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ABSTRACT

This thesis includes a number of theoretical
contributions that are complete in themselves but are also
related by the area of application end/or the theoretical
approach used, The first area includes parameter
identification, output estimation, adaptive control and
adaptive inferential control of multirate systems. The work
on parameter convergence is then extended to include some
general results for systems where the idéntified model is
overparameterized.

A multirate system is defined as one in which the
output is sampled at an integer, J, multiple of the input
sample period T, i.e. the data collected are
{y(kdT),[u((k-1)JT+iT),i=1,2,...,3), k=0,1,2,...}. Three
main contributions are made with respect to multirate
systems: (i) formulation and convergence analysis of
parameter and output estimation algorithms, which produce
process parameter estimates whenever new measured outputs
are available and output estimates at every input sampling
interval, i.e. every interval T, (ii) formulation and
convergence analysis of a multirate adaptive control
algorithm, which uses the output estimates calculated at
every input sampling interval as a closed loop feedback
signal, (iii) formulation and convergence analysis of a
multirate inferential estimation algorithm, which makes use
of a secondary output measurement to improve the

intersampling estimates and is a first step toward the



extension of the multirate system study to multi-input,

multi-output systems.

Overparameterized models result in formulations of

multirate systems (discussed above) plus in many adaptive

systems in which there is uncertainty about the

actual plant and/or the disturbances. This work

order of the

uses the

concept of quotient space to prove that for a broad class of

system signals (cf. excitation), the parameters
an equivalent class set in the parameter vector
the parameter estimates are constrained, to the

of the equivalent class set and the constrained

general results are applied specifically to the

extended least squares algorithms.
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1. INTRODUCTION

This thesis deals with parameter identification,
output estimation and adaptive control of linear time
invariant systems with unknown parameters and two sampling
rates: the slow rate for the output and the fast rate for
the input. It also includes a theoretical study of parameter
convergence with overparameterized models, which was
originally undertaken to solve the parameter convergence
problem associated with the identification of the multirate
systems described above. However the results obtained are
far more general than required fof multiréte systems and
represent an important contribution to the identification

area.

1.1 Multirate Adaptive Systems

In many discrete control applications the appropriate
control interval is T but practical restrictions, such as
the cycle time of a discrete measurement transducer, mean
that the output values, y(t), are measured only at every J°
interval. For example, in chemical processing applications,
composition analyzers such as gas chromatographs have a
cycle time of several minutes compared to a desired control
interval of say 30 seconds. If the control interval is
increased to JT to match the availability of measurements

then control performance deteriorates. It is not a trivial



probiem to maintain a contfol interval of T when the only
available output measurements are at intervals of JT.
However if the process can be represented by a continuous,
SISO, linear, time-invariant system with a zero-order-hold
of sampling period T for the input, the problem can be
stated as follows: given the measurement sequence
fu(kT),y(kJT),k=1,2,...}, where J is a positive integer and
T is the basic sampling period, reconstruct the output
values {y(kT), k=0,1,2,...}. If the output y(kT) can be
accurately estimated at every (input) sampling instant then
the control algorithm can be implemented using the
reconstructed information with an interval T instead of an
interval JT.

This thesis provides a systematic solution to the
problem of modelling and adaptive control of the multirate
systems described above. The scope includes model
formulation, parameter identification, output estimation and
adaptive control. The proposed algorithms are based on a
solid theoretical framework and their convergence analysis
is included.

Studies of non-adaptive multirate systems in areas
such as computer control and signal processing date back to
the 1950s. A comprehensive treatment is included in the book
by Crochiere and Rabina (1983) and a recent paper by Arki
and Yamamoto (1986) contains several important references
which defines the current state of non-adaptive multirate

systems. However, a complete theoretical study for the



identification, estimation and adaptive control of the
multirate system described above has not been presented in
the literature. Soderstrom (1980) did some work on this
topic, but his work was restricted to first order systems
and the intersampling values of the output were
reconstructed by approximation. Zhang and Tomizuka (1988)
proposed a multirate adaptive control algorithm, which is
alsb restricted to first order systems and does not
guarantee an asymptotically zero output estimation error or
parameter convergence. In a context of inferential control
Guilandoust et al. (1986, 1987a, 1987b, 1988) also assumed
that the main plant output is sampled slower than the input
and showed that its intersampling behaviour can be estimated
with the aid of a secondary output, the measurement of which
is available at the faster (input) sampling rate. Young and
Mellichamp (1987) proposed an algorithm to identify the -
parameters and estimate the output of an approximate model
of the multirate system using a virtual 'effective input’.
The recent work of these two groups of authors (Guilandoust
et al. 1986, 1987a, 1987b, 1988) Young and Mellichamp 1987)
focused more on applications and did not include a complete
theoretical foundation. Recently Scattolini (1988) presented
a study of the self-tuning control of multirate systems. In
his approach the issue of output intersampling estimation is
not addressed and therefore the control performance index is
defined only at the (slow) output sampling instants.

Stability and convergence properties were given and proven



only for the reduced case of equal rate systems,

Note that most of the multirate system work presented
in this thesis was completed before most of the above cited
publications appeared in the literature.

It i; worth noting that the multirate systems dealt
with in this thesis are different from those treated by the
hybrid techniques of Gawthrop (1980), Elliott (1982) and
Narendra et al. (1985). In this thesis the output is
measured at a slower rate than the input and the parameter
estimates of the system are updated at the slow output
sampling rate. The hybrid techniques require that the input
and output be measured simultaneously, i.e. at a same rate.
The associated parameter identification and/or control
calculation may be done at the same or slower rate. Note
however that when the calculations are done at the slow
interval, all the intersample values of the output (at the
fast interval) are available from the measured data. In the
approach used in this thesis it is necessary to estimate the
intersample output values and prove that the estimates

converge to the true (intersampled) outputs.

1.2 Parameter Convergence with Overparameterized Models
Parameter convergence is an important consideration in
any process identification study. The parameter convergence
problem when the identified model is not a minimal order
representation of the plant has not been solved even for

. simple cases such as overparameterized deterministic



autoregressive moving average (DARMA) models, Neverthless,
it is common practice in identification applications to use
nonminimal or overparameterized models when only an upper
bound of the system order or delay is known, or when some
specific structure is required for an estimation or control
strategy.

| One significant study which does apply to
overparameterized systems is that by Ljung (1987). He showed
that for prediction error type algorithms the criterion
minimizing arguments converge, if the system signals are
informative, to a set, each point of which results in the
same input-output relations as that of the plant. (To use
this result it is necessary to show that the estimated
parameters for a particular prediction type algorithm
asymptotically converge to the limiting set of the criterion
minimizing arguments. This can be done for the recursive
least squares algorithm (RLS) by applying the ordinary
differential equation (ODE) technigue (Ljung 1977, Ljung and
Soderstrom 1983) subject to scme regularity conditions.)
However, Ljung's results are based on the very restrictive
assumption of quasi-stationary data (A signal u(t) is
quasi-stationary only if

%im §1 u2(t)/T exists and is finite (Ljung 1987).), which
d;:s not apply to most signals encountered in applications
and theoretical studies. Indeed an argument based on the
quasi-stationary data assumption is more an identifiability

than a convergence study, and is very close to arguing that



'if the parameter estimates converge to something (which
cannot be a priori verified for non-quasi-stationary data)
then they must converge to the true values,'

Recently parameter convergence with overparameterized
models has received a great deal of attention in the
literature. This includes the work of Goodwin at al (1985),
Janecki (1987), Xia et al. (1987) and Heymann (1988). To
ensure parameter convergence, all of these results
implicitly require that the degree of overparameterization
be known or that the common factor polynomial be uniquely
fixed by the estimated model structure,

The general results obtained in this thesis apply not
only to the identification of multirate system, but also to
a very wide class of identification applications. The
results do not need the quasi-stationary data assumption nor
any a priori knowledge of the degree of overparametrization,
and represent an essentially complete solution to the
problem of parameter convergence with overparameterized

models.

1.3 Outline

In this thesis each chapter is essentially a paper
prepared for publication in a control journal. While
focusing on the main theme of the thesis each chapter is
self-contained and contributes at least one independent and
signifiéant result. Simulation examples are included to

illustrate the algorithms and the theoretical results



obtained.

The thesis consist of two major parts: multirate
systems (Chapter 2-5) and parameter convergence (Chapter
6-7). Chapter 8 includes overall conclusions and
recommendations for future work. |

The first part of this thesis deals with the model
formulation, open loop parameter identification, output
estimation and adaptive control of multirate systems.
Starting with a conventional discretized continuous model an
equivalent multirate model is derived by two approaches, one
of which is straightforward and mathematically simple
(Chapter 3) while the other is of a more physical nature
(Chapter 2). This equivalent model is convenient for
parameter identification and for the estimation of the
outputs {y(kT), k=01,2,...} using the available data
{u(kT),y(kJdT), k=0,1,2,...}. Two algorithms, projection and
least squares, are proposed. The convergence properties of
the identification and estimation signals at the basic
sampling instants are not available in the literature but
are shown and formally proven in this thesis. The projection
algorithm is not usually implemented in practice due to its
poor convergence rate., However, since it is easier to
analyze, results are first given for this algorithm (Chapter
2) and then extended to its least squaresbcounterpart
(Chapter 3). With the parameter and output estimates, 6(kT)
and y(kT), available at every basic sampling instants,

little effort is needed to incorporate these estimates into



most existing adaptive controllers. The first demonstration
example (Chapter 4) is constrained adaptive control of a
multirate system, Stability and convergence are formally
proven for this closed loop system. The second example
(Chapter 5) is adaptive inferential control. The original
inferential estimation algorithm was presented by
Guilandoust et al. (1986, 1987a, 1987b, 1988) The
inferential problem is not the same as the multirate system
described above since additional information, i.e. the
secondary output {v(kT), k=0,1,2,..}, is assumed available
as measured data. This thesis provides a much clearer
perspective than the previous work ot Guilandoust et al.
(1986, 1987a, 1987b, 1988) by rigorously reformulating the
model and the estimation algorithm based on a theoretical
framework. In addition, convergence properties of the
inferential algorithm are also studied and a practical,
simplified algorithm is proposed.

The second part of this thesis is concerned with
parameter convergence with overparameterized models. Results
are first presented-(Chapter 6) for the simple but
fundamental case of RLS parameter convergence with
overparameterized models. These results are then extended
(Chapter 7) to a broad class of identification algorithms
for which a Lyapunov type function of parameter estimates
can be found. The general results cover that of parameter
convergence in the identification of multirate systems as

well as those in the recent literature (e.g. Goodwin et al.



1985, Janecki 1987, Heymann 1988).



10

1.4 References

Araki M, and Yamamoto K., "Multivariable Multirate
Sampled-Data Systems: State-Space Description, Transfer
Characteristics, and Nyquist Criterion," IEEE Trans.
Automat. Contr., vol. AC-31, pp. 145-154, Feb. 1986.

Crochiere R. E. and Rabina L. R., Multirate Digital Signal

Processing. Englewood Cliffs, NJ: Prentice-Hall, 1983,

Elliott H,, "Hybrid Adaptive Control of Continuous Time
Systems", IEEE Trans. Automat. Contr., vol. AC-27, pp.
419-426, April 1982.

Gawthrop P. J., "Hybrid Self-tuning Control", Proc. Inst.
Elec. Eng., vol 127, part D, no. 5, pp. 973-998 Sept.
1980.

Goodwin G, C., Norton J. P., and Viswanathan M. N,,
"Persistency of Excitation for Nominimal Models of
Systems Having Purely Deterministic Disturbance," IEEE
Trans. Automat. Contr., vol. AC-30, pp. 589-594 June
1985,

Guilandoust M, T.,, Morris A. J. and Tham M, T., "Estimation
and Control of Distillation Product Composition Using
Tray Temperature Measurments," IFAC Symposium on
Dynamics and Control of Chemical Reactors and
Distillation Columns, pp. 203-208, Bournemouth, UK,
1986.A

Guilandoust M., T., Morris A. J. and Tham M. T., "Adaptive
Estimation in Inferential Process Control," Proc.

American Control Conf., pp1743-1748, 1987a.



1

Guilandoust M. T., Morris A. J. and Tham M, T., "Adaptive
Inferential Control," IEE Proc, vol. 134, Pt., D, NO., 3,
pp. 171-179, May 1987b,

Guilandoust M. T., Morris A. J. and Tham M. T., "An Adaptive
Estimation Algorithm for Inferential Control," Ind. Eng.
Chem, Process Des Dev., 27, pp. 1658-1664, 1988.

Heymann M,, "Persistency of Excitation Results for
Structured Nonminimal Models," IEEE Trans. Automat.
Contr,, vol. AC-33, pp. 112-116, 1988,

Janecki D., "Remarks on Persistency of Excitation for
Nonminimal Models of Systems Having Purely Deterministic
Disturbances," IEEE Trans. Automat. Contr., vol, AC-32,
pp. 1123-1125, 1987.

Ljung L., "Analysis of Recursive Stochastic Algorithms,”
IEEE Trans. Automat. Contr., vol. AC-22, pp. 551-575,
1977.

Ljung L., System Identification: Theory for the User.

Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

Ljung L. and Soderstrom, Theory and Practice of Recursive

Identification. Cambridge, MA: M.I.T., Press, 1983.

Narendra K. S., Khalifa I. H. and Annaswamy A. M., "Error
Models for Stable Hybrid Adaptive Systems", IEEE Tran.
Automat. Contr., vol. AC-30. pp. 339-347, Apr. 1985.

Scattolini R., "Self-tuning Control of Systems with
Infrequent and Delayed Output Sampling," IEE Proc. vol.
135, Pt. D, No. 4, pp. 213-221, July 1988.

Soderstrom T., Methods and Applications in Adaptive Control,




12

Springer Verlag, 1980.

Xia L., Moore J. B., and Gevers M,, "On adaptive estimation
and pole assignment of overparameterized system", Int,
J. of Adaptive Contr., and Signal Processing, veol. 1, pp.
143-160, 1987.

Young R. E. and Mellichamp D. A., "Multirate Sampled Data
Models Applied to Parameter Estimation and Adaptive
Control," AICHE Annual Meeting, New York, NY, Nov., 1987,

Zzhang Q. and Tomizuka M., "Multirate Sampling Adaptive
Control and Its Application to Thermal Mixing Systems,”

Int. J. Control, vol, 47 No, 3, pp. 135-144, 1988,



2. OUTPUT ESTIMATION WITH MULTIRATE SAMPLING:
PROJECTION ALGORITHM'

2.1 Introduction

In many discrete control applications the appropriate
control interval is T but restrictions, such as the cycle
time of a discrete measurement transducer, mean that the
output values, y(t), are measured only at every gt
interval. For example, in chemical processing applications,
compositioh analyzers such as gas chromatographs have a
cycle time of several minutes compared to a desired control
interval of say 30 seconds. If the control interval is
increased to JT to match the availability of measurements
then control performance deteriorates. Various approaches,
such as inferential estimation (Guilandoust et al. 1986,
1987a, 1987b, 1988) which use measurements of secondary
output values v(t) related to y(t), have been proposed to
handle this problem. However, in this chapter an output
estimation scheme is presented which produces estimates of
the output, §(kT), based directly on measurements of input
u(kT) and output y(kJT), where k=0,1,2,... . Convergence.is
proven for integer values of J and simulation results are

presented which demonstrate convergence for J=10.

‘A version of this chapter has been published: Lu W. and
Fisher D. G., Int. J. Control, 1988, vol. 48, NO. 1, pp.
149-160.
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2.1.1 Overview of Problem Formulation

There is a very large number of parameter estimation
schemes plus output estimators, observers and filters which
can be used to produce estimates of the process output y(t).
However, most of these approaches assume that all the
input/output data are available at every sampling instant.

The problem to be solved in this chapter is illustrated
in Figure 2.1, A time series of known input values
{u(kT),u(k?-T),...} and output values
{y(kT),y(kT-JT),y(kT-2JT), ...} are sent to a parameter
estimation algorithm which produces estimates of the
parameter vector, 8,, of the assumed model. Based on the
known values of the input and the estimated parameters, an
output estimation algorithm produces estimates of the
process output y(kT) and/or predicted values of the output.
These estimated output values are shown to converge to the
actual output and can be used for operator information,
process characterization, adaptive control or time delay
compensation. However, this chapter deals only with the
formulation of the output estimation problem and the proof
of its convergence properties.

A conventional, discrete input-output model is shown

in Figures 2.2a with the input, u(k), and the output, y(k)
both sampled at every interval, T. Here let T=1 to simplify
the notation. As shown later, it is always possible to find

an equivalent input-output model with the form shown in
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Figure 2.2b where B,(g”') is a polynomial in q ', and
A,(q”’)is a polynomial in q”’. The available input-output
measurement data {u(k),u(k-1),...,y(k),y(k-J3),...} are
sufficient to identify B,(g™'), A,(q”). The estimates of the
output y(k) are then obtained by passing u(k) through a
nonlinear filter which uses estimated parameters as shown in
Figure 2.2c and 2.1,

Almost any identification algorithm can be used to
identify the parameters in the model shown in Figure 2.2b.
The proposed multirate output estimation algorithm has been

formulated using the output error formulation (Landau 1979,

Goodwin and Sin 1984). When the output error method is used
the estimates of y(k) can be easily generated at every
sampling instant without affecting the properties of the
parameter estimates. As proven later, the error between the
estimated output y(k) and y(k) asymptotically approaches
zero or is at least bounded under very weak conditions.

The equivalence of the models shown in Figure 2.2a and
2b is shown in section 2.2 using a standard state space
model approach. In section 2.3 the properties of the output
estimation system based on an output error, projection
approach are stated as theorems and formally proven. This is

followed by a simulated example and the conclusions.

2.2 Process Model
For simplicity it is assumed that the process can be

adequately represented by the continuous, single input and
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single output (SISO), linear, time-invariant system:
x(t)=A_x(t)+B.u(t) (2.1)
y(t)=C.x{t) (2.2)

The dimensions of matrices A_., B, and C. are nxn, nx1 and 1xn

respectively.

If the input u(t) is sampled with the unity rate, i.e.
T=1, and a zero-order-hold is used, the input can be

represented by
u(t)=u(k), (k £t < k+1), (k=0,1,...) (2.3)

By integrating (2.1) from kJ+i-J to kJ+i,

kJ+i

x(kJd+i)=exp[A J]x(kJ+i-J)+ J expl[A (kJ+i-7)]B.u(r)dr

kJ+i~J

(i=1,2,...,J3) (2.4)

Making the variable change t=7-(kJ+i-J) and defining
s
B":=J expla (J-t) 1B At, (821,2,..0,d) (2.5)
s-1

equation (2.4) can be written as
x(kJ+i)=exp[A J)x(kJ+i-J)+B u(kJ+i-1)+
«. o +B'u(kJ+i-J), (i=1,2,...,3) (2.6)
By combining (2.2) and (2.6),
y(kJ+i)=Cc[qJI—exp(AcJ)]_1[Bau(kJ+i+J-1)+...+B‘u(kJ+i)]
=[B3(q™)/AJ(q™) Ju(kJ+i+J~-1)+.. .+
[B,(q™)/a3(q™") Ju(kJ+i)
(i=1,2,...,J) (2.7)

where BS(q™)/AN(q”):=C.[q’I-exp(AJ)17'8° (s=1,2,...,J). The
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order of the polynomials in q°, A), B),..., B, is n. Since

[q"I-exp(l\cJ]'1 is strictly proper, the first coefficients,
i.e. the constant terms of B,,...,B; are zero.

Thus, equation (2.7) can be written as

A,(q)y(kJ+i)=B,(q )u(kJ+i) (i=1,2,...,J) (2.8)
where A;(q”) is an n*® order polynomial in g, B,(g”') is an
(nxJ)™ order bolynomial in q'1 with its constant term being
zero.

In summary, the resulting multirate model in Figure
2.2b is

A,(q ")y (k)=B,(q )ulk) (2.9)
which is equivalent to the more commonly used equal rate
model

A, (g )y (k)=B,(qg Du(k) (2.10)
in the sense that both models describe the input/output
relationship of the same state space model (2.1) and (2.2)
with u(t) given in the form of (2.3).

Note that equation (2.9) can also be obtained by
multiplying both sides of equation (2.10) by a polynomial

P(q"') (Crochiere and Rabina 1983).
2.3 Estimation System

2.3.1 Process Model
Based on the derivation in section 2.2, the actual
process (2.1), (2.2) and (2.3) can be represented by

(dropping the subscript J for simplicity)



where

Alternatively, the input/output relationship can be

descr

where

and

2.3.2

where

a(g”)y(k)=B(g u(k)

a(g)=1+a,q +a,q ¥+...+a,g ™
B(q"')=b,q '+b,q *+...+b g™

m=nxJ

ibed by
y(k)=¢(k=-1)"6,

¢ (k-1)T=[-y(k=-J),-y(k-23),...,-y(k-nJ),
u(k-1),u{k-2),...,u(k-m)]

90=[a1,.-.,an,b1,...,bm]T

Estimation Model

A(k,q )y (k)=B(k,q u(k)

Alk,g7)=1+a,(k)g”7+...+a (k)g™
B(k,q ')=b,(k)q '+...+b_(k)g™

18

(2.11)

(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
(2.19)

Note that the number of parameters to be estimated in A and

B is

2.3.3

a) a

where

n+m=n+nxJ.

Estimation System
Define the following:
posteriori model output

7(k):=pg(k-1)"8(k)

(2.20)



19

3(k-1)"=[-§(k-3),-F(k-23),...,-¥(k-nJ),
u(k=-1),u(k=-2),...,ulk-m)] (2.21)

8(k)=[a (k),...,a,(k),by(k),..., B (k)] (2.22)
Note that (2.20)-(2.22) are equivalent to (2.17)-(2.19),
b)a postericri model output error

n(k)=y(k)-y(k) (2.23)
c)a priori model output

y(k):=3(k=-1)78(k-1) (2.24)

d) a priori model output error

e(k):=y(k)-y(k) (2.25)
e) generalized a posteriori output error

7(k) :=D(q”) (k) (2.26)
where

D(g)=1+d,q +d.q P +...+d,q " (2.27)

is a fixed moving average filter.

f) generalized a priori output error
V(k):=e(k)+[D(g”)-11n(k) (2.28)
The parameter identification algorithm is defined by
6(kJ)=0(kJ-1)+[3(kI-1)/(1+8(kI-1)"¢(kJ-1))1v(kJ) (2.29)
6(kJ+i)=6(kJ), (i=1,2,...,3-1) (2.30)
8(0)=6, (2.31)

The regressor ¢(k) has been defined in (2.21). Its initial

value can be set by
¢(-1)=¢(-1) (2.32)

¢(-1+i)=arbitrary, i=1,2,...,J-1 (2.33)

2.3.4 Convergence at the Output Sampling Instants
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The convergence properties of the signals generated in
the estimation system are given in Theorem 2.1. These
convergence properties are given only at the larger sampling
instants. For example, it will be seen that the signal
sequence {y(kJ),y(kJ+J),y(kJ+2J),...} asymptotically
converges to the process output sequence

{y(kJ),y(kJ+J) ,y(kI+2J),...}.

