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Abstract

In recent decades, condition-based maintenance has been acknowledged as a cost-

effective maintenance program and widely used in many engineering systems. Di-

agnostics and prognostics are critical components of condition-based maintenance,

responsible for providing information about present and future system health condi-

tions. These two components are respectively an integrated process covering several

essential aspects that should be cared about to ensure successful implementation of

diagnostics and prognostics. This thesis focuses on certain aspects for diagnostics

and prognostics, respectively.

When doing diagnostics, data processing is an important stage responsible for

providing reliable data for use. Data processing usually includes feature extraction,

data cleaning and feature selection. Feature extraction is responsible for extracting

from the raw data characteristic features representing system conditions. Data

cleaning is necessary for removing outliers caused by the noise during data collection.

Feature selection is responsible for capturing and removing useless features generated

during feature extraction. This thesis focuses on data cleaning and feature selection.

When doing prognostics, noise may appear in condition indicator values. The

condition indicator is extracted from condition monitoring data and is able to reflect

the health conditions of monitored assets. Generally, using the noisy condition

indicator values may result in unreliable predictions for prognostics, so there is a

demand of the method that can provide predictions without the effects of noise.

Support vector machine (SVM) is recognized an effective tool for classification

and prediction that are needed by diagnostics and prognostics. SVM is a supervised-

learning method and is reported to have better generalization ability and superior

performance for small sample cases over other supervised learning methods such as



artificial neural network. This thesis develops SVM-based methods to solve some

problems existing in diagnostics and prognostics.

The contributions of this thesis are summarized as follows:

1. An SVM-based data cleaning algorithm that removes outliers for effective

diagnostics.

2. An SVM-based feature selection algorithm that removes useless features for

effective diagnostics.

3. An analytical method that selects SVM model parameters for effective on-line

system condition prognostics.

4. An intelligent optimization-based method that selects SVM model parameters

for effective on-line system condition prognostics.



Acknowledgements

I would like to express my gratitude with sincere respect to my supervisor Dr. Ming

J. Zuo for his support, care, and encouragement through all my study and research.

Under his guidance, I have gained not only valuable academic training but also

useful logic and methodology to deal with real world problems. It is my honor to

research under this guidance.

My sincere thanks to my Ph.D. examining committee members, Dr. John Doucette,

Dr. Khashayar Khorasani, Dr. Mike Lipsett, Dr. Yongsheng Ma, and Dr. Qing

Zhao, for their helps in improving this thesis. Thanks to Dr. Mike Lipsett for

providing valuable comments on my thesis writing. Thanks to Dr. Yongsheng Ma

for his suggestions of preparing and the efforts of chairing my final oral examination.

Also thanks to Dr. Khashayar Khorasani for taking efforts to have a telephone

conference for my final oral examination.

I am also grateful to all the members in our Reliability Research Lab for their help

and support. Working with them is always an exciting and beneficial experience. I

am pleased to work with them in the past five years.



Table of Contents

1 Introduction 1

1.1 Condition-Based Maintenance . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Prognostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Support-Vector-Machine-Based Diagnostics and Prognostics . . . . . 9

1.5 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Review of Data-Driven Approaches for Diagnostics and Prognos-

tics 13

2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Diagnostics Using Data-Driven Approaches . . . . . . . . . . . . . . 19

2.3.1 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Artificial Intelligence Methods . . . . . . . . . . . . . . . . . 22

2.4 Prognostics Using Data-Driven Approaches . . . . . . . . . . . . . . 27

2.4.1 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Artificial Intelligence Methods . . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Support Vector Machine Fundamentals 32

3.1 Support Vector Classification . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Binary Support Vector Classification . . . . . . . . . . . . . . 32



3.1.2 Multi-class Support Vector Classification . . . . . . . . . . . 38

3.1.2.1 One-Against-All (OAA) . . . . . . . . . . . . . . . . 38

3.1.2.2 One-Against-One (OAO) . . . . . . . . . . . . . . . 38

3.2 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Standard SVR . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Least Square SVR (LSSVR) . . . . . . . . . . . . . . . . . . . 44

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Experimental Systems 46

4.1 Planetary Gearbox Test Rig . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 System Descriptions . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Manual Pitting Damage Experiments . . . . . . . . . . . . . 49

4.1.2.1 Damage Creation . . . . . . . . . . . . . . . . . . . 49

4.1.2.2 Implementations . . . . . . . . . . . . . . . . . . . . 51

4.1.2.3 Data Collection . . . . . . . . . . . . . . . . . . . . 52

4.1.3 Run-to-Failure Experiments . . . . . . . . . . . . . . . . . . . 53

4.1.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . 54

4.2 Slurry Pump Test Rig . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Impeller Damage Experiments . . . . . . . . . . . . . . . . . 57

4.2.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . 58

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Support-Vector-Machine-Based Diagnostics 60

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Data Partition . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.4 Benchmark Datasets for Demonstration . . . . . . . . . . . . 64

5.2 SVM-Based Diagnostic Algorithm . . . . . . . . . . . . . . . . . . . 65

5.3 SVM-Based Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Outlier Effects on SVM Separating Plane . . . . . . . . . . . 67

5.3.2 Outlier Effects on SVM Parameter Selection . . . . . . . . . . 69



5.3.3 Principle of Outlier Identification Using SVM . . . . . . . . . 71

5.3.4 The Proposed Data Cleaning Algorithm . . . . . . . . . . . . 73

5.3.5 Evaluation Using Benchmark Datasets . . . . . . . . . . . . . 76

5.3.5.1 Evaluation Using Modified Iris Dataset . . . . . . . 76

5.3.5.2 Evaluation Using Colon Cancer Dataset . . . . . . . 77

5.3.5.3 Evaluation Using Sonar Dataset . . . . . . . . . . . 79

5.3.6 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 SVM-Based Feature Selection . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Feature Evaluation using SVM Measure . . . . . . . . . . . . 81

5.4.2 The Proposed Feature Selection Algorithm . . . . . . . . . . 82

5.4.2.1 Model for Binary Classification . . . . . . . . . . . . 82

5.4.2.2 Model for Multi-class Classification . . . . . . . . . 83

5.4.2.3 Additional Details . . . . . . . . . . . . . . . . . . . 84

5.4.3 Evaluation Using Benchmark Datasets . . . . . . . . . . . . . 85

5.4.3.1 Evaluation Using Sonar Dataset . . . . . . . . . . . 85

5.4.3.2 Evaluation Using Breast Cancer Dataset . . . . . . 87

5.4.3.3 Evaluation Using Parkinson Dataset . . . . . . . . . 88

5.4.4 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.1 Data Cleaning for Slurry Pump System . . . . . . . . . . . . 91

5.5.1.1 Feature Extraction and Database Establishment . . 91

5.5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.2 Feature Selection for Planetary Gearbox System . . . . . . . 95

5.5.2.1 Feature Extraction and Database Establishment . . 95

5.5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.3 Diagnostics of Slurry Pump System . . . . . . . . . . . . . . 105

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Support-Vector-Machine-Based Prognostics 107

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



6.1.2 Datasets for Demonstrations . . . . . . . . . . . . . . . . . . 109

6.2 SVM-Based Prognostic Algorithm . . . . . . . . . . . . . . . . . . . 110

6.2.1 SVM Prediction Using Analytical Method . . . . . . . . . . . 114

6.2.2 SVM Prediction Using Optimization-Based Method . . . . . 118

6.3 Evaluation of the Proposed Methods . . . . . . . . . . . . . . . . . . 125

6.3.1 Methods for Comparisons . . . . . . . . . . . . . . . . . . . . 125

6.3.2 Training Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.3 Criteria for Evaluation . . . . . . . . . . . . . . . . . . . . . . 127

6.3.4 Evaluation Using Simulation Datasets . . . . . . . . . . . . . 128

6.3.4.1 Evaluation Using Simulation Dataset 1 . . . . . . . 129

6.3.4.2 Evaluation Using Simulation Dataset 2 . . . . . . . 135

6.3.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . 141

6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Condition Prognostics for Slurry Pump System . . . . . . . . 142

6.4.1.1 Database Establishment . . . . . . . . . . . . . . . . 142

6.4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.2 Condition Prognostics for Planetary Gearbox System . . . . 147

6.4.2.1 Database Establishment . . . . . . . . . . . . . . . . 147

6.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Conclusions and Future Work 151

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 157



List of Tables

4-1 Number of teeth for two-stage planetary gearbox . . . . . . . . . . . 48

4-2 Availability of data segments for manual pitting damage experiments 52

4-3 Availability of data files for RTF experiment . . . . . . . . . . . . . 55

4-4 Availability of data files for slurry pump experiment . . . . . . . . . 58

5-1 Structure of pre-processed dataset . . . . . . . . . . . . . . . . . . . 66

5-2 Performance comparisons using colon cancer dataset . . . . . . . . . 78

5-3 Results of classification for colon cancer dataset using different classifiers 79

5-4 Performance comparisons using Sonar dataset . . . . . . . . . . . . . 79

5-5 Results of classification for Sonar dataset using different classifiers . 80

5-6 Feature importance comparisons . . . . . . . . . . . . . . . . . . . . 81

5-7 Results of classification for sonar dataset . . . . . . . . . . . . . . . . 86

5-8 Results of classification for breast cancer dataset . . . . . . . . . . . 87

5-9 Results of classification for Parkinson dataset . . . . . . . . . . . . . 89

5-10 List of extracted features for impeller damage level classification . . 91

5-11 List of extracted features for manual pitting damage level classification 98

5-12 Results of classification using the proposed feature selection algorithm 103

5-13 Results of classification using the proposed data processing algorithm 106

6-1 Data arrangement for training . . . . . . . . . . . . . . . . . . . . . . 127

6-2 Parameter settings for simulation datasets . . . . . . . . . . . . . . . 129

6-3 Results of SD1 (Methods 1 - 4) . . . . . . . . . . . . . . . . . . . . . 130

6-4 Results of SD1 (Methods 5 - 7) . . . . . . . . . . . . . . . . . . . . . 130

6-5 Results of SD2 (Methods 1 - 4) . . . . . . . . . . . . . . . . . . . . . 137

6-6 Results of SD2 (Methods 5 - 7) . . . . . . . . . . . . . . . . . . . . . 137

6-7 Parameter settings for experiment datasets . . . . . . . . . . . . . . 142



List of Figures

1-1 A shovel loading oilsand into haul truck [1] . . . . . . . . . . . . . . 2

1-2 The structure of CBM . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1-3 Flow chart of SVM-based diagnostics and prognostics . . . . . . . . 10

2-1 Procedure of data processing . . . . . . . . . . . . . . . . . . . . . . 15

2-2 Architecture of FFNN . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2-3 Structure of ANFIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2-4 Point estimate of RUL . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3-1 Examples of a linearly separable classification problem in R
2 . . . . 34

3-2 Example of feature mapping enabling linear data separation . . . . . 37

3-3 SVR with ǫ-insensitive loss function for one-dimensional data . . . . 41

4-1 View of planetary gearbox test rig . . . . . . . . . . . . . . . . . . . 47

4-2 Diagram of two-stage planetary gearbox . . . . . . . . . . . . . . . . 48

4-3 View of accelerometers and three reduction gearboxes locations . . . 49

4-4 Simulation of pitting levels on planet gears . . . . . . . . . . . . . . 51

4-5 View of four artificially pitted planet gears . . . . . . . . . . . . . . . 51

4-6 Profile change on sun gear teeth in 2nd stage planetary gearbox . . . 54

4-7 Wear pattern change on sun gear teeth in 2nd stage planetary gearbox 54

4-8 Diagram of slurry pump test rig . . . . . . . . . . . . . . . . . . . . . 56

4-9 Views of slurry pump test rig . . . . . . . . . . . . . . . . . . . . . . 57

4-10 Trailing edge damage (left) and leading edge damage (right) . . . . . 57

5-1 Data partition and procedure of cross-validation . . . . . . . . . . . 62

5-2 Diagram of the proposed diagnostic algorithm . . . . . . . . . . . . . 66



5-3 Illustration of outlier effects on SP (kf is Gaussian kernel, kp = 1,

and C = +∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5-4 Illustration of outlier effects on SP (kf is Gaussian kernel, kp = 1,

and C = +∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5-5 Classification without outliers using different settings of parameter C

(for both panels, kf is Gaussian kernel and kp = 1; for parameter C,

the left panel is C = 100 and the right one is C = +∞) . . . . . . . 70

5-6 Classification with outliers using different settings of parameter C

(for both panels, kf is Gaussian kernel and kp = 2; for parameter C,

the left panel is C = 100 and the right one is C = +∞) . . . . . . . 70

5-7 Illustration of outlier identification using test data . . . . . . . . . . 72

5-8 Flow chart of the proposed data cleaning algorithm . . . . . . . . . . 75

5-9 Modified Iris dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5-10 Fractions of misclassified data points for the modified Iris dataset . . 77

5-11 Flow chart of the proposed feature selection algorithm . . . . . . . . 83

5-12 Results of CA for sonar dataset over 30 trials . . . . . . . . . . . . . 86

5-13 Results of CA for the breast cancer dataset over 30 trials . . . . . . 88

5-14 Results of CA for Parkinson dataset over 30 trials . . . . . . . . . . 89

5-15 Fractions of misclassified data points for slurry pump dataset . . . . 94

5-16 3D plot of pump data distribution . . . . . . . . . . . . . . . . . . . 95

5-17 Processing flow for feature extraction . . . . . . . . . . . . . . . . . . 96

5-18 An example of planetary gearbox sidebands . . . . . . . . . . . . . . 97

5-19 Classification results using standard deviation frequency of HS1 under

900 rpm & noload condition . . . . . . . . . . . . . . . . . . . . . . . 104

6-1 Plot of SD1 (RNL=0.4) . . . . . . . . . . . . . . . . . . . . . . . . . 109

6-2 Plot of SD2 (RNL=0.4) . . . . . . . . . . . . . . . . . . . . . . . . . 110

6-3 Procedure for SVM-based online prognostics . . . . . . . . . . . . . . 113

6-4 Procedure of obtaining TVCI using the proposed analytical method 115

6-5 Procedure for obtaining TVCI using the proposed optimization-based

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6-6 Procedure of GA optimization . . . . . . . . . . . . . . . . . . . . . . 120

6-7 CUSUM criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



6-8 Trend prediction (RNL = 0.2) . . . . . . . . . . . . . . . . . . . . . . 132

6-9 Trend prediction (RNL = 0.5) . . . . . . . . . . . . . . . . . . . . . . 133

6-10 Trend prediction (RNL = 0.7) . . . . . . . . . . . . . . . . . . . . . . 134

6-11 Trend prediction (RNL = 0.2) . . . . . . . . . . . . . . . . . . . . . . 138

6-12 Trend prediction (RNL = 0.5) . . . . . . . . . . . . . . . . . . . . . . 139

6-13 Trend prediction (RNL = 0.7) . . . . . . . . . . . . . . . . . . . . . . 140

6-14 Trend prediction of 2X for trailing edge damage . . . . . . . . . . . . 144

6-15 Trend prediction of kurtosis for trailing edge damage . . . . . . . . . 144

6-16 Trend prediction of 2X for leading edge damage . . . . . . . . . . . . 146

6-17 Trend prediction of kurtosis for leading edge damage . . . . . . . . . 147

6-18 Trend prediction of sideband for planetary gearbox . . . . . . . . . . 149



Nomenclature

ADAQ Acoustic Data Acquisition

AE Acoustic Emission

AI Artificial Intelligence

AIA Artificial Immunization Algorithm

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

AR Auto-regressive

ARMA Auto-regressive Moving Average

BMP Band-pass Mesh Signal

BP Back Propagation

BPNN Back-Propagation Neural Network

BS Backward Selection

CA Classification Accuracy

CBM Condition-based Maintenance

CI Condition Indicator

CM Condition Monitoring

CPU Central Processing Unit



CT Classification Tree

CUSUM Cumulative Sum

CV Cross-Validation

DIFF Difference Signal

DLDA Diagonal Linear Discriminant Analysis

FFNN Feed Forward Neural Network

FFT Fast Fourier Transform

FLI Fuzzy Logic Inference

FNA Fine Needle Aspirate

FS Forward Selection

GA Genetic Algorithms

GMF Gear Mesh Frequency

GRNN Generalized Regression Neural Network

HMM Hidden Markov Chain

HP Horse Power

HS High Sensitivity

KFCV K-Fold Cross Validation

KKT Karsh-Kuhn-Tucker

KNN K-Nearest Neighbor

LOOCV Leave-One-Out Cross Validation

LR Logistic Regression

LS Low Sensitivity



LSSVR Least Square Support Vector Regression

MD Mahalanobis Distance

MR Misclassification Rate

NBC Naive Bays Classifier

NFIS Neuro-Fuzzy Inference System

NL Noise Level

NRMSE Normalized Root Mean Square Error

OAA One-Against-ALL

OAO One-Against-One

PBP Percentage of Better Performance

PCA Principal Component Analysis

PDF Probability Density Function

PHM Proportional Hazard Model

PIP Pump Inlet Pressure

POP Pump Outlet Pressure

RAW Raw Signal

RBF Radial Basis Function

RBS Recursive Backward Selection

RES Residual Signal

RMC Regular Mesh Components

RMS Root Mean Square

RNL Relative Noise Level



RPM Revolution per Minute

RSV Random Sub-sampling Validation

RTF Run-to-Failure

RUL Remaining Useful Life

SD1 Simulation Dataset 1

SD2 Simulation Dataset 2

SNR Signal-to-Noise Ratio

SP Separating Plane

SR Selection Rate

SSM State-Space Model

SVC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

TVCI True Value of Condition Indicator

VDAQ Vibration Data Acquisition

WPT Wavelet Packet Transform

WT Wavelet Transform



Chapter 1

Introduction

In engineering systems, one tends first to think of airplanes, cars, shovels, trucks, and

so forth. These systems play an important role in many aspects of our daily life and

in industry. In industrial applications, engineering systems may be used to handle

difficult tasks which encompass high speeds, heavy loads, or harsh environments

such as low temperatures and dusty surroundings. Such harsh working conditions

accelerate the deterioration of engineering systems and accordingly increase the

frequency of unexpected system breakdowns.

An example is the shovel used in oil sands excavation. Figure 1-1 shows a typical

working scenario for a shovel at Syncrude Canada Limited [1]. Because of the high

output torque required, this kind of shovel is usually equipped with a planetary

gearbox. It is known that gear teeth experience cyclic stress when gears engage.

This stress eventually contributes to gear fatigue damage such as pits and cracks.

If nothing preventive is done, the gear damage will progress faster and faster until

it results in failures such as broken teeth which incur unexpected downtime for the

shovel [2].

When an engineering system breaks down, one has to take action to restore it

to operating condition. This action is part of a maintenance program. Traditional

maintenance strategies can be categorized into two classes [3]: corrective main-

tenance and preventive maintenance. Corrective maintenance is the maintenance

that occurs when a system fails. Some researchers refer to it as repair. According

to MIL-STD-721B, corrective maintenance means all actions performed as a result

of failure, to restore an item to a specified condition. Preventive maintenance is

1



the maintenance that occurs when a system is operating. According to MIL-STD-

721B, preventive maintenance means all actions performed in an attempt to retain

an item in a specified condition by providing systematic inspection, detection, and

prevention of incipient failures.

Figure 1-1: A shovel loading oilsand into haul truck [1]

Domestic plants in the United States spent more than $600 billion to maintain

critical plant systems in 1981, and this figure doubled within 20 years [4]. An even

more shocking fact is that one-third to one-half of this expenditure was wasted

through ineffective maintenance [5]. This reveals the need for an advanced main-

tenance strategy which can implement maintenance actions in a more cost-effective

way.

1.1 Condition-Based Maintenance

In recent decades, condition-based maintenance (CBM) has developed rapidly. CBM

conducts maintenance based on condition monitoring (CM) data relevant to system

operating states, and it is able to avoid unnecessary maintenance actions. Figure 1-2
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(adapted from [6, 7]) exhibits a CBM framework where each stage performs a unique

function to ensure the process of CBM can be successfully implemented.

 

Data Acquisition 

Prognostics Diagnostics 

 
Maintenance Concern 

Maintenance Policy 

Optimization 

CBM  

Implementation 

Decision Making 

Data Processing 

Figure 1-2: The structure of CBM

Data acquisition is a process of collecting and storing CM data for a system of

interest. Monitoring instruments are used in this stage, e.g. thermometers, pressure

gauges, vibration sensors, acoustic emission sensors, particle counters, etc. The CM

data collected are called raw data. These data may fall into different categories.

More details about data acquisition are given in Chapter 2.

Data processing is a process of providing reliable processed data for the following

stages. Three sub-stages that may be included in data processing are: data cleaning,

feature extraction, and feature selection. Feature refers to the characteristics that

are able to reflect the conditions of the asset of interest. Data cleaning refers to

identifying and eliminating outliers. It can be implemented before or after feature

extraction. Feature extraction refers to calculating characteristic features from raw

data for the use of diagnostics and prognostics. As the extracted features may not
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all be useful, feature selection is usually used to select the most useful ones. Chapter

2 gives more details on data processing. The output of data processing can be used

in both diagnostics and prognostics.

Diagnostics refers to either an off-line process of searching for the cause of a

system breakdown or an online process of detecting abnormality in a system. In

this thesis, diagnostics, if not otherwise stated, always refers to the online process.

The outputs of diagnostics can be fault modes and fault levels which are indicative

of the current state of the system. Diagnostics is one focal point of this thesis. More

details on diagnostics are given in Section 1.2.

Prognostics refers to an online process of estimating remaining useful life (RUL);

in other words, failure forecasting. The output of prognostics indicates future states

of the system, for example the time period over which a system will normally operate.

The results provided by diagnostics can be used in prognostics, because the current

state of a system is useful information for predicting future ones. Prognostics is the

other focal point of this thesis. More details on prognostics are given in Section 1.3.

Maintenance concerns refer to the factors that need to be considered when mak-

ing maintenance decisions. A common factor is maintenance cost, that is, the cost

of implementing maintenance. Other factors may include maintenance degree, avail-

ability of maintenance personnel, availability of a maintenance facility, productivity,

unfilled orders and so forth [3].

Maintenance policy optimization refers to a mathematical optimization process

which offers options for maintenance strategy by jointly considering system health

status (the output of prognostics) and maintenance concerns. In the literature,

researchers usually consider minimizing maintenance cost in terms of cost per unit

time [8–10]. The output of this stage provides information about the time at which

conducting maintenance will cost the least.

Decision making refers to selecting the best maintenance option for a given sys-

tem. The options can be obtained from diagnostics, prognostics and maintenance

policy optimization. Expert knowledge and experience is also usually incorporated
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into making a decision. Once an option is finalized, maintenance scheme (e.g. sched-

ule, degree, personnel assignment, etc.) is made based on concrete conditions of

involving maintenance resources. Eventually, a maintenance action is implemented;

this is the last stage of a CBM program.

From Figure 1-2, we can see that the output of diagnostics and prognostics is

crucial to the success of a CBM program. In terms of diagnostics, the output de-

pends on not only the performance of the diagnostic approach but also the quality

of data transmitted from previous stages; thus it is more appropriate to treat diag-

nostics as an integrated process covering these relevant stages. For this reason, this

thesis defines diagnostics as a process involving data acquisition, data processing

and diagnostic implementation where diagnostic implementation refers to the stage

of identifying fault characteristics (modes, levels, etc.) using diagnostic approaches.

The above is also true for prognostics. There is a stage of prognostic implementation

which refers to predicting failures using prognostic approaches. Sections 1.2 and 1.3

further introduce diagnostics and prognostics, more specifically the diagnostic and

prognostic approaches.

1.2 Diagnostics

A fault is defined as an abnormal condition or a defect at the component, equipment,

or subsystem level which may lead to a failure of system; however, a fault in these

assets may not necessarily cause a system failure. Diagnostics is able to detect

the minor fault and track its progression; as a result, the failure of system could

be prevented. For better understanding of the fault and failure, the terms minor

fault, major fault, and failure are used in the following context: an incipient fault

can be regarded as a minor fault; a minor fault progresses to a major fault as the

system operates; a major fault corresponds to a higher severity level and approaches

a failure. When either a minor or a major fault occurs, the system performs at a

low level, but continues to operate. When a failure occurs, the system no longer

operates and must be repaired.

When a fault occurs in a system, symptoms can be detected through monitored

measures, e.g. excessive vibration and noise, extremely increased temperature, oil
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debris, etc. Utilized effectively and appropriately, such symptoms are helpful for

detecting minor faults. Such symptoms are also known as an indicator or a feature

in the scope of diagnostics. Although the ultimate failure of a system may be

inevitable, diagnosing and fixing faults can postpone the failure and prolong the

system’s operational time.

Many approaches have been reported for diagnostics. Good reviews of them can

be found in [7, 11, 12]. These approaches can be classified into three categories:

signal-based approaches, knowledge-based approaches, and data-driven approaches.

They will be introduced one by one below; however, data-driven approaches are the

main focus of this thesis.

Signal-based approaches focus on detecting changes or variations in a signal and

subsequently identifying the changes. Researchers have developed indicators that

reflect system conditions, using such approaches as spectral analysis and wavelet

analysis [13]. In the 1990s, tracing a single indicator for fault detection prevailed.

Since 2000, the indicators obtained using the signal-based approaches are often

incorporated with data-driven approaches to achieve better diagnostic results. The

data-driven approaches are introduced later.

Knowledge-based approaches embody knowledge in a narrow domain related to

the solutions to problems. These approaches simulate the ways that human ex-

pertise thinks and infers, creating a series of rules whereby solutions are produced.

Typical examples of these approaches are the rule-based expert system and fuzzy

logic inference (FLI) [14–16]. Though they have been successfully used in diag-

nostics, knowledge-based approaches have their shortcomings. For example, expert

system can not deal with new situations, that is, ones not covered explicitly in its

knowledge bases; and FLI needs good membership functions and appropriate fuzzy

rules which are not always easy to obtain.

Data-driven approaches are usually conducted to classify fault modes or lev-

els (this is discussed in Section 1.4). They further include statistical methods and

artificial intelligence (AI) methods. Data-driven approaches employ a parametric

model of which parameters need to be determined by training data. The param-

eters are input arguments required to establish the model. The training data are
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known samples carrying information useful for classification. Statistical methods

generalize the underlying dependency of given data through explicit mathematical

models derived from certain statistical theories. AI methods achieve the same thing

through a model simulating biological mechanism. Statistical methods are usually

subject to certain assumptions such as data distribution and independency; while AI

methods have no such constraints. Unfortunately, however, AI models are implicit

and usually can not be explained to users.

One focus of this thesis is SVM-based diagnostics. SVM is an AI method which

belongs among the data-driven approaches. More about SVM-based diagnostics is

talked in Section 1.4. For better understanding of the state-of-the-art for data-driven

approaches, some typical methods are reviewed in Chapter 2.

1.3 Prognostics

Prognostics is a process of predicting failure thereby the future life profile of system

can be revealed [7]. Prognostics aims at preventing failure, but operates in a way

different from that of diagnostics. Diagnostics can tell whether a system is subject

to a minor fault or a major fault at present, but it can not tell how long the

system will continue to operate. In contrast, prognostics can tell this — it is also

known as RUL estimation. This good capability makes prognostics very attractive

to maintenance decision makers. In short, diagnostics cares about detecting what is

happening at present, and prognostics cares about predicting what will happen in

the future; hence, some researchers consider prognostics to be superior to diagnostics

[7]. Nevertheless, prognostics is technically more expensive to implement and more

difficult to fulfill, so it is usually used for critical assets.

Prognostic approaches fall into four categories. Good reviews of them can be

found in [5–7, 12, 17]. They are introduced one by one below; however, data-driven

approaches are again my main focus.

A simple form of prognostics can be found in the experience-based approaches.

These approaches gather statistical information about the amount of time that a

component lasts before failure, and use these statistics to make RUL predictions.

These predictions are dependent solely on the passage of time and/or measures of
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usage of the system or component. For example, for a timing belt on an automobile,

the manufacturer may recommend that the belt be replaced every five years or 60,000

miles.

Model-based approaches usually use mathematical models for the system being

monitored. One prevailing method of this kind is the physics-based model. Physics-

based models are developed by experts in the component field and validated on

large sets of data to show that they are indeed accurate. They are useful in tracking

realistic operating conditions of systems. Model-based prognostic approaches are

only as good as the models on which they are based. For physics-based models,

the understanding of failure mechanisms is often impractical and sometimes even

impossible [6].

Knowledge-based approaches for prognostics are similar to those for diagnos-

tics. These approaches mimic the ways in which human expertise thinks and infers

thereby creating a series of rules through which solutions are produced. Unlike those

for diagnostics, knowledge-based approaches are used for prediction in prognostics.

Rule-based expert system and FLI are two typical examples [18]. The advantages

and disadvantages are discussed in Section 1.2 and therefore will not be repeated

here.

