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Abstract

This dissertation is concerned with the parameter estimation problem for
Ornstein-Uhlenbeck processes and Vasicek models and the product formula
for multiple It6 integrals of Lévy processes.

In the first part of the thesis, we study the parameter estimation for Ornstein-
Uhlenbeck processes driven by the double exponential compound Poisson
process. In chapter 23 a method of moments using ergodic theory is pro-
posed to construct ergodic estimators for the double exponential Ornstein-
Uhlenbeck process, where the process is observed at discrete time instants
with time step size h. We further also show the existence and uniqueness of
the function equations to determine the estimators for fixed time step size
h. Also, we show the strong consistency and the asymptotic normality of
the estimators. Furthermore, we propose a simulation method of the double
exponential Ornstein-Uhlenbeck process and perform some numerical simu-
lations to demonstrate the effectiveness of the proposed estimators.

In the next chapter, we consider the parameter estimation problem for Va-
sicek model driven by the compound Poisson process with double exponential
jumps as discussed in Chapter 4. Here we discuss the construction of least
square estimators for drift parameters based on continuous time observa-
tions.

In the last chapter of the dissertation, we show the derivation of the product
formula for finitely many multiple stochastic integrals of Lévy process, ex-
pressed in terms of the associated Poisson random measure. A short proof
is found that uses properties of exponential vectors and polarization tech-

niques.
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Preface

This dissertation is based on two published papers listed below

e Chapter 3 of the dissertation is joint work with Prof. Yaozhong Hu
and has been published as “Ergodic Estimators of double exponential
Ornstein-Uhlenbeck processes” in the Journal of Computational and
Applied Mathematics.

e Chapter 4 of the dissertation is joint work with Prof. Yaozhong Hu
and is a work in progress. This work in chapter 4 is in the editing

stage and will soon be submitted for publication.

e Chapter 5 of the dissertation is a joint work with Prof. Yaozhong
Hu and Dr. Nishant Agrawal and has been published as “General
Product Formula of Multiple Integrals of Lévy Process” in the journal

of Stochastic Analysis.
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Chapter 1
Summary

This dissertation consists of the work done during my Ph.D. under the supervision
of Prof. Yaozhong Hu. This dissertation discusses topics of stochastic calculus, Lévy

process, Poisson random measures, parameter estimation, and applications.

Chapter 2 introduces briefly the background and preliminaries of Ornstein Uhlen-
beck type processes and stochastic calculus for jump-diffusion processes which are

used in Chapters 3, 4, and 5 respectively.

Chapter 3 initiates the study of the parameter estimation for Ornstein-Uhlenbeck
processes driven by the double exponential compound Poisson process. In this chap-
ter, a method of moments based on ergodic theory is discussed and proposed to
construct ergodic estimators for the double exponential Ornstein-Uhlenbeck process,
where the process is observed at discrete time instants with time step size h. Further
in this chapter the existence and uniqueness of the function equations to determine
the estimators for fixed time step size h is also discussed. The main results are in
Section concerning the strong consistency and the asymptotic normality of the es-
timators. Furthermore, in Section a simulation method of the double exponential
Ornstein-Uhlenbeck process is proposed, and numerical simulations to demonstrate

the effectiveness of the proposed estimators are carried out there.

The results of Chapter 3 are further extended in Chapter 4 in which the parameter es-
timation problem for the Vasicek model driven by the compound Poisson process with
double exponential jumps are discussed. In this chapter, estimators are constructed

by using the least square techniques for drift parameters based on continuous time



observations.

TO deepen my understanding of stochastic analysis, I have also made a contribu-
tion to the theory of stochastic analysis of Poisson random measures which has been
discussed in Chapter 5. Chapter 5 is based on the derivation of a product formula
for finitely many multiple stochastic integrals of Lévy process, expressed in terms of
the associated Poisson random measure. In the chapter, it has been shown that the
formula is compact. The proof is short and uses exponential vectors and polarization

techniques

Chapters 3 to 5 are based on the following works which are listed below.

e Ergodic estimators of double exponential Ornstein—Uhlenbeck processes. with
Yaozhong Hu. Journal of Computational and Applied Mathematics, Volume
434, Issue C, Dec 2023

e Parameter Estimation for Vasicek Model with double exponential jump. (In

editing for submission)

e General product formula of multiple Integrals of L “evy process, with Yaozhong
Hu and Nishant Agrawal, Journal of Stochastic Analysis: Vol. 1, No. 3, Article
3.

1.1 Summary of Works

1.1.1 Summary on Ergodic estimators of double exponential
Ornstein—Uhlenbeck processes

Consider the following Ornstein-Ulenbeck process described by the following Langevin
equation

dXt = —GXtdt + O'dZt s te [0, OO), XO = 2. (11)

the process Z; = vaztl Y; is the compound Poisson process with double exponential
jumps. This process X; depends on the parameters 0, o, p (or ¢), n, A, and ¢. In
this work, it is assumed that the process {X¢;t > 0} can be observed at discrete time
instants t; = jh, where A > 0 is some observation time interval. We use the discrete

observation data {X;;j = 1,2,...n} to estimate the parameters 0, o, p, 7, A, and
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. Given Z;, a compound Poisson process with double exponential jumps, a unique
solution to the equation (|1.1)) is given by

t
X, =e Py + 0'/0 e =9)dz, . (1.2)

If & > 0, then the double exponential Ornstein-Uhlenbeck process X; converges in law
to the random variable X, = o fooo e~%%dZ, which exists a square-integrable random

variable.

The explicit form of the distribution of X, is hard to obtain. So, it is hard to com-
pute E(f(X,)) for general f. But when f has some particular form, namely, when
f(x) = e, then the computation of E(f(X,)) is much simplified.

Theorem 1.1.1. Let X; be the double exponential Ornstein-Uhlenbeck process with
initial condition xy € R. Then for any h € Ry, u,v € R, we have almost surely

(denoting t; = jh)

( 1 n . PA ['2N
lim — 3 ey = (L) ()
n—o0 7 o n — o n 4+ e
NI . .
lim — Z exp [1uXy, + 10Xy, 4]
n—oo 7, 4
7=1 (13)
pA ax
- e ™) Groneem)
n —io(u +ve %) © +io(u+ ve )
<77 — iae‘ehv) B <<p + ie‘ghav) 2
L n — iov o +iov '

We shall use the above theorem to estimate all the parameters 7, 8, ¢, A, o, and p
by replacing the limits in (|1.3]) by their the empirical characteristic functions \illn(u)
and U, ,(u) defined as follows

A

1 n
Uy (u,v) = - Zexp iuXy, ;
j=1

n

- 1 , .
Uy (u,v) = - Z exp(iuXy, + Xy, 1p) .

Jj=1



Since E|Xo|™ < oo and E|XX,|™ < oo for all m we know (e.g. [I5, Theorem
1.1]) that hold true for moment functions, in particular, we shall choose f =
z, 2% 2%, g(z,y) = zy. Evaluating the moments from the characteristic functions al-
lows to obtain the estimators of parameters by solving the system of equations. We
summarize the above discussions as the following theorem about the existence and

uniqueness of the parameter estimators and their strong consistency results.

Theorem 1.1.2. From the observation data, we denote py,, k = 1,2,3,4 by (refer
Section 4.2,(3.3) ). Then 0,, is given by

N 1 n— 12
0, ==1In (M) (1.5)
h Hapn — U1 n

and fr, k =1,2,3 by (3.10). If (3.15) has a unique solution p, on (0,1), namely,

(=5 (b + i1 50 (f2—f12)>3 (16)

3
(fl flpn \/pn Pn f - f12)> - f?j)i(l _pn)Z =0

and if p,, is a continuous function of f1, fa, f3, then . ) has a unique solution

(Qn,fn,f)mﬁn ) given by (3.16]), (3.17) and
5 =  J1bn VD1 — D) (f2 = fD)

bn | (1.7)
PR U
En =15
_pn
Define
1
Pn &,

If (0,n,p,p) are the true parameters, namely, if the double exponential process X
satisfies with the above parameters and with A = o = 1, and if has a
unique solution when f1, fa, f3 are replaced by their limits as n — oo, then when
n — 0o, (97“ N> P> Pn) — (0,1, 0, p) almost surely.

Further the central limit theorem for the ergodic estimators ©,, = (6,7, Pr, D)
is also proved. The goal is to prove that /n(6, —0), where © = (0,7, ¢, p) converges

4



in law to a mean zero normal vector and to find the asymptotic covariance matrix.

Let
{g(:v,y) = (g1(, ), 92(. y), g3(x, y), ga(z, y))",

gl<$,y) =T, 92<x>y) :an gg(l',y) :3:37 g4(ar,y) =Ty
and

H= (:uh M2, 13, M4> ) where Mg = E[gk(xm Xh)]a k= 17 27 37 4.

Denote

HUn = (,Ul,n s M2,n 5y U3n 7“4,11) )

where pig,,, kK =1,2,3,4 are defined by (3.3).

Theorem 1.1.3. Denote © = (0,1, ¢,p) and 6, = (@n,fymfpn,fon). If p,, is a con-
tinuous function of fi, fa, f3 and if (3.15)) has a unique solution when fi, fo, f3 are

replaced by their limits as n — oo, then as n — oo we have

A

V6, —0) L N (0, %) (1.9)

where
> = ((Vh)—1 Vﬁ)TA(Vh)_l Vh. (1.10)

This chapter is concluded by numerical simulations which are shown to validate
the ergodic estimators. To do so a distributional decomposition to exactly simulate
the double exponential Ornstein-Uhlenbeck process is proposed following the idea of
[29], where the exact simulation of Gamma Ornstein-Uhlenbeck process is studied.

First, we have the following result. Without loss of generality, we can assume o = 1.

Theorem 1.1.4. Let X; be the double exponential Ornstein-Uhlenbeck process given
by (1.2). For anyt,t, > 0, the Laplace transform of Xy, conditioning on X, is given
by

-~ o _)\p 00 ‘ 1/w 1
Ele™* 1| X;] = e ™" exp [—9 / (1-— e_“‘s)/ nue *1" —duvds
0 1 v

o S 1 (1.11)
__q/ (1 —e™) gbve””;dvds] :

9 —00 1

where w = e~ %1,



Corollary 1.1.5 (Exact Simulation via Decomposition Approach). Let N be a Pois-

son random variable of rate Ah and let {Sy}x=1.2,.. be i.i.d random variables following

goee

a mixture of double exponential distribution

—nef &0
Fs(y) =pne®V e Lsg + gV e L,

(1.12)
Vk=1,2,. ..
where U < U[0, 1] is the uniform distribution on [0,1]. Then
N
Xen = X +3 7 8. (1.13)
k=1

The above formula ([1.13) enables us to simulate the process X; by the exact

decomposition approach.

1.1.2 Summary on Parameter Estimation for Vasicek Model
with double exponential jump
The model is expressed in the form of the following stochastic differential equation

(SDE),

dX, = (u— 0X,)dt + dL, (1.14)
Xo=0 (1.15)

The first term (p — 6.X;)dt represents the drift term. The parameter 6 gives the

reversion speed of the stochastic component. The long-term mean is given £. Here

the Vasicek model is driven by compensated Lévy process (Ly,t > 0) refer (2.2)), where
N¢
L=3n
i=1

is the double exponential compound Poisson process and the compensated double



exponential compound Poisson Process L; is given by

L, = Ly — ME[Y1] (1.16)

The goal is to construct least square estimators under continuous observations. We

find the estimators by minimizing the following contrast function

T
o0, ) = min/ 1X, — (u—0X,)|dt (1.17)
0

0,1

(1.18)

Upon minimizing the contrast function we obtain expressing with integrals of the form
fOT XydX;. Such integrals can be interpreted as Young integrals. Using the ergodicity
of X; and using BDG inequality (Lemma 2.1[35]) we get the following result

Theorem 1. The estimators 67 and fip given by

) Ly [} Xydt — T [ X,dL
Or = 0+—=% -

T [, XZdt— ([, Xudt)?

7 T T T 7
P Ly [, X7dt — [; Xedt [; XedLy

T[] X2dt — (f, X,dt)?

converge a.s. to 6 and u respectively as T' — oo.

1.1.3 Summary on General Product formula of multiple in-
tegrals of Lévy process

The product formula for two multiple integrals of Brownian motion is known since
the work of [10), Section 4] and the general product formula can be found for instance
in [I8, chapter 5|. In Chapter 5, a general formula for the product of m multiple
integrals of the Poisson random measure associated with (purely jump) Lévy process

is obtained. The formula is in a compact form and it is reduced to the Shigekawa’s

7



formula when m = 2 and when the Lévy process is reduced to Brownian motion.

When m = 2, we have the following example

Example 1.1.6. If m = 2, then s, = 22 — 1 — 2 = 1. To shorten the notations we
can write g = 1, @2 = m, fi = fu, f2 = Gms law = 1, np, = k. Thus, x(1,1,7) =
X(2,1,7@) =1+ k and |q| + |7i] — |x(I, @) = n+m+k—2(1+k) = n+m—2l — k.
Hence the formula (2.12) becomes the following. If

fu € (L2(0,T) x R, dt @ v(dz)))™"

and
gm € (L*([0,T) x Ry, dt ® v(dz)))*™ |
then
n!m! .
In(fn)]m(gm) = Z l'k'(n —k l)'(m —k l)!]n—i-m—Zl—k <fn X k,lgm> 3
kl€Z
k+l<mAn

where Z, denotes the set of non negative integers and

fn ® k1m (815 215 5 Sntm—k—2ls Zntm—k—21)

= symmetrization of ; Ju(S1, 215 3 Sty Znts L1, Y1, 0 5t Y1)
gm(sh 21yt s Sky Zhy Sneldls s Zneltls
Sn+m—k—215 Fnt+m—k—21, tl, 21y ,tl, zl)dtly(dzl) s dth(le).

(1.19)

In the chapter, a product formula for finitely many multiple stochastic integrals of
Lévy process, expressed in terms of the associated Poisson random measure is derived.

The chapter gives proof of the following result.

Theorem 1.1.7. Let q1,--- ,qn be positive integers greater than or equal to 1. Let

fi € (L2([0,T] x R, dt @ v(d2)))*™ , k=1, m.
8



Then

- Hzl 1Qk'
Ik(fk> = P -
kl:[l ! *Z:Q [Te2 G H[s 1 Mg T (ge — x(k, 1,7

Iy, 7llﬁm A EIRNRY L2 Jrr
Loty (@i g @ V350 (fr e fin)) (1.20)

where we recall

— —

Please refer to ([5.2)) for the details in the notions.



Chapter 2

Preliminaries

In this chapter, we will briefly discuss some background on the Ornstien-Uhlenbeck

processes and Lévy processes.

2.1 Lévy Process
Let (2, F,P) be a proability spae.

Definition 2.1. A filtration F = (F;,¢ > 0) is a family of o-algebras F; on the same
probability space (2, F,P) such that F; C F;, for s < t. Note that Fo, = 0 (UteR }"t) )

Definition 2.2. Let us have a probability space (2, F,P) with a filtration F;. Then
a one-dimensional process Z = Z(t),t > 0 is called a Lévy process if the following

holds true :
1. Z(0) =0 Pa.s.,
2. Zy s — Zy is independent of F; for every s,t > 0.

