
Advanced Stochastic Programming for Smart Grid
Operation under Uncertainties

by

Yue Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Energy Systems

Department of Electrical and Computer Engineering
University of Alberta

c©Yue Wang, 2020



Abstract

Smart grid, typically regarded as the next generation of electrical power grid, can bring

numerous benefits for electric utilities and customers with substantial economic and eco-

logical benefits. However, uncertainties caused by the distributed power generation from

renewable energy sources, household appliance power consumption under demand re-

sponse programs, and electric vehicle charging demand under random usage and traffic

patterns, bring us new challenges to ensure the efficiency and reliability of smart grid

operation. These uncertainties usually lead to the risk of generation shortage or unusual

peak power demands, and the consequences will be disastrous if a failure happens.

In literature, aggregated household electrical consumption is widely used as the input

of optimization problems in distribution systems. Yet, as pointed out by recent research

works, bottom-up probabilistic residential electrical load models can better characterize

the random operating conditions of appliances by considering the uncertain human be-

haviour. However, the dimensions of the optimization problems become enormous if

we analyze electrical appliances based on a bottom-up probabilistic model in distribution

systems. The optimization problems are further complicated if the randomness of renew-

able power generation and electric vehicle usage in smart grid is considered. Therefore,

there is an urgent need to develop more efficient optimization algorithms for smart grid

operation under uncertainties.

This research focuses on the development of advanced stochastic programming algo-

rithms for smart grid operation under uncertainties. In particular, a two-stage stochastic
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programming problem is formulated to address the random usage patterns of appliances,

for which the distribution system operation cost is minimized in the first stage, by con-

sidering various distribution system operation constraints. The scheduling of shiftable

appliances is optimized in the second stage, by considering the random usage patterns of

non-shiftable appliances. To reduce the computational complexity caused by a large num-

ber of home appliances in distribution systems, scenario reduction technique is applied

to reduce the number of possible scenarios while still retaining the essential features of

the original scenario set. Further, a parallel decomposition method is developed for large-

scale stochastic programming in a distribution system with renewable energy sources and

energy storage units. By leveraging nested decomposition, the problem can be converted

into independent sub-problems with a series of time periods. The reformulated prob-

lem is fully parallel for speed-up in execution. Dealing with the uncertainties associated

with vehicle-to-grid applications in smart grid with renewable generation, we propose

a bottom-up approach to analyze customers’ uncertain driving mode. By implement-

ing decentralized processing, the computational complexity can be significantly reduced.

Moreover, real-time simulation considering uncertainties plays an important role in smart

grid operation. We developed a stochastic programming problem with Lyapunov opti-

mization technique to minimize distribution system expenses. The effectiveness of the

proposed methods is validated by simulation results.
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1
Introduction

Interdisciplinary backgrounds of smart grid operation, stochastic programming and com-
puter engineering lead to the main theme of this thesis: optimal solutions of smart grid op-
eration problems under various random features via framework design, algorithm com-
position and uncertainty analysis.

1.1 Backgrounds

Smart grid [1] as the future power grid, including smart meters, smart appliances, and re-
newable energy resources, aims to improve reliability, security and efficiency of the power
grid. In addition, by involving distributed renewable energy resources, smart grids can
help reduce greenhouse gas emissions, and through demand response (DR) mechanisms,
smart grids allow consumers to play a role in the optimal operation of the system. More-
over, with the increasing number of electric vehicles (EVs), smart grid is the key to the
optimization of smart EV charging. Smart grid can also provide controls that mitigate the
impacts of loads and protect individual components in the distribution network from the
effects of overloading EVs, ensuring the most efficient use of power generation capacity.
With smart residential charging, vehicle-to-grid, charging station networks, renewables
and storage integration, these techniques provide utilities to manage customers when
and where to charge, while still satisfying their preferences.

1
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Figure 1.1: Typical distribution system in a smart grid.

Fig. 1.1 shows a typical distribution system in a smart grid. In this system, there are
several types of houses, including houses with electrical appliances, houses equipped
with rooftop photovoltaic (PV) power generation, EVs, and community shared battery
storage. According to the U.S. residential energy consumption survey [2], the percentage
of energy consumption at home by daily electrical appliances (e.g., lighting and air con-
ditioning) is 34.6% in 2011, which is 1.44 times higher than that of 1993. Moreover, the
installed capacity of PV generation in Canada has reached 2517 MW in 2015, which is ten
times more than that of 2010 according to [3]. With incentive policies, the total number of
EVs can be as high as 220 million in 2030, compared to the current number of 3 million [4].
Therefore, the optimal operation of smart grid and its components is a crucial problem to
solve.

Although the smart grid provides us with a future grid that brings us many advan-
tages, such as lower electricity bills and reduced green gas emissions, however, there are
still some difficulties when considering smart components. As the abundance and envi-
ronmental advantages of solar power are becoming perceptible, PV technology has been
developed rapidly. However, due to its volatile nature, solar power output results in con-
stant fluctuations of power generation in distribution systems. Therefore, how to deal
with the PV panel power output to make the system economical and how to use renew-
able energy efficiently in distribution systems still require extensive research.
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Moreover, EV [5], as movable storage compared to the community shared storage,
can be charged and discharged at home, playing the role of an additional storage unit
for community shared battery storage. Besides, compared to traditional internal combus-
tion engine vehicle, EV is becoming a major means of transportation to reduce the carbon
dioxide emission if it is charged by renewable energy sources. However, EV charging may
lead to peak power consumption due to a large amount of electrical energy consumption.
Furthermore, EV driving related random usage patterns makes EV optimization problems
more difficult to solve.

In addition, the optimization for smart grid operation involves numerous applications
including optimal operation in home energy management systems, renewable generation
planning and scheduling, and energy management of distribution system under uncer-
tainties. Most of the optimization problems are large-scale, non-linear, and mixed-integer
in nature, such that solving them efficiently has become a significant concern of smart
grid operation recently. Furthermore, the uncertainties caused by renewable power gen-
eration, home electric appliance power consumption, and EV usage, can further increase
the computational complexity.

1.2 Literature Review

This section will review the milestones and previous studies in areas that must be focused
in this research.

1.2.1 Demand Response

Compared to the traditional power grid that power can only be delivered from the main
plant in a one-way distribution, smart grid provides two-way power flows facilitated by
the two-way communications between electricity producers and customers, which results
in power quality improvement as well as operating cost reduction of the power system.
On the other hand, the customers can adjust (or shift) the time of their appliance usage in
response to different electricity pricing for energy bill savings. DR is expected to play an
essential role in accommodating such load increment in the near future.
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Along with renewable energy sources and energy storage devices at the distribution
system level, DR have significant implications in the wholesale energy market. In [6],
the authors distinguish various types of DR as market DR and physical DR. Market DR
focuses on the electrical pricing and the physical DR is more about the grid system man-
agement. DR programs can also be divided into time-based DR programs and incentive-
based DR programs [7]. By these different classifications of DR, we can observe that the
electricity market requires the customers to play an active role to improve the grid system,
rather than pure receivers in the traditional market. Moreover, the close relationship be-
tween the customer and the electrical market helps enhance power quality, reduce peak
period load demand, and enhance customer user experience. Therefore, customers can
choose whether to shift electrical appliances to the low-price period or to their favourite
hours.

In literature, DR optimization has been studied based on various pricing mechanisms,
such as real-time pricing, day-ahead pricing, time-of-use pricing, and critical peak pricing
[8, 9]. Several research works investigate the optimal design of price-based DR schemes
by utility companies based on the prediction of customer load demand, in order to im-
prove the efficiency of power system operation [10–13]. A recent research work pointed
out that the consideration of uncertain load growth is critical for distribution network
pricing [14], and a bidding strategy operation model of the virtual power plant has been
formulated to make distributed energy resources more applicable and effective in electric-
ity market [15]. Although there are existing research works on modelling the uncertainties
of renewable power generation [16,17], EV charging and discharging, and voltage regula-
tion and inverter capacity [18], how to incorporate the random appliance usage patterns in
the development of DR schemes in distribution system still requires extensive research. In
order to address this issue, recent research works on DR investigate residential appliances
with flexible service time period and power intensity, as well as day-ahead load forecast
considering errors [19]. Also, a continuous decision-making process that allowed more
flexibility of electricity customers is proposed in [20]. Probabilistic residential electrical
load models are developed in some recent research works by considering the random op-
erating conditions of each home appliance under uncertain human behaviour [21]. Yet,
these works concentrated on the optimization at the residential level, but how to utilize
the probabilistic residential electrical load models and develop a stochastic DR scheme
accordingly in the distribution system level is still an open issue.
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1.2.2 Household Load Demand with Uncertainties

As an important part of DR, customers can adjust the appliance usage time according to
different electricity prices to save electricity costs. Since most appliances are related to
human operation, the household load demand for appliances is uncertain. Random load
demand has been studied in literature as a part of uncertainties in power systems. A real-
time interactive energy management scheme of microgrid was proposed by [22], where
various uncertainties including random load demand and renewable power generation
are being considered. Also, the uncertainties of wind power generation and price elastic
loads (PELs) are investigated in [16] for security-constrained economic dispatch. Never-
theless, these research works study the random load demand based on data analysis and
prediction, by assuming that the human behaviour are known in advance.

In practice, the knowledge of future human behaviour cannot be obtained accurately
when the electrical price is released. To address this kind of uncertainty, two-stage ap-
proaches can be applied for stochastic programming [23]. Considerable efforts have been
made in the past concerning applying two-stage approaches for DR [24–28]. In particular,
a two-stage stochastic programming problem was formulated in [24], aiming at pursuing
the optimal day-ahead power procurement with minimum costs and expected recourse
cost, while considering the random actual power demand, renewable energy supply and
storage. In [25], a two-stage operation scheme was introduced to reduce the uncertainty
of the solar energy at the first stage, while maximizing the total revenue of EV parking
at the real-time operation in the second stage. Uncertainties such as renewable energy,
power demand, and energy storage are considered in [26–28].

Although different kinds of uncertainties have been studied in power systems, all of
the above-mentioned literature does not take into account human behaviour uncertain-
ties in DR, or only considers the random appliance usage patterns in household energy
management system instead of a distribution system. In this research, we formulate a
two-stage stochastic programming problem based on probabilistic residential electrical
load models for DR in smart grid. Besides, genetic algorithm is implemented to solve
the two-stage stochastic programming problem, in conjunction with a scenario reduction
technique for computational complexity reduction.
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1.2.3 Renewable Generation

With increasing concerns about the environmental impacts of grid power, sustainable re-
newable generation units, especially PV panels, are being widely installed for their eco-
nomical and environmental benefits. As the abundance and environmental advantages of
solar power is becoming perceptible, PV technology has been developed rapidly in recent
years. However, due to the volatile nature of renewable energy, solar power output re-
sults in constant fluctuations in distribution systems. Therefore, how to deal with the PV
panel power output to make the system economical and how to use the renewable energy
efficiently in distribution systems still require extensive research.

However, the electricity generated by renewable energy sources may affect or dis-
rupt conventional power generation, and due to the random nature of renewable energy
sources, it is difficult to predict and integrate variable power sources to the grid. Recent
studies discussed the randomness of renewable energy in distribution systems [29–31],
small energy consumers (such as buildings [32], marine systems [33] and railway station
systems [34]), and home energy systems [35, 36]. Specifically, in [29], the authors propose
a semi-Markov model for the stochastic scheduling of PV power generation in microgrids
to reduce fuel consumption. Multiple types of stochastic distributed generation, such as
solar and wind power generation, and battery storage systems are considered in [30].
Here, the authors implemented the heuristic moment matching method to generate sce-
narios from random characters. Randomness is also considered for real-time control of
an integrated solar-storage system in [31]. With the high penetration of renewable en-
ergy generation, PV panels can also be installed in a building with battery energy storage
system [32]. Accordingly, the size of the battery storage and the number of installed PV
panels need to be determined based on the consideration of randomness. Similar appli-
cations considering randomness are discussed in the sizing problem of a merchant ma-
rine [33] and the energy management system of a railway station [34]. In home energy
management system, authors in [35, 36] propose learning algorithms for scheduling dis-
tributed energy resources integrated with home battery storage systems.

Recently, there are many studies on renewable energy applications in the distribution
system. Energy storage is usually integrated with renewable generation to improve the
reliability and efficiency of the power grid [37,38]. Energy management system (EMS) in-
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tegrates the renewable generation and energy storage are invested in [39–43]. Specifically,
to maximize utility for the demands with uncertain distributed renewable energy and cus-
tomers’ power demand, authors in [39] propose a robust optimization algorithm, which
allows the customer to operate at a suitable time. In [40], an energy storage system (ESS) is
introduced against the uncertainties, which helps the EMS to produce an economical and
reliable microgrid dispatch. A hierarchical EMS architecture is proposed in [41], which
consists of load demand forecasting and renewable generation resource integration, aim-
ing to achieving optimal scheduling of power generation resources in a smart grid. Au-
thors in [42] proposed an affine arithmetic method for EMS in isolated microgrids. In this
model, uncertain load and renewable energy are managed through robust commitment
and dispatch, and all of the possible realizations are within the predetermined uncertain
range. EMS in [43] is designed for both grid-connected mode and isolated mode, and
the proposed robustness solution is compared to the Monte Carlo simulation. However,
the optimal operation of the EMS in these research works, typically treats the customer’s
home demand as an integral part of a random value in the distribution system.

Moreover, considering the investment and maintenance cost of the household battery,
a relatively high capacity storage system in a specific area such as a community, accessi-
ble by a group of houses, is more preferable. Such batteries can be shared among these
houses instead of the private battery for each home, and take advantage of reducing the
cost of investment, operation and maintenance by each end-user [44, 45]. They can also
mitigate the negative impact of the randomness of renewable generation and load on
distribution system reliability. Residential optimal energy management systems with re-
newable power generation units are proposed by [46–50]. Researchers treated multiple
houses with controllable loads or distributed load groups in smart grid to reduce the fluc-
tuation of power flow caused by renewable energy [51, 52]. Some of the recent studies
have taken a deterministic approach when dealing with the volatile properties of the re-
newable energy [38, 46, 47, 50, 51]. In [37, 48, 49], the stochastic nature of the renewable
energy is considered and characterized based on historical data or the worst case [52].
These methods can be categorized as the scenario-based approach. However, the random
features of both the renewable energy and the household power consumption should be
taken into account by all scenarios.
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1.2.4 Electric Vehicle

In recent years, EVs [5] are becoming the primary means of reducing carbon dioxide emis-
sions if they can be recharged by renewable power generation compared to conventional
internal combustion engine vehicles. In addition, compared with traditional community
shared storage, EV, as a kind of mobile storage, can be used as a family private storage
unit to charge and discharge at home, and can serve as an additional storage unit for com-
munity shared battery storage. According to different incentive policies, the total number
of EVs will reach 220 million by 2030, compared with the current number of 3 million [4].
However, since EV charging consumes a large amount of power, this can lead to higher
peak grid consumption. In addition, the randomness associated with EV driving makes
the EV optimization problem more challenging to solve.

There is a lot of research works that study EV charging methods as well as infrastruc-
ture analysis in response to incentive policies. Basically, recent research on EV optimiza-
tion can be classified into two categories by different charging locations: charging EV at
charging stations or charging EV at home. Specifically, for the charging station optimiza-
tion problem, authors in [53] proposed a framework to optimize the bidding strategy of an
ensemble of charging stations equipped with an energy storage system in the day-ahead
power market. EV charging stations with renewable generation is discussed in [54]. By
providing limited information to the proposed optimization framework, the system cost
can be dramatically reduced compared to the benchmark. Besides, similar to EV charging
stations, the EV parking lot allocation problem has been solved in [55].

For home energy system optimization that considering charging EV at home, recent
research works have discussed how to minimize power loss in a smart home energy
management [5, 56], which can help achieve more efficient grid operation. The authors
in [57, 58] take renewable energy and local energy storage into consideration, seeking a
minimum electricity cost while satisfying household energy demand and EV charging re-
quirements. Moreover, by charging or discharging EVs, home energy management can
minimize energy costs by considering estimates of household power demand or consid-
ering home climate energy cost [59, 60].

When considering random features such as household appliances and EV operations,
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which related to human activities, or random renewable generation, the massive set of
scenarios makes the optimal operation in a distribution very difficult to solve. Compared
with the load demand optimization of household appliances, EV needs more energy to
charge. Therefore, it is critical to consider the randomness of EV operation. There are
many uncertainties regarding the operation of EV, such as drivers’ departure/arrival time
uncertainty [61], energy consumption uncertainty caused by drivers’ different driving
habits [56, 62], charging station access uncertainty, and traffic flow uncertainty [63] and
market price uncertainty [53]. Specifically, considering the uncertain EV demand and the
driver’s arrival/departure times, a two-stage stochastic programming model is proposed
in [63], which aims to maximize access to the location and capacity of public EV charging
stations in urban areas. A similar study [62] discusses efficient and reliable access to EV
charging stations, and considers the EV random usage model under real-time pricing in
smart grids. Moreover, a stochastic energy-aware routing framework that considers the
random effects of environmental factors is proposed in [64], in order to improve the sus-
tainability of future electrified transportation systems. All these research works discussed
EV charging problems under uncertain pricing schemes or uncertain environmental con-
ditions in the distribution system, but ignored home EV charging problem under the con-
sideration of household load demand.

There is a limited number of research works discussed EV operation in household
load demand optimization under uncertainties. In [5], by coordinating the EV charging
process, minimize power loss and voltage deviation can be achieved. In this research, the
total load demand is randomly selected from specific scenarios for simulation, without
considering EV operation randomness. [56, 65] has a similar problem. When optimiz-
ing an EV under the situation that the household load is uncertain, the load demand
for household appliances is usually regarded as a random value, which is not accurate
enough in the home energy management system. Customers’ different lifestyles or fam-
ily composition will lead to different lifestyle habits. The appliances related to these habits
will cause random load demand, which cannot be simulated using random values.

Based on the stochastic features mentioned above, the optimization problems are usu-
ally modelled as a stochastic programming problem [57, 63, 64], in order to find the op-
timal decision with the minimum cost or the optimal scheduling. To solve the massive
set of uncertain scenarios, Monte Carlo simulation [56,61], roulette wheel mechanism [58]
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or scenarios selected from historical data [55], have been widely used in recent research
works. But after all, it is ultimately some specific cases that randomly selected from de-
termined distributions.

On the other hand, to improve the efficiency of stochastic programming optimiza-
tion, decentralized computing can potentially be used. Different from parallel computing,
which relies on high-performance computers (HPC), decentralized computing distributes
tasks to one or more computers. Specifically, to solve the large-scale optimization prob-
lem in smart grid operations, the authors of [66] proposed a decomposition algorithm
using the MapReduce framework. The model can also be applied to the synchronized
harmonics [67] or circuit switches [68] in distribution networks for big data analysis. The
application in a smart grid can be used to optimize the control of distribution feeders
with smart loads [69]. By distributing individuals from the master-node computer among
worker-nodes to achieve minimal losses, the run-time can be significantly reduced simul-
taneously.

1.2.5 Analysis of Uncertainties in Distribution System and Residential Sys-
tems

In existing literature, the random features in both distribution system and residential cus-
tomer levels have been widely studied [70–78]. At the distribution system level, uncertain
loads are considered in optimal power flow in [70], and energy management problems
for grid-connected microgrids under uncertainties, such as random renewable generation
and loads, are proposed in [71,72]. Also, transmission network expansion planning prob-
lem under these uncertainties is proposed in [73]. A distribution network configuration
optimization problem with uncertainties is investigated in [74]. Both works use a robust
optimization approach to solve the formulated problems. These works are based on dis-
tribution system level study, and random facility usages are characterized by the worst
case. In other words, these methods are based on a deterministic approach.

At the residential customer level, a stochastic bottom-up analytical model is designed
to describe the domestic electrical load profiles in [75, 76]. Fig. 1.2 shows a typical home
energy management system (HEMS), which consider the uncertainties of household ap-
pliance usage and renewable generation units, aiming to seek the minimum household
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Figure 1.2: Smart home with electric vehicle and rooftop solar energy [170].

electricity bills, are proposed in [77,78]. Similar to the research works at the grid level, the
fundamental idea is to describe the stochastic features via deterministic model or Monte
Carlo simulations at residential level, or use the robust optimization approach, which
relies on the upper and lower bounds of uncertain variables to solve the optimization
problem.

In order to improve the performance of energy management schemes, all the random
scenarios of electrical appliance usage patterns should be considered. However, the sce-
nario set is too massive to be simulated efficiently. Yet, large-scale scenario characteriza-
tion and reduction in distribution systems are still a challenging tasks.

In order to address such massive set of scenarios, most recent studies utilize the ro-
bust approach [70, 72–74, 78, 79], chance constrained programming [71], and Monte Carlo
simulation [80]. Table 1.1 gives a brief summary of these references. It is noticeable that
in these recent research works, randomness of renewable generation and households de-
mand are discussed. But these approaches either apply specific scenarios or use the worst
case for simulation, which can also be classified as deterministic (D) approaches (compare
to stochastic (S) approach).
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Most of the algorithms proposed in recent research works are based on the formula-
tion of stochastic programming problems to handle the randomness. However, the solu-
tion methods are based on specific scenarios [29–31, 33–36]. For example, scenarios can
be generated by the heuristic moment matching method [30], innovative scenario gener-
ation processes [33, 34], and heuristic scenario reduction techniques [35, 36]. These algo-
rithms can be categorized as the scenario-based algorithms. Benders decomposition is a
well-known method for dealing with large-scale problems, and it is applied in research
work [32]. However, this research focuses on the optimization problem in a building,
without considering the distribution system operation. Moreover, dynamic programming
is an effective method to reduce the computational complexity of stochastic optimization
problems. For example, the authors in [81] propose a storage operation problem in distri-
bution systems considering in-house renewables and in-house energy storage devices.
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Table 1.1: Research Works on Uncertainty Analysis in Smart Grid
Reference Methods HEMS Distribution HEMS in Dis

PV A ES PV A ES PV A ES D/S
[46] Two-point estimate method

√ √ √
D

[51] Tabu search method
√ √ √

D
[77] Roulette wheel mechanism

√ √ √
D

[50] Stackelberg game
√ √

D
[47] Routing algorithm

√ √
D

[75] Semi-Markov process
√

S
[76] Bottom-up model (random case)

√
D

[78] Robust optimization
√

D
[45] Bi-level optimization

√
D

[44] Robust optimization
√ √ √

D
[43] [39] Robust optimization

√ √
D

[38] Maximum power point tracking
√ √

D
[42] Affine arithmetic method

√ √
D

[41] Bi-level, imperialist competition algorithm
√ √

D
[40] Two stage stochastic programming

√ √
D

[71] Chance constrained programming
√ √

D
[72–74] Robust optimization

√ √
D

[80] Approximate dynamic programming & Monte Carlo simulation
√ √

S
[70] Robust transient stability-constrained

√
D

[37] Two-period stochastic programming (historical data)
√ √ √

D
[48] Approximate dynamic programming (expected value)

√ √
D

[49] Graphical capacity selection method
√ √

D
Proposed work Parallel decomposition algorithm

√ √ √
S
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On the other hand, to accelerate solution procedure, parallel computing [82–84] and

decomposition algorithm [85, 86] are widely used to solve large-scale problems. Using
parallel computing technique, we can first decompose the optimization problem into mul-
tiple sub-problems or scenarios, then implement computing so that that each core (thread)
solves one sub-problem or one scenario, to speed-up in the execution process. A scenario-
based decomposition method is developed to address the multiobjective stochastic eco-
nomic dispatch problem [85]. In [86], a new nested Benders decomposition strategy is
presented to solve a multi-period problem for hydrothermal scheduling.