Unlike diagnostics, data-driven approaches for prognostics employ a paramet-

ric model to track system deterioration and predict system conditions. They also

include statistical methods and AI methods. Statistical methods use explicit mathe-

matical expressions to first calculate the probability density function (PDF) of RUL

and then estimate the expectation of RUL based on the PDF obtained. AI meth-

ods otherwise obtain a real-value prediction (the point estimate) of the condition

indicator based on past ones, and then estimates RUL according to a pre-specified

threshold of the condition indicator. Statistical methods can give a probabilistic

measure evaluating the certainty of the condition indicator being a certain value at

a certain time. This is attractive in realistic cases because it allows maintenance

personnel to incorporate their expertise into decision making; nevertheless, statis-

tical methods are usually complicated and subject to assumptions that limit their

applications. AI methods are unable to provide the probabilistic measure, but they
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are easy to implement and free of restrictions, so they are more widely used. Some

typical data-driven approaches are reviewed in Chapter 2. SVM-based prognostics,

the other focus of this thesis, is discussed in the next section.

1.4 Support-Vector-Machine-Based Diagnostics

and Prognostics

In recent decades, SVM has attracted more and more attention in diagnostics and

prognostics because of its better generalization ability and superior performance for

small sample cases [11, 19]. The mathematical explanations of these good char-

acteristics are explained in Chapter 3 (see Sections 3.1.1 and 3.2.2). This thesis

does not concentrate on analytical and mathematical development of SVM, but the

applications of SVM in diagnostics and prognostics, so the formal and rigorous sub-

stantiations of these characteristics are not given. As mentioned in Sections 1.2

and 1.3, AI methods realize classification for diagnostics and prediction for prognos-

tics. SVM is applicable for both classification and prediction, achieved by support

vector classification (SVC) and support vector regression (SVR), respectively. Con-

ventionally, researchers do not differentiate between SVC and SVR in their work,

and simply call them SVM. This thesis follows this convention. Readers can easily

distinguish them by following the rule that SVC is for diagnostics and SVR is for

prognostics. More details of SVC and SVR are presented in Chapter 3.

As announced in Section 1.1, this thesis treats diagnostics and prognostics as

an integrated process. For both SVM-based diagnostics and prognostics, the first

two stages are data acquisition and data processing. The third stage is SVM-based

classification for diagnostics and SVM-based prediction for prognostics. These two

processes are illustrated in Figure 1-3 which is actually a part of Figure 1-2, but

with output included.

For SVM-based diagnostics, outputs are usually fault modes and/or fault lev-

els. Fault mode refers to the type of fault subject to a certain fault mechanism.

Fault level refers to the severity of a certain fault. Common fault levels are binary

labels, namely, normal and faulty; classifying fault levels is synonymous with fault
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detection, a widely studied problem. Complex problems can include multiple labels.

These labels could be different fault modes, e.g, gear crack, gear pit and gear tooth

missing, and different fault levels each of which corresponds to a certain range of

quantitative measures, e.g. four crack levels described as no damage, slight, moder-

ate and severe where the “slight” level corresponds to a crack size of [0.5mm, 1mm].

Based on these outputs, one knows what type of fault the system is currently subject

to and is at what level it is subject to it. Many studies have been reported in this

area [11, 20–23], some of which are reviewed in Chapter 2.

Diagnostics 

 

Data 

acquisition 

Data  

processing 

CM data 

Processed 

data 

SVM-based 

prediction 

SVM-based 

classification 

Fault modes RUL Fault levels 

Prognostics 

 

RUL  

estimation 

Figure 1-3: Flow chart of SVM-based diagnostics and prognostics

For SVM-based prognostics, the output is RUL based on which one can know

how long a system will continue to operate. SVM is used to predict the condition

indicator (CI). Then, the CI value is compared with a pre-specified threshold to

determine the RUL in the RUL estimation stage. One can also trace the predicted

trend of the CI to foresee system conditions; this is known as condition prognostics

[19]. The output of SVM-based classification can also be used in SVM-based pre-

diction. This, however, is not my research focus, so this thesis treats SVM-based
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diagnostics and prognostics independently. SVM-based prognostics has attracted

increasing attention in recent years. Some researchers have reported successful ap-

plications in this area [19, 24–27]; however, compared to SVM-based diagnostics,

SVM-based prognostics has not been sufficiently studied. Some published studies

are reviewed in Chapter 2.

Though SVM has been successfully used in diagnostics and prognostics, the

applications are limited to the classification and prediction stages. Besides, the

performance of SVM is likely to be affected by the quality of the data. These

concerns have inspired the research in this thesis and they are defined in the next

section.

1.5 Research Objectives

As discussed in Section 1.4, SVM has been widely used in the classification stage of

diagnostics; however, its potential for use in other stages, such as data cleaning and

feature selection, to improve diagnostic results is lack of study. Some work reports

using SVM in feature selection [28, 29]. To the best of my knowledge, SVM for data

cleaning has been rarely reported. Since these two stages are also important for the

success of diagnostics, the following two topics are specifically investigated in this

thesis:

• developing an SVM-based data cleaning method for diagnostics, and

• developing an SVM-based feature selection method for diagnostics.

As discussed in Section 1.4, some researchers have reported using SVM in the

prediction stage of prognostics. The performance of prediction relies heavily on the

behavior of the SVM model, so the selection of SVM model parameters is important.

When using SVM for prediction, the random noise which contributes to over-fitting

and under-fitting is another critical factor influencing prediction results. Two types

of method are reported as overcoming the noise effects by means of selecting ap-

propriate SVM parameters. One is the analytical method which employs explicit

expressions for selecting the parameters [29–32]; the other is the optimization-based
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method which selects the parameters via an optimization model incorporating cross-

validations [24, 25]. The analytical method can address noise effects in its expres-

sions, but it is not case-specific; the optimization-based method is case-specific, but

has no explicit term for addressing noise effects and does not update the selected

parameters along with the passage of time. For these reasons, the following two

topics are specifically investigated in this thesis:

• modifying a reported analytical method in order to select appropriate SVM

model parameters for better prognostic results, and

• developing an intelligent optimization-based method for selecting SVM model

parameters to mitigate the shortcomings of common optimization-based meth-

ods.

1.6 Thesis Organization

This thesis is composed of 7 chapters. Chapter 2 reviews some published data-driven

approaches to diagnostics and prognostics. Chapter 3 presents the fundamentals of

SVM. Chapter 4 introduces the two experimental systems to be studied in this thesis.

Chapter 5 presents an SVM-based diagnostic algorithm which contains one proposed

SVM-based data cleaning algorithm and one proposed SVM-based feature selection

algorithm. Chapter 6 presents an SVM-based online prognostic algorithm which

uses separately two proposed methods of selecting SVM parameters for prediction.

Chapter 7 summarizes my contributions and introduces the possible directions for

moving forward in my future work.
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Chapter 2

Review of Data-Driven
Approaches for Diagnostics and
Prognostics

As mentioned in Section 1.5, SVM-based diagnostics and prognostics are the focal

points of this thesis. SVM belongs among the data-driven approaches; hence, this

chapter gives a review of some typical data-driven approaches. As mentioned in

Section 1.4, both diagnostics and prognostics employ data acquisition and data

processing as their first and second stages and employ data-driven approaches as

their third stage. In this chapter, I first briefly introduce data acquisition, then

discuss reported data processing methods, and finally review data-driven approaches

for diagnostics and prognostics, respectively.

2.1 Data Acquisition

Data acquisition is a process of collecting and storing raw data from sensors which

are placed on the system to be monitored. These data usually fall into two categories,

event data and condition monitoring (CM) data. Event data include historical

information such as installation, breakdown, overhaul, etc., and/or what has been

done such as minor repairs, preventive maintenance and lubricating the system.

The CM data are versatile; they contain value-type data, waveform data, and multi-

dimensional data. The value-type data are gathered over a specific time period for a

condition indicator (CI). They are time series data and usually display a trend over

the monitoring periods. Examples of this type of data are temperature, pressure
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and humidity. The waveform data are gathered at a specific time and are also time

series data. This kind of data usually displays a pattern of waveform. Typical

examples are vibration signals and acoustic signals. The multi-dimensional data

usually display an image over a specific time period. Ultrasonic data and visual

images belong to this type.

Data acquisition supplies raw data for diagnostics and prognostics; hence, the

performance of data acquisition affects the reliability of the collected data and ac-

cordingly the final results of diagnostics and prognostics. Unreliable data may result

from various aspects of data acquisition, e.g. malfunction of monitoring instruments,

large magnitudes of noise in the external environment, human error, etc. Although

this is well known, it is often difficult to ensure the data are 100% reliable, because

some factors such as ambient noise are impossible to control. This leaves a problem

for the next stage, data processing, to deal with.

2.2 Data Processing

Data processing is implemented after raw data are acquired. The data processing

stage can be further divided into three sub-stages: feature extraction, data clean-

ing, and feature selection. Figure 2-1 shows the procedure for data processing.

Data cleaning follows feature extraction, which means that data cleaning is to be

conducted in the feature space. It can also be conducted before feature extraction

in order to eliminate outliers in the raw data; however, from the viewpoint of fault

classification, this kind of methods are not classification-focused. These methods

may be able to provide clean data at the raw data level, but when the feature data

are extracted from the cleaned data, outliers may still be in the feature data result-

ing in bad classification. In this case, data cleaning needs to be conducted again

to clean the feature data. For this reason, this thesis places the data cleaning af-

ter the feature extraction, so the procedure for data processing is as that shown in

Figure 2-1. These three sub-stages will be introduced one by one below.
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Figure 2-1: Procedure of data processing

2.2.1 Feature Extraction

In most cases, raw data can not be used directly for diagnostic and prognostic

purposes. One needs a way of obtaining useful information from the raw data; this

is known as feature extraction. The useful information extracted is often referred to

as the CI or feature; it reflects the health status of the system. Feature extraction

is a widely studied problem for which numerous models, algorithms and tools have

been reported. These are reviewed in terms of domain analysis in the following.

Time-domain analysis is directly based on waveform data in the time domain.

Traditional features are statistical characteristics such as mean, standard deviation,

kurtosis, peak, peak-to-peak, crest factor, skewness, etc. Good reviews of time-

domain features can be found in [33, 34]. Samanta et al. [19] used a kurtosis feature

for the prognosis of gearbox condition subject to gear pitting wear. Time-domain

features can also be extracted from some statistical models. Samuel et al. [35]

compared several time-domain features for detecting faults of helicopter gearboxes.

Pöyhönen et al. [36] modeled vibration signals gathered from an induction motor

using an autoregressive (AR) model and used the coefficients of the AR model as

features for fault detection.

Frequency-domain analysis is based on transformed signals in the frequency

domain. Unlike time-domain features, frequency-domain features can detect and

identify changes of a particular frequency component which may indicate a fault in-

volving a particular system component. In addition, some fault modes may possess

specific frequency spectra which make possible non-intrusive identification of sys-

tem faults. Reported techniques for frequency-domain analysis include fast Fourier

transform (FFT), power spectrum analysis, envelope analysis, sideband analysis,

and Hilbert transform, among others. Pöyhönen et al. [36] compared the perfor-

mance of the FFT-based feature selection approach in the frequency domain with
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ones based on the AR model. Samanta et al. Tse et al. [37] both predicted the

progression of a shaft misalignment based on the shaft’s frequency spectrum.

Time domain analysis and frequency domain analysis are based on the assump-

tion that statistical characteristics such as the mean and variance of signals do not

vary over time. Such signals are known as stationary signals, but when signals are

non-stationary, the above two methods are unable to capture the variations. Time-

frequency domain analysis was thus developed to cope with this problem. The

most typical method of this kind is wavelet transform (WT). WT has developed

rapidly in the recent decades and has been widely used for feature extraction [38].

A continuous WT is defined as:

W (a, b) =
1

a

∫ +∞

−∞
x(t)Ψ∗(

t− b

a
)dt, (2.1)

where x(t) is waveform signal, a is scale parameter, b is time parameter, and Ψ∗(·)
is a wavelet which is a zero average oscillatory function centered around zero with a

finite energy. The asterisk means complex conjugate. Widely used WT techniques

include continuous WT, discrete WT, and wavelet packet transform (WPT). He et

al. [21] used wavelet packet transform (WPT) to extract time-frequency features of

valve faults from the vibration signals of three-cylinder reciprocating pumps. Sara-

vanan et al. [39, 40] developed features using various wavelets for classifying bevel

gearbox fault modes. Wang et al. [41] developed a continuous wavelet transform

based approach for fault detection under variant loads. Samanta et al. Wang et al.

[42] used an energy feature obtained through continuous wavelet transform for the

prognosis of gearbox condition subject to gear fault modes of wear, chipping and

crack, respectively.

2.2.2 Data Cleaning

For some cases, the data obtained from feature extraction are not 100% reliable and

need to be further processed in order to identify and eliminate outliers. This is known

as data cleaning. In statistics, an outlier is an observation that is numerically distant

from the rest of the data [43] or does not follow the pattern of the majority of the data

[44]. In the reported literature, the terms “data cleaning”, “outlier detection” and
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“outlier identification” are used interchangeably. This stage is chosen to be referred

to as data cleaning, because it involves two successive actions, detecting outliers and

eliminating outliers. The key problem in data cleaning is how to accurately detect

existing outliers.

Classical methods of detecting outliers adopt a statistical way where some sta-

tistical measures are calculated to determine the distance between a particular data

point and the rest of the data points. A widely used method of detecting outliers

in multivariate samples is to compute the Mahalanobis distance (MD):

MDi =

√

(xi − µ)S−1(xi − µ)T, (2.2)

where x is a random vector, representing attributes or features in a N dimensional

space, µ is the mean vector of M sample vectors, [x1, . . . ,xM ], and S represents the

covariance matrix of x of M samples. The MD considers the correlations between

different features. This property makes MD superior to Euclidean distance which

assumes an independency of features that does not always hold for practical cases.

Some reported work on data cleaning is as follows. Rousseeuw et al. [44] proposed

to compute distances based on robust estimates of locations and covariance of data

points. Fun [45] proposed a method of detecting outliers based on the S-estimation

robust method. Shieh et al. [46] proposed an outlier detection method for microarray

data based on principal component analysis (PCA) and robust estimation of the MD.

For diagnostics, errors caused by human error, environmental factors, and mal-

functioning instruments may occur during data acquisition. This causes the gathered

data to contain inaccurate data, contaminated data and/or incomplete data. For

this reason, data cleaning is necessary to ensure, or at least increase the chance that,

clean (error-free) data are kept for further use [7]. Unfortunately, to our best knowl-

edge, the studies reporting SVM-based data cleaning for diagnostics and prognostics

of engineering systems are very limited [47, 48].

2.2.3 Feature Selection

Generally speaking, feature selection for the classification of diagnostics is distinct

from that for the prediction of prognostics. For prognostics, researchers focus mainly
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on univariate time series prediction where only one feature is involved, so suitable

features can be directly selected by visualizing their trends, e.g. if the values for a

feature monotonically increase as time passes, this feature could be a good represen-

tative of health status of the system. For diagnostics, the rationale behind feature

selection is more complex for classification problems where the dimension of feature

space is usually greater than one. In this thesis, if not otherwise specified, feature

selection always refers to the one for classification problems.

For a certain problem, many features may be extracted according to the reported

literature; however, these features may not all be useful since practical cases vary

with specific assumptions, constraints, etc. For cases where all features are useful

and the number of features is not too large, one can simply use all of them, but

if the dimension of feature space is enormous, there will be a huge computational

burden for the forthcoming stage, classification. It is, however, more usual for

some features to be redundant and irrelevant. The redundant features contribute

nothing to the classification results but the dimension of the feature space, and

the irrelevant features actually impair the classification results; hence, such features

should be selected and eliminated from the feature space.

Feature selection involves two steps. The first is feature ranking which quanti-

tatively assesses how critical to classification an individual feature is and builds a

rank of features based on the criticality values. Two models can be used for this

step. One is wrapper which ranks features based on the feedback on evaluations, e.g.

classification accuracy. The other is filter which ranks features by heuristically de-

termined goodness or knowledge that are able to reflect classification performance,

e.g. information entropy. These two models were originally studied in biology and

medicine. Balakrishnan et al. [29] selected features for Type II diabetes using a

Bays classifier based wrapper model. Guyon et al. [49] proposed an SVM-based

gene wrapper model for cancer classification. In recent decades, a number of studies

have reported using these two models for diagnostics. Guadrón et al. [28] proposed

an SVM-based wrapper model for fault diagnosis in multi-sensor systems. Li et al.

[50] used a filter model to select features for gear fault diagnosis. Baydar et al.

[51] employed a PCA-based filter model for detecting localized faults in gearboxes.

John et al. [52] reported that wrapper models outperform filter models with regard
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to predictive power on unseen data. Since, however, wrapper models need to run

classification many times in order to evaluate every feature, filter models are usually

faster.

The second step is feature selecting which refers to selecting features based on

their rank. Two schemes are usually used for this step: the forward selecting scheme

and the backward selecting scheme. Given that a rank of features is available in

which the most useful feature is ranked highest and the most useless feature is ranked

lowest, the forward selecting scheme adds the top ranked features one by one to an

empty feature set, and the backward selecting scheme eliminates the lowest ranked

features one by one from an original feature space. A criterion, usually classification

accuracy, is then applied to stop this process. Guadrón et al. [28] used the forward

selecting scheme in an SVM-based feature selection for multi-sensor systems. Qu

et al. [53, 54] used backward selecting scheme for classifying damage level in a

slurry pump. The forward selecting scheme requires more perfect ranking, while the

backward selecting scheme relies less on rank quality. The forward selecting scheme

can ensure the features selected are all useful but it cannot ensure all useful features

are selected, whereas the backward selecting scheme is able to retain most useful

features but it may leave a few useless features in the final feature subset.

2.3 Diagnostics Using Data-Driven Approaches

As mentioned in Section 1.2, data-driven approaches encompass statistical methods

and artificial intelligence (AI) methods. They both employ a parametric model

the parameters of which are determined based on a set of data having inputs that

correspond to their outputs. Once the model is built using the obtained parameters,

the outputs can be computed according to the given inputs. The process of building

the model is known as training or supervised-learning. The data used for training

are called training data. A large number of both statistical and AI methods have

been reported. For the sake of thesis length, only several typical ones are reviewed.

Actually, there is another broad category called unsupervised-learning meth-

ods where no training process is required before classification. A typical example

is clustering analysis [55]. As opposed to the unsupervised-learning methods, the
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supervised-learning methods have limitations when used in practice e.g. lack of

training data, changes of the number of classes, etc. However, for the cases where

historical information about system health, e.g. fault modes observed, fault levels

measured, is available, the supervised-learning methods are able to provide better

results than unsupervised-learning methods due to the knowledge learned from the

historical information. For this reason, a tremendous number of studies are re-

ported about using the supervised-learning methods for diagnostics (see [21–23, 56–

62]). The supervised and unsupervised learning methods are two ways for solving

the diagnostic problems. Which to be chosen depends on the data information

available. A great number of methods have been reported for both supervised and

unsupervised-learning methods. Unsupervised learning methods are not discussed

in this thesis; however, it does not mean unsupervised-learning methods are not

important.

2.3.1 Statistical Methods

For statistical methods, the parametric models are explicit and the parameters to

be determined are usually interpretable. These parameters may be relevant to the

inputs and outputs, e.g. hidden Markov model (HMM) or the features of inputs, e.g.

logistic regression (LR) model. Some methods such as naive Bayes classifier (NBC)

are directly derived from statistical theory. These three methods are reviewed below.

The HMM has two processes, a Markov chain with a finite number of states

depicting an underlying mechanism and an observation process relying on the hidden

state. A discrete-time HMM is defined by [7]:

Xi+1 = AXi + Vi+1, (2.3)

Yi = CXi +Wi, (2.4)

where Xi and Yi represent the hidden process and the observation process, respec-

tively, Vi and Wi are noise terms, and A and C are model parameters. Historical

data are needed to train the HMM model; in other words, historical data are needed

to obtain parameters which enable the model to describe the data appropriately.
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Apparently, parameter A relates to the transition from one state to another, and

parameter C represents the relationship between observations and hidden states.

The HMM can be used to classify fault modes or levels in which X represents un-

known observed features, and Y represents fault modes or levels. Nelwamondo et

al. [63] classified early faults in bearings using HMM. Li et al. [64] used HMM to

recognize faults of the speed-up and speed-down process in rotating machinery.

The LR model is a non-linear classification method which uses a set of samples

from known classes to derive coefficients for an equation that calculates the prob-

ability of a new sample belonging to a certain class. This equation is written as

[65]:

Probability =
1

1 + exp[−(β0 +ΣiβiXi)]
(2.5)

where β0 is a constant term, βi is the derived coefficient, and Xi is the value of the

ith feature. Yan et al. [65] used LS model to identify normal and failure states in

an elevator. Sutanto et al. [66] used LR model to analyze faults in an industrial

printing process.

The NBC is based on the well-known Bayes rule. Assuming that Y is any

discrete-valued class, and Xi, i = 1, 2, . . . ,M are any discrete or real-valued features,

NBC gives the probability that Y will take on its kth possible value, which, according

to Bayes rule, is [67]

P (Y = yk|X1, . . . , XM ) =
P (Y = yk)

∏M
i P (Xi|Y = yk)

ΣM
j P (Y = yj)

∏M
i P (Xi|Y = yj)

(2.6)

where the sum is taken over all possible values yj of Y , assuming that the Xi are

conditionally independent, given Y . Given a new sample Xnew = [X1, . . . , XM ] and

the distributions P (Y ) and P (Xi|Y ) estimated from the training data, one can find

the class of the new sample by:

Y ←− argmaxykP (Y = yk)
∏

i

P (Xi|Y = yk) (2.7)

where the denominator of Eq. (2.6) is removed because it does not depend on yk.

Maragoudakis et al. [68] detected faults in a gas turbine using naive Bayes classifier.
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One drawback of statistical methods is that they may need assumptions before

use, e.g. assumptions regarding data distribution, independency, etc. If inappropri-

ate assumptions are made, the diagnostic results may be impaired.

2.3.2 Artificial Intelligence Methods

Unlike with statistical methods, the models of AI methods are usually implicit, and

the parameters have no physical meaning. Basically, AI methods have two types

of parameter, user-defined and training-data-defined. Here, the parameters are the

latter. Artificial neural network (ANN) is the most widely used AI method. Its

model is flexible and able to accommodate different methods to enhance classifica-

tion results. Neuro-fuzzy inference system (NFIS) is a version of ANN hybridized

with the knowledge-based fuzzy inference system (FIS). For ANN and NFIS, all

training data are used to determine their models. SVM works in a way different

from ANN and NFIS. It determines the model by relying on only a few selected

training data points. For this reason, compared to other AI methods [11] SVM

is regarded as possessing better generalization ability and superior for cases where

only a small number of training data points are available. These three methods are

reviewed below.

The ANN consists of processing elements connected in a layer structure. This

structure allows the model to approximate an underlying non-linear function whose

multiple inputs and outputs are known. The feed forward neural network (FFNN)

in which the information moves only forward, from inputs, through hidden neurons,

to outputs is the first and simplest type of ANN devised. Figure 2-2 shows the

architecture of FFNN where the empty circles and the solid circles are called neurons.
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Figure 2-2: Architecture of FFNN

When the radial basis function (RBF) is used for the neurons in the hidden layer,

the neural network in Figure 2-2 becomes a so-called RBF network. RBF networks

typically have three layers, an input layer, a hidden layer with a non-linear RBF

function and a linear output layer. The RBF function is defined as [69]:

ρi(x) = exp(−βi ‖x− ci‖2), i = 1, 2, . . . , N, (2.8)

where ρi represents the RBF function for the ith neuron, x represents a multi-

dimensional input, N represents the number of neurons, ci is the center of the ith

neuron, and βi is the weight coefficient. The output of neural network can thus be

given by:

ϕ(x) =

N
∑

i=1

wiρi(x), (2.9)

where wi is the linear weight coefficient for the ith neuron.

One widely used training method for neural network is back-propagation (BP).

This method generates an error function based on the difference between predicted

outputs and actual observations. During the training, the weights of each connection

are continuously adjusted in order to reduce the difference. After repeating this

process for a sufficiently large number of training cycles, the network will usually

converge on some state where the error of the calculations is small.

Many studies report using ANN to classify fault modes or levels. Saravanan et

al. [40] detected incipient faults in bevel gearboxes using FFNN. Dash et al. [56]

developed an accurate fault mode classifier based on radial basis function (RBF)
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neural network. Other advanced forms of ANN have also been reported. Chang et

al. [57] proposed an enhanced probabilistic neural network for fault detection. Wu

et al. [58] used ANN for classifying engine fault modes based on acoustic emission

(AE) signals. Rafiee et al. [59] developed an algorithm for classifying gearbox fault

modes using two-layer ANN. Wu et al. [60] used back-propagation neural network

(BPNN) and generalized regression neural network (GRNN) for classifying fault

modes in automotive generators.

The NFIS was proposed by Jang [61] where FIS was implemented in the frame-

work of adaptive neural network. The adaptive network consists of nodes, and

directional links through which nodes are connected. Moreover, part or all of the

nodes are adaptive; the output depends on the parameters pertaining to these nodes,

and the learning rule specifies how these parameters should be changed to minimize

the prescribed measure of error. For simplicity, an adaptive neuro-fuzzy inference

system (ANFIS) with two inputs, x and y, and one output, f , is considered below.

Suppose that the rule base contains two fuzzy if-then rules [61]:

Rule 1: If x is A1 and y is B1 then f1 = p1x+ q1y + r1;

Rule 2: If x is A2 and y is B2 then f2 = p2x+ q2y + r2;

where x and y are inputs, A1, A2, B1, and B2 are fuzzy sets to be determined by

the training process, f1 and f2 are outputs, and p1, q1, r1, p2, q2, and r2 are linear

parameters to be determined by the training process. The structure of ANFIS based

on these two rules is shown in Figure 2-3, and the brief introduction of each layer is

given below.
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Figure 2-3: Structure of ANFIS

In layer 1, these nodes represent input nodes each of which is a linguistic label

associated with the node function:

O1i = µAi
(x), i = 1, 2, (2.10)

O2i = µBi
(y), i = 1, 2, (2.11)

where O1i and O2i are membership functions with linguistic labels of Ai and Bi,

respectively.

In layer 2, every node is a fixed node labeled Π which multiplies the incoming

signals and sends the product out. For instance,

wi = µAi
(x)µBi

(x), i = 1, 2, (2.12)

where wi is the output of the ith node and represents the firing strength of a rule.

In layer 3, every node is a fixed node labeled N. The ith node calculates the

ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths:

ŵi =
wi

∑

iwi
, i = 1, 2, (2.13)

where ŵi is also called the normalized firing strength.

In layer 4, every node is an adaptive node with a node function:
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ŵifi = ŵi(pix+ qiy + ri), i = 1, 2, (2.14)

where ŵi is the output of layer 3, and pi, qi, and ri are parameters defined in the

two If-Then rules.

In layer 5, the single node is a fixed node labeled Σ that computes the overall

output as the summation of all incoming signals. For instance,

∑

i

ŵifi =

∑

iwifi
∑

iwi
, i = 1, 2, (2.15)

ANFIS then finds the optimal parameters that establish the appropriate relation

between inputs and outputs.

Applications of ANFIS for diagnostics have been reported in recent years. Tran

et al. [62] utilized neuro-fuzzy system for fault diagnosis of a methane compressor.

Wu et al. [70] used ANFIS for gear fault mode classification using features extracted

from WT. Nguyen et al. [71] used ANFIS in the fault mode classification of a

transmission line.

As mentioned above, SVM has good ability in generalization and performs well

for small sample cases, so it has attracted more and more attention in diagnostics

in recent decades. Since SVM-based diagnostics is a focal point of this thesis, the

theory of SVM for classification is presented in Chapter 3. Here are the related

reported studies. Widodo et al. [11] reviewed SVM applications for classifying fault

modes and levels in system diagnostics. Samanta [20] studied the performance of

ANN and SVM for fault mode classification, and found that SVM outperformed

ANN for all tested cases. He et al. [21] detected faults in valves from reciprocating

pumps using SVM. Yuan et al. [22] developed a multi-class SVM classifier to classify

fault modes in a turbo-pump rotor. Yuan et al. [23] developed a method based on

SVM and artificial immunization algorithm (AIA) for classifying fault modes in a

turbo-pump rotor.

AI methods can be used without any assumptions, so they are more favored for

practical applications. Note, however, that they may be criticized as a black-box
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approach because their models are implicit, and the parameters usually cannot be

explained to users.

2.4 Prognostics Using Data-Driven Approaches

The goal of prognostics is to acquire the RUL for a system on which maintenance ac-

tions can be effectively implemented. Similar to diagnostics, data-driven approaches

for prognostics also include statistical methods and AI methods. Statistical methods

may obtain the point estimate of RUL in two ways, determining a system’s lifetime

distribution or determining the probability density function (PDF) of a system’s

RUL. AI methods obtain the point estimate of RUL by predicting the CI.

2.4.1 Statistical Methods

As mentioned, there are two ways of obtaining the point estimate of RUL. The first

one estimates the lifetime distribution of a system, and then estimates the expec-

tation of system life using the distribution. Once this is done, the point estimate

of RUL is calculated by subtracting the current system age from the expectation.