Theorem 2,1

Consider the algorithm (2.29)-(2.31) applied to
process model (2.11); then, provided that the system

H(q”)=D(q’)/a(q”’) is very strictly passive:

N
(i) lim Z 7(kJ)?*<e {2.34)

N-ow k=1

which implies

N
lim Z 7(kJ)?*<e= (2.35)
N~ =1
N - - -
(ii) lim Z #(kJI-1)"8(kI-1)7(kJ) ?<= (2.36)
Noo k=1
which implies
N - -
lim 2 |6(k)-6(k-s)|2< (2.37)
Noo k=1

where s is any finite integer.
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(iii) If {u(k)} is bounded, then

lim v(kJ)=0 (2.38)
k=
lim |y(kJ)-y(kJ)|=0 (2.39)

ko>

th
[y

Proo

Careful examination of the estimation algorithm
(2.29)-(2.31), shows that y(kJ),y(kd+1),...,y(kJ+J-1) do not
interact with each other. In other words, only
{y(kJ),y(kJ+J),y(kJ+2J3),...} are used in the parameter
identification; and
y(kJ+i),y(kJ+i+J), y(kg+i+2J),... (i=1,2,...,d-1) are used
in (2.24) only for the purpose of generating y(k) between
the sampling time instants. Therefore, Theorem 2.1 is

equivalent to Theorem 3.5.1 of Goodwin and Sin (1984). ®

2.3.5 Convergence at the Input Sampling Instants

The convergence properties of the signals are now
proven in Theorem 2,2 not only at the larger but also at the
smaller sampling instants. The result is that ly(k)-y(k)| is
at least bounded by a value proportional to the parameter
estimation error and also by another value proportional to
the increment of the input, and it approaches zero if the
parameter estimation error or the input difference

approaches zero.

Theorem 2.2:
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Consider the algorithm (2.29)—(2.33) applied to
process model (2.11); then; provided that the system
H(g?)=D(q )/A(q™") is very strictly passive:

(i) 16(k)-6o]2<]|6(0)=6,]? vk>0 (2.40)
(ii) There exists a positive number e such that if {u(k)} is
bounded then [[#(0)=-6,]2<e implies:

(a) ly(k)-yg(k)|<8 lim sup|l6(k)-68c]+a, (k) vk>0  (2.41)
where 0<§ <=, 4 (k) is 2:;e sequence satisfying iig 4. (k)=0.

(b) |y(k)~y(k)|<é,1im supful(k)-u(k=1)|+4a,(k)  Vk>0 (2.42)

ke
where 0<§,<», 4,(k) is some sequence satisfying lim 4,(k}=0.
- k=
(c) lim |y(k)-y(k)|=0 (2.43)
_ k=e
provided that lim 6(k)=6, or lim |u(k)-u(k-1)|=0.
k= ke

Proof:
Note that k only has discrete values and the sampling

instant is T for u and JT for y. For simplicity of notation

T=1 has already been assumed.

Step 1:

Define

b(k):=-3(k-1)"8 (k) (2.44)
where

G(k):=8(k)-6o (2.45)

From equations (2.11) and (2.17)
A(q™)y(k)=B(g )u(k) (2.46)
Alk,q )y (k)-B(k,q )u(k)=0 (2.47)
By combining (2.46) and (2.47) and introducing A(g™)y(k),
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A(Q) ly(k)-3(k))J=B(g Du(k)-Al(q)y(k)+
A(k,g )y (k)-B(k,g " )ulk)

== (k-1)"6 (k) (2.48)
or
A(g7)n(k)=b(k) (2.49)
Thus, by using the definition of 7(k) (2.26)
A(q)7(k)=D(q")b(k) (2.50)
Specifically

n(kJ)+a,n(kI-J)+...+a,n(kJ-nJ)

=b(kJ)+3,b(kJ-J) +...+4,b(kI-1J) (2.51)
where the input is b(0), b(J), b(23),..., while the output
is n(0), 7(J3), 7(23),..., and the input-output relation is
very strictly passive by the assumption for
H{q™)=D(q™’)/a(q™).

Letting

v(k)=6(k)"8 (k) (2.52)
1t follows after Goodwin and Sin (1984) that

V(kJ)=V(kJ-1)-2b(kI)n(kI) =3 (kI-1)"6(kI-1)n(kJ)* (2.53)

From (2.53), by noting V(kJ-1)=V(kJ-J)

V(kJ)=V(O)-—2£1 b(jJ)?;(jJ)-z1 $(3I-1)78 (§I-1)n(53)2(2.54)
3= )=

Since the system (2.51) with its zero initial states

implied in (2.32)—-(2.33) is very strictly passive,

2 b(33)7(33)20 Vk>0 (2.55)

1

J
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Thus from (2.52), (2,54) and (2.55)
0sv(kJ)sv(0) vk>0

This gives (i) by considering (2.30).

Step 2:

By the very strictly passive assumption, the system
(2.11) determined by 6, is asymptotically stable. Thus it is
concluded that there exists e,>0 such that: [[6(0)=8,]?<e,
implies that the system formed by 6(0) has all its
eigenvalues inside the unit circle. So if [6(0)-6o]*<e,, by
(i) it is deduced that the systems formed by 6(k) (vk>0)
have uniformly all their eigenvalues strictly inside the
unit circle, and system (2.17) is uniformly asymptotically
stable. Therefore, bounded {u(k)} implies bounded {y(k)}.

This means that [¢(k)[|<M, (vk20) for some 0<M,<=., From

(2.44) and (i)

Ib(k) |<[8(k=1)|8(k) |l M,1im sup||6 (k)[+a (k) (2.56)
koo
where
lim sup|&(k) <=, lim A,(k)=0
k4> koo

Since A(g™”) is asymptotically stable, from (2.49) and

(2.56)
|7(k)|<é 1im sup|&(k)[+a, (k) (2.57)
S
where
0<§ <=, lim A (k)=0
k=2

By considering (2,30) and (2.57)
|y (kJ+i)-y(kdg+i) |=|y(kJ+1i)-6(kI+i-1)"6(kI+i-1) |

=]y (kJI+1)-§(kI+i-1)78(kJ) |
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=|y(kI+1)-@(kJ+i-1)T8(kI+i) |

=]y (kJ+i)-y(kJ+i)|

=|n(kJ+i) |

s&nlitgzupug(k)H+An(kJ+i) (i=1,2,...,J-1) (2.58)
(2,58) and (2.39) together give (a) of (ii),

Step 3:
From the definition of ¢(k) in (2.21):
#(ka-1)=[1-M,(ka)q™-...-M (k3)q™™ 1 'M(q " Ju(kJ-1) (2.59)
where M;(kJ) fi=1,2,...,n) are (nxm)x(nxm) matrices with

-8(kJ-iJ3)" as its i*™ row and zero as its ™ (1<j<(nxm) and

j#i) row,
M(g)=fo, - - -, 0,1, g, -+ -, @™ (2.60)
which is of dimension (nxm)x1. From {2.44)
b(kJ)=-8(kJI)T@(kI-1)=P(kJ,q ' )ulkd-1) (2.61)
where

P(kJ,q ) =-F(kd)"[1-M, (kd)g’-...-M_(kJ)g ™1 'M(q™")

:=P_(kJ,q”")/P,(kJ,q) (2.62)

P,(kJ,q"') is a polynomial in q .

Py(kd,q ) =1+P4, (k3) g +Py, (kI)G P+, . . +Py, (k3)G™  (2.63)
The parameters of P(kJ,q”') are functions of
6(kJ),6(k3-3),...,8(kJ-nJ).

By considering (2.30), it can be derived in general
that

b(kJ+i)=P(kJ,q u(kJ+i-1) (i=0,1,...,3-1) (2.64)



26

or

P,(kJ,q”)b(kJ+i)=P (kJ,q ' )u(kJ+i-1)(i=0,1,...,0-1)(2.65)

Step 4:

By referring to the proof of Theorem 3.5.1 in Goodwin
and Sin (1984),

lim b(kJ)=0 vi{u(k)} (2.66)
Note t;:t (2.66) was obtained without imposing any
restriction on the initial values of b(kJ). Therefore it can

be easily concluded that for any {u(k)} the solution of the

following time variant system

P,(kJ,q”)b"(kJ)=0 (2.67)
asymptotically approaches zero, ie.

lim b'(kJ)=0 | (2.68)

ke

for any initial wvalues,

Specifically the time invariant system

PS(q™)b' (kJ)=0 (2.69)
is asymptotically stable and has all its eigenvalues inside

the unit circle, where Pg(qq) is obtained by replacing 6 in

Py(kJ,q°) with 6,. This is true since lim §(k)=8, also
ko

implies lim b(kJ)=0.

k- . .
Then from (i) there exists e,>0 such that }|6(0)-6,]*<e.
implies that for any {u(k)} the system (2.67) has all its
eigenvalues strictly inside the unit circle at any time

instant k.

Thus system (2.67) is uniformly asymptotically stable.
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This implies that in system (2,65) a bounded input produces
a bounded output. Since b(kJ+i)-b(kJ) (i=0,1,...,3-1) is the
output of system (2.65) if the input is u(kJ+i-1)-u(kJ-1)

(i=0,1,+..,J-1), considering lim b(kJ)=0 and the boundedness

ko
assumption of u(k)
|b(k)|=8,1im sup|u(k)-u(k=-1)|+4, (2.70)
K=
where
0<d,<=, lim supfu(k)-u(k-1)|<=, lim 4,(k)=0
ke k-

Then an argument similar to step 2 can be used to give (b)
of (ii). (c) of (ii) is obvious from (a) and (b).

Finally note that in (ii) e=minle,,e;]. ®

2.3.6 Remarks

1) In (ii) of Theorem 2.2 it is required that the initial
parameter estimates, 6(0), lie sufficiently close to the
true parameters 6,. This condition can easily be met by
running the parameter estimation algorithm by itself prior
to starting the output estimation. If the input u(k) is
persistently exciting for sufficient time during this
initial period the desired 6(0) can be obtained in a finite
time. Once suitable starting parameters, 6(0), are available
then the output estimation can be started and it is no
longer necessary to provide continuous persistent
excitation. The value of e in theorem 2,2-(ii) depends on

the eigenvalue locations of the system in equation (2.11),

2) The results in (ii) of Theorem 2.2 are important from
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both a practical and a theoretical point of view since they
show that the output estimation error is bounded by the
smaller value of the right sides of (2.41) and (2.42), If
the excitation is rich then the parameter estimation error
will become small and (2.41) will give a tight bound to the
output estimation error., If the excitation is poor then the
input u(k) is probably changing slowly and (2,42) will

provide the tight bound instead.

3) The initial conditions (2.32) and (2,33) are used in
order to gquarantee property (i) of Theorem 2.2 under the
weakest possible conditions. If 6(k) converges to 6, then

these initial conditions are not required.

4) To predict y(k) one step ahead, the a priori output model
(2.24) can be used to give

y(k+1)=¢"(k)6(k) . (2.71)
since both #(k) and 6(k) are available at time instant k
when u(k) is known. In general, if {u(k)} is available then
the output can be predicted d-steps ahead using

y.(k+d)=a.(k-1+d) 8 (k) (2.72)
where

¢ (k-1+d)=(-y,(k-J+d) ,-¥.(k-2J+d),...,-¥.(k-nJ+d),

u(k-1+d) ,u(k-2+d4)...)
Yel7)=y(7) if r<k
=y.(7) if >k (2.73)

The convergence properties of y, follow directly from
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those of y, y and 6. Note that Y. gives the predicted values
of y at every interval T and not just at the output sampling
intervals JT. These predicted output values can be used in

applications such as time delay compensation.

5) Since #(k), y(k) and the predicted values y,(k+d) are
available at every u(k) sampling interval it should be
relatively straightforward to formulate adaptive controllers
with a control interval T. However, it would still be
necessary to prove the closed loop stability of the adaptive

system based on the properties given in Theorem 2.1 and 2.2.

6) The equation error method variant of the algorithm
(2.29)-(2.31) can be easily derived based on the idea that
only y(kJ), y(kJ+J),y(kJ+23)...(not y(kJ),y(kJ+2J),...) are
used in the parameter identification and

y(kJ+i), y(kJ+i+J),... (i=1,2,...,d-1) are used for the

purpose of generating estimates of y(k) at the smaller
sampling instants. It is easy to prove that

iim |y(k)-y(k)|=0 if the persistent excitation condition is
s

provided. Simulation examples (not presented here) verify

this result.

2.4 Examples
Figure 2.3 illustrates the results obtained when the
multirate output estimation scheme is applied to a second

order system. The system was simulated by the equation:
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(1-1.5q7'+0.7q )y (k)=(q '+0.5q ) u(k)
and u(k) was excited by a PRBS with magnitude 0.5. The
output y(k) was sampled with a period J=10 times that of the
input signal and, as shown in Figure 2.3, the estimated
value y(k) converges to the true values after approximately
1000 intervals. Note however that this represents only 100
measured values of y(kJT) since J=10.

In most parameter estimation applications least squares
algorithms gjve faster convergence than projection type
algorithms. Figure 2.4 shows the result using the least
squares variant of the algorithm (2.29)-(2.31). The output
estimation error is eliminated after approximately 200
intervals, i.e. after 20 measured values of the output. In
Chapter 3 a formal proof of convergence is completed for the

least squares type algorithm.
2.5 Conclusions

1) It is proven that the output y(t) can be estimated at
every control interval T even if y(t) is measured only at
every JT instant, where J is an integer, and that the output
estimation error |y(kT)-y(kT)| is at least bounded and

normally approaches zero.

2) The output estimation y(kT) and the parameters 6 (kT) are
available at every input sampling interval for use in

adaptive controllers, time delay compensators etc.
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(b)

w(k) B(kq") | (k)

Rka™)

(c)

Figure 2.2: Output.estimation models: (a) conventional
discrete model, (b) equivalent model, (c) adaptive

estimation model.
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3. OUTPUT ESTIMATION WITH MULTIRATE SAMPLING:
LEAST SQUARES ALGORITHM?®

3.1 Introduction

This chapter deals with output estimation in
applications where the output,y(kJT),is sampled at a slower
rate than the input,u(kT),and where output
estimates,y(kT),are required at the faster rate. This
problem was studied in Chapter 2 using a projection
algorithm., However simulation studies showed that the
projection algoritki has a very slow convergence rate and
hence is not recommended for practical application. In this
chapter a least squares algorithm which has a much faster
convergence rate is used to solve the same problem and the
relative output estimation convergence properties are
proven. These results are an extension of those developed by
Landau (1979) and Goodwin and Sin (1984) for the case of
equal sampling rates (i.e. for J=1), Essentially no
additional assumptions or limitations are imposed for the
solution with J>1 although “lle algorithm is more complex.

Assume that a linear time invariant process model is

represented by A,(q ')y (kT)=B,(q ')u(kT) (3.1)

where A,(q")=1+a”q"+a,2q'2+...+a,nq-"=.1ri1 [1-(nq) ') (3.2)
i=

and B,(q ')=b,,q '+...+b, g ". (3.3)

——— e . s = ———

*A version of this chapter has been accepted for
publication: Lu W. and Fisher D. G., to appear, IEEE Trans.
Automat. Contr., June, 1989.
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The available online measurement data are u(kT) and y(kJT)

(note that {y(kJT+iT),i=1,2,...,J-1} are not available from

the measurement data), where k=0,1,2,... . T is the basic
sampling period and J is any finite positive integer. Note
that for notational simplicity T=1 in the following
discussion,

The first step is to transform the process model (3,1)
into a form, which can be identified from the available
measurement data sequence. To do so, multiply both sides of
(3.1) by (Crochiere and Rabina 1983)

£1 [1+(Riq)”+...+(kiq)2”+(xiq)’ﬂ] to obtain

a(g7)y(k)=B(g u(k) (3.4)
where A(g™)=[1-(\,q) 1 1-(A.q@)”)...[1-(A @) ]

=1+a,q "+a.q +...+a g™ (3.5)
and B(q ')=b,q '+b.q **...+b q ", (3.6)
m=Jxn. (3.7)

Remarks:

1) If the coefficients of A,(g"') and B,(q”') are all real so
are those of A(g™) and B(q™'), since if A is a root of A, so

is its conjugate.

2) If A, is stable so is A.

3) In Chapter 2 an alternative method of transforming (3.1)

to (3.4) was presented which provides greater physical
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3.2 Estimation System
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Assume that the process can be represented by (3.4)

which can also be written as y(k)=¢(k-1)76,

where ¢(k-1)"=[~-y(k-J),-y(k~2J3),...,~y(k-nJ),
u(k-1),u(k-2),...,u(k-m)]

and 6o=[ay, v, 8,,b1,00.,b,1".

The estimation model is given by

Alk,g?)y(k)=B(k,q )u(k)

where Alk,g ) =1+a, (k)g 7 +a, (k)g ¥+, ..+a, (k)g™

and B(q ')=b,(k)q '+b, (k)g?+...+b,(k)g™.
Alternatively, write ¥(k)=#(k-1)78(k)
where $(k-1)"=[-§(k-J),-y(k-23),...,-¥(k-nJ),
u(k=1),u(k-2),...,ulk-m)]
and 8(k)=[a,(k),...,a,(k),by(k),...,b,(k)]1".
Let
n(k)=y(k)-§(k),
y(k)=¢(k=1)"6(k=-1),
e(k)=y(k)-y(k)
7(k)=D(g™)n(k)
where D(q7)=1+d,q+d,q" ¥ "+...+d,q""’
is a fixed moving averaging filter,

and v(k)=e(k)+[D(g™’)-1]n(k).

3.2.1 Output Error Method

(3.8)

(3.9)
(3.10)

(3.11)
(3.12)
(3.13)
(3.14)

(3.15)
(3.16)

(3.17)
(3.18)
(3.19)
(3.20)
(3.21)

(3.22)

The parameter identification algorithm is given by
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6(kJ)=6(kJ-J)+
P(kJ-2)6(kI-1)V(kJI) /[ 1+3(kI-1)"P(kI~2)$(kI-1}] (3.23)
6(kJ+i)=6(kJ), i=1,2,...,J1 (3.24)
P[(k+1)J-2]=P(kJ-2)~
P(kJ-2)$(kJ-1)8(kI~1)"P(kJ~2)

/0148 (kI-1)"P(kJ-2) $(kI-1)1;
P(-2)>0 (3.25)
6(0)=arbitrary. (3.26)
Note that between output sampling instants #(k) is not
updated and it is not necessary to calculate P(k). The
initiel values of ¢(k) can be set by
¢(-1)=¢(-1) (3.27)
¢(-1+i)=arbitrary, i=1,2,...,3-1 (3.28)

where ¢(-1) is available from the measurement data.

Theorem 3,1¢

Consider the algorithm (3.23)-(3.28) applied to process
model (3.4); then provided that the system
H(g™)=[D(q7)/Aa(q”)-1/2] is very strictly passive:

(1) 16(kI)-00f2<K[6(0)=6,]" vk>0 (3.29)
where ki=\,, [P(-2) "+¢(~1)¢(-1)"1/%,;,[P(-2)7"], and
Aag () a@and Ay, (-) represent maximum and minimum eigenvalues
respectively.
(ii) There exists a positive number e such that if {u(k)} is
bounded then ||8(0)-6,] 2<e implies:
(a) |y(k)-y(k)|s

5[1im sup|6(kJ)-6o)3[1lim sup|u(k)-ulk=1)|1+A(k)

ke ke
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vk>0 (3.30)
where A(k) is a sequence satisfying lim A(k)=0 , & and the
ke
two superior limits are finite positive numbers.
(b) lim |y(k)-y(k)|=0 _ (3.31)
ke
provided that lim 6(kJ)=6, or lim [u(k)-u(k-1)]=0.
k2= ke

Proof:

Since some intermediary steps of this proof follow
Goodwin and Sin (1984) they are omitted in this presentation
but a full proof is included in Chapter 5, where a more
general case is considered.

(i) The proof of (i) follows those of Corollary 3.5.1 and

Lemma 3.3.6 in Goodwin and Sin (1984).