1.2.6 Real-time Optimization in Smart Grid under Uncertainties

Different from the day-ahead operation, real-time operation in smart grid should not re-
quire any prior decisions considering stochastic processes and should adapt to the time-
varying circumstance. The challenge for real-time operation is to prevent the violation of
the day-ahead schedule while minimizing the cost. Furthermore, stochastic natures such
as real-time pricing [87], renewable power production [87,88], electricity demand [87,89],
and EV random usage [90] should be considered for both day-ahead and real-time opera-
tion.

There are limited studies on real-time operation in the smart grid under uncertainties.
Real-time energy management in smart grid has been discussed in [91–93, 103]. Specifi-
cally, random energy demands are considered in [91], where the authors proposed a Gaus-
sian approximation to reduce the complexity of system optimization for a distributed
real-time energy scheduling problem. An advanced real-time distribution management
system for system protection, operation planning, and real-time control is introduced
in [92], where stochastic parameters including solar irradiation and ambient tempera-
ture are considered in this framework. Two groups of uncertainties, including normal
operation uncertainties and contingency-based uncertainties, are discussed in [93] for the
optimal scheduling problem in a microgrid, where linear programming is used to increase
the computational efficiency. An online real-time energy management strategy was devel-
oped in [103], which considers the stochastic optimal power flow problem in a distribu-
tion system. However, the above-mentioned works do not take into account the human
random behaviour caused by various smart home applications in a distribution system.
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In addition, in order to increase EV penetration rate in the future smart grid, existing
studies have investigated optimal real-time scheduling for EV charging [94–98]. Notably,
the authors in [94] proposed a real-time heuristic operation strategy for a commercial
building with renewable generation coordinated with EV charging activities. The EV
related uncertainties such as the arrival time and the initial SOC of EV battery are con-
sidered in this work. Similar studies that discussed EV charging stations with renewable
PV-assist automatic DR are introduced in [95, 96], aiming at both global and real-time
optimization under EV random usage pattern. For the minimum recharging costs of EV
owner, a dynamic stochastic optimization approach was proposed in [97], considering
the reliability problems caused by renewable generations. Uncertainties such as charging
energy, electricity pricing and renewable generation are taken into account in this work.
Furthermore, a heuristic smart charging strategy for vehicle-to-grid (V2G) during real-
time operation, is designed in [98], intending to optimize an achievable V2G capacity of
large-scale EV integration.

A brief summary of recent research works on real-time optimization algorithms in
smart grid are conclude in Table 1.2 and Table 1.3. We can observe that in real-time
stochastic operation, Lyapunov optimization technique is widely used in recent research
works. The studies in [99–105] applied Lyapunov-based energy management algorithms
with the main idea of buffering the power demand of flexible loads when the electricity
prices are high, and to meet the stored requests when electricity prices are low. Specif-
ically, an online energy management algorithm to minimize the expected total cost in a
smart home is proposed in [99]. Authors in [100] developed a dynamic smart grid system
model as a constrained stochastic network optimization module, without consideration
of household customers’ load demand. In [101], a residential energy storage manage-
ment and load scheduling approach is proposed, which takes the renewable generation,
household loads and energy storage into consideration. Different from [101], authors
in [102,104,105] studied a real-time design for renewable-integrated power grid with stor-
age and loads in a distribution system. However, these studies did not consider uncertain
factors, which may lead to more complicated solutions in real world applications. In order
to reduce the computational complexity, problem linearisation can significantly improve
the solution progress efficiency [91, 93, 95, 97]. Specially, different linearisation algorithms
such as Gaussian approximation [91] and linear programming [93, 95, 97] can be used to
convert the stochastic constraints into linear constraints.
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Table 1.2: Research Works on Real Time Optimization Algorithms

Ref. Year Random factor Algorithm

[91] 2013 Transfer to deterministic Gaussian approximations, Newtons method
[99] 2018 Random information (NOT stochastic programming) Lyapunov optimization

[100] 2016 Renewable generation, loads, price Lyapunov optimization
[101] 2018 Storage, renewable generation Lyapunov optimization
[102] 2016 Renewable generation, loads, energy prices Proposed real time distributed algorithm

(based on Lyapunov optimization)
[103] 2017 Power flow Lyapunov optimization
[104] 2015 Energy storage with renewable Lyapunov optimization
[105] 2016 Cloud service Lyapunov optimization
[106] 2013 Real-time price Markov decision process
[107] 2017 EV Bidding strategy, conditional value-at-risk (CVaR)
[108] 2017 EV, renewable Bender’s decomposition
[109] 2015 EV, renewable Incomplete information game theory algorithm
[110] 2018 Renewable Stochastic convex-concave problem (Average dispatch)
[111] 2014 Residential appliances, price, outdoor temperature, Conditional value-at-risk (CVaR)

hot water usage, PV generation
[112] 2014 EV Distributed risk-aware real-time dispatch algorithm
[113] 2015 EV,real time pricing, realizations Conditional random field online learning model

Table 1.3: Research Works on Lyapunov Optimization Algorithms

Ref. Year EV Renewable House load Storage Other Innovation

[60] 2019
√ √

HVAC Lyapunov-based energy management algorithm without
predicting any system parameters and HVAC power demand

[99] 2018 Data center Lyapunov algorithm apply to distributed real time
[101] 2018

√ √ √
Virtual queue with new formulation

[114] 2018
√ √ √

Cluster Online energy sharing model, formulation to P2P
[115] 2018

√ √
Price The modified Lyapunov optimization can solve unknown statistics

[116] 2018
√

Battery Modified the original problem into one stochastic subgradient method
[117] 2017

√ √ √
EMS, PF Traditional Lyapunov optimization with drift-plus-penalty
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1.3 Objectives and Contributions

As discussed in the literature review, significant efforts have been made to improve the
efficiency of smart grid operations under uncertain conditions. Although most of them
have made remarkable achievements, explorations are still far from their destinations as
new challenges and opportunities continue to emerge. Therefore, seizing new opportuni-
ties to meet new challenges is the main motivation for this research. The derivation of the
countermeasures is mainly based on the characteristics of the target problem and the so-
lution method, based on the refinement of the algorithm and the update of the computing
architecture. Since the challenges have been explained above, the following is dedicated
to extracting opportunities, which is also the main goal of this research. The major contri-
butions of this research are summarized as follows:

• Two-stage stochastic demand response

A two-stage stochastic programming scheme is developed for DR in smart grid, by
considering the random appliance usage patterns of customers. In the first stage
of the stochastic programming, a genetic algorithm is implemented to optimize the
electricity price, by considering the responses of various types of appliances and
non-linear distribution power flow. In the second stage of the stochastic program-
ming, due to the existence of a large number of appliances with random usage pat-
terns in each household, a modified scenario reduction technique is proposed to
reduce the computational complexity of appliance scheduling optimization.

• Energy storage management with renewable generation

In this research, both PV power generation and household electrical consumption
are characterized via probabilistic models. Notably, the PV power probabilistic
model is derived from solar irradiance, and the model of residential power con-
sumption is based on a bottom-up approach, which is formulated from customers’
random usage patterns. To better approximate real cases, various types of residen-
tial loads are considered. We proposed a novel problem formulation for optimal
energy storage management. In this formulation, the cost of the distribution system
not only considers battery operation cost, but also incorporates the household un-
certain load demand and the PV generation electric profit based on a probabilistic
model. In order to address the technical challenges introduced the probabilistic PV
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generation and load models, a parallel computing method based on nested decom-
position is developed to reduce the computational complexity.

• Demand response under random renewable power generation

A bottom-up stochastic model is developed for both residential electrical appliances
and PV power generation in the HEMS. We proposed a stochastic bi-level demand
response scheme aiming at seeking the optimal pricing scheme for operator min-
imum system loss. The problem is solved by simplex and mixed integer linear
programming (MILP) algorithms. The proposed algorithm is implemented by ac-
celeration strategy to improve its efficiency.

• Optimal vehicle-to-grid operation in smart grid

A stochastic model is proposed to determine the uncertain behaviour of household
appliances load demands, EV driving model and distributed renewable resources,
and modelling the home energy management system using stochastic formulation.
In order to describe the uncertain relationship between households and utility com-
panies, we developed a bi-level stochastic programming model to determine the
optimal household operating schedule. In addition, to reduce computational com-
plexity, we implemented problem decomposition and scenario reduction technique
in the proposed problem. Decentralized computing is applied to accelerate the pro-
posed approach. Our decentralized bi-level structure quantifies the cost-saving of
utility as well as EV operation with renewable generation, while protect customers’
privacy.

• Real-time operation of EV with renewable generation

Since real-time operation plays an important role in balancing the differences be-
tween the day-ahead scheduled operation and actual real-time requirements, we de-
veloped a stochastic programming problem while considering EV, PV home storage
system and load demand, while minimizing distribution system costs. The problem
is solved by Lyapunov optimization technique, thus guarantee the optimal solution
for the proposed problem.
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1.4 Thesis Outline

This thesis consists of 6 chapters and is organized as follows:

• Chapter 1: Introduction

In the context of both opportunities and challenges, the problem of smart grid oper-
ation optimization under uncertainty is defined and clarified to highlight the scope
of this research. In the literature review, useful work related to each issue is re-
viewed to outline achievements and limitations. Finally, the motivation, goals and
overview are summarized.

• Chapter 2: Demand Response in Smart Grid under Uncertainties

By effectively adjusting the appliance usage patterns of customers, DR is expected
to bring significant economic and environmental benefits to the future smart grid.
Generally speaking, two kinds of appliances should be considered for DR, i.e., shiftable
appliances such as dishwashers and laundry machines, and non-shiftable appli-
ances such as lights and stoves. Although the shiftable appliances can be well con-
trolled by energy management systems, the random usage patterns of non-shiftable
appliances will result in uncertainties to electrical demands and thus, affect the ef-
ficiency and reliability of smart grid operation. Different from most existing stud-
ies that focus on the optimal scheduling of shiftable appliances, we contemplate
the random usage patterns of non-shiftable appliances for the optimization of DR
schemes. A two-stage stochastic programming problem is formulated, for which
the distribution system operation cost is minimized in the first stage, by considering
various distribution system operation constraints. The scheduling of shiftable ap-
pliances is optimized in the second stage, by taking into account the random usage
patterns of non-shiftable appliances. In order to reduce the computational complex-
ity caused by a large number of home appliances in distribution systems, scenario
reduction technique is applied to reduce the number of possible scenarios while still
retaining the essential features of the original scenario set. Extensive simulations
are performed to evaluate the proposed DR scheme in IEEE 33 bus and 119 bus test
distribution systems based on real appliance usage pattern data.
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• Chapter 3: Energy Storage Management in Smart Grid with Renewable Power
Generation

Renewable power generation combined with energy storage is expected to bring
enormous economical and environmental benefits to the future smart grid. How-
ever, the ES management in smart grid is facing significant technical challenges due
to the volatile nature of renewable energy sources and the buffering effect of en-
ergy storage units. The challenges are further complicated by the increasing size
and complexity of the system, as well as the consideration of random usage pat-
terns of electrical appliances by customers. In order to address these challenges,
this research proposes a parallel decomposition method for large-scale stochastic
programming in a distribution system with renewable energy sources and energy
storage units. By leveraging nested decomposition, the problem can be converted
into independent sub-problems with a series of time periods. In addition, the refor-
mulated problem is fully parallel for speed-up in execution. The performance of the
proposed method is evaluated based on the IEEE 4-bus and 33-bus test distribution
systems with real PV generation and electrical appliance usage data. The case study
demonstrates that the proposed scheme can substantially reduce the system opera-
tion cost, with a low computational complexity.

Moreover, rooftop PV generation combined with battery energy storage provides
a promising solution for solar energy integration in smart grid. Specifically, the
home battery energy storage systems can improve the efficiency and reliability of
PV integration while reducing the greenhouse gas emissions. In this research, we
investigate the randomness of home PV generation and the residential random load
demand, which may affect the efficiency and reliability of the power grid. A bi-level
stochastic programming problem is formulated to provide a pricing strategy to cus-
tomers for the optimal DR in smart grid. In particular, the operators model rep-
resents the cost minimization of the power system operation, while the customers’
model represents the cost minimization of their household energy demand. In the
operators model, power loss calculated based on power flow analysis is used as
the system loss, while the stochastic model of the household load demand is used
instead of the expected value to characterize the human random behaviour. The
performance of the proposed stochastic DR scheme is evaluated through extensive
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simulations. Simulation results indicate that this novel scheme can help both power
system operators and electrical customers to better decide on their operating sched-
ule and energy usage, respectively.

• Chapter 4: Optimal Vehicle-to-Grid Operation in Smart Grid

A decentralized stochastic programming operation scheme for a vehicle-to-grid sys-
tem in a smart grid is presented, which includes a series of equipment with random
power generation and demands. For households with electric devices, renewable
solar power generation, energy storage systems and EVs, we consider utility oper-
ating expenses, including power loss and energy consumption cost as the objective
function. For customers, we consider the cost of electricity, including battery degra-
dation. To investigate the uncertainty of the devices, a bottom-up approach is pro-
posed to develop a random device usage model for analysing customers’ uncertain
behaviour. Besides, a random renewable power generation model and an EV ran-
dom driving model are implemented. The proposed approach is implemented with
OpenMP to simulate the decentralized process on a multi-core CPU while reduc-
ing the computational burden. A case study based on the IEEE 33-bus distribution
system with different scenarios is used to evaluate the performance of the proposed
approach. The simulation results show that by introducing an optimal household
operation schedule, the expense of distribution system utility company can be re-
duced in which both customers and operators can benefit from the optimization of
the system schedules.

• Chapter 5: Real-Time Operation of Electric Vehicle with Renewable Generation

In recent years, with the rapid growth of EVs and the sharp decline in solar panel
production cost, roof-top PV systems combined with EVs play an important role
in reducing electricity bills and lowering greenhouse gas emissions. However, the
randomness caused by the drivers’ habits and PV power generation may affect the
efficiency and reliability of the power grid. In this research work, we investigate
the real-time energy management of EVs with random renewable PV power gener-
ation in distribution systems. The objective is to minimize distribution system op-
eration costs by considering the uncertainty in EV operation, PV power generation
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and household load demand. We first formulate a stochastic programming problem
with the considerations of EVs, PV, home energy storage systems and load demand,
while minimizing distribution system operation costs. Then, a real-time algorithm
is developed for the proposed problem based on the Lyapunov optimization tech-
nique. The performance of the proposed stochastic energy management scheme is
evaluated through extensive simulations.

• Chapter 6: Conclusions and Future Works
The conclusion of this research and the future works are summarized in this chapter.



2
Demand Response in Smart Grid under

Uncertainties

List of Acronyms
DR Demand Response
DET Deterministic Optimisation Scheme
EMS Energy Management System
EV Electric Vehicle
MCP Market Clear Price
MC10, MC1000 Monte Carlo Simulation 10 and 1000 Random Sample
MILP Mixed-Integer Linear Programming
SR Scenario Reduction
ToU Time of Use Pricing scheme

In this research, we proposed a two-stage stochastic programming scheme for DR in
a smart grid. Different from the recent research works on the optimization in distribution
systems, which model each residential household by its total load, we establish detailed
models of the usage patterns of each appliance in the household, as well as the customers’
response to electrical price variation. Specifically, the operation cost minimization of dis-
tribution system is considered in the first stage by optimizing electrical price, while the
optimal scheduling of shiftable appliances is investigated in the second stages. The inter-

23
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action between the two stages is established based on customers’ response to electricity
price, which can affects the usage patterns of various appliances. this research is impor-
tant for the analysis of the impact of customers’ uncertain behaviour in distribution sys-
tems with certain DR programs, and for the utility companies seeking for optimal pricing
schemes for the DR programs to indirectly affect customers’ behaviour.

2.1 System Model

In this research, we consider a typical residential distribution system and various types
of appliances. The distribution system power flow model and household electrical appli-
ance models are presented in the following.

2.1.1 Distribution System Power Flow Model

We use a common branch model to characterize the transmission lines and transformers
in an n-node distribution system, which consists of a standard π transmission line model
and an ideal phase shifting transformer model. For a transformer with tap-ratio τ and
phase shift angle θ, its turns ratio can be represented as B = τejθ, while a transmission
line can be modelled by letting B = 1.

Then, the complex current from sending end (InS ) to receiving end (InR) of a branch
can be expressed with branch admittance matrix and respective voltages VnS and VnR ,
given by [

InS
InR

]
=

[
(y2 + z) 1

B2
1
B z

1
B z z + y

2

] [
VnS
VnR

]
, (2.1)

where the impedance z and the admittance y in the branch admittance matrix are
elements between the sending end and receiving end. For an n-node distribution system,
the complex nodal current injections from related node d to node b is Ib =

∑d=n
d=1 Ibd. Then,

the complex power flow can be calculated as a function of the complex nodal voltages,
given by

Pb + jQb = VbI∗b = VbY∗bdV∗d, (2.2)
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where P and Q refer to the active power and reactive power, respectively. Ybd integrates
all the impedance and admittance elements into a complex n×n admittance matrix. Once
the active and reactive power consumed by all household appliances (which are random
variables in nature due to the random appliance usage patterns) are realized, the voltage
and related phase angle can be obtained based on power flow analysis.

For tap changing transformers (e.g., voltage regulators), the transformer tap-ratio can
be calculated as [118]:

τt = 1 + bV,t, ∀t = 1, 2, ...T, (2.3)

where bV,t refers to the voltage regulator coefficient, based on the transformer turns ratio
range. For a given period of time (T ), the total number of transformer tap operations can
be calculated as

Ntap =
T∑
t=1

|τt − τt−1|. (2.4)

The branch power loss LSR from node nS to node nR can be calculated based on bus
voltages and branch parameters as

LSR = |(VnS/B)− VnR |
2/z. (2.5)

As mentioned before, voltage and phase angle can be acquired from power flow analysis.
So, the system operation cost, which includes tap operation and power loss, can be calcu-
lated accordingly.

2.1.2 Residential Load Model

Two categories of household appliances are considered for demand response programs.
One includes the non-shiftable appliances which involve human participation, such as
cooking and cleaning. The other consists of shiftable appliances such as washers and dry-
ers, which can be controlled by an energy management system (EMS) with adjustable op-
eration start times. A key feature of this research work is the consideration of the random
usage patterns of appliances, which can significantly affect the optimization of demand
response schemes.
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Figure 2.1: Time of use distribution profile with the following activities: (1) cooking; (2)
laundry; (3) comfort and healthy; (4) entertainment.

2.1.2.1 Non-shiftable Appliances

Recent research works have investigated how to quantify the randomness of human par-
ticipated activities [119, 120]. In particular, the electric load profiles of individual appli-
ances have been developed.

Based on these research works, we can introduce the appliance time-of-use (ToU)
probability profile ξm,a,t, which represents the probability of operation of an electrical
appliance a ∈ ASM in a household m ∈Mn during time period t ∈ T .

The probability distribution profiles of human behavior can be found in [121]. In this
research, we assume that the appliances related to one behaviour follow the same distri-
bution (for example deep fryer and stove are related to the cooking behaviour). Fig. 2.1
shows several typical human behaviors in a common household with children. The prob-
ability distributions differ by household types. For more details, please refer to [121].

In practice, many factors can affect this ToU probability profile, among which the price
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sensitivity is a major factor.

Price sensitivity function G(W ) can be used to describe the sensitivity of human be-
haviours in response to different market clear prices (MCPs) W [122]. Affected by the
price sensitivity, the new ToU probability profile can be calculated as follows:

ξ
′
m,a,t = G(Wt) · ξm,a,t, ∀m ∈Mn,∀a ∈ ASM , ∀t ∈ T, (2.6)

where the MCP value applied to calculate the new ToU probability profile is given by

Wt =
αct
cmax
t

,∀t ∈ T. (2.7)

Here, α is a calibration scalar to adjusted the MCP value. By applying different scalars,
the effectiveness of the price sensitivity can be different.

Another common factor related to the random appliance usage patterns is whether the
house is occupied or not. In other words, the appliances can only be operated when the
house is not empty. Thus, a household occupation function can be applied to force the ap-
pliance turn-on probability to zero when the household is empty [21, 119]. Accordingly, a
household occupation function with binary variables is introduced in this research, given
by

O(m) =

{
1, if the house is occupied
0, otherwise

∀m ∈Mn. (2.8)

Consequently, the household occupation function affected ToU probability profile can be
expressed as

ξ
′
m,a,t = O(m) · ξm,a,t, ∀m ∈Mn,∀a ∈ ASM ,∀t ∈ T. (2.9)

The summation of the adjusted human activity probability profile ξ
′
m,a,t is still equal to 1.

Therefore, a calibration equation can be introduced as follows:

ξ′′m,a,t =
βξ′m,a,t∑
t ξ
′
m,a,t

, ∀m ∈Mn,∀a ∈ ASM ,∀t ∈ T. (2.10)
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The final ToU probability profile ξ′′m,a,t , which is affected by either the price sensitivity
function or the occupation function, could be adjusted by the calibration scalar β to ensure
the sum of probability profile equals to 1.

