
U n iv e rs ity o f A lb e r ta

T y p e s a n d C o d e G e n e r a t io n f o r u s e in G e n e r a t iv e D e s ig n P a t t e r n s

by

P a tr ic k E a rl

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of M a s te r o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95740-3
Our file Notre reference
ISBN: 0-612-95740-3

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming languages should be designed not by piling feature on top of feature, but by
removing the weaknesses and restrictions that make additional features appear necessary.

Revised(4) Report on the Algorithmic Language Scheme

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Em a, Helle, and Lome.
W ithout you, this would not have been possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

Many thanks go to my supervisors, Duane Szafron and Jonathan Schaeffer, for their patience
and guidance. I greatly appreciated the time I had to spend with each of them. Thanks to
Jonathan for correcting a mistake in my writing th a t prompted me to learn to use semicolons;
I appreciate knowing. Thanks to Duane for the interesting discussions about types and for
the enjoyable movie and pizza parties.

Thanks to the staff and students at the University of Alberta. I enjoyed my time in your
presence. Thanks also to Dominque Parker, with whom I had many interesting discussions
and badminton games in the systems lab.

My family deserves many thanks for their support and encouragement on my journey.
Thanks go to my grandmother, Ema, for her love and for the seed of money she planted so
long ago. My parents, Helle and Lome, provided not only nourishment, but continued love
and encouragement. Thanks also go to my sister, Debra, who is wonderful in general.

Finally, I wish to thank God for the opportunities and gifts tha t have been given to me.
I appreciate His patience and love for me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In tro d u c tio n 1
1.1 Motivation and Goals .. 2
1.2 Related W o rk ... 2
1.3 C o n tribu tions... 4
1.4 Overview .. 4

2 O verv iew o f C O 2 P 2 S 5
2.1 Design P a tte rn s .. 5
2.2 C 0 2P 2S ... 5
2.3 M etaC 02P 2S ... 7

2.3.1 M etaC 02P2S P attern Description .. 8
2.4 Javadoc. Code G e n e ra to r... 13

2.4.1 Javadoc T a g s .. 15
2.4.2 Macro L a n g u a g e .. 17
2.4.3 Extended Parameters ... 17
2.4.4 Limitations of Code G e n e ra to r .. 18

2.5 S u m m a ry .. 19

3 T y p e S y stem E x am p le 20
3.1 Brief Overview of Decorator P a t t e r n .. 22
3.2 Example of Original S y s te m .. 23
3.3 Using the Decorator P a t te rn .. 23

3.3.1 Requirements C 0 2P 2S places on the Type S y s te m 28
3.4 Defining the Decorator P a t t e r n .. 28

3.4.1 Requirements M etaC 02P 2S places on the Type S y s te m 32
3.5 Type E d i to r .. 33

3.5.1 Type C o m p o n e n ts .. 33
3.5.2 Creating a New Type ... 38
3.5.3 How the Type System Meets the R equ irem en ts ... 39

3.6 S u m m a ry ... 46

4 T y p e S y stem D e ta ils 47
4.1 Type C o m b in a tio n .. 47

4.1.1 References... 48
4.1.2 D elegation... 48
4.1.3 In h e r i ta n c e ... 50

4.2 Accessing Parameters .. 54
4.3 API Overview 55

4.3.1 D ata Access C la s s e s ... 55
4.3.2 Framework C la sse s .. 57
4.3.3 GUI C lasses... 59

4.4 Inheritance Issu es .. 59
4.5 Type S to r a g e ... 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Existing T y p e s ... 60
4.7 S u m m a x y ... 61

5 C ode G eneration 62
5.1 Overview of Generation S u b sy stem ...62

5.1.1 Type-Specific C o d e ... 64
5.1.2 P attern Template C o d e ... 65
5.1.3 User Code Fragments .. 66

5.2 Output F o rm a ttin g ...68
5.3 Language S y n ta x .. 69

5.3.1 # Command S y n ta x .. 69
5.3.2 @ Expressions .. 69
5.3.3 Choice of C h arac te rs .. 70

5.4 Language F e a tu r e s .. 71
5.4.1 D o cu m en ta tio n .. 71
5.4.2 Value R ep lacem ent... 71
5.4.3 Conditional Code In c lu s io n ... 72
5.4.4 Repetitive Code In c lu s io n .. 72
5.4.5 Keeping Similar Code T o g e th e r.. 73
5.4.6 Aliases and M odification... 73
5.4.7 O utput F i l e s ... 75
5.4.8 Displaying Generated S o u r c e ... 76
5.4.9 Editing Generated S o u rc e .. 76
5.4.10 W hitespace Control .. 78
5.4.11 Extension System ... 79
5.4.12 Complex O p e ra tio n s .. 80

5.5 Generator Design I s s u e s ...82
5.5.1 Composition versus Transformation .. 82
5.5.2 Size of C G L .. 84
5.5.3 Choice of Language .. 85

5.6 The New D ecorato r... 85

6 Evaluation and C onclusion 86
6.1 E valuation ... 86

6.1.1 P attern Creation P r o c e s s .. 88
6.2 Work Completed and Goals A ccom plished..90

6.2.1 Completed G o a ls ... 90
6.3 Limitations and Future W o r k ... 92
6.4 Conclusion .. 92

B ibliography 93

A Original D ecorator P attern 95
A .l Decorator C la s s ..95
A.2 Decorator M e th o d s ... 96

A.2.1 FrameworkCLASSJDecorator.Framew'orkCLASS-ComponentClass . . 96
A.2.2 getD ecoratedCom ponent... 96
A.2.3 setDecoratedComponent.FrameworkCLASS-ComponentClass.................96

A.3 Decorator Method List E lem en t.. 96

B CGL D ecorator P a ttern 108
B .l Decorator C la s s ..108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C G U I S k e le to n Ja v a S ource 110
C .l Display GUI Skeleton Java S o u r c e ..110
C.'2 Param eters GUI Skeleton Java S o u rc e ...112

D D T D s fo r X M L U sed in T y p e S y ste m 114
D .l DTD for C 0 2P 2S T y p e s ... 114
D.2 DTD for Type D a t a ... 114
D.3 DTD for P attern D e fin itio n .. 115

E T y p e S y ste m A P I 117
E .l D ata Access C la s s e s ..117

E.1.1 D a ta T r e e .. 117
E .l.2 D a t a .. 117
E .l.3 D a ta S t r in g ...118
E .l.4 D a ta B o o le a n ..118
E .l.5 D a ta ln te g e r...118
E .l.6 D a ta F lo a t .. 119
E .l.7 D a ta L is t... 119
E .l.8 D a taR eco rd ... 119

E.2 Framework C la s s e s ..120
E.2.1 D a ta G u i..120
E.2.2 D a taM etaG u i..121
E.2.3 D a taC o p sG u i..121
E.2.4 O p tio n T y p e... 122

E.3 GUI C lasses ...122
E.3.1 D a ta J T a b le ...122
E.3.2 D a ta J L is t .. 123

F G e n e ra to r S k e le to n P y th o n S ource 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 CO 2 P 2 S User Interaction (Adapted from [12]).. 6
2.2 C 0 2P 2S G U I ... 6
2.3 MetaCC>2 P 2 S General P attern D escrip tion ... 8
2.4 M etaC02P2S Programmer-Named C la s s .. 9
2.5 M etaC02P2S Framework C la s s ... 9
2.6 MetaCC>2 P 2 S Basic Param eter T y p e ... 11
2.7 M etaC02P2S Extended Param eter T y p e .. 12
2.8 M etaCQ 2 P 2 S List Parameter T y p e .. 12
2.9 M etaC02P2S Method List Param eter T y p e .. 13
2.10 MetaCC>2 P 2 S Configuration of Visual E le m e n ts ... 14
2.11 Javadoc Tag E x a m p le ... 15
2.12 Java Code G e n e ra tio n ... 18

3.1 Type System within CO2 P 2 S S y s te m .. 21
3.2 Decorator P attern .. 22
3.3 Decorator P attern in CO2 P 2 S ...24
3.4 Decorator Class Name D ia lo g ... 25
3.5 Decorator Superclass D ia lo g .. 25
3.6 Decorator Method List D ialog ...26
3.7 Decorator Method D ia lo g ... 26
3.8 Decorator Configuration C o m p le te ...27
3.9 Decorator Pattern in M etaC 0 2 P 2 S ...30
3.10 Option Param eters for ClassName T y p e ..31
3.11 Type Editor showing ClassName D o cu m e n ta tio n ... 34
3.12 Type Editor showing MethodSuffix S t r u c tu r e ..35
3.13 Type Editor showing ClassName Parameters ..36
3.14 Type Editor showing ClassName GUI P a n e l ... 37
3.15 String Initialization and V a lid a tio n ..40
3.16 String GUI S o u r c e ... 42
3.17 AugmentedMethod GUI S o u rc e .. 43
3.18 AugmentedMethodList GUI S o u rce ..44
3.19 Method toString S o u rc e ... 45

4.1 Example Types to be Combined ... 47
4.2 Combining Types Using R eferences... 48
4.3 Combining Types Using D elegation ... 49
4.4 Combining Types Using In h e r i ta n c e ..50
4.5 Multiple Inheritance E x am p le ... 52
4.6 Method Resolution O r d e r .. 53
4.7 Accessing Parameters ... 54
4.8 Type F ram ew o rk .. 57

5.1 Code Generation Subsystem .. 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QJX

C
l

C
l

C
l

C
l

C
l

5.2 Type Editor Code G en era tio n .. 64
5.3 Example Method from VariableList T y p e ...65
5.4 Decorator Template E x a m p le .. 66
5.5 Viewing Decorator Template .. 67
5.6 User M eth o d s ..67
5.7 Syntax of @ E xpressions..70
5.8 Example of # r e m ..71
5.9 Example of © expression R ep lacem ent... 71

.10 Example of # i f ... 72

.11 Example of # f o r ..73

.12 Example of # m acro .. 74

.13 Example of # a s s i g n ... 75

.14 Example of to u tp u t and # t e m p l a t e ... 77

.15 Example of #u ser .. 78
5.16 Type U s a g e ...80
5.17 String O perations...81
5.18 M athematical E xpressions.. 81
5.19 Directly Including P y th o n .. 83
5.20 Transformation T y p e s ...84

6.1 Decorator Pattern C o m p a riso n .. 87

E .l Type F ram ew o rk ...120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Software developers are continually looking for better ways to create software. Reliabil­

ity, reusability, and decreased development time are common goals in the search for new

techniques and tools.

Design patterns have increased the level of abstraction at which a programmer can create

software [18]. These patterns of design, though not new in themselves, have now been defined

and recorded. These pattern descriptions allow developers to speak a common language and

more easily define the building blocks of their software.

As useful as these recorded design patterns were, the element of code was still missing.

Generative design patterns were created to fill the gap between the design pattern description

and the source code required by the application. A generative design pattern system gathers

a specification from the application developer and creates a customized pattern for use in

the application. Generative systems allow for flexibility not present in static frameworks

or libraries [25]. This additional flexibility is needed to create true multi-purpose design

pattern implementations.

CO 2 P 2 S1 [22] is one such generative design pattern system. In its original form, CO 2 P 2 S

made use of hand-coded pattern specifications in its generation process. M etaC 0 2 P 2 S

was later created to provide tool support for building patterns. MetaCC>2 P 2 S provided

GUI tools and a limited set of types tha t eased the pattern creation process. Yet, many

patterns still required substantial amounts of custom Java code and an understanding of the

internal MetaC02P2S framework. There were also shortcomings and limitations in the code

generation system, making the creation of pattern templates more difficult than neccesary.

The primary goal of this thesis research is to simplify the process of building a generative

design pattern within CO2 P 2 S. This involved the creation of a system of types and a new

code generator. In a paper on CO 2 P 2 S and M etaC02P2S [22], the authors discuss the use

of numerous small types for pattern creation. The original system never fully realized that

*CO2P3S stands for C orrect O bject-O rien ted P atte rn -based Paraliel P rogram m ing System . Since
C O2P2S also handles sequential design p a tte rn s , Parallel has been dropped from the name.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vision, in part due to the limitations of the code generator. The system implemented in

this thesis reaches the level where many small types can be combined in useful ways to

produce complex design patterns. The result is a system tha t simplifies the task of creating

generative design patterns.

1.1 M otivation and Goals

A generative design pattern system, such as CO2 P 2 S, is more useful when it supports a large

number of patterns. The easier it is to create those patterns, the more patterns there will

be. The system should provide room for growth, making it easy to support new patterns.

M etaCO‘2 P 2 S provided some support for pattern creation, and this research aims to extend

th a t support, making the building of patterns easier than before.

There are numerous smaller goals and tasks that are part of the primary goal of easier

pattern creation. The amount of code th a t the pattern designer has to write should decrease.

Additional reuse of existing code is beneficial. Reducing the potential for errors is another

goal. In the old CO 2 P 2 S, creating GUIs for patterns was somewhat difficult; this should be

improved.

Techniques for reducing the complexity and length of the generative design pa tte rn ’s

source code are desired. There are many ways this can be done, from simple macros, as in

the C preprocessor, to advanced d ata structures and mathematical operations.

In [23], the author points out th a t some systems focus on code size and quality, but fail

to address the ease of use of the system. When the system is difficult to learn and use, the

resulting benefits are decreased. W ith this in mind, simplicity and ease of use are also goals

for the new system.

1.2 Related Work

There has been extensive work on type systems, generative programming, and design pat­

terns. Presented here is a brief summary of related work.

TXL [15] is a general purpose source-to-source transformation system. While TXL itself

is not well suited to simple code generation, the pC language [16], implemented on top of

TXL, is a better fit. Despite being easier to use, fxC requires the user to specify the types of

the source elements th a t are being manipulated. As an example, a loop tha t creates a list

of variable declarations is given a type of [d e c la ra t io n s *] . The need to learn the types of

textual elements in the system detracts from the simplicity of the system.

The p,C paper [16] also provides an example of an “ideal” metalanguage. The language

demonstrated is simple, and though not complete, following its guidance helps maintain

simplicity when creating a code generation language.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GenVoca [10] uses a layered approach to creating customized components. Each layer

in the system is responsible for an individual aspect. The layers are composed to create

components with different feature sets. Though simple in concept, this technique is not

sufficient for all generative design pattern tasks.

Frame-based systems, such as ANGIE [1], are focused on combining parameterized code

blocks. This approach seems well suited to general purpose generative programming and

elements of it are used in this research.

