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Abstract

This dissertation is concerned with the parameter estimation problem for

Ornstein-Uhlenbeck processes and Vasicek models and the product formula

for multiple Itô integrals of Lévy processes.

In the first part of the thesis, we study the parameter estimation for Ornstein-

Uhlenbeck processes driven by the double exponential compound Poisson

process. In chapter 23 a method of moments using ergodic theory is pro-

posed to construct ergodic estimators for the double exponential Ornstein-

Uhlenbeck process, where the process is observed at discrete time instants

with time step size h. We further also show the existence and uniqueness of

the function equations to determine the estimators for fixed time step size

h. Also, we show the strong consistency and the asymptotic normality of

the estimators. Furthermore, we propose a simulation method of the double

exponential Ornstein-Uhlenbeck process and perform some numerical simu-

lations to demonstrate the effectiveness of the proposed estimators.

In the next chapter, we consider the parameter estimation problem for Va-

sicek model driven by the compound Poisson process with double exponential

jumps as discussed in Chapter 4. Here we discuss the construction of least

square estimators for drift parameters based on continuous time observa-

tions.

In the last chapter of the dissertation, we show the derivation of the product

formula for finitely many multiple stochastic integrals of Lévy process, ex-

pressed in terms of the associated Poisson random measure. A short proof

is found that uses properties of exponential vectors and polarization tech-

niques.
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Preface

This dissertation is based on two published papers listed below

• Chapter 3 of the dissertation is joint work with Prof. Yaozhong Hu

and has been published as “Ergodic Estimators of double exponential

Ornstein-Uhlenbeck processes” in the Journal of Computational and

Applied Mathematics.

• Chapter 4 of the dissertation is joint work with Prof. Yaozhong Hu

and is a work in progress. This work in chapter 4 is in the editing

stage and will soon be submitted for publication.

• Chapter 5 of the dissertation is a joint work with Prof. Yaozhong

Hu and Dr. Nishant Agrawal and has been published as “General

Product Formula of Multiple Integrals of Lévy Process” in the journal

of Stochastic Analysis.
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Chapter 1

Summary

This dissertation consists of the work done during my Ph.D. under the supervision

of Prof. Yaozhong Hu. This dissertation discusses topics of stochastic calculus, Lévy

process, Poisson random measures, parameter estimation, and applications.

Chapter 2 introduces briefly the background and preliminaries of Ornstein Uhlen-

beck type processes and stochastic calculus for jump-diffusion processes which are

used in Chapters 3, 4, and 5 respectively.

Chapter 3 initiates the study of the parameter estimation for Ornstein-Uhlenbeck

processes driven by the double exponential compound Poisson process. In this chap-

ter, a method of moments based on ergodic theory is discussed and proposed to

construct ergodic estimators for the double exponential Ornstein-Uhlenbeck process,

where the process is observed at discrete time instants with time step size h. Further

in this chapter the existence and uniqueness of the function equations to determine

the estimators for fixed time step size h is also discussed. The main results are in

Section 3.4 concerning the strong consistency and the asymptotic normality of the es-

timators. Furthermore, in Section 3.5 a simulation method of the double exponential

Ornstein-Uhlenbeck process is proposed, and numerical simulations to demonstrate

the effectiveness of the proposed estimators are carried out there.

The results of Chapter 3 are further extended in Chapter 4 in which the parameter es-

timation problem for the Vasicek model driven by the compound Poisson process with

double exponential jumps are discussed. In this chapter, estimators are constructed

by using the least square techniques for drift parameters based on continuous time
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observations.

TO deepen my understanding of stochastic analysis, I have also made a contribu-

tion to the theory of stochastic analysis of Poisson random measures which has been

discussed in Chapter 5. Chapter 5 is based on the derivation of a product formula

for finitely many multiple stochastic integrals of Lévy process, expressed in terms of

the associated Poisson random measure. In the chapter, it has been shown that the

formula is compact. The proof is short and uses exponential vectors and polarization

techniques

Chapters 3 to 5 are based on the following works which are listed below.

• Ergodic estimators of double exponential Ornstein–Uhlenbeck processes. with

Yaozhong Hu. Journal of Computational and Applied Mathematics, Volume

434, Issue C, Dec 2023

• Parameter Estimation for Vasicek Model with double exponential jump. (In

editing for submission)

• General product formula of multiple Integrals of L´evy process, with Yaozhong

Hu and Nishant Agrawal, Journal of Stochastic Analysis: Vol. 1, No. 3 , Article

3.

1.1 Summary of Works

1.1.1 Summary on Ergodic estimators of double exponential

Ornstein–Uhlenbeck processes

Consider the following Ornstein-Ulenbeck process described by the following Langevin

equation

dXt = −θXtdt+ σdZt , t ∈ [0,∞), X0 = x0 . (1.1)

the process Zt =
∑︁Nt

i=1 Yi is the compound Poisson process with double exponential

jumps. This process Xt depends on the parameters θ, σ, p (or q), η, λ, and φ. In

this work, it is assumed that the process {Xt; t ≥ 0} can be observed at discrete time

instants tj = jh, where h > 0 is some observation time interval. We use the discrete

observation data {Xtj ; j = 1, 2, . . . n} to estimate the parameters θ, σ, p, η, λ, and

2



φ. Given Zt, a compound Poisson process with double exponential jumps, a unique

solution to the equation (1.1) is given by

Xt = e−θtx0 + σ

∫︂ t

0

e−θ(t−s)dZs . (1.2)

If θ > 0, then the double exponential Ornstein-Uhlenbeck process Xt converges in law

to the random variable Xo = σ
∫︁∞
0
e−θsdZs which exists a square-integrable random

variable.

The explicit form of the distribution of Xo is hard to obtain. So, it is hard to com-

pute E(f(Xo)) for general f . But when f has some particular form, namely, when

f(x) = eιξx, then the computation of E(f(Xo)) is much simplified.

Theorem 1.1.1. Let Xt be the double exponential Ornstein-Uhlenbeck process with

initial condition x0 ∈ R. Then for any h ∈ R+, u, v ∈ R, we have almost surely

(denoting tj = jh)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

1

n

n∑︂
j=1

eiuXtj =
(︂ η

η − iuσ

)︂ pλ
θ
(︂ η

η + iuφ

)︂ qλ
θ

lim
n→∞

1

n

n∑︂
j=1

exp [iuXtj + ivXtj+h]

=
(︂ η

η − iσ(u+ ve−θh)

)︂ pλ
θ
(︂ φ

φ+ iσ(u+ ve−θh)

)︂ qλ
θ

·
(︂η − iσe−θhv

η − iσv

)︂ pλ
θ
(︂φ+ ie−θhσv

φ+ iσv

)︂ qλ
θ
.

(1.3)

We shall use the above theorem to estimate all the parameters η, θ, φ, λ, σ, and p

by replacing the limits in (1.3) by their the empirical characteristic functions Ψ̂1,n(u)

and Ψ̂2,n(u) defined as follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ψ̂1,n(u, v) :=

1

n

n∑︂
j=1

exp iuXtj ;

Ψ̂2,n(u, v) =
1

n

n∑︂
j=1

exp(iuXtj + ivXtj+h) .

(1.4)
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Since E|X0|m < ∞ and E|X0Xh|m < ∞ for all m we know (e.g. [15, Theorem

1.1]) that (1.3) hold true for moment functions, in particular, we shall choose f =

x, x2, x3, g(x, y) = xy. Evaluating the moments from the characteristic functions al-

lows to obtain the estimators of parameters by solving the system of equations. We

summarize the above discussions as the following theorem about the existence and

uniqueness of the parameter estimators and their strong consistency results.

Theorem 1.1.2. From the observation data, we denote µk,n, k = 1, 2, 3, 4 by (refer

Section 4.2,(3.3)). Then θ̂n is given by

θ̂n =
1

h
ln
(︂µ2,n − µ2

1,n

µ4,n − µ2
1,n

)︂
(1.5)

and fk, k = 1, 2, 3 by (3.10). If (3.15) has a unique solution p̂n on (0, 1), namely,

(1− p̂n)
2

(︃
f1p̂n +

√︂
p̂n(1− p̂n)(f2 − f 2

1 )

)︃3

(1.6)

+p̂2n

(︃
f1 − f1p̂n −

√︂
p̂n(1− p̂n)(f2 − f 2

1 )

)︃3

− f3p̂
2
n(1− p̂n)

2 = 0

and if p̂n is a continuous function of f1, f2, f3, then (3.5)-(3.8) has a unique solution

(θ̂n, ξ̂n, ρ̂n, p̂n) given by (3.16), (3.17) and

⎧⎪⎪⎨⎪⎪⎩
ρ̂n =

f1p̂n +
√︁
p̂n(1− p̂n)(f2 − f 2

1 )

p̂n
,

ξ̂n =
p̂nρ̂n − f1
1− p̂n

.

(1.7)

Define

η̂n :=
1

ρ̂n
, φ̂n :=

1

ξ̂n
. (1.8)

If (θ, η, φ, p) are the true parameters, namely, if the double exponential process Xt

satisfies (1.2) with the above parameters and with λ = σ = 1, and if (3.15) has a

unique solution when f1, f2, f3 are replaced by their limits as n → ∞, then when

n→ ∞, (θ̂n, η̂n, φ̂n, p̂n) → (θ, η, φ, p) almost surely.

Further the central limit theorem for the ergodic estimators Θ̂n = (θ̂n, η̂n, φ̂n, p̂n)

is also proved. The goal is to prove that
√
n(Θ̂n−Θ), where Θ = (θ, η, φ, p) converges

4



in law to a mean zero normal vector and to find the asymptotic covariance matrix.

Let {︄
g(x, y) = (g1(x, y), g2(x, y), g3(x, y), g4(x, y))

T ,

g1(x, y) = x, g2(x, y) = x2, g3(x, y) = x3, g4(x, y) = xy

and

µ = (µ1, µ2, µ3, µ4) , where µk = E[gk(Xo,Xh)], k = 1, 2, 3, 4 .

Denote

µn = (µ1,n , µ2,n , µ3,n , µ4,n) ,

where µk,n, k = 1, 2, 3, 4 are defined by (3.3).

Theorem 1.1.3. Denote Θ = (θ, η, φ, p) and Θ̂n = (θ̂n, η̂n, φ̂n, p̂n). If p̂n is a con-

tinuous function of f1, f2, f3 and if (3.15) has a unique solution when f1, f2, f3 are

replaced by their limits as n→ ∞, then as n→ ∞ we have

√
n(Θ̂n −Θ)

d−→ N (0,Σ) (1.9)

where

Σ =
(︂
(∇h)−1∇h̃

)︂T
A (∇h)−1∇h̃ . (1.10)

This chapter is concluded by numerical simulations which are shown to validate

the ergodic estimators. To do so a distributional decomposition to exactly simulate

the double exponential Ornstein-Uhlenbeck process is proposed following the idea of

[29], where the exact simulation of Gamma Ornstein-Uhlenbeck process is studied.

First, we have the following result. Without loss of generality, we can assume σ = 1.

Theorem 1.1.4. Let Xt be the double exponential Ornstein-Uhlenbeck process given

by (1.2). For any t, t1 > 0, the Laplace transform of Xt+t1 conditioning on Xt is given

by

E[eiuXt+t1 |Xt] = e−iuwXt exp
[︂−λp
θ

∫︂ ∞

0

(1− e−ius)

∫︂ 1/w

1

ηve−sηv 1

v
dvds

−λq
θ

∫︂ 0

−∞
(1− e−ius)

∫︂ 1/w

1

ϕvesϕv
1

v
dvds

]︂
,

(1.11)

where w = e−θt1.
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Corollary 1.1.5 (Exact Simulation via Decomposition Approach). Let N be a Pois-

son random variable of rate λh and let {Sk}k=1,2,... be i.i.d random variables following

a mixture of double exponential distribution

fSk
(y) =pηeθhUe−ηeθhUyIy≥0 + qϕeθhUeϕe

θhUyIy<0 ,

∀ k = 1 , 2 , . . . ,
(1.12)

where U
d
= U [0, 1] is the uniform distribution on [0, 1]. Then

Xt+h
d
= Xte

−θh +
N∑︂
k=1

Sk . (1.13)

The above formula (1.13) enables us to simulate the process Xt by the exact

decomposition approach.

1.1.2 Summary on Parameter Estimation for Vasicek Model

with double exponential jump

The model is expressed in the form of the following stochastic differential equation

(SDE),

dXt = (µ− θXt)dt+ dL̃t (1.14)

X0 = 0 (1.15)

The first term (µ − θXt)dt represents the drift term. The parameter θ gives the

reversion speed of the stochastic component. The long-term mean is given µ
θ
. Here

the Vasicek model is driven by compensated Lêvy process (L̃t, t ≥ 0) refer (2.2), where

Lt =
Nt∑︂
i=1

Yi

is the double exponential compound Poisson process and the compensated double

6



exponential compound Poisson Process L̂t is given by

L̂t = Lt − λtE[Y1] (1.16)

The goal is to construct least square estimators under continuous observations. We

find the estimators by minimizing the following contrast function

Φ(θ, µ) = min
θ,µ

∫︂ T

0

|Ẋ t − (µ− θXt)|2dt (1.17)

(1.18)

Upon minimizing the contrast function we obtain expressing with integrals of the form∫︁ T

0
XtdXt. Such integrals can be interpreted as Young integrals. Using the ergodicity

of Xt and using BDG inequality (Lemma 2.1[35]) we get the following result

Theorem 1. The estimators θ̂T and µ̂T given by

θ̂T = θ +
L̃T

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

µ̂T = µ+
L̃T

∫︁ T

0
X2

t dt−
∫︁ T

0
Xtdt

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

converge a.s. to θ and µ respectively as T → ∞.

1.1.3 Summary on General Product formula of multiple in-

tegrals of Lévy process

The product formula for two multiple integrals of Brownian motion is known since

the work of [10, Section 4] and the general product formula can be found for instance

in [18, chapter 5]. In Chapter 5, a general formula for the product of m multiple

integrals of the Poisson random measure associated with (purely jump) Lévy process

is obtained. The formula is in a compact form and it is reduced to the Shigekawa’s

7



formula when m = 2 and when the Lévy process is reduced to Brownian motion.

When m = 2, we have the following example

Example 1.1.6. If m = 2, then κm = 22 − 1 − 2 = 1. To shorten the notations we

can write q1 = n, q2 = m, f1 = fn, f2 = gm, lα1 = l, nβ1 = k. Thus, χ(1, l⃗, n⃗) =

χ(2, l⃗, n⃗) = l + k and |q| + |n⃗| − |χ(l⃗, n⃗)| = n +m + k − 2(l + k) = n +m − 2l − k.

Hence the formula (2.12) becomes the following. If

fn ∈
(︁
L2([0, T ]× R0, dt⊗ ν(dz))

)︁⊗̂n

and

gm ∈
(︁
L2([0, T ]× R0, dt⊗ ν(dz))

)︁⊗̂m
,

then

In(fn)Im(gm) =
∑︂

k,l∈Z+
k+l≤m∧n

n!m!

l!k!(n− k − l)!(m− k − l)!
In+m−2l−k

(︂
fn ⊗̂ k,lgm

)︂
,

where Z+ denotes the set of non negative integers and

fn ⊗̂ k,lgm(s1, z1, · · · , sn+m−k−2l, zn+m−k−2l)

= symmetrization of

∫︂
Tl

fn(s1, z1, · · · , sn−l, zn−l, t1, y1, · · · , tl, yl)

gm(s1, z1, · · · , sk, zk, sn−l+1, · · · , zn−l+1, · · · ,

sn+m−k−2l, zn+m−k−2l, t1, z1, · · · , tl, zl)dt1ν(dz1) · · · dtlν(dzl).

(1.19)

In the chapter, a product formula for finitely many multiple stochastic integrals of

Lévy process, expressed in terms of the associated Poisson random measure is derived.

The chapter gives proof of the following result.

Theorem 1.1.7. Let q1, · · · , qm be positive integers greater than or equal to 1. Let

fk ∈
(︁
L2([0, T ]× R0, dt⊗ ν(dz))

)︁⊗̂qk , k = 1, · · · ,m .

8



Then

m∏︂
k=1

Iqk(fk) =
∑︂
l⃗,n⃗∈Ω

χ(1,l⃗,n⃗)≤q1
···

χ(m,l⃗,n⃗)≤qm

∏︁m
k=1 qk!∏︁κm

α=1 liα !
∏︁κm

β=1 µjβ !
∏︁m

k=1(qk − χ(k, l⃗, n⃗))!

I|q|+|n⃗|−|χ(l⃗,n⃗)|(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1
,··· ,µjκm

j1,··· ,jκm (f1, · · · , fm)) (1.20)

where we recall

|q| = q1 + · · ·+ qm and |χ(l⃗, n⃗)| = χ(1, l⃗, n⃗) + · · ·+ χ(m, l⃗, n⃗) .

Please refer to (5.2) for the details in the notions.

9



Chapter 2

Preliminaries

In this chapter, we will briefly discuss some background on the Ornstien-Uhlenbeck

processes and Lévy processes.

2.1 Lévy Process

Let (Ω,F ,P) be a proability spae.

Definition 2.1. A filtration F = (Ft, t ≥ 0) is a family of σ-algebras Ft on the same

probability space (Ω,F ,P) such that Fs ⊆ Ft, for s < t. Note that F∞ = σ
(︁⋃︁

t∈R Ft

)︁
.

Definition 2.2. Let us have a probability space (Ω,F ,P) with a filtration Ft. Then

a one-dimensional process Z = Z(t), t ≥ 0 is called a Lévy process if the following

holds true :

1. Z(0) = 0 P a.s.,

2. Zt+s − Zt is independent of Ft for every s, t ≥ 0.

3. Z has stationary increments, i.e, Zt+s − Zt and Zs have the same law for every

s, t ≥ 0,

10



4. Z is continuous in probability , i.e for every t ≥ 0 and ϵ > 0 we have

lim
s→t

P{|Z(t)− Z(s)| > ϵ} = 0,

5. Z is càdlàg upto a modification.

Let T > 0 be a positive number and let {Z(t) = Z(t, ω) , 0 ≤ t ≤ T} be a Lévy

process on some probability space (Ω,F , P ) with filtration {Ft , 0 ≤ t ≤ T}. The

jump of the process Z at time t is defined by

∆Z(t) := Z(t)− Z(t−) if ∆Z(t) ̸= 0 .

Given R0 := R\{0}, then B(R0) is the the Borel σ-algebra generated by the family of

all Borel subsets U ⊂ R, such that Ū ⊂ R0. If U ∈ B(R0) with Ū ⊂ R0 and t > 0, we

then define the Poisson random measure N : [0, T ]×B(R0)×Ω → R, associated with

the Lévy process Z by

N(t, U) :=
∑︂
0≤s≤t

χU(∆Z(s)) , (1.1)

where χU is the indicator function of U . The associated Lévy measure ν of Z is de-

fined by

ν(U) := E[N(1, U)] (1.2)

and the compensated jump measure Ñ is defined by

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt , (1.3)

where ν satisfies ∫︂
min{1, x2}ν(dx) <∞.
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There are real-life cases where the trajectories of Z have infinitely many jumps of

small size, and its occurrence can be seen often in financial modeling. However, the

Lev́y measure always follows the above equality. For any t, let Ft be the σ-algebra

generated N(ds, dz), z ∈ R0, s ≤ t.