(ii) Define b(k)=-g(k-1)T8(k) (3.32)
where G(k)=6(k)-6o. (3.33)
Combining (3.4) and (3.11) gives A(g™”)n(k)=b(k) (3.34)

or equivalently
A(q)n(kJ+i) == (kJ+i-1)T6(kJ) i=0,1,2,...,3-1. (3.35)
Here (3.24) is used. From (3.35)
A(g) [n(ka+i)-n(kI)I=-[3(kI+i-1)-3(ka-1)1"6(kJ)
i=1,2,..,d-1. (3.36)
But $(kJ+i-1)"=
[F(kJ—J,q”)q”,F(kJ—zJ,q”)qﬂa,...,F(kJ—nJ,qq)qu,
aq?, ..., g lu(ka+i)  i=0,1,2,...,0-1 (3.37)
where F(k,qq)=§(k,qq)/§(k,q”).
By the very strictly passive assumption, A(g™) is

asymptotically stable. Thus there exists €,>0 such that: if
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16(0)-6o]2<e,, A(0,g”°) is also asymptotically stable. From
(i) it is concluded that A(kJ,q°) Vvk20 have uniformly all
their eigenvalues inside a circle with its radius strictly
less than one if letting e=e¢;/x,;. By a similar way and a
result on the parameter estimates (Goodwin and Sin, 1984) it
is not difficult to show that e can be such that the system
F(k,g ') is slowly time varing and global uniform
exponentially stable uniformly in its parameters. Therefore
by (3.37) bounded {u(k)} implies bounded {¢(k)} and that
there exists 0<M<e such that
|8 (ka+i-1)-g(kI-1)] < Mju(kd+i)-u(kd)|

i=1,2,...,d0-1 (3.38)
since ¢(kJ+i-1)-¢(kJ-1) versus u(kJ+i)-u(kJ) i=1,...,J-1
also satisfy (3.37).
Considering that lim 5(kJ)=0 (easily obtained from Corollary
3.5.1 of Goodwin 2;2 sin, 1984) and A(q”’) is asymptotically
stable, it is obtained from (3.36) and (3.38)
|n(kJ+i) |<6,[1im sup|§(kd)[I[1im sup|u(kd+i)-u(kd)|I+a(kI+i)

ke k=

i=1,2,40.,3-1 (3.39)
where A(kJ+i) i=1,2,...,J-1 are some sequences satisfying
1im A(kJ+i)=0, &, and the two superior limits are finite
;;:itive numbers. Note that for i=1,2,...,J-1
lim sup|u(kJ+i)-u(kd)| < (J-1)lim supful(k)-u(k-1)].

koo “ koo

Letting A(kJ)=|y(kJ)-y(kJ)|, 6=(J-1)8, and noting
iimly(kJ)-§(kJ)|=O (also easily obtained from Corollary
o

3.3.6 of Goodwin and Sin, 1984) and

n(kJ+1)=y (kJ+i) - (kJ+i)=y (kJ+i)-§(kI+i-1)F (kI+i)
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=y (kJ+i)-¢(kJ+i-1)"6 (kJ)
=y (kJ+i) -y (kJ+i) i=1,2,00.,0-1 (3.40)
it is obtained from (3.39) part (a) of (ii). Part (b) of

(ii) is obvious, =
3.2.2 Remarks and Example

1) Replacing ¢(-) by ¢(-) and v(kJ) by
y(kJ)~¢(kJ-1)T6(kJ-J) in (3.23-3,24) results in the equation
error variant of algorithm (3.23-3.26). Its convergence
properties are similar to those of the output error method
but are stated as: "there exists a positive number e such
that if {u(k)} is bounded then [[6(0)-6,]2<e implies:

|y (k)-y(k)| < 8lim sup|6(kJ)-6o]+A(k) vk>0
where A(k) is a sequenCEQZatisfying lim A(k)=0, & and the
superior limit are finite positive nt;;ers." The proof is
essentially the same as that of Theorem 3.1, except that
(3.35) is used instead of (3.36) since the lim n(kJ)=0 may

ks

not hold here.

2) In (3.30), the output estimation error is bounded by the
product of the parameter estimation error and the input
difference in the limit sense. This is a very meaningful
result, since it shows that for the output error method
|y(k)-y(k)| will almost always tend to zero since rich
excitation of u(k) implies small parameter estimation error

I6(kJ)| and lack of excitation via u(k) normally (but not



43

necessarily) implies small |u(k)-u(k-1)}, i.e. in most cases

at least one of the two terms in (3.30) will be very small.

3) Theorem 3,1 is a local rather than global result because
the proof requires that [|§(0)| be "sufficiently small", This
condition does not appear to be critical and can be achieved
in practice by running the parameter estimation algorithm
for a finite time with rich excitation. The output
estimation can then be ,started and the requirement for

continuous rich excitation dropped.

4) The equivalent plant model (3.4) is structuraly
overparameterized in the sense that A(q’) and B(q™') contain
a monic common factor. Persistent excitation, u(k), of order
2m=2(Jxn) should be sufficient to guarantee parameter
convergence if the original plant model (3.1) is
irreducible. A formal proof of parameter convergence is

presented in Chapter 4 and 7.

5) The very strictly passive condition is not due to the
multirate sampling. It is inherent in the output error
identification method. The conditions of Theorem 3.1
essentially demand nothing more or less than those of
Corollary 3.5.1 in Goodwin and Sin (1984), which is applied
to the single sampling rate case. Discussion of the relation
between the very strictly passive condition and the original

plant is included in (Landau 1979) and (Goodwin and Sin
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1984),

6) It is worth noting that the output estimation technigue
proposed in this section is different from the Hybrid
Techniques of Gawthrop (1980), Elliott (1982) and Narendra
et al. (1985) which require that the input and output be

measured simultaneously even though their parameter

adaptation can be done at the same or slower sampling rate.

An Example:
Figure 3.1 illustrates the result obtained when the

output error algorithm (3.23)-(3.28) is applied to the
following system

(1-1.5q7'+0.7q %)y (k) =(q '+0.5q *) u(k)
where u(k) is excited by a PRBS. The output y(k) was sampled
with a period J=30 times that of the input signal. Figure
3.1 shows that the output estimation error has essentially
been eliminated after time 3900T (T=1). Note that this
involves only 130 measured values of y(kJT). The parameter
estimates also converge to the true parameters of the
equivalent model (3.4). Use of the equation error algorithm
gave comparable results (not included), but the use of a
projection algorithm for parameter estimation gave

significantly slower convergence (Chapter 2).

3.3 Conclusions

It was shown that, even when the output is sampled J
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times slower than the input, the output intersampling
estimation error is bounded and 'almost always' converges to
zero. This formulation and proof provides a basis for
multirate sampling applications in time-delay compensation,

inferential and adaptive control.
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Figure 3.1: Output estimation with J=30 (solid line=y(k);

dotted line=§(k); circles=measured y(kJ)).
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4, MULTIRATE CONSTRAINED

ADAPTIVE CONTROL®

4.1 Introduction

In discrete computer control applications, it is
usually desirable to use a sampling rate which is consistent
with the controlled system dynamics. However, the choice of
sampling rate may be limited by the availability of the
output measurement, For example, in chemical processing
applications, composition analyzers such as gas
chromatographes have a cycle time of say 5 to 10 minutes
compared to a desired control interval of say 0.5 to 1
minute. If the control interval is increased to match the
availability of measurements then control performance
deteriorates significantly. The deterioration of control
performance with the increased control interval is due to
the fact that between measurements the controller works in
open loop mode and its action is kept constant. This means
that the control system cannot respond faster than the open
loop system between the slow measurements and only low
frequency inputs to the system, eg. slow setpoint changes,
can be compensated.

However, instead of being constant, or following some

other fixed action such as using a higher order hold, the

A version of this chapter has been accepted for
publication: Lu W., Fisher D. G, and Shah S. L., Int.
Journal of Control, 1989,
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control action between the slow measurements can be based on
a process model. A good model would permit the use of a
faster control sampling rate, and hence the controlled
system should be able to respond to higher frequency inputs.
This simple but fundamental idea is applied in this chapter
to improve the servo control of linear time invariant
systems with unknown parameters.

An adaptive control law is derived which accommodates
two sampling rates: a slower one {(due to slow measurements)
for the output and a faster one (due to desirable control
interval) for the manipulated input. The control action is
based on an estimated discrete model with the faster
sampling rate. The estimated discrete model is updated
whenever the output measurement is available. The control
law aims at minimizing a quadratic function of the output
tracking error with dynamic weighting on the input at each
fast input sampling instant. When there are upper and lower
bounds imposed on the control action, as is always the case
in real applications, the minimization is performed in the
constrained region without extra computation. The stability
and convergence properties of the control system are stated
and formally proven.

The block diagram of the proposed multirate
constrained adaptive control system is shown in Figure 4.1.
Note that since only servo control is considered the
disturbances are not considered and assumed to be zero.

4.1.1 Previous Work



50

This work is a natural extension of the work presented
in Chapters 2 and 3 on the identification and output
estimation of multirate systems and is intended to show how
these previous results can be applied to formulate and
analyze the multirate counterparts of adaptive control
algorithms developed for egual rate sampling systems.

Textbooks such as the one by Goodwin and Sin (1984)
include a comprehensive treatment of adaptive control for
the case of equal rate sampling. However, very little work
has been published on the adaptive control of multirate
systems. Minimum variance control (or d+1 step ahead control
for deterministic systems) of a first order system was
studied by Soderstrom (1980), who also used a slower output
sampling rate. The first control law considered by
Soderstrom coincides with the usual minimum variance
controller only at the (slower) output sampling instants.
The second control law he considered coincides with the
usual minimum variance controller only in an approximate
sense, since the missing output measurements are replaced by
interpolated and extrapolated values. Convergence properties
were not formally given or proven. Zhang and Tomizuka (1988)
proposed a multirate adaptive control algorithm, which is
also restricted to first order systems and does not
guarantee an asymptotically zero output estimation error or
parameter convergence. Recently, a self-tuning controller
for multirate systems was presented by Scattolini (1988). In

his approach the performance index is defined only at the
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(slow) output sampling instants. To minimize the performance
index function the control action is determined subject to
the minimal change of control action at the (fast) input
sampling instants. Stability and convergence properties were
given and proven only for the reduced case of equal rate
systems.
4.2 ADAPTIVE PREDICTIVE CONTROL SYSTEM

The multirate, constrained adaptive control system is
derived in this section,
4,2.1 Plant Model

Consider the continuous, SISO,linear time-invariant

system
x(t)=A_x(t)+B.u(t) (4.1)
y(t)=C_x (t-dT) (4.2)

The dimension of matrices A., B, and C, are nxn, nx1, and 1xn
respectively, and the system is assumed to be a minimal
representation of the plant. Assume that the delay d is an
integer and T is selected as the input sampling period, i.e.
u(t)=u(kT), kT<t<kT+T, k=0,1,... (4.3)
For simplicity and without loss of generality let T=1. Then
the continuous model (4.1)-(4.2) can be represented by the

equivalent discrete model

A, (g y(k)=B,(q )ulk-d), (4.4)
where

A (g )=1+ a,a '+ a,qd *...* a,,a", (4.5)

B,(q")=b,,qa" '+...+ b, g (4.6)

and A;(g’"), By;(qg”') are coprime since the system of (4.1)
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and (4.2) is minimal,

I1f the output sampling period is greater than that of
the input, e.g. only y(kJT) is available from the
measurement data, where J is a positive integer, then
multiplying both sides of (4.4) by some polynomial c.(g’")

provides an equivalent form of (4.4) (cf. Chapter 3)

A(g)y(k)=B(q Nu(k-d), (4.7)
where

A(g)=1+ a,g+ azq'2‘1+...+ anq'"J, (4.8)

B(q ')=b,q '+b,g’+ . . . +bq " (4.9)
and m=Jxn. (4.10)

The equivalent model (4.7) is convenient for parameter
identification and output estimation in multirate
applications. Output estimates can be generated not only at
the output sampling instants, 0, JT, 2JT,..., but also at
the input sampling instants, 0, T, 2T, ... and it can be
proven (cf. Chapters 2 and 3) that the estimated output
values converge to the real output values. This helps to
improve the performance at the J-1 intersampling instants of
the output y(kJ).

4.2.2 1dentification and Output Estimation

Assume that the plant is represented by model (4.7),

y(k)=¢(k-1)"8, (4.11)
where
¢ (k-1)"=[-y(k-J3), ~-y(k-2J), ..., -y(k-nJ),
u(k-d-1), u(k-d-2), ..., u{k-d-m)1, (4.12)



6o=[a,, +vees 8,0 bys eses byl and m=Jxn, (4.

If the estimates of 6, are given by

6(k)"=[a,(k), ..., a,(k), b,(k), ..., by(k)]
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13)

k=0, 1, 2, s e (4.14)

then the a posteriori output estimate is generated by

7(k)=6(k-1)"8(k) (4.15)

where #(k-1)"=[-¥(k-J), -y(k-2J),..., -y(k-nJ),

u(k-d-1), u(k-d-2), ..., u(k-d-m)] (4.16)

with the initial values

¢(-1)=¢(-1) (available from the measurement data)

and _ (a4.17)

¢(i-1)=arbitrary for i=1, 2, ..., Jd-1, (4.18)

The a priori output estimate is given by

7 (k)= (k-1)T6(k=-1). (4.

Define:

the a posteriori model output error

19)

7(k)=y(k)-y(k), (4.20)

the a priori model output error

e(k)=y(k)-y(k), (4.21)

the generalized a posteriori output error

7=D(q™”)n(k) (4.22)

and the generalized a priori output error

J(k)=e(k)+[D(q™)-119(k), (4.23)

where
D(q‘J)=1+d1q‘J+d2q"2J
is a fixed moving average filter.

The parameter adaptation law is given by

+...+d g (4.24)
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6(kJ)=6(kJ-J)+
P(kJ-2)8(kJ-1)9(kJ) /[ 1+ (kI-1)"P(kI-2)#(kI-1)] (4.25)

6(kJ+i)=6(kJ), i=1,2,.00,d"1 (4.26)

P[(k+1)J-2)=P(kJ-2)-P(kJI-2)é(kI-1)F(kI-1)"P(kI-2)

/L1+¢(kJ-1)"P(kJ-2) ¢ (kI-1)], (4.27)
P(-2)>0 (4.28)
6(0)=arbitrary. (4.29)

Note that the parameter estimator (4.25-4.29) is an
output error method (Goodwin and Sin 1984). An equation
error method (Goodwin and Sin 1984) for parameter estimation
can be derived using a similar approach. However the two
methods result in different interéampling output estimation
error behaviour and it is show. in Chapter 3 that the output
error method can have a smaller bound on the error when the
input, u(k), is not rich in excitation and slowly changing.
4.2.3 Adaptive Predictive Control Law

At time k, the predicted value of y(k+d+1) is given by
vy (k+d+1]k)=¢," (k+d|k)6 (k) (4.30a)
where

v (r]k)=¢."(7]k)B(k), (4.30b)

6. (7|K)=[-F (r-J+1]k),~F.(1-2J+1|k), ...,
=Y. (r-nJ+1|k) ,u(k), u(k-1), ..., u(k-m+1)1. (4.31)
Ye(r|k)=y(r) if <k
and Yo (7| k)=y (7 |k) if >k, (4.32)
At time k the controller output u(t) is calculated

such that the performance index
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I, (k+@+1|k)=[y, (k+d+1|k) -y (k+d+1)1:+[0(q Nu(k)]® (4.33)
is minimized subject to the constraint

max ! (4.34)

UpinSulk)su

where
0(a )=0,(g")/Q,(q™), (4.35)
0y Q™ ) =Qe* QG e v o+ AT T (4.36)
0p(Q ) Qpo*Api@ e o+ QG s (4.37)

y*(k+d+1) is the assumed known set point value. Since
I.(k+d+1]k) is guadratic in u(k), the minimization is such

that one of the following three cases is satisfied

(1) 9l (k+d+1]k)/du(k)=0 and U, Sulk)su,, (4.38)
(ii) u(k)=u;, (4.39)
(iii) u(k)=u,,,. (4.40)

This leads to the following control law

u' (k)={b, (k) [y" (k+a+1)-(y,(k+d+1|k)=-b,(k)u(k))1}

/{b,(k)2+0(q ) qye} - (4.41)
u(k)=uy;, if u' (k)<uy,

=u' (k) if upsu' (k)sug,,

=Upa, if wup,,<u' (k) (4.42)

Note that in (4.41) ye(k+d+1|k)-51(k)u(k) contains only past
data y(k),y(k-1),...,u(k-1),u(k-2),... . The control law
(4.41-4.42) is an (output error method variant) extension of
that given in Remark 6.3.3. of Goodwin and Sin (1984). The
extension is in the sense that multirate sampling and input
weighting are included. To improve the information content

and robustness of the overall control system, a small
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amplitude external excitation signal may be added to the

calculated control signal, i.e.

ulk)=u,;,+v(k) if u'(k)<uy,
=u' (k)+v(k) if upsu' (k)<ug,,
=y, +v(k) if ug,,<u’ (k) (4.43)

4.3 CONVERGENCE ANALYSIS

The convergence properties of the multirate adaptive
control system derived in the previous section are developed
and proven below. .
4.3.1 Parameter and Output Estimation

Here a result presented in Chapter 3 is first stated
in Theorem 4.1 for completeness, then parameter convergence
is proven in Theorem 4.2 under a persistent excitation
condition. (Note that the identified model (4.7) is a
nonminimal model, i.e. A(g™”) and B(g"') contain the common
factor polynomial C(g™'), and that conditions for parameter
convergence are not as obvious as for minimal model cases.)
These two theorems provide convergence properties for the
parameter and output estimation algorithm described in
section 2.2.

Theorem 4.1:

Consider the output estimation and parameter
identification algorithm (4,15,4.19) and (4.25-4.29) applied
to the plant model (4.7). Then, provided that the system
H(g ™ )=[D(q ) /a(q™?)-1/2] is very strictly passive:

(i) lim £ q(kJ)’<e, (4.44)

Noc k=1
which implies
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N -
lim £ 7(kJ)’<e  and lim|y(kJ)-y(kJ)|=0. (4.45)
N-e k=1 k_.m
N » - -
(ii) lim  3(kd-1)"P(kJ-2)3(kI-1)7(kJ)’<e (4.46)
Neoce k=1
which implies
N ~ ~
lim £ [[8(k3)-8[(k-5)J]|’<= (4.47a)
Noo k=1
or equivalently (cf. (4.26))
. N -~ -~ i
lim T [6(k)-6(k-5)]|’<e (4.47b)
N_.m k=1 .

wvhere s is any finite integer.
(iii) 16 (kJ)-6,]°<k,|6(0)-6,]? vk20 (4.48a)

or equivalently (cf.(4.26))

16(k)-8,)°<k,[|6(0)-6o]* vk>0 (4.48b)
where 0<k <=,
(iv) §(kJ)™P(kJ-2) "6 (k) <c<e vk=0, (4.49a)

or equivalently
F(kJ+i)"P(kJ-2) '8 (kJ+i)<c<e
vk20 and i=0,1,...J-1, (4.49b)
where ¢ is a constant and 6(k)=8(k)-6,.
If {u(k)}is bounded then:
(v) lim]y(kJ)-y(kJ) |=0 (4.50)
and e

(vi) there exists a positive number e;<= such that

16(0)-6o]*<e; implies

ly (k)-y (k)|
<6[1im sup||6(kJ)-6o])[1im sup|ulk)-u(k-1)|J+A(k)
k= ks
vkz0 (4.51)

where A(k) is a sequence satisfying lim A(k)=0, & and the

k2o
two limit superiors are positive finite numbers.
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Proof: See Chapters 3 and 5. ®

Theorem 4.2:

Subject to the same conditions as Theorem 4.1 the
implication (i)=2(ii)=»(iii)=(iv) holds for the following

statements:

(i) c,max1>:‘§: U()U(1) e, vk20, (4.52)
where r<e= is an integer, «>c,..>c,;;,>0 and
Uk-1)=lu(k=1),u(k-2), ..., ulk-2m) 1" (4.53)
(i1) Con 7L, $(13-1)8(10=1)>C o,
vk sufficiently large, (4,54)

and
k+r - -, . .
cz,naxI>iZEk $(iJ-1)g(id-1)">c,,,, I
vk sufficiently large, (4.55)

where e=>c, . >c,. >0.

(iii) lim A, (P(kJ-2)7") == (4.56)
kse
where X, ,, (') means the minimum eigenvalue,
(iv) lim 6(k)=6,. (4.57)
k-
Proof:

(i)=»(ii): It is easy to check that the equivalent model
(4.7) is uniquely determined by model (4.4) and the integer
J, i.e. the common factor polynomial, C,(qq), is uniquely
fixed by the model structure. This implies that a state
space realization of ¢(-) versus u(-) as the input is
completely reachable (Heymman 1988). Therefore (4.52)
implies (4.54) (Anderson and Johnson 1982), which yields
{4.55) since lim ||¢(kJ-1)-¢(kJ-1)||=0 by (i) of Theorem 4.1.

ks

(ii)=»(iii): This is obvious since
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p(ka—z)"=p(—2)"+:z;; $(iJ-1)8(ig-1)",
(iii)=»(iv): Combining (4.56) and (4.49b) gives this
implication, ®

Note that for the more general cases, where A, and B,
are not coprime the result of Chapters 6 and 7 can be used
to determine the limiting set of 6(k). Theorem 4.2 given
above would then be a special case of this more general
result. However, the above proof is more concise and
provides a direct 1link with other publications.
4.3.2 Adaptive Control System

Theorems 4.1 and 4.2 only give convergence properties
for the parameter and output estimation algorithm. When the
values of parameter and output estimates are incorporated
into in the adaptive control law (4.41,4.43), it is also
desirable to prove the stability and convergence properties
of the overall control system. Note that with ug;,=-= and

u_.=» a stability and convergence proof is difficult to

max
carry out. The main difficulty is that the Key Technical
Lemma (Lemma 6.1 of Goodwin and Sin, 1984) is not applicable
in this multirate case because the adaptive control law
(4.41,4.43) allows the control, u(t), to change between two

siccessive output measurements. Since a constraint with

>-» and u_ .. <= is more typical of practical control

min max

u
applications a convergence proof without the constraint is
not discussed here.

The following Theorem 4.3 shows that under given

conditions the adaptive control system guarantees
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boundedness for all its internal signals and asymptotically
behaves like a reference cortrol system, defined by the
corresponding control system with known plant parameters and
known output values at the fast (input) sampling instants.

The following assumptions will be used in Theorem 4.3:

Assumptions:

(1) The time delay d+1 is known.

(2) a+1 < g,

(3) The order of the plant is known,

(4) H(g”) is very strictly passive.

(5) There exists 0<M<e such that Vk, the 'frozen' transfer
function 1/[b,(k)2+Q(q ')qy,] is asymptotically stable and
has a steady state gain bounded by -M from below and M from
above.

(6) {y'(k)} is bounded and y'(k+d+1) is known at time
instant k.
(7) -e<u;,<u,.,<e and {v(k)} is bounded.
Remarks:
(1)Note that to use the adaptive control algorithm
(4.41,4.43) Assumptions (1-3) are not necessary. Upper '
bounds of the plant order and the delay are all that is
required. For simplicity these assumptions are used in
Theorem 4.3.

(2) The very strictly passive condition in Assumption (4) is
not due to the multirate sampling. It is inherent in the

output error identification method (Landau 1979). This

condition is not required if an equation error method is
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used. Discussion of the guidelines for selecting the D
filter of (4.23) and the relationship between the very
strictly passive condition and the original plant is
included in Goodwin and Sin (1984) and Landau (1979).

