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Abstract

Linear mixed model (LMM) analysis has been recently used extensively for estimating additive genetic variances and
narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the
Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical
procedure known as symmetric differences squared (SDS) as it may serve as a viable alternative when the LMM methods
have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based
only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS
procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the
LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation
by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it
continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to
work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable
alternative particularly when analyzing ‘big’ genomic data sets.
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Introduction

Recent surge of genome-wide association studies (GWAS) based

largely on the use of single nucleotide polymorphisms (SNPs) has

enabled plant/animal breeders and human geneticists to identify

hundreds of SNPs responsible for the genetic variation of

quantitative traits or complex diseases. While such identification

contributes to an in-depth understanding of the genetic architec-

ture of complex traits, the numerous SNPs identified have

collectively accounted for only a small amount of genetic variation

in many studies. Several possible explanations have been put

forward to explain this phenomenon known as the ‘‘missing

heritability’’ [1–4]. Meanwhile, several studies [5–8] suggested the

use of Henderson’s [9] linear mixed models (LMM) to estimate the

total genetic variation captured by all SNPs by replacing the

pedigree-based relationship matrix with the marker-based rela-

tionship matrix in the mixed-model equations. As usual, restricted

maximum likelihood (REML) method is used for the estimation of

variance components. The use of LMM uncovers a substantial

amount of hidden (rather than missing) heritability. However, the

LMM-REML analysis is computationally very demanding partic-

ularly when there are a large number of individuals. For this

reason, there are now a whole array of software packages

including ASREML [10], EMMA [6,11], FaST-LMM [12],

GEMMA [8], GCTA [13], rrBLUP [14] and TASSEL [15] that

implement the REML in the LMM analysis.

Since Meuwissen et al. [16], the use of DNA markers over the

whole genome for prediction of unobserved phenotypes (genome-

wide prediction or genomic selection, GS) has been extensively

exploited in animal and plant breeding [17,18]. While the

Bayesian-based analyses are often used to simultaneously estimate

variance parameters and marker effects in GS studies, it is

recommended [17] that with moderate to large sample sizes, a

two-step approach should be employed: (i) to estimate the variance

components using a non-Bayesian algorithm, usually REML-

based algorithm; and (ii) to compute BLUP of genetic effects from

standard mixed-model equations. This two-step approach is

computationally less intensive than the Bayesian algorithms.

In order to achieve sufficient statistical power of detecting

numerous variants with small-sized effects that collectively

contribute to the genetics of most complex traits, large sample

sizes are often used [19–23] though it is most convenient to scan

the whole genome one marker at a time. For example, a recent

large-scale (126,559 individuals) GWAS [23] is able to detect very

small allelic effect with R2 of , 0.02%. However, the LMM

analysis of such large data sets creates a much heavier

computational burden because the computing time required for

constructing the genetic relationship matrix and solving LMM

equations increases with the cube of the number of individuals fit

as a random effect. The computing time is further increased

because iteration is needed to estimate population parameters,

such as variance components that are due to the effects of

individual tested markers. Despite recent proposed improvements

[e.g., 8,12], the computational burden with the LMM analysis will

remain to be a major issue in anticipation of larger GWAS or GS

studies in the future.
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It has been well known since the founding days of quantitative

genetics [24] that genetic and environmental variance components

can be estimated directly from phenotypic resemblance between

related individuals. Koch [25] proposed the use of symmetric

differences squared (SDS) as a general statistical procedure to

compute the phenotypic resemblance between relatives. The SDS

procedure or its variant based on the phenotypic similarity index

have been subsequently used to estimate genetic and environ-

mental variances for linkage analysis [24], animal breeding [25],

estimation of heritability in natural populations [26–29], and

recently in the genetic analysis of complex traits in humans

[3,5,30] and QTL mapping in plants [31,32]. Since the SDS

procedure is a general and computationally simple method based

only on the least squares regression analysis, it may serve as a

viable alternative when the REML-based methods have difficulty

or fail to work with large datasets. However, the SDS procedure

has not always been employed appropriately and its correct usage

needs to be clarified. The objectives of this study are (i) to provide

a comprehensive evaluation of the SDS procedure in terms of its

statistical properties and computational efficiencies and (ii) to

compare it with two commonly used REML-based methods

implemented in the software packages, rrBLUP and GCTA.

Results

Simulation results
The effects of sample size and marker density on the correlation

between the actual and theoretical genetic relatedness are depicted

in Figure 1. The correlations are nearly perfect (r .0.98) with the

high marker density (m = 20000) regardless of sample sizes.

However, the situation is different for lower marker densities:

while there is little change in the correlations for smaller samples,

the correlations for larger samples can be substantially reduced.

For example, at the marker density of m = 200, the correlation for

the population of size n = 200 is r = 0.95, but the correlation for the

sample of size n = 10000 is nearly halved at r = 0.48.

Presented in Table 1 are the means and ranges of realized

heritability values (~hh2) and SDS and REML heritability estimates

(ĥh2) from 100 replicated samples for each of the 27 simulation

combinations consisting of theoretical heritability, sample size and

marker density. A realized heritability is calculated as the ratio of

the variance components directly from simulated genetic and

residual effects and thus it gauges the variation in genetic sampling

across different simulated samples. The effect of genetic sampling

is evident as the ~hh2 values are distributed around their respective

true values (h2). Such effect is more evident with smaller samples

but the impact of marker density is less obvious. Since the

estimates by rrBLUP and GCTA are identical, the mean values

and ranges of estimated heritability under the header of REML

are those of GCTA estimates. Both REML and SDS approaches

give the mean values that are close to the corresponding true

values of heritability for all the parameter combinations. The t-

tests show that with a few exceptions (seven in the REML

estimates and one in the SDS estimates), the means of the

estimates are not significantly different from their theoretical

values. However, while the ranges of the estimated heritability by

the REML approach are relatively consistent over different sample

sizes and marker densities, the ranges by the SDS approach are

much larger for n = 500 than for n = 5000 under different h2 and m

values. For example, for the parameter combination of h2 = 0.8

and m = 200, the ranges of REML estimates are 0.075 ( = 0.828–

0.753) for n = 500 and 0.014 (0.806–0.792) for n = 5000, but the

ranges of SDS estimates are 0.558 (1.096–0.538) for n = 500 and

0.268 (0.955–0.687) for n = 5000. Unlike the sample size, the

marker density has a minor effect on the estimates of heritability

though there are larger standard deviations and ranges of

heritability estimates when too many markers (m = 20000) are

used.