A stochastic process f = f(t, z), t ≥ 0, z ∈ R0, is F -adapted if for all t ≥ 0 and

for all z ∈ R0, the random variable f(t, z) = f(t, z, ω), ω ∈ Ω, is Ft-measurable. Also,

if f satisfies

E
[︃∫︂ T

0

∫︂
R0

f 2(t, z)ν(dz)dt

]︃
<∞ for some T > 0, (1.4)

we can see that the process Zn(t) is a martingale in L2(P ), where Zn(t) is defined as

Zn(t) :=

∫︂ t

0

∫︂
|z|≥ 1

n

f(s, z) ˜︁N(ds, dz), 0 ≤ t ≤ T,

and it’s limit

Z(t) := lim
n→∞

Zn(t) :=

∫︂ t

0

∫︂
R0

f(s, z) ˜︁N(ds, dz), 0 ≤ t ≤ T, (1.5)

in L2(P ) is also a martingale. This also results in the the Itô isometry,

E
[︃∫︂ T

0

∫︂
R0

f(t, z) ˜︁N(dt, dz)2
]︃
= E

[︃∫︂ T

0

∫︂
R0

f 2(t, z)ν(dz)dt

]︃
. (1.6)

In the next chapters, the parameter estimation problem for the Ornstein-Uhlenbeck

(OU) process and the Vasicek model driven by the double exponential jump diffusion

process are discussed. In this chapter, some preliminaries of the OU process and the

Vasicek model are presented below.
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Definition 2.3. An Ornstein-Uhlenbeck (OU) process driven by a Lévy process

(Zt)t≥0 is defined to be the stochastic process satisfying the SDE

dXt = −θXtdt+ σdZt , t ∈ [0,∞), X0 = x0 . (1.7)

Here θ > 0 and σ > 0 are parameters of the OU process. Such stochastic processes

are also referred to as Ornstein-Uhlenbeck-type processes.

The solution of the SDE can be given by

eθtXt = eθsXs +

∫︂ t

s

eθuθXudu+

∫︂ t

s

eθudXu

= eθsXs +

∫︂ t

s

eθuθXudu+

∫︂ t

s

eθu(−θXudu+ σdZu)

= eθsXs +

∫︂ t

s

eθuθXudu−
∫︂ t

s

eθuθXudu+ σ

∫︂ t

s

eθudZu

= eθsXs + σ

∫︂ t

s

eθudZu.

This gives the solution,

Xt(ω) = e−θtx0 + σ

∫︂ t

0

e−θ(t−s)dZs(ω). (1.8)

The Vasicek model, originally introduced by Oldrich A. Vasicek in 1977, is a

mathematical model used to describe the evolution of interest rates over time. It is a

stochastic model that assumes that interest rates follow a mean-reverting process. In

its basic form, the Vasicek model is driven by a Brownian motion or a Wiener process.

However, it can be extended to incorporate other stochastic processes, including Levy

processes.
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Definition 2.4. The Vasicek model driven by Lévy Process is a stochastic model that

follows the following stochastic differential equation (SDE),

dXt = (µ− θXt)dt+ dZt (1.9)

X0 = 0 (1.10)

The first term (µ − θXt)dt represents the drift term. Here θ > 0 and µ > 0 are

parameters of the above process.

The solution to the above SDE can be written as

Xt =
µ

θ
(1− e−θt) +

∫︂ t

0

e−θ(t−s)dZs

Definition 2.5. The characteristic function P̂X(z) of a random variable X whose

distribution function is PX on R is defined by

P̂X(z) = E(eizX) =
∫︂
R
eizxPXdx.

Definition 2.6. Let (Yn, n ≥ 1) be a sequence of independent real-valued random

variables with distribution f . Let (Nt) be the Poisson process with rate λ > 0,

independent of {Yi, i = 1, 2, . . .}. Then the process

Zt =
Nt∑︂
i=1

Yi

is called compound Poisson process.

Remark 2.1.1. When (Yn, n ≥ 1) follows the distribution

fY (x) = pηe−ηxI[x≥0] + qφeφxI[x<0]

where the parameters p, q, η, φ are positive and p + q = 1. Then the process

Zt =
∑︁Nt

i=1 Yi is called the double exponential compound Poisson process.
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Remark 2.1.2. For a step function g(u) =
∑︁n

j=1 aj1(uj−1,uj ](u) with s = u0 <

u1, · · · < un = t, and Lévy process (Zt) the following holds true,

E
[︂
exp

(︂
iz

∫︂ t

s

g(u)dZu(ω)
)︂]︂

= exp
[︂ ∫︂ t

s

Ψ(g(u)z)du
]︂

where z ∈ R and Ψ(z) = ln P̂Z1(z), and P̂ is the characteristic function of Z1. By

approximation, the above is also true for any real continuous function g(u) on [s, t].

Therefore we have

E[eiuXt ] = exp
[︂
ie−θtx0u+

∫︂ t

0

Ψ(σe−θsu)ds
]︂
.

Theorem 2.1.3 ([12]Lévy -Khintchine Formula in one-dimension). Let Z be a Lévy

process on R. Then the process (Zt)t≥0 for each t is infinitely divisible distribution

and its characteristic function P̂Z(z) is given by the Lévy -Khintchine Formula,

P̂Zt(z) = exp
(︂
t
(︂
− 1

2
Az2 + iyz +

∫︂
R
(eizx − 1− izx1D(x)ρ(dx)

)︂)︂
(1.11)

z ∈ R, where A ≥ 0 and D = {x : |x| ≤ 1}, ρ is a measure on R satisfying

ρ({0}) = 0∫︂
R
(|x|2 ∧ 1)ρ(dx) <∞ .

Here (tA, tρ, ty) is called the characteristic triplet of Zt. We can also refer to as

(A, ρ, y), the characteristic triplet of the Lévy process Z.

Definition 2.7. A map Ps,t(x,B) of x ∈ R and B ∈ B(R) for 0 ≤ s ≤ t <∞ is called

a transition function on R if

1. for any fixed x, it is a probability measure as a mapping of B.
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2. for any fixed B, x ↦→ Ps,t(x,B) is measurable.

3. Ps,s(x,B) = δx(B) for s ≥ 0

4. also ∫︂
R
Ps,t(x, dy)Pt,y(y,B) = Ps,u(x,B), 0 ≤ s ≤ t ≤ u,

5. if, in addition, we have that Ps+h,t+h(x,B) does not depend on h, then it is

called a temporally homogeneous transition function and it is given by

Pt(x,B) = Ps,s+t(x,B), s ≥ 0.

Lemma 2.1.4 (Sato[30], Lemma 17.1). Let {Zt} be a Lévy process on R generated by

(G, ρ, β). Let θ ∈ R, then there exists a temporally homogeneous transition function

Pt(x,B) on R such that

∫︂
Rd

eizyPt(x, dy) = exp[ie−θtxz +

∫︂ t

0

ψ(σe−θsz)ds] (1.12)

where ψ(z) = lnP̂Z(z) = lnE[eizZ ]. For each t, Pt(x, ·) is infinitely divisible with

the generating characteristic triplet (At, vt, γt,x)

At =

∫︂ t

0

e−2θsdsG (1.13)

vt(B) =

∫︂
Rd

ρ(dy)

∫︂ t

0

IB(e
−θsy)ds (1.14)

γt,x = e−θtx+

∫︂ t

0

σe−θsxds+

∫︂
R

ρ(dy)

∫︂ t

0

e−θsy(ID(e
−θsy)− ID(y))ds (1.15)

D = {x : |x| ≤ 1}

Definition 2.8. Let θ > 0 {Zt} is a Lévy process on R generated by (G, ρ, β), the

temporally homogeneous Markov process with transition function {Pt(x,B)} is called

process of Ornstein Unhlenbeck type generated by (G, ρ, β, θ)
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Theorem 2 (Sato[30], Theorem 17.9). Fix θ > 0, If ρ satisfies,

∫︂
x|>2

log|x|ρdx <∞

the process of Ornstein-Unhlenbeck type on R generated by (G, ρ, β, θ) has the limit

distribution µ with

µ̂(z) = exp[

∫︂ ∞

0

ψ(e−θsz)dz]

The distribution µ is self decomposable and the generating triplet (A, v, γ) of µ is

given by ,

A =
1

2θ
G

v(B) =
1

θ

∫︂
R

ρ(dy)

∫︂ ∞

0

IB(e
−θsy)ds

γ =
1

θ
β +

1

θ

∫︂
|y|>1

y

|y|
ρ(dy)

2.2 Stochastic Calculus for Jump Diffusion Pro-

cess

Theorem 2.2.1 ([2]Lévy -Itô decomposition theorem). Let Z be a Lèvy process. Then

Z = Z(t), t ≥ 0 has the following integral representation

Z(t) = a1t+ σW (t) +

∫︂ t

0

∫︂
|z|<1

zÑ(ds, dz) +

∫︂ t

0

∫︂
|z|≥1

zN(ds, dz),

here a1, σ ∈ R are constants, Ñ(ds, dz) as defined in 1.3 and W = W (t), t ≥ 0 is

a standard Wiener process.

If
∫︁
|z|≥1

|z|2ν(dz) <∞, then the above expression can be written in the form
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Z(t) = at+ σW (t) +

∫︂ t

0

∫︂
R0

zÑ(ds, dz).

Definition 2.9. Consider the process X(t) of the form

X(t) = x+

∫︂ t

0

α(s)ds+

∫︂ t

0

β(s)dW (s) +

∫︂ t

0

∫︂
R0

γ(s, z)Ñ(ds, dz),

where α(t), β(t), and γ(t, z) are predictable processes such that, for all t > 0, z ∈ R0.

If,

∫︂ t

0

[|α(s)|+ β2(s) +

∫︂
R0

γ2(s, z)ν(dz)]ds <∞,

then the stochastic process X(t) is well-defined and is a local martingale. Such pro-

cesses are called Itô’s - Lèvy process.

Theorem 2.2.2 (Itô formula[12]). Let X = X(t), t ≥ 0, be the Itô–Lèvy process and

let f : (0,∞)× R → R be a function in C1,2((0,∞)× R) and define

Y (t) := f(t,X(t)), t ≥ 0.

Then the process Y = Y (t), t ≥ 0, is also an Lèvy-Itô process and its differential form

is given by

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))α(t)dt (2.1)

+
∂f

∂x
(t,X(t))β(t)dW (t) +

1

2

∂2f

∂x2
(t,X(t))β2(t)dt

+

∫︂
R0

[f(t,X(t) + γ(t, z))− f(t,X(t))− ∂f

∂x
(t,X(t))γ(t, z)]ν(dz)dt+

+

∫︂
R0

[f(t,X(t−) + γ(t, z))− f(t,X(t−)]Ñ(dt, dz).
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In case of multidimensional Itô–Lévy process where there is an L-dimensional

Brownian motion W (t) = (W1(t), . . . ,WL(t)), t ≥ 0, and M independent compen-

sated Poisson random measure Ñ(dt, dz) = (Ñ1(dt, dz1), . . . , ÑM(dt, dzM))T , t ≥ 0,

the Itô–Lévy process is of the form

dX(t) = α(t)dt+ β(t)dW (t) +

∫︂
(R0)M

γ(t, z) ˜︁N(dt, dz), t ≥ 0. (2.2)

where α(t), β(t), and γ(t, z) are predictable processes .

Theorem 2.2.3 (The multidimensional Itô formula[12]). Let X = X(t), t ≥ 0, be an

n-dimensional Itô–Lévy process of the form (2.2). Let f : (0,∞)×Rn → R and define

Y (t) := f(t,X(t)), t ≥ 0.

Note that the function f is in C1,2((0,∞)×Rn) Then the process Y = Y (t), t ≥ 0, is

a one-dimensional Itô–Lévy process and its differential form is given by

dY (t) =
∂f

∂t
(t,X(t))dt+

n∑︂
i=1

∂f

∂xi
(t,X(t))αi(t)dt

+
n∑︂

i=1

L∑︂
j=1

∂f

∂xi
(t,X(t))βij(t)dWj(t) +

1

2

n∑︂
i=1

L∑︂
j=1

∂2f

∂xi∂xj
(t,X(t))(ββT )ij(t)dt

+
M∑︂
k=1

∫︂
R0

[︂
f(t,X(t) + γk(t, z))− f(t,X(t))−

n∑︂
i=1

∂f

∂xi
(t,X(t))γik(t, z)

]︂
νk(dzk)dt

+
M∑︂
k=1

∫︂
R0

[︄
f(t,X(t−) + γk(t, z))− f(t,X(t−))

]︂
Ñk(dt, dzk),

(2.3)

where γk is the column number k of the n× k matrix γ =

⎡⎢⎢⎢⎣
γ1k
...

γnk

⎤⎥⎥⎥⎦.

Example 2.2.1. Let h ∈ L2([0, T ]) be a cadlág real function. Let us consider a one-

dimensional stochastic differential equation for the cadlág process Z = Z(t), t ∈ [0, T ]
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of the form,

dZ(t) = Z(t−)

∫︂
R0

(eh(t)z − 1)Ñ(dt, dz).

We argue that the solution to this equation is

Z(t) = exp{X(t)}, t ∈ [0, T ].

where

X(t) =
{︂∫︂ T

0

∫︂
R0

h(s)zÑ(ds, dz)−
∫︂ T

0

∫︂
R0

[eh(s)z − 1− h(s)z]ν(dz)ds
}︂
.

In particular Y (t), t ∈ [0, T ] is a local martingale. To show this we apply the one-

dimensional Itô formula to Z(t) = f(t,X(t)), t ∈ [0, T ] with f(t, x) = ex and Xt as

given above. Since we have ∂f
∂t
(t,X(t)) = 0, α(t) = −

∫︁
R0
[eh(s)z − 1 − h(s)z]ν(dz),

β(t) = 0 from (2.2.2) defined in Then we get,

dZ(t) = − exp{X(t)}
∫︂
R0

[eh(s)z − 1− h(t)z]ν(dz)dt

+

∫︂
R0

[exp{X(t) + h(t)} − exp{X(t)} − exp{X(t)}h(t)z]ν(dz)dt

+

∫︂
R0

[exp{X(t−) + h(t)} − exp{X(t−)}]Ñ(dt, dz),

which gives us

dZ(t) = Z(t−)

∫︂
R0

(eh(t)z − 1)Ñ(dt, dz)

as required.
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Let us consider a pure jump Lêvy process given by

η(t) =

∫︂ t

0

∫︂
R0

zÑ(ds, dz), t ≥ 0,

We consider that η(t) is adapted to the σ-algebras Ft .

Lemma 2.2.4. [2] The set of all random variables of the form

{f(η(t1) . . . η(tn)) : ti ∈ [0, t], 1 ≤ i ≤ n; f ∈ C∞
0 (Rn)n = 1, 2 . . .}

is dense in the subspace L2(FT ,P) ⊂ L2(P) of FT -measurable square-integrable ran-

dom variables.

Lemma 2.2.5. [2] Given the Doleans-Dade exponentials of the form

exp
{︂∫︂ T

0

∫︂
R0

h(t)zχ[0,R](z)Ñ(ds, dz)−
∫︂ T

0

∫︂
R0

[eh(t)zχ[0,R](z)−1−h(t)zχ[0,R](z)]ν(dz)dt
}︂
,

where h ∈ C(0, T ), R > 0 are dense in the space of FT -measurable square-integrable

random variables L2(FT ,P).

Theorem 2.2.6. (Itô representation theorem)[2] Let U ∈ L2(P) be FT measurable

random variable. Then U can be written as

U = E[U ] +
∫︂ T

0

∫︂
R0

f(t, z)Ñ(ds, dz), (2.4)

where f = f(t, z), t ≥ 0, z ∈ R0 is a unique predictable process such that

E
[︂ ∫︂ T

0

∫︂
R0

f(t, z)2ν(dz)dt
]︂
<∞.

Proof Let U be represented as process U = V (T ), where

V (t) = exp
(︂∫︂ t

0

∫︂
R0

h(s)zχ[0, R](z)Ñ(ds, dz)

−
∫︂ t

0

∫︂
R0

[eh(s)zχ[0, R](z)− 1− h(s)zχ[0, R](z)]ν(dz)ds
)︂
, t ∈ [0, T ],
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for some h ∈ C(0,∞). Clearly, U is a Wick/Doléans–Dade exponential. With Itô

formula and Example 1.2.1, the differential form V (t) can be written as

dV (t) = V (t−)

(︃∫︂
R0

eh(t)zχ[0, R](z)− 1

)︃
Ñ(dt, dz).

Therefore, U can be written as

U = V (T ) = V (0) +

∫︂ T

0

dV (t) = 1 +

∫︂ T

0

∫︂
R0

V (t−)
(︁
eh(t)zχ[0, R](z)− 1

)︁
Ñ(dt, dz).

Therefore

f(t, z) = V (t−)
(︁
eh(t)zχ[0, R](z)− 1

)︁
.

also,

E
[︁
V 2(T )

]︁
= 1 + E

[︃∫︂ T

0

∫︂
R0

V 2(t−)
(︁
eh(t)zχ[0, R](z)− 1

)︁2
ν(dz)dt

]︃
.

Let U be an FT -measurable random variable in L2(P ). Using 2.2.4 we can choose a

sequence Un of linear combinations of Doléan–Dade exponentials such that Un → U

in L2(P ). Then we have

Un = E[Un] +

∫︂ T

0

∫︂
R0

fn(t, z)Ñ(dt, dz),

for all n = 1, 2, . . ., such that

E[U2
n] = (E[Un])

2 +

∫︂ T

0

∫︂
R0

f 2
n(t, z)ν(dz)dt <∞.

Using Itô isometry we can see that fn, n = 1, 2, . . . is a Cauchy sequence in L2(P ×
λ× ν) and it converges to a limit f in L2(P × λ× ν) and
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U = lim
n→∞

Un = lim
n→∞

(︃
E[Un] +

∫︂ T

0

∫︂
R0

fn(t, z)Ñ(dt, dz)

)︃
= E[U ] +

∫︂ T

0

∫︂
R0

f(t, z)Ñ(dt, dz).

2.3 Wiener -Itô Chaos Expansion

Let us use T to represent [0, T ]× R0 to simplify notation.

Let

(︁
L2(T, λ× ν)

)︁⊗n ⊆ L2 (Tn, (λ× ν)n)

be the space of deterministic real functions f such that

∥f∥2L2,n =

∫︂
Tn

f 2(t1, z1, · · · , tn, zn)dt1ν(dz1) · · · dtnν(dzn) <∞ ,

where λ(dt) = dt is the Lebesgue measure.

Definition 2.10. The symmetrization f̃ of f is defined by

f̃(t1, z1, · · · , tn, zn) =
1

n!

∑︂
σ

f(tσ1 , zσ1 , · · · , tσn , zσn),

where σ = (σ1, . . . , σn) and the sum is taken over all the permutation of σ.

In the above, a function f ∈ L2,n is called symmetric if f = f̃ . Also space of all

symmetric functions in L2,n can be denoted by L̂
2,n

.

Define

Gn := {
(︁
t1, z1, · · · , tn, zn

)︁
: 0 ≤ t1 ≤ · · · ≤ tn ≤ T, zi ∈ R0, i = 1, 2, · · · , n}
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and let L2(Gn) be the set of all real functions g on Gn such that

∥g∥
L̃
2
(Gn)

:=
(︂∫︂
Gn

g2(t1, z1, · · · , tn, zn)dt1ν(dz1) · · · dtnν(dzn)
)︂1/2

<∞.

Also, for any f ∈ L̂
2,n

, we have f|Gn ∈ L̂
2
(Gn) and

∥f∥2L2 = n!∥f∥2L2(Gn)
.

Definition 2.11. For any g ∈ L2(Gn), the n-fold iterated integral Jn(g) is the random

variable in L2(P ) defined as

Jn(g) :=

T∫︂
0

∫︂
R0

· · · .
t−2∫︂
0

∫︂
R0

g(t1, z1, · · · , tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn).

We set J0(g) = g for any g ∈ R.

