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Abstract—We consider the problem of vehicle classification
using acoustic signals captured within a sensor network. The
sensors perform collaborative decision and/or data fusion in a
distributed and energy efficient manner. We present a distributed
cluster-based algorithm, where sensors form clusters on-demand
for the sake of running the classification task. We aim at mini-
mizing the energy costs incurred due to the transmission of the
feature vectors among collaborating sensors within a cluster. To
this end, we present schemes to generate effective feature vectors
of low dimension. An experimental study has been conducted
using real acoustic signals of military vehicles recorded during
DARPA’s Sensit/IXOs project. The features generated through
our proposed schemes are evaluated using K-Nearest Neighbor
(k-NN) and Maximum Likelihood (ML) classifiers. Performance
results indicate that the proposed schemes are effective in terms
of classification accuracy, and can even outperform previously
proposed approaches, but, in addition, they are also efficient in
terms of communication overhead.

I. INTRODUCTION

Vehicle tracking on acoustic data is based on the fact that
different vehicles produce distinctly different acoustic signals
because their engine and propulsion mechanisms are unique
[12]. The problem of vehicle detection using the acoustic
signature has existed for years and many solutions have been
proposed in the literature [2], [12], [15]. Recently, target
classification based on acoustic signals in wireless sensor
networks has been addressed in [3], [7], [9]. Sensor networks
provide redundancy in terms of sensing and processing units.
Hence, they can operate to detect and report the presence of a
target vehicle, possibly refining the tracking and classification
quality as the target is moving. In this paper we restrict our
attention to the classification task. Classification is necessary
because sensors may be required to report on specific types
of vehicles once sensors recognize them which are of some
interest, e.g., belong to a specific class. We further assume that
traffic is constrained to paths, e.g., roads, where sensors are
deployed in an organized manner, for instance, on light poles
as suggested in Fig. 1(a).

The inherently distributed environment of a sensor net-
work provides further challenges to achieve good classifica-
tion results. Moving vehicles can be detected, and detection
measurements can be recorded at multiple sensors. These
measurements can be exploited in a number of ways. Two
basic approaches that are popular in the literature are data
fusion (DAF) and decision fusion (DEF). In a data fusion
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approach, individual measurements from multiple sensors can
be collected at a central location to perform classification. The
choice of a central location may depend on various constraints
such as number of sensor nodes that detect the same event
at approximately the same time, and communication range
of the sensors. Inspired by clustering approaches similar to
the ones presented in [1], [4], we use data fusion based
classification techniques in which a cluster—head becomes the
central location. It may use multiple feature vectors collected
from the cluster members to predict the class of the unknown
vehicle. In the second approach of decision fusion, sensors in
a cluster can individually perform a classification technique
to make a decision. Individual decisions can be collected by
the cluster head to predict, e.g., by voting, the class of an
unknown vehicle. More discussion on the data and decision
fusion based approaches can also be found in [3].

o O =] ] o, NN [ ]
Path of the vehicle
o o o o o~ o o o o o

Cluster Cluster head

(b) A cluster and its cluster-head.

Fig. 1. Example of vehicle detection and cluster formation in a sensor
network along a narrow one-way street.

Implementing decision or data fusion based approaches
requires sensors to collaborate efficiently with each other to
perform classification. We use a sensor network to perform
the classification task within a limited and non-fixed subset
of the network, which we call a cluster. Clusters can be



formed on-demand when a signal suggesting the presence
of a vehicle is detected by a minimum number of sensors.
The purpose of on-demand based clustering is that a static
logical structure is not needed to be maintained until an
actual classification operation is to be performed. Maintaining
a static logical structure requires sensors to send periodic
communication messages, which are considered expensive in
sensor networks [13]. Moreover, it may not be useful to add
sensors to the classification task that did not receive an audio
signal of appreciable strength or quality. Finally, the logical
structures used for distributed computation can be dissolved
after a sufficient amount of time has elapsed, and there is no
more presence of a signal suggesting vehicular activity.