Other generative programming systems [16, 29] use declarative logic to combine facts and

direct code generation. Because of the graphical nature of the CO 2 P 2 S system, the format of

the facts is of less importance. The generation systems presented already [1, 10, 15, 16, 29]

use a textual interface to provide configuration information to the system. While this is

sufficient for code generation purposes, the user of the CO 2 P 2 S system should not need to

learn a language to compose a design pattern th a t meets his/her specifications.

Transformational systems [17] (for an example, see [14]) provide powerful techniques for

manipulating source code. However, with these powerful techniques comes a steeper learning

curve. Instead of just specifying what needs to be produced, mechanisms for selecting source

elements and transforming them must be learned.

Czarnecki’s book [17] provides a more comprehensive overview of the various generative

techniques and languages.

The most applicable related work is described in “Automatic Code Generation from De­

sign Patterns” [13]. The presented architecture uses three layers to generate design patterns

from user specifications. The first of these layers is a web interface. The web interface

displays information about a particular design pattern and allows the user to enter options

that customize the pattern source code to the user’s application. A layer of Perl [5] scripts

maps the input from the user into output suitable for use in the code generator. The code

generation layer is based around simple operations such as conditional inclusion, repetitive

inclusion, textual replacement, and code segment reuse. Because the code generation lan­

guage is simple, additional functionality must sometimes be provided by the mapping layer

or by customized operators, implemented as external processes in a language of choice. Since

this system requires the user to cut and paste code into their application, it is difficult to

incorporate changes to a pattern configuration into the application. W ithout th a t ability, it

is more difficult to experiment with different options. The CO 2 P 2 S system, in combination

with the CO2 P 2 S code generator, provides the ablity to reconfigure options and test different

pattern configurations easily. The use of web pages as a medium for pattern configuration

means that the user interfaces may be inflexible. The server-based architecture requires a

server running to handle the requests. Since CO 2 P 2 S is a standalone application, it does

not suffer from either of those difficulties.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Contributions

Through this thesis research, the following contributions were realized.

• A system of types was created for use in generative design patterns. These types

are object-oriented and axe manipulated through a GUI type editor, which was also

created during the course of the research.

• As well as the type system itself, many types were created for use in constructing

generative design patterns.

• To make use of the types, the CO2 P 2 S Generation Language (CGL) was created. This

meta-language, in combination with the type system, provides a flexible platform on

which to create design patterns.

• The existing tools, CO 2 P 2 S and MetaCCUPaS, were rewritten to take advantage of the

new system of types and code generator. The result is a complete system for working

with generative design patterns. Through the new CO2 P 2 S system, generative design

patterns are easily created and utilized.

The contributions of this research have improved the CO2 P 2 S system. Though not well

tested, we expect tha t the pattern creation process will now be easier, faster, and more

reliable.

1.4 Overview

Chapter two provides additional background, including an overview of the original CO 2 P 2 S

and MetaCCLPzS. The second chapter also provides further motivation for the research

presented in this dissertation. Chapter three is an overview of the new type system, using

the Decorator pattern as an example. Chapter four provides more details on the type

system, including some of the design decisions in its creation. Chapter five covers the new

code generator and the meta-language it uses. Chapter six provides a comparison of the old

and new systems and concludes the dissertation.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Overview of CO2P 2S

2.1 Design Patterns

A design pattern is an abstraction of a commonly used programming technique. Design pat­

terns can be found across a wide variety of application domains. Patterns are often defined

by high-level descriptions [18], separate from any source code. To use one of these design

patterns in an application, the pattern must be translated from the high-level description

into actual code th a t can be inserted into the application.

Some design patterns are simple, perhaps describing a way tha t objects in a GUI can

relate to an underlying data model. Other patterns are more complex, such as a pattern

describing a parallel computation on a mesh. By the very nature of patterns, they can be

used under a variety of circumstances. Adapting the pattern to fit the circumstances is

usually performed manually. In addition, design patterns may appear in code, but they

may not be recognized due to poor documentation.

CO 2 P 2 S was created to automate the use of existing design patterns. This is particularly

useful for complicated patterns such as the parallel mesh computation. In addition to

generating code for a pattern, CO2 P 2 S implicitly documents the patterns th a t are used in

an application.

2.2 C 0 2P 2S

The CO2 P 2 S system is composed of two components, CO2 P 2 S and M etaC02P2S (Figure

2.1). MetaCC>2 P 2 S is used by a pattern designer to create a description of a pattern. CO 2 P 2 S

is then used, by a programmer, to instantiate tha t pattern for use in an application. The

pattern designer needs to create a single pattern template, yet tha t same template can be

used in many applications.

The main screen of the CO2 P 2 S user interface is shown in Figure 2.2. On the left

side, there is one icon for each of the available patterns. To make a pattern available, the

programmer must first import tha t pattern using one of the menu items.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P rogram m er

p aram eter values are spec ified and
ap p lica tio n -sp ec ific code is p rov ided

P attern D esigner

user im p o rts pa ttern into C O ,P ,S P attern .'specification
creates

pattern .xm l

fra m e w o rk
M etaC O Jk Ss o u rc e C ode

Icons and im aces uses

C ustom C ode
G enera to r
S ource C ode

pattern C u sto m G U I
D isplay C odeselected

for use m
user

applica tion
in itia tes

gen era tio n

u se d by

C ode G e n era to r

F in ished A pp lica tion
S ource C ode

Figure 2.1: CO2 P 2 S User Interaction (Adapted from [12])

i up i n it. Pror.ii ant
Ti1 PiOiK'in5

i: « *0 *; i1? C O giP i-S Maimi
: , V,'S MP' IJp.meni ■■ • 1}9oo ; | . i

' ' —1- -L- ! i Jit i
■CI Ilf | [i
jjjj ft

l i f e S s S I
: t. i; s:Ls N:

iif I : H? I
i-lp ft

A

r ;

H r i i i

1 nantfUiar MaJrtty

I kim■
• s : ; S S i t . c * i i i

\ î .s "l- -
ne*!“s *
' i e . .S V 'C 'M rsM -’Ss |l |. f

S C " ^ IE M ' l d i *

s . ■: a
N ? s l f i: . J t t i ! 4

S,*T 1 '.v.iPrii s5»
svt ^

Figure 2.2: C 0 2P 2S GUI

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To create an application in CO 2 P 2 S, the programmer starts by creating a “New Pro­

gram.” Applications are composed of patterns and user classes. To add a pattern to an

application, the programmer selects the pattern from the “Palette.” The same pattern may

be added multiple times if desired.

Once the pattern has been added to the program, the programmer must adapt the pat­

tern to the application’s requirements by setting the param eter values available via the menu

shown. For example, an application may need the parallel wavefront pattern. The wavefront

pattern performs a com putation tha t flows across a m atrix of cells. In the wavefront, the

programmer must set the class name of the wavefront element, as well as five other parame­

ters that control how the wavefront code will be generated. Changes to the parameters are

reflected visually in the pane on the right.

Once the parameters have been set to values appropriate for the application, the pro­

grammer will choose “Generate First Code Layer.” The code generator will use the pro­

grammer’s param eter choices to create an adapted pattern tem plate. In some patterns, the

programmer will specialize the pattern further by inserting application-specific code into

methods or classes in the pattern.

After application-specific code is added or parameter values are changed, the code gen­

erator can process the code again. This allows the programmer to modify parameters even

after the code has been generated for the first time. This feature is useful in performing

tasks such as performance evaluation, and can even allow for changes in the application that

the programmer did not anticipate.

2.3 MetaCC>2P2S

To use a design pattern in CO 2 P 2 S, the pattern designer must first create the specification

for that pattern. M etaC 0 2 P 2 S was designed to assist in the creation of this specification.

Though patterns are created once and used many times, a pattern system with only a few

patterns is not very useful. It is therefore critical tha t adding new patterns to the system

be as easy as possible. The goal of the research described in this dissertation was to replace

MetaC 0 2 P-2 S with a simpler, more efficient, and more powerful generative design pattern

creation system. The rest of this section describes the earlier MetaCO-2 P 2 S system. A more

complete description can be found in [12]. A view of the earlier version of M etaC02P2S is

helpful in understanding the problems tha t needed to be solved in this research project. In

the earlier version of MetaCC>2 P 2 S, a pattern consisted of the following components:

• A system-independent description of the pattern, stored as XML. This description is

the primary output of MetaCC>2 P 2 S.

• Annotated framework source code which will be processed by the code generator.

T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C3 GUI Configuration

Figure 2.3: MetaCC^PsS General P attern Description

MetaC 0 2 P 2 S is able to output skeleton framework files from the pattern description.

• Custom Java code to display special types of param eters and to generate the code

associated with them.

• Pattern documentation, stored as HTML.

• The images used for displaying the pattern in CO 2 P 2 S.

2.3.1 M eta C 0 2P2S P attern Description

The overall description of the pattern created by M etaC 02P2S contains the following ele­

ments (see Figure 2.3):

• The name of the pattern.

• The Java package where custom code is located.

• A list of string constants which my be used in place of string literals in other M etaC 02P 2S

fields.

• The list of all of the classes contained in the pattern.

• The list of param eters used in the pattern.

« A description of the pattern ’s GUI representation.

The last three items in the above list will be explained in more detail.

Class N am es

M etaC 02P 2S requires the pattern designer to specify all of the classes that the pattern

contains. These classes can be either programmer-named classes (Figure 2.4) or framework

classes (Figure 2.5).

Creating a programmer-named class allows the programmer to specify a name for th a t

class. A default value for the class name may be provided. If the pattern designer specifies

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Vila «efrc-wD-»mant

i- f s,*li w i n * « . i r . iH i* u r ii*.*n * is q j M N N P i a \< » : I ' . « j .

v i s ! v n i i i i j r > t | < i s s

ICrî rrmf- m “'ii-rn il s.js%*

i ' r f « i >ih>s '•#

Figure 2.4: M etaC 02P-2S Programmer-Named Class

U‘ \ ». rs.‘ ■*

Figure 2.5: M etaC 02P2S Framework Class

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that this class “Represents pattern name,” then the GUI will use this information to update

the title of the pattern shown in CO 2 P 2 S. Some classes in the framework may need to be

edited by the programmer. Other classes may define part of the interface to the generated

framework tha t the programmer needs to know about. If the class should be visible to the

programmer for editing or viewing, the pattern designer needs to select “Is tem plate class.”

Programmer-named classes can also be used to specify classes and interfaces th a t are not

included in the framework source. An example of this would be allowing the programmer to

specify a superclass tha t would be referred to by some class in the framework. To indicate

that a given class refers to a class th a t is not part of the framework itself, the pattern

designer would choose “Reference to external class.” If the external reference may also be

an interface, th a t alternative is accommodated by choosing “Prompt for class or interface.”

The other type of classes, framework classes, do not have their names specified by the

programmer. Instead, the name is built by concatenating extra characters to the name of

an existing programmer-named class. Just as with programmer-named classes, the pattern

designer has the option of making the class visible to the programmer as a tem plate class.

Param eters

MetaCC>2 P 2 S allows the pattern designer to specify one of four types for each of the param ­

eters within the pattern. Along with the type-specific information, each param eter has an

ID. The ID is used to identify this param eter within the context of the code generator. All

parameters also have a “visual name” and “menu tex t” associated with them. The “menu

tex t” provides the name of the CO2 P 2 S menu item for the given parameter. The “visual

tex t” is displayed, along with the value of the param eter, to indicate the current state of

the pattern.

B asic (Figure 2.6): To the code generator, a basic param eter is simply a string. MetaCC>2 P 2 S

allows the designer to specify a default value for the basic parameter. Basic parameters

can also be “validated.” When “requires validation” is selected, the pattern designer

must provide a list of possible values for the param eter. Normally, a basic param eter

provides a text field into which an arbitrary string can be entered. If validation is

used, a set of buttons is provided, one for each possible value.

E xtended (Figure 2.7): For complex param eter types, an extended param eter must be

defined. Extended parameters are defined entirely by a Java class provided by the

pattern designer. This class must contain methods tha t specify what code is generated

(see Section 2.4.3 for details). The class must also provide a Java GUI th a t will be used

to display the parameter in CO2 P 2 S. Because the Extended param eter is contained

within a single class, there is no formal definition of the configuration data used by

the parameter. The class provided will save the param eter as an arbitrary string and

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I !»'

. . , v . \ . f i . - s ’>

' PSI-SUS*-?!*. s'.!. ■ ■ *

i-'im'V ru'w. : ••

4?:; P\ nUlinrittÔ '
\- “J ■ Menu te x t 'Set bieirien^rypej’.....................................

i.|:i [_j neighbours ;
II •. p s ilj r :■ ? : p: 7/, ■ - L,-- ------------------- .-- ------- -----------|| • Lj rven^eo c.eppnc* (
lis (-"i * » - • < - . v ,I|:>| I 1 b?>f>[T)t3nt ' VHt- I :■.-!! : J ’'I !

| . : ► R e q u i r i 1' \ - t l i f l a M O n

i!

Figure 2.6: M etaC02P2S Basic Parameter Type

load the parameter by parsing th a t arbitrary string. In this manner, the CO2 P 2 S GUI

and code generator are tied together.

L is t (Figure 2.8): This type is a list of basic or extended parameters. The pattern designer

must provide a Java class th a t contains the code generation methods (same methods as

the extended type). The class should be a subclass of PatternListParameter. Inside

the class, the designer must also implement stub methods th a t act as an interface to

a provided list GUI. The provided list GUI shows a list of simple strings. Items in

the list can be edited or reordered by clicking on various buttons. If the list contains

extended parameters, the pattern designer must also provide a class representing the

individual list elements.

M e th o d L ist (Figure 2.9): The method list type provides a list of method signatures.

These signatures can be obtained either by entering them through the CO 2 P 2 S GUI

or by importing them from a class file. A Java class which represents an individual

method element must be provided. This class controls the code generation and the

GUI dialog used for each element in the method list. The pattern designer can also

choose to make the method signatures tha t are imported from classes immutable.

11

' v <i Ru p % I f » i v j r i A h l e : " t i i t u h M n ’’

" h u p "'*1
i i i j I11' '

•Via I'aluc Sifefni)‘.t Value "iiua*’'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:-«i? srn t'i'-i

Pjrarcs't-M $ \ ss*:

Modify S}*ti?nQ

Figure 2.7: MetaCC>2 P 2 S Extended Param eter Type

]
S> F ."J Cnrt3* , .rs

ij ^ 0 3 C lass N am es

! <? r̂ i'aramcte,s
Q n o i .v a t io r

;! Q TtSTI T CO

P } no nhn n u rs

Dl roanJsd G,epepc:ep''i>»:
I Q elemem'yve
‘ L Jo .’f *J/a 'r» r,jl ’ . Pt'Mf.'HM!