For any f ∈ L̂
2,n

, we can write the multiple Wiener-Itô integral as

In(f) :=

∫︂
Tn

f(t1, z1, · · · , tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn) = n!Jn(f). (3.1)

Also for any g ∈ L̂
2,n

and f ∈ L̂
2,n

, the following relation holds true

E[Im(g)In(f)] =

⎧⎨⎩ 0, if n ̸= m

(g, f)L2,n , if n = m

where

(g, f)L2,n =

∫︂
Tn

g(t1, z1, · · · , tn, zn)f(t1, z1, · · · , tn, zn)dt1ν(dz1) · · · dtnν(dzn).

Theorem 2.3.1. [2](Wiener-Itô chaos expansion for Lévy process) Let FT = σ(η(t), 0 ≤

t ≤ T ) be σ - algebra generated by the Lévy process η.
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Let F ∈ L2(Ω,FT , P ) be an FT measurable square integrable random variable. Then

F admits the following chaos expansion:

F =
∞∑︂
n=0

In(fn) , (3.2)

where fn ∈ L̂
2,n
, n = 1, 2, · · · and where we denote I0(f0) := f0 = E(F ). Moreover,

we have

∥F∥2L2(P ) =
∞∑︂
n=0

n !∥fn∥2L2,n . (3.3)

Proof By theorem 1.2.6, a predictable process θ(t1, z1) ∈ T exists such that for

F ∈ L2(Ω,FT , P ), F can be written as

F = E[F ] +

∫︂ T

0

∫︂
R0

θ1(t1, z1)Ñ(dt1, dz1),

also

∥F∥2L2(P ) = (E[F ])2 + E
[︂ ∫︂ T

0

∫︂
R0

θ21(t1, z1) dt1 ν(dz1)
]︂
<∞.

Applying theorem 1.2.6 on θ1(t1, z1), for almost all (t1, z1) ∈ T, there exists a pre-

dictable process θ2(t1, z1, t2, z2), where (t2, z2) ∈ [0, t1]× R0, such that

θ1(t1, z1) = E[θ1(t1, z1)] +

∫︂ T

0

∫︂
R0

θ2(t1, z1, t2, z2)Ñ(dt2, dz2).

This allows us to write F as

F = E[F ] +

∫︂ T

0

∫︂
R0

E
[︂
θ1(t1, z1)Ñ(dt1, dz1)

]︂
+

∫︂ T

0

∫︂
R0

∫︂ t−1

0

∫︂
R0

θ2(t1, z1, t2, z2)Ñ(dt2, dz2)Ñ(dt1, dz1).
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Let’s define

g0 := E[F ]

g1(t1, z1) := E[θ1(t1, z1)], (t1, z1) ∈ T.

Similarly we can repeat the above same argument for (t2, z2) and again for new inte-

grands generated through the process θ2(t1, z1, t2, z2). This will give

F =
k−1∑︂
n=0

J(gn) +

∫︂
Gk

θk(t1, z1, . . . , tk, zk)Ñ
⊗k
(dt, dz),

where

Gk := {
(︁
t1, z1, · · · , tk, zk

)︁
: 0 ≤ t1 ≤ · · · ≤ tk ≤ T, zi ∈ R0, i = 1, 2, · · · , k}.

refer to Theorem 1.10 [2] to see that the residual term
∫︁
Gk
θk(t1, z1, . . . , tk, zk)Ñ

⊗k
(dt, dz)

converges to 0 in L2(Ω,FT , P ).

This gives the following chaos expansion

F =
∞∑︂
n=0

J(gn).

Define fn := g̃n by extending the function gn on the whole Tn such that gn := 0 on

Tn\Gn. Then

In(fn) = n!Jn(fn) = n!Jn(g̃n) = Jn(gn).

Thus,we have

F =
∞∑︂
n=0

In(fn).

Example 2.3.2. Let F = V (T ), where
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V (t) = exp

(︃∫︂ t

0

∫︂
R0

h(s)z ˜︁N(ds, dz)−
∫︂ t

0

∫︂
R0

(︁
eh(s)z − 1− h(s)z

)︁
ν(dz) ds

)︃
, t ∈ [0, T ]

here h ∈ L2([0, T ]) is a càdlàg real function. Clearly, V is a Wick/Doléans–Dade

exponential. Then, by the Itô formula, we have

dV (t) = V (t−)

∫︂
R0

(︁
eh(t)z − 1

)︁ ˜︁N(dt, dz).

Therefore

V (T ) = 1 +

∫︂ T

0

∫︂
R0

V (t−)
(︁
eh(t)z − 1

)︁ ˜︁N(dt, dz).

Repeating the above iteration again for V (t−) and so on again, the following expansion

is obtained

V (T ) =
n−1∑︂
k=0

In(fn)

+

∫︂ T

0

∫︂
0

· · ·
∫︂ t−2

0

∫︂
R0

V (t−1 )
k∏︂

i=1

(︁
eh(ti)zi − 1

)︁ ˜︁N(dt1, dz1) · · · ˜︁N(dtk, dzk),

where

fn(t1, z1, . . . , tn, zn) :=
1

n!

n∏︂
i=1

(︁
eh(ti)zi−1

)︁
=

1

n!

(︄
n∏︂

i=1

(︁
eh(t)z−1

)︁)︄⊗n

(t1, z1, . . . , tn, zn),

which leads to the chaos expansion

V (T ) =
∞∑︂
n=0

In(fn),

with convergence in L2(P ). To prove this, we need to verify that
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E

[︄∫︂ T

0

∫︂
0

· · ·
∫︂ t−2

0

∫︂
R0

V (t−1 )
(︁
eh(t)z − 1

)︁⊗k ˜︁N⊗k(dt, dz)

]︄
→ 0, k → ∞.

This follows from the estimate∫︂ T

0

∫︂
R0

· · ·
∫︂ t2

0

∫︂
R0

E
[︂
V 2(t−1 )

(︁
eh(t)z − 1

)︁⊗k
]︂
ν(dz1)dt1 · · · ν(dzk)dtk

≤ E [V 2(T )]

k!

(︃∫︂ T

0

∫︂
R0

(︁
eh(t1)z1−1

)︁2
ν(dz1)dt1

)︃k

→ 0 as k → ∞.
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Chapter 3

Ergodic Estimators of double

exponential Ornstein-Uhlenbeck

processes

In this chapter, we study the parameter estimation for Ornstein-Uhlenbeck processes

driven by the double exponential compound Poisson process. A method of moments

using ergodic theory is proposed to construct ergodic estimators for the double ex-

ponential Ornstein-Uhlenbeck process, where the process is observed at discrete time

instants with time step size h.

The existence and uniqueness of the function equations to determine the estimators

for fixed time step size h is also shown. Also, we show the strong consistency and the

asymptotic normality of the estimators. Furthermore, we propose a simulation method

of the double exponential Ornstein-Uhlenbeck process and perform some numerical

simulations to demonstrate the effectiveness of the proposed estimators.

3.1 Introduction

Let (Ω,F ,P) be a probability space with a right continuous family of increasing σ-

algebras (Ft, t ≥ 0) satisfying the usual condition ([19]). We denote the expectation on

this probability space by E. Recently, there have been a very successful applications

of double exponential jump processes to finance and insurance, we refer to [13, 16,
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17, 21] and relevant references for further details. To apply these models to more

specific situations, we need to estimate the parameters appeared in the model from

the historical data. It seems there has been no work on this direction yet. This

motivates us to study the parametric estimation problem for the double exponential

Ornstein-Uhlenbeck process. To introduce this process let us recall the following

concept. Let (Yn, n ≥ 1) be a sequence of independent real-valued random variables

with the following probability density function

fY (x) = pηe−ηxI[x≥0] + qφeφxI[x<0] , (1.1)

where the parameters p, q, η, φ are positive and p+ q = 1. Let Nt be the Poisson pro-

cess with rate λ > 0, independent of {Yi, i = 1, 2, . . .}. Then the process Zt =
∑︁Nt

i=1 Yi

is called the double exponential compound Poisson process. The double exponential

compound Poisson process is a particular Lévy process. The stochastic calculus with

respect to this process falls in the framework of the stochastic calculus for general

Lévy processes. For more details, we refer to [30] whose results will be used freely.

Let us consider the following double-exponential Ornstein-Ulenbeck process given

by the following Langevin equation driven by the double exponential compound Pois-

son process Zt:

dXt = −θXtdt+ σdZt , t ∈ [0,∞), X0 = x0 . (1.2)

Of course, the integral form of this equation can be written as

Xt = x0 − θ

∫︂ t

0

Xsds+ σZt . (1.3)

As we observe, this process Xt depends on the parameters θ, σ, p (or q), η, λ, and φ.

In this chapter we assume that the process {Xt; t ≥ 0} can be observed at discrete

time instants tj = jh, where h > 0 is some observation time interval. We want to

use the discrete observation data {Xtj ; j = 1, 2, . . . n} to estimate the parameters θ,

σ, p, η, λ, and φ. To construct such estimators, we shall use the ergodic theorem

limn→∞
1
n

∑︁n
j=1 f(Xtj) =

∫︁
R f(x)µ(dx), where µ is the limiting distribution of Xt. It

appears that with appropriate choices of different f we shall have sufficient number

of equations so that we may be able to find all the parameters. However, the limiting
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distribution depends on the parameters in such a way (e.g. (2.13)) that one cannot

decouple them. For this reason and motivated by [18], we also get involved the er-

godic theorem of the form limn→∞
1
n

∑︁n
j=1 g(Xtj , Xtj+1

) =
∫︁
R g(x, y)ν(dx, dy), where

ν(dx, dy) is the limiting distribution of (Xt, Xt+h). After finding the distribution of µ

and ν we shall use the moment functions (e.g. f(x) = xn etc) to obtain appropriate

equations for the ergodic estimators to satisfy.

The existence, local uniqueness and global uniqueness of the system is the imme-

diate problem after the obtention of the equations. We shall address this elementary

and challenging problem and prove that when the sample size is sufficiently large we

shall have the existence and uniqueness of a local solution. For the global uniqueness

we reduce the problem to another one of finding zero for a real valued function of

one variable, where the mean value theorem can be used. The strong consistency and

asymptotic normality of our ergodic estimators are also given.

We propose an exact decomposition simulation algorithm for our double exponen-

tial Ornstein-Ulenbeck process to validate our approach. As a consequence of the

exact decomposition, we can write the distribution of Xt+h given Xt as a sum of non

stochastic function and a mixed compound Poisson process. After discussing the al-

gorithm we simulate the data from (1.3) assuming some given values of θ, p, η, and

φ. Then we apply the estimators to estimate these parameters. The numerical results

show that our estimators converge fast to the true parameters.

The chapter is organized as follows.

In Section 2, we give some preliminaries and some basic results for our double

exponential Ornstein-Uhlenbeck process. We also obtain the explicit form of the

characteristic functions of limiting distributions µ and ν mentioned earlier.

In Section 3, the ergodic estimators for all the parameters in the double expo-

nential Ornstein-Uhlenbeck process are constructed. The local existence, uniqueness

and the global uniqueness of the system of equations that determine these ergodic

estimators are discussed.
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In Section 4, we obtain the joint asymptotic normality of the the estimators.

In Section 5, we discuss the exact decomposition algorithm for simulating the dou-

ble exponential OU process.

In Section 6 we perform some numerical simulations to validate our results which

demonstrate the effectiveness of our estimators.

Section 7 contains the computation of a covariance matrix that appeared in our

theorems.

3.2 Preliminaries

Given Zt a compound Poisson process with double exponential jumps, a unique solu-

tion to the equation (1.2) is given by

Xt = e−θtx0 + σ

∫︂ t

0

e−θ(t−s)dZs . (2.1)

If θ > 0, then the double exponential Ornstein-Uhlenbeck process Xt converges in law

to the random variable Xo = σ
∫︁∞
0
e−θsdZs. If the process starts at the stationary dis-

tribution i.e., the initial condition X0 has the same law of Xo and if X0 is independent

of the process Zt, then Xt is a stationary process.

It is well-known from [30, Theorem 17.5]) that the double exponential process

{Xt, t ≥ 0} is ergodic. Namely, we have the following result from [28, Theorem 8.1].

Proposition 3.2.1. [20, Theorem 3.8] Let f : R → R be measurable such that

E|f(Xo)| < ∞. Then for any initial condition x0 ∈ R and for any h ∈ R+, we

have (denoting tj = jh)

lim
n→∞

1

n

n∑︂
j=1

f(Xtj) = E(f(Xo)) a.s. (2.2)

The explicit form of the distribution of Xo is hard to obtain. So, it is hard to

compute E(f(Xo)) for general f . But when f has some particular form, namely, when

f(x) = eιξx, then the computation of E(f(Xo)) is much simplified.
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Evaluation of the limiting characteristic functions

Proposition 3.2.2. [30] Let Zt be the double exponential compound Poisson process

and let 0 < s < t < ∞. Then for any real valued continuous function g(u) on [s, t]

we have

E
[︂
exp

(︂
iz

∫︂ t

s

g(u)dZu(ω)
)︂]︂

= exp
[︂ ∫︂ t

s

Ψ(g(u)z)du
]︂
, ∀ z ∈ R , (2.3)

where

Ψ(u) = log P̂Z1(u) = logE
[︂
eiuZ1

]︂
= λ

∫︂
R
eiuyfY (y)dy − λ (2.4)

with fY being given by (1.3).

Proof We follow the idea of [30, Section 17]. Let us first compute the characteristic

function of Zt.

P̂Zt(u) :=E
[︂
eiuZt

]︂
= E

[︂
eiu

∑︁Nt
j=1 Yj

]︂
=

∞∑︂
n=0

E
[︂
eiu

∑︁n
j=1 Yj |Nt = n

]︂
P (Nt = n)

=
∞∑︂
n=0

(λ · t)n

n!
e−λ
(︂
E(eiuY1)

)︂n
=e[λtE(e

iuY1 )−λ]

=exp

[︃
λt

∫︂
R
eiuyfY (y)dy − λ

]︃
,

where fY (y) is the double exponential density defined by (1.3). When t = 1 we have

(2.4).

Now we are going to compute the characteristic function of the limiting distribution

of Xo. From Equation (2.1) and Proposition 3.2.2 it follows
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E[eiuXt ] = exp
[︂
ie−θtx0u+

∫︂ t

0

Ψ(σe−θsu)ds
]︂

=exp

[︄
ie−θtx0u+ λ

∫︂ t

0

[︃∫︂
R
eiσe

−θsuyfY (y)dy − 1

]︃
ds

]︄

=exp

[︄
ie−θtx0u+ λI1,t

]︄
,

(2.5)

where I1,t =
∫︁ t

0
[I2,s − 1]ds and I2,s is defined and computed as follows.

I2,s =

∫︂
R
eiσe

−θsuyfY (y)dy

=

∫︂
R
eiσe

−θsuy
[︁
pηe−ηyI[y≥0] + qφeφyI[y<0]

]︁
dy

= pη

∫︂ ∞

0

eiσe
−θsuye−ηydy + qφ

∫︂ 0

−∞
eiσe

−θsuyeφydy

=
pη

η − iσue−θs
+

qφ

φ+ iσue−θs
,

where in the above second identity we used the explicit form of fY given by (1.3).

Thus

I1,t =

∫︂ t

0

[I2,s − 1]ds

=

∫︂ t

0

(︂ pη

η − iσe−θsu
+

qφ

φ+ iσe−θsu
− 1
)︂
ds

=
p

θ
ln
(︂η − iσe−θtu

η − iσu

1

e−θt

)︂
+
q

θ
ln
(︂φ+ ie−θtσu

φ+ iσu

1

e−θt

)︂
− t

= ln

[︃(︂η − iσe−θtu

η − iσu

1

e−θt

)︂ p
θ ·
(︂φ+ ie−θtσu

φ+ iσu

1

e−θt

)︂ q
θ · e−t

]︃
= ln

[︃(︂η − iσe−θtu

η − iσu

)︂ p
θ ·
(︂φ+ ie−θtσu

φ+ iσu

)︂ q
θ

]︃
, (2.6)

where in the above last identity, we used p+ q = 1. Consequently, we have as t→ ∞

lim
t→∞

I1,t = ln

[︃(︂ η

η − iσu

)︂ p
θ ·
(︂ φ

φ+ iσu

)︂ q
θ

]︃
.
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This combined with (2.5) yields

lim
t→∞

E[eiuXt ] =
(︂ η

η − iσu

)︂ pλ
θ
(︂ φ

φ+ iσu

)︂ qλ
θ
. (2.7)

In other words, we have

E
[︁
eiuXo

]︁
= lim

t→∞
E[eiuXt ] =

(︂ 1

1− iuσ
η

)︂ pλ
θ
(︂ 1

1 + iuσ
φ

)︂ qλ
θ
. (2.8)

As we notice the above characteristic function (2.8) uniquely determines the proba-

bility distribution function of Xo. This formula also means that the invariant random

variable Xo depends on σ
η
, φ
η
, λ
θ
and then we cannot separate the parameters θ, σ, η,

φ, λ and p.

Motivated by the works of [18, 22] we use the multi-time ergodic theorem to find

more parameters. Our theoretical basis is the following general ergodic result, which

is a consequence of [15, Theorem 1.1].

lim
n→∞

1

n

n∑︂
j=1

g(Xtj , Xtj+h) = E
[︂
g
(︂
X0,Xh

)︂]︂
(2.9)

where Xt satisfies the Langevin equation (1.2) with the initial condition X0 = Xo,

namely, dXt = −θXtdt+ σdZt and X0 has the invariant measure given by (2.13). The

right hand side of (2.17) is hard to compute for general g. So we shall compute

lim
n→∞

1

n

n∑︂
j=1

exp [iuXtj + ivXtj+h] = E
[︂
exp

(︂
iuX0 + ivXh

)︂]︂
(2.10)

for arbitrary u, v ∈ R. In fact, we shall evaluate the above quantity by evaluating

limt→∞ E[ei(uXt+vXt+h)]. We shall still use the formula (2.3) to do our computations.

As we see we can assume X0 = 0. Thus,

Xt(ω) = σ

∫︂ t

0

e−θ(t−s)dZs(ω) ; Xt+h(ω) = σ

∫︂ t+h

0

e−θ(t+h−s)dZs(ω) .
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Therefore,

uXt(ω) + vXt+h(ω) =σ

∫︂ t

0

(ue−θ(t−s) + ve−θ(t+h−s))dZs

+ σ

∫︂ t+h

t

ve−θ(t+h−s)dZs . (2.11)

Because of the independent increment property of the double exponential compound

Poisson process Zt, we have

E
[︂
exp

(︂
iuXt + ivXt+h

)︂]︂
= E

[︂
exp

(︂
i

∫︂ t

0

σe−θ(t−s)(u+ ve−θh)dZs

)︂]︂
·

E
[︂
i

∫︂ t+h

t

σve−θ(t+h−s)dZs

]︂
=: I3,t · I4,t , (2.12)

where I3,t and I4,t denote the above first and second expectations. Similar to (2.6),

we have

I3,t =exp
[︂pλ
θ

ln
(︂η − iσ(e−θtu+ ve−θ(t+h))

η − iσ(u+ ve−θh)

u+ ve−θh

ue−θt + ve−θ(t+h)

)︂
+
qλ

θ
ln
(︂φ+ iσ(e−θtu+ ve−θ(t+h))

φ+ iσ(u+ ve−θh)

· u+ ve−θh

e−θtu+ ve−θ(t+h))

)︂
− ln(eλt)

]︂
(2.13)

and

I4,t =
(︂ η − iσv

η − iσe−θhv

)︂ pλ
θ
(︂φ+ ie−θhσv

φ+ iσv

)︂ qλ
θ
. (2.14)

It may be a bit strange to see that I4,t is independent of t. But this is because of

the independent increment property of the process Zt. In fact, we see easily that∫︁ t+h

t
σve−θ(t+h−s)dZs has the same law as that of

∫︁ h

0
σve−θ(h−s)dZs. It is easy to verify

lim
t→∞

I3,t =
(︂ η

η − iσ(u+ ve−θh)

)︂ pλ
θ
(︂ φ

φ+ iσ(u+ ve−θh)

)︂ qλ
θ
. (2.15)
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Hence, we have

E
[︂
exp

(︂
iuX0 + ivXh

)︂]︂
= lim

t→∞
E
[︂
exp

(︂
iuXt + ivXt+h

)︂]︂
=
(︂ η

η − iσ(u+ ve−θh)

)︂ pλ
θ
(︂ φ

φ+ iσ(u+ ve−θh)

)︂ qλ
θ

·
(︂η − iσe−θhv

η − iσv

)︂ pλ
θ
(︂φ+ ie−θhσv

φ+ iσv

)︂ qλ
θ
.