The computational time and memory requirements for the two

REML-based analyses (rrBLUP and GCTA) and the SDS analysis

are recorded in Table 2 for seven sample sizes from n = 500 to

n = 40000. These records of time and memory requirements are

taken from the runs of the analyses on Dell Precision T1650 with

Intel Xeon E3-1280 (3.8 GHz) and 32GB of RAM under the

Redhat Linux 6.4 operating system. In anticipation of insufficient

RAMs required for the REML-based analyses of large data sets,

we decide that any analysis is terminated if its RAM usage exceeds

30GB. Thus, the recorded memory for a given analysis is the

maximum memory usage over the entire process of the analysis if

the memory usage at any given time of the analysis is within 30GB

RAMs, or the maximum memory usage during the time period

from the beginning to the termination of the analysis if the

memory usage is beyond 30GB RAMs. In this study, the time

period for terminating an analysis is set to be one hour after the

30GB RAM usage criterion is reached. For GCTA, only one CPU

core is used in each analysis run to measure the computational

time and memory usage for a fair comparison with the

computational efficiencies for rrBLUP and SDS. For rrBLUP,

the memory usage is measured in a clean R environment with only

the H matrix and the vector of phenotypic values being loaded

and the time of loading the data is not included in the

computational time recorded.

It is evident from Table 2 that the SDS analysis succeeds with

all sample sizes and it requires far less computational time and

memories than either the GCTA or rrBLUP analysis. For the two

REML-based methods, while the rrBLUP and GCTA analyses

give identical estimates of variance components and heritability,

the GCTA analysis requires much less computational time and

memories than the rrBLUP analysis. When the sample size is

increased to n = 20000, the rrBLUP analysis is terminated because

its memory requirement (65.6GB) is far beyond our criterion of

30GB RAMs. With this same sample size, the GCTA analysis is

successfully completed in ,27 minutes but its memory require-

ment (28.9GB) is near the RAM capacity of our computer.

Obviously, both rrBLUP and GCTA are terminated for n = 40000

because the memory requirement certainly exceeds our criterion

of 30GB RAMs.

Empirical study
Wheat data. We will analyse two empirical examples. The

first empirical data set is taken from Crossa et al. [33] and it

includes 599 wheat inbred lines developed by the CIMMYT

Global Wheat Breeding program and tested in four target sets of

environments (E1–E4). The pedigree data and 1279 polymorphic

Diversity Array Technology (DArT) markers for these lines are

provided as well. Grain yield (GY) was measured in all the

environments. Crossa et al. [33] compared the estimates of

variance components and heritability under different schemes

ranging from pedigree-based information only to the combination

of both pedigree-based and marker information. Since the

genotype of each inbred line can only be one of the two

homozygotes at a marker locus (essentially a haploid model), the

ilth element of W matrix for the genotype of the ith individual at

lth locus is coded as, wil~(zil{p̂pl)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pl(1{p̂pl)

p
, where the

indicator variable zil is 1 for the reference homozygote and 0 for

the alternative homozygote, and p̂pl is the estimated frequency of

the reference homozygote at the lth locus. Both rrBLUP and

GCTA do not allow for inputting haploid data for constructing W
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matrix and thus the GRM, but GCTA does have an option to

allow for inputting the GRM. Thus the comparison will be

between the SDS and GCTA analyses for this empirical data.

The estimates of heritability for the GY in E1-E4 are presented

in Table 3. The SDS estimates are comparable with the GCTA

estimates, judging from the standard deviations and the 95%

confidence intervals generated by bootstrapping. The bootstrap-

ping procedure used here is somewhat different from the usual

bootstrapping in that any duplicates in a bootstrap sample from

sampling with replacement are excluded to avoid the problem of

the GRM being singular in the REML-based GCTA estimation.

Drosophila data. The second empirical data set is taken

from Macdonald et al. [34]. These authors examined associations

of 203 SNPs at the Enhancer of split Complex [(E(spl)-C] with

sternopleural bristle number (SBN) and abdominal bristle number

(ABN) for 2000 Drosophila melanogaster individuals (1000 males and

1000 females) sampled from a location in Napa Valley, California.

The 203 genotyped polymorphisms actually consisted of 191 SNPs

and 12 insertion/deletion events, but for simplicity, they were all

referred to as SNPs. There was little evidence of associations

between individual SNPs and SBN or ABN in the female or male

population. In fact, Macdonald et al. [34] concluded that

individual SNPs in the E(spl)-C gene region contributed little to

phenotypic variation in SBN and ABN. For this reason, we use the

LMM-REML and SDS methods to determine if the joint effect of

all SNPs in the E(spl)-C would make a detectable contribution to

the variation in SBN and ABN. Prior to our analysis, we remove

50 individuals with missing phenotypic values or genotype scores

in both female and male populations. In addition, a total of

41 SNPs are removed due to (i) minor allele frequency (MAF) of ,

0.05 and (ii) significant (p,0.01) departure from Hardy-Weinberg

proportions of three genotypes at each locus. Thus, 950 individuals

with 162 SNPs in the E(spl)-C are retained for the analysis. To be

consistent with the analysis of the first data set, only the GCTA is

used for comparison with the SDS.

As shown in Table 4, the joint effect of 162 SNPs in the E(spl)-C

makes a small contribution to the phenotypic variation in SBN

and ABN in both female and male populations. The percentages

of the contribution range from 0.5% to 9% by the SDS method

and 0% to 1.4% by the GCTA. These are reasonable values given

that (i) this is the joint contribution of potential causal variants

from one major gene complex for the traits; and (ii) the previous

gene-wide scan by Macdonald et al. [34] revealed only marginally

significant associations of three SNPs with SBN and of two SNPs

with ABN regardless of sexes. The lower limits of the 95%

confidence intervals are all bound to 0 because, in a REML-based

analysis, a constraint of ŝs2
a§0 and thus ĥh2

§0 is imposed.