3. Z has stationary increments, i.e, Z;, s — Z; and Zg have the same law for every

s, t >0,

10



4. Z is continuous in probability , i.e for every ¢ > 0 and ¢ > 0 we have

lim B{| Z(t) — Z(s)] > e} =0,

5. Z is cadlag upto a modification.

Let T > 0 be a positive number and let {Z(t) = Z(t,w),0 <t < T} be a Lévy
process on some probability space (2, F, P) with filtration {F;,0 < t < T}. The
jump of the process Z at time t is defined by

AZ(t) == Z(t) — Z(t—) it AZ(t) £0.

Given Ry := R\{0}, then B(Ry) is the the Borel o-algebra generated by the family of
all Borel subsets U C R, such that U C Ry. If U € B(Ry) with U C Ry and t > 0, we
then define the Poisson random measure N : [0,7] x B(Rg) x Q2 — R, associated with
the Lévy process Z by

N(tU) = > xv(AZ(s)), (1.1)

0<s<t

where xy is the indicator function of U. The associated Lévy measure v of Z is de-
fined by

v(U) := E[N(1,U)] (1.2)

and the compensated jump measure N is defined by

N(dt,dz) := N(dt,dz) — v(dz)dt, (1.3)

where v satisfies
/min{l,xQ}y(d:v) < 00.

11



There are real-life cases where the trajectories of Z have infinitely many jumps of
small size, and its occurrence can be seen often in financial modeling. However, the
Levy measure always follows the above equality. For any ¢, let F; be the o-algebra
generated N(ds,dz), z € Ry, s < t.

A stochastic process f = f(t,2), t > 0, z € Rq, is F-adapted if for all ¢ > 0 and
for all z € Ry, the random variable f(¢, z) = f(t, z,w), w € Q, is Fy-measurable. Also,
if f satisfies

< oo for some T > 0, (1.4)

E [ /0 ' [, maz)i

we can see that the process Z,(t) is a martingale in L?(P), where Z,(t) is defined as
t ~
Z(t) = / / F(s,2)N(ds,dz), 0<t<T,
0 Jz[>3

and it’s limit

in L?(P) is also a martingale. This also results in the the It6 isometry,

EUOT Rof(t,z)ﬁ(dt,dz)Q] :E[/OT 5 f2(t,z)y(dz)dt] (1.6)

In the next chapters, the parameter estimation problem for the Ornstein-Uhlenbeck
(OU) process and the Vasicek model driven by the double exponential jump diffusion
process are discussed. In this chapter, some preliminaries of the OU process and the

Vasicek model are presented below.

12



Definition 2.3. An Ornstein-Uhlenbeck (OU) process driven by a Lévy process
(Z4)1>0 is defined to be the stochastic process satisfying the SDE

dX, = —0X,dt + 0cdZ,, te0,00), Xo=m. (1.7)

Here 6 > 0 and o > 0 are parameters of the OU process. Such stochastic processes
are also referred to as Ornstein-Uhlenbeck-type processes.

The solution of the SDE can be given by

t t
eetXt:eesXs+/ 69“9Xudu+/ dX,
st St
=X, + / 0 X du + / " (—0X, du + 0dZ,)
st St t
=X, + / 0 X, du — / OX du+ o / e dz,

t
=X, + a/ dz,.
This gives the solution,
t
Xy (w)=e "z + 0/ e =947 (w). (1.8)
0

The Vasicek model, originally introduced by Oldrich A. Vasicek in 1977, is a
mathematical model used to describe the evolution of interest rates over time. It is a
stochastic model that assumes that interest rates follow a mean-reverting process. In
its basic form, the Vasicek model is driven by a Brownian motion or a Wiener process.
However, it can be extended to incorporate other stochastic processes, including Levy

processes.

13



Definition 2.4. The Vasicek model driven by Lévy Process is a stochastic model that
follows the following stochastic differential equation (SDE),

dX, = (u — 0X,)dt + dZ, (1.9)

Xo=0 (1.10)

The first term (u — 0.X;)dt represents the drift term. Here § > 0 and p > 0 are

parameters of the above process.

The solution to the above SDE can be written as

Xt:

SIS

t
(1 _€9t)_'_/ efa(tfs)dZS
0

Definition 2.5. The characteristic function Px(z) of a random variable X whose

distribution function is Px on R is defined by
Px(z) = E(e*¥) = / e"** Pxdx.
R

Definition 2.6. Let (Y,,,n > 1) be a sequence of independent real-valued random
variables with distribution f. Let (N;) be the Poisson process with rate A > 0,
independent of {Y;,7 =1,2,...}. Then the process
Ny
Z=3y
i=1

is called compound Poisson process.

Remark 2.1.1. When (Y,,,n > 1) follows the distribution

fy(x) = pne™ " Iip>o) + qpe? I

where the parameters p, ¢, n, ¢ are positive and p + ¢ = 1. Then the process

Zy = vaztl Y; is called the double exponential compound Poisson process.

14



Remark 2.1.2. For a step function g(u) = D77 a;l(,;_,u(w) with s = ug <

uy, - - < u, =t, and Lévy process (Z;) the following holds true,
¢ ¢
E[exp (zz/ g(u)dZu(w)>] = exp [/ U(g(u)z)du

where z € R and W(z) = In Py, (2), and P is the characteristic function of Z;. By
approximation, the above is also true for any real continuous function g(u) on [s, t].

Therefore we have

t

E[e™Xt] = exp [z’e’etxou +/ U(oe %u)ds|.
0

Theorem 2.1.3 ([I2]Lévy -Khintchine Formula in one-dimension). Let Z be a Lévy
process on R. Then the process (Zi)i>o for each t is infinitely divisible distribution

and its characteristic function PZ(Z) 18 given by the Lévy -Khintchine Formula,

. 1
Pz, (z) = exp <t( - §Az2 +iyz +/

R(em 1 ileD(x)p(da:)>) (1.11)

z € R, where A >0 and D = {z : |z| < 1}, p is a measure on R satisfying
p({0}) =0

/(]x\Q A 1)p(dr) < co.
R
Here (tA,tp,ty) is called the characteristic triplet of Z;. We can also refer to as

(A, p,y), the characteristic triplet of the Lévy process Z.

Definition 2.7. A map P, ;(z,B) of x € R and B € B(R) for 0 < s <t < oo is called

a transition function on R if

1. for any fixed x, it is a probability measure as a mapping of B.

15



2. for any fixed B, x — P, ;(z, B) is measurable.
3. Pss(z,B) =0,(B) for s >0

4. also

/ Ps,t(I,dy)Pt’y(% B) - P&U(J],B), 0<s<t<u,
R

5. if, in addition, we have that Py yn(z, B) does not depend on h, then it is

called a temporally homogeneous transition function and it is given by

P,(xz,B) = Pss44(z,B), s>0.

Lemma 2.1.4 (Sato[30], Lemma 17.1). Let {Z;} be a Lévy process on R generated by
(G,p,B). Let 0 € R, then there exists a temporally homogeneous transition function
P,(z, B) on R such that

t
/ e Py(x, dy) Zexp[ie_etxan/ Y(oe2)ds] (1.12)
Rd 0

where ¥(z) = InPy(2) = InEle*Z]. For each t, P,(x,-) is infinitely divisible with

the generating characteristic triplet (A, ve, V)

t
A = / e dsG (1.13)
0
t
w(B) = [ ) [ Ialeg)ds (1.14)
Rd 0
t t
Yo =€ "z + / oe P xds + / p(dy) / e "y(Ip(e™™y) — Ip(y))ds ~ (1.15)
0 R 0
D={x:|z| <1}
Definition 2.8. Let § > 0 {Z;} is a Lévy process on R generated by (G, p, 3), the

temporally homogeneous Markov process with transition function { P;(z, B)} is called

process of Ornstein Unhlenbeck type generated by (G, p, 3, 6)

16



Theorem 2 (Sato[30], Theorem 17.9). Fix 6 > 0, If p satisfies,

/ log|z|pdx < oo
x|>2

the process of Ornstein-Unhlenbeck type on R generated by (G, p, 3, 0) has the limit
distribution g with

A(z) = exp| / (e 2)dz)

The distribution g is self decomposable and the generating triplet (A,v,7) of p is
given by ,
1
A=—(G
20
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2.2 Stochastic Calculus for Jump Diffusion Pro-
cess

Theorem 2.2.1 ([2]Lévy -1t6 decomposition theorem). Let Z be a Lévy process. Then
Z = Z(t),t > 0 has the following integral representation

t t
Z(t) = art + oW(t) + / / 2N (ds,dz) + / / zN(ds, dz),
0 Jz|<1 0 Jz|>1

here a1,0 € R are constants, N(ds,dz) as defined in and W =W (t),t >0 is

a standard Wiener process.

If f‘z|>1 |z|?v(dz) < oo, then the above expression can be written in the form

17



Z(t) =at +oW(t) //szs dz).
Ro

Definition 2.9. Consider the process X (t) of the form

X(t):x—l—/ot ds—ir/ﬁ )dW (s //Ro s,2)N(ds, dz),

where a(t), 5(t), and 7(t, z) are predictable processes such that, for all £ > 0, z € R,.
If,

/0 las)] + B%(s) + / (s, 2)(d2)]ds < oo,

then the stochastic process X (t) is well-defined and is a local martingale. Such pro-

cesses are called It0’s - Levy process.

Theorem 2.2.2 (It formula[12]). Let X = X (t),t > 0, be the It6—Lévy process and
let f:(0,00) x R — R be a function in C*?*((0,00) x R) and define

Y(t) = f(t, X(£)),t > 0.

Then the process Y =Y (t),t > 0, is also an Lévy-Ité process and its differential form

15 given by
av (1) = o x @t + 2o X @otsyr (2.1)
= xwppmaw e + 120 x o)

# [ 10X +(82) = £6.X0) - SHE X 0)1 82+

[ (X ) 4 5(02) = £ X (O] . d2)

18



In case of multidimensional [to—Lévy process where there is an L-dimensional
Brownian motion W (t) = (Wiy(t),...,Wg(t)), t > 0, and M independent compen-
sated Poisson random measure N(dt,dz) = (Ny(dt,dz), ..., Ny(dt,dzy))", t > 0,

the [to—Lévy process is of the form

dX (t) = at)dt + B(t)dW () + / v(t, )N (dt,dz), t>0. (2.2)

(Ro)M

where «(t), 5(t), and ~(t, z) are predictable processes .

Theorem 2.2.3 (The multidimensional 1t6 formula[l12]). Let X = X (¢),t > 0, be an
n-dimensional Ito—Lévy process of the form (2.2). Let f: (0,00) x R" — R and define

Y(t) = f(t, X(1), t>0.

Note that the function f is in C*?((0,00) X R™) Then the process Y =Y (t),t >0, is

a one-dimensional Ito—Lévy process and its differential form is given by

dY (t) = %(t, X())dt + Z g—i(t, X () (t)dt
1o O .
+ZZ ﬁm() ()“’5 Zaxi xj( ())(Bﬁ )Z]()

— Ox;
+Z/ [ 7))+t 2) - f(taX(t_»}Nk(dt?dzk)a
(2.3)
Vik
where 7y, 1s the column number k of the n x k matriz v =
Tnk

Example 2.2.1. Let h € L*([0,T]) be a cadldg real function. Let us consider a one-

dimensional stochastic differential equation for the cadldg process Z = Z(t),t € [0, T
19



of the form,
Az (t) = Z(1°) / ("= _ 1N (dt, d=).
Ro
We argue that the solution to this equation is
Z(t) = exp{X (1)}, te0,7].

where
_ //R §)2N (ds, d) //R F 1 h(s)lu(dz)ds ).

In particular Y (t),t € [0,T] is a local martingale. To show this we apply the one-
dimensional Ité formula to Z(t) = f(t, X(t)),t € [O T) with f(t x) = e* and X; as
given above. Since we have %(t,X(t)) =0, aft) = —f — 1 = h(s)z]v(dz),
B(t) =0 from (2.2.2)) defined in Then we get,

dZ(t) = —exp{X(t)} [ — 1 —h(t)z]v(dz)dt
+ /R lexp{ X (t) + h(t)} —exp{X(t)} — exp{ X (t)}h(t)z]v(dz)dt

T / (exp{ X (t7) + h(t)} — exp{X (1)} N (dt, d2),

which gives us

Az (1) = Z(17) / ("= _ 1) (dt, d)

as required.
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Let us consider a pure jump Lévy process given by

t
n(t):/ / N (ds, dz), >0,
0 Ro

We consider that 7(t) is adapted to the o-algebras F; .

Lemma 2.2.4. [Z] The set of all random variables of the form
{f(n(tr)...n(ty)):ti€[0,t],1 <i<n;fe CR")n=1,2...}

is dense in the subspace L*(Fr,P) C L*(P) of Fr-measurable square-integrable ran-

dom wvariables.

Lemma 2.2.5. [J] Given the Doleans-Dade exponentials of the form

exp{/OT /RO h(t)zx[om(z)N(als,dz)_/OT/RO[eh(z:)2><[o,z:c](Z)_1—h(t)zx[oﬂ](,z)]y(glz)dt}7

where h € C(0,T), R > 0 are dense in the space of Fr-measurable square-integrable

random variables L*(Fr,P).

Theorem 2.2.6. (Ito representation theorem)[2] Let U € L*(P) be Fr measurable

random variable. Then U can be written as

U =E[U]+ /OT : f(t,2)N(ds,dz), (2.4)

where f = f(t,z),t >0,z € Ry is a unique predictable process such that

T
E[/ f(t,Z)2V<dZ)dt] < 00.
0 JRo
Proof Let U be represented as process U = V(T'), where
t ~
V(t) = exp (/ / h(s)zx[0, R](z)N(ds,dz)
0 JRo

—/0 /R [eh(s)zx[O,R](z) —1—h(s)zx[0, R](z)]u(dz)ds), t €[0,7],
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for some h € C(0,00). Clearly, U is a Wick/Doléans-Dade exponential. With Ito

formula and Example 1.2.1, the differential form V'(¢) can be written as

dv(t) =V (t—) (/R "®2x[0, R](2) — 1) N(dt, dz).

Therefore, U can be written as

U=V(T)=V(0)+ /T dV(t) =1+ /T/ V(t—) (e"D*x[0, R](2) — 1) N(dt, dz).
Therefore

F(t,2) = V(t=) ("O*x[0, B](2) = 1)

also,
E[VX(T)]=1+E [/o /R V2(t—) (e"D*x[0, R](2) — 1)2 v(dz)dt| .

Let U be an Fr-measurable random variable in L?(P). Using we can choose a
sequence U, of linear combinations of Doléan—Dade exponentials such that U, — U
in L?(P). Then we have

T ~
U, = E[U,] +/0 : fult,2)N(dt,dz),

for all n = 1,2, ..., such that

E[U?] = (E[U,))? +/0 s fA(t, 2)v(dz)dt < oo.

Using Ito isometry we can see that f,, n = 1,2,... is a Cauchy sequence in L*(P X

A x v) and it converges to a limit f in L?(P x A\ x v) and
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T ~
U= lim U, = lim (E[Un] +/ fu(t, 2)N(dt, dz))
0 JRrg

n—oo n—oo

:E[U]+/T f(t, 2)N(dt,dz).

2.3 Wiener -1t6 Chaos Expansion

Let us use T to represent [0,7] x Ry to simplify notation.
Let

(L(T, A x )" C L2 (T, (A x »)")

be the space of deterministic real functions f such that

||f||%2n = ] Aty 21, -ty 2)dtiv(dzy) - - - dt,v(dz,) < oo,

where A(dt) = dt is the Lebesgue measure.

Definition 2.10. The symmetrization f of f is defined by

1
f(thzla"' 7tmzn) = HZJC@UNZUN”' 7t0n720n>7

where 0 = (04, ...,0,) and the sum is taken over all the permutation of o.