(2.16)

We summarize (2.2), (2.13), (2.10), (2.10) as the following theorem.

Theorem 3.2.3. Let Xt be the double exponential Ornstein-Uhlenbeck process with

initial condition x0 ∈ R. Then for any h ∈ R+, u, v ∈ R, we have almost surely

(denoting tj = jh)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

1

n

n∑︂
j=1

eiuXtj =
(︂ η

η − iuσ

)︂ pλ
θ
(︂ η

η + iuφ

)︂ qλ
θ

lim
n→∞

1

n

n∑︂
j=1

exp [iuXtj + ivXtj+h]

=
(︂ η

η − iσ(u+ ve−θh)

)︂ pλ
θ
(︂ φ

φ+ iσ(u+ ve−θh)

)︂ qλ
θ

·
(︂η − iσe−θhv

η − iσv

)︂ pλ
θ
(︂φ+ ie−θhσv

φ+ iσv

)︂ qλ
θ
.

(2.17)

3.3 Estimation of the parameters η, θ, φ and p

We have assumed now that the double exponential Ornstein-Uhlenbeck process can

be observed at discrete time. Hence we have the availability of the observation data

{Xtj , j = 1, · · · , n}, where tj = jh for some given observation time interval length h.

Presumably Theorem 3.2.3 can be used to estimate all the parameters η, θ, φ, λ, σ,

and p by replacing the limits in (2.17) by their the empirical characteristic functions
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Ψ̂1,n(u) and Ψ̂2,n(u) defined as follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ψ̂1,n(u, v) :=

1

n

n∑︂
j=1

exp iuXtj ;

Ψ̂2,n(u, v) =
1

n

n∑︂
j=1

exp(iuXtj + ivXtj+h) .

(3.1)

For any given pair (u, v) although Ψ̂1,n(u, v) depends only on u we write it as a function

of u, v for convenience. Since we have 6 parameters, it may be possible for us to choose

appropriately 6 pairs of (uk, vk) such that the 6 parameters can be determined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂ η

η − iukσ

)︂ pλ
θ
(︂ η

η + iukφ

)︂ qλ
θ
= Ψ̂1,n(uk, vk) , k = 1, · · · ,m,(︂ η

η − iσ(uk + vke−θh)

)︂ pλ
θ
(︂ φ

φ+ iσ(uk + vke−θh)

)︂ qλ
θ

·
(︂η − iσe−θhvk

η − iσvk

)︂ pλ
θ
(︂φ+ ie−θhσvk

φ+ iσvk

)︂ qλ
θ
= Ψ̂2,n(uk, vk) ,

k = m+ 1, · · · , 6 ,

(3.2)

where m is some integer between 1 and 6. For any given pair (u, v), the empirical

characteristic functions Ψ̂1,n(u, v) and Ψ̂1,n(u, v) are known since we have the available

observation data. Thus (3.2) is a system of function equations on the parameters η,

θ, φ, λ, σ, and p. With appropriate choice of (uk, vk) we believe we should be able to

use (3.2) to estimate all the above six parameters. However, it is still difficult for us

to argue if this system of equations have a global unique solution or not although this

system of nonlinear function equations (3.2) is explicit and appears to be quite simple

as well. We shall assume λ = σ = 1 since we want to deal with the global uniqueness

of the system (3.2). This allows us to have only four parameters: η, θ, φ, and p. If

we choose four different values of (uk, vk), we should be able to obtain a system of

four equations for the four unknowns. However, it is still difficult to argue the global

uniqueness for the obtained system. So we are proposing an alternative method. Since

(2.17) holds true for all (u, v) ∈ R we can obtain explicit formulas for the moments

and then we use the moments to identity the parameters. Since E|X0|m < ∞ and

E|X0Xh|m <∞ for all m we know (e.g. [15, Theorem 1.1]) that (2.2) and (2.17) hold

true for moment functions, in particular, we shall choose f = x, x2, x3, g(x, y) = xy.

Thus the system of four equations we choose to obtain the estimators for η, θ, φ, and
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p are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[Xo] ≈ µ1,n, where µ1,n :=
1

n

n∑︂
j=1

Xtj ,

E[X2
o] ≈ µ2,n, where µ2,n :=

1

n

n∑︂
j=1

X2
tj
,

E[X3
o] ≈ µ3,n, where µ3,n :=

1

n

n∑︂
j=1

X3
tj
,

E[XoXh] ≈ µ4,n, where µ4,n :=
1

n

n∑︂
j=1

XtjXtj+h .

(3.3)

With discrete time observations of the double exponential Ornstein-Uhlenbeck process

Xt the right hand sides of (3.3) (namely, µi,n, i = 1, 2, 3, 4) are known. The left hand

sides of (3.3) are functions of the parameters η, θ, φ, and p. We need first to find

out how they depend on the four parameters explicitly and then solve this system to

construct the ergodic estimators η̂n, θ̂n, φ̂n, and p̂n for the parameters. Let us also

emphasize that (3.3) are not equations for the true parameters but they are equations

for the ergodic estimators.

Now let us find the explicit forms for the left hand sides of (3.2). Let ρ =
σ
η

and ξ = σ
φ
. From the identities (2.13) and (2.10), we see by the expression

of moments through characteristic function (e.g. Corollary 1 to Theorem 2.3.1 in
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[25])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[Xo] =
1

i

∂

∂u
E[eiuXo ]

⃓⃓⃓⃓
u=0

=
1

i

∂

∂u

(︂ 1

1− iuρ

)︂ pλ
θ
(︂ 1

1 + iuξ

)︂ qλ
θ

⃓⃓⃓⃓
u=0

=
λ

θ

[︂
pρ− qξ

]︂
;

E[X2
o] =

1

i2
∂2

∂u2
E[eiuXo ]

⃓⃓⃓⃓
u=0

=
λ

θ

[︂
pρ2 + qξ2

]︂
+
λ

θ

[︂
pρ− qξ

]︂2
=
λ

θ

[︂
pρ2 + qξ2

]︂
+ E[Xo]

2 ;

E[X3
o] =

1

i3
∂3

∂u3
E[eiuXo ]

⃓⃓⃓⃓
u=0

=
2λ

θ

[︂
pρ3 − qξ3

]︂
+
(︂λ
θ

[︂
pρ2 + qξ2

]︂
+
λ

θ

[︂
pρ− qξ

]︂2)︂(︂λ
θ

[︂
pρ− qξ

]︂)︂
+ 2

λ

θ

[︂
pρ− qξ

]︂(︂λ
θ

[︂
pρ2 + qξ2

]︂)︂
=

2λ

θ

[︂
pρ3 − qξ3

]︂
+ E[X2

o]E[Xo] + 2E[Xo](E[X2
o]− E[Xo]

2) ;

E[XoXh] =
1

i2
∂

∂v

∂

∂u
E
[︂
exp

(︂
iuX0 + ivXh

)︂]︂ ⃓⃓⃓⃓
u=0,v=0

=
1

i2
∂

∂v

∂

∂u

(︂ 1

1− iρ(u+ ve−θh)

)︂ pλ
θ
(︂ 1

1 + iξ(u+ ve−θh)

)︂ qλ
θ

·
(︂1− iρe−θhv

1− iρv

)︂ pλ
θ
(︂1 + ie−θhξv

1 + iξv

)︂ qλ
θ

⃓⃓⃓⃓
u=0,v=0

= e−θhλ

θ

[︂
pρ2 + qξ2

]︂
+
λ2

θ2

[︂
pρ− qξ

]︂2
= e−θhλ

θ

[︂
pρ2 + qξ2

]︂
+ E[Xo]

2

. (3.4)
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An elementary simplification yields (noticing λ = 1)

1

θ

[︂
pρ− qξ

]︂
= µ1,n , (3.5)

1

θ

[︂
pρ2 + qξ2

]︂
= µ2,n − µ2

1,n , (3.6)

2

θ

[︂
pρ3 − qξ3

]︂
= µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2

1,n) , (3.7)

1

θ
e−θh

[︂
pρ2 + qξ2

]︂
= µ4,n − µ2

1,n . (3.8)

Thus we have the explicit form (3.5)-(3.8) for (3.3). Now we want to solve this system

of function equations (e.g. (3.5)-(3.8)). Dividing (3.6) by (3.8) gives

θ̂n =
1

h
ln
(︂µ2,n − µ2

1,n

µ4,n − µ2
1,n

)︂
. (3.9)

Now we use the three equations (3.5)-(3.7) to solve for the remaining three unknowns

p, ρ, ξ (noticing q = 1− p). Denote⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1 = θ̂nµ1,n ,

f2 = θ̂n
(︁
µ2n − µ2

1,n

)︁
,

f3 =
θ̂n
2

(︁
µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2

1,n)
)︁
.

(3.10)

Thus we have ⎧⎪⎪⎨⎪⎪⎩
pρ− (1− p)ξ = f1

pρ2 + (1− p)ξ2 = f2

pρ3 − (1− p)ξ3 = f3

(3.11)

The first equation in (3.11) yields

ξ =
pρ− f1
1− p

. (3.12)

Substituting to the second equation in (3.11) we have

pρ2 − 2f1pρ+ f 2
1 − f2(1− p) = 0 .
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Solving for ρ, we have

ρ =
f1p±

√︁
p(1− p)(f2 − f 2

1 )

p
. (3.13)

Recalling σ = 1, ρ = 1
η
and ξ = 1

φ
we have

f2 − f 2
1 = pρ2 + qξ2 − (pρ− qξ)2 = p(1− p)ρ2 + q(1− q)ξ2 + 2pqρξ > 0

so the discriminant defining ρ (ie (3.13)) is nonnegative. Moreover, since ξ = 1
φ
, we

see from (3.12) that pρ−f1
1−p

= 1
φ
which means

ρ =
f1
p

+
1− p

pφ
> f1 .

Thus in (3.13), we should take the positive sign to obtain

ρ =
f1p+

√︁
p(1− p)(f2 − f 2

1 )

p
. (3.14)

Now we substitute ξ given by (3.12) into the third equation in (3.11) to obtain

pρ3 − (1− p)

(︃
pρ− f1
1− p

)︃3

= f3 .

This means

f3(1− p)2 = p(1− p)2ρ3 + (f1 − pρ)3 .

Finally we substitute ρ in the above equation by (3.14) to obtain one function equation

for only one unknown p:

(1− p)2
(︃
f1p+

√︂
p(1− p)(f2 − f 2

1 )

)︃3

(3.15)

+p2
(︃
f1 − f1p−

√︂
p(1− p)(f2 − f 2

1 )

)︃3

− f3p
2(1− p)2 = 0 .

This equation depends on f1, f2, f3 is computed from the observation data of the

double exponential Ornstein-Ulenbeck process. It is still hard to know if this function

equation has a unique global solution or not. However, since it contains only one

42



equation for one unknown we can plot the graph of the function (we denote the left-

hand side of (3.15) by h(p), 0 < p < 1) to see if h(p) has a unique solution on the

interval 0 < p < 1 or not. Below is the graph of h(p) for 0 < p < 1 with values of

f1 = 0.0895, f2 = 0.1025, f3 = 0.0693 computed from the simulated path of double

exponential Ornstein Uhlenbeck process with h = 0.02, η = 1.2, φ = 1.6 and θ = 2.0,

σ = λ = 1.

Figure 3.1: Function h(p) for p in [0,1]

We summarize the above discussions as the following theorem about the existence

and uniqueness of the parameter estimators and their strong consistency results.

Theorem 3.3.1. From the observation data, we denote µk,n, k = 1, 2, 3, 4 by (3.3).

Then θ̂n is given by (3.9), namely

θ̂n =
1

h
ln
(︂µ2,n − µ2

1,n

µ4,n − µ2
1,n

)︂
(3.16)

and fk, k = 1, 2, 3 by (3.10). If (3.15) has a unique solution p̂n on (0, 1), namely,

(1− p̂n)
2

(︃
f1p̂n +

√︂
p̂n(1− p̂n)(f2 − f 2

1 )

)︃3

(3.17)

+p̂2n

(︃
f1 − f1p̂n −

√︂
p̂n(1− p̂n)(f2 − f 2

1 )

)︃3

− f3p̂
2
n(1− p̂n)

2 = 0
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and if p̂n is a continuous function of f1, f2, f3, then (3.5)-(3.8) has a unique solution

(θ̂n, ξ̂n, ρ̂n, p̂n) given by (3.16), (3.17) and

⎧⎪⎪⎨⎪⎪⎩
ρ̂n =

f1p̂n +
√︁
p̂n(1− p̂n)(f2 − f 2

1 )

p̂n
,

ξ̂n =
p̂nρ̂n − f1
1− p̂n

.

(3.18)

Define

η̂n :=
1

ρ̂n
, φ̂n :=

1

ξ̂n
. (3.19)

If (θ, η, φ, p) are the true parameters, namely, if the double exponential process Xt sat-

isfies (1.2) with the above parameters and with λ = σ = 1, and if (3.15) has a unique

solution when f1, f2, f3 are replaced by their limits as n → ∞, then when n → ∞,

(θ̂n, η̂n, φ̂n, p̂n) → (θ, η, φ, p) almost surely.

Proof For any fixed n, it is clear that f1, f2, f3 are continuous function of µk,n,

k = 1, 2, 3, 4. So, θ̂n, ξ̂n, ρ̂n, p̂n are continuous functions of µk,n, k = 1, 2, 3, 4. Since

µk,n, k = 1, 2, 3, 4 have limits as n → ∞, we then see (θ̂n, ξ̂n, ρ̂n, p̂n) have limits

(θ̂, ξ̂, ρ̂, p̂). However, by the above argument, for each n, θ̂n, ξ̂n, ρ̂n, p̂n satisfy (3.5)-

(3.8). Taking the limits of this system of equations we see (θ̂, ξ̂, ρ̂, p̂) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

θ̂

[︂
p̂ρ̂− (1− p̂)ξ

]︂
= lim

n→∞
µ1,n ,

1

θ̂

[︂
p̂ρ̂2 + (1− p̂)ξ̂

2
]︂
= lim

n→∞

[︁
µ2,n − µ2

1,n

]︁
,

2

θ̂

[︂
p̂ρ̂3 − (1− p̂)ξ̂

3
]︂
= lim

n→∞

[︁
µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2

1,n)
]︁
,

1

θ̂
e−θ̂h

[︂
p̂ρ̂2 + (1− p̂)ξ̂

2
]︂
= lim

n→∞

[︁
µ4,n − µ2

1,n

]︁
.

(3.20)

Since (3.15) has a unique solution when f1, f2, fn are replaced by their limits as

n → ∞, by the same argument as above we can show (3.20) has a unique solu-

tion. Obviously, (θ, ξ, ρ, p) satisfy (3.20). Thus (θ̂, ξ̂, ρ̂, p̂) = (θ, ξ, ρ, p). This means
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that when n → ∞, (θ̂n, ξ̂n, ρ̂n, p̂n) → (θ, ξ, ρ, p) almost surely and hence we obtain

that when n→ ∞, (θ̂n, η̂n, φ̂n, p̂n) → (θ, η, φ, p) almost surely.

Remark 3.3.2. The estimators (θ̂n, ξ̂n, ρ̂n, p̂n) defined in the above theorem are called

the ergodic estimators of the parameters (θ, ξ, ρ, p). The above theorem states that

these ergodic estimators are uniquely determined and are strongly consistent.

Remark 3.3.3. The existence and uniqueness of the equation (3.15) depends on the

values of f1, f2, f3 which are from the real data. The function

h(p) = (1− p)2
(︃
f1p+

√︂
p(1− p)(f2 − f 2

1 )

)︃3

(3.21)

+p2
(︃
f1 − f1p−

√︂
p(1− p)(f2 − f 2

1 )

)︃3

− f3p
2(1− p)2

on the left hand side of equation may have no zero on (0, 1) for some values of f1, f2, f3.

For example, when f1, f2 are fixed, then when f3 → ∞, then h(p) → −∞, which

suggests that (3.15) may have no zero for p ∈ (0, 1). However, once the data are

given the problem of existence and uniqueness of p ∈ (0, 1) can be known by graph

the function h(p). For the data obtained by simulation in Section 6, we graph h(p) in

figure 1 which clearly demonstrates that in this case the equation (3.15) has a unique

solution in (0, 1).

3.4 Joint asymptotic behavior of all the obtained

estimators

In this section, we shall prove the central limit theorem for our ergodic estimators

Θ̂n = (θ̂n, η̂n, φ̂n, p̂n). Our goal is to prove that
√
n(Θ̂n − Θ), where Θ = (θ, η, φ, p)

converges in law to a mean zero normal vector and to find the asymptotic covariance

matrix. Let{︄
g(x, y) = (g1(x, y), g2(x, y), g3(x, y), g4(x, y))

T ,

g1(x, y) = x, g2(x, y) = x2, g3(x, y) = x3, g4(x, y) = xy
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and

µ = (µ1, µ2, µ3, µ4) , where µk = E[gk(Xo,Xh)], k = 1, 2, 3, 4 .

Denote

µn = (µ1,n , µ2,n , µ3,n , µ4,n) ,

where µk,n, k = 1, 2, 3, 4 are defined by (3.3).

First, we have the following central limiting result.

Lemma 3.4.1. Let µn, µ and g be defined as above. Then as n→ ∞, we have

√
n(µn − µ)

d−→ N(0, A) , (4.1)

with the 4× 4 covariance matrix A being given by

A =
(︁
σgigj

)︁
1≤i,j≤4

, (4.2)

where σgigj , 1 ≤ i, j ≤ 4 will be given in the appendix.

Proof We shall use the Cramer-Wold device (e.g. [14, Theorem 29.4]). For any a =

(a1, a2, a3, a4)
T ∈ R4, consider aTµn =

∑︁4
k=1 akµk,n. By [27, Theorem 2.6] and [26],

the double exponential Ornstein-Uhlenbeck process {Xt} is exponentially β-mixing.

Since the exponential β-mixing implies the exponential α-mixing, by the central limit

theorem (e.g. [23, Theorem 18.6.2]) for stationary process with exponential α-mixing,

we have
√
naT (µn − µ)

d−→ N (0, σ2
a) , (4.3)

Since a ∈ R4 is arbitrary, we prove the lemma through the Cramer-Wold device.

Denote ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(θ, ξ, ρ, p) =
1

θ

[︂
pρ− (1− p)ξ

]︂
,

h2(θ, ξ, ρ, p) =
1

θ

[︂
pρ2 + (1− p)ξ2

]︂
,

h3(θ, ξ, ρ, p) =
1

θ

[︂
pρ3 − (1− p)ξ3

]︂
,

h4(θ, ξ, ρ, p) =
1

θ
e−θh

[︂
pρ2 + (1− p)ξ2

]︂
.
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h̃1(µ1, µ2, µ3, , µ4) = µ1 ,

h̃2(µ1, µ2, µ3, µ4) = µ2 − µ2
1 ,

h̃3(µ1, µ2, µ3, µ4) = µ3 − µ2µ1 − 2µ1(µ2 − µ2
1) ,

h̃4(µ1, µ2, µ3, µ4) = µ4 − µ2
1 .

