are different intensity values and 

wavenumbers in a group. A group ideally is a representative of a class of compounds with 

similar major functional groups.  
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Figure 2-1. A flow diagram for the algorithm used. 

The next step is to use Bayesian learning to recover the network structure form the group data 

and to estimate the corresponding probability distribution/parameters for the intensity of the 

groups. The intensity associated with each cluster was calculated as the root- means squared 

average of the intensities at all wavenumbers that were present in the group. Finally, the resulting 

Bayesian network is compared against the possible reaction mechanisms. All the 

simulation/coding was done in MATLAB version 9.0.081 and R version 3.3.1. 

2.5. RESULTS AND DISCUSSION 

2.5.1 Infrared spectra 

The infrared spectra that were collected are shown in relation to the solid yield for each sample 

in Figure 2-2.  Many of the spectra are of thermally processed products that were associated with 

minor formation of organic deposits, having solid yields of 1–2 wt%.  The spectrum with 0.9 
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wt% solid yield is the bitumen feed.

 

Figure 2-2. Fourier transforms infrared (FTIR) spectroscopic data of thermally processed 

bitumen samples. 

Figure 2-3 shows the spectra of raw bitumen and a sample treated at 300oC and for 6 hr. Clearly, 

the heated treated sample has much more absorbance at 2854, 2922, 2954, 1371 and 1455 cm-1. 

This indicates that the heat-treated sample contains more saturated groups than untreated 

bitumen sample.  
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Figure 2-3. Comparison of raw bitumen spectra with sample treated at 300oC and for 6 hr. 

2.5.2 Solid yield 

Figure 2-4 shows the solid yield of the thermally cracked bitumen samples. The result indicates 

that the highest solid yield is observed for sample treated at 300 oC. In general, this result 

indicates that the solid yield is a none-linear function of reaction time. 



21 

 

Figure 2-4. Variation of solid yield, in weight (%), with reaction time.  

2.5.3 Principal component analysis  

Principal component analysis (PCA) was performed on the infrared spectra.  It was found that 

only two components were required to explain about 94% of the variation in the data.  The score 

plot using these two components Figure 2-5 can be used to detect outlying samples. 

It can be seen from Figure 3 that only two of the samples, the liquid products from thermal 

processing at 200 °C for 1 and 2 hours, were different from the rest of the data.  These two 

samples were retained in the dataset, because the Bayesian agglomerative clustering employed is 
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less sensitive to outliers, as mentioned before.

 

Figure 2-5. Principal component analysis score plot for the first two principal components 

(which explain 94% of the variance. PC1 and PC2 are represents the first and the second 

principal components. The legends denote the variables sample labels. For example, X200_1 and 

X400_0.33 represent the spectra of a samples treated at 200oC and 1 hr. and 400oC and 0.33hr 

respectively. 

2.5.4 Clustering  

Cluster analysis is used as a preprocessing method for Bayesian learning, the groups obtained 

were used as the variables/nodes for Bayesian learning. Clustering is similar to the concept of 

lumping kinetic methods where pseudo-components or lumps are generated based on some 

similarity criteria such as boiling point and other physicochemical properties  common to the 

specific group74. In this work, functional groups and their characteristic wavenumbers are the 

measure of similarity of a group or pseudo-component and dissimilarity between different 

pseudo-components. Due to the size of the data (about 2000 variables, representing the 

wavenumbers), the dendrogram, Appendix A, FigureA1 has little visual information to offer; 

however, we choose to select five groups in total at the appropriate level of the dendrogram.  
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This decision on the number of groups is based on the fact that the major products of cracking 

heavy feedstock are mostly paraffin, alkenes, cycloalkanes, aromatics and polyaromatics, which 

are produced due to coking. Disregarding the heteroatoms, generally the conversion will result in 

the variation of those major functional groups during the thermal cracking of bitumen.   Tables 

A1-A5 in the Appendix show the wave numbers included in each of the clusters.  

In order to know the functional in each group, several sources, including handbooks of 

spectrometric identification of organic compounds,75-77 were consulted. Each group consists of 

various wavenumbers and a functional group is assigned to the group as long as the wavenumber 

at which it absorbs exist. While this attribution is approximate it allows us to provide a chemical 

basis for the clustering and acts as a reality check for our mathematical analysis. 

Table 2-1 shows the organic functional groups attributed to each group. The first group consists 

mainly of aromatics (including polyaromatics) and alkanes (cyclic and normal). The normal 

alkanes may refer to the side chains. The second group is a mixture of alkanes, aromatics and 

carbonyl groups. The third group includes aromatics and hetroaromatics, cycloalkanes and 

alkanes. The fourth group consists mainly of cycloalkanes and alkanes whereas the fifth group 

contains Paraffin. From the group analysis it can be seen that the aliphatic nature of the groups 

increase from the first to the fifth group.  These groups s are then used as the variables in 

Bayesian network learning to generate the reaction network, which is described in the next 

subsection.  
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Table 2-1. Clusters and the constituent functional groups, the assignment is based on several 

sources75-78. 

Cluster/group  1 2 3 4 5 

Possible 

functional 

groups 

Aromatics and 

poly-aromatics; 

cycloalkanes 

Carboxylic: 

dimers, aromatic 

and conjugated 

esters, 

Thiocarbonyl 

groups and 

sulfoxides. 

Amides (tertiary) 

Alkanes, 

Aromatics 

carbonyls,  

unsaturated 

alcohols and 

phenols, 

mercaptans, 

thiophenols, 

thio-acid and 

sulfoxides 

 

Alkanes, Aromatics, and 

hetroaromatics,  

𝛾 −  CH and ring bending. 

 𝛽 − Ring bands of: Pyridines, 

 Furans and Thiophene. 

𝛽 − Substituted naphthalene 

(four adjacent hydrogens). 

Amides (tertiary) 

 

Alkanes; 

and, may have 

cycloalkane, 

normal and 

branched 

alkanes   

 

Paraffin 

 

2.5.5 Correlation analysis 

The last subsection described the groups obtained from clustering the infrared spectra of the 

bitumen samples. The aim of this subsection is to get a better view of the variables obtained from 

clustering. Figure 2-6 describes the linear cross-correlation of the groups, qualitatively and 

quantitatively on the lower and upper panel, respectively.  From the results, it can be seen that 

group4 and group5 have the most correlated variables, 97%, while group1 and group5 are the 

least correlated, 64%. Generally, the correlation matrix shows a nice correlation among the 

variables but it should be noted that correlation does not mean causality. The variables can be 

correlated but one may not be the cause of the other. Acyclic Bayesian learning is used to 

discover the causal relationship between the variables. Causal relationship is the same to the 

concept of reaction, which is why this method is select to uncover the reaction network between 

these variables. 
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Figure 2-6. Person’s cross-correlation plot of the groups, diagonal shows variable name 

(groups).The linear correlation of each variable with the other is shown qualitatively 

(graphically) and quantitatively on the lower and upper panel respectively. The horizontal and 

vertical axis both show intensities.  

2.5.6 Bayesian network (BN) structure  

In the topology of the BN, nodes that are connected together by the arcs represent the variables 

(groups). The arcs describe the direct causal influences. In the discussion about BN, the family 

metaphor is often used i.e. a node is a parent of a child if there is an arc from the former to the 

latter.  In a directed chain of nodes, one node is an ancestor of another if it appears earlier in the 

chain, whereas a node is a descendant of another node if it comes later in the chain. 

Most often more than one learning method are used to learn the BN topology to ensure 

optimality of the solution. Theoretically, if two or more different learning approaches provide the 

same structure, most often the solution is considered optimal.  For this reason, two greedy search 

algorithms, Hill climbing with random restarts and Tabu search were implemented. 

Hill climbing (HC) with random starts with initial structure, empty, performs an iterative HC by 

re-starting with a random new initial condition and if a new run of HC provides the solution that 
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increase the score function than the previously discovered optimal structure then the new one 

replaces the old, otherwise the old solution will maintained and the search goes on. 79 Tabu 

search, on the other hand, starts with a feasible initial solution and chooses the next best move 

that can significantly increases the score function while introducing Tabu restrictions on possible 

moves to daunt the reversal and repetition of selected moves.80 

Figure 2-7 shows graphical representation of the optimal solution when form HC with random 

restart is applied.  

 

Figure 2-7. Bayesian causal network structure modeled using HC. 

Table 2-2 shows the corresponding arc strength for HC graph.   