In the above, a function f € L*" is called symmetric if f = f. Also space of all
~2n
symmetric functions in L?" can be denoted by L.
Define

Gn ::{(tlazlu'” 7tnazn) OgtlggtnSTazzeR07Z:1727 ,TL}
23



and let L?*(G,,) be the set of all real functions g on G,, such that

1/2
||9||i2((;n) = (/92(751, 21,0ty 2n)dtiv(dzy) - - dtn’/(dzn)> < 0.
Gn,

Also, for any f € iQ’n, we have fig, € E2(Gn) and
1£11Z2 = nlll fl1Z2a,)-

Definition 2.11. For any g € L?(G,,), the n-fold iterated integral J,,(g) is the random
variable in L?(P) defined as

Jo(g) :/T/ .7/9(751,21,--- s zn)N(dty, dzy) - - N(dty, dzy).

0 Ro 0 Ro

We set Jy(g) = g for any g € R.

~2, . . . a .
For any f € L ! , we can write the multiple Wiener-Ito integral as

L(f):= [ flt1,z1,- tn, 20)N(dty,dzy) - N(dtn, dz,) = nlJ,(f). (3.1)

Tn
Also for any g € " and f € IA/M, the following relation holds true

0, ifn#m
(9, f)rzn, ifn=m

where
(9, f)sz" = / g(tla 21yt 7tn7 Zn)f(tla 21,0 7tn7 Zn)dtly(dzl) T dtnlj(dzn)

Theorem 2.3.1. [2](Wiener-1to chaos expansion for Lévy process) Let Fr = o(n(t),0 <
t <T) be o - algebra generated by the Lévy process 1.
24



Let F € L*(Q, Fr, P) be an Fr measurable square integrable random variable. Then

F admits the following chaos expansion:
F=> I(f)), (3.2)
n=0

where f, € ﬁQ’n,n = 1,2,--- and where we denote Iy(fo) := fo = E(F). Moreover,

we have

|FHL2 (P) = Zn | fall 72 - (3.3)

Proof By theorem 1.2.6, a predictable process 0(t1,z1) € T exists such that for
F e L*(Q, Fr, P), F can be written as

/ / 91 tl, 2,'1 dtl, le)
RO

also

PV = BLED+E[ [ [ szt fda)] < o

Applying theorem 1.2.6 on 6(t1,21), for almost all (¢1,z1) € T, there exists a pre-
dictable process 0y (t1, 21, t2, 22), where (t2,29) € [0,t1] X Rg, such that

T
Ql(tl,Zl) = E[@l(tl,zl)] +/ / QQ(tl,Zl,tQ,ZQ)N(dtQ,dZQ).
Ro

This allows us to write F' as

// 91 (t1,21) (dt17d21)}
Ro

+/ / / 92(t1,Zl,tQ’ZQ)N(dt27dZQ)N(dtl,le).
0 Ro Ro
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Let’s define

Similarly we can repeat the above same argument for (¢s, 22) and again for new inte-

grands generated through the process 0 (t1, 21, t2, 22). This will give

N

-1

F= J(gn) _'_/ 9k<t17217"'7tk7zk)N®k(dt7dz)a
Gy

3
I
o

where

Gri={(ti, 21, iy 2) :0<ty <+ <1, <T,z €Ro, i = 1,2, k}.

refer to Theorem 1.10 [2] to see that the residual term ka O (t1, 21, ... te, zk)N®k(

converges to 0 in L*(2, Fr, P).

dt,dz)

This gives the following chaos expansion

F=> Jg).

n=0

Define f,, := g, by extending the function g, on the whole T" such that g, := 0 on
T™\G™. Then

Thus,we have
[e.e]

F=> L(f).

n=0

Example 2.3.2. Let F' = V(T), where

26



V(t) = exp (/Ot /R h(s)z N(ds,dz) — /Ot /R ("% — 1 — h(s)z) v(dz) ds) ,

€ [0,T]

here h € L*([0,T]) is a cadlag real function. Clearly, V is a Wick/Doléans-Dade

exponential. Then, by the Ito formula, we have

dV (t) = V(t—)/ ("= —1) N(dt, dz).

Therefore

=1 +/ / ("®2 — 1) N(dt, dz).
Ro

Repeating the above iteration again for V' (¢—) and so on again, the following expansion

is obtained

ZI (fn)

k

// / V(D) [ ("% — 1) N(dty,dz) - - N(dty, dz),
Ro

=1

where

it ) = ST )

which leads to the chaos expansion

= Z[n(fn)a

with convergence in L?(P). To prove this, we need to verify that
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E

T ts _
/ / .. / ’ / V(ty) (eh(t)z _ 1)®k N®k(dt,dz)] —0, k— oc.
o Jo 0 JRg

This follows from the estimate

/OT /RO . /;2 /ROIE [VQ(tI) (eh®= — 1)®k} V(der )t - o(den)dts
= w (/OT/R (eh(tl)ZII)QV(dzl)dtl)k —0 ask— 0.
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Chapter 3

Ergodic Estimators of double
exponential Ornstein-Uhlenbeck

processes

In this chapter, we study the parameter estimation for Ornstein-Uhlenbeck processes
driven by the double exponential compound Poisson process. A method of moments
using ergodic theory is proposed to construct ergodic estimators for the double ex-
ponential Ornstein-Uhlenbeck process, where the process is observed at discrete time

instants with time step size h.

The existence and uniqueness of the function equations to determine the estimators
for fixed time step size h is also shown. Also, we show the strong consistency and the
asymptotic normality of the estimators. Furthermore, we propose a simulation method
of the double exponential Ornstein-Uhlenbeck process and perform some numerical

simulations to demonstrate the effectiveness of the proposed estimators.

3.1 Introduction

Let (Q2, F,P) be a probability space with a right continuous family of increasing o-
algebras (F;,t > 0) satisfying the usual condition ([19]). We denote the expectation on
this probability space by E. Recently, there have been a very successful applications

of double exponential jump processes to finance and insurance, we refer to [13, [16,
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17, 21] and relevant references for further details. To apply these models to more
specific situations, we need to estimate the parameters appeared in the model from
the historical data. It seems there has been no work on this direction yet. This
motivates us to study the parametric estimation problem for the double exponential
Ornstein-Uhlenbeck process. To introduce this process let us recall the following
concept. Let (Y,,n > 1) be a sequence of independent real-valued random variables

with the following probability density function

frr(x) = pne” " I>g) + qpe? Ipco) (1.1)

where the parameters p, ¢, 1, ¢ are positive and p+q = 1. Let V; be the Poisson pro-
cess with rate A > 0, independent of {Y;,i = 1,2,...}. Then the process Z; = EN" Y;
is called the double exponential compound Poisson process. The double exponential
compound Poisson process is a particular Lévy process. The stochastic calculus with
respect to this process falls in the framework of the stochastic calculus for general

Lévy processes. For more details, we refer to [30] whose results will be used freely.

Let us consider the following double-exponential Ornstein-Ulenbeck process given
by the following Langevin equation driven by the double exponential compound Pois-

son process Zi:

dXt = —HXtdt + O'dZt s te [O, OO), X[) =Xy . (12)

Of course, the integral form of this equation can be written as
t
X =x09 — 0/ X ds+oZ;. (1.3)
0

As we observe, this process X; depends on the parameters 6, o, p (or ¢), , A\, and .
In this chapter we assume that the process {X;;t > 0} can be observed at discrete
time instants t; = jh, where h > 0 is some observation time interval. We want to
use the discrete observation data {X;;;j = 1,2,...n} to estimate the parameters 0,
o, p, n, A, and . To construct such estimators, we shall use the ergodic theorem
limy, oo + = ST i1 f( Xt fR , where p is the limiting distribution of X;. It
appears that with appropriate ChOlces of different f we shall have sufficient number

of equations so that we may be able to find all the parameters. However, the limiting
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distribution depends on the parameters in such a way (e.g. (2.13])) that one cannot
decouple them. For this reason and motivated by [I8], we also get involved the er-
godic theorem of the form lim,, o + 2?21 9(Xe,, X)) = Jp9(z,y)v(de, dy), where
v(dzx,dy) is the limiting distribution of (X, X;15). After finding the distribution of u
and v we shall use the moment functions (e.g. f(x) = x™ etc) to obtain appropriate

equations for the ergodic estimators to satisfy.

The existence, local uniqueness and global uniqueness of the system is the imme-
diate problem after the obtention of the equations. We shall address this elementary
and challenging problem and prove that when the sample size is sufficiently large we
shall have the existence and uniqueness of a local solution. For the global uniqueness
we reduce the problem to another one of finding zero for a real valued function of
one variable, where the mean value theorem can be used. The strong consistency and

asymptotic normality of our ergodic estimators are also given.

We propose an exact decomposition simulation algorithm for our double exponen-
tial Ornstein-Ulenbeck process to validate our approach. As a consequence of the
exact decomposition, we can write the distribution of X;,, given X; as a sum of non
stochastic function and a mixed compound Poisson process. After discussing the al-
gorithm we simulate the data from assuming some given values of 6, p, n, and
. Then we apply the estimators to estimate these parameters. The numerical results

show that our estimators converge fast to the true parameters.
The chapter is organized as follows.

In Section 2, we give some preliminaries and some basic results for our double
exponential Ornstein-Uhlenbeck process. We also obtain the explicit form of the

characteristic functions of limiting distributions p and v mentioned earlier.

In Section 3, the ergodic estimators for all the parameters in the double expo-
nential Ornstein-Uhlenbeck process are constructed. The local existence, uniqueness
and the global uniqueness of the system of equations that determine these ergodic

estimators are discussed.
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In Section 4, we obtain the joint asymptotic normality of the the estimators.

In Section 5, we discuss the exact decomposition algorithm for simulating the dou-

ble exponential OU process.

In Section 6 we perform some numerical simulations to validate our results which

demonstrate the effectiveness of our estimators.

Section 7 contains the computation of a covariance matrix that appeared in our

theorems.

3.2 Preliminaries

Given Z; a compound Poisson process with double exponential jumps, a unique solu-
tion to the equation (1.2)) is given by

¢
X, =e %z + cr/ e 0tz . (2.1)
0

If # > 0, then the double exponential Ornstein-Uhlenbeck process X; converges in law
to the random variable X, = o fooo e~95dZ,. If the process starts at the stationary dis-
tribution i.e., the initial condition X, has the same law of X, and if X is independent

of the process Z;, then X, is a stationary process.

It is well-known from [30, Theorem 17.5]) that the double exponential process
{X},t > 0} is ergodic. Namely, we have the following result from [28, Theorem 8.1].

Proposition 3.2.1. [20, Theorem 3.8] Let f : R — R be measurable such that
E|f(X,)| < oo. Then for any initial condition xo € R and for any h € R, we
have (denoting t; = jh)

lim ~ > f(Xy) =EB(f(X,)) a.s. (2.2)

The explicit form of the distribution of X, is hard to obtain. So, it is hard to
compute E(f(X,)) for general f. But when f has some particular form, namely, when
f(x) = e, then the computation of E(f(X,)) is much simplified.
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Evaluation of the limiting characteristic functions

Proposition 3.2.2. [30] Let Z; be the double exponential compound Poisson process

and let 0 < s <t < o0o. Then for any real valued continuous function g(u) on [s,t]

we have
E[exp (zz /:g(u)dZu(w)ﬂ = exp [/: \If(g(u)z)du] , VzeR, (2.3)
where
U(u) = log Py, (u) = logE[ewzl} = )\/Rei“yfy(y)dy — A (2.4)

with fy being given by (1.3)).

Proof We follow the idea of [30, Section 17]. Let us first compute the characteristic

function of Z;.
A . WSV
Pz, (u) :=E [e’”Zt] =E [e“‘zatl J}

=3 B[ =N, = n| P(N, = n)

n=0
- ()‘t)n — iu
:Z o e ’\(E(e Y1)>
n=0
_6[/\tE(eiuY1 )=l

=exp {At /R e fy (y)dy — A} :

where fy (y) is the double exponential density defined by (1.3). When ¢ = 1 we have
2.

Now we are going to compute the characteristic function of the limiting distribution
of X,. From Equation (2.1)) and Proposition it follows
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_ t
E[e™Xt] =exp |ie " zou +/ \Il(ae_esu)ds}
- 0

t
= exp ief(%xou + )\/ |:/ eicre_gsuyfy(y)dy — 1:| dS] (25)
0 R

=exp |ie " xou + Ay

)

where [, ; = fg [I5,s — 1]ds and I s is defined and computed as follows.

L, = / e i (y)dy
R
- / €7 e Iy + qpe? Iiy<of] dy
R

] 0
= / e ey + g / e7e ey
0

pn i qy
n—ioue=? = p+icuets’

where in the above second identity we used the explicit form of fy given by (1.3)).
Thus

t
Il,t :/ []213—]_]d8
0
t
:/ ( @7 o+ ggo —1>ds
o \n—ice %y p+ioce%u

— —0t 1 - —0t 1
pln( et >+g1n<<,0+ze ou 9t>_t

n—iou e % 6 Y +iou e
_lan—we Oty 1 >§.<<p+z'e_9tau 1 )Z'e_t}
—iou e o +iou e %
T {(77 —ioe %y >§ ' <g0—|—z'e‘9tau>3} ’ (2.6)
n—1iou @ +iou

where in the above last identity, we used p + ¢ = 1. Consequently, we have as t — oo

' (go —:Oz'au)g} '

D
0

lim [,; =1In {( : )
t—o0 ’]7 — 10U
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This combined with (2.5)) yields

PA

=2

lim E[e™Xt] = < a >7< - > : (2.7)
t—o0 n— 10U Y +wou
In other words, we have
uX : uX 1 % 1 %
E [¢"*] = lim E[e t]:< , U) ( : U) : (2.8)
t—00 1-— iuy 1+ Ul

As we notice the above characteristic function (2.8) uniquely determines the proba-
bility distribution function of X,. This formula also means that the invariant random
A

variable X, depends on %, %, 2 and then we cannot separate the parameters 6, o, 7,

v, A and p.

Motivated by the works of [I8, 22] we use the multi-time ergodic theorem to find
more parameters. Our theoretical basis is the following general ergodic result, which

is a consequence of [I5, Theorem 1.1].
S
300, 30 - o
J:

where X, satisfies the Langevin equation ((1.2)) with the initial condition X, = X,
namely, dX; = —0X;dt + 0dZ; and X, has the invariant measure given by ([2.13]). The
right hand side of (2.17)) is hard to compute for general g. So we shall compute

1 n
lim — Z exp [iuXy, + Xy 44 =E [exp (iuXo + i'uXh)] (2.10)

n—oo

Jj=1

for arbitrary u,v € R. In fact, we shall evaluate the above quantity by evaluating
limy o E[e?Xe+vXetn)] - We shall still use the formula (2.3) to do our computations.