Q M Ptrvju Lis' e ^ a u jjl-^ 'y ih .j 'J ! -MPat.

C!3CU! C onfiguration iiIS -

!'«i tnsns m »f •- 1 i

' | <i-nr

’ i^r i. * * ' . . . -

: - f t : t ■.!-,%

v ' l i s t c o n t a i n s o n l y B a s i r p > a . i a r n i * t m

m

Figure 2.8: MetaCC^P-jS List Param eter Type

I# »s» i» r in i

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.< t . a t e r i o r i o M o r t i f y S e i? tn i> s

h ' ? L 'l ' ^ i“n. 'T-",ru>
!■■
1 C

•i
I: ...

|f:j Q notification

l ; I ‘ n a - v r n -
\ \

U 0 Extended- dependencies i
= | Q eiememType

ij Q MpeiciI i;‘-i

I'iM rneSei Irf; 5i-*» r =.-iM^'s-' v 'r> --\-

Vistiat HSiTie: ' Ti e :rp ie U n tie d L z' ’a r c T - te ; '

M ena t s v t ‘'E^-.ifpie Msfii io ■T,.iT P e '-a-r^-:^

in i>«iiie>i ! 'i? i.> ;y ri. s,*. «,«». • •

M s i f t u d l i s t E J o m e n r (l a i ^ i M e t h c c .U r t i s n c m C l i i :

.O - r - . r u *:• . ♦>*!«* *«.«»<* . <\
 :?:* & ■>*;: '■■ ■ ' ' -:t! ■ ■ ■■ ^ : : ̂ iV!?:"'-1;-:-*'-'' <■. I

Figure 2.9: MetaC02P-2S Method List Param eter Type

G U I C onfiguration

MetaCC>2 P 2 S also allows the pattern designer to specify a GUI representation of the pattern.

The GUI representation can consist of text and graphic elements. Both text elements and

image elements can be either static or dynamic. For each GUI element, the pattern designer

must specify a valid Java variable name, and the absolute (x, y) location of the element.

For static text, a fixed string of text will be displayed. For dynamic text, the contents

of the text to be displayed will be taken from either the name of a class or the value of a

parameter. A default value is also provided by the pattern designer. The default value is

used when the text element is static, or when the programmer has not specified the value

associated with a dynamic text element.

For a graphical element, one or more images are provided by the pattern designer. To

determine which image to display, a list of “Image Name P arts” is concatenated together to

form the name of the image. Each “Image Name P art” can be a fixed string or a reference

to a param eter.

2.4 Javadoc Code Generator

After a pattern is created with the help of M etaC02P2S, CO 2 P 2 S can then be used to

create a concrete instance of the pattern. The programmer used CO2 P 2 S to provide values

for each of the parameters that were specified in MetaCC>2 P 2 S. Based on those parameter

values, the resulting source code changes. To specify what changes are needed, the pattern

designer marks up the source code with special directives. These directives, combined with

the param eter values from the programmer, provide the information the code generator

needs to produce the concrete Java source.

Javadoc [4] was chosen to make the job of parsing easier. Javadoc allows you to define

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(. r. hi<- ' r >a.li«i>i f r «• ' «pa l»v.» ! Ii mrs*!

Figure 2.10: MetaCC>2 P 2 S Configuration of Visual Elements

arbitrary tags for Java language elements such as classes, methods, and fields (see Figure

2 .11).

The Javadoc doclet produces output in two forms. One of these is an HTML form tha t

is used within the CO2 P 2 S GUI, allowing the programmer to provide custom code to be

inserted at indicated locations in the code. This custom code may be in the form of bodies

of hook methods. The other form of output is the finished source code tha t is ready to be

compiled. Each Java tem plate file will be transformed into a compilable Java source file.

The HTML form is only output if the source is editable in some manner. In the HTML

output, necessary HTML headers and footers are added and special characters such as <

and > are escaped.

Instead of taking a source file and modifying it, the doclet reads the entire source file

into internal data structures and then outputs a new version of the file based on those data

structures. Javadoc does not parse method bodies or initial values for fields. Because it does

not track those in its data structures, it is impossible to reproduce them purely through

Javadoc. In Figure 2.11, you can see tha t m ethod() has no body. W ith CO2 P 2 S, the body

for this method must be stored in a separate file, which would be loaded by the doclet and

used as the m ethod’s body.

When filling in method bodies, the code generator checks to see if the programmer has

supplied a custom method body for the method. If one has been provided, it is used in

lieu of the default method body supplied by the pattern designer. If the method is not a

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ * *

* This is a Javadoc comment with a single tag that directs the code generator
* to allow the programmer to add custom imports to this class.
*
* ©userlmports
* /
class FrameworkCLASS_MyClass {

/**
* This method would only be included in the resulting source if the
* needMoreMethods parameter was set to the "yes" value.
%
* ©parameter needMoreMethods yes
* /

void method() { }

Figure 2.11: Javadoc Tag Example

constructor, it may be an abstract method or a method declaration inside of an interface.

In those cases, no method bodies will be present.

Having Javadoc tags alone is not sufficient for code generation, since method bodies

cannot easily be modified. As a result, a small macro language was defined th a t supports

conditional inclusion and limited macro expansion. Javadoc tags and the macro language

will be described in the next two sections.

2.4.1 Javadoc Tags

W hat follows is a complete list of the Javadoc tags th a t are supported by the code generation

doclet.

Class Tags

These tags apply to the entire class.

@user Im ports A single set of programmer-defined Java imports may be defined for the

entire pattern. This tag causes the code generator to provide a way for the programmer

to enter custom imports.

@ im portIm ports This tag is used to include the single set of imports, defined by ©user Im ports

into other files.

O fram ew o rk S u p e rc lass <param > The current class will inherit from the super class or

interface specified by <param>.

@ noC onstructors If this tag is present, no constructors will be written. If a class has

no constructors, Javadoc will insert an empty default constructor. This tag allows

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for more control over the generated constructors by inhibiting the empty default con­

structor.

@ userC odeA llow ed Allows the programmer to add custom methods and fields to the

current class. There is one block of programmer code allowed per class.

@ e x tP a ra m e te r < p a ra m > The extended parameter <param> has Java code associated

with it th a t allows it to insert additional fields and methods. The interface to this Java

code is described in the Extended Param eters section. The methods th a t are called as a

result of the © extParam eter tag are getCodegenMethods () and getC odegenF ields ().

M eth od Tags

These tags apply to individual methods or constructors.

© ed itab le Makes the method editable by the programmer. A default body can be provided

th a t will be used if the programmer does not specify a custom body.

@ p aram ete r < n a m e> <value> Given the name of a param eter and a literal value, this

field is used to determine whether the following method should be rendered. If the

param eter called <name> is set to <value>, then the method will be rendered. If

multiple param eters with the same name are given, the results of the comparisons are

combined using OR semantics. If more than one parameter name is provided, the

results for the individual param eters are combined using AND semantics.

© p a ra m e te r < p a ra m > <va lu e> , <p aram > < v a lu e> , ... To specify conditions in which

param eter values depend on each other, this multi-parameter syntax can be used. In

this case, the results of the comparisons are combined using AND semantics. If mul­

tiple occurences of this multi-parameter syntax are present, the results of those are

combined using OR semantics.

Field Tags

These tags apply to individual fields.

© in itia lV alue < value> Since Javadoc does not parse the values tha t fields are initialized

to, this tag was introduced to provide the means to specify the initial value of a field.

It is also worth noting that this workaround does not support the s t a t i c { f i e l d =

com pu tation !) } technique for initializing fields.

© param eter Same behaviour as for methods.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Macro L anguage

A small macro language is used to process method bodies and initial values of fields. The

supported operations are listed below.

#FrameworkMACRO#(<param> <op> <value>)

< o p tio n a l code>

#FrameworkMACROend#

<op> is either = = or !=. If the condition is satisfied, the c o p tio n a l code> will be output.

#FrameworkPARAM_<param>#

In this case, <param> must be an extended parameter. The getCodegenBodyO method of

th a t param eter is called to retrieve the code to be inserted at the location of the macro.

getCodegenBodyO takes two arguments. For methods, the arguments are the name of the

class and the name of the method. For fields, the arguments are the type of the field and

the name of the field. This macro is used for inserting an arbitrarily complex code fragment

inside a method body or field initializer.

#FrameworkCLASS_<class>#

Inserts the programmer-defined name for the class.

2.4.3 Extended Param eters

M etaC02P2S has a number of built-in types. When those types are not sufficient, an ex­

tended param eter must be created to perform the code generation. An extended parameter

must follow the interface laid out in the A bstractPatternParam eter class. The following

methods from A bstractPatternParam eter are relevant to code generation.

p u b lic a b s t r a c t L is t getCodegenM ethods(S tr in g className) ;

For a class with the S ex tP aram eter tag, this method will be called. This method can

insert full methods by returning a list of CopsMethod instances. Each CopsMethod contains

standard items such as the name of the method, the argument list, and the list of exceptions

the method can throw. It also contains a data structure that allows the type creator to

specify if the method should be rendered or not. The data structure allows the same

conditional expressions as the ©parameter tag.

p u b lic a b s t r a c t L is t ge tC o d eg en F ie ld s(S tr in g className) ;

This method is also called when SextParam eter is used. It inserts additional fields by

accessing a list of C opsField instances. Aside from the differences between fields and

methods, its use is very similar to th a t of the CopsMethod class. Note tha t both CopsField

and CopsMethod inherit from C opsC onstruct which provides the common functionality.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Javadoc Code Generator:

sb.append("if("+testl+" && "+test2+") {\n");
sb. append("J\n") ;

Ideal:

if(©test1 kk ®test2) {
}

Figure 2.12: Java Code Generation

public abstract String getCodegenBody(String className, String method);

If #FrameworkPARAM_<param># appears within a field initializer or a method body, this

method will be called to generate the code for that particular location. The location of the

code is identified using the class name and the method signature. W ithout knowledge of

the internals of the code generator, it is not possible to insert multiple code fragments in

any particular method body.

public abstract String saveToStringO;
public abstract void loadFromString(String str);

Each param eter knows how to save itself to a string and load itself from a string. Unfor­

tunately, since each param eter specifies its own saving and loading technique, there is no

standard format for the output of the parameter values. This creates a strong coupling

between the code generator and the CO 2 P 2 S code th a t stores the state of the parameters.

2 .4 .4 Lim itations of Code Generator

Overall, the Javadoc code generation method lacks flexibility and adds unecessary com­

plexity to the work of the pattern designer. Some tags, such as © noC onstructors and

© in itia lV a lu e , exist solely to work around limitations in the Javadoc approach. This

approach needed to be simplified.

W ith the Javadoc code generator, there is no way to exclude a file from being processed.

Even if a class is not needed in a particular configuration of a pattern, it will still be

produced. As well, there is no way to produce multiple files from a single template file.

This is inefficient and restrictive.

To produce anything other than simple code, Java code must be written that assembles

the code as a string. An example of how this obfuscates the code is shown in Figure 2.12.

A better technique was required to simplify what the pattern designer needed to wTrite.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Javadoc does not parse method bodies or field initializers. This created the need for

the small macro language th a t was used in addition to the Javadoc tags. Also, because of

this, the methods are stored in individual files which are later loaded by the code generator.

Having the code spread out into many tiny files makes it more difficult to understand as a

whole.

The files required for each pattern were previously distributed throughout the CO2 P 2 S

directory hierarchy. As part of this research, all of the files within a single pattern were

placed within a single directory, making it easier to see which files belong to a particular

pattern.

It is difficult to maintain consistency between files. Similar code must be duplicated

even when there is little or 1 1 0 variation. A technique for combining similar blocks of code

is desired.

2.5 Sum m ary

Pattern-based tools will only succeed if they have a rich, extendable set of patterns. The eas­

ier it is to create those patterns, the more likely it is tha t a tool will succeed. M etaC 0 2 P 2 S,

as presented in this chapter, was a first attem pt at a pattern builder. Though it did im­

prove the process of designing patterns, it was awkward and difficult to use. The research

presented in the following chapters has changed that.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Type System Exam ple

Within a design pattern there are options1 th a t can be modified to change how the code for

the pattern is generated. As a simple example, we could have a pattern whose purpose is

to support the storage of a collection of numbers. These numbers could be either integers

or floating point numbers. If we choose integers, the code for the container class would be

different than if we chose floating point.

The type system within CO 2 P 2 S is the mechanism by which the pattern options are

created and used. Each option in a pattern has a particular type. T hat type defines

characteristics such as the GUI interfaces, the code generated for the type, and the structure

of the data within the type.

The new CO 2 P 2 S type system is composed of four main layers (see Figure 3.1).

T y p e E d ito r Creation and modification of types occurs at this level. The types must be

created before they may be used within M etaC 0 2 P 2 S.

M etaC 0 2 P 2 S Patterns are defined in MetaCC>2 P 2 S. The patterns have options which

represent the variability within the pa tte rn ’s code. Each of these options has a type.

C O 2 P 2 S W ithin CO2 P 2 S, patterns are selected by the user and the values of the p a tte rn ’s

options are defined.

C ode G e n e ra to r The code generator combines the user-defined option values and the

annotated framework code into application-specific source code.

This chapter will provide an example tha t examines the first three layers, starting from

CO2 P 2 S. The Code Generator layer will be discussed in Chapter 5. The example tha t is

used is the Decorator design pattern.

1Note th a t in C h ap te r 2 , these options were known as param eters. P aram eters w ithin th e p a tte rn are
now known as options. Also no te th a t p a tte rn op tions m ay now' be param eterized , bringing the p a ram ete rs
term back under a different m eaning.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I ' . i r ; . , ' ' ! i . - i . - i : i 1 t - ' ■ ' p M . i •.

 i * i i i * i i i " / \ " i p p

L’;iiu in ■: i* I Oi iiniiion

(option Data) (Application-Specific Code)

L _ J Type Designer

i J Pattern Designer

□ Application Programmer

EH Derived

Code Generator

Generated Source Code)

Figure 3.1: Type System w ithin CO 2 P 2 S System

•21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ Decorator \
\ Superclass J

Share Same interface

Of aio- .

- J
\ (Component ; j

Figure 3.2: Decorator Pattern

3.1 B rief Overview of Decorator Pattern

The Decorator or Wrapper pattern is a simple structural design pattern [18]. It is used to

modify the behaviour of an object a t run-time by layering objects inside of each other. The

object on the outside is known as the Decorator (see Figure 3.2). The object on the inside

is known as the Component. The Decorator shares the same interface as the Component, so

one acts as a drop-in replacement for the other. When the Decorator’s method is called, it

has a chance to perform operations and delegate to the Component’s method as it chooses.