Set

h = (h1, h2, h3, h4)
T and h̃ = (h̃1, h̃2, h̃3, h̃4)

T .

We compute the partial derivative of h̃ with respect to µ to obtain

∂h̃1
∂µ1

= 1 ,
∂h̃1
∂µ2

=
∂h̃1
∂µ3

=
∂h̃1
∂µ4

= 0

∂h̃2
∂µ1

= −2µ1 ,
∂h̃2
∂µ2

= 1 ,
∂h̃1
∂µ3

=
∂h̃1
∂µ4

= 0

∂h̃3
∂µ1

= −3µ2 − 6µ2
1 ,

∂h̃3
∂µ2

= −3µ1 ,
∂h̃3
∂µ3

= 1 ,
∂h̃3
∂µ4

= 0

∂h̃4
∂µ1

= −2µ1 ,
∂h̃4
∂µ4

= 1 ,
∂h̃4
∂µ2

=
∂h̃4
∂µ3

= 0

We compute the partial derivatives of h with respect to the parameters to obtain

∂h1
∂p

=
1

θ
(ρ+ ξ) ,

∂h2
∂p

=
1

θ
(ρ2 − ξ2) ,

∂h3
∂p

=
1

θ
(ρ3 + ξ3)

∂h4
∂p

=
1

θ
e−θh(ρ2 − ξ2) ,

∂h1
∂ρ

=
1

θ
(p− qξ) ,

∂h2
∂ρ

=
1

θ
(2pρ+ qξ2)

∂h3
∂ρ

=
1

θ
(3pρ2 − qξ3) ,

∂h4
∂ρ

=
1

θ
e−θh(2pρ+ qξ2) ,

∂h1
∂ξ

=
1

θ
(pρ− q)

∂h2
∂ξ

=
1

θ
(pρ2 + 2qξ) ,

∂h3
∂ξ

=
1

θ
(pρ3 − 3qξ2) ,

∂h4
∂ξ

=
1

θ
e−θh(pρ2 + 2qξ)

∂h1
∂θ

=
−1

θ
(pρ− qξ) ,

∂h2
∂θ

=
−1

θ
(pρ2 + qξ2) ,

∂h3
∂θ

=
−1

θ
(pρ3 − qξ3)

∂h4
∂θ

=
−1

θ
e−θh(pρ2 + qξ2)

[︂1
θ
+ 1
]︂
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Let us denote the matrix

∇Θh(Θ) =

⎛⎜⎜⎜⎜⎝
∂h1

∂p
∂h1

∂ρ
∂h1

∂ξ
∂h1

∂θ
∂h2

∂p
∂h2

∂ρ
∂h2

∂ξ
∂h2

∂θ
∂h3

∂p
∂h3

∂ρ
∂h3

∂ξ
∂h3

∂θ
∂h4

∂p
∂h4

∂ρ
∂h4

∂ξ
∂h4

∂θ

⎞⎟⎟⎟⎟⎠
Then we have the following result.

Theorem 3.4.2. Denote Θ = (θ, η, φ, p) and Θ̂n = (θ̂n, η̂n, φ̂n, p̂n). If p̂n is a con-

tinuous function of f1, f2, f3 and if (3.15) has a unique solution when f1, f2, f3 are

replaced by their limits as n→ ∞, then as n→ ∞ we have

√
n(Θ̂n −Θ)

d−→ N (0,Σ) (4.4)

where

Σ =
(︂
(∇h)−1∇h̃

)︂T
A (∇h)−1∇h̃ . (4.5)

Proof It is easy to see that h, h̃ : R4 → R4 defined as above are smooth mappings.

Using these two mappings, we can write the system (3.5)-(3.8) to determine the ergodic

estimators Θn

h(Θn) = h̃(µn) . (4.6)

From Theorem 3.3.1, it follows that h has inverse h−1 so that

Θn = (h−1 ◦ h̃)(µn) .

By Lemma 3.4.1 and the Delta method, we see that

√
n(Θ̂n −Θ)

d−→ N (0,Σ) (4.7)

where

Σ =(∇µ(h
−1 ◦ h̃))TA∇µ(h

−1 ◦ h̃)

=
(︂
(∇h)−1∇h̃

)︂T
A (∇h)−1∇h̃ .
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This proves the theorem.

3.5 Exact Simulation for the double exponential

Ornstein-Uhlenbeck process

Before we give some numerical simulations to validate our ergodic estimators, in this

section we propose a distributional decomposition to exactly simulate the double

exponential Ornstein-Uhlenbeck process. We follow the idea of [29], where the exact

simulation of Gamma Ornstein-Uhlenbeck process is studied. First, we have the

following result. Without loss of generality we can assume σ = 1.

Theorem 3.5.1. Let Xt be the double exponential Ornstein-Uhlenbeck process given

by (1.2). For any t, t1 > 0, the Laplace transform of Xt+t1 conditioning on Xt is given

by

E[eiuXt+t1 |Xt] = e−iuwXt exp
[︂−λp
θ

∫︂ ∞

0

(1− e−ius)

∫︂ 1/w

1

ηve−sηv 1

v
dvds

−λq
θ

∫︂ 0

−∞
(1− e−ius)

∫︂ 1/w

1

ϕvesϕv
1

v
dvds

]︂
,

(5.1)

where w = e−θt1.

Proof Recall the Ψ defined by (2.4) and the formula (2.5). We can write the char-

acteristic function of Xt1 = σ
∫︁ t+t1
t

e−(t+t1−s)dZs as

E[eiuXt1 ] = exp
[︂ ∫︂ t+t1

t

Ψ(σe−θ(t+t1−s)u)ds
]︂

=exp
[︂ ∫︂ t1

0

−λ
(︂
1− E

(︂
e(iσe

−θ(t1−s)uY1)
)︂)︂
ds
]︂
.

(5.2)

Denote ĥ(z) = E
(︂
ezY1

)︂
. The Laplace transform of Xt+t1 conditioning on Xt is

E[eiuXt+t1 |Xt] =e
−iuwXt exp

[︂ ∫︂ t+t1

t

−λ
(︂
1− ĥ(iσe−θ(t+t1−s)u)

)︂
ds
]︂

=e−iuwXt exp
[︂ ∫︂ t1

0

−λ
(︂
1− ĥ(iσe−θsu)

)︂
ds
]︂
.

(5.3)
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Let ue−θs = x, then for σ = 1, we have

∫︂ t1

0

(︂
1− ĥ(iue−θs)

)︂
ds =

1

θ

∫︂ ue−θt1

u

−(1− ĥ(ix))

x
dx

=− (I1 + I2) ,

where

I1 =
1

θ

∫︂ u

uw

1

x

∫︂ ∞

0

(1− e−ixy)ηpe−ηydydx ,

I2 =
1

θ

∫︂ u

uw

1

x

∫︂ 0

−∞
(1− e−ixy)ϕqeϕydydx .

The first term I1 can be written

I1 =
1

θ

∫︂ ∞

0

(1− e−ius)

s

∫︂ s/w

s

ηpe−ηydyds

=
p

θ

∫︂ ∞

0

(1− e−ius)

1

e−ηs − e−ηs/w

s
dy

=
p

θ

∫︂ ∞

0

(1− e−ius)

1

∫︂ η/w

η

e−svdvds

=
p

θ

∫︂ ∞

0

(1− e−ius)

1

∫︂ 1/w

1

ηve−sηv 1

v
dvds .

The second term I2 can be written as

I2 =
1

θ

∫︂ 0

−∞

(1− e−ius)

s

∫︂ s/w

s

ϕqe−ηydyds

=
q

θ

∫︂ 0

−∞

(1− e−ius)

1

eϕs − eϕs/w

s
dy

=
q

θ

∫︂ 0

−∞

(1− e−ius)

1

∫︂ ϕ/w

ϕ

esvdvds

=
q

θ

∫︂ 0

−∞

(1− e−ius)

1

∫︂ 1/w

1

ϕvesϕv
1

v
dvds .

This gives us (5.1), proving the theorem.

Since the second exponential factor on the right hand side of (5.1) is the charac-

teristic function of the compound Poisson process we have
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Corollary 3.5.2 (Exact Simulation via Decomposition Approach). Let N be a Pois-

son random variable of rate λh and let {Sk}k=1,2,... be i.i.d random variables following

a mixture of double exponential distribution

fSk
(y) =pηeθhUe−ηeθhUyIy≥0 + qϕeθhUeϕe

θhUyIy<0 ,

∀ k = 1 , 2 , . . . ,
(5.4)

where U
d
= U [0, 1] is the uniform distribution on [0, 1]. Then

Xt+h
d
= Xte

−θh +
N∑︂
k=1

Sk . (5.5)

The above formula (5.5) enables us to simulate the process Xt by the exact de-

composition approach.

3.6 Numerical results

To validate our estimators discussed in Section 4, we perform some numerical simula-

tions. We choose the values of p = 0.6, η = 1.2, φ = 1.6 and θ = 2.0 (and λ = σ = 1).

With these parameters, we simulate the double exponential Ornstein-Uhlenbeck pro-

cess using the exact decomposition algorithm given by (5.5). A simulated sample is

displayed in Figure 3.2. Figures 3.3 and 3.4 plot the assumed values versus the values

by the ergodic estimators. Table 1 lists the approximation of ergodic estimators to

the true parameters as the time becomes larger. It demonstrates that the rate of

convergence is quite faster.
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Figure 3.2: Simulated sample path for a double exponential Orntein-Uhlenbeck pro-
cess with T=20, Nsteps=50, h=0.4 η = 1.2, φ = 1.6 and θ = 2.0, σ = λ = 1

(a) Estimated Values of p (b) Estimated Values of η

Figure 3.3: Assumed versus estimated values

The table 3.1 shows the estimated values of the parameters p, η, ϕ and θ with

different number of steps N and fixed h = 0.02 and T = Nh

Time Number of steps p = 0.6 η = 1.2 ϕ = 1.6 θ = 2.0

1 50 0.8421 1.31677 0.8995 7.4297
2 100 0.7070 1.3477 1.2816 3.6995
4 200 0.74925 1.2498 1.1164 2.9127
6 300 0.6928 1.2532 1.4803 2.6587
8 400 0.6804 1.2571 1.5397 2.3808
10 500 0.6812 1.2204 1.4793 2.2743
12 600 0.5500 1.2089 1.6546 2.2217
20 1000 0.6320 1.1836 1.5078 2.1066
40 2000 0.5635 1.1255 1.7866 2.0631
60 3000 0.6135 1.2112 1.5940 2.0128

Table 3.1: Assumed Values and Estimated values of the parameters with different
number of steps N and fixed h = 0.02 and T = Nh
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(a) Estimated Values of φ (b) Estimated Values of θ

Figure 3.4: Assumed versus estimated values

In our theoretical analysis, we assume that λ = σ = 1. However, in applications,

λ, σ are usually unknown. To estimate λ, σ, we can introduce two more moment

equations and solve them by numerically to find all parameters p, θ, ξ, ρ, λ, σ. Here

to show the same, we have also computed the fourth and fifth moments along with

(3.4). This gives us

E[X4
o] =

1

i4
∂4

∂u4
E[eiuXo ]

⃓⃓⃓⃓
u=0

=
6λ

θ

[︂
pρ4 + qξ4

]︂
+ E[Xo]

4 + 3(E[Xo])
2(E[X2

o]− E[Xo]
2)

+ E[Xo](E[X3
o]− E[X2

o]E[Xo]− 2E[Xo](E[X2
o]− E[Xo]

2)) + 3(E[X2
o]− E[Xo]

2)E[X2
o]

+ E[Xo](E[X2
o]− E[Xo]

2)

E[X5
o] =

1

i5
∂5

∂u5
E[eiuXo ]

⃓⃓⃓⃓
u=0

=
24λ

θ

[︂
pρ5 − qξ5

]︂
+ E[Xo]

5 + 4E[Xo]
3(E[X2

o]− E[Xo]
2)

+ 3E[Xo]
2(E[X3

o]− E[X2
o]E[Xo]− 2E[Xo](E[X2

o]− E[Xo]
2))

+ (E[X2
o]− E[Xo]

2)(3E[Xo]
3 + 6(E[X2

o]− E[Xo]
2))

+ 5E[Xo]
[︂
E[X4

o]− E[Xo]
4 − 3(E[Xo])

2(E[X2
o]− E[Xo]

2)− 3(E[X2
o]− E[Xo]

2)E[X2
o]

− E[Xo](E[X2
o]− E[Xo]

2)− E[Xo](E[X3
o]− E[X2

o]E[Xo]− 2E[Xo](E[X2
o]− E[Xo]

2))
]︂

+ 2(E[X3
o]− E[X2

o]E[Xo]− 2E[Xo](E[X2
o]− E[Xo]

2))(3E[X2
o] + 3(E[X2

o]− E[Xo]
2))

+ (E[X2
o]− E[Xo]

2)
[︂
3E[Xo]

3 + 6E[Xo](E[X2
o]− E[Xo]

2)

+ 9E[Xo](E[X2
o]− E[Xo]

2) + 3(E[Xo]
3 − E[X2

o]E[Xo]− 2E[Xo](E[X2
o]− E[Xo]

2))
]︂

+ (E[X3
o]− E[X2

o]E[Xo]− 2E[Xo](E[X2
o]− E[Xo]))(E[X2

o] + E[Xo]
2)
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We can solve the following system of equations numerically to obtain the param-

eters p, θ, ξ, ρ, λ,

λ

θ

[︂
pρ− qξ

]︂
= µ1,n ,

λ

θ

[︂
pρ2 + qξ2

]︂
= µ2,n − µ2

1,n ,

2λ

θ

[︂
pρ3 − qξ3

]︂
= µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2

1,n) ,

λ

θ
e−θh

[︂
pρ2 + qξ2

]︂
= µ4,n − µ2

1,n ,

6λ

θ

[︂
pρ4 + qξ4

]︂
= µ5,n − µ4

1,n − 3µ1,n(µ2,n − µ2
1,n)

− 3µ1,n(µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2
1,n))

− 3(µ2,n − µ2
1,n)µ2,n − µ1,n(µ2,n − µ2

1,n) ,

24λ

θ

[︂
pρ5 − qξ5

]︂
= µ6,n − µ5

1,n − 4µ3
1,n(µ2,n − µ2

1,n)

− 3µ2
1,n(µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2

1,n))

− (µ2,n − µ2
1,n)(3µ

3
1,n + 6(µ2,n − µ2

1,n))

− 5µ1,n

[︂
µ5,n − µ4

1,n − 3µ1,n(µ2,n − µ2
1,n)

− 3µ1,n(µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2
1,n))

− 3(µ2,n − µ2
1,n)µ2,n − µ1,n(µ2,n − µ2

1,n)
]︂

− 2(µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2
1,n))(3µ

2
1,n + 3(µ2,n − µ2

1,n))

− (µ2,n − µ2
1,n)
[︂
3µ3

1,n + 15µ1,n(µ2,n − µ2
1,n)

+ 3(µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2
1,n)
]︂

− (µ3,n − µ2,nµ1,n − 2µ1,n(µ2,n − µ2
1,n)(µ

2
1,n + µ2,n)

where µ5,n := 1
n

∑︁n
j=1X

4
tj
and µ6,n := 1

n

∑︁n
j=1X

5
tj
We have numerically estimated the

parameters p, θ, ξ, ρ, λ by solving first five nonlinear equations from simulated data.

Similarly, we can solve for all the parameters including σ numerically using Newton’s

Raphson method [31] and obtain the parameters.
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Time Number of steps p = 0.6 η = 1.2 ϕ = 1.6 θ = 2.0 λ=1.0

1 50 0.8218 1.5087 1.0445 6.061 1.3198
2 100 0.6203 1.5123 1.7117 3.6881 1.6826
4 200 0.5865 1.4139 2.1101 2.9641 1.5514
6 300 0.5619 1.2951 2.2689 2.5361 1.6127
8 400 0.5820 1.3251 1.8637 2.5552 1.3424
10 500 0.5761 1.4336 1.9873 2.3187 1.5333
12 600 0.5591 1.4874 2.1702 2.2577 1.6498
20 1000 0.5580 1.2395 1.9293 2.1609 1.1983
40 2000 0.6115 1.1146 1.3757 2.0413 0.8927
60 3000 0.5880 1.1839 1.7118 2.0039 1.0807

Table 3.2: Assumed Values and Estimated values of the parameters with different
number of steps N and fixed h = 0.02 and T = Nh
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Chapter 4

Parameter Estimation for Vasicek

Model with double exponential

jump

In this chapter, we consider the parameter estimation problem for Vasicek model

driven by the compound Poisson process with double exponential jumps. Here we

will construct least square estimators for parameters based on continuous time obser-

vations.

4.1 Introduction

The Vasicek model is a stochastic model used in finance to describe the evolution

of interest rates over time. It is a single-factor, continuous-time model that assumes

interest rates follow a mean-reverting process. The model has found wide application

in fixed-income valuation, risk management, and interest rate derivatives pricing. For

more details refer to [34]

The model is expressed in the form of the following stochastic differential equation

(SDE),

dXt = (µ− θXt)dt+ dL̃t (1.1)

X0 = 0 (1.2)
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The first term (µ − θXt)dt represents the drift term. The parameter θ gives the

reversion speed of the stochastic component. The mean-reversion in finance can be

interpreted as the fluctuation in the stochastic price is around the mean and the prices

only peak temporarily. These peaks can be explained as a result of unforeseen cir-

cumstances such as outages or shortages due to supply and demand.

This leads to the exploration of parameter estimation problems for the Vasicek

model as it is of great significance in econometrics. when µ = 0, the process (1.1)

becomes the well known Ornstein-Uhlenbeck process. The parameter estimation prob-

lem of the Ornstein-Uhlenbeck driven by compound Poisson process with double ex-

ponential jumps has been discussed in Chapter 3. Parameter estimation for fractional

Vasicek models and Ornstein Uhlenbeck process using least square estimators has

been extensively studied in [32] and [33].

In this chapter, we want to discuss the parameter estimation for θ and µ when the

Vasicek model is driven by compensated Lêvy process (L̂t, t ≥ 0) , where

Lt =
Nt∑︂
i=1

Yi

and (Yn, n ≥ 1) is a sequence of independent real-valued random variables with the

following probability density function

fY (x) = pηe−ηxI[x≥0] + qφeφxI[x<0] , (1.3)

where the parameters p, q, η, φ are positive and p+ q = 1.

Also Nt is the Poisson process with rate λ > 0, independent of {Yi, i = 1, 2, . . .}.