In this context, we describe in Section II a clustering
algorithm, which forms the basis of our distributed clas-
sification framework. Using the same we can evaluate the
benefits of DAF and DEF in various scenarios. We evaluate
these approaches and scenarios using K-Nearest Neighbor (k-
NN) and Maximum Likelihood (ML) classifiers, discussed in
Section III. These classifiers operate upon feature vectors,
i.e., from each audio sample a time series data analysis
is performed upon the obtained audio sample. Selection of
feature vectors is thus critical for achieving good classification
results [6]. However, in order to keep the communication costs
low, particularly in the data fusion based approaches, it is
highly desirable to have low dimensional feature vectors which
faithfully represent the acoustic signals of vehicles. Towards
that goal we describe in Section III simple feature extraction
schemes that yield low dimensional, yet representative, feature
vectors of the captured acoustic signals. In Section IV, we
present performance evaluation results in terms of classifi-
cation accuracy and energy expenditure trade-offs. Finally,
Section V summarizes the findings of the paper and outlines
our future research goals.

II. ON-DEMAND BASED CLUSTERING

We consider a network of static sensor nodes, and a subset
of the network that forms a cluster. The classification task is
to be performed collectively by the nodes within a cluster.
We denote by T the time during which a vehicle is classified.
Further, we assume that no more than one vehicle is within
the network during 7', all sensors have a synchronized global
clock, and all sensors gather (sense) data every W; time units
Wy < D).

The problem at hand is then to organize the sensors in the
form of a cluster that work as a single unit to classify a vehicle
that is moving in the network. A scenario of vehicle detection,
and cluster formation is depicted in Fig. 1. Sensors are placed
along a path to classify a moving vehicle as illustrated in
Fig. 1(a). As a vehicle enters the network region sensors can
detect its presence by measuring its acoustic energy using a
detection algorithm such as the one proposed in [5]. Our focus
here is not on detection mechanisms, but using a detection
mechanism to form the clusters. Our proposed on-demand
clustering algorithm simply relies on existing methods for

detection. Upon detection some sensors communicate with
each other to form a cluster as suggested in Fig. 1(b).

A. Cluster Head Selection & Cluster Formation

Cluster formation is triggered when a number of sensors
confirm the detection of an acoustic signal of an appreciable
strength, suggesting the presence of a vehicle in the vicinity
of sensors. A sensor that detects the vehicle broadcasts a
detection message to its neighbors. To distinguish the sensors
that have detected a vehicle from the sensors that have not
detected the vehicle, we call the detecting sensors as active
nodes. The detection message sent by the active nodes consists
of the signal strength of the acoustic energy they have received.
All active nodes keep track of only the most recent detection
messages they have received from their neighboring active
nodes.

An active node that finds its signal strength greater than its
neighboring active nodes chooses to become a cluster head
if it has received at least N; detection messages from its
neighboring active nodes. Otherwise, it waits for W; amount
of time before measuring the signal strength again, and, if
appropriate, sending a detection message. This addresses the
case where there is not a minimum set of active nodes to
form a sufficiently large cluster. (As we will see, the size
of the cluster matters in the resulting classification accuracy.)
The cluster—head broadcasts a cluster-head message, so that all
other neighboring active nodes know the presence of an active
node that has greater signal strength, and therefore, they do
not broadcast a cluster-head message. Since the cluster—head
is aware of its neighbor active nodes it can select all of these to
form a cluster or it may choose only those that have reported
a good signal strength. In our proposed approach we assume
the cluster—head selects all reporting active nodes.

The cluster—head message consists of a membership list of
the active nodes that have been selected to form the cluster.
All active nodes, which receive the cluster—head message, and
found themselves on the membership list reply back with a
confirmation message to form a cluster. It is possible that an
active node may receive multiple cluster—head messages. In
that case we assume it selects a cluster—head that has greater
signal strength. Once part of a cluster, an active node does not
send further detection messages and also ignores the detection
messages from other active nodes until the classification time,
T, expires.