As an example, consider a system for drawing objects. We might have a circle object

th a t has a draw () method. When called, it draws a black circle. Suppose we would like to

draw the circle on a different type of background. We could have a background object that

paints the entire canvas blue when its draw () method is called. Normally, we might call

background.draw () and then c i r c l e . d ra w (), but what we actually want is to perform a

single call to drawO and have the circle and background paint themselves. In this example,

we want the background to act as a Decorator for the circle. The background would maintain

a reference to the object that it decorates, in our case the circle. Inside background’s draw()

method, it will first paint the background and then call its components’ draw () method.

A yellow border around the canvas could be added in a similar manner. The border object

would decorate the background object, which in turn decorates the circle. The programmer

defines which components decorate which other components at run-time. We can see that

although we are performing a number of different operations, we need only use the draw()

call on the top level object. Note th a t the background, circle, and border all share the

draw () interface, but with different code. Since the Decorator and Component share the

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same interface, they may be chained together in arbitrary configurations to perform complex

tasks.

In Figure 3.2 there is a Decorator Superclass. This superclass is part of the Decorator

pattern within CO2 P 2 S, but is not an integral part of the Decorator pattern itself.

3.2 Example of Original System

For comparision, the code, th a t the pattern designer had to write, for the original Decorator

pattern has been provided in Appendix A. The code will not be explained in detail since it

is over 10 pages long and contains callbacks and references to more code th a t has not been

listed. The point is tha t creating the decorator pattern for the original system was clearly

a complicated endeavour.

3.3 Using the Decorator Pattern

We start by looking at the third layer of the type system, where the types are used by the

application programmer. This section refers to the CO2 P 2 S box from Figure 3.1.

When a CO 2 P 2 S user would like to use a pattern, they must first import it. This process

is performed by selecting “Im port P attern” from the “Environment” menu (shown in Figure

3.3). The available patterns will be shown and the user selects the one they would like to

use.

After the pattern is imported, it may be used in the creation of an application. To use

the pattern, a programmer must perform the following steps.

1. S tart a new program by selecting “New Program ” from the “File” menu. The program

must be given a name at th a t point.

2. Once the program has been created, the user selects the “Decorator” pattern from the

palette on the left. An instance of the pattern is added for use within the program.

The decorator pattern is now ready to be configured (Figure 3.3). The right pane of the

CO 2 P 2 S window shows a graphical representation of the Decorator pattern. In the graphical

representation we can see the default values for four options tha t must be configured to use

the Decorator pattern within an application:

® Decorator class name (D eco ra to rP a tte rn),

• Decorator superclass name (O bject),

• Component class name (O bject), and

• Methods in the shared interface (none shown).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i i ' P n I' n i l t If I I, ‘f n i l

BI ■ f C O v / i - ’sV OecoratorTe

iJtior-atoi Pattern*

bum.-ibi
OOJ&’T

B e c o i a t o i

Pclt̂ tec Met *cd>

. • < :►!
I i'm !»•>
s; f,rx ;-R>'v O ’!8. r,1

peierstw Pfcttff«

i.H i«: >t» * o u t

' . I d * . * n j i i i j

V i i) c « f i i . U b i S i . s J . ' i r * . ^ ^

"itM I * li»-
i *h i U i 'U i o * ; i l i t

Figure 3.3: Decorator P attern in CO2 P 2 S

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ecorator U a s s N am e .MyOecorator

" k i-i.-.e-

Figure 3.4: Decorator Class Name Dialog

D e < u i - i i n r !! i '

(J ' n n (' . a f t i t i p p r e s ? m s i n l e i i n i c

O k (an>i> i \
j; ' ■ ‘ j

Figure 3.5: Decorator Superclass Dialog

The configuration process consists of setting the pattern options by using the menu

shown in the bottom right of Figure 3.3.

By selecting “Decorator Class Name” from the menu, we get the dialog box shown in

Figure 3.4. A simple dialog box like this is also provided for the “Set Component Class”

menu item. The dialog box allows the user to enter the desired class name. Validation is

also performed to ensure th a t the entered string is a valid class name.

Setting the “Decorator Superclass” produces a similar dialog box (Figure 3.5). Since

the superclass of the decorator may also be an interface, a checkbox is provided to indicate

that.

The most complicated option in the Decorator pattern allows the programmer to define

the shared interface by creating a list of methods (Figure 3.6). The list is manipulated using

the buttons located near the bottom of the dialog. Since lists occur often, the ability to

easily create lists of arb itrary items is desirable.

Individual methods in the list are edited with the dialog box shown in Figure 3.7. This

dialog box contains a number of fields, including two sublists for specifying arguments used

and exceptions thrown by the method. Due to the complexity of the dialog, it would be

easier to compose the dialog from smaller well-defined building blocks.

Once the four options are defined, the pattern is now ready to be generated. In Figure

3.8, we can see tha t the GUI has updated itself to display the current values of the p a tte rn ’s

options. All we need to do now is choose “Generate Code” to proceed. At th a t point, a last

check is performed to ensure valid option values and the code is generated. For information

on code generation, see Chapter 5.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D elegated Methods
void methods; int a tg l , Objest aig?)
boolean anotherM ethod()

i i!

Edit "teles:-

O k i a n i e r

Figure 3.6: Decorator Method List Dialog

■ Method Naseie i"1 ’I:-. i

f t e s i J h l - p t ■■■h i

I . .AtayhienLt'^pe
i lint
' [o b je c t

argl
arg2

_ AMh? §01 Name

!i

Atiii I * In&eit

Exceptions

Add

■uusti rosiiitu* H t d
Guard Name jCuard

v; Prefix' Method Required
Prefix Name :Prefix

; i Suffix Method Required
Suffix Name Suffix

’es -=t

s Ok C a n c e l s

Figure 3.7: Decorator Method Dialog

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Si':

• i i ‘ rn v i-nsHi-Piif ;* ik.! .i-i!

Pairiie h**nr.*.:i
•? -COaPsCi Detor*wT*«

I I I

- f e M r f t U O l

MyD\>< u » a r»jrv> u p ‘iM la sv

D e c o r a t o r M y t - t e c e r 'K c r

111
fcW'cmpcnPtt

Dehuystetf
v o i d m e t t i o c K h i t u r s ' l , O s i j t * . * a r g *)
bo-iUirin iito.therMfcthoidf)

'.tiM ; i .

s tfyppfl

l|l»lfr Pit.I s*
! > * - » n ^ - r j i t i i \ - i N a m p

Ŝ t riptii'jUi'Stipniilavt
'-M * 4 u«*
a-«Iil M r l h i u l : U \

Figure 3.8: Decorator Configuration Complete

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 Requirem ents CO 2 P 2 S places on the Type S ystem

To make this process possible, there axe a number of requirements tha t must be fulfilled by

the type system:

• The structure of the data in the options must be defined, either implicitly or explicitly.

• The values manipulated by the GUI need to be initialized and validated.

• Each pattern option has a GUI associated with it that is used within CO 2 P 2 S. These

GUIs may have a variety of widgets and may even spawn child GUIs.

• Support is required for the composition of larger GUIs from smaller GUI components.

• Support is required for lists of arbitrary items without having to create a complicated

list GUI each time.

• In the graphical representation of the pattern, options need to be converted to a

string form to be displayed. If the option is already in a form similar to a string, this

conversion is trivial. For complicated structures like lists and records, more capabilities

are needed.

3.4 Defining the Decorator Pattern

In the previous section we examined how the Decorator pattern was used from CO 2 P 2 S.

The first step was importing the p a tte rn ’s XML definition file into the CO2 P 2 S environ­

ment. This pattern XML file was created by a pattern designer using MetaCCUPzS (see

MetaCCUPeS in Figure 3.1). We will now examine how the Decorator pattern is created in

MetaC02P2S. In creating a pattern, the pattern designer must perform the following tasks:

1. Give the pattern a name.

2. Decide what options the pattern needs to support the variability present in specific

applications.

3. Define a GUI representation for the pattern.

4. Create and annotate the framework source.

5. Create documentation for the pattern.

The code generation aspect will be discussed in Chapter 5. The format of pattern

documentation will not be discussed since it is not relevant to this thesis.

The GUI representation for the pattern consists of graphic and text elements. Each of

these elements can be either static or dynamic. A static element would be an image or string

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of text whose contents are fixed. Dynamic elements depend on the value of options within

the pattern. Dynamic graphic elements can have their names constructed from the string

values of one or more pattern options. Dynamic text elements represent the string value

of a pattern option. Because the dynamic elements depend on a human readable string

representation for the pattern options, it was necessary to provide a mechanism to generate

custom strings from pattern options.

The most im portant part of the pattern definition in M etaC0aP2S is the options. Op­

tions come in all shapes and sizes. They may be as simple as a class name or as complex

as a list of method signatures. In the original M etaC02P2S, only a few option types were

supported: string, enumeration, list, class name, and an arbitrarily complex extended type.

The list and extended types involved writing substantial amounts of Java code to perform

everything from the GUI display to the actual code generation. There was no real underlying

structure to types like the extended type. The structure of the data was decided implicitly

by the Java code tha t was written. Class names were not considered pattern options but

were defined separately. This distinction was not needed and it also restricted the ability

of the system to adapt which class files were generated. Though the use of extended op­

tions made the system flexible enough to handle most code generation, the creation of an

extended type was a daunting task.

Instead of providing ju st a handful of types, the new type system provides a large variety

of types that can be combined and used for most code generation tasks. Though somewhat

pattern-specific types will need to be created in rare cases, most pattern options will now

be handled through the larger variety of built-in types. Even when a pattern-specific type

is needed, its creation is much simpler than the creation of an extended type.

Figure 3.9 shows the decorator pattern in M etaC02P2S. On the left we can see the four

options in the pattern. As well, a number of GUI elements are defined below. On the right

side are the settings for the decorator class name pattern option. Every pattern option

requires the pattern designer to provide these same settings. An identifier must be created

which will be used later for code generation. As we saw in CO2 P 2 S, each option is associated

with a menu item. The text for th a t menu item is specified on th a t panel as well. There is a

checkbox called “Represents P attern Name.” Since a program can have multiple patterns of

the same type, there must be some way of distinguishing between them. W hen an option is

set to represent the pattern name, its string value is used to identify the pattern instance to

the CO2 P 2 S programmer. The pattern designer must also choose a type for the option. All

the types that were available when CO 2 P 2 S was started are listed in a combo box for easy

selection. Note also tha t options can be moved up and down. Their order affects the order

tha t the options appear in the menu. Generally a pattern designer would group similar

options such as class names together.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■

caPaii-i-n
C 3 c c r

<? I Opt

? C3

OMujti

1

? Q t

*■ VnRIl1

>• •t*': i l«svs>i.Ltn>
; u * ‘ Si:snr
LidjvO:!nurT<neNdtn̂

Ss*
*« ‘J.'oll'f

tfeihurfijiidMl

%• i * f P i

Figure 3.9: Decorator Pattern in M etaC02P2S

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.10: Option Parameters for ClassName Type

In addition to selecting a type, the pattern designer must configure the type’s param ­

eters. Parameters are needed to add flexibility to the types without forcing the user to

create numerous types with nearly the same function. An excellent example of this is an

enumeration type. An enumeration can be thought of as a string with a constrained set

of values. Instead of creating a new type for each set of values, we ju st have a single enu­

meration type and allow the pattern designer to set the possible values as parameters of

the type. Parameters are also used to configure things like the labels in the GUI and what

validation occurs. The parameterization provided is different from the parameterization

provided by generics. W ith generics, you might be able to create a list of X, where X is a

parameter. In the CO 2 P 2 S type system, you would need to create a list of only one type,

but the param eterization might allow you to specify details of how tha t list would appear

in CO2 P 2 S.

In Figure 3.10, the parameters for the ClassName type are shown. In this case the

parameters are used to configure the label in the GUI, provide a default value for the user,

and change how the option is validated.

Option values sometimes depend on the values of other options. Though not imple­

mented, there were plans to allow the pattern designer to enable or disable an option based

on the values of other options. For example, if you turned on caching in the N-Server[19]

pattern, CO2 P 2 S would enable the option tha t allowed you to specify the cache replacement

policy. This would be implemented by allowing the pattern designer to fill in a Java hook

method. The method would have the pattern ’s options passed in as an argument. The

method would evaluate if the option should be enabled based on the values of the other

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

options, and return true or false. Since the type system standardizes the mechanisms fox-

accessing the data within the types, this could be done without intricate knowledge of the

type internals.

In addition to the extensive modifications and additions to the type system, there were

several other simplifications made to the M etaCOaPaS system during this research. They

are listed here without going into further detail.

• Previously, files and directories needed for a pattern were distributed in many lo­

cations. All of the files and subdirectories for a pattern now reside within a single

directory. This makes pattern management and distribution easier.

• You no longer need to specify the pattern image directory. The images for the pattern

are now stored in the images directory relative to where the pattern is stored.

• You no longer need to specify where the extra classes for the pattern go. The pattern

itself needs no Java classes now. The functionality has been moved to the type system

and to the code generator.

• “Param eters” were renamed to “Options” and th a t portion of MetaC02P2S was com­

pletely rewritten.

• The “Class Names” section has been removed. Class names are now just regular

options.

• For the visual text elements a default value is no longer required for dynamic elements.

3.4.1 Requirem ents M eta C 0 2P2S places on the Type System

Examination of the use of types within MetaCC^PaS provides us with this list of require­

ments on the type system:

• Types need parameters to make them more flexible. W ithout parameters, almost all

options would require the creation of their own unique type.

® The type system should provide support for validating and enabling or disabling op­

tions based on the content of other options within the pattern. To do this, standard

methods must be provided to check the data within other options.

• A large variety of types are needed for the many facets of code generation. It should

not be difficult to create new types. The ability to base new types on existing types

would also be helpful.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Type Editor

In this section, we leave the domain of the Decorator pattern and move on to see how the

types themselves are constructed. We will examine some examples of types tha t are used

by the Decorator.

We are now looking at the Type Editor portion of Figure 3.1. The Type Editor (Figure

3.11) is the system through which types are created and modified. In the previous incarna­

tion of MetaCC^PaS, there was no type editor; type creation was done by manually writing

substantial amounts of Java. On the left side of Figure 3.11, we can see the list of types.

The top seven in the list are the fundamental types. These types are used to compose all

the other types.