(3) From (4.47b) [f:,(k)’+Q(q'1)q,,0]_1 is slowly time varing,
Therefore Assumption (5) guarantees that the linear, slowly
time varing system [b,(k)2+0(q ')q,,]  is BIBO (bounded input
produces bounded output). Note that for a corresponding
adaptive control system with known output values at the fast
(input) sampling instants and u,,=-= and u,, ==, i.e. an
adaptive equal (fast) rate control system without input
constraints, the offline choice of Q has to make

B,(q ')+A, (g )0(q ')q,,/b,, stable (Tsiligiannis and Svoronos
1986), which requires some a priori knowledge about the
plant parameters. Since Assumption (5) only involves one
parameter, 5,(k), and 51(k)‘>0, vk, the offline choice of Q
to meet the assumption is much easier. For example Q=X
always satisfies the assumption for any constant scalar
constant A#0. To satisfy Assumption (5), similar simple
rules can be deduced for a first or second order Q, etc.

Theorem 4.3:

Subject to Assumptions (1-7) the control law
(4.41,4.43) when applied to the system (4.11) yields:
(i) {u(k)} and {y(k)} are bounded seguences.
(ii) 1f ﬂé(O)-60"2<e7, where e, is as defined in Theorem
4.1, then {y,(7]k),7<k} and {y. (k+d+1|k)} and {u'(k)} are

all bounded and the following reference performance index
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I(k+d+1|k)=[ (y(k+d+1)-y' (k+a+1))1%+[Q(q Du(k)]® (4.58)
is approximated by I, (k+d+1|k) with the following error

|1,(k+d+1|k)-I(k+d+1|k)|<alim sup|8(kJ)-6,]+a,(k) (4.59)
where A,(k) is a seguence satisfy?gg lim 4,(k)=0, ¢ and

R k2
lim sup||6#(kJ)-6,]| are two finite numbers.
ke
(iii) If {v(k)} is selected such that (4.52), the excitation
condition for u(k) holds, then
lim 6(kJ)=6, (4.60)
k=
which implies from (4.59) that
lim |I.(k+d+1]k)-I(k+d+1|k)|=0 (4.61)
ko
Proof:

(i) conclusion (i) is obvious since u(t) is constrained and
the system is asymptotically stable by the very strictly
passive assumption.
(ii) Since d+1<g

Ve (7 |k)=y (1) v r<k and k=1,2,... (4.62)
and ¢, (k+d|k)=9 (k+d). (4.63)
Therefore by (vi) of Theorem 4.1 and (i) of this theorem
{yo.(7|k),7<k} and

¢, (k+d|k)[|=]¢(k+d)|] £ n sup|y(k)|+m supfu(k)| (4.64)

are bounded, which implies that %ye(k+d+1|k)¥ (cf£. (4.30))
is also bounded since 6(k) is from (4.47b) or (4.48b). From
(4.41) the boundedness of {u'(k)} is assured by Assumption
(5), and the boundedness of y'(k), y.(k+d+1|k), u(k) and
6(k). To prove (4.59) note that from (4.33) and (4.58)

|I.(k+d+1[k)-1(k+d+1]|k)]
= |y (k+d+1| k) -y (k+d+1) -2y (k+d+1) (y, (k+d+1]k)-y(k+d+1)) |
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=| [y, (k+d+1|k)+y(k+d+1)-2y" (k+d+1) ] (y, (k+d+1]k) -y (k+d+1)) | (4.65)
and

|ye (k+d+1 k) -y (k+d+1) |

=|$(k+d)T8(k)-¢(k+d)76,]

<]@ (k+d) =g (k+d) [ 6 (k) | +]|¢ (k+a) [[|8 (k)-8

<m, lim sup [|8(k)-6,)+A, (k)=m, lim sup
R ke k»x
16 (k)-6,]+8c (k) (4.66)
where 0<m,<=, lim 4,(k)=0, and

koo
|#(k+d)-¢ (k+d) [|<n sup|y(k)-y(k)| and (4.51) are used in
(4.66). Substituting (4.66) into (4.65) and noting that
Ye(k+d+1]k), y(k), y'(k) are all bounded yields (4.59).
(iii) Conclusion (iii) is obvious. Note that conditions for
v(k) under which excitation conditions for u(k) are
satisfied have been discussed by Moore (1987). ®
It is important to realize that conclusion (ii) of

Theorem 4.3 is a local stability and convergence result
because of the condition [|#(0)-6o] %<e;. Since in practical
applications an adaptive control system should not be
switched on with poor initial parameters this condition does
not appear to be especially critical and can be achieved
(cf. Theorem 4.2) in practice by running the parameter
estimation algorithm for a finite time with sufficient
excitation before the adaptive contro? law (4.41, 4.43) is
switched on.
4.4 A SIMULATION EXAMPLE

This section presents a simulation example which shows

that the proposed multirate, constrained, adaptive control
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system behaves asymptotically like the reference control
system, which minimizes, at each control sampling instant k,
the reference performance index I(k+d+1]|k) instead of
I (k+d+1]k).

The simulated continuous plant system (cf. model

(4.1-4.2)) is represented by

. 0.7504 -0.8668 0.5821
x(t)= x(t)+ u(t)
1.2383 -1.1071 -0.6562
(4.67)
y(t)=[ 1 0.5 lx(t-7,) (4,68)

With 7,=0, the open loop response of the plant is shown in
Figure 4.2 for a unit step input. Common design guidelines
suggest that the discrete sampling interval for the system
should be approximately T=1 if the controlled system is
required to have faster dynamics than the open loop system.
For T=1, the corresponding discrete model (cf. model (4.4))
is

(1-1.5g"'+0.7¢ %)y (k)=(q '+0.5q ) u(k~d) (4.69)
where d=1,/T=71,.

Assume that the output, y, can be measured only every
10 control intervals. It is obvious from Figure 4.2 that a
control interval of JT=10 would not be expected to give good
control using conventional equal (slow) rate algorithms.

However, applying the adaptive control law (4.41,4.43) with
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J=10, v(k)=0, Q(q')=0, u,,=-1 and u,, =1, i.e. d+1 step

ahead constrained adaptive control, to system (4.67-4,68)

yields the responses shown in Figure 4.3 (a-d) for d=0 and
Figure 4.4 (a-d) for d=12. All figures are plotted using
continuous time t, instead of discrete time k, to show the
intersampling behaviour. The identification and estimation
algorithm is on from time t=0 and the parameter estimates
start from zero initial values. A conventional PI controller
with a control interval of 10 is used from t=0 to t=300 and
a small amount of noise is added to the control action at
every interval (T=1) to yield additional excitation during
this initial period, after which this noise is removed. The
adaptive control law is turned on at t=300. The set point is
given by
y' (t+d+1)=5 100i<t<100i+100 i=0,2,4
==5 100i<t<100i+100 i=1,3,5 (4.70)
Figure 4.5 (a-d) shows the response of the

corresponding reference control system with known plant
parameters and known output values at every interval, T=1.
Remarks:
(1) For 0<t<300, with a control interval of 10 and a PI
controller it is difficult to achieve a satisfactory
response (cf. Figure 4.2a where tuning was done by trial and
error). When the system has a delay of 12 the response is
even worse (cf. Figure 4.4a). Since fast output measurements
are assumed for the reference control system in Figure 4.5a

the PI controller gives a much better performance than in
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Figures 4.3a and 4.4a, Note that in Figures 4.3b and 4.4b.
the small ripple in u(t) between the control intervals for
0<t<300 is due to the small excitation or probing signal.
(2) For t2300 there is essentially no difference between the
multirate adaptive control system and the reference control
system (compare Figure 4.3 versus Figures 4.5). This
indicates that the parameter estimates (not plotted) were
sufficiently close to the true plant paruzmeters even though
only 30 measured values of the output were available during
the initial identification period 0<t<300., After t=500 the
adaptive system shown in Figure 4.3behaves essentially the
same as the 'ideal' (fast and equal rate sampling, known
parameters) reference system shown in Figure 4.5.

(3) When the system has a delay of 12 the predictive
structure of the proposed multirate adaptive control still
ensures excellent performance (cf. Figure 4.4). This
simulation result also shows that the control algorithm
(4.41,4.43) is applicable with d>J even though d<J is
assumed in the proof of Theorem 4.3.

(4) The response of the reference system with a single, slow
sampling rate of 10 is not shown., However, as may be
expected, since between the sampling instants the control
u(t) is constant and the response is open loop (cf, the open
loop response shown in Figure 4.2), the output response is
definitely not as good as Figure 4.3 or Figure 4.5 (Note
that in Fiqures 4.3 and 4.5 the output tracking errors, for

300st, are essentially settled to zero only 5 or 6 steps
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after every setpoint change,).
(5) Control in the presence of external disturbances is not
discussed. Obviously information about the disturbances
enters the system only via the slowly measured output
variable, Therefore even though the control sampling rate is
faster than the output sampling rate the propcsed controller
still cannot compensafe disturbance components beyond the
frequency range determined by the output sampling rate,.
(6) Note that the output estimation y, represented in (30)
‘relies explicitly only on u(k) and #(k), i.e. in Figure 4.1
the line from y(kJT) to the output estimation model block is
not connnected. Therefore the oﬁtput feedback is only
indirectly via the parameter estimate 6(k). Since the
simulation example is linear and allows an exact model
match, this 'weak' form output feedback does not cause
problems., However, in most control applications an exact
model match is impossible and it should be more practical to
connnect the line from y{kJT) to the output estimation model
block by some adhoc method to strengthen the 6utput feedback
and/or to improve the output estimation and prediction.
4.5 CONCLUSIONS |

A multirate, constrained adaptive servo controller is
derived for applications where the output sampling rate is
restricted to a rate J times slower than the desired control
(input sampling) rate.

Local stability and convergence properties of the

adaptive control system are given and formally proven. It is
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shown that the the multirate, constrained adaptive control
system asymptotically approaches the performance of the
analogous fast and equal sampling rate system with known,
constant system parameters.

Performance is excellent, as shown by the simulated
results. Since almost all practical applications have input
constraints u,,Su(k)su,, and many applications have
restrictions on the output sampling rate, the proposed
control algorithm should be of significant practical

interest.,
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Figure 4.1: Multirate constrained adaptive control system.
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Figure 4.2: Open loop output response of continuous model to

a unit step input.
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Figure 4.3a: Output response using multirate, constrained
adaptive d+1 step ahead control (for t>300). System
delay d=0, control interval=1, output measurement

interval=10.
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Figure 4.3b: Manipulated variable with constraints

-1su(t)s<t.
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Figure 4.3c: Output response with an expanded time scale.
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Figure 4.3d: Manipulated variable with an expanded time
scale .to show control action every one time interval

despite output sampling every 10 time intervals).
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Figure 4.4a: Output response comparable to Figure 4.3 but

with system delay d=12.
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Figure 4.4c: Output response with an expanded time scale.
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Figure 4.5a: Output response of the reference control system
representing the best control performance achievable,
i.e. output measurement interval=1 and plant parameters
are known and used in the constrained d+1 step ahead

control law. System delay d=0.
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5. MULTIRATE ADAPTIVE
INFERENTIAL ESTIMATION AND CONTROL*

5.1 Introduction

This chapter combines some of the concepts used in
multirate output estimation presented in Chapters 2 and 3
and inferential control (Parrish and Brosilow 1985). The
resulting multirate adaptive inferential estimation and
control-system is shown in Figure 5.1. The primary process
output, y(t), is sampled with a period JT while the input
u(t) and secondary output v(t) are sampled at the desired
control interval, T. These measurements are sent in parallel
to a parameter identification algorithm and an output
sstimation algorithm. The output ectimates, y.(t), are
produced every sampling interval, T, and can be used, as
shown in Figure 5.1, as the basis for control. I1f y, is a
good estimate of y then control should improve because it
can be implemented with period T rather than JT.

The multirate adaptive inferential estimation and
control system shown in Figure 5.1 was first proposed by
Guilandoust et al. (1986, 1987a, 1987b, 1988). Their work
includes two approaches: state space and input-output. It is
original and practical but is incomplete in its theoretical

foundation. For example, the state-space approach requires

+p version of this chapter has been submitted for
publication: Lu W. and Fisher D. G., IEE Proc. D, Control
Theory & Appl., 1989.
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that the process be completely observable from the secondary
output v(t). This requirement is severely restrictive since
in most cases the dynamic modes of the primary output y(t)
are not all included in the dynamic modes of v(t). The
input-output approach does not require this observability
assumption, It directly assumes that the process has two
input-output models, one for y(t) versus u(t), another for
v(t) versus u(t). However the formulation requires that the
same white noise term be present in each of the two models
to relate y(t) with v(t) to obtain the working equation of
the algorithm. This approach does not adequately reflect the
link between y and u, e.g. the link is only via the external
white noise disturbance and if this disturbance vanished
then there would be no theoretical basis for the working
equation. Furthermore, it is difficult to interpret the
physical meaning of the working ejuation, e.g. the
relationship between the order of the polynomials in the
working equation and the characteristics of the actual
process is not clearly defined.

This chapter formulates the working equation based on
the frahework of linear models (Wolovich 1974). The working
equation reflects fully and more fundamentally the
inferential relation from v to y via the internal system
structure. The proposed approach does not require the
limiting assumptions made by Guilandoust et al. (1986,
1987a, 1987b, 1988); quantitatively defines the relationship

between the working equation and the original process model
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plus the external disturbances; formally proves the output
convergence properties; and provides a solid theoretical
background for extending the result to multi-input
multi-output cases.

When J, i.e, the output sampling interval, is
increased then the number of parameters to be identified
increases proportionally. For cases when the number of
estimated parameters must be reduced, a simplified algorithm
is proposed which works well in simulations but lacks a
formal proof of convergence.

5.2 Models for Multirate Inferential Estimation

In the following discussion, models are derived first
for multirate systems without external disturbances and then
for systems with external deterministic and/or stochastic
disturbances. It is assumed that the process shown in Figure
5.1 is completely observable from v(t) plus y(t), which is
much less restrictive than assuming that it is completely
observable from v(t) alone (Guilandoust et al. 1986, 1987a,
1987b, 1988). The process is of order n with an
observability index nv from v(t). To simplify the notation
it is assumed that the input sampling interval T=1 and t is
also used to indicate discrete time.

5.2.1 Case 1: No Disturbances

By the observability assumption, the system can be



represented as (Wolovich 1974):

[ 0 ... 0 -a, 0 ... 0 -a, ]
1., :
x(t+1)= -a,, 0 ... 0 -a, |x(t)+
0 voo 0=a,,,, 0 vu. 0 =3,
Loy
0 ... 0 -a, -a,

v(t)=x,,(t)

y(t)=hx_,(t)+x,(t)

nv+1

u(t)

B7

(5.1)
(5.2)
(5.3)

where ny=n-nv. The corresponding input-output relation from

u(t) and v(t) to y(t) can be expressed as follows

A(q ) [y(t)-hv(t)I=B(q Du(t)+C(q )Iv(t)

where A(g ')=1+3.q '+3,,q +.. . *8,,Q ' = H: [1-(0g) '],
i=

The \,'s are the roots of a(g’"),
B(q"")=b q '+b,_,q **...+b,.,q
and Cla =-a,q '-a,.,G -« .. m8ppaiQ e

Let C(q ')=A(g ')h+C(q™")

=h+(3,h-a,)q +...+ (8, h"8pys1 )T

Then

alg )y (t)=B{g ult)+c(q v (t).
Multiplying both sides of (5.9) by

iﬁ [1+(A Q) "+ o+ (@) 72+ () ™)

results in the equivalent form

A, (q7)y(t)=B,(g Hult)+C,(q v(t)

ny

(5.4)
(5.5)

(5.6)
(5.7)

(5.8)

(5.9)

(5.10)
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where A (g )=1+a,q  +a ,q .. .+aar;yq'"y", (5.11)
BJ(q")=bJ,q'1+b\,2q'2+. «o¥b,a (5.12)
C,(q ) =Cy+Cyr@ +Cpq *+ 1 o +Cy@ ™ (5.13)

and m=Jyny.

Remarks:

(1) The working equation (5.10) can also be derived directly
from the original continuous model of the process with a
discretized input (cf. Chapter 2).
(2) The stability property of AJ(q”) follows that of A(g’').
If the parameters of A{(q ') are real, so are those of
A (q™).
5.2.2 Case 2: Deterministic and Stochastic Disturbances

I1f the dynamic modes of the deterministic disturbances
do not result in pole-zero cancellation with the dynamic
modes of the process, the composite system, i.e. the process

system plus deterministic disturbances, can be represented

by
B _ N [~ 7
O LI 0 -a1 0 "o O _a‘l b]
Inv-‘l
x(t+1)= -a,, 0 ... 0 -3, [x(t)+| by, fult)+
0 vov 0 -8, 0 o. 0 -3, byss
Iyt
0 ... 0 -a, -a, b,
[f1 vee Ty Tpguy oos Lpl WiT) (5.14)
vit)=x,,(t)+n,(t), (5.15)
y(t)=hx (t)+x (t)+n,(t), (5.16)

where the augmented state variable x includes the dynamics
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of deterministic disturbances. The order of the composite
system (5.14) is greater than or equal to the order of the
process but is still represented by n. The stochastic
disturbances, w(t), n,(t) and n,(t) are assumed to be white,
Gaussian sequences with finite variances.

As in the zero disturbance case, the input-output
relationship betwwen u(t), w(t), v(t) and y(t) can be
obtained as follows:

a(q ") [y(t)-hv(t)+hn,(t)-n,(t)]
=B(q Du(t)+C(g v (t)+R(g W (t) - (5.17)
where A, B and C have the form of (5.5-5.7) and

R(q'1)=rnq'1+rn_,q”2+. S SR B (5.18)
Similarly, likes (5.9)

A(g Ny (t)=B(g Du(t)+c(g )v(t)+D(q )z (t) (5.19)
where z(t) is white and has a finite variance. In (5.19)
R(q”)G(t)-A(q”)hnv(t)+A(q”)ny(t) has been replaced by
D(q ')z(t) using the representation and spectral
factorization principle (Astrom 1970). The polynomial D(q"W

is defined by

D(q )=d,+d,q *...+d,q . (5.20)
Like (5.10), an equivalent form of (5.19) is

A, (@) y(£)=B,(g ul(t)+C (g v (t)+D,(q )z (t) (5.21)
where

D,(q " )=d,o+d;,q +d5,q ... *dpa (5.22)

Remarks:

(1) 1f the deterministic disturbances result in pole-zero

cancellation with the process, the observability property of
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the composite system is lost. This situation, called input
zero blocking, is not discussed in here.
(2) The derivation of the working equation (5.10¢) or (5.21)
is easily extended to MIMO cases. For example if there are
several secondary measured variables rather than a single
v(t) the same approach can be used to derive an appropriate
working equation. On the other hand if v(t) is not
available, i.e. if nv=0. the working equation naturally
reduces to the SISO case treated in Chapters 2 and 3. Note
that it is almost impossible to make either the extension to
the MIMO case or the reduction to the SISO case when using
the approach of Guilandust et al. (1986, 1987a, 1987b,
1988).
5.3 Estimation Algorithm
5.3.1 Definitions

The notation used to describe the process in (5.10) and
(5.21) can be simplified by dropping the J subscript. The

inferential mcdel of the process then becomes

Al y(t)=B(g ult)+C(g Iv(t)+D(g )z (t) (5.23)
where

A(q"’)=1+a,q'a+a2q'2"+. ..+a g™, (5.24)

B(q')=b,q '+b,g *+...+b,g™", (5.25)

clg ) =cote,@ +e,g .. te gy (5.26)

D(g " )=c ,+d,q '+d,g"* +...+d,a ", (5.27)

m=Jxn.

Note that here n plays the role of ny in the previous

section. It is further assumed that the original state space
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representation (5.14-5.16) has all its eigenvalues inside

the stable region,

A priori model output error

Let
6(t-1)"={-y(t-3),-y(t-23), ...~y (t-nJ) ,u(t-1),u{t-2),
veo,ult-m),vit),v(t-1),...,v(t-m)] (5.28)
and
6, =[a,,ee0r8,/b1seeesbprCorCisenesCple (5.29)
Then
y(t)=¢(t-1)T0,+D(g ) =(t). (5.30)
Next, Define the following:
A posteriori model output
F(t)=d(t-1)T6(¢t) (5.31)
where
$(t-1)"=[-y(t=3),-y(t-23),...
-5(t-nJ) ,u(t-1),ult-2),..0,
u(t-m),v(t),v(t-1),...,v(t-m)] (5.32)
with the initial values
p(-1)=0¢(-1) (available from the measurement data),
and ¢(-1+i)=arbitrary and
(t)"=[a,(t),...,a,(t), b,(t),...,b,(t),celt),
cic(t)] (5.33)
i.e. 6(t) is the estimate of 6, at time t.
A posteriori model output error
n(t)=y(t)-y(t) (5.34)
A priori model output
y(t)=8(t-1)6(t-1) (5.35)
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e(t)=y(t)-y(t) (5.36)
Generalized a posterior output error

n(t)=L(g”)n(t) (5.37)
where

L(g¥)=1+#1,g7+...+1,.q"*" (5.38)

is a fixed, moving-average filter.

Generalized a priori output error

V(t)=e(t)+IL(g7)-1]n(t) (5.39)
5.3.2 Estimation Algorithm
The parameter estimation algorithm is given by
6(Jt)=6(Jt-3)+
P(Jt-2)8(Jt-1)%(J3t)/[1+8(It-1)"P(Jt-2)$(It-1)], (5.40)
6(Jt+i)=6(Jt) (i=1,2,...,3-1), (5.41)

PlJ(t+1)-2]=P(Jt-2)-P(Jt-2)3(Jt-1)$(It-1)"P(Jt~2)

/[1+3(Jt-1)"P(Jt-2)3(Jt-1) ], (5.32)
6(0)=arbitrary, (5.43)
P(-2)>0. (5.44)

The regressor #(t) has been defined in (5.32). At each unity
time step, the estimated outputs y(t) and y(t+1) can be
calculated by using (5.31) and (5.35) although the output is
measured only every J sampling intervals.
5.3.3 Convergence at Output Sampling Instants (for z(t)=0)
The first step is to define the convergence properties
of the output estimates at the output (slow) sampling
interval, JT.