Lifetime distribution can be estimated using failure data or CM data. The methods

using failure data are widely reported in reliability theory [72]. Some methods using

CM data can be found in [73]. One drawback of these methods is that data from

multiple samples are usually required. This may be impractical for complicated

systems which are too expensive to damage.

The second way is to obtain the PDF of RUL. For this case, RUL is considered

as a random variable. Let Xt represent the random variable of RUL at time t. The

PDF of Xt conditional on Yt can be represented by f(Xt|Yt) where Yt represents

the condition information up to time t. As long as the PDF of RUL is available,

the expectation of RUL (a point estimate of RUL) can be easily estimated. In the

following, two methods of this type are reviewed: the state-space model (SSM) and

the proportional hazard model (PHM).

The SSM is one widely used statistical method in which an unobservable variable

is defined as representing system operating states. The SSM model can be expressed
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as [74]:

yt = Ztαt + dt + Stǫt, (2.16)

αt = Ttαt−1 + ct +Rtηt, (2.17)

where ǫt is a serially uncorrelated disturbance with a mean of zero and a covariance

matrix of Ht, and αt is a state vector which is not observable and is assumed to

be generated by the first-order Markov process as shown in Eq. (2.17). Tt is a

transition matrix and ηt is a random vector of serially uncorrelated disturbances

with a mean of zero and a covariance matrix of Qt. The parameters of Zt, dt, St,

Tt, ct and Rt depend on information available at t− 1 if normality for errors ǫt and

ηt is assumed. Eq. (2.16) is known as the measurement equation while Eq. (2.17) is

called the transition equation. The SSM model requires the following two additional

assumptions:

1. the initial vector, α0, has a mean of a0 and a covariate matrix of Σ0, i.e.

E[α0] = a0 and V ar[α0] = Σ0.

2. the disturbances, ǫt and ηt, are uncorrelated with each other for all time

periods, and uncorrelated with the initial state variable, i.e. E[ǫtηt] = 0 and

E[ǫtα
T
0 ] = E[ηtα

T
0 ] = 0, for all t.

Given the information up to time s, i.e. (y1, . . . , ys), the conditional expectation

of αt can be denoted by E[αt|(y1, . . . , ys)] ≡ at|s, and the conditional covariance

matrix of αt can be denoted by Cov[αt|(y1, . . . , ys)] ≡ Σt|s. The evaluation of at|s is

known as filtering if t = s, smoothing if t < s, and predicting if t > s. The filtering

problem can be addressed by the well-known Kalman filter [74].

Some work report using SSM for the estimation of RUL. Most of them incor-

porated the PDF with a cost model on which the CBM decision could be made.

Christer et al. [8] adopted the SSM for predicting furnace erosion and replacement.

Lu et al. [9] employed a similar state model to determine the PDF that was used in

a cost model for CBM decision making. Zhou et al. [75] developed a Gamma-based

SSM for predicting the life time of liquified natural gas pumps.

Another popular method is time-dependent PHM which analyzes event data and

CM data together. The merit of a time-dependent PHM is its ability to relate the
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probability of failure to both age and condition indicators, so that one can assess

failure probability with any given system condition at any specified age [7]. The

PHM assumes that the failure rate is the product of a baseline failure rate dependent

only on the age of the unit and a positive function, ϕ(·), dependent on the values

of the stochastic process Z. Z reflects the effect of the working environment on the

system; therefore, the survivor function is given by [10]:

P (T > t|Zs, 0 ≤ s ≤ t) = exp(−
∫ t

0
h(s, Zs)ds), t ≥ 0, (2.18)

where T is the time to failure of the system, and h(s, Zs) is the failure rate at time

t which can be expressed as:

h(s, Zs) = h0(s)ϕ(Zs), s > 0. (2.19)

The PHM is usually incorporated with a cost model for CBM decision making.

Makis et al. [10] proposed a model for optimal replacement based on PHM. In

their model, it is assumed that the failure rate of a system is a function of age but

can also depend on the values for condition indicators describing the effect of the

environment in which it operates. Banjevic et al. [76] developed a model for the

optimization of CBM decisions using PHM with a Weibull baseline hazard function,

and a time-dependent stochastic covariates are used to describe the failure rate of

system.

Statistical methods can also be incorporated into AI methods to directly provide

a point estimate of RUL. In this case, because the parameters of statistical methods

are obtained using CM data, they can carry useful information about system health;

hence, these parameters can be used as condition indicators to represent system

health. This kind of problem has not been widely studied. Zhang et al. [77]

used HMM to generate a health index which is the input to an adaptive prognostic

component for point estimation of RUL. Yan et al. [65] adopted ARMA model

to provide useful condition indicators for a logistic regression model for estimating

RUL.

Statistical methods can not only provide the point estimate of RUL, but the

probability of a system having a certain RUL value at a certain time. This prob-
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abilistic measure can be incorporated with maintenance concerns such as costs for

making maintenance decisions. Nevertheless, the statistical methods are rather

complicated and are subject to some assumptions which may not be convenient to

use.

2.4.2 Artificial Intelligence Methods

AI methods aim to obtain a point estimate of RUL. The point estimate of RUL is

defined as the length of time between current time and system failure. Figure 2-4

exhibits the process of obtaining the point estimate of RUL where tc represents

current time, yth represents a pre-specified threshold of the CI value indicating the

failure of the system, and tth represents the time corresponding to yth. The threshold

value is usually determined relying on expert knowledge and experience. From the

viewpoint of maintenance, the threshold correlates with not only the health states

of the system but also the costs of implementing maintenance.

AI methods obtain the RUL through addressing a time series prediction problem.

The CI values are first observed or extracted from online CM data up to tc; these

values are then used to train the parametric model in AI methods. When the model

is established, the CI value for a future time of interest can be predicted. When

the predicted value exceeds the threshold, yth, the point estimate of RUL can be

computed using tth − tc.
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Figure 2-4: Point estimate of RUL
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AI methods reported for diagnostics can also be used for prognostics. Samanta

et al. [19] studied the performance of ANFIS in the prognosis of gearbox conditions.

Tse et al. [37] used the amplitude of a vibration signal as a CI and predicted its

value for prognostics using recurrent neural networks. Wang et al. [42] used NFIS

for the prognosis of gearbox conditions. Greitzer et al. [78] proposed a model for

RUL estimation of gas turbine engine health prognostics using ANN.

Some studies have been reported for SVM-based prognostics in recent years.

Though the number is limited, the results are quite promising. Samanta et al.

[19] adopted ANFIS and SVM for gearbox condition prognostics, and the results

showed that SVM was better than NFIS for the tested problems. Chen [24] and Pai

[25] proposed respectively an algorithm based on genetic algorithm and SVM for

prognostics of system reliability. Kim et al. [26] proposed an SVM-based method

to obtain the point estimate of RUL for bearings. Hong et al. [27] used SVM for

engine condition prognostics. The theory of SVM for prediction is covered in detail

in the next chapter, because SVM-based prognostics is another focal point of this

thesis.

2.5 Summary

This chapter reviews some typical data-driven approaches for both diagnostics and

prognostics. The diagnostics and prognostics contain the same two stages of data

acquisition and data processing. The rationales for these two stages are presented,

and some reported work is reviewed. For the diagnostics and prognostics stages,

statistical and artificial intelligence methods of data-driven approaches are reported.

The advantages and disadvantages of these two types of method are commented on,

and some typical methods are reviewed. SVM, as the focus of this thesis, is also

mentioned in the section on artificial intelligence methods. The relevant reported

studies are reviewed, but the SVM theory is presented in the next chapter.
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Chapter 3

Support Vector Machine
Fundamentals

In this chapter, the fundamentals of support vector machine (SVM) are presented.

SVM is a learning system that uses a hypothetical space of linear functions in a

high dimensional feature space, trained with a learning algorithm from optimization

theory that implements a learning bias derived from statistical learning theory. SVM

can be used in the realms of classification and regression. For ease of use, this chapter

uses shortened names SVC for support vector classification and SVR for support

vector regression. Fundamentals of SVC and SVR are separately introduced in this

chapter.

3.1 Support Vector Classification

Regular SVC is applicable only to binary classification problems. For problems

involving multiple classes, several approaches can be incorporated with SVC to

achieve multi-class classification problems. In this section, the theory of binary SVC

is first introduced. After that, two multi-class strategies, one-against-all (OAA) and

one-against-one (OAO), are introduced for multi-class SVC.

3.1.1 Binary Support Vector Classification

Consider a problem of binary classification where training data are given as {(x1, y1);

(x2, y2); . . . ; (xM , yM )},xi ∈ R
m and yi ∈ {1,−1}, (i = 1, 2, . . . ,M). The labels of

1 and -1 are used to represent the two classes of data points. If the training data
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are linearly separable, there exists a separating plane (SP) in the input space; this

can be expressed as

f(x) = wTx+ b =
m
∑

j=1

wjxj + b = 0, (3.1)

where w ∈ R
m is a weight vector, b is a scalar, and T means the transpose operator.

The parameters of w and b define the location of the SP and are determined during

the training process.

In SVC theory, training data points satisfying the constraints that f(xi) = 1 if

yi = 1 and f(xi) = −1 if yi = −1 are called support vectors. Other training data

points satisfy the inequalities that f(xi) > 1 if yi = 1 and f(xi) < −1 if yi = −1.
As a result, a complete form of constraints for all training data can be represented

as

yif(xi) = yi(w
Txi + b) ≥ 1 for i = 1, 2, . . . ,M. (3.2)

Figure 3-1 illustrates a linearly separable classification problem in a two-dimensional

space. In this figure, all squares are labeled −1 while all circles are labeled +1. The

solid squares and the solid circles are called support vectors. The two dash lines rep-

resent two parallel planes where one crosses all solid squares and the other crosses all

solid circles. These two parallel planes are called boundaries. The distance between

the boundaries is called the margin.
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Figure 3-1: Examples of a linearly separable classification problem in R
2

The quantity of margin can be computed by the distance between two parallel

planes. Given two parallel planes, wTx+ b = +1 and wTx+ b = −1, the distance

can be obtained by:

D =

∣

∣

∣

∣

(wTx+ b− 1)− (wTx+ b+ 1)

‖w‖

∣

∣

∣

∣

=
2

‖w‖ . (3.3)

It is intuitive that many pairs of such parallel planes could exist. In SVC theory,

one searches for the pair that provides the largest margin value. As long as the

maximal margin is obtained, an optimal SP, the solid straight line in Figure 3-1,

can be determined as the plane that is parallel to and equally distant from these two

parallel planes. More details can be found in [79]. Because the margin can represent

the separation of data points, its values could be used to assess feature usefulness.

In Chapter 5, a feature selection method is presented based on changes in margin

value .

To acquire the optimal SP, SVC adopts an optimization process that maximizes

margin and minimizes noise using slack variables, ξi.

Minimize
1

2
‖w‖2 + CΣM

i=1ξi, (3.4)

Subject to yi(w
Txi + b) ≥ 1− ξi, i = 1, 2, . . . ,M,

ξi ≥ 0, i = 1, 2, . . . ,M,
(3.5)
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where C is a positive constant and ξi represents the distance between a data point,

xi, lying on the false class side and the plane in its virtual class side. This opti-

mization problem can be solved by introducing the Lagrange multipliers, αi and

βi.

L(w, b, ξ,α,β) =
1

2
‖w‖2 + CΣM

i=1ξi − ΣM
i=1αi(yi(w

Txi + b)− 1 + ξi)

− ΣM
i=1βiξi, (3.6)

where α = (α1, . . . , αM )T,β = (β1, . . . , βM )T, and ξ = (ξ1, . . . , ξM )T.

For the optimal solution, the derivatives of the Lagrange function with respect

to w, b and ξ should vanish, that is,

∂L

∂w
= 0 =⇒ w = ΣM

i=1αiyixi, i = 1, 2, . . . ,M, (3.7)

∂L

∂b
= 0 =⇒ ΣM

i=1αiyi = 0, i = 1, 2, . . . ,M, (3.8)

∂L

∂ξ
= 0 =⇒ αi + βi = C, i = 1, 2, . . . ,M. (3.9)

Substituting Eqs. (3.7) and (3.8) into Eq. (3.6) yields:

L(α) = ΣM
i=1αi −

1

2
ΣM
i,j=1αiαjyiyjx

T
i xj . (3.10)

The primal minimization problem of Eqs. (3.4) and (3.5) can be transformed

into the dual optimization problem of maximizing Eq. (3.10) subject to the following

constraints:

ΣM
i=1yiαi = 0, i = 1, 2, . . . ,M, (3.11)

C ≥ αi ≥ 0, i = 1, 2, . . . ,M. (3.12)

By solving the dual optimization problem, one obtains the coefficients αi which

are required to express w. Following the Karush-Kuhn-Tucker (KKT) condition,

the products of the dual variables and the constraints should be equal to zero at the

solution point:
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αi(yi(w
Txi + b)− 1) = 0, i = 1, 2, . . . ,M. (3.13)

According to Eqs. (3.7) and (3.13), the expressions of w and b are given by:

w = ΣM
i=1yiαixi, (3.14)

b =
1

p
Σp
j=1(yj −wTxj), (3.15)

where p is the number of support vectors and b has an expression only when αi

is non-zero for the support vectors. The advantage of SVM with regard to using

limited amount of data for its model establishment can be seen from Eq. (3.14).

This is the expression of w, the coefficient of the underlying dependency. The w is

dependent on the sum of the product of yi, αi, and xi. The αi is non-zero for only

support vectors, so it mathematically shows that SVM uses only a certain amount

of data points for building its model representing the underlying dependency. Once

w and b are available, the linear decision function can be given by:

if = sign(ΣM
i=1αiyi(x

T
i x) + b), (3.16)

where if if is positive, a new input data point, x, belongs to class 1 (yi = 1) and if

if is negative, x belongs to class 2 (yi = −1).

When the given data are not linearly separable, using Eq. (3.16) is no longer

appropriate. In SVC theory, this problem is addressed by introducing a mapping

which projects the original input data onto a high dimensional feature space in

which the input data can be linearly separated. Figure 3-2 gives an example of

feature mapping from a two-dimensional input space to a two-dimensional feature

space using a mapping, Φ(·). As a result, data points that can not be separated by

a linear function in the input space can be linearly separated in the feature space.
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Figure 3-2: Example of feature mapping enabling linear data separation

Adopting the mapping allows the linear model of Eq. (3.16) to remain valid for

non-linear cases. Accordingly, the non-linear function can be given by:

if = sign(ΣM
i=1αiyi(Φ

T(xi)Φ(x)) + b), (3.17)

where Φ : Rm −→ χ is a mapping function which transforms the original input space

into a feature space. The fact is, however, that this mapping function is difficult

or even impossible to compute. Fortunately, one can avoid computing it by using

kernel functions, since only the dot product of the mapping functions is needed in

Eq. (3.17). A kernel function, represented by K(xi,x) = ΦT(xi)Φ(x), can return a

dot product of the feature space mappings of the original inputs, which makes the

explicit form of Φ(·) no longer necessary. The non-linear decision function can thus

be given by:

if = sign(ΣM
i=1αiyiK(xi,x) + b). (3.18)

Any function that satisfies Mercer’s theorem [80] can be used as a kernel function.

Many kernel functions are off the shelf. The selection of kernel function is dependent

on the distribution of the data which, however, is often difficult to know if prior

knowledge of the data is not available. This is difficult even for the data in a

high-dimension the distribution of which can not be visualized. A commonly-used

method for kernel selection is the “trials and errors” test. For example, one can

assess different kernel functions in terms of their accuracy of classification. The
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kernel function to be selected is the one offering the highest classification accuracy.

Fortunately, this test is not computationally expensive, since Gaussian kernel and

polynomial kernel are often adequate for most applications [11, 81]. In this thesis,

kernel function and kernel parameter are denoted as kf and kp, respectively. For

example, Gaussian kernel is expressed as:

kf = K(xi,x) = exp(
‖x− xi‖2

2σ2
) (3.19)

where σ represents the width parameter, denoted as kp = σ. Polynomial kernel is

expressed as:

kf = K(xi,x) = (xTxi + c)d (3.20)

where c is a constant term and d represents the polynomial degree, denoted as

kp = [c, d].

3.1.2 Multi-class Support Vector Classification

3.1.2.1 One-Against-All (OAA)

The OAA strategy virtually transforms an N -class classification problem into N

binary classification problems. For an SVC-based OAA approach, N SVC models

are established using Eqs. (3.4) and (3.5). The jth (j = 1, 2, . . . , N) SVC model is

trained using all training data in which data points belonging to the jth class carry

the positive label and the rest carry the negative label. After a successful training

of all N SVC models, a new data point, x, is said to belong to the class that has

the largest value for the following indicator function [11]:

Class of x ≡ argmaxj=1,2,...,N ((w(j))TΦ(x) + b(j))

= argmaxj=1,2,...,N (ΣM
i=1α

(j)
i y

(j)
i K(j)(xi,x) + b(j))

(3.21)

where w(j) and b(j) represent the parameters of the jth SVC model.

3.1.2.2 One-Against-One (OAO)

The OAO strategy consists of constructing one SVC for each pair of classes. Thus,

for a problem with N classes, the number of N(N − 1)/2 SVCs are trained to

distinguish data points of one class from those of another class. An unknown data

point is classified according to the maximal number of votes, where each SVC votes

for one class [11].
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3.2 Support Vector Regression

An SVR model can be obtained by minimizing the following expression:

RSVR = RSTR +REMR, (3.22)

where RSVR represents the regression risk of SVR, RSTR represents the structural

risk (model complexity), and REMR represents the empirical risk (estimation error)

assessed by loss functions.

Simultaneously minimizing empirical risk and model complexity enables SVR

to have good generalization ability and makes it less prone to over-fitting. The

type of SVR depends on the loss functions employed. For example, standard SVR

employs the ǫ-insensitive loss function; another commonly used SVR model called

least square SVR (LSSVR) employs the squared loss function. This section intro-

duces the loss function as well as the two mentioned SVRs because they are used in

following chapters.

3.2.1 Loss Function

Under the assumption that a given set of samples, {(x1, y1); (x2, y2); . . . ; (xM , yM )} ⊂
R
m × χ, can be generated by an underlying functional dependency plus additive

noise, yi = f(xi) + ηi, for the density model of p(ηi). The optimal loss function for

the samples can be obtained using the maximum likelihood method:

f̂ = argmaxf (p(η1, . . . , ηM )),

= argmaxf (p(y1 − f(x1), . . . , yM − f(xM ))), (3.23)

where f̂ represents the optimal underlying functional dependency.

If it is assumed that the additive noise is independently and identically dis-

tributed, Eq. (3.23) can be equally represented as:

f̂ = argmaxf (

M
∏

i=1

p(yi − f(xi))). (3.24)
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Since maximizing a product is equivalent to minimizing a negative logarithm of the

product, Eq. (3.24) can be expressed as:

f̂ = argminf (−
M
∑

i=1

log[p(yi − f(xi))] = argminf (

M
∑

i=1

c(yi − f(xi)), (3.25)

where c represents an optimal loss function or cost function.

Based on the density models reported in [82], the commonly used ǫ-insensitive

and squared loss functions can be derived from:

pǫ(η) =
1

2(1 + ǫ)
e|η|ǫ

-log
=⇒ cǫ(η) = |η|ǫ, (3.26)

ps(η) =
1√
2π

e
1

2
η2 -log

=⇒ cs(η) =
1

2
η2, (3.27)

where pǫ and ps represent the density models corresponding to the ǫ-insensitive

function, cǫ, and the squared loss function, cs, respectively. It is noted that ps is

virtually a Gaussian density function; hence, the squared loss function is optimal

for data with Gaussian additive noise.

3.2.2 Standard SVR

Let us consider the samples in Section 3.2.1. If it is assumed that they can be

linearly described, the following expression exists:

f(w,x) = wTx+ b,w ∈ R
m, b ∈ χ. (3.28)

In SVR theory, the RSTR term in Eq. (3.22) is represented by the squared norm

of w, namely ‖w‖2 = wTw. It is believed that a smaller such value corresponds to

a lower complexity, in other words a flatter shape for f(w,x).

Standard SVR adopts the ǫ-insensitive loss function to determine tolerated errors

between observations and predictions. This indicates that one is not concerned

about the difference between the observations and the predictions that are smaller

than ǫ but care about those larger than ǫ. In other words, SVR concerns only data
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Figure 3-3: SVR with ǫ-insensitive loss function for one-dimensional data

points that are outside the ǫ-insensitive zone. Figure 3-3 shows an example of SVR

with ǫ-insensitive loss function for one-dimensional data.

The ǫ-insensitive loss function is formulated as:

|y − f(w,x)|ǫ =
{

0 if |y − f(w,x)| ≤ ǫ,

|y − f(w,x)| − ǫ otherwise.
(3.29)

The standard SVR model can thus be formulated as:

Minimize
1

2
‖w‖2 + CΣM

i=1(ξi + ξ∗i ) (3.30)

Subject to











yi −wTxi − b ≤ ǫ+ ξi,

wTxi + b− yi ≤ ǫ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0,

(3.31)

where two non-negative slack variables, ξi and ξ∗i , i = 1, 2, . . . ,M, are used to mea-

sure deviations outside the ǫ-insensitive zone, and parameter C is a positive constant

called a regularization parameter which determines a compromise between the com-

plexity and the amount up to which deviations larger than ǫ are tolerated. The

parameters C and ǫ need to be pre-specified. Some studies reporting the selection

of the parameters can be found in [24, 30, 83, 84].

The problem given above is a constrained optimization problem which can be

solved using the Lagrange multiplier method; this is given by:
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Maximize L(w, b, ξ, ξ∗) =
1

2
‖w‖2 + CΣM

i=1(ξi + ξ∗i )

− ΣM
i=1αi(ǫ+ ξi − yi +wTxi + b)

− ΣM
i=1α

∗
i (ǫ+ ξ∗i + yi −wTxi − b)

− ΣM
i=1(λiξi + λ∗

i ξ
∗
i ), (3.32)

where αi, α
∗
i , λi, and λ∗

i are Lagrange multipliers and are subject to non-negativity

requirements. The conditions for optimality are given by:

∂L

∂w
= 0 =⇒ w = ΣM

i=1(αi − α∗
i )xi, i = 1, 2, . . . ,M, (3.33)

∂L

∂b
= 0 =⇒ ΣM

i=1(αi − α∗
i ) = 0, i = 1, 2, . . . ,M, (3.34)

∂L

∂ξi
= 0 =⇒ C = αi − λi, i = 1, 2, . . . ,M, (3.35)

∂L

∂ξ∗i
= 0 =⇒ C = α∗

i − λ∗
i , i = 1, 2, . . . ,M. (3.36)

From Eq. (3.33), w can be expressed in terms of variables αi and α∗
i . Substi-

tuting Eq. (3.34) into Eq. (3.32) makes b terms vanish. Substituting Eqs. (3.35)

and (3.36) into Eq. (3.32) makes λi and λ∗
i vanish and results in only one term con-

taining ξi and ξ∗i , expressed as CΣM
i=1(ξi + ξ∗i ). This term is a constant for a given

set of data which does not affect maximization results, so it can be removed from

the resultant objective function. As a result, the optimization problem becomes:

Maximize − 1

2
ΣM
i,j=1(αi − α∗

i )(αj − α∗
j )x

T
i xj − ǫΣM

i=1(αi + α∗
i )

+ ΣM
j=1yj(αj − α∗

j ) (3.37)

Subject to

{

ΣM
i=1(αi − α∗

i ) = 0,

αi, α
∗
i ∈ [0, C].

(3.38)

The term b can be obtained according to the KKT condition on which the

product of dual variables and constraints at the point of the optimal solution has

to vanish:
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αi(ǫ+ ξi − yi +wTxi + b) = 0, (3.39)

α∗
i (ǫ+ ξ∗i + yi −wTxi − b) = 0, (3.40)

(C − αi)ξi = 0, (3.41)

(C − α∗
i )ξ

∗
i = 0. (3.42)

Only the data points corresponding to αi = C or α∗
i = C lie outside the ǫ-

insensitive zone and yield a non-zero coefficient, w. Such data points are referred

to as support vectors. This determines the advantage of SVM about using limited

number of data points for establishing its model, which is similar to that discussed

for SVR above. As well, αiα
∗
i = 0 states that no pairs of αi and α∗

i can be non-zero

at the same time; this yields:

b = yi −wTxi − ǫ, for 0 ≤ αi ≤ C, (3.43)

b = yi −wTxi − ǫ, for 0 ≤ α∗
i ≤ C. (3.44)

Therefore, the optimal regression function can be represented as:

f(x) =
M
∑

i=1

(αi − α∗
i )x

T
i x+ b. (3.45)

When the given samples can not be linearly represented, Eq. (3.45) can still be

made valid by introducing a mapping function, Φ(·), (the same as that of SVC) on

which the primal input data are projected onto a high dimensional feature space

in which they can be linearly represented. Hence, the regression model can be

formulated as:

f(x) =
M
∑

i=1

(αi − α∗
i )Φ

T(xi)Φ(x) + b. (3.46)

Kernel function, K(xk,xj) = ΦT(xk)Φ(xj), k, j = 1, . . . ,M, is then used, and

the following regression model is obtained:

f(x) =
M
∑

i=1

(αi − α∗
i )K(xi,x) + b, (3.47)

where the term b can be computed based on Eqs. (3.43) and (3.44).
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3.2.3 Least Square SVR (LSSVR)

Unlike standard SVR, LSSVR is based on a squared loss function and is optimal for

predicting data containing Gaussian additive noise. The LSSVR model is formulated

as:

Minimize J(w, e) =
1

2
‖w‖2 + 1

2
C

M
∑

i=1

e2i (3.48)

Subject to yi = wTΦ(xi) + b+ ei, i = 1, 2, . . . ,M, (3.49)

where a mapping of Φ(·) is directly employed to allow LSSVR to work for non-linear

cases.

The constraints in Eq. (3.49) are all equality constraints which are easy to deal

with. Introducing the Lagrange multiplier method into Eqs. (3.48) and (3.49) yields

an unconstrained optimization problem:

Maximize L(w, b, e,α) = J(w, e)−
M
∑

i=1

αi[w
TΦ(xi) + b+ ei − yi]. (3.50)

The conditions for optimality are given by:

∂L

∂w
= 0→ w =

M
∑

i=1

αiΦ(xi), i = 1, 2, . . . ,M (3.51)

∂L

∂b
= 0→

M
∑

i=1

αi = 0, i = 1, 2, . . . ,M, (3.52)

∂L

∂ei
= 0→ αi = Cei, i = 1, 2, . . . ,M, (3.53)

∂L

∂αi
= 0→ wTΦ(xi) + b+ ei − yi = 0, i = 1, 2, . . . ,M. (3.54)

These conditions are similar to the optimality conditions of standard SVR except

for the condition αi = Cei. It is seen that every ei is used for computing αi which

implies that all the data points are used for constructing the regression model. This,

as a result, makes LSSVR lose the sparseness property.

By eliminating w and e, one can obtain a matrix equation that contains only α

and b:
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[

0 1T

1 Ω+ C−1I

] [

b
α

]

=

[

0
y

]

, (3.55)

where Ωk,j = ΦT(xk)Φ(xj), k, j = 1, . . . ,M,y = [y1; . . . ; yM ] ,α = [α1; . . . ;αM ] ,

and 1 = [1; . . . ; 1] . When Ω + C−1I is symmetric and positive definite, its inverse

exists. Hence, the solution of Eq. (3.55) can be represented by:

α = (Ω+ C−1I)−1(y − b1), (3.56)

b =
1T(Ω+ C−1I)−1y

1T(Ω+ C−1I)−11
. (3.57)

Using kernel function, the LSSVR model can be represented as:

f(x) =
M
∑

i=1

αiK(xi,x) + b. (3.58)

where K(xi,x) = ΦT(xi)Φ(x), i = 1, . . . ,M.

3.3 Summary

This chapter presents the theory of SVC. SVC can be used only for binary clas-

sification problems; this means only two classes of data points can be classified.

Fortunately, one can extend SVC to multi-class SVC using OAA or OAO in order

to deal with multiple classes. Chapter 5 presents a diagnostic algorithm using both

SVC and OAA-based multi-class SVC. The theories of SVR and LSSVR are also

presented in this chapter. These two can be used for prediction, however, LSSVR

is superior when Gaussian noise are involved in the data. Chapter 6 presents an

online prognostic algorithm where SVR and LSSVR are used for prediction.
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Chapter 4

Experimental Systems

This thesis proposes SVM-based algorithms for diagnostics and prognostics. In order

to examine their effectiveness in industrial applications, two test rigs are employed

to collect data . The two test rigs include one slurry pump and a planetary gearbox

which were designed and established for collaborative research projects between

Syncrude Research Center and Reliability Research Lab (Department of Mechanical

Engineering, University of Alberta). This thesis uses some data, tables, and pictures

of these two projects. The author would like to thank all the people who have made

efforts on gathering and creating them. The two test rigs are used, because they

can mitigate the possible inadequacy of the data collected from a single test rig.

In addition, many features have been reported for gearbox diagnosis, so it allows

to test the proposed feature selection algorithm which needs a large number of

features to begin with. Slurry pump data do not have such an advantage. This

chapter introduces the two test rigs, the details of experiments conducted, and the

data collected for evaluating the proposed algorithms.

