
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

A review of cryptography as applied to computer networks

by

Freddy Lap Kei Yeung f c)

A thesis submitted to the Faculty o f Graduate Studies and Research
in partial fulfillment o f the requirements for the degree of Master of Science

in

Applied Mathematics

Department of Mathematical and Statistical Sciences

Edmonton, Alberta

Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0-494-08180-5

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I’edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN:

Our file Notre reterence
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L'auteur conserve la propriete du droit d’auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant.

■ + i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis is a survey about the network security between a sender and a

receiver. We w ill address some o f the possible network security problems and their

solutions. The security problems can be classified as an internal attack or an

external attack. The internal attack only involves the sender and the receiver, while

the external attack involves a third party. In the first chapter, we w ill discuss the

four security sendees and the related algorithms. In the second chapter, we w ill

discuss the next generation o f cryptography algorithms which may be implemented

in the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

M y girlfriend. Kapo Wong, and my mom. Cindy Lam. love me and ha\e made

me happy while I was researching and writing the thesis. Without their support. I

th ink I cannot finish my thesis.

I also thank my supervisor, loanis Nikolaidis. and my co-supervisor. Andy Liu.

fo r their patience, kindness, and support.

Finally. I would like to thank the Department o f Mathematical and Statistical

Sciences for the financial support that I received through a leaching Assistantship.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents:

C H A P TE R 0: N E TW O R K S E C U R ITY AND CR YPTO G R APH Y

A L G O R IT H M .. i

0.1 I n t r o d u c t io n 1

C H A P TE R 1: C O N F ID E N T IA L IT Y 6

1. 1 Encryption /D e c r y p tio n 6

1.2 B ru te fo rc e a t ta c k s ... 8

1.3 P u b lic Key c r y p to g r a p h y .. o

1.4 The D if f ie -H e llm a n (-M e rk le) A lg o r i t h m14

1.5 The RSA A lg o r i t h mIV

1.6 The E l l ip t ic C u rve A lg o r i t h m ... ' 1

1.7 H y b r id S y s te m ... i

C H A P TE R 2: IN T E G R IT Y 34

2.1 Independence fro m c o n f id e n t ia l i t y 34

2.2 H a s h 34

T3 MD5 M essage D igest A l g o r it h m .. ' s

T4 Secure H ash A l g o r it h m4!

2.5 M A C 48

T 6 H M A C ... 4V

2.7 In t e r n a l /E x t e r n a l Error Co n t r o l ..

C H A P TE R 3: A U T H E N T IC A T IO N ..

3.1 A u th en tic atio n Re q u ir e m e n t56

3.2 Passw ord 57

3.3 Z e ro - K n o w le d g e P ro o fs 58

3.4 C h a lle n g e -response a n d m a n - in -the- m id d lh a t t a c k s 62

3.5 Pu b lic K ey I nfrastructures (P K I)... 66

C H A P TE R 4: N O N R E P U D IA T IO N 72

4.1 D ig ita l Signatures R e q u ir e m e n t ..

4.2 D irect D ig ita l Sig n a t u r e 73

4.3 RSA for D ig ita l Sig n a tu r e 74

4.4 D ig i ta l S ig n a tu re S ta n d a rd .. 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 D ig ital S ignature A l g o r it h m .. 76

4.6 A r bitrated D ig ita l Sig n a t u r e ...7S

C H A P T E R 5: T H E N E X T G E N E R A T IO N O F A L G O R IT H MSI

5.1 In tr o d u c tio n .. s i

5.2 D N A c o m p u t in g ..SI

5.2.1 Introduction...S2
5.3 D N A CRYPTOGRAPHY USING RANDOM ONE-TIME-PAD... N6

5.4 Q u a n tu m c o m pu tin g a n d Q u a n tu m c r y p to g r a p h y ...87

5.4.1 Introduction... nn

5.5 Q u a n tu m K ey D is t r ib u t io n ...yo

C H A P T E R 6: D IG IT A L R IG H T S M A N A G E M E N T (D R M)93

6.1 In t r o d u c tio n .. 93

6.2 Exa m p le of D R M ..95

6.3 Waterm ar kin g of D R M ...99

C H A P T E R 7: C O N C L U S IO N ... 101

A P P E N D IX I: T H E M C E L IE C E A L G O R IT H M ...103

A . l In t r o d u c tio n ..!03

A .2 L inear Co d e ..104

A P P E N D IX I I : M C E L IE C E A L G O R IT H M ...106

B IB L IO G R A P H Y ..I l l

L ite r a tu r e ...! i i

On lin e Res o u r c e ..112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 0: Network Security and Cryptography Algorithm

0.1 Introduction

We live in the age o f communication. Most transactions nowadays are

conducted by parties in remote locations, linked by an electronic network. W hile this

mode o f operation does provide unrivaled convenience, it also presents a number o f

problems. For instance, faulty equipments or noisy channels may cause errors in the

transmitted messages. In the Appendix, we give an account o f how error-correcting

codes may address this problem. In this thesis, we are mainiy concerned with

d ifficu lties arising from dishonesty o f human beings.

The basic scenario involves two parties who are communicating with each

other via network connection. O f course, information Hows in both directions. In

this thesis, we shall always identify the sender as Alice and the receiver as Bob. l or

convenience, we may assume that the communication is a sequence o f messages

where each message has one intended recipient. (See Figure l)

Figure 1

i Alice Public Bob

• Message M — • ■

T

M

There are two kinds o f security risks, internal and external. In the former case.

A lice and Bob may be working against each other. In the latter case, we assume that

they work together against a malfeasant third party. In this thesis, we shall identify

the potential v illa in as Eve. (See Figure 2)

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2

Alice i Eve Bob

; Observe

! Message M |________________ _ ▼

7

M

Let us consider first external security risks. What do Alice and Bob want to protect

against Eve? There arc three main areas: [5]

1) Confidentiality.

A lice and Bob want to ensure that the information in the computer system and

transmitted information are accessible only to them.

2) Integrity.

A lice and Bob want to ensure that only they are able to modify the transmitted

information.

3) Authentication.

Bob wants to ensure that the transmitted information does come from Alice.

Accordingly. Eve can mount attacks on these areas: [5. pg 7]

1) Interception.

This is an attack on confidentiality. Eve simply gains access to the transmitted

information. (See Figure 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3

| Alice |
; j

Message M

Eve

▼

M

Bob

7

M

2) Modification.

This is an attack on integrity. Eve does not only gain access to but also tampers

w ith the transmitted information. She can change the values in a data file o f a

program so that it performs differently, or change the content o f the message

being transmitted. (See Figure 4)

Figure 4

Alice

; Message M j

Eve Bob

▼

M

: Message M ’ i

T

M'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Fabrication.

This is an attack on authenticity. Eve sends Bob a message purported to be from

Alice. In some instances. Eve may simply replay earlier valid messages from

Alice. (See Figures 5 and 6)

Figure 5

Alice I Eve

Message M : -------

T

M

Figure 6

Eve Bob

Message M
▼

M

Attacks are d ifficu lt for the system to prevent, as it requires plnsicui protection

o f the whole communication path from one end to the other at all limes. 1 low ever,

it is feasible to prevent the success o f such attacks. The interception attack does

not involve any alteration o f the data. Such attacks are called passive attacks, and

it is d ifficu lt lo r the system to detect them. The focus is on making the intercepted

information unintelligible. The modification and fabrication attacks, on the other

hand, are active attacks. Here, the focus is on detecting them and recovering from

4

Alice

Bob

T

M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any disruptions or delays caused by them.

The protection against interception is dealt with in chapter 1. The detections o f

modification and fabrication are dealt w ith in chapter 2 and 3. In chapter 4. we w ill

turn our attention to internal security risks. When Bob receives a message from

A lice (w ith authentication) asking him to perform a certain task. Bob would like to

be able to produce a copy o f the message later and prove that Alice did send it. lit

other words. Bob wants non-repudiation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Confidentiality

Confidentiality is the property that the information remains unknown to

unauthorized parties. Usually, the information is a sequence o f bits o f length m

which needs to be protected for some time period. In this wav. only Alice and Bob

can read the information and no other unauthorized party (such as Eve) can read the

information during that time period.

Note that it may be possible for the information to eventually become known

after a substantially long period o f time. For example even state secrets become

public after several decades, or in other cases the information is o f no value in the far

future (for example the confidentiality o f a banking transaction that took place fifty

years ago is o f little significance). We are therefore interested in maintaining

confidentiality for a period o f time as long as possible, at least long enough to nm

compromise the value o f possessing such information (versus not possessing if).

1.1 Encryption/Decryption

The principal mechanism to protect the confidentiality o f message m for a time

period is encryption. One o f the first known algorithms transforms plaintext

(Original Information) into ciphertext (Unreadable Information) is called Caesar

Algorithm [1 1. The Caesar A lgorithm works as the following:

The encryption function E(x.y) encrypts the plaintext message .v with key

v to become ciphertext. Assume each plaintext corresponds to its ow n ciphertext

letter. For example:

Plaintext a b c d c f g II I

Ciphertext D E F G H 1 .1 ! KL L

Assign a number to each plaintext letter in sequence. Start with plaintext

letter "a " equal to 0 and letter “ b" equals to 1 and so on for the rest o f the letters.

There w ill be 26 assigned values. From the example, we can see that the plaintext

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

letter "a” has a corresponding ciphertext letter "D “ which is the letter 3 positions

down in the alphabet. In this example the key is 3. Likewise "b " maps to "H '\

That is. the number o f positions by w'hich we shift is the key.

The general form o f the encryption function for Caesar's Algorithm is

£(.v. v) = .Y + _y(mod 26). where ,v is the plaintext and y is the key. Suppose we

wish to encrypt the word "dog" using the key y = 3. The ciphertext w ill become

"GRJ". A lice and Bob use the same key in order to encrypt the plaintext into

ciphertext in both directions.

The transfonnation from plaintext to ciphertext is called encryption while the

transformation from the ciphertext into plaintext is called decryption. I'sing

Caesar's Algorithm in our example, i f Bob receives the ciphertext "GRJ". he needs

to use the key with the corresponding decryption function to recover the plaintext.

In general, the decryption function is D(C.y) = x where C is the ciphertext and

y is the key share w ith Alice. For Caesar's Algorithm, the decryption function

w ill be D(C.y) = C - y(mod 26). So i f the ciphertext is "GRJ". Bob should be

able to derive "dog" by applying D(C.y) = C - 3. since the key is y = 3. (See

Figure 1.1)

Figure 1.1

Eve Bob

GRJ
y-3

T. v

D(GRJ.3)

dog

7

Alice ;

M=dog K=3
I ;

 T. y

i E(dog,3) j -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where:

M = A message where Alice wants to send to Bob

K - A key which share by A lice and Bob share.

E (x .y) - The encryption function. We assume not only Alice and Bob

know it. but Eve also knows it.

D (C .y) = The decryption function. We assume not only Alice and Bob

know it. but Eve also knows it.

Caesar's algorithm uses the same key for encryption and decryption. This is a

major weakness: i f any third party retrieves the key. then he or she can perform both

the encryption or decry ption function.

One o f the most important assumptions in modem cryptography is Kerckhofis's

Principle [6. pg 4]: In assessing the security o f a cryptosystem, one should always
assume the enemy knows the method being used. Hence, the strength o f the

cryptosystem should be based on the key and not on the algorithm. Consequent!},

we always assume that Eve knows the algorithm that is used to perform encryption.

1.2 Brute force attacks

Once the ciphertext is made public, we should always assume that live can get

hold o f the ciphertext and decrypt it by applying all o f the possible decryption

methods. The easiest method for Eve to decrypt the ciphertext is to find the ke\

w hich can decrypt the ciphertext. Brute force attack is a form o f attack whereby

Eve tries to evaluate all o f the possible key combinations which can decrypt the

ciphertext. Therefore, the size o f the key itse lf and the size o f the family o f

bijections (related key) become important to take into account.

We w ill consider an example encryption standard and related brute force attacks.

The DES (Data Encryption Standard) [5. pg 49-56] algorithm was created by IBM in

the early 1970s. The algorithm involves five functions: an initial permutation < IP).

a function labeled / u . the function (SW) which invoKed permutation and

substitution o f the two halves o f the data, the function again, and finally a

permutation function that is the inverse o f the in itial permutation (/ / ’ '). The

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ciphertext is created as follow:

C = IP"' (f l2(S W (fkl(IP{ A /)))), where M is the plaintext.

The value k\ and k 2 are the sub-key created by the permutation function and

the circular left shift operation on the key bits. The decryption function is the

inverse o f the encryption function by using the same key:

m = ip - \ j] , (sw (fk:(ir(C))))

The algorithm reportedly had no known exploitable cryptographic weaknesses,

was using a 56-bit key for encryption at that time when it was announced. In 1 977.

DifTie and Heilman announced that the key was too short and was searchable in a

reasonable time [7]. In 1994. Wiener presented a key search machine which can

search the whole space o f the DES key in 7 hours [9|. The key search machine cost

was one m illion dollars at that time. In between 1997 and 1908. Electronic Frontier

Foundation did actually built a highly parallel DES key search machine out o f

custom chips for 250K dollars. This new key search machine broke the DES 11-2

challenges in just 56 hours [4. pg 64], In November 2001. Bound and Clacton J4.

pg 64] announced the much cheaper FPGA - based DES - cracking machine that can

recover all the DES keys o f an IBM 4758 running IBM 's own CCA cash machine

software. This attack combines a smart DES key search with newly found

weaknesses in the CCA software. The machine costs 1000 dollars and can break

the cryptosystem in just a couple o f days.

From the last example, we can see that even i f the algorithm has no weakness,

when the technology improves, the cryptosystem w ill become weaker because iarger

key spaces can become searchable. The ciphertext should always assume to be

viewable after some time period. The brute force attack should always be

considered as an upper bound o f the searching time when designing the

cryptosystem.

1.3 Public Key cryptography

In the security sense, it becomes harder and harder to deliver the key to another

party. Usually, the encryption requires a key to encrypt the plaintext before it is

transmitted. The decryption requires a key to decrypt the ciphertext into the

plaintext. Depending on which algorithm wc use. we can ciassily the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cryptosystems into two categories:

1) Symmetric Algorithm

In this type o f algorithms, both the encryption and the decryption use the same

key. I f any third party knows the key. they can perform the encryption and

decryption like A lice or Bob.

2) Asymmetric A lgorithm (Public Key Algorithm)

In this type o f algorithms, the encryption and the decryption use different but

related keys. It is easy for the third party to obtain one key bin not the other

one even w ith the knowledge o f the encryption or decryption function.

Caesar's Algorithm and DES use the same key for encryption and decryption.

So these algorithms are classified as symmetric. On the other hand, the RSA is one

o f the most popular algorithms which use a pair o f keys, a public key and a private

key. for encryption and decryption. One o f the keys is called the public key

because this key is announced to the public. The other one is called the private key

because only the proper owner knows the key and no other users should know it.

This algorithm also indicates that with the knowledge o f the public key and the

algorithm, it is s till not feasible for other users to find the private key. In th is thesis,

we w ill focus on asymmetric algorithms rather than symmetric algorithms.

One o f the major improvements from symmetric to asymmetric algorithm

cryptosystems is that asymmetric algorithms use the public key for encryption while

using the private key for decryption. (Therefore, the key distribution for

asymmetric cryptosystem is as important as symmetric cryptosystem.) Even i t ' two

parties have not communicated before, they still can use the asymmetric

cryptosystem to achieve the needs for confidentiality. The public key cryptography

was introduced by D ifile and Heilman in 1976 [8]. In the meantime, they have also

announced that the algorithm cannot satisfy all the conditions they have described

and can be broken by some attacks. However the algorithm is still a key concept

for the later development. A couple o f years later. Rivest. Shamir, and Adlem an

(known as RSA) introduced the RSA algorithm [lOj which has all the properties

which DilYie and Heilman described. The public key cryptography is asymmetric,

involving the use o f two separate keys.

iO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before we discuss the details o f public key cryptography, we should mention

several common misconceptions concerning public key encryption. The first

misconception is that public key encryption is more secure from cryptanalysis than

conventional encryption. In fact, the security o f any encryption scheme should

depend on the length o f the key and the computational work involved in breaking a

cipher. There is nothing in principle about either conventional or public key

encryption that makes one superior to another from the point o f view o f resisting

cryptanalysis. The second misconception is that public key encryption is a

general-purpose technique that has made conventional encryption obsoieie. fo r

some situations, because o f the computational overhead o f current public key

encryption schemes, it seems unlikely that conventional encryption w ill he

abandoned. Finally, the key distribution is trivia l when using public key encryption

compared to conventional encryption. We w ill demonstrate how a

man-in-the-middle attack can occur when two parties communicate. The key

distribution for both conventional encryption and public key encry ption may involve

a central agent, and the procedures involved are neither simpler nor any more

efficient in either one o f the two approaches.

The concept o f public key cryptography evolved from an attempt to attack two o f

the most d ifficu lt problems associated with conventional encryption. The first

problem is about key distribution. As we know, conventional encryption requires

two communicants who share the same key for encryption and decryption. The

second problem is about "digital signatures". I f the use o f cryptography was to

become widespread, for instance, not only in military situations but also for

commercial and private purposes, then the electronic messages and documents

w'ould need the equivalent o f signatures used in paper documents.

Before we introduce any o f the public key algorithms. let us look at the overall

framework for the public key cryptography. The public key algorithms rely on one

key for encryption and a different but related key for decryption. These algorithms

have the follow ing important characteristic: it is computationally infeasible to

determine the decryption key given only the knowledge o f the cryptographic

algorithm and the encryption key. In addition, some algorithms also exhibit the

fo llow ing characteristic: either o f the two related keys can be used for encryption,

while the other one is used for decryption. Figure 1.2 illustrates the public key

encryption process which can provide the confidentiality and digital signatures

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

together.