Theorem 5.1

Consider the algorithm (5.40-5.44) applied to
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inferential model (5.23) with z(t)=0; then, provided that

the system H(g”)=[L(q”)/a(g’)-1/2] is very strictly

passive:
N
(1) lim Z #(Jt)?*<e, (5.45)
Noeo t=!
which implies
N
lim £ n(Jt)3<= (5.46)
. Noo t=!
and lim|y(Jt)-y(Jt) |=0; (5.47)
t >
N _ - -
(ii) lim Z ¢(Jt-1)"P(Jt-2)8(Jt-1)n(Jt) <=, (5.48)
N+ t=!
which implies
N ~ -
lim £ [6(Jt)-6[3(t-s)]|2*<= (5.49)

Now t=1
where s is any finite integer;

(iii) 1f {u(t)} is bounded, then

lim v(Jt)=0 (5.50)
tre .
and’ lin |y(Jt)-y(Jdt)|=0. (5.51)
b 1.
Proof:
Define b(t)=-¢(t-1)T8(¢t) (5.52)
where B(t)=6(t)-6,. (5.53)

Combining (5.30) and (5.31) (and noting z(t)=0) gives
A(g)n(t)=b(t), (5.54)
or particularly A(g™)n(Jt)=b{Jt). (5.55)
(5.37) and (5.55) give
A(g™)7(3t)=D(g”)b(3t). (5.56)



Multiplying (5.40) by #(Jt-1)T and then subtracting from
y(Jt) gives
n{Jt)=e(Jt)
-3 (Jt-1)"P(Jt-2)8(Jt-1)v(Jt)
/01+6{3t-1)"P(Jt-2)8(Jt-1)]. " (5,
Combining (5.57) with (5.237) and (5.39), yields
2(3t)=v(Jt) /L 143 (Jt-1)"P(Jt-2) 3 (Jt~1)] (5.
Substituting (5.58) into (5.40) gives
8(Jt)=6(Jt-J)+P(Jt-2)@(Jt-1)7(Jt). (5.
Substracting 6, from both sides yields
F(Jt)-P(Jt-2)@(Jt-1)n(It)=6(Jt-J). (5.
Let
v(at)=5(It)"plI(t+1)-2]""8(Jt) (5.
and then from (5.60) and (5.61)

[5(Jt)-P(Jt-2)8(Jt-1)7(at)1"P(Jt-2)""

[F(It)-P(Jt-2)8(It-1)n(Jt) )"=v(Jt-J) (5.
or T(It)"P(It-2)"6(at)-26(I3t) 3 (It-1)7n(Jt)
+3(Jt-1)"P(Jt-2)@(Jt-1)n2(Jt) =v(Jt-J) (5.

'3ing the Inversion Lemma (Lemma 3.3.4, Goodwin and Sin
- 1984)
F(at)P(It~2) '8 (3t) =
F(at)T{PlI(t+1)-2)""-5(It-1)3(It-1)"}8(at)"
=v(Jt)-5(Jt)"3(It-1)8(It-1)"8(Jt). (5.
Combining (5.52), (5.62) and (5.63)
v(Jt)=v{(Jt-J)-2[7(Jt)-b(Jt)/2]1b(Jt)
-3(Jt-1)"P(Jt-2)8(Jt-1)72(Jt). (5.

The remainder of the proof is the same as that of Theorem

9¢

57)
58)
59)
60)

61)

62)

63)

64)

65)
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3.5.1 in (Goodwin and Sin 1984), except that the very
strictly passive condition is used for the relation between
[7(3t)-b(Jt)/2] and b(Jt), where the input sequence is
b(0),b(J),b(23),... and the output segquence is
[7(0)-b(0)/2], [a(J)-b(J)/2), [w(23)-b(23)/2],... . ®

5.3.4 Convergence at the Input Sampling Instants (for
z(t)=0)

Using the results from Theorem 5.1 it is now possible
to define the convergence properties of the output estimate
at each input sampling interval, T, i.e. at the output
intersampling points.

Theorem 5.2:

Under tha2 same conditions as Theorem 5.1:
(i) 16(It) =60 2k, ]|6(0)-8o]> vt>0 (5.66)
where x,=\mx[P(-2)q+¢(-1)¢(-1)T]/kmm[P(-2)q], and

Moy (*) and A, () represent the maximum and minimum

eigenvalues respactively.

(ii) There exists a positive number e such that if {u(t)} is
bounded then [6(0)-8o]*<e implies
(a) |y(t)-y(t)|s
§{1im suplé(Jt)-6,]1[1im supjult)-u(t-1)|1+a(t)
t 4 hole 1)
\'t>0 (5.67)

where A(t) is a sequence satisfying lim A(t)=0 , & and the
t e

two limit superiors are finite numbers.

(b) lim |y(t)-y(t)|=0 (5.68)
. t9e
provided that lim 6(Jt)=6, or lim [u(t)-u(t-1)]=0.

t3c tox



Proof:
(i) using (5.65),
V(3t)=V(0)-2Z b(Ji)[7(3i)=b(3i)/2]
jé1 #(Ji-1)"P(Ji-2)8(Ji-1) 72 (Ji),
From (5.56)
[7(Jt)-b(at)/2)=[D(g”) /a(q™")-1/2]1b(Jt)
=H(q)b(Jt). |

By the very strictly passive assumption of H(g™)

§1 b(J1) [7(J1)-b(Ji)/2] = -b(0) [7(0)-b(0)/2].

Considering the initial conditions of ¢,
7(0)=D(q ") n(t) |,.o=n(0)=y(0)-y(0)
=¢(~1)70,-3(-1)"8(0)=¢(-1)"[6,-6(0)]
=-8(0)7¢(~1).
But
b(0)=-57(0)$(-1)==8"(0)¢(-1)
and therefore
é1 b(Ji)[n(Ji)-b(Ji}/2] 2
-b2(0)/2=-8"(0)¢(-1) ¢ (-1)76(0) /2.

9%

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

Substituting (5.74) into (5.69) and using the definition of

V give
T(It) P[I(t+1)-21"'6(Jt) <
FT0)[P(-2)+o (-1 (-1)T17'F(0)

where the positive definite property of P is used.

(5.75)

By the Inversion Lemma {(Lemma 3.3.4, Goodwin and Sin 1984)

it is easy to verify that
Ay [PL3(e+1)-217"] 2 A, [P(-2)7"] vt20.

Then (5.75) and (5.76) immediately yield (5.66).

(5.76)
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(ii) From (5.54)
A(g)n(t)=b(t) (5.77)
or equivalently, using (41),
Al ) n(Jt+i)=-g(Jt+i-1)8(Jt) i=0,1,2,...,0-1. (5.78)
From (5,78)
Al [n(Jt+1)-n(Jt) 1=-[(It+i=-1)-§(It~1)]6(Jt)
i=1,2,..,J-1 (5.79)
But
P(It+i-1)=
{[F,(3t-3,9 g™, F,(Jt-23,a° Vg™, ... ,F,(Jt-nJ,q g™ Ju(Jt+i)
+[F,(Jt-J,q9 Vg7, Fa(Jt-23,07)a, ... ,F2(Jt-nJ,q g W Iv(gt+i),
[q7,q%, .o ,g " lulat+i),
[+,q9',q%, ...,q " Iv(Jt+i)} i=1,2,...,3-1(5.80)
where
Fo(t,q )=B(t,q ") /Alt,q%), Fa(t,q )=C(t,q ) /Alt,q),
Alt,g ) =1+a, (t)qg 7 +a, (t)g ¥+...+a, ()g™,
B(t,q ')=b,(t)q '+b, (t)g %+...+b,(t)q™"

J - -nJd
+.o.+cn(t)q n .

and €(t,q™)=co(t)+c, (t)g+c.(t)g™
By the very strictly passive assumption, a(q”) is
asymptotically stable. Thus thére exists €;>0 such that: if
16(0)-6o]2<ey, A(0,g”7) is also asymptotically stable, From
(i) it is concluded that A(Jt,q”) vt20 has uniformly all
its eigenvalues strictly inside the unit circle for e=c1/Kq.
Also from (5.49), (5.80) is slowly time varying and it is
not difficult to show that ¢ can be such that the systems

F,{t,q ') and F,(t,q ') are slowly time varing and global

uniform exponentially stable uniformly in their parameters.
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Therefore bounded {u(t)} and {v(t)} imply bounded {é(t)} and
that there exist 0<M,,M;,M<= such that
|8 (at+i-1)-8(Jt-1)| <
M, |u(Jt+i)-u(Jt) | +Mz |v(Jt+i)-v(Jt) |
sM|u(Jt+i)-u(Jt) |
i=1,2,...,0-1 (5.81)
since $(kJ+i—1)—$(kJ-15 versus u(kJ+i)-u(kJ) and
v(kJ+i)-v(kJ) i=1,...,J-1 also satisfies (5.80) and the
relationship between v(t) and u(t) is linear time invariant
and asymptotically stable by the assumption on the
eigenvalues of the original process.
Considering that lim n(Jt)=0 (from (5.47)) and a(g™”) is
asymptotically st:;Te, (5.79) and (5.81) yield
|n(Jt+i)|<6,[1im sup|6(Jt)[|I[1im sup|u(Jt+i)-u(Jdt)|I+A(Jt+i)
t> t o
i=1,2,...,d-1 (5.82)
where A(Jt+i) i=1,2,...,J-1 are some sequences satisfying
1im A(Jt+i)=0, &, and the two limit supperios are finite
;;:itive numbers. Note that for i=1,2,...,d-1
lim sup|u(Jt+i)-u(Jdt)| < (J-1)1lim supfu(t)-u(t-1)].
) tae A
Part (a) of (ii) is obtained by letting |y(Jt)-y(Jt)|=a(Jt),
§=(J-1)6, and noting that
n(Jt+i)=y(Jt+i)-?(Jt+i)=y(Jt+i)-6(Jt+i—1)5(Ut+i)
=y (Jt+1)-¢(JIt+i-1)"8(Jt)
=y (Jt+i)-y(Jt+i) i=1,2,000,0-1 (5.83)
and using (5.51) and (5.82). Part (b) of (ii) is obvious., ®

5.3.5 Remarks on Convergence Theorems

(1) Theorems 5.1 and 5.2 are extensions of the results
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presented in Chapters 2 and 3. Here the secondary output
v(t) is included in the algorithm and the prcofs are
presented in greater detail.

(2) The convergence results of Theorems 5.1 and 5.2 are
applicable to cases with z(t)=0 and can be applied to the
convergence analysis of any adaptive servo control using the
multirate, inferential estimation algorithm.

(3) The estimation algorithm (5.40-5.44) will handle
processes operating in noisy, stochastic disturbance
environments. In general, if external stochastic
disturbances are present then there is model mismatch since
the parameters of the external stochastic disturbance model,
D(q”'), are not identified. This makes the convergence
analysis quite difficult.

(4) Note that only output convergence is proven and no
conclusion is made about parameter convergence to the true
parameter vector. It is not difficult to observe from the
derivation in the previous section that the parmeterization
of the inferential equation (eg. (5.23) with z(t)=0) is, in
general, not unique, i.e. 6, can be anything belonging to an
equivalence class set in the parameter vector space. It
would be desirable, in cases where parameter convergence 1is
important, to use some improved algorithm with structurally
constrained, inferential working equations so that only a
unique convergence point in the parameter vector space
exists for identification.

5.3.6 Simplified Algorithm
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?he algorithm (5.40-5.44) has one practical
disadvantage: the number of the parameters to be estimated
increases linearly with J. Since an exact model match can
not be achieved by the algorithm (5.40-5.44) when
D(g ')z(t)#0, it may be desirable to simplify the algorithm
for such cases. Decreasing the number of parameters in the
algorithm would, in general, increase the model’mismatch and
result in poorer performance. However, in some épplications
reducing the number of parameters to be estimated improves
the numerical conditioning of the estimation algorithm and
reduces the variance of the output estimate, thus resulting
in better overall performance. Based on this observation
(cf. parsimony principle, Ljung 1988) it is proposed that
the algorithm defined by (5.40-5.44) be simplified by
reducing tHe number of b and c parameters. One extreme case,
considered here as an demonstration example, is to set
b,.,(t)=¢c,(t)=0 for i#0,J,2J,...,(n-1)J. The number of
parameters to be estimated in the proposed simplified
algorithm is 3n and is therefore independent of J. The
algorithm (5.40-5.44) could be simplified or modified in
other ways, which should depend on the application. The
simplified algorithm considered here 1is similar in form to
the original algorithm and can achieve an exact model match
(if ¢, is not set to zero and included in the parameter
estimate vector) at the output sampling intervals if
D(g ')z(t)=0 and the input u is kept constant within each

primary output sampling interval, i.e. over J intervals.
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5,3.7 Predictive Estimation
A one step ahead prediction of y(t) can he calculated
from the a priori model (5.13):
g(t+1)=3(t)78(¢t). (5.84)
In general, to predict y(t) k steps ahead:
Yo (t+k)=¢" (£-1+k) 8 (t) (5.85)
where ¢, (t-1+k)=
[~y (t-0+k), -y, (£=23+K) , cv o, =¥ (t-nT*+k),...]1(5.86)
and y. (7)=y(7) if r<t
Ye(7)=y (7) if t<r. ' (5.87)
5.4 Simulation Results

The simulated process is given by

r_=5.9 a -ks -6.34 _-xs
y=l5 8647 * Tesv1i® U To.2s+1° " (5.88)

-16.877 -18.0
V—3.65+1U + 95+1w (5-89)

This model is a modified version of the linearized

distillation column model described by Patke et al. (1982),
where y is the composition of one component of the overhead,
u is the reflux rate, v is a temperature measured at an
appropriate stage in the column and w is a disturbance in
the feed. The process output, y(t), was scaled to a
comparable numerical magnitude with respect to that of u and
v, and for convenience the model was considered to be
dimensionless. The term §Té%;Te'“u in (5.88) was added to
the original model of Patke et al. (1982) to illustrate
different modes of coupling between v(t) and y(t). (In the

following simulation examples a=0.0 or a=0.5.)
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5.4.1 Open-lcop Output Estimation without Disturbances
(g=10) |

For the process defined by (88-89), the time delay
k=0, the disturbance w=0 and the input u is a PRBS sequence
passed through a zero order hold. The sampling interval for
U and v is one time unit but the sampling interval for the
output, y, is 10 units, i.e. J=10.1The appropriate working

equation, as defined in section 2 is

(1+a,q"°)y(t)=ii:°1 biq-iu(t)+i'1[=.oo c,qv(t). (5.90)
For the simplified algorithm, the working eguation is

(1+a,q ')y (t)=b,q 'ul(t)+cov(t) (5.91)
Remarks:

(1) Since a zero-order hold is used, the algorithm
(5.40-5.44) with the working eqguation (5.90) (fﬁll
algorithm) allows an exact model match to the simulated
plant model.

(2) If the simplified algorithm is used then there is model
mismatch because of the insufficient number of the estimated
parameters.

(3) When using the full algorithm, it is not necessary to
use v(t) even if a#0. However, if v(t) is not used then the
assumptions about the state representation of the process
change accordingly, e.g. the observability index with
respect to v(t) becomes zero. Therefore the structure of the
working equation has to be reformulated (cf. Chapters 2 and
3), i.e. the working equation cannot be obtained by simply

dropping the v(t) terms in (5.90). The output estimate will
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still converge to the real output and the number of
parameters to be estimated does not change (cf. Chapters 2
and. 3). The advantage of using v(t) is that, each common
mode shared by y and v will, in general, reduce the length
of the data window by J and improve the numerical
conditioning of the algorithm,

(4) When the simplified algorithm is used, the secondary
measurement v(t) is necessary even if a=0 because it
partially compensates for the information lost by omitting
J-1 values of u(t) in the regressoi.

(5) Note that with the approach of the Guilandanst et al.
(1986, 1987a, 1987b, 1988) their working equation can not be
formulated for this case with w(t)=0, since the existence of
a sustained external stochastic disturbance is assumed by
their approach.

The performance of the full algorithm is shown in
Figure 5.2 (a=0) and Figure 5.3 (a=0,5) and shows excellent
convergence of the output estimates to the real output. The
output estimates y(t) in Figures 5.4 and 5.5 produced by the
simplified algorithm are not as good as the corresponding
estimates in Figures 5.2 and 5.3, but are still a good
approximation of y(t). The sacrifice in output estimation
accuracy may be worthwhile since the number of estimated
parameters is significantly reduced (from 22 to 3).

5.4.2 PI Feedback Control with Disturbances (J=10)

The disturbance w(t) is defined by the following

series of step changes
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w(t)=+0,7 100(i-1)st<100i i=1,2,3,...

w(t)==0.7  100ists100(i+1)  i=1,2,3,...  (5.92)
The control objective is to maintain the output at the
desired value y=0 using u as the control variable. A
conventional PI feedback controller is chosen for simplicity
so that

W(IE)=koy, (TE)+(kI/T)E v, (1) £=1,2,... (5.93)
When (93) is used with the adaptive inferential estimation
algorithms a small perturbation sighal is added to u to
improve the excitation., y, and I (I=1 or J) are selected for
each specific case as described below.

Ideal case: The best control should be obtained when &ll

measurements are available at the desired control interval,
i.e., I=1 and y,(It)=y(t) in (5.93). Figure 5.6 shows the
closed loop response with and without the process time
delay. The controller constants K.=0.2 and T;=10 were
obtained by trial and error tuning.

Practical case: With the conventional PI control scheme if

J=10 then the control interval must be increased from one
time unit to 10, i.e. I=3J=10 and y,(It)=y(It) in (93). As
expected, the control performance (solid line Figure 5.7)
becomes oscillatory and control detuning is required (dotted
line, T, increased to 60). If a time delay k=5 is included
the performance degradation is even more severe (results not
shown).

Multirate inferential control with delay compensation: The

output is sampled every J=10 intervals but estimates of the
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output, y., are produced at every control interval, i.e. I=1
and y(It)=y,(t+k) in (5.93). As shown in Figure 5.8 (k=0)
and 9 (k=5) the estimated output values are very close to
the true values and control performance is very close to the
ideal case plotted in Figure 5.6. (However the case with
time delay (Figure 5.9) is not as good as the corresponding

case with no delay.)

Simplified multirate inferential control: The open-loop

output estimation results in Figures 5.2-5.5 showved that the
output estimation error increased when the simplified
algorithm was used. However, Figure 5.10 shows that under
closed loop conditions the simplified algorithm produced
output estimates and control performance equal to, or better
than the full algorithm., When a process delay is included
(Figure 5.11) the cutput estimates and the control
performance are again better than the full algorithm (Figure
5.9).

The fact that the simplified algorithm can result in
better closed loop performance can be demonstrated by
simulation examples and can be supported by intuitive
arguments, e.g. the parsimony principle in parameter
estimation (Ljung, 1987). However, at the present time there
is no formal proof of convergence on improved performance
for the simplified algorithm. Neverthless for a given
application it is obviously worthwhile to evaluate both the
full and simplified algorithms by simulation or experiment

as shown in this section.
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5.5 Conclusions

(1) A multirate, inferential estimation algorithm based on
fu(t),v(t),y(Jt),t=0,1,2...}, is derived. The output
convergence properties are formally proven for the case
without unmeasured external stochastic disturbances.

(2) Multirate, inferential control using the output
estimates, y,(t), rather than the measured values y(Jt) 1s
significantly better than the comparable conventional,
single-rate control scheme using y(Jt) and approaches that
of the ideal case where the output is measured every
sampling interval, i.e. the output values y(t) are used.
(3) A simplified inferential algorithm is presented which
actually outperforms the full algorithm in the closed loop
simulation example. However, the convergence properties are
not formally proven.

(4) The algorithm has direct application in the process
industries (e.g. distillation columns) where the output
measurements, y(Jt) (g.g. composition), are available only
at intervals J times slower than the desired control
interval, and a secondary measurement v(t) (e.g.
temperature) is available. It can also be used as an
alternative to many conventional cascade control loops in
which the outer loop operates with a sampling interval JT

and the inner loop with T.
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Figure 5.2: Output estimation with the full algorithm,

u=PRBS, a=0 (solid line=y; dotted line=y).
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Figure 5.3: Output estimation with the full algorithm,

u=PRBS, a=0.5 (solid line=y; dotted line=y).
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Figure 5.4: Output estimation with the simplified algorithm,

u=PRBS, a=0 (solid line=y; dotted line=y).
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0 100 200 300
Time (Unit of u Sampling Interval)

-3 1

Figure 5.6: Closed loop PI control, ideal case: (using the
process output y(t) at the fast control sampling
intervals) with delay (dotted line) or no delay (solid

line).
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Figure 5.7: Closed loop PI control, Practical case: (using
the process output y(t) at the slow sampling intervals,
i.e. every JT intervals) with no delay, K.=0.2, T;=10

(solid line) and T;=60 (dotted line).
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Figure 5.8: Multirate inferential control, with no delay

(solid line=y; dotted line=y,).
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Figure 5.9: Multirate inferential control, with delay k=5

(solid line=y; dotted line=y,).
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Figure 5.10: Multirate simplified inferential control, with

no delay (solid line=y; dotted line=y,).
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Figure 5.11: Multirate simplified inferential control, with

delay (solid line=y; dotted line=y,).
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6. RLS PARAMETER CONVERGENCE WITH
OVERPARAMETERIZED MODELS® ‘

6.1 Introduction

Overparameterization is freguently used in parameter
identification applications, For example, the identified
model is often overparameterized to avoid model mismatch
when the delay or the order of the plant model is not
exactly known, or when more design freedom is required in an
adaptive control strategy. However, most of the theoretical
analyses of parameter convergence to date require that the
exact model order pe known,

One significant study which does apply to
overparameterized systems is that by Ljung (1987). He showed
that for prediction error type algorithms the criterion
minimizing arguments converge, if the system signals are
informative, to a set, each point of which results in the'
same input-output relations as that of the plant. (To use
this result it is necessary to show that the estimated
parameters for a particular prediction type algorithm
asymptotically attain the values of the criterion minimizing
arguments. This can be done for RLS by applying the ordinary
differential equation (ODE) technique (Ljung 1977, Ljung and
Soderstrom 1983) subject to some reqularity conditions,)

However, Ljung's results are based on the very restrictive

sA version of this chapter has been published: Lu W. and
Fisher D. G., System and Control Letters, vol. 12, No. 2,
pp. 133-138, Feb. 1989.