Table 2-2. Arc strength for Bayesian network structure modeled using HC 

From                                       To arc-strength  

group 4                                 group5 -87 

group 1                                 group3 -53 

group 2                                 group5 -32 

group3                                 group2 -29 

group2                                 group4 -29 

group 3                                group5 -3 

 

 Figure 2-8 describes the graphical model obtained using Tabu search.  
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Figure 2-8. Bayesian causal network structure derived using Tabu search. 

Table 2-3 illustrates the strength values of each arc in the Tabu search-based BN.  

Table 2-3. Arc strength of Bayesian network developed using Tabu search. 

From                                       To arc-strength  

group 4                                 group5 -87 

group 1                                 group3 -53 

group 2                                 group5 -32 

group3                                 group2 -29 

group2                                 group4 -29 

group 3                                group5 -3 

 

From the above results, it can be seen that both resulted in exact the same solution for the 

network (Figure 2-7 and Figure 2-8), the same score, and the same arc strength, as shown in 

Table 2-1 and Table 2-3. This may indicate that the solution is indeed a global optimum.  

The final directed acyclic graph (DAG), either of the two (Figure 2-7 or  Figure 2-8), represents 

the causal relationships between the groups.  From the DAG group1 is directly related to group3 

but no direct relationship to the other groups. In the same way, group3 is the family of group2 

and group5.  While group4 has a single family, group2, group5 has three families, group2, 
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group3, and group4. Hence, in this case any change in group2, group3, and group4 will directly 

affect the state of group5.  Moreover, given group2, group3, and group4, the state of group5 is 

independent of group1. This applies to all family–child relationships in the graph.  

In addition to the graphical representation of the causal relationship between the variables, BN 

also models the quantitative strength of the connections between variables (Table 2-2 and Table 

2-3). Strength indicates the probabilistic beliefs about arcs to be updated automatically as new 

information becomes available. From this point of view, the arcs from group4 to group5 and 

group3 to group5 have the highest probability of updating themselves as new information 

become available relative to the others.  In other words, the arc strength values represent the 

change in the score of the network that can result by an arc removal. For example, the overall 

score of the DAG will decrease by 87 if the arc from group4 to group5 is removed. Clearly, the 

strongest dependence is found between group4 and group5 while the weakest is from group3 to 

group5. From the reaction point of view, different arc strengths indicate the preferred reaction 

pathways or more probable reactions (the higher the negative number, the stronger the 

dependencies and vice versa). 

2.5.7 Model Validation 

This section presents the comparison of the developed model against the reaction network of 

model compound representing bitumen. Validation of this model is tricky particularly because 

the reaction mechanism of the process investigated; low temperature visbreaking is not well 

understood. Moreover, the groups used as variables for Bayesian networks are not necessarily 

single compounds. However, it can be seen from the graphical model representation (the DAG) 

that the final product, group5, is relatively saturated compared to the intermediate and the 

starting material. This indicates that the reaction generally leads to a hydrogen rich product, 

which was also observed in the experimental analysis of the reaction elsewhere.3, 33 In the 

following subsection, the DAG is compared to a reaction mechanism hypothesized based on 

expert process knowledge.   

2.5.7.1. Reaction network 

The reaction network of thermal processing of bitumen is illustrated using an alkyl tricyclic 

naphtheno-aromatic compound (1), where R can be either hydrogen, or a more complex aliphatic 
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and/or aromatic structure Figure 2-9 . Although no heteroatoms have been shown, the network 

can also describe the reactions of heteroatom containing molecules.   

During thermal processing hydrogen transfer between molecules, can either lead to a net 

decrease in hydrogen to convert cycloalkane structures into aromatic structures, (1) to (2), or to 

saturation of aromatic structures, (1) to (3).  Free radical addition, where stabilization does not 

take place by addition of hydrogen (H•) as shown, but by addition of a larger radical (R•), is not 

explicitly shown.  Thermal cracking of weaker bonds in a cycloalkane structure, shown by 

intermediate (4), can lead to different reaction products.  Intramolecular hydrogen transfer leads 

to (5) and intermolecular hydrogen transfer leads to (6).  The intermediate (4) can also undergo 

further free radical cracking before intermolecular hydrogen transfer to stabilize the products to 

produce (7) and (8).  The longer alkyl chain in (5) and (6) is susceptible to thermal cracking in an 

analogous way, as shown for the cracking of (6) to (9) and (10).  Molecules present in the 

bitumen feed that have alkyl chains analogous to (6) will react in a similar way. 

From the perspective of generalizing the reaction network, the most obvious outcome of thermal 

processing is the increase in lighter and more aliphatic products.  This comes at the expense of 

generating more aromatic products, which ultimately end up as the organic deposits.   

 

Figure 2-9. Hypothesized reaction network involving hydrogen disproportionation, hydrogen 

transfer and thermal cracking reactions. 
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Comparing the DAG (Figure 2-7) with the reaction network in Figure 2-9, one obvious similarity 

is that both predict the lighter and aliphatic final product. Comparing the components in Figure 

2-9 with the nodes in Figure 2-8, group1 is similar to component (1) and group3 is similar to 

component (4). In the DAG, it was found that group1 causes group3; similarly, in Figure 2-9, the 

reaction of component (1) produces component (4). From the DAG, group3 also produces 

group5 and from the reaction network, component (4) can produce component (10) through the 

thermal cracking of component (5). Likewise, components (6) and (9) can represent group2, the 

reaction of which produces the paraffinic component (10). In the reaction network in Figure 2-7, 

group4 is not represented explicitly. However, component (10) can represent larger alkanes that 

can break down to smaller alkanes. The other possible explanation is that the intermediate in the 

reaction network, component (9), can undergo hydrogenation to produce a compound class 

similar to group4, which will finally crack to give component (10).  

In summary, there is a very good agreement between the proposed reaction network and the 

graphical model developed through the Bayesian learning approach.  

2.5.7.2. Sensitivity analysis  

Inn addition to validation, sensitrivity analysis can also help to evaluate the accuracy of the 

model. A good model reacts correctly to changes in the process conditions. From the application 

point of view, this is equivalent to using the DAG as an expert system to predict the effect of 

different reaction conditions. In order to evaluate the response of the model to different reaction 

conditions,  the data was divided into two sections based on the solid yield (low, <2 wt% and 

high, >2%). The arc strengths were calculated using each data set separately. The solid yield was 

selected to break the data into two sets because it represents the combined effect of resisdence 

time and temperature.  

Figure 2-10 shows the changes in the arc strengths when the first dataset, low coke yield, is used.  

The result shows that less saturate will be produced under this circumstance compared to the 

base case (Figure 2-7).  
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Figure 2-10. Effect of solid yield on the significance of the reaction pathways (low solid yield, 

<2%). 

Table 2-4 shows the values of the strength of each arc for the low solid yield data. It can be seen 

from the strength of the arc from group3 to group5 is positive.  Positive arc strength indicates 

that the network gains score if this branch is removed, and it is less likely to produce paraffin 

product from the reaction of group3.  

Table 2-4. Arc strength illustrating the effect of low solid yield  

From                                       To arc-strength  

group 4                                 group5 -51 

group 1                                 group3 -22 

group 2                                 group5 -16 

group3                                 group2 -25 

group2                                 group4 -10 

group 3                                group5 2 
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In the second case, data corresponding to the reactions with relatively higher coke yield were 

used to calculate the strength of the DAG. Figure 2-11shows the changes in the arc strengths 

when the second dataset, higher coke yield, is used.  The result shows that more saturates will be 

produced under this condition compared to the first case (Figure 2-10).  

 

Figure 2-11. Effect of solid yield on the significance of the reaction pathways (high solid yield, 

>2%) 

Table 2-5 describes the arc strength of the BN when high solid yield data is used. It can be seen 

that the strength of the arc from group3 to group5 is negative, and more than the base case 

scenario. This shows production of more group5 compared to the case of low solid yield.  

Table 2-5. Arc strength illustrating the effect of high solid yield 

From                                       To arc-strength  

group 4                                 group5 -59 

group 1                                 group3 -32 

group 2                                 group5 -25 

group3                                 group2 -12 

group2                                 group4 -9 

group 3                                group5 -14 
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2.5.8 Parameter Learning  

In modeling a reactive system, once the reaction network is developed or the product and the 

reactants are identified, a reaction rate equation can be developed using the corresponding 

experimental data and the assumptions about the order. The reaction rate equation provides a 

quantitative description of the interaction between variables describing the reaction process. 