As we see we can assume Xy = 0. Thus,

¢ t+h
Xi(w) = a/ e A7z, (w);  Xpn(w) = O'/ e =947 (w).
0 0

35



Therefore,

t
uXy(w) + vXp(w) :g/ (uefe(tfs) X Uefe(tJrhfs))dZS
0

t+h
+0 / ve th=s)qz. . (2.11)
t

Because of the independent increment property of the double exponential compound

Poisson process Z;, we have

]E[exp (iuXt + ivXtJrh)} = E[exp <z /Ot ge t=s) (u+ vefeh)dZsﬂ )

t+h
E [z / Uve_a(tJrh_s)dZS}
t

= Igi : I4¢, (212)

where I3, and I, denote the above first and second expectations. Similar to (2.6),

we have

p—Aln
0

<77 —ido(e %y 4+ ve M)y 4 pe=0h )

I3, =exp [ n—io(u+ve )  ue 0+ pe0U+h)

N qA I (gp +io (e % + ve )
~ —0h
0 © +io(u+ ve o)
u + ve " \
— +U6—0(t+h)>) —In(e )} (2.13)
and
s _( n—iov )?(@Jrie“ghav)‘? (2.14)
Y\ — ety @ +iov ' '

It may be a bit strange to see that I, is independent of . But this is because of
the independent increment property of the process Z;. In fact, we see easily that

ftHh ove =947 has the same law as that of foh ove " =9)d7, . Tt is easy to verify

PA g

lim Iy, = (— ) (—— )" 2.15
i 3 n —io(u + ve ) © + 1o (u + ve ) (2.15)
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Hence, we

E [exp

have

(iuXo + wxhﬂ = tlim E[exp <iuXt + ivXt+h>]
—00

PA

(77 — joe %"

- v>?<<p+z’e‘ av)qg
n —iov o +iov '

We summarize (2.2)), (2.13]), (2.10)), (2.10]) as the following theorem.

G=returvem) G
n —io(u+ ve=) o+ io(u + ve o

))9 (2.16)

Theorem 3.2.3. Let X; be the double exponential Ornstein-Uhlenbeck process with

wmitial condition xo € R. Then for any h € Ry, u,v € R, we have almost surely

(denoting t; = jh)

;

3.3 Estimation of the parameters 7, 6, ¢ and p

1~ o G
lim — Y e = ()" ()
n—oo N, o= n — o 77+ZU(,0

lim — Zexp [iuXy; + v Xy, p]

n—oo 1,

ar
0

%
(n—za(u+ve oh > (cp+w u+ve 9h)>
0h

(n—iae‘ ) <g0+ze av>e
7N — 10V @ +10v

(2.17)

We have assumed now that the double exponential Ornstein-Uhlenbeck process can

be observed at discrete time. Hence we have the availability of the observation data

{thaj - 17

,n}, where t; = jh for some given observation time interval length h.

Presumably Theorem can be used to estimate all the parameters 7, 6, p, A, o,
and p by replacing the limits in (2.17)) by their the empirical characteristic functions
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~

Uy o (u) and Wy, (u) defined as follows

~

1 & ,
Uy (u,v) = - Zlexp iuXy ;
- (3.1)

By, 0) = — 3 explinXy, + ivX
u,v) = — ex , ).
2n (U, o plrulXy, + v t]+h)

j=1

For any given pair (u, v) although ¥, ,, (u, v) depends only on u we write it as a function
of u, v for convenience. Since we have 6 parameters, it may be possible for us to choose

appropriately 6 pairs of (uy,vy) such that the 6 parameters can be determined by

((_n N\NT(_m \T_g
( - ) ( - > =Win(ug,vp), k=1,---,m,
n— WUEo n + MUY
<77 —dor(u + U’“eeh)> <90 + 1o (ug + Ukeeh)> (3.2)
n—ioe Mo\ ro +ie oy T -
. ( . ) < N ) = 1112,71(1%, Uk‘) ,
N — 10V @Y+ 10U
k=m-+1,---,6,

\

where m is some integer between 1 and 6. For any given pair (u,v), the empirical
characteristic functions W, ,,(u, v) and ¥, ,,(u, v) are known since we have the available
observation data. Thus is a system of function equations on the parameters 7,
0, v, A, o, and p. With appropriate choice of (u, vx) we believe we should be able to
use to estimate all the above six parameters. However, it is still difficult for us
to argue if this system of equations have a global unique solution or not although this
system of nonlinear function equations ([3.2)) is explicit and appears to be quite simple
as well. We shall assume A = 0 = 1 since we want to deal with the global uniqueness
of the system (3.2). This allows us to have only four parameters: 7, 6, ¢, and p. If
we choose four different values of (ug,vg), we should be able to obtain a system of
four equations for the four unknowns. However, it is still difficult to argue the global
uniqueness for the obtained system. So we are proposing an alternative method. Since
holds true for all (u,v) € R we can obtain explicit formulas for the moments
and then we use the moments to identity the parameters. Since E|X;|™ < oo and
E|XoX,|™ < oo for all m we know (e.g. [15, Theorem 1.1]) that and hold
%1%, g(v,y) = xy.
Thus the system of four equations we choose to obtain the estimators for 7, 8, ¢, and

true for moment functions, in particular, we shall choose f = =,z
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p are
( n

]E[XO] ~ 1, where MHin = E Zth )
j=1
2 1 - 2
E[X?] = pon, where pg, ==Y X7 |
b b n J
=1
, " (3.3)
E[Xi] ~ 13,n, where H3mn 1= — th )
n J
j=1
1 n
E[Xoxh] ~ Han, where Han = E Z Xt]-th-‘rh .
j=1

0
With discrete time observations of the double exponential Ornstein-Uhlenbeck process
X; the right hand sides of (namely, f; .0 =1,2,3,4) are known. The left hand
sides of are functions of the parameters n, 6, ¢, and p. We need first to find
out how they depend on the four parameters explicitly and then solve this system to
construct the ergodic estimators 17,,, @n, ®,, and p, for the parameters. Let us also
emphasize that are not equations for the true parameters but they are equations

for the ergodic estimators.

Now let us find the explicit forms for the left hand sides of (3.2). Let p =
2 and £ = 7. From the identities (2.13)) and (2.10), we see by the expression

"
of moments through characteristic function (e.g. Corollary 1 to Theorem 2.3.1 in
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[25])

E[X,] = 12IE[ o]

1 0u u=0

B & g
- %%(1 —1iup> 6 <1 +1@'U£> 6
2[}9/) Qé“} '

1o

u=0

u=0
= %[pp —{—qSQ] +g[pP—Q§]2

)\[ pp +q€2] +EX]

0
E[X,] = 213 (;ZE[@ " u=0
B ] (o]« oo G- - 09
+22[pp qé]( [ pp +Q€D
% [p/) - q€3] +EXGIE[X,] + 2E[X,] (E[X;] — E[X,]*) ;
EUEG] = g i o (s )] |
0 0 v ’
- 50 Zp(u1+ ve‘eh)> (i +z£(u1+ )

(1 Zpe ”U> <1+Z€ ehf'l])
1— Zp'U 1+Z€U

u=0,0=0
2

— ef’hg [pr + q£2] + % [pp - Q£] 2

Con A
=e th [pPQ + Q§2] +E[X,J?
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An elementary simplification yields (noticing A = 1)

% :pp - qS] = i, (3.5)
% :pp2 + qﬁﬂ = on — My (3.6)
; :pp?’ — qu] = U3n — Hambitn — 2000 (Bom — 11,) (3.7)
%e‘eh [pp2 + Q§2} = Hap = M- (3-8)

Thus we have the explicit form (3.5))-(3.8)) for (3.3]). Now we want to solve this system
of function equations (e.g. (3.5)-(3.8])). Dividing (3.6 by (3.8) gives

. 1 =2,
b, = —1In (%) . (3.9)
h Npay — pi,

Now we use the three equations (3.5))-(3.7]) to solve for the remaining three unknowns
p, p, € (noticing ¢ = 1 — p). Denote

>

fl = Unpl1in,

fo=10, (:u% - :uin) ) (3.10)
O

f3 - E (/'L3,n — H2nMin — 2/.L17n(,u2,n - Min)) '

Thus we have

pp—(1—=p)¢&=fi
pp°+ (1 —p)& = fo (3.11)
pp’ — (1 —p)& = fs

The first equation in (3.11)) yields

iy (3.12)

1—p

Substituting to the second equation in (3.11)) we have

pp° —2fipp+ fi — f2(L—p) = 0.
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Solving for p, we have

T V(L =p)(fa = [?)

. . (3.13)

Recalling o =1, p = % and £ = i we have
fo= 1t = 0" + 46 = (pp — 4€)* = p(1 = p)p* + (1 — Q)& + 2pgpé > 0

so the discriminant defining p (ie (3.13)) is nonnegative. Moreover, since § = é, we
po—=fr __ 1 :
see from (3.12) that =l = which means

Thus in ((3.13]), we should take the positive sign to obtain

,—hvt V(L =p)(f2 — f})
p

. (3.14)

Now we substitute & given by (3.12)) into the third equation in (3.11]) to obtain

. 3
pp* = (1-p) (pf_f) = f5.

This means
fs(L=p)*> =p(1—p)°p* + (f1 —pp)*.

Finally we substitute p in the above equation by (]3.14]) to obtain one function equation

for only one unknown p:

(1—p)° (flp + \/p(l —p)(fo = ff))3 (3.15)

+p° (f1 —fir— \/p(l —p)(fa —ff))s — f3p°(1—p)*=0.

This equation depends on fi, fo, f3 is computed from the observation data of the
double exponential Ornstein-Ulenbeck process. It is still hard to know if this function

equation has a unique global solution or not. However, since it contains only one
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equation for one unknown we can plot the graph of the function (we denote the left-
hand side of by h(p),0 < p < 1) to see if h(p) has a unique solution on the
interval 0 < p < 1 or not. Below is the graph of h(p) for 0 < p < 1 with values of
fi = 0.0895, fo = 0.1025, f3 = 0.0693 computed from the simulated path of double
exponential Ornstein Uhlenbeck process with h = 0.02, n = 1.2, ¢ = 1.6 and 0 = 2.0,
c=A=1.

Graph of h(p) for p in [0,1]

0.00100 1
0.00075 4
0.00050 1
0.00025

§ 0.00000 - 0.54065348, 0)

-0.00025 A
-0.00050 -
-0.00075 A

—0.00100 A

00 02 04 06 08 10
p

Figure 3.1: Function h(p) for p in [0,1]

We summarize the above discussions as the following theorem about the existence

and uniqueness of the parameter estimators and their strong consistency results.

Theorem 3.3.1. From the observation data, we denote puy.,, k = 1,2,3,4 by (3.3)).
Then 0,, is given by (3.9), namely

. 1 n— 13
9, = —1In (%) (3.16)
h Nan — pi,

and fr,k=1,2,3 by (3.10). If (3.15) has a unique solution p, on (0,1), namely,

(1-p,)? (flpn +y/Pul = D) (e~ f%>>3 (3.17)

3
( — fibn — \/pn — D) (f2 — ff)) — fapp(1=p,)* =0
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and if p,, is a continuous function of f1, fa, f3, then (3.5))-(3.8)) has a unique solution

Oy &1y s D) given by (B16), [B.17) and

n Y

o pn (3.18)
& :pnpn - fl
Define
SR R (3.19)
My = = P =75 - :
Pn &

If (0,m, v, p) are the true parameters, namely, if the double exponential process X; sat-
isfies (1.2]) with the above parameters and with A = o =1, and if (3.15) has a unique

solution when f1, fa, f3 are replaced by their limits as n — oo, then when n — oo,

Oy M0y Pras D) — (0,1, 0, p) almost surely.

Proof For any fixed n, it is clear that fi, fa, f3 are continuous function of p .
k=1,2,3,4. So, én,én,pn,pn are continuous functions of ., k = 1,2,3,4. Since
Wien, k = 1,2,3,4 have limits as n — oo, we then see (9 é’n,ﬁn,f?n) have limits

oy satisty (B3)-

p, D) satisfies

~

(9,&,}),]5). However, by the above argument, for each n, 6, é
(3-8). Taking the limits of this system of equations we see (6, €,

\

pp— (1= p)E] = lim g,
L n—o0

e
PPt (1= D)E | = lim [ = 13,] |
) (3.20)

- .3 '
pp3 - (1 - p)g :| = nh—>n;olo [,u?),n — M2 nlin — 2;“1,71(,”2,71 - u%,nﬂ )

Qb>| — N D~ D~

A n o\ 22 .
e pp? + (1= P)E| = Tim [ —pi,]

Ve

Since (3.15) has a unique solution when fi, fo, f,, are replaced by their limits as
n — 0o, by the same argument as above we can show (3.20) has a unique solu-
tion. Obviously, (6, &, p,p) satisfy (3.20). Thus (6,€,p,p) = (6,€, p,p). This means
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that when n — 00, (6n,&,,, P, D) — (0,€, p,p) almost surely and hence we obtain

~

that when n — oo, (0, 7,,, > Dn) — (6,1, 0, p) almost surely. m

Remark 3.3.2. The estimators (@n, én, P, D) defined in the above theorem are called
the ergodic estimators of the parameters (6,&, p,p). The above theorem states that

these ergodic estimators are uniquely determined and are strongly consistent.

Remark 3.3.3. The existence and uniqueness of the equation (3.15)) depends on the

values of fi, fs, f3 which are from the real data. The function

h(p) = (1 - p)* (flp + \/p(l —p)(f2— ff))3 (3.21)

+p? (f1 ~ fwp =\~ D)2 - ff))3 — fsp*(1 = p)*

on the left hand side of equation may have no zero on (0, 1) for some values of fi, fo, f3.
For example, when fi, fo are fixed, then when f3 — oo, then h(p) — —oo, which
suggests that may have no zero for p € (0,1). However, once the data are
given the problem of existence and uniqueness of p € (0,1) can be known by graph
the function h(p). For the data obtained by simulation in Section 6, we graph h(p) in
figure 1 which clearly demonstrates that in this case the equation has a unique

solution in (0,1).

3.4 Joint asymptotic behavior of all the obtained

estimators

In this section, we shall prove the central limit theorem for our ergodic estimators
On = (O, i1s Py b,). Our goal is to prove that /n(©, — ©), where © = (0,7, p,p)
converges in law to a mean zero normal vector and to find the asymptotic covariance

matrix. Let

{g(fc,y) = (g1(, ), 92(, ), g3(x, ), ga(, )",
g(zy) =z, gz,y) =2 gz,9)=2" gi(z,y) =2y
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and

= (p, o, 3, pra) ,  where pp = E[gr(X,,X,)], k£=1,2,3,4.

Denote

HUn = (,ul,n y M2,n 5 U3n 7”4,11) )

where pig,,, kK = 1,2, 3,4 are defined by (3.3).

First, we have the following central limiting result.

Lemma 3.4.1. Let p,, pt and g be defined as above. Then as n — oo, we have

d
Vi, — 1) % N (0, 4). (4.1)
with the 4 X 4 covariance matriz A being given by

A= (o (4.2)

9igj ) 1<ij<4 ’

where ag.4., 1 < 0,7 < 4 will be given in the appendiz.