2.1.2.2 Shiftable Appliances

Different from the non-shiftable appliances operated by human which can cause uncer-
tainty, the EMS controlled appliances can be shifted to the lower price period determin-
istically. For the various EMS controlled appliances, we proposed the following EMS
appliance property matrix to describe each appliance:

a ∈ ASE := {a : [Ha, Hsa , Hfa , Ea, ψ
max
a , ψmin

a ]}. (2.11)

Here, we denote the appliance operation duration by Ha, the operation starting time Hsa ,
finishing time Hfa , appliance total energy consumption Ea, and upper and lower bounds
of power operation consumption ψmax

a and ψmin
a , respectively. Based on this matrix, we

can define appliances with different requirements, such as the appliances need to be op-
erated during a specific period, with controllable or uncontrollable power consumption.
Details of the EMS controlled appliance operation is discussed in Subsection V-B.

Therefore, considering these two kinds of appliance and non-shiftable appliances with-
out price sensitivity as base load (a ∈ ANS), the power consumption of a single household
m ∈Mn can be calculated as

Pm =
∑
a

Pa, {a ∈ A | A = ASE ∪ANS ∪ASM}. (2.12)

The household reactive power for power flow computing can be achieved by using the
power factor cos θa of a specific appliance a, given by

Qm =
∑
a

Pa(
1

cos2 θa
− 1)−1, ∀m ∈Mn,∀a ∈ A. (2.13)
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2.2 Problem Formulation

In this research, we consider the minimization of distribution system operation cost based
on demand response. Therefore, we can define the operation cost as follows1:

Operation cost = Wholesale martket’s electrical cost

+ Power transmission cost.
(2.14)

The electrical cost from wholesale market associated with the cost of energy procure-
ment by retailers from the power pool, while the transmission cost reflects the power
loss during transmission plus the cost associated with transformer wear and tear due to
tap charging operation. Therefore, the objective function of the optimization problem is
formulated as

Cu(cw, P ) =
∑
n

∑
m

∑
a

∑
t

cwPn,m,a,t

+ (µ
∑
n

∑
t

cwLn,t + νNtap),

∀n ∈ N, ∀m ∈MNS , ∀a ∈ A,∀t ∈ T.

(2.15)

where µ and ν are the weights given to the power transmission operation which depends
on the level of priority, while cw refers to the price of wholesale electricity market, who
offers the electricity to retailers. In this research, we consider that the electricity retailers
purchase from the wholesale pool and decide the price for electricity customers. The op-
timized electrical price can help reduce power loss by indirectly affecting the the usage
of price-sensitive appliances. Consequently, the residents would respond to the electrical
price c presented by the utility company, and aspirate to reduce the electrical expendi-
ture by arranging their behaviours related to non-shiftable appliances and shiftable ap-
pliances. Therefore, the household appliances electrical expenditure, that is, all the ap-
pliances a ∈ A electrical cost Cm in a household m ∈ Mn can be commonly expressed
as

Cm(c, P ) =
∑
t

c(
∑
a

Pa,t), ∀a ∈ A,∀t ∈ T. (2.16)

1In this research, the transmission investment and maintenance costs are not considered, since they are
typically charged at a fixed rate and would not affect the optimization results.
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2.3 Two-stage Stochastic Programming

Considering the costs of two different parties in the distribution system, i.e., utility com-
pany and customers, the optimization problem with random appliance usage patterns
can be solved based on two-stage stochastic programming. The basic idea is that optimal
decisions should be made based on available data, without a priori knowledge of future
observations. The general formulation of a two-stage stochastic programming problem is
given by [123]:

min{Cu(cw, P ) =
∑
n∈N

∑
m∈Mn

fu(cw,
∑

a∈ASE

Pa,t)

+
∑
n∈N

∑
m∈Mn

E ε∈E
a∈ASM

[gu(cw, Pa(ε))]

+ (µ
∑
n

∑
t

cwLn,t + νNtap)},

(2.17)

where fu(cw,
∑

a∈ASE Pa) refers to the shiftable appliance related cost of utility company.
Once the second stage realization is achieved, it corresponds to a deterministic power con-
sumption in the distribution system. Further, gu(cw, Pa(ε)) is the non-shiftable appliance
a ∈ ASM related cost, which can be calculated from the second stage problem

min{gu(cw, Pa(ε))|GM (c, ε) +O(m)Pa(ε) = h(ε)}. (2.18)

Here, ε refers to the appliance random turn-on scenarios, determined by the ToU probabil-
ity profile ξm,a,t, which is related to the electrical price c presented by the utility company
as well as the household occupation function O(m). For the second stage, electrical price
c is determined before the realization of the uncertain data ε. Once the realization of ε
becomes available, we can optimize the shiftable appliances by solving an optimization
problem.

In this research, genetic algorithm is applied in the first stage to seek for the optimal
electrical price since the distributed power flow analysis is highly non-linear. A flowchart
of the stage decomposition based genetic algorithm is shown in Fig. 2.2. Details of the
techniques involved are discussed in the following subsections.
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Figure 2.2: Flowchart of the stage decomposition based genetic algorithm.

2.3.1 First Stage Optimization

The general formulation of the proposed stochastic programming is shown in (2.17). Since
the power loss L and transformer tap operation Ntap can be calculated based on power
flow equations once all the appliance operations are settled, we can start with costs of
EMS controlled shiftable appliances (a ∈ ASE) and non-shiftable base load appliances
(a ∈ ANS). By considering all appliances of these two categories in a household m ∈ Mn,
we have

fu(cw,
∑

Pa) =
∑

a∈ASE∪ANS

∑
t∈T

cwPa,t. (2.19)

Further, we defined the stochastic appliance turn-on scenarios by ε ∈ E . Therefore,
for each scenario ε, the electrical cost of shiftable appliances with ToU probability profiles
(a ∈ ASM ) in household m ∈Mn can be formulated as

gu(cw, Pm(ε)) =
∑
t∈T

cwPm(ε), ∀ε ∈ E . (2.20)
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Consequently, the electrical cost of a household by considering the random human be-
haviours can be formulated as

Eε[gu(cw, Pm(ε))] =
∑
ε

pεgu(cw, Pm(ε)),∀ε ∈ E . (2.21)

By minimizing the cost, the cost minimization of distribution system operation can be
achieved in the first stage. However, in (2.21), the total number of scenarios of appliance
turn-on permutation in a household is given by

KE = (Ka)
(KO(m)), ∀a ∈ ASM ,∀m ∈Mn. (2.22)

As the number of household appliances increase, the total number of scenarios increases
exponentially. The situation becomes even worse if we model the ToU probability profile
ξm,a,t as random variables with continuous distributions. A common approach to reduc-
ing the scenario set to a manageable size is by using Monte Carlo simulations. Specifically,
we can generate a set ε1, ε2, · · · , εK of K scenarios of the random vector ε, which follow
the same probability distribution. Furthermore, we assume that the samples are indepen-
dent identically distributed. Therefore, the approximated expectation gm(c, Pm(ε)) can be
calculated based on an average over the samples, given by

Eε[gu(c, Pm(ε))] =
1

K

∑
k

gu(c, Pm(εk)),∀k ∈ K. (2.23)

This formulation is also known as the Sample Average Approximation method [124]. The
accuracy of the optimal result can be improved by increasing the number of samples (K).
Therefore, the computational complexity of the algorithm could be excessive when con-
sidering a large distribution system. In order to address this issue, scenario reduction
technique will be introduced in Subsection 5.3.

2.3.2 Second Stage Optimization

The objective of second stage optimization is to calculate an appliance schedule to min-
imize the electrical cost for each scenario ε ∈ E , based on the electrical price c given by
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the first stage optimization. Furthermore, once the operations of shiftable appliances with
ToU probability profiles are realized, the shiftable appliances controlled by the EMS can
be scheduled by solving a mixed integer linear programming (MILP) problem. The gen-
eral formulation of the second stage optimization is introduced in (2.18) and (2.20), with
the details given below:

min
x,r

fm(c, Pa) + gm(c, Pm(ε)). (2.24)

s.t.
∑

a∈ASM

Pa +
∑

a∈ASE

Pa +
∑

a∈ANS

Pa ≤ Pmax, (2.25)

GM (c, ε) +O(m)Pa(ε) = h(ε), (2.26)

F (Pa(x, r)) = b. (2.27)

The value of Pmax in the first constraint can be obtained by running the standard test
system, according to certain voltage and loading constraints. The second constraint is
used to simplify the equations (2.6), (2.9) and (2.10) for appliance a ∈ ASM . The last
constraint refers to the EMS controlled appliances. The decision variables (x, r) for a ∈
ASE ∪ANS are introduced as follows

(x, r) =[x1, x2, · · · , xa, r1, r2, · · · , ra], (2.28)

xa =[xa,1, xa,2, xa,3, · · · , xa,t], (2.29)

ra =[ra,1, ra,2, ra,3, · · · , ra,t]. (2.30)

where xa is the energy consumption for each appliance a ∈ ASE ∪ ANS , and each xa is
consumed within the T time slots. Also, ra is the appliance operation status represented
by binary variables, i.e., 1 and 0 for appliances turned on and off, respectively.

Based on the appliance property matrix (2.11), we can define several kinds of ap-
pliances: appliances with controllable power level such as light bulbs with controllable
brightness, electric fans with controllable speeds; appliances with fixed power level such
as battery chargers with fixed charging rates; and appliances need to operate at a specific
period of day, etc. For the set of appliances operated by EMS (a ∈ ASE) with controllable
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power levels ψa, the properties can be described as follows

t=Hfa∑
t=Hsa

xta = Ea, ψ
min
a ≤ xta ≤ ψmax

a , (2.31)

∑
t

sa[t] = Ha, Hsa ≤ {t|sa[t] = 1} ≤ Hfa , (2.32)

where sa[t] = 1 refers to the appliance turn-on time. For the set of appliances operated by
EMS (a ∈ ASE) with fixed power level, it can be formulated as

t=Hfa∑
t=Hsa

xta = Ea, ψ
min
a = xta = ψmax

a , (2.33)

∑
t

sa[t] = Ha, Hsa ≤ {t|sa[t] = 1} ≤ Hfa . (2.34)

For appliance a ∈ ANS , which refers to the non-shiftable appliance such as refrig-
erator, the parameters in the property matrix are all constant and cannot be optimized.
Therefore, after the stochastic appliance scenarios are settled, MILP can be used for the
EMS controlled appliance optimization.

2.3.3 Scenario Reduction for Two-Stage Stochastic Programming

In stochastic programming, the expectation of uncertainty related problem can be ob-
tained by evaluating all possible scenarios, which usually results in an enormous scenario
set. For the ease of implementation, we need to reduce the number of scenarios while still
preserving the basic characteristics of the original scenario set. In other words, we seek
a set of reduced scenarios to produce the optimal solution that can best approximate the
solution of the original problem.

In this research, the scenario reduction technique based on fast forward section is im-
plemented [125], as shown in Algorithm 1. In this algorithm, o(εk, εu) refers to the norm
of εk and εu. This selection allows us to not only seek for the scenarios with the highest
probability of occurrence, but also concern the solution that is closest to the original op-
timal problem. In each step i, the closest scenario is selected. In general, more accurate
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results of scenario reduction can be obtained by increasing the number of steps.

Algorithm 1 Scenario Reduction
1: for i = 1 do
2: o

[1]
ku = o(εk, εu), k, u = 1, · · · , E

3: z
[1]
u =

∑E
k=1,k 6=u pko

[1]
ku, u = 1, · · · , E ,

4: u1 ∈ argminu∈{1,··· ,E} z
[1]
u , J [1] := {1, · · · , E} \ {u1}

5: end for
6: for i = 2, 3, ..., E do
7: o

[i]
ku = min{o[i−1]

ku , o
[i−1]
kui−1

}, k, u ∈ J [i−1]

8: z
[i]
u =

∑E
k∈J [i−1]\{u} pko

[i]
ku, u ∈ J

[i−1]

9: ui ∈ argminu∈J [i−1] z
[i]
u , J [i] := J [i−1] \ {ui}

10: end for
11: for i = n+ 1 do
12: Redistribution by the minimum attained at:
13: q̄j = pj +

∑
i∈Jj pi, for each j /∈ J

14: end for

To further accelerate the scenario reduction process, we also combine the following
method with fast forward section. The key for this method is to transfer the appliance
turn-on scenarios to the power consumption scenarios with the related probability. Specif-
ically, the power consumption by different power level P (l) in a household m ∈ Mn at a
specific time t ∈ T can be computed as

Pm,t(l) =
∑
a

Pa(l), ∀a ∈ ASM ,∀l = 1, 2, · · · , (2.35)

where
∑

a Pa(l) refers to the power consumption of power level Pm,t(l) related appliance
turn-on scenarios. For instance, if the power level is Pm,t(l) = 50W ,

∑
a Pa(l) can be 5 light

bulbs with 10 W rating, and 2 light bulbs with 25 W rating at time t ∈ T . A power level is
the total appliance turn-on scenarios without repetition. Consequently, the corresponding
power consumption probability distribution at time t ∈ T can be calculated as

ζP (l) = Πaξa′ · ξa, ∀a ∈ ASM , (2.36)

where ζP (l) is the probability corresponding to the power level Pm(l), a′ refers to the
turned-off appliances. The probability distribution ξa introduced in section 3.2.1. Using
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this probability distribution profile, the turn on/off probability for a specific appliance in
each time slot can be obtained. Therefore, the power consumption probability distribu-
tion profile in household m ∈ Mn can be calculated via equations (2.35)-(2.36). For each
time period, there is a pool that contains the turn on/off operation scenarios for all appli-
ances. For a specific scenario in the pool, there exists an optimal solution for the shiftable
appliances controlled by EMS. Noted that the non-shiftable appliances are assumed to be
operated once every day and non-interruptible. As the number of all the scenarios can
be as large as 2a, we define a redistributed power consumption probability distribution
by d intervals, that is, in household m ∈ Mn at time t ∈ T , the redistributed power level
Pm,t(ld) can be calculated as

Pm,t(ld) =
max{Pm(l)}

d
, ∀a ∈ ASM ,∀ld = 1, 2, · · · . (2.37)

And the corresponding probability is the sum of the probability in each interval d, given
by

ζP (ld) =
∑
d

ζP,t(l),∀a ∈ ASM . (2.38)

Since this method allows us to reduce a large number of scenarios to d scenarios and ob-
tain the corresponding probability ζP (ld) of each scenario, the original probability distri-
bution can be retained with proper value of d. By combining the sample average approxi-
mation and scenario reduction technique, the performance of our proposed algorithm can
be improved significantly without sacrificing the accuracy.

2.3.4 Heuristic Two-Stage Stochastic Programming Algorithm

L-shaped method [126] has been widely used to solve two-stage stochastic programming
problems. However, for large-size problems, the study in [127] indicates that the evolu-
tionary algorithm such as genetic algorithm performs better in finding the optimal solu-
tions than the L-shaped method. Besides, the genetic algorithm, as a common mature
algorithm in evolutionary computing, has been widely used in demand response prob-
lems [13]. Furthermore, the power flow analysis in our work is highly non-linear in na-
ture. For the above reasons, a genetic algorithm is applied to solve the proposed problem
instead of the L-shaped method.
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The proposed stochastic two-stage programming scheme with genetic algorithm is in-
troduced as follows.

• First stage: System operation cost minimization:

1. Initialize: Generate the initial population electrical price ckt,i, where the sub-
script i refers to the ith individual in iteration k. Then, input the household
shiftable appliances a ∈ ANS ∪ ASE use pattern follow equation (2.11). Also,
input non-shiftable appliances with probability usage pattern a ∈ ASM , which
is ToU probability profile ξm,a,t in this research. For a specific time slot t, the
scenario pool for non-shiftable appliances is obtained from the probability pro-
file, and the pool is utilized by the next process.

2. Evaluate: Use the initialled individuals cki to apply the fitness function below
that modified from (2.17) with second stage power consumption Pm. Cmax is
the maximum estimate value of system operation cost. This function helps
transfer the minimization problem to maximization problem.

fit = Cmax − Cu(cw, Pm). (2.39)

3. Scenario reduction: scenarios are exhausted and the most representative sce-
narios are selected via the Algorithm 1 and functions (2.35-2.38). Only the
selected scenarios are considered in the second stage optimization.

• Second stage: Household electrical cost minimization: For each scenario ε ∈ E , the
optimal power consumption Pa can be achieved by equation (2.27). The optimal
shiftable appliances schedules are decided in this stage once the representative sce-
narios are selected in the first stage.

• Genetic operation: Electricity price optimization:

1. Select: The best-ranking individuals are preserved as parents to reproduce the
offspring.
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2. Breed: To generate a new generation population, a combination of crossover
and mutation can be applied to give birth to offspring ck+1

t,i .

3. Evaluate: Apply the offspring ck+1
t,i to the fitness function Cu(c, P ).

2.4 Case Study

In this section, we evaluate the performance of the proposed demand response scheme
based on the IEEE 33-bus and 119-bus test distribution systems. The simulations are con-
ducted on a Linux desktop with an Intel i7-4790 CPU at 3.60GHz with 16 GB RAM. Sev-
eral categories of typical household appliances are considered, with their characteristics
shown in Table 2.1. For each appliance, the average power consumption, average op-
eration duration, and power factor can be obtained from [128, 129]. The appliances for
entertainment activities are considered as non-shiftable and insensitive to price due to
comfort reasons, while all other appliances are considered as price sensitive. In particu-
lar, the washing machine and dryer are assumed to be controlled by the EMS in this case
study. Note that the appliance list is expandable if more appliance usage data are avail-
able. In the case study, the time horizon is considered to be 24 hours, with the duration
of each time slot being 1 hour. The wholesale market electrical pool price cw are obtained
from Alberta Electric System Operator (AESO) in April 2018 [130].

2.4.1 IEEE 33-Buses Test Distribution System

The IEEE 33-bus test distribution system is used in the first case study. Due to the rela-
tively small-scale of the distribution system with low computational complexity, we can
evaluate our proposed demand response scheme through extensive simulation runs un-
der various system configurations. The one-line diagram of the system under study is
shown in Fig. 2.3, where the detailed circuit data can be obtained from [131]. The system
is operated at 12.66 kV, and the total real and reactive loads are 3715 kW and 2300 kVar,
respectively. The voltage regulators can regulate system voltages in 32 steps with 0.625%
for each step. The household type applied in this case study is the household with chil-
dren, and the data related to human behaviour are collected from [121, 132].
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Table 2.1: Characteristics of typical household appliances.
Appliance Category Average Power Average Operation Power

and Name Consumption (W) Duration (h) Factor
Kitchen
Blender 175 0.2 0.73

Coffee maker 900 0.4 1
Deep fryer 1500 0.267 1

Dishwasher 1300 0.667 0.99
Food freezer 350 8 0.8

Microwave oven 1500 0.333 0.9
Range and oven 4000 0.833 1

Toaster 1200 0.133 1
Laundry

Dryer 5000 0.933 0.99
Iron 1000 0.4 1

Washing machine 500 0.867 0.65
Entertainment

Computer (desktop) 250 8 0.8
Computer (laptop) 30 8 0.8

Laser printer 600 2 -
Stereo 120 4 -

Television 100 4.167 0.8
Comfort and Health

Air conditioner 750 2.467 0.9
Electric heating 1000 8.333 1

Fan 120 0.2 0.87
Lights 60 8 0.93

Vacuum cleaner 800 0.333 0.9

In the simulation, the performance of the proposed two-stage stochastic programming
scheme with scenario reduction technique is compared with that of the Monte Carlo sim-
ulation, which can be considered as the benchmark solution. Monte Carlo simulation
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Figure 2.3: One-line diagram of the IEEE 33-bus test distribution system.

method is widely used to generate random scenarios in stochastic programming [23,133].
In this research, Monte Carlo simulation with repeated random sampling is applied to
obtain the optimal results. These results still need to be sent to the genetic algorithm,
and genetic operation (crossover and mutation) is used to generate new population for
the next iteration. A large number of Monte Carlo simulation runs can lead to better per-
formance in terms of the demand response outcome. But the computational complexity
can be prohibitive due to a large number of appliances in the distribution system. Fur-
thermore, the results of both the proposed scheme and Monte Carlo simulation scheme,
which are stochastic in nature, are also compared to that of traditional deterministic opti-
mization scheme, where only the expectations are used to model the uncertain factors in
the simulation [23, 133]. Moreover, the mechanism of economic demand response intro-
duced in [20] can be adapted for comparison.

A comparison of average fitness of different schemes is shown in Fig. 2.4 (a), which
shows the performance of the proposed scheme (SR10), in comparison with the Monte
Carlo simulations with 10 and 1000 random samples (MC10, MC1000), respectively, the
deterministic optimization scheme (DET), and economic demand response (EDR). Here,
the modified objective function (2.39) that aims at finding the lowest cost for distribution
system operation, is chosen as the fitness function for comparison. As we can see, the sce-
nario reduction method shows a better convergence in the first 100 generations than other
methods. Furthermore, the cost of EMS appliances a ∈ ASE is shown in Fig. 2.4 (b), with
respect to the different percentage of controllable domestic appliances a ∈ ASE ∪ ASM .
In this simulation, after all the algorithms reach each their solutions, we use Monte Carlo
simulation with random samples to simulate as the real scenario. Based on the economic
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Figure 2.4: (a) Comparison of the average fitness. (b) Cost of shiftable appliances con-
trolled by EMS. (c) Comparison of the pure electrical cost.

demand response algorithm, the peak load is shifted to the off-peak period, which should
lead to the most economical result. However, when the randomness of the appliance us-
age patterns is considered, the cost becomes higher than our proposed method, as shown
in Fig. 2.4 (b) and Fig. 2.4 (c). Also, Fig. 2.4 (b) shows that our proposed method with sce-
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nario reduction technique has a better performance than that of Monte Carlo simulation
and deterministic optimization scheme, due to the consideration of random appliance us-
age patterns. Note that the cost based on Monte Carlo simulations with 1000 random
samples (MC1000) is higher than that of our proposed scheme. The main reason is that
Monte Carlo simulations choose scenarios randomly, while the scenario reduction tech-
nique used in this research selects scenarios based on the probability of their occurrence.
Since the probabilities for different human behaviours to occur are different, our proposed
scenario reduction technique can effectively select the scenarios which may improve the
outcomes of demand response significantly.

From the utility companies’ perspective, Fig. 2.4 (c) shows the cost of electricity from
wholesale market for distribution system operation, which can be indirectly affected by
the optimized electrical price. As we can see, the electrical cost is lower based on the
proposed scheme. Besides, as the percentage of the domestic appliances increases, the
electrical cost can be reduced significantly. In other words, the optimized electrical price
can effectively reduce the distribution system operation cost while achieving reliable elec-
trical grid operation. Note that in these figures, we allocate different loading percentages
of shiftable appliances. Although the cases with close to 0% or 100% of domestic appli-
ances may not happen in practice, these cases are still included in this case study to show
the trend of the performance of different algorithms.