Similarly, a Bayesian network is formally defined as,  𝐵𝑁 = 〈𝐷𝐴𝐺, 𝛩〉, where DAG is as 

described earlier and 𝛩 represents the set of parameters of the network. DAG is analogous to the 

reaction network and 𝛩 is similar to the reaction rate equations and parameters. Once the 

topology of the BN is specified, the next step is to quantify the relationships between connected 

nodes and this is called parameter learning. Parameter learning is the process of specifying the 

conditional probability distributions and probabilistic beliefs of each nodes. The most important 

assumption in the Bayesian learning approach for parameter learning is that the DAG models all 

the direct dependencies between the variable of the system. In addition, every variable is 

independent of its non-descendants given the state of its parent and there are no direct 

dependencies.  

 In this study, the DAG described the directed causal map between the variables (groups) and the 

conditional probability distribution of each group estimates a model for the mean value of the 

intensity as the function of the intensity of the other groups. On top of the model for the mean, 

the conditional probability distribution describes the degree of uncertainty about the model used 

to estimate the mean. Hence, parameter learning in Bayesian framework is similar to the classical 

reaction rate modeling with the quantification of the uncertainty about the model.   

 Now, let Xj denote the intensity value of jth in the DAG (Figure 5) and 𝜇𝑗 be the mean value of 

Xj where j=1, 2, 3, 4, 5. The conditional probability distribution of each group is described in 

(equations 2-4 to 2-8) and the model for the mean intensity of the groups is presented in 

(equations2-9 to 2-13).  These equations are the pseudo-kinetic equations for the graphical 

model, DAG.  

P (X1) ~ N (μ1, 0.0056
2
)                                                                                                           (2-4) 

P (X3|X1) ~ N (μ3,0.00202)                                                                                                       (2-5) 

P (X2|X3) ~ N (μ2,0.00372)                                                                                                       (2-6) 
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P (X4|X2) ~ N(μ4, 0.00432)                                                                                                       (2-7) 

P (X5|X2, X3, X4 ) ~ (μ5,0.0020 2)                                                                                             (2-8) 

μ1 = 0.0213                                                                                                                               (2-9) 

μ3 = 1.2570μ1-22.91                                                                                                              (2-10) 

μ2 = 0.73143μ3 − 0.0292                                                                                                      (2-11) 

μ4 = 1.225μ2 + 0.0652                                                                                                          (2-12) 

μ5 = 1.70702μ4 − 0.4488μ2 −0.3184μ3 − 0.0003                                                              (2-13) 

2.5.9 Application to visbreaking 

To address the application of the model to visbreaking, it is useful to restate the challenges. The 

main challenge in modeling the reaction mechanism of the visbreaking process at the described 

condition was the limited prior knowledge of the reaction mechanism to use the classical 

lumping kinetic modelling approach. Moreover, experimental studies indicated that the reduction 

in product viscosity could be by reactions other than just thermal cracking.   

In order to overcome this problem and estimate the most plausible reaction model of the process 

a method based on data mining and Bayesian learning was designed. Lumping was performed 

using clustering of spectroscopic data which required limited prior knowledge about the system. 

The lumps (groups) obtained from the cluster analysis described the variation of the system very 

well. Then, the reaction network and reaction equations were developed using Bayesian learning. 

The network was compared against the reaction network for a model compound and the 

developed model described the reaction very well.  Hence, one most important advantage of the 

proposed method was that it requires limited prior information to provide a very good 

approximation of the reaction model. 

The developed DAG indicates that estimates the reaction of the process well compared to the 

model reaction and the experimental observations, the reaction network generally shows the 

formation of saturate material with reaction progression. Moreover, the DAG is a self-updating 

reaction network, which can predict the reaction network, reaction rate, for new operation 

condition.  The model can be deployed online to monitor the real time effect of different reaction 

conditions. This is useful to investigate the effect of different operation conditions.  
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2.5.10 Conclusions  

A reaction network and the rate models were modeled for low temperature visbreaking of using a 

Bayesian learning approach. First, Bayesian agglomerative hierarchical cluster analysis was 

implemented on spectroscopic data to obtain clusters or pseudo-components. Then, the Bayesian 

network and parameter learning approach were used to develop the kinetic model. The model 

described the reaction mechanism and model compound reaction very well. The kinetic model 

can be used for the online monitoring of the visbreaking process using FTIR spectroscopic data.  
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3.1. INTRODUCTION  

Spectroscopic methods have been widely used in chemical industries for various purposes, 

including new product development, process performance improvement and real time 

monitoring.1, 2 The main reason behind the growing interest for the use of spectroscopic methods 

over conventional process analysis methods is that they are generally fast, reliable, non-invasive, 

and cost-effective; it is also possible to use them to deduce physical parameters3. These methods 

can be used in either laboratory, pilot-plant or full-scale production experiments involving 

identification of new reaction chemistries, new processes and products 4. If used in lab scale 

experiments, the information obtained is usually used in decision making, developing and 

commercializing a new product or even rejecting a new product from commercial consideration5.  

Online spectroscopy has also gained increasing acceptance as a choice for industrial chemical 

process control as it can provide rapid and representative information such as composition and 

quality information directly for a complex chemical process, which otherwise are 

difficult/hazardous to obtain using direct measurement 6, 7, and this information is obviously 

valuable in process and product quality control5, 6, 8, 9.  However, the large amount of useful 

information contained in spectroscopic data is often difficult to extract mainly because 

absorption bands from individual chemical constituents often experience a high degree of 

overlap, the samples are often chemically complex (for example, reactions involving heavy oils) 

and susceptible to a large number of non-chemical interferences. As a result, it is often necessary 

to enhance the information retrieval process by using multivariate statistical methods. 

Chemometrics methods, and specifically self-modeling multivariate curve resolution (SMCR), 

are well suited for improving the effectiveness of online spectroscopic techniques by extracting 

useful information by deconvolving the data and facilitating the automation of online analytical 

techniques10-13. 

The principal advantage of SMCR over other widely used chemometrics techniques, such as 

partial least squares regression, principal component regression, or multiple linear regression is 

that it only requires a small amount of quantitative data7, 10, 14.  

The main objective in this work is to design a SMCR model for automatic prediction of the 

number of components or chemical rank and resolved concentration and spectral profiles of the 

FTIR spectroscopic data acquired from thermally processed oil sands-derived bitumen samples 
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with a view to use the model for online spectroscopy monitoring of similar processes. The 

processing of bitumen offers a significant challenge for online monitoring since it is a highly 

complex mixture with incomplete characterization of the chemical species present. While 

conversion is easily defined for reactions with pure components and can be used to monitor the 

progress of reaction, it is not easy to define or determine for complex mixtures; often, arbitrary 

measures such as the liquid yield or yield of components boiling below a certain temperature are 

used15, 16. However, we show that the SMCR model can be used to develop a monitoring scheme 

for this case. The samples collected were analyzed offline, but the method and model developed 

are suitable for online monitoring. 

3.2. METHODS: SELF-MODELING MULTIVARIATE CURVE RESOLUTION 

(SMCR) 

Self-modeling curve resolution, in a broader sense, is a method similar to principal component 

analysis (PCA), independent component analysis (ICA), evolving factor analysis (EFA) and its 

derivatives, and multivariate curve resolution (MCR),17 that helps to resolve complex mixtures 

into pure components where there is no or very little prior knowledge about the system 18.  

SMCR is different from factor analysis  techniques such as PCA which only produce an abstract 

decomposition of the experimental data to maximize the explained variance in the data 19, in that 

it forces the solution (concentration and spectral profiles) to follow chemically and physical 

meaningful constraints. The fundamental premise in multivariate curve resolution is that spectra 

of the mixtures are the linear combination of the pure spectra and concentrations of the chemical 

species in the mixture and that Beer’s law is valid.  On this ground, the spectral data of the 

mixture sample, D, can be modeled as  

 D = CST + E                                                                                                                             3-1 

where D is the NxM data matrix, C  is a NxK matrix of the concentration profile of K 

components, S  is the MxK matrix of spectral profiles of the K components and E  is the NxM 

noise matrix. 
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3.2.1 Chemical Rank and Initial condition 

As stated before, the first and the key step in SMCR-based analysis of process data is to 

determine the number of active chemical species in the sample, i.e., the chemical rank. For 

spectroscopic and/or chromatographic data, active chemical species refer to species that can 

absorb in the desired wavelength range, have distinguishable spectra and take part in the process; 

for instance, if a species does not change concentrations,20 it does not contribute to the rank. In 

an idealized and noise free situation, the chemical rank is equal to the rank of the data matrix 