Proof We shall use the Cramer-Wold device (e.g. [I4, Theorem 29.4]). For any a =
(ay,as,as3,as)’ € R, consider a’p,, = Zizl At By [27, Theorem 2.6] and [26],
the double exponential Ornstein-Uhlenbeck process {X;} is exponentially S-mixing.
Since the exponential S-mixing implies the exponential a-mixing, by the central limit

theorem (e.g. [23, Theorem 18.6.2]) for stationary process with exponential a-mixing,

we have
vna® (s, — 1) 5 N(0,02), (4.3)
Since a € R* is arbitrary, we prove the lemma through the Cramer-Wold device.
|
Denote ) 1
h1(67€7p7p) = 5 _pp - (1 _p>£i| )
1 —
ha(0,€,p,p) = 5 o+ (1 —p)éz] ,
1 -
h3(67€7p7p) = 5 _pp3 - (1 - p)§3i| ;
1 _
| 746, p,p) = 5™ [pp2 +(1 —p)fz] :
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and
(

o>

1 (s piay 3,5 pa) = pn

2 (b1, pio, i3, pra) = pio — 113
(
(

SN0 SN

3\H1, N27M37/~L4) = M3 — M2ty — 2#1(#2 - M%) )

>

| Pa(pon, pio, s, pia) = pia — 113 -

Set
h: (h17h27h37h4)T and B: (517627};’37}34)71-

We compute the partial derivative of h with respect to p to obtain

0_131:1 aﬁlzaﬁlzaﬁlzo
O Opa Ops Opa )
g—ﬁz—wz—m?, g—iz:jsm,~g—fz=1, g—zzzo

We compute the partial derivatives of A with respect to the parameters to obtain

oh, 1 Ohy 1, 5 oy Ohg 1. 5 .3
ap—e(p+£), ap_e(p £), 8p_¢9(p +£°)
Oha 1 gnyo oy O _ 1.~ Ohy _ 1 2
Ohsg 1o o 5y Oha 1 g, oy O _ 1.

o 9(3pp q§”) o " 4° (2pp + ¢€7), o e(pﬂ q)
Ohy 1, ohs 1 3 2 Ohy 1 g

o 9(pp + 2¢¢€), o e(pp 3¢€7), o §° (pp” + 2¢€)
ohy Ohs Ohs —1

ohy -1~ Ohg =1 5 oy Oh3 -1 3 3

Ohs _ =1 gy o on[L
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Let us denote the matrix

Ohi  Oh Ohi O

Ohy  dhy Oy Ohy

_ dp dp & 00
Veh(®) =1 ony ony omy ong

dp dp & 00
dp dp & 00

Then we have the following result.

Theorem 3.4.2. Denote © = (0,1, ,p) and 0, = (9n,ﬁn,¢n,]§n). If p,, is a con-
tinuous function of fi, fa, f3 and if (3.15)) has a unique solution when fi, fo, f3 are

replaced by their limits as n — oo, then as n — oo we have

A

V6, —0) % N(0,Y) (4.4)

where

> = ((Vh)_l vﬁ)TA (Vh)™ Vh. (4.5)

Proof It is easy to see that h, h : R* — R?* defined as above are smooth mappings.
Using these two mappings, we can write the system (3.5])-(3.8) to determine the ergodic

estimators ©,,

h©n) = h(pn) - (4.6)
From Theorem [3.3.1], it follows that A has inverse h~! so that

0, = (h" o h) (i) .

By Lemma |3.4.1] and the Delta method, we see that

N

V6, —0) % N(0,Y) (4.7)
where

Y =(Vu(h o h)TAV,(h™' o h)
- ((Vh)*1 vﬁ)T A(Vh) ' V.
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This proves the theorem. m

3.5 Exact Simulation for the double exponential

Ornstein-Uhlenbeck process

Before we give some numerical simulations to validate our ergodic estimators, in this
section we propose a distributional decomposition to exactly simulate the double
exponential Ornstein-Uhlenbeck process. We follow the idea of [29], where the exact
simulation of Gamma Ornstein-Uhlenbeck process is studied. First, we have the

following result. Without loss of generality we can assume o = 1.

Theorem 3.5.1. Let X; be the double exponential Ornstein-Uhlenbeck process given
by (L1.2). For anyt,t; > 0, the Laplace transform of X;iy, conditioning on Xy is given

by

) ) 1/w 1
E[e’“XWl | Xy] = e uw Xy exp / —hus) / nue " —duvds
v
0 ! (5.1)

0
0 l/w 1

9 1y [ e L]
0 v

1

where w = e~

Proof Recall the ¥ defined by (2.4) and the formula (2.5). We can write the char-

acteristic function of X;, = o fttHl e~ (=947 as

) t+t1
E[e™X1] = exp [/ \I'(Je_e(t“l_s)u)ds}
t

t1
— exp [ / _A<1_E<6<we<tlfs>uyl>>> ds}_
0

Denote ﬁ(z) = E(ezy1>. The Laplace transform of X;,;, conditioning on X, is

t+t1 R
Efet+]x;] ==X oxp | / (1= ioe ) Y ds|
t (5.3)

—e "Xt oxp [/tl —A(l — ﬁ(iae‘esu))ds} .
0
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Let ue=% = x, then for ¢ = 1, we have

—ot;

Ah<1—ﬁ@wf%wds:%[7€ :jl;;ﬁzﬁdn

— (L + 1),
where
%/wi/ (1 — e "™ppe Vdydz
%/u i/ — e pgeVdyda .

The first term I; can be written

1 00 (1 —ius s/w
I 25/ (—s)/ npe” "dyds
0 s
p 00 (1 _ efius) e s 6*775/117
_b d
9/0 1 s 4
e’} 1 _ ,—ius n/w
:g/ —( f )/ e *duvds
0 U]

e—zus)

:B/ME;_;_
5 ), 1

The second term I, can be written as

1/w 1
/ nve " —duvds .
1 v

7’L’LLS

1 0
peb [ e

/ pqe”Mdyds

6d)s/w

—zus) e¢s _

dy

:g/“<1—

e
1 S

0 1— —ius ¢/w
_4q / (A —=e™) / e duds
o). 1/,

:g/“<1—eiw> e
0) .. 1 .

This gives us (5.1]), proving the theorem. =
Since the second exponential factor on the right hand side of (5.1)) is the charac-

teristic function of the compound Poisson process we have

1
dve®? =duds .
v
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Corollary 3.5.2 (Exact Simulation via Decomposition Approach). Let N be a Pois-
son random variable of rate Ah and let {Sy}x=1.2,.. be i.i.d random variables following

a mixture of double exponential distribution

—nef &0
Fs(y) =pne®V e Lsg + gV e L,

(5.4)
Vk=1,2,. ..
where U < U[0, 1] is the uniform distribution on [0,1]. Then
N
Xen = X +3 7 8. (5.5)
k=1

The above formula ([5.5) enables us to simulate the process X; by the exact de-

composition approach.

3.6 Numerical results

To validate our estimators discussed in Section 4, we perform some numerical simula-
tions. We choose the values of p=0.6,n =1.2, p = 1.6 and § = 2.0 (and A = o0 = 1).
With these parameters, we simulate the double exponential Ornstein-Uhlenbeck pro-
cess using the exact decomposition algorithm given by . A simulated sample is
displayed in Figure[3.2l Figures[3.3]and [3.4] plot the assumed values versus the values
by the ergodic estimators. Table 1 lists the approximation of ergodic estimators to
the true parameters as the time becomes larger. It demonstrates that the rate of

convergence is quite faster.
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4 OU type process driven by Double Exponential Jump Process

Path of Process )(t

0 5 10 15 20
Number of steps

Figure 3.2: Simulated sample path for a double exponential Orntein-Uhlenbeck pro-
cess with T=20, Nsteps=50, h=04n=12 ¢ =16and § =20, 0 = =1

Assumed Value of p=0.6 Assumed Value of n=1.2

0470 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of steps Number of steps

(a) Estimated Values of p (b) Estimated Values of 7

Figure 3.3: Assumed versus estimated values

The table shows the estimated values of the parameters p, 1, ¢ and 6 with
different number of steps N and fixed h = 0.02 and T"= Nh

H Time Number of steps p=06 1n=12 ¢=16 0=20 H

1 50 0.8421 1.31677 0.8995  7.4297
2 100 0.7070  1.3477 1.2816  3.6995
4 200 0.74925 1.2498 1.1164 2.9127
6 300 0.6928  1.2532 1.4803 2.6587
8 400 0.6804  1.2571 1.5397  2.3808
10 500 0.6812  1.2204 1.4793 2.2743
12 600 0.5500  1.2089  1.6546  2.2217
20 1000 0.6320 1.1836  1.5078  2.1066
40 2000 0.5635 1.1255 1.7866  2.0631
60 3000 0.6135 1.2112 1.5940 2.0128

Table 3.1: Assumed Values and Estimated values of the parameters with different
number of steps N and fixed h = 0.02 and T'= Nh
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Assumed Value of ¢=1.6 ° Assumed Value of theta=2.0

16 ° *
oo b4

o
Predicted Value of theta
N I T S - T )

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of samples in Thousands Number of steps

(a) Estimated Values of ¢ (b) Estimated Values of 6

Figure 3.4: Assumed versus estimated values

In our theoretical analysis, we assume that A = ¢ = 1. However, in applications,
A, 0 are usually unknown. To estimate A, o, we can introduce two more moment
equations and solve them by numerically to find all parameters p,80,&, p, A\, 0. Here

to show the same, we have also computed the fourth and fifth moments along with

(3.4). This gives us

E[X) = o < B[
6A 4 4 4 2 2 2

= = |po* + 06" | + EIXJ* + 3(EIX)A(EXE — EX,J?)

+ E[X,)(E[X3) - EIE[X,] - 2E[X,)(E[XZ] — E[X.]?)) + 3(E[X2] - E[X,]*)EX]

+ E[X,)(E[X2] - E[X,])

1

~ P oub w—0
= 2200 — 48] + BIXJ +4E[X.P(EIX) ~ EIX.P)

+ 3E[X,]A(E[XY] - EIXZE[X,] - 2E[X](E[XZ] — E[X,])
+ (B[X2) - E[XJ?) GE[X,* + 6(E[XZ] — EIX,[)

+5E[X,] [ [X0) — E[X]" — 3(E[X])*(E[XS] — E[X,]*) — 3(E[X;] — E[X,*)E[X]]

u=0

"]

~ E[X)(E[XZ] - EIX,J?) - EIX,|(E[XS] - EIXZEX,] - 2E[X)(E[X] - EIX,[)]
+ 2(E[X] — EIXE[X,] - 2E[X,)(E[XZ] - E[X,]%) (3E[X] + 3(EIXZ] — E[X,]%))
+ (E[XZ] - EX,J?) [3E[X,* + 6E[X,|(E[XZ] - EIX.]?)

+ 9E[X,|(E[XZ] — EIXJ?) + 3(E[X,]° — EIXZE[X,] — 2E[X,](EXZ] — E[X,]%)]
+ (E[XS] — EXZE[X,] - 2E[X,)(EXZ] - EIX,])(E[XZ] + EX,]%)
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We can solve the following system of equations numerically to obtain the param-

eters p,0,&, p, A,

A [ £_ .
0 pp—q | = Himn
AT 2 + 2] = — 2
0 _pp q€ | = H2m — [y 5,
2X7 |
7 1Pt = 0] = pa = patng = 240 (2 = 11
AT -
7€ " pP” + a8 | = pan — i,
6A T |
7 pp4 + q§4 = M5n — /[117” — 3#1771(#2,71 - M%,n)

- 3,Ull,n<,u3,n — H2nMin — 2,“1,71(,“2,71 - /vbin»
- 3(:“2,71 - :uin)/@,n - /ll,n(/@,n - :uin) )

24\
e [pp5 - qﬁﬂ = Yo — 13 — A3 0 (B2 — 111 )

= 3413 (3.0 — H2mbtin = 20 (fizn — 13 ,))

— (2 = 13,0) (Bh3 1y + 6(p2,0 — 113,))

—5ptin [us,n — 11y = g (pan — 113,

= 310 (H3.0 — Honttin = 21,0 (Hi2n — 117 1))

= 3(p20 — M) 2,0 — Hin(fizn — uin)}

— 230 — pantism — 2t (2 — 13,)) 313 + 3tz — 413,,))

— (p20 = 163) |37 3y + 15p0a 0 (20 — 11,

+3(usn — tonttin — 2010 (Hon — M%n)]

— (3 — Hamban — 210 (p2n — 143 ) (13, + pi2n)
where 5, = >, X, and pg, = D D X, We have numerically estimated the
parameters p, 0, &, p, A by solving first five nonlinear equations from simulated data.

Similarly, we can solve for all the parameters including ¢ numerically using Newton’s

Raphson method [31] and obtain the parameters.
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Time Number of steps p=06 n=12 ¢=16 6=20 I=1.0
H H

1 20 0.8218 1.5087 1.0445 6.061 1.3198
2 100 0.6203 1.5123 1.7117 3.6881 1.6826
4 200 0.5865 1.4139 2.1101 2.9641 1.5514
6 300 0.5619  1.2951 2.2689 2.5361 1.6127
8 400 0.5820 1.3251 1.8637 2.5552 1.3424
10 500 0.5761 1.4336 1.9873 2.3187 1.5333
12 600 0.5591  1.4874 21702  2.2577 1.6498
20 1000 0.5580  1.2395 1.9293 2.1609 1.1983
40 2000 0.6115 1.1146 1.3757 2.0413 0.8927
60 3000 0.5880  1.1839 1.7118 2.0039 1.0807

Table 3.2: Assumed Values and Estimated values of the parameters with different
number of steps N and fixed h = 0.02 and T'= Nh
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Chapter 4

Parameter Estimation for Vasicek
Model with double exponential

jump

In this chapter, we consider the parameter estimation problem for Vasicek model
driven by the compound Poisson process with double exponential jumps. Here we
will construct least square estimators for parameters based on continuous time obser-

vations.

4.1 Introduction

The Vasicek model is a stochastic model used in finance to describe the evolution
of interest rates over time. It is a single-factor, continuous-time model that assumes
interest rates follow a mean-reverting process. The model has found wide application
in fixed-income valuation, risk management, and interest rate derivatives pricing. For
more details refer to [34]

The model is expressed in the form of the following stochastic differential equation
(SDE),

dX, = (pn — 0X,)dt + dL, (1.1)
Xo=0 (1.2)
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The first term (u — 6.X;)dt represents the drift term. The parameter 6 gives the
reversion speed of the stochastic component. The mean-reversion in finance can be
interpreted as the fluctuation in the stochastic price is around the mean and the prices
only peak temporarily. These peaks can be explained as a result of unforeseen cir-

cumstances such as outages or shortages due to supply and demand.

This leads to the exploration of parameter estimation problems for the Vasicek
model as it is of great significance in econometrics. when p = 0, the process
becomes the well known Ornstein-Uhlenbeck process. The parameter estimation prob-
lem of the Ornstein-Uhlenbeck driven by compound Poisson process with double ex-
ponential jumps has been discussed in Chapter 3. Parameter estimation for fractional
Vasicek models and Ornstein Uhlenbeck process using least square estimators has
been extensively studied in [32] and [33].

In this chapter, we want to discuss the parameter estimation for 6§ and p when the

Vasicek model is driven by compensated Lévy process (f/t,t > 0) , where

N¢
Li=) Y,
=1

and (Y,,n > 1) is a sequence of independent real-valued random variables with the

following probability density function

fy(x) = pne” " Ip>0) + qpe Ip<q (1.3)

where the parameters p, ¢, n, ¢ are positive and p + ¢ = 1.
Also Ny is the Poisson process with rate A > 0, independent of {Y;,i =1,2,...}.

Here the compensated Lévy process is a compensated double exponential compound

Poisson Process L; is given by
L; = L, — ME[Y/] (1.4)

Note that L; is a martingale w.r.¢ filtration {Fi}i>o0-
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4.2 Preliminaries

Let us have a probability space (€2, F,P) with a right continuous and increasing fam-
ily of o-algebras {F;}:>o and L; be the compensated double exponential compound
Poisson Process. We aim to study the parameter estimation for the Vasicek model
driven by the compensated Levy process, which is given by the following stochastic

equation

dX, = (u— 0X,)dt + dL, (2.1)
X, = 0. (2.2)

Here we assume p > 0 and # > 0 and Xy = 0 a.s. Our goal is to construct least
square estimators under continuous observations.Let X, denote the differentiation of
X, with respect to t. We will find the estimators by minimizing the following contrast

function

T

©(6. 1) = min [ 5, ~ (u - 0Pt 2.3)
e 0

Upon minimizing the contrast function we obtain expressing with integrals of the form

fOT X;dX;. Such integrals can be interpreted as Young integrals.