Figure 1.2

Alice Eve Bob

M Pb

E(M,Pb)
Sa

c ;
. T .

E(C,Sa)
C' Pa

▼ T

D (C ’.Pa) Sb

C
T

D (C ’.Pa)

▼

M

Where.

M = A message which A lice wants to send to Bob.

Pa - Alice's public key.

Sa ~ Alice's private key.

Pb = Bob's public key.

Sb = Bob's private key.

E (x .y) = A encryption function. Given a message .v and a key r . the

function can generate a ciphertext corresponding to the key.

D (x .y) = A decryption function. Given a ciphertext .y and a ke> v . the

l'unction can generate a message corresponding to the key.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) Each end system in a network generates a pair o f keys which is used for

encryption and decryption o f messages that it w ill receive. According to the

above figure. Alice w ill have a public key Pa and a private key Sa . Bob

also w ill have a public key Pb and a private key S b .

2) Each system publishes its public key. Thus Alice's public key Pa and Bob's

public key Pb w ill be placed in a public register. The private keys Sa and

Sb are kept secret by A lice and Bob respectively.

3a) I f A lice wants to send a message m to Bob. she encrypts the message by using

Bob’s public key Pb to generate the ciphertext C by the encryption function

E(M . Pb) = C .

3b) Once the message is encrypted and becomes a ciphertext, the system encrvpts

the ciphertext C with A lice ’s private key Sa by the encryption function

E(C.Sa) = C ".

4a) When Bob receives the message, he decrypts it with Alice's public key Pu to

get C by the decryption function D(C” . Pa) = C . No other sender but Alice

could have sent the message, since it can only be decrypted by using Alice's

public key Pa and the corresponding private key is held in secret by Alice.

4b) Once Bob gets the ciphertext C . he uses his own private key Sb to deciypt

the ciphertext C and no other recipients can decrypt the ciphertext because or.b

Bob possesses his own private key. Therefore. Bob performs /)•;('.Sb) -- .»/ to

recover the original message M .

In this approach, it is assumed that all participants have access to public ke\s.

Private keys are generated locally by each participant to provide the needs for

confidentialities and the digital signatures. They must never be distributed. At

any time, i f a system changes its private key. it needs to publish the companion

public key to replace its old public key.

No matter which algorithm we use in the cryptosystem, the algorithms must

fu lf il l the fo llow ing conditions:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) It is computationally easy for a party to generate a key pair, a public k e y Pk
and a private key S k .

2) It is computationally easy for a sender A. who knows the recipient's public key

Pk and the message to be encrypted. A/ . to generate the corresponding

ciphertext C :

E(M .Pk) = C . where Pk is the public key and A/ is the message to

send.

3) It is computationally easy fo r the receiver B to decrypt the resulting ciphertext

by using the private key Sk to recover the original message:

D(C.Sk) = D(E{M. Pk).Sk) = M . where Sk is the private key and ,\/ is

the original message.

4) It is computationally infeasible for an opponent, who knows the public key. to

determine the private key.

5) It is computationally infeasible for an opponent, who knows the public key and

a ciphertext. C . to recover the original message. A/ .

1.4 The Diffie-Hellman (-Merkle) Algorithm

The first and the simplest public key cryptographic algorithm to understand is

the Diffie-Hellman algorithm |8]. It is named after its inventors W hitfield Diffie.

Martin Heilman, and Ralph Merkle. who first announced the results in 1976. ! he

algorithm is based on the simple set o f exponentiation rules:

{BXY = B (Xmy) = B {y' x) = (B 'Y

Definition:

u - A prime number.

B - The generator for the algorithm.

The generator B and the prime number u must satisfy the following

condition: For every number n between 1 and / / - I inclusive, there is

a power K o f B such that n = B f'm o d u .
Sa - A lice's secret key

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sb ~ Bob's secret key

Pa = A lice's public key

Pb = Bob's public key

K = A session key

PKG(x.B.u) = B x mod u = Px modz/

= The public key generating function. Given the randomly generated

secret number x the function PKG(x.B.u) w ill generate a public k e y

Px.

SKG{ Px.y. u) = Px' mod 11 = B x"y mod u = K mod u

= The session key generating function. Given the pub lic key P x . a

secret number y . and the prime number u . The function

SKG(Px.y.u) w ill generate a session key K .

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.3

Alice Eve Bob

Sa B u

. ▼ ▼ . . T

PKG(Sa,B,u)
Pa

Sb u

V T T

SKG(Pa.Sb,u)

K

Sa u

▼ . ▼ T

SKG(Pb,Sa,u)

Pb

Sb B u

▼ T T

PKG(Sb.B.u)

T K

In Figure 1.3. A lice and Bob want to communicate with each other confidentially

by using DHM algorithm. First. A lice and Bob need to choose a generator B and a

prime number u as a modulus which Alice. Bob. and (potentially also) K\e know.

The Following are the initialization steps:

1) Alice selects a secret key: Sa

2) A lice calculates a public key: Pa = Bs' modi/

3) Bob selects a secret key: Sb

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4) Bob calculates a public key: Pb = B ''1'm od u

Protocol:

1) A lice and Bob exchange their public keys.

2) A lice now has Bob's public key. Pb . and performs the calculation:

SKG(Pb. Sa. u) = Pb* mod it = B*"'*’ mod u = A'

Even though Alice derives A . she does not know the number Sh .

3) Bob also has Alice's public key P a . and performs the same calculation like

A lice:

SKG(Pa.Sb.u) = Pash modu = B s“'sh mod u = A

Also. Bob does not know Alice's secret key S a .

Now Alice and Bob possess the same secret A while Eve does not know

anything other than the publicly disclosed public keys. Alice and Bob can use A

as their session key with any conventional cryptographic algorithm. This process

we just talk about is called a key agreement protocol. In a key agreement protocol,

both sender and receiver contribute information to establish a common shared secret.

Adding the modulo function into the algorithm does not change the core o f the

algorithm but brings some benefits. First, we can only work with integer numbers.

Second, we can lim it the size o f the numbers to less than the modulus. Without the

modulo function, computing the logarithm o f an integer is trivial to solve for the

modem computer and it is easy for an opponent to break. It is the computation

d ifficu lty o f calculating the discrete logarithm that the D iffie-Hellman scheme

capitalizes on to provide properties (4) and (5) listed earlier.

However, the DHM scheme could be broken by a man-in-the-middle attack. In

Figure 1.4. there is the example in which Eve can masquerade as Bob or Alice

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.4

Alice Eve Bob

PKG(Sa,B,u)

A ’ A A

Sa B u

u Ss

SKG(Pe,Sa,u)

Pa

Pe

u

T .

Se

. T . T

SKG(Pa,Se,u)

K1

PKG(Se,B,u)

A
Se

“A '

B

A

u

Pe

Sb u

. ? . T ▼

SKG(Pe.Sb.u)

K1

u Se

T . T ▼

SKG(Pb,Se,u)

Pb

v K2

Sb B u

▼ ▼ T

PKG(Sb,B,u)

K2

It is crucial for the attacker to be able to intervene in the channel, and select tor

fabricate) what and which messages can be exchanged between panics, in particular,

it can inject messages o f its own that appear as i f lhe> originated by the

communicating panics. In this sense, the attack represents a scenario o f a sccurin

protocol running over an insecure network infrastructure. As it is clear from the

example, the security protocol fails to provide the needed confidentiality.

IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The attack is successful because even though the algorithm itse lf is intact, the

protocol used to implement the algorithm has a crucial component missing: message

origin authentication. Unless we encrypt the public key by using a digital signature

method, we are unable to prevent the attack.

1.5 The RSA Algorithm

The RSA algorithm [10] was invented by Ronald Rivest. Adi Shamir, and

Leonard Adleman in 1977 after DHM algorithm was introduced. The core o f the

RSA algorithm is based on the mathematical basis that in modulo multiplication,

numbers can be inverses o f each other. This means that i f they are multiplied, they

cancel each other out to be congruent to 1:

in * m] = 1 m o d i/. where n f l is the modulus inverse o f m

In modulo arithmetic, the m o f a number is another number w ith in the modulo

multiplication tables. The modulo arithmetic exponent can be added, subtracted,

and multiplied as in normal arithmetic, even though the modulo arithmetic exponent

has a different meaning than in normal arithmetic.

Before we look at the RSA algorithm, let us define some notation:

S - the secret Private Key.

P = the Public Key.

Pick P and S such that (P * S) = 1 mod n . for some number n

So.

S = P~] m odn and P = S"' mod//

Because

P * S mod/7 = P *(P "')m odn = 1 mod n

And

P * S mod n = S * (S ' 1) mod n = 1 mod n
We can write m sgr modn = C where m.sg is the plaintext and (' is the

ciphertext

We can do the follow ing to recover the plaintext from C :

C s m odn = (m sgr)'s mod // = w.vg1" * ' ’ m odn = msg

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before we discuss how the RSA algorithm works, let us detine some o f the terms:

Definition:

U = A prime number.

V - A prime number w ith a same length o f U .

X = A product o f U and V : X = U * V .
M = A message. I f the length o f M greater than X then divide it into

sub-messages.

msg - A sub-message length less then .V

Given that X is a produce o f two large prime numbers L and V .

some condition must be satisfied:

1) msg < X . (I f not. then the algorithm w ill not work)

2) I f msg is 0 or 1. then is not secure to prevent the attack.

(0 A = 0 and 1A =1 for any K < X)
3) For every number n between 1 and P - 1 inclusive, there is a

power k o f msg such that n = 7 7 7sg* mod P .

Pb = Bob's public key.

Sh = Bob's private key.

Alp(N) = ({ U - \) * { V - \)) .

C' = A ciphertext.

E(msg.x.n) = m sgv mod 77 = C mod n
= The encryption function. Given a message msg. the public key ,v.

and the modulo number 7 7 . The function w ill generate the ciphertext C

corresponding to the key.

D(C.y./7) = C" mod/7 = m s g mod/? = msg mod// = msg
= The decryption function. Given a ciphertext C’ . the private key r .

and the modulo number 7 7 . The function w ill generate the message

msg corresponding to the key.

Let see how Alice uses the RSA algorithm to communicate with Bob. Bob needs

to follow some initialization steps:

1) Selects two prime numbers U and V . U and F should be the same

length.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2) Computes N = U * V .

3) Selects Pb as a public key such that Pb has no division in common with

(U - 1) * (V - 1).

4) Computes Sb as a private key such that Sb and Pb are multiplicative

inverses mod (U -1) * (F - 1) :

Sb * Pb =] mod((U -1) * (F -1))

And from now on. define Alp(N) = ((U -1) * (F -1))

So the last formula can be rewritten as:

Sb * Pb =] mod Alp(N)

=> Sb = Pb"' mod Alp(N)

=s> Ph - Sb~l mod Alp{N)

After that. Bob publishes his public key Pb through a trusted arbiter w ith lire

number N . Now let us see how A lice sends a confidential message rn.^p by

using RSA algorithm to Bob. Shown in figure 1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.5

Alice Eve Bob

Message M

I
Msg Msg

Pb

▼ . .

E(Msg.Pb) i
A '

i ! ,▼
E(Msg,Pb)

Pb Sb

▼ .

D(C.Sb)

D(C.Sb)

Sb
y

Msg
J

Msa

▼
Messaae M

1) A lice computes the ciphertext C from the msg :

E(msg. Pb) = C - i}isg‘"h mod N

2) A lice sends the ciphertext C to Bob

3) Bob receives the ciphertext C and decrypts it to obtain the plaintext messagi
m sg :

D(C.Sb) = C sh mod .V -- (m sgrh)v’ mod A' = msg'11' v” mod A’ - msg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The initialization steps 1 and 2 create the TRAPDOOR function that makes the

RSA algorithm useful. A trapdoor function is the function that is easy to compute

but it is d ifficu lt to compute its inverse. Since Bob knows U and / ' . it is easy

for him to compute Ph and S b . For anyone who does not know and I".

this is almost infeasible to compute Sb given N and Ph . This is the property

that makes RSA satisfy the requirements o f public key cryptography.

The RSA algorithm does not only provide confidentiality but also authentication

using digital signatures. We w ill discuss how the RSA algorithm can pro\ ide

digital signature in chapter 5 in more detail.

In most o f the time, the RSA algorithm is used to transmit an encrypted session

key only because the algorithm requires a lot o f computational time and resource for

encryption and decryption. The key. once received, is used for further encryption

using any kind o f shared-kev algorithm.

1.6 The Elliptic Curve Algorithm

The e llip tic curve was introduced into cryptography by M ille r and Koblitz in

the mid 1980. Later. Lenstra showed how to use elliptic curves to factor integers.

Since that time, elliptic curves have played an important role in many cryptographic

situations. One o f the advantages is that the algorithm seems to offer a level o f

security comparable to classical cryptosystems that use much larger key sizes.

Using much shorter numbers as a key can represent a considerable savings in

hardware implementations. The follow ing provide the details o f the algorithm |5.

pg 193] [6. pg 272].

To understand the elliptic curve, we have to start from the a d d itio n law . An

elliptic curve E is the graph o f an equation:

E : y : = x ' + a * x + b

where a.b can be rational numbers, complex numbers, or integers mod n as long

as it is the appropriate set. Let us work on the real numbers in our example. I f a.b

are real numbers, the graph E has one o f two possible forms, depending on whether

the cubic polynomial in x has one real root or three real roots.

2.'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.6 Example for y : = x(x + 2)(.y - 2)

Figure 1.7 Example for y : = x ’ +17

-6

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We exclude the case that the cubic polynomial x '+ a * . x + b has multiple

roots. For example, the graph y 2 = .y : (.y + L) w ill be excluded. Given any two

points PI and P2 on £. we can obtain the third point PS on L as the following:

Figure 1.8

.— — v "

Point P2 = (3.10)

Point P1 = (2.0)

-10
I Point P 3 = (-4 .-3)

Draw the line L through PI and P2 (iI'PI = P2. take the tangent line to K at PI).
The line L intersects E in a third point O. Reflect Q through the x-axis to get PS.
This is defined as a law o f addition on E by

PI + P2 = PS .where + stands for the above operation, not ordinary addition.

Let us start with the example [6. pg 274|. Suppose H is delined by

y " = .v’ + 7 3 . Let PI - (2. 9) and P2 - (3.10L The line L through PI and P2

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a slope = ̂ 1S y = x + 7 . Substituting into the equation for E yields

(x + 7)2 = . r ’ +73 . simplifies to x ' - x 2 -1 4 x + 24 = 0 . Since L intersects E

through PI and P2. we know the sum o f the three roots minus the coefficient o f .v

and therefore equals 1. We already know two roots. x = 2 and x = 3. So the

third root w ill be l - (2 + 3) = - 4 . Since y = x + 7. therefore substitute x = - 4

to get y = (-4) + 7 = 3 . and Q = (-4.3). Therefore. PS = (-4.-3). Now suppose

we want to add PS to itse lf (PS + PS). The slope o f the tangent line to E at PS is

obtained by im plic it differentiation o f the equation for E:

2 vdy = 3xV x. So — = (3x2)(2 v)’ 1
dx

Substitute (-4.-3) from PS to get the slope. -8. In this case, line L is

y = -8 (x + 4) - 3

Substitute into the equation for E to yield (-8 (x + 4) - 3)2 = x ' + 73. Simplify the

equation E to get x ’’ - 64x2 - 560x -1152 = 0. The sum o f the three roots is 64.

Therefore the third root is 64 - (-4) - (-4) = 72. The corresponding value o f y is

-611. Changing y to - y to get:

PS + PS -(72.-611).

In general, the addition Law is delined as the following:

Let E be given by y 2 = x ' + ax + h and let PI = (x , . v ,) and P2 ~ (x , . y ,)

Then consider the operation PI 4- P 2 - PS = (x , . y ;).

Where

x- = in' - x , - x :

y , = m(x] - x ,) - y ,

And

m = 2 PI 4 P2
(x, - x ,)

(3 * (x ,) 2 +a)
m = ---------1---------- il P I - P 2

(2 * (y ,))

The above operations can be calculated under modulo arithmetic as well. Let's

consider the following example:

Given /:: y ‘ = x ' + 2x + 3(mod 5)

Find (1.4) + (3.1) on the curve E. First we have to Una the slope m

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1 -4)
m = ------------ l(mod5)

(3 -1)

Therefore

x3 = m 2 - x l - .v2 = 1 -1 - 3 = 2(mod 5)

v3 = w (x l - x3) - y l = 1(1 - 20 - 4) = 0(mod 5)

So the point (1.4)+(3.1) = (2.0) which is on the curve and we can verify it.

x = 2 => y : = 15 = 0(mod5)

Let us define some terminology before we discuss the algorithm.

Definition:

* = stands for repetitive application o f the -f operator, not ordinary

multiplication.

P = The prime number.

m = The original message.

E - The elliptic curve we use for the algorithm. The curve represent by

/ (x) = .r ' + ax + b mod P . Most o f the time we generate the curve by

imbedding method using the message m :

Suppose we have a function E and an integer message m such that

P P0 < m < --------------- . (Check that m must be less then ----------
(1000-1) (l (KK)- l)

because we want to append at least three digits. For a larger number u

P
o f diuits. the upper bound w ill be in < ---------- .) Appendhm three diuiis

10" -1

to m w ill produce a value Pm such dial

1000m < Pm < 1000(//r +1) < P . We append difi'erent digits until we find

an Pm such that f (P m) - (P m) ' +a{Pm) + h .