Discussion

The computational burdens of many LMM applications

including heritability estimation in large-scale genomic studies

have recently stimulated a huge amount of research interest in the

development of faster and memory-efficient algorithms for feasible

and successful analyses of large-scale genomic data. Despite these

efforts, the computational challenges remain. In this study, we

investigate the statistical properties and computational efficiency of

the least-squares-based SDS method in comparison to the two

LMM methods (rrBLUP and GCTA) to see the feasibility of the

SDS method as a viable alternative to LMM-based methods. Our

Figure 1. Effects of marker density on correlation between realized genetic relatedness and its expected value under the AR1
model.
doi:10.1371/journal.pone.0102715.g001
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results (Table 1) show that the SDS method is inferior to the

REML methods for small sample sizes, but it becomes progres-

sively better and can match well with the precision of estimation

by the REML methods for large sample sizes. Thus, these results

suggest that the SDS method can serve as a viable alternative

particularly when analyzing ‘big’ genomic data sets. Its major

advantage is that with larger and larger data sets, it continues to

work with the increasing precision of estimation while the other

current commonly used methods are no longer able to work with

our current computing capacity. To illustrate this point, we go

beyond the parameter combinations set in Table 1 to simulate a

larger data set with sample size of n = 50000 and marker density of

m = 2000 and heritability of h2 = 0.8. We analyze this data set using

the SDS only because the other methods have already stopped to

work with a sample of smaller size n = 40000 and the same marker

density (m = 2000) as shown in Table 2. The means of estimates

from 100 simulation samples are very similar and are closely

around the true value of o.8 is 0.805 with SD being 0.026, and the

90% range is 0.072 (0.838–0.766). This range is much narrower

than that for n = 5000. On average, the per-sample time

requirement for constructing the GRM and the SDS analysis is

6355.3 seconds or about 1 hour 46 minutes.

It is evident from Table 2 that the SDS requires far less

computational time and memory than the LMM methods.

Henderson [9] and recently others [5–8,12] have shown that the

LMM estimates the variance components through simultaneously

estimating the variance parameters and marker effects in an

iterative manner. Usually, the iterative process starts with an initial

(guessed) set of variance values or their ratio to provide the first

round of estimates of random additive genetic effects (cf. equation

A5 in the Text S1). These estimates of random effects are in turn

used to estimates additive and residual variances using equation

(A8) in the Text S1. The iteration continues until the successive

rounds of estimates of variance components are stabilized. On the

other hand, the SDS estimation of variance components or

heritability is based directly on the linear regression of two sets

second-order statistics, phenotypic and genetic similarities or

dissimilarities. The SDS approach is much simpler and thus

computationally much less demanding than the LMM approaches

because it does not require (i) iteration and (ii) computing the

inverse of GRM. The Bayesian analysis was not used in our study

because in our initial investigation of different estimation methods,

it took the Bayesian LASSO [17] 304.161 seconds or .5 minutes

to complete the analysis of a single simulated sample of size

n = 1000 with m = 2000, comparing to only 17.856 seconds by

rrBLUP, 0.746 seconds by GCTA and 0.061 seconds by the SDS

as shown in Table 2 for the same n and m. It would have been

hardly feasible to run the data sets from a number of replicated

simulations. Furthermore, de los Campos et al. [17] suggested the

Bayesian analysis would be computationally even more demand-

ing than the LMM analysis.

Table 2. Actual computational efficiency by SDS and REML procedures under samples of seven sizes (n)a.

REML

GCTA rrBLUP SDS

n Time (s) RAM(GB) Time (s) RAM(GB) Time (s) RAM(GB)

500 0.235 ,0.01 1.438 0.27 0.054 0.26

1000 0.746 0.02 17.856 0.42 0.061 0.32

2000 3.881 0.33 112.780 0.94 0.084 0.42

5000 58.451 1.91 2738.159 4.77 0.231 0.59

10000 226.827 7.46 9054.193 19.33 0.756 1.14

20000 1610.518 28.90 NAb 65.60 2.851 2.05

40000 NA NA NA NA 11.286 5.13

aThe computational times in seconds (s) and memory requirements in gigabites (GB) that are required to run a simulated sample of size n with the true heritability of
h2 = 0.5 and marker density of m = 2000 by the symmetric difference squared (SDS) and two residual maximum likelihood (REML) methods, GCTA and rrBLUP. Each of
these times and memory requirements is an average over five simulation samples.
bNA indicates that no information is available due to termination of the analysis.
doi:10.1371/journal.pone.0102715.t002

Table 3. SDS and REML estimates of heritability for wheat grain yield in four environments (E1–E4)a.

Environment SDS REML

h2 SD CI95 b h2 SD CI95

E1 0.564 0.086 0.362–0.706 0.498 0.049 0.399–0.589

E2 0.452 0.114 0.192–0.629 0.448 0.048 0.324–0.520

E3 0.379 0.070 0.223–0.497 0.423 0.061 0.305–0.544

E4 0.481 0.071 0.304–0.587 0.430 0.058 0.292–0.524

aThe estimates of heritability for the wheat data set taken from Crossa et al. [33] by the symmetric difference squared (SDS) method and a residual maximum likelihood
(REML) method, GCTA.
bThe 95% confidence intervals (CI 95) are constructed based on 1000 bootstrap samples.
doi:10.1371/journal.pone.0102715.t003
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Computational efficiency has become an emerging issue

particularly with increasing availability of larger and larger data

sets from genomic studies and it has been recently investigated

[8,35]. However, these investigations focus on the computational

complexity that is platform-independent, but ignore the imple-

mentation issues that may affect the actual computational

efficiency in reality. In other words, the actual computational

efficiency needs to be evaluated by considering the memory

capacity and management under a given operating and software

environment. Thus, in this study, we instead emphasize the actual

computational time and memory requirements under different

sample sizes (Table 2). Should the computational efficiency be

based solely on the computational complexity [8,35], the two

REML implementations, rrBLUP and GCTA, would have had

the same computational complexity. However, because rrBLUP is

a cross-platform R package that is implemented strictly in the R

environment and GCTA is a program that was written in C and

has routinely run in the Linux operating system, the two programs

are obviously different in terms of their actual computational

efficiency (Table 2). This discrepancy is due mainly to the

differences in the platforms and programming languages inherent

in the two software packages.