4.1 Planetary Gearbox Test Rig

Planetary gearboxes are widely used in Canada’s oil sands industry and other heavy-

duty industry such as helicopters, heavy-duty trucks, and other large-scale machin-

ery. Planetary gearboxes are able to undertake heavy-duty tasks (high torque out-

put) because they have multiple planet gears to share and carry loads. Unscheduled

outages of planetary gearboxes have major economic consequences. Online assess-

ment of the health condition of planetary gearboxes could generate significant cost
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savings for these industries.

4.1.1 System Descriptions

A planetary gearbox test rig is designed to provide full capabilities of performing

controlled experiments suitable for developing a reliable diagnostic system for plan-

etary gearboxes. Figure 4-1 illustrates the test rig established the main components

of which include one 20 HP drive motor, one stage of bevel gearbox, two stages

of planetary gearbox, two stages of speed-up gearbox, and one 40 HP load motor.

The drive motor is on the first foundation, the bevel gearbox and the planetary

gearboxes are on the second foundation, and the two speed-up gearboxes and the

load motor are on the third foundation. My research objective is the two stages of

planetary gearboxes which have an over-hung floating configuration that mimic the

support found in field planetary gearboxes at Syncrude’s mining operations.

Figure 4-1: View of planetary gearbox test rig

Figure 4-2 shows a diagram of the structure of the two stages of planetary

gearboxes. The 1st stage sun gear is mounted on the right side of shaft #1 with the

driven bevel gear mounted on the left side. The 1st stage planet gears are located

on the 1st stage carrier which is connected to shaft #2. The 2nd stage sun gear is

mounted on the other side of shaft #2. The 2nd stage planet gears are mounted

on the 2nd stage carrier located on output shaft #3. The ring gears of the 1st and

2nd stage are mounted on the housing of the corresponding stage. The two stages

of planetary gearbox have different parameters for their gears. Table 4-1 lists the
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number of teeth and the speed ratio achieved by each stage of the gearbox. For

the speed-up ratio, the ratio value is calculated by the output speed divided by the

input speed. For the speed reduction ratio, the ratio value is calculated by the input

speed divided by the output speed.
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Figure 4-2: Diagram of two-stage planetary gearbox

Table 4-1: Number of teeth for two-stage planetary gearbox

 Bevel 1st planetary 2nd planetary 1st speed-up 2nd speed-up 

Gears IB OB S P R S P R GI SM LM GO GI SM LM GO 

No. 18 72 28 62(3) 152 19 31(4) 81 72 32 80 24 48 18 64 24 

Ratio 4↓ 6.429↓ 5.263↓ 3.75↑ 7.111↑ 

Note: No.: number of gear teeth, IB: input bevel gear, OB: output bevel gear, S: sun gear, P: planet gear, R: 

ring gear, GI: gear on input shaft, SM: small gear on middle shaft, LM: large gear on middle shaft, GO: 

gear on output shaft, ↓: speed reduction ratio, and ↑: speed-up ratio. The number of planet gears is indicated 

in the parentheses.   

Four accelerometers are located on the housing of the two-stage planetary gear-

box; these consist of two identical low sensitivity accelerometers (LS1 and LS2) and

two identical high sensitivity accelerometers (HS1 and HS2) as shown in Figure 4-2.

The LS is miniature DeltaTron accelerometer, the manufacturer is Brüel & Kjaer,

the model number is 4508B, the frequency range is 0.3 - 8,000 Hz, and the adhesive

mounting clip is attached to the housing for securing the body of accelerometer.

The HS is SEISMIC ICP accelerometer, the manufacturer is PCB Piezotronics, and

the model number is 393B32, the frequency range is 0.2 - 200 Hz, and the adhesive
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mounting is attached to the housing and the body of accelerometer is secured by

screw. Figure 4-3 gives a view of the location of the four accelerometers and three

speed-reduction gearboxes. Acoustic emission (AE) and particle counter data are

also collected. This thesis focuses only on the analysis using vibration signals.
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Figure 4-3: View of accelerometers and three reduction gearboxes locations

4.1.2 Manual Pitting Damage Experiments

Manual pitting damage experiments were designed and implemented to provide vi-

bration data corresponding to different levels of gear pitting damage. The vibration

data are the basis on which methods of classifying fault levels can be examined.

4.1.2.1 Damage Creation

Based on stress calculations [85], it has been found that planet gears on the 2nd

stage planetary gearbox are more likely to suffer pitting damage during operations,

so our focus was the pitting damage on these planet gears. Since it is difficult to

govern the natural progression of pitting damage so as to obtain desired discrete

damage levels, we chose to create pitting damage artificially. To mimic the pits

observed on actual pitted gears, the following rationales were applied to manually

creating various levels of pitting damage.

Slight level: Three holes (simulated pits) on one tooth and one hole on each of

its two nearest neighboring teeth. The holes on the teeth are on the same

mesh side. The percentage of pitted area, denoted as APit/AFace × 100%, is

used to assess created holes where APit represents the area of all created holes
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and AFace represnts the area of the tooth surface. We define the diameter

of a hole as being 3 mm which gives APit = 7.07 mm2. The area of tooth

surface is obtained from gear specifications, AFace = 267 mm2. In this way,

the percentages of simulated pitted area are 2.65%, 7.95%, and 2.65% for the

three teeth. This choice is in accordance with the definition of Level 2 given in

the ASM Handbook which specifies a pitted area of 3-10% of the tooth area.

This level of damage is used to mimic a minimal detectable level of pitting

damage.

Moderate level: A total of 10 holes on one tooth, and 3 holes on each of its

two nearest neighboring teeth, with one hole on each of its second nearest

neighboring teeth. The most pitted tooth corresponds to ASM’s level 3 pitting

(15% - 40% of tooth area). The pitted areas of the 5 teeth are 2.65%, 7.95%,

26.5%, 7.95% and 2.65%.

Severe level: A total of 24 holes on one tooth, with 10 holes on each of its two

nearest neighboring teeth, and 3 holes on each of its second nearest neighbor-

ing teeth. The most pitted tooth corresponds to ASM level 4 pitting (50% -

100% of tooth area). The pitted areas of the 5 teeth are 7.95%, 26.5%, 63.6%,

26.5% and 7.95%. This level of damage is used to mimic the last tolerable

level of damage before major shutdown of the system occurs.

Figure 4-4 illustrates the schematic of the holes on a tooth surface where n

represents a certain gear tooth number, n + 1 and n − 1 represent its nearest gear

tooth numbers, and the numbers in parentheses represent the number of holes on

the teeth from n− 2 to n+ 2. Figure 4-5 gives views of the planet gears with four

damage levels, baseline (top left), slight (top right), moderate (bottom left), and

severe (bottom right). More details on creating pitting damage can be found in [86].
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Figure 4-4: Simulation of pitting levels on planet gears

Figure 4-5: View of four artificially pitted planet gears

4.1.2.2 Implementations

There are four planet gears in the 2nd stage planetary gearbox (see Table 4-1).

We installed three normal and one artificially damaged planet gears in the test rig

and conducted the experiments. Upon finishing one experiment, we replaced the

artificially damaged gear with one having another level of damage. This procedure

was repeated until all four damage levels were tested.

For each of damage level, we conducted experiments on two separate days. For
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each day, the load and the drive motor speed were varied. The two load conditions

involved were “noload” and “load”. For the load condition, constant torque of 10,000

lb·in was applied to the output shaft of the 2nd stage planetary gearbox. The four

drive motor speeds applied were: 300, 600, 900, and 1200 revolutions per minute

(rpm). Under each load condition, the drive motor speed was applied constantly

one after another.

4.1.2.3 Data Collection

For each combination of loads and speeds, vibration data were collected from each of

the four accelerometers with a sampling frequency of 10,000 Hz and a time span of

5 minutes. Each of these time-span data were further split into 10 segments of equal

length. The segment length was determined to ensure that the lowest frequency

component of interest, the carrier frequency from the 2nd stage planetary gearbox

at 300 rpm, was covered. As a result, there are 80 segments (2 days × 4 damage

levels × 10 segments) for each combination of loads and speeds. Table 4-2 lists the

number of segments available for different conditions.

Table 4-2: Availability of data segments for manual pitting damage experi-
ments

Exp. day Load cond. Speed Baseline Slight Moderate Severe 

Day 1 

No-Load 

300 rpm 10 10 10 10 

600 rpm 10 10 10 10 

900 rpm 10 10 10 10 

1200 rpm 10 10 10 10 

Load 

300 rpm 10 10 10 10 

600 rpm 10 10 10 10 

900 rpm 10 10 10 10 

1200 rpm 10 10 10 10 

Day 2 

No-Load 

300 rpm 10 10 10 10 

600 rpm 10 10 10 10 

900 rpm 10 10 10 10 

1200 rpm 10 10 10 10 

Load 

300 rpm 10 10 10 10 

600 rpm 10 10 10 10 

900 rpm 10 10 10 10 

1200 rpm 10 10 10 10 
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4.1.3 Run-to-Failure Experiments

Run-to-failure (RTF) experiments were conducted in order to study the wear pro-

gression of planetary gears. Because we were most interested in the 2nd stage plane-

tary gearbox, a softer gear set was chosen for this stage. This allowed the 2nd stage

planetary gears to wear out before obvious wear appeared on the gears of other

stages. To track the wear progression of gears, sun, planet and ring gears of the 2nd

stage planetary gearbox were all uniquely labeled; moreover, ten teeth of each of

these gears were also labeled.

The RTF experiment was operated for 762 hours. Interim, we suspended the

experiments many times for inspections. During each suspension, we took pictures

of each gear. A microscope was also used to capture details of the wear pattern on

each labeled tooth. Figure 4-6 compares tooth profiles for the 1st, 11th, and 19th

runs. Figure 4-7 shows changes in the wear pattern on the sun gear of tooth number

10 for these three runs. In the 11th run, we observed a large pit on the top right

tooth surface above the pitch line, which might have been caused by adhesive wear.

Under the pitch line, few pits were observed (see circled area in Figure 4-7). At the

tooth root, significant squeezing wear was observed. In the 19th run, the large pit

became smaller due to polishing. Under the pitch line, some old pits were polished

away, some became larger, and new pits also appeared. Squeezing wear was still

obvious. On the basis of our calculations of tooth profile, we estimated that by the

19th run, 60% of the material had been removed from the sun gear teeth; therefore,

we terminated the RTF experiment at this run.

The parameter settings for the RTF experiment are as follows. The motor speed

was kept constant at 1200 rpm, the load applied was 20,000 lb·in, and the sampling

frequency was 10,000 Hz for runs 1 - 4 and 5,000 Hz for the remaining runs.
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Figure 4-6: Profile change on sun gear teeth in 2nd stage planetary gearbox
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Figure 4-7: Wear pattern change on sun gear teeth in 2nd stage planetary
gearbox

4.1.3.1 Data Collection

For the RTF experiment, vibration data were collected every one hour for runs

1-3 and every two hours for the remaining runs. Similar to the manual pitting

experiments, every 5-minute time span data were recorded and stored in a data file.

The data from each file were further split into 10 segments of equal length. All

data segments were then connected in a time series in order to construct a series of

degradation data. Table 4-3 shows the duration, the data files available and some

experimental parameters for each run.
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Table 4-3: Availability of data files for RTF experiment

Run 

No. 

Hours 

operated 

No. of 

data files 

Freq. of 

collection 

Sampling 

freq. (Hz) 

1 8 10 Every 1 hour 10,000 

2 8 9 Every 1 hour 10,000 

3 16 17 Every 1 hour 10,000 

4 32 11 Every 2 hours 10,000 

5 32 17 Every 2 hours 5,000 

6 64 41 Every 2 hours 5,000 

7 32 19 Every 2 hours 5,000 

8 32 19 Every 2 hours 5,000 

9 48 41 Every 2 hours 5,000 

10 48 32 Every 2 hours 5,000 

11 54 32 Every 2 hours 5,000 

12 48 30 Every 2 hours 5,000 

13 48 30 Every 2 hours 5,000 

14 48 30 Every 2 hours 5,000 

15 48 36 Every 2 hours 5,000 

16 56 26 Every 2 hours 5,000 

17 58 37 Every 2 hours 5,000 

18 51 25 Every 2 hours 5,000 

19 31 18 Every 2 hours 5,000 

 

4.2 Slurry Pump Test Rig

Slurry pumps used at Syncrude play the critical role of providing and maintaining a

flow of slurries for bitumen separation. Their reliable operation is essential for the

running of the whole production process. Slurries contain abrasive and erosive solid

particles, which cause severe wear of wetted components in the pumps. The wear

of wetted components is a main cause of reduced pump performance and eventual

pump failure. Monitoring the wear condition of the wetted components in slurry

pumps provides useful information for effective pump operation and maintenance,

enhancement of pump availability, and reduction of operation costs [87].

4.2.1 System Description

The slurry pump test rig was designed to run the pump at controlled speeds, flow

rates, slurry densities, and inlet pressures using wetted components with controlled

levels of damage. Figure 4-8 shows a diagram of the slurry pump test rig.
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Figure 4-8: Diagram of slurry pump test rig

The test rig contains a Weir/Warman 3/2 CAH slurry pump (40 HP) with

impeller C2147 (8.4”) which has a radially split casing, a 2-piece liner, a gland

packing shaft seal arrangement, a closed impeller design, and a maximum pump

casing pressure of 300 psi. The inlet and outlet diameters are 3 inches and 2 inches,

respectively. The drive motor rating is 40 HP, 1200 rpm, and 326 T frame. Three tri-

axial vibration accelerometers were used, one with high sensitivity and low frequency

located on top of the casing (A2) and the other two with low sensitivity and high

frequency located at the side of the outlet (A1) and at the top of the pump bearing

(A3). There are also pressure gauges located for control purposes at the suction

and the discharge sides of the pump. A gate valve is in-line to control the flow rate,

and a venturi meter provides flow rate information on the control panel. Figure 4-9

shows local views of the test rig where ADAQ represents acoustic data acquisition,

VDAQ represents vibration data acquisition, PIP represents pump inlet pressure,

and POP represents pump outlet pressure. More details on this test rig can be

found in [87].
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Figure 4-9: Views of slurry pump test rig

4.2.2 Impeller Damage Experiments

Upon examination of the wear patterns of worn impellers taken off from field slurry

pumps, four damage modes were considered: impeller hole-through damage, impeller

vane trailing edge damage, impeller vane leading edge damage, and impeller expeller

vane damage. Figure 4-10 shows views of the studied trailing edge and the leading

edge damage from typical industrial pumps. The damage profiles produced on lab

impellers mimic the observed wear patterns of worn field impellers.

Figure 4-10: Trailing edge damage (left) and leading edge damage (right)
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For each damage mode, four wear levels were used with regard to the impeller:

baseline (no wear), slight, moderate, and severe. Detailed information on the profiles

of different levels for each of the damage modes machined can be found in [88].

Experiments were conducted at pump speeds of 1800, 2200, and 2600 rpm.

4.2.2.1 Data Collection

The slurry pump experiments were conducted according to the various conditions of

medium, damage level and speed which are shown in Table 4-4. Vibration data were

collected under these conditions through three accelerometers mounted at different

places on the pump casing. For each of these conditions, 5-minute time span data

were recorded. The sampling frequency was 9,000 Hz. One can refer to [87] for more

details regarding data availability.

Table 4-4: Availability of data files for slurry pump experiment

Medium Damage mode Damage degree Speed (rpm) 

Water 

Trailing edge  

damage 

Baseline 1400,1600,1800,2200,2600 

Slight 1800,2200,2600 

Moderate 1600,1800,2200,2600 

Severe 1600,1800,2200,2600 

Leading edge  

damage 

Baseline 1400,1600,1800,2200,2600 

Slight 1800,2200,2600 

Moderate 1600,1800,2200,2600 

Severe 1600,1800,2200,2600 

Slurry 

Trailing edge  

damage 

Baseline 1400,1600,1800,2200,2600 

Slight 1800,2200,2600 

Moderate 1600,1800,2200,2600 

Severe 1600,1800,2200,2600 

Leading edge  

damage 

Baseline 1400,1600,1800,2200,2600 

Slight 1800,2200,2600 

Moderate 1600,1800,2200,2600 

Severe 1600,1800,2200,2600 

 

4.3 Summary

This chapter presents a planetary gearbox test rig and a slurry pump test rig which

mimic the field machines employed in the oil sands industry. We collected vibration

data from these two test rigs under various experimental conditions. These data

are used to examine the performance of our proposed methods for diagnostics and

prognostics of engineering systems. Data from the slurry pump and planetary gear-
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box are used for damage level classification in Chapter 5. Condition prognostics for

the slurry pump and the planetary gearbox are presented in Chapter 6.
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Chapter 5

Support-Vector-Machine-Based
Diagnostics

As mentioned in Section 1.4, SVM-based classification has been successfully used in

diagnostics; however, this is true only for the classification stage. For other stages

such as data processing (see Figure 1-3), reported studies are very limited. As men-

tioned in Section 1.5, two sub-stages of data processing, data cleaning and feature

selection, can both be classification-based. This chapter presents a diagnostic al-

gorithm composed of an SVM-based data cleaning [53, 54], an SVM-based feature

selection algorithm [89, 90], and the SVM-based classification. This algorithm is

basically an off-line process, but the results of this process can be used for online

purpose, e.g. the data after using the proposed data cleaning and feature selection

can be used to build a SVM classifier for online diagnostics. However, this thesis

focuses only on the off-line and the online diagnostic framework needs to be devel-

oped in future. The performance of the proposed diagnostic algorithm is studied

using various benchmark datasets, and application results are given for the two

experimental systems of interest.

5.1 Preliminaries

5.1.1 Terminology

For ease of reading, the terms that are to be used in this chapter are listed. Some

of them may be defined in a more specific way than is commonly done.
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Feature space: A multi-dimensional space with extracted features as its dimen-

sions, e.g. a feature space has 21 types of feature as its dimensions.

Data point: A multi-dimensional feature space with an output label, e.g. a data

point has 21 features and a label of -1 to represent one of two classes.

Dataset: A set containing a certain number of data points.

Training process: A process of determining SVM model parameters where cross-

validation methods are usually incorporated.

Testing process: A process of evaluating a built SVM model in terms of a mea-

sure for evaluating classification performance (hereafter called classification

measure).

Classification accuracy (CA): A classification measure denoted as Nc/(Nc +

Nf ) × 100% where Nc denotes the number of data points that are correctly

classified and Nf denotes the number of data points that are falsely classified.

Misclassification rate (MR): A classification measure which is given by: MR=1-

CA.

Selection rate (SR): A fraction that specifies the percentage of data points to be

chosen for training data in each sampling of random sub-sampling validation.

Classification accuracy and misclassification rate are used to measure the perfor-

mance of the proposed algorithms. In the field of artificial intelligence, a confusion

matrix [91] is also commonly used, in which each column of the matrix represents the

instances in a predicted class and each row represents the instances in an actual class.

One benefit of the confusion matrix is that it is easy to see if the system is confusing

two classes (i.e. mislabeling one as another). According to the above descriptions,

the confusion matrix is used to assess the performance of the supervised-learning

method, namely, a classifier such as SVM, so that whether the classifier is confused

by classes can be revealed. Nevertheless, the proposed algorithms are developed

for data cleaning and feature selection, which focus on data processing rather than

classification. We will not use the confusion matrix, because whether the classifier

is confused by the classes is not our concern. We are more interested in whether the
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overall classification results are improved after using the proposed algorithms. This

can be sufficiently given by the regular classification accuracy or misclassification

rate.

5.1.2 Data Partition

For SVM-based classification, one needs various datasets for purposes of training,

validating and testing. In this chapter, we arrange a given dataset according to

Figure 5-1. First, we partition the given dataset into an original training dataset

and a test dataset; then the original training dataset is further partitioned into a

training dataset and a validation dataset. The training dataset is used to train an

SVM model and the validation dataset is used to determine appropriate parameters

for building an SVM model.

A given dataset 

Original Training 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 
… 

Pair #1 Pair #N 

CM1 CMN 

If average of CMi 

is satisfied 

Parameters 

 

U
p

d
ate p

aram
eters 

No Yes 
Test dataset 

CMTest CMcv 

Parameters 

Figure 5-1: Data partition and procedure of cross-validation

Usually, cross-validation methods are incorporated into the training process to

help determine model parameters (see the solid square of Figure 5-1). These meth-
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ods need multiple pairs of training datasets and validation datasets to calculate the

values for the classification measure, denoted as CMi, i = 1, 2, · · · , N ; the average,

denoted as CMcv, is output for determining the SVM model. For some cases where

the number of data points is limited, this average value can also be used directly

to represent classification performance. Nevertheless, it is intuitive that some data

points may be used as both training and validation data, so the CMcv may not

reflect the real classification performance. For this reason, the classification mea-

sure (computed using the test dataset, CMTest) is more appropriate, because it has

nothing to do with the training process and this allows it to reflect the truth. In

this chapter, CMcv and CMTest are both used but for different cases, depending on

the number of data points available.

5.1.3 Cross-Validation

Cross-validation (CV) is a technique for assessing how the results of a statistical

analysis will generalize to an independent dataset. It is used mainly for two ob-

jectives: model selection and performance estimation, both of which have exactly

the same process of implementation. This section introduces three cross-validation

methods that are used in the proposed diagnostic algorithm. They provide an aver-

age value for classification measure to either determine SVM model parameters or

evaluate classification performance. In the following, it is assumed that sufficient

data are available, so the CV methods are working with the original training dataset.

K-fold cross validation (KFCV): KFCV splits original training data into K

disjoint subsets (folds). In each iteration, K − 1 folds are used in the train-

ing dataset and the remaining one in the validation dataset. Next, the SVM

model is trained and its classification measure is computed. This process is

repeated until all folds have been used once for the validation dataset. The

average value for the classification measure for K iterations is then computed

for output. The output from different runs of KFCV is usually different,

because samples are randomly selected for different folds in each run.

Leave-one-out cross validation (LOOCV): LOOCV is actually a degenerate

case of KFCV which involves using a single sample of the original training

dataset for the validation dataset, and the remaining for the training dataset.
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In each iteration, the value for the classification measure is computed. This

process is repeated so that each sample in the original training dataset is used

once for the validation dataset. LOOCV also returns the average value for the

classification measure as output. Unlike the KFCV, the output of LOOCV

remains constant over runs because the training and validation datasets are

not varied over different runs.

Random sub-sampling validation (RSV): RSV trains the SVM model for a

specified number of samplings (iterations) in each of which a fixed number of

data points are randomly chosen for the training dataset and the rest for the

validation dataset. Like the previous two validation methods, RSV returns

as output the average value for the classification measure obtained over the

samplings. For a given original training dataset, RSV provides varied aver-

age values over different runs, since in each sampling it randomly selects the

training and validation datasets.

5.1.4 Benchmark Datasets for Demonstration

The data cleaning and feature selection algorithms proposed in this thesis aim to

improve diagnostic results. To demonstrate the performances of the proposed algo-

rithms, the datasets should be widely used by other researchers. Five benchmark

datasets are employed for demonstrating the performance of the proposed algorithms

in this chapter. They all have been tested and studied by other researchers, so if

the results using the proposed algorithms are good, they can be attributable to the

proposed algorithms rather than attributable to the uniqueness of the datasets. The

first dataset was obtained from MATLAB data library, the others from [92].

1. The modified Fisher’s Iris dataset: a modification of the original Fisher’s

Iris dataset provided by MATLAB’s data collection. The original dataset is

comprised of three classes: “Setosa”, “Versilcolor” and “Viginica”. There

are 4 attributes for a data point: sepal length, sepal width, petal length, and

petal width. We modified the original dataset into a binary class dataset which

contains data points from only two of the classes, Setosa and Versilcolor.

2. The colon cancer dataset: 62 samples of which 22 are from normal tissue and

40 are from tumor tissue [93]. Original expression levels (features) involves
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more than 6500 genes which were measured using Affymetrix oligonucleotide

arrays. The dataset was filtered down to the 2000 genes with the highest

minimal intensity across all samples.

3. The sonar dataset: 208 observations on 61 features. The first 60 represent the

energy within a particular frequency band, integrated over a certain period of

time. The last column provides the class labels. There are two classes: “R”

if the object is a rock and “M” if the object is a mine (metal cylinder).

4. The breast cancer dataset: 569 samples of which 357 belong to benign, “B”,

and 212 samples belong to malignant, “M”. The dataset includes 32 attributes

with their ID number and outcome, benign or malignant. There are 30 real-

value features which were computed from a digitized image of a fine needle

aspirate (FNA) from a breast mass. They describe the characteristics of the

cell nuclei present in the image.

5. The Parkinson dataset: a range of biomedical voice measurements from 31

people, 23 of whom have Parkinson’s disease (PD). Each attribute is a par-

ticular voice measurement, and there are 195 voice recordings from these

individuals.

5.2 SVM-Based Diagnostic Algorithm

This section presents the SVM-based diagnostic algorithm that is an integration of

an SVM-based data cleaning algorithm, an SVM-based feature selection algorithm,

and an SVM-based classification. Figure 5-2 illustrates the relation between each

stage and its output. Descriptions of each stage are also given below for better

understanding.
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Figure 5-2: Diagram of the proposed diagnostic algorithm

First, data acquisition is conducted to gather condition monitoring data, out of

which a raw dataset is built. Next, feature extraction methods are used to process

the raw data and return a pre-processed dataset containing a certain number of data

points, each of which has an equal dimension of feature space. The pre-processed

dataset can be arranged as shown in Table 5-1 where empty cells are assigned feature

values; these could be linguistic labels, real-values, boolean numbers, etc. The

feature values to be assigned should be able to reflect the characteristics of the

corresponding class label. This thesis uses real-value feature only. Next, the pre-

processed dataset is input to an SVM-based data cleaning algorithm which provides

a transitional dataset, possibly with a reduced number of data points, i.e. M is

reduced, because outliers are removed during data cleaning. The transitional dataset

is a cleaned pre-processed dataset. It is subsequently imported to an SVM-based

feature selection algorithm, the output of which is stored in a processed dataset. The

processed dataset may have a reduced number of features for feature space, i.e., L

is reduced, because redundant and irrelevant features are removed during feature

selection. Such processed data are eventually used in the SVM-based classification

in order to identify fault modes or fault levels in the monitored system.

Table 5-1: Structure of pre-processed dataset

              Feature #  

Data point # 
1 2 … L Label 

1     1 

2     -1 

… … … … … … 

M     -1 
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In the following sections, the proposed SVM-based data cleaning algorithm and

the proposed SVM-based feature selection algorithm are separately presented. They

serve in the corresponding blocks of Figure 5-2.

5.3 SVM-Based Data Cleaning

Classical methods of outlier identification use statistical indices such as sample mean

and covariance matrix to create a measure to determine the distance of a certain

data point from others in a defined space; this is done so data points away from the

majority of data can be detected and identified as outliers. One drawback of these

methods is that one needs to create an appropriate decision criterion for separating

good data points from outliers, which is usually difficult. Another drawback is that

these methods do not work when outliers lie in between classes, especially when dif-

ferent classes are near each other. Additionally, outliers detected by these methods

may be trivial to SVM-based classification because they are far from the bound-

aries, thus are unlikely to be used as support vectors for determining a separating

plane (SP). For these reasons, one needs a method that is different from the classical

ones, one that can detect outliers for SVM-based classification. Before introducing

the proposed method, the outlier effects on SVM-based classification are illustrated.

This will assist in understanding the proposed method.

5.3.1 Outlier Effects on SVM Separating Plane

As presented in Section 3.1, an SP obtained using SVM depends only on support

vectors. Theoretically, an outlier located in between classes or even in the opposite

class has a high chance of being selected as a support vector, because it is odd to

the others. If such outlier data are used for classification, the resulting SP tends

to be inappropriate and unacceptable. Figures 5-3 and 5-4 show examples of the

influence of an outlier on SP. The symbol “+” represents the data of class one and

the symbol solid dot represents the data of class two. A solid white curve represents

the SP. The two dotted curves represent the boundaries. The contours in yellow

and blue colors represent the areas for the two classes and as data points are close

to the SP, the color becomes darker. For both figures, the SP for a dataset without

outliers is shown in the left panel, while the one with an outlier is shown in the right
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panel. The outlier does not overlap the opposite class in Figure 5-3, but it overlaps

the opposite class in Figure 5-4. In the captions, kf represents kernel function and

kp represents the parameters of kernel function.

In Figure 5-3, the SP moves to the right due to the outlier in class one. Conse-

quently, test data which should belong to class two is classified as class one (left of

the SP) as shown in the right panel. In Figure 5-4, not only the SP moves to the

left due to the outlier of class one, but a small area of class two data is classified

as being class one. A test data of class two in this area is thus incorrectly classified

as class one. In accordance with previous remarks, the outlier in the right panel is

selected as a support vector (indicated by a circle) for both cases. Based on Fig-

ures 5-3 and 5-4, we can conclude that the existence of outliers impairs classification

performance, so data cleaning is necessary for removing such undesired data points.

The plots in this sub-section were drawn using Steve Gunn’s SVM toolbox [94].