D21. In other words, the chemical rank of the systems reacting in bulk  may not exceed the 

number of chemical reactions plus one 22.  For real data, however, the instrumental noise and 

other experimental errors make it difficult to identify the true chemical rank. In this context, 

chemical rank estimation is the process of identifying the relevant chemical information from the 

background noise or in the presence of species that do not take part in the process. There are an 

innumerable number of models and methods proposed to recover the number of linearly 

independent and chemically relevant factors from two-way or multi-way data from samples of 

chemical mixtures 23. The major methods can be classified into two broad classes; namely, 

methods that require full knowledge of the experimental error and approximate methods 

requiring no knowledge of experimental error 23; the details of these methods can be obtained 

elsewhere20, 24. Most of these methods are based on visual analysis of quantities such as the 

logarithm of the eigenvalues, etc.20, and are usually less accurate and are difficult to automate9, 13, 

25. An important factor is robustness, i.e., the ability of the model to provide accurate estimates in 

the presence of background noise, especially when the instrument noise is not constant.  After a 

comparative analysis of various factor analysis methods, Elbergali et Al. 26  found out that the 

ratio of the second and third derivatives of the empirical function known as the indicator function 

(IND) derived by Malinowski 27 accurately predicted the number of relevant factors even for data 

without uniform background noise. Later, Wasin et al. 24 performed another critical analysis of 

rank determination techniques (applied to spectroscopic and chromatographic data)  and also 

arrived at the same conclusion. They confirmed that the maximum of the ratio of the second and 

third derivatives (ROD) and the minimum of IND both accurately estimated the chemical rank of 

this data regardless of the noise level.  For brevity, we refer the reader to Malinowski 23 and 

references within for details and present only the relevant quantities.  Once PCA is performed, 
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the error (the difference between the original data and the predicted data using the first L 

principal components) can iteratively calculated using (Eqn:3.2) by varying the number of PCA 

components from 1 to the number of original variables in the data . It should also be noted that 

the sum of square of elements of a given dataset is equal to the sum of the squares of the 

elements of the matrix of its corresponding principal components. Once the error function is 

calculated then IND and ROD are evident (Eqn:3-3 and 3-4 respectively).   

∑ 𝑒𝑗
N
j=L+1 = ∑ ∑ dij

2 −𝑀
𝑖=1

𝑁
i=1 ∑ ∑ tij

2𝑁
𝑖=1

L
i=1                                                                              3-2 

IND(L) =

√
∑ 𝑒𝑗

N
j=L+1

M(N−L)

(N−L)2
                                                                                                                   3-3 

 

ROD(L) =
IND(L−2)−IND(L−1)

IND(L−1)−IND(l)
                                                                                                    3-4 

where 𝑒𝑗 , dij , tij are error of predicting the data using the first ‘L’ PCA components, the 

element of data matrix, D, and elements of matrix of Principal components respectively.  N and 

M and D are as defined earlier.  

Therefore, the whole procedure of rank determination is reduced to performing PCA/SVD and 

evaluation of the second and third derivative of ROD(K) and locating its maxima or alternatively 

the minima of IND (K). One important consequence of this analysis is the estimation of the 

experimental error in the data, which will be very helpful in the evaluation of the performance of 

the curve resolution process 23.  

The next step is to determine the initial condition for the least squares projection method. For 

this, several methods have been used, including evolving factor analysis (EFA) 28, window factor 

analysis (WFA) 29, orthogonal projection (OPA)30 and simple-to-use interactive self-modeling 

mixture analysis (SIMPLSM) 31, etc. EFA is the most commonly used method and it exploits the 

inherent evolutionary structure in the data registered along the line of process change (with time, 

for example) to determine the local rank at each step. EFA creates a submatrix starting with the 

first spectrum and performs a subsequent PCA on gradually increasing submatrices, enlarged by 

adding one new row at a time and calculating a new set of eigenvalues. Once the forward 
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procedure is done, EFA is also performed in the reverse order and the combined results are used 

for further analysis. Some of the commonly used techniques for the estimation of an initial 

concentration profile are combined forward and backward EFA concentration profiles (the 

smaller of each forward/backward pair is used); result of none iterative EFA and resolving factor 

analysis (RFA) 32, all with equivalent performance. The latter methods need to determine the 

importance level (threshold of concentration profile) which can be affected by the noise level) 

and in the case of the non-iterative EFA, one has to define zero concentration regions to start 

with (the same drawback as with the case of the importance level) and one has to perform 

another least squares analysis. The first method is easy to automate, and no user intervention, 

which makes it an ideal candidate for automation purposes 28. For this reason and the relatively 

lower required computational effort, combined forward and backward EFA is used to estimate 

the initial concentration profile. The subsection provides a brief description of the least square 

based projection method.  

3.2.2 Self-modeling multivariate curve resolution by alternating least squares 

(SMCR-ALS) 

Self-modeling multivariate curve resolution by alternating least squares is by far the most 

popular and potent curve resolution method. Besides the simplicity and the low computational 

effort required, the introduction of ALS as an optimization method enabled SMCR to incorporate 

any data-specific constraint 1, 18, 33.  The ability to incorporate prior knowledge about the process 

and computational simplicity together with an automated procedure to predict the chemical rank 

of the data and initial condition the SMCR-ALS an ideal candidate for an online monitoring 

system for a complex reacting system such as is encountered in the thermal processing of 

bitumen. In short, SMCR-ALS is the minimization of the Frobenius norm of the residual in the 

search for the best fit to the data in a least squares sense18, 34, 35, alternating between equations (3-

5) and (3-6). 

min
𝐶

(‖D − CST‖2
2

)  
 

𝑠. 𝑡: 𝑆 ≥ 0 ,  𝐷 = 𝐶𝑆𝑇

}                                                                                                           3-5 
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min
𝐶

(‖D − CST‖2
2

)  
 

𝑠. 𝑡 𝐶 ≥ 0 𝐷 = 𝐶𝑆𝑇

}                                                                                                             3-6 

The flow chart in Figure 3-1 summarizes the algorithm used in this study for online monitoring 

of thermal processing of bitumen. The computation starts with singular value decomposition 

(SVD)/PCA and ROD determine the chemical rank. EFA estimates the initial concentration, 

which ALS uses to resolve the data D to active chemical species.  
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Figure 3-1.  Flow chart for SMCR-ALS algorithm; nc and Cin are the number of components and 

initial concentration profile, respectively. PCA, ROD and EFA are principal component analysis, 

the ratio of the second and third derivatives of the indicator function and Evolving factor 

analysis. D, S C are as defined earlier.  Cin and nc represent the initial concentration and the 

number of components respectively. 
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3.2.3 Band assignment and quantitative parameters 

In order to facilitate the analysis in the following section, the most commonly used IR regions 

for the interpretation of the FTIR spectra are summarized in Table 3-1 36-41. This is important and 

will be used as reference in the investigation of the resolved profiles.  

Table 3-1. Summary of commonly used band assignments, c the peak centers are assigned within 

a spectral widow of ±10 wavenumbers. 

c Peak center 

(wavenumber cm-1) 

Assignment  

700- 900 

720 

750 

820 

870 

1450-1460 

1500-1800 

1575 

1610 

1630 

1635 

1650 

1710 

1770 

2750-3150 

2857 

2872 

2897 

2925 

2962 

3050 

C-H out-of-plane bending 

Aliphatic  CH2 

Aromatic, four neighbouring  C-H 

Aromatic, two neighbouring  C-H 

Aromatic, isolated C-H 

Aliphatic (±aromatic) CH2 and CH3 bending 

Carbon-carbon and carbon-oxygen stretching 

Carboxyl COOH 

Aromatic C=C (±shited CO) 

Aromatic C=C(± phenol OH) 

Olefin  C=C 

Carbonyl (quinone) C=O 

Carbonyl (ketone) C=O 

Carbonyl (ester) C=O and C-O 

C-H stretching  

Aliphatic CH2, symmetric 

Aliphatic CH3, symmetric 

Aliphatic CH 

Aliphatic CH2, symmetric 

Aliphatic CH3, symmetric 

Aromatic C-H 

In addition to the qualitative analysis of the IR spectra based on band assignment, several semi-

quantitative parameters have been used to assess the effect of aging, reaction conditions and 

other process changes on the characteristic structure of coal, kerogen, bitumen, asphaltenes and 

other similar classes of materials 36-38, 42, 43.  Some of these parameters are used here to get a 
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deeper insight into the effect of reaction conditions and to compare resolved components from 

the SMCR analysis.  

The first parameter is the ratio of the intensity of asymmetric stretching between methylene and 

methyl groups (CH2— and CH3—). The  nCH2/nCH3 ratio is used to measure the effect of 

reaction conditions on the average length of the aliphatic chain in the samples 44, 45
 
46

 and is 

defined as 

𝑛𝐶𝐻2 𝑛𝐶𝐻3 =
𝐼2922

𝐼2954
⁄                                                                                                                     3-7 

or 

𝑛𝐶𝐻2 𝑛𝐶𝐻3 =
𝐼2922 + 𝐼2954

𝐼2954
⁄                                                                                                           3-8 

where 𝐼2922 and 𝐼2954 are the absorbance at 2922 and 2954cm-1. 