In our study, any analysis would be terminated if its RAM usage

exceeds 30GB, the maximum allowable RAMs after accounting

for the RAM requirements by the operating system and other

essential utility programs. It may be argued that we can increase

the memory for the current computer or tap into supercomputing

resources to address the issue of insufficient memory. However,

neither solution is very feasible in our situation and perhaps in

many other situations. Our workstation has a motherboard that

can only support the maximum RAMs of 32GB and thus there is

no room to add more memory. Many supercomputing servers

such as the Westgrid in Canada (https://www.westgrid.ca/) have

provided excellent computing resources to researchers with larger

computing needs. However, access to these servers is a compli-

cated process. It involves (i) submission of separate proposals for

those systems with considerably large computing capacity in the

supercomputing network; and (ii) a long waiting time after

submitting batch jobs. In addition, some servers only serve certain

countries or regions. Another possibility is the use of GPU

(graphics processing unit)-accelerated computer for more efficient

and even faster solutions to the large-scale GRM and its inverse

essential in GWAS and genomic prediction. There are recent

studies on the use of GPU-based parallel computing in GWAS

[36–38], but these studies focus on detecting individual gene or

gene-gene epistatic effects through genome-wide scan using single-

marker analysis. Thus, it remains to be developed the GPU-based

parallel computing algorithms for calculating the GRM and its

inverse needed for genomic and marker-based estimation of

variance components or heritability.

Our choice of rrBLUP and GCTA for comparison with the

SDS method is somewhat arbitrary and it is due to our own

familiarity and experiences with these software packages. Other

LMM-REML software packages as mentioned in the Introduction

section would have been equally effective for the comparison.

ASREML [10] is widely used in agriculture community and it is

implemented based on the average information algorithm as

GCTA is. TASSEL [15] is very popular in plant breeding because

it is able to accommodate both intra- and inter-population genetic

relatedness in the LMM analysis. EMMA [6,11] and its more

efficient version GEMMA [8] have been extensively used in

detection of causal variants responsible complex traits and diseases

in human. FaST-LMM [12] uses a low-rank approximation to the

GRM and thus it greatly improves computational efficiency and
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reduces memory requirement. For example, the computing time

for the FaST-LMM analysis of a simulated data set with n = 20000

and m = 2000 is only 50.1 seconds and the maximum RAM usage

for this run is 2.8 GB. These computational performance and

memory requirement by FaST-LMM are much better than the

GCTA analysis (1610.5 seconds and 29.0 GB), but are still not as

good as the SDS analysis (2.9 seconds and 2.0 GB). Despite FaST-

LMM’s superior computational performance and low memory

requirement, it remains to be determined the optimal number of

eigenvalues and corresponding eigenvectors that should be

retained for a good low-rank approximation to the GRM for a

given data set.

The analysis of the wheat yield data supplied by Crossa et al.

[33] (Table 3) shows the similar estimates of heritability by the

SDS and REML methods in all four environments, despite a

relatively small sample size (n = 599) and low marker density

(m = 1279). At the first glance, this result is somewhat surprising

because the SDS estimates would have been more fluctuating than

the REML at this level of sample size and marker density as can be

inferred from the simulation results of Table 1. However, it should

be remembered that this wheat population consists of 599

recombinant inbred lines (i.e., they are essentially 599 haplotypes)

whereas our simulation data are all based on diploid individuals.

The estimation of genetic relationship between haploids would be

obviously more accurate than that between diploids at the same

level of sample size and marker density. We also employ the

GCTA analysis to confirm the estimates of genetic and residual

variances as in Table 1 of Crossa et al. [33] based on their P model

(i.e., the A matrix obtained from the pedigree information only)

and the M-RKHS model (i.e., the K matrix obtained using the

reproducing kernel Hilbert space nonlinear function of marker

distance). The heritability estimates are subsequently calculated.

Our GRM-based estimates of heritability, by either SDS or

GCTA, are close to or slightly higher than those based on the P

model, but they are all smaller than those based on the M-RKHS

model. The elements of the K matrix derived from the M-RKHS

model are a nonlinear (exponential) function of squared-Euclidean

distance between markers in pairs of individuals, thereby probably

capturing more genetic variation. It remains to be investigated

how the use of nonlinear functions of marker distances generally

affects the estimation of the genetic relationship between

individuals, thereby influencing the estimation of variance

components or heritability. The analysis of the drosophila data

taken from Macdonald et al. [34] (Table 4) shows that the joint

effect of all potential causal variants in in the E(spl)-C gene region

remains small. This reinforces the earlier conclusion [34] that

individual SNPs contribute little to the phenotypic variation in the

bristle number.

A key part of both LMM and SDS analyses is to estimate the

GRM based on a set of SNPs or other genetic markers. The use of

GRM is more advantageous over the use of the traditional

pedigree-based relationship matrix (A matrix) for two major

reasons. First, the GRM would capture much of the Mendelian

sampling variation that is missing in the A matrix. Second, the use

of marker SNP data (rather than pedigree information) allows for

estimation of relatedness of distantly related individuals, thereby

controlling confounding effects from the environmental correla-

tion between relatives due to their shared (common) environment.

However, the unbiased estimate of GRM is achieved only if all the

markers used for the estimation are the causal variants [4,39,40].

This of course is not true almost in all the cases. In our simulation

studies, we use 10% of the total markers as the ‘causal’ (relevant)

variants and the remaining 90% of the markers as irrelevant

variants. It is evident from Table 1 that the accuracy of the

estimated heritability is the best with the medium marker density

(m = 2000) for most simulation trials. With the high marker density

(m = 20000), there are more irrelevant markers, thereby costing

some accuracy in the estimation of heritability. Similar results were

observed in other simulation studies [e.g., 39].

In applying the SDS method to the actual analysis, we propose a

modification to the Ritland’s estimation procedure. Instead of

directly regressing the phenotypic similarity indexes on the

corresponding genetic relatedness values between pairs of individ-

uals as originally suggested in Ritland [26] and Lynch and Walsh

[29, p. 800–803], we propose that the regression analysis should

be based on the averages of bins to improve the feasibility and

accuracy of the estimation in large genomic studies. The bins are

constructed as a complete set of nonoverlapping intervals covering

the entire range of genetic relatedness coefficients (i.e., all the

elements of lower triangle of the GRM). The basis of our binning

(grouping) procedure is simple: the neighboring values of genetic

relatedness should contribute very similarly to the shape and

pattern of the linear regression line in equation (9) and thus they

can be bracketed into the same group or bin. A question would

naturally arise: how many bins should we have to achieve the best

estimates of variance components or heritability? In our own

simulation and empirical data analysis, we use a set of 1000 equal-

width bins for all the data. While this set is somewhat arbitrary, we

feel it suffices for the data sets we have analyzed. Nevertheless, it is

an interesting issue that needs to be further examined particularly

when there are nonlinear relationships arising from gene-gene

interactions and gene-environment interactions [3].