Young [36] introduced the Riemann—Stieltjes integral as follows. Suppose that
f,9:10,7] — R are Hélder continuous functions of orders a € (0,1) and g € (0, 1)
with o + g > 1 for fixed T' > 0. Then the Young integral fOT fsdgs exists. If a = 3,
a,B € (0,1) and ¢ : R? — R is a function of class C*, the integrals Jg—fj(fu,gu) df,
and fg ‘g—‘;( fus gu) dgy, exist in the Young sense, and we have the following change of
variables formula

to to
O(furg1) = D for 90) + / a—?(fu,gu)dfﬁ / a—ﬁ(fu,gumgu, 0<t<T. (24)

refer [36] for more details.
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4.3 Least Square Estimators ;. and 6

Let X, denote the differentiation of X, with respect to ¢. Then, upon minimizing the
contrast funtion ®(0, 1) we get

T
B(6. 1) =i [ 1, — (- 0,)Pa (3.)
o Jo
T . T . T . 2
:min(—Qu/ Xtdt+29/ XtXtdt~|—/ X2t (3.2)
O, 0 0 0
T T T
+/ p?dt+/ 92X3dt—2/ uGXtdt>. (3.3)
0 0 0

Minimizing w.r.t to p will give us

o T T T
O 0 0 0

and minimizing ®(0, 1) w.r.t 6 gives us

8<I> T . T T
——2/ XtXtdt+29/ det—2u/ X,dt =0
86 0 0 0

Therefore, the minimum is attained when

O [T Xdt+ Xy
and . .
b — Xr fo Xdt — Tfo Xd X, (3.5)
T Xede— () Xty |
Upon substituting O we get
X [T X2dt — [T XydX, [ Xdt
fip = fO t fO fO ) (36)

T[] Xzt — (f] X,dt)?
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The solution to the SDE (2.1)) can be written as

Xt:

=

t
(1—e ) + / e =)L, = X1 (1) + X,(2).
0

Here X5 (t) satisfies
dXo(t) = —0X,(t)dt + dL, .

It is easy to see from the expression of X (¢) that from 6 > 0, X, is asymptotically

stationary and ergodic and as t — oo, we have

lim 1 /TXl(t)dt =25 E[X(00)] =

t—o0 T

=

Also we have,

lim + /T X2(t)dt X2 E[XE(00)].

t—o0 T
Since,
E(X7) = E(X{(t) +2E(X:i(H)Xa(t) + E(X3(t))
2 t
= % +0+/0 e 200y s,
we get
L ’ —20(t—s)
fim o [ XR@d = Jim (§+0+/0 e uds)
2
a.s 1% v
T
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where v = AE[Y}] is the Lévy measure of L. Further, We can write

Xy

T
|
0

=

t
(1 _€9t)+/ efé(tfs)dzs
0

Tru t ~
[—(1—6—9t)+ / e‘e(t‘s)dLs} dt
0 0

S—

e -1 Tl et bui
T+ T] + e "e™dL,dt
0 0

e’ -1 Y
T + T] + e "dte™dL,
0 u
-0T __ 1

H
0
H
0
T
1 -
%[T+€T]+ E(G—GU_B—QT)GGudLu
0
—0T_1 L T ,—0T 0u _
%[T+€T]+7T—/ ¢ 96 dL,
0
T ougT
1 By —oT N_foedLu
A R R e

Therefore we can write the integral as

We have

62 0

/OTXtdt:%(uT—%JrzT) +e9T[ﬂ—M]
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. Xr [ Xdt — T [ X,dX,
T[] Xzdt — ([ X,dt)?
Xp [ Xedt =T [ Xi[(1n — 0X;)dt + dL,]
T[] X2dt — (f, Xdt)?

Xp [ Xodt — Ty [} Xodt +T0 [ X2dt — T [} X,dL

T [ Xt — (f] X,dt)?
76 [} X2dt — T [ XidL, + X [} Xedt —Tp [, X,dt

T[] X2dt — (f, Xdt)?
76 [ X2dt — T [ XidL; + (4(1 — e ) + [ e ®T=dL,) [T X,dt — Ty [, Xdt

T[] Xpdt — ([ X,dt)?

76 [} X2dt — T [ XidLy + (% — pT — Le=®T 4 0T [Ye=0udL,) [ Xdt

T[] X2dt — (f, X,dt)?

From (3.7 we can write,

o TO[f! XPdt—T [ X, dLy + (Ly — 0 f) X,dt) [, X.dt
T[] Xpdt — ([ X,dt)?

Ly [} Xedt =T [} X,dL

T [, Xpdt— (f) Xudt)?
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Similarly, we can evaluate ji as,

Xp [P X2dt — [} X,dX, [, Xdt

T[] X2dt — (f, X,dt)?
Xp [ X2dt — [\ Xodt [} X[(p — 0X,)dt + dLy]

T [ Xpdt — ([ X,dt)?
—u(fy Xedt)? + [ X2dt[Xp + 0 [ Xedt] — [ XedL, f; Xedt
T[] X2dt — (f) Xdt)?

Ly ] X2dt - [ Xdt [ XdL,

T [y Xpdt—(fy Xudt)>

This allows us to write 67 and i as the following

b — o Ly [} Xydt — T [} X,dL
T[] Xxpdt— ([ X.dt)?
%T I ;(tdt B fOT);tdf,t
9 * foT;ftzdt _ (foT;(tdt)Z .
7 T T T 7
b = Ly [y X7dt — [; Xedt [; XedLy

T[] X2dt — (f, X,dt)?

Lo Ji X2dt B ST Xpdt [ XedLy
T T T T
/"L —"_ T T
Jo Xidt (fo Xedtyo
T T

JF xzat
T

S xdt
T

Clearly we know limp_, < oo and limp_, < 00

~ T ~ -
We want to find the limit of LTT and Jo XedLe as t = oco. To find the limit of L—TT

T
R
and M as t — oo, the following result is needed. Let K; be the compensated

Poisson stochastic integral process given by:

K= [ t / ol ) (¥(ds.dy) = i)t € R

of the predictable integrand g(s,y). Then the following extension of BDG inequality
holds,

63



Lemma 4.3.1. [35] Consider the compensated Poisson stochastic integral process

(Ki)ier+ of a predictable integrand g(s,y). Then for all p > 2, we have

B((xi) = 200 (%) [ [ lats. st
[logzp] 1 (3.8)

MR ([ e o))

where

Ki = sup |K|.

s€[0,t]

The proof is given in Lemma 2.1[35]. The above results allow us to write

t
E sup |K [P < Cp]E/ l9(s,y)[Pv(ds, dy)

- ([ d(g(s,w?’“u(ds,dy))w] .

Applying this inequality to K; = L, = f(f I yN (ds, dy) yields

[logy p]—1

- Z CrpE

T
B swp [KP < GE [ [ lvids.dy)
0 Ro

0<s<T
2k
(/ / y u (ds, dy) ) ]

Ro

In case of the compensated double exponential compound Poisson Process L; where
L; = Ly — ME[Y], we have the Lévy measure v(ds, dy) = dsv(dy) = dsAE[Y1], and

[log, p]—

+chp

for any p > 2.

sup [ |y|[Pr(dy) < oo

520 JRy
Then
[logs p]—1 .
E sw |[KJ) < GT+ Y Cuy [TP/Q] < o172,
0<s<T Pt
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when T is large. Now consider

P(K;/n=n") = P((K;/n)’ 2n™")
B ((K;/n)’]

1 1
nPAn—2P — (GNP

IN

IN

So when A < 1/2; we can choose p such that

ZP(K;/TL >n ) < Zn_(%_’\)p < 00. (3.9)
n=1 n=1

Then by Borel-Cantelli lemma we have

lim K /n=0.
n—oo
Since
KT < K[*T}—l—l 5
this implies
K| o K [T] 41
T~ —0.
P L [ I
This gives us )
lim 27—
T T
Using Lemma 3.3.1 [35], we also have
. fOT Xtdz/t
S
Hence, we have,
Ly [ Xudt =T [ X,dL
lim TfOT : {;’ ) (3.10)
T=oo T [T X2dt — ([, X,dt)?
This gives us
lim 67 5 0 (3.11)
T—o0
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JF xedL
T

=0 and limp_,

SIS

Similarly, since limy_,

. Ly [ X2dt — [ Xdt [} X,dL, 0
Tooo [ X2dE— (f) Xidt)?

which gives us

lim jir =2 4
T—o00
Thus we have the following result,

Theorem 3. The estimators 67 and [ given by

) - Ly [} Xudt — T [} X,dL
T [} X2dt — (f, Xdt)?

Ly [ X2dt — [ Xdt [ X,dL,

= 0, we gave

fir = pt
! T 7 X2dt — (f) X,dt)?

converge a.s. to 6 and pu respectively as T' — oo.
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Chapter 5

General Product formula of

multiple integrals of Lévy process

In this chapter, we derive a product formula for finitely many multiple stochastic inte-
grals of Lévy process, expressed in terms of the associated Poisson random measure.
The formula is compact. The proof is short and uses the exponential vectors and

polarization techniques.

5.1 Introduction

Stochastic analysis of nonlinear functionals of Lévy processes (including Brownian
motion and Poisson process) have been studied extensively and found many applica-
tions. There have been already many standard books on this topic [1, 8, [9]. In the
analysis of nonlinear Wiener (Brownian) functional the Wiener-It6 chaos expansion to
expand a nonlinear functional of Brownian motion into the sum of multiple Wiener-Ito
integrals is a fundamental contribution to the field. The product formula to express
the product of two (or more) multiple integrals as linear combinations of some other
multiple integrals is one of the important tools ([3]). It plays an important role in
stochastic analysis, e.g. Malliavin calculus ([3, [7]).

The product formula for two multiple integrals of Brownian motion is known since
the work of [10), Section 4] and the general product formula can be found for instance
in [3, chapter 5]. In this chapter we give a general formula for the product of m

multiple integrals of the Poisson random measure associated with (purely jump) Lévy
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process. The formula is in a compact form and it reduced to the Shigekawa’s formula
when m = 2 and when the Lévy process is reduced to Brownian motion.

When m = 2 a similar formula was obtained in [4], where the multiple integrals is
with respect to the Lévy process itself (ours is with respect to the associated Poisson
random measure which has better properties). To obtain their formula in [4] Lee
and Shih use white noise analysis framework. In this work, we only use the classical
framework in hope that this work is accessible to a different spectrum of readers.

The product formula for multiple Wiener-It6 integrals of the Brownian motion
plays an important role in many applications such as in U-statistics [5]. We hope
similar things may happen. But we are not pursuing this goal in the current chapter.
Our formula is for purely jump Lévy process. It can be combined with the classical
formulas [3, 5, [7, [10] so that it holds for general Lévy process (including the continuous
component).

This chapter is organized as follows. In Section 2, we recall some preliminaries
on Lévy process, the associated Poisson random measure, multiple integrals. We also

state our main result in this section. In Section 3, we give the proof of the formula.

5.2 Preliminary and main results

Let T' > 0 be a positive number and let {n(t) = n(t,w),0 <t < T} be a Lévy process
on some probability space (€2, F, P) with filtration {F;,0 < ¢t < T'} satisfying the
usual condition. This means that {n(¢)} has independent and stationary increment
and the sample path is right continuous with left limit. Without loss of generality,
we assume 77(0) = 0. If the process n(t) has all moments for any time index ¢, then
presumably, one can use the polynomials of the process to approximate any nonlinear
functional of the process {n(t),0 <t <T}. However, it is more convenient to use
the associated Poisson random measure to carry out the stochastic analysis of these
nonlinear functionals.

The jump of the process n at time t is defined by

An(t) = n(t) —n(t—) if An(t) #0.

Denote Ry := R\{0} and let B(Ry) be the Borel o-algebra generated by the family of
all Borel subsets U C R, such that U C Ry. If U € B(Rg) with U C R and t > 0, we
then define the Poisson random measure N : [0, 7] x B(Ry) x Q — R, associated with
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the Lévy process n by

N(tU) = Y xu(An(s)), (2.1)

0<s<t

where xy is the indicator function of U. The associated Lévy measure v of 7 is defined
by
v(U) :=E[N(1,U)] (2.2)

and the compensated jump measure N is defined by

N(dt,dz) := N(dt,dz) — v(dz)dt . (2.3)

The stochastic integral [, f(s, 2)N(ds, dz) is well-defined for a predictable process
f(s,z) such that [ E|f(s,z2)|*v(dz)ds < oo, where and throughout this chapter we
use T to represent the domain [0, 7] x Ry to simplify notation.

Let

L™= (LA(T, A x )" C L2 (T, (A x v)")

be the space of symmetric, deterministic real functions f such that
||f||%2’” = / f2(t17 21y 7tn7 ZN)dtll/(dzl) e dtnl/(dzn) < 00,
']TTL

where A(dt) = dt is the Lebesgue measure. In the above the symmetry means that

f(tlvzh“' 7tiazi7'” 7tj7zj7"' 7tnazn)

:f(thzla"' )tjuzja"' 7tiazi7”' atnuzn)

~2n . . s
forall 1 <iv<j<n. Forany f € L the multiple Wiener-Ito integral

L(f)= [ f(ti,z1,"  tn, 22)N(dt1,d21) - N(dt,, dz,) (2.4)

T’l’b
is well-defined. The importance of the introduction of the associated Poisson measure
and the multiple Wiener-1t6 integrals are in the following theorem which means that
any square integrable nonlinear functional F' of the Lévy process n can be expanded

as sum of multiple Wiener-1t6 integrals.
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Theorem 5.2.1 (Wiener-Itd chaos expansion for Lévy process). Let Fr = o(n(t),0 <
t <T) be the o-algebra generated by the Lévy process 1).
Let F € L*(Q,Fr, P) be an Fr measurable square integrable random variable.

Then F admits the following chaos expansion:
F=> I(f), (2.5)
n=0

where f, € ﬁ2’n,n = 1,2,--- and where we denote 1y(fo) := fo = E(F). Moreover,

we have

1F sy = 3 0l (2.6)
n=0

This chaos expansion theorem is one of the fundamental results in stochastic anal-
ysis of Lévy processes. It has been widely studied in particular when 7 is the Brownian
motion (Wiener process). We refer to [18], [7], [8] and references therein for further
reading.