2.4.2 IEEE 119-Buses Test Distribution System

A relatively large-scale case study is performed based on the IEEE 119-bus test distribu-
tion system to test the scalability and effectiveness of proposed scheme, the system data
can be found in [134]. As shown in Fig. 2.5, several types of households with various oc-
cupation function O(m) and human behaviour ToU probability profiles are used. The test
system operates at 11 kV with 22709.7 kW and 17041.1 kVar of real and reactive power
demand, respectively. In this study, 30% of shiftable appliances are implemented.

Table 2.2 shows the performance of the proposed scheme. For all the simulation re-
sults, 200 generations are applied to the genetic algorithm for each method. Similar to
the 33-buses test system, we still use Monte Carlo simulation with random sample to test
the these algorithm as the real scenario. Single individual average time indicating the
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Figure 2.5: Illustration of the IEEE 119-bus test distribution system with various house-
hold types.

execution time for each scenario. As we can see, the proposed scheme can optimize the
electrical price more effectively, as reflected by the lower user cost and system operation
cost. Also, the convergence of the proposed scheme is faster, since the average time for
the calculation of every single individual is shorter. For the overall optimization of the
demand response, the Monte Carlo simulation with 1000 random samples takes over 76
hours to converge, while the scenario reduction technique can efficiently converge within
200 generations in about 4 hours.
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Table 2.2: Electrical price optimization results

Method SR10 MC10 MC1000 DET EDR

User cost ($) 5.0126 6.7451 5.2202 5.8152 6.8366

System operation cost ($) 268578 358572 299785 309342 362523

Single individual average time (s) 15.7467 8.8023 282.7716 2.6277 3.0424

2.5 Summary

In this research, a two-stage stochastic programming scheme is proposed for the purpose
of optimal demand response in smart grid. A genetic algorithm is utilized to find the op-
timal electrical price under random appliance usage patterns, while a scenario reduction
technique is embedded in the algorithm to reduce the computational complexity caused
by a large number random scenarios of the household electrical appliance operation. Sim-
ulation results based on IEEE 33-bus and 119-bus test distribution systems indicate that
our proposed scheme can provide better performance of demand response in comparison
with Monte Carlo simulations and deterministic optimization. Also, the convergence of
the proposed scheme is faster, which improves the efficiency of practical implementation
of demand response. Future research work involves the investigation of other types of
uncertainties in DR, such as renewable energy sources with intermittent power genera-
tion and EVs with random driving cycles, and the development of an efficient stochastic
programming scheme to optimize the demand response process accordingly.
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Energy Storage Management in Smart Grid

with Renewable Power Generation

List of Acronyms
CF Capacity Fade
ESS Energy Storage System
HEMS Home Energy Management System
PV Photovoltaic
PDF Probability Density Function
EV Electric Vehicle
ToU Time of Use Pricing scheme

3.1 Parallel Stochastic Programming for Energy Storage Manage-
ment in Smart Grid

Compared with traditional fossil fuels, renewable energy such as solar and wind energy
is eco-friendly as a clean energy source, which can help reduce greenhouse gas emissions.
Due to the sharp decline in solar panel production cost in recent years, residential solar
power systems are reasonably priced to help customers reduce their annual electricity
consumption by 20% – 50% [135]. For example, solar energy was not a source of power
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for utility companies in Canada a decade ago, but in 2016, the installed capacity was 2,310
MW in Ontario [136].

Moreover, demand response with renewables that aims to minimize system loss in
distribution system via a parallel decomposition algorithm, based on the probabilistic re-
newable generation and load models. Different from the existing research, this research
considers the probabilities of all scenarios and solves the problem by stochastic program-
ming. Moreover, the residential system consisting of different house types comprise the
holistic configuration of the distribution system. By leveraging the proposed parallel de-
composition algorithm, the massive scenario set can be efficiently addressed and the com-
putational time is reduced significantly.

Different from recent studies, this research focuses on a distribution system in which
households are equipped with renewable energy and community shared energy storage
units. Along with the energy storage units, households can flexibly interconnect with
distribution system for electricity supply and demand. this research considers the highly
random features of PV power output and household electrical consumption. Hence, we
solve the problem via stochastic programming and implement parallel decomposition to
transfer the large-scale problem into a series of independent sub-problems. Accordingly,
the reformulated problem can be fully paralleled.

3.1.1 System Model

In this research, we consider a typical distribution system composed of households equipped
with renewable energy sources, manually controlled appliances with probabilistic usage
patterns, and shared energy storage units. In this section, we introduce the models of
these components in the system.

3.1.1.1 Distribution System Model

For an N node system, the complex power flow sn on the node n consists of real power
Pn and reactive power Qn, and equals to the product of voltage Vn and the conjugate of
the corresponding nodal current In. In this research, we denote subscript {0, 1, ..., n} as
the set of nodes, and node 0 as the slack node. Therefore, the complex power flow can be
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represented as
sn = Pn + jQn = VnI

∗
n. (3.1)

The current I is linearly related to bus voltage V via the nodal admittance matrix Y , which
can be formulated as I = Y V .

In [137], the author proposed a linear approximation of the power flow solution by
assume that all the shunt admittances at the buses are negligible, by using the vector of
all ones 1, we have the following relation of nodal admittance matrix Y :

Y 1 = 0. (3.2)

Moreover, by partitioning the admittance matrix Y between two nodes 0 and n, we rewrite
the linear relation between current and voltage as[

I0

In

]
=

[
Y00 Y0n

Yn0 Ynn

] [
V0

Vn

]
. (3.3)

Through this relation and (3.2), voltage can be solved linearly by using the following
equation:

Vn = V01 + Y −1
nn In, (3.4)

where Ynn is invertible because 1 is the only vector in the null space of Y . Consequently,
power loss can be calculated as:

Ln = Y |Vn|2. (3.5)

3.1.1.2 Probabilistic Model of PV Generation

In this research, we use solar irradiance to compute the power output of a PV array. Solar
irradiance Iβ can be derived from the PV array inclination angle β as follows [138]:

Iβ =

[
(Rb + ρ · 1− cosβ

2
) + (

1 + cosβ

2
−Rb) · p

]
Io · kt

− (
1 + cosβ

2
−Rb) · q · Io · k2

t ,

(3.6)
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whereRb is the ratio of beam radiation on a leaned PV array surface to that on a horizontal
surface. The calculation of Rb can be found in [139], where ρ is the reflectance of the
ground. The extraterrestrial solar irradiance is indicated by Io, which can be calculated as

Io = rd ·
Ho

3600
, (3.7)

where rd is the correlation between the diffuse radiation in a day, and Ho is the extrater-
restrial total solar radiation on a horizontal surface introduced by [140].

In (3.6), p and q are the parameters describing the relationship between the diffuse
fraction k and the clearness indicator kt as k = p − qkt, where the subscript t indicates
the time, and kt is the hourly clearness index which is an uncertain variable to model the
random behavior of the terrestrial solar radiation. The probability density function (PDF)
of kt is introduced in [141].

The PDF of PV active power output is presented in [142]. As a result, the PDF of PV
generation can be determined by the PDF of solar irradiance. Specifically, the relationship
between random variable kt controlled solar irradiance and PV active power output can
be described linearly as

P rm,t = Iβ,tAmη(1− ρ(T − Tref )), (3.8)

where P rm,t is the PV active power output from the household m at time t, Iβ,t is the
actual irradiance, A is the total area of the PV array, ρ is the short-circuit temperature
coefficient, T and Tref are practical and reference temperature coefficients, respectively.
According to [143], the variation in solar irradiance will ultimately result in a change in
the cell temperature. However, the change of PV cell temperature is much slower than
the rapid diversification of solar irradiance and thus is not considered in this research.
Therefore, the relationship between the PV generation and solar irradiance is given by

P rm,t = Iβ,tAmη. (3.9)

The PDF of solar irradiance is denoted as gIβ (Iβ,t). Then, the PDF of the PV power output
ξrm,t(P

r
m,t) can be calculated and is defined as

ξrm,t = gPV (P rm,t). (3.10)
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3.1.1.3 Energy Storage Model

In this research, we consider a typical distribution system where shared batteries are used
as energy storage devices. For specific node n ∈ N with battery energy storage device,
the energy stored Sn,t at time t is limited by a minimum value Sn,t and maximum value
Sn,t, as follows:

Sn,t ≤ Sn,t ≤ Sn,t. (3.11)

To extend battery life, we also limit the charging and discharging power by

Sch ≤ Schn,t ≤ Sch,

Sdch ≤ Sdchn,t ≤ Sdch,
(3.12)

where the underscore values indicate lower limits, and the over-line ones are the upper
limits. The superscripts ch and dch denote battery charge and discharge, respectively.
Furthermore, considering the battery efficiency, the power drawn from or injected to the
grid when the battery is charging or discharging, respectively, can be calculated as

Schn,t = P chn,t/(1− ρch),

Sdchn,t = P dchn,t · (1− ρdch),
(3.13)

where P ch and P dch indicate charging and discharging power, respectively; Coefficients
ρch and ρdch represent charging efficiency and discharging efficiency, respectively.
Moreover, due to the limited life spans of batteries, we should consider the battery degra-
dation D [144] caused by the multi-time charging or discharging in daily usage:

Dn,t =
u · Savgn,t − v
CF · 15 · 8760

, (3.14)

where u and v are linear fitting parameters, while CF is the battery capacity fade (CF) at
the end of the life. These three parameters depend on the type of battery. In addition, Savg

is the average stored power level.

3.1.1.4 Probabilistic Model of Loads

In this research, a bottom-up approach [145] is implemented to model the residential loads
in a distribution system. The household daily time of use (ToU) probability profiles are
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Table 3.1: Composition of households in UK (2001 Census)

Single pensioner household (65+ years old) 14%

Single non pensioner household 16%

Multiple pensioner household 9%

Household with children 29%

Multiple person household with no dependent children 31%

used to infer the appliance operation probability. The ToU probability profiles may vary
with house types, for which the composition is shown in Table 3.1.

All the household electrical usages are classified depending on whether they have
electric heating or not, and holidays or workdays [132]. We represent the household daily
ToU probability distribution by ξm,a,t. The subscripts (m, a, t) denote index of houses, dif-
ferent household appliances, and time slots, respectively. It is assumed that the devices
related to an identical activity are following the same probability. For example, cook-
ing related electrical appliances, such as blender, toaster, coffee maker, microwave oven,
follow the distribution of cooking. On the other hand, washer and dryer follow the distri-
bution of laundry.

The influence of electric price on ToU probability distribution profiles of different ac-
tivities is also distinct. For example, the probability distribution related to entertainment
is price-insensitive, as the customers are reluctant to change their behaviour for the sake
of saving money. On the other hand, activities such as washing machine and dryer, are
sensitive to price due to low human intervention. Such properties can be introduced as
price-sensitive functionG(Wt). Therefore, a price-sensitive residence ToU probability dis-
tribution profile can be expressed as

ξ′m,a,t = G(Wt) ·O(m, t) · ξm,a,t, ∀m ∈M,a ∈ A, t ∈ T. (3.15)

In this equation, O(m, t) denotes the occupation function, which can be used to model
different schedules of the residents in various houses, or describe holidays or workdays,
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as follows:

O(m, t) =

{
1, when the house is occupied,
0, when the house is unoccupied,

∀m ∈M. (3.16)

After implementing the price-sensitive function or household occupied function to the
original distribution, because of the property of the price-sensitive function, the summa-
tion of the adjusted probability distribution ξ

′
m,a,t is usually smaller than or equal to 1.

Therefore, a calibration (normalized) equation is introduced as follows:

ξ′′m,a,t =
ξ′m,a,t∑
t ξ
′
m,a,t

. (3.17)

Consequently, household power level distribution for time t can be derived through ToU
probability and appliance rated power consumption. For appliance a ∈ A operation sce-
narios at time t, the total number of power level scenarios which might be happening
is K excluding the repeated power levels (i.e., this number will be 2A if there is no re-
currence). First, we assume that there is no recurrence and the power level subscript is
l ∈ {1, 2, ..., 2A}. For a specific power level Pm,l,t, the corresponding probability ζm,l,t is
given by

ζm,l,t = ΠAξ
′′
a′,t · ξ′′a,t, ∀a ∩ a′ = A. (3.18)

Here, ξ′′a,t indicates the turn-on appliance probability and ξ′′a′,t denotes the turn-off appli-
ance probability. Then we can remove the repeated levels by adding the probabilities of
the same power level together:

ζfm,k,t =
∑
l

ζm,l,t, ∀ P fm,k,t = Pm,l,t, l ∈ Ωk. (3.19)

Set Ωk represents the set of all appliance operation scenarios with the same power level k.
Therefore, probability distribution of a power level can be represented as

ζfm,k,t = g
Pf

(P fm,k,t). (3.20)

Considering the exponential growth of the number of power levels when adding more
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electrical appliances, we can reorganize the existing power levels by reducing the degree
to yl, given by

P fm,k,t(yl) =
max

(
P fm,k,t

)
l

, ∀yl = 1, 2, · · · , (3.21)

where l is the length of power interval, and the corresponding probability is the summa-
tion of the probabilities in the interval as:

ζfm,k,t(yl) =
∑
l

ζfm,k,t. (3.22)

By combining these power levels, we should note that if a shorter length is chosen,
the accuracy of the reorganized power levels will be higher, but the execution time will be
long at the same time.

3.1.2 Problem Formulation

Generally, decisions on shared energy storage management in distribution systems are
made to either minimize system loss or maximize profit. The former formulation is
adopted in this research. In this case, since the utility have the permit to operate the bat-
tery to indirectly control the customer’s home load demand, therefore, the battery degra-
dation cost should consider as the system cost. Moreover, other system operation loss
such as power loss and electricity power benefit is considered in our objective function,
due to these costs are related to the storage operation. Some losses, such as investment
and maintenance costs, are usually at a fixed rate, so they are excluded from the total sys-
tem cost. Therefore, we include the power losses, shared energy storage degradation cost
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and electrical profit in the objective function, which is given by

min
D

Cg =
∑
n,t

cnett E(Ln,t) + cbatt E(Dn,t)

+
∑
n,m,t

(cnett − cxt )E(PR,xn,m,t) +
∑
n,m,t

cetE(PR,en,m,t)

=
∑
n,t

(
cnett

∑
k

pL(k)Lt(k) + cbatt
∑
k

pdt (k)(Dt(k))

+
∑
m

(cnett − cxt )
∑
k

pR,xm (k)(PR,xm (k))

+
∑
m

cet
∑
k

pR,em (k)(PR,em (k))

)
,

(3.23)

where Cg is the total losses in the distribution system. With different superscripts, ct rep-
resents time varying electrical price, cnett indicates the electrical cost from the wholesale
market, cbatt denotes the battery degradation cost, while cxt and cet represent the price that
utility sells to or purchases from customers, respectively. In the objective function, the
first term shows the power loss caused by distribution system operation, and the value
can be calculated from the power flow analysis (3.5). The second term is the cost of bat-
tery degradation, which is introduced in (3.14). The next term indicates the profit that
utility earned via distributing electricity to the customers. The last term is the cost that
utility purchases electricity generated from household renewable energy sources or en-
ergy storage devices. The superscripts x and e for power P indicate the power household
utilized or generated, respectively. Note that the variables PR,en,m,t and PR,xn,m,t do not have
values simultaneously, which is considered as one of the constraints in the optimization
problem. To embody the expectations in (3.23), the probability mass functions of power
loss, customer power consumption and generation are required, which are indicated by
pLt , PR,xn,m,t and PR,en,m,t, respectively. The constraints of the energy management problem are
given by:

Sn,t = Sn,t−∆t +
∑
m

PRn,m,t ·∆t+ Pn,t ·∆t, (3.24)

PRn,m,t = |P rn,m,t − P
f
n,m,t|

=

{
PR,en,m,t, if P rn,m,t − P

f
n,m,t > 0,

PR,xn,m,t, if P rn,m,t − P
f
n,m,t < 0,

(3.25)

Sn,t ≤ Sn,t ≤ Sn,t, (3.26)
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P rn,m,t + P gn,m,t + avg(PSn,m,t) = P fn,m,t, (3.27)

PSn,t = (Sn,t − Sn,t−∆t)/∆t,

Pn,t =
∑
m

P gn,m,t, (3.28)

Pn,t ≤ Pn,t ≤ Pn,t, (3.29)

Vn,t ≤ Vn,t ≤ Vn,t. (3.30)

Note that in the objective functions (3.23), both power P rn,m,t and P fn,m,t are random vari-
ables which are specified by the corresponding probability distributions. Battery related
charging and discharging operations, which depend on the battery state in the previous
moment, is defined by (3.24). The current battery state Sn,t is the summation of the pre-
vious battery state Sn,t−∆t, total power consumption at the node

∑
m P

R
n,m,t and power

exchanged Pn,t during the current state. In equation (3.25), the total local power con-
sumption PR, is defined as the difference between renewable power generation P rn,m,t and
domestic appliance consumption P fn,m,t. Different superscripts PR,en,m,t and PR,xn,m,t represent
extra power send to the grid and insufficient power that must be purchased from the grid,
respectively. In addition, battery charging and discharging operations are constrained by
lower and upper limits shown in equation (3.26). For any moment t, the condition of
power balancing is realized in equation (3.27), where the total power for a specific house
includes renewable power generation, domestic appliance power consumption and the
power supplied by the grid and shared storage. Here we use average battery supplied
energy for the single house power balance. Real power for each node in power system
can be obtained via equation (3.28), which is the summation over houses. Reactive power,
as well as real power that is utilized for computing the system power flow, can be derived
from real power by power factors. Finally, power limit and voltage limit are shown in
equations (3.29) and (3.30), respectively.

By including renewable energy and storage devices, the values of variables P gn,m,t and
PSn,t can be either positive or negative. For P gn,m,t, positive value means that end-users
purchase power from the grid, while and negative value indicates end-users sell extra
electricity to the grid. Similar rule applies to the variable PSn,t, where positive value indi-
cates the battery is discharging, while negative value represents charging.
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Figure 3.1: An illustration of parallel stochastic programming.

In summary, the optimization problems of (3.23) is formulated with constraints (3.24)
to (3.30). Variables involved are introduced in the system model. Solution procedure will
be presented in the next section. Variables involved are introduced in the system model.
Solution procedure will be presented in the next section.

3.1.3 Parallel Stochastic Programming for Problem Solution

As the size of the proposed problem would increase dramatically when adding any of
the random features in this research, we contemplated adding cuts or linear supports to
manipulate the domain of the problem progressively. These cuts are piecewise linear ap-
proximations of the functions, and they can be obtained by the Lagrangian multiplier,
which is the result of the linear programming. These cuts are also precise lower bounds
and can make the algorithm achieve any degree of accuracy. Therefore, in the following
part, to derive the feasible cut, we start with scenario analysis.

As shown in Fig. 3.1 and Table 3.1, houses can be divided into z types. For each house
type in each period, there exist k scenarios. A specific scenario is associated with random
variables P rn,m,t and P fn,m,t, represents a combination of the values of renewable power
generated from PV array and power consumption by residential electrical appliances, re-
spectively. Consequently, an evaluation function for each scenario can be expressed as
cost functionCg,(i,j)t (Ln,t, PRn,m,t, Dn,t), which can be modelled as a dynamic program with
T stages. Therefore, for each period t, the cost function can be calculated as the current
expenditure and future period t+ ∆t possible expenditure, given by equation (3.31).
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In this modified objective function by each scenario, the superscript d indicates the
descent/offspring situations of the current scenario for the next period t+ ∆t. Moreover,
the constraints of each scenario can be concluded from battery state Si,jt as follows:

Si,jn,t = Si,jn,t−∆t +
∑
m

PRn,m,t
(
P rn,m,t(i), P

f
n,m,t(j)

)
1(∆t)

+ Pn,t(i, j)(∆t),

(3.32)

where we assume the PV array power output is the same in an equivalent area, and the
rank of 1 matrix is equal to the number of total house types to make sure all the matrices
are at the same rank. Concerning that the battery state Si,jt is related to former state Si,jt−∆t,
this process can be called the forward pass. Consequently, for each house m, the power
exchange should satisfy

P rn,m,t(i) + P gn,m,t(i, j) + avg(PSn,m,t(i, j)) = P fn,m,t(j). (3.33)

Based on battery charging and discharging rate limits and battery energy state constraint,
we have

P
S,(i,j)
n,t ≤ PS,(i,j)n,t ≤ PS,(i,j)n,t ,

Si,jn,t ≤ S
i,j
n,t ≤ S

i,j
n,t.

(3.34)

C
g,(i,j)
t (Ln,t, PRn,m,t, Dn,t) =Cgt

(
Ln,t, P rt (i), P ft (j), Dn,t

)
+ E

[
Cgt+∆t

(
Ln,t+∆t, P

r
t+∆t(i), P

f
t+∆t(j), Dn,t+∆t

)]
=cnett Ln,t(i, j) + cbatt Dn,t(i, j) + (cnett − cxt )PR,xn,m,t

(
P r(i), P f (j)

)
+ cetP

R,e
n,m,t

(
P r(i), P f (j)

)
+
∑
d∈Di,jt

pdt+∆t(i, j) ·
[
cnett+∆tLdn,t+∆t(i, j)

+ cbatt+∆tD
d
n,t+∆t(i, j) + (cnett+∆t − cxt+∆t)P

R,x,d
n,m,t+∆t

(
P r(i), P f (j)

)
+ cet+∆tP

R,e,d
n,m,t+∆t

(
P r(i), P f (j)

)]
.

(3.31)
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Then, the real power at node n of the distribution system can be calculated as

P gn,t(i, j) =
∑
m

P gn,m,t(i, j)

=
∑
m

[
P fn,m,t(j)− P rn,m,t(i)− PSn,m,t(i, j)

]
.

(3.35)

The real power limit and voltage limit are shown as (3.36), where the nodal voltage can
be calculated based on (3.3) in the former section.

P gn,t(i, j) ≤
∑
m

P gn,m,t(i, j) ≤ P
g
n,t(i, j),

Vn,t(i, j) ≤ Vn,t(i, j) ≤ Vn,t(i, j) .

(3.36)

In addition, the line current can be derived from

sn,t(i, j) = P gn,t(i, j) + jQgn,t(i, j) = Vn,t(i, j)(In,t(i, j))∗

= (V01 + Y −1
nn In,t(i, j))(In,t(i, j))∗.