Another possible question with our binning procedure is that

the number of observations may vary from bin to bin and thus the

residual variance may also vary from bin to bin. At the first

glimpse, the use of weighted least square (WLS) analysis would be

a natural solution to this problem. However, our preliminary

analysis shows that the WLS results are similar to those from the

regression analysis of un-binned data (i.e., individual phenotypic

and genetic similarities). We are not exactly sure why WLS does

not work well as it should. We suspect the following reason. For

the GRM constructed for a large sample, the distribution of

genetic similarity between pairs of individuals is often highly

skewed towards zero, that is, the majority of genetic similarity

values are clustered around zero (see Figure S1 for an example of

n = 4000 under the AR1 model with ha = 0.95 and h2 = 0.5). In

WLS, these near-zero values would be overemphasized (i.e., they

would carry much more weight), thereby having a much stronger

influence on the slope of the regression line (estimated additive

genetic variance or narrow-sense heritability) than the values over

the rest of the genetic similarity range. This issue certainly needs to

be further investigated.

Our study focuses on a comparison of LMM-REML and SDS

methods for estimating additive genetic variance and thus narrow-

sense heritability. Such comparison can be easily extended to

include non-additive genetic variances. As shown in Su et al. [41],

the dominance genomic relationship matrix (D) based on marker

genotypes is needed to estimate the dominance genetic variance;

similarly different epistatic relationship matrices based on H and

D matrices (i.e., H#H, H#D, D#H and D#D) are needed to

estimate epistatic genetic variances. While it is quite straightfor-

ward for the SDS method to estimate all non-additive variances by

extending the simple regression analysis to the multiple regression

analysis, it is computationally even more challenging for the

LMM-REML methods to estimate non-additive genetic variances

even for a moderate-sized data set. Furthermore, far fewer

software packages are available for the estimation of non-additive

genetic variances. There is an ongoing debate on how much non-
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additive genetic variances really contribute to the ‘missing

heritability’ [3,42–44]. According to Hill [42], such contribution

would be relatively small for biologically more realistic epistatic

models. Regardless, one of the key issues with the estimation of

non-additive genetic variances is that unless sample size is large

enough, the estimates would be highly unreliable. Thus, in the

future efforts to improve the reliability of additive and non-

additive variances from the analysis of large-scale genomic data

sets, the LMM-REML methods will be certainly challenged but

the SDS method looks very promising in terms of computational

feasibility and estimation accuracy.

Our study uses all individuals, related and unrelated, in the

simulated and empirical populations for the SDS and the LMM-

REML analyses. This is somewhat in contrast to some recent

studies, more specifically by Yang et al. [5] who focused on the

estimation of additive genetic variance and narrow-sense herita-

bility in a human population of ‘unrelated’ individuals with close

relatives in their original population being selectively excluded

from their LMM analysis. In particular, while the off-diagonal

elements of the estimated GRM between 4259 individuals ranged

from 20.024 to 0.585, Yang et al. [5] selectively chose individuals

such that only those individuals with the genetic relatedness within

the range of 20.024 to 0.024 were considered as ‘unrelated’ for

the LMM-REML analysis. It is evident from Figure S1 that the

majority of genetic similarity values for n = 5000 under the AR1

model and h_a = 0.95 are clustered around zero with 95% of

pairwise elements in the estimated GRM being from 20.0496 to

0.0524. This is slightly larger than but essentially similar to the

range of 20.027 to 0.027 for the estimated GRM as given in Yang

et al. [5]. It is also evident from Figure S1 that, of the remaining

5% elements in the estimated GRM under the AR1 model, the

range from 0.0524 to 0.95 spans widely. It is this small percentage

of the widespread values that largely determine the slope of the

regression line in the SDS method. Similarly, we analyse the same

data set using the usual LMM-REML analysis [e.g., 29] where all

individuals are used regardless of their relatedness.

A distinction needs to be made between the use of simple

regression analysis or its refinements for genome-wide scan of

individual marker effects in a large-scale (n .100000) and m .

500000) genomic studies [e.g., 23] and the use of LMM-REML

analysis for the aggregate effect of all markers across the genome in

our study and other studies. It should not be forgotten that a key

motivation of using LMM-REML analysis is to help recover the

portion of ‘missing’ heritability encountered in the single-marker

analysis [5]. Earlier, we have already discussed some of the

computational challenges with the LMM-REML analysis for a

moderate-scale (n ,10000) and m ,100000) genomic data under

our current typical computing capacity and suggested the SDS

approach as a viable alternative when the data becomes larger and

larger. With our binning approach to the SDS analysis, it is

possible to handle genomic data sets of any size because the

regression analysis is based on a fixed number of bins for

phenotypic and genetic similarity indexes regardless of sample size.

However, it is presently not feasible yet for the LMM-REML

analysis to handle a very large data set. For example, Yang et al.

[13] reported that it would take their software package GCTA ,
4 CPU hours (AMD Opteron 2.8 GHz) to compute the GRM for

a data set with 3925 individuals genotyped by 294,831 SNPs. If we

use this time as a guideline, then for a simulated data set with

m = 500000 and n = 4000, it would have taken GCTA more than

400 ( = 10064) CPU hours or more than 16 days to complete this

simulation alone. Thus, in most recent LMM-REML analyses

[e.g., 39], a moderate-sized data set is used.

Conclusions

The SDS method that has been overshadowed by more popular

LMM or Bayesian methods in recent years appears to have a

bright future because of the computational challenges that the

LMM and Bayesian methods are currently facing with growing

availability of larger and larger genomic data sets from the

genomic studies of human and domestic plants and animals. It can

serve as a viable alternative framework for quantitative genomic

analyses such as GWAS and genome-wide prediction. We hope

that our study stimulates and renews research interests in the use of

the SDS method for the analysis of large-scale genomic data sets

that will become increasingly available in the future.