Once a cluster is formed, the classification process starts
and it involves two parts: (i) assigning tasks to the individual
active nodes, and (ii) collecting the classification results. A
cluster-head coordinates with the active nodes in its cluster to
perform this process. Recall that at this point in time all active
nodes in a cluster have their own feature vectors ready to be
used in the classification process. A cluster—head orchestrates
the classification process as follows:

1) A cluster-head prepares a schedule, and broadcasts it
in the cluster. A schedule consists of task assignments
for all (active) nodes in a cluster. A typical task for an
active node is to compute the similarity measure of an



unknown sample with respect to the training samples as
specified in the schedule.

2) After performing their assigned task, sensors report back
to the cluster—head with their individual results (e.g., a
decision or distance measurement computed in response
to the first step). After collecting results the cluster—head
makes a decision on the class of the unknown vehicle.

It is conceivable that multiple clusters be formed as the
vehicle moves along its path, and these clusters may cooperate
in the classification process. For the time being however, we
assume that the classification task is performed by single
clusters (perhaps several times by different clusters as the
vehicle moves) using either data fusion or decision fusion. We
make this assumption as multiple clusters may not easily reach
a consensual decision about a detected vehicle, which may
have not exhibited a certain audible characteristic consistently
along its path, e.g., due to environmental noise. Thus, we
consider the classification task within a single cluster using
either data fusion or decision fusion.

When DAF is used, all sensors in a cluster send their fea-
ture vectors to their cluster—head. The cluster-head combines
all received feature vectors (including one from itself) and
executes the classification task using, e.g., k-NN or Maximum-
Likelihood classifier. When DEF is employed, all sensors
in a cluster execute the classification task using their own
feature vectors, and make their own decision on the class of
the unknown vehicle. The sensors then provide the cluster—
head with their decision, which, after receiving all decisions
(including one from itself), predicts the class of the unknown
vehicle based on the majority of decisions.

III. CLASSIFICATION TECHNIQUES AND FEATURES
SELECTION

Techniques such as K-Nearest Neighbor (k-NN) and Max-
imum Likelihood (M L) can be used for classification. k-NN
is one of the simplest, yet accurate, classification method. It
is based on the idea that similar objects are close to each
other in a multidimensional feature space. Consider a set U
consisting of n samples, {u1, ua, ...... un}, such that for all
u; € U class labels are known in advance. To predict the
class of an unknown sample, z, the k-NN method finds k
“closest” samples from the set U, and classifies  as the
majority class of the k retrieved samples. Closeness can be
computed, for instance, using the Euclidean distance if the
samples are feature vectors in the Euclidean space. In our
case the set U consists of n acoustic samples. Some well
known methods such as fast Fourier transform (FFT) and
power spectral density (PSD) can be used to extract features
from the acoustic samples.

If we assume d to be the length of the feature vectors, and
[ to be the number of training samples in each of the ¢ classes
then the number of computations performed by a sensor to
classify an unknown sample is proportional to d x [ x c. If the
total number of training samples are large, and there are many
classes then the time required to classify an unknown sample
using k-NN method may be quite high. The dimensionality of

the selected feature vectors makes the k-NN method costly for
most real time application. Therefore, feature vectors of low
dimension are important to k-NN method, especially when
sensors are assumed to have limited computing resources.