Here the compensated Lévy process is a compensated double exponential compound

Poisson Process L̂t is given by

L̃t = Lt − λtE[Y1] (1.4)

Note that L̃t is a martingale w.r.t filtration {Ft}t≥0.
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4.2 Preliminaries

Let us have a probability space (Ω,F ,P) with a right continuous and increasing fam-

ily of σ-algebras {Ft}t≥0 and L̂t be the compensated double exponential compound

Poisson Process. We aim to study the parameter estimation for the Vasicek model

driven by the compensated Levy process, which is given by the following stochastic

equation

dXt = (µ− θXt)dt+ dL̃t (2.1)

X0 = 0. (2.2)

Here we assume µ > 0 and θ > 0 and X0 = 0 a.s. Our goal is to construct least

square estimators under continuous observations.Let Ẋ t denote the differentiation of

Xt with respect to t. We will find the estimators by minimizing the following contrast

function

Φ(θ, µ) = min
θ,µ

∫︂ T

0

|Ẋ t − (µ− θXt)|2dt (2.3)

Upon minimizing the contrast function we obtain expressing with integrals of the form∫︁ T

0
XtdXt. Such integrals can be interpreted as Young integrals.

Young [36] introduced the Riemann–Stieltjes integral as follows. Suppose that

f, g : [0, T ] → R are Hölder continuous functions of orders α ∈ (0, 1) and β ∈ (0, 1)

with α + β > 1 for fixed T > 0. Then the Young integral
∫︁ T

0
fsdgs exists. If α = β,

α, β ∈ (0, 1) and ϕ : R2 → R is a function of class C1, the integrals
∫︁ t

0
∂ϕ
∂f
(fu, gu) dfu

and
∫︁ t

0
∂ϕ
∂g
(fu, gu) dgu exist in the Young sense, and we have the following change of

variables formula

ϕ(ft, gt) = ϕ(f0, g0) +

∫︂ t

0

∂ϕ

∂f
(fu, gu) dfu +

∫︂ t

0

∂ϕ

∂g
(fu, gu) dgu, 0 ≤ t ≤ T. (2.4)

refer [36] for more details.
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4.3 Least Square Estimators µ and θ

Let Ẋ t denote the differentiation of Xt with respect to t. Then, upon minimizing the

contrast funtion Φ(θ, µ) we get

Φ(θ, µ) = min
θ,µ

∫︂ T

0

|Ẋ t − (µ− θXt)|2dt (3.1)

= min
θ,µ

(︂
− 2µ

∫︂ T

0

Ẋ tdt+ 2θ

∫︂ T

0

XtẊ tdt+

∫︂ T

0

Ẋ
2

tdt (3.2)

+

∫︂ T

0

µ2dt+

∫︂ T

0

θ2X2
t dt− 2

∫︂ T

0

µθXtdt
)︂
. (3.3)

Minimizing w.r.t to µ will give us

∂Φ

∂µ
= −2

∫︂ T

0

Ẋ tdt+ 2µ

∫︂ T

0

dt− 2

∫︂ T

0

θXtdt = 0

and minimizing Φ(θ, µ) w.r.t θ gives us

∂Φ

∂θ
= 2

∫︂ T

0

XtẊ tdt+ 2θ

∫︂ T

0

X2
t dt− 2µ

∫︂ T

0

Xtdt = 0

.

Therefore, the minimum is attained when

µT̂ =
θ̂T
∫︁ T

0
Xtdt+XT

T
(3.4)

and

θ̂T =
XT

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdXt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

. (3.5)

Upon substituting θ̂T we get

µ̂T =
XT

∫︁ T

0
X2

t dt−
∫︁ T

0
XtdXt

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

. (3.6)
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The solution to the SDE (2.1) can be written as

Xt =
µ

θ
(1− e−θt) +

∫︂ t

0

e−θ(t−s)dL̃s =: X1(t) +X2(t) .

Here X2(t) satisfies

dX2(t) = −θX2(t)dt+ dL̃t .

It is easy to see from the expression of X(t) that from θ > 0, Xt is asymptotically

stationary and ergodic and as t→ ∞, we have

lim
t→∞

1

T

∫︂ T

0

X1(t)dt
a.s.−−→ E[X1(∞)] =

µ

θ
.

Also we have,

lim
t→∞

1

T

∫︂ T

0

X2
1 (t)dt

a.s.−−→ E[X2
1 (∞)].

Since,

E(X2
t ) = E(X2

1 (t)) + 2E(X1(t)X2(t)) + E(X2
2 (t))

=
µ2

θ2
+ 0 +

∫︂ t

0

e−2θ(t−s)νds,

we get

lim
t→∞

1

T

∫︂ T

0

X2
1 (t)dt = lim

t→∞

(︂µ2

θ2
+ 0 +

∫︂ t

0

e−2θ(t−s)νds
)︂

a.s.−−→ µ2

θ2
+

ν

2θ
,
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where ν = λE[Y1] is the Lévy measure of L. Further, We can write

Xt =
µ

θ
(1− e−θt) +

∫︂ t

0

e−θ(t−s)dL̃s∫︂ T

0

Xtdt =

∫︂ T

0

[︂µ
θ
(1− e−θt) +

∫︂ t

0

e−θ(t−s)dL̃s

]︂
dt

=
µ

θ
[T +

e−θT − 1

θ
] +

∫︂ T

0

∫︂ t

0

e−θteθudL̃udt

=
µ

θ
[T +

e−θT − 1

θ
] +

∫︂ T

0

∫︂ T

u

e−θtdteθudL̃u

=
µ

θ
[T +

e−θT − 1

θ
] +

∫︂ T

0

1

θ
(e−θu − e−θT )eθudL̃u

=
µ

θ
[T +

e−θT − 1

θ
] +

LT

θ
−
∫︂ T

0

e−θT eθu

θ
dL̃u

=
1

θ

(︂
µT − µ

θ
+ L̃T

)︂
+ e−θT

[︂ µ
θ2

−
∫︁ T

0
eθudL̃u

θ

]︂
.

Therefore we can write the integral as

∫︂ T

0

Xtdt =
1

θ

(︂
µT − µ

θ
+ L̃T

)︂
+ e−θT

[︂ µ
θ2

−
∫︁ T

0
eθudL̃u

θ

]︂
. (3.7)

We have
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θ̂T =
XT

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdXt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
XT

∫︁ T

0
Xtdt− T

∫︁ T

0
Xt[(µ− θXt)dt+ dL̃t]

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
XT

∫︁ T

0
Xtdt− Tµ

∫︁ T

0
Xtdt+ Tθ

∫︁ T

0
X2

t dt− T
∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
Tθ
∫︁ T

0
X2

t dt− T
∫︁ T

0
XtdL̃t +XT

∫︁ T

0
Xtdt− Tµ

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
Tθ
∫︁ T

0
X2

t dt− T
∫︁ T

0
XtdL̃t + (µ

θ
(1− e−θT ) +

∫︁ t

0
e−θ(T−u)dL̃u)

∫︁ T

0
Xtdt− Tµ

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
Tθ
∫︁ T

0
X2

t dt− T
∫︁ T

0
XtdL̃t + (µ

θ
− µT − µ

θ
e−θT + e−θT

∫︁ t

0
e−θudL̃u)

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

.

From (3.7) we can write,

θ̂T =
Tθ
∫︁ T

0
X2

t dt− T
∫︁ T

0
XtdL̃t + (L̃T − θ

∫︁ T

0
Xtdt)

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

= θ +
LT

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

.
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Similarly, we can evaluate µ̂ as,

µ̂T =
XT

∫︁ T

0
X2

t dt−
∫︁ T

0
XtdXt

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
XT

∫︁ T

0
X2

t dt−
∫︁ T

0
Xtdt

∫︁ T

0
Xt[(µ− θXt)dt+ dL̃t]

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

=
−µ(

∫︁ T

0
Xtdt)

2 +
∫︁ T

0
X2

t dt[XT + θ
∫︁ T

0
Xtdt]−

∫︁ T

0
XtdL̃t

∫︁ T

0
Xtdt

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

= µ+
L̃T

∫︁ T

0
X2

t dt−
∫︁ T

0
Xtdt

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

.

This allows us to write θ̂T and µ̂T as the following

θ̂T = θ +
L̃T

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

= θ +
L̃T

T

∫︁ T
0 Xtdt

T
−

∫︁ T
0 XtdL̃t

T∫︁ T
0 X2

t dt

T
− (

∫︁ T
0 Xtdt

T
)2
.

µ̂T = µ+
L̃T

∫︁ T

0
X2

t dt−
∫︁ T

0
Xtdt

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

= µ+
L̃T

T

∫︁ T
0 X2

t dt

T
−

∫︁ T
0 Xtdt

T

∫︁ T
0 XtdL̃t

T∫︁ T
0 X2

t dt

T
− (

∫︁ T
0 Xtdt

T
)2

.

Clearly we know limT→∞

∫︁ T
0 X2

t dt

T
<∞ and limT→∞

∫︁ T
0 Xtdt

T
<∞

We want to find the limit of L̃T

T
and

∫︁ T
0 XtdL̃t

T
as t → ∞. To find the limit of L̃T

T

and
∫︁ T
0 XtdL̃t

T
as t → ∞, the following result is needed. Let Kt be the compensated

Poisson stochastic integral process given by:

Kt =

∫︂ t

0

∫︂
R0

g(s, y)(N(ds, dy)− νs(dy)ds), t ∈ R+

of the predictable integrand g(s, y). Then the following extension of BDG inequality

holds,
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Lemma 4.3.1. [35] Consider the compensated Poisson stochastic integral process

(Kt)t∈R+ of a predictable integrand g(s, y). Then for all p ≥ 2, we have

E ((K∗
t )

p) =
2

p
(40p)

p
2

(︂p2e
2

)︂p(log2 p)/2
E
[︂ ∫︂ t

0

∫︂
R0

|g(s, y)|pνs(dy)ds
]︂

+ 2p
[log2 p]−1∑︂

k=1

ppk

2k

(︂e
2

)︂ kp
2 E
[︂(︂ ∫︂ t

0

∫︂
R0

(g(s, y))2
k

νs(dy)ds
)︂ p

2k
]︂
,

(3.8)

where

K∗
t = sup

s∈[0,t]
|Ks| .

The proof is given in Lemma 2.1[35]. The above results allow us to write

E sup
0≤s≤t

|Ks|p ≤ CpE
∫︂ t

0

|g(s, y)|pν(ds, dy)

+

[log2 p]−1∑︂
k=1

Ck,pE

[︄(︃∫︂ t

0

∫︂
Rd

(g(s, y)2
k

ν(ds, dy)

)︃p/2k
]︄
.

Applying this inequality to Kt = L̃t =
∫︁ t

0

∫︁
R0
yÑ(ds, dy) yields

E sup
0≤s≤T

|Ks|p ≤ CpE
∫︂ T

0

∫︂
R0

|y|pν(ds, dy)

+

[log2 p]−1∑︂
k=1

Ck,pE

[︄(︃∫︂ T

0

∫︂
R0

(y2
k

ν(ds, dy)

)︃p/2k
]︄

for any p ≥ 2.

In case of the compensated double exponential compound Poisson Process L̂t where

L̂t = Lt − λtE[Y ], we have the Lévy measure ν(ds, dy) = dsν(dy) = dsλE[Y1], and

sup
s≥0

∫︂
R0

|y|pν(dy) <∞ .

Then

E sup
0≤s≤T

|Ks|p ≤ CpT +

[log2 p]−1∑︂
k=1

Ck,p

[︂
T p/2k

]︂
≤ CpT

p/2 ,
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when T is large. Now consider

P (K∗
n/n ≥ n−λ) = P ((K∗

n/n)
p ≥ n−pλ)

≤ npλE [(K∗
n/n)

p]

≤ npλn− 1
2
p = n−( 1

2
−λ)p .

So when λ < 1/2, we can choose p such that

∞∑︂
n=1

P (K∗
n/n ≥ n−λ) ≤

∞∑︂
n=1

n−( 1
2
−λ)p <∞ . (3.9)

Then by Borel-Cantelli lemma we have

lim
n→∞

K∗
n/n = 0 .

Since

KT ≤ K∗
[T ]+1 ,

this implies

lim
T→∞

|KT |
T

≤ lim
T→∞

K∗
[T ]+1

[T ] + 1

[T ] + 1

T
= 0 .

This gives us

lim
T→∞

L̃T

T
= 0.

Using Lemma 3.3.1 [35], we also have

lim
T→∞

∫︁ T

0
XtdL̃t

T
= 0.

Hence, we have,

lim
T→∞

L̃T

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

= 0. (3.10)

This gives us

lim
T→∞

θT̂
a.s.−−→ θ (3.11)
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Similarly, since limT→∞
L̃T

T
= 0 and limT→∞

∫︁ T
0 XtdL̃t

T
= 0, we gave

lim
T→∞

L̃T

∫︁ T

0
X2

t dt−
∫︁ T

0
Xtdt

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

= 0 (3.12)

which gives us

lim
T→∞

µT̂
a.s.−−→ µ (3.13)

Thus we have the following result,

Theorem 3. The estimators θ̂T and µ̂T given by

θ̂T = θ +
L̃T

∫︁ T

0
Xtdt− T

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

µ̂T = µ+
L̃T

∫︁ T

0
X2

t dt−
∫︁ T

0
Xtdt

∫︁ T

0
XtdL̃t

T
∫︁ T

0
X2

t dt− (
∫︁ T

0
Xtdt)2

converge a.s. to θ and µ respectively as T → ∞.
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Chapter 5

General Product formula of

multiple integrals of Lévy process

In this chapter, we derive a product formula for finitely many multiple stochastic inte-

grals of Lévy process, expressed in terms of the associated Poisson random measure.

The formula is compact. The proof is short and uses the exponential vectors and

polarization techniques.

5.1 Introduction

Stochastic analysis of nonlinear functionals of Lévy processes (including Brownian

motion and Poisson process) have been studied extensively and found many applica-

tions. There have been already many standard books on this topic [1, 8, 9]. In the

analysis of nonlinear Wiener (Brownian) functional the Wiener-Itô chaos expansion to

expand a nonlinear functional of Brownian motion into the sum of multiple Wiener-Itô

integrals is a fundamental contribution to the field. The product formula to express

the product of two (or more) multiple integrals as linear combinations of some other

multiple integrals is one of the important tools ([3]). It plays an important role in

stochastic analysis, e.g. Malliavin calculus ([3, 7]).

The product formula for two multiple integrals of Brownian motion is known since

the work of [10, Section 4] and the general product formula can be found for instance

in [3, chapter 5]. In this chapter we give a general formula for the product of m

multiple integrals of the Poisson random measure associated with (purely jump) Lévy
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process. The formula is in a compact form and it reduced to the Shigekawa’s formula

when m = 2 and when the Lévy process is reduced to Brownian motion.

When m = 2 a similar formula was obtained in [4], where the multiple integrals is

with respect to the Lévy process itself (ours is with respect to the associated Poisson

random measure which has better properties). To obtain their formula in [4] Lee

and Shih use white noise analysis framework. In this work, we only use the classical

framework in hope that this work is accessible to a different spectrum of readers.

The product formula for multiple Wiener-Itô integrals of the Brownian motion

plays an important role in many applications such as in U-statistics [5]. We hope

similar things may happen. But we are not pursuing this goal in the current chapter.

Our formula is for purely jump Lévy process. It can be combined with the classical

formulas [3, 5, 7, 10] so that it holds for general Lévy process (including the continuous

component).

This chapter is organized as follows. In Section 2, we recall some preliminaries

on Lévy process, the associated Poisson random measure, multiple integrals. We also

state our main result in this section. In Section 3, we give the proof of the formula.

5.2 Preliminary and main results

Let T > 0 be a positive number and let {η(t) = η(t, ω) , 0 ≤ t ≤ T} be a Lévy process

on some probability space (Ω,F , P ) with filtration {Ft , 0 ≤ t ≤ T} satisfying the

usual condition. This means that {η(t)} has independent and stationary increment

and the sample path is right continuous with left limit. Without loss of generality,

we assume η(0) = 0. If the process η(t) has all moments for any time index t, then

presumably, one can use the polynomials of the process to approximate any nonlinear

functional of the process {η(t) , 0 ≤ t ≤ T}. However, it is more convenient to use

the associated Poisson random measure to carry out the stochastic analysis of these

nonlinear functionals.

The jump of the process η at time t is defined by

∆η(t) := η(t)− η(t−) if ∆η(t) ̸= 0 .

Denote R0 := R\{0} and let B(R0) be the Borel σ-algebra generated by the family of

all Borel subsets U ⊂ R, such that Ū ⊂ R0. If U ∈ B(R0) with Ū ⊂ R0 and t > 0, we

then define the Poisson random measure N : [0, T ]×B(R0)×Ω → R, associated with
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the Lévy process η by

N(t, U) :=
∑︂
0≤s≤t

χU(∆η(s)) , (2.1)

where χU is the indicator function of U . The associated Lévy measure ν of η is defined

by

ν(U) := E[N(1, U)] (2.2)

and the compensated jump measure Ñ is defined by

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt . (2.3)

The stochastic integral
∫︁
T f(s, z)Ñ(ds, dz) is well-defined for a predictable process

f(s, z) such that
∫︁
T E|f(s, z)|

2ν(dz)ds < ∞, where and throughout this chapter we

use T to represent the domain [0, T ]× R0 to simplify notation.

Let

L̂
2,n

:=
(︁
L2(T, λ× ν)

)︁⊗n ⊆ L2 (Tn, (λ× ν)n)

be the space of symmetric, deterministic real functions f such that

∥f∥2
L̂
2,n =

∫︂
Tn

f 2(t1, z1, · · · , tn, zn)dt1ν(dz1) · · · dtnν(dzn) <∞ ,

where λ(dt) = dt is the Lebesgue measure. In the above the symmetry means that

f(t1, z1, · · · , ti, zi, · · · , tj, zj, · · · , tn, zn)

= f(t1, z1, · · · , tj, zj, · · · , ti, zi, · · · , tn, zn)

for all 1 ≤ i < j ≤ n. For any f ∈ L̂
2,n

the multiple Wiener-Itô integral

In(f) :=

∫︂
Tn

f(t1, z1, · · · , tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn) (2.4)

is well-defined. The importance of the introduction of the associated Poisson measure

and the multiple Wiener-Itô integrals are in the following theorem which means that

any square integrable nonlinear functional F of the Lévy process η can be expanded

as sum of multiple Wiener-Itô integrals.
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Theorem 5.2.1 (Wiener-Itô chaos expansion for Lévy process). Let FT = σ(η(t), 0 ≤

t ≤ T ) be the σ-algebra generated by the Lévy process η.

Let F ∈ L2(Ω,FT , P ) be an FT measurable square integrable random variable.

Then F admits the following chaos expansion:

F =
∞∑︂
n=0

In(fn) , (2.5)

where fn ∈ L̂
2,n
, n = 1, 2, · · · and where we denote I0(f0) := f0 = E(F ). Moreover,

we have

∥F∥2L2(P ) =
∞∑︂
n=0

n !∥fn∥2
L̂
2,n . (2.6)

This chaos expansion theorem is one of the fundamental results in stochastic anal-

ysis of Lévy processes. It has been widely studied in particular when η is the Brownian

motion (Wiener process). We refer to [18], [7], [8] and references therein for further

reading.

To state our main result of this chapter, we need some notation. Fix a positive

integer m ≥ 2. Denote

Υ = Υm = {i = (i1, · · · , iα), α = 2, · · · ,m , 1 ≤ i1 < · · · < iα ≤ m}

(2.7)

where α = |i| is the length of the multi-index i (we shall use α, β to denote a natural

number). It is easy to see that the cardinality of Υ is κm := 2m − 1 − m. Denote

i⃗ = (i1, · · · , iκm), which is an unordered list of the elements of Υ, where iβ ∈ Υ. We

use l⃗ = (li1 , · · · , liκm ) to denote a multi-index of length κm associated with Υ, where

liα , 1 ≤ α ≤ κm are nonnegative integers. l⃗ can be regarded as a function from Υ to

Z+ = {0, 1, 2, · · · }. Denote

⎧⎨⎩Ω =
{︂
l⃗, n⃗ : Υ → Z+

}︂
and for any l⃗, n⃗ ∈ Ω ,

χ(k, l⃗, n⃗) =
∑︁

1≤α≤κm

[︂
liαχ{iα contains k} + niαχ{iα contains k}

]︂
.