A low (CH2/CH3) value generally indicates lower average length of the aliphatic chain in the 

sample while a higher value may imply either longer aliphatic chains or may also imply higher 

cycloalkanes content of the sample 47. 

The other commonly used parameter, the degree of aromatic condensation (DOC), is used to 

measure the relative content of the condensed aromatic structures in the sample 37. 𝐴1550−1630 

and 𝐴700−900 represent the area under the peak over the range of frequencies of 1550-1630 and 

700-900cm-1 respectively. The higher the value of DOC the higher is the condensed structure.  

𝐷𝑂𝐶 =
𝐴1550−1630

𝐴700−900
                                                                                                                        3-9 

The third parameter, the C-factor, is used to assess the change in the oxygenated functional 

groups versus the aromatic ring functional group42. In equation 3.10 the I’s, 𝐼1742, 𝐼1603, show 

the absorbance values at 1603 and 1742 cm-1 respectively. 

𝐶 − 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐼1742

𝐼1603+𝐼1742
                                                                                                       3-10 

  



53 

Data Description and Preprocessing 

Bitumen consists of different classes of compounds, namely saturates, aromatics, substituted 

aromatic and polyaromatic groups 48,  mixed naphthene-aromatic rings49 and other heteroatoms 

such as sulfur, oxygen and nitrogen. The IR spectrum shows characteristic peaks that correspond 

to modes of those functional groups.  

FTIR data was obtained within (600 to 4000 cm-1) portion of the infrared region with a resolution 

of 2 cm-1 for samples obtained from the thermal reaction of bitumen under different reaction 

conditions (time varying from 0.5 to 8 hrs. and temperature varying from 150oC to 400oC), with 

the details of the experimental procedure being reported elsewhere50-52.  

Figure 3-2 shows all the data together and consists of 43 FTIR spectra with 1765 spectral 

channels. The saturates have abundant bands at 2854, 2922, 2954, 1371 and 1455 cm-1. 

Moreover, the band regions (1550-1630 cm-1), (700-900 cm-1), (3000-3150 cm-1),  (1630-1670 

cm-1), (1670-1800 cm-1), (2750-3000 cm-1) and  (1000-1300 cm-1) designate aromatic C=C ring 

stretching vibration; aromatic C-H out-of-plane bending vibration; aromatic C-H stretching 

vibration 37, 40, 42, 53, 54; alkene group; oxygenate groups; aliphatic group and C-O functional group 

55 respectively. 

 

Figure 3-2. FTIR spectra of all the thermally treated bitumen samples. 
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Before the analysis, the data is baseline corrected and the high frequency signals were filtered 

out. Figure 3-3 shows one sample smoothed dataset (the first dataset at 150oC); the plots include 

the raw data, its smoothed counterpart and the corresponding residual. The residual consists of 

only high frequency signals and probably represents the instrument noise. The analysis of all the 

other data is done in similar fashion and is left out for brevity.  

 

Figure 3-3. Comparison of the smoothed and raw data and the corresponding residual for the first 

data set (150oC). 

3.3. RESULTS AND DISCUSSION 

3.3.1 Chemical rank  

Figure 3-4a demonstrates how ROD works to estimate the chemical rank of the data, with the 

maximum value indicating the optimum number of components. Clearly, the number of 

components for this dataset is three, for the 150oC dataset, and three components are enough to 

explain about 99.6% of the variance in the data.  Figure 3-4b presents the resulting residual, 
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which also indicates that there is no significant information left to recover. Other datasets were 

analyzed in similar fashion and it was found that only three components were found significant 

for each dataset, explaining more than 99% of the variance in each case. Generally, it is easy to 

see how suitable the method is to automate compared to the graphical methods where the user 

has to determine the rank qualitatively based on one’s understanding of the noise level.  

  

 

a 

  
b 

Figure 3-4. Chemical rank estimation using the ratio of the second and third derivatives of the 

indicator function (ROD). This is a sample result to describe how ROD works; the estimation of 

chemical rank is determined automatically during simulation. 
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3.3.2 SMCR-ALS  

This subsection presents the alternating least squares results for each dataset, obtained at reaction 

temperatures of 150 oC, 200 oC, 300oC, 340oC, 360oC and 400oC.   

Figure 3-5 shows the resolved spectra, the estimated parameter values, concentration profiles, 

rate of convergence and ALS residual for the 150oC dataset. The three components indicated by 

the analysis are designated as A1, A2 and A3, respectively. For FTIR spectra of bitumen, the peak 

at 864 cm-1 indicates an aromatic structure with isolated aromatic hydrogen whereas peaks at 739 

and 812 cm-1 designate the presence of two and four vicinal aromatics respectively56. Weak 

bands at 3050, 864, 812 and 739 cm-1 show the presence of polyaromatic groups and for this 

dataset, weaker peaks in these regions (Figure 3-5a) indicate that the second and the third 

components (A2 and A3) have higher condensed structures than the first component (A1).  Figure 

3-5b compares the components in terms of the C-O band (1000-1300 cm-1) and the aliphatic CHx 

intensities (peaks at 1371 and 1460 cm-1). From the result, it is clear that A3 has the least C-O 

group and other two are equivalent. Besides the aliphatic CHx content is  least for A1. Figure 

3-5c shows two important regions, the aromatic ring C=C stretching (̴1602 cm-1) and the 

carbonyl peak (~1742 cm−1). The aromatic ring C=C stretching intensity and carbonyl intensity 

are relatively the lowest for A3 and the other two components are similar in this region. The 

shoulder between these two peaks is usually ascribed to the alkene group, but there is no 

significant absorption for this case, though A3 has relatively better absorbance. Figure 3-5d 

describes the aliphatic and aromatic CHx stretching intensities. Clearly, the intensity for A2 and 

A3 are higher in aliphatic CHx stretching intensities, indicating these compounds are more 

aliphatic than A1.  

Figure 3-5e-g shows the values of the semi-quantitative parameters used to evaluate the 

differences between the components. Figure 3-5e shows that the CH2/CH3 ratio is highest for A3 

followed by that for A2. Under normal circumstances, thermal cracking usually produces shorter 

aliphatic chains and one may expect a decrease in the CH2/CH3 ratio with reaction time. In this 

case, the result is indicative of the fact that there is no significant thermal cracking at this 

reaction temperature (the difference is negligible) or it could also mean that hydrogenation is 

taking place, which may have produced cycloalkanes. Similar trends were observed for datasets 
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at 150-360oC. The result also compares well with another recent study by Craddock et al. 37. In 

their investigation of pyrolysis-based thermal maturation of bitumen samples, they observed a 

decreasing CH3/CH2 ratio with pyrolysis. Figure 3-5f shows the degree of condensation of the 

aromatic fraction and obviously, A2 has the least DOC followed by A1, with A3 consisting of 

more condensed aromatic structures compared to the other two, which is reasonable. The 

prolonged pyrolysis period normally favors the formation of coke, which has a condensed ring 

structure. Finally, Figure 3-5g compares the carbonyl content of the components, which is 

highest for A2, followed A1. Figure 3-5h shows the resolved concentration profile for the same 

dataset, with C1, C2 and C3 representing the concentrations of A1, A2 and A3, respectively. From 

the results, one can see that the relatively aliphatic component (A3) is dominant in terms of 

concentration over the majority of the reaction period. This is consistent with the results obtained 

through 1H NMR  and viscosity measurement 51 where it was found that the aliphatic content of 

the visbroken material is higher than the starting material and lower viscosity. Figure 3-5 i and j 

illustrate the speed of convergence and accuracy of the ALS optimization. The speed of 

convergence and residuals are similar for the other reaction conditions, and those plots are 

omitted for brevity. 

 

a 

 

b 



58 

 

c 
 

d 

 
e 

 
f 

1.78

1.80

1.82

1.84

1.86

1.88

1.90

1 2 3

C
H

2
/C

H
3

Component number

I_2922/I_2954

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3

D
O

C

Component number

A_1550-1630/A_700-900



59 
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h 

 
i  

j 

Figure 3-5. SMCR analysis results for 150oC dataset where (a-d) shows the resolved spectra; (e-

g) the quantitative parameters; (h) represents the corresponding concentration profile; (i) shows 

the convergence with respect to number iteration and (j) is the ALS optimization residual. C1, C2 

& C3  and A1, A2 & A3 represent the concentrations and the absorbance of the resolved 

components.  DOC, I’s and A’s with respective subscripts stands for the degree of aromatic 

condensation, intensities at the wavenumber indicated as subscript and area under the peak over 

the range of frequency range indicated as subscript. 