G = The base point. The point is on the curve E .
Pm = The point represents the message m .
Sb ~ Bob's private key.

Pb - Bob's public key. The public key is generated by Sb * G .

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k = A random number.

C l = Part o f the ciphertext. C l is calculated by k * O '.

C 2 = Part o f the ciphertext. C2 is calculated by Pm + k * Pb .

Now let us see how A lice uses the Elliptic Curve to encrypt a message that she

can send. (Shown figure 1.9)

Figure 1.9

Alice Eve Bob

Message m

^ Appending

Pm

G ; k

. V. .
k *G

▼ T
l ’m + k *P b

i

Pb

C1

C2

G Sb
T ▼.

Sh*G

Sb

t r
Sh* CI

T ▼ T

t : - sh * ci

▼
Pm

In the initialization steps:

l) Pick the point G - (.v,. y ,) as a base point on E . and the curve :

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f i x) = x ' +ax + b mod/* where P is a prime number. The point G and

equation E are published: therefore Eve knows them as well.

2) Bob has chosen a random number Sb as a private key and has published the

point Sb * G = Ph as a public key.

Protocol:

1) Alice has a message and uses a point Pm = (x . y) to represent the message.

2) A lice downloads the Pb and chooses a random number k . She sends Bob

k * G - C l and Pm + k * Pb = C2

3) Once Bob receives it. he first calculates Sb * Cl and then subtracts this from

C2 to get Pm

C2 — Sb k * G = Pm + k * Sb * O' — Sb * k * O' r: I’m

Because o f the property o f the addition law. we can use elliptic curve and D11M

to exchange the symmetric key thus using the public key algorithm onl\

occasionally to establish shared secret keys. Let us see how Alice and Bob can

exchange the session key confidentially [6. pg 288]: (Shown figure 1.2.11)

Definition:

So = Alice's private key.

Pa = Alice's public key. The public key is calculated by Sa * G

Sb ~ Bob's private key.

Pb = Bob's public key. The public key is calculated by Sh G

Alice chooses Sa and Bob chooses S b . The Sa and Sh must be

satisfies the following:

For every number n between 1 and P - 1 inclusive, there is a

coefficient Sa and Sh such that n - Sa * Sh * G mod P .
I f Sa * Sb * G > P .then Alice and Bob may need to chooses again.

K The session key.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.10

L _
Alice

Sa

▼ .. ▼ ...

S a*G i

Sa ;

. ▼ . ▼
Sa*Pb

Eve

Pa

Pb

Bob

Sb

▼ v
S b*!'a

▼

K

G Sb

▼ T
S b*G

▼

K

Initialization steps:

1) Pick a public point G and elliptic curve E as before with some prime

numbers P .

2) Alice chooses Sa as a private key. and Bob also chooses Sh as a private kc\.

They need to keep them private to themselves but publish Sa * O' - Pa and

Sh * O’ - Ph .

Protocol:

1) A lice now takes Ph and multiplies it by Sa to get the key:

Sa * Ph - Sa * (Sh * G)= K

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2) Bob now takes Pa and multiplies it by Sh to get the key:

Sh * Pa = Sh * (Sa * G)= K

A fter that, they both have a same session key.

The advantage o f this algorithm is that for any given point P on the curve it is

easy to find C * P = M where C is a coefficient, but it is d ifficu lt to find ('

given M . P . and the equation o f the curve since the addition in this section is not

the ordinary addition, the multiplication is different too. Therefore, i f live wants to

retrieve C’ . then she needs to try all the possible given M . P . and the equation o f

the curve.

1.7 Hybrid System

Public key algorithms are built in a completely different way from symmetric

key cryptosystems. The public key algorithm usually needs more computation

operations than a symmetric key algorithm for encryption and decryption o f

comparable strength. For example, the RSA algorithm involves the exponential

operation to encrypt and decrypt the message and the ciphertext. Using the same

key size, the DES w ill encrypt the message faster than the RSA because the RSA

needs to operate an exponential function rather than a linear function. Therefore,

most o f the public key algorithms are used only for key distribution, w hich transfer a

key which is subsequently used for symmetric cryptography. When Alice

communicates with Bob. she uses an asymmetric system to transmit the symmetric

key to Bob. A fter that. A lice and Bob can communicate with each other by using

the same symmetric key. We know that symmetric systems can be attacked by

brute force attack. An improvement is a hybrid system [4. pg 67 j. where Alice

generates a random session key. encrypts it by using Bob's public key and then sends

it to Bob. In this case, they can share the same session key for later communication.

(See Figure l . l l.)

Definition:

K - A session key.

Ph = Bob's public key.

Sh - Bob's private key.

61 = A ciphertext generated by public key algorithm encryption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C'2 = A ciphertext generated by symmetric algorithm encryption.

M - The message which A lice wants to send to Bob.

PE(K.x) = Cl

= Any public key algorithm's encryption function. The function w ill take

K as an input message and .v as a key to generate a ciphertext C l.

PD(Cl.y) = K

- The public key algorithm's decryption function. The function w ill take

a ciphertext C l as an input and decrypt the ciphertext by using the key

>• to get the message K .
S E (M .K) = C2

- Any symmetric key algorithm's encryption function. The function wi l l

take a message M as an input and encrypt the message by using the

session key K to generate the ciphertext C2.

SD(C2.K) = .\f

- The symmetric key algorithm's decryption junction. The function wil l

take the ciphertext C2 as an input and decrypt the ciphertext by the same

session key K to get M .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.11

Alice Eve Bob

K | Pb |
T. ▼

PE(K.Pb)

C1
Sb

T ▼
PD(CI.Sb)

m : k

▼ ▼
SE(M.K)

C2

T

K

K
▼ T

SD(C2.K)

The benefit o f the combination for both public key system and symmetric k e y

system is that. A lice and Bob can deliver the session key to each other to decrease

the computational time for encryption and decryption without five knowing t h e

session key. Also there is another benefit, each time when Alice generates t h e

session key and encrypts the session key: the ciphertext she sends to Bob w i l l b e

different. This makes five harder to obtain the session key from each ciphertext.

Even i f Eve gets the right session key. the key may only be used once and after t h a t

Alice can generate another session key. and so Eve needs to find the session ke>

again. The randomness involved in generating the session key ensures that a t h i r d

party cannot guess it except by brute force attack, and i f it is found it oni\

compromises one session.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Integrity

Integrity is the property that no other unauthorized parties are able to modify

the data when it is transmitted. As we have seen, protecting the confidentiality o f a

message in transmission on a communication channel between Alice and Bob

ensures that no other unauthorized parties can discover the contents o f the message.

Protecting the integrity o f the message under the same circumstances means to

ensure that once the message leaves Alice, no other unauthorized parties can alter the

contents o f the message until it reaches Bob. In practice, it is impossible to prevent

an attacker (our old friend Eve) who has control o f the channel from altering the

message, so what we actually mean is ensuring that no other unauthorized parties

can alter the message without Bob noticing it.

2.1 Independence from confidentiality

Most o f the people think that confidentiality implies integrity. This means that a

ciphertext which has been changed ever so slightly w ill automatically decrypt into

garbage, so that the recipient w ill notice that integrity was compromised. Actually

this is not always true. For example, suppose the ciphertext is obtained by the

bit-by-bit exclusive-or o f the plaintext and a pseudo-random key stream. I f Eve

knows the exact format o f the message, she w ill know which bit positions

correspond to a specific field. She can create an altered ciphertext and substitute

the original ciphertext and resend it into the channel. In this case. A iicc and Bob

would not detect any error after the transmission. This is an attack called an attack

in depth. There is another sim ilar attack for public key cryptosystem and we wil l

discuss more in section 1.4 (Man-in-lhe-middle attack). Therefore, in general,

neither integrity nor confidentiality implies the other.

2.2 Hash

An error - detecting code with an external interface but suitable for integrity

protection is called a cryptographic hash function, or sometimes called one-way

hash to convey the intuitive meaning which is easy to compute the function in the

forward direction, but practically impossible to compute its inverse [4. pg 70]. Its

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fundamental property is non-invcrtibility: given any hash output "Soul", it is

computationally infeasible to find an input "S in” such that

h(Sin) = Sout

The idea here is to produce a representative "fingerprint" o f any input message.

This way. i f the hash output is secure from modifications, it w ill not be possible for

any attacker to modify the message in a way that still matches the hash. Stronger

requirement for a hash function is collision resistance: it is computational!\

infeasible to find two inputs with the same image. I f one input could do that, then

it would no longer be possible to consider hashes as representative fingerprints o f

longer strings.

Usually the Hash function is publicized. Not only the sender or receiver but

also the attacker w ill know the hash functions. T herefore i f the attacker is able to

m odify the hash, then it w ill be trivia l for the attacker to calculate a new hash that

matches the modified message. There are two other cryptographic prim iii\es. the

M AC and the digital signature, capable o f withstanding that type o f attack.

2.3 MD5 Message Digest Algorithm

The MD5 message - digest algorithm [5. pg 272] 124] was developed by Ron

Rivest at M IT. Until the last few years, the MD5 was the most widely used secure

hash algorithm. The algorithm takes a message o f arbitrary length as an input and

produces a 128-bit message digest (checksum) as an output. The input is processed

in 512-bit blocks.

When Alice wants to send a message to Bob and produces the message digest

by the MD5 hash function, she has to do the followings in order to create the MD5

message digest:

1) Append padding bits

The message is padded so its length in bits is congruent to 448 modulo 512.

The message is extended so that it is just 64 bits shy o f being a multiple o f 512

bits long. Padding is always added, even i f the message is already w ith the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

desired length. For example, i f the message is 448 bits long, it is padded h\

512 bits to a length o f 960 bits.

2) Append length

A 64 bits representation o f the length in bits o f the original message is

appended to the result o f step 1. I f the original length is greater than 2', i .

then only the low order 64 bits o f the length are used. Therefore, the Held

contains the length o f the original message modulo 2M . A t this point the

resulting message has a length that is an exact multiple o f 512 bits.

3) Divide appended result

The outcome o f the first two steps yields a message that is an integer multipie

o f 512 bits in length. We can divide the appended result into L pieces.

Therefore, the appended result is Z.*512 bits length long. We call each

piece }'(ry) where 0 < q < L.

4) Initialize M D buffer

A 128-bit buffer is used to hold intermediate and final results o f the hash

function. The buffer can be represented as four 32-bit registers (named A. B.

C. and D). These registers are initialized to the following 32-bit integers in

hexadecimal, bit order least-significant-first:

A = 01 23 45 67

B = 89 AB CD EF

C = FE DC BA 98

D = 76 54 32 10

5) Process message in 512-bit blocks

The main idea o f this algorithm is a compression function that consists o f four

"rounds" o f processing. This module is labeled hash(MD5) in the figure 2.3.

The logic o f this function is illustrated in figure 2.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1

Y(q)
CV(q)

- 128-

F.T[1...16],X[i]
16 steps

G.T[17...32].X[p2i]
16 steps

▼................ . T

H,T[33...48].X[p3i]
16 steps

!.T[49...64].X[p4i]
16 steps

T *

+

▼ T

+

T ■■ ii i i T ,.................... T T

128

CV(q+l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The four rounds have a similar structure, but each uses a different prim itive

logical function, referred as F . G . 77. and I in the specification. Rach round

takes the current 512-bit block Y(q) being processed and the 128-bit MD buffer

(A B C D) as an input and updates the contents o f the buffer. Also, each

round w ill make use o f one-fourth o f a 64-element tabic T|1..64| which is

constructed from the sin function. The element T [i] has the value equal to the

integer part o f 2 ': xahs(s\n(i)) where / is in radians. The output o f the fourth

round is added to the input to the first round CV(q) to produce Cl'(q + 1). The

addition is done independently for each o f the four words in the buffer with each o f

the corresponding words in CV(q). using addition modulo 2 ^ .

6) Output

A fter all L 512-bit blocks have been processed, the output from the B"‘
stage is the 128-bit message digest. We can summarize the process o f MD5

into the following:

C'F(O) = (A B C D)

CV(q + 1) = Sum(CV(q). RF(I)[Y(q). RF(H)\Y(q). RF(G)[Y[q). RF{ F) \) \ q) . Cl U /) i

MD = CV(L)

where RF(x) is a round function using prim itive logical function .v and MD

is the message digest. The function Sum() is an addition function modulo 2 :

which is performed separately on each word o f the pair o f inputs.

Let us look at more details at the logic in each o f the four rounds o f the

processing o f one 512-bit block. Rach round consists o f a sequence o f 16 steps

operating on the buffer (A B C D) . Rach step performs the follow ing

formulas:

A’<- D

C < - B
D'<— C
B'<- B + ((A + ,g(B.C.D) + X \k \ + T[i] « < s)

Where

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B C D = the four words o f the bull er.

A' B' C" D' = the four words o f the buffer alter processing the primitive

function.

g (B . C . D) = one o f the prim itive functions F . G . H . I

« < s = circular left shift (rotation) o f the 32-bit argument by s bits

A' f*] = the k ’h 32-bit word in the </"’ 5 12-bit block o f the message

71/] - the i'h 32-bit word in sin matrix T

+ = addition modulo 2

Each o f the prim itive functions F .6 ' . / has the following logic structure:

F{B.C.D) = { B a C) w (B a D)

G{B.C\ D) = (B a D) v (C a D)

II (B.C. D) = B @ C ® D

I (B.C.D) = C @ (B v D)

Where a . v . © . a are bit-wise operation.

a = "A nd" operation

v = "O r" operation

© = "Excl O r" operation

a = "Complement" operation, where a can be B or D

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2

A B C D

g(B.C.D)
X[k]

CLS

B' CA' D'

The MD5 RF(x) is shown in figure 2.2. It takes the prim itive function F

in the first round and performs the formula. Once the result is calculated, update

the value B with the result, update C w ith old B value, update D with old C

value and update A w ith the old D value. After the first round, we repeat the

same thing except we w ill use the prim itive function O’ and update the value

A.B .C .D again. A fte r we finish the fourth round by using the / prim itive

function, we w ill have the final result o f A. B.C. D . We can perform the addition,

function Sum(x.y) to get the next CT(</ + 1) from Cl-'(cj).

Figure 2.3 shows the overall process o f a message to produce a message digest.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2 3

-L X 512bits = N X32bits-
—K bits-------------------------

Message 100.0
~ < A

I Padding(1 to : \
; 512 bits) :

Message
[Length

I Y(0) (512 bits) |

 ̂ 512 '
, j _________

i i 128
►] Hash(MD5) ~ H
i i _ _ _ _ _ _ _ _ _ _ i c v (dI

128

Y(1) (512 bits)*

512

Hash(MD5) I—1
128
&

CV(q)

•Y(q) (512 bits)*

512
 ,

t ;

■►I Hash(MD5) !

Y(L-1) (512
bits)

512
. . . T .

- Hash(MD5)
128
&

CV(L-1)

IV 128-bits’
digest :

The M D5 algorithm has the property that ever)’ bit o f the hash code is a

function o f every b it in the input. The complex repetition o f the basic functions

F . G . / / . / produces results that are well mixed. Therefore, it is unlikely that two

messages chosen at random w ill have the same hash code. Rivest conjectures that

MD5 is as strong as possible for a 128-bit hash code, which mean this is d ifficult o f

coming up w ith two messages having the same message digest is on the order o f

264 operations. Also, it is d ifficu lt to find a message w ith a given digest is on the

order o f 2 i:s operations.

2.4 Secure Hash Algorithm

The secure hash algorithm (SHA) [5, pg 281] [15] was developed by the

National Institute o f Standards and Technology (NIST) in 1993. A rev ised v ersion

was issued in 1995 and is generally referred as SHA-1. The algorithm takes a

message w ith a maximum length o f less than 264 bits as an input and produces a

160-bit message digest as an output. The input is processed in 512-bit blocks like

MD5.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Same as before, i f A lice wants to send a message to Bob with a message digest

then she needs to proceed the fo llow ing steps:

1) Append padding bits

The message is padded so that its length is congruent to 448 modulo 512 like

MD5.

2) Append length

A block o f 64 bits is appended to the message. Again, this process is same as

in MD5.

3) Initialize M D buffer

A 160-bit buffer is used to hold intermediate and final results o f the hash

function. The buffer can be represented as five 32-bit register (named A . B .

C . D , and E). These registers are initialized to the fo llow ing 32-bit

integers in hexadecimal, b it order most-significant-first:

A = 67 45 23 01

B = EF CD AB 89

C = 98 BA DC FE
D = 10 32 54 76

E = C3 D2 E\ F0

Note that the first four values are the same as those used in MD5

4) Process the message in 512-bit blocks

The main idea o f this algorithm which is different from MD5 is this algorithm

is a module that consists o f four rounds o f processing o f 20 steps each. The

four rounds have a sim ilar structure which is shown in figure 2.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4

CV(q) 160
Y(q)

f2,K,W[20...39]
20 steps

T 'TI

160

 ,y_ - .
CV(q+1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The difference in the prim itive logical function is different from what we have

seen in M D5, namely / 1 . / 2 . / 3 . / 4 . Each round takes the current 512-bit block

being processed Y(q) like in MD5 and the 160-bit buffer value

(A B C D e) as an input and updates the contents o f the buffer. Also, each

round makes use o f an additive constant K{i) . where 0 < t < 79 indicates one o f

the 80 steps across four rounds.

0 < / < 19 K{t) = 5A 82 79 99

20 < / < 39 K{t) = 6E D9 EB .41

40 < / < 59 K(t) = 8F IB BC DC
60 < / < 79 K{t) = CA 62 C l D6

As before, the output o f the fourth round is added to the input to the first round

CV(q) to produces CV(q + 1). The addition is done independently for each o f

the five words in the buffer w ith each o f the corresponding words in CV(q) . using

addition modulo V 2.