120
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assumption of qQuasi-stationary data. (A signal u(t) is
quasi-stationary only if

lim 51 u?(t)/T exists and is finite (Ljung 1987).) Since
agzy practical applications and theoretically significant
systems do not satisfy this quasi-stationary data
assumption, several authors (Solo 1979, Arderson and Johnson
1982, Moore 1983, Lai and Wei 1986a) have used the
alternative Lyapunov type function approach (also referred
to as a Martingale approach for stochastic systems). The
Lyapunov type function approach provides greater insight
into the algorithms. For example it provides a basis for
studying convergence rates (Anderson and Johnson 1982) and a
basis for obtaining parameter convergence conditions in the
presence of possibly unbounded signals (Goodwin and Teoh
1985) or in terms of "much weaker types of excitation
conditions than persistent excitation" (Lai and Wei 1986b) ,
etc. Unfortunately, in order to prove parameter convergence,
all of these authors using the Lyapunov type function
approach had to assume that the system order was not
overestimated,

This chapter shows how the Lyapunov type function
approach can be extended to prove parameter convergence for
overparameterized systems in such a way that all the
advantages of this approach for minimum systems are
preserved for overparameterized systems. For example, by

using this approach the properties of the common factor

polynomials defined by the limiting set of parameter
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estimates can be addressed and the excitation requitements
can be relaxed. The approach used in this chapter is new and
has application beyond the RLS case treated in this chapter.
Recently there have been a number of studies dealing
with parameter convergence for overparameterized systems
(Goodwin et al., 1985, Janecki 1987, Xia and Moore 1987,
Heymann 1988, Xia and Moore 1988). Goodwin et al. showed a
persistency of excitation result for nonminimal models of
systems having purely deterministic disturbances. The same
result was obtained by Janecki (1987) using a more direct
approach. Xia et al, (1987,1988) showed that when the RLS or
r"§ algorithm is applied to overparameterized models it is
possible, by modifying the data regressor in the algorithm,.
to insure the persistent excitation condition for the
modified data regressor and thus guarantee parameter
convergence to a unigue point. Heymann (1988) showed that
the parameters in structured nonminimal models can be
uniquely determined if and only if a certain design identity
has a unigue solution, To insure parameter convergence, all
of these results implicitly require that the degree of
overparameterization be known or the common factor
polynomial be uniquely fixed by the estimated model
structure. Note that if the system signals are
quasi-stationary then the parameter convergence results of
Goodwin et al. (1985), Janecki (1987) and Heymann (1988) are
essentially covered by those of Ljung (1987). Thus one of

the main contributions of these papers (Goodwin et al. 1985,
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Janecki 1987, Heymann 1988) is to avoid the guasi-stationary
data assumption,

This chapter proves parameter convergence for RLS
applied to overparameterized systems without assuming
quasi-stationary data, without requiring any priori
knowledge of the degree of overparameterization and without

modifying the RLS algorithm,

6.2 Main convergence Results
The following set notation is used. If W is a vector

space over the real scalar field R, GcW, FCW, wéW and re€R,

let
w+G={w+g: g€G},
w-G={w-g: gfG},
G+F={g+f: g€G, f€F},
rG={rg: g¢tG}
etc.

Assume that the plant is represented by the n th order
irreducible DARMA model
(1+% a,q )y (£)=(Z bault) (6.1)
and the RLS, (3.3.46)-(3.3.47) of (Goodwin and Sin 1984), is
used to identify the parameters of (6.1):
(t)=8(t-1)+ P(t-2)¢(t-1)[y(t)-¢(t-1)76(t-1)]
/L1+¢(£-1)"P(£-2)¢(t-1)] £21 (6.2)
P(t-1)=P(t-2)-P(t-2)¢(t-1)¢(t-1)"P(t-2)
/T1+¢(t-1)"P(t-2)¢(t-1)] 21 (6.3)

with 6(0) and P(-1)>0 given, and
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é(t)=[£1(t)’.'.’én§m(t)'51(t)"l"5n¢‘“(t)]1\' (604)
¢(t—1)=[-y(t-1),...,-y(t-(n+m)),u(t-1),...,u(t-(n+m))]T,
(6.5)
where 1<m<e, In other words, RLS is applied to identify a
model from the following model set
n+m - -3 n+m - )
{(1+.I>:1 a;q )y(t)=(Z b,g lult):
1= 1= .
[51'o.opan;m'51ytoo'Bn.pm]TeRZ(n*m)}t (6.6)
An important subset of (6.6) is
n -3 m _j n -i m "'j
{(1+2 a,g ) (1+Z cg )y(t)=(Z byg ) (1+Z cyg )ult)s
Ci= j=1 ] i=1 1 =1 ]
CE[C1,.co'cm]T€Rm}o (6.7)
Any element of (6.7) contains the plant model (6.1) and a
monic common factor polynomial of order < m. Fixing c€R",
let
Gcs[aw""'an+mc'b1c""'bn*mc]T (6.8)
be the parameter vector of model (6.7). By expressing the 6.
versus ¢ relation in an explicit matrix form, it easily
follows that
H=(6,_:c€R") (6.9)
is an m dimensional linear hypersurface of rR¥"™™  or more
precisely, for any fixed ho€H, H-ho is an m dimensional

2
subspace of R™™,

Theorem 6.1:

For the RLS algorithm applied to the DARMA model (6.1)
with overparameterization of degree m, if
lim A, ,,(t)== (6.10)

ol 1)
where A (t), i=1,...,2(n+m), is defined to be i th largest
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eigenvalue of P(t)”',

then lim inf 18(t)-h[=0 (6,11)
t+e= h€HNH+B,

where B,E(zERz“"m): lz]<r) for r>0, (6.12)
e=/k||6(0)-6], (6,13)
k=the condition number of P(-1)7', (6.14)

6 is the point on H which is closest to 6(0), i.e.
[6-8(0)[=inf||h-6(0)|. Such a point 6 exists and is unique
h€H

since H is closed and convex,

Theorem‘6.2:

Under the conditions of Theorem 6.1, if the condition

number, k, of pP(-1)"', is unity, then

lim 6(t)=6 : if m>1 (6.,15)
R toe
and 6(t)€s vt if m22 (6.16)
where S=(s€R*"™™: s=r(6(0)-6)+6, |r|<1), (6.17)

and 6 is the unique point as defined in Theorem 6.1.

Remarks on the Theorems:

(1) Theorem 6.1 implies that the limiting set of parameter
estimates always belongs to H, which represents the
equivalence class model set (6.7), any element of which is a
true model of the plant. This conclusion implied by Theorem
6.1 can be obtained by Ljung's approach if the
quasi-stationary data and %im Aopen(t)/t>0 are assumed.

S

Theorem 6.1 also points out that the initial conditions of

the algorithm determine the bounded region, HN#+B,, of the
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limiting set on H or equivalently‘the common factor
polynomials represented by this bounded region, Note that
parameter convergence to H is global since HN6+B,cH always
holds irrespective of the initial estimate which determines
the position of 6 on H.

(2) For parameter convergence to the set H, the condition
(lim A, (P(t) ')==) is the weakest possible and compatible
wgg; the "much weaker types of excitation conditions than
persistent excitation" discussed by Lai and Wei (1986b) as
well as the "persistency of excitation in the presence of
possibly unbounded signals" discussed by Goodwin and Teoh
(1985), while Ljung's condition (Ljung, 1987) (which implies
that P(t) '/t converges to a semipositive definite matrix
with a rank greater or equal than 2n+m) is significantly
stronger and is nét applicable to more general signals.

(3) The geometric meaning of Theorem 6.2 is very
informative. S is a straight line section which is normal to
the linear hypersurface H with 8(0) at one end and 6€H as
the symmetric point., This symmetric point 6 is uniquely
defined by model (6.1), the degree of overparameterization
m, and the initial value of the parameter estimate 6(0).

(4) 1f 6(0)€H then #(t)=8(0), vt=0 and Theorem 6.1 and 6.2

are trivially verified.

6.3 Proof of Theorem 6.1 and 6.2
Several lemmas are presented first to facilitate the

proof of Theorems 6.1 and 6.2.
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Lemma 6.1: Vt20 there exists an orthogonal matrix Q(t) such
that
P(t) =07 (£)diag (A1 (t),eeer Apmem (E))Q(L) (6.18)

where \,(t)20, i=1,2,...,2(n+m) is the i*" largest eigenvalue

of P(t).

Proof:

The existence of Q(t) is obvious since P(t)”' is real
symmetric and positive. ®

Let 6.(t)=8(t)-6, (6.19)
and v (£)=8,(t)"P(t-1)""F (t) (6.20)

Lemma 6.2: V.20 is nonincreasing Vc€R". Thus
limv (t)=vV, (=)< (6.21)
t e

exists. Note that V. («)<= is c dependent and is not

uniformly bounded.

Proof:

Note that any 6., c€R", can be used as the true
parameter '6,' in Lemma 3.3.6. of (Goodwin and Sin 1984),
since each model in the model set (6.7) is a true plant
model as well as model (6.1). Then this lemma is proven by

simply applying Lemma 3.3.6. of (Goodwin and Sin, 1984). =

Lemma 6.3:
Let x.(t)=Q(t-1)8_(t) (6.22)

Then x,(t)Tx (t)=8,(t)7F,(t) (6.23)
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2(n+m) 2
and V(£)= Z A (£=1)x%(£) (6.24)

i=

where x,(t), i=1,...,2(n+m) is the i th component of x.(t)..

Proof:
Combining (6.18), (6.20) and (6.22) yields the proof

since Q(t) is orthogonal. ®

Lemma 6.4:

Let the conditions of Theorem 6.1 be satisfied. Then

vc€R" lim inffx. (t)-x|=0 (6.25)
tae XEX o

where X={x€R""": x,=0, 1<i<2n+m]} (6.26)

Proof:

Since V (=)< Vc, A;(t)20, V1$i<2(n+m) and t20 and lim

A;(t)== 1<i<2n+m, we have lim x.;(t)=0, 1£i<2n+m by (6.24f1;
Lemma 6.3. This immediatef;“;ives (6.25)., ®
Proof of Theorem 6.1:
From Lemma 6.4 we have:
Vc€R" and e1>0 there exists 0<T <= such that
x (£)=0(t=-1)8_(t)€X+B,, VE>T, (6.27)

where B,, is as defined in (6.12). Since Q(t) is orthogonal,
there exists 0<d<e such that [Q(t)"|sd vt. Here d may depend
on the matrix norm used. Letting e=d-el we have
Q(t—1)'1B,‘=Q(t-‘1)TB‘,cB‘ vt. Thus by (6.27)
6(t)€6,+Q(t-1)"%X+B, VE>T, (6.28)

Since 6€H, by using a similar argument to that of Lemma 6.2,
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Lemma 3.3.6. of (Goodwin and Sin, 1984) shows that

j6(t)-6|<e vt (6.29)
Therefore 6(t)€(6.+Q(t-1)"X+B,)N(6+B,) vE>T, (6.30)
Since
o(t)TeQ={||lu|sd, U€set of [2(n+m)]* matrices}  vt20 (6.31)
and @, is compact, there exists a subsequence {o(t,-1)"}"\.,
which convergés in the matrix norm to some Q' €9,. It is easy
to see that Q7 is also orthogonal. Since lim Q(t, -1)"=Q" and
(6,+Q(t,~1)"X+B,)N(6+B,) is bounded, there k;:ists Tor T ST.<e,
such that

6(t,)€(6.+Q(t,~1)"X+B IN{9+B,)

c(6.+Q"%+B, )N(6+B,) v, >T, (6.32)

Indeed the linear hypersurface 9c+QTx which contains 6., does
not depend on 6_fH, and thus contains H. To see this, note
+hat for h,, hytH, h,+0'X and h,+0'X are two parallel linear
hypersurfaces (i.e. the distance from any point on one
hypersurface to the other is constant) since X is anm
dimensional subspace and so is 0", and that h,;+0'X and
h,+0'X either coincide with each other or are separated by a
distance greater than zero. The latter case is impossible
since from (6.32) h,;+0"+B, Nh,+0'+B,, is not empty Ve>0.
Since the dimension of H=m=the dimension of §.+0'X and
Hcé +Q'X it follows that

H=0,+0'X Vo €H, (6.33)
which means that 6.+0'X V6_€H and H are the same element in
the quotient space rR¥**"™ modulo 0% (Rudin, 1973). Since

2¢>0 is arbitrary, (6.32) is equivalent to
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lim inf 16(t,)-hj=0 (6.34)
k+® hEHNO+B,
Similar arquments can be applied to show that every
subsequence of {6(t)}",., has a subsequence having the
property of (6.32) like {6(t,)31",.,. This just implies

(6.11). =

Proof of Theorem 6.2:

Again from Lemma 3.3.6, of (Goodwin and Sin, 1984)

16 (t)-h|2sk]6(0)-hjj2= [[6(0)-h}? vhe€H (6.35)
Suppose m22, 8(0)EH (if H(0)€H, then #(t)=6(0)€S, Vt20) and
8(t)¥s for some t>0. Let

h,=r(6-h(t))+h(t) r21 (6.36)
where 6 is as defined in Theorem 6.1 and h(t) is the unigue
point on H closest to 6(t). Since dimension of H=m22 H
contains at least a two dimensional plane in g
Therefore, if r is sufficiently large, it is easy to show
that [8(t)-h,|2>6(0)-h,||?, which is a contradiction to
(6.35). To see this, let (xo,y0)€R?* and fix yo>0. Let
Yo2e,>0, yOZeYZO. Then

(Xo+e,) 2+ (2(yo—e,)) 2~ (%07+yo?)>0
if %,>0 is sufficiently large. In our case, the plane
determined by 6(0), 6(t) and 6 corresponds to R?, 6(0)
corresponds to (0,y0), 6(t) corresponds to (-e,,*(yo=€,)), 6
corresponds to (0,0) and h, corresponds to (xo,0). Thus

2{n+m)

(6.16) is proven. If m=1, H is a line in R and the same
argument shows that f(t) vt falls in a plane which contains

S and has H as its normal line. Since 6 is the only point in
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the intersection of this plane and H, lim 6(t)=6 by Theorem
t »c

6.1. If m22 we also have

lim 8(t)=6 by Theorem 6.1 since SNH=6. Thus (6.15) is
t
proven, ®

Remarks on the Proofs:

1) The above two proofs provide clear geometric pictures.
For example, when k=1 and m22, the parameter estimates
follow the shortest straight path from the initial value to

the linear hypersurface H.

2) Both P(t)”'/t and Q(t)” may not converge to anything at
all in general for a wide class of signals. This is the most
difficult part in achieving the result of Theorem 6.1. The
argument of compactness and quotient space overcomes this
difficulty and indeed shows that every converging
subsequence of Q(t)" must yield the same m dimensional
subspace Q'X regardless of whether Q" depends on the

individual subseguence.

3) To keep the condition of Theorem 6.1 in its weakest
possible form we use (6,10) instead of a more specific
condition imposed on u(t). When the plant model (6.1) is
stable a sufficient condition for (6.10) to hold is that
u(t) be weakly persistently exciting of order 2n+m

(Definition 3.4.B. of (Goodwin and Sin, 1984)). The basic



-
w)
N

idea in this argument is that a state space realization of
[-y(t-1),...,—y(t-n)),u(t-1),...,u(t—(n+m))]T versus
u(t) as the input is completely reachable even though that
of the full regressor
[-y(t-1),...,-y(t—(n+m)),u(t-1),...,u(t—(n+m))]T versus
u(t) is not. More generally, condition (6.10) can be
satisfied by a very wide class signals, e.g. those discussed

by Lai and Wei (1986a) and Goodwin and Teoh (1985).

6.4 Conclusions

In this chapter it is proven that for RLS applied to
an overparameterized DARMA model the limiting set of
parameter estimates belongs to a set, H, each element of
which contains the irreducible plant model plus a monic
common factor polynomia.. Furthermore the common factor
polynomials defined by the limiting set of parameter
estimates are shown to be quantitatively related to the
initial conditions of the algorithms and the conditions on
the required excitation are the weakest possible.

By introducing the concept of quotient space the
approach taken in this chapter preserves all the merits of
the Lyapunov type function approach and makes it generally

applicable to both minimal and non-minimal systems.
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7. A GENERAL APPROACH TO
PARAMETER CONVERGENCE WITH OVERPARAMETERIZED MODELS*®

7.1 Introduction

Nonminimal or overparameterized models occur in many
parameter identification applications., For example, the
jdentified model is often overparameterized when the delay
or the order of a plant model is not exactly known, or when
some specific structure is required due to restrictions on
the observed data as illustrated by the multirate systems
described in the previous chapters. Other typical examples
can be seen in direct adaptive control applications where
the identified models are specially structurally
overparameterized (Heymann 1988) or when internal models of
the external dis*urbances are included. The latter can
result in overparameterized models either because the exact
disturbance order is unknown or because the disturbance
model changes order, e.g. when the disturbance temporarily
goes to zero. However, almost all the theoretical analyses
of parameter convergence to date (Ljung 1977, Solo 1979,
Anderson and Johnson 1982, Goodwin and Sin 1984, Moore 1883,
Lai and Wei 1986a) require that the exact model order be

known.

Recently parameter convergence with overparameterized

—— ———— A ———— - -

‘A version of this chapter has been submitted for
publication: Lu W. and Fisher D. G., 1EEE Trans. Automat.
Contr., 1988.
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models has received a great deal of attention in the
literature (Goodwin et al. 1985, Janecki 1987, Xia et al.
1987, Heymann 1988). Goodwin et al, (1985) showed a
persistency of excitation result for nonminimal models of
systems having purely deterministic disturbances. The same
result was obtained by Janecki (1987) using a more direct
approach. Xia et al. (1987) showed that when the RLS
algorithm is applied to overparameterized models it is
possible, by modifying the data regressor in the algorithm,
to insure the persistent excitation condition for the
modified data regressor and thus guarantee parameter
convergence to a unique point. Heymann (1988) showed that
the parameters in structured nonminimal models can be
uniguely determined if and only if a certain design identity
has a unique solution. This was shown to be related to the
output-reachability of an associated-signal system which in
turn can be used to develop persistency of excitation
results. To insure parameter convergence, all of these
results implicitly require that the degree of
overparameterization be known.

In a context of minimum variance adaptive control
Becker et al. (1985) used the stochastic approximation
algorithm to show that if the control system does not
possess reduced order controllers (i.e. if the order of the
control system is overspecified), then the limit of the
parameter estimates is a hypersphere of dimension strictly

less than that of the parameter vector space, and is
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contained in a set, each member of which yields a minimum
variance control law. The geometric properties they showed
are properties of the overall control system and not those
of the plant. No conclusion regarding the convergence of the
parameter estimates to the true values is made.

Ljung (1987) presented some general results that can
be applied to overparameterized systems. He showed that for
prediction error type algorithms the criterion mihimizing
arguments converge, under certain existence conditions, to a
set, each point of which results in the same input-output
relation as that of the plant. To show that the parameter
estimates asymptotically attain the values of the criterion
minimizing arguments the ordinary differential equation
(ODE) technique (Ljung 1977) can be applied if some
regularity conditions are satisfied. The key restriction in
Ljung's approach is the quasi-statiorary data assumption
(Ljung 1987) which does not apply to a wide class of
signals.

Using a Martingale approach several authors (Ljung
1977, Solo 1979, Anderson and Johnson 1982, Goodwin and Sin
1984, Moore 1983, Lai and Wei 1986a) showed that the
parameter estimation error is related to a deterministic or
stochastic Lyapunov type function, Parameter convergence
properties for minimal models were determined from the
properties of this Lyapunov function without requiring the
quasi-stationary data assumption. Note that some authors

(Ljung 1976, Solo 1979, Goodwin and Sin 1984) still made the
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quasi-stationary data assumption, i.e. the existence of some
limits, although it is not strictly necessary in their
derivation,

This chapter presents two general convergence results
(Theorems 7.1 and 7.4) closely related to the Lyapunov type
function approach described above. These results can be
applied to obtain parameter convergence properties without
the quasi-stationary data assumption when nonminimal models
with an unknown degree of overparameterization are involved.
Theorem 7.1 shows that under conditions similar to those
required for parameter convergence in the minimal model
cases, if the input and the noise of the plant are
sufficiently rich in an overparameterized sense, e.g. u(t)
is weakly persistently exciting of order 2n+r (Definition
3.4.B of Goodwin and Sin 1984) instead of order 2n etc.,
where n is the plant order and r is the degree of
overparameterization, then the parameter estimates at least
converge to a set, say H, each element of which gives a
model containing the irreducible plant model plus a common
factor polynomial. The application of Theorem 7.1 is
demonstrated by RLS and ELS algorithms (Theorem 7.2 and
7.3). Theorem 7.4 extends the convergence results to
overparameterized systems with structured constraints (i.e.
the constrained model structure allows exact model matching
with the plant model) and is applied to RLS with
overparameterized DARMA models subject to parameter

constraints (Theorem 7.5) or a constraint on the initial
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covariance matrix (Theorem 7.6). The use of Theorem 7.4 is
also illustrated by considering conditions for parameter
convergence for the nonminimal systems having purely
deterministic disturbances (Theorem 7.7) previously
considered by Goodwin et al., (1985) and Janecki (1987).
Remarks are also made to show that Theorem 7.4 can be used
to obtain: (i) the parameter convergence result for the
structured nonminimal models presented by Heymann (1988),
(ii) an alternative and simpler approach to the problem,
presented by Xia et al. (1987), of ensuring a unique
parameter convergence point when an overparameterized model
is used in an adaptive control algorithm, and (iii) the

parameter convergence result of the multirate identification

algorithm of Chapter 3.

7.2 Parameter Convergence with Minimal Models

This section presents a brief review of the literature
on parameter convergence with minimal models, which provides
a basis for the nonminimal model results developed in the
later sections.

Consider the linear system

A(g Dy (t)=B(g Nult)+c(g w(t) (7.1)
where A(q”)=1+a1q”+...+apqw, (7.2)
B(q ')=bo+b:q '+...+b,g", (7.3)
c(g ) =1+c q '+...*+c,q ", (7.4)

the sequence {w(t)} is a real stochastic process defined on

a probability space (Q,F,P) adapted to the sequence of
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increasing sub-sigma algebras (F,,t=0,1,...), where F, is
generated by the observations up to time t, and such that

{w(t)} satisfies

E{(w(t)]|F,,}=0 a.s. (almost surely) (7.5)
E{(w(t)?|F,  }S0o?<e a.s. ‘ (7.6)
sup £ w(t)?/N<e a.s. (7.7)
N t=1

We assume that A(g™'), B(q™') and C(qg"') do not contain a
common factor if o2#0 and that A(g’') and B(q™') are coprime
if 02=0,

For RLS and ELS type algorithms, when applied to
system (7.1), (if the plant model is contained in the
identified model set and satisfies a certain positive real
condition) a Lyapunov type function can be found, which
usually has the form (Ljung 1977, Solo 1979, Goodwin and Sin
1984, Moore 1983, Lai and Wei 1986a)

TP (£=-1)/s(t-1)18(t)=0 as t-oo a.s. (7.8)
where 9(t) is the parameter estimation error, P(t-1) is the

covariance matrix and s(t-1)>0 Yt. Obviously if

lim inf A, [P(t-1)7"/s(t-1)1>0 a.s. (7.9)
toae
then lim 6(t)=0 a.s. (7.10)
t e

where A,;, (M) (X, (M)) denotes the minimal (maximal)
eigenvalue of a symmetric matrix M.