Figure 3-6 describes the resolved spectra of the components, the estimated parameters and the 

concentration profiles for the 200oC dataset. Similar to the 150oC case, it is clear that generally 

there is an increase in the CH2/CH3 ratio and increasing DOC going from A1 to A3, as seen in 
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Figure 3-6a-f. On the other hand, A2 has the highest carbonyl fraction and A3 the least of all 

(Figure 3-6g).  Figure 3-6h describes the corresponding concentration profile for the resolved 

spectra; the product stream consists mainly of A3 after 200 min. 

 In general it can be seen that the intermediate and the final product has higher aliphatic 

composition than the starting material, A1, which is similar to the results obtained from 1H NMR 

, higher aliphatic content51.  

 

 

a 

 

 

b 

 

c 
 

d 
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Figure 3-6.  SMCR analysis results for 200oC dataset where (a-d) shows the resolved spectra, (e-

g) the quantitative parameters, (h) represents the corresponding concentration profile. C1, C2 & 

C3  and A1, A2 & A3 represent the concentrations and the absorbance of the resolved 

components.  DOC, I’s and A’s with respective subscripts stands for the degree of aromatic 

condensation, intensities at the wavenumber indicated as subscript and area under the peak over 

the range of frequency range indicated as subscript. 

Figure 3-7 illustrates the resolved spectra of the components, the parameter values and the 

concentration profiles for the 300oC dataset. Similar to the previous cases, the DOC and 

CH2/CH3 ratio increase and the carbonyl fraction decreases from A1 to A3. Figure 3-7h presents 
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the concentration profile of the components with respect to reaction time. The concentration of 

A1 decreases quickly to zero and that of A2 increases and stays constant after that with A2 being 

the dominant species after about 300 min. 

Similar to the two cases above, 1H NMR was used to measure the actual content of aliphatic 

protons and it was found that the visbroken materials have a higher proportion of aliphatic 

protons than the raw bitumen. Besides, after visbreaking at 300oC, the viscosity of the products 

decreased by two to three orders of magnitude compared with the raw bitumen51 which may also 

confirm the fact that the product side has higher aliphatic content and this is consistent with the 

results discussed above.   
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Figure 3-7. SMCR analysis results for 300oC dataset where (a-d) shows the resolved spectra, (e-

g) the quantitative parameters, (h) represents the corresponding concentration profile. C1, C2 & 

C3  and A1, A2 & A3 represent the concentrations and the absorbance of the resolved 

components.  DOC, I’s and A’s with respective subscripts stands for the degree of aromatic 

condensation, intensities at the wavenumber indicated as subscript and area under the peak over 

the range of frequency range indicated as subscript. 

Figure 3-8 shows the SMCR analysis results, the estimated parameter values and concentration 

profiles for the 340oC dataset.  Figure 3-8a-g show increasing DOC and CH2/CH3 values and 

decreasing carbonyl intensity from A1 to A3. Figure 3-8h describes the corresponding 

concentration profile of the components, with a fast drop in the relative concentration of A1 and 

non-monotonic trends in the other two components. The fact that intermediate and the final 
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product have more aliphatic content than the first component is consistent with observed 

viscosity reduction 16, 57, lower viscosity indicates higher aliphatic content.   
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Figure 3-8. SMCR analysis results for 340oC dataset where (a-d) shows the resolved spectra, (e-

g) the quantitative parameters, (h) represents the corresponding concentration profile. C1, C2 & 

C3  and A1, A2 & A3 represent the concentrations and the absorbance of the resolved 

components.  DOC, I’s and A’s with respective subscripts stands for the degree of aromatic 

condensation, intensities at the wavenumber indicated as subscript and area under the peak over 

the range of frequency range indicated as subscript. 

  

Figure 3-9 describes the SMCR results, the resolved spectra, the estimated parameter values and 

concentration profiles for the 360oC dataset, indicating a (non-monotonic) increase in the DOC 

and CH2/CH3 ratio with reaction time and decreasing carbonyl intensity from A1 to A3 as shown 
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in Figure 3-9a-g.  Figure 3-9h show the corresponding concentration profiles for the components. 

Obviously, A1 disappears after a while and only A2 and A3 are available in the system. Similar to 

the case of 340oC visbroken material showed lower viscosity which agrees with the results of 

this analysis, higher aliphatic content in the product stream (A1, A2).
16, 57  
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Figure 3-9. SMCR analysis results for 360oC dataset where (a-d) shows the resolved spectra, (e-

g) the quantitative parameters, (h) represents the corresponding concentration profile. C1, C2 & 

C3  and A1, A2 & A3 represent the concentrations and the absorbance of the resolved 

components.  DOC, I’s and A’s with respective subscripts, stands for the degree of aromatic 

condensation, intensities at the wavenumber indicated as subscript and area under the peak over 

the range of frequency range indicated as subscript. 

Figure 3-10 shows the SMCR analysis results, the resolved spectra, the estimated parameter 

values and the concentration profiles for the 400oC dataset. Figure 3-10a indicates that A3 has the 

least CH2/CH3 ratio, the relatively highest content of the shorter aliphatic chain, which is 

consistent with 1H NMR characterization of the samples, where a decreasing and then increasing 
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trend in the methyl group was observed 58. This also shows that there is more thermal cracking at 

400oC than the cases addressed so far. Figure 3-10f shows the increasing degree of aromatic 

condensation (from A1 to A3). In addition, A3 is dominant in terms of its relative concentration at 

longer reaction times (greater than 90 min), which is in agreement with the increasing 

microcarbon residue content of the solid -free liquid products of the samples that was also 

observed in experimental analysis of these samples 58.  
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Figure 3-10. SMCR analysis results for 400oC dataset where (a-d) shows the resolved spectra, (e-

g) the quantitative parameters, (h) represents the corresponding concentration profile.  C1, C2 & 

C3  and A1, A2 & A3 represent the concentrations and the Absorbance of the resolved 

components.  DOC, I’s and A’s with respective subscripts, stands for the degree of aromatic 

condensation, intensities at the wavenumber indicated as subscript and area under the peak over 

the range of frequency range indicated as subscript 

Since this algorithm allows prediction of the most plausible components from FTIR spectra of 

mixtures and requires very short computation time it can be used to perform real time analysis 
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and control of the reaction. In order to use the algorithm it can be incorporated to the existing 

control system and provides addition information or can be the code can be deployed online with 

FTIR spectroscopy. Hence one can analyze the changes and the effect of different operation 

condition online, identify the optimum operation condition.   
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3.4.  CONCLUSION  

A multivariate algorithm is designed to resolve the FTIR spectra of thermally cracked bitumen 

samples. The algorithm enables automatic estimation of the chemical rank and initial condition 

for FTIR spectral data. Principal component analysis is implemented to determine the error for 

rank estimation and evolving factor analysis to approximate the initial concentration profile. The 

final resolution of the spectra is performed using an alternating least squares-based constrained 

optimization method, SMCR-ALS, using the Frobenius norm of the residual as the cost function.  

In order to assess the accuracy and the convergence speed of the algorithm six FTIR spectral of 

the samples of bitumen, treated at various temperature and reaction times, were investigated. The 

results were compared with available experimental data, 1H NMR characterization and measured 

microcarbon residue content. The agreement with the experimental results is promising and the 

algorithm requires few seconds to converge, which also a good feature for online monitoring.  
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4. CONCLUSIONS AND RECOMMENDATIONS  

4.1. CONCLUSIONS 

The main theme of this study is to derive the reaction network and develop a multivariate online 

monitoring scheme for the investigation of the mild thermal cracking of oil sand bitumen in the 

temperature range of 150oC to 400oC, both objectives serving the same goal, identification of the 

process. The objectives are achieved by analyzing FTIR spectroscopy data using a combination 

of a variable selection technique (PCA), data clustering, Bayesian network learning and PCA, 

IND, EFA and SMCR-ALS respectively.  

This research is significant for the identification of the reaction network involved in the mild 

thermal cracking of bitumen for two basic reasons. One of the problems is that there is only 

limited information about the chemistry of the process in the temperature range 150oC to 400oC 

for the classical lumping kinetic methods to be used. Secondly, spectroscopy techniques seem to 

an ideal choice for the identification of such a complex chemical process since it provides 

comprehensive information about the underlying chemical changes at a given operation 

condition. However, the large amount of useful information contained in spectroscopic data is 

often difficult to extract since absorption intensities from individual chemical constituents of the 

sample experience a high degree of overlap, particularly for reactions involving chemically 

complex systems such as reactions involving heavy oils. 