5) Output

A fte r all L 512-bit blocks have been processed; the output from the

stage is the 160-bit message digest. Same as MD5. we can summarize the

behavior o f SHA-1 as the follow ing:

C F(0) = (A B C D E)

CV{q + \) = Sum{CV{q).RF{f4)[Y{q) .RF(fj)[Y(q) .RF{f2)[Y(q) .RF(f\){Y(q) .Cl ' (q)]\ \ \)
MD = CV(L)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5

T

I_

I__

 T___ i---
W(t)

K(t)

Let us look in more details about the logic in each o f the 80 rounds o f the

processing o f one 512-bit block. Shown in figure 2.5. each round performs the

fo llow ing formulas:

A'<r- (E + / (/ , B. C. D) + 5 s (A) + W(0 + K)
B'<r~A

C'<r-S:' \ B)
£>'<— C
£ '< -£ >

Where

A B C D E - the five words o f the buffer.

A' B' C' D' E' = The five words o f the buffer after processing the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+

R l B.C.D)

sk
W(t)

m

prim itive function.

= prim itive logical function for step t

- circular left shift o f the 32-bit argument by k bits
= a 32-bit word derived from the current 512-bit input

block

= The four distinct values which are defined previously

= addition modulo 2 '2

Each o f the prim itive functions / 1 . / 2 . / 3 . / 4 has the fo llow ing logic

structures:

For f \ = f (t . B, C ,D). Function Value is (B a C) v (B a D)

For / 2 = / (/ , B .C .D) . Function Value is B @ C @ D

For / 3 = f (l , B . C, D) , Function Value is (B a C) v (B a D) v (C a D)
For f 4 = f (/. B, C. D) . Function Value is B @ C ® D

The process starts from t = 0 , each round updates the buffer by using the First

K value and / I as an input and the prim itive logical function. Until / = 20.use

second K value and / 2 as a prim itive logical function to update the buffer by

performing the formula. Repeat the process until / = 40. using third K value

and / 3 as the prim itive logical function as before. A fter that, when / = 60. use

the last K value and / 4 as the prim itive logical function to update the buffer

until / = 79. Use the result from the 80 steps to perform the function Si<m() by

taking CV(q) as other input to create CV(q +1) like in MD5. Figure 2.6 shows

the overall process to produce a message digest.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.6
-L X 512b its = NX32bits-
— K bits -------------------

Message 100 . 0 '

< 1 A
Padding(1 to

512 bits)

Message
Length

; Y(0) (512 bits) j I Y(1) (512 bits)* •Y(q) (512 bits)* Y(L-1) (512
bits)

512

I Hash
i i (SHA-1)

160
- & H
CV(1)

512
 y.__

Hash
(SHA-1)

160

512

I—9
160
&

CV(q)

Hash
(SHA-1)

160
&

CV(L-1)

512
 T . . .

Hash
(SHA-1)

IV 160-bits r
digest

MD5 and SHA-1 are quite sim ilar to one another. Therefore, their strengths

and characteristics should be similar. We can compare the two algorithms using the

design goals: Security. Speed. Sim plicity and compactness, and choice o f the

architecture [5. pg 285] [14],

1) Security:

The most obvious and most important difference is the SHA-1 digest is 32 bits

longer than the MD5 digest. Using a brute-force technique, the d ifficu lty o f

producing any message having a given message digest is on the order o f 2 i:'

operations for MD5 and 2160 for SHA-1. Also, using a brute-force technique, the

d ifficu lty o f producing two messages having the same message digest is on the order

o f 2 M operations for DM5 and 280 for SHA-1. Thus. SHA-1 is considerably

stronger against brute-force attacks.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2) Speed:

SHA-1 involves more steps than MD5 (80 versus 64) and must proceed a

160-bit buffer compared to MD5's 128-bit buffer. Therefore. SHA-1 should

execute more slowly than MD5 on the same hardware.

3) S im plicity and compactness:

Both algorithms are simple to describe and implement. Nowadays. MD5 and

SHA-1 are already embedded into most o f the software tools. Thus, the SHA-1 has

no advantage over MD5.

4) Little-endian versus big-endian architecture:

MD5 uses a little-endian scheme for interpreting a message as a sequence o f

32-bit words, where SHA-1 uses a big-endian scheme. There seems to be no strong

advantage over either approach.

2.5 MAC

The M AC [4. pg 71]. or message authentication code, is similar to a hash

parameterized w ith a secret key. Each key you apply to the M AC gives you a

different hash function. The hash is a surjection while the M AC is a family o f

suijections. You might view the hash as a M AC whose key has been carried away

with a wel 1-know constant. Different than Hash function, in order to use MAC

both sender and recipient need the same key. The key is used to calculate the MAC.

I f the key is different the result for the sequence o f bits for the ciphertext from the

sender w ill be different when the recipient tries to verify' the ciphertext. So what

w ill A lice do i f she wants to send something to Bob? First, she chooses a M AC

function she likes to use with a key. a key that Alice and Bob share and use the

message as an input. The M AC function w ill generate a unique output which

shares the same property like Hash function that it is computationally infeasible to

find the input M from the output C.

MAC (message + Key) = C

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now an attacker (Eve?) who wants to modify the message can no longer generate a

new M A C for the forgery because she does not know the key. For the same reason,

she cannot check whether her forgery matches the old M AC as well. MAC

provides an improvement over Hash for the purpose o f integrity but it now requires a

mechanism to allow sender and recipient to establish a shared secret key.

2.6 HMAC

The hash function was not designed for the use as a M AC and cannot be used

directly for that purpose because it does not rely on a secret key: instead it relies on a

message. There have been a number o f proposals for the incorporation o f a secret

key into an existing hash algorithm. The approach that has received the most

support is HM AC [5. pg 293] [21], HM AC has been chosen as mandatory to

implement M AC for IP security and is used in other Internet protocols, such as SSL.

The HM AC has the follow ing design objectives [5, pg 294]:

1) To use available hash functions without any modifications.

2) To allow easy replaceability o f the embedded hash function in case faster or

more secure hash functions are found.

3) To preserve the original performance o f the hash function without incurring a

significant degradation.

4) To use and handle keys in a simple way.

Those objectives are important for the acceptability o f HM AC. There are two

benefits. First, an existing implementation o f a hash function can be used as a

module in implementing HM AC . Second, i f any faster hash function module

comes up. then we can just drop o f f the old hash function and implement the new

hash function. Moreover, i f the security o f the embedded hash function is

compromised, the security o f H M AC could be retained simply by replacing the

embedded hash function w ith a more secure one.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.7

Kh (i i -ipad

— t_
|___ S(i)_ Y(0) Y(1) |---------------- . Y(L-1)

K+—►[©^1-<-opad
Hash !

. n bits

~H&mr

IV (n bits)

b bits.
Pad to b bits

S(0)

r ------Y
I Hash

IV (n bits)

n bits

HMAC(K.M) |

Figure 2.7 shows the overall operation o f HMAC.

Definitions:

H = embedded hash function (e.g. MD5 or SHA-1)

M = message input to HM AC

Y(i) = i'h block o f M . 0 < / < L - 1

L = number o f blocks in M

b = number o f bits in a block

n = length o f hash code produced by embedded hash function

K = secret key: i f key length is greater than b. the key is input to the hash

function to produce an n -b it key. Recommended length is > n
K + = K padded w ith zeros on the left so that the result is b -bit string K +

ipad = 00110110 is repeated

opad = 01011010 is repeated

Assume A lice wants to send a message to Bob with message digest which is created

by HM AC . She can perform the follow ing:

50

b .
— times
8
b .
— times
8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initia lization steps:

1) Assume A lice and Bob share the same secret key K .

2) Embedded hash function H , such as MD5 or SHA-1.

3) A lice uses message M as an input for HM AC.

Operation steps:

1) Append zeros to the le ft end o f K to create a b-bit string K + .
2) XO R K + w ith ipad to produce the b-bit block S(i)

3) Append M to S(i)

4) A pp ly H to the stream generated in step 3.

5) XO R K + w ith opad to produce the b-bit block S(0)

6) Append the hash result from step 4 to S(0)

7) Apply H to the stream generated in step 6 and output the message digest.

Note that, the XO R operation for K + w ith ipad and opad can be done

before we apply any hash function. This means we can have S(i) and .V(0)

pre-computed. The security o f any M AC function is based on an embedded hash

function depending in some ways on the cryptographic strength o f the underlying

hash function. The H M A C is considered as broken i f an attacker, without having a

key K . can find some message A/' together with its correct HM AC value

H M AC(M ’. K) . This is the same that an attacker who can forge the HM AC

function can break the underlying hash function (MD5 or SHA) in one o f the

fo llow ing ways [21]:

1) The attacker finds collisions in the hash function even when the IV is random

and secret.

2) The attacker is able to compute an output o f the compression function even

w ith an IV that is random, secret and unknown to the attacker. (IV is the initial

buffer in any hash function)

Since the feasibility o f any o f these attacks would contradict some o f our basic

assumptions about the cryptographic strength o f these hash functions, the HMAC

schemes could be secure. Could the secret key K be found after awhile when

A lice and Bob repeatedly use it? For example, take a H M AC with output size o f

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128 bits as the example, the attacker need to acquire 2W correct plain message with

the corresponding H M AC value (with the same key) to find out the right HMAC

secret key. This is considered as an impossible task in any realistic scenario even

w ith a message block length o f 64 bytes, this would take 250.000 years in

continuous lGbps link and provided there is no change o f the secret key during all

this time. I f we replace a strong HM AC with 160 bits output size then the number

o f original message and HM AC code required should become 2s" which is even

harder and impossible to attack.

2.7 Internal/External Error Control

The Hash/Mac can provide not only the message authentication but also can

save some time to decrypt the ciphertext. We know that to decrypt the ciphertext

which is encrypted by using public key method can take a lot o f time and resources.

It is therefore not useful to first decrypt a message in order to subsequently perform

error detection. We can use internal or external error control [5. pg 243], Let's

assume the Hash/Mac function F() which takes the message as an input and

generates a unique output from f ().

f \
F message M

\
= checksum D

The internal error control ensures that when Alice wants to send Bob a message,

she can find the message checksum from the original message

F Original message M = checksum D

and encrypt the message and the checksum D together and send the ciphertext to

Bob. So once Bob gets the ciphertext. Bob decrypts it and gets the checksum D
and the message M . What Bob can do is run the same Hash/Mac function /*'()

and get another checksum. I f both checksums from the ciphertext and the message

are the same, then Bob can tell this is the message from Alice. (Shown in figure

2.8)

Definition:

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M = A message from Alice.

C = A ciphertext generated by the encryption function.

F{) = Hash/Mac function

D = The checksum generated by F().

E (x ,K) = C

= Any encryption function. The function takes an input x and encrypts

it by using the key K to generate a ciphertext C

D(C\ K) = x

= The decryption function. The function takes an input C and decrypts

it by using the key K to generate a message x . The key K can be different

than the encryption function depending on what encryption function we choose.

Figure 2.8

Alice Eve Bob

Message M J

 T. , !
Hash F(M)

D

I

! I
r_ J t _ . n
E(M+D,K) j~

D(C,K)

M
▼

Hash F(M)

! D '

Y _ _ . .
Compare

D

In the case o f the external error control. A lice encrypts the message first and

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runs the Hash/Mac function after it has been encrypted.

F ciphertext C = checksum D

She sends both the checksum and ciphertext to Bob. A fter Bob gets the

ciphertext, he can run the Hash/Mac function first before he decrypts it. I f both the

checksum from the ciphertext and the Hash/Mac function are the same, then Bob can

run the decryption on ciphertext to get the message. In this case, i f the checksum is

not the same then Bob can detect it before he decrypts it. This can save him a lot o f

time and resources. (Shown in figure 2.9)

Figure 2.9

Alice Eve Bob

Message M

i
 T
E(M,K) __J

D
! Hash F(C) j--------------------

T
Hash F(C)

D'
▼T

Compare

W ith internal error control, authentication is provided because an opponent

would have d ifficu lty generating ciphertext that, when decrypted, would have valid

error control bits. On the other hand, w ith external error control, authentication

may not be provided because o f the man-in-the-middle attack. An opponent can

get the original ciphertext from Alice and use his own message and Hash/Mac

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function to generate other checksum to fault Bob. However, as far as decryption is

concerned, external error control provides better run time because Bob does not need

to decrypt the ciphertext to run the Hash/Mac function. Instead he can just run the

Hash/Mac function by using the ciphertext as an input. Depending on the

application, the choice to use internal or external error control w ill be different.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Authentication

Authentication is the process o f verifying a principal's claimed identity. In the

network connection, we do not only need to identify the received message or

information but also the receiver or sender. The sender or the receiver can be a

computer or program. For example, i f Eve knows Alice's or Bob's password (login

id. or user name) she can login to the computer to pretend to be A lice or Bob. A ll

o f the integrity service which we have mentioned in the last section cannot detect it.

Therefore, integrity sendee can only help us to achieve certain authentication needs

w ith respect to network connections but we need to consider more possibilities to

prevent mis-authentication.

3.1 Authentication Requirement

The fo llow ing attacks can be identified against authentication [5. pg 238]:

1) Traffic analysis: Discover}' o f the pattern o f traffic between parties. In a

connection-oriented application, the frequency and duration o f connections

could be determined. In either connection-oriented or connectionless

environment, the number and length o f messages between parties could be

determined.

2) Masquerade: Insertion o f messages into the network from a fraudulent source.

This includes the creation o f messages by an opponent that are purported to

come from an authorized entity. It also includes fraudulent acknowledgments

o f message receipt or nonreceipt by someone other than the message recipient.

3) Sequence modification: Any modification to a sequence o f messages between

parties, including insertion, deletion, and reordering.

4) Tim ing modification: Delay or replay o f messages. In a connection-oriented

application, an entire session or sequence o f messages o f some previous valid

session could be a replayed, or individual messages in the sequence could be

delayed or replayed. In a connectionless application, an individual message

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be delayed or replayed.

In general, authentication requires that with proper protocols and techniques we

can identify- the origin o f the message and also the authenicity o f the content o f the

message.

3.2 Password

Let us assume that A lice wishes to authenticate herself to a computer C': She is

known to C by her name "A lice" (or some other login name) and can prove her

identity by demonstrating knowledge o f a secret password p that she previously

agreed w ith C. The problem here is that, i f C keeps a list o f the passwords o f its

users, this password file becomes a valuable target for an attacker. Encrypting the

file containing the password would bring little benefit since C itse lf would need the

key to decrypt in order to be able to check any supplied password. So the attacker

who manages to break into C could simply steal both the key and the encrypted file.

Therefore, to address this problem, C just simply records a hash value o f /Mice's

password instead o f the password. This is a technique pioneered by Needham in

the 1960s [4, pg 76]. This means that an attacker grabbing the list stored on C does

not have access to any passwords. Even with this improvement, the system is still

vulnerable. There is one attack which is similar to brute force attack and it is called

the dictionary attack. Many users w ill choose passwords that are easy to guess.

The attacker generates hashes o f such candidate guesses and checks whether the

result matches any entry in the list stolen from C. I f it does, a password has been

found. The guesses may even be pre-computed once and for all and stored in a

lookup table indexed by the hash value. Then, the attacker can just simply crack on

sight any account that used one o f the guesses as its password. The method against

this attack can be salting or slowing down the hash function in order to increase the

attacker's workload. Salting is the practice o f adding random bits to the

user-supplied password before hashing it. These random bits have to be stored on

C in the password list next to the hash value, otherwise the system itse lf would not

be able to regenerate the hash for comparison even i f the correct password is

supplied. The technique does not prevent the attacker from verifying the validity o f

a guess, but it frustrates pre-computation and parallel search. Furthermore, two

users m ight choose the same password, without salting, their hash values would be

identical, telling an attacker that the penetration o f one account also opens the door

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the other, and also indicates that the password is so easy to guess while those two

users thought o f it independently.

Another suggested method from Lamport is to use a chain o f hashes to protect

the password. The idea is to generate a series o f passwords pn. p i p„ linked by

the recurrence relation p, = h(p,.i). In this case, even i f the attacker got the tile

containing the list o f hashes, it w ill be lim ited w ith respect to using pre-computation

and parallel search as well. The disadvantage, o f course, is the cost to compute the

hash every time when A lice logins. Moreover, i f A lice exhibits p or h(p) (hash

result) in cleartext across the network, an attacker can record what A lice says and

replays it later to impersonate her. Note that the hash offers no protection here.

The attacker won't know the actual password, but would not need it to impersonate

her. This attack is defined as a replay attack. To prevent this attack, it is

necessary to ensure that Alice's authenticators cannot be predicated from previous

ones. This mean that the p and h(p) have to be always different after it has been

transmitted once.

3.3 Zero - Knowledge Proofs

Consider the following scenario: A computer reports to Bob that it received the

ciphertext from Alice. The ciphertext requires Bob's private key to decode the

ciphertext and asking Bob to input his private key. Can Bob be sure that here is

really some ciphertext sent from Alice? Can Bob be sure that after he inputs his

private key to the computer he w ill see the message?

One o f the possibilities is that Eve may setup a fake computer that tells Bob the

computer received a ciphertext from A lice and asking him to input his private key.