 

Test data 

Outlier 

Test data 

Figure 5-3: Illustration of outlier effects on SP (kf is Gaussian kernel, kp = 1,
and C = +∞)
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Figure 5-4: Illustration of outlier effects on SP (kf is Gaussian kernel, kp = 1,
and C = +∞)

5.3.2 Outlier Effects on SVM Parameter Selection

The parameters of the SVM model are very critical to classification performance,

since improper selection could lead to under-fitting or over-fitting. There are three

parameters in the SVM model: kernel function, kf ; kernel parameter, kp; and pa-

rameter C. Parameter C, as shown in Eq. (3.4), is very important for controlling

such “fitting” problems. In terms of separable data, if there is no existing outlier,

the selection of parameter C is somewhat trivial. One can simply set C = +∞ to

obtain a desirable SP. Figure 5-5 shows an example of this, where parameter C is

set at 100 for the left panel and positive infinity for the right panel. We see that the

SPs are no differences in these two panels. When outliers exist and are overlapped

with the opposite class, the selection of parameter C turns out to be complicated.

Figure 5-6 gives an example where two outliers exist in two different classes. In the

left panel, the classification is acceptable because the outliers are tolerated by the

SVM with a parameter C of 100; but over-fitting occurs in the right panel due to

the setting of C = +∞, even though it gives no misclassified data. Compared to

C = 100, C = +∞ creates an over-fitted SP for classification.
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Figure 5-5: Classification without outliers using different settings of parameter
C (for both panels, kf is Gaussian kernel and kp = 1; for parameter C, the
left panel is C = 100 and the right one is C = +∞)

 

Outliers Outliers 

Figure 5-6: Classification with outliers using different settings of parameter C
(for both panels, kf is Gaussian kernel and kp = 2; for parameter C, the left
panel is C = 100 and the right one is C = +∞)

One way of avoiding such over-fitting is to find an appropriate parameter C

as shown in the left panel of Figure 5-6. As a matter of fact, it is difficult for a

specific case, since classification is usually implemented in a high dimensional space

in which the SP can not be visualized. The other solution is to remove outliers from

the dataset; this makes the SP insensitive to the selection of parameter C as shown

in Figure 5-5. This is possible if the outliers can be located. Then, the problem

turns out to be how to locate the outliers. This is given in the next section.
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5.3.3 Principle of Outlier Identification Using SVM

When using SVM for classification, misclassified data points could result from out-

liers in either the training or test data; however, outliers in training data affect

classification results in a different way from those in test data. The former may

cause the SP to be falsely determined, leading to misclassifying test data (as shown

in Figures 5-3 and 5-4 where one test data point from class two is misclassified). On

the other hand, outliers in test data may be misclassified, because they are located

in the opposite class according to the SP determined by the training data. If an SP

can be reasonably determined, misclassified test data stand a high chance of being

outliers. The key point is how to find a reasonable SP, one that is not affected by

the outliers in the training data.

As shown in Eq. (3.4), the SVM model introduces a slack variable, ξi, tolerant

of noise and outliers in the training data; this allows for taking into account more

training data points than merely those closest to the boundaries. Thanks to ξi,

outliers in training data are allowed to be misclassified as long as the parameters

of the SVM model have been appropriately selected. For example, two outliers of

different classes have been left misclassified in the left panel of Figure 5-6.

With such good characteristics, test data can be used to identify outliers. The

following four scenarios may take place during training and testing (see Figure 5-7

for schematics in R
2):

Scenario 1: No outliers are in the training data or the test data;

Scenario 2: Outliers are in the training data only;

Scenario 3: Outliers are in the test data only;

Scenario 4: Outliers are in both the training and the test data.

The corresponding results obtained by using SVM with appropriate parameters

are:

Result 1: No outliers are in the training data, so the SP can be determined prop-

erly. No outliers are in the test data, so no data points are misclassified;
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Result 2: Outliers in the training data are tolerated by the SVM model, so the

SP can be determined properly. No outliers are in the test data, so no data

points are misclassified;

Result 3: No outliers are in the training data, so the SP can be properly deter-

mined. Outliers in the test data are misclassified;

Result 4: Outliers in the training data are tolerated by the SVM model, so the SP

can be determined properly. Outliers in the test data are misclassified.
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Figure 5-7: Illustration of outlier identification using test data

It can be concluded that if the SP is appropriately determined, outliers in the test

data will be misclassified. Hence, if we conduct training and testing for a particular

number of runs and label misclassified data points for each run, the final outliers
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will be among those that are the most frequently misclassified. The proposed data

cleaning algorithm is inspired by this idea.

Nevertheless, one may argue that this idea is quite dependent on setting appro-

priate SVM parameters, which is not easy. Actually, this is not true and the reasons

are given below. Suppose that the settings of SVM parameters are not appropriate.

A particular normal data point will be misclassified when real outliers are in the

training dataset, leading to an inappropriate SP, and the same data point will be

correctly classified when no outliers are in the training dataset. It can be concluded

that a normal data point can be correctly classified for at least a certain number

of runs. In contrast, an outlier, because it is actually located in the opposite class,

will be misclassified for most of the runs whether the SP is appropriate or not. By

this way, outliers can be identified.

In the following, a supervised SVM-based data cleaning algorithm is proposed.

In the literature, unsupervised SVM-based data cleaning (anomaly detection) ap-

proaches are also reported [48]. The major difference between the proposed and

their methods is that the proposed algorithm needs training data with known la-

bels. This makes the proposed algorithm able to provide more accurate results than

the unsupervised one, but the drawback is that the proposed algorithm is unable to

operate when there are no training data with known labels, which are common in

practice.

5.3.4 The Proposed Data Cleaning Algorithm

The proposed data cleaning algorithm uses the RSV to conduct the training process

many times. The RSV constructs different validation and training datasets over

samplings. Given a sufficient number of samplings, it can be assumed that every

data point is selected as the validation data or the training data an equal number of

times; hence, the chance of a data point being misclassified over samplings can easily

be represented by a fraction. Since real outliers should have the greatest chance of

being misclassified, the fraction values can thus be used to identify them.

It should be noted that a large fraction may also represent real support vectors

which can be used to determine the SP; it is, therefore, inappropriate to determine
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outliers by relying solely on the fraction values. To address this problem, the mis-

classification rate (MR) can be used to determine final outliers, since it is believed

that the removal of true outliers lowers the MR value. The value for the fraction

is thus computed for each data point, based on which all data points are ranked.

Data points corresponding to larger fraction values can thus be treated as candidate

outliers. By removing the candidate outliers one by one according to their rank and

calculating the corresponding MR values, real outliers can be finally determined.

Figure 5-8 illustrates the procedure of the proposed data cleaning algorithm. As

mentioned in Chapter 2, this thesis focuses on a case where data cleaning is imple-

mented after feature extraction, so the proposed algorithm works in a feature space,

and the input is the pre-processed dataset. The proposed algorithm is implemented

as follows.

First, training and validation data are randomly chosen from the pre-processed

dataset based on an SR. Next, data points misclassified in current sampling are

recorded and an array is established to store the number of times each data point

is misclassified. This process is repeated until a pre-specified number of samplings,

Ns, is reached. Then the number of times that the ith data point is misclassified

can be obtained, and denoted as N i
f , i = 1, 2, . . . ,M . A fraction value for the ith

data point can thus be denoted by N i
f/Ns, i = 1, 2, . . . ,M . Data points are then

ranked according to their fraction values from large to small, and the ones with

larger fraction values are considered as candidate outliers.

The final outliers are determined based on the impact removing candidate out-

liers has on MR values. MR values are computed using LOOCV. To begin, the first

candidate outlier in the rank is removed from the pre-processed dataset. The re-

moval takes the scheme of “without replacement”, which means once a data point is

removed it will not be returned to the dataset. The MR values for the pre-processed

dataset and the resultant dataset are then computed and compared. If the resultant

dataset has a reduced MR value, the second candidate outlier in the rank is subse-

quently removed, and the MR values for the datasets before and after the removal

are compared. The above procedure is repeated until the MR value does not de-

crease further. As a result, data points whose removal results in a reduction of MR
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values are identified as final outliers. These are then permanently removed from the

pre-processed dataset, giving a clean dataset, namely a transitional dataset.
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Figure 5-8: Flow chart of the proposed data cleaning algorithm

In the next section, the effectiveness of the proposed algorithm is verified using
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various benchmark datasets. The results of these datasets are compared with those

reported in the literature.

5.3.5 Evaluation Using Benchmark Datasets

In this section, the performance of the proposed data cleaning algorithm is demon-

strated. Three benchmark datasets are used for the demonstrations: the modified

Iris dataset, the colon cancer dataset, and the sonar dataset. These datasets are

presented in Section 5.1.4. The proposed algorithm is programmed using MATLAB.

This chapter uses SVM for classification. Kernel function is an important parameter

for SVM. There are a large number of kernel functions available in the literature

[82]. However, according to our experience, polynomial and Gaussian kernels are

generally capable of addressing most problems. For this reason, this chapter adopts

the “trials and errors” tests to select the kernel function from these two. The one

to be selected is expected to provide higher classification accuracy.

5.3.5.1 Evaluation Using Modified Iris Dataset

The modified Iris dataset has two classes, and a data point from class Versilcolor is

intentionally mislabeled as class Setosa to simulate an outlier. The outlier is data

point #70. All data points are plotted in terms of petal length and petal width

in Figure 5-9. We see that a Versilcolor data point that should be a blue “+” is

mislabeled by a red “*” representing a Setosa data point.
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Figure 5-9: Modified Iris dataset
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The proposed data cleaning algorithm is applied to the modified Iris dataset

and the results are shown in Figure 5-10. The parameters for SVM are as follows:

C = 100, kf is polynomial kernel, and kp = 1. It is seen that data point #70

corresponds to a fraction value of one. This means that this data point has been

misclassified for every sampling; it can thus be identified as the only candidate

outlier. All other data points are correctly classified and correspond to a fraction

value of zero. The MR value computed is 1% for the modified Iris dataset. When

data point #70 is removed, the MR value becomes 0; hence, data point #70 is

identified as a final outlier.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 b
ei

ng
 m

is
cl

as
si

fie
d

Data point #

Figure 5-10: Fractions of misclassified data points for the modified Iris dataset

5.3.5.2 Evaluation Using Colon Cancer Dataset

The colon cancer dataset is a widely used benchmark dataset in outlier identifica-

tion. The proposed data cleaning algorithm suggests that the outliers are samples

from N36, N34, T36, T33 T30, T2, and N8 where “N” represents the normal samples

and “T” represents the tumor samples. The proposed data cleaning algorithm is

compared with three reported methods. Shieh’s method [46] used principal compo-

nent analysis (PCA) and robust estimation of Mahalanobis distances (MD). Alon’s

method [93] used a two-way clustering algorithm based on deterministic annealing.

Li’s method [95] used a genetic algorithm with a K-nearest neighbor (KNN) clas-

sifier. The outliers detected for the colon caner dataset were explicitly given in

their papers. This allows for a direct comparison with the outliers detected by our
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algorithm.

The MR values for the clean datasets resulting from the four methods were

computed using LOOCV. SVM is used as the classifier and the parameters for SVM

are C = 100, kf is Gaussian kernel, and kp = 1. The results are listed in Table 5-2.

The MR values shown in the last column are based on the clean datasets, that is,

those without outliers. The MR value for the original dataset is 17.74%. We find

that every algorithm provides a reduced MR value and the proposed algorithm gives

the smallest. Because the CPU time consumptions were not reported for the three

existing methods and we did not program their methods, the comparison of CPU

time consumption is not conducted.

Table 5-2: Performance comparisons using colon cancer dataset

Algorithms Outliers identified MR 

Shieh’s method T20, T30, T33, T36, T37, N8, N12, and N34 3.7% 

Alon’s method T30,T33,T36, N8, N34, and N36 3.6% 

Li’s method T2, T30, Y33, T36, T37, N8, N34, and N36 1.8% 

The proposed algorithm N36, N34, T36, T33 T30, T2, and N8 0% 

 

The proposed data cleaning algorithm is an SVM-based algorithm, so it is likely

to give the smallest MR value when SVM is adopted for classification; such good

performance should be consistent when other classifiers are used. Because of this

concern, the outliers identified by the proposed algorithm were also tested using

four other classifiers, including k-nearest neighbor (KNN) classifier, diagonal lin-

ear discriminant analysis (DLDA), classification trees (CT), and feed-forward back-

propagation neural network (FBNN). We used MATLAB-provided commands with

default settings for the first three classifiers and 10 hidden layers and 1 output layer

for FBNN.

Table 5-3 shows the results of our comparisons. The MR values in the “Original”

column are for the original dataset. The MR values in the “Random” column are

for the dataset in which six random samples are removed from the original dataset.

For each classifier, the six random samples were drawn uniformly from the original

dataset. Such datasets were included to demonstrate that simply removing sam-

ples does not reduce MR values. The MR values in the “clean” column are for
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the datasets without the outliers identified by the proposed algorithm. Comparing

results show that the clean dataset achieves the best performance for every clas-

sifier. This shows that the proposed algorithm gives consistent good performance

for classification irrespective of the classifiers used for this dataset. It also shows

that the removal of random samples is unable to consistently improve classification

performance, and in some cases (such as KNN, CT and FBNN) it has even impaired

classification performance.

Table 5-3: Results of classification for colon cancer dataset using different
classifiers

 Original Random Clean 

SVM 17.74% 14.55% 0% 

KNN 22.58% 25.45% 14.55% 

DLDA 37.09% 35.71% 18.18% 

CT 17.74% 21.05% 5.45% 

FBNN 17.74% 26.78% 5.45% 

5.3.5.3 Evaluation Using Sonar Dataset

Li’s method [96] combines estimating the overall probability density and sequential

ranking of the data according to observed changes in performance on validation

datasets. The validation dataset is discussed in Section 5.1.2. This method is used

for the sonar dataset and six outlier samples: #3, #101, #23, #172, #134, and

#131 are found. The proposed algorithm also detected six outlier samples: #45,

#18, #74, #151, #36, and #8. Table 5-4 compares the results. The parameters

for SVM classification are C = 100, kf is Gaussian kernel, and kp = 1. We find

that the outliers identified by the two algorithms are entirely different. Because the

sonar dataset used in this experiment was obtained from the UCI repository as that

used in [96], this tremendous difference is strange.

Table 5-4: Performance comparisons using Sonar dataset

Algorithms Outliers identified MR 

Li’s method #3, #101, #23, #172, #134, and #131 25.25% 

The proposed algorithm #45, #18, #74, #151, #36, and #8 16.83% 

 

We tested the outliers identified by the proposed algorithm using different classi-
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fiers; the results are shown in Table 5-5. It is seen that the cleaned dataset performs

best for every classifier and removing random samples does not improve classification

performance consistently.

Table 5-5: Results of classification for Sonar dataset using different classifiers
 Original Random Clean 

SVM 25.48% 25.24% 16.83% 

KNN 12.50% 13.36% 11.88% 

CT 33.65% 27.72% 18.81% 

DLDA 30.77% 30.20% 29.21% 

FBNN 20.19% 21.37% 18.81% 

5.3.6 Short Summary

Based on the test results of benchmark datasets, the performance of the proposed

data cleaning algorithm is demonstrated. Because the three benchmark datasets

adopted are also used by many other researchers for testing their methods, the ef-

fectiveness of the proposed algorithm using the same benchmark datasets is convinc-

ing. This effectiveness is due to that the proposed algorithm is classification-focused.

Compared to the classical data cleaning methods which focus on identifying the out-

liers distantly away from the majority, the proposed algorithm focuses on identifying

the outliers in-between opposite classes. This enables the outliers impairing classi-

fication results to be identified and removed rather than those that do not impair

classification results. As the classification-focused outlier identification is not well

studied, we conclude the proposed algorithm has important contributions to this

scope.

5.4 SVM-Based Feature Selection

As mentioned in Section 3.1, SVM seeks an SP that provides the largest margin

for two classes of data points; this is because the larger the margin, the better the

separation of data points. With this unique property, margin value can be used to

quantify the importance of a certain feature subset to classification performance.

This observation is the theoretical support for the SVM-based feature selection

algorithm that is presented below.
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5.4.1 Feature Evaluation using SVM Measure

According to Eq. (3.3), the margin is proportional to the reciprocal of the norm

of the weight vector ‖w‖; hence, the norm value can be used to assess feature

sets in terms of classification performance. In the following, the feature set of the

transitional dataset is referred to as the original feature space. When a feature is

removed from the original feature space, the resultant norm value may or may not

be changed. This property allows us to evaluate the feature. The explanations are

given below using an example.

Suppose that the original feature space has L, (L > 2) features. We remove

features C and D from the original feature space, obtaining the resultant ‖wC‖ and
‖wD‖, respectively. The ‖w0‖ is obtained using the original feature space. Now,

we consider four scenarios of which true observations are listed in Table 5-6. For

the sake of brevity, we explain in detail only one of the four scenarios, but the other

scenarios can be explained following the same rationale.

Table 5-6: Feature importance comparisons

                      Conditions 

 Scenarios 

Observations 

|δC| > |δD| |δC| = |δD| |δC| < |δD| 

||wC||=||w0||+δC 

& 

||wD||=||w0||+δD 

δC>0, δD>0 IC>ID IC=ID IC<ID 

δC>0, δD<0 IC>ID IC>ID IC>ID 

δC<0, δD>0 IC<ID IC<ID IC<ID 

δC<0, δD<0 IC<ID IC=ID IC>ID 

Scenario: ‖wC‖ = ‖w0‖+ δC and ‖wD‖ = ‖w0‖+ δD, (δC > 0 and δD < 0)

Observation: The equality ‖wC‖ = ‖w0‖ + δC, (δC > 0) indicates that removing

feature C increases the ‖w‖ value (reduces the margin); this means that the

removal of feature C impairs the classification; therefore, feature C is impor-

tant to the classification. Inversely, the equality ‖wD‖ = ‖w0‖+ δD, (δD < 0)

indicates that removing feature D reduces the ‖w‖ value (increases the mar-

gin); because its removal enhances the classification performance, feature D

is harmful to the classification. We can thus conclude that, for this scenario,

no matter what the absolute values are for δC and δD, feature C is more im-

portant than feature D (see the 2nd scenario of Table 5-6); this is denoted
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by, IC > ID, where I represents the importance of a particular feature to

the classification. Any criterion satisfying Table 5-6 can be used to evaluate

feature importance for the purpose of classification.

5.4.2 The Proposed Feature Selection Algorithm

5.4.2.1 Model for Binary Classification

As mentioned in Chapter 2, a feature selection method includes feature ranking and

feature selecting. In accordance with Table 5-6, we propose a measure for feature

ranking; this is given as:

δi = ‖wi‖ − ‖w0‖ , i = 1, 2, . . . , L. (5.1)

where L represents the total number of features.

Based on Eq. (5.1), we can easily obtain the observation results given in Table 5-

6, since the following causal relations always hold: if δC > δD, IC > ID; if δC = δD,

IC = ID; and if δC < δD, IC < ID. The features can be ranked for feature selection

in accordance with the δ values.

Forward selection (FS) and backward selection (BS) are two commonly-used

feature selection schemes. FS adds useful features to an empty feature set. BS elim-

inates useless features from the original feature set. As discussed in Section 2.2.3,

FS relies more on a perfect rank, whereas, BS relies less on rank quality. Though

BS may leave some useless features in the final feature subset, most useful features

are reserved. BS is more robust than FS in terms of obtaining good classification

results, because it is usually difficult to ensure a perfect rank.

We adopt the BS scheme in the proposed algorithm. The CA value obtained from

KFCV is employed to determine whether a particular feature should be removed.

Unlike regular BS where feature ranking is conducted only once, the proposed algo-

rithm re-ranks the features when no more features can be removed from the current

feature space. As a result, regular BS is recursively implemented until removing the

first top-ranked feature decreases the CA. This recursive backward selection (RBS)

allows irrelevant and redundant features remaining in the reduced feature space to

have multiple chances of being removed. There is, however, a side effect: it may
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take more computational time. Figure 5-11 shows the flow chart of the proposed

algorithm where the measures of U and R represent CA and ‖w‖, respectively. The
flow chart is depicted in detail in the next section.
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Figure 5-11: Flow chart of the proposed feature selection algorithm

5.4.2.2 Model for Multi-class Classification

The proposed algorithm for binary classification is also extended for multi-class

classification problems. The One-against-all (OAA) approach is adopted for multi-

class SVM classification. Figure 5-11 is still applicable to this case where the measure

of U is still defined as the CA, but the measure of R is re-defined to adapt to the

multi-class cases given below.

First, the U0 (CA) is calculated based on the feature space, F0. F0 is the original

feature space and is used in the first iteration. The value for R0,j(‖w0,j‖), j =
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1, 2, . . . , N is also calculated; it is returned by the jth SVM model when all features

in the F0 have been used. Next, the impact of removing the ith (i = 1, 2, . . . , L)

feature on the jth (j = 1, 2, . . . , N) SVM model is calculated, represented by δi,j =

‖wi,j‖ − ‖w0,j‖ , i = 1, 2, . . . , L and j = 1, 2, . . . , N . This yields an impact matrix:











δ1,1 δ2,1 · · · δL,1
δ1,2 δ2,2 · · · δL,2
...

...
...

...
δ1,N δ2,N · · · δL,N











(5.2)

where the impact of removing each feature on a certain binary SVM model is given

in the row, and the impact of removing a certain feature on each binary SVM model

is given in the column. Since there is often no prior knowledge regarding which SVM

model should be preferred in classifying a particular data point, we use the equal

weighting technique to evaluate the overall impact of removing a certain feature. For

the ith feature, this is given by ∆i =
1
NΣN

j=1δi,j , i = 1, 2, . . . , L and j = 1, 2, . . . , N .

The features are then ranked according to these ∆ values. The feature corresponding

to the smallest ∆ value has the top rank and the one corresponding to the largest ∆

value has the lowest rank. Next, the features are removed one at a time, starting from

the top-ranked feature, until removing a feature decreases the CA. The feature space,

F0, is then updated by eliminating the removed features. The above procedure is

repeated until the CA is decreased when removing the first top-ranked feature (the

least useful feature). The optimal feature subset is then obtained using the original

feature space without all the removed features.

5.4.2.3 Additional Details

At the feature ranking step of the proposed algorithm, several features may have

the same δ value for binary class cases and the same ∆ value for multi-class cases.

For binary class cases, these features are arbitrarily ranked. For multi-class cases,

the following strategy is adopted. Suppose that features H and G have the same

∆ value. We count the number so that δH,j > δG,j , j = 1, 2, . . . , N is satisfied and

denote it as ncom. If ncom > N/2, feature G will be placed ahead of feature H in the

rank. If ncom < N/2, feature H will be placed ahead of feature G. Otherwise, the

two features are ranked arbitrarily. When more than two features have the same
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∆ value, this strategy is applied to any pair of features until every such feature is

ranked.

5.4.3 Evaluation Using Benchmark Datasets

This section demonstrates the performance of the proposed feature selection algo-

rithm. Three benchmark datasets are used: the sonar dataset, the breast cancer

dataset, and the Parkinson dataset. These three datasets have been introduced in

Section subsec:5BMDUD, and pre-arranged identically as described in Section 5.1.2.

Feature selection is conducted using training and validation datasets. Once the op-

timal feature subset is determined, the whole dataset is updated using the selected

features. Then the original training dataset is used to train the SVM model, and

the test dataset is used to evaluate its performance.

The proposed algorithm is compared with Gualdrón’s SVM-based algorithm

[28] in terms of feature ranking and selecting. The Gualdrón’s algorithm used the

following feature ranking measure:

δi = | ‖w0‖ − ‖wi‖ |, i = 1, 2, . . . , L, (5.3)

where all the parameters are defined in the same way as those in Eq. (5.1). FS

was used as its feature selecting scheme. To fully demonstrate our algorithm’s per-

formance, we examine both feature ranking and feature selecting schemes. This

is done by comparing the following three algorithms, the Gualdrón’s algorithm,

the proposed feature ranking + Gualdrón’s feature selecting (PFR+GFS) and the

proposed feature ranking + the proposed feature selecting (PFR+PFS). Comparing

the Gualdrón’s algorithm and PFR+GFS reveals how performs the proposed feature

ranking versus Gualdrón’s feature ranking. Comparing PFR+GFS and PFR+PFS

reveals how performs the proposed RBS versus FS. In addition, SVM using all fea-

tures is used as a baseline in relation to which the capabilities of the three methods of

improving classification performance can be assessed. We conducted 30 independent

trials for each of the three benchmark datasets.

5.4.3.1 Evaluation Using Sonar Dataset

Table 5-7 shows the results using the sonar dataset. With regard to the CA, we

found that Gualdrón’s algorithm provided a value even smaller than the baseline.
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In contrast, PFR+GFS increased the baseline value by about 3%. This value was

further increased by 9%, when PFR+PFS was used. We observed similar results

from the column of “Number of features” where the mean values were all rounded

off. Though with the identical value of three, PFR+GFS provided a CA value about

6% greater than that of Gualdrón’s method. This shows that the proposed feature

ranking is better able to detect useful features.

Table 5-7: Results of classification for sonar dataset
 

Methods 
CA (%) Number of features CPU time (s) 

Mean Std. PBP Mean Std. Mean 

SVM using all features 77.55 2.26 0 60 0 - 

Gualdrón’s method 74.63 7.46 40 3 1.36 8.4729 

The proposed 

algorithm 

PFR+GFS 80.44 9.15 53.3 3 1.38 8.4328 

PFR+PFS 89.58 4.95 100 20 7.76 20.819 
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Figure 5-12: Results of CA for sonar dataset over 30 trials

An index called the percentage of better performance (PBP) was also used to

evaluate the robustness of these feature selection methods. The PBP is the ratio

between the number of trials where the CA value is improved by a feature selection

method and the total number of trials. It is seen that PFR+PFS improved the CA

for every trial (PBP=100%); in contrast, Gualdrón’s method had a PBP of 40% and

PFR+GFS had a PBP of 53.33%, indicating a much lower robustness. Figure 5-12

shows the CA value for each method for all 30 trials. It is seen that PFR+PFS

provided almost the largest CA values for every single trial.
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In terms of CPU time, Gualdrón’s method and PFR+GFS use comparable

amount of time. It indicates that the PFR and Gualdrón’s feature ranking ba-

sically consume the same amount of CPU time, as they both adopt the forward

selecting scheme. In contrast, the PFR+PFS consumes twice the CPU time of the

other two methods. This is a drawback of the RBS — the greater the gain in CA,

the more expensive the computations. For the given sonar dataset, we can see that

double CPU time consumptions contribute to 10% increase of CA.

5.4.3.2 Evaluation Using Breast Cancer Dataset

Table 5-8 shows the results using the breast cancer dataset. Basically, the three

methods performed much as they did for the sonar dataset. Figure 5-13 shows the

performance of each method over 30 trials, giving four curves that were basically

separated from each other. The PFR+PFS curve is above all the others, revealing

the superior robustness of this method. The curve for Gualdrón’s method is at the

bottom, lying even below the baseline curve.

Table 5-8: Results of classification for breast cancer dataset

Methods 
CA (%) Number of features CPU time (s) 

Mean Std. PBP Mean Std. Mean 

SVM using all features 88.96 1.79 0 30 0 - 

Gualdrón’s method 79.72 6.98 3.33 2 0.76 182.96 

The proposed 

algorithm 

PFR+GFS 93.85 2.64 96.67 4 1.43 178.15 

PFR+PFS 99.32 0.43 100 22 4.34 364.36 
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Figure 5-13: Results of CA for the breast cancer dataset over 30 trials

Unlike the sonar dataset, PFR+GFS provided a CA of 93.85% and a good PBP

of 96.67%. Moreover, it selected fewer features in the final feature subset and used

the least CPU time. If the CA requirement is not exceptionally high, PFR+GFS

may be a good choice for the breast cancer dataset indicates, because it balances

CA, the number of features selected, and computational time.

As mentioned, PFR+GFS uses the least amount of CPU time, 178.15s. Gualdrón’s

method uses a slightly higher CPU time, 182.96s. However, for the CA value,

PFR+GFS is 14% higher than that of Gualdrón’s method. Hence, it is no doubt

that PFR+GFS is much better than Gualdrón’s method in terms of CA. PFR+PFS

uses the CPU time of 364.36s which is approximately twice the other two methods.

This is similar to the sonar dataset. For the given breast cancer dataset, we can see

that double CPU time consumptions contribute to merely 5% increase of CA.

5.4.3.3 Evaluation Using Parkinson Dataset

Table 5-9 lists the results using the Parkinson dataset. It is seen that Gualdrón’s

algorithm and PFR+GFS provided almost the same results; their curves almost

merged together as Figure 5-14 shows. Studying the two feature ranking schemes,

we found that the δ values for Eq. (5.1) are positive for most features, with the

exception of five that have nearly zero δ values. Taking the absolute values of

these δs, we obtained similar results as found using Eq. (5.3), so this explains why
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Gualdrón’s algorithm and PFR+GFS gave the same results. These obtained δ values

satisfy the scenarios of both the first row (δC > 0 and δD > 0) and conditions of the

first column (|δC| > |δD|) and the second one (|δC| = |δD|) in Table 5-6. From this

it can be concluded that most of the features in the Parkinson dataset are useful

and the rest are redundant.