To state our main result of this chapter, we need some notation. Fix a positive

integer m > 2. Denote

Y o= Yo={i=(i1, ia), =2, ,m, 1 <i; <+ <iy <m}
(2.7)

where o = [i] is the length of the multi-index i (we shall use «, 3 to denote a natural
number). It is easy to see that the cardinality of Y is k,, := 2™ — 1 — m. Denote
i= (iy,- - ,1x, ), which is an unordered list of the elements of Y, where iz € Y. We
use [ = (liy, -+ 1., ) to denote a multi-index of length ,, associated with Y, where
li,, 1 < o < Ky, are nonnegative integers. [ can be regarded as a function from T to

Z, ={0,1,2,---}. Denote

Q:{Zﬁ:Y—>Z+} andforanyf,ﬁeﬂ,
(2.8)

X(E,170) =30 e, [liocX{ioc contains k} + M. X i, contains k}] :

The above y on the right hand side refers to the indicate function. Denote x(f, n) =
(x(1,1,7),--- ,x(m,[,7)). The conventional notations such as |I| = I, + - + 1

iy 0
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I'=1;!---1; ! and so on are in use. Notice that we use [;, instead of [; to emphasize
that the l;, corresponds to i;. For i = (i1, - ,ix),j = (j1,---,Jp) € Y, and non

negative integers n and v denote

~

S frr e fu) = / (s 21), e+ ) (5o ) 6 o
([0,T]xRo)*

Ofia(s1,21), 7+ (s, 20), -+ )dsav(dz) - -

dsyv(dz,) f1 ® @5}11@3 @ f @ fm,
(2.9)

and

Vjv(fla"' 7fm) = fjl((slazl)v"' 7(SV7ZV)7"')®

®fj[5((81721)7 T 7(SV7ZV)7 : )fl ® -
(2.10)

where & denotes the symmetric tensor product and }jl means that the function f;, is
removed from the list. Let us emphasize that both ®; and V¥ are well-defined when
the lengths of i and j are one. However, we shall not use ®} when |i| = 1 and when

Jl =1 Vi¥(fr, -, fm) = f ® -+ ® fm (namely, the identity operator). For any two

elements [ = (§,,--- &, ) and @ = (p5,,- -+, pt5.,.) in Q, denote
.7 byl ol -
R i R M
noo_ Ky Mgk Hip & LS Hjkpm
V= e S @Y @11)

Now we can state the main result of the chapter.

Theorem 5.2.2. Let qy,--- ,qy be positive integers greater than or equal to 1. Let

fi € (Z2([0,T] x Ry, dt @ v(d2)))®™ , k=1, m.
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Then

= _ H;: 1Qk'
o= > ST

k=1 icQ | J SN Hﬁ 1y T (e — i))!
X(lvftﬁ)<q1
X(m, 1) <gm
I L (B e @ T e (L p ) (2.12)
lql+I7] = Ix (L) | N i i, Jidem 1> vSmi) ‘

where we recall
gl =g+ +gn and |[x(I,7)] =x(1,07)+ - +x(m, 7).

Remark 5.2.3. The above formula looks sophisticated and it may be understood
in the following manner. There are two types of contraction operation involved in
the above formula. The first one is the integration contraction: we choose certain
subset of functions f;,---, f;, and we choose pu variables (throughout the chapter
for simplicity we call a pair (s, z) as one variable) in each of these chosen functions
and set them to be the same: (s,21),--, (s, z,) and we integrate with respect to
these variables (with respect to the product measure of dsv(dz)) as in (2.9). The
second one is the simple contraction without integration: we also choose certain
subset of functions fj,, -+, f;, and let v variables in all of these functions be the
same: (S1,21), -, (Sy,2,), as in (2.10). We just concatenate the remaining variables:

The concatenation of function g;(z1, -+ ,Zpn,), ***, gm(T1, -+ , Ty, ) MeANSs

gl(xl,la T axl,nl) o 'gm(xm,la e axm,nm) .

All the variables not integrated out with respect to dsv(dz) will be integrated with
respect to the Poisson random measure. The summation in the formula (2.12)) is over
all the possible two contraction operations. See the following examples for

more explanation.

Remark 5.2.4. If the index 77 does not appear, then there will be no operator V. In
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this case the formula (2.12)) becomes [I8], formula 5.3.5], which is the product formula

for finitely many multiple integrals of Brownian motion.

Example 5.2.5. If m = 2, then k,, = 22 — 1 — 2 = 1. To shorten the notations we
can write ¢4 = n, g = m, fi = fu, fo = Gm, loy = 1, np, = k. Thus, X(l,f,ﬁ) =
X(2,1,7@) =1+ k and |g| + |ii] — |x(I, @) =n+m+k—2(1+k) =n+m—2l — k.
Hence the formula becomes the following. If

fu € (L2(0,T) x R, dt @ v(dz)))™"

and
G € (L2([0,T] x Ry, dt ® v(dz)))™" |
then
nlm! .
klEZ,
k-+l<mAn

where Z, denotes the set of non negative integers and

In ® kiGm (81,21, 5 Sntm—k—21> Zntm—k—21)
= symmetrization of l (81,215 s Sty Zn—tst1, Y1, -+ 5t Yi)
T
gm(81, 21y 3 Sky Rky Sn—l+1 """ 5 Bn—l+15 """,
Sntm—k—2l Zntm—k—20> L1, 21, -+, b, z)dt v(dzy) - - - dtiv(dz).

(2.13)

Example 5.2.6. If m = 3, then x,, = 23 — 1 — 3 = 4. The set

Y3 = {11 = (172)7i2 = (273)ai3 = (1’3)714 = (17273)}
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We also write

Ly =la, by, =las, li; = lis, i, = liog,

My = kl? y Hjo = k23 y Hjz = k13 s Hjy = k123 .

Thus,
x(1, Z; 1) = lia + lis + liaz + k12 + k13 + K123,
x(2, Z) 1) = lig + log + liog + k12 + ko + kia3,
X(3, Z 1) = lig + log + liog + k13 + ko + kia3,
and

lq| + |7i| — |X(Z: n)| = ¢+ q+qs— 2lis — 2log — 2115 — 31123
—Fk19 — kog — k13 — 2k103 .

Hence we have

Loy (Fi) g (f2) 15 (f3) (2.14)

_ Z ¢1!q2!qs!

3 —
Lij iy >0 L2133 193 k12 Ky 3 higs ey 23! HTZI(%’ —x(i,1,1))!
X(0,17)<q; i=1,2,3

L@ ( ®7 @ VI (f1, f, f3)> : (2.15)

-

The above contraction operator ®i~ ® VJﬁ is given as follows:

= symmetrization of f1(T12, 713, 7123, S12, S13, S123, S1)
Tl

f2(7“12, 23,7123, 512, 523, 5123, 82)f3(7“13, 23,7123, 513, 523, 5123, 33)

v(dif2)v(diys)v(dras)v(diaes) (2.16)
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where (denoting |I| = l12 + 13 + loz + l123 and |k| = k1o + k13 + ko + k123)

T2 = ((s51,21), ", (Sta» 212)) »

713 = ((Stia415 211241) s+ 5 (Stiathigs Zhiatins)) 5

793 = ((Stiattis+1s Zhiotiis+1) 5+ 5 (Stiathiatlags Ziathig+ias)) »
123 = ((Shia+hatias+15 Zlaothis+last1) > (Sl 21)) s

12 = ((Sj1s Sj+1)s 5 (Suass 2112 »

S13 = ((Sjthro+1 Zitkiot1) s 0 s (Sll+kiathugs 2l +hio+his ) »
S23 = ((Sjtfthro+has+1s 2l +hiathig+1) 5"

(S\l|+k12+k13+k23 5 Z\l|+k12+k13+k23)) )

S123 = ((S|l\+k12+k‘13+k23+1a Z|l|+k’12+k13+k23+1> LA (S|l|+|k’\7 Z|”+|k|>> )

for i = 1,2,3, §; represents the remaining variables in f; and there are ¢; — x(1, 7, 1)
variables (we count every pair (s,z) as one variable) in §;. In (2.16)), the variables

marked as 7 are integrated out. The total number of variables appeared in all § is

lq| + |7t| — |X(Z; n)| = ¢+ q+qs— 2lia — 2log — 2115 — 31123
—Fkig — kog — ki3 — 2k193

and they will be integrated with respect to the Poisson random measure as a multiple

integral.

Remark 5.2.7. When 7 is the Brownian motion, the product formula (2.13) is known
since [10] (see e.g. [18, Theorem 5.6] for a formula of the general form (2.13))) and is
given by

nAm

(fn Z l' n'm‘ — l)!jn+m—2l <fn ® lgm) .

n—1)!

(2.17)

It is a “special case” of (2.12)) when k = 0.
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5.3 Proof of Theorem [5.2.2

We shall prove the main result (Theorem [5. of this chapter. We shall prove this by
using the polarization technique (see [18, Section 5.2]). First, let us find the Wiener-

[t6 chaos expansion for the ezponential functional (random variable) of the form

(3.1)

where p(s, z) € pP=1= L*(T,v(dz) @ A(dt)). An application of It6 formula (see
e.g. [8]) yields

_1+// eXp pls, 2)) — }N(dsdz)

Repeatedly using this formula, we obtain the chaos expansion of Y (T") as follows.

Elpls,2)) — exp{ /T p(s, )N (dz, ds) — /T (e —1—p(s,z))y(dz)ds}

o0

AT (3.2)

n:0
where the convergence is in L?(2, Fr, P) and
fo = fu(s1,21, , Sny 2n) = (eX — 1)®" = H (ep(s“zi) — 1) ) (3.3)

=1

We shall first make critical application of the above expansion formula ({3.2)-(3.3)).
2

For any functions pg(s,2) € L (in what follows when we write & we always mean

k=1,2,--- ,m and we shall omit k£ =1,2,--- ,m), we denote

pr(ug, s, z) = log(1 4+ ugpk(s, 2)), (3.4)
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From (3.2)-(3.3]), we have (consider u; as fixed real numbers)

o0

1
g<pk U,k,S,Z Z_ TlI fk‘n ) (35)

n.
n=0

where

n

1 n
= [Tcerstewmos — 1) = pe = T palsi, 1) (3.6)
Uk 52

=1

It is clear that

m o0 1 1
HE(Pk<Uk73>Z)) = Z ﬁ 'ug?[tn(fl,ql)”'[qm<fm,qm)
k=1 q1, Qm:Oq q

(3.7)

where fi .., k=1,--- ,m are defined by (3.6). On the other hand, from the definition
of the exponential functional (3.1]), we have

[T &0 (ue.s,2)

k=1

1”__1 {/pk uk,s,z)N(dz,ds)} (3.8)
eXp{ — / <€p’“(u’“’s’z) — 1 — pe(ug, s, z))y(dz)ds}

= exp Zpk uy, 5, 2)N(dz, ds)

T p=1

_/(Zk 1 Pk (Uk;5,2) 1—Zpkuk,sz> dZ)dS}

T

exp { / ST prunss) Z PRs?) L 1)y(dz)ds}
T

k=1

= A-B (3.9)

where A and B denote the above first and second exponential factors.
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The first exponential factor A is an exponential functional of the form (3.1f). Thus,

again by the chaos expansion formula (3.2))-(3.3)), we have

|
A= Zaln(hn(ul,m Um)) (3.10)
n=0
where
Bty -+ ) = [ J(eXFmromesezd — 1) (3.11)
=0

By the definition of ¢, we have

Zpk(ukasiazi) = logH(1+ukpk(Si,Zi))-

k=1 k=1

m ®n
ho(ug, - um) = ([H(l + urpr) — 1])

k=1
21), ,(Sn,2n) H [H(l + ukpk(5i7 Zz)) 1],

i=1 Lk=1

I

w
<
£
=

where ® denotes the symmetric tensor product and Symy ) denotes the

51,21), »(Snyzn

symmetriization with respect to (sq,21), -, (Sn, 2,). Define

S:{j:(jh?]ﬁ)? levam7 1§.]1<<]|3§m}

The cardinality of S is |S| = R, := 2™ —1. We shall freely use the notations introduced

in Section 2. Denote also

Uy = Ujy =+ Ujg pj<8,2):pjl(S,Z)"'ij(S,Z> (fOI‘j:(jl,"- 7][3)65)
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We have

jes |ii|=n
_ n' u'ujl . ‘qucm ®'U‘J1 ® ® ®‘u~]nm
- Z [ . irm Pin Py,
ILLJl :U’ka

where (L : S — Z, is a multi-index and we used the notation

rd i Mj~
ub = ut

: N N
j J1 JRm pj = by ® QP

Jrm

Inserting the above expression into (3.10) we have

> 1 ; Hiz A . Ou.
SR SR SF TP

TP
n=0 pjy +-tpy, =n i Hisn

(3.12)

Now we consider the second exponential factor in (3.9)):

m

B = exp { / (6275 1ok (ur,8,2) Zeﬂk(uka&z) +m— 1>I/(d2)d8}
T k=1
Zul/plsz (dz) ds}

iey

where Y is defined by (2.7) (which is a subset of S such that [j| > 2). Thus,

B = .<Zu1/plsz (dz)d )

ieYy
1 L L, i
— Z Z TR I (/ pil(s,z)y(dz)ds)
n=0 1, +-+l,, =n 1 em T

. ( /T B (5, z)y(dz)ds) e , (3.13)
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where [ € Q is a multi-index. Combining (3.12)-(3.13), we have

= 1
1 i

AB=Y ¥ IR

u.!...u.~ !li!"'li !Jl JiEm
n,n=0 ,uj1+"'+ujgm =n M1 JEm 711 rm
lil 44 n
li Uiy,
Uy Uy Bi,j,li,ﬂj ? (3'14)

11 1k,

1km

where

L
Biyj,luuj = (/Tpil(S,Z)V(dz)ds)

liHm SR ~ ~ 2 s
(/ Di, (S Z)V(dz)ds) ]n(pﬁlhl @ .- ®p(-8i/h"m) ) (3.15)
T

Jim

To get an expression for Bjj,, ., we use the notations (2.9)-(2.10) and (2.11). Then

S VEp ™ D)) (3.16)

ANBORDY

To compare the coefficients of u?il ---urm we need to express the right hand side of
(3.14) as a power series of uy, -+, Up. For k =1,---  m denote

X(k, 1, i) = Z lioc]{i“ contains k} + Z “J'rs]{jﬁ contains k} (3.17)

1<a<tm 1<B<im

Combining (3.9)), (3.14) and (3.16]), we have

© u(fl ceaydm ® ®
Z l my Lo (pr™) -+ Loy, (P™™)
0 ql'...qm.
g1, sqm

> X
B L

n,i=0  pjy ety =n i Hin Hi.,

lig oot =n

el ) =g k=1,...;m
(B VI e o)
n i1, ik, 31y sdam Y2 s P .

(3.18)
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Comparing the coefficient of u{" - - u%", we have

m

l... |
Rqr\ __ qi: qm:
Hqu(pk )= Z Z Llol Tl !
_ : - Jp— i e, M Mg,
k=1 ‘]17.”7‘]kmesx(k’lvﬁ):qk’kzlv“ym
i1, ik, €Y
T L [T
1 Km Rm q1 qgm
]'fl<®i1,~~~ e & Vhy... Jim (pl »" s Pm )) : (319)

Notice that when |j| = 1, namely, j = (k),k = 1,--- ,m, then Vj“(fl,--- Jfm) =
fi® - @ fm. We can separate these terms from the remaining ones, which will satisfy
lj| > 2. Thus, the remaining multi-indices j’s consists of the set Y. We can write a
multi-index { : S = Zy as £ = (n@), - ,Nm), 1), where 7 € V. We also observe
qr = )Z(kj, ) = ng + X(k,z,ﬁ). After replacing [ by 7, gives (2.12). This
proves Theorem for f;, = pfq’“, k=1,---,m. By polarization technique (see e.g.
[18, Section 5.2]), we also know the identity holds true for fi = pr1®- - Q@ Ppr.g,
Prg. € L*([0,T] x Ry, ds x v(dz)), k = 1,---,m. Because both sides of are
multi-linear with respect to fr, we know holds true for

Vi
fk::ch,zpk,1,£®-..®pk7qk,g, k=1,---,m,
=1
where ¢, are constants, prwe € L*([0,T] x Ro,ds x v(d2)), k = 1,--- ,m, k' =

1,--- ,qrand £ = 1,--- | vg. Finally, the identity (2.12) is proved by a routine limiting

argument.
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Chapter 6

Application of double exponential
Ornstein Uhlenbeck Process in

Finance

The Orntein Uhlenbeck process has been introduced as a more sophisticated model
for Brownian Motion that captures the effect of friction in the motion (Uhlenbeck and
Orntein 1930)[46]. This process has since been widely used in evolutionary biology,
physics, and finance.