(2.8)

The above χ on the right hand side refers to the indicate function. Denote χ(l⃗, n⃗) =

(χ(1, l⃗, n⃗), · · · ,χ(m, l⃗, n⃗)). The conventional notations such as |l⃗| = li1 + · · · + liκm ;
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l⃗! = li1 ! · · · liκm! and so on are in use. Notice that we use li1 instead of l1 to emphasize

that the li1 corresponds to i1. For i = (i1, · · · , iα) , j = (j1, · · · , jβ) ∈ Υ, and non

negative integers µ and ν denote

⊗̂µ

i (f1, · · · , fm) =

∫︂
([0,T ]×R0)µ

fi1((s1, z1), · · · , (sµ, zµ), · · · ) ⊗̂ · · ·

⊗̂fiα((s1, z1), · · · , (sµ, zµ), · · · )ds1ν(dz1) · · ·

dsµν(dzµ) f1 ⊗̂ · · · ⊗̂ f̂ i1 ⊗̂ · · · ⊗̂ f̂ iα · · · ⊗̂ fm ,

(2.9)

and

V ν
j (f1, · · · , fm) = fj1((s1, z1), · · · , (sν, zν), · · · ) ⊗̂ · · ·

⊗̂fjβ((s1, z1), · · · , (sν, zν), · · · )f1 ⊗̂ · · · ⊗̂ f̂ j1 ⊗̂ · · · ⊗̂ f̂ jβ
· · · ⊗̂ fm ,

(2.10)

where ⊗̂ denotes the symmetric tensor product and f̂ j1 means that the function fj1 is

removed from the list. Let us emphasize that both ⊗̂µ

i and V ν
j are well-defined when

the lengths of i and j are one. However, we shall not use ⊗̂µ

i when |i| = 1 and when

|j| = 1, V ν
j (f1, · · · , fm) = f1 ⊗̂ · · · ⊗̂ fm (namely, the identity operator). For any two

elements l⃗ = (li1 , · · · , liκm ) and n⃗ = (µj1 , · · · , µjκm ) in Ω, denote

⊗̂l⃗
i⃗ = ⊗̂li1 ,··· ,liκm

i1,··· ,iκm = ⊗̂li1
i1

· · · ⊗̂ liκm
iκm

,

V n⃗
j⃗

= V
µj1

,··· ,µjκm
j1,··· ,jκm = V

µj1
j1

⊗̂ · · · ⊗̂ V
µjκm
jκm

. (2.11)

Now we can state the main result of the chapter.

Theorem 5.2.2. Let q1, · · · , qm be positive integers greater than or equal to 1. Let

fk ∈
(︁
L2([0, T ]× R0, dt⊗ ν(dz))

)︁⊗̂qk , k = 1, · · · ,m .

71



Then

m∏︂
k=1

Iqk(fk) =
∑︂
l⃗,n⃗∈Ω

χ(1,l⃗,n⃗)≤q1
···

χ(m,l⃗,n⃗)≤qm

∏︁m
k=1 qk!∏︁κm

α=1 liα !
∏︁κm

β=1 µjβ !
∏︁m

k=1(qk − χ(k, l⃗, n⃗))!

I|q|+|n⃗|−|χ(l⃗,n⃗)|(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1
,··· ,µjκm

j1,··· ,jκm (f1, · · · , fm)) , (2.12)

where we recall

|q| = q1 + · · ·+ qm and |χ(l⃗, n⃗)| = χ(1, l⃗, n⃗) + · · ·+ χ(m, l⃗, n⃗) .

Remark 5.2.3. The above formula looks sophisticated and it may be understood

in the following manner. There are two types of contraction operation involved in

the above formula. The first one is the integration contraction: we choose certain

subset of functions fi1 , · · · , fiα and we choose µ variables (throughout the chapter

for simplicity we call a pair (s, z) as one variable) in each of these chosen functions

and set them to be the same: (s1, z1), · · · , (sµ, zµ) and we integrate with respect to

these variables (with respect to the product measure of dsν(dz)) as in (2.9). The

second one is the simple contraction without integration: we also choose certain

subset of functions fj1 , · · · , fjβ and let ν variables in all of these functions be the

same: (s1, z1), · · · , (sν , zν), as in (2.10). We just concatenate the remaining variables:

The concatenation of function g1(x1, · · · , xn1), · · · , gm(x1, · · · , xnm) means

g1(x1,1, · · · , x1,n1) · · · gm(xm,1, · · · , xm,nm) .

All the variables not integrated out with respect to dsν(dz) will be integrated with

respect to the Poisson random measure. The summation in the formula (2.12) is over

all the possible two contraction operations. See the following examples 5.2.5-5.2.6 for

more explanation.

Remark 5.2.4. If the index n⃗ does not appear, then there will be no operator V . In
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this case the formula (2.12) becomes [18, formula 5.3.5], which is the product formula

for finitely many multiple integrals of Brownian motion.

Example 5.2.5. If m = 2, then κm = 22 − 1 − 2 = 1. To shorten the notations we

can write q1 = n, q2 = m, f1 = fn, f2 = gm, lα1 = l, nβ1 = k. Thus, χ(1, l⃗, n⃗) =

χ(2, l⃗, n⃗) = l + k and |q| + |n⃗| − |χ(l⃗, n⃗)| = n +m + k − 2(l + k) = n +m − 2l − k.

Hence the formula (2.12) becomes the following. If

fn ∈
(︁
L2([0, T ]× R0, dt⊗ ν(dz))

)︁⊗̂n

and

gm ∈
(︁
L2([0, T ]× R0, dt⊗ ν(dz))

)︁⊗̂m
,

then

In(fn)Im(gm) =
∑︂

k,l∈Z+
k+l≤m∧n

n!m!

l!k!(n− k − l)!(m− k − l)!
In+m−2l−k

(︂
fn ⊗̂ k,lgm

)︂
,

where Z+ denotes the set of non negative integers and

fn ⊗̂ k,lgm(s1, z1, · · · , sn+m−k−2l, zn+m−k−2l)

= symmetrization of

∫︂
Tl

fn(s1, z1, · · · , sn−l, zn−l, t1, y1, · · · , tl, yl)

gm(s1, z1, · · · , sk, zk, sn−l+1, · · · , zn−l+1, · · · ,

sn+m−k−2l, zn+m−k−2l, t1, z1, · · · , tl, zl)dt1ν(dz1) · · · dtlν(dzl).

(2.13)

Example 5.2.6. If m = 3, then κm = 23 − 1− 3 = 4. The set

Υ3 = {i1 = (1, 2), i2 = (2, 3), i3 = (1, 3), i4 = (1, 2, 3)}
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We also write

li1 = l12 , li2 = l23 , li3 = l13 , li4 = l123 ,

µj1 = k12 , µj2 = k23 , µj3 = k13 , µj4 = k123 .

Thus,

χ(1, l⃗, n⃗) = l12 + l13 + l123 + k12 + k13 + k123 ,

χ(2, l⃗, n⃗) = l12 + l23 + l123 + k12 + k23 + k123 ,

χ(3, l⃗, n⃗) = l13 + l23 + l123 + k13 + k23 + k123 ,

and

|q|+ |n⃗| − |χ(l⃗, n⃗)| = q1 + q2 + q3 − 2l12 − 2l23 − 2l13 − 3l123

−k12 − k23 − k13 − 2k123 .

Hence we have

Iq1(f1)Iq2(f2)Iq3(f3) (2.14)

=
∑︂

lij ,kij≥0

χ(i,l⃗,n⃗)≤qi ,i=1,2,3

q1!q2!q3!

l12!l13!l23!l123!k12!k13!k23!k123!
∏︁3

r=1(qi − χ(i, l⃗, n⃗))!

·I|q|+|n⃗|−|χ(l⃗,n⃗)|

(︂
⊗̂ l⃗

i⃗ ⊗̂ V n⃗
j⃗
(f1, f2, f3)

)︂
. (2.15)

The above contraction operator ⊗̂l⃗
i⃗ ⊗̂ V n⃗

j⃗
is given as follows:

⊗̂l⃗
i⃗ ⊗̂ V n⃗

j⃗
(f1, f2, f3)(s1⃗, s2⃗, s3⃗, s⃗12, s⃗13, s⃗23, s⃗123)

= symmetrization of

∫︂
T|l|

f1(r⃗12, r⃗13, r⃗123, s⃗12, s⃗13, s⃗123, s1⃗)

f2(r⃗12, r⃗23, r⃗123, s⃗12, s⃗23, s⃗123, s2⃗)f3(r⃗13, r⃗23, r⃗123, s⃗13, s⃗23, s⃗123, s3⃗)

ν(dr⃗12)ν(dr⃗13)ν(dr⃗23)ν(dr⃗123) , (2.16)
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where (denoting |l| = l12 + l13 + l23 + l123 and |k| = k12 + k13 + k23 + k123)

r⃗12 = ((s1, z1), · · · , (sl12 , zl12)) ,

r⃗13 = ((sl12+1, zl12+1) , · · · , (sl12+l13 , zl12+l13)) ,

r⃗23 = ((sl12+l13+1, zl12+l13+1) , · · · , (sl12+l13+l23 , zl12+l13+l23)) ,

r⃗123 = ((sl12+l13+l23+1, zl12+l13+l23+1) , · · · , (s|l|, z|l|)) ,

s⃗12 = ((s|l|+1, s|l|+1), · · · , (s|l|+k12 , z|l|+k12)) ,

s⃗13 = ((s|l|+k12+1, z|l|+k12+1) , · · · , (s|l|+k12+k13 , z|l|+k12+k13)) ,

s⃗23 = ((s|l|+k12+k13+1, z|l|+k12+k13+1) , · · · ,

(s|l|+k12+k13+k23 , z|l|+k12+k13+k23)) ,

s⃗123 = ((s|l|+k12+k13+k23+1, z|l|+k12+k13+k23+1) , · · · , (s|l|+|k|, z|l|+|k|)) ;

for i = 1, 2, 3, si⃗ represents the remaining variables in fi and there are qi − χ(i, l⃗, n⃗)

variables (we count every pair (s, z) as one variable) in s⃗i. In (2.16), the variables

marked as r⃗ are integrated out. The total number of variables appeared in all s⃗ is

|q|+ |n⃗| − |χ(l⃗, n⃗)| = q1 + q2 + q3 − 2l12 − 2l23 − 2l13 − 3l123

−k12 − k23 − k13 − 2k123

and they will be integrated with respect to the Poisson random measure as a multiple

integral.

Remark 5.2.7. When η is the Brownian motion, the product formula (2.13) is known

since [10] (see e.g. [18, Theorem 5.6] for a formula of the general form (2.13)) and is

given by

In(fn)Im(gm) =
n∧m∑︂
l=0

n!m!

l!(n− l)!(m− l)!
In+m−2l

(︂
fn ⊗̂ lgm

)︂
.

(2.17)

It is a “special case” of (2.12) when k = 0.
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5.3 Proof of Theorem 5.2.2

We shall prove the main result (Theorem 5.2.2) of this chapter. We shall prove this by

using the polarization technique (see [18, Section 5.2]). First, let us find the Wiener-

Itô chaos expansion for the exponential functional (random variable) of the form

Y (T ) = E(ρ(s, z))

:= exp

{︃∫︂
T
ρ(s, z)Ñ(dz, ds)−

∫︂
T

(︂
eρ(s,z) − 1− ρ(s, z)

)︂
ν(dz)ds

}︃
(3.1)

where ρ(s, z) ∈ L̂
2
:= L̂

2,1
= L2(T, ν(dz)⊗ λ(dt)). An application of Itô formula (see

e.g. [8]) yields

Y (T ) = 1 +

T∫︂
0

∫︂
R0

Y (s−)
[︂
exp (ρ(s, z))− 1

]︂
Ñ(ds, dz) .

Repeatedly using this formula, we obtain the chaos expansion of Y (T ) as follows.

E(ρ(s, z)) = exp

{︃∫︂
T
ρ(s, z)Ñ(dz, ds)−

∫︂
T

(︂
eρ(s,z) − 1− ρ(s, z)

)︂
ν(dz)ds

}︃
=

∞∑︂
n=0

1

n!
In(fn) , (3.2)

where the convergence is in L2(Ω,FT , P ) and

fn = fn(s1, z1, · · · , sn, zn) = (eρ − 1)⊗̂n =
n∏︂

i=1

(︁
eρ(si,zi) − 1

)︁
. (3.3)

We shall first make critical application of the above expansion formula (3.2)-(3.3).

For any functions pk(s, z) ∈ L̂
2
(in what follows when we write k we always mean

k = 1, 2, · · · ,m and we shall omit k = 1, 2, · · · ,m), we denote

ρk(uk, s, z) = log(1 + ukpk(s, z)) , (3.4)
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From (3.2)-(3.3), we have (consider uk as fixed real numbers)

E(ρk(uk, s, z)) =
∞∑︂
n=0

1

n!
unkIn(fk,n) , (3.5)

where

fk,n =
1

unk

n∏︂
i=0

(eρk(uk,si,zi) − 1) = p⊗n
k =

n∏︂
i=1

pk(si, zi) (3.6)

It is clear that

m∏︂
k=1

E(ρk(uk, s, z)) =
∞∑︂

q1,··· ,qm=0

1

q1! · · · qm!
uq11 · · ·uqmm Iq1(f1,q1) · · · Iqm(fm,qm)

(3.7)

where fk,qk , k = 1, · · · ,m are defined by (3.6). On the other hand, from the definition

of the exponential functional (3.1), we have

m∏︂
k=1

E(ρk(uk, s, z))

=
m∏︂
k=1

exp
{︂∫︂

T
ρk(uk, s, z)Ñ(dz, ds)

}︂
(3.8)

exp
{︂
−
∫︂
T

(︂
eρk(uk,s,z) − 1− ρk(uk, s, z)

)︂
ν(dz)ds

}︂
= exp

{︂∫︂
T

m∑︂
k=1

ρk(uk, s, z)Ñ(dz, ds)

−
∫︂
T

(︂
e
∑︁m

k=1 ρk(uk,s,z) − 1−
m∑︂
k=1

ρk(uk, s, z)
)︂
ν(dz)ds

}︂
· exp

{︂∫︂
T
e
∑︁m

k=1 ρk(uk,s,z) −
m∑︂
k=1

eρk(uk,s,z) +m− 1
)︂
ν(dz)ds

}︂
=: A ·B (3.9)

where A and B denote the above first and second exponential factors.
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The first exponential factor A is an exponential functional of the form (3.1). Thus,

again by the chaos expansion formula (3.2)-(3.3), we have

A =
∞∑︂
n=0

1

n!
In(hn(u1, · · · , um)) , (3.10)

where

hn(u1, · · · , um) =
n∏︂

i=0

(e
∑︁m

k=1 ρk(uk,si,zi) − 1) . (3.11)

By the definition of qk, we have

m∑︂
k=1

ρk(uk, si, zi) = log
m∏︂
k=1

(1 + ukpk(si, zi)) .

Or

hn(u1, · · · , um) =

(︄[︄
m∏︂
k=1

(1 + ukpk)− 1

]︄)︄⊗̂n

= Sym(s1,z1),··· ,(sn,zn)

n∏︂
i=1

[︄
m∏︂
k=1

(1 + ukpk(si, zi))− 1

]︄
,

where ⊗̂ denotes the symmetric tensor product and Sym(s1,z1),··· ,(sn,zn) denotes the

symmetriization with respect to (s1, z1), · · · , (sn, zn). Define

S = {j = (j1, · · · , jβ), β = 1, · · · ,m, 1 ≤ j1 < · · · < jβ ≤ m} .

The cardinality of S is |S| = κ̃m := 2m−1. We shall freely use the notations introduced

in Section 2. Denote also

uj = uj1 · · ·ujβ , pj(s, z) = pj1(s, z) · · · pjβ(s, z) (for j = (j1, · · · , jβ) ∈ S) .
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We have

hn(u1, · · · , um) =

(︄∑︂
j∈S

ujpj

)︄⊗̂n

=
∑︂
|µ⃗|=n

|µ⃗|!
µ⃗!
uµ⃗
j⃗
p⊗̂µ⃗

j⃗

=
∑︂

µj1
+···+µjκ̃m

=n

n!

µj1 ! · · ·µjκ̃m
!
u
µj1
j1

· · ·u
µjκ̃m
jκ̃m

p
⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

,

where µ⃗ : S → Z+ is a multi-index and we used the notation

uµ⃗
j⃗
= u

µj1
j1

· · ·u
µjκ̃m
jκ̃m

; p⊗̂µ⃗

j⃗
= p

⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

.

Inserting the above expression into (3.10) we have

A =
∞∑︂
n=0

∑︂
µj1

+···+µjκ̃m
=n

1

µj1 ! · · ·µjκ̃m
!
u
µj1
j1

· · ·u
µjκ̃m
jκ̃m

In(p
⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

)

(3.12)

Now we consider the second exponential factor in (3.9):

B = exp
{︂∫︂

T

(︂
e
∑︁m

k=1 ρk(uk,s,z) −
m∑︂
k=1

eρk(uk,s,z) +m− 1
)︂
ν(dz)ds

}︂
= exp

{︂∑︂
i∈Υ

ui

∫︂
T
pi(s, z)ν(dz)ds

}︂
,

where Υ is defined by (2.7) (which is a subset of S such that |j| ≥ 2). Thus,

B =
∞∑︂
n=0

1

n!

(︄∑︂
i∈Υ

ui

∫︂
T
pi(s, z)ν(dz)ds

)︄n

=
∞∑︂
n=0

∑︂
li1+···+liκm=n

1

li1 ! · · · liκm !
u
li1
i1

· · ·uliκmiκm

(︃∫︂
T
pi1(s, z)ν(dz)ds

)︃li1

· · ·
(︃∫︂

T
piκm (s, z)ν(dz)ds

)︃liκm

, (3.13)
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where l⃗ ∈ Ω is a multi-index. Combining (3.12)-(3.13), we have

AB =
∞∑︂

n,ñ=0

∑︂
µj1

+···+µjκ̃m
=n

li1+···+liκm ñ

1

µj1 ! · · ·µjκ̃m
!li1 ! · · · liκm !

u
µj1
j1

· · ·u
µjκ̃m
jκ̃m

u
li1
i1

· · ·ulliκmiκm
Bi,j,li,µj

, (3.14)

where

Bi,j,li,µj
:=

(︃∫︂
T
pi1(s, z)ν(dz)ds

)︃li1

· · ·(︃∫︂
T
piκm (s, z)ν(dz)ds

)︃liκm

In(p
⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

) . (3.15)

To get an expression for Bi,j,li,µj
we use the notations (2.9)-(2.10) and (2.11). Then

Bj,j̃,nj,ñj
= In(⊗̂

l⃗
i⃗ ⊗̂ V µ⃗

j⃗
(p

⊗ni1
1 , · · · , p⊗nm

m )) . (3.16)

To compare the coefficients of u
ni1
1 · · ·unm

m , we need to express the right hand side of

(3.14) as a power series of u1, · · · , um. For k = 1, · · · ,m denote

χ̃(k, l⃗, µ⃗) =
∑︂

1≤α≤κm

liαI{iα contains k} +
∑︂

1≤β≤κ̃m

µjβI{jβ contains k} . (3.17)

Combining (3.9), (3.14) and (3.16), we have

∞∑︂
q1,··· ,qm=0

uq11 · · ·uqmm
q1! · · · qm!

Iq1(p
⊗q1
1 ) · · · Iqm(p⊗qm

m )

=
∞∑︂

n,ñ=0

∑︂
µj1

+···+µjκ̃m
=n

li1+···+lκm=ñ

χ̃(k,l⃗,µ⃗)=qk,k=1,...,m

uq11 · · ·uqmm
li1 ! · · · liκm !µj1 ! · · ·µjκ̃m

!

In(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1
,··· ,µjκ̃m

j1,··· ,jκ̃m
(p⊗q1

1 , · · · , p⊗qm
m )) .

(3.18)
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Comparing the coefficient of uq11 · · ·uqmm , we have

m∏︂
k=1

Iqk(p
⊗qk
k ) =

∑︂
j1,··· ,jκ̃m∈S
i1,··· ,iκm∈Υ

∑︂
χ̃(k,l⃗,µ⃗)=qk,k=1,...,m

q1! · · · qm!
li1 ! · · · liκm !µj1 ! · · ·µjκ̃m

!