String A simple string value. Enumerated types would normally be built around Strings.

This type is represented by the S tr in g class in Java and the s t r type in Python.

B o o lean Used to represent true or false choices. This type is represented by the boolean

type in Java and the bool type in Python.

In te g e r A 64-bit integer type. This type is represented by the long type in Java and

Python.

F lo a t A 64-bit floating point type. This type is represented by the double type in Java

and the f l o a t type in Python.

R e c o rd Records have a fixed number of fields. Each field has a name and a value. The

value can be of any type except the None type.

L is t Lists are composed of an arbitrary number of elements. Each element within a single

list must be of the same type.

N on e The None type simply represents a type with no internal state. A type tha t contains

only behaviour, or a type th a t inherits all of its state from another type, would be of

type None.

Following the fundamental types in the type list are all the user-created types, organized

alphabetically.

3.5.1 T ype Com ponents

On the top right side of Figure 3.11, the tabs show the five different components of each type.

These are the type documentation, structure, parameters, GUI, and generation settings.

Generation will be discussed in Chapter 5, but the other four components will be discussed

here.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I 'o c le a n
r oat
I r t p g e r

- DESCRIPTION —
ie o f the m ain types availab le , th is type w ill be used to s p e c ify m ost o f the class names
;ed in COPS. O ther classes m a y be autom atica lly genera ted based on the
■er-specified class names.I, List

U jf N one - GUI —
:e Identifier type.!1 ^Record

Jffstring
1 -A ryum erU L ist
1 X u q m en ted M elh c ti

U ig m en ted M elh iH iL is t
< la s sN a m e - VALIDATION — -

vccepts all va lid class names. It w ill accept n o n -c a p ita liz e d and b u il t- in classes, such as
'b je c t.

- INITIALIZATION —
it ia lize d to the value o f the stringD efauit pa ram eter.

I ClassOfSntPrfAceNamt?
. u e p t i o n

< cep tio n L ist
ife n tif ie r

..len tifie rS u ff ix
* M eth o d

* le th o d G u a rd
* le th o d P re fix
' le th o d S u ffix

- PARAMETERS —
ringE m ptyV alid
T h is p a ra m e te r is set to false.

ringLabe!
D efau lts to a labe l o f "Class Name".

ringD efau lt
ringD e fau ltV a lid
See S tring type fo r deta ils on these param eters.

1 P e su ltT y p e
1 IVP“

v.'.- ih:t
.‘jp* R4‘ r:a .r i

Figure 3.11: Type Editor showing ClassName Documentation

D ocum entation

Previously there was only a handful of types available in the CO2 P 2 S system. The docu­

mentation for each type was either implicitly provided by the GUI used to configure the

type, or by reading a separate document. In the new system, the documentation for each

type is written and viewed directly in the type editor. The documentation is formatted as

simple text. The documentation describes the type, including the GUI, param eters, and

validation tha t will occur. See Figure 3.11 for an example of what the documentation might

look like.

Ultimately, the types are used for code generation. The values of the type instances are

set by the CO 2 P 2 S application programmer. To use those values, the code generator needs

to know how the information is structured. The Structure panel is used to define that

structure.

Figure 3.12 shows the Structure for the MethodSuffix type. In the decorator pattern , a

suffix method is a method tha t is called after a delegated method is called. The suffix has

the option of modifying the return value from the delegated method. The MethodSuffix

shares the method signature of the delegated method. Figure 3.12 shows th a t MethodSuffix

inherits from the Method type. This is the mechanism by which the m ethod signature is

shared. The choice of inheritance mechanism will be discussed in the next chapter.

At the top level, the MethodSuffix is a Record. It has six fields, four of which are inher-

Structure

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

. 1'.,“
b . n o At
ji' Inley^t
kiiiiL ist

jliiNone
\i iRerorrt
’ S tr in g
I ;'ArgyroentLlsi

A m j t t ^ n t e d M e i h o d
j jAugmentedMethcdList
] ClassName
| iCIassOrlnterfaceName
|i .Exception
Ij LxceptionLlst
I Identifier
i IdentifieiSuffix

Method
.MethodCuard
Methodl’refix
MefhodSuftiv

iiR esult Type
I Ivpe

| • I i 1.IT
V i ' s .5* .N.

5$ " . ■

iwiatir1

Figure 3.12: Type Editor showing MethodSuffix Structure

ited. These fields are inherited from Method: arguments, exceptions, name, and resultType.

In the type editor, the inherited fields and their descendants are shown in a different colour,

indicating th a t the nodes are inherited and cannot be edited.

The arguments field has a type of ArgumentList. When the tree node is expanded, we

can see that the ArgumentList type is composed of a List of Variables. Each Variable is a

Record containing name and type fields.

In addition to the fields inherited from Method, MethodSuffix defines the suffixName and

suffixRequired fields. Just as with the inherited fields, the types of the fields are indicated

to the right of the field names. If a type is not a fundamental type, the editor shows which

fundamental type the type is associated with, in parentheses. This makes it easy to see and

understand the full structure of a type without examining other types.

To modify the structure, the type designer right clicks on nodes within the tree. A menu

similar to the one in Figure 3.12 is shown. If a node is a record, the popup menu will allow

the user to add new fields.

Ancestors can be added or removed using the list and buttons shown near the top right

of Figure 3.12. Ancestors can also be moved up or down in the ancestor list, the significance

of which will be discussed in the next chapter.

P a ra m e te rs

As discussed in Section 3.4, types require some sort of param eterization to make them more

flexible. The param eterization of types comes in the form of a Record. Every user-created

35

J'*. ■ i ■.* :: . (• :.» m ■ »' :
A.fsji v , *

‘iMhnr \.JI* ili'HJi-'.
V: M r,**.';. V .iv IV 1.-,.

! l ull S trut!w e

I ;JpES M ethodSuffix (Record)
fy C 3 argum ents ' .ArgumentList (List)

: f a- V ariab le (Record)

- Q nam e: Id e n tifie r (String)

i i | Q tvpe: Type (String)

$ C 3 exceptions: ExceptlonList (List)

‘ I Q Exception (String)

v /m ; 0 nam e: Iden tifie r (String)

::* ;M •• D resu ltType : ResultType (String)

D y ; (h a tig e ty p e a / t f> f i ftft t le
su f f ix R e q u ir e d : B o o le a n •

3»ii«i -*• :i::s n»lil
« - • ! - - - - 'if llt'UJ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i .ru in M il '».< '»,i :i: ?

I O o o l s a n

l -iDd?
] Integer

r i C tassN arne-P aram eters (Record)

Q s ir in g D e fa u lr String

[j s tringD efau ltV a iid : Boolean

Q s trm g E rn p ty /a iia : Boolean

Q s tr in g la b e !; String

. S t H ’ HJ

i . . A r (| u m e n t L 1s t

l A u g m e n te d M e th o d
| 'A n g m e n te c iM e T tn H lD s t
; CUssNamp

:C la ssO rln t.e rfa reN am e
■1 E x cep tio n
iL x c e p t io n L js l

I id e n t i f i e r
Id e n tif ie rs u ffix

^M ethod
^ M ethodG uard
jM eth o d P refix
M eth o d S u ffix

.R esu ltT y p e
'T ype

j \ . i l U i j l > -

’\a * ^» s. t e n a n t- I)'ip»*

type, as well as the String, Boolean, Integer, and Float types, has a Record associated with

it th a t defines the parameters for th a t type. Each param eter is simply added as a field

within the parameters Record. Like the normal type structure, a param eter can be made

up of records, lists, strings, booleans, integers, and floats. Unlike the normal type structure,

no user-defined types may be used as part of each parameter. This means tha t any records

and lists within param aters will always be anonymous types.

When type B inherits from type A, the param eters from type A become parameters of

type B. In Figure 3.13, we can see the four inherited param eters th a t make up ClassName’s

parameterization. ClassName inherits from Identifier, which in tu rn inherits from String.

By convention, parameters have names that start with the full name of the type in which

they are defined. This convention helps avoid conflicts and indicates where the parameters

were originally defined.

Note th a t the structure of the parameterization is manipulated in the same way that

the type’s main structure is manipulated. As will be described in the next chapter, the

underlying methods for manipulating the data defined by the structure are also the same.

CO 2 P 2 S and MetaCCUP'iS use GUIs to display the types. Since CO 2 P 2 S is written in Java,

the GUIs for the types are also written in Java. In addition to definining the GUIs, we also

need mechanisms to initialize the type instances, validate their contents, and convert the

contents to a string.

Figure 3.13: Type Editor showing ClassName Param eters

G U I

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l> « f a im f W 3 U lc * 5 % w w 3virt. • P 3 J 3 i r ;« f e t£ G U I G e n e r a t i o n

If you w ish to use th is typ e fro m w ith in the COPS o r MetaCOPS GUIs, you must p ro v ide
Java classes tha t w ilt p e r fo rm the GUI display.

The D isp la y GUI is w hat w ifi be d isp layed in COPS to a llow the COPS user to m o d ify the
d a ta d e fin e d b y the ’S truc tu re ' o f th is type. The Param eters GUI a llows the MetaCOPS
u ser to ed it the contents o f the 'P aram eters’ structure. If pa ram e te rs are defined , the
D is p la y GUI shou ld m ake use of them.

For m ore deta ils , see the genera ted skeleton code. Ait o f the Java code re q u ire d fo r
the typ e shou ld be p lace d in the fo llow ing d ire c to ry

/ho m e /pa te a rl/d t/e c M p s e /w o rk s p a c e /C o p s C V S /c o p s /ty p e s /G a s s N a m e /g u i

£ : r e a t « S o t i r c e -w, ■ ■ ■

t r sa ie S k e le to n Parameters- GUI S ou rre ;

fcdlt D isp lay GUI so u rce

Lrtii Param eters GDI S o t in e

D e le te D isp lay GUI Source j

D ele te Param eters GUI Source

Figure 3.14: Type Editor showing ClassName GUI Panel

By default, types are initialized to zero, empty string, false, or empty list values. At first

glance, it may seem that it would be convenient to initialize values via a GUI mechanism.

Digging deeper, we can see th a t initialization of values based on the contents of param e­

ters, and the initialization of lists, would add considerable complexity to such a GUI. The

approach chosen for intialization was to allow the setting of values through a standard data

access API. This standard API will be described completely in the next chapter.

Validation can also be very complicated, involving anything from checking the ordering

of list elements to the capitalization of the first character of a class name. Due to the

complexity and variety of validation tasks, the validation is performed with Java code.

For similar reasons, the conversion to a string is also handled by Java code. The GUI

code is created using a simple yet flexible framework which will be described in full detail

in the next chapter. Examples of GUI code will be provided later in this chapter.

In the GUI panel (Figure 3.14), the six buttons on the lower right provide three opera­

tions th a t may be performed for either the “Display GUI” or the “Param eters GUI” . These

buttons provide convenient access to the creation, manipulation, and deletion of the two

GUI source files.

The “Display GUI” is what will display the type to the CO2 P 2 S application programmer.

It also contains the code tha t will perform the initialization, validation, and / t t toString

conversion needed by CO2 P 2 S. This is the code responsible for the work shown in Section

3.3.

The “Parameters GUI” is what will display the type’s parameters to the pattern designer

37

; i l l '

in-1
(Float

Integer
: .List
rfNone
5 ReroriJ
' Suing
I Arq.arnentList

, A a q it? e n t e <1M e th o d
iiAugrnentedMeihodLrst
| < Ussvarne
■ 5 CiassOrlmerfaLeNarne
j: I <ception
| f xceptionlisi
: liientifiet
| l.lentifierSuttix
j; Method
1 MethodCuani
h jMethotlPrefix
j; .MethodSuffix
! KesultType
‘ IvppI •
; '■ • H i . i h l e

j V . lM .) | i |s ‘ l >»l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in MetaCC>2 P 2 S. Initialization and validation of the parameters is also performed by the

code in the “Parameters GUI” . This is the code responsible for the work shown in Section

3.4.

There are three operations th a t can be performed on each of the Java GUI files. A

skeleton template can be generated th a t provides framework and documentation for the

type designer to work from. The Java code can be edited by clicking on the edit button.

This will open the user’s favorite editor as defined in the CO2 P 2 S preferences. If no longer

needed, the Java file may be deleted by clicking the delete button. See Appendix C for the

skeleton code generated by the first two buttons.

Since the types involve the creation of Java code, the compilation of the Java code is also

required. This compilation occurs when you save the types via the file menu. Any errors in

the compilation can be detected and rectified immediately to prevent later problems.

3.5.2 Creating a N ew Type

To create a new type, the user clicks on the “New Type” button shown in the bottom left of

Figure 3.14. After entering a name for the type, the user needs to choose an existing type

to base the new type on.

If None is selected, the type will have no state of its own. It may add ancestors which

provide state, but when the ancestors axe removed, the type will have no state. Types with

no state can be used to add packages of behaviour for use in code generation. When a type

has no state, it may be inherited by any type, and it may inherit from any type.

If Record is selected, an empty Record will be created. The user may add local fields or

other Record-based ancestors. Unlike the local fields, inherited fields cannot be modified or

removed.

If List is selected, another dialog box will ask the user to choose the type for the elements

in the list. Lists of lists can be created.

If any of the other types are selected, the new type has a type of None and the selected

type is added as an ancestor. The added ancestor defines the state of the created type. For

example, if String is selected, the structure of the type will be a simple string value. If the

String ancestor is removed, the type will revert to None. When a type is based on a Record

of some sort, it will allow the addition of local fields. If no local fields are added and the

Record-based ancestor is removed, the sta te of the type will revert to None. If however,

local fields are added while the type has a Record-based ancestor, the type will remain a

Record when its ancestors have been removed.

If required, a type can be renamed or deleted at a later point. When renamed or deleted,

any data that previously used those types needs to be recreated within MetaCC>2 P 2 S and

CO 2 P 2 S. In addition, the GUI source files may need to be modified. Renaming and deletion

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of types requires changing or removing' references to the type. In practice renaming and

deletion is uncommon with m ature types.

3.5.3 How the T ype System M eets the Requirem ents

This section shows how the requirements of CO 2 P 2 S (Section 3.3.1) and MetaCC^P-rS (Sec­

tion 3.4.1) are met by the type system. It will do so in the context of types that are used

directly or indirectly by the Decorator pattern. The requirements are shown in italics and

the solutions in plain text.

Structure o f D ata

The structure of the data in the options must be defined, either implicitly or explicitly.

In the previous system, the structure of the data was defined implicitly by the Java

source tha t was written for each option type. In the new system, the options are specified

explicitly by combining types into a tree as shown in Section 3.5.1.