Table 5-9: Results of classification for Parkinson dataset 

 

Methods 
CA (%) Number of features CPU time (s) 

Mean Std. PBP Mean Std. Mean 

SVM using all features 94.43 2.05 0 23 0 - 

Gualdrón’s method 84.33 7.42 13.33 3 1.66 3.25 

The proposed 

algorithm 

PFR+GFS 84.47 7.44 13.33 3 1.92 3.27 

PFR+PFS 96.15 1.65 76.67 11 4.65 7.12 
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Figure 5-14: Results of CA for Parkinson dataset over 30 trials

This conclusion accords well with the results of the row labeled “SVM using

all features” where a high CA (94.43%) is obtained without using feature selection.

Although a reasonable rank is obtained, FS fails to select all possible useful features;

whereas, the proposed RBS selects a subset containing 11 features and achieves an

even higher CA (96.15%).

In terms of CPU time, it is generally consistent with the other two datasets. The

CPU time for Gualdrón’s method and PFR+GFS are almost the same. PFR+PFS
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uses twice the CPU time of the other two methods. For the given Parkinson dataset,

we can see that double CPU time consumptions contribute to 11% increase of CA.

It is interesting that for all three datasets PFR+PFS always uses twice the CPU

time of the other two methods. Basically, the CPU time consumption is dependent

on the number of iteration conducted for removing useless features, the greater the

number, the larger the CPU time. The proposed method uses RBS that sacrifices

CPU times for high CA values. For this reason, when using the proposed method,

CPU time should be considered, for sometimes it may go to a high number that one

does not desire.

5.4.4 Short Summary

Based on the test results of benchmark datasets, the performance of the proposed

feature selection algorithm is demonstrated. Because the three benchmark datasets

adopted are also used by many other researchers for testing their methods, the

effectiveness of the proposed algorithm using the same benchmark datasets is con-

vincing. This effectiveness stems from the deep understanding of the SVM theorem

for classification. Compared to a reported SVM-based feature selection method, the

proposed algorithm addresses the drawbacks of the reported method in both feature

ranking and feature selecting aspects. Therefore, we conclude that the proposed al-

gorithm enhances the theorem of SVM-based feature selection and provides a good

choice for feature selection.

5.5 Applications

This section presents the application results using the proposed algorithms. First,

the proposed data cleaning algorithm is used in classifying the damage level in the

given slurry pump system; next, the proposed feature selection algorithm is used in

classifying the level of pitting damage in the given planetary gearbox system. The

proposed diagnostic algorithm is applied to the slurry pump system to show how

well integrating data cleaning and feature selection worked.
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5.5.1 Data Cleaning for Slurry Pump System

5.5.1.1 Feature Extraction and Database Establishment

As mentioned in Section 4.2.2, four damage levels involving impellers were studied:

baseline, slight, moderate, and severe. We labeled them classes 1, 2, 3, and 4,

respectively. Experiments were conducted for each of the four damage modes. For

each damage mode and each damage level, pump speed was varied using the control

panel. At each specified pump speed, several process parameters were recorded.

Table 5-10 lists those (F1 – F7) to be used as features for classifying damage levels.

The number of data points belonging to classes 1, 2, 3, and 4 are 11, 97, 88, and

88, respectively. These numbers were determined by the number of experiments

conducted.

Table 5-10: List of extracted features for impeller damage level classification

Features  Description Features Description 

F1 Pump rpm F12 Peak to Peak - A1 

F2 Motor Speed (%) F13 Peak to Peak - A2 

F3 Horse Power F14 Kurtosis - A1 

F4 Flow Rate (maximum) F15 Kurtosis - A2 

F5 Flow Rate (minimum)  F16 1X - A1 

F6 Outlet Pressure (maximum) F17 1X - A2 

F7 Outlet Pressure (minimum) F18 2X - A1 

F8 RMS - A1 F19 2X - A2 

F9 RMS - A2 F20 5X - A1 
F10 Peak - A1 F21 5X - A2 

F11 Peak - A2   

 

Vibration signals with a time span of 5 minutes were collected for each com-

bination of damage mode, pump medium, pump speed, and damage level within

specified ranges. We used the signals of two channels, A1 and A2 (see Figure 4-9

for locations), to extract features following the suggestions in [87].

Possible useful features were also extracted using statistical and signal processing

techniques. First, we selected four time-domain features which are commonly used

for monitoring the condition of rotating machinery.

Root mean square (RMS): a time domain feature which measures the power

content in a vibration signature. It is a good idea to track the overall noise

standard deviation in order to be able to detect a major out-of-balance in
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rotating systems. The RMS value is given by [97]:

RMS =

√

1

T
ΣT
t=1x

2(t) (5.4)

where x(t), t = 1, 2, . . . , T represents a data series, and T represents the length

of the data series.

Peak: the maximum amplitude of the signal regardless of the sign [98] .

Peak-to-peak: the difference between the maximum and minimum of the signal

[98].

Kurtosis: the fourth moment of the distribution; it measures the relative peaked-

ness or flatness of the distribution and is used as an indicator of major peaks

in a set of data. Kurtosis is given by [97]:

Kurtosis =
ΣT
t=1[x(t)− µ]4

T (σ2)2
(5.5)

where x(t), t = 1, 2, . . . , T represents a data series, T represents the length

of the data series, µ represents the mean of the data series given by µ =

1
T Σ

T
t=1x(t), and σ2 represents the variance of the data series given by σ2 =

1
T−1Σ

T
t=1(x(t)− µ)2.

Spectral analysis in the frequency domain is also employed to extract features.

Three harmonics of shaft rotating speed are considered:

First harmonic (1X): presents in the vibration spectrum due to several faults

mainly caused by imbalance, even for a good pump [99].

Second harmonic (2X): usually appears in the vibration spectrum of rotating

machinery. It is the two times of the 1X in the frequency spectrum.

Vane passage frequency (5X): is equal to the number of blades times the shaft

speed. It is often a dominant component of pump’s vibration and is of special

interest for pump diagnostics [100].

The above seven features are extracted from each of the two channels of vibration

signals which provide 14 more features for feature space. They are F8 – F21 as listed

in Table 5-10. The number of data points belonging to classes 1, 2, 3, and 4 are
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8, 26, 32, and 32, respectively. Note that these numbers are different from those of

the process data, that is why we retained only the data points having values for all

21 features on which the pre-processed dataset was established with a dimension of

94 × 21. As a result, the number of data points the pre-processed dataset has is

4, 26, 32, and 32 for classes 1, 2, 3, and 4, respectively. It is seen that class 1 has

only 4 data points which is a small number. First, 4 data points are not enough

for building SVM model because the information that the data can convey is very

limited. Second, from the viewpoint of the classification accuracy, suppose that 2

data points are used for training, and then 2 data points are used for testing. If

one testing data point is misclassified, the classification accuracy is 50%. This is

not likely to reflect the capability of the metohd. For this reason, we consider only

classes 2, 3, and 4. As a result, the pre-processed dataset ultimately has a dimension

of 90× 21.

5.5.1.2 Results

The slurry pump data are analyzed using OAA-based multi-class SVM classification.

At first, genetic algorithms (GA) combined with 8FCV were used to determine

the parameters of the multi-class SVM model based on the pre-processed dataset.

Once obtained, the optimal parameters were used in the SVM model to establish

relations between features and damage levels. One may argue that because of using

GA, the computational time of the proposed data cleaning will be significantly

increased. Some discussions about this argument is given below. The GA used

here is not for the proposed data cleaning algorithm but for determining the model

parameters of SVM, the classifier. This is a common step for data-driven-approach-

based classification [11] such as determining the optimal number of layers, neurons,

training epochs and so forth for artificial intelligence networks. For this reason, the

computational time should be attributed to the classification phase, namely SVM.

SVM is used to do classification based on which the classification accuracy can be

calculated and the data cleaning algorithms can be evaluated. This phase is needed

by most data cleaning algorithms not specifically for the proposed data cleaning,

so it is not reasonable to say the proposed data cleaning algorithm needs more

computational time due to adopting GA.
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The parameters obtained for SVM were: C = 19000, kf is the polynomial kernel,

and kp = 1. The parameters used for the proposed algorithm were: Ns = 5000 and

SR = 4/5. The SR value selected resulted in 72(4/5×90) data points being selected

as training data and 18(1/5× 90) data points being used as validation data for each

sampling.

Figure 5-15 shows the fraction values for misclassified data points. It is found

that many data points have non-zero fraction values of which data point #65, with

a value of one, is the largest. The fraction values for data points #83, #66, and

#90 are also large (all more than 90%) which are regarded as candidate outliers.

The MR value is 14.4% for the pre-processed dataset. After removing data point

#65, the MR value became 11.23%, but when data point #83 which has the second

largest fraction value was sequentially removed, the MR value increased to 11.36%.

As a result, only data point #65 was identified as a final outlier.
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Figure 5-15: Fractions of misclassified data points for slurry pump dataset

5.5.1.3 Discussions

The data point #65 was determined to be an outlier. We investigated the whole

preprocessed dataset and found that the data point #65 had a pump speed (the first

feature) of 1400 rpm. This value appeared only once in the preprocessed dataset

and other speeds were 1600, 1800, 2200, and 2600 rpm. Because the rpm values were

recorded manually, we suspected that human errors occurred here. Investigations
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on the values of other features for the outlier did not show any anomaly.

To visualize the outlier from other data, we used PCA to extract three principal

components for the use of plotting. Figure 5-16 shows the 3D-graph plotted based

on the preprocessed dataset. Basically, we could not see a clear classification from

the plot. This may be due to the fact that the three principal components do not

contain all useful information needed for classifying the data. However, the plot still

provides us some clues in distinguishing the outlier. In Figure 5-16, the identified

outlier (data point #65) is belonging to the slight wear class represented by “+”.

We differentiated the outlier using “∗”. It can be found that the “∗” is away from

the majority of “+” but is close to the severe wear class represented by “•”. Figure
5-16 provides a visual evidence of identifying the data point #65 as an outlier.

 

-5
0

5 -3 -2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

 

 

Slight wear

Moderate wear

Severe wear

Outlier

Figure 5-16: 3D plot of pump data distribution

5.5.2 Feature Selection for Planetary Gearbox System

5.5.2.1 Feature Extraction and Database Establishment

The features to be extracted for classifying the level of manual pitting damage in the

planetary gearbox include those features reported for fault detection and fault mode

classification of fixed shaft gearboxes [33, 87, 97, 101]. Due to the unique behavior of

planetary gearboxes, their sidebands are different from those of fixed shaft gearboxes
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[102]. Hence, our modification of the features which require information regarding

the sidebands of the planetary gearbox.

Figure 5-17 shows the preprocessing of vibration signals for feature extraction.

We define the regular mesh components (RMCs) as the fundamental shaft frequency,

its second harmonic, gear mesh frequency (GMF), its harmonics and its 1st order

sidebands. It is reported in [102] that unlike the sidebands of the fixed shaft gearbox,

those of the planetary gearbox appear at the integer multiples of planet passing

frequency (the number of planets multiplied by carrier frequency), with the largest

sideband being found at the frequency closest to the GMF. Figure 5-18 shows the

spectrum of the manual pitting data for our 2nd stage planetary gearbox. All gears

are in a normal condition, the motor speed is 1200 rpm, and the load applied is

10,000 lb·in. The horizontal axis depicts the carrier order which is the ratio of

frequency value to carrier frequency. The red-dashed vertical line corresponds to

the GMF. We see that the amplitude of GMF is not sizable, and that the maximum

amplitude appears at the carrier order of 80 which is twenty multiples of four, the

number of planet gears. Figure 5-18 indicates that the sidebands of a planetary

gearbox may show up even if there is no damage on its gears.
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Figure 5-17: Processing flow for feature extraction
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Table 5-11: List of extracted features for manual pitting damage level classi-
fication

 Features Definition  Features Definition 
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We define the 1st order sidebands for planetary gearboxes as the lower and the

upper sidebands closest to the GMF. Four types of signal are used to calculate

features: raw signals (RAW), residual signals (RES), difference signals (DIFF) and

band-pass mesh signals (BPM). RAW denotes the vibration signal subtracted by its

mean, DIFF denotes the RAW excluding the RMCs, RES is similar to DIFF but

has the 1st order sidebands included, and BPM denotes the band-pass mesh signal

which is obtained using a band-pass filter filtering around the 1st order sidebands.

The RAW, DIFF, RES, and BPM are represented by x(t), d(t), r(t), and b(t), t =

1, 2, . . . , T , respectively, where T is the number of data points in the data series.

Table 5-11 lists 34 extracted features including 26 time domain features and 8

frequency domain features. The time domain features include 16 commonly-used

ones (F1 – F16) for fault diagnosis of generic systems and 10 advanced ones (F17

– F26) exclusively proposed for gear fault detection. Frequency domain features

are calculated based on sidebands including 4 (F27 – F30) proposed for gear fault

detection and 4 (F31 – F34) exclusively developed for planetary gearboxes. Details

on these features can be found in [33, 34, 97, 101–103].

The notations in Table 5-11 are defined as follows:

1. ∆x(t) is obtained piecewise. For the non-endpoints, it is obtained by the

squared x(t) subtracted by the product of the data points of x(t − 1) and

x(t+ 1). For the endpoints, the data point of x(t) is looped around.

2. X(k), k = 1, 2, . . . ,K represents the kth measurement of the frequency spec-

trum of x(t). f(k) represents the frequency value for the kth spectrum line.

3. xm(t), rm(t) and dm(t) represent the RAW, RES and DIFF of the mth time

record, respectively. The bar notation represents the mean, e.g. x̄ represents

the mean of x(t). Mn represents the total number of time records up to the

present. Mh represents the total number of time records corresponding to

healthy conditions of the gearbox. See [87] for details regarding estimating

the variance for a gearbox in good condition.

4. e(t) represents the envelope of the current time record expressed as e(t) =

|b(t) + j ·H(b(t))| where H(b(t)) represents the Hilbert transform of b(t) and

em(t) represents the envelope of the mth time record.
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5. k∗ represents the index of the 1st order sidebands.

In Table 5-11, features F17 - F26 are exclusively reported for gearbox diagnosis.

Their definitions are specially described in the following. For illustration purpose,

they may not be introduced following the order of their labels.

FM4 is defined to be the kurtosis of the DIFF over each time record where a com-

plete data series collected (called a run ensemble) is divided into M time

records each including T data points [104]. According to [105], FM4 reacted

well to the damage on one or two isolated teeth, but lost its sensitivity signifi-

cantly as the damage spreads to other teeth. Thus, FM4 is good for detecting

initial faults, but not suitable for measuring the progression of faults.

FM4∗ is equal to the ratio between the fourth moment of a DIFF time record and

the squared value of the average variance of the “healthy” DIFF time records

[34]. FM4∗ is designed for the purpose of monitoring the progression of a fault

instead detecting of the initial fault. At the point of using FM4∗, we assume

that the fault has already appeared. Among the M time records in the run

ensemble, the first Mh time records correspond to the gearbox condition of

no fault yet. The remaining records would then contain information on the

growth of the fault.

M6A is defined to be the ratio between the sixth moment of a DIFF time record

and the third power of the variance of the DIFF time records. It is called

M6A in [106] and M6 in [107]. As we know, kurtosis uses the fourth moment

in the numerator and the second power in the denominator, while M6A uses

the sixth moment in the numerator and the third power in the denominator.

The underlying theory of M6A is the same as that of FM4. However, M6A

is expected to be more sensitive to peaks in the DIFF due to the use of the

sixth moment in the numerator [108].

M6A∗ is based on the M6A with the exception that it differentiates the “healthy”

records from the “faulty” records [106]. It uses the average variance of the

“healthy” DIFF time records in the denominator. Based on its definition,

M6A∗ is expected to improve the performance of M6A in tracking progression
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of gear faults. In addition, M6A∗ is more sensitive than FM4∗ due to the use

of the sixth moment [106].

M8A is exactly the same as M6A except that the sixth moment of a DIFF time

record becomes the eighth moment and the third power of the variance of the

DIFF time record becomes the fourth power. M8A is expected to be more

sensitive to peaks than M6A by definition [108] .

M8A∗ is exactly the same as M6A∗ except that the sixth moment of a DIFF time

record becomes the eighth moment and the third power of the variance of the

DIFF time record becomes the fourth power. M8A∗ is expected to be more

sensitive to the fault progression than M6A∗ by definition [108].

NA4 is defined to be the ratio between the fourth moment of an RES time record

and the squared value of the average variance of the RES time records in the

run ensemble where the run ensemble is divided into M time records each

with T data points. NA4 is designed to overcome the shortcoming of FM4

which is less sensitive to the progression of faults. NA4 can not only detect

the onset of damage, as FM4 does, but also continue to react as the damage

spreads and increases in magnitude [105].

NA4∗ is defined as the kurtosis of the run ensemble normalized by the squared

average variance of the RES time records collected when the gearbox is in the

“healthy” condition [109]. This is similar to FM4∗. Ref. [109] reports that

NA4∗ is robust for indicating not only initial damage but also progressive

damage.

NB4 is equal to the ratio between the fourth moment of a BPM time record and

the squared value of the average variance of the BPM time records within the

run ensemble of the envelope signal [104]. The theory behind NB4 is that the

damage on gear teeth will cause transient load fluctuation that is different

from that caused by healthy teeth, and this can be seen from the envelope of

the signal.

NB4∗ aims to improve the performance of NB4 in tracking damage progression.

The concept of “healthy” time records is used here [106]. Ref.[104] reports
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that NB4 and NB4∗ present trends similar to those of NA4 and NA4*, with

a more robust indication to the severity of damage.

In accordance with Section 4.1.2.3, we built a dataset with 80 data points, each

of which has 136 (34 features × 4 accelerometers) input features and an output

damage level. The features were numbered in the following way: #1 – #34 are

from LS1, #35 – #68 are from LS2, #69 – #102 are from HS1, and #103 – #136

are from HS2. The features for each accelerometer are in the same order as shown

in Table 5-11, e.g. features #1, #35, #69, and #103 all correspond to maximal

value (F1). There are eight conditions of load and speed, hence there are eight

classification problems to be addressed.

5.5.2.2 Results

Since four damage levels are involved, each of the eight problems is a 4-class clas-

sification problem. We used the multi-class model of the proposed algorithm for

feature selection. The parameters used for classification are: kf is the Gaussian

kernel, kp = 1, and C = 50. The 3FCV is used to calculate the CA. Table 5-12

shows the results averaged over 30 trials. The definition of CA(%) is given in Section

5.1.1. The column labeled “All features” indicates the results of SVM classification

using all the features. We see that the CA values are quite low for all conditions.

Some are even as low as 50%, which is unacceptable. Relatively large standard

deviations are also observed; these suggest that the data points may not be dis-

tributed evenly in the original feature space. The CA is significantly improved by

using the proposed feature selection algorithm for all conditions. We see that the

CA values are all greater than 95%, and the corresponding standard deviations are

reduced. Moreover, all these good results are provided by feature sets with less than

15 features, five of which contain fewer features than 5. From these observations,

we can conclude that the proposed algorithm is capable of significantly enhancing

classification performance for the given damage level classification problem.
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Table 5-12: Results of classification using the proposed feature selection algo-
rithm

Conditions 

All features The  proposed algorithm 

CA (%) CA (%) Number of features 

Mean Std.  Mean Std. PBP Mean Std. 

300rpm & noload 63.50 5.82 99.75 1.01 100 2 0.60 

300rpm & load  50.67 9.91 96.58 5.34 100 4 3.93 

600rpm & noload 72.42 8.39 99.58 1.33 100 2 3.38 

600rpm & load 54.67 8.11 97.67 2.86 100 10 8.87 

900rpm & noload 65.83 8.16 100 0 100 1 0.18 

900rpm & load 68.67 9.28 96.25 4.34 100 14 6.78 

1200rpm & noload 59.00 11.83 99.25 1.99 100 2 1.87 

1200rpm & load 64.42 7.90 100 0 100 7 4.89 

 

5.5.2.3 Discussions

From Table 5-12, it is seen that, given the same speed, the degree of improvement

in CA is greater for noload conditions than for load conditions. In addition, the

dimensions of resultant feature subsets are larger for load conditions than for noload

conditions; the same is true of their standard deviations. These observations indicate

that the classification problem may become more difficult when a load is applied.

For this reason, we examined the noload condition and the load condition separately

in this section.

(1) Analysis of the resultant feature subsets for noload conditions

The feature subsets of 900 rpm were analyzed first. It was seen that about one

feature on average was selected in this condition. We examined the composition of

these subsets over the 30 trials and found the results were quite consistent. Feature

#98 was selected for 23 trials, feature #96 was selected for 3 trials, feature #28

was selected for 2 trials, and feature #132 and a combination of features #86 and

#90 were both selected for 1 trial. Based on Table 5-11, it was seen that apart

from features #86 and #90, most were either standard deviation frequency (F30)

or frequency center (F28). Because feature #98 was selected for most of the trials,

out of interest, we plotted the classification results using this feature in Figure 5-19.

It exhibited a good separation of data points for different damage degrees.
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Figure 5-19: Classification results using standard deviation frequency of HS1
under 900 rpm & noload condition

For the 300 rpm, the resultant feature subsets showed two compositions. One

contained only feature #96 for 11 trials and the other contained both features #92

and #126 for 17 trials. For the 600 rpm, the resultant feature subsets were a bit

various. We found that features #28 and #96 were selected for the most trials,

14 and 10, respectively. These two were both frequency center (F28) but from

different accelerometers. For the 1200 rpm, the most frequently selected features

were #96 and #98 which were selected for 11 and 10 trials respectively. Based on the

above observations, we concluded that the frequency center (F28) and the standard

deviation frequency (F30) were the most useful features for noload conditions. To

test this conclusion, classification using features #28 (F28 from LS1), #96 (F28

from HS1), and #98 (F30 from HS1) was conducted for the same 30 sets of training

and testing data. The resulting classification accuracies were comparable to those

obtained using the proposed method.

(2) Analysis of the resultant feature subsets for load conditions

For each speed, the resultant feature subsets over 30 trials were not as consistent as

those from noload conditions. The resultant subsets usually contained more than

one feature and displayed a relatively high variety. We still, however, found some

features appearing in the subsets with high frequencies for all speeds; these included

features #29 (F29 from LS1), #30 (F30 from LS1), #96 (F28 from HS1), #129 (F27
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from HS2) and #133 (F31 from HS2). It was apparent that these features were all

frequency domain features. Similarly, studying the classification results from using

these features under load conditions, we obtained classification accuracies that were

not as good as those using the proposed method; they were, however, all over 90%,

which was acceptable.

5.5.3 Diagnostics of Slurry Pump System

This section presents the results of classifying impeller damage level in a slurry pump

using the SVM-based diagnostic algorithm. Since one outlier has been identified

from the pre-processed slurry pump dataset (see Section 5.5.1), this section directly

conducts feature selection for the cleaned dataset. Accordingly, the transitional

dataset can be built by removing data point #65 from the pre-processed dataset.

The proposed feature selection algorithm is then applied to the transitional dataset.

The selected features are F1, F2, F10, F19, F16, F20, F18, F21, F15, F5, F6, F3,

and F4, which reduce the dimension of the original feature space by 8. Table 5-13

shows the results of the given classification problem.

The diagnostic results are given in the row labeled “Combination”, which sig-

nifies that the proposed data cleaning and feature selection methods were used

together for diagnostics. It is seen that using both proposed algorithms reduces the

MR value by more than 5%, and reduces the dimension of the feature space by 11,

compared to the values given by the original SVM. The results from using only data

cleaning are given in the row labeled “Data cleaning (only)”, and those from using

only feature selection are given in the row labeled “Feature selection (only)”. We see

that data cleaning reduced the MR value by 3%. Feature selection did not reduce

the MR value, but the dimension of the feature space was reduced by 5. Note also

that the selected useful features for “Feature selection (only)” and “Combination”

are not consistent. This is straightforward, because they were determined based on

a different database, the pre-processed dataset and the transitional dataset, respec-

tively. Such a difference implies that outliers should not be ignored and that data

shoud be cleaned before feature selection.
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Table 5-13: Results of classification using the proposed data processing algo-
rithm

 Outliers removed Features selected MR 

Original SVM N/A All 14.44  

The proposed data 

cleaning (only) 
#65 All 11.23  

The proposed feature 

selection (only) 
N/A 

F10, F1, F14, F2, F16, F18, F17, F19, 

F20, F3, F15, F6, F5, F21, F4, and F7 
14.44% 

The proposed 

diagnostic algorithm 
#65 

F16, F21, F20, F6, F14, F8, F9, F11, 

F12, and F17 
8.99  

 

5.6 Summary

This chapter presents an SVM-based diagnostic algorithm which contains SVM-

based data cleaning algorithm and SVM-based feature selection algorithm that we

propose. The former was inspired by observing that outliers close to the separating

plane are misclassified by the SVM classifier. The latter was based on the weight

vector of the SVMmodel which relates to the margin of SVM separation. Benchmark

datasets have been used to validate these two proposed algorithms. Comparing both

with reported methods demonstrates the effectiveness of the proposed algorithms.

The proposed data cleaning algorithm is also used for the given slurry pump and the

proposed feature selection algorithm for the given planetary gearbox. The results

show the good potential of these two algorithms for engineering applications. Our

results show also that employed together to classify impeller damage level in the

slurry pump system, these algorithms achieved better diagnostic results than either

could when used alone.
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Chapter 6

Support-Vector-Machine-Based
Prognostics

SVM-based prognostics employs SVM as a predictor to forecast condition indicator

values based on which remaining useful life (RUL) can be estimated for a system.

It is obvious that prediction results depend on the behavior of the SVM model,

as determined by its parameters. One challenge is that random noise usually ap-

pears in the observations of condition indicators, and this can cause over-fitting

or under-fitting when model parameters have not been appropriately selected. In

the literature, two types of method are reported for selecting model parameters

in order to relieve noise effects. One is the analytical method, and the other is

the optimization-based method. The analytical method employs explicit expres-

sions to compute SVM parameters directly, where statistical measures such as noise

standard deviation are usually adopted [29–32]. This method can adjust the pa-

rameters as data are updated, but the obtained parameters are not optimal. The

optimization-based method employs an optimization process to obtain parameters

[24, 25], but do not contain relevant terms for dealing with noise effects and are

unable to automatically adjust SVM parameters when data are updated.

This chapter presents an SVM-based online prognostic algorithm where SVM

model parameters are determined by one proposed analytical method and one pro-

posed optimization-based method. The proposed analytical method [110] focuses on

selecting the regularization parameter, C, of the SVM model, which is modified from

a reported method by introducing a measure of noise into the selection model. The

proposed optimization-based method [111–113] adopts a new optimization model
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and is incorporated with the cumulative sum (CUSUM) technique to adjust intelli-

gently the SVM model parameters when current parameters are inappropriate. The

performance of the two proposed methods for condition prognostics are examined

using two simulation datasets, and their applications in condition prognostics are

given for the two experimental systems of interest.

6.1 Preliminaries

6.1.1 Terminologies

Condition indicator (CI): a measure used to represent a system’s health status.

It can be either directly observed through monitoring instruments or extracted

from raw condition monitoring (CM) data such as vibration signals, acoustic

emission signals and particle counter data.

Observation: an observed value for CI. The observations are time series data,

stored in sequence with respect to monitoring time. Observations are assumed

to consist of the true value for CI and noise.

True value of CI (TVCI): the component of observations, reflecting real system

condition without the involvement of noise.

Noise: noisy components appearing in the observations, due to various uncontrolled

random factors, e.g. environmental conditions, instrument errors, human er-

ror, etc.

Noise level (NL): the standard deviation of noise.

Relative noise level (RNL): the ratio of NL to the standard deviation of obser-

vations. This measure is used to represent the noise effects. Compared to

the well-known Signal-to-noise ratio (SNR), RNL has a very small definition

region [0,1], because the variation of noise is involved in that of observations.

Based on RNL, noise effects on observations can be readily evaluated following

the rule, “the smaller the RNL value, the smaller the noise effects”.
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6.1.2 Datasets for Demonstrations

In practice, the TVCIs are unknown, so simulation datasets are very useful for

demonstrating the performance of prognostic algorithms. This is because their TV-

CIs are available. We generate two simulation datasets labeled SD1 and SD2 to

mimic the trend of realistic deterioration for a system. These two datasets have

univariate input and are generated based on the same base model:

yt = yt(True) + δt (6.1)

where yt(True) represents the TVCI for time t, and δ represents the noise term.