Methods

The SDS approach
There are two versions of the SDS approach. The first and true

version of the SDS approach (SDS1) was originally proposed by

Koch [45] and has been subsequently used in many genetics and

genomics applications [3,5,24,25,30]. The second version that is

based on the phenotypic covariance between pairs of related

individuals (SDS2) was first put forward by Ritland [26] and

subsequently discussed particularly in the genetic analysis of

natural populations [27–29,46–48]. However, the theoretical

relationship between the versions has never been clarified so that

they are sometimes considered as two different approaches [29]. In

fact, we view them simply as the two sides of the same coin. In

addition, there is a considerable amount of confusion regarding

what needs to be used in the regression equation for estimation.

Here we will describe both versions in details, point out the

theoretical relationship between them and clarify appropriate and

correct estimation procedures that should be used in each case.

SDS2. We describe the SDS2 first because it has a more direct

connection with the LMM-REML analysis described in Text S1.

Recall from the LMM analysis [equation (A2) in Text S1] that the

total phenotypic covariance matrix among n individuals is

partitioned into genetic and residual components, V = G+
R =Hs2

a+Ins2
e , where H= {hij} is the n6n genetic relationship

matrix (GRM) with hij being the coefficient of genetic relationship

between ith and jth individuals, In is an identity matrix order n, s2
a

is the additive genetic variance and s2
e is the residual variance.

Writing the phenotypic covariance between individuals i and j (vij)

in V in terms of the phenotypic correlation between the two

individuals (rij ) and their variances (s2
p~s2

pi~s2
pj ), i.e., vij~rijs

2
p,

we have V = Ps2
p with P being the phenotypic correlation matrix

and,

V~Ps2
p~Hs2

azIns2
e ð1Þ

Multiplying both sides of equation (1) by s{2
p , we obtain,

P~Hh2zIn(1{h2) ð2Þ

where h2~s2
a=s2

p is the narrow-sense heritability. We now write

the matrices in equations (1) and (2) in the vector form,

v~hs2
a and p~hh2 ð3Þ

where v = Vech(V), h = Vech(H), and p = Vech(P) with Vech(X)

being the ‘‘vector-half’’ function [49] that creates a column vector
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whose elements are the stacked columns of the lower triangular

elements of matrix X. Thus, for an n6n matrix X, there are n(n-1)/

2 elements in Vech(X). The residual term in equation (3)

disappears because Vech(In) is a vector of zeros (0). The results

in equation (3) reinforce the well-known result in classic

quantitative genetics [29,50] that for a quantitative trait with

purely additive-genetic basis but no shared environmental effects,

the phenotypic covariance between pairs of relatives in a

population is expected to be the covariance between the additive

genetic effects for the same pairs of relatives. Thus, equation (3)

provides a simple regression model that can be used to estimate the

variance components or heritability.

SDS1. Above we show that the linear relationship between

phenotypic and additive genetic covariances or correlations

between pairs of individuals can be used for predicting additive

genetic variance or heritability. Similarly, the expected value of

difference squared (DS) between the phenotypic values of a pair of

individuals can be partitioned into the two components due to

additive genetic effect and residual deviation as done in Grimes

and Harvey [25]. Since the DS is symmetric for any pair of

individuals (i.e., the DS is identical regardless of the order of the

two individuals), Grimes and Harvey [25] called it the symmetric

difference squared (SDS). This partitioning for the ith and jth

individuals can be written as,

dij ~ 1=2E½(yi{yj)
2�

~ 1=2E½(ai{aj)
2�z1=2E½(ei{ej)

2�
~ (1{hij)s

2
azs2

e

, ð4Þ

where the quantity (1–hij) measures the genetic distance between

the ijth pair of individuals for i,j. The usual assumptions are: (i)

the additive genetic effects are independent of the residual

deviations and (ii) there is no correlation between the residual

deviations of the ijth pair of individuals. Collecting the partitioning

results for all pairs of individuals including the trivial result of zero

SDS for individuals with themselves, we have in matrix form,

D~½(Jn{In)z(Hd{H)�s2
az(Jn{In)s2

e ð5aÞ

or

0 d12 � � � d1n

d12 0 � � � d2n

..

. ..
.

P
..
.

d1n d2n � � � 0

2
6666664

3
7777775
~

0 1{h12 � � � 1{h1n

1{h12 0 � � � 1{h2n

..

. ..
.

P
..
.

1{h1n 1{h2n � � � 0

2
6666664

3
7777775

s2
az

0 1 � � � 1

1 0 � � � 1

..

. ..
.

P
..
.

1 1 � � � 0

2
666664

3
777775

s2
e

ð5bÞ

where Jn is the n6n matrix of ones, In is the identity matrix of order

n, and Hd is a diagonal matrix with the diagonal elements being

the same as in matrix H.

Relationship between SDS1 and SDS2. The SDS1 and

SDS2 (covariance) versions are obviously related to each other.

This relationship between the phenotypic values of the ijth pair of

individuals is derived as,

dij ~ 1=2E½(yi{yj)
2�

~ 1=2Ef½(yi{m){(yj{m)�2g
~ 1=2E½(yi{m)2z(yj{m)2{2(yi{m)(yj{m)�
~ s2

p{vij

~ (1{rij)s
2
p

ð6Þ

It is evident from equation (6) that a perfect inverse linear

relationship between the phenotypic SDS (dij) and the covariance

(vij) with the intercept being the phenotypic variance (s2
p) and the

slope being 21. Thus, if the phenotypic SDS (dij) values are

known, we can immediately obtain the corresponding covariances

for all pairs of individuals by reversing the relationship in equation

(6) as vij = s2
p - dij.

Similar relationships can be found for additive genetic SDS and

residual SDS with 1=2E½(ai{aj)
2�~(1{hij)s

2
a and 1=2E½(ei{ej)

2�
~s2

e .

Equation (4) shows the partitioning of the phenotypic SDS into

additive genetic and residual variance components. To show the

partitioning in terms of heritability, we need the standardized

phenotypic SDS (dij/s2
p) which is simply the phenotypic distance

(1{rij ). Thus, the standardized phenotypic SDS or phenotypic

distance is related to the genetic distance and the heritability as,

dijs
{2
p ~(1{rij)~(1{hij)h

2z(1{h2), ð7aÞ

or in matrix form,

Ds{2
p ~(Jn{P)~½(Jn{In)z(Hd{H)�h2z(Jn{In)(1{h2): ð7bÞ

Estimation procedure. It is evident from the above theoret-

ical analysis that the estimation of variance components or

heritability can be carried out using either the SDS1 (difference)

model or SDS2 (covariance) model and both models would lead to

the same estimates of variance components or heritability. Thus

we will focus on our estimation procedure under the SDS2 model

as it is more directly connected to the LMM analysis.