(3.37)

Since the problem needs to be solved by the previous state, this process can be named
as single scenario forward pass analysis. As we revealed at the beginning of this section,
adding cuts or linear supports can achieve an accurate result, and the process of the algo-
rithm can be accelerated.
A feasible cut can be built as [146]:

H l,i,j
t PSt (i, j) + hl,i,jt ≥ 0 , (3.38)

where H l,i,j
t and hl,i,jt can be calculated as

H l,i,j
t = µdt+∆t ∗

[
P fn,m,t(j)− P rn,m,t(i)− PSn,m,t(i, j)

]
,

hl,i,jt = µdt+∆t ∗ 1 +
∑
U

(
λdt+∆t ∗ U(i, j)

)
,

(3.39)

where µ and λ are the Lagrangian multipliers corresponding to each constraints. We use
U(i, j) to represents all other constraints. The proposed nested decomposition algorithm
for stochastic programming is shown in Algorithm 2, with the details being described as
follows:
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• Firstly, we set time index t = 1, iteration index w = 1. Solve current problem (3.31)-
(3.37). If infeasible and t = 1, then stop; Problem (3.23) is infeasible.

• Otherwise, calculate the current time t optimal solutions for scenarios i ∈ It and
j ∈ Jt. Solve (3.31) for next time and all scenarios applying the appropriate ances-
tor optimal solutions in (3.32). And go to the next iteration and time period.

• If any period problem is infeasible and

H l,i,j
t P

S,(i,j)
n,t + hl,i,jt < 0, (3.40)

add a feasibility constraint to the corresponding ancestor period problem. Return to
step 3.

• Otherwise, iteratively solve a finite sequence of sub-problems (backward from t = T

to t = 1) until one is feasible. If a problem is feasible, then one has a new set of values
for each stage to ensure feasibility from period 1 through all the periods.

For better understanding of the procedure, Fig. 3.2 describes the implementation of
the proposed nested decomposition parallel processing using OpenMP. In this figure, data
initialized from the master thread (core), by implementing barrier construct, we assign
each thread processes one time slot. After the optimization process by each thread, the
results are sent to the master thread for data update and build cuts for the next iteration.

3.1.4 Case Study

To demonstrate the effectiveness of parallel stochastic programming, we applied the pro-
posed method on the IEEE 4-bus and 33-bus test distribution systems. The simulations
are conducted on a Windows desktop with an Intel Core i7-4790 CPU at 3.60GHz with 16
GB RAM (4 physical cores and 8 logical cores), and all the experiments are performed in
C++. The sub-problem of linear programming is solved via the Lpsolve library [147].

We first describe the configuration of the studied microgrid and relevant datasets, and
then present the simulation results and discussions. The microgrid energy management is
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Algorithm 2 Nested decomposition for stochastic programming
1: Set t = 1, w1(i, j) = 1, solve optimization problem (3.31)-(3.37)
2: for t ∈ T do
3: if t = 1 and problem infeasible then
4: STOP.
5: else if the problem is feasible then
6: apply optimal solution PS,wtopt (i, j) to next time t + ∆t to the problem (3.31). And

wt = wt + 1, t = t+ ∆t.
7: if any t+ ∆t problem is infeasible and (3.40) then
8: add (3.38) to (3.31), let t = t−∆t.
9: else if any t+ ∆t problem is infeasible with condition (3.40) then

10: solve a finite sequence of sub-problems until one is feasible.
11: if feasible, then
12: a new set of values for t ∈ T , update results.
13: end if
14: end if
15: else if all the sub-problems are infeasible, then
16: STOP. The entire problem is infeasible.
17: end if
18: end for

implemented over a finite time horizon (e.g., T=24 hours) in this study and the time step
is set to be 1 hour. In Table 3.2 [148], we show the household appliance properties, such
as the average power consumption, the average operation duration, and the power fac-
tor. The categories of typical household types were introduced in previous section (Table
3.1); Different combinations of electrical appliances may lead to different electrical usage
probabilities. Also, for the purpose of simulating closer to the real cases, we assume 40%
of houses are equipped with renewable generation, and each bus equipped with the size
of 30% capacity of the node power battery storage [149].

The wholesale market electrical pool price is obtained from Hourly Ontario Energy
Price (HOEP) in April 2018 [150]. The ToU electrical price for customer is given in [151].
The feed-in tariff (FIT) program encourages customers to sell renewable energy to the
grid, and the details can be found in [152].
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Figure 3.2: Flow chart for the implementation of the nested decomposition parallel pro-
cessing.

3.1.4.1 IEEE 4-bus Test Distribution System

The first case study is performed on the IEEE 4-bus test distribution system. This 12.47 kV
radial distribution system has a total peak load of 6000 kVA. The detailed data are avail-
able in [153], and the one-line diagram is shown in Fig. 3.3. Household with children is
considered in this case. Due to the relatively small-scale of the distribution system which
has a low computation complexity, we can evaluate our proposed scheme extensively by
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Table 3.2: Characteristics of typical household appliances.
Appliance Category Average Power Average Operation Power

and Name Consumption (W) Duration (h) Factor
Kitchen
Blender 175 0.2 0.73

Coffee maker 900 0.4 1
Deep fryer 1500 0.267 1

Dishwasher 1300 0.667 0.99
Food freezer 350 8 0.8

Microwave oven 1500 0.333 0.9
Range and oven 4000 0.833 1

Toaster 1200 0.133 1
Laundry

Dryer 5000 0.933 0.99
Iron 1000 0.4 1

Washing machine 500 0.867 0.65
Entertainment

Computer (desktop) 250 8 0.8
Computer (laptop) 30 8 0.8

Laser printer 600 2 -
Stereo 120 4 -

Television 100 4.167 0.8
Comfort and Health

Air conditioner 750 2.467 0.9
Electric heating 1000 8.333 1

Fan 120 0.2 0.87
Lights 60 8 0.93

Vacuum cleaner 1300 0.333 0.9

performing comparison under various system configurations.

As we introduced in the former section, two random factors, renewable PV power
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1 2 3 4

Figure 3.3: One-line diagram of IEEE 4-bus test distribution system.

output and household electrical consumption are considered in this study. Their joint
probability distributions, which describes the stochastic properties of these two random
variables, are shown in Fig. 3.4 (a). In this case, 21 PV generation and 12 energy consump-
tion power levels are considered, which lead to 252 realizations in total. As we can see,
the section along the axis of domestic power consumption scenario shows the probability
distribution of energy consumption with a specific PV power generation. On the other
hand, the perpendicular section displays the PV power generation profile with a certain
scenario of domestics energy consumption.

Fig. 3.4 (b) shows the household electrical expense corresponding to the probability
distribution in Fig. 3.4 (a). For a higher renewable power output, the cost for each house-
hold is lower, and vice versa. Then, these scenarios are solved by linear programming.
Once the forward process is solved, the Lagrangian multiplier can be accessed and then
utilized as the composition of feasible cuts which constrain the backward process. By im-
plementing both forward process and backward process, the execution time of the whole
process can be reduced by half at least.

To better demonstrate the convergence of the whole process, Fig. 3.4(c) shows the total
utility cost in one day. The two layers are sequential process (upper) and nested parallel
process (lower), respectively. The cost difference between the two processes is shown in
Fig. 3.4 (d). The result indicates that these two processes converge to the same value,
which indicates that optimality can be achieved based on the proposed nested parallel
decomposition method.

Fig. 3.5 shows the convergence curve of the total benefit for a whole day. We com-
pare the convergence curve versus (a) number of iterations and (b) execution time, where
the red and blue curves represent parallel and sequential optimizations, respectively. The
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Figure 3.4: Results for: (a) Probability distribution of domestic power consumption and
renewable generation at 7 pm; (b) Household cost of the random set at 7 pm; (c) Conver-
gence of final utility cost for each iteration; (d) Cost difference of two algorithms.

processes are executed backward and forward alternatively in the sequential optimiza-
tion. However, the nested decomposition based parallel computing is executed with four
cores simultaneously. We can see that both of these two methods converge to same final
result, while the nested decomposition can save execution time significantly.

Moreover, household daily power consumption under ToU price and household daily
electrical cost are shown in Fig.3.6 (a) and (b), respectively. It can be seen that on the user
side, the household power consumption is negatively correlated with the electrical rate.
In other words, the optimized domestic power consumption decreases with the increas-
ing of electrical price.
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Figure 3.5: Utility electrical profit results plotted against: (a) number of iterations; (b)
execution time.

To further demonstrate the efficiency of the proposed method, we compare it against
scenario-based parallel processing method [82–84] in this simulation. This process can
also be accelerated by computing each scenario parallelly in one period, but the accel-
eration is only valid in each time block and cannot run across time horizon and use the
results from the previous iteration as warm start, which differs from the proposed parallel
nested decomposition algorithm. The comparison results are shown in Table 4. In order
to complete the comparison, the computation time of sequential process with single core
is also shown.



Chapter 3. Energy Storage Management in Smart Grid with Renewable Power Generation 65

Figure 3.6: Final iteration result for (a) household daily electrical cost (b) household daily
power consumption under ToU price.

With a single core, the sequential computing is more efficient than the scenario-based
parallel computing and the nested decomposition based parallel process due to the over-
head involved in parallel processing. Even all the processes are assigned to only one core,
the parallel computing involves overhead such as task assignment, data communication,
and data synchronization. But with multiple cores, the execution time for the parallel pro-
cess is drastically reduced with the increasing number of processors, which demonstrates
its efficiency. Comparing the two parallel processes, the difference of the execution time
is caused by the difference in the overhead for the parallel processes. The time for data



Chapter 3. Energy Storage Management in Smart Grid with Renewable Power Generation 66

Table 3.3: Execution time (s) for different numbers of cores

Number of cores 1 core 2 cores 3 cores 4 cores

Sequential run 19254 n/a n/a n/a

Scenario based parallel 21005 12398 7251 6513

Nested decomposition parallel 24699 11471 6871 5804

Number of cores 5 core 6 cores 7 cores 8 cores

Sequential run n/a n/a n/a n/a

Scenario based parallel 4932 4277 3712 3682

Nested decomposition parallel 4742 3966 3548 3494

communication and data synchronization of scenario-based parallel process is between
scenarios, which is much more than that of the nested decomposition process, where the
data communication and data synchronization are between iterations. Specifically, the
scenario-based parallel process requires more time and space to store the data during each
iteration, which means each scenario should wait until all other scenarios have finished
processing for all time slots. However, the nested parallel process calculates simultane-
ously for all time slots, that saves execution time compared to the scenario-based parallel
process.

3.1.4.2 IEEE 33-bus and 119-bus Test Distribution System

The IEEE 33-bus test distribution system (Fig. (2.3)) is a 12.66 KV radial distribution sys-
tem, and the details of the system can be found in Section 2. All kinds of households intro-
duced in Table 3.1 are added to this comprehensive simulation with their corresponding
percentage. Still, there are total 40% of houses equipped with renewable generation.

The sequential computing and the proposed nest decomposition based parallel com-
puting results are shown in Fig. 3.7. From this figure, we can observe that at first 80
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Figure 3.7: Final utility electrical profit results plotted against proposed nested parallel
process and Sequential process.

iterations, sequential process have a better performance than the nested one, since the
nested process are using results from the previous iteration while sequential process up-
dates the results by the current iteration. Once the nested process obtains high-quality
cuts, it will have a better performance than the sequential process.

The whole process for sequential simulation took 527703s, which is 6.108 days when
the number of total scenarios is 9373, and nested parallel process requires 144189s to con-
verge, resulting in a speed-up of 3.6598 times. Moreover, IEEE 119-bus test distribution
system is performed to test the scalability and effectiveness of the proposed model. The
system is operated at 11 kV, and the total real and reactive loads are 22709.7 kW and
17041.1 kVar, respectively. The system data can be found in [134]. We implement scenario
reduction to all the IEEE 4-bus, IEEE 33-bus and IEEE 119-bus test distribution system to
test the scalability and efficiency of the proposed scheme.

In this simulation, the same number of total scenarios is chosen for all these three test
distribution system, with the total number of scenarios being 9373. PV power generation
is assumed to be the same due to the same area. By combining the power level using (3.21)
and (3.22), we can reduce the total scenario to shorten the execution time, while maintain-
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ing the accuracy of the proposed method, details can be found in [148]. Therefore, the
results for execution time for different number of scenarios are shown in Table 3.4. The
execution time for 33-bus can be as low as 2 hours compared to 6.108 days with sequential
simulation. We can see that with the expansion of the network scale, the proposed solu-
tion can be effectively implemented with good scalability. Due to the linear power flow
analysis we implemented in this research, the execution time is efficiently reduced even if
the test system is large.

Table 3.4: Execution time (s) for different number of scenarios and buses

Number of total scenarios

Number of buses 9373 938 468 234

4 70363 11227 7624 3316

33 144189 22608 9469 4633

119 189265 28176 15149 6740

3.2 Stochastic Demand Response under Random Renewable Power
Generation in Smart Grid

Different from previous recent works, in this study, we propose a stochastic bi-level de-
mand response scheme for operator optimal pricing scheme in a distribution system. We
assume that the residence is equipped with various electrical devices, rooftop PV power
generation and battery energy storage system. Residential load demand as the lower
level is modelled by the customer’s uncertain behaviour, and PV power generation is de-
termined by the probability distribution of random solar irradiance. Next, considering
the random load demand response of the houses in the distribution system, we revolve
these customers random demand scenarios in the operator economic model as the upper
level. Therefore, we solve the proposed problem through stochastic programming, and
an acceleration strategy is implemented to improve the algorithm efficiency.
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3.2.1 System Model

3.2.1.1 Customer Model – Lower Level

This subsection describes the customer’s electrical equipment model. We assume that all
of these devices, such as renewable energy generation, household appliances and energy
storage units, are equipped in house m. To simplify the formulation, we omit the sub-
script m in the following subsection.

3.2.1.2 PV Power Generation Probabilistic Model

We can derive the PV power generation probabilistic distribution by the solar irradiance
s, as follows [142]:

PPV = sAηPV , (3.41)

where A and ηPV refer to the area of the PV array and PV panel efficiency, respectively.
As the solar irradiance is variant by time, the PV power output distribution can be written
as:

PPVt = gs(st)Aη
PV , (3.42)

and the corresponding probability distribution can be derived as:

ψPV = gPV (PPVt ). (3.43)

An example of PV power output distribution is shown in Fig. 3.8.

3.2.1.3 House Appliances Load Demand Probabilistic Model

The probabilistic home demand model can be derived from our previous work [148], in
which we assume that the probabilistic use of all appliances is randomly controlled by the
customer. By considering the customer’s behavioural probability distribution, the devices
usage probability distribution can be determined. For example, customer entertainment
related appliances such as television and stereo set have the same distribution as enter-
tainment behaviour. Therefore, the appliance usage time distribution φdt belongs to the
same behaviour φbt can be derived as:

φdt = φbt , ∀d ∈ b. (3.44)
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Figure 3.8: An example of PV power output distribution, with a 20m2 solar panel at 10am
in Ontario, July 2017.

Here, we define the probability distribution of human behaviour as φb, and the time of use
distribution for the specific behaviour b related appliance d is represented by φd. There-
fore, we can derive the power consumption distribution for each time period from the
probability distribution of all devices and their rated power P̃ d as follows:

φt =
∑
d

φdt , ∀P dt = P̃ d, (3.45)

where φt refers to the power distribution probability, and the corresponding power is P dt .
Therefore, the probability distribution of household electricity demand is:

ψdt = gd(P dt ). (3.46)

3.2.1.4 Home Energy Storage Model

The limits on battery charging power Bch and discharging power Bdch can be described
as:

0 ≤ Bch
t ≤ Bch(max),

0 ≤ Bdch
t ≤ Bdch(max). (3.47)
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And the battery current state can be derived as follows:

Bt = Bt−1 + ηchBch
t − ηdchBdch

t ,

Bt(min) ≤ Bt ≤ Bt(max), (3.48)

where the battery current state Bt is related to the previous state Bt−1, and is also related
to the amount of charged or discharged energy. Moreover, only one operation can be
performed between the charging and discharging process at the same time. Accordingly,
we impose the following constraint:

λcht + λdcht ≤ 1, ∀

{
λcht = 1, if Bch

t 6= 0,

λdcht = 1, if Bdch
t 6= 0,

(3.49)

where we define the variables λcht and λdcht as the binary variables for the purpose of
charging and discharging operation constraints. Thus, we can ensure that only one battery
storage operation takes place.
Therefore, household power consumption from the grid is given by

Pt = PPVt (ψPV ) + P dt (ψd) +Bt, (3.50)

and reactive power can be derived from this real power and power factor cos θ as follows:

Qt = Pt
√

1/ cos2 θ − 1. (3.51)

Then, the customer’s electrical cost is given by

G = E
∑
t

Ct · Pt. (3.52)

Also, the constraints introduced previously and the following power limit should be taken
into account:

P (min) ≤ Pt ≤ P (max). (3.53)
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Figure 3.9: Basic structure of the proposed problem.

3.2.1.5 Operator Model – Upper Level

For operators, the problem is to set the optimal price and indirectly control the usage
period of the customer’s load demand, to achieve minimum system loss and maintain
system stability. In this research, we consider linear power flow analysis [137] for analyt-
ical tractability. And the power loss is chosen as the system cost, since other costs such
as investment and maintenance costs are typically charged as a fixed rate, which does not
affect the results. The piecewise linearized power loss [155] between node i and node j is
given by

PLij = (Gij/B
2
ij)

K∑
k=1

λ(k)∆Pij(k), (3.54)

λ(k) = (2k − 1)Pij(max)/L, (3.55)

where Gij and Bij are transmission line conductance and admittance from node i to node
j, respectively. And Pij refers to the power flow from node i to node j. The basic idea of
the linearized line loss modelling is to approximated the loss by K linear sections.
Therefore, operator’s system cost can be formulated as:

F =
∑
n,t

Ct · PLn,t + E
( ∑
n,m,t

Ct · Pn,m,t
)
, (3.56)
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where the electrical price Ct refers to the optimal pricing as the decision variable for the
operator’s model. And the following constraints are considered:

Pn,t =
∑

Pm,t, (3.57)

Pn,t(min) ≤ Pn,t ≤ Pn,t(max), (3.58)

Vn,t(min) ≤ Vn,t ≤ Vn,t(max). (3.59)

Here, Pn,t refers to the node power, which can be achieved from the house power con-
sumption Pm,t. The following two constraints (3.59) and (3.58) refer to the nodal power
limits and nodal voltage limits, respectively.

3.2.2 The Proposed Stochastic Demand Response Scheme

We formulated the optimal pricing problem under customers random load demand as a
bi-level stochastic programming problem as follows:

min
C
F =

∑
n,t

Ct · PLn,t + E
( ∑
n,m,t

Gm

)
, (3.60)

min
B

Gm = E
∑
t

Ct · Pt, (3.61)

s.t. (3.41) – (3.55), (3.57) – (3.59), (3.62)

where the decision variable of the operator objective function is the electrical pricing
schemeC, and for the customer objective function it is the energy storage charging/discharging
process B.

As we can see, the formulated problem is linearly constrained in both upper level and
lower level. Therefore, we implemented the simplex algorithm for the upper level opti-
mization, and mixed-integer linear programming for the lower level. Since there exists
a large amount scenarios in household random load consumption model, we implement
parallel computing to accelerate the algorithm. The details are shown in Algorithm 3 and
a flowchart shown in Fig. 3.9.

Once the amount of renewable power generation is determined, our proposed pricing
scheme can be utilized to find the optimal operations for both operators and customers.
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Algorithm 3 Parallel stochastic demand response scheme
1: for iteration i = 1 do
2: for t ∈ T do
3: Generate renewable power PPVt by (3.43)
4: Publish pricing scheme for users
5: end for
6: Evaluate the results using (3.60) and
7: if feasible then
8: STOP
9: else if Go to the next iteration, then

10: i = i+ 1
11: end if
12: end for
13: for house m ∈M do
14: Calculate house load demand distribution for each t from equation (3.46), and gen-

erate the home demand scenario set
15: Parallel computing optimal solution (3.52) for each scenario using MILP and saving

the results
16: end for

Moreover, customer’s optimal operation under the published pricing scheme considers
all potential scenarios that are derived from the distribution of household probabilistic
load demand.

3.2.3 Case Study

In this section, we evaluate the proposed pricing scheme under stochastic demand re-
sponse based on IEEE 33-bus test distribution system. The one-line diagram is shown in
Fig. 3.10, and the system parameter can be found in [154]. The simulations are imple-
mented with MATLAB linear programming toolbox on a Windows desktop with an Intel
i7-4790 CPU at 3.60 GHz with 16 GB RAM.

In this simulation, the home energy system consists of a 5 kW rooftop PV system, a 6
kWh energy storage system and several kinds of electrical devices. Specifically, the maxi-
mum and minimum energy storage states are 600W and 5400W, respectively. The typical
home appliance parameters can be found in [156]. We assume that PV power is randomly
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Figure 3.10: One-line diagram of IEEE 33-bus test distribution system.

generated by Monte Carlo simulation to simulate the real cases. Therefore, the optimal
pricing for each simulation varies, and we use Time-of-Use (TOU) price in Ontario for
pricing scheme comparison. The details of TOU price is introduced in TABLE 3.5. In ad-
dition, the minimum costs of the operator and the customers are compared under these
different pricing schemes. For the voltage magnitude, the lower and upper limits are 0.96

p.u. and 1.04 p.u., respectively.

Table 3.5: Time of use price, Ontario (2018 – 2019).

Period Price

Peak hours 11:00 – 17:00 13.2 ¢/kWh

Mid-peak hours 17:00 – 19:00, 7:00 – 11:00 9.4 ¢/kWh

Off-peak hours 19:00 – 7:00 6.5 ¢/kWh

Firstly, we test our proposed home energy storage system with the TOU price, and
the results are shown in Fig. 3.11. In this figure, we compare our proposed method with
the highest probability method, the random scenario selection method, and the scenario
selection technique proposed in reference [33]. The blue line indicates the average cost by
implementing the average value of home load demand instead of scenarios. The proposed
scenario based algorithm and other comparison methods correspond to the red lines in the
results. Furthermore, the daily total electricity cost are: 9.667$, 11.637$, 11.322$, 10.269$,
respectively.
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Figure 3.11: A comparison of the domestic cost: (a) The proposed method; (b) The highest
probability method; (c) The random scenario selection method; (d) The scenario selection
technique proposed in reference [33].