Many workers (Ljung 1977, Solo 1979, Goodwin and Sin
1984, Moore 1983, Lai and Wei 1986a) have shown that s(t)=t
satisfies (7.8). Lai and Wei (1986a) were able to show that
{s(t)} can be any positive sequence such that

5(£)/1ogleth, (E ¥(i)¥(1))}we as toe a.s., (7.17)
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which will lead to weaker persistent excitation type
conditions imposed on the plant signals for parameter
convergence. In (7.11)
vit-1)=[-y(t-1), e, ~y(t-p-r1),ult), ... ,ult-1-r2),
wit-1),...,w(t-m-r3)}, (7.12)

where r1, r2, r320.

7.2.1 Conditions for Parameter Convergence

To guarantee parameter convergence it is necessary to
impose conditions on the data, e.g. (7.9) defines conditions
imposed on P(t) ',

Translation of conditions imposed on P(t)”' into
conditions on the plant signals {y(t)} was discussed by Solo
(1979). He concluded that the ELS (AML) algorithm (subject
to certain conditions, e.g. the positive real condition)
yields

P(£)7!/s(t)-Z ¥(i)0(1)7/s(t)0 as to= a.s. (7.13)
for s(t)=t. Similar results have also been presented by
Goodwin and Sin (1984), Moore (1983) and Lai and Wei
(1986a).

Translation of conditions imposed on the plant signals
{y(t)} into conditions on the plant input u(t) and the noise
w(t) was done by Anderson and Johnson (1980) for
deterministic systems (where w(t) is not present) and by
Moore (1983) and Lai and Wei (1986b) for stochastic systems

by a reachability approach. Essentially the conclusion is
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that if u(t) and w(t) are sufficiently rich in excitation
£1 v(i)yv(i)T/s(t) has "sufficiently" many eigenvalues
greater than a positive number.

Up to this point virtually no minimal model assumption
is imposed. For minimal models, since an associated state
space realization of ¥(t) with u(t) and w(t) as inputs is
completely reachable

lim inf A, (2 w(i)y(i)"/s(t))>0. (7.14)

toe 1=1
i.e. all the_ eigenvalues are nonzero, and parameter
convergence follows immediately from this property. However,
for nonminimal models since the associated state space
realization is only partially reachable

él v(i)¥(i)"/s(t) may possess eigenvalues arbitrarily
close to zero. In general
lim (é1 v(i)y(i)"/s(t)) does not exist. These two factors
;gie it difficult to reach any conclusions about the
asymptotic properties of the parameter estimates. Therefore
one of the main contributions of this chapter is to identify
mathematical analysis tools which get around this problem
and ensure that the limiting set of the parameter estimates
can be determined under conditions such that

t
21 v(i)y(i)T/s(t) has "sufficiently" many eigenvalues
1:

greater than a positive number.

7.3 Parameter Convergence with Overparameterized Models
Theorem 7.1 in this section defines sufficient

conditions for parameter convergence of a class of
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nonminimal systems. The results do not require that the
degree of overparameterization be known; do not require the
gquasi-stationary data assumption used by Ljung; and are
applicable to any parameter estimation algorithm and model
for which a Lyapunov type function can be found. The general
results of Theorem 7.1 are applied to RLS with DARMA models
and ELS with ARMAX models in section 7.3.1 and 7.3.2
respectively.

The following set notation is used. If W is a vector
space over the real scalar field R, GCW, FcW, wéW and r€R,
let.

w+G={w+g: g€G},
w-G={w-g: g€G},
G+rF={g+f: g€tG, fEF},
rGs{rg: g€G}
etc. .
Let

6'€Rr" i=0,1,...,05N (7.15)
be r+1 vectors such that they uniquely determine an r
dimensional linear hypersurface H. Specifically if r=1 then
H is a linear line, and if r=2 then H is a linear plane,
etc.. By this definition it is easy to see that H-h is an r
dimensional subspace of R" for any h€H. Let

7' (t)=6(t)-6 © i=0,1,...,1 (7.16)

where {6(t)} is a vector valued time sequence.

Theorem 7.1
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lim inf _||6(t)-h]=0 (7.17)
t-+e h€HNC
provided that the following assumptions are verified:
(1) There exists a real symmetric NxN matrix sequence {S(t)!}
such that
(1) s(t)=20 vt (7.18)
(i1) v, (£)=8'(£)7s(£)F (£)~0 as twe i=0,1,...,r (7.19)
(iii) lim inf A, (S(t))>0 (7.20)
towx
where A, (M) denotes the k th largest eigenvalue of the
symmetric matrix M.
(2) 6(t)€C vt (7.21)

where C is a compact subset of R' and

{6°,6',...,08"}cC (7.22)

Proof:
Theorem 7.1 is a generalized version of Theorem 6.1
presented in Chapter 6. Herein we give a more direct and

concise proof.

Step 1:
Since S(t) is a real symmetric NxN matrix, there
exists an orthogonal matrix 0(t) such that
S(t)=0"(t)diag(X,(S(t)), ..., A (s(t)))Qlt), (7.23)
where A;(S(t))20 V1<i<N by (7.18) and
lim inf A, (S(t))>0 by (7.20).
t oo
Step 2:

Let x'(£)=0(t)F (t) 1=0,1,c0e,Ce (7.24)



145

By the orthogonality of Q(t), (7.19), (7.23) and (7.24)

]

yield
N :
vi(t)=L A(s(t))x’;(t)?50 as tee  1=0,1,...,r (7.25)
j=
which implies lim inflx'(t)-x|=0 i=0,1,..4,T (7.26)
too x€X
vhere
X={x€R": x. (the j th element of x) =0 j=1,...,N-r},

since lim inf A\, (S(t))>0 and A;(S(t))20 i=1,...,N.
t
Step 3:
Since O(t) ¥t is orthogonal, {Q(t)}",., is bounded in
the NxN matrix norm space and thus belongs to some compact
set. By also considering (7.21) (C is compact in R") this

implies that there exists a subsequence {t,‘}"",‘=1 such that

lim Q(t,)=0 exists, (7.27)
ko> _
and lim 6(t,)=8 exists. (7.28)
koo

Therefore (7.26) implies that

lim x'(t,)=lim 0(t,) (6(t,)-6")

ko ke

=0(8-6")€X i=0,1,40.,r (7.29)

since X is a closed subspace, or

lim 6(t,)=6€6'+0"X i=0,1,.0.,L. (7.30)

ko
0'% is an r dimensional subspace since X is and Q is
orthogonal (and therefore nonsingular). (7.30) implies that
the cosets 6'+0'X i=0,1,...,r are the same element in the
guotient space R" modulo 0"X (Rudin 1973). In other words
they are the unique r dimensional linear hypersurface in R"

passing through 6°,6',...,6", i.e. they are all identical to

H according to the definition of H. So by considering
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(7.,21), {(7.30) gives

lim 6(t,)=8€HNC (7.31)

ke
Step 4:

Similar arguments can be applied to show that every
subsequence of {#(t)}",., has a subsequence converging to a
point in HNC. This implies (7.17). It is worth noting that
0"% does not depend on the particular subsequences selected

even though Q does. ®

Corollary 7.1:

For a stochastic system, if the assumptions of Theorem
7.1 are all satisfied almost surely (a.s.), then
lim inf _||6(t)-h|=0 a.s. (7.32)
t=»= h€HNC
Proof:
Applying Theorem 7.1 pointwise to the probability

space yields the proof. ®

7.3.1 RLS Applied to Overparameterized DARMA Models
In this case C(q ')w(t)=0, and the parameter
adaptation is (Goodwin and Sin 1984)
B(t)=8(t-1)+ P(t-2)¢(t-1)[y(t)-¢(t-1)78(t-1)]
1+ (t-1)"P(t-2)¢(t-1)] £21 (7.33)
P(t-1)=P(t-2)-P(t-2)¢(t-1)¢(t-1)"P(t-2)
/0146 (£=1)"P(£~-2)¢(t-1) ] £z 1 (7.34)

with 6(0) and P(-1)>0 given, and
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B(£)=[a1(t),een,BpusDolt),oee,bi (£)]7 (7.35)

¢(t-1)=[-‘y(t-1),...,—y(t-p—r),u(t),...,u(t-l-r)]T (7.36)

where r>0 is the degree of overparameterization.

Theorem 7.2:

For the RLS algorithm (7.33)-(7.36) applied to ARMAX

model (7.1) with C(qg )w(t)=0, if

lim Ay (P(t-1)")= (7.37)
where ;:;+l+2r+1, then
lim inf |6 (t)-h]=0, (7.38)
t+e h€H,N6+B,
where B,=(z€R": |z[<e,), (7.39)
e.=/x||6(0)-6], (7.40)
k=X, (B(=1)")/A(P(-1)T), (7.41)

H,cR" is an r dimensional linear hypersurface such that each
element of Hy, h, gives a model with the following form

A(g E, (g Ny (t)=B(q NE (g Nult) (7.42)
where E (g ')=1+e,,q '+...+e, q " (7.43)

and 8 is the unique point on Hy which is closest to 6(0).

Proof:

It is easy to verify that Hy is an r dimensional
linear hypersurface of R" and 6(t)€0+B, vVt (Chapter 6). Let
H=H,, S(t)=P(t-1)""/A (P(t-1)""), C=6+B,, 6°=6 and 6',...,6"
be such that {6'-6,...,8'-6}cB, forms a basis of Hy-6.

Condition (7.19) is verified by applying Lemma 3.3.6. of
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(Goodwin and Sin) considering that each 6' 1<isr can
represent a true plant parameter vector. Conditions (7.18)
and (7.20-7.22) are obviously verified. Then application of

Theorem 7.1 yields the proof. ®

7.3.2 ELS Applied to Overparameterized ARMAX Models

In this case C(q ')w(t) is present, and the parameter
adaptation has the same form as (7.33) and (7.34) with 4(0)
and P(-1)>0 given, and the matrices and vectors have their
corresponding dimensions, e.g.

é(t)=[é1(t) ’ooo’ép+rygo(t),ooo 'Bl"‘l‘(t)'

Cil(t),eeesCp ()17 (7.44)
p(t=1)=[-y(t-1),...,~y(t-p-r),ult),...,ult-1-r),

7(t=1),.ee,n(t-m-r) 1" (7.45)

where n(t)=y(t)-¢(t-1)78(t) (7.46)

Theorem 7.3

For the ELS algorithm (7.33~7.34) and (7.44-7.46)
applied to ARMAX model (7.1), V positive k sufficiently

large

lim inf  ||6(t)-h|=0 (7.47)
t+® hEHNB,

a.s. on the event {[8(t)]<k, vt}, if there exists some

positive sequence {s(t)} such that

lim s(t)=e a.s., (7.48)
tox

and
FHe)T[P(t-1)""/s(t~-1)18 (£ )-0 as too a.s.

i=0'1,ooo,r (7-49)
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and lim inf [A, (P(t-1)"")/s(t-1)1>0 a.s., (7.50)
where §:;+1+m+3r+1, Bkt:RN is as defined in (7.39), H, is anr
dimensional hypersurface in R" such that each element of H,,
h,gives a model with the following form

Alg E (g )y (t)=B(g E, (g ult)+c(q )E, (g )u(t) (7.51)
where E,(q"') has the same form of (7.43),

{6', i=0,1,...,r}cHNB, for k sufficiently large and

{6'-6°, i=1,...,r} forms a basis of H-6°.

Proof:

Let H=H,, S(t)=P(t-1)"'/s(t-1), T=B,. Now all the
assumptions of Theorem 7.1 are verified a.s. on the event
{]8(t)|<k, vt}. Thus the proof is done by applying

Corollary 1. ®
7.3.3 Remarks

(1) The concept of "quotient space"™ (Rudin 1973) used in the
proof of Theorem 7.1 has a very meaningful geometric
interpretation, When transformed from the parameter vector
space R® onto the quotient space the limiting set of
parameter estimates, which represents a linear hypersurface
in R', is condensed to a unigue point in the quotient space.
Theorems 7.2 and 7.3 both show that the model defined by any
point on the limiting set of parameter estimates contains

the plant model (7.1) and a monic common factor polynomial,



150

(2) Condition (7.49) is imposed implicitly on 6'. For
example, if 1/[C(q")E, (g"')1-1/2 is very strictly passive,
then (7.49) is satisfied for s(t)=t (Solo 1979) or for
{s(t)>0} such that (7.11) is satisfied (Lai and Wei 1986a).
The existence of the r+1 6''s satisfying the very strictly
passive condition may only require that c(q’") is stable
(Shah and Franklin 1982), which is less demanding than the

very strict passivity of 1/c(q”')-1/2.

(3) The rate at which é(t) approaches infinity in (7.48)
affects the type of persistent excitation conditions
required on the plant signals for the parameter estimates to
converge (to a set in nonminimal model cases). The slower
the rate, the weaker the type of persistent excitation
conditions will be. This is the basis for Lai and Wei's
claim that the type of excitation they used to guarantee
parameter converge (to a point in minimal model cases) was

weaker than those of previous results.

(4) Conditions (7.37) and (7.50) can be translated into
persistent excitation type conditions on the plant input
u(t) and noise w(t). For example, for open loop
identification if A(qg™') is stable a condition similar to
the one given by eguation (3.13) of (Moore, 1983), i.e.
lim inf i E[V(i)V(i)"|F,.,1/t>0 where

t9m i=1

vit)=[u(t),...,ult-2n-r),w(t-1),...,wit-2n-r)]

T
’

n=max(p,1+1,m), is sufficient for
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Lim inf A, (Z ¥(i)v(1)7/5(£))>0 to hold, which in turn
im;ITes (7.50). This kind of condition translation has
essentially been done in several previous publications (Solo
1979, Anderson and Johnson 1980, Goodwin and Sin 1984, Moore
1983, Lai and Wei 1986b). The basic argument for applying
these previous results to the overparameterized case is
that, for example, if a state space realization of

['y(t-1),...,-y(t-p),u(t),...,u(t-l)]T versus u(t) as
input is completely reachable so obviously is that of

[-y(t=1), .00, =y(t=p),ult), ..., ult-1-r)]" versus u(t),
even though that of the full regressor

[-y(t-1), ..., =yt~ ©),ult),...,u(t-1-r)]" versus u(t)
is not. A similar argument can be applied to the case where
w(t) is present.

In order to avoid unnecessarily lengthy descriptions
of previous results (Solo 1979, Anderson and Johnson 1980,
Goodwin and Sin 1984, Moore 1983, Lai and Wei 1986b) and to
focus on the key contributions of this chapter, persistent
excitation type conditions in this chapter are almost always

imposed on P(t)™' in terms of equations like (7.37) and

(7.50) rather than on u{t) and w(t).

(5) Conclusion (7.47) of Theorem 7.3 applies almost surely
on the event {]|8(t)]|<k, vt} for any sufficiently large
positive integer k. It would be preferable to extend this
result such ﬁhat the limiting set of {A(t)} belongs to a

bounded subset of H, almost surely on the whole probability
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space. However, to do this would require the boundedness of
the parameter estimates, which may need some modification to
the algorithm, e.g. (i) project 6(t) to a bounded region at
each time instant, or (ii) monitor P(t) such that sup

t
A, (P(t) )<=, However, if the algorithm were modified it
would be necessary to re-verify the conditions of Theorem

7.1,

7.4 Parameter Convergence with Constrained Overparameterized
Models

In this section, it is assumed that some a priori
knowledge of the plant is available such that the
overparameterized model can be structurally constrained. We
first present for this case a counterpart theorem of Theorem
7.1, then apply it to obtain parameter convergence results
for the RLS algorithm applied to DARMA models. New
approaches to some results of (Goodwin et al. 1985, Janecki

1987, Heymann 1988) are also discussed in this section.

Theorem 7.4:

Subject to assumptions (7.18), (7.20-7.22) of Theorem
7.1, if

V,(t)=6°(t)"s(t)8°(t)=0 as t-o (7.52)
and (6'-6°)T5(t)(6'-6°)+0 as toe i=1,...r  (7.53)
then Vv, (£)=8'(£)7s(£)F '(t)+0 as toe  i=0,1,...,r  (7.54)

and thus lim inf _[|6(t)-h|=0, (7.55)
t+o hEHNC
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if in addition {6°,8(t)}€D(t)cR" vt (7.56)

then obviously

lim inf _ [6(t)-h]j=0 (7.57)
t+e hE€HNCND(t)
which implies

lim 6(t)=8" (7.58)
to >
provided that lim sup lhi-h.|=0. (7.59)

t+= h,,h, €HNCND(t)
For a stochastic system this result applies pointwise with

respect to the probability space.

Proof:

Following the same line as the proof of Theorem 7.1 it
is easy to show that every subseqguence of {6(t)} has a
subsequence converging to 6°+3'%nC, which always contains
{6',i=0,1,...,r}. Since {6',i=0,1,...,r} uniquely determines
the r dimensional linear hypersurface H we have 6°+Q"XNC=HNT
even though Q' varies with different subsequences. Thus the
proof is done, ®

The key point of applying Theorem 7.4 in the following
subsections is to decompose the nonminimal model parameter
convergence problem into two separate parts. The first part
is to verify conditions for insuring (7.55), where the
linear hypersurface H is usually used to represent the
equivalent class set, each element of which is a true
representation of the plant if no constraint is imposed. The
second part is to find an explicit or implicit relation for
the structured constraint such that the intersection of H

and the constrained region can be easily determined.
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7.4.1 RLS Applied to Overparameterized DARMA Models with
Some Known Parameters

In this case C(qg )w(t)=0. Let H, be as defined in
Theorem 7.2 and 6°€H,. Assume that i,<i.<...<i; th elements
of 6° are known a priori, where 1<f<N=p+l+2r+1., The
parameter adaptation is

6(t)=8(t-1)+ P _(t-2)¢(t-1)[y(t)-¢(t-1)T8(t-1)]

/L1+¢(t-1)"P (t-2)¢(t-1)] t>1 (7.60)

P (t-1)=P;;(t-1) if 1,3#14,...,1

=0 if 1 or j=i,, ..., i (7.61)

where P(t-1) and ¢(t-1) are given by (7.34) and (7.36), M,
denotes the element of the i th row and j th column of-a

matrix M., The initial values of the algorithm are

P(-1)=Po>0 (7.62)
and 6,(0)=6,=arbitrary if i#iq,...,1;
=6 i=i1,.0.,1 (7.63)

where 6% denotes the i th component of 6° etc. .
Equivalently (7.60-7.63) can be represented by

6 (t)=6,(t-1)+

P,(t-2)¢ (t-1)[¢, (£-1)70%(£=1)=¢ (£-1)76,(£-1)]

/l1+¢ (£-1)7P (£-2) ¢, (£-1)] £21 (7.64)
where 6° is an N-f dimensional vector containing the unknown
components of 6° in their original order, 6.(t) is the
estimate of 6° and ¢,(t-1) is the corresponding regressor,
etc.,

P, (t-1)=P (t-2)-

P_(t-2)¢,(t-1)¢,(t-1)"P (£-2) /[ 1+¢,(£-1)"P (£-2)¢, (t-1)]
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t21, (7.65)
the initial values are properly selected to match those of

(7.62) and (7.63).

Theorem 7.5

For the algorithm (7.60-7.63) or equivalently

(7.64-7.65) applied to ARMAX model (7.1) with clg "yw(t)=0,

if
lim A (P(t-1)"")=e (7.66)
tow .
then lim inf |6 (t)-h|=0, (7.67)
t+= hEH,NB,NY
where 0<k<e and Y={z€R": z,=09%, i=1,,...,1¢}, (7.68)

in addition if

H,NY={6°} (7.69)
then lim 6(t)=6°. (7.70)
Lol o)
Proof:

Let H=H,, S(t)=P(t-1)"'/A, (P(t-1)7"), D(t)=Y and C=B,
for k sufficiently large such that B(t)€EC vt ({6(t)} is
shown to be bounded in the following context) and
{6°,6',...,6°}cC, where {6'-6°,...,0-6°} forms a basis of

H-6°,

Step 1:
An argument similar to that in the proof of Lemma
3.3.6. of (Goodwin and Sin 1984) gives

1im(6, (£)-6°)"P, (£-1)""(8, (t)-62) <= (7.71)

to



and |8, (t)-6°]*sk||6,(0)-63%]* for some O<k<wx.
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(7.72)

(7.72) implies that {6(t)} is bounded, i.e. {6(t) vt}cB, for

some 0O<k<e,

Step 2:¢
By inspecting ¢(i)~¢ (i) and P(t-1)"'~p (t-1)"
relations

(P(e-1)"=R(~1) 4T, 6()e(D)",

- -1 t-1
P (t-1)7"=P, (-1) 7+ ¢.(i1)¢,(i)") and noting that the
i=0

i,,...,1i, th components of 6°(t) are all zeros

V,(£)=8° (£)7s(£)F° (£)=8° (£)T[P(t-1)7"/A (P(t-1)") 18 (£)

=Fe (£) IR, (t=1) 7" /Ay (P(£-1)7") 163 (t) =0
as too

from (7.66) and (7.71).

Step 3:
Since P(t-1)""/A (P(t=-1)7")

=[1+:z: 6(1)6 (1)1 /N (P(t=1)"7")

2T 6(1)8 ()T A (PLE- D)) as toe
and ¢(t)T9°=¢(t)70 i=1,...,1 vt

it follows that

(6'-6°)Ts(t)(8'-6°)+0 as to= i=0,1,00.,C.

Step 4:

(7.73)

(7.74)

(7.75)

(7.76)

All the conditions of Theorem 7.4 have been verified.