On the other hand in the M L classifier an unknown sample,
z, is classified to be in class j if

(ijj(x) = maw{qmi(x) Vi} (D

where ¢; and p; are, respectively, the known a priory probabil-
ity and the probability density function of a class 7. Assuming
an equal a priori probability for each class Eq. 1 becomes:

pj(x) = maz{p;(z') Vi} (2)

The probability density function, p;(z') is given by the
following known equation.

exp 71(35' — )T @ - )|
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where ¥;, of size d?, is the covariance matrix of class i, i
is the mean of samples in the class 4, and |¥;| and ¥;~*
are, respectively, the determinant and inverse of the covariance
matrix of the the class ¢. In order to classify an unknown
sample, ', a sensor must determine the values for p;, |¥;|,
and X; ', which can be computed off-line. In Eq. 3 variable
z' is unknown until the sample is made available. Therefore, a
sensor must compute (2’ — ;)T S; ™ (2’ — p;) on-line in order
to classify the unknown sample, z'. It is worth noting that the
size of the Efl matrix is d x d, and the number of operations
performed by a sensor to compute (z' — ;)78 (@' — i)
for all classes is proportional to d2. Therefore, dimensionality
of the feature vector is also important to the ML classifier.

Selection of d is thus critical as we would like to reduce
the computational load from sensors, of-course, without com-
promising on the quality of solution. In addition, the size of a
feature vector is also crucial for communication costs in sensor
networks. That is, a larger d causes a higher rate of energy
consumption for the communication among the sensors.

Many researches have used various techniques to extract
feature vectors from the acoustic signatures, Duarte et. al. in
[7], first choose 100 FFT points from the fast Fourier transform
of 512 data points sampled at a rate of 4.960 kHZ. Then, they
average the 100 FFT points by pairing consecutive points to
get a 50 dimensional feature vector. Brooks et. al. [3] also
used a 50-dimensional FFT feature vectors extracted from the
time series data. Wang et. al. [14] used PCA to choose the 15
largest eigenvalues to form the eigenspace for their training
and test data. Unfortunately, selecting the first few principal
components provides only a measure of statistical significance
without guaranteeing to yield the best subset of features that
can discriminate between the classes. The reason is that PCA
finds feature combinations that model the variance of a data
set, but these may not be the same features that separate the
classes [10].

i(2') = ———
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These pre—existing methods are either simply not meeting
the demands of energy conservation in sensor networks [7],
or they are generic in nature (e.g. PCA) and computationally
expensive, while not even yielding the best results. More
importantly, however, they do not address the issue of relating
dimensionality of the feature vectors issue with the objective
of energy conservation. What is required is to meet the two
demands that compete with each other i.e. creating feature
vectors that are low on dimensions and that can still produce
good classification results. Towards that goal we present two
schemes for feature extraction from the acoustic signatures of
vehicles.
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(a) PSD of four randomly chosen sam-
ples from the Assault Amphibian Vehi-
cle (AAV) set.
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(b) PSD of four randomly chosen sam-
ples from the Dragon Wagon (DW) set.

Fig. 2. Example PSDs for samples from two different classes of vehicle
extracted from the SensIT dataset [7].

A. Features Selection Schemes

A vehicle sound is a stochastic signal. In practice, the sound
of a moving vehicle observed over a period of time can be
treated as a stationary signal [15]. In our case we use the
signal’s duration to be 51.6 ms, i.e., 256 data points sampled
at a frequency of 4.960 kHz. In our study we considered power
spectral density (PSD) based features. This feature is generated
by taking PSD estimates of 256 data points yielding a linear
vector of 128 PSD points with a resolution of 38.75 Hz. In
the rest of the discussion a PSD point is also called a band

of frequencies, or simply a dimension, because a PSD point
represents a collection of consecutive frequencies.

Our proposed schemes start by considering all 128 dimen-
sions, and subsequently pruning many of them through a
number of steps described next. The basis of our proposed
schemes, and the first pruning criteria is that most of the
power in a vehicle’s sound lies in the lower frequencies.
As shown in Fig. 2 for two classes of vehicles, AAV and
DW taken from the Sensit dataset [7], the power is mostly
concentrated in the lower frequencies, i.e., between 200 Hz
and 1000 Hz. To create a feature vector our schemes start by
choosing only those dimensions that correspond to frequencies
that have the maximum power as reported by the samples of
the corresponding training class.