Since the structure is defined in a standard manner, the d ata within the system can

also be manipulated in a standard manner. The invention of file formats and internal data

storage techniques is not necessary. The system handles all of th a t automatically using the

pre-defined structure.

In addition to simplifying the code within CO 2 P 2 S and MetaCC>2 P 2 S, the pre-defined

structure specifies the interface to the data tha t will be used by the code generator. Record

fields are always accessed as fields within a class and lists are always accessed by standard

list operators. Accessing the data within a type is a well-defined process at any level of the

system.

For example, because the structure of data is well-defined, it was possible to add a

“Cancel” button to the dialogs in CO2 P 2 S. The Data models know how to backup and

restore their own data. This functionality is used by the automatically created dialog boxes

to provide the “Cancel” button.

In itia lization and V alidation

The values manipulated by the GUI need to be initialized and validated.

As described earlier, initialization and validation can be complex tasks. Even though

they may be complex, they can usually be expressed succinctly in the form of Java code.

To initialize or validate types, the type designer must provide initialization and validation

methods. Figure 3.15 shows the methods for initialization and validation of the String type.

The model tha t is passed to intializeModel () and validateModelQ represents the

structure of the String type. Since the structure of the String type is just a simple string, we

use it as such. Since the String type has parameters, we can get the Record tha t contains

those parameters by calling getParameters () on the String model.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void initializeModel(Data model) {
DataRecord params = model.getParameters();
model.asStringO .set(params.getStringC'stringDefault").get()

>

public String validateModel(Data model) {
DataRecord params = model.getParameters();

String label = params.getString("stringLabel").get();
String current = model.asStringO.get();

boolean emptyOk = params.getBoolean("stringEmptyValid").get();
if(!emptyOk kk current.equals("")) {

if(label.equals("")) {
return "Please enter a non-empty string.";

} else -f
return "Please enter a non-empty string for the field"

" labeled:\n" + label;
>

>

boolean defOk = params.getBoolean("stringDefaultValid").get();
String def = params.getStringC'stringDefault").get();
if(!defOk M current.equals(def)) {

if(label.equals("")) {
return "The default show here is invalid:\n" + def;

} else {
return "The default show here is invalid:\n" + def +

"\nlt cannot be used in the field labeled:\n" +
>

}

return null;

Figure 3.15: String Initialization and Validation

40

+

label;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In initializeModelO, the first thing we do is get the DataRecord that contains the

key/value pairs representing the String’s parameters. Second, the "stringDefault" pa­

rameter is retrieved. Since the elements in the param eters Record could be of any type, we

use getString(key) to cast the value to its proper DataString type. The DataString is

a container for a plain Java String. It supports the get() method which returns a String,
and the set (value) method which takes a String as an argument. Note tha t the model
is passed into the method as a Data instance. Since we need to use it as a string, we

call the convenience method asStringO on it to cast it to a DataString. Putting that

all together, initializeModelO initializes the value of the string to the contents of the

"stringDefault" parameter.

Looking at validateModelO, we can see th a t similar operations are occuring. Again,

the parameters are retrieved for the String type represented by the model. The "stringLabel"
param eter and the model’s current String representation are stored in convenience vari­

ables. Next, we fetch the "stringEmptyValid" param eter from the parameters Record.

Since this time the param eter is not a string, but a boolean value, we use getBooleanO to

perform the cast to a D ataBooleanfor us. As with DataString, we use the get() method to

access the boolean inside. After performing some validation logic, we return a string indi­

cating what has gone wrong. A similar process is repeated for the default value parameters.

If nothing is wrong, we simply return n u ll .

The type system will examine the return value of the va lid a teM o d elO type. If it is

non-null, it will display the provided error message and will ensure tha t the user makes the

appropriate changes before proceeding.

From these examples, we can see tha t the initialization and validation of types is per­

formed by retrieving and storing values using the methods that are part of the Data family

of classes. Aside from learning how to access the data model, the type designer uses simple

Java tools to perform the tasks of initialization and validation.

Though the code shown for initialization and validation is for CO2 P 2 S, the MetaCC>2 P 2 S

method is very similar. The only differences are th a t the type designer would only be ac­

cessing the param eters, and the parameters would be accessed in a slightly different manner.

G U Is and W id gets

Each pattern option has a GUI associated with it that is used within CO2 P2 S. These GUIs

may contain a variety of widgets.

To simplify the creation of GUIs, the type system assumes tha t the type designer will

be laying out a panel by specifying “rows” of widgets th a t flow from top to bottom inside

a container panel. If the type designer wishes to lay out the widgets in a more complicated

manner, it can be done using the standard mechanisms provided by the Java Swing Library.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void initializePanel(Data model) {
// Create a new panel into which we will stuff a label and a text field
Box panel = Box.createHorizontalBoxO;

// Put the parameter stuff into convenience variables.
DataRecord parameters = model.getParameters();
String label = parameters.getStringO'stringLabel"),get() ;

// Add the label.
panel.add(new JLabel(label));

// Add a bit of space.
panel.add(Box.createHorizontalStrut(5));

// Add the field.
panel.add(new JTextField(model.asStringO , null, 0));

// Add our dual-widget panel to the main panel,
add(panel);

>

Figure 3.16: String GUI Source

Instead of providing a few fixed widgets, the type system provides models upon which

widgets act. In Figure 3.16, the JT ex tF ie ld is created with model .a s S tr in g O as its data

model. The D a taS trin g class follows the Java Document interface. The other members of

the D ata family also provide similar models th a t can be easily attached to widgets. The

models will be discussed further in the next chapter.

If a model cannot be easily attached to a widget, the widget can just be created man­

ually based on the primitive values stored in the data model. The type system provides a

dumpToModelO method tha t will be called when the information from the GUI is required

by the model. The type designer need not worry about using events to update the model

when the GUI contents change. Like the validateModelO method, dumpToModelO may

return a String indicating tha t an error has occured.

The GUIs for CO2 P 2 S and MetaCO-2 P 2 S are created using the same techniques. There

is no longer any need to learn many different methods for creating GUIs.

As seen in Figure 3.16, the creation of a GUI involves combining standard Swing widgets

and Data models into a panel. The final add() method adds the constructed label/field box

to the main panel. If the panel needs to be displayed as a dialog, the type system will handle

that automatically.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void initializePanel(Data model) {
add(getSuperPanel("Method"));
addSpacer();
add(getSuperPanel("MethodGuard"));
addSpacer();
add(getSuperPanel("MethodPrefix"));
addSpacer();
add(getSuperPanel("MethodSuffix"));

>

Figure 3.17: AugmentedMethod GUI Source

C om p osition o f G U I C om ponents

Support the composition of larger GUIs from, smaller GUI components. There is also a need

for the ability to spawn child dialog boxes to manipulate smaller pieces of each option.

While the old system provided some support for creating GUIs from smaller components,

the combination of GUI components was limited to the small set of built-in types. The new

system provides a unified approach for combining all types of GUI components. There

are three mechanisms for combining existing types into larger GUIs. The GUI panel for a

given ancestor can be retrieved. A GUI panel for fields or list elements can be retrieved.

As well, dialogs can be automatically created for fields or list elements. An example of

the construction of the AugmentedMethod GUI is shown in Figure 3.17. This example

demonstrates the simplicity of combining GUIs from ancestor types into a larger GUI.

GUIs for fields and list elements are created in a similar manner. Suppose th a t the

passed in model represents a record with a String field named “foo” . We could create a GUI

for the String by performing one of these operations:

• model .getData("foo") .getPanel () This method returns a panel which might then
be add () ed to the parent panel.

• model.getDataC'foo") .getDialogO This method spawns a dialog that can be
used to modify the contents of the “foo” field.

Using these simple techniques, complicated GUIs can be created using the many available

smaller components.

Lists o f A rbitrary Item s

Support lists of arbitrary items without having to create a complicated list GUI each time.

Though the previous type system had a rudimentary parameterized list type, it rquired

the creation of substantial amounts of Java code to function. The new system requires that

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void initializePanel(Data model) {
DataRecord params = model.getParameters();
String title = params.getStringO'augmentedMethodListTitle").get();

DataJList jlist = new DataJList(model.asList(), title);

add(jlist);
}

Figure 3.18: AugmentedMethodList GUI Source

the user specifies the exact contents of their lists, but still allows for the easy creation of

lists.

We just saw an example of how the AugmentedMethod GUI was created. Figure 3.18

shows how a list of these would be created. Note tha t the underlying data structure is spec­

ified as a List of AugmentedMethod elements. The DataJList and DataJTable types were

created to make it easy to display and edit lists. The DataJList and DataJTable types

will be described in detail in the next chapter. In this case, we can see th a t creating a fully

functional list is as easy as passing the model and an optional title to the DataJList con­

structor. The items in the list are displayed according to their visual string representation,

described next.

String R epresentation o f A rbitrary D ata

In the graphical representation of the pattern, options need to be converted to a string form

to be displayed. In the case the option is already in a form similar to a string this conversion

is trivial. For complicated structures like lists and records, more capabilities are needed.

In the old system, this conversion to strings was still performed, but the new system

does so in a more consistent and simpler manner. Figure 3.19 demonstrates how an entire

method signature string can be constructed from its component types. It is basically a

m atter of performing a few Java operations to combine the string representations of the

various fields and list elements.

Like the GUI panels, the string representations of ancestors can be accessed using the
getSuperString("ancestorType") method.

Param eters

Types need parameters to make them more flexible. Without parameters, almost all options

would require the creation of their own unique type.

We have seen how parameters can be used to make types more flexible. The structure

of the parameters is defined within the type editor, making it apparent which parameters

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public String toString(Data model) {
String res = "";
DataRecord rec = model.asRecordO;
res += rec.getData("resultType").toStringO;
res += " ";
res += rec.getData("name")-toStringO;
res += "(" ;
Iterator it = rec.getList("arguments").iterator();
while(it .hasNextQ) {

DataRecord arg = (DataRecord)it.next();
res += arg.getData("type")-toStringO;
res += " ";
res += arg.getData("name").toStringO;
if (it.hasNextO) res += ",

>

res += ")" ;
return res;

>

Figure 3.19: Method toString Source

each type has. As with the normal data structure, what was implicit in the old system has

been m ade explicit in the new system.

Inter-O ption C hecking

The type system should provide support for validating and enabling or disabling options based

on the content of other options within the pattern. To do this, standard methods must be

provided to check the data within other options.

Though inter-option validation and enabling was not implemented in time for the thesis,

well-defined mechanisms for accessing the option data are provided. The standardization of

data access makes the implementation of inter-option checking straightforward.

E asy T ype C reation

A large variety of types are needed for the many facets of code generation. I t should not be

difficult to create new types. The ability to base new types on existing types would also be

helpful.

All through this chapter there have been examples of how types can be created using

other types as a starting point. Most individual types require only a basic structure and a

handful of lines of Java code. This makes it easy to understand existing types and create

new types.

Once these types are created, they are seen by the pattern designer as tidy bundles that

can simply be used from the familiar GUI environment of CO 2 P 2 S and MetaC02P2S. The

4-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern designer is no longer required to write substantial amounts of Java to display or

perform code generation for complex pattern options.

When creating types, the type editor performs checking to ensure tha t the types never

fall into an inconsistent state. Whenever a change is attem pted in the type editor, it will

be checked for validity before it is allowed to occur. The early detection of mistakes assists

the type designer in the type creation process.

M odularity

Well-defined interfaces that allow for modularity within the CO2 P2 S system are desirable.

Though not mentioned before, modularity was one of the goals of the type system. The

ability to separate pieces of the system makes it easier to develop extensions that replace or

modify existing modules in the CO2 P 2 S system.

Since the structure and parameterization are well-defined, it is much easier to develop

separate tools that works with the data. Before, the structure was defined implicitly by

writing Java code. W ithout examining the Java code, one could never be sure what format

the data would be in. In fact, the code generator could not be separated from the definition

of the types, because the d ata format was proprietary to each type.

3.6 Summary

This chapter has examined the Decorator pattern and a number of examples of types. It

has described how the type system shown in Figure 3.1 fits together. The precise APIs and

underlying design decisions behind the type system will be examined in the next chapter.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Type System D etails

The previous chapter discussed a few examples th a t demonstrated the use of the type

system. This chapter will examine some of the design decisions in the type system. It will

also provide details of the API used by the type designer in creating new types.

4.1 Type Combination

Sometimes the type designer wishes to combine the functionality of two or more individual

types into an aggregate type. If the types being combined do not depend on data contained

within the other, a simple record can be used to combine them. In the record, there

would be one field for each of the required types. If a type depends on data contained

within another type, a more complex technique for combining types is required. As an

example, many patterns use methods, naturally leading to a type tha t represents a method

signature. Sometimes these methods need to be prefixed and suffixed by additional methods

that cause some change in behaviour. The techniques for performing type combination will

be demonstrated by combining the three types shown in Figure 4.1. MethodPrefix and

MethodSuffix both require the information provided in a MethodSignature. Three ways to

create aggregate types were identified: References, Delegation, and Inheritance.

MethodSignature
~ String (name)
~ String (returnType)
L List of Argument (arguments)

MethodPrefix
hString (prefixName)

Boolean (prefixExists)

MethodSuffix
hString (suffixName)
^Boolean (suffixExists)

[Parentheses contain names of fields within the records, j

Figure 4.1: Example Types to be Combined

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AugmentedMethod
MethodSignature (signature)

MethodSignature
String (name)
String (returnType)

LList of Argument (arguments)

MethodPrefix (prefix)

MethodSuffix
String (suffixName)
Boolean (suffixExists)
Reference to Method Signature (ref)

■MethodSuffix (suffix)

MethodPrefix
String (prefixName)
Boolean (prefixExists)

LReference to Method Signature (ref)

Figure 4.2: Combining Types Using References

4.1.1 References

One way to combine types is to allow types to have references to other types. Figure

4.2 demonstrates this technique. In the figure you can see that a “Reference to Method

Signature” has been added to the MethodPrefix type and the MethodSuffix type. The

MethodPrefix and MethodSuffix types can follow the references to find the data they need

from the MethodSignature. The type designer would access the signature, prefix, and suffix

as fields of the new AugmentedMethod. The references, as shown by the arrows, are specified

when AugmentedMethod is created. The type designer would need to specify where the

references pointed. In this case, the s e l f . s ig n a tu re identifier would be used to resolve the

two references. The main disadvantage of this technique is the added complexity of dealing

with the references. Instead of somehow resolving themselves, the type designer must create

explicit links for each reference. As an advantage, name conflicts are avoided due to the

separation of the types into individual fields.