Before describing our own procedure, we outline the estimation

procedure of Ritland [26] and Lynch and Walsh [29, p. 800–803]

under the SDS2 model (also commonly known as Ritland’s

procedure). For n individuals, there are n(n-1)/2 pairs of

individuals and phenotypic values of each pair are used to

calculate the phenotypic similarity. Thus, the sample phenotypic

similarity between the ith and jth individuals for i,j is given by,

sij~(yi{�yy)(yj{�yy) ð8Þ

where �yy is the mean of n phenotypic values. Thus, the additive

genetic variance can be estimated from the linear regression of the

sample phenotypic similarity on the genetic relatedness as,

sij~azĥhijbzeij ð9Þ

where a is the intercept, b is the regression coefficient which

estimates the additive genetic variance (s2
a), ĥhij is the estimated

value of hij corresponding to the ijth element of the GRM

estimated using m markers scored and eij is the residual deviation
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of the sample phenotypic similarity from its expected value. The

intercept should be zero because it is assumed that none of

individual pairs are genetically identical, nor do they share the

same environment. The estimate of additive genetic variance is

simply the regression coefficient (slope),

b~ŝs2
a~

cov(sij ,ĥhij)

var(ĥhij)
: ð10Þ

The narrow-sense heritability is subsequently estimated as

ĥh2~ŝs2
a=ŝs2

p. A more direct estimate of h2 can be obtained by

regressing the standardized phenotypic similarity index,

s’ij~sij=ŝs2
p, on the ĥhij values,

ĥh2~
cov(s0ij ,ĥhij)

var(ĥhij)
: ð11Þ

Ritland’s procedure has two major drawbacks particularly in the

context of large-scale genomic studies. First, since it is not the

sample phenotypic similarity index but rather its expected value

that is proportional to the additive genetic variance or heritability

without error[i.e., E(sij)~hijs
2
a or E(s0ij)~hijh

2], Ritland’s proce-

dure makes the direct use of sample phenotypic similarity index

and thus it would lead to a biased estimate of additive genetic

variance or heritability [cf. equation (9)]. Second, while Ritland’s

procedure is computationally much simpler than the above LMM

analysis, it can still be memory- or time-consuming. For example,

for 40000 individuals, the total pairs of phenotypic similarity

values and genetic relatedness estimates are 799980000 and it

certainly takes a long time and a large RAM capacity for the

regression analysis based on such two huge arrays of values.

Here we propose a modification of Ritland’s procedure to

remove the two deficiencies. Our new procedure is based on a

simple idea that if we sort out the coefficients of genetic relatedness

in an ascending or descending order, the neighboring values of

genetic relatedness should contribute very similarly to the shape

and pattern of the linear regression line in equation (9) and thus

they can be bracketed into the same group or bin. Now the bin

averages instead of individual phenotypic and genetic similarity

indexes are used for the least squares estimation of additive genetic

variance,

�ssbin~Ssij(bin)=nbin~�hhbins2
azSeij(bin)=nbin ð12Þ

Clearly, the average of residual deviations (eij ’s) would tend to

zero for the large number of observations (i.e., large nbin) within the

bins, thereby leading to the estimate of additive genetic variance

with minimal bias. A similar argument can be made for binning

the standardized phenotypic similarity index (s0ij ) for estimating the

heritability. In actual implementation of our binning strategy, we

divide the whole range of genetic relatedness (usually 0–1) into

1000 equally spaced bins and then distribute individual similarity

index values into different bins according to their levels of genetic

relatedness. In other words, our binning approach uses the

regression analysis based on this fixed number of bins regardless of

the number of individual pairs and thus the sample size. Thus, its

computing load is practically the same for samples of any sizes.

A similar estimation procedure can be given under the SDS1

model. The regression of the sample SDS (d̂dij ) on estimated genetic

relatedness (ĥhij ) is given by,

d̂dij~azĥhijbzeij

where the intercept a estimates the phenotypic variance (s2
p = s2

a+
s2

e ) and the slope b estimates minus the additive genetic variance (-

s2
a) [cf. equation (4)]. In some studies [5,24], twice the SDS value is

used for the regression analysis and thus the intercept a estimates

twice the phenotypic variance (2s2
p) and the slope b estimates

minus twice the additive genetic variance (22s2
a).

Simulation experiments
Simulation models and procedures. To investigate the

dependence of phenotypic similarity on genetic relatedness, we

need a population of individuals whose genetic relatedness covers

the full range from no genetic correlation to perfect genetic

correlation between pairs of individuals. Such special population is

simulated using the first-order auto-regressive model (AR1). With

a nearly perfect starting genetic correlation, AR1 model guaran-

tees a full range of genetic relatedness for each and every simulated

sample of sufficient size. Such high genetic correlation may be

artificial and unrealistic for many human and livestock populations

to which the LMM-REML analysis is often applied. However, it

does approximate some situations in crop breeding where modern

cultivars are genetically highly similar because (i) strong directional

selection has been practiced and (ii) they all trace back to one or a

few founders, for example, Canadian wheat [51].

We assume that the population consists of n individuals which

are arranged in a descending order according to the degrees of

their genetic relatedness. Thus, the genetic correlation between

any individual and its nearest neighbor is a constant ha, the genetic

correlation between any individual and its second nearest neighbor

(i.e., one individual apart) is h2
a, and so on. In general, the genetic

correlation between the ith and jth individuals which are t = |i – j|

individuals apart is ht
a. The correlation between n individuals

under the AR1 model is,

HAR1~

1 ha � � � hn{1
a

ha 1 � � � hn{2
a

..

. ..
.

P
..
.

hn{1
a hn{2

a � � � 1

2
666664

3
777775
: ð13Þ

We further assume that m independent markers are genotyped

for each individual. The simulation can be done by obtaining a

363 two-way contingency table for nine genotypes at a pair of

SNP loci through sampling from a multinomial distribution.