Specifically, let f] be a frequency band that has the max-
imum power as reported by the sample j in the class 7. Let
Si be the set of all f}’s reported by all samples j in the class
i. Note that |S;| <, i.e., some samples in class 4 may report
on a common dimension. This particular situation is favorable
for producing feature vectors that are low on dimension, and
yet be effective. Our intuition is that a dimension that has
been reported by a large number of samples in a class is more
suitable to characterize that particular class than a dimension
which has not. Following this intuition, we rearrange S;. First,
we count the number of times each unique dimension has
appeared in S; to obtain their rank. Then, we place each
unique dimension in S; in an decreasing order based on
their rank. After rearranging set, S;, we further prune some
more dimensions by selecting a percentage, p, of top ranked
dimensions from S; to constitute another set, Sf . By this
pruning criteria, we eliminate those dimensions that are less
frequent in the training class. This process is repeated, in order
to derive the Sf set for each class ¢ = 1,2...c.

We propose two schemes to select elements (dimensions)
from sets Sf to create the feature vectors, which will be stored
in the sensor nodes.

In the first approach the sets S? are combined to get a final
set,

S=|Js? vi. @)

which selects feature vectors with dimensions those that are
present in S. We name this approach an independent feature
selection (IFS) scheme. In the second approach, features are
selected by considering only those dimensions from sets S?
that are common to all classes.

S =[S Vi. )

We name this latter approach global feature selection (GFS),
as dimensions are common to all training classes. A potential
problem that might occur in the GFS scheme is that the final
set S may remain empty if there is no common dimension
among the sets S?. Since we can control the size S by setting
an appropriate value for p, we can handle this exception by
increasing the value of p. If the set S remains empty even for
p = 1.0, the first element from all sets Sf is chosen to be
inserted into the final set, S.



IFS/GFS feature vectors can be obtained in advance from
a training set. The training samples, and their corresponding
feature vectors are then uploaded to the sensors before their
deployment. After deployment , sensors can extract 128 PSD
points from the time series data of unknown vehicles, and
directly fetch IFS/GFS feature vectors (from local storage) for
the known vehicle using the selected dimensions learned from
the training phase.

IV. EXPERIMENTAL STUDY

In this section we present the results of our experimental
study where we evaluate the performance of our distributed
classification schemes as well as merits of feature vectors
generated through our proposed feature extraction schemes.
We are mainly interested in comparing accuracy results with
the results of already existing studies. With that in mind, we
chose an acoustic dataset that has been used elsewhere for
similar studies. The dataset we consider was generated during
the third SensIT situational experiment (SITEX02), organized
by DARPA/IXOs SensIT program. In the rest of the paper we
refer to this dataset as Sensit dataset! It consists of acoustic
samples of Assault Amphibian Vehicle (AAV), Dragon Wagon
(DW) recorded at 29 Palms, California in Nov. 2001. These
samples are organized by the run numbers, from 2 to 12,
and the sensors that recorded the acoustics. There are total
of 23 sensors that are numbered 1-6, 41-42, 46-56, and 58-
61. There are total of 9 runs for the AAV class (AAV3-
AAV11) and 11 runs for the DW class (DW2-DW12). After
rearranging the original Sensit dataset we had 180 and 209
samples, respectively, from AAV and DW class of vehicles.
We standardized our dataset to remove any shifting and scaling
factors by using the normal form [8] of the original time series
data.