Thus applying the theorem yields the proof. ®
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7.4.2 Parameter Convergence to a Unique Point

Theorem 7.4 showed that in general, the parameter
estimates converge to the intersection of the hypersurface,
H, and the constrained region, Obviously if the intersection
is a singleton then the parameter estimates converge to a
unique point. An interesting special case is RLS applied to
overparameterized DARMA models (cf. section 7.3.1) with
k=N, (P(-1)"") /A, (P(-1)7")=1. In this case parameter
convergence to a unique point (which depends on the initial
parameter estimate) can be guaranteed no matter what the
degree of overparameterization is. This example shows that
the constrained region need not be explicitly given in the
parameterized structure and can be automatically provided by

the properties of some specific identification mechanisms.,

Theorem 7.6:

Subject to the same conditions of Theorem 7.2 and

k=N, (P(-1)7") /A (P(-1)"")=1 we have

6 (t)€GR" vt (7.77)
and lim 6(t)=6 (7.78)
t e

where 6 is the unigue point on Hy closest to #(0) and

G={g€R": g-6.1H,~6 and [g-0]<|g-6(0)|}. (7.79)

Proof:
Refer to Chapter 6 to obtain (77). Then applying
Theorem 7.2 and 4 yields the proof since D(t)=GNH,={6}. ®

The geometric interpretation of Theorem 7.6 is
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interesting. When r22, G is a straight line section which is
normal to the linear hypersurface Hy with 6(0) at one end
and 6€H; as the symmetric point. This symmetric point 6 is
uniquely defined by the plant model (7.1), the degree of
overparameterization r and the initial value of the
parameter estimates 6(0). Parameter convergence to 6 is
guaranteed if k=1 even though there are no constraints
imposed on the model structure. Indeed the constraint is
implicitly provided by the nature of the algorithm which

follows the closest path from the initial value to H,.

7.4.3 Parameter Convergence for Nonminimal Systems Having
Purely Deterministic Disturbances

Results similar to those obtained by Goodwin et al.
(1985) and Janecki (1985) for parameter convergence of
systems having purely deterministic disturbances can be
obtained using Theorem 7.4.

Consider the following system

Alg )y (t)=B(g ult), (7.80)
y{t)=y,,(t)+d,(t) (7.81)
where d,(t)=d(t)/alq™"), (7.82)

A(qg”") and B(q™') are given in (7.2) and (7.3) and assumed to
be coprime. d(t) is a periodic signal such that among all
the monic polynomials of order<r there exists a unique
D(q™') satisfying

D(q")d(t)=[1+iz§1 d,q7'1d(t)=0 vt. (7.83)

Obviously d,#0 by the unigueness.
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Note that an equivalent definition for d(t) is: d(t) is a
periodic signal which satisfies the condition for weakly
persistent excitation of order r (Definition 3.4.B of

Goodwin and Sin, 1984) but not of any order greater than r.

Theorem 7.7:

For the RLS (7.33-7.36) applied to the system
(7.80-7.83) if

Lim sup [A,(Z 654(i)6,,(1)7)/t]<e, (7.84)
t o 1=
lim inf nN_,(rfo 8.4(1)6:4(1)T) /150 (7.85)
tox 1=
and lim (I ¢,4(i)6a(i)™)/t=0 (7.86)
toe i=0
where
¢id=[_yid(t"1),...,"Yid(t“p‘r),u(t),...,U(t“l-r)]T, (7087)
and ¢,(t-1)=[-d,(t~1),...,-&,(t-p-r),0,...,017, (7.88)
then lim 8(t)=6°, (7.89)
tox

where 6° yields the following model
a(g")p(g )y(t)=B(q )D(g Dult). (7.90)

Proof:

Step 1:

From (Goodwin and Sin 1984)

lim §°(£)™P(t=1)7'F° (t)<= (7.91)

N t
and 6(t)€6°+B, vt for some 0<k<e, (7.92)
Since ¢(t)=¢;4(t)+¢,(t) (7.93)

we have P(t-1)”=P(*1)q;%; ¢(i)e(i)”
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=P(-1)..1+

-1

(a4

™

[6,4(1)0,5(1)™+6,5(1)8a(1)T+4(118,4(1)T+0,4(1)85(1)7]

=0

-

(7.94)
From (7.84-7.86), (7.91) and (7.94) we have |
BUOTIE, 6ia(i)6,4()7/(£-D1F(£)20  as e, (7.95)
and 7°()T(E, 64(1)6,(1)/ (6118 (£)0  as twe.  (7.96)
Note that in this example (7.96) defines the constrained
region (cf. (7.56) of Theorem 7.4) for the parameter

estimates.

Step 2:
By following the same argument as in the proof of Theorem

7.5, (7.92) and (7.95) imply that

lim inf 16 (t)-h]=0 (7.97)
t+e h€H;NE6°+B,
l1.€.
8(t)=h(t)+Ah(t), (7.98)
where h(t)€H4N8°+B, vt (7.99)
and lim [Jah(t)|=0, (7.100)
tox

H, is as defined in Theorem 7.2. According to the definition
of Hy, h(r) gives a model of the following form

alg D, (g, )y (t)=B(q D, (q ,r)ult) (7.101)
where nh(q",f)=1+i>§1 4, (r)g" (7.102)

is 7 dependent.

Step 3:
Let 6%=[d,,...,d,17, (7.103)
6% (t)= [, (), .en,dy, (£)]17, (7.104)
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and &(t-1)=[d(t-1),...,d(t-r)]". (7.105)
From (7.90) and (7.101) h(t)-6° is a linear function of
6% (£)-6°°. By expressing this function in terms of a matrix
equation it is not difficult to show that
(h(£)-6°)7[F, 64()84(3)7/(£=1)1(h(E)-0°)
=<e"“(t)-e"°)T[}§; §(1)8(1)7/(t-1)1(6™(£)-6") (7.106)

Step 4:
(7.98), (7.100) and (7.84) imply
B ()T, 65a(1)0,0(1)7/(£-1)1F° (£)
S(h(£)=87 (£))TIE, 86(1)8,0(1)7/(£=1) 1 (0 (1)=8(£)),

(7.107)
which in turn implies from (7.95) and (7.106)
(6™ (£)=6°)TIZ, 8(1)8(1)7/(+=1)1(6" (£)=6%)+0
as toe, (7.108)

Since d{(t) is weakly persistently exciting of order r

-1
lim inf £ 6(i)8(1)7/(£-1)>0, (7.109)
toe i=0

which yields from (7.108)

lim 6% (t)=6%, (7.110)
toe R
which in turn implies that 1lim #(t)=6°. (7.111)
t o

Thus the proof is complete. ®

Condition (7.86) has a much more explicit physical
interpretation than conditions 5.15-5.16 of Goodwin et al.
(1985) or the conditions of Lemma 2.3 of Janecki (1387): the
filtered values of u(t) and d(t) should be uncorrelated and
a very special case for (7.86) to hold is that u(t) does not

contain those frequencies contained by d(t).
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I1f d(t) is weakly persistently exciting of order<r,
the limiting set of the parameter estimates can be obtained
as well by using Theorem 7.1,

When A(q”') is stable, for conditions (7.84) or (7.85)
to hold it is sufficient that u(t) be weakly persistently
exciting of order 2n+r (Definition 3.4.B of Goodwin and Sin,

1984), where n=max(p,1+1).

7.4.4 Other Applications of Theorem 7.4

Theorem 7.4 can be used to obtain the parameter
convergence properties for RLS applied to the deterministic,
structured, nominimal model presented by Heymann (1988). An
equivalent algorithm like (7.60-7.63) can be formulated and
the constrained region Y defined as the set, each point of
which gives a model containing the structurally specified
common factor polynomial. Then a result like Theorem 7.5 can
be stated and similarly proven, Convergence to a unique
point is only a special case, i.e. when HyNY is a singleton.

Xia et al. (1987) use RLS with an overparameterized
model for an adaptive pole placement control algorithm and
add an auxiliary signal to the regressor in order to force
the paramete.s to convergence to a unigue point., A simpler
alternative approach based on the results in this chapter
would be to use a constrained, overparameterized model with
some prespecified (known) parameters, e.g.
{b,,;=0, i=1,...,r}. Theorem 7.5 will guarantee parameter

convergence to a unique point if the prespecified parameters
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uniquely determine the common factor polynomial. Adaptive
control schemes can use overparameterized models in this
manner to gain the degrees of freedom in the model structure
necessary to cope with uncertain disturbances without losing
the guarantee of parameter convergence to a unique point if
the uncertain disturbances vanish,

Aanother application for Theorem 7.4 and 7.5 is to
prove parameter convergence for the multirate identification
algorithm developed in Chapter 3. In this multirate,
discrete system, J>1 is a positive integer,

-1 nd -i

A(q )=1+.z_‘ a;q ,

-1 na ' -i

B(g );E1 b,q ",

1=

and {a;, i#J,2J,...,nJ} are structurally constrained to zero.

7.5 Conclusions

Generalized parameter convergence properties were
derived for overparameterized deterministic and stochastic
systems with (Theorem 7.4) or without (Theorem 7.1)
structured constraints., These results apply to any
identification algorithm and model for which an appropriate
Lyapunov type function of parameter estimates can be found
and do not require the quasi-stationary data assumption nor
¢hat the degree of overparameterization be known. Parameters
are shown to converge to a set H, each element of which
contains the irreducible plant model plus a common factor
polynomial, or to the intersection of H and the constrained

region. The application of Theorem 7.1 and 7.4 is
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illustrated by using them to: prove parameter convergence of
RLS with overparameterized DARMA models (Theorem 7.2, 7.5
and 7.6) and ELS with ARMAX models (Theorem 7,3); and
provide an alternative proof for the results of Goodwin et
al., (1985) and Janecki (1987) for nonminimal systems with
purely deterministic disturbances (Theorem 7.7). Theorem 7.1
and 7.4 are also shown to be applicable to several other
problems in identification and adaptive control (e.qg.

Heymann 1988, Chapter 3 of this thesis, Xia et al. 1987).
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

This thesis makes several contributions related to
multirate systems and the identification of
overparameterized models. The two areas are closely related
because overparameterized models are generally used in the
formulation of multirate systems. Although the results are
mainly theoretical, remarks and/or simulation examples are
included@ to indicate the practicality and area of
application of the results. The main contributions are
summarized below in the order of presentation in the thesis.

Multirate Parameter and Output Estimation: (cf. Chapters 2

and 3)

A multirate estimation model is formulated from a
discretized continuous plant model by two approaches. The
obtained estimation model is overparameterized. Both
projection and recursive least squares algorithms are
developed to identify the parameters of the model and to
generate the estimates of {y(k),k=1,2,...} using
{y(kJ),u(k),k=1,2,...}. It is proven that the estimated
output value, y(k), converges to the real output y(k) at
each sampling interval although the real output measurement
is available only every J sampling intervals. Simulation

results show that the least squares algorithm converges much

167
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faster than the projection algorithm,

This work appears to be the first in the literature to
show the existence of an intersampling output estimation
algorithm with asymptotically zero estimation error for
processes with unknown parameters.

Adaptive Control of Multirate Systems: (cf. Chapter 4)

The recursive least squares algorithm of Chapter 3 is
used to formulate an adaptive control law with input
constraints for application to multirate systems. The error
between the actual and a reference performance index is
shown to.be bounded by the product of a finite gain and the
parameter estimation error in the limit sense. Sufficient
conditions for parameter convergence are proven and thus,
under these conditions the performance of the multirate,
adaptive constrained control system asymptotically behaves
like that of the analogous single (fast) rate, constrained
control system with known, constant parameters.

This work illustrates the use of the intersampling
output estimation techniques in control applications and a
different approach to defining the convergence properties of
adaptive controllers.

Multirate Adaptive Inferential Estimation: (cf. Chapter 5)

An adaptive, inferential algorithm for estimation and
control of multirate systems is derived. A secondary process
output, v(t), sampled at the same rate as the process input,
is included in the multirate estimation scheme to produce

process output estimates at the same sampling rate as the
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process input u(t). Compared to previous work (Guilandoust
et al. 1987) on multirate inferential systems, the proposed
algorithm has a more formal theoretical basis, e.g. y(t) is
related to v(t) not simply through an external stochastic
disturbance but also through the internal system structure.
Thus the working equation of the algorithm can be related
more quantitatively to the characteristics of the actual
process. Convergence properties are formally proven and a
simplified algorithm is proposed for practical applications
(but without formal convergence proofs). Simulated results
illustrate the convergence properties of the algorithm and
the improvement in simple feedback control systems that can
be obtained by using estimated values y,, calculated at
every input sampling interval, rather than just the slowly
measured output values of y.

This work provides a solid theoretical basis for
multirate inferential adaptive estimation and control.

Parameter Convergence with Overparameterized Models: (cf.

Chapters 6 and 7)

Through the concept of quotient space, parameter
convergence with overparameterized models is defined. Under
a set of defined sufficient conditions, which do not
restrict system signals to being gquasi-stationary as assumed
by Ljung (1987), the parameter estimates of a broad class of
identification algorithms including RLS and ELS, applied to
overparameterized (nonminimal) models, are shown to converge

to a set H, each element of which defines a model containing
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the irreducible plant model plus a common factor polynomial,
This result is extended to show that when the
overparameterized model is structurally constrained the
parameter estimates converge to the intersection of H and
the constrained region. The results are shown to be
applicable to the multirate identification algorithms
presented in Chapters 2 and 3 and provide an alternative
approach to obtain some recently published results (Goodwin
et al. 1985, Janecki, Heymann 1988) on overparameterization
and parameter convergence.

This work represents an essentially complete soluiion
to the problem of parameter convergence with

overparameterized or nonminimal models.
8.2 Recommendation for the Future Work

(1) Multirate Parameter and Output Estimation of Stochastic

Systems:

The work on multirate parameter and output estimation
in this thesis is essenﬁially complete for deterministic
systems. However, stochastic systems were not considered in
the “heoretical analysis. It is therefore desirable to
extend the work to include stochastic systems. For example,
consider the following system

A, (g )y (k)=B, (g Nulk)+x(k), (8.1)
where A, and B, are given in (3.3), x(k) is a stochastic

process and the measured data are {y(kJ)} and {u(k)}, i.e. y
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is sampled J times slower than u. The objective would be to
study the convergence properties of parameter and output
estimation algorithms presented in this thesis for this
stochastic system and/or develop new algorithms to handle a
specific structure of the term x(t), e.g. where x(k) is a

moving average of white noise.

(2) Parameter and Output Estimation of Systems with

Continuously Measured Inputs and Irregularly Measured

Outputs:
The multirate work in this thesis assumes an integer

ratio, J, of the two sampling rates and that the input value
between two fast sampling instants is constant and known.
This is actually a special case of the more general problem
involving parameter and output estimation of systems with
continuously measured inputs and irregularly measured
outputs. The latter can be handled by using continuous
nodels since they are invariant to the cutput measurement
sampling rate. The solution of this problem would result in
some fundamental improvements in the adaptive identification
and control of a large class of systems, e.qg.

nonsynchronized sampled systems or two time scale systems.

(3) Multirate Parameter and Output Estimation of MIMO

Systems:
The multirate inferential system treated in Chapter 5

is essentially a very special case of MIMO systems, i.e. a
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system with two outputs and one input. Unlike the intuitive
and adhoc solution given by Guilandous et. al (1987), the
work in Chapter 5 provides a reliable approach to
inferential estimation with slow output measurements, i.e.
in this work the inferential schemes are developed
structurally from a linear model framework anc the
associated convergence problem is addressed. Due to the
generality of the linear model framework the methodology for
deriving the inferential schemes is not limited to the
special case treated in Chapter 5. It is also applicable to
more general MIMO systems for which there may be several
slowly measured outputs and several fast measured inputs and
secondary outputs. The work in Chapter 5 would thus be a
good starting point to study multirate inferential and

control of such MIMO systems.

(4) Implementation of the Multirate Adaptive Control

Systems:

The multirate work in this thesis is oriented towards
process control applications. Since most of work done so far
is theoretical and fundamental it is important in the future
to do some experimental and/or extensive simulation work and
to address practical implementation isgues which may arise
in industrial applications. For example, for the adaptive
and inferential systems studied in Chapters 4 and 5 it is
necessary to develop some adhoc methods to strengen the

output feedback and to improve the robustness of the system
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to unmeasured external disturbances. Such an adhoc method
could be a cascade control loop in which an outer loop using
the slowly measured output as feedback signal is added such
that the outer loop operates with a sampling interval JT and
the inner loop with T; or, in terms of Figure 4.1 or Figure
5.1 this would include improvements in the feedback of y(kJ)
to the output estimation block so that there is a more

direct feedback of the disturbances via y,.

(5) Parameter Convergence with MIMO Models:

One problem associated with parameter convergence of
MIMO systems is determining the existence of a unique point
in the parameter vector space to which the parameter
estimates converge. In general the uniqueness property does
not hold. The quotient space concept used in Chapters 6 and
7 for parameter convergence with overparameterized SISO
models is also applicable fo MIMO systems. The technique
used for the prcof of theorems in Chapters 6 and 7 could be
applied to determine the limiting set of parameter
estimates. Knowing the limiting set of estimates it would
then be possible to find ways to structurally constrain the
identified model such that an appropriate unique convergence
point in the parameter vector space would exist for the

identification.

(6) Applications of Overparameterized Models in Adaptive

Predictive and Control Application:
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Given the proof of parameter convergence for
overparameterized models, the use of structurally
overparameterized models may be attractive to specific
adaptive predictive control applications, since extra design
freedom could be gained by using overparameterized models,
However it requires further study to see the 'gain'’ which

can be obtained by the use of overparameterized models.
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APPENDIX A

DISCRETE PASSIVITY AND POSITIVE REALNESS

The concept of passivity is important in the design
and analysis of many adaptive identification and control
schemes and is therefore widely discussed in textbooks, e.g.

soer and Vidyasagar (1975), Landau (1979), Goodwin and Sin
(1984), Anderson et al. (1986), Caines (1988) and Astrom and
Wittenmark (1989). However, the only terminology used in
this thesis that is related to passivity is the very
strictly passive (VSP) condition. It is used in Chapters 2
to 5 of this thesis during the development of output error
jdentification methods. This appendix is intended as a brief
introduction to the definition, interpretafion and
application of the VSP condition.

This thesis deals only with proper and rational
transfer function systems. For these systems the passivity
conditions are equivalent to those of positive realness.
These ;onditions and the equivalence of the two concepts,

passivity and positive realness, are discussed below.

A.1 Positive Realness

Consider the following discrete transfer function
system in the time domain

y(t)=H(g u(t) (A.1a)

or in the frequency domain

176
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y(z)=H(z )ulz). (A.1b)
For convenience in the following discussion let

H'(z)=H(z™') (A.2)
and assume that the transfer function H'(z) is always proper
and rational,

Definition A.1:

The discrete transfer function H'(z) is positive real

(PR) if:

(i) H'(z) is analytic in }z|>1 ard the poles of H'(z) on
|z|=1 are simple, with nonnegative residues; and

(1i) Re{H'(e¥)}20 for all w€(-m,n] at which H'(e’) exists.

Definition A.2:

The discrete transfer function H'(z) is strictly
positive real (SPR) if:
(i) H'(z) is analytic in |z|21; and
(ii) Re{H'(e™)}>0 for all wé€(-=,7].

Theorem A.1: The following statements are eguivalent to each

other for system (A,1):
(i) H'(z) is PR.
(ii) System (A.1) is passive (P).
(iii) The input and output sequences of system (A.1) always
satisfy
éo y(i)u(i)=0 vt20. (a.3)

Theorem A.2: The following statements are equivalent to each

other for system (A.1):
(i) H'(z) is SPR.

(i.) system (A.1) is very strictly passive (VSP).
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(iii) There exists a 6>0 such that the input and output
sequences of system (A.1) aiways satisfy
Loy(u(i)asz uli): 20, (A.4)
Remarks:
(1) Condition (i) of Definition A.1 which states that H'(z)
is PR implies that H'(z) is stable but not necessarily
asymptotically stable, while condition (i) of Definition A.2
vhich states that H'(z) is SPR is equivalent to asymptotic
stability condition for H'(z).
(2) condition (ii) of Definition A.1 or Condition (ii) of
Definition A.2 is essentially nothing more than a condition
on ¢(w) the phase of H'(e?), i.e. for a PR H'(2)
-n/25¢(w)<n/2 ' weE(-7,7] (A.5}
which implies that the Nyguist plot of H'(z) lies in the
closed right complex plane, and for a SPR H'(z)
-n/2<¢(w)<n/2 wE€(-7,7) (A.6)
which implies that the Nyguist plot of H'(z) lies in the
open right complex plane, To see this note that
¢ (w)=tan ' {Im(H'(e™))/Re{H'(e™))} | (A.7)
and Re{H'(e?)}20 for a PR H'(z)
and Re{H'(e?)}>0 for a SPR H'(z).
(3) In the textbook by Goodwin and Sin (1984) there are also
two cther types of strict passivity: input strict passivity
(ISP) and output strict passivity (OSP). For proper and
rational transfer function systems ISP, OSP and VSP are
equivalent, |

(4) Theorems A.1 and A.2 follow directly from results in
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texts such as Desoer and Vidyasagar (1975), Landau (1979)
and Goodwin and Sin (1984), The information in Remarks 1 and
3 can also be obtained from these texts but requires some
further analysis and/or rationalization of nomenclature, For
example, equation (A.7) is very helpful for one to relate
the phase condition of (A.,5) or (A.6) and the conditions of
PR or SPR but does not appear explicitly anywhere in the
above cited texts,

A.2 Choice of D Filter

As discussed in Chapters 2 to 5 the VSP condition (or
equivalently the SPR condition, cf. Theorem A.2) is not due
to the multirate sampling. It is inherent in the output
error identification method (Landau 1979), This condition is
not required if an equation error method is used. However
the two methods result in different intersampling output
estimation error behaviour and it is shown in Chapter 3 that
the output error method can have a smaller bound on the
error when the input is not rich in excitation and slowly
changing.

The choice of the D(q™’) filter can play an important
role in satisfying the VSP condition associated with the
output error method. In many cases a D filter is not
required, i.e. D(q’)=1. The first example of such cases is
where the input u(t) only contains low frequencies since the
VSP condition is usually violated only at the high
frequencies for most asymptotically stable systems. The

second example is where J is large since A(g™) would then
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be very close to 1 and the VSP condition would therefore
always be satisfied. Generally, for asymptotically stable
systems it is recommended that D(g™”)=A(0,g”), where A(0,q”)
is a good estimate of A(g™”). Such an estimate can be
obtained by using an equation error method since it does not
need the VSP condition,

Other methods of selecting D filters are discussed in

the book by Landau (1979),
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