The first part of the study (Chapter 2) showed how to use combination of data mining and other 

learning techniques to develop the most possible reaction kinetics model from FTIR 

spectroscopy data alone. The required underlining assumption and domain knowledge is also 

minimal. Moreover, the computer codes for this algorithm can readily be deployed online for use 

in the real time investigation of the reaction network, a self-updating reaction network.   

The second part of the study (Chapter 3) described the importance of self -modeling multivariate 

curve resolution (SMCR) in the analysis of the effect of various operation condition on the 

process. The model predicts the chemical rank of the system, resolve the spectra and calculates 

the resulting concentration profile with no user intervention, which is also useful for further 

analysis and monitoring of the system.  
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The major conclusions are: 

 Bayesian agglomerative hierarchical cluster analysis applied to the FTIR spectroscopic 

data for the reaction conditions in the temperature range of 150oC to 400oC and five 

major clusters/ pseudo-components were identified. Then the possible compound classes 

in the clusters were identified using spectroscopy handbooks. The first group consists of 

aromatics and cycloalkanes. The second group consists of aromatics, alkanes, carbonyls, 

alcohols and phenols. The third cluster includes aromatics and hetroaromatics, 

cycloalkanes and alkanes. The fourth and the fifth clusters consists mainly of 

cycloalkanes & alkanes and Paraffins respectively. The clustering result shows an 

increase in the composition of saturates from group1 to group5. The difference in 

composition among the groups confirms that the methods may be used to identify the 

varying groups in such a complex reactive system. 

  A Bayesian learning method is then used to recover the possible reaction network among 

the pseudo (groups). The reaction network from Bayesian learning approach is compared 

against the representative model reaction network and the BN described the model 

reaction network very well. This indicates the accuracy of the approach to discover 

reaction mechanism while there is very limited information about the process. 

 In addition to the qualitative model, the graph, Bayesian parameter learning is 

implemented and the reaction rate model was estimated with the uncertainties of the 

estimation well described.   

 In general, since the proposed method is based on data mining scheme it is difficult to, 

completely validate the results, yet it can be concluded that a sensible reaction network 

can be developed from FTIR data alone using the proposed approach. 

 The results of this part of the study indicates that the reaction favors formation a more 

saturated products.  

 The second part of the study focused on self-modeling curve resolution approach to 

further investigate the process.  The  reaction at each temperature (varying reaction time) 

is investigated separately.  The method used PCA, ROD, EFA to define IND, predict the 

chemical rank and approximate the initial concentration profile respectively. The final 

resolution of the spectra is performed using an alternating least squares-based constrained 
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optimization method, SMCR-ALS.   The results dictate that the chemical rank of the 

system is three for each reaction condition.  

 The findings also show that in general the reaction leads to an increase in aliphatic 

content of the components with reaction time. 

 The agreement between the first and the second approach is an indication of the fact that 

both estimations are reasonably accurate. The experimental studies also showed an 

increase in the composition of saturates as reaction progresses.  

 The results were also compared with available experimental data, 1H NMR 

characterization and measured microcarbon residue content. The agreement with the 

experimental results is promising. 

4.2. RECOMMENDATIONS AND FUTURE WORK 

The research highlighted some interesting techniques that can be used to recover the reaction 

kinetics of and resolve spectra of systems with complex chemical mixtures when there is limited 

information about the chemistry of the process. However, the following aspect of the topic can 

be investigated further. 

 Even though the acyclic Bayesian network is provides a very good estimation of the 

reaction mechanism, thermal cracking reaction is commonly reversible and this model 

can be extended to cyclic Bayesian graphs for the complete description of the 

phenomena. 

 A further parametric study can be done using the model either using offline or online 

data.  

 The models in this work are developed using the offline data and they need to be tested 

on real time basis for actual implementation. 

 The methods designed in this reach can be used for the analysis of similar systems such 

as thermal processing of biogas.  

 In the presence of enough data points, concentration profiles from self-modeling curve 

resolution scheme can be used with Bayesian learning to identify reaction parameters. 
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APPENDIX A.  

Figure A1 show the dendrogram where the height is the log of posterior of merging and the 

horizontal axis represent the variables, wavenumbers. 

 

Figure A1.  The dendrogram where the height (y-axis) is the log of posterior of merging and the 

horizontal axis represent the variables, wavenumbers. 
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Tables A 1 to 5 describes the wave numbers in the each cluster described in (chapter 2) and 

Figure A1 of the thesis. 

Table A-0-1: Wave numbers (cm-1) in cluster I 

 

  

2982 1408 1325 1254 1182 1111 1040 968 897 825 754 665

2980 1406 1323 1252 1180 1109 1038 966 895 824 752 663

2978 1404 1321 1250 1178 1107 1036 964 893 822 750 662

2976 1402 1319 1248 1176 1105 1034 962 891 820 748 660

2974 1400 1317 1246 1175 1103 1032 960 889 818 729 658

2972 1398 1315 1244 1173 1101 1030 959 887 816 727 656

2970 1396 1313 1242 1171 1099 1028 957 885 814 725 654

2837 1394 1311 1240 1169 1097 1026 955 883 812 723 652

2835 1393 1310 1238 1167 1095 1024 953 881 810 721 650

2833 1391 1308 1236 1165 1094 1022 951 879 808 719 648

2831 1389 1306 1234 1163 1092 1020 949 878 806 717 646

2829 1387 1304 1232 1161 1090 1018 947 876 804 716 644

2827 1385 1302 1230 1159 1088 1016 945 874 802 714 642

2826 1383 1300 1229 1157 1086 1014 943 872 800 712 640

2824 1369 1298 1227 1155 1084 1013 941 870 798 710 638

1489 1367 1296 1225 1153 1082 1011 939 868 797 708 636

1487 1366 1294 1223 1151 1080 1009 937 866 795 706 635

1485 1364 1292 1221 1149 1078 1007 935 864 793 704 633

1483 1362 1290 1219 1148 1076 1005 933 862 791 702 631

1481 1360 1288 1217 1146 1074 1003 932 860 789 700 629

1479 1358 1286 1215 1144 1072 1001 930 858 787 698 627

1477 1356 1284 1213 1142 1070 999 928 856 785 696 623

1475 1354 1283 1211 1140 1068 997 926 854 783 694 621

1474 1352 1281 1209 1138 1067 995 924 852 781 692 619

1472 1350 1279 1207 1136 1065 993 922 851 779 690 615

1431 1348 1277 1205 1134 1063 991 920 849 777 689 613

1429 1346 1275 1203 1132 1061 989 918 847 775 687 611

1427 1344 1273 1202 1130 1059 987 916 845 773 685 608

1425 1342 1271 1200 1128 1057 986 914 843 771 683 606

1423 1340 1269 1198 1126 1055 984 912 841 770 681 604

1421 1339 1267 1196 1124 1053 982 910 839 768 679 602

1420 1337 1265 1194 1122 1051 980 908 837 766 677 600

1418 1335 1263 1192 1121 1049 978 906 835 764 675

1416 1333 1261 1190 1119 1047 976 905 833 762 673

1414 1331 1259 1188 1117 1045 974 903 831 760 671

1412 1329 1257 1186 1115 1043 972 901 829 758 669

1410 1327 1256 1184 1113 1041 970 899 827 756 667
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Table A -0-2: Wave numbers (cm-1) in cluster II 

 

 

 

 