I f Bob inputs his private key. then the computer may show up an error message to

Bob that the key is in error or the ciphertext is in error in order to fool Bob. A t the

same time. Eve can retrieve Bob's private key for later use. A few years ago.

sim ilar scenarios happened on ATM machines. Some thieves set up a fake ATM

machine at a shopping mall. When a person inserted a bank card and typed in an

ID number, the machine recorded the information but responded w ith the message

that it could not accept the card. The thieves then would make counterfeit bank

cards and go to legitimate ATM machine to withdraw cash, using the ID they had

obtained.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To avoid that problem, what we need is a way to use the secret number to

identify a person or computer without giving any information that can be reused by

an eavesdropper. This is where zero-knowledge techniques come in. The basic

challenge-response protocol [11] is best illustrated by an example due to Quisquater.

Guillou, and Berson. (Shown in figure 3.1)

Figure 3.1

Door

Suppose there is a tunnel w ith a door like in figure 3.1. A lice wants to prove

to Bob that she can go through the door w ithout giving any information to Bob about

how she does and which direction she can pass through the door. They proceed as

following: A lice enters the tunnel at point B and goes down either the left side or the

right side o f the tunnel w ithout Bob knowing in which side she goes. There are

some physical constraints, so that Bob needs to wait outside for a minute, then

comes in at point B can calls A lice out from "Le ft'' or "R ight". A lice then comes to

point B by the left or right tunnel, as requested. This entire protocol is repeated

several times until Bob is satisfied. O f course, in each round. A lice chooses which

side she w ill go down and where Bob chooses which side he w ill request randomly.

Since A lice must choose to go down the left or right side before she knows

what Bob w ill say. she has only a 50% chance o f fooling Bob i f she does not know

how to go through the door. Therefore, i f A lice comes out the correct side for each

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f 10 repetitions, there is only one chance in 2 ’°= 1024 possible that A lice does not

know how to go through the door. A t this point. Bob is probably convinced.

Suppose Eve is watching the process on a video monitor set up at point B.

She w ill not be able to use information she sees to convince Bob or anyone else that

she can go through the door. Moreover, she might not even be convinced that Alice

can go through the door. The sequence o f rights and lefts which were chosen by

Bob is random and ahead o f time before A lice goes into the tunnel. By this

reasoning, there is no useful information that Eve obtains that can be transmitted to

anyone. Note that there is never a proof in a strict mathematical sense that Alice

can go through the door. But there is overwhelming evidence which obtained

through a series o f challenges-responses sequences. This is a feature o f

zero-knowledge “ proofs'*.

There are several mathematical versions o f this procedure and we w ill

concentrate on one o f them. The process is called Feige-Fiat-Shamir identification

scheme [12]. This is used as the basis o f an identification scheme.

Definition:

p = Prime number.

q = Prime number.

n - p q - The product o f two primes p and q .

r = The random integer less then n .

k = The length o f the number which Bob chooses to send to Alice.

b = 6,...... bk = The numbers which Bob chooses to send to Alice.

.v = .v, sk = The secret numbers which Alice possesses.

v = The numbers v is calculated bv v, = „v, ' mod n .•> I /

f (r) = r 2 mod n = x(mod n)

= The function takes r as an input and calculate the result .v.

F(r.s .b) = rs* 's2h: • • • .v /‘ m odn = _v(modn)

= The function takes r . .v. and b as an input and calculate the

result y .

V(y.v.b) = y 2v]h'v2h: modn = x'(modw)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= The function takes v , v . and b as an input and calculate the

result

Let n = pcj be the product o f two large primes p and q . A lice has secret

number 5,, , s k . Let v, = s~2 modw where gcd(.v,.n) = 1. The numbers r

are sent to Bob. Bob w ill try to verify that Alice knows the number.v, s. .

A lice and Bob proceed as follows: (Shown in figure 3.2)

Figure 3.2

Alice Bob

► v

f(r)

r s

T r_
Rr.s.b) I-----

: V b

. T ▼ T
j V(y,v,b)

x x'
 ▼ . . .

 Compare I

1) A lice chooses a random integer r . computes .v 5 /-2mod« and sends .v to

Bob.

2) Bob chooses number 6,. bk w ith each 6, e {0 . l} . He sends these to

Alice.

3) A lice computes y = rs^ 's2h: • • • skhl modn and sends r to Bob.

4) Bob checks that .t'= v: /,; • • • vkhl modn .

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5) Repeat Step 1 through Step 4 until Bob is satisfied.

Consider the case k = 1. Then A lice is asked for either r or r.v,. These are

two random numbers whose quotient is a square root o f v, . Therefore, this

method gives A lice a 50% chance o f fooling Bob. Now consider the case o f larger

k. Suppose Bob sends bx = \.b2 = 0.6, = \.b4 = \.b< = 0 bk = 0 . Then Alice

must produce y = rs xs:>sA, which is a square root o f . r v ^ v , . In each round. Bob

is asking for a square root o f a number and Alice can supply a square root i f she

knows r . s x ,s k . I f she cannot supply it, then she w ill have a hard time to

compute a square root to fool Bob.

3.4 Challenge-response and man-in-the-middle attacks

Authentication can be performed in a stateless manner by using a challenge

response strategy. The term “ stateless" means that the computer has no information

about what the user does previously. Therefore, the computer does not know

whether the response from A lice is from the same person who responded earlier.

Computer C generates a random number n and asks Alice to return n which is

encrypted (Shown in figure 3.3).

Figure 3.3

! Alice

► n

E(n,K)
A~ " A

n K

Note that in this case a M AC. which is not invertible, would serve the same

purpose as the encryption, since the computer is in no need to decrypt the result to

verify. The computer simply performs the encryption on n and compares the result

which what is returned from Alice. This is the model originally used for A ir force

IFF(identify friend or foe) systems. The system operates in this way: i f the fighters

from the same side share a secret key. they can challenge each other via radio

62

i Computer
i

Number n j----------- ^

j

E(n,K) « -j
I
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission. I f they can prove that they have the same secret key. this means they

are from the same alliance. This method is safe from passive replay attacks but it

remains vulnerable to active attacks, such as "man-in-the-middle".

Let us discuss what the '’man-in-the-middle" attack is. There are two parties

communicate through the network like what we have described at the beginning.

(Shown in figure 3.4)

Definition:

Sa = A lice's private key.

Pa - A lice's public key.

Sb = Bob's private key.

Pb = Bob's public key.

C = The ciphertext.

M = Original message from Alice.

R - Reply message from Bob.

E(x.y) = Encryption function.

Takes a key y and encrypts the input x .

Z)(x. y) = Decryption function.

Takes a key y and decrypts the ciphertext x .

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4

Alice Bob

Public Key Pa h

Pb

M Pb

E(M,Pb)

C1

Pa

Public Key Pb

Sb

D(C1.Sb)

M

Sa

D(C2,Sa)

C2
R Pa

E(M.Pa)

R

Alice sends her public key to Bob and Bob replies her with his public key. So

in this case. A lice can send Bob a ciphertext encrypted by Bob's public key and Bob

can also send Alice a ciphertext encrypted by Alice's public key. However, there is

vulnerability o f this scheme. (Shown in figure 3.5) I f there is a third party, says

Eve. who interrupts the connection and is able to get the message from Alice. Eve

is still unable to find Alice's and Bob's private keys from their public keys but she

can read the message from Alice and m odify it or redirect it to Bob.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5

Alice

Public Key Pa

Pe * ------

Eve

Pa

Public Key Pe

Pe
E(M1,Pe)

Pb «-

C1

Pb

Bob

---► Pe

Public Key Pb

E(M2,Pb)

C3 «--------

C2

C1 Se

D(C1,Se)

D(C3,Se)
‘IT

C4

C4
Sa i

T
— ►] D(C4,Sa)

C3

E(R1,Pe)

. _____ T
D(C3,Sb)

▼

M2

C2

Pe

Sb

Pa

E(R2,Pa)

i
▼

R2

Alice wants to send her public key to Bob. A t this point Eve interrupts the

connection and gets the public key from Alice. Now. Eve sends her own public key

to Bob and impersonates Alice. Bob receives the public key and replies to Eve:

(Thinking it is A lice) w ith his public key. Once Eve receives the reply from Bob.

she can reply to Alice with another public key. A t this point, i f Bob wants to send a

secret message to Alice, he w ill encrypt the message using Eve's public key. So

Eve can decrypt the ciphertext from Bob and reply to Alice with other message using

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Alice's public key. Another possibility is that i f A lice wants to send a secret

message to Bob. Eve can decrypt it and modify it as well. In this scenario, we can

see that this position which is vulnerable to attack involves the key distribution and

authentication problem. One possible solution is using digital signature w ith an

arbitrator in between the sender and receiver.

3.5 Public Key Infrastructures (PKI)

Public key cryptography is a powerful tool that allows confidentiality,

non-repudiation, and key distribution for symmetric cryptography [6. pg 246].

However, when the public key is published or private key is signed as a digital

signature, what assurances do we have so that Alice's public and private key actually

belong to Alice? Eve could have substituted her own public key in place o f Alice's,

as in the man-in-the-middle attack. The digital signature w ill provide a better

improvement against the attack, but the public key cryptography is still vulnerable

unless the keys are generated in a manner that does not break confidentiality.

In order for public key cryptography to be useful in communication, it is

necessary' to have an infrastructure that keeps track o f public keys. A public key

infrastructure (PKI) is a framework consisting o f policies which define the rules o f

operation and procedures o f particular cryptographic systems for generating and

publishing keys and certificates. A ll PKIs consist o f certification and validation

operations. The certification binds a public key to an entity, such as a user.

Validation guarantees the certificates are valid.

A certificate is a quantity o f information that has been signed by its publisher:

usually referred to as the certification authority (CA). There are many types o f

certificates, and they are composed o f at least two parts: User's identity and User's

public key. Some o f the certificates may also include the CA's identity, certi ficate’s

identity number, date o f issuance, and the time period for which the certificate is

valid. Two popular ones are identity certificates and credential certificates.

Identity certificates contain an entity's identity information, such as email address,

and a list o f public keys for the entity. Credential certificates contain information

describing access rights. In either case, the data are typically encrypted using the

CA's private key. (See Figure 3.6)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition:

Pa = Alice's public key

ID(a) = Alice's identification.

Sea = CA's private key.

Cert(A) = Certificate created by the CA.

E(x,y) = Encryption function. Takes a key y and encrypts the input .y to

generate the ciphertext. I f the ciphertext is created by the CA. then the

ciphertext may be the certificate Cert.

Figure 3.6

Alice Eve CA

Pa ID(a)

Pa || 10(a)

Pa || ID(a) (Usually by person)

Cert(A)

Verify (Pa || ID(3))

Sea

E(Pa||ID(a),Sca) -

Suppose we have a PKI. and the CA publishes identity certificates for Alice and

Bob. I f A lice and Bob know the CA’s public key. then Alice can take the encrypted

identity certificate for Bob that has been published and extract Bob's identity

information as well as a list o f public keys needed to communicate securely with

Bob.

(Shown in figure 3.7)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.7

Alice i CA Eve Bob

C e rt(B)^

D(Cear(B),Pca) !

M — ■♦j E(M,Pb) i--

c
Sb

D(C,Sb)

▼

M

In the last scenario. A lice and Bob need to trust the CA and CA's ccrtilieates.

The concept o f trust is critical to PKI's and perhaps is one o f the most important

properties. It is unlikely that a single entity could ever keep track o f and issue

every user's public keys. Instead. PKIs often consist o f multiple CAs that are

allowed to certify each other and the certificates they issue. Thus. Bob might be

associated w ith a different CA from Alice. When Alice requests Bob's identity

certificates, she might only trust it i f she trusts Bob's CA. It is necessary for each

o f the CAs between Alice and Bob to trust each other. In addition, most PKIs have

varying levels o f trust, allowing some CAs to certify other CAs with varying degrees

o f trust. It is possible that CAs may only trust other CAs to perform specific tasks.

For example, there can be a root CA issue certificates to other CAs. thereby

constructing a certificate hierarchy sim ilar to figure 3.8 [1. pg 86]

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8

i Root]I _ !

. _ T . . ▼

[Sub h --------►{ Sub ;
i _pA_h] |̂ i ca l? * ,

Sub-Sub „
CA r ~ CA

 7
Sub-Sub

*1 CA

▼ 7
| Alice j Bob

The root CA issues certificates to sub-CAs. which issues certificates to sub-sub

CAs and on down to the individual like A lice or Bob. The sequence o f certificates

forms a chain o f trust. As we can see in figure 3.8. the root CA has issued

certificates to the First and Second Corporation. W ithin each Corporation there is a

sub-CAs which issues certificates to its own department. W ithin the first corporation,

there is Department A which can have another sub-CAs issuing a certificate for its

employee, named Alice. Alice's basic certificate may only contain the fo llow ing 11.

CERT for A lice = {Alice's public key + Alice's identity}

But for now. w ithin the certificate hierarchy Alice's certificate w ill reside at the end

o f a certificate chain like the following:

CERTi = {CERT for A lice} issue from Dept A.

CERT: = {CERT for Dept A } issue from l sl Corp

CERT = {CERTi + CERT:} issue from Root CA

P g 8 7 J :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.9 Alice's Certificate Chain

--------------► Root CA

, I ,
;---------------H Is tC o rp !
I i_________________________■

__ iI “1
Dept A

I f Bob wishes to authenticate a message that Alice has purportedly signed, he

can proceed up the certificate chain until he can find a certificate he can trust. In

this case, it would be the root CA certificate. Then he can progress back down the

certificate chain, authenticate each certificate, in turn, with the trusted public key

from the preceding level.

Now we come to a problem that what happens i f Alice's certificate becomes

invalid prior to its expiry date. For instance. A lice might lose her computer that

contains her secret keys. Other possibility is Alice's private key is somehow

discovered by other parties. Under these circumstances. Alice's certificate would

be invalid because it may no longer represent Alice. In this case. A lice should

report the possible compromise o f her secret keys to her CA. I f this happens, w hat

the C A would do when Alice's secret key may be compromised or when she no

longer meets the certification criteria? One o f the most frequently talkcd-about

mechanisms for invalidating certificates is called certificate revocation. I f a CA is

given valid information that either Alice's secret keys have been compromised or

that A lice no longer meets the certification criteria, then the CA places Alice's

certificate on a certification revocation list (CRL). Placing a certificate onto a CRL

is a serious business. In the CA's certification practice statement, the CA w ill have

to validate the claim o f key compromise or certificate invalidation. The CA must

be cautious and not revoke valid certificates without sufficient proof o f the

authenticity o f the revocation evidence. I f the evidence is fraudulent, the CA may

deny their ability to conduct business o f the valid certificate users. Also. CA must

post invalid certificates on the CRL as quickly as possible to minimize the possible

70

i--------

Alice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fraudulent use o f invalid certificates. The CA passes out the CRL is controversial.

There are two possible methods the CA can do to put the certificates onto the CRL.

The first method we called it "The Push model", in which the CA updates the CRL

and then sends it out to recipients on a scheduled basis. This method has the

advantage o f automatically giving the updated CRL but the CA must use significant

bandwidth in the periodic broadcast o f the CRL. The second method we called it

"The Pull model", in which the recipient must query the CA each time when the

recipient has a question about the valid ity o f a certificate. This method has the

advantage that the CA does not need to send the CRL periodically to each recipient

but someone could interfere with the CRL queries and deny the recipients access to

the information they require. Another disadvantage for the "The Pull model'* is

that there are so many recipients but less CA. I f every recipient requests

verification from the CA. then the C A server may be tied up and cannot handle all o f

the requests from many recipients at once.

Incidentally, certain programs (for example web browsers) have built-in into

them a few public keys o f certification authorities that they trust. I f a user browses

the Internet and requires a certification for a w'ebsite (For example. Bank webpage)

which is not built-in the web browser, then the web browser downloads it from the

web server and saves it fo r later use. In principle, one could modify- the executable

program to alter the authorities being trusted. Hence it is crucial to guarantee the

integrity o f downloaded programs that have built-in trust relationships to

certification authorities.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Nonrepudiation

Nonrepudiation is the property that neither the sender nor the receiver o f a

message is able to deny the transmission. Up to the previous section, all the

methods we provide can only protect two parties who exchange messages from any

third party. However, it does not protect the two parties against each other. The

most important development from the public key cryptography is the digital

signature. The digital signature provides a set o f security capabilities that would be

d ifficu lt to implement in any other way. With this level o f difficult}-, we can

achieve the purpose o f nonrepudiation.

4.1 Digital Signatures Requirement

Before wre introduce any algorithm for digital signature, let us start with some

requirements for digital signatures. To understand that, we have to know what can

happen after the transmission. We assume Alice sends an authenticated message to

Bob using any public key algorithm to protect it. A fter the transmission. Bob may

forge a different message and claim that it came from Alice. Bob would simply

have to create a message and append a checksum from the Hash/Mac which Alice

and Bob share. Another possibility is that. A lice can deny sending the message.

Since it is possible for Bob to forge a message, there is no way to prove that Alice in

fact sent the message. In situations where there is no complete trust between

sender and receiver, something more than authentication is needed. The most

attractive solution to this problem is the digital signature. The digital signature is

analogous to the handwritten signature. It must have the fo llow ing properties] 5.

pg 300]:

1) It must be able to verify the author and the date and time o f the signature.

2) It must be able to authenticate the contents at the time o f the signature.

3) The signature must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

On the basis o f these properties, we can formulate the follow ing requirement

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fo r a digital signature [5. pg 300]:

1) The signature must be a bit pattern that depends on the message being signed.

2) The signature must use some information unique to the sender, to prevent both

forgery and denial.

3) It must be relatively easy to produce the digital signature.

4) It must be relatively easy to recognize and verify the digital signature.

5) It must be computationally infeasible to forge a digital signature or to construct

a fraudulent digital signature for a given message.