One of the challenges in our experimental study was to
simulate a distributed environment of a sensor network. The
signal captured of an unknown vehicle that is captured by a
sensor may be different from the signal from the same vehicle
but captured by another sensor at approximately the same time.
This is due to the placement of the sensors. In order to create
multiple copies of an acoustic signal for different sensors
we adopted the following procedure. We selected an acoustic
signal from our dataset, and created multiple copies of the
same, attenuating the original signal based on the distance of
the sensors from the moving vehicle. Then, we introduced time
difference of arrival lags for the sensors based on their relative
position with respect to the moving target. We also added
white noise for each of the sensor’s signal. Finally, we also
standardize the (attenuated and noised) signal that is assumed
to be received at each sensor, by applying the normal form
of the synthetic time series created as described above. This
procedure is repeated for every testing signal in our dataset.
For the sake of simplicity we assume the environment to be
such that effects such a reverberation and Doppler effect can
be safely ignored as negligible.

Uhttp://www.ece.wisc.edu/~sensit

A. Performance Metrics

We consider two performance metrics: (i) classification
accuracy, and (ii) energy expenditure. Classification accuracy
is computed based on the number of unknown samples that
are correctly predicted by the classifiers. For constituting
training classes we choose an equal number of samples in
both the classes from our dataset. The training samples are
chosen at random. The rest of the samples become testing
samples. Naturally, the class label of the testing sample is
unknown to the classifier. A sample is considered correctly
classified if the true class is predicted. In the k-NN method
similarity between any two samples is computed using L1
distance metric. Energy expenditure is computed based on the
number of bits transmitted by a sensor. We assume the same
radio model as in [13], according to which a sensor spends
50 + .1 x R® nJ/bit of energy to send one bit at R distance.
The cost of assembling the cluster is the same for both data
and decision fusion approaches, and is therefore irrelevant to
discriminate which one is more efficient
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Fig. 3. IFS & GFS feature vector size.

B. Size of IFS/GFS Feature Vectors vs. Training Classes

Before implementing the proposed classification schemes
we studied the relationship between the size of the training



classes and the size of the feature vectors generated through
our proposed IFS/GFS schemes. Fig. 3 summarizes our find-
ings on this relationship. The results shown in Fig. 3 are
obtained by varying the size of the training classes. Equal
number of training samples are chosen for both the classes to
disfavor any particular class. Since two classes have different
sizes, we chose the smaller class, i.e. AAV, to be the maximum
size of a training class. That means if we chose to select
20% of samples from AAV class, i.e., 36 out of 180 samples,
to constitute a AAV training class, then we also chose 36
samples to constitute the DW training class. Samples from the
respective classes are chosen randomly. With this policy we
chose 20, 30, 40, 60, 80, and 100 percent of total samples in
AAV class, which gave us the set 36, 72, ..., 180 that we used
as the number of samples to constitute our training classes for
AAV and DW. Also, the number of top ranked dimensions
selected from sets S? were varied by setting a p value from
the set 0.2, 0.4, ..., 1.0.

Several observations can be made from the results shown in
Fig. 3. In Figures 3(a) and 3(b) values along the y-axis (feature
vector size) indicate the consensus among the training samples
on common bands of frequencies (dimensions) that have the
maximum power. A smaller feature vector size indicates a
wider consensus among the training samples on common
dimensions, in contrast to a larger size of feature vector
indicates that fewer samples agree on common dimensions.
With a particular training class size, when we allow to select
more top ranked dimensions (by increasing p from 0.2 to
1.0), the size of feature vector naturally increases for both
of the schemes as shown in Figures 3(a) and 3(b). This
trend continues for all sizes of training class, i.e., 36-180
samples/class. Another more noticeable trend is that as the
training class size increases from 108 samples/class to 180
samples/class, the size of the feature vector does not change
much. This behavior can be explained as follows: when the
size of the training class is sufficient the consensus among the
samples of the training classes is high, hence, adding more
samples into the training classes does not affect the consensus
much. As we see in Figures 3(a) and 3(b) when the training
class size changes from 108 to 180 samples/class the feature
vector size does not go beyond 18 and 12, respectively, in
GFS and IFS schemes. As expected, with a similar setting of
parameters for IFS and GFS schemes, GFS scheme produced
feature vectors of smaller size. This trend can be seen by
comparing the results in Figures 3(a) and 3(b).