In this chapter, we briefly mention some other applications of the Ornstein Uhlenbeck
process driven by the double exponential compound Poisson process| refer to Chapters

3 and 4] in the area of Finance.

6.1 Pair Trading strategy with OU process

A pair trade refers to a trade that consists of matching a long position with a short
position for two stocks that have a high correlation value. Pair trading was introduced
by research scientists in Morgan Stanley [37]. The idea of using this strategy is to
reduce the overall exposure to the market risk. For more applications and studies
of pair trading strategy, refer to [38]. In this section, we will briefly discuss the
application of the double exponential Ornstein Uhlenbeck process in the modeling of

pair trading strategy.
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Given two stocks U and V with prices Sy (t) and Sy (t) respectively, the spread is

&:m(iﬁo—m<%%g,tzo. (1.1)

This spread dynamics can be modelled using double-exponential Ornstein Uhlenbeck

given by

process where the process X, is given by the following Langevin equation :

dX, = (u—0X,)dt +dZ,, te[0,00), Xo=1. (1.2)

with mean reversion speed # € R and mean-reversion level © € R. The solution to
the SDE ((1.2) can be written as

t
X, =ze % + %(1 —e ) ¢ / e =947,
0

Details on double exponential and hyper-exponential jump-diffusion processes have
been discussed in [40], [I7]. Here the double-exponential Ornstein Uhlenbeck process
is considered due to its effectiveness in approximating the stock data better since it

also captures the sudden jumps in stock prices.

The stochastic process which is a double-exponential compound Poisson process is

given by
N
Zt = Z Y; )
=1

where (Y,,,n > 1) is a sequence of independent real-valued random variables with

distribution f given by

fy(x) = pne” " Ip>0) + qpe Iz, (1.3)

where the parameters p, q, 1, ¢ are positive and p + ¢ = 1. Here N, is the Poisson
process with rate A > 0, independent of {Y;,i = 1,2,...}. The constants p and ¢ are
the probabilities associated with an upward and downward jump respectively.
The moment-generating function of double exponential jump Y is given by

Ui ¥

E[e“Y] = + .
e ] i
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The moment-generating function of the compound Poisson process is given by

E[e"%] = MPas et b (1.4)
The goal is to maximize the expected return in a unit time. To do so, consider the
entry and exit points a and b(a,b € R) and it is safe to assume that a < b W.L.O.G.
The first passage time 7, is defined as the time over which the return takes place,
ie,

Tho = inf{t > 0|X; > b}

for Xy = a. The entry and exit of the position is made when the spread crosses the
threshold. This implies that the trading party enters at ¢ty = inf{t > 0|X; < a} and
exits for the first time when ¢; = inf{t > 0|X; > b}. Let R be the function of the
return that depends on the entry and exit signal point a and b and also the cost of
transaction ¢ > 0. This gives an optimization problem
R(b,a,c

max ﬁ . (1.5)
This leads to the problem of approximation the distribution of the first passage time
The- The analytical solutions of the first passage time has been discussed in [41].
To calculate the first passage time on real stock data, we can fit the Ornstein-
Uhlenbeck process driven by a double-exponential jump by looking at the time series
historical data of the pairs of stocks. Applying parameter estimation techniques from
Chapter 3 and Chapter 4 can help to estimate the parameters p and 6 by observing
the real data at discrete time events and can be used further for benchmarking the

model and backtesting.

6.2 OU short rate process

Modeling stochastic interest rates is very important for the banks. There have been
extensive studies and literature available that discuss and bifurcate between the for-
ward rate models and short rate models [refer to [42],[43]].

For modeling short rates, the more extensively used models are the Vasicek Model,
the Hull-White model, and Cox-Ingersoll Ros(CIR)[44]. In this section, the short rate

process modeled by the double exponential Ornstein Uhlenbeck process is discussed.
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Let (2, F,P) be a probability space with a right continuous family of increasing o-
algebras (F;,t > 0) satisfying the usual condition ([19]). Let @ be a risk-neutral
probability measure and 7" > 0 be fixed time. Then the short rate process {R;}:cjo,r]
is given by

R, = a(t) +zn:Xf (2.1)

where a(t) if a differentiable real-valued function and XF is modelled using double-

exponential Ornstein Uhlenbeck process given by :

dXF = —0, XFdt + 0dZF, te[0,00), XF=2,>0. (2.2)

Proposition 6.2.1. ([{J]) For0 <s<t<T,

1— —Ag(t—s)
Eq(R:|Fs) = a(t —i—Z (Xke t=8) 4 g — ‘3)\ / zduk(Z)> ;
k Dy

" 52(] — e 2Mk(t—s)
Varg(Ry|Fs) = ’“( IE )/ 22 dv(2),
k=1 k Dk

where the short rate process Ry satisfies ([2.1] m, v 18 the Lévy measure associated with

the compound Poisson process and Dy, = e}, €}] with 0 < €}, < €}..

For more details on the Proposition we refer to [45]. Parameter estimation tech-
niques from Chapter 3 for XF can be used to estimate the expected value for the short

rate process and also to estimate the variance for the short rate process R;.
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Appendix A

Matlab codes to the simulation of

Ornstein Uhlenbeck process in

Chapter 3

The following code was used to simulate the paths of double exponential Ornstein

Uhlenbeck process using Exact simulation via the decomposition approach.

function S_avg= 0U_jump_Mr23(p,q,eta,phi,Nsteps,lambda,
Npaths ,T,sigma,theta)

%S=zeros (Nsteps+1,Npaths) ;

Suml=zeros (1, Npaths) ;

Sum2=zeros (1, Npaths) ;

Sum3=zeros (1, Npaths);

Sumé4=zeros (1, Npaths) ;

Sumb=zeros (1, Npaths) ;

Sum6=zeros (1, Npaths) ;

sl=zeros (1, Npaths);

s2=zeros (1, Npaths);
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s3=zeros (1, Npaths) ;

s4=zeros (1, Npaths);

sb=zeros (1, Npaths) ;

s6=zeros (1, Npaths);

n=zeros (Nsteps+1,Npaths) ;

for k=1:Npaths
for i=1:Nsteps+1

n(i,k)=poissrnd(lambda*(T/Nsteps));

end

end

path=zeros (1, Npaths);
path(1,:)=0;

for k = 1:Npaths
for j=1:Nsteps

hpath(j+1,k)=-theta* path(j,k)*T/Nsteps+sigmax*(
doubleexpol(p,q,eta,phi,n(j+1,k))-doubleexpol
(p,q,eta,phi,n(j,k)));

path(j+1,k)=exp(-theta*x(T/Nsteps))* path(j,k)+
doublexp(p,q,eta,phi,n(j+1,k),theta,T,Nsteps)

hpath(j+1,k)=exp(-theta*(T/Nsteps))* path(j,k)+
sigma*((exp(-theta*(T/Nsteps)) -1) *(
doubleexpol(p,q,eta,phi,n(j+1,k))))/theta;

s1(1,k)=s1(1,k)+path(j+1,k);

s2(1,k)=s2(1,k)+path(j+1,k) "2;

s3(1,k)=s3(1,k)+path(j+1,k)"3;

s4(1,k)=s4(1,k)+path(j,k)*path(j+1,k);

91



s5(1,k)=s5(1,k)+path (j+1,k) "4;
s6(1,k)=s6(1,k)+path(j+1,k)"5;
Suml (1,k)=s1(1,k)/Nsteps;
Sum?2 (1,k)=s2(1,k)/Nsteps-(Sumi(1,k)"2);
Sum3(1,k)=s3(1,k)/Nsteps-2*Suml (1,k)*Sum2(1,k)-Suml
(1,k)*(s2(1,k)/Nsteps);
Sum4 (1,k)=s4(1,k)/Nsteps-(Suml(1,k)"2);
Sumb(1,k)=s5(1,k)/Nsteps-Suml (1,k) "4-3*x(Suml(1,k)"2)
*Sum2 (1,k)-3*Suml1 (1,k)*Sum3(1,k)-Sum2(1,k)*3*Sum?2
(1,k)-Sum1 (1,k)*Sum2(1,k);
%»Sumb (1,k)=s5(1,k)/Nsteps-Suml (1,k) "4-3*x(Suml (1,k)
"2)*(Sum2 (1,k)-Suml1 (1,k) "2) -3*xSuml (1,k)*(Sum3(1,k
)-Sum2 (1,k)*Suml1 (1,k)-2*xSuml (1,k)*(Sum2(1,k)-Suml
(1,k)°2))-(Sum2 (1,k)-Suml (1,k) "2) *3*xSum2(1,k) -
Suml (1,k)*(Sum2(1,k)-Sumi (1,k)"2);
Sum6b (1,k)=s6(1,k)/Nsteps-Suml (1,k) "5-4*Suml (1,k) ~3%*(
Sum2 (1,k)) -3*Suml1 (1,k) "2*xSum3 (1,k) -2*xSum2(1,k)
* (3*xSuml (1,k) "2+6*Sum2(1,k)) -3*Suml (1,k)*Sumb(1,k
)-Sum3(1,k)*(3*Suml1(1,k) "2+3*xSum2(1,k))-Sum2(1,k)
* (3*Suml (1,k) "3+6*Suml (1,k)*Sum2(1,k)+9*xSuml (1,k)
*Sum?2 (1,k)+3*Sum3(1,k)) -2*xSuml (1,k)*Sumb(1,k) -
Sum3 (1,k)*Sum2 (1,k) ;
end
end
plot (0:T/Nsteps:T,path);
fprintf (' The average sum is %s\n',Suml);
Sum4 ;
Si=sum(Suml) ;
S2=sum (Sum?2) ;

92



S3=sum (Sum3) ;
S4=sum (Sum4) ;
S5=sum (Sumb) ;
S6=sum (Sum6) ;
A=S1/Npaths;
B=S2/Npaths;
C=83/Npaths;
D=S4/Npaths;
E=85/Npaths;
F=S56/Npaths;
S_avg=[A,B,C,D,E,F];

S_imp=S_avg;

disp('The sum S1/Npaths is:')

disp(S1/Npaths)

disp('The sum S2/Npaths is:')

disp(S2/Npaths)

disp('The sum S3/Npaths is:')

disp (S3/Npaths)

disp('The sum S4/Npaths is:')

disp(S4/Npaths)

disp('The sum S5/Npaths is:')

disp (S5/Npaths)

disp('The sum S6/Npaths is:')

disp (S6/Npaths)

title('0U type process driven by Double Exponential Jump
Process ')

xlabel ('Time ')

xlabel ('Number of steps')
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ylabel ('Path of Process X_t')

%%% 0U_jump(.5,.5,1.1,1.1,20000,1,20,1000,1.2,1.4)
%0U_jump(.5,.5,1.1,0.9,20000,1,20,1000,1.2,1.4)
%0U_jump_Sep(.6,.4,1.2,1.6,80000,1,100,1000,1,2)
%0U_jump_Sep(.65,.35,1.25,1.65,80000,1,100,1000,1,2)

The following code is used to generate steps sizes of the compound Poisson process

using a mixture of double exponential distribution

function sum= doublexp(p,q,eta,phi,Nsamples, theta,T,
Nsteps)
r=rand (1, Nsamples) ;
Y=zeros (1,Nsamples) ;
u=rand (1,Nsamples) ;
sum=0;
h=T/Nsteps;
for i=1:Nsamples
if r(i)<q
Y(i)=(1/(phi*exp(theta*h*u(i))))*log(r(i)/q);
elseif r(i)==q
Y(i)=0;
else

Y(i)=(1/etaxexp(thetaxh*u(i)))*log(p/(1-r(i)));
end

sum=sum+Y (i) ;

end
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Appendix A

Covariance matrix A

In this section we give the expression of the covariance matrix A in Lemma [3.4.1] It
is very sophisticated to express the entries of this matrix in terms of the parameters
of the equation (2.1)). So, we keep them as expression of the invariant probability

measure of Xy and that of Xj;,. First, we compute o, .

Tgrgr = Cov(Xo, Xo) + 2 [Cov(Xo, X;)]

j=1

= E(X3) - E(X,)?+2

~r

[B(0,X0) — B(K,)E(K) (0.1)

1

J

= E(X) ~ B(X,)? +2 3 [E(XX) - [BCG)E ],

~r

1

J
where we used E(X;;,) = E(X(). Now we compute c,,,.

Ogogy = Cov(X5, X3) + 2 Z[Cov(Xga X2)]

j=1

- (0.2)
—E(X}) - E(X2)® +2 ) [E(XEX;%) — E(X2)?) .
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Similarly, we have

Ogags = Cov(X3,X3) +2 ) [Cov(X5, X3,)]

Jj=1

— E(X8) - E(X?)? +2Z[ E(X0X;n°) — E(X7)?
and

Ogags = COV(X()X}L, X()Xh) +2 Z[COV(XOX}L, thX(jJrl)h)}
j=1

= E((XoX1)?) — E(XoX,)?

+2 Z [E(XoXhthX(jﬂ)h) - E(Xoxh)E(thX(jH)h)] :

j=1
Og14, 1s computed as follows.

Tgrgs = Cov(Xo, X2) + Z [Cov (X, X3,) + Cov(X3, X;1)]

7j=1

— B((X,)?) — Y +Z[ (XoX2,) — E(Xo)E(X2,)

j=1

+ E(X3X;) - E(X(%)E(th)} -

In similar way we can get

Og19s = Cov(Xo, X3) + Z[COV(XO, X?h) + Cov(X3, X;1,)]

J=1
0

— B((Xo)") — E(Xo)E(X3) +Z[ (XoX3,) — E(Xo)E(X3,)

+E(X3X;0) — E(Xé)E(Xm}
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and
g = Cov(Xo, XoXp) + Y _[Cov(Xo, XX (je1y) + Cov(Xjn, XoXy,)]
j=1

= E(X;X,) ~ E(X0E(XoXs) + Y [EXoXX(s1n) — BRo)E(X;nX410)

+ E(XoXpX;n) — E(X;)E (XOXh)]

(0.7)
Og,gs 15 similar to og,g,.
Tgogs = Cov(XE, X3) + > "[Cov(XE, X3,) + Cov(X3, X3,)]
7j=1
_ 5y _ 3 S 253 2 3 (0.8)
= E((X0)") E(Xp) + Z (XoX55) — E(X)EX,)

+E(X{X3,) - E<x3>E<x§h>} .

Finally, we have
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= COV(X%, X()Xh) + Z[COV(X%, thX(j+1)h) + COV((th)2, XOXh)]
j=1

— E(X}Xa) - E(XYEXoXn) + > [EXEXXs41) — EDE((X5nX(s41n)
7j=1

+ B(XoX6X2,) — E(X2,)E(XoX, }
(0.9)

and
Ogsgs = Cov(X3, XoXp) Z [Cov (X3, XX j119) + Cov((X;n)3, XoXp))]

= E(X§X,) ~ EKDEXoXa) + Y [EKIK X run) ~ EKDE(X;nX410)
7j=1

+ E(XoX,X5,) — E(XoX5) }
(0.10)
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