4000 3929 3857 3786 3715 3643 3572 3501 3429 3358 3286 3215 3144 3072 3001 2770

3998 3927 3855 3784 3713 3641 3570 3499 3427 3356 3285 3213 3142 3070 2999 2768

3996 3925 3853 3782 3711 3639 3568 3497 3425 3354 3283 3211 3140 3069 2997 2766

3994 3923 3852 3780 3709 3637 3566 3495 3423 3352 3281 3209 3138 3067 2995 2764

3992 3921 3850 3778 3707 3636 3564 3493 3421 3350 3279 3207 3136 3065 2993 2762

3990 3919 3848 3776 3705 3634 3562 3491 3420 3348 3277 3205 3134 3063 2991 2760

3988 3917 3846 3774 3703 3632 3560 3489 3418 3346 3275 3204 3132 3061 2989 2758

3987 3915 3844 3772 3701 3630 3558 3487 3416 3344 3273 3202 3130 3059 2988 2756

3985 3913 3842 3771 3699 3628 3556 3485 3414 3342 3271 3200 3128 3057 2986 2754

3983 3911 3840 3769 3697 3626 3555 3483 3412 3340 3269 3198 3126 3055 2984 2752

3981 3909 3838 3767 3695 3624 3553 3481 3410 3339 3267 3196 3124 3053 2822 2750

3979 3907 3836 3765 3693 3622 3551 3479 3408 3337 3265 3194 3123 3051 2820 2748

3977 3906 3834 3763 3691 3620 3549 3477 3406 3335 3263 3192 3121 3049 2818 2746

3975 3904 3832 3761 3690 3618 3547 3475 3404 3333 3261 3190 3119 3047 2816 2745

3973 3902 3830 3759 3688 3616 3545 3474 3402 3331 3259 3188 3117 3045 2814 2743

3971 3900 3828 3757 3686 3614 3543 3472 3400 3329 3258 3186 3115 3043 2812 2741

3969 3898 3826 3755 3684 3612 3541 3470 3398 3327 3256 3184 3113 3042 2810 2739

3967 3896 3825 3753 3682 3610 3539 3468 3396 3325 3254 3182 3111 3040 2808 2737

3965 3894 3823 3751 3680 3609 3537 3466 3394 3323 3252 3180 3109 3038 2806 2735

3963 3892 3821 3749 3678 3607 3535 3464 3393 3321 3250 3178 3107 3036 2804 2733

3961 3890 3819 3747 3676 3605 3533 3462 3391 3319 3248 3177 3105 3034 2802 2731

3960 3888 3817 3745 3674 3603 3531 3460 3389 3317 3246 3175 3103 3032 2800 2729

3958 3886 3815 3744 3672 3601 3529 3458 3387 3315 3244 3173 3101 3030 2799 2727

3956 3884 3813 3742 3670 3599 3528 3456 3385 3313 3242 3171 3099 3028 2797 2725

3954 3882 3811 3740 3668 3597 3526 3454 3383 3312 3240 3169 3097 3026 2795 2723

3952 3880 3809 3738 3666 3595 3524 3452 3381 3310 3238 3167 3096 3024 2793 2721

3950 3879 3807 3736 3664 3593 3522 3450 3379 3308 3236 3165 3094 3022 2791 2719

3948 3877 3805 3734 3663 3591 3520 3448 3377 3306 3234 3163 3092 3020 2789 2718

3946 3875 3803 3732 3661 3589 3518 3447 3375 3304 3232 3161 3090 3018 2787 2716

3944 3873 3801 3730 3659 3587 3516 3445 3373 3302 3231 3159 3088 3016 2785 2714

3942 3871 3799 3728 3657 3585 3514 3443 3371 3300 3229 3157 3086 3015 2783 2712

3940 3869 3798 3726 3655 3583 3512 3441 3369 3298 3227 3155 3084 3013 2781 2710

3938 3867 3796 3724 3653 3582 3510 3439 3367 3296 3225 3153 3082 3011 2779 2708

3936 3865 3794 3722 3651 3580 3508 3437 3366 3294 3223 3151 3080 3009 2777 2706

3934 3863 3792 3720 3649 3578 3506 3435 3364 3292 3221 3150 3078 3007 2775 2704

3933 3861 3790 3718 3647 3576 3504 3433 3362 3290 3219 3148 3076 3005 2773 2702

3931 3859 3788 3717 3645 3574 3502 3431 3360 3288 3217 3146 3074 3003 2772 2700

2627 2555 2484 2413 2341 2270 2199 2127 2056 1985 1913 1842 1771 1699 1628 1556

2625 2554 2482 2411 2339 2268 2197 2125 2054 1983 1911 1840 1769 1697 1626 1555

2623 2552 2480 2409 2338 2266 2195 2123 2052 1981 1909 1838 1767 1695 1624 1553

2621 2550 2478 2407 2336 2264 2193 2122 2050 1979 1907 1836 1765 1693 1622 1551

2619 2548 2476 2405 2334 2262 2191 2120 2048 1977 1906 1834 1763 1691 1620 1549

2617 2546 2474 2403 2332 2260 2189 2118 2046 1975 1904 1832 1761 1690 1618 1547

2615 2544 2473 2401 2330 2258 2187 2116 2044 1973 1902 1830 1759 1688 1616 1545

2613 2542 2471 2399 2328 2257 2185 2114 2042 1971 1900 1828 1757 1686 1614 1543

2611 2540 2469 2397 2326 2255 2183 2112 2041 1969 1898 1826 1755 1684 1612 1541

2609 2538 2467 2395 2324 2253 2181 2110 2039 1967 1896 1825 1753 1682 1610 1539

2608 2536 2465 2393 2322 2251 2179 2108 2037 1965 1894 1823 1751 1680 1609 1537

2606 2534 2463 2392 2320 2249 2177 2106 2035 1963 1892 1821 1749 1678 1607 1535

2604 2532 2461 2390 2318 2247 2176 2104 2033 1961 1890 1819 1747 1676 1605 1533

2602 2530 2459 2388 2316 2245 2174 2102 2031 1960 1888 1817 1745 1674 1603 1531

2600 2528 2457 2386 2314 2243 2172 2100 2029 1958 1886 1815 1744 1672 1601 1529

2598 2527 2455 2384 2312 2241 2170 2098 2027 1956 1884 1813 1742 1670 1599 1528

2596 2525 2453 2382 2311 2239 2168 2096 2025 1954 1882 1811 1740 1668 1597 1526

2594 2523 2451 2380 2309 2237 2166 2095 2023 1952 1880 1809 1738 1666 1595 1524

2592 2521 2449 2378 2307 2235 2164 2093 2021 1950 1879 1807 1736 1664 1593 1522

2590 2519 2447 2376 2305 2233 2162 2091 2019 1948 1877 1805 1734 1663 1591 1520

2588 2517 2446 2374 2303 2231 2160 2089 2017 1946 1875 1803 1732 1661 1589 1518

2586 2515 2444 2372 2301 2230 2158 2087 2015 1944 1873 1801 1730 1659 1587 1516

2584 2513 2442 2370 2299 2228 2156 2085 2014 1942 1871 1799 1728 1657 1585 1514

2582 2511 2440 2368 2297 2226 2154 2083 2012 1940 1869 1798 1726 1655 1583 1512

2581 2509 2438 2366 2295 2224 2152 2081 2010 1938 1867 1796 1724 1653 1582 1510

2579 2507 2436 2365 2293 2222 2150 2079 2008 1936 1865 1794 1722 1651 1580 1508

2577 2505 2434 2363 2291 2220 2149 2077 2006 1934 1863 1792 1720 1649 1578 1506

2575 2503 2432 2361 2289 2218 2147 2075 2004 1933 1861 1790 1718 1647 1576 1504

2573 2501 2430 2359 2287 2216 2145 2073 2002 1931 1859 1788 1717 1645 1574 1502

2571 2500 2428 2357 2285 2214 2143 2071 2000 1929 1857 1786 1715 1643 1572 1501

2569 2498 2426 2355 2284 2212 2141 2069 1998 1927 1855 1784 1713 1641 1570 1499

2567 2496 2424 2353 2282 2210 2139 2068 1996 1925 1853 1782 1711 1639 1568 1497

2565 2494 2422 2351 2280 2208 2137 2066 1994 1923 1852 1780 1709 1637 1566 1495

2563 2492 2420 2349 2278 2206 2135 2064 1992 1921 1850 1778 1707 1636 1564 1493

2561 2490 2419 2347 2276 2204 2133 2062 1990 1919 1848 1776 1705 1634 1562 1491

2559 2488 2417 2345 2274 2203 2131 2060 1988 1917 1846 1774 1703 1632 1560 625

2557 2486 2415 2343 2272 2201 2129 2058 1987 1915 1844 1772 1701 1630 1558 617
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Table A0-3: Wave numbers (cm-1) in cluster III 

 

 

Table A0-4: Wave numbers (cm-1) in cluster IV 

 

Table A0-5: Wave numbers (cm-1) in cluster V 

 

2968 2966 2964 2962 2889 2887 2885 2883 2881 2880 2878 2876 2874 2872 2845 2843 2841 2839 1470 1468 1466 1448 1447

1445 1443 1441 1439 1437 1435 1433 1381 1379 1377 1375 1373 1371 746 744 743 741 739 737 735 733 731

2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2903 2901 2899 2897 2895 2893 2891

2870 2868 2866 2864 2862 2860 2858 2856 2854 2853 2851 2849 2847 1460 1458 1456 1454 1452 1450

2935 2934 2932 2930 2928 2926 2924 2922 2920 2918 2916 2914 2912 2910 2908 2907 2905