C. Classification Accuracy

We used both IFS and GFS schemes to generate feature
vectors for the k-NN and ML classifiers. k-NN and ML clas-
sifiers obtained different classification accuracies with various
settings of IFS and GFS schemes. The best classification
accuracies are reported here and compared with the previously
achieved best accuracies on the same dataset. In particular the
results reported in this section were obtained with a training
class of 45 samples/class and p value of 0.3 for GFS scheme
in the k-NN classifier, and 63 samples/class and p value of

0.5 for IFS scheme in the ML classifier. With this setting, the
average size of the feature vectors was found to be 8, which
is almost 1/6 and 1/2 the size of the features vectors used in
[7] and [3], respectively. In general, selecting 30-50% of the
top ranked dimensions (i.e. a p value in the range [0.3 0.5])
produced the best results.

Our accuracies Brooks[3] | Duarte[7]
k-NN 77.89 —_— 69.36
ML 89.46 77.90 68.95
TABLE 1
DEF CLASSIFICATION ACCURACY.
Our accuracies Brooks[3] | Wang[14]
k-NN 77.63 —_— 84.68
ML 89.20 81.30 ——
TABLE 11
DAF CLASSIFICATION ACCURACY.
Accuracy (%)
k-NN ML
Study DEF | DAF | DEF | DAF
Our’s 77.89 | 77.63 | 89.46 | 89.20
Brooks[3] || — - 77.90 | 81.30
Duarte[7] 69.36 | — 68.95 | —
Wang[14] - 84.68 | — -
TABLE III

COMPARISION OF CLASSIFICATION ACCURACIES.

Accuracy (%) Cost (pJ/sensor)

k-NN ML k-NN ML
Cluster || DEF| DAF| DEF| DAF| DEF| DAF| DEF| DAF
Size
3 70 68 88 83 17 21 17 21
5 70 71 89 89 19 25 19 24
10 72 73 88 89 29 38 26 37
20 74 77 89 89 67 83 67 82
40 78 76 89 88 209 | 240 | 210 | 239

TABLE IV

CLASSIFICATION ACCURACY AND COMMUNICATION COST FOR VARIOUS
CLUSTER SIZE.

Tables I and II summarize and compare our classification
results with the results from the previous studies on the same
dataset using various decision and data fusion approaches. In
the study of Brooks et. al., the authors considered various
scenarios of data fusion and decision fusion using single and
multiple sensors. The main scenarios that were considered are
(i) decision and data fusion of multiple modalities at a single
sensor, (ii) decision and data fusion of single modality from
multiple sensors, (iii) decision fusion of multiple modalities
from multiple sensors, (iv) data fusion of multiple modalities
at a single sensor with decision fusion of multiple sensors, and
(v) data fusion of multiple modalities from multiple sensors.



Comparison with all these approaches was not in the scope of
our study. We were mainly interested in evaluating the impact
of feature vectors in various settings of data and decision
fusion approaches using the well known classifiers and a
cluster logical structure.

In their study Brooks et. al. considered 2 modalities and
3 sensors. Their compared results presented in Table I are
from the acoustic modality with decision fusion from multiple
sensors, and the compared results in Table II are again using
the acoustic modality with data fusion from multiple sensors.
The results from the study of Wang et. al. compared in Table II
are based on a data fusion approach for which they modified
the multi-resolution integration (MRI) algorithm originally
proposed by Prasad et. al in [11]. The idea here is to construct
a simple overlap function for input acoustic data from multiple
sensors. The overlap function is resolved at successive finer
scales of resolution to select the highest and widest peaks of
the fused data. The authors considered data of a single as
well as three sensors from the various combinations of sensor
numbers 1, 3, 5, and 11 from the Sensit dataset. Duarte et. al.
used acoustic as well as seismic modality in their study. Their
results presented in Table I are based on the local classification
with decision fusion using the acoustic modality.