As we can see, our battery storage system can effectively reduce the peak-hour cost in
comparison with the other methods. The voltage profiles of these cases are shown in Fig.
3.12. From the figure we can see that our proposed algorithm can improve the voltage
profile, while some other scenario selection methods may violate the lower limit of volt-
age requirement (0.95 p.u.). The power loss versus iterations is shown in Fig. 3.13. It can
be observed that all the methods can converge to the optimal value within 30 iterations,
and our proposed method converges faster. It is worth noting that the convergence of the
active power loss also indicates that the proposed pricing scheme converges to the opti-
mal value under bottom-up stochastic models of both residence electrical appliances and
PV power generation, which is different from the existing research works.

To further demonstrate the effectiveness of the proposed parallel process, several cases
with different numbers of appliances are designed to compare the proposed parallel and
sequential computing. The results are shown in the TABLE 3.6. The number of home
electrical appliances and their corresponding scenarios are also listed in this table. We can
observe that for a single core, when the number of scenarios is small, the execution time
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Figure 3.12: Voltage profiles obtained based on different methods.

Figure 3.13: Convergence of power loss based on different methods.

is shorter than multi-core parallel computing. However, as the number of appliances in-
creases, the execution time of the single core sequential process is dramatically increased
compared to the parallel process.

3.2.4 Summary

In this research, we propose a parallel decomposition algorithm for stochastic program-
ming in electrical distribution system, which consists of household appliances, energy
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Table 3.6: Execution time (s).

Number of appliances 4 6 8 12 24

Number of scenarios 16 48 83 198 520

Sequential process (s) 97.33 296.41 528.75 1294.46 3525.66

Parallel process (s) 309.51 390.04 467.77 735.38 1046.52

storage system and PV panels as renewable energy sources. The PV panel power output
and household load demand are modelled by probabilistic models, for which a parallel
computing method based on nested decomposition is developed to speed-up the solu-
tion process for optimal energy management. The proposed method has been evaluated
through two case studies, and the simulation results demonstrate the efficiency and ac-
curacy of the proposed method. Furthermore, compared to the methods such as tradi-
tional sequential process or scenario-based parallel computing, the proposed method can
achieve speed-up in execution.

Moreover we propose an optimal pricing scheme under user’s random load demand
to achieve the optimal demand response in the smart grid. In the residence model, PV
power generation, household appliances and energy storage unit are considered. Besides,
PV power and electrical appliance demand are modelled based on a probabilistic model.
The simplex and MILP algorithms are utilized to find the optimal pricing scheme under
user’s random demand response, while parallel computing technique is embedded in the
algorithm to accelerate the computational process due to a large amount random scenar-
ios. The proposed method has been evaluated through the simulations. Comparing sev-
eral scenario selection technique that implemented in most research works, the proposed
scheme is more effective and efficient in terms of cost reduction and voltage regulation.

In our future work, we will include EV random driving mode as an another stochastic
factor in the optimization process. Due to the high uncertainty of EV driving profile, such
as the uncertain departure time, driving distance and destination, more efficient parallel
implementation is needed to improve the performance.
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According to the technical literature, considerable research has provided impressive
models for EV optimal operation. However, combined scheduling of different types of
household appliances, renewable energy resources, EV operations and energy storage
operations, while considering the operating expenses of utility has not yet been resolved.
Moreover, when considering EVs and renewable generation units, the scale of the prob-
lem has become dramatically large.

In this research, optimization issues in a distribution system with households equipped
with renewable power generation, electric vehicle and backup storage units are investi-
gated. Random features such as renewable power generation, uncertain house power
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consumption and uncertainties associated with EV driving, will be modelled by a prob-
abilistic model. Decentralized computing is used for large-scale optimization. To reduce
the computational complexity, problem decomposition and scenario reduction are imple-
mented in this research.

4.1 System Model

Households in a typical smart grid consist of conventional electricity, electrical equip-
ment, renewable energy generation, energy storage systems and EVs. In this section, we
introduce the linear power flow model for the distribution system and household random
components features.

4.1.1 Linear Power Flow Analysis

It is known that, for a N node distribution system, the complex power flow can be
defined as

Sn = Pn + jQn = VnI
∗
n, ∀n ∈ N, (4.1)

where P and Q represent real power and reactive power, respectively, while V and I refer
to the node voltage phasor and current phasor, respectively. This equation shows that the
complex power flow S is composed of real power and reactive power, which is equal to
the product of voltage and the conjugate of the corresponding node current. In addition,
it is known that current through the nodal admittance matrix Y is linearly related to the
voltage, as indicated by I = Y V . By assuming that the shunt admittances of the buses
are negligible [137], we can derive the admittance matrix to satisfy Y 1 = 0, where 1

represents the vector of ones. Moreover, by extending the linear relationship between
voltage and current as: [

I0

In

]
=

[
Y00 Y0n

Yn0 Ynn

] [
V0

Vn

]
, ∀n ∈ N, (4.2)

where node 0 refers to the PCC point and extension matrix Y is the admittance between
nodes 0 and n, we can derive the following linear equation:

Vn = V01 + Y −1
nn In, ∀n ∈ N, (4.3)
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where Ynn is invertible because 1 is the only vector in the null space of Y . Consequently,
by solving (4.1) and (4.3), we can achieve power loss L as shown below:

Ln = Y |Vn|2, ∀n ∈ N. (4.4)

4.1.2 Home Demand Loads Probabilistic Model

Since most home electrical appliances require manual operation, we can define the
random distribution of these devices through the random distribution of human activi-
ties. For example, we can define the probability distribution of oven or stove usage by
human cooking probability distribution. In addition, the probability distribution of hu-
man activities also depends on the type of family, and the composition of the family can
be found in [157].

In this research, we first define the household probability distribution of the daily
activity by ξm,t, where the subscript (m, t) represents the index of houses and the time
slots, respectively. We assume that devices related to an identical activity follow the same
probability and their activities are affected by the electrical price Bt. Therefore, the price-
sensitive probability distribution profile can be expressed as

ξ′m,t = σG(Bt) · ξm,t, ∀m ∈M, t ∈ T, (4.5)

where σ is the coefficient to maintain the summation of the new distribution is equal to 1,
and G(Bt) denotes to the price-sensitive function.
Due to the device distributions, the total household load consumption distribution ζm,t of
each time slot can be derived by the bottom-up approach. For appliance a ∈ A, we have
the turn on probability ξa,t at time t by the device distribution ξm,t (the probability of turn
off device a′ ∈ A is ξ′a′,t = 1− ξa,t) and their rated power consumption. Then we can have
the power probability distribution at time t as follows:

ζm,t = ΠAξ
′
a′,t · ξ

′
a,t, ∀a ∩ a′ = A, a 6= a′. (4.6)

Here, a and a′ indicate the appliances which are turned on or of, respectively. And the
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corresponding power can be achieved as follows:

P fm,t =
∑
a

Pa,t, ∀a ∈ A,m ∈M, t ∈ T, (4.7)

where, the set a ∈ A is identical to the one in (4.6). By defining the number of the scenarios
k ∈ K, we can conclude the household power distribution as:

ζfm,k,t = hf (P fm,k,t), ∀m ∈M,k ∈ K, t ∈ T. (4.8)

4.1.3 Renewable Power Generation Model

Similar to the previous section, we can derive the solar power generation distribution
by solar irradiance. Solar irradiance Iβ [138] is related to a series of parameters, such as PV
array inclination angle β, beam radiation ratio [139], reflectance of the ground, extrater-
restrial solar irradiance, diffuse fraction and clearness indicator. With the relationship
between diffuse fraction and clearness indicator, we can derive the probability density
function (PDF) of the clearness indicator as introduced in [141] and the distribution of
solar irradiance.

As we mentioned, the PDF of PV active power output is related to solar irradiance and
has several variables, such as the total area of the PV array areaw and the cell temperature
[142]. Moreover, according to [143], the temperature change of the PV cell is much slower
than the rapid change of solar irradiance. Therefore, we ignore the influence of PV cell
temperature and present the PV power output function as follows:

P rm,t = Iβ,twmη
r, ∀m ∈M, t ∈ T, (4.9)

where ηr is the coefficient of the PV array efficiency. Therefore, the PDF of the PV power
output ξrm,t(P rm,t) can be calculated and is defined as

ξrm,t = hr(P rm,t), ∀m ∈M, t ∈ T. (4.10)
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Figure 4.1: Travel start time by trip purpose distribution probability.

4.1.4 EV Probabilistic Model

Different from other household electrical appliances, the randomness of EV is much
more complicated to present directly due to uncertain driving patterns and different hu-
man behaviours in different lifestyles. To solve this problem, in this section, we first in-
troduce the uncertainty features of EV, and then present the typical constraints of EV.

4.1.4.1 EV usage probabilistic model

The random EV driving mode, such as the arrival and departure times of EV owner, driv-
ing distance, or the amount of EV battery remaining when people are arriving or depart-
ing, makes the establishment of the EV probability model more complicated.

To build an EV model that takes these random characteristics into account, we can derive
the distribution of EV random usage time through the UK National Travel Survey [158],
in which we can achieve the time and distance of people travelling. Depending on the
purpose of the trip, we can analyze the start or end time of the trip based on Fig. 4.1, and
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Figure 4.2: Travel distance probability distribution.

define these distributions as variable tv. Then, we can use this distribution to generate the
operation time by start time tu and the end operation time tz , respectively. Thus, the start
and end times of EV operations follow the distribution shown as:

tu = hv(tv),

tz = hv(tv),
∀(tu, tz) ∈ tv, tz ≥ tu; (4.11)

tflag =

{
1, if t ∈ [tu, tz];

0, otherwise.
(4.12)

Moreover, we can derive travel distance through the National Household Travel Survey
[159]. And we define it by the random variable X and shown in Fig. 4.2.

As we mentioned, the battery state before the operation is another stochastic variable.
If given a distribution of the state of charge (SOC) at the starting time tu, the battery state
can be achieved by:

Et = SOC · Zv, ∀t = tu. (4.13)

Please note that in this research, we do not consider EV charging in a parking lot or EV
charging station, and only consider operation at home. Therefore, we should realize that
if there is no one in the house (tflag = 0), then EV should not be used and discuss, unless
when people go home (tflag = 1).
Moreover, it is worth noting that due to the lack of EV data, the survey data we im-
plemented is applicable to all private vehicles, including traditional internal combustion
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engine vehicles, electric vehicles and hybrid vehicles.

4.1.4.2 EV operation characterization

After determining the uncertain EV operating time and mileage of the usage, we can
build the stochastic EV operating model through the EV battery charging and discharging
process. First, during a specific time period t ∈ [tu, tz], the EV charging or discharging
process should not occur at the same time, and EV battery charging/discharging power
limits and energy storage limits we define as follows:

P vct · P vdt = 0, P vc ≤ P vc ≤ P vc,

P vd ≤ P vd ≤ P vd, Ev ≤ Ev ≤ Ev.
(4.14)

By defining the battery charging/discharging operation efficiency ηvc and ηvd, respec-
tively, we can calculate the EV battery current state by:

Evt = Evt−∆t + P vct−∆t · ηvc ·∆t+ P vdt−∆t · ηvd ·∆t. (4.15)

The equation shows that, the EV battery current state is related to the previous time state,
and is also related to the amount of power required for charging/discharging operation
during this period.
Moreover, the EV total energy charged should satisfy the next driving requirements shown
as follows:

Ev =
∑
t

Evt , Ev ≥ X ∗ ηX . (4.16)

Here, the EV battery efficiency ηX can be achieved by analysing the EVs available on the
market. The details and parameters we introduced in this section will be presented in the
simulation section.
Besides, battery degradation is an essential indicator of maintaining battery health. There-
fore, we consider it as follows:

Dv
t =

δ1 · E(Et)/Z
v − δ2

CF · y · 8760
, (4.17)
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where, δ1 and δ2 are linear fit coefficients; CF refers to the capacity fade, which usually
taken above to be 20%; y represents battery life span; and Zv represents the battery ca-
pacity. Finally, we can derive the total EV electrical cost, which includes the expense of
charging or discharging process and the cost of battery degradation, given by

Cv =
∑
t

(Bt · P vc − Ut · P vd +Dv
t ), t ∈ [tu, tz]. (4.18)

4.1.5 Energy Storage Model

Houses equipped with renewable generation usually have alternate energy storage to
store extra energy. Therefore, we consider some common storage characteristics, which
should satisfy the following constraints:

P xct · P xdt = 0, P xc ≤ P xct ≤ P
xc
,

P xd ≤ P xdt ≤ P
xd
, Ex ≤ Ext ≤ E

x
,

(4.19)

Ext = Ext−∆t + P xct−∆t · ηxc ·∆t+ P xdt−∆t · ηxd ·∆t. (4.20)

Similar to the EV operating constraints, battery operation should avoid simultaneous
charging and discharging process, and can operate within a tolerable range, which is
shown in (4.19). In addition, we have the current battery state equation shown in (4.20).
Moreover, since the battery degradation for EV (4.17) is calculated based on long-term
data research results, which is suitable for most Lithium-ion batteries. Therefore, we im-
plement the same degradation model for energy storage.

Note that the difference between an EV and a battery storage is that the battery storage
can be operated in all periods, and the operation does not require people to be at home. We
assume the battery is a type of recourse appliance, which is depending on the operation
of other appliances. Therefore, battery operation costs can be derived as follows:

Cx =
∑
t

(Bt · P xc − Ut · P xd +Dx
t ), t ∈ T. (4.21)
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4.2 Problem Formulation

Considering that we are seeking for optimization of both customers and operators, a
bi-level model can solve this problem simultaneously. Utility companies can determine
the amount of power purchased from the customers in the upper-level problem, with the
maximum profits, while customers can decide their electrical devices usage in the lower
level, aiming at minimizing the power consumption expenses.

Different from the standard bi-level model, such as the general formulation of the
Stackelberg game, customers would compete with each other, but in our proposed prob-
lem, information is not shared among customer each other. Plus, our proposed problem
has existing uncertainties in the lower level. Thus, we introduce the common bi-level
stochastic linear model as follows:

Upper level: minF (P g) =
∑
t

C(P g)t

s.t. O1P
g +R1 ≤ b1, P g ≥ 0.

Lower level: min f(P g) = c2P̂ g + Φ(P̂ g, P g(ξ, ζ))

s.t. O2P̂ g +R2 ≤ b2, P g ≥ 0.

Φ(P̂ g, P g(ξ, ζ)) = Eξ,ζ [h(P̂ g, ξ, ζ)]

s.t. Wξ,ζP
g(ξ, ζ) = rξ,ζ − Tξ,ζP̂ g, P g ≥ 0.

(4.22)

We implement this model to our proposed problem, where the lower level represents the
customer’s model, while the upper level represents the operator’s level. Details will be
presented in the following subsections.

4.2.1 Customer’s Model: Minimizing Electrical Cost

4.2.1.1 Objective Function

For each customer m ∈ M , the objective includes all electricity expenditures, such as an
electric vehicle, electric appliances, renewable power generation profits (investment fee
and maintenance fees are not considered as they are usually at a fixed value), storage
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battery degradation fee:

min f(P g) =
∑
t

(
Bt(P

g+)t − Ut(P g−)t
)

=
∑
t

(
Cxt + E[C(P rt (ξ)− P ft (ζ)) + Cvt ]

)
,

where, P g+ = P g, if P g ≥ 0;P g− = |P g|, otherwise.

(4.23)

Generally, the customers’ electricity bill is simply the profit of selling electricity to the
grid plus the cost of regular use, shown in the first line equation. In this user’s objective
function, we consider the following parts as electricity costs: battery storage, EV opera-
tion, household electrical equipment operation, and the profit part is consists of power
generated by renewable energy, as shown in the second line of the equation. Due to
the randomness of the devices, we implement stochastic programming in the lower-level
problem through the idea of stochastic linear programming introduced at the beginning
of this section.

4.2.1.2 Constraints

In the household energy system, in addition to the characteristics of each specific device
introduced in Section 3.2 – Section 3.5, here we add the following general constraints in
the home energy system:

P f (ζf ) + P r(ξr) + P v ≤ Pmax,

P g = P r(ξr)± P v ± P x − P f (ζf ),
(4.24)

Here, the two random variables P f (ζf ) and P r(ξr) are the power demand of household
common electrical devices, and power generated by renewable power generation, respec-
tively. And the variable P v and P x are the EV operation and backup storage power ex-
change, respectively. These constraints indicate that the total household power consump-
tion should not exceed the maximum value of Pmax, and the power transmission from the
grid to the customer should be balanced.
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4.2.2 Operator’s Model: Minimizing Power Consumption Expenses and Power
Loss

4.2.2.1 Objective Function

In this research, we use the minimum system loss as the objective function in the distri-
bution system. Some losses, such as investment and maintenance costs, are usually at a
fixed rate, so they are excluded from the total system expenditure. We include the power
loss and electrical supply in this formulation, given by

minF (P+) =
∑
n

∑
t

(C(Ln,t) + C(P+
n,t) + C(P−n,t))

=
∑
n

∑
t

(
Ht · (Ln,t) + Ut · (P−n,t)−Bt · (P

+
n,t)
)
,

∀n ∈ N.

(4.25)

4.2.2.2 Constraints

Pn =
∑
m∈M

P gm,

where P+
n = Pn, if Pn ≥ 0; P−n = |Pn|, otherwise; (4.26a)

Pn,t ≤ Pn,t ≤ Pn,t, Vn,t ≤ Vn,t ≤ Vn,t, ∀n ∈ N ; (4.26b)

(4.1) – (4.4). (4.26c)

In the operator’s model, node power (4.26a) can be summed by the house power con-
sumption, followed by the node power limits and node voltage power limits (4.26b). By
adjusting the power that the operator (utility) purchases from customer CP

+
, which not

only helps maintain the grid power balance, but also achieve optimal operations for the
utility companies.

4.3 Decentralized Bi-level Stochastic Linear Programming

In general, our problem cannot be solved by the standard Stackelberg game model, be-
cause customers do not share information with each other to keep their privacy. It can be
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solved by parallel processing, which can help to accelerate the progress. However, the de-
centralized computing allows us to distribute computing tasks to users, saving computing
time and space for both utilities and customers. In this section, we present a decentralized
bi-level stochastic linear programming, in which the operator serves as the upper level,
and the customer serves as the lower level.

Note that the proposed problem is in a multi-stage, bi-level and stochastic architec-
ture, which makes this problem very complicated to solve. Therefore, we first propose
two methods to reduce the complexity, and the decentralized architecture will be pre-
sented after.

4.3.1 Problem Decomposition

Due to the multi-stage structure of the proposed problem, we first decouple the prob-
lem by time, and transfer the problem into a dynamic programming formulation as fol-
lows:

f(P g) =
∑
t

(
Cxt + E[C(P rt (ξ)− P ft (ζ)) + Cvt ]

)
=

[
f(P g)t1 + E

[
f(P g)t2 · · ·+ E

[
f(P g)T

]]]
,

(4.27)

For a specific time t, we can reformulated the objective function as follows:

min f̂(P g)t = f(P g)t + E
(
f̂(P g)t+1

)
= C(P g)t + E

(
C(P g)t+1

)
(4.28)

= Bt(P
g+)t − Ut(P g−)t + E

(
Bt(P

g+)t − Ut(P g−)t

)
.
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Moreover, we can further decompose the lower level by each device as follows:

ψ(Evt )+ψ(Ext ) + ψ(P r(ξr)) + ψ(P f (ζf )) = b1 : µcp

ψ(Evt ) = b2 : µv

ψ(Ext ) = b3 : µx

ψ(P r(ξr)) = b4 : µr

ψ(P f (ζf )) = b5 : µf (4.29)

where, function ψ indicates the relations among the devices, and the coupled constraints
(µcp) are shown as follows and we introduce the slack variable π:

P f (ζf ) + P r(ξr) + P v + π = Pmax,

P g = P r(ξr)± P v ± P x − P f (ζf ).
(4.30)

Therefore, all the variables are bounded and we can decompose the proposed problem to
the following format with extreme points set j ∈ J as follows:

min f̂(Ev, Ex, P r(ξr), P f (ζf ))

= Cvt

( ∑
j∈Jv

µvj (E
v
j )

)
+ Cxt

( ∑
j∈Jx

µxj (Exj )

)

+ Crt

(∑
j∈Jr

µrj(P
r(ξr))

)
+ Cft

( ∑
j∈Jf

µfj (P f (ζf ))

)
.

(4.31)

Then, we can find optimal solutions for each variable which we define asEv◦,Ex◦, P r(ξr)◦

and P f (ζf )◦, and we use subscript 1, 2, · · · j to define the number of the optimal solution
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of each variable as:

Ev◦ = µv1E
v◦

1 + µv2E
v◦

2 + · · ·µvjEv◦j ,

µv1 + µv2 + · · ·µvj = 1, ∀j ∈ Jv; (4.32)

Ex◦ = µx1E
x◦

1 + µx2E
x◦

2 + · · ·µxjEx◦j ,

µx1 + µx2 + · · ·µxj = 1, ∀j ∈ Jx; (4.33)

P r(ξr)◦ = µr1P
r(ξr)◦1 + µr2P

r(ξr)◦2 + · · ·µrjP r(ξr)◦j ,

µr1 + µr2 + · · ·µrj = 1, ∀j ∈ Jr; (4.34)

P f (ζf )◦ =µf1P
f (ζf )◦1 + µf2P

f (ζf )◦2 + · · ·µfjP
f (ζf )◦j ,

µf1 + µf2 + · · ·µfj = 1. ∀j ∈ Jf . (4.35)

4.3.2 Scenario Reduction

Since we defined the random distribution of household power demand, and renew-
able power generation, the scenario set (Rr×Rf ) could be very large in most cases. There-
fore, we can combine some similar scenarios to keep the random set within a computa-
tionally tractable range.

For these two random variables, we first redistribute them by the amount of power, as
follows:

ζfm,lf ,t =
∑
kf

ζfm,kf ,t, ∀P fm,lf ,t = P fm,kf ,t,

ξrm,lr,t =
∑
kr

ξrm,kr,t, ∀P rm,lr,t = P rm,kr,t,
(4.36)

where, l represents the power level after the probability distribution is redistributed with-
out duplication. Then, we can decide the accuracy level of the simulation and combine
the scenarios to a limited number q as follows:

P fm,lf ,t(qf ) =
max

(
P fm,lf ,t

)
qf

, ∀qf = 1, 2, · · · ,Nlf

P rm,lr,t(qr) =
max

(
P rm,lr,t

)
qr

, ∀qr = 1, 2, · · ·Nlr .