4.1.2 D elegation

In the case of the method signature example, there are three pieces of code tha t will ulti­

mately be produced by the code generator. One of these is the delegated call to the method

that matches the method signature. Another piece is the call to the prefix method that

may modify the arguments which will be passed to the delegated method call. The call to

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AugmentedMethod

MethodSignature
_ String (name)
"String (returnType)

List of Argument (arguments)

MethodSuffix
"String (suffixName)
"Boolean (suffixExists)
Decorates (r e f) ,

MethodPrefix
"String (prefixName)
"Boolean (prefixExists)
Decorates (r e f) '

Figure 4.3: Combining Types Using Delegation

the suffix provides an opportunity to do post-processing and potentially modify the return

value provided by the delegated method. In this example, it is possible to think of the

MethodSuffix as decorating the MethodSignature by supplying additional code after the

delegated call. The MethodPrefix further decorates by providing additional code before the

delegated call. Figure 4.3 shows how the AugmentedMethod would be constructed. The

outer MethodPrefix decorates a MethodSuffix, which in tu rn decorates a MethodSignature.

When MethodPrefix tries to access the r e f .name field, MethodSuffix will determine that it

does not own tha t field and will pass the field access on to M ethodSignature.

Note th a t the technique described here is not decoration in the sense of the design

pattern. There is no common interface specified for the different types. The types just

provide mechanisms for accessing the wrapped types, more like a system of delegation.

Delegation and inheritance are able to solve similar problems [27, 28]. One of the advan­

tages of delegation is tha t the ordering of member resolution can be specified at runtime.

However, the runtime specification of the ordering would shift some of the burden from the

type designer to the pattern designer. To avoid this, the order of delegation would need

to be specified at type creation time. This is no easier than specifying the resolution or­

der of classes in some multiple inheritance systems. Using delegation to share data leads

to additional issues also found in multiple inheritance. If two types share the same field

name, there would be no way to access the inner field without providing additional access

mechanisms. Using delegation under these conditions is no less difficult than using simple

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inheritance

Multiple Inheritance

Bold indicates
inherited fields.

MethodSignature
- String (name)
“ String (returnType)

List of Argument (arguments)

MethodSuffix
“String (suffixName)
“Boolean (suffixExists)
“String (name)
“String (returnType)
List of Argument (arguments)

MethodPrefix
“String (prefixName)
“Boolean (prefixExists)
“String (name)
“String (returnType)
List of Argument (arguments)

AugmentedMethod
“String (name)
“String (returnType)
-List of Argument (arguments)
“String (prefixName)
“Boolean (prefixExists)
“String (suffixName)
LBoolean (suffixExists)

Figure 4.4: Combining Types Using Inheritance

multiple inhertance.

In the investigation of delegation and inheritance, the option of using a prototype-based

system [11, 21] was also considered. Prototypes would be useful in a code generation lan­

guage in that you could simply clone an existing type, make modifications, and then use

those modifications to produce additional code. However, using prototypes in tha t situation

is more complicated than it needs to be. Since the modified prototype is not likely to be

reused, the programmer might as well write the code outside of the object. As well, the

prototype model does not extend well to the idea of having a self-contained type, which may

be accessed repeatedly by pattern designers. Having a set of classes would be more intuitive

to the pattern designer, who would be familiar with Java.

4.1.3 Inheritance

Instead of using references, inheritance shares data by combining inherited and local fields

directly within the same type. For an example, see Figure 4.4. Inheritance was used in the

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type system for the following reasons:

• Inheritance removes the need for the type designer to explicitly specify references to

other types.

• Inheritance would be familiar to the type designer, who would have used Java.

• When inheritance occurs, the resulting data structure is no more complicated than the

simple combination of the ancestor types. Understanding the structure of the data is

simple.

• As will be explained in the next chapter, the Python[6] language is used as part of the

code generation system. Using inheritance makes the types fit naturally with Python.

In an inheritance based system, there are a number of issues that must be considered.

Single Inheritance versus M u ltip le Inheritance

Single inheritance is often easier to use and implement when compared with multiple inher­

itance. However, single inheritance leads to some issues that are not easily resolved without

a more flexible mechanism. When seeking to combined multiple types, single inheritance

dictates that a chain of types must be created. If the types are loosely related, this chain

of types may create intermediate types th a t make little sense on their own. W ith multiple

inheritance, it is easier to add a new feature to an existing type anywhere in the type hier­

archy. Multiple inheritance was chosen because the additional simplicity of representation

was more important than the negative aspects of the issues discussed mext.

D ata Copying and N am e C onflicts

Knudsen [20] demonstrates the different relationships possible in a multiple inheritance

system. The basic choice Knudsen describes is the ability to specify whether the base class

is copied. Figure 4.5 shows the essence of this choice. Because of the variety of circumstances

under which general purpose inheritance might be used, Knudsen advocates flexibility in

allowing the programmer to choose how ancestor types are combined. To maintain the

simplicity of the type system, the base class, A, is not copied. D will only be able to see one

copy of the members from A. Because one of the primary purposes of inheritance was to

allow for data sharing, always copying the base class would not work. Providing the choice

would have made the system more complicated than it needed to be. If the type designer

needed another copy of the base class, the missing behaviour could be emulated by creating

fields for B and C in D.

W ith any form of inheritance there is the potential for name conflicts. W ith single

inheritance, we can resolve these conflicts in a straightforward manner by using the member

closest to us in the inheritance hierarchy.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: Multiple Inheritance Example

W ith multiple inheritance, dealing with conflicts is more complicated. Some languages

provide mechanisms to rename conflicting members to avoid conflicts. To promote the sim­

plicity of the type system, name conflicts are not allowed. Because of this, no mechanism is

needed to explicitly resolve name conflicts in the structure of the data. Note th a t parameters

use a naming convention th a t places the name of the type before the rest of the parameter

name. Though conflicts may be tricky to resolve when they do occur, they seem to occur

rarely in practice.

W ith multiple inheritance, it is not always clear where a particular method comes from.

Since the type system does not clone the base class, it is possible to create a linearization

of the type hierarchy which may be traversed when searching for a particular method. This

is the technique used by Python as described in the next section.

M ethod R eso lu tion O rder

Due to the use of Python as the underlying language for the code generator, the type system

adopted the use of the Python method resolution ordering[8]. When determining which

method to use, the type system must make sense of the type hierarchy. If the hierarchy is

a simple tree, we need only search up the tree until we find a matching method. However,

with multiple inheritance the situation becomes more complex.

Each type can have multiple ancestors. These ancestors ultimately need to be traversed

in some order when seaching for methods. The type editor allows the type designer to

change the ordering using the “Move Up” and “Move Down” buttons shown in Figure 3.12.

The higher the ancestor is in the list, the sooner its methods will be resolved. In other

words, the higher a type is in the list, the more specific it is considered to be.

Figure 4.6 (taken from [8]) shows how the method resolution order can be ambiguous.

In Figure 4.6, the types inherited from the left take precedent over the types inherited from

the right. We can see from Figure 4.6a tha t class A implies an ordering of (X, Y), meaning

that a method of the same name in X and Y will come from X. Class B implies an ordering

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) O)

Figure 4.6: Method Resolution Order

of (Y, X). When class C combines A and B, the order of resolution of X and Y becomes

ambiguous. In Figure 4.6b, class C implies an ordering of (A, B), but class B itself implies

an ordering of (B, A). T hat situation is also ambiguous. The type editor will not allow the

type designer to create ambiguous type hierarchies. It performs checks to ensure th a t valid

resolution orders can be created for all of the types on the system. The method resolution

order is constructed according to the algorithms from [8].

Forms o f S ta te

In conventional class-based systems, everything is like a record with fields. When inherting

from other classes, we would simply check for conflicts between the fields. In the CO 2 P 2 S

type system, types can take the form of numbers, strings, or lists. In these cases, inheritance

must be handled slightly differently. For example, it does not make sense to combine a string

and a record directly. To handle this, when using a non-record type there is only one type

within an entire inheritance hierarchy that may provide its own state. This base type would

be either String, Boolean, Integer, Float, or a user-defined List type.

For simplicity, inheritance of fields is not allowed in anonymous records within the type.

Fields can only be inherited in the top level records of user-defined types. As a clarifying

example, suppose we have a type A and a type B. We need to create a list of A plus B.

Allowing the inheritance of fields inside anonymous records is akin to combining a list of A

and a list of B. T hat behaviour is not allowed, forcing the user to create a list of C, where

C is a combination of A and B. The later model makes more sense since each C element

would know how to handle itself.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ExampleType Parameters Record
“ String (exampleTypeParamOne)

String (exampleTypeParamTwo)

String Parameters Record
“ String (stringLabel)
“ String (stringDefault)
“ Boolean (stringDefaultValid)

Boolean (stringEmpty V alid)

String Parameters Record
“ String (stringLabel)
“ String (stringDefault)
“ Boolean (stringDefaultValid)

Boolean (stringEmptyValid)

Figure 4.7: Accessing Parameters

4.2 Accessing Parameters

As explained earlier, each type is associated with a record containing zero or more param ­

eters. In Figure 4.7 there is an ExampleType Record with two fields. One of the fields,

innerList, is an anonymous List of Strings. The other field, innerString, is a String. On

the right side of the figure are the parameters th a t are associated with each component of

the type. Though there is only a single type shown on the left, the composition of smaller

types has created a situation where many param eters exist. It may be necessary for the

higher level type to modify the GUI label for one of the inner strings. To do this, there must

be a way to access the parameters of contained types. In the Display GUI which is used in

CO 2 P 2 S, a Data model is passed in. In the Param eters GUI, a DataTree tree is passed in.

To access the param eters in Figure 4.7 via the model and tree, we would do the following:

DataRecord params;

// Display GUI
params = model.getParameters();
params = model.getData("innerList").getData(O).getParameters();
params = model.getDataO'innerString").getParameters();

// Parameters GUI
params = tree.getParameters();

54

ExampleType
“List (innerList)

L String -------------
String (innerString)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

params = tree.getField("innerList").getElementQ.getParameters();
params = tree,getField("innerString").getParameters() ;

When accessing the normal model’s list, we get the individual list element (0 in this

example) and use its parameters. Normally one would not need to access parameters as

part of a list, so this is just shown for completeness. The normal case would be that the

String GUI would simply use the param eters tha t were set, even if they were specialized for

ExampleType.

When accessing the tree from the code th a t runs in MetaCC>2 P 2 S, the calls are slightly

different. In particular, when accessing the parameters for the list element, we would call

getE lem entQ to modify the parameters used for all instances contained within the list.

Conceptually, the parameters are designed to be set in M etaC02P2S (by the parameters

GUI) and then read in CO2 P 2 S (by the display GUI).

4.3 A PI Overview

This section provides an overview of the parts of the API tha t the type designer might need

to use. The rest of the API is documented in Appendix E. The classes are divided into three

categories. D ata access classes are used to read and write the data contained within the

type instances. Framework classes make up the inherited framework th a t the type designer

works within. Finally, the GUI classes provide some useful widgets for the type designer to

work with.

4.3.1 D ata Access Classes
D ataT ree

The D ataTree class is used within the Param eters GUI to access the param eters th a t are

part of the type. This was explained in Section 4.2.

D ata

This is the superclass for the remainder of the data access classes. It provides common

functionality. See Appendix E for the full list of methods.

class Data {
// Access Methods
public DataRecord getParametersO ;
public JPanel getPanelQ;
public boolean createDialogO;
public String toStringO;

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Casting Methods
public DataString asStringO;
public DataBoolean asBooleanO ;
public DataBoolean asIntegerO;
public Datalnteger asFloatO;
public DataList asListO;
public DataRecord asRecordO;

>

getP aram eters() Returns the param eters associated with this data item. If none are

available, n u l l is returned.

getP an el() Returns the JP an el for this data item. This method is used to access the GUIs

of child elements. If no panel is available, n u l l will be returned.

createD ialogQ Creates a dialog whose contents are the same as the panel returned by

g e tP a n e lO , The dialog will have “OK” and “Cancel” buttons. If “Cancel” is selected,

any changes to the model will be rolled back. Cancelling a higher level dialog will

also cancel the changes made by dialogs created from inside the higher level dialog.

c rea teD ia lo g O returns t r u e if the dialog is “OKed” , f a l s e otherwise.

toS tr in g() Returns the string representation of this data item.

C asting M e th o d s These methods simply perform a cast to one of the indicated Data

types.

D ataString

D ataS trin g is a container for a Java S tr in g . This class implements the Document interface,

providing a convenient model for use in text widgets.

D ataB oolean

DataBoolean acts as a wrapper for a boo lean Java primitive. It also provides the ButtonModel

interface for easy manipulation using various button-like widgets. JCheckBox is able to take

advantage of the ButtonModel interface.

D ata ln teger

This class acts as a wrapper for a long Java primitive.

D ataF loat

This class acts as a wrapper for a double Java primitive.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DataGui

TYPE„metacops) [TYPE_cops

DataMetaGui DataCopsGui

User-Created User-Created
Parameters GUI Display GUI

Figure 4.8: Type Framework

D ataL ist

This class acts as a full featured list data type. It implements a number of Java interfaces

for easy access to the underlying type. Operations such as sorting can be accomplished

through the List interface. GUIs can be created based on ListModel or ComboBoxModel.
Note that the DataList performs checks to ensure that only elements of the right type can

be added. Elements of the right type can be created using the create factory methods.

Creating an element does not add it to the list; this must be performed as usual through

the List interface methods.

D ataR ecord

This class provides the Map interface for manipulating records. Note that the optional

c le a r () , p u t() , p u tA llO , and rem ove() methods are not supported.

4.3.2 Framework Classes

The types in this section are used in the creation of the display and parameters GUIs.

Remember that the GUI source includes not only GUI creation, but also initialization and

validation. The class hierarchy is shown in Figure 4.8 with the user created types at the

bottom.