To the best of our ability, through the two Tables I and II
presented above, we have compared the superior results from
the studies mentioned previously with the best of our results
obtained with various settings of data and decision fusion
schemes proposed here. In particular our decision fusion
approach, DEF, using GFS feature vectors produced the best
classification accuracy of 89.46% as compared to all other
results presented for the ML classifier.

D. Impact of Clustering : Data Fusion vs. Decision Fusion

Clustering has significant impact on the results obtained
through data and decision fusion approaches. Figures 4 and 5
summarize our findings in the k-NN classifier. As shown in
Fig. 4, a cluster with only three sensors achieved an accuracy
of nearly 69% using DEF, while DAF achieved a slightly less
accuracy. Accuracy for both of the approaches is improved as
we increased the cluster size by adding more sensors to the
cluster. The reason for improved accuracy is that increasing
the number of sensors in the cluster increases the probability
of making a correct prediction. However, after a sufficient
number of sensors are available within the cluster, adding
more sensors did not improve the accuracy much. It can be
seen in Fig. 4 that accuracy improved from 69% to 73% as
the number of sensors in the cluster increased from 3 to 20.
Adding additional 20 sensors did not improve the accuracy
much.

Clustering has much more impact on the energy expenditure
than on the accuracy. Results for k-NN classifier are summa-
rized in Fig. 5. As shown in Fig. 5, when the number of sensors
in a single cluster increases from 3 to 40 sensors the energy
expenditures increase. The reason is that the increased number
of sensors causes more communication exchanges between the
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Fig. 4. k-NN classifier classification accuracy for varying cluster size.
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Fig. 5. k-NN classifier communication cost for varying cluster size.

cluster members. Data fusion approach, DAF, incurred more
cost due to the transmission of feature vectors by the sensors.
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Fig. 6. ML classifier classification accuracy for varying cluster size.

Figures 6 and 7 summarize the results on accuracy and cost,
respectively, in the ML classifier. As shown in Fig. 6 when
cluster size changed from 3 to 40 sensors accuracy improved
slightly. Overall the DEF approach performed better than DAF
for reasons similar to those for the case of k-NN classifier.

Also, similar trends of energy expenditures can be noted
in ML classifier as observed in k-NN classifier. Results for
energy expenditures in ML classifier are summarized in Fig. 7.
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Fig. 7. ML classifier communication cost for varying cluster size.

A single large cluster incurs heavy costs without giving much
benefit in terms of classification accuracy.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Classifying audio signals is an important application in
wireless sensor networks where features extracted from acous-
tic signatures form the basis for classification. Efficient im-
plementation of classification depends on whether necessary
operations, such as clustering, data and decision fusion, can
be performed efficiently in a distributed fashion, achieving
high classification accuracy at reasonable energy cost. To
address this problem we proposed a distributed clustering
algorithm by which sensors can form clusters on-demand
without using a static logical structure. We proposed two
distributed classification schemes, which take into account the
inherently distributed nature of the problem leading to good
classification results. We also proposed schemes to extract
low-dimensional, yet meaningful, feature vectors from the
acoustics signals. Using feature vectors generated through our
proposed schemes the two classifiers we used, ML and k-
NN, yielded better or competitive classification results when
compared to other existing approaches.

Our proposed feature extraction schemes are generic, and
may find applications in other areas where feature selection
is a difficult task due to high dimensionality. One limitation
of our proposed schemes is finding the right size of training
classes, and setting an appropriate value for p. However, these
parameters can be learned during the training phase. We are
currently investigating the proposed feature extraction schemes
to improve their efficiency even further.

In the context of our application domain, another promising
venue for further work is to allow the classification process
to be a continuous one along the vehicle’s path. For that the
classification will inevitably be performed at several different
clusters, which should ideally communicate among themselves
in order to improve the accuracy of the result. Issues such as
how and what to communicate among different clusters are
the key ones that we are currently investigating.
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