(4.37)

Here, the larger the number q, the higher the accuracy of the new distribution allocation.



Chapter 4. Optimal Vehicle-to-Grid Operation in Smart Grid 93

Thus, we can finally achieve the new distribution of the two variables by:

ζfm,lf ,t(qf ) =
∑
lf

ζfm,lf ,t, ξrm,lr,t(qr) =
∑
lr

ξrm,lr,t. (4.38)

4.3.3 Decentralized Architecture

The main steps of the proposed optimal control algorithm are described below:

• At the upper level, the operator publishes power limits through power flow analysis
and issues of different electricity tariffs for different purposes.

• Each customer can calculate their own minimum electricity cost min f(P g) for daily
appliances scheduling based on the home energy management system. For privacy
reasons, customers can calculate their own expenses individually, which is why this
step can be decentralized computing, and customers do not require to share infor-
mation with each other.

• Operators as the upper-level controller can collect data and information (such as
the amount of electricity exchanged by customers from the grid) from all the lower
level customers. Based on the information, the operator can decide the next control
policy, such as energy obtained from the customers. Then evaluate the cost function
(4.25).

• Update all equipment status and forecast data for renewable power generation in
the smart grid.

We elaborate on the details in the Algorithm 4 and the flowchart in Fig. 4.3.
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Algorithm 4 Decentralized Stochastic Optimization

1: Utility Input: Ht, Ut, Bt, Pn,t, Pn,t, Vn,t, Vn,t
2: for n = 1 : N do
3: Utility company decide the amount of power sold from customer to the grid, con-

sidering the minimum power loss.

minF (P+) =
∑
n

∑
t

(C(Ln,t) + C(P+
n,t) + C(P−n,t))

=
∑
n

∑
t

(
Ht · (Ln,t) + Ut · (P−n,t)−Bt · (P+

n,t)
)

4: for customer 1 : M do
5: Assign customer solve their own electricity cost by linear programming to obtain

the optimal electricity cost appliances usage schedule.
6: end for
7: end for
8: Customer Input: appliance usage power and probability, EV and battery storage re-

lated properties.
9: for t = 1 : T do

10: Multiple stage optimization problem
11: end for
12: Until the stopping criterion is satisfied
13: Each customer can achieve the optimal electricity cost

4.4 Case Study

In order to evaluate the performance of the proposed approach under the randomness
of household demand, renewable energy generation and EV uncertain driving patterns, a
case study was conducted in this section. The simulation was performed on a Windows
desktop with an Intel Core i7-4790 CPU at 3.60 GHz with 16 GB of random access memory
(four physical cores and eight logical cores). It should be noted that in order to implement
the proposed EV decentralized operation, we use OpenMP parallel computing to serve
each core as an individual EV.

4.4.1 Simulation Set-up

The proposed decentralized operation scheme was tested on the IEEE 33-bus distribu-
tion system, and the system details can be found in Section 2.
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EV decentralized operation:

Constraints:

Power balance and 

power limits: (24)

Household devices 

energy constraints:

(5) – (21)

Household optimal 

operation (23)

Start

Node 1:n
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m = M?
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End

EV 1 EV m...EV 2

Utility publish electrical 

price and power limit

Utility optimal 

operation

Renewable generation 

random set ξ(r)

EV travel purpose 

(from Fig. 1) 

and distance 

(variable X)

Appliance random set 

ζ(f) 

Stochastic scenario set

Figure 4.3: Flowchart of the proposed decentralized process.

In this simulation, several categories of typical household appliances are considered,
whose characteristics can be found in [156].
There are in total 21 kinds of electrical appliances, and 4132 scenarios of power demand
ξfm,lf ,t considered. The range is from 0W (all appliances are turned off) to 21725W (all ap-
pliances are turned on). For the PV generation, there are 21 scenarios of power generated
ξrm,lr,t. After scenario reduction technique, there are in total 55 scenarios. Since the EV
plays the role of decentralized computing platform, different EV models are not consid-
ered in this research. The parameters in this simulation are based on the average values of
parameters of popular EV models (such as BMW i3, Ford Focus, Hyundai IONIQ, Nissan
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Leaf, and Tesla Model S). The parameters can be found in [160], and the average values
implemented in the simulation are shown in Table 4.1.

Table 4.1: Electrical characteristics of electric vehicle

EV battery capacity 40 kWh

Full charged battery range 242 km

EV battery efficiency 18.55 kWh/100 km

Average annual driving distance 20,000 km

Average daily distance Random from Fig. 4.2

Min and max SOC for healthy battery 20% – 80%

Battery lift span 15 (years)

Moreover, similar to the purpose of the EV parameters, we applied the average values
of current popular household energy storage models (such as Tesla, Nissan, LG Chem,
and Mercedes-Benz) to simulate, with the battery capacity being 10 kWh. This system
was implemented for a finite time horizon of 48 hours in this study, and the time step is
set to be 1 hour.

Several cases are presented in this simulation to compare to our proposed decentral-
ized scheme.

Case 1. The proposed stochastic programming, which including 252 scenarios for hourly
house load demand and renewable power generation.

Case 2. The maximum probability scenario [161], which means that the scenario correspond-
ing to the maximum probability will be selected for the process.

Case 3. The mean value scenario [162], which is similar to Case 2, but based on the average
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value of the random scenario.

Case 4. Monte Carlo randomly selected scenario [163], through which several scenarios will
be selected randomly to the process.

Case 5. Worst-case scenario [164], which is based on the highest household energy demand
through the time span.

4.4.2 Simulation Results

In this section, we analyze household energy management and utility optimal opera-
tion, respectively.

4.4.2.1 Household Energy Management

With the parameters and datasets introduced above, we first analyzed the stochastic
household energy management. The optimal EV energy schedule is shown in Fig. 4.4.
The green line indicates the Time of Use (ToU) price in Ontario, Canada. The on-peak
price is 13.4 ¢/kWh, mid-peak price is 9.4 ¢/kWh, and the off-peak price is 6.5 ¢/kWh.
Due to the high randomness in this simulation, in order to make a fair comparison, we
used the fixed variable method to model the randomness related to EV travels, including
travel start time and travel distance. In this simulation, all cases were selected for educa-
tion purposes during the first 24 hours, and commute purpose was selected over the last
24 hours to make all scenarios fair.

As we can see, the EV starts operation when it arrives at home, and the battery energy
status shows that the battery is being charged during off-peak hours. Because of the dif-
ferent purposes and driving distances of the EV, the battery discharges when it leaves the
house. Moreover, the charging rate varies depending on the household load demand. For
example, the rate at night is low and becomes slightly higher in the morning. Specifically,
the trends of the EV battery status in all cases indicate that EVs are operating when they
return home, except that they leave the house between 9 am and 5 pm, and between 33
and 41 (the next day from 9 am to 7 pm). For the consecutive night from time period 17
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Figure 4.4: EV battery operation status.

to 33 (7 pm on the first day to 9 am the next day), the EV trend shows that it is charging,
but the trend becomes different as the load demand changes. In addition, our proposed
scheme Case 1 is very close to Case 2, which is because, in the stochastic programming
process, all scenarios were evaluated for optimization, while a larger probability may
have a more significant impact on the process. Case 3 shows a smoothing trend compared
to Case 4, and the total home electric costs are $4.02, $4.10, $4.26, $4.44, respectively.

In addition, the household load demand is shown in Figure 4.5. We can see that in the
first 24 hours, the load demand increases during the day and decreases at night, depend-
ing on the family with two or more children. In the next 24 hours, due to high electricity
prices, the load demand first drops in the morning and afternoon, while the load increases
at night. This is because the family consists of multiple people but no dependent children.
In addition, compared with the case, our case 1 shows a relatively flatter trend than other
cases, which shows a better performance than other cases.

4.4.2.2 Utility Optimal Operation

In the home energy management system, our proposed approach Case 1, shows a slight
advantage compared to another method. However, the difference between the system op-
eration costs of utility becomes larger, according to the utility expense convergence results
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Figure 4.5: Household load demand.

Figure 4.6: Utility cost ($).

shown in Fig. 4.6. As we can see, all cases converged during the first 30 iterations. Our
proposed approach shows the fastest convergence with the lowest operating expense. In
this figure, compared to case 2, the trend for Case 3 is closer to Case 1, which is the oppo-
site of Home EV operation. This suggests that when there is a long-term dataset or a large
dataset available, the maximum probability scenarios and mean value scenario seem to be
well optimized, but for a single realization problem, we need to analyze from the bottom,
such as analysing each customer’s habits. Moreover, the power loss is shown in Fig. 4.7
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Figure 4.7: Power loss ($).

is more pronounced to show the advantage of our proposed method.

The execution time for all the cases shown in Table 4.2. The results indicate that for res-
idents, due to the limited number of special scenarios, the execution time of special cases
(cases 2 - 5) is faster than our proposed method. And generally, for utility companies with
large data sets, the average value scenario case (case 3) is usually used, which make sense
comparing the results for utility cost and power loss, the average case has the closest per-
formance of our proposed algorithm. In addition, as for other cases (cases 2, 4, 5) are
usually implemented in traditional optimization, they are not suitable for real cases. For
our proposed algorithm, the performance of execution time may not be as good as other
cases, but through technology development, due to the decentralization of the proposed
algorithm, it is feasible to perform complex calculations using existing equipment such as
EV or smartphones.

4.5 Summary

Stochastic energy management is of considerable significance in distribution systems.
In this research, we developed a household stochastic energy management model that
consists of electrical devices, renewable energy generation, energy storage systems and
EVs. In addition to the typical expense costs in the objective function, degradation cost
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Table 4.2: Execution time

Case number Execution time Case number Execution time

Case 1 (4 cores) 66.45s Case 3 6.22s

Case 1 (1 cores) 278.32s Case 4 5.81s

Case 2 5.64s Case 5 6.04s

for energy storage and EV are also considered in our model. The uncertainty of solar
power generation is captured by a stochastic probability model. Furthermore, to pro-
tect customer privacy, we present a decentralized bi-level stochastic linear programming
model, in which the operator serves as the upper level, and the customer serves as the
lower level. To reduce the computation complexity, problem decomposition and scenario
reduction techniques are applied to improve efficiency. The proposed method has been
analyzed through a case study, and the simulation results show the effectiveness and re-
liability. Moreover, the comparison with the approach with specific cases validates the
advantages of the proposed method, which is more applicable in practice in the future
smart grid. Due to the rapid development of EVs, the capacities of the batteries become
larger, and there are parking lots that allow drivers fast charging. Therefore, the avail-
ability of parking lots or charging stations and renewable energy power plants can be
explored in the future expansion of this research.



5
Real-Time Operation of Electric Vehicle with

Renewable Generation

List of Acronyms
CESS Community Energy Storage System
EV Electric Vehicle
HESS Household Energy Storage System
PV Photovoltaic
SOC State of Charge
ToU Time of Use Pricing scheme
V2G Vehicle-to-Grid

With the rapid growing number of electric vehicles, and the sharp decline in the cost
of solar panel production in recent years, roof-top PV energy systems play an important
role in reducing electricity bills, lower greenhouse gas emissions, and even reduce the
unexpected power outages. However, the randomness caused by the drivers’ habits and
PV power generation may affect the efficiency and reliability of the power grid. There-
fore, in this thesis, we invest the real-time operation of EVs with random renewable PV
power generation in distribution systems. Specifically, our goal is to minimize distribu-
tion system costs by considering the uncertainty in EV operation, PV power generation
and household load demand. We first develop a stochastic programming problem with

102
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the considerations of EV, PV, home storage system and load demand, while minimizing
distribution system costs. Then, a real-time algorithm is designed for the proposed prob-
lem based on Lyapunov optimization technique to guarantee the optimal solution for the
proposed problem. The performance of the proposed stochastic demand response scheme
is evaluated through extensive simulations. Simulation results indicate the effectiveness
of the proposed algorithm in operational cost reduction for distribution systems.

5.1 System Model

This section will introduce the system model studied in this research work. As shown in
Fig. 5.1, we consider a household model that includes an EV, a renewable energy source
(PV), home energy storage systems (HESS), and household load demand that is common
electrical appliances usage. In addition, the distribution system is also equipped with
community energy storage systems (CESS). In the following subsections, we will intro-
duce the system model in details.

Figure 5.1: System model.
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5.1.1 EV Operation Model

Since the usage of EV is based on the owner’s driving habit, we cannot use a simple
uniform distribution to describe its randomness. By analysing the UK National Travel
Survey [166], we can obtain EV travel statistics based on different types of lifestyles.

Assume that the EV driving data is identical with gas and hybrid vehicles. Then, we
can derive the EV daily total driving distance D through the survey. Therefore, the EV
driving distance probability distribution ψD can be modelled as follow:

ψD = fD(D). (5.1)

The EV energy demand B(t) within a specific time slot ∆t can be expressed as B(t) =

P (t) ·ηE ·∆t, where P (t) and ηE represent the EV charging power and charging efficiency,
respectively. Consider an EV travelling at an average speed ν(t), the EV driving power
consumption P (t) can be derived by the vehicle speed ν(t) and total traction force F (t)

as P (t) = (ν(t) · F (t))/ηF , where ηF is the motor efficiency. Furthermore, if we define the
distance function D(t) = ν(t) ·∆t, the EV daily minimum energy demand can be derived
as follows:

B(t) =
F (t)

ηF
· ηE ·D(t) =

F (t) ·D(t)

ηB
. (5.2)

Here, we define ηB as the results of previous efficiency indicators for simplification.
The EV energy demand can be obtained from the grid b(t) and PV e(t). The EV battery

can also be discharged for driving propose, with the discharging power ofw(t). Moreover,
the energy flow is bounded by the following constraints:

0 ≤ b(t) + e(t) ≤ cEmax, (5.3a)

0 ≤ w(t) ≤ dEmax. (5.3b)

Therefore, the EV state of charge (SoC) E(t) can be expressed with the state in the
previous time interval and the energy demand as follows:

E(t+ 1) = E(t) + 1c,t

(
b(t) + e(t)

)
+ 1d,t

(
w(t)

)
, (5.4a)

Emin ≤ E(t) ≤ Emax. (5.4b)
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where 1c,t and 1d,t are indicators that ensure the battery charging and discharging pro-
cesses do not happen simultaneously. Variables Emin and Emax are the lower and upper
limits of EV battery SoC. Therefore, the EV operation cost can be derived as follows:

CE =
∑
t

p · b(t). (5.5)

5.1.2 Household PV Generation Model

The power generation by household PV unit can be derived from the solar irradiance
distribution as follows:

R = IβAβη
R, (5.6a)

ψR = fR(R), (5.6b)

where Iβ refers to the solar irradiance, Aβ represents the area of the solar panel, and ηR is
the efficiency of the solar power generation.

In this work, we consider that the PV power generated gives priority to charging EV,
and thus, we have the following constraints:

e(t) = min{B(t), R(t)}, (5.7a)

0 ≤ h(t) ≤ min{R(t)−B(t), cSmax}, if R(t) ≥ B(t), (5.7b)

0 ≤ u(t) ≤ R(t)−B(t)− cSmax. (5.7c)

Here, the first equation shows the energy charged to EV. If PV power generated is more
than EV requirement (B(t) ≤ R(t)), the charging power will be equal to EV power re-
quirement, due to the EV charging priority. If there is a surplus of PV power, we consider
charging the HESS, which is shown in the second equation. Usually, the PV power will be
exhausted after charging the EV and HESS. Therefore, we add the third equation, which
shows the constraint of charging CESS. Therefore, the PV power balance can be derived
as:

R(t) = e(t) + h(t) + u(t). (5.8)
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5.1.3 Household Energy Storage System Model

As introduced in the previous subsection, we assume the households are equipped with
PV power generation system, which is typically paired with an HESS to store the abun-
dant energy. This HESS can also absorb energy from the power grid, under the following
constraint:

0 ≤ h(t) + s(t) ≤ cSmax, (5.9)

where the variables h(t) and s(t) represent energy absorbed from the PV power gener-
ation and power grid, respectively. Moreover, since the energy absorbed from the PV
source is already the second priority after the EV, we consider the HESS discharging only
to the household load demand as follows:

0 ≤ k(t) ≤ dSmax. (5.10)

Therefore, the HESS SoC evolves over time as follows:

S(t+ 1) = S(t) + h(t) + s(t)− k(t), (5.11)

where S(t) is limited by the following bounds:

Smin ≤ S(t) ≤ Smax. (5.12)

Battery degradation is typically associated with battery charging or discharging cycles.
Therefore, if we consider a 15 years lifespan for a typical battery, the battery degradation
cost can be calculated as follows:

GS(t) = pS · m · S(t)/ZS − d
8760 · CF · 15

, (5.13)

where CF means the capacity fade, which usually takes the value of 20%. Therefore, the
HESS operation cost can be expressed as

CS =
∑
t

p · s(t) +
∑
t

GS(t). (5.14)
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5.1.4 Household Load Demand

Household load demand distribution can be obtained by analysing the human activities
[167]. Therefore, for a household appliance a ∈ A, the power demand distribution can be
expressed as

ψLa = fL(La), ∀a ∈ A. (5.15)

Therefore, the household load demand time of use distribution can be derived as

ψKj = fK(Kj) =
∏

(a1,a0)

ψLa1 · (1− ψLa0), (5.16a)

Kj(t) =
∑
a1

La1, (5.16b)

K(t) =
∑
j

ψKj(t) ·Kj(t), (5.16c)

∀j ∈ J, {(a1, a0)|a1 ∩ a0 = A, a1 6= a0}, (5.16d)

where the variables (a1, a0) refer to the turn on and turn off of appliances, respectively.
Variables ψKj and Kj represent the household load demand probability and associated
power, respectively.

Since we assume the household is equipped with HESS, and there may be a CESS at
the node, the household load demand can absorb energy from HESS (k(t)), CESS (v(t))
and power grid (l(t)), respectively. The household power balance can expressed as

K(t) = k(t) + 1vv(t) + l(t), (5.17)

where 1 is a function to indicate that community is equipped with CESS or not. Therefore,
the household load demand cost can be defined as follows:

CL =
∑
t

p · l(t), ∀t ∈ T. (5.18)

5.1.5 Community Energy Storage System

Community energy storage plays an important role in providing and absorbing energy
for each household, which benefits both customers and utility companies. It can also
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plays the role of backup power source for the integration of PV energy sources, while
maintaining the stability of the local power grid. Moreover, these systems can provide
voltage regulation, peak load shaving and other ancillary services. Therefore, we assume
that CESS is utility-owned and provides services for community residences. It can ab-
sorb abundant community PV energy and discharge energy to household load with the
following constraint:

0 ≤ u(t) ≤ cWmax, (5.19a)

0 ≤ v(t) ≤ dWmax, (5.19b)

where u(t) and v(t) represent charging and discharging energy, respectively. Similar to
the HESS, the SoC and its bounds are given by:

W (t+ 1) = W (t) + u(t)− v(t), (5.20a)

Wmin ≤W (t) ≤Wmax. (5.20b)

The CESS battery degradation is considered as part of the utility expense as follows:

GW (t) = pW · m ·W (t)/ZW − d
8760 · CF · 15

. (5.21)

Moreover, different from HESS, the CESS operation cost should consider energy exchange
with customers. Overall, the CESS operation cost is given by:

CW =
∑
t

(
GW (t) + (

pxt − pzt
2

u(t) +
pxt + pzt

2
v(t))

)
, (5.22)

where pxt and pzt represent electric price for buying and selling at time t, respectively.

5.1.6 Distribution System Power Flow Analysis

For each individual household m ∈M on a node n ∈ N , the real power consumption can
be calculated by adding the power consumption of each element as follows:

Pn(t) =
∑
m

(lm(t) + bm(t) + sm(t)), ∀m ∈M. (5.23)
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Based on the power factor, reactive power can be calculated as follows:

Qn(t) = Pn(t)(
1

cos2 θa
− 1)−1, ∀n ∈ N. (5.24)

Therefore, with the node real power Pn(t) and reactive power Qn(t), linear power flow
approximation can be applied to reduce the computational complexity [168]. Specifically,
voltage can be calculated via the nodal admittance matrix Y , as I = Y V . Then it can be
approximately linearised based on the following equation:

Vn = V01 + Y −1
nn In. (5.25)

Also, the power loss can be derived as follows:

U(t) = Y |Vn(t)|2. (5.26)

Accordingly, the cost associated with power loss can be expressed by following equation:

CU =
∑
t

pU · U(t). (5.27)

5.2 Problem Formulation

Generally, utility companies are aimed at satisfying energy demand while reducing sys-
tem operation costs. However, customers tend to optimize energy management to mini-
mize their electricity bills. Therefore, in this optimization process, we model the total sys-
tem cost as an aggregation of utility cost and customer cost with the coefficients γU and
γL. Specifically, utility cost includes power losses and CESS operation costs, while cus-
tomer cost consists of energy procurement from the power grid, such as EV operations,
household load demand and HESS operations. This objective function not only allows us
to find an optimal policy while minimizing system cost, but also enhances the customer’s
motivation for participating in demand response program. Therefore, we formulate the
problem as follows:

P1: min C =
∑
t

γU
∑
n

(CUn,t + CWn,t)

+
∑
t

γL
∑
m

(CSm,t + CEm,t + CLm,t).
(5.28)
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s.t. (5.3, 5.4), (5.7c− 5.12), (5.17), (5.19b, 5.20b), (5.23− 5.25)

The decision variables of P1 are {b(t), e(t), w(t)}, {h(t), s(t)},{u(t), v(t)},{l(t), k(t)},
while the system inputs are {B(t), R(t),K(t),p}. Specifically, PV generation R(t), EV
driving energy demand B(t) and household load demand K(t) are random based on our
system model. Moreover, P1 is a joint stochastic optimization problem between power
grid, EV driving scheduling, household load demand, PV power generation, HESS and
CESS control in a finite time period. Therefore, this makes P1 more challenging to solve
compared to traditional deterministic optimization problems. In addition, the battery en-
ergy state related constraints, such as (5.4, 5.11, 5.20b), are time variant variables, which
also make the optimization problem more difficult to solve.

5.3 Problem Solution

To address these difficulties in the proposed optimization problem, Lyapunov drift-plus-
penalty framework provides a method for designing control algorithms to optimize the
proposed system, while maintaining the stability of operation. Moreover, the queueing
system provides us with a methodology to optimize the time-variant system. Therefore,
we first introduce the virtual queues for time-variant variables associated with energy
storage, aiming at building a dynamic queueing system that transforms the originally
proposed optimization problem into a queue stability problem.