However, this procedure is time-consuming. We have found an

equivalent but more efficient simulation procedure by directly

sampling an n6m Zc matrix consisting of m random observations

from an n-variate standard normal distribution with the mean

vector of zeros and the covariance matrix being given in equation

(13).

However, while this direct sampling scheme can be easily

implemented using existing software packages such as the

mvrnorm function in MASS/R [52] when n is not too large, it

can be time-consuming for very large n. For this reason, a more

efficient sampling scheme based on the definition of the AR1
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model is employed and implemented in the following three steps.

First, a m|1 vector, zc
1, of random numbers are taken from the

univariate standard normal distribution N(0,1) for the first

individual. Second, another m|1 vector zc
2 of random numbers

are taken again from N(0,1) for the second individual given zc
1, but

with the correlation between zc
1 and zc

2 being ha. Thus a general

recursive relationship for sampling the ith vector, zc
i given the (i-

1)th vector zc
i{1 is

zc
i ~hazc

i{1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

a

q
k

where k is a m|1 vector of random numbers that are taken from

N(0,1). Third, all n z vectors generated in such way are collected

to form the matrix Zc = fzc
1,zc

2, � � � ,zc
ng.

Regardless of whether the Zc matrix is generated by directly

sampling from a multivariate normal distribution or by the

recursive relationship, it needs to be converted into an indicator

genotype matrix Z = fz1,z2, � � � ,zng with vector zi containing only

three values of 0, 1 and 2 to indicate three possible genotypes at

each of m independent loci for the ith individual. For simplicity, we

consider the proportions of the three genotypes in each individual

to be 1: 2 : 1 so that the ranges for converting a normally

distributed variate into the three genotypes coded as 0, 1 and 2

are: (2?,20.67449), (20.67449, 0.67449) and (0.67449, ?),

respectively. The genotypes could have been simulated directly

through sampling from a multinomial distribution but the genetic

relatedness between individuals are more conveniently accommo-

dated through sampling from a multivariate normal distribution as

in our simulation.

To simulate random additive genetic effects and phenotypic

values, we assume that a quantitative trait is controlled by the

quantitative trait loci (QTL) which are randomly located at one

tenth of the total simulated markers (see Program S1 for step-by-

step description of simulating positions and effects of causal

markers). In other words, 10% of the total simulated markers are

causal (relevant) variants and the remaining 90% are irrelevant

markers. Thus a vector of phenotypic values (y) for n individuals

are simulated using the following LMM model,

y~1mzWuze~1mzaze ð14Þ

where m is the population mean, W is an n6m standardized

genotype matrix with the ilth element being wil~

(zil{2p̂pl)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂pl(1{p̂pl)

p
and p̂pl being the estimated frequency of

the reference allele for the lth simulated marker, and e is a vector

of n residual effects taken from a multivariate normal distribution,

u is a vector of m random additive genetic effects that are taken

from a standard multivariate normal distribution u*N(0,Ims2
a=m)

or equivalently the genome-wide additive genetic effects a = Wu

are taken from a multivariate normal distribution, a*N(0,Hs2
a)

with H being estimated by ĤH~WW0=m, and e*N(0,Ins2
e ). In

our simulation, we have the phenotypic variance s2
p~s2

azs2
e so

that s2
a~½h2=(1{h2)�s2

e and s2
e~½(1{h2)=h2�s2

a with h2 being

the narrow-sense heritability.
Three simulation scenarios. We consider three simulation

scenarios. In the first scenario, we investigate the degree of

agreement between the actual and theoretical genetic relatedness.

This scenario simulates five populations of sizes n = 200, 500,

1000, 2000 and 10000 with each population being genotyped at

seven marker densities (m = 200, 500, 1000, 2000, 5000, 10000

and 20000). For each simulated population, the theoretical GRM

between n individuals is obtained using the AR1 model as in

equation (13). Here and throughout all simulations, we choose the

genetic correlation between any individual and its nearest

neighbor to be ha = 0.95. The actual GRM is estimated by

ĤH~WW’=m using each of the seven marker densities. The degree

of agreement between the actual and theoretical genetic related-

ness is measured by Pearson’s correlation between elements of

matrices ĤH and HAR1.

In the second scenario, we want to examine the effects of sample

size (n) and marker density (m) on the estimation of narrow-sense

heritability. This simulation scenario consists of all combinations

of the following parameter values: three levels of the heritability

(h2 = 0.2, 0.5, and 0.8); three levels of sample size (n = 500, 1,000

and 5,000); and three levels of marker density (m = 200, 2,000 and

20,000). These simulation trials are replicated 100 times. The

variance components and heritability are estimated using (i) the

LMM approach as implemented by two software packages,

rrBLUP [14] and GCTA [13], and (ii) the SDS approach as

implemented by our own R package, SDS/R (http://statgen.

ualberta.ca/index.html?open = software.html). In each of 100

replicated simulations, the LMM approach as in rrBLUP and

GCTA estimates the additive genetic variance and residual

variance and the heritability is subsequently calculated as the

ratio of the estimated additive genetic variance to the sum of the

estimated two variance components. On the other hand, the SDS

approach directly estimates the heritability through the regression

of the phenotypic correlation between pairs of individuals on the

corresponding values of genetic relatedness.

In the third scenario, we want to compare and contrast the

computational efficiency of the SDS method of heritability

estimation to the REML-based methods as implemented in the

two software packages, rrBLUP and GCTA over a wide range of

sample sizes. We choose seven sample sizes for this scenario:

n = 500, 1000, 2000, 5000, 10000, 20000, and 40000, but we only

consider one marker density (m = 2000) and one heritability

(h2 = 0.5). Given that the REML-based methods are very time-

consuming for large n, each simulation trial is replicated only five

times. The time (in seconds) required by the different estimation

methods for the analysis of simulated data for each of the five

replicates are recorded using proc.time, a R core function [53].

Since the GRM is required by all the estimation methods, the time

needed for constructing the GRM is not included in the

comparison of computational efficiency.

Supporting Information

Figure S1 The genetic similarity and phenotypic simi-
larity in a simulated population under an AR1 model
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Eddy W, Härdle W, Sheather S, Tierney L, editors. New York, NY: Springer.

53. R Core Team (2012) R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing.

Marker-Based Estimation of Genetic Parameters in Genomics

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e102715