6) It must be practical to retain a copy o f the digital signature in storage.

A variety o f approaches has been proposed for the digital signature function.

These approaches fall into two categories: direct and arbitrated.

4.2 Direct Digital Signature

The direct digital signature involves only the communicating panics, sender

and receiver. It is assumed that the receiver knows the public key o f the sender.

A digital signature may be formed by encrypting the entire message w ith the sender's

private key or by encrypting a hash code o f the message w ith the sender's private key.

Confidentiality can be provided by encrypting the entire message and the signature

w ith the receiver's public key. It is important to perform the signature function first

then an outer confidentiality function. In case o f dispute, some third parties must

v iew the message and its signature. I f the signature is calculated on an encrypted

message, then the third party also needs access to the decryption key to read the

original message. However, i f the signature is the inner operation, then the

recipient can store the plaintext message and its signature for later use in dispute

resolution.

A ll direct schemes discussed so far have a common weakness, which depends

on the security o f the sender's private key. I f the sender wishes to deny sending a

particular message later, the sender can claim that the private key is lost or stolen

and someone else has forged his or her signature. Another possibility is that some

private keys might actually be stolen from X at time T. The opponent can then

send a message signed with X's signature and stamped with a time before or equal to

T.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 RSA for Digital Signature

The RSA algorithm not only uses for message encryption but also can use to

perform the need o f digital signature [1. pg 130] [5. pg 312], The basic concept is

shown as follow : (Figure 4.1)

Figure 4.1

i Alice I

Message M

Eve

M
_ / T -

i

Hash F(M)

H i

Sa

E(D,Sa)

Bob

Pa

T ▼
D(C,Pa)

T
Hash F(M)

: H '

▼ . T
Compare

H

Instead o f using the public key to encrypt the message, the sender can use his

own private key to encrypt the message. The sender performs a hash function

using the message as an input and encrypts the digest by his private key. Once the

receiver receives the message and the ciphertext, he can perform the hash function

by using the message he received. The he can decrypt the ciphertext by using the

sender's public key. Since only the proper sender knows his own private key and

no other people know it. i f the receiver is able to decrypt the ciphertext then he can

get the digest from the ciphertext. Comparing the digest created by the receiver

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the digest from the ciphertext, i f both digest are the same, then the receiver can

assume the message created by the proper sender.

4.4 Digital Signature Standard

The digital signature standard (DSS) [5. pg 312] was introduced by the

National Institute o f Standards and Technology (NIST) in 1991. known as "Federal

Information Processing Standard FIPS PUB 186'". The DSS makes use o f the

Secure Hash Algorithm (SHA) and the digital signature algorithm (DSA). The

DSS was originally proposed in 1991 and revised in 1993 in response to public

feedback. A further m inor revision occurred in 1996. The DSS uses an algorithm

that is designed only to provide the digital signature function. Unlike RSA. the

DSS cannot be used for encryption or key exchange.

Figure 4.2

! Alice
i_______

Message M

Eve

M

Bob

 T . .

Hash F(M) J

” h H “ I 1
I !

,__ ▼______ t_
j Signature

* A
..Tv.

I KUg

. . ▼
Hash F(M)

KUa

KUg KRa T ▼ T
Verify

Compare

Figure 4.2 shows the DSS approach and figure 4.1 shows the RSA approach for

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generating digital signature. In the RSA approach, the message to be signed is an

input to a hash function that produces a secure hash code o f fixed length. The hash

code is then encrypted w ith A lice's private key to form the digital signature. Once

A lice has the message and the digital signature, she w ill transmit both message and

the digital signature to Bob. Bob takes the message and produces a hash code.

Bob also decrypts the digital signature by using Alice's public key. I f the

calculated hash code matches the decrypted signature, the signature is accepted as

valid. Since only Alice knows her private key. Bob can verify that only A lice could

have produced a valid signature.

The DSS approach also makes use o f a hash function. The hash code is

provided as an input to a signature function along with a random number k generated

for this particular signature. The signature function also depends on the sender's

private key (KRa) and a set o f parameters known to a group o f communicating

principals. We can consider this set as a global public key (KUg). The result is a

signature consisting o f two components, named as r and s.

A t the receiving end. the hash code o f the incoming message is generated.

The hash code plus the signature are input to a verification function. The

verification function also depends on the global public key as well as the sender's

public key (KUa). The output o f the verification function is a value v that is equal

to the signature component r i f the signature is valid. Same as RSA. only the

sender w ith knowledge o f the private key could have produced the valid signature.

4.5 Digital Signature Algorithm

The digital signature algorithm [5. pg 313-315] is based on the d ifficu lty o f

computing discrete logarithms. There are three parameters that are public and can

be common to a group o f users, which is KUg . Two prime numbers p and q .

such that q divides p - 1 . and g is chosen to be o f the form

,ci\
g = h q mod p .

Where h is an integer between 1 and p -1 . The length o f these numbers is

somehow^ restricted. The prime number q must be 160-bit long and p is

selected w ith a length between 512 and 1024 bits. Also, number " must be

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

greater than 1.

Once we have these numbers set up. Alice can select a private key and

generates a public key. The private key must be a number from 1 to q -1 and

should be chosen randomly. The public key is calculated from the private key as

y = g x mod p . As before, calculating y given x is easy but is computationally

infeasible to determine x from v .

To create a signature, A lice calculates two quantities, r and s . which are the

functions o f the public key components (p q g) . A lice's private key x . the hash

code o f the message, H (M) , and an additional integer k that should be generated

randomly and be unique for each signing. The integer k and the public key

components should also satisfy the follow ing condition: For every number n
between 1 and p - 1 inclusive, there is a power k o f g such that

n = g k mod p .

The quantity r is calculated by the follow ing operation:

r = (g k mod p)m odq

And the quantity s is calculated by the follow ing operation:

s = [&“ '(/ / (A /) + x r)]m od#

Once A lice creates the signature, she can send the message M and the signature

(r s) to Bob.

A t the receiving end. verification is performed using the follow ing formula in

the fo llow ing order. Assume Bob gets the signature (r1 s') and message A /':

First, find \v = (s ') -1 mod^r

z/1 = [H (A /')vr] mod q
u2 = ((r'JvtOmodt/

v = [(g " ‘) (y "2) mod p] mod q
Check v =

Bob generates a quantity v that is a function o f the public key components.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the sender's public key. and the hash code o f the incoming message. I f the quantity

v matches the r component o f the signature, then the signature is validated.

The structure o f the algorithm is quite interesting and different from RSA.

Note that the test at the end is on the value r . which does not depend on the

message at all. Instead, r is a function o f k and the three global key

components. The m ultiplicative inverse o f k m o d p is passed to a function that

also has the message hash code and the user's private key as the inputs. The

signature created by RSA may only depend on the public key o f the user and the

hash code. The structure o f the DSA is that the receiver can recover r using the

incoming message, signature, the public key o f the user, and the global public key

which involved more parameter than RSA. The DSA has one more advantage

which is the signature r does not depend on the message to be signed. It can be

computed ahead o f time and be used to sign documents later.

4.6 Arbitrated Digital Signature

The solution for the direct digital signatures can be used as an arbiter. Like

direct signature schemes, there is a variety o f arbitrated signature schemes. In

general terms, they all operate as follows: Every signed message from Alice to

Bob should go to a trusted arbiter A first. An arbiter subjects the message and its

signature to a number o f tests to check its origin and content. The message then is

dated and is sent to Bob w ith an indication that it has been verified to the satisfaction

o f the arbiter. The presence o f an arbiter solves the problem which we have

indicated in the last section. The arbiter plays a sensitive and crucial role in this

scheme and all parties must have a great deal o f trust that the arbitration mechanism

is working properly.

For the public key encryption scheme, the arbiter does not need to see the

message to check the digital signature. What Alice should do is to send the

identifier o f A lice, and the ciphertext CN which is encrypted by A lice's private key.

to the arbiter. The ciphertext CN contains the identifier o f A lice and the double

encrypted ciphertext M . which is encrypted by Alice's private key and Bob's public

key. A fter the arbiter gets the message from Alice, an arbiter can decrypt the

ciphertext CN to make sure the public or private key is s till valid. An arbiter can

compare the identifier o f A lice is the same as the one writh the message to confirm

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the message is made from Alice. An arbiter confirms the sender is Alice, and sends

the identifier o f Alice, timestamp, and the double encryption ciphertext M to Bob

encrypted w ith arbiter’s private key [5, pg 301]. (Shown in figure 4.3)

Definition:

Pa = A lice ’s public key.

So - A lice ’s private key.

Pb = Bob’s public key.

Sb = Bob’s private key.

PA = Arbiter's public key.

SA = Arbiter's private key.

M = The original message from Alice.

T = Timestamp created by Arbiter.

CN = The ciphertext w ith sender’s identification.

CT = The ciphertext w ith arbiter's timestamp and the sender's identification.

E(x.y) = The encryption function which has the same properties like in the

previous chapter.

D(x .y) = The decryption function which has the same properties like in the

previous chapter.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3

~i Eve

Alice
Sa

Arbiter

E(M,Sa) I! _J ._r~i
Pb ,------------- C1

E(C1,Pb) r

PA C2

E(C2||ID(a),PA) '

CN

10(a)1

10(a)

SA
. T T _

D(CN,SA)

T ---------
! Check ID(a)

10(a) ; C2
_T__

E(ID(a)]|C2||T,SA)
Ai

Bob

CT
PA

▼ T
D(CT,PA)

SA y n
Check T ;

Check
10(a)

ID(a) C2

i D(C2.Sb) ^

i !ci
i _
! T Pa
I ! D(C1,Pa) <

M

Sb

This scheme has a number o f advantages over the direct digital signature.

First, the information is shared by the sender and the receiver parties like before.

Second, no incorrect dated message can be sent, even i f Alice's private key is

compromised, assuming that arbiter’s private key is not compromised.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: The Next Generation of Algorithm

5.1 Introduction

In the last chapter we have introduced the modem cryptography algorithms and

cryptosystems. One o f the most common problems in the modem cryptography

algorithm is that the algorithms w'ere developed in the early 90's. This mean they

are more than 10 years old. I f we are s till using the same algorithms to protect the

network from security problems, soon or later, the algorithms w ill not meet our

requirement as they w ill be prone to other attacks like brute-force attack. The

researchers and developers try to develop some new algorithms by either using the

existing hardware or new technologies which may become available in next few

years. In order to increase security, there are two options which may be tried.

The first method is to improve the existing algorithms by using modem technology.

The second method is to use some new' technologies in conjunction w ith new

algorithms. Both methods are workable and there are some examples showing that

both attempts have enjoyed some degree o f success. In this chapter, we w ill

examine these examples and the cryptography algorithms for both attempts.

First, we w ill introduce the D N A computing and the cryptography algorithms

which are built by current computer technology. Second, we w ill introduce the

cryptography algorithms for the quantum computer, a next generation computer

which has not yet come into existence.

5.2 DNA computing

DNA computing is a new approach for the massive parallel computation based

on groundbreaking work by Leonard Adleman [22]. Leonard Adleman is the one

who developed RSA cryptography in early 90 and he used DNA to solve a

seven-node Hamiltonian path problem. The seven-node Hamiltonian path problem

is a special case o f an NP-complete problem that attempts to visit every node in a

graph exactly once. This special case is triv ia l to solve with a conventional

computer or even by hand, but for more nodes in the graph, it w ill not be easy for

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conventional computer. We w ill discuss more about it later in section 5.3 and see

the example about how the DNA computing can solve this special NP problem.

Later in section 5.4. we w ill see what the D N A computing can do for encryption and

decryption. The idea come from Ashish Gehani. Thomas LaBean. and John Reif

and is the first example o f how D N A computing can perform encryption and

decryption [16]. The research on D N A computing is ongoing. Hopefully,

efficient designs o f possible D N A computers w ill exist in the future.

5.2.1 Introduction

To understand how DNA computing works for cryptography, we have to know

what is DN A. D N A (Deoxyribonucleic acid) is the molecular basis o f genetics. For

our purposes, the following features are important [2. pg 241] [20] [23]:

1) A D N A molecule is made o f two intertwined, parallel strands which usually called

double helix

2) Each strand has the follow ing structure (figure 5.1):

Figure 5.1

/
\ / \ /
r \

\ / \ /\ / \ /' \ \

! s j s ! s I ! s
! _ ^ _ j [—,— i !— i ii—

r~ •— i t i---0—y r-

B j ! B !1 I L i j B
I_ _ 1 L_.....

B

Where p = phosphate, s = sugar, and b = base. Each b can be any one o f the four

bases: a - adenine, t = thymine, c = cytosine, g = guanine.

3) Two consecutive s-p bonds must occur at distinct places on the s molecule: one at

3 ' (three-prime) position and one at the 5 ' (five-prime) position. So each strand has a

3'-end and a 5'-end. and so they are systematically oriented. We w ill write a. t. c. g

when the strand is being read from the 3'-end to the 5'-end. and a. t. c. g when the

strand is being read the opposite way. that is. from 5‘ -end to the 3'-cnd.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4) The two intertwined strands in a D N A molecule have opposite orientations, and

complementary base sequences, a is always complements w ith t and vice versa.

Also, c is always complements w ith g and vice versa. A typical stretch o f the DNA

molecule looks like (figure 5.2):

Figure 5.2

A strand from 3' to
5‘ which connect

with its
complement.

a

U I

L_

9

I

! S

r " _ H
1 t i t ! 10

L

I
3

! .
a

S
■

L

This schematic representation o f a segment o f a DN A molecule w ill be abbreviated

to:

We name the template strand on the top as: a. a. g, c. t and the complement strand as:

1.1. c. g, a.

We now showr how DNA can solve the seven-node Hamiltonian Path Problem.

The seven-node Hamiltonian Path Problem involves an oriented graph, a collection

o f vertices and oriented path from one vertex to another vertex. The following

graph is one o f the examples o f seven-node Hamiltonian Path problem (figure 5.3):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.3

J . _ f

i 6 f

The problem is this: We designate a Start vertex and a Finish vertex. In these

terms, the Hamiltonian path problem for this graph is to find a sequence starting

from the Start vertex and ending at the Finish vertex and to visit each vertex in the

graph exactly once. In usual graph terminology, such a sequence is called a

Hamiltonian Path. For seven-nodes, it may be easy to solve by hand. However,

when the number o f vertex increase, the amount o f computation to find the

Hamiltonian Path by using the present efficient algorithm w ill also increase

exponentially. Also, to check i f there exists a Hamiltonian Path in the graph it

means we have to check i f the Path contains all the vertices in the graph. I f the

numbers o f vertices are increasing, the time to check the path w ill grow at a

polynomial rate. The combination o f the exponential growth o f the list to be

searched and polynomial growth o f the length o f the solution verification algorithm

makes this problem an NP problem.

Leonard Adleman is the first researcher who used DNA strands to solve this NP

problem [22].

1) Each vertex and the link connecting each vertex w ill assign a single D N A strand

20 bases long. For example:

Vertex 2: TATCGGATCGGTATATCCGA

Vertex 3: GCTATTCGAGCTTAAAGCTA

Vertex 4: GGCTAGGTACCAGCATGCTT

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L ink 2—>3: GTATATCCGA|GCTATTCGAG

L ink 3—>4: CTTAAAGCTAGGCTAGGTAC

Etc..

Note that L ink 2 -* 3 is made o f the last ha lf o f vertex 2 plus the first ha lf o f

vertex 3, same for the L ink 3—>4. Also. L ink 4—>3 must be different from Link 3- *

4. So the strand which represents L ink 4—>3 is totally different from the strand

which represents L ink 3—>4. Instead o f using 20 bases, we use 8 bases in our

example.

Vertex 2: TATCCCGA

Vertex 3: GCTAAGCT

Vertex 4: GGCTCGTT

L ink 2—>3: CCGAGCTA

L ink 3—>4: AGCTGGCT

Etc..

Once we have all the strands representing each vertex and the link connecting

each vertex, we need to m ix the strands representing the link o f connection w ith its

complementary strands representing the vertex in the test-tube. So. for our

example, the test-tube holds:

L ink 2—>3: CCGAGCTA

L ink 3—>4: AGCTGGCT

Complement o f Vertex 2: ATAGGGCT

Complement o f Vertex 3: CGATTCGA

Complement o f Vertex 4: CCGAGCAA

Etc..

When the contents are mixed, the complementary sections o f the strand w ill

bond, yielding products o f reaction like (figure 5.4):

C .C .G A . G C .T .A

/ / / /

A. T. A. G G C. T

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4

—tI

And

C .C .G A . Q C .T .A

I I I I I I I I
A .T .A .G G G C .T . C .G A .T . T .C .G A

Etc..

The products o f reaction represent all the possible o f path that can exist in the

graph. By using recombinant DNA technology we can easily eliminate the path

which

1) Does not start w ith the START vertex and does not end w ith the END vertex

2) Does not contain exactly 7 vertices

3) Contains repeated vertices

I f there is anything left, it must be the molecules encoding a path that goes from

the START vertex and end w ith the END vertex and each vertex exists in the path

once. This mean there is a Hamiltonian path in the graph.

5.3 DNA cryptography using random one-time-pad

This is the first example o f using DNA computing to encrypt and decrypt data.

The method is suggested by Ashish Gehani. Thomas LaBean. and John Reif in 2000

[16]. They are using the D N A characteristics to form a one-timc-pad codebook as

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a key to encrypt and decrypt data. Here is the protocol:

In itia l steps:

A lice and Bob want to communicate with each other by using DNA

cryptosystem to encrypt and decrypt the data. What they need is a long strand as a

one-time codebook that can map a plaintext word to a codeword. The map must be

a one-to-one map from each plaintext word to a codeword. For example we have a

strand A as our codebook in which each o f the four bases represents a plaintext word

Strand A : TTGC AAGTCCGTTTAA

Therefore we w ill have a unique complement o f strand A:

Complement o f strand A: AACGTTCAGGCAAATT

Each o f the four bases in the complement o f strand A represents a codeword.