5.3.1 Definition of Virtual Queues

To guarantee the feasibility of (5.4, 5.11, 5.20b), we define virtual queues for these time
variant variables as follows:

XE(t+ 1) = max{XE(t) +B(t)− cEmax, 0}. (5.29)

Here, XE(t) represents the EV charging and discharging operation queue. In order to
stabilize the queue, the energy demand should not be greater than the queue, as shown
in the following equation:

0 ≤ B(t) ≤ min{Bmax(t), XE(t)}. (5.30)
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Similarly, virtual queues for HESS and CESS energy states and their dynamic formulations
are denoted by:

XS(t) = S(t) + yS , (5.31a)

XS(t+ 1) = XS(t) + h(t) + s(t)− k(t), (5.31b)

XW (t) = W (t) + yW , (5.32a)

XW (t+ 1) = XW (t) + u(t)− v(t). (5.32b)

Here, XS(t) and XW (t) refer to the virtual queues of HESS and CESS SoC, respectively.

5.3.2 Upper Bounds of Lyapunov Drift

After defining the virtual queues for time variant variables, we can define the quadratic
Lyapunov function as follows:

L(t) =
1

2

(
(XE(t))2 + (XS(t))2 + (XW (t))2

)
, (5.33)

which indicates the total energy stored in the system. For example, a lower value of L(t)

means that the energy stored in some time-variant elements is lower, while a higher value
of it means that some of these elements have a higher level of energy stored. Then we
further define the one time slot Lyapunov drift as follows :

∆L(t) =L(t+ 1)− L(t)

=
1

2

(
(XE(t+ 1))2 − (XE(t))2 + (XS(t+ 1))2

− (XS(t))2 + (XW (t+ 1))2 − (XW (t))2
)
.

(5.34)

This equation represents the difference value between two time slots, which means the
change of the system energy stored in one time slot. If we only minimize the drift value,
we can achieve the best system stability. However, our original object function is minimize
the system cost, therefore, we define the following one-slot Lyapunov drift plus penalty
as follows:

∆L(t) +H(C)

=∆L(t) +H
(
γU (pU (t)U(t) +GW (t)) + γL((

pxt − pzt
2

u(t)

+
pxt + pzt

2
v(t)) + p(t)b(t) + p(t)s(t) +GS(t) + p(t)l(t))

)
,

(5.35)
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where H is a positive weight between the drift and the original cost function (penalty) to
achieve both the system stability and the system cost. Specifically, the following lemma
provides an upper bound of the drift.

Lemma 1: For all t ∈ T , the drift expression should satisfy: ∆L(t) ≤ XE(t)
(
e(t)+b(t)−

w(t)
)
+XS(t)

(
h(t)+s(t)−k(t)

)
+XW (t)

(
u(t)−v(t)

)
+λ, where λ =

1

2

[
(max(cEmax, Bmin(t)))

2+

(max(cSmax, d
S
max))2 + (max(cWmax, d

W
max))2

]
.

Proof: From (5.34), we have upper bound of each element as follows:

∆XE(t) =
1

2

(
(XE(t+ 1))2 − (XE(t))2

)
(5.36)

≤ XE(t)
(
e(t) + b(t)− w(t)

)
+

1

2
(max{cEmax, dEmax})2,

∆XS(t) =
1

2

(
(XS(t+ 1))2 − (XS(t))2

)
(5.37)

≤ XS(t)
(
h(t) + s(t)− k(t)

)
+

1

2
(max{cSmax, dSmax})2,

∆(XW (t) =
1

2

(
(XW (t+ 1))2 − (XW (t))2

)
(5.38)

≤ XW (t)
(
u(t)− v(t)

)
+

1

2
(max{cWmax, dWmax})2.

Thus, the upper bound for the drift is given by: ∆L(t) ≤ XE(t)
(
e(t) + b(t) − w(t)

)
+

XS(t)
(
h(t) + s(t)− k(t)

)
+XW (t)

(
u(t)− v(t)

)
+ λ, where λ =

1

2

[
(max(cEmax, Bmin(t)))

2 +

(max(cSmax, d
S
max))2 + (max(cWmax, d

W
max))2

]
.

Accordingly, the original problem can be transformed into minimizing the total cost
over time subject to queue stability, and we design our scheduling algorithm to observe
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the queue states and the objective can be rewritten as follows:

P2: minimize XE(t)
(
e(t) + b(t)− w(t)

)
+XW (t)

(
u(t)− v(t)

)
+XS(t)

(
h(t) + s(t)− k(t)

)
+HU

(
(pU (t)U(t) +GW (t))

)
+HL

(
((
pxt − pzt

2
u(t) +

pxt + pzt
2

v(t))

+ p(t)b(t) + p(t)s(t) +GS(t) + p(t)l(t))
)

s.t. (5.3), (5.7c− 5.10), (5.17), (5.19b), (5.23− 5.25).

Here, coefficients HU and HL are used instead of original coefficients HγU and HγL re-
spectively, for simplicity.

5.3.3 Real-time Lyapunov Algorithm

By regrouping the terms in P2 corresponding to different control variables, the problem
can be divided into the following sub-problems, which can be sequentially solved to de-
termine the control variables. The details of the procedure are as follows.

5.3.3.1 (P2a):

minXE(t)e(t) +
(
XE(t) +HLp(t)

)
b(t)−XE(t)w(t); subject to (5.3,5.7c,5.17).

Theorem 1: EV battery operate in three possible situations: charging, discharging
and idle states. First we define [b(t)◦, e(t◦), w(t)◦] as the idle state of the EV battery, and
b(t)◦ = w(t◦) = 0. Therefore, e(t◦) = min{cEmax, R(t)} and the optimal value of (P2a) is
XE(t) min{cEmax, R(t)}. Second, we define [b(t)∗, e(t)∗, w(t)∗] as the optimal solution for
EV, and [b(t)�, e(t�), w(t)�] as the other solution.

Lemma 2: The optimal EV charging decision of the proposed algorithm has the fol-
lowing properties:

• If XE(t) + HLp(t) ≤ 0, the EV battery is in charging state (or in idle state) and
[b(t)�, e(t�), w(t)�] is given as follows: w(t)� = 0, e(t�) = min{B(t), R(t), cEmax},
b(t)� = min{cEmax − b(t), R(t)− b(t)}.
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• If XE(t) +HLp(t) > 0 , the EV battery is in discharging state and [b(t)�, e(t�), w(t)�]

is given as follows: w(t)� = B(t), e(t�) = b(t)� = 0.

Proof: Since we define [b(t)∗, e(t)∗, w(t)∗] as the optimal solution for EV operation in
(P2a), when XE(t) > −HLp(t), we assume HLp(t) ≥ 0. To prove that the above assump-
tion does not hold, we construct another solution ([b(t)�, e(t�), 0]). According to power
balance, we have e(t�) = min{B(t), R(t), cEmax}.

• When b(t)� < 0, we have b(t)∗ < 0 since b(t)∗ = b(t)� −HL and HL > 0. Then, the
difference is (XE(t) +HLp(t)) ·HL ≥ (XE(t) +HLcEmax) ·HL > 0.

• When b(t)� > 0 and b(t)∗ > 0, since b(t)∗ = b(t)� −HL and HL ≥ 0, the difference is
(XE(t) + pxt ) ·HL > (XE(t) +HLp(t)) ·HL > (XE(t) +HLcEmax) ·HL > 0.

• When b(t)� > 0 and b(t)∗ < 0, since b(t)∗ = b(t)� −HL and HL ≥ 0, the difference is(
XE(t)+((pxt −pzt )/2)

)
·HL > (XE(t)+HLp(t)) ·HL > (XE(t)+HLcEmax) ·HL > 0.

Taking the above cases into consideration, we have the optimal solution for EV.

5.3.3.2 (P2b):

minXS(t)h(t) +
(
XS(t) +HLp(t)

)
s(t)−XS(t)k(t) +HLp(t)l(t); subject to (5.7c, 5.9, 5.10).

Theorem 2: Similar to EV battery, HESS operates in three possible solutions. We de-
fine [h(t)◦, s(t◦), k(t)◦] as the idle state of the EV battery, with h(t)◦ = k(t◦) = 0. Therefore,
s(t◦) = min{cSmax, R(t)} and the optimal value of HESS is XS(t) min{cSmax, R(t)}. Then,
we define [h(t)∗, s(t)∗, k(t)∗, l(t)∗] as the optimal solution for (P2b), and [h(t)�, s(t�), k(t)�, l(t)�]

as the other solution.

Lemma 3: The optimal HESS operating decision of the proposed algorithm has the
following properties:

• If XE(t) + HLp(t) ≤ 0, the HESS battery is in charging state (or in idle state) and
[h(t)�, s(t�), k(t)�, l(t)�] is given as follows: k(t)� = 0, s(t�) = min{B(t), R(t), cEmax},
h(t)� = min{cEmax − h(t), R(t)− h(t)}, l(t)� = 0.

• IfXE(t)+HLp(t) > 0 , the HESS battery is in discharging state and [h(t)�, s(t�), k(t)�]

is given as follows: k(t)� = B(t), s(t�) = h(t)� = 0, l(t)� = 0.
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Proof: Let [h(t)∗, s(t)∗, k(t)∗, l(t)∗] be the optimal solution of P2b. When XE(t) <

HLp(t), suppose l(t)∗ ≥ 0. To prove that the above assumption does not hold, we con-
struct another solution [h(t)�, s(t�), 0, l(t)�].

• When h(t)∗ < 0, we have h(t)� < 0, since h(t)� = h(t)∗ − s(t)∗ and s(t)∗ > 0, the
difference is (XE(t)−HLp(t)) · s(t)∗ ≥ (XE(t)−HLp(t)) · s(t)∗ > 0.

• When h(t)∗ > 0 and h(t)� > 0, since h(t)� = h(t)∗−s(t)∗ and s(t)∗ ≥ 0, the difference
is (XE(t)− pzt ) · s(t)∗ > (XE(t)− pxt ) · s(t)∗ > (XE(t)−HLp(t)) · s(t)∗ > 0.

• When h(t)∗ > 0 and h(t)� < 0, since h(t)� = h(t)∗−s(t)∗ and s(t)∗ ≥ 0, the difference
is
(
XE(t)− ((pxt −pzt )/2)

)
·s(t)∗ > (XE(t)−pxt ) ·s(t)∗ > (XE(t)−HLp(t)) ·s(t)∗ > 0.

5.3.3.3 (P2c):

min
(
XW (t) +

pxt − pzt
2

HL
)
u(t) +

(
XW (t) +

pxt + pzt
2

HL
)
v(t); subject to (5.19b).

Theorem 3: CESS also operates in three possible situations. We define [u(t)◦, v(t◦), l(t◦)]

as the idle state of the EV battery, and (u(t)◦ = v(t)◦) = 0. Therefore, l(t)◦ = min{cWmax,K(t)}
and the optimal value of CESS isXW (t) min{cWmax,K(t)}. Then, we define [u(t)∗, l(t)∗, v(t)∗]

as the optimal solution for (P2c), and [u(t)�, l(t�), v(t)�] as the other solution.

Lemma 4: The optimal CESS operating decision of the proposed algorithm has the
following properties:

• If XW (t) +HL(pxt − pzt )/2 ≤ 0, the CESS battery is in charging state (or in idle state)
and [u(t)�, l(t�), v(t)�] is given as follows: v(t)� = 0, l(t�) = min{W (t),K(t), cWmax},
u(t)� = min{cWmax − u(t),K(t)− u(t)}.

• IfXW (t)+HL(pxt−pzt )/2 > 0, the CESS battery is in discharging state and [u(t)�, l(t�), v(t)�]

is given as follows: v(t)� = W (t), l(t�) = u(t)� = 0.

Proof: We will prove that the above inequalities are satisfied for all time slots by using
mathematical induction method. Suppose the above-mentioned inequalities hold for time
slot t, we should verify that they still hold for time slot t + 1. The details of the proof are
given as follows.

• If XW (t) +HL(pxt − pzt )/2 ≤ 0, the optimal CESS decision is W ◦(t) ≤ 0. As a result,
W (t+ 1) = W (t) +W ◦(t) ≤ dWmax. Similarly, W (t+ 1) ≥ −pxt − yW − b

Sc
> cWmax.
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• If cWmax ≤ W (t) ≤ −pzt − yW , the optimal ESS decision is W ◦(t) ≥ 0. Continually,
W (t+ 1) ≤ −pzt − yW + b

Sc ≤ dWmax.

• If−pzt−yW ≤W (t) ≤ −pxt −yW ,W (t+1) ≤ −pxt −yW +b
Sc ≤ dWmax, where yW = yW

is adopted. Similarly, W (t+ 1) ≥ −pzt − yW − b
Sd ≥ cWmax.

5.3.4 Feasibility Discussion

By observing of the above procedure, the optimization of EV battery storage management
and household load demand can be calculated separately. Based on the charging prior-
ity, the EV battery is considered first by solving (P2a), followed by the HESS and CESS
battery energy management decisions that can be obtained by solving (P2b) and (P2c),
respectively.

5.4 Case Study

In order to evaluate the performance of the proposed approach under the randomness
of household demand, PV energy generation and EV uncertain driving patterns, a case
study is conducted in this section.

5.4.1 Simulation Setup

In this research, we consider a time horizen of 24 hours, with the duration of each time slot
being 5 minutes. Wholesale market electrical pool price is obtained from Alberta Electric
System Operator (AESO) in April 2020 [130]. To test the real-time Lyapunov algorithm,
Alberta regulated electricity rate and Ontario winter time of use (TOU) price [169] are
adopt for comparison, as shown in Fig. 5.2 (a). Moreover, probability distribution of EV
driving ψD is obtained from the UK national travel survey [166], as shown in Fig. 5.2 (b).
Here, we assume EV operation limits are given by cEmax = dEmax = 3.7 kW,Emin = 12 kWh,
and Emax = 48 kWh, with battery capacity of 60 kWh (keep the battery SOC between 20%
to 80% of the capacity for battery healthy). As for the rooftop PV generation system, we
assume the capacity is 5 kWh, and the generation is shown in Fig. 5.2 (c). Similarly, we
assume the capacity of the HESS is 10 kWh, and its operation parameters are given by
cSmax = dSmax = 2 kW, and Smin = 2 kWh, Smax = 8 kWh, while the CESS has a capacity of
50 kWh, with parameters of cWmax = dWmax = 35 kW,Wmin = 10 kWh, andWmax = 40 kWh.
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Two existing methods are adopted for performance comparisons. The first one is
minimizing the energy cost without considering HESS and CESS (cSamx = dSamx = 0,
cWamx = dWamx = 0) [77], and the other is minimizing the energy cost without energy selling
to CESS (pzt = 0).
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Figure 5.2: The illustrations of: (a) Electrical price; (b) Travel distance distribution; (c) PV
generation distribution.

5.4.2 Simulation Results

Figs. 5.3 - 5.5 show the performance of the proposed approach under different drift pa-
rameters, cost weighting coefficients and HESS capacity. Specifically, the AESO conven-
tional electricity price is adopted in Fig. 5.3 (a) to demonstrate the impact of different drift
parameters H , while Fig. 5.3 (b) shows the results under TOU price. By observing these
results, we can see that the object value is reduced by increasing the value of the drift
parameter under all weather conditions with our proposed algorithm, and for the com-
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parison method that without energy selling to CESS. However, without ESS (HESS and
CESS), the objective value reduces slowly compare to other methods, which is because
the excess renewable power can not be stored during the daytime. As drift parameter H
increases, the object value decreases, which means that there is a relatively high flexibility
in energy management, which leads to a decrease in the object value. In addition, com-
pared with the results in Fig. 5.3(a) and Fig. 5.3(b), we can see that under the incentive
policy with relatively low prices during the off-peak hours, the object value has decreases
50% more than that of regular electricity price, which indicates the effectiveness of TOU
pricing in adjusting the results of energy management.
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Figure 5.3: Impact of drift parameter H.

In Fig. 5.4, we consider that the relationship between the cost weighting coefficients
follows λU + λL = 1. In this way, the different weighting coefficients λU and λL can
demonstrate the increasing system cost or residential electricity expenditure. A greater
value of λL indicates a higher weight for residential energy management. Moreover, as
the weather conditions change from sunny to rainy, which leads to PV power generation
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R(t) to decrease, the residential energy requirement become relatively higher. Compared
with the case that without ESS, the objective value is less sensitive to the weight coef-
ficients. The reason is that PV energy can only be used to charge EVs and household
appliances, and it reduces customers’ awareness of participating in demand response.
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Figure 5.4: Impact of cost weight coefficients.

Fig. 5.5 indicates the impact of HESS battery capacity on household costs under differ-
ent weather conditions and different price. As the battery capacity increases, the residen-
tial cost decreases, which indicates that larger battery capacity can improve the flexibility
of battery charging and discharging operations. This leads to a more flexible scheduling
of the EV and house load demand, thereby reducing the energy bills of households to be
paid.

In summary, the proposed algorithm offers an effective way of controlling the real-
time energy management system with integration of PV generation, energy storage sys-
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Figure 5.5: Impact of HESS capacity.

tems, household demand and EV operation. With different control policy such as drift
parameter and cost weighting coefficient, the proposed algorithm can consider both util-
ity and customers’ energy cost.

5.5 Summary

In this research, we investigated the real-time energy management of a smart home with
EV, PV and random load demand. In order to minimize the electricity expenditure, we
proposed a real-time stochastic algorithm based on the Lyapunov optimization technique.
In addition, after analysing the attributes of the elements, we provide a separate and
sequential solution for each element, making it easy to implement the optimal control
strategies in real-time. Extensive simulation results are presented to demonstrate the per-
formance of the proposed algorithm under different scenarios and testing conditions. As
our future work, we will extend this study to the uncertainty modelling of PV farms,
wind farms and EV charging stations. Also, in order to improve the efficiency of energy
management, more intelligent optimization algorithms based on machine learning and
artificial intelligence can be developed.



6
Conclusions and Future Works

This chapter concludes the thesis. A summary of the main findings is presented in Section
6.1, while Section 6.2 contains suggestions for future research.

6.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

• A two-stage stochastic programming scheme is developed for demand response in
the smart grid, by considering the random appliance usage patterns of customers.
Specifically, in the first stage of the stochastic programming, a genetic algorithm is
implemented to optimize the electricity price, by considering the responses of vari-
ous types of appliances and non-linear distribution power flow. In the second stage
of the stochastic programming, due to the existence of a large number of devices
with random usage patterns in each household, a modified scenario reduction tech-
nique is proposed to reduce the computational complexity of appliance scheduling
optimization.

• Probabilistic models are used to characterize PV power generation and household
electricity consumption. It is worth noting that the PV power probability model is

121
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derived from solar irradiance, while the residential electricity model is based on a
bottom-up approach, which is based on customer random usage patterns. In order
to better approximate the actual situation, various types of residential loads are con-
sidered. We propose a novel problem for optimizing energy storage management.
In this formulation, the cost of the power distribution system not only takes into ac-
count battery operating costs, but also combines the uncertain load demand of the
home with the profit of PV power generation based on a probabilistic model. To ad-
dress the technical challenges introduced the probabilistic PV generation and load
models, a parallel computing method based on nested decomposition is developed
to reduce the computational complexity.

• To solve the stochastic demand response problem that considering renewable power
generation in the smart grid, we developed a bottom-up stochastic model for both
residential electrical appliances and PV power generation in the home energy man-
agement system. We proposed a stochastic bi-level demand response scheme aim-
ing at seeking the optimal pricing scheme for operator minimum system loss. The
problem is solved by simplex and mixed-integer linear programming (MILP) al-
gorithms. The proposed algorithm is implemented by an acceleration strategy to
improve its efficiency.

• A household stochastic energy management model that consists of electrical de-
vices, renewable energy generation, energy storage systems and EVs is developed.
In addition to the typical expense costs in the objective function, degradation cost
for energy storage and EV are also considered in our model. The uncertainty of so-
lar power generation is captured by a stochastic probability model. Furthermore, to
protect customer privacy, we present a decentralized bi-level stochastic linear pro-
gramming model, in which the operator serves as the upper level, and the customer
serves as the lower level. To reduce the computation complexity, problem decom-
position and scenario reduction techniques are applied to improve efficiency.

• We invested the real-time operation of EVs with random renewable PV power gen-
eration in a distribution systems. To solve this problem, we modelled the EV battery
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charging/discharging operation, household energy storage system and rooftop so-
lar energy charging priority, household load random demand and their associated
costs. We also modelled the community energy storage system and distribution
system linear power flow analysis. Based on Lyapunov optimization technology, a
real-time algorithm is designed for the proposed problem to ensure the optimal so-
lution of the proposed problem, while minimizing the system cost.

6.2 Directions for Future Work

The following topics are proposed for future work:

• Uncertain renewable generation and household appliance random usage pattern
in previous work can be by considering EV random usage pattern with uncertain
departure/arrive and charging duration. Most of the existing EV optimal charg-
ing approaches are developed for EV charging stations, while EV home charging
along with household appliances as a bottom-up approach still needs to be investi-
gated. In the future research, all these random components will be considered in a
household with multiple house types, and the EV charging station and renewable
generation station will be studied based on a bottom-up approach in a smart grid.

• Due to the nature of the random components we considered in this research, the
scale of the proposed problem would become enormous. Therefore, to make the
large-scale system optimization problem tractable, an advanced algorithm that con-
siders scenario reduction technique, parallel decomposition method and distributed
computing should be developed to reduce the massive computational effort.

• All the electrical components involved such as EV battery degradation, electrical ap-
pliance scheduling model, as well as power flow analysis in the proposed problems
can be potentially approximated as linearized models for the purpose of reducing
the computational complexity in implementation. As our previous work considered
both linear power flow analysis and non-linear power flow analysis, it is obvious
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that former one has acceptable performance and is more efficient than the latter one.
In our future work, the linear models will be investigated for the other electrical
components in the modelling and problem formulation.

• Uncertainty modelling of the solar farm, wind farm and EV charging station should
be considered. For example, forecast performance should be improved for the re-
newable farms, and negative impact of the power grid should be considered and
reduced for the EV charging station. Moreover, since most real-world modelling
is non-linear, more intelligent optimization algorithms such as machine learning or
artificial intelligence can be developed to solve non-linearities. And thus, a multi-
objective operation can be achieved, considering not only the economic cost but also
air pollutant emissions.
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