In(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1
,··· ,µjκ̃m

j1,··· ,jκ̃m
(p⊗q1

1 , · · · , p⊗qm
m )) . (3.19)

Notice that when |j| = 1, namely, j = (k), k = 1, · · · ,m, then V µ
j (f1, · · · , fm) =

f1 ⊗̂ · · ·⊗̂fm. We can separate these terms from the remaining ones, which will satisfy

|j| ≥ 2. Thus, the remaining multi-indices j’s consists of the set Υ. We can write a

multi-index µ⃗ : S → Z+ as µ⃗ = (n(1), · · · , n(m), n⃗), where n⃗ ∈ Υ. We also observe

qk = χ̃(k, l⃗, µ⃗) = n(k) + χ(k, l⃗, n⃗). After replacing µ⃗ by n⃗, (3.19) gives (2.12). This

proves Theorem 5.2.2 for fk = p⊗qk
k , k = 1, · · · ,m. By polarization technique (see e.g.

[18, Section 5.2]), we also know the identity (2.12) holds true for fk = pk,1⊗· · ·⊗pk,qk ,
pk,qk ∈ L2([0, T ] × R0, ds × ν(dz)), k = 1, · · · ,m. Because both sides of (2.12) are

multi-linear with respect to fk, we know (2.12) holds true for

fk =

νk∑︂
ℓ=1

ck,ℓpk,1,ℓ ⊗ · · · ⊗ pk,qk,ℓ , k = 1, · · · ,m ,

where ck,ℓ are constants, pk,k′,ℓ ∈ L2([0, T ] × R0, ds × ν(dz)), k = 1, · · · ,m, k′ =

1, · · · , qk and ℓ = 1, · · · ,νk. Finally, the identity (2.12) is proved by a routine limiting

argument.
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Chapter 6

Application of double exponential

Ornstein Uhlenbeck Process in

Finance

The Orntein Uhlenbeck process has been introduced as a more sophisticated model

for Brownian Motion that captures the effect of friction in the motion (Uhlenbeck and

Orntein 1930)[46]. This process has since been widely used in evolutionary biology,

physics, and finance.

In this chapter, we briefly mention some other applications of the Ornstein Uhlenbeck

process driven by the double exponential compound Poisson process[ refer to Chapters

3 and 4] in the area of Finance.

6.1 Pair Trading strategy with OU process

A pair trade refers to a trade that consists of matching a long position with a short

position for two stocks that have a high correlation value. Pair trading was introduced

by research scientists in Morgan Stanley [37]. The idea of using this strategy is to

reduce the overall exposure to the market risk. For more applications and studies

of pair trading strategy, refer to [38]. In this section, we will briefly discuss the

application of the double exponential Ornstein Uhlenbeck process in the modeling of

pair trading strategy.
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Given two stocks U and V with prices SU(t) and SV (t) respectively, the spread is

given by

Xt = ln

(︃
SU(t)

SU(0)

)︃
− ln

(︃
SV (t)

SV (0)

)︃
, t ≥ 0 . (1.1)

This spread dynamics can be modelled using double-exponential Ornstein Uhlenbeck

process where the process Xt is given by the following Langevin equation :

dXt = (µ− θXt)dt+ dZt , t ∈ [0,∞), X0 = x . (1.2)

with mean reversion speed θ ∈ R and mean-reversion level µ ∈ R. The solution to

the SDE (1.2) can be written as

Xt = xe−θt +
µ

θ
(1− e−θt) +

∫︂ t

0

e−θ(t−s)dZs.

Details on double exponential and hyper-exponential jump-diffusion processes have

been discussed in [40], [17]. Here the double-exponential Ornstein Uhlenbeck process

is considered due to its effectiveness in approximating the stock data better since it

also captures the sudden jumps in stock prices.

The stochastic process which is a double-exponential compound Poisson process is

given by

Zt =
Nt∑︂
i=1

Yi ,

where (Yn, n ≥ 1) is a sequence of independent real-valued random variables with

distribution f given by

fY (x) = pηe−ηxI[x≥0] + qφeφxI[x<0] , (1.3)

where the parameters p, q, η, φ are positive and p + q = 1. Here Nt is the Poisson

process with rate λ > 0, independent of {Yi, i = 1, 2, . . .}. The constants p and q are

the probabilities associated with an upward and downward jump respectively.

The moment-generating function of double exponential jump Y is given by

E[euY ] = p
η

η − s
+ q

φ

φ+ s
.

83



The moment-generating function of the compound Poisson process is given by

E[euZt ] = eλt(p
η

η−s
+q φ

φ+s
−1) . (1.4)

The goal is to maximize the expected return in a unit time. To do so, consider the

entry and exit points a and b(a, b ∈ R) and it is safe to assume that a < b W.L.O.G.

The first passage time τb,a is defined as the time over which the return takes place,

i.e,

τb,a = inf{t ≥ 0|Xt ≥ b}

for X0 = a. The entry and exit of the position is made when the spread crosses the

threshold. This implies that the trading party enters at t0 = inf{t ≥ 0|Xt ≤ a} and

exits for the first time when t1 = inf{t ≥ 0|Xt ≥ b}. Let R be the function of the

return that depends on the entry and exit signal point a and b and also the cost of

transaction c ≥ 0. This gives an optimization problem

max
a,b

R(b, a, c)

E[τb,a]
. (1.5)

This leads to the problem of approximation the distribution of the first passage time

τb,a. The analytical solutions of the first passage time has been discussed in [41].

To calculate the first passage time on real stock data, we can fit the Ornstein-

Uhlenbeck process driven by a double-exponential jump by looking at the time series

historical data of the pairs of stocks. Applying parameter estimation techniques from

Chapter 3 and Chapter 4 can help to estimate the parameters µ and θ by observing

the real data at discrete time events and can be used further for benchmarking the

model and backtesting.

6.2 OU short rate process

Modeling stochastic interest rates is very important for the banks. There have been

extensive studies and literature available that discuss and bifurcate between the for-

ward rate models and short rate models [refer to [42],[43]].

For modeling short rates, the more extensively used models are the Vasicek Model,

the Hull-White model, and Cox-Ingersoll Ros(CIR)[44]. In this section, the short rate

process modeled by the double exponential Ornstein Uhlenbeck process is discussed.
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Let (Ω,F ,P) be a probability space with a right continuous family of increasing σ-

algebras (Ft, t ≥ 0) satisfying the usual condition ([19]). Let Q be a risk-neutral

probability measure and T > 0 be fixed time. Then the short rate process {Rt}t∈[0,T ]

is given by

Rt = a(t) +
n∑︂

k=1

Xk
t (2.1)

where a(t) if a differentiable real-valued function and Xk
t is modelled using double-

exponential Ornstein Uhlenbeck process given by :

dXk
t = −θkXk

t dt+ σkdZ
k
t , t ∈ [0,∞), Xk

0 = xk ≥ 0 . (2.2)

Proposition 6.2.1. ([45]) For 0 ≤ s ≤ t ≤ T ,

EQ(Rt|Fs) = a(t) +
n∑︂

k=1

(︃
Xke

−λk(t−s) + σk
1− e−λk(t−s)

λk

∫︂
Dk

z dνk(z)

)︃
,

VarQ(Rt|Fs) =
n∑︂

k=1

σ2
k(1− e−2λk(t−s))

2λ2k

∫︂
Dk

z2 dνk(z),

where the short rate process Rt satisfies (2.1), νk is the Lévy measure associated with

the compound Poisson process and Dk = [ϵ1k, ϵ
1
k] with 0 < ϵ1k < ϵ1k.

For more details on the Proposition we refer to [45]. Parameter estimation tech-

niques from Chapter 3 for Xk
t can be used to estimate the expected value for the short

rate process and also to estimate the variance for the short rate process Rt.
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[5] Major, P. Multiple Wiener-Itô integrals. With applications to limit theorems.

Second edition. Lecture Notes in Mathematics, 849. Springer, Cham, 2014.

[6] Meyer, P. A. Quantum probability for probabilists. Lecture Notes in Mathemat-

ics, 1538. Springer-Verlag, Berlin, 1993.

[7] Nualart, D. The Malliavin calculus and related topics. Second edition. Probability

and its Applications (New York). Springer-Verlag, Berlin, 2006.

[8] Protter, P. E. Stochastic integration and differential equations. Second edition.

Version 2.1. Corrected third printing. Stochastic Modelling and Applied Proba-

bility, 21. Springer-Verlag, Berlin, 2005.
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Appendix A

Matlab codes to the simulation of

Ornstein Uhlenbeck process in

Chapter 3

The following code was used to simulate the paths of double exponential Ornstein

Uhlenbeck process using Exact simulation via the decomposition approach.

function S_avg= OU_jump_Mr23(p,q,eta ,phi ,Nsteps ,lambda ,

Npaths ,T,sigma ,theta)

%S=zeros(Nsteps+1,Npaths) ;

Sum1=zeros(1,Npaths);

Sum2=zeros(1,Npaths);

Sum3=zeros(1,Npaths);

Sum4=zeros(1,Npaths);

Sum5=zeros(1,Npaths);

Sum6=zeros(1,Npaths);

s1=zeros(1,Npaths);

s2=zeros(1,Npaths);
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s3=zeros(1,Npaths);

s4=zeros(1,Npaths);

s5=zeros(1,Npaths);

s6=zeros(1,Npaths);

n=zeros(Nsteps+1,Npaths);

for k=1: Npaths

for i=1: Nsteps +1

n(i,k)=poissrnd(lambda *(T/Nsteps));

end

end

path=zeros(1,Npaths);

path (1,:)=0;

for k = 1: Npaths

for j=1: Nsteps

%path(j+1,k)=-theta* path(j,k)*T/Nsteps+sigma*(

doubleexpo1(p,q,eta ,phi ,n(j+1,k))-doubleexpo1

(p,q,eta ,phi ,n(j,k)));

path(j+1,k)=exp(-theta*(T/Nsteps))* path(j,k)+

doublexp(p,q,eta ,phi ,n(j+1,k),theta ,T,Nsteps)

;

%path(j+1,k)=exp(-theta*(T/Nsteps))* path(j,k)+

sigma *(( exp(-theta*(T/Nsteps)) -1)*(

doubleexpo1(p,q,eta ,phi ,n(j+1,k))))/theta;

s1(1,k)=s1(1,k)+path(j+1,k);

s2(1,k)=s2(1,k)+path(j+1,k)^2;

s3(1,k)=s3(1,k)+path(j+1,k)^3;

s4(1,k)=s4(1,k)+path(j,k)*path(j+1,k);
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s5(1,k)=s5(1,k)+path(j+1,k)^4;

s6(1,k)=s6(1,k)+path(j+1,k)^5;

Sum1(1,k)=s1(1,k)/Nsteps;

Sum2(1,k)=s2(1,k)/Nsteps -(Sum1(1,k)^2);

Sum3(1,k)=s3(1,k)/Nsteps -2* Sum1(1,k)*Sum2(1,k)-Sum1

(1,k)*(s2(1,k)/Nsteps);

Sum4(1,k)=s4(1,k)/Nsteps -(Sum1(1,k)^2);

Sum5(1,k)=s5(1,k)/Nsteps -Sum1(1,k)^4-3*( Sum1(1,k)^2)

*Sum2(1,k) -3*Sum1(1,k)*Sum3(1,k)-Sum2(1,k)*3* Sum2

(1,k)-Sum1(1,k)*Sum2(1,k);

%Sum5(1,k)=s5(1,k)/Nsteps -Sum1(1,k)^4-3*( Sum1(1,k)

^2)*(Sum2(1,k)-Sum1(1,k)^2) -3*Sum1(1,k)*(Sum3(1,k

)-Sum2(1,k)*Sum1(1,k) -2*Sum1(1,k)*(Sum2(1,k)-Sum1

(1,k)^2))-(Sum2(1,k)-Sum1(1,k)^2)*3* Sum2(1,k)-

Sum1(1,k)*(Sum2(1,k)-Sum1(1,k)^2);

Sum6(1,k)=s6(1,k)/Nsteps -Sum1(1,k)^5-4* Sum1(1,k)^3*(

Sum2(1,k)) -3*Sum1(1,k)^2* Sum3(1,k) -2*Sum2(1,k)

*(3* Sum1(1,k)^2+6* Sum2(1,k)) -3*Sum1(1,k)*Sum5(1,k

)-Sum3(1,k)*(3* Sum1(1,k)^2+3* Sum2(1,k))-Sum2(1,k)

*(3* Sum1(1,k)^3+6* Sum1(1,k)*Sum2(1,k)+9* Sum1(1,k)

*Sum2(1,k)+3* Sum3(1,k)) -2*Sum1(1,k)*Sum5(1,k)-

Sum3(1,k)*Sum2(1,k);

end

end

plot (0:T/Nsteps:T,path);

fprintf('The average sum is %s\n',Sum1);

Sum4;

S1=sum(Sum1);

S2=sum(Sum2);
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S3=sum(Sum3);

S4=sum(Sum4);

S5=sum(Sum5);

S6=sum(Sum6);

A=S1/Npaths;

B=S2/Npaths;

C=S3/Npaths;

D=S4/Npaths;

E=S5/Npaths;

F=S6/Npaths;

S_avg=[A,B,C,D,E,F];

S_imp=S_avg;

disp('The sum S1/Npaths is:')

disp(S1/Npaths)

disp('The sum S2/Npaths is:')

disp(S2/Npaths)

disp('The sum S3/Npaths is:')

disp(S3/Npaths)

disp('The sum S4/Npaths is:')

disp(S4/Npaths)

disp('The sum S5/Npaths is:')

disp(S5/Npaths)

disp('The sum S6/Npaths is:')

disp(S6/Npaths)

title('OU type process driven by Double Exponential Jump

Process ')

xlabel('Time')

xlabel('Number of steps')
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ylabel('Path of Process X_t')

%%% OU_jump (.5 ,.5 ,1.1 ,1.1 ,20000 ,1 ,20 ,1000 ,1.2 ,1.4)

%OU_jump (.5 ,.5 ,1.1 ,0.9 ,20000 ,1 ,20 ,1000 ,1.2 ,1.4)

%OU_jump_Sep (.6 ,.4 ,1.2 ,1.6 ,80000 ,1 ,100 ,1000 ,1 ,2)

%OU_jump_Sep (.65 ,.35 ,1.25 ,1.65 ,80000 ,1 ,100 ,1000 ,1 ,2)

The following code is used to generate steps sizes of the compound Poisson process

using a mixture of double exponential distribution

function sum= doublexp(p,q,eta ,phi ,Nsamples ,theta ,T,

Nsteps)

r=rand(1,Nsamples);

Y=zeros(1,Nsamples);

u=rand(1,Nsamples);

sum =0;

h=T/Nsteps;

for i=1: Nsamples

if r(i)<q

Y(i)=(1/( phi*exp(theta*h*u(i))))*log(r(i)/q);

elseif r(i)==q

Y(i)=0;

else

Y(i)=(1/ eta*exp(theta*h*u(i)))*log(p/(1-r(i)));

end

sum=sum+Y(i);

end
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Appendix A

Covariance matrix A

In this section we give the expression of the covariance matrix A in Lemma 3.4.1. It

is very sophisticated to express the entries of this matrix in terms of the parameters

of the equation (2.1). So, we keep them as expression of the invariant probability

measure of X0 and that of Xkh. First, we compute σg1g1 .

σg1g1 = Cov(X0,X0) + 2
∞∑︂
j=1

[Cov(X0,Xjh)]

= E(X2
o)− E(Xo)

2 + 2
∞∑︂
j=1

[︂
E(XoXjh)− E(Xo)E(Xjh)

]︂
= E(X2

o)− E(Xo)
2 + 2

∞∑︂
j=1

[︂
E(XoXjh)− [E(Xo)]

2
]︂
,

(0.1)

where we used E(Xjh) = E(X0). Now we compute σg2g2 .

σg2g2 = Cov(X2
0,X2

0) + 2
∞∑︂
j=1

[Cov(X2
0,X2

jh)]

= E(X4
o)− E(X2

o)
2 + 2

∞∑︂
j=1

[︂
E(X2

oXjh
2)− E(X2

o)
2
]︂
.

(0.2)
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Similarly, we have

σg3g3 = Cov(X3
0,X3

0) + 2
∞∑︂
j=1

[Cov(X3
0,X3

jh)]

= E(X6
o)− E(X3

o)
2 + 2

∞∑︂
j=1

[︂
E(X3

oXjh
3)− E(X3

o)
2
]︂ (0.3)

and

σg4g4 = Cov(X0Xh,X0Xh) + 2
∞∑︂
j=1

[Cov(X0Xh,XjhX(j+1)h)]

= E((X0Xh)
2)− E(X0Xh)

2

+ 2
∞∑︂
j=1

[︂
E(X0XhXjhX(j+1)h)− E(X0Xh)E(XjhX(j+1)h)

]︂
.

(0.4)

σg1g2 is computed as follows.

σg1g2 = Cov(X0,X2
0) +

∞∑︂
j=1

[Cov(X0,X2
jh) + Cov(X2

0,Xjh)]

= E((X0)
3)− E(X0)E(X2

0) +
∞∑︂
j=1

[︂
E(X0X2

jh)− E(X0)E(X2
jh)

+ E(X2
0Xjh)− E(X2

0)E(Xjh)
]︂
.

(0.5)

In similar way we can get

σg1g3 = Cov(X0,X3
0) +

∞∑︂
j=1

[Cov(X0,X3
jh) + Cov(X3

0,Xjh)]

= E((X0)
4)− E(X0)E(X3

0) +
∞∑︂
j=1

[︂
E(X0X3

jh)− E(X0)E(X3
jh)

+ E(X3
0Xjh)− E(X3

0)E(Xjh)
]︂

(0.6)
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and

σg1g4 = Cov(X0,X0Xh) +
∞∑︂
j=1

[Cov(X0,XjhX(j+1)h) + Cov(Xjh,X0Xh)]

= E(X2
0Xh)− E(X0)E(X0Xh) +

∞∑︂
j=1

[︂
E(X0XjhX(j+1)h)− E(X0)E(XjhX(j+1)h)

+ E(X0XhXjh)− E(Xjh)E(X0Xh)
]︂
.

(0.7)

σg2g3 is similar to σg1g2 .

σg2g3 = Cov(X2
0,X3

0) +
∞∑︂
j=1

[Cov(X2
0,X3

jh) + Cov(X3
0,X2

jh)]

= E((X0)
5)− E(X2

0)E(X3
0) +

∞∑︂
j=1

[︂
E(X2

0X3
jh)− E(X2

0)E(X3
jh)

+ E(X3
0X2

jh)− E(X3
0)E(X2

jh)
]︂
.

(0.8)

Finally, we have

σg2g4 = Cov(X2
0,X0Xh) +

∞∑︂
j=1

[Cov(X2
0,XjhX(j+1)h) + Cov((Xjh)

2,X0Xh)]

= E(X3
0Xh)− E(X2

0)E(X0Xh) +
∞∑︂
j=1

[︂
E(X2

0XjhX(j+1)h)− E(X2
0)E((XjhX(j+1)h)

+ E(X0XhX2
jh)− E(X2

jh)E(X0Xh)
]︂

(0.9)

and

σg3g4 = Cov(X3
0,X0Xh) +

∞∑︂
j=1

[Cov(X3
0,XjhX(j+1)h) + Cov((Xjh)

3,X0Xh)]

= E(X4
0Xh)− E(X3

0)E(X0Xh) +
∞∑︂
j=1

[︂
E(X3

0XjhX(j+1)h)− E(X3
0)E((XjhX(j+1)h)

+ E(X0XhX3
jh)− E(X3

jh)E(X0Xh)
]︂
.

(0.10)
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