SD1: a simulation of a monotonic trend of CI values the function of which is given

as:

yt = 10 + 10−3et + cδt (6.2)

where δt represents additive noise following the Gaussian distribution with a

mean of zero and a standard deviation of one, and c represents the expected

NL. For SD1, we generated six sets of data based on RNL values, 0.2, 0.3, 0.4,

0.5, 0.6, and 0.7. Data length was 400 for each of the six datasets. Figure 6-1

shows a plot of SD1 with RNL=0.4.
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Figure 6-1: Plot of SD1 (RNL=0.4)
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SD2: a simulation of a more complicated situation where a deterioration trend

contains fluctuations due to seasonal components, the function of which is

given as:

yt = 10 + sin(2πft) + 10−3et + cδt (6.3)

where f represents the sampling frequency (which is 500 for SD2). Other

parameters have the same meanings as those of SD1. Six sets of data were

generated as they were for SD1. Data length was 1000 for each set. Figure 6-2

shows a plot of SD2 with RNL=0.4.
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Figure 6-2: Plot of SD2 (RNL=0.4)

6.2 SVM-Based Prognostic Algorithm

The problems of system prognostics are diverse. In this research, we focus on ad-

dressing problems subject to the following assumptions.

1. One CI is always available for use. It can be either directly observed through

instruments or extracted from CM data.

2. Observations of CI are not noise-free. The noise is due to various independent

random factors. It is known from the central limit theorem [72] that irrespec-

tive of the distribution followed by the each random factor, the combination
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of distributions can be reasonably approximated by a Gaussian distribution

with a certain mean and a certain standard deviation.

3. Observations of CI are time series data which are subject to a deterioration

trend, which is not necessarily strictly monotonic.

4. Monitored systems can be expected to work properly for a long enough time

to ensure there will be a number of observations available for utilization.

5. There is a threshold for the boundary of system deterioration. Once a pre-

dicted CI exceeds this threshold, a fault with an unacceptable level or a failure

has been detected and the system must be shutdown for maintenance imme-

diately.

Multiple CIs could be used for prognostics. Monitoring and predicting multi-

ple CIs at the same time may capture different characteristics of machine damage

mechanism. To make a maintenance decision needs jointly considering every sin-

gle CI. However, this thesis focuses only on the single CI case. The multiple CIs

cases may be addressed in future. Consider that a time series of observations,

Y t = [y1, y2, . . . , yt], is known, where yt is an observation at time t. Based on as-

sumption 2, these observations can be modeled in the same way as shown in Eq.

(6.1) where δt represents the noise following a Gaussian distribution with mean zero

and a certain NL, σt(Noise). We further hypothesize that the σt(Noise) value may

change over time, but a particular σt(Noise) will remain stable for a certain time

span.

Therefore, we formulate the SVM-based prediction for the time point at a-step-

ahead t as:

ŷt+a = Θ(Y b
t , pSVM) (6.4)

where ŷt+a represents the prediction for the time point a-step-ahead t, pSVM rep-

resents the SVM model parameters, and Y b
t represents a time series [yt−b, . . . , yt]

where yt−b represents the observation at b-step behind t. If a = 1, the prediction is

a one-step forecast, whereas when a > 1 the prediction is a multi-step forecast. Al-

though multi-step forecasting may capture some system dynamics, the performance

is poor because there is an accumulation of errors [24]. For this reason, we use
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a = 1 in this research. Eq. (6.4) can be interpreted as predicting ŷt+a using the

SVM predictor, Θ(·), based on observations between time points t− b and t.

To evaluate the predictions, the measure of normalized root mean square error

(NRMSE) is used; this is given by:

NRMSE =

√

√

√

√

Σl
i=1(yi(True) − ŷi)2

Σl
i=1y

2
i(True)

(6.5)

where yi(True) and ŷi represent TVCI (known from the simulation datasets) and cor-

responding prediction, respectively. l represents the number of predictions available.

It is believed that the smaller the NRMSE value, the better the method performs.
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Figure 6-3: Procedure for SVM-based online prognostics

Figure 6-3 shows the procedure for an SVM-based online prognostic algorithm.

Each step is explained below. For brevity, some steps (blocks) may be presented

together.

Step 1: Collect CM data, obtain observations of CI, and store the observations.

Figure 6-3 considers the situation that CI is not available from a direct mea-

surement, so one has to extract/compute CI values from collected CM data.

Observations of CI are continuously collected and stored in a dataset until a

specified number of observations (N) are available. This is subject to assump-

tion 4 which enables sufficient data to be used in the steps that follow.
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Step 2: Check data sufficiency. The relationship between t and N is checked (t is

a time label beginning with 1). If t < N , observations will be continuously

gathered and stored. If t = N , SVM parameters will be determined for the

first time in the next step. If t > N , observations will be directly used to

train the SVM model for prediction. The observations in the dataset can be

transferred through this step without any loss.

Step 3: Determine SVM parameters, build the SVM model using these parameters,

and predict TVCI using the built the SVM model. The two proposed methods

for determining SVM parameters are used in this step. The rationale for the

proposed methods, and the procedure of implementation are presented in

detail in the sections below.

Step 4: Check to see if the predicted TVCI exceeds a specified threshold. If yes,

the whole procedure is stopped; otherwise, repeat Steps 1 to 3.

6.2.1 SVM Prediction Using Analytical Method

This section presents an analytical method of selecting the regularization parameter

of the SVM model, parameter C. This method is a modification of an existing

method [30]. Figure 6-4 shows the procedure for obtaining predictions using the

proposed analytical method which can serve in the online prognostic algorithm,

specifically in the bold block of Figure 6-3.

Figure 6-4 illustrates that one determines SVM parameters first, then uses those

parameters to build an SVM model, and ultimately uses the built model to predict

the TVCI value.
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Figure 6-4: Procedure of obtaining TVCI using the proposed analytical
method

It is reported in [30] that the optimal choice of parameter C can be derived

from standard parameterization of the SVM solution according to Eq. (3.47); this

is given by:

|f(x)| ≤ |Σp
i=1(αi − α∗

i )K(xi,x)| , (6.6)

where p represents the number of support vectors. Incorporating the constraints of

dual variables as given in Eq. (3.38), one has:

|f(x)| ≤ pC |K(xi,x)| . (6.7)

Eq. (6.7) can be transformed to:

|f(x)|
M |K(xi,x)|

≤ p

M
C. (6.8)

whereM represents the number of training data, so that p
M represents the proportion

of support vectors in the training data. Because p is always no larger than M , this

proportion ranges between [0,1]; hence, it yields:

|f(x)|
M |K(xi,x)|

≤ C. (6.9)

In Eq. (6.9), K(xi,x) is determined by a support vector xi, and a new input

data point x. The input of the new data point is easy to obtain, but the support
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vector xi is unavailable before the training process. Hence, the product of M and

K(xi,x) is not easy to determine. Because the product involves the size of the

training data, M , it could be very large, making the LHS of the inequality very

small. As reported in [84], when parameter C was very small compared to |f(x)|,
it would be impossible to obtain a good prediction, therefore Eq. (6.9) can not be

used. This is in accordance with the results of our independent experiments. A

large C value is more favorable, and the following inequality can be used:

|f(x)| ≤ C. (6.10)

The parameter C can be selected using the lower bound of Eq. (6.9); this is

given by:

C = max |y| (6.11)

where y instead of f(x) represents the output of the training data for the sake of

simplicity. The authors of [30] claimed that the range in the training outputs is very

sensitive to outliers, so they proposed to computing parameter C using the following

expression:

C = max(|y + 3σy| , |y − 3σy|), (6.12)

where y and σy represent the mean and the standard deviation of the training

outputs, respectively.

It is reported in [32] that parameter C is associated with the size of the ǫ-

insensitive zone, which in [82] was discovered to be proportional to NL. These two

observations together suggest that the factor of NL should be considered in the

selection model of parameter C. For these reasons, we propose the following model

for parameter C:

C = max(|y + 3σy| , |y − 3σy|)g(σ), (6.13)

where g(σ) is a function of σ, namely NL. It is believed that when NL is small the

optimal parameter C tends to be large making the product of C and the empirical
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risk comparable to the structural risk; it is thus reasonable to define σ inversely

proportional to parameter C.

The following shows how we come up with the proposed analytical model for

selecting parameter C. The procedure is introduced in detail but the numerical

tests are not given due to the thesis length. First, a constant coefficient is applied

to the function, and because parameter C should be inversely proportional to σ, the

underlying function of g(σ) is expressed as,

g(σ) =
a

σ
(6.14)

Based on our experiences, the prediction results of SVM are sensitive to the C values

in ten orders of magnitude. Thus, we use a series of values, a = 10i−1, i = 1, 2, . . . , 8,

to conduct “trials and errors” tests. SVM is used with these eight values. Normalized

root mean square error (NRMSE) is employed to assess the prediction results. The

datasets used for testing are SD1 and SD2. The results are compared with the one

reported in [30]. Unfortunately, we found that none of the used coefficients are able

to provide consistent good prediction results.

Constant coefficients seem not working. As we know, NL is popularly used to

measure the magnitude of noise; however, the noise effects on training outputs should

not rely only on the NL but also on the magnitude of the training outputs. We can

not say that noise with a small NL value produces little noise effect, because this

is not true when the standard deviation of the training outputs is also very small.

This concern inspires us to define the RNL measure as given in Section 6.1.1. The

RNL is defined as the ratio of noise level to standard deviation of observations and

it ranges from 0 to 1. A small RNL value represents small noise effects and vice

versa. Because RNL is varied according to the data, it is more sensitive compared to

the constant coefficient. Now, g(·) becomes a function of RNL. Following the same

rationale of the constant coefficient case, the “trials and errors” tests are conducted

for three forms of g(RNL) tested,

g(RNL) =
1

RNL0.5 or
1

RNL
or

1

RNL2 , (6.15)

where RNL is placed in the denominator to make σ inversely proportional to the

C. The numerical test results show that the first expression gives consistently good

results, so the proposed analytical model for selecting parameter C is expressed as:
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C = max(|y + 3σy| , |y − 3σy|)RNL−0.5 (6.16)

= max(|y + 3σy| , |y − 3σy|)
√
σy/
√
σ, (6.17)

where it is seen that the max term is scaled by a factor relevant to the root of NL.

Over-fitting caused by noise is a usual problem that one has to face when doing

prediction. SVM handles this problem by selecting appropriate user-defined model

parameters. This section proposed an analytical method to calculate the appropriate

values for parameter C. Methods reported in literature mainly relate parameter C

to the magnitude of the observation of condition indicator. Our studies reveal that

parameter C is also dependent on the magnitude of noise existing in the observations.

RNL is thus defined and incorporated into the model for selecting parameter C.

The proposed analytical method takes into account the noise effects in prediction

and enables the parameter C value to be adjusted along with the variations of

noise magnitude. It is a valuable contribution to analytically selecting SVM model

parameters for prediction.

6.2.2 SVM Prediction Using Optimization-Based Method

This section presents an intelligent method of selecting SVM model parameters that

is based on a developed optimization model which takes the noise effects into account

in its objective function.

The least square SVM (LSSVM) for prediction is adopted because it has per-

formed well for data with Gaussian noise. In order to accommodate variations in

observations and noise, the cumulative sum (CUSUM) technique is employed. By

this means, the re-determination of LSSVM parameters can be triggered when un-

allowable cumulated variations are detected. Figure 6-5 shows the procedure for

obtaining a prediction which corresponds to the bold block of Figure 6-3. Figure 6-

5 is explained step by step below. The label for each step begins with a 3, indicating

a sub-step of Step 3 which is described in Section 6.2.
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Figure 6-5: Procedure for obtaining TVCI using the proposed optimization-
based method

Step 3-1: An optimization process is triggered when the condition t = N is satisfied

or the CUSUM criterion (Step 3-4) is not satisfied. This optimization problem

is solved using genetic algorithms (GA). The MATLAB’s GA toolbox is used

to achieve the GA optimization. Figure 6-6 shows the procedure which is

described step by step below. One can refer to MATLAB’s Help document

for the parameter settings of each step.
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Figure 6-6: Procedure of GA optimization

Step 3-1-1: Code. LSSVM parameters are decision variables for the opti-

mization problem. A real-value coding strategy is adopted; this means

that parameter values are real numbers during the optimization.

Step 3-1-2: Generate initial population. An individual (chromosome) is

composed of LSSVM parameters in the form of [C, kp] where kp rep-

resents the parameter of the kernel function. A number of individuals

(100) are generated at random for the initial population.

Step 3-1-3: Train the LSSVM model. The LSSVM model with the parame-

ters carried by each individual is trained based on available observations.

Step 3-1-4: Calculating fitness value. Fitness function is the NRMSE for

regular optimization-based methods. Such fitness values are easy to

compute; however, the predictions obtained tend to over-fitting due to

noise. We propose a new fitness function that addresses this problem.
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The fitness function is designed to compel the difference between obser-

vations and corresponding predictions as close to noise as possible. The

mathematical expressions of the fitness function and the constraints are

given as:

Minimize

∣

∣

∣

∣

∣

√

1

l
Σt
i=t−l+1[∆yi −

1

l
Σt
j=t−l+1(∆yj)]2 − σ̂

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

1

l
Σt
j=t−l−1(∆yj)

∣

∣

∣

∣

(6.18)

Subject to (6.19)

0 < C < CLim, (6.20)

0 < kp < kp(Lim), (6.21)

∆yi = yi − ŷi, (6.22)

ŷi+1 = Θ(Y b
i ;C, kp), (6.23)

where l represents the number of predictions needed for computation,

the subscript of “Lim” represents the upper bound of parameters, σ̂

represents the estimate of NL, and ∆yi represents the difference between

observation and corresponding prediction for time i.

Based on Eq.(6.1), if ∆yi is equal to the noise term, δi, the TVCI, yi(True),

can be obtained given the observations. Because Gaussian noise can be

represented by its mean and standard deviation, we build the fitness

function in such a way as to enable ∆yi to have values identical to the

mean and the standard deviation of δi. This fitness function thus allows

SVM predictions to reach or approach the TVCIs. In Eq.(6.18), the term

in the first absolute sign is the difference between the standard deviation

of ∆yi and the estimated NL. The NL is obtained using an estimation

method that is described below. The term in the second absolute sign

is the difference between the mean of ∆yi and the ideal mean of noise,

zero. We expect a scenario where the fitness function returns a zero value

which yields ŷi = yi(True), but realistically, this is unlikely to happen due

to the randomness of noise. A more realistic expectation is for ŷi to be as

close to yi(True) as possible. Since the fitness function aims to narrow the
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deviations between the predictions and the TVCIs rather than between

the predictions and the observations, it reduces the risk of over-fitting.

The estimated NL is obtained using k-nearest-neighbors regression [30]:

σ̂ =

√

M1/5k

M1/5k − 1

1

M
ΣM
i=1(zi − ẑi)2 (6.24)

where ẑi represents the estimate of the data point zi obtained by k-

nearest neighbor regression, k is the number of nearest data used to

estimate zi, and M is the sample size of the whole dataset.

Step 3-1-5: Selection. A stochastic uniform method is employed to select

individuals. This is a default option of GA toolbox.

Step 3-1-6: Crossover. An arithmetic crossover is employed to create chil-

dren (new individuals) that are the weighted arithmetic mean of two

parents (old individuals). The weight is 0.8 for the individual with a

greater fitness value and is 0.2 for the other individual.

Step 3-1-7: Mutation. A uniform mutation is employed to provide the nec-

essary diversity of population. The mutation fraction is set at 0.1.

Step 3-1-8: Stopping criterion. The optimization process stops if there is no

improvement in the objective function for 10 generations.

The reasons of using GA to solve the optimization problem is as follows. For

the given optimization problem, the decision variables are the model param-

eters of SVM and the objective function is not differentiable with respect to

the decision variables. For this reason, the optimization algorithms requiring

function differentiability are not applicable. The algorithms that do not re-

quire strict mathematical properties of the objective function and the decision

variables are needed. These algorithms may include genetic algorithm (GA),

particle swarm optimization, ant colony algorithm, simulated annealing, etc.

GA is finally chosen because it is widely acknowledged as being able to ensure

general global optimality, without limitation for use. In addition, many GA

toolboxes are available for MATLAB programming.

For the sub-steps of Step 3, several GA parameters are specified. These pa-

rameters control the GA optimization process. Different selections of them
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may generate distinct results. For example, a certain group of parameters

may get rid of a local optimality and reach a global optimality. However,

this usually needs additional algorithms or multiple implementations of GA.

Basically, we do not expect the proposed method much dependent on the

parameters of GA optimization, because it will reduce the robustness of the

proposed method. Hence, the parameters for GA are all default settings de-

fined in GA toolbox. These settings are not optimal but generally applicable

to most of optimization problems.

Step 3-2: Establish an LSSVM model and make a prediction. The LSSVM model

is established using the optimal parameters returned by Step 3-1. This model

is then used to predict as shown in Eq. (6.4).

Step 3-3: Check CUSUM criterion. CUSUM is used to determine the adequacy of

the current LSSVM model and to trigger, if needed, the optimization process

(Step 3-1) in order to re-determine the optimal parameters for the LSSVM

model based on updated observations.

Suppose that a random variable, Z, is drawn from a normal distribution with

a mean of µ and a standard deviation of σ. CUSUM detects the deviation of

a certain observation from the mean by:

di =
zi − µ

σ
, (6.25)

where di represents the multiple of σ that a certain observation, zi, deviates

from µ. In terms of a large sample size, the two statistical parameters, µ and

σ, can be replaced with the sample mean and sample standard deviation.

CUSUM uses two sums to detect unallowable deviations. These are given by

[114]:

UBi = max[0, (di −m) + UBi−1], (6.26)

LBi = max[0, (−di −m) + LBi−1], (6.27)
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where UBi is for detecting positive deviation and LBi is for detecting negative

deviation. The values for UB0 and LB0 are zero. The value for m is usually

selected to be 0.5 which is appropriate for detecting a one-sigma deviation.

There is a threshold, h, such that when it is exceeded by either sum, an unal-

lowable deviation is detected. The h is usually selected to be 3 as suggested

in [114].

We expect the predictions of LSSVM to be as close to the TVCIs as possi-

ble. As a result, the differences between observations, yi, and corresponding

predictions, ŷi, are normally distributed with a mean of zero and a certain

standard deviation. CUSUM can be used to control the differences, yi − ŷi.

Figure 6-7 shows the CUSUM criterion in which the µ and σ of the differences

up to time t are estimated by sample mean and sample standard deviation:

µ =
1

t− t0 + 1
Σt
i=t0(yi − ŷi), (6.28)

σ =

√

1

t− t0
Σt
i=t0

(yi − ŷi − µ)2, (6.29)

where t0 represents the time point that CUSUM begins to operate. Once

either of the two sums exceeds the threshold, the sum values are reset to zero.

Compute μ, σ, and d at 

current time t 

If UB or LB 

<h? 

Yes 

No 

Compute UB and LB at 

current time t 

UB=0  

 LB=0 

Figure 6-7: CUSUM criterion

This section proposed an optimization-based method to mitigate the noise effects
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in prediction. Unlike reported optimization-based methods which determine SVM

model parameters merely based on the observations collected in the initial stage,

the proposed method employs the CUSUM to update the model parameters. This

allows for using the up-to-date information for parameter selection and enables SVM

to capture the change caused by noise during the whole process of prediction. More

importantly, whenever the predicted errors are out of the specified tolerance, the

SVM model is re-established to accommodate the present situation. For this reason,

the proposed method has advantage over reported optimization-based methods and

is an important contribution to SVM parameter selection for prediction.

6.3 Evaluation of the Proposed Methods

This section examines the two proposed methods using the two simulation datasets,

SD1 and SD2. Since our focal point is how close the predicted TVCIs are to the real

ones rather than obtaining a RUL for decision making, checking whether a predicted

TVCI exceeds the threshold at Step 4 is not included in the examination.

6.3.1 Methods for Comparisons

Some reported analytical methods and optimization-based methods are compared

with the proposed two methods. As the proposed analytical method is for selecting

parameter C only, other SVM model parameters are selected exactly the same way

for all analytical methods in order to ensure a fair comparison, i.e. ǫ =
3σ
√
ln(M)√
M

[30], kf is the Gaussian kernel, and kp = 1. These selected kf and kp were determined

by “trials and errors” tests.

Method 1: Analytical method, C = max(|y + 3σy| , |y − 3σy|) [30].

Method 2: Analytical method, C = Mymax [83].

Method 3: Analytical method, C = ymax [84].

Method 4: The proposed analytical method, max(|y + 3σy| , |y − 3σy|)
√
σy/
√
σ [110].

Method 5: GA-based optimization method [24] where the SVM parameters, C, ǫ

and kp are decision variables. The procedure for implementation is similar to
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that in Figure 6-6 except that the fitness function in Step 3-1-4 minimizes the

NRMSE obtained from a 5-fold cross-validation.

Method 6: This is similar to Method 5 but SVM is replaced with LSSVM be-

cause LSSVM is optimal for data with Gaussian noise [115]. The LSSVM

parameters, C and kp, are decision variables.

Method 7: The proposed optimization-based method [113].

The data studied in this chapter are non-stationary. There are other reported

methods that can be used for non-stationary time series data prediction such as

autoregressive moving average (ARMA) [65] and Kalman filter (KF) [74]. Because

the proposed methods aim to improve SVM performance in prediction, it is more

reasonable to compare with the methods of the same kind. For this reason, the

comparisons with other non-stationary methods such as ARMA and KF are not

conducted.

6.3.2 Training Strategy

Training strategy is used only to determine SVM/LSSVM parameters for optimization-

based methods, because analytical methods have mathematical expressions for di-

rectly computing the parameters. For Methods 5 and 6, cross-validation is used as

reported in [24]. One-step ahead prediction is conducted according to Eq. (6.4).

Table 6-1 shows the arrangements of training and test data where b is given in Eq.

(6.4). The predictions obtained and the test data listed in the last column are input

to Eq. (6.5) in order to compute the NRMSE value which is the fitness value for

GA-based optimization. The parameters offering the minimum NRMSE value are

selected as the optimal parameters. For Method 7, the training and test data are

arranged in the same way as for Methods 5 and 6. The procedure for implementing

Method 7 can be found in Section 6.2.2.
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Table 6-1: Data arrangement for training

Training data Testing data 

y1 y2 ··· yb yb+1(True) 

y2 y3 ··· yb+1 yb+2(True) 

y3 y4 ··· yb+2 yb+3(True) 

··· ··· ··· ··· ··· 

yt-b yt-b+1 ··· yt-1 yt(True) 

 

The one-step-ahead prediction is conducted in this chapter. However, n-step-

ahead prediction would be more useful for prognostics since it predicts the system

conditions much ahead of the current time. This allows more time for arranging

maintenance actions. Nevertheless, as stated in [24], n-step-ahead prediction is more

likely to be corrupted by accumulated errors, so it may need additional methods to

work with in order to reach satisfied prediction results. On the other hand, one-

step-ahead prediction must be well addressed as it is the foundation of multi-step

methods. For this reason, this thesis focuses only on the one-step-ahead prediction

problem based on which multi-step problems could be possibly tackled in future.

According to Figure 2-4, one can use one-step-ahead prediction to estimate RUL.

However, the condition is that the length of monitoring intervals should not be too

small. If the interval is sufficiently large, for example weekly or biweekly, the RUL

calculated may be adequate for scheduling maintenance activities

6.3.3 Criteria for Evaluation

The NRMSE is an important measure for evaluating the performance of prediction

methods; however, it is not adequate, because a small NRMSE value may correspond

to a trend with unacceptable fluctuations which give it a noisy pattern. For this

reason, visual comparisons of a predicted trend and its corresponding TVCI trend

are given. The criteria are described as follows:

Criterion 1: Given that two predicted trends are similar, one is preferred if it has

a smaller NRMSE value than its counterpart.

Criterion 2: Given that two predicted trends correspond to comparable NRMSE

values, one is preferred if its trend is smoother than that of its counterpart.
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Criterion 3: Trend pattern has a higher priority than does NRMSE value, e.g. a

trend with a smaller NRMSE value but a noisier trend is not favored.

For the simulation datasets, the NRMSE values and the plots of trends are both

given, but for experimental datasets, only the plot of trend is given since TVCIs are

not available in this situation.

6.3.4 Evaluation Using Simulation Datasets

This section shows the results of the seven methods using simulation datasets. The

CI observations to be plotted are normalized using (y−min(y))/(max(y)−min(y))

where y represents the observation. The NRMSE value is calculated for every RNL

case. We show the plots of three RNL cases in which RNL=0.2 corresponds to a

case where the noise effect is small and may be ignored, RNL=0.5 corresponds to a

case where the NL can not be ignored, and RNL=0.7 corresponds to a case where

the noise effect is significant. The last case is somewhat practically inapplicable

because noise becomes the dominant component in the signal. We consider this

case just for the interest of assessment. In the following, the analytical methods and

the optimization-based methods are first compared separately. Later, we summarize

in terms of these two categories of method.

The parameters of Methods 5, 6, and 7 for simulation datasets are given in Ta-

ble 6-2. Parameter N denotes the number of observations available (see Figure 6-3),

l denotes the number of predictions used to determine the SVM/LSSVM parame-

ters (see Eq. (6.18)), and b denotes the number of observations used for training (see

Eq. (6.4)). Parameter N is selected as being 100 for SD1 and SD2. For Methods 5

and 6, l is set at 5 as suggested in [24]. Because Method 7 uses a different optimiza-

tion model, l is set at 30 in order to provide sufficient predictions for computing

the mean and standard deviation of the noise. The selection of b is subject to a

constraint that b + l must be no larger than N . Parameters m and h are for the

CUSUM of Method 7 (see Step 3-3 in Section 6.2.2 for their selections).
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Table 6-2: Parameter settings for simulation datasets

Dataset              Method 
Methods 5 and 6 Method 7 

N l b N l b m h 

SD 1 100 5 50 100 30 50 0.5 3 

SD 2 100 5 50 100 30 50 0.5 3 

 

6.3.4.1 Evaluation Using Simulation Dataset 1

Tables 6-3 and 6-4 lists the NRMSE values and CPU times for all seven methods

used with SD1. The column labeled “original” shows the values when the observa-

tion values are used for ŷi in Eq. (6.5). For the analytical methods, it is seen that

when RNL is relatively small, i.e. 0.2 – 0.4, all methods provide a larger NRMSE

value than those in the original column. When RNL is greater than 0.4, the situation

is reversed. We see that Method 4 (the proposed analytical method) provides con-

sistently smaller NRMSE values for all RNL cases than does Method 1. As Method

4 is based on Method 1, the results verify the effectiveness of the modification. This

observation is also true of the comparisons with Method 3.

In terms of NRMSE, it seems that Method 2 is the best of the analytical methods.

Figures 6-8, 6-9, and 6-10 show the predicted trends with RNL values of 0.2, 0.5,

and 0.7, respectively. The “Errors” curve in the legend (dash curve) denotes the

difference between the TVCIs and the corresponding predictions. It is seen that

Method 2 is quite noisy. According to evaluation criterion 3, this method is not

preferred. It is also seen that for Methods 1, 3, and 4 the predicted trends are much

smoother than the observations. This is desirable. Nevertheless, the large deviation

appears at a time when the TVCI is increasing rapidly. This deviation is believed

to be the major cause of NRMSE values greater than the original ones. If such

deviations can be corrected, these methods will be preferred.
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Table 6-3: Results of SD1 (Methods 1 - 4)

RNL Original 

Analytical methods 

Method 1 Method 2 Method 3 Method 4 

NRMSE CPU(s) NRMSE CPU(s) NRMSE CPU(s) NRMSE CPU(s) 

0.2 0.1309 0.2585 3.0108 0.2052 2.9484 0.2630 2.5740 0.2480 2.8860 

0.3 0.1753 0.2664 2.8392 0.2166 2.9328 0.2702 2.6364 0.2524 2.8860 

0.4 0.2079 0.2434 2.8392 0.2174 2.6520 0.2460 2.7612 0.2363 2.6364 

0.5 0.2266 0.1970 2.7768 0.1816 2.6520 0.1989 2.7300 0.1915 2.6208 

0.6 0.2438 0.1725 2.8704 0.1721 2.7768 0.1739 2.7768 0.1639 2.7144 

0.7 0.2576 0.1395 2.6208 0.1531 2.7144 0.1399 2.5428 0.1382 2.6364 

 

Table 6-4: Results of SD1 (Methods 5 - 7)

RNL Original 

Optimization-based methods 

Method 5 Method 6 Method 7 

NRMSE CPU (s) NRMSE CPU (s) NRMSE CPU (s) 

0.2 0.1309 0.1342 104.645 0.1077 115.9867 0.0881 108.8455 

0.3 0.1753 0.1803 74.4281 0.2992 117.8432 0.1306 599.2542 

0.4 0.2079 0.1634 105.7843 0.1709 115.3627 0.1548 145.7267 

0.5 0.2266 0.1035 262.5092 0.1071 115.7839 0.0823 439.2544 

0.6 0.2438 0.1847 121.2128 0.1111 107.7638 0.0814 105.8468 

0.7 0.2576 0.1241 163.6294 0.1126 108.8419 0.0755 648.1842 

 

In terms of CPU time, all four analytical methods perform equally. For each of

the four methods, the CPU times are comparable for the different RNL values. This

indicates that the CPU time is not sensitive to the NL.

For the optimization-based methods, let us consider first the special case of

RNL= 0.2, because Method 7 (the proposed optimization-based method) determines

the parameters only once; this means that no CUSUM is involved. This special

situation allows us to assess the performance of the developed optimization model

of Eqs. (6.18) and (6.23). In terms of NRMSE, based on Table 6-4, we see that

Method 7 has a smaller NRMSE value than do Methods 5 and 6. In terms of trend

pattern, Method 7 is comparable to Method 6 and much better than Method 5;

therefore, it can be said that the developed optimization model is effective.