A lice and Bob share this one-time codebook which Eve does not know.

Steps:

1) A lice uses the codebook to map each plaintext word to the D N A strand. Once

she finishes and has all the D N A strands, she can form the complement o f those

strands as a codeword and sends it to Bob.

2) Once Bob gets the codeword, he can use the codebook to form the DNA strands

from the codeword and find the complement o f those strands to get the plaintext

words.

Since Eve does not know the codebook, even she gets the DN A strands and

finds the complement o f those strands, without the codebook, she cannot get the

plaintext from Alice. The reason we only use the codeword once is because Eve

can trace the codeword by the brute-force attack or by counting the number o f

existence for each DN A strands. Also, the codebook must be shared by Alice and

Bob secretly in order to make this method work.

5.4 Quantum computing and Quantum cryptography

Quantum computing [18] is a new area o f research that has only recently started

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to blossom. Quantum computing and quantum cryptography were born out o f the

study o f how quantum mechanical principles might be used in performing

computations. Quantum computing is totally different from classical computing.

In classical computing, a bit has a discrete angle and can represent either a 0 state or

a 1 state. In quantum computing, the computer uses a qubit instead o f a bit where a

qubit can be in a linear superposition o f the two states. In 1982. the Nobel Laureate

Richard Feynamn observed that certain quantum mechanical phenomena could not

be simulated efficiently on a classical computer. He suggested that the situation

could perhaps be reversed by using quantum mechanics to do computations that are

almost impossible on classical computers. A t that time. Feynman did not present

any examples o f such devices.

5.4.1 Introduction

To understand more about quantum computing, we w ill start with a simple

example [6. pg 353] [18]. We know photons are the particles that make up light

and are therefore observable. We start w ith some light source w ith three Polaroid

filters which they have the fo llow ing polarization: horizontal. 451 . and vertical.

Start a light source on a wall as the fo llow ing figure:

Figure 5.5

We insert the filte r w ith a horizontal polarization between the light source and

the wall as the fo llow ing figure:

O

Wall

Light source

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.6

o
1st

filter
; Wall

Light source

A fte r that all the photons coming out from the filte r w ill have horizontal

polarization. Now insert the filte r with the vertical polarization as the follow ing

fmure:

Figure 5.7

o
------- ► 1st

i ;

‘ 3rd i
i \A/call

filter filter j
i W a l l

i

Since the last filte r has vertical polarization, it filters out all the horizontal

polarized photons from the previous filter. Therefore, no photon w ill past the last

filte r and no light on the w'all. The last step we do is to insert the filte r with

45° polarization in between two filters as the follow ing figure:

Figure 5.8

o

i
I ;

1st
filter

!

■ * ! 2nd i

! filter !
l

! i
! j

■p
a>

i;

— ►

i Wall

Light source

A fte r you insert the last filter, we w ill notice that there is a light on the wall.

What happened in the last example? In order to explain the last example, we w ill

represent a photon's polarization w ith a unit vector in the two dimensional complex

vector space. This vector space has a dot product given by (a.b) . (c.d) = ac + bd.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where cxd denotes the complex conjugates o f c and d. Choose a basis for this

vector space, which we can denote asf and —►. Therefore, an arbitrary polarization

may be represented as a | + b —* . We could just have well chosen a different

orthogonal basis, for example, one corresponding to a 45' rotation: \ and T .

Similarly, we measure a vertical aligned photon w ith respect to a 45" filter. Since

T= 2_: \ + 2“V .
the probability that the photon f passes through the 45 polarization filte r is (2 ':) '

= ^ . Similarly, the probability that it does not pass through the filte r is also —.

When the original light is emitted w ith random polarization a l ^ b - + . only ha lf o f

the photons being emitted w ill pass through the —► filter, and all o f these photons

w ill have their state changed to — We place the | filte r after the —> filter, the

photons which in —*• state w ill be stopped. When we insert the 45 polarization filter

in the middle o f j filte r and —> filter, it corresponds to the measure with respect to

and hence those photons w ith —► polarity w ill come out as polarity with

probability o f Therefore, there has been a 4:1 reduction in the amount o f

photons passing through up to the filter. Now the ./* photons pass through the J

filte r w ith probability o f so the total intensity o f light arriving at the wall after

the last filte r w ill be 8:1 reduction.

5.5 Quantum Key Distribution

Once we know the ideas behind quantum mechanics, we can use them to

exchange information between two parties through a quantum channel with some

qubits. As we know previously, i f a photon's polarization is read in the same basis

twice, the polarization w ill be read correctly and w ill remain unchanged. I f it is

read in different basis, only ^ chance the polarization w ill be read correctly.

Combine the number o f chances to choose a different basis, and it w ill become --
4

chance the original polarization w ill be read correctly because in different basis there

are 2 choices. The follow ing protocol can be used by A lice and Bob to exchange

secret keys [6. pg 357] [19]:

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In itia l steps:

1) A lice sends Bob a stream o f photons, each w ith a random polarization, in a

random basis. She records the polarizations. For example, she sends

The bits : 0,1,1,1,0,0.1,0

The basis 1. B l : 0 = j . 1 = —>•

The basis 2. B2: 0 = \ , 1 = /
So the stream w ill become: | —>\ with the basis she chooses

randomly: B l. B2. B l. B l, B2. B2. B l. and B2.

2) Bob measures each photon in a randomly chosen basis and records the results.

In our example, he measures it w ith the basis: B2.B2.B2.B 1 .B2.B1 .B 1 ,B2

3) Bob announces over an authenticated channel, the basis he uses for each photon.

So now Alice should know which basis Bob has chosen.

4) A lice tells him which choices o f bases are correct. So in this example, both

A lice and Bob w ill share the 2nd, 4th. 5th, 7th, and 8Ih bases because the basis

made from Bob matches her choices.

The bits: 1 .1 .0 ,1 .0 w ith bases B2. B 1. B2. B 1. B2.

The qubits:

Protocol:

1) A lice sends a message to Bob encrypted by the key 1. 1.0. 1.0

2) Since Bob has the same key. he should be able to decrypt the ciphertext after he

receives it.

I f the key is long enough. Eve can read the ciphertext only i f she knows the key.

The security behind quantum key distribution is based upon the laws o f quantum

mechanics. Assume Eve is eavesdropping between Alice and Bob when they

exchange the key. Eve may measure the photon w ith different basis: therefore Bob

w ill have a 1/4 chance to get the correct polarization from the photon after he

measures from Eve. I f the steam is long enough. Alice and Bob should find out

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they are having different values for their secret keys, then they can detect the

presence o f eavesdropping, and start the protocol over.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Digital Rights Management (DRM)

A fte r year 2000, most o f the documents, pictures, or music is produced as

digital files. It is not easy to prevent copying or sharing on the digital file because

once the user owns the digital file either from the store (music from a CD. image

from a DVD, or documents from a textbook) or downloads it from the internet

(Napster), it is hard to control how users share it w ith other users or copy it to resell.

From the number o f users using the Napster, we can tell that many people on the

internet try to share and copy the same digital file. We need to have a management

o f rights for the digital file. The rights indicates which group o f users has the rights

to operate some actions on the digital file for some certain time while which group

o f user has no rights to access it all the time. We w ill first introduce some o f the

requirements for DRM in the next section, and then we w ill provide an example to

understand how the DRM works.

6.1 Introduction

The digital rights management is developed to prevent the user to copy or share

the digital file against the copyrights. DRM involves the description, identification,

trading, protection, monitoring and tracking o f all forms o f rights usage over both

tangible and intangible assets (physical and digital form) including management o f

right holder relationship [26, pg 2]. Usually DRM consists only o f the

identification o f intellectual property and the enforcement o f usage restrictions.

The identification consists o f the attribution o f an identifier (such as the ISBN

numbers for books) and the marking o f the property w ith a sign (such as a

watermark). The enforcement works via encryption, which can ensure the digital

content is only used for the purposes agreed by the rights holder. Fncryption

system cannot prevent the copying and sharing. Consider the fo llow ing scenario:

Assume A lice is the author o f the digital file, and Bob is the one who requests the

digital file . I f A lice only uses the encryption system to encrypt the digital file and

sends the ciphertext to Bob along w ith the key. then Bob is not only able to decrypt

the ciphertext to get the digital file, but also can share the ciphertext and key with

other users. Shown in figure 6.1

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1

Alice I Eve Bob

DM

E(DM,K) J !

[E(K,Pb) I T -

K ' Pb 1

CK

C

Sb

 ▼.
D(CK,Sb)

 T.
K

Public

In the last scenario, we can see the encryption system cannot prevent the

copying and sharing, but the encryption system can assist the DRM. Basically, the

DR M works as follow ing:

1) A lice encrypts the digital file and sends it to the trusted third party T (Trusted

Authority).

2) Bob requests the digital file from Alice. Bob needs to download some

software from T which may contain the unique key that Bob cannot view the

key or share w ith other users.

3) A fte r Bob installs the software into his computer, the third party T w ill send the

ciphertext to Bob's computer.

4) The software in Bob's computer w ill decrypt the ciphertext and view the digital

file to Bob. Since Bob cannot access the key. he cannot share the digital file

w ith others.

(Shown in figure 6.2)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2

Alice

DM; PT j
I i; i

 ▼____
1 E(DM.PT)

Computer;
(Bob)

ST — jT Request DM :

 D(C,ST)

DM i

Respond \—
K

Bob

Request DM

E(DM,K) ■?
CM

T T
D(CM.K) ► DM

The DRM has some disadvantages, because [93]:

1) The encryption/decryption system remains vulnerable.

2) The software may not be able to install into the client computer

3) The verification from the client to the server may require the internet

connection, which lim its the number o f users.

There are so many different approaches from different companies (Microsoft.

Adobe, etc) to achieve the purpose o f DRM. In the next section, we w ill prov ide

the example to achieve the purpose o f DRM by using elliptic curve algorithm.

6.2 Example of DRM

As before, assume Alice is the rights holder o f the digital file and Bob is the

one who requests that digital file from Alice. The follow ing is the protocol which

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lice can send the digital file to Bob and Bob does not copy or share w ith other

users (Shown in figure 6.3):

Definition:

P = A prime number.

E = An elliptic curve.

D M = The digital file front Alice.

Pa = A lice 's public key.

Sa = A lice 's private key.

Pb = Bob's public key.

Sb = Bob's private key.

PT = Arbiter T's public key.

ST - A rbiter T's private key.

S = The software to install to Bob's computer. The software contains few

keys to unlock the ciphertext. Bob cannot view' the key and share the key

w ith other user.

Na = Key to unlock the software S .

Nb = Key contained in software 5 .

P = Payment.

E(m.x) = C

= Any public key encryption function.

D (C .y) = m

= The related public key decryption function.

SE(D M .x) = Cs

= The symmetric key encryption function. The ciphertext can be created

by the arbiter T only. Also, the ciphertext can decrypted by the software

S .
SD(Cs, x) = D M

= The symmetric key decryption function which is embedded in the

software S .

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3

Alice j

PT,DM,

i E(DM.PT) |

' l L .

T

I ST

D(C.ST)

Sa CP

DM,

i Respond

y
Certified

P _

y
Verify P i

■-A'

! Computer,
: (Bob) :

I Request DM

Install, Gets Nb, E, P

Request Payment

-- Payment P 4 -

Pa

D(CP,Sa) j

E(Na,PT)
A A'

N a1 PT1

E(P,Pa)

K1
ST

D(K1,ST)
.

| Na

E(Na,Pb)
' A
Pb

C1
▼_____
D(C1,Sb)

C2
|SE(DM,Na*Nb*Pb). — A

Nb

DM Na*Nb*Pb

| Na

..._y.. .▼ . y _
SD(C2,Na*Nb*Pb)

DM

. T ___
View DM

Bob

Request DM

Payment P

Sb

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialization steps:

1) Trusted authority T is between A lice and Bob. which contains the e llip tic curve

E w ith some prime numbers P .

2) T may also contain the public key PT which Alice and Bob can use to

encrypt their data. O f course. T w ill have the private key ST which is

related to PT fo r decryption. No one knows the ST except T.

As before. A lice has her own public key P a . and private key S a . Bob also has

his own public key P b . and private key S b .

Protocols:

1) A lice encrypts the digital file DM w ith trusted authority T 's public key PT

and sends it to T: E(D M . PT) = C .

2) Bob sends the request to T. T needs Bob to download some software S

which contain the unique key Nb . A t this point, we assume Bob cannot copy,

access, view, or share Nb w ith other users. Bob needs to install the software

S into his PC to become a certified client.

A fter the installation, the software S connects to T to indicate that Bob is able to

install the software properly.

3) The software S requests a payment from Bob.

4) Bob makes a payment P and sends it to T. T verifies P and sends it to

Alice: E(P. Pa) = CP

5) Once A lice accepts the payment from Bob. she sends the key Na to T:

E(Na.PT) = K\

6) T gets the key Na from A lice and encrypts the digital file by using

combination key: SE(DM, Na * Nb * Pb) = C l

Also. T encrypts the key Na by Pb: E(Na.Pb) = C2

7) T sends C l and C2 to Bob's computer. The software S asks Bob to input

his own private key Sb in order to verify himself.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8) I f Bob inputs the correct private key Sb. then the software w ill be able to

decrypt C2 to get N a . The software S does not need to show the key

Na to Bob. instead. S combines the Na w ith Nb and Pb to make the

key Na * Nb* Pb to decrypt C l to get DM :
SD(C\ , Na * Nb * Pb) = DM

I f Bob wants to copy or share DM to other users, then Bob needs to operate

the software to get DM . Depending on the software or the rights to access, it may

not be easy to make a copy o f D M . I f Bob copies or shares the ciphertext C l or

C 2 w ith other users, then the next user needs to know Sb in order to decrypt Cl

to get D M . Since Nb is uniquely installed in Bob's PC. Bob cannot access the

software to get N b . This is really hard for other users to crack C l to get DM .
Assume Eve tries to eavesdrop and get DM without A lice or Bob noticing it.

The first attempt from Eve is to make a copy C and get DM from C . We

know this is almost impossible to crack C i f C is encrypted by some modern

encryption systems likes RSA. The second attempt from Eve is to make a copy

C l and get DM from C l. Again, this is almost impossible for her because i f

she needs to crack the C l . then she needs to know N a . Nb . and Pb . She can

get the Pb easily because Pb is a public key. However, it is not easy to get

Nb because Nb is installed in Bob's computer. I f Eve wants to get N b . then

she needs to hack to Bob's computer and crack the software to get it. Also, i f Eve

wants to get N a, she needs to crack C’2 by using S b . Again, that is almost

impossible for her to get Na as well.

6.3 Watermarking of DRM

Watermarking is the insertion o f “ hidden" data such as copyright information

into visible data such as an image or a video. There are various kinds o f

watermarks, the usage or the watermarks are various. The following considerations

apply on choosing different watermarks [17]:

1) The purpose o f the embedded data.

2) Whether it is the same for each instance o f a given content item.

3) Whether one or both o f the signals are analog vs. digital.

4) How subtly the data is embedded.

5) How perceptible the data is.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6) Whether the watermark is intended to survive manipulation o f the marked file.

It is important to understand that a watermark is not encryption. A watermark

modifies data but cannot prevent or enable playback o f the data by itself, except in

the special case where playback is restricted to proprietary closed boxes which insist

on seeing the watermark.

Watermark schemes fall into three classes [17]:

1) Forensic watermark: Watermarks do not actually stop anyone from copying or

manipulating content, but they can establish where the content came from

originally.

2) Denial watermark: A watermarks aimed to prevent content from being accessed

fraudulently.

3) Mulit-phase watermarking: A watermarking schemes usually involve a change

o f states in the content. In the in itia l state, the content is in a sample from

which may or may not be easily usable. Then a consumer legitimately

acquires the content and it is transformed into a form which is more usable.

I f the content has a forensic watermark, then it is only intend to track copies o f

the data but not able to prevent the copying. Mostly, the forensic w'atermark has be

found in the image files such as JPEG file. The denial watermarking is a mix o f

encryption and the information o f copyright. This watermarking has been found in

a physical audio formats music CD or video disk such as VCD or DVD. The main

scheme to make this watermarking work is that the closed boxes able to play the

music CD, VCD, or DVD need to match the w'atermark on the disk. I f the

watermark is not matched, then the closed boxes w ill terminate the operation. The

multi-phase watermarking schemes are just emerging as o f spring 2003 and are still

under development. The main idea o f mulit-phase watermarking is that the content

exists in one from as originally distributed, and transformed to the second form once

legitimately licensed. The mulit-phase watermark is hard to find for now in the

digital data because these schemes are really complex. I f the content is cracked at

the first phase, the features o f the second phase never come into play. That is the

main reason why this scheme is still under development unless there is a way to

ensure the security o f the first phase.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Conclusion

The development o f cryptography helps protect the communication between the

sender and the receiver. The protocols and the algorithms we have studied in this

thesis are only for one-to-one communication. We have studied the aspect o f the

network security, possible attacks which can occur during the communication, and

the algorithms which solve the corresponding problems. Mostly, network security

involved four important services to prevent internal and external attack. The four

services are confidentiality, integrity, authentication, and non-repudiation. In

chapter 1. we have studied the aspect o f confidentiality and the algorithms which can

meet the needs o f confidentiality. In chapter 2. we have studied aspect o f the

integrity and the hash/MAC functions. In chapter 3. we have studied the aspect o f

authentication and the requirement to achieve it. In chapter 4. we have studied the

aspect o f non-repudiation and the solutions to associated problems. In chapter 5.

we have studied the new approaches for the next generation o f cryptograph

algorithms, which include DNA computing and Quantum computing. Although

these algorithms may never be implemented as they are. they do advance the concept

o f key-based cryptography. Some o f the algorithms are extensions o f existing

algorithms, such as D N A computing, while others are developed from new

approaches, such as quantum computing. In chapter 6. we have studied the digital

right management, which is designed to manage digital files. This idea is

developed to address many users sharing digital files over the Internet. Therefore,

this research area is relatively new and still under development. Nowadays, the

attempted solutions are s till not sufficient for preventing all possible attacks. Also,

many restrictions apply in trying to achieve the requirements, such as Internet

connection between the client and the authority.