D ataG ui

At the highest level, the DataGui class provides functionality th a t is common to both the

parameter and display GUIs. This class is itself a JPanel. In the constructor, the JPanel is

set to use a vertical box layout.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D a ta C o p s G u i

This class is used as the superclass for all of the “Display GUI” classes. It provides default

implementations of the five methods that need to be overridden.

class DataCopsGui extends DataGui {
public void initializeModel(Data model);
public void initializePanel(Data model);
public String dumpToModel(Data model);
public String validateModel(Data model);
public String toString(Data model);

protected JPanel getSuperPanel(String ancestor);
protected String getSuperString(String ancestor);

>

in itia lizeM o d e lO This method is responsible for initializing the contents of the given

model. If it is not overridden, the model will be initialized with empty lists, zero

numeric values, empty strings, and false booleans.

in itia lizeP an el0 Responsible for creating the GUI panel. If this method is not overridden,

the type will not be available for selection in M etaC02P2S. The contents of the panel

must reflect the information in the provided model.

d u m p T o M o d elQ If the GUI does not automatically update the underlying models, this

method can be used to store the values from the GUI into the model. In CO2 P 2 S,

this method will be called when a dialog is accepted or even cancelled. If all is well,

n u l l should be returned. If an error occured, a string indicating the problem should

be returned.

validateM odel() This method is used to confirm th a t the contents of the model are correct.

If they are, n u l l should be returned. If they are not, an error string should be returned.

to S tr in g () Returns the string representation of the type. If to S tr in g O is not provided

and the type is based on a String, Boolean, Integer, or Float value, the simple string

representation of the value will be used. For Records and Lists, default strings will be

automatically generated but they are not particularly helpful. If the type designer is

creating a Record or List based type tha t might be displayed in a list or as part of a

pattern GUT, the designer should override this method.

g e tS u p e rP a n e lQ Given the name of an ancestor type, this method will retrieve the GUI

panel used to display and manipulate the ancestor’s structure.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getSuperString() Given the name of an ancestor type, this method will retieve the string

generated by the ancestor type.

D ataM etaG ui

This class is used as the superclass for all of the param eter GUI classes. It provides default

implementations of the four methods that need to be overridden. This class provides similar

methods to DataCopsGui, only it does not include to S tr in g O or g e tS u p e rS tr in g O .

4.3.3 G UI Classes
DataJT able

In combination with DataJTableM odel, the D ataJT able type provides a flexible way to

display lists of editable items. It is based on the Java JT able class. Figure 3.7 includes two

of these tables.

D ataJL ist

The DataJList class provides an editable list of arbitrary elements. The only requirement

is tha t the list elements provide a sane toStringO implementation. Figure 3.6 provides an

example of the list.

4.4 Inheritance Issues

As explained in Section 4.1.3, the type hierarchy is linearized to provide a method resolution

order. This resolution order is used in the initialization and validation of types.

First, the type system creates the linearization of the type hierarchy. For initialization,

the type system traverses this hierarchy and initializes the types starting with the least

specific. The fields of each type are initialized before the type itself is initialized. This

allows more specific types to override the initialization of less specific types.

For validation, a similar process occurs, except the valid a teM o d elO method is called

first for more specific types. This allows more specific types to produce more informative

error messages. Note th a t there is no way to override the validation provided by the less

specific types. As an example, the ResultType type allows all valid Java type names as

well as the v o id type. In the Type type, which specifies types of variables, we do not wish

to allow the vo id type. In this case, Type m ust inherit from ResultType, since Type’s

validation is more limiting.

No autom atic inheritance occurs for the i n i t i a l i z e P a n e l 0 or dumpToModelO meth­

ods. When a type provides the i n i t i a l i z e P a n e l () method, it also signifies tha t it has

a GUI available for use. Not inheriting the panel initialization leaves the type designer

with the choice of providing a GUI. As well, since no GUI is provided by default, the type

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

designer must explicitly choose an ancestor GUI in the case of multiple inheritance. Since

dumpToModelO is functionally tied to i n i t i a l i z e P a n e l (), it makes little sense to allow it

to be inherited independently of the panel initialization.

4.5 Type Storage

Types are stored in a single directory. This directory contains the ty p e . xml file, any Java

GUI files, and the code generator source file. Previously, types were scatted throughout the

CO 2 P 2 S directory hierarchy.

Types are stored as XML as described in Appendix D. As well, when types are in use

they are stored using the XML described in the CopsData namespace. The DTDs related

to type storage and use are all provided in Appendix D.

4.6 Existing Types

This section provides a brief list of the existing types. The fundamental types are not

included in this list as they have been described elsewhere.

A rgum entL ist A list of type/nam e pairs. This represents a list of arguments tha t would

be passed into a method.

A u gm en ted M eth od A complex type th a t combines the functionality of Method, Meth­

odSuffix, MethodPrefix, and M ethodGuard.

A u gm en tedM eth od L ist A list of AugmentedMethods.

C lassN am e Represents a valid class name. Does not enforce the convention that the first

letter of the class is upper-cased.

C lassO rlnterfaceN am e Represents the name of a valid class or interface. A checkbox is

provided to differentiate between classes and interfaces.

E x c e p tio n An exception that may be thrown by a method. Represented simply as the

name of the exception.

E xceptionL ist A list of elements of the Exception type.

Id e n tif ie r A valid identifier.

IdentifierSuffix A valid suffix to an existing identifier. An IdentifierPrefix type is not

necessary as it would follow the same rules as Identifier.

M eth o d A method with a name, a result type, and lists of arguments and exceptions.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M e th o d G u a rd Represents a m ethod th a t acts as a check to see if a delegated method

should be called.

M e th o d P re f ix Represents a method th a t can modify the parameters th a t are passed to a

delegated method. It may perform additional operations before the delegated method

is called.

M eth o d S u ffix Represents a method th a t can modify the return value from a delegated

method. It may also perform additional operations after the delegated method is

called.

R esu ltT yp e Represents any valid Java type including the void type.

R esu lt Variable Used for code generation, assisting in generation related to ResultTypes.

Represents a named variable with a certain ResultType type.

T ype Represents any valid Java type.

TypeW rapper Used with code generator to create and manipulate object wrappers for

the Java primitive types.

Variable Stores a name and type th a t make up the identify of a variable.

VariableList A list of Variables.

4.7 Sum m ary

This chapter provided further details about the type system. Design decisions and issues

were examined. The API of the type system was described briefly, and the implemented

types were listed. The next chapter discusses the code generation subsystem, also showing

how types are used in the creation of application source code.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Code Generation

To be of use, a generative design pattern must produce functional source code. The user of

the pattern specifies the application requirements via options defined in the CO 2 P 2 S GUI.

The pattern designer must build the pattern to take those options and produce a customized

implementation. Previous chapters demonstrated the use of types for GUI display and input

validation. This chapter will cover the use of types during code generation. The CO2 P 2 S

Generation Language (CGL) will also be covered.

5.1 Overview of Generation Subsystem

Figure 5.1 shows the flow of d ata within the code generation subsystem. To generate the

pattern source used in the application, three groups of input are required. F irst, the pattern

template itself is required. This would be composed of the Java source, annotated with CGL.

The CGL annotations affect what Java is ultimately produced by the generation system.

In addition to the pattern tem plate provided by the pattern designer, the option values

used to configure the pattern are needed. The application developer provides configuration

information via the CO 2 P 2 S GUI. The configuration information is then passed to the code

generator as an XML file containing the option values. As well, code fragments (such as the

body of a method) may be provided by the application developer. The third group of input

to the code generator is the type information. As discussed previously, each option value

has a type which specifies the code generated for that option. The generation functions

needed for each type are specified using Python, possibly with embedded CGL.

Once all of the inputs have been collected, the code generator produces compilable, yet

specially annotated Java source. Jalopy [3] is used to do whitespace formatting. Finally,

a post-processing step uses the special annotations and produces Java source and HTML

templates. These HTML tem plates are used by the CO2 P 2 S GUI to allow the application

developer to enter code fragments and view the important parts of the output source.

Figure 5.1 shows five inputs to the code generator. The option value XML is generated

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o o uses

Application Developer

Code Generator

. i j : M - I e r i p l t i ! . 1-A n i M i a u M * l : i \ a v m n v

Jalopy

i •■uni’ iiili.i! A n iw i 'a iL -i i . i v j S o u

Legend

c-S o cr-.v
i l 'v ’i i ir i.iL'lii.i-1!;:- .

Figure 5.1: Code Generation Subsystem

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 KfV: -’v.' .» Cv.'n:*:-
:s w here you c rea te the custom code fo r your type. Th is custom code w ill be used

v th e g e n e ra to r w hen p ro du c in g code fo r the type.

•ir m ore deta ils , see the g en era te d skeleton code.

lo m e /p a te a rl/d l/e d ip s e /w o rk s p a c e /C o p s C V S /c o p s /ty p e s /R e s u ltV a r ia b le /ty p e .p y

C reate S k e le to n P y th o n S o u n e <•

Edit P ython Source

D e le te P ython Source

Figure 5.2: Type Editor Code Generation

from the configuration information provided by the application developer. Aside from the

option values, there are four other inputs to the code generator. One of these is the XML

type definition, created by the type editor. The type definition contains information such

as the ancestors and fields of the type. The other three inputs are the type-specific code,

the pattern tem plate code, and the user code fragments.

5.1.1 Type-Specific Code

Each of the option types within CO2 P 2 S has the ability to generate code in a specific manner.

Some abilities are provided by the CO2 P 2 S system, while other abilities are provided by

the type designer. Internal abilities allow the String, Boolean, Integer, and Float types to

generate default representations of themselves. Designer-provided abilities come in the form

of methods, which are attached to each type.

Figure 5.2 shows the panel where the code generation for the Result Value type is spec­

ified. Just like the GUI panel discussed previously, there are three actions tha t may be

performed. A skeleton file, containing informative comments and empty methods, can be

created. The file can then be edited or removed. To see the generated skeleton file, consult

Appenix F.

Inside the file are the methods provided by the type designer. There are two special

methods, i n i t () and s t r i n g (). The i n i t 0 method is used to prepare the type and might

be used to create or modify fields within the type. The s t r i n g () method is used to specify

the default representation of the type. Other methods may be created, adding custom

64

S' EM*
|:TVi»*S ■

! 1st

NuiiC
1 Record

S tu n g
f JA rg u m e n tL is t

A u g m e n te d M e th o d
f fA iig m e n te d M e th o d L is t
5 C lassN am e
| C la ssO rln te rfac e N aro e

l i ' f E x cep tio n
| |E x c e p t io n U s t
i Id en tifie r
! Id en tifie rS u fftx
j M eth o d
} ^M ethodG uard
t M e th o d P re fix
jij M eth o d S u ffix
f] R esu ltT y p e
I ResuftVaruhh!
I' J y p e
| T y p e W n p p e r

I V.- \
N A ,\\if Rert«JT:*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Python ----

def a rg u m e n ts (se lf) :
"""R eturn th e names of th e v a r ia b le s s e p a ra te d by commas."""
re tu rn " , " -jo in(m ap(lam bda x: x . name, s e l f))

— CGL —

c g l (r ’ ’ ’

#macro a rg u m e n ts(se lf)
fo r a rg in s e l f

#em it arg.nam e
i f n o t l a s t

#em it " , "
#end

#end
#end

, , ,)

Figure -5.3: Example M ethod from VariableList Type

functionality to the type.

Figure 5.3 shows an example of a custom m ethod th a t is part of the VariableList type.

The first example shows the method written using some of the features of Python. The

second example shows how the method can be written in CGL.

Note th a t the CGL method is enclosed in c g l (r ’ ’ ’ . . . ’ ’ ’). To avoid preprocessing

Python code, embedded CGL is handled via the c g l () call in combination with a multi-line

string.

The type files themselves are created by the type designer, the most advanced user of the

CO 2 P 2 S system. P attern designers would not need to concern themselves with the internal

implementation of the types.

Unlike the Java GUI for the type, no compilation is needed for the Python file used in

the code generator. The types are loaded at generation time, leading to a fast development

cycle for the types themselves.

5.1.2 Pattern Tem plate Code

The pattern template code is the annotated Java source created by the pattern designer.

This template code generally contains the bulk of the information in a pattern; it is used to

generate the source code for use in applications.

The majority of the template code will be in one or more . j ava files th a t reside in the

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i ilr- . n* u o v i ' r n i i* *s% ! ;tn

ft .1 •

VS*\ rti M ■TdL&'aa

jja iro ra to r

-IlllllMl .

ŝ9"1116i <|! ? « illll
\ ii»W 5>at»aifi
opis'U p4M*in
PpUlf-HMf > it*\ Nalfi"
* . c » i * e « o i d t y ! S ' l p n - i d * i s

S p f (i i i ik p o n s 1!! ' ■

{.it:: 'iclmd f n«

f i t

}«»i

Ijlt;.: i I f ! ^ ̂ i' £ :::! ̂ ‘ ^ !'A ̂ ̂ ̂ ̂ !■ ̂ & 3' I ̂ ' I ■ ^ ^ - ̂ (\ '■ \ ̂ ̂ ^ 9 ' ' ? \ “! ̂ M W '' i ̂ '
i, rr->rt--r— --

Figure 5.4: Decorator Template Example

framework directory. When the generator is processing the code, it will examine all of the

files in the framework directory. Note th a t there need not be a one-to-one relationship

between input files and output files.

In addition to the regular Java files, there is also a p a t te r n , c g l file which is used to

store pattern-wide macros. If a macro is needed in multiple tem plate files, it would be

placed in p a t t e r n .c g l in the framework directory. Aside from the types themselves, this

is the mechanism for sharing code and handling changes which crosscut multiple template

files. If needed, pattern-wide convenience variables can also be created in p a t t e r n , cg l.

The annotations used in the Java code will be described starting in Section 5.3.

5.1.3 User Code Fragments

After the code has been generated, some classes will be available for viewing or editing.

Figure 5.4 shows how those classes are accessed in the Decorator pattern. Note tha t a

“Test” class has been added for demonstration purposes; it is not part of the Decorator

itself. Once the CO 2 P 2 S user selects the class to view, a viewer will display the contents

of the source. A viewer showing a portion of the Decorator code is shown in Figure 5.5.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i :

!

Edi t User Methods
vo id methodAQ {
I

void methodBQ f
}

* Methods Generated From Deleqated Method Li s t
V

/w *
* Delega t ion Method. This method i s r e sp on s ib l e f o r performing t he ac tua l
* dec o ra t i o n . The de l ega t ed method i s c a l l e d acco rd ing t he t he r e s u l t s
* from the op t i ona l p r e f i x and guard methods. The op t i ona l s u f f i x method
* can modify t h e r e t u rn va lue o f t h i s method, i f t h e r e i s one.
V

i n t f o o (i n t a r g l , boolean arg2) throws Exception!. , Exception2 {
i n t r e s u l t = 0;

O b j ec t [] pref ixArguments = f o o P r e f i x (a r g l , a rg2) ;

i f (pref ixArguments != n u l l) {
a r g l = ((I n t e g e r) p re f ixArgument s[0]) . i n t V a l u eQ ;
arg2 = ((Boolean) p re f