Considering all RNL cases, the three optimization-based methods basically pro-

vide NRMSE values smaller than the original ones. It is seen that Method 7 provides
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the smallest NRMSE values for all RNL cases. Method 6 is basically better than

Method 5. Figures 6-8, 6-9, and 6-10 show that the predicted trends of Method 5

fluctuate more evidently than do those of the other two methods, especially for large

RNL cases. Method 5’s trends fluctuate even more than do those of Methods 1, 3

and 4. It is seen that these optimization-based methods have a slighter deviation

problem than do the analytical methods when the TVCIs are increasing rapidly.

In terms of CPU time, Methods 5 is larger than Method 6 for the large RNL

values, 0.5, 0.6, and 0.7. For RNL=0.2 and RNL=0.4, Methods 5 and 6 are compa-

rable. Basically, it is reasonable that Method 5 uses more CPU times than Method

6, since Method 5 has 3 decision variables over 2 of Method 6. However, Method 5

is observed much smaller than Method 6 for RNL=0.3. This may be caused by GA.

One possible reason is that the initial population contains individuals that are close

to the optimal solution, which make GA converge to the optimal solution quicker

than other RNL cases. Method 7 uses larger CPU times than Methods 5 and 6,

especially for RNL=0.3, 0.5 and 0.7. This is because it conducts GA optimization

multiple times, e.g. 8 times for RNL=0.5 and 12 times for RNL=0.7. When using

Method 7, one needs to consider if large CPU time is acceptable.
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Figure 6-8: Trend prediction (RNL = 0.2)
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Figure 6-9: Trend prediction (RNL = 0.5)
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Figure 6-10: Trend prediction (RNL = 0.7)
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For the two proposed methods, Methods 4 and 7, the former is much better

than the latter in terms of NRMSE. Method 7 has a self-examining mechanism

provided by CUSUM. We can see several vertical lines in Figures 6-9 and 6-10

for Method 7. These vertical lines correspond to the optimization process of re-

determining LSSVM parameters triggered by CUSUM. Taking the case of RNL=0.7

as an example, Method 7 automatically triggers the optimization processes at times,

223, 249, 283, and so on. This allows the predicted trend to return to the right

path without manual interruption when it deviates from the TVCIs. Conclusively,

Method 7 has a significant advantage over Method 4 in terms of its NRMSE values

and predicted trend patterns. In terms of CPU time, Method 7 uses much larger

amount than Method 4 does. When selecting method, One needs to consider both

prediction accuracy and CPU time.

6.3.4.2 Evaluation Using Simulation Dataset 2

Tables 6-5 and 6-6 lists the NRMSE values and CPU times for all seven methods

for SD2. Basically, the observations are quite similar to those for SD1. For the

analytical methods, Method 4 provides smaller NRMSE values than do Methods 1

and 3 for all RNL cases. Methods 1, 3 and 4 perform comparably to each other.

Method 2 gives the smallest NRMSE values for RNLs of 0.2, 0.3 and 0.4, but the

greatest NRMSE values for the rest of the RNL cases. Figures 6-11, 6-12, and 6-

13 show the predicted trends when RNL is equal to 0.2, 0.5, and 0.7, respectively.

Method 2 is always nosier than the others, which is not desired. Deviations happen

earlier than for SD1 for all methods due to a large scale fluctuation generated by

the sinusoidal term in Eq. (6.3). According to the evaluation criteria, Method 4

is the best, because it provides the best balance between NRMSE value and trend

pattern.

In terms of CPU time, it is also similar to SD1. The four analytical methods

basically use the same amount of CPU time, but the magnitude is larger than that

of SD1. This is because SD2 has 1000 data points while SD1 has merely 400 data

points.

For the optimization-based methods, Method 7 provides the smallest NRMSE

value for all RNL cases. Method 5 seems promising as well; its NRMSE values are
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comparable to those of Method 7 for half the RNL cases; however, when it comes

to the patterns of predicted trends, Method 5’s trends fluctuate more than those

of Methods 6 and 7. Methods 6 and 7 offer comparable smooth trends most of

the time. For Method 6, deviations become significant after time 800. Method

7 remedies this problem by triggering the optimization processes to re-determine

the parameters. It is seen from Figure 6-13 that the Method 6’s trend is subject

to a small fluctuation throughout its entire time span. This is strangely distinct

from its performance for other RNL cases where its trends are quite smooth. To

eliminate the effect of singularity, we independently ran Method 6 ten times, but

the trend patterns we obtained remained similar. Method 7 also provides a trend

with some small-scale fluctuations in several discontinuous time intervals, but these

fluctuations were quickly corrected.

In terms of CPU time, it is also similar to that of SD1. Method 5 basically uses

the amount of CPU time comparable to and larger than Method 6. Method 7 uses

even larger amount of CPU time due to the larger number of optimization runs. For

SD2, the largest two CPU time appear at RNL=0.2 and RNL=0.3. This is different

from SD1. Figure 6-11 reveals that most of CPU times are used around the end of

time series when RNL=0.2.

The following summarizes the performance of the seven methods. In terms

of the criteria mentioned in Section 6.3.3, Method 2 is the worst among all four

analytical methods as its predicted trend is the noisiest. Compared to Methods 1

and 3, Method 4 provides comparable trends and smaller NRMSE values. Method

7 provides smaller NRMSE values than do Methods 5 and 6, and its trend is as

smooth as that of Method 6. In conclusion, Method 4 is the best among the four

analytical methods, and Method 7 is the best among the three optimization-based

methods. Compared to Method 4, Method 7 is much better in terms of NRMSE

and trend pattern. Method 4 is even worse than Method 6. In this sense, the

optimization-based methods are superior to the analytical methods, and Method 7

is the best of the all seven methods.
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Table 6-5: Results of SD2 (Methods 1 - 4)

RNL Original 

Analytical methods 

Method 1 Method 2 Method 3 Method 4 

NRMSE CPU(s) NRMSE CPU(s) NRMSE CPU(s) NRMSE CPU(s) 

0.2 0.0885 0.1295 9.2197 0.1071 8.5801 0.1308 8.8921 0.1239 8.8297 

0.3 0.1268 0.1201 8.2837 0.1088 8.3773 0.1211 8.1433 0.1172 8.2681 

0.4 0.1584 0.1195 8.1901 0.1151 8.8297 0.1204 8.2525 0.1174 8.3929 

0.5 0.1753 0.1028 8.3305 0.1098 8.4397 0.1031 7.9093 0.1020 8.2057 

0.6 0.2153 0.1087 8.4397 0.1228 8.6425 0.1089 8.1589 0.1081 8.1589 

0.7 0.2305 0.0656 8.1277 0.0948 8.4709 0.0653 7.8781 0.0655 8.0809 

 

Table 6-6: Results of SD2 (Methods 5 - 7)

RNL Original 

Optimization-based methods 

Method 5 Method 6 Method 7 

NRMSE CPU (s) NRMSE CPU (s) NRMSE CPU (s) 

0.2 0.0885 0.0747 285.4662 0.1530 165.6731 0.0751 801.1119 

0.3 0.1268 0.0819 142.0701 0.1472 166.6751 0.0544 826.9010 

0.4 0.1584 0.0632 133.6733 0.1366 164.1443 0.0619 304.9002 

0.5 0.1753 0.0719 267.5573 0.1069 158.4658 0.0579 526.4098 

0.6 0.2153 0.1484 166.4687 0.1227 162.1786 0.0635 664.4863 

0.7 0.2305 0.0819 161.9758 0.0507 154.4254 0.0428 562.0104 
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Figure 6-11: Trend prediction (RNL = 0.2)
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Figure 6-12: Trend prediction (RNL = 0.5)
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Figure 6-13: Trend prediction (RNL = 0.7)
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In terms of the CPU time, the analytical methods, Methods 1, 2, 3 and 4,

use comparable amount of CPU time. This amount is much lower than that of

optimization-based methods, Methods 5, 6 and 7. Method 6 uses a bit larger amount

of CPU time than Method 5 because it has 3 decision variables in optimization over

2 of Method 6. Method 7 may use very large amount of CPU time than Methods

5 and 6. This is dependent on the number of optimization runs it conducts. Gen-

erally, optimization-based methods use larger amount of CPU time than analytical

methods. When selecting method for a certain problem, one needs to consider both

prediction accuracy and CPU time to make an appropriate decision.

6.3.4.3 Discussions

It is seen that the error between TVCIs and predictions increases as time passes.

This error becomes larger when the TVCI increases in a high rate. When the TVCI is

large to a certain extent the noise level may be ignored. In this case, one needs a large

parameter C value to enable SVM to capture the change of the TVCI. Unfortunately,

none of the four used analytical methods realized this. For optimization methods,

especially Methods 5 and 6, this error still grows larger when the TVCI increases,

even though the error value is smaller than those of the analytical methods. This is

due to that the SVM model parameters are determined based on the observations of

the initial stage (times 1 to 100), and these parameters are not good enough to make

SVM capture the change occurring in the end stage. In comparison, the proposed

Method 7 performs well, because it responds to the changes by re-determining SVM

model parameters.

Basically, the errors are the consequence of the fast increase of TVCI. They can

not be eliminated, even if one-step-ahead prediction which is less likely to create

large prediction errors is used. The way to mitigate the errors is to select the SVM

model parameters according to the changes of TVCI values. This answers why the

proposed Method 7 beats its counterparts by giving the smallest error values.

6.4 Applications

This section presents the applications of the proposed algorithm in condition prog-

nostics for the two pertinent experimental systems. For the slurry pump system,
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two conditions are to be studied, one where the pump impeller has vane trailing edge

damage and vane leading edge damage, respectively. For the planetary gearbox, we

deal with the condition of the gearbox in the course of the RTF test. The proposed

online prognostic algorithm uses Methods 4 and 7 to determine the parameters of

the SVM/LSSVM model for prediction. Method 6 is also employed for comparison

purposes, because it is the second best among the seven methods according to the

results from comparing the simulation datasets.

The parameters of Methods 6 and 7 for the two experimental datasets are given

in Table 6-7. The definitions of the parameters are exactly the same as those in

Table 6-2. The settings for the parameters were also the same except that parameter

N was set at 200 for the planetary gearbox dataset.

Table 6-7: Parameter settings for experiment datasets

Dataset                   Method 
Methods 6 Method 7 

N l b N l b m h 

Slurry pump dataset 100 5 50 100 30 50 0.5 3 

Planetary gearbox dataset 200 5 50 200 30 50 0.5 3 

 

6.4.1 Condition Prognostics for Slurry Pump System

6.4.1.1 Database Establishment

As mentioned in Section 4.2.2.1, 5-minute time span vibration data were collected for

each combination of damage modes, damage levels, and pump speeds. The software

for data acquisition automatically split and saved the data in 40 separate data files

each of which is an 8-second time record. As a result, each file should contain 72000

(9000 × 8) data points; however, a close look at all data files suggests that some

had fewer data points than 72000. For this reason, we selected 3 consecutive data

segments from each data file. Each segment contained 18000 data points. This data

length is sufficient to capture the lowest frequency component of interest (30 Hz)

which corresponds to a pump speed of 1800 rpm. Thus, for a combination of pump

speed and damage mode, we had 120 (3 × 40) data segments for a single damage

level and 480 (4×120) data segments for all four damage levels. We connected these

data segments from baseline to severe in order to construct a series of degradation
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data. We built slurry pump datasets using vibration signals from A1-z direction,

collected at a pump speed of 2600 rpm. Kurtosis and the second harmonic of pump

speed (2X) were computed and employed as CIs representing pump conditions. This

section focuses only on the prediction performance. For the performance of CPU

time, one can refer to the discussions of the two simulation datasets.

6.4.1.2 Results

(1) Trailing Edge Damage

Figure 6-14 shows the results of 2X. Basically, the observations show an increasing

trend as time passes. Because the TVCIs of 2X are unknown, we cannot pro-

vide NRMSE values for quantitative comparison. This is true of all experimental

datasets. We see that the trend of Method 4 is the noisiest of the three methods.

Method 6 performs well, but it shows greater fluctuation than does Method 7.

Figure 6-15 shows the results of kurtosis. The observations are evidently subject

to a decreasing trend as time passes. The trend of Method 4 is still slightly noisier

than the trends of the others, especially at the beginning. Methods 6 and 7 perform

comparably. It is seen that observations of kurtosis dropped suddenly between times

224 and 228. Method 7 spent 16 (228 – 244) time intervals capturing this change

and triggered the re-determination of LSSVM parameters at time 244. As a result,

the predicted kurtosis value becomes 0.1228 at time 244 which is much closer to the

TVCI via visual estimation, compared to the 0.1783 of Method 6.
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Figure 6-14: Trend prediction of 2X for trailing edge damage
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Figure 6-15: Trend prediction of kurtosis for trailing edge damage
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For trailing edge damage, 2X shows an increasing trend and kurtosis shows a

decreasing trend. Basically, they are good condition indicators as their values change

monotonically with the passage of time. In terms of 2X, its values are in the same

level for baseline and slight damages. When it comes to medium and severe damages,

the increasing trend becomes obvious. In terms of kurtosis, its values for baseline

damage are around three (The values shown in Figure 6-15 are normalized). For

trailing edge damage, it is found that the large area of material loss on trailing edge

causes the reduction of kurtosis values.

(2) Leading Edge Damage

Figure 6-16 shows the results of 2X. Basically, the observations of 2X do not show

a degradation trend. The magnitude of the observations changes significantly and

that of noise also varies noticeably. This is not a good trend for representing sys-

tem condition; however, we found an interesting property of Method 7 through it.

Method 7 predicted two sudden peaks appearing at times 359 and 439. This is a

good property because peaks may carry useful information one does not want to

miss regarding machine conditions. A possible explanation for the peaks is that a

fresh set of LSSVM parameters is determined at time 353 which is coincidently in the

middle of a process where observation values increase, so the parameters determined

are able to capture the rapid increase in observation values. Nevertheless, Method

7 may not always successfully predict a peak, because CUSUM governs when to

trigger the determination of LSSVM parameters. This leaves us with a problem for

future work.
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Figure 6-16: Trend prediction of 2X for leading edge damage

Figure 6-17 shows the results of kurtosis. The trend displays a sudden drop

between times 229 and 232. The predicted trend of Method 4 is a little noisier than

those of Methods 6 and 7, which are comparable. These observations are similar to

those from the case of trailing edge damage; however, Method 7 performed somewhat

interestingly for this case; it re-determined LSSVM parameters at time 224 which

is actually in advance of the sudden drop. As a result, Method 7 basically captured

this drop and provided a desirable trend for this time span. A possible explanation

for this phenomenon is that the trend of observations declines generally from the

starting at time point 100, but the LSSVM model is established upon the first 100

data points of a trend which is otherwise increasing, so deviations of predictions

from unknown TVCIs accumulated to the point of exceeding the threshold. This

caused the LSSVM parameters to be re-determined at time 224.
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Figure 6-17: Trend prediction of kurtosis for leading edge damage

For leading edge damage, 2X is not as good as that for trailing edge damage. The

2X values of medium damage is smaller than those of baseline and slight damages.

This makes 2X inappropriate to be the condition indicator for monitoring leading

edge damage. The kurtosis basically performs consistently as does for the trailing

edge damage. It shows a deceasing trend for baseline, slight and medium damage

levels as expected, but a small fluctuation appears for the severe damage level around

time 382. This is caused by some unknown factors that need further studies.

6.4.2 Condition Prognostics for Planetary Gearbox Sys-
tem

6.4.2.1 Database Establishment

Vibration signals from the run-to-failure (RTF) experiment are used. The 5-minute

time span data were collected every two hours for each of 19 runs. The time span

data were further split into 10 segments of equal length. All data segments were

connected to construct a series of degradation data. We used the first order sideband
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of the 2nd stage planetary gearbox to represent conditions at this stage.

6.4.2.2 Results

Figure 6-18 shows the results of the sideband CI. The trend of Method 6 seems to be

noisier than that of Method 4 for this dataset. This is different from the slurry pump

dataset. In contrast, Method 7 provides a much smoother trend and successfully

captures the peaks. It is observed that Method 7 triggers 14 times re-determination

of the LSSVM parameters; this reveals the complexity of this dataset.

As mentioned in Section 4, the RTF experimental data are continuously collected

from natural progression of gear damage, so the data should be able to show a

pattern of degradation. The CI used for tracking damage progression is the first

order sideband whose magnitude increases as gear damage progresses. According to

Figure 6-18, it is seen that the trend is flat from initial stage to time 1485 (run 12).

This accords with our observation that obvious pitting damage does not appear on

gear teeth until run 11. There are two unexpected big drops at times 701 and 830.

They may be caused by inappropriate disassembly and assembly for gear damage

inspection. After run 11, pitting damage grows faster and faster and the size of

pits becomes larger, so we expect an increase on the trend values. The increase

happens around time 1631, but a sudden drop is observed after that. This action

forms a peak that is beyond our expectation. Again, it may be the consequence of

disassembly for run 13. A consistent increase is finally observed after time 1995.

This reflects the fast deterioration of gear until the experiment is terminated when

more than 60% materials are worn off from gear teeth. Basically, the trend reflects

the degradation of the gearbox, but it is not as good as our expectation. Further

studies should be done for developing CIs that are more sensitive to the degradation.
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Figure 6-18: Trend prediction of sideband for planetary gearbox

6.5 Summary

This chapter presents an online prognostic algorithm where SVM and LSSVM are

employed for the stage of prediction. One analytical method and one optimization-

based method are proposed for selecting SVM/LSSVM model parameters based on

which noise effects in observations can be mitigated from predictions. The pro-

posed analytical method is for selecting the regularization parameter, C, of SVM. It

incorporates a measure of relative noise level into a reported analytical method to

address noise effects in TVCI predictions. The proposed optimization-based method

determines the parameters using an optimization model developed to exclude noise-

like components from its predictions. The cumulative sum technique is used to

intelligently trigger the optimization process for re-determining the parameters.

The two proposed methods were incorporated into the online prognostic al-

gorithm and their performance was demonstrated using simulation datasets. They

were then compared with three reported analytical methods and two reported optimization-
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based methods. Also the online prognostic algorithm was used with the two proposed

methods in condition prognostics of the slurry pump and the planetary gearbox. The

results show that in terms of prediction accuracy, the proposed two methods both

perform better than their counterparts in their category. In terms of CPU time, the

proposed analytical method performs comparable to its counterpart. The proposed

optimization-based method usually needs more CPU time to reach the results. In

general, the optimization-based methods performed better than the analytical meth-

ods with respect to both prediction errors and trend patterns, but consume more

CPU time than analytical methods.
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Chapter 7

Conclusions and Future Work

Diagnostics and prognostics are effective and efficient techniques for identifying sys-

tem operating conditions and preventing unexpected system failures. They are an

integrated process covering many aspects. Each aspect is uniquely essential and

should be taken care of to ensure the successful application of diagnostics and prog-

nostics. My research focuses on one particular aspect of diagnostics and prognostics,

respectively. This chapter summarizes my contributions to these aspects, describes

some problems that remain unaddressed, and suggests directions that hold potential

for future work.

7.1 Conclusions

(1) SVM-Based Diagnostics

Diagnostics includes several constituent stages. Data cleaning and feature selection

are two of them, responsible for providing reliable processed data. In practice, raw

data collected from monitoring instruments may be corrupted by noise resulting

from various random factors occurring in the course of data collection. Usually, the

raw data are in a form that can not be used directly for diagnostics. Sometimes, the

dimensions of data are too large to be efficiently used. All these concerns affect the

results of diagnostics. In this thesis, we propose an SVM-based diagnostic algorithm

that is able to deal with such concerns.

SVM as a basis is employed in the stages of data cleaning, feature selection,

and classification. SVM has good generalization ability, as has been acknowledged
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by many researchers. Its superior performance for small sample cases has also

attracted a lot of attention. Another advantage of using SVM in multiple stages of

diagnostics is reducing duplicated steps in determining classifier model parameters

which requires much training and testing, resulting in significant computational

expense.

The proposed SVM-based data cleaning algorithm was inspired by the obser-

vation that outliers close to the separating plane are often misclassified by SVM

classifiers. Random sub-sampling validation is able to capture these misclassified

data points by implementing a training process a specified number of times. A frac-

tion value for each data point that has been misclassified is then calculated, and

candidate outliers are identified and ranked according to their fraction values. Fi-

nally, the backward selecting scheme is used to determine which are the real outliers,

following the rule that the removal of a real outlier improves classification perfor-

mance. The proposed data cleaning algorithm is examined using three benchmark

datasets. The results show its good effectiveness. We also used it for a slurry pump

system to clean data for impeller damage level classification. Our results show that

one outlier exists in the slurry pump dataset, and eliminating that outlier increases

classification accuracy by 3.17%.

The proposed SVM-based feature selection algorithm aims at removing irrelevant

and redundant features and reducing the dimensions of feature space; this is because

irrelevant features tend to impair classification performance and high dimension

of feature space consumes a huge amount of computational time. According to

the SVM theorem, the margin of SVM classification is related to the separation

between two classes of data points. This margin value can be directly represented

by a weight vector. The proposed feature selection algorithm uses this margin value

to rank features in terms of their importance to classification. A recursive backward

selecting scheme was developed to select the most useful features. It outperforms

the forward selecting scheme in terms of retaining useful features. Unlike regular

backward selecting schemes, the recursive one eliminates useless features repeatedly

until no more can be removed. This allows the maximum possible reduction of

feature space dimension. The proposed feature selection algorithm was examined

using three benchmark datasets, and the results are very promising. To study
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its performance in practical applications, the proposed feature selection algorithm

was used for classifying the level of pitting damage in a planetary gearbox. Various

conditions of speed and load were studied. It is found that, on average, classification

accuracy is increased by more than 30%, and the dimension of feature space is

reduced from 136 to about 5. These results show the great potential of the proposed

feature selection algorithm for engineering applications.

The proposed SVM-based diagnostic algorithm which employs both the proposed

SVM-based data cleaning and feature selection algorithm was used for the slurry

pump datasets. Our results show that the classification accuracy is increased by

3.11% when using data cleaning only. The classification accuracy remains unchanged

but the dimension of feature space is reduced by 5 when using feature selection

only. When using both, the classification accuracy is increased by 5.45%, and the

dimension of feature space is reduced by 11. These results show the effectiveness

of the proposed SVM-based diagnostic algorithm and indicate the importance of

combining data cleaning and feature selection for diagnostics.

In a word, the contributions of this thesis to diagnostics can be summarized as:

1. Develops an SVM-based data cleaning algorithm to detect and remove outliers

for effective diagnostics. This algorithm specially cleans the data for classi-

fication purpose that is required by diagnostics, but has not been studied in

the literature.

2. Develops an SVM-based feature selection algorithm to remove redundant and

irrelevant features for effective diagnostics. This algorithm uses a special

measure of SVM to rank features and uses the recursive backward selecting

scheme to remove as many as possible the useless features.

3. Develops an SVM-based algorithm that employs the SVM-based data clean-

ing, feature selection, and classification for effective diagnostics.

(2) SVM-Based Prognostics

Prognostics also contains several stages where prediction is essential to provide reli-

able predictions of true values for the condition indicator based on which decisions
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regarding preventive activities can be made. SVM as a predictor is one of the good

choices because of its good generalization ability. We propose an on-line prognostic

algorithm using SVM for the prediction stage. It is realistic to expect that noise will

affect the observed condition indicator values. Directly using such values for pre-

diction could result in unreliable predictions because noise affects the predictions

to some extent. One can relieve such noise effects by selecting appropriate SVM

model parameters. In the literature, two methods are usually used, the analytical

and optimization-based methods. We propose one method for each of the two cat-

egories. We have used the proposed methods to determine SVM model parameters

for the on-line prognostic algorithm in order to predict a smooth trend of the true

values for the condition indicator.

The proposed analytical method is for selecting a regularization parameter, C.

It is inferred from reported studies that parameter C should be proportional to

the noise level; however, this does not adequately to express the noise effects, since

they should be evaluated in terms of the magnitude of the observations. For this

reason, we propose a measure of relative noise level and incorporate it into a reported

analytical model. The proposed method is validated using two simulation datasets.

Three reported analytical methods are compared with the proposed one, and the

results show that the proposed method is better than its counterparts in terms of

not only prediction errors but also trend patterns. The proposed method is used in

an on-line prognostic algorithm for a slurry pump and planetary gearbox.

The proposed optimization-based method aims at selecting a set of optimal

parameters for the SVM model. We use LSSVM instead of regular SVM due to

its superior prediction performance for data with Gaussian noise. The proposed

method adopts a new optimization model developed for determining parameters.

The genetic algorithm is employed to address the optimization problem. Due to

possible variations in condition indicator values, a single set of optimal parameters

may not work for the whole process of prediction. The cumulative sum technique

is thus adopted to detect any error accumulated between observations and predic-

tions. When accumulated error exceeds a specified threshold, the cumulative sum

technique will trigger another optimization process to obtain a new set of parameters

based on up-to-date observations. This proposed method is demonstrated using the
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same simulation datasets as before. Two optimization-based methods are compared

which determine model parameters for SVM and LSSVM based on cross-validation

methods. The results show that the proposed method is superior to its counterparts

in terms of prediction accuracy and trend patterns, but one drawback is that it

needs longer time to reach the results. The proposed method is applied in the on-

line prognostic algorithm for the slurry pump and planetary gearbox. The results

show good potential of the proposed method in practical applications.

It is observed that optimization-based methods provide high prediction accu-

racy and good trend patterns than do analytical methods. This makes sense since

optimization-based methods determine parameters based on the observation values

for a given problem and is therefore case-specific; in contrast, analytical methods

merely use statistical measures of observations which are not specific to any given

problem. Nevertheless, the optimization-based methods usually need longer CPU

time due to the optimization process embedded.

Briefly, the contributions of this thesis to prognostics can be summarized as:

1. Develops an analytical method to select SVM model parameters. This method

modifies a reported method by considering noise effects in observations. Based

on our tests, it provides better results for on-line system condition prognostics

than does the reported one.

2. Develops an intelligent optimization-based method to select SVM model pa-

rameters. This method proposes an optimization model that considers noise

effects in observations and uses the cumulative sum technique to control the

process of determining SVM parameters. Based on our tests, it outperforms

the traditional optimization-based and analytical methods and provides the

best results for the tested cases of on-line system condition prognostics.

3. Develops an SVM-based algorithm that employs respectively the developed

analytical and optimization-based methods for on-line system condition prog-

nostics.
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7.2 Future Work

(1) Classification of Fault Mode and Fault Level

One ultimate goal of this thesis has been to conduct a successful fault level classifica-

tion, but fault mode classification, which is another important aspect of diagnostics,

has not been studied. For desired diagnostic results, one may need to know not only

what type of fault a system is currently experiencing, but also how severe the fault

is. This requires doing both fault mode classification and fault level classification in

a single diagnostic task. Unfortunately, we have not found reported studies that ad-

dress this concern. For this reason, an SVM-based diagnostic algorithm that is able

to classify both fault mode and fault level is developed. The algorithm will contain

an off-line process and an on-line process, where the former achieves training SVM

using available data, and the latter achieves identifying fault mode and fault level

on the basis of new condition monitoring data. The difficulties of this work will be:

1. how to assess the overall fault level of a system if multiple fault modes exist;

2. how to identify or determine unknown fault modes, since it is impossible to

have training data for all possible fault modes;

3. how to deal with the fault level of unknown fault modes.

(2) Parameter Selection for the Proposed Optimization-
Based Prognostics

This thesis presents an optimization-based method of determining LSSVM model

parameters. This method uses the cumulative sum technique to govern when to re-

determine a model’s parameters. There are two parameters, m and h, which specify

deviations to be detected and accumulated errors not to be tolerated. In the tests

given in Chapter 6, these two parameters are set constantly; however, they may not

be the best choice. Based on our studies, where there are small RNL values, small

m values tend to give better results, and vice versa. These observations are also

true for parameter h. In order to obtain better predictions, we will develop criteria

or algorithms for selecting optimal values for m and h.
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(3) Threshold Determination for Prognostics

This thesis specifically addresses the noise effects on the prediction of condition

indicators for prognostics; however, we do not present a case study that illustrates

deciding when to stop an operating system for an overhaul. This is because we need

to pre-specify a condition indicator threshold that represents a failure condition,

and the value for this threshold usually relies on solid knowledge of and expertise

with the system that is not easy to obtain. This topic will be worked on in future.
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[33] P. Večeř, M. Kreidl, and R. Smı́d. Condition indicators for gearbox condition

monitoring systems. Acta Polytechnica, 45(6):35–43, 2005.

[34] M.J. Zuo, W. Li, and X.F. Fan. Statistical methods for low speed planetary

gearbox monitoring. Technical Report, Department of Mechanical Engineer-

ing, University of Alberta, Edmonton, 2005.

[35] P.D. Samuel, D.J. Pines, and D.G. Lewicki. A comparison of stationary and

non-stationary metrics for detecting faults in helicopter gearboxes. Journal of

the American Helicopter Society, pages 125–136, 2000.
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