In the future. I believe that having an authority between the sender and the

receiver is still the best solution for protecting both sides. The authority can be a

person or a computer. The one-to-one communication w ill not only include the

sender and the receiver. Instead, we are more concerned with the communication

between the sender and the authority or the authority and the receiver. From the

D R M example, we can see the trusted authority party is a must-have requirement in

order to protect both sides and the digital file. The communication between the

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sender and the receiver w ill become more complex once we involve an authority.

However, this should be able to provide a better solution to network security.

Another possible improvement in the future is that the public key or private key

may be embedded into the computer hardware or software. The DRM example

shows that the software may include the key for decoding but not to the user. The

next generation o f cryptography algorithm should be able to operate faster than

before even w ith keys o f the same size, against any attacks. They should also be

easy to integrate into the software or hardware.

Finally, the computer hardware or software may embed multiple versions o f

encryption and decryption functions. Again, as the DRM example shows, the use

o f one encryption and decryption function cannot protect both sides. Therefore, w e

need two different algorithm's encryption and decryption functions in order to

satisfy all the possible requirements for the DRM. Under different constraints, we

may need different algorithms to prevent the problems and achieve the requirements.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix I: The McEliece Algorithm

A.1 Introduction

In a normal communication cannel. changing one bit in the ciphertext can

change enough bits in the corresponding plaintext to make it unreadable or

unmatchable. Therefore, we need a way to detect or correct errors that could occur

when the ciphertext is transmitted. Therefore, we need a method which provides

an ability to correct the error when the error occurs in the channel.

Before we start to explain any o f the error correcting methods, let us see w hat

the problem between Alice and Bob is. Assume Alice wants to send a message to

Bob through a noisy channel. A lice w ill “ encode" the message in order to obtain

the codewords consisting o f sequences o f symbols. A fter the transmission. Bob

may gel the sequences o f symbols which are not the same as what Alice sends. In

this case. Bob needs to “ decode*’ the sequences o f symbols in order to get the correct

codewords. “ Decode" means to correct the error and get the same codeword as

before it is sent. Shown in figure A .l

Figure A.1

| Alice j

; Message M j

For now. the codeword is represented by a sequence o f binary numbers J0.11

symbols, which is called a binary code. I f the code uses sequences o f 3 symbols.

103

Channel Bob

V V" V'' v -
' X X X X -v/ a y \ ' T

M

Noise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we often call it a ternary code. In general, a code that uses an alphabet F,

consisting o f q distinct symbols is called a q - a r y code. Also, we denote

at € Ft]. For example, (F2)j contains a vector: (000,001.010.011.100.101.110.111).

One o f the important definitions is the Hamming distance d{c) because the

hamming distance o f a code c can tell us how many errors can be corrected for

code c .

Definition:

Let x and y be any vector in c . The Hamming distance d(c) is the number

o f symbols that disagree in x and y .

A code c can correct up to t errors i f d (c)> 2 * t + \ . We call any code c

a (n .M .d) code, meaning the code c has a length n . M codewords, and with

minimum distance between codewords o f d = d(c). Sometime, we w ill say code

c is perfect code i f every vector in f is at distance A t from exactly one

codeword. For example, the binary repetition code:

J000 0

[i l l 1

O f length n, where n is odd, is a perfect (n.2. n) - code.

A.2 Linear Code

A linear code [3. pg 55-78] [6. pg 311] is one o f the methods which can be used

to correct errors on codewords. I f the linear code has a dimension k and length

n over a field F . we call it a [« ,£] code. Usually, the linear code is generated

by a generating matrix G = [/(A'). P] . where I(k) is identity matrix w ith k rows

and columns, and P is a k x (n - k) matrix. The rows o f G are the basis for a

k -dimensional subspace o f the space o f all vectors o f length n . It is named linear

code because any codeword v in C is a linear combination o f vectors r from

as a nonempty set o f n — tuples elements a = a^a1....un where each

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the generating matrix G . Suppose we have G = [I(k).P] as the generating

matrix for a code C . Let H = { -P ! J (n - k)] be the matrix that is used to

correct errors, where - P 1 is the transpose o f P . In general, the matrix H is

called a parity check matrix for G i f H has the property that a vector v e /*"' is

in G i f and only i f v * IP1 = 0 . Assume there are some errors that occur after the

transmission. The codeword r = v + e where v is the codeword in c and c is

the vector which tells us which position the error is occurred. So

r * I f = (v + e) * I f = v * I f +e* I f = e * I f

We say e is the coset leader while e* H 1 is called the syndrome. One o f

the helpful lemmas is that two vectors u and v belong to the same coset i f and

only i f they have the same syndrome. Therefore, we can correct the error by

subtracting the coset to get the correct codeword.

Let us start w ith some examples. Assume A lice wants to send a message to

Bob through a noisy channel.

Initialization steps:

1) A lice and Bob need to agree on the same generating matrix G
Let c be the binary linear [4.2] code w ith a generator G

G = { 1 ° 1 °[o 1 1 0,

2) A lice w ill calculate the codeword from G and use it to represent the message

In this case, the codeword is (0 0 0 0),(l 0 1 l).(0 1 1 0).(l 1 0 l)

3) A lice can calculate the syndrome to see how many errors the codeword can

correct by picking the coset leader.

I f the coset leader is (0 0 0 0). then the syndrome is (0.0)

I f the coset leader is (l 0 0 0). then the syndrome is (l. l)

I f the coset leader is (0 1 0 0). then the syndrome is (l.O)

I f the coset leader is (0 0 0 l) , then the syndrome is (0.1)

Protocol:

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) A lice sends the codeword through the channel to Bob.

Assume Alice sends a codeword (l 0 1 l) to Bob.

2) Bob gets the codeword but he is not sure i f it is the codeword which Alice sends.

He can trv to decode the codeword and uet the correct codeword.

Assume Bob gets the codeword (0 0 1 l) . He can first use the matrix II to

calculate the syndrome.

f \ O

1 0
(0 0 1 l)«

1 0

V0 1 j

=(1.1)

This is the syndrome for the second row. Subtract the coset leader

(0 0 1 l) - (l 0 0 0) = (0 0 1 l) + (l 0 0 0) = (l 0 1 1)

Because we work on the binary field: 1 + 1 = 2 = 0(mod 2) . Therefore.

-1 = l(m od2) for the binary field.

The example shows some disadvantages. The first one is that it cannot correct

two errors. The second one is that i f the error occurs at the third position, then the

syndrome cannot correct the error. For a linear code, in order to correct more errors

o f course we need the larger hamming distance d(c) . Also, large d(c) can help

us to have more syndromes to represent more coset leaders then we can correct the

errors accurately as well.

Appendix II: McEliece Algorithm

There are so many cryptographic systems that are based on number theoretic

principles and other algorithms that are based on other complex problems. The

McEliece algorithm [13] is based on the d ifficu lty o f finding the nearest codeword

fo r a linear binary code. The idea o f this algorithm is that with a binary string o f

length 1024 bits, and 50 bits is error, there are 1024C50 = 3x 108' possible locations

for these errors; therefore to search these locations by trying all possible

combinations is nearly infeasible. The algorithm itself is not vulnerable but

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because the ciphertext and the public key contain so many 1 's and 0 ‘s. Therefore,

the algorithm is not effective against brute force attacks. The reason we introduce

this algorithm is to compare other cryptography algorithm, like RSA.

Suppose you have an efficient decoding algorithm that is unknown to anyone

else. Only you can correct these errors and find the corrected string.

Definition:

N = Modulo number.

G = Generating matrix size (n.k) .

H = Parity check matrix H for G
S = A k x k matrix that is invertible mod N .
SA (-1) = An inverse matrix o f 5 .

P = A n n x n permutation matrix.

P A (-1) = An inverse matrix o f P .

M = The message from Alice. Always, the message is represented in vector

form and all elements must be less than N .
x = The sub-message. I f the message vector's length is longer then n .

then divide it into sub-message.

C = The ciphertext.

e = The error occuring in the ciphertext.

• = The • operator is ordinary' matrix multiplication.

G\ = S * G * P

= G\ is the Bob's public key. The public key is calculate by S . G .
and P . The value S . G , and P is Bob's private key.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A.2

Alice Eve Bob

Message M

T
 j I

i x * G 1 + e r
! _| AA-----

i i
G1 e

■r *

 1L !
• x *G1 +e i !

G1 e j

c * r
~A

C * lv'
~A"~

 T ... T
c * h — c * H ;
▲ A

H | ! H i
i X“ X*'

 ▼ ▼
: x" * G - - - x " * G !
i : L' "A ;■ ” a '

G 1 G■ X X
 ▼ V

! x' ‘ S-1 - - - x - ‘ S’1 !

i
Message M

Let start w ith some examples w ith N = 2 (Shown in figure A.2):

Initialization steps:

Bob chooses G to be the generating matrix for a (n.k) linear error correcting

code c w ith d{c) = d .

Let us use G fo r [7.4] Hamming code as an example

He chooses S to be a k x k matrix that is invertible mod 2 and let's P be an

n x n permutation matrix. This means P has exactly one “ 1" in even.’ row and in

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

every column, with all the other entries being 0.

Let us use S :

1 0 0 1
1 1 0 1
0 1 0 1
1 1 1 0

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0

He needs to calculate G1 = 5 • G • P . publish G1 as his public key and keep .S'

G . and P secret.

The matrix G1 =

0 1 1 0 1 0A

1 0 1 0 0 1 1

1 1 0 0 0 1 0

\ 0 1 0 1 0 0,

Protocol:

A lice wants to send Bob a message x . She generates a random binary string e o f

length n that has weight t.

She chooses x = (1.0,1.1) and e = (0.1.0.0.0.0.0) w ith w e ig h t!.

She forms the ciphertext by computing C = xG l + c (m o d 2). So now Alice w iii

have C = xG l + e(mod 2) = (0.0.0.1.1.0.0).

Now Bob receives the ciphertext. He needs to decrypt it in order to get the

message x . First, he calculates the C'= C * P~x.
So C = C * P - ' = (0.0.1.0.0.0.1).

Then he calculates the syndrome o f C by applying the parity check matrix II

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for G and changing the corresponding position b it to get x"

Assume j is the position that needs to be changed, so / = C" * H' =(0.1.0).

Change the 2nd position bit in C to get ,v"= (0 .0.1.0.0.1.1) .

He next forms a vector jc' such that x' * G = x" .

In this case, jc' * G = x"=> x '= (0.0.1.0).

He decrypts by calculating x = x' * S "5.

N ow x = x' * S~' = (0,0,1.0) • S -' =(1.0.1.1).

This algorithm seems reasonably secure but compared to other algorithm, the size

o f the public key G1 is rather larger. I f the size o f the public key is large, then the

operation we need in order to encrypt a message to a ciphertext w ill be increased as

well. Therefore i f the attacker. Eve. tries to use the brute force attacks to find the

private key. then the time she needs is same as trying all 1024C50 = 3x 10s' possible.

Compared w ith the RSA algorithm, given the same amount o f time for Eve to try

all the possible combination by brute force attacks, the public key can be smaller.

Therefore, the McEliece algorithm is not really effective compare to other existing

algorithms. Also, the size o f the encrypted message can be an issue.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

Literature

[1] Graff. J.C. "Cryptography and E-Commerce". Toronto: John W iley & Sons

Inc. 2001.

[2] Griffiths. A. M iller. J. Suzuki. D. Lewontin. R. Gelbart. W. “ An

Introduction to Genetic Analysis'’ . 7lh Edition. New York: W. H. Freeman and

Company. 2000. PP 241 -2 6 2 .

[3J H ill. R. "A First Course in Coding Theory". Oxford: Clarendon press. 21.

2002. PP 47-80.

[4] Stajano, F. "Security for Ubiquitous Computing". Toronto: John W iley & Sons

Inc. 2002.

[5] Stallings. W. "Cryptography and Network Security: Principles and Practice".

2nd Edition. New Jersey: Prentice Hall. 1999.

[6] Trappe. W. Washington. L.C. "Introduction to Cryptography w ith Coding

Theory". New Jersey: Prentice Hall. 2002.

[7] D iffie . W. Heilman. M . E. "Exhaustive Cryptanalysis o f the NBS data

encryption standard". Computer. 10(6): 74 - 84. June 1977.

[8] D iffie . W. Heilman. M. E. "New Directions in Cryptography".

IEEE Transactions on Information Theory. Vol. IT - 22. No. 6.

PP 644 - 654.

[9] Wiener. M. J. "E ffic ient DES Key Search” . Technical Report 244.

School o f Computer Science. Carleton University. May 1994.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] Rivest, R. Shamir. A. Adleman. L. “ A Method for obtaining Digital

Signatures and Public-key Cryptosystems Communications o f the ACM'". Vol.

21 (2). 1978. PP 120-126 .

[11] Quisquater, J-J. Quisquater, M . Quisquater. M. Quisquater M. Guillou.

L.

Guillou, M. A. G. Guillou. G. Guillou, A. Guillou. G. Guillou. S.

Berson, T. “ How to explain zero-knowledge protocols to your children".

In G. Brassard. Editor, Advances in Cryptology. CRYPTO '89.

Vol. 435 o f Lecture Notes in Computer Science, PP 628 - 631.

Springer - Verlag, 1990. 20 - 24 August 1989.

[12] Feige, U. Fiat, A. Shamir. A . “ Zero-knowledge proofs o f identity". Journal

o f Cryptology. Vol. 1. Issue 2. August 1988. PP 77 - 94.

[13] McEliece, R. J. “ A public-key cryptosystem based on algebraic coding theory".

DSN Progress Report 42 - 44. Jet Propulsion Laboratory. Pasadena. 1978.

PP 1 1 4 - 116.

Online Resource

[14] Brown. L. “ Cryptographyand Network Security: Ch 12". Istanbul Technical

University. Lecture Notes in Computer Science. 2003.

www.cs.itu.edu.tr/~etaner/courses/BESec02_03/chl2.ppt. (July. 2004)

[15] Eastlake. D. Jones. P. “ RFC 3174 - US Secure Hash Algorithm 1 (SHA1)".

September 2001. www.faqs.org/rfcs/rfc3174.html. (August. 2004)

[16] Gehani. A. LaBean, T. Reif. J. "D N A — Cryptography". Department o f

Computer Science. Duke University. September. 2003.

www.cs.duke.edu/~reil7paper/DNAcrypt/dna.pdf. (July 2004)

[17] Larose. G.. “ DRM Technologies: The Foundations o f Usable Content Control".

www.info-mech.com/drm_technologv.html. (August. 2004)

[18] RSA Laboratories. “ RSA Laboratories' Frequently Asked Questions about

1 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.itu.edu.tr/~etaner/courses/BESec02_03/chl2.ppt
http://www.faqs.org/rfcs/rfc3174.html
http://www.cs.duke.edu/~reil7paper/DNAcrypt/dna.pdf
http://www.info-mech.com/drm_technologv.html

Today's Cryptography". Version 4.1. Section 7.17. 2000.

www.rsasecurity.com/rsalabs/node.asp?id=2353. (July. 2004)

[19] RSA Laboratories. "'RSA Laboratories' Frequently Asked Questions about

Today's Cryptography". Version 4.1. Section 7.18. 2000.

www.rsasecurity.com/rsalabs/node.asp?id=2354. (July, 2004)

[20] RSA Laboratories. "RSA Laboratories' Frequently Asked Questions about

Today’s Cryptography". Version 4.1. Section 7.19. 2000.

www.rsasecurity.com/rsalabs/node.asp?id=2355. (July. 2004)

[21] Krawczyk, H. Bellare, M. Canetti, R. “ RFC 2104 - HM AC : Keyed-Hashing

for Message Authentication". February 1997. \v\v\v.faqs.org/rics/rfc2104.html.

(August, 2004)

[22] Adleman, L. "Molecular Computation o f Solutions to Combinatorial

Problems".

Science. 266:1021-1024. November 1994.

www.usc.edu/dept/moIecular-science/fp-sci94.pdf. (August. 2004)

[23] Phillips. T. "The ABC o f DN A computing". American Mathematics Society.

February, 2000. www.ams.org/new-in-math/cover/dna-abcl.html. (August.

2004)

[24] Rivest. R. "RFC 1321 - The MD5 Message-Digest Algorithm ". April 1992.

www.faqs.org/rfcs/rfcl321 .html. (August. 2004)

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.rsasecurity.com/rsalabs/node.asp?id=2353
http://www.rsasecurity.com/rsalabs/node.asp?id=2354
http://www.rsasecurity.com/rsalabs/node.asp?id=2355
http://www.usc.edu/dept/moIecular-science/fp-sci94.pdf
http://www.ams.org/new-in-math/cover/dna-abcl.html
http://www.faqs.org/rfcs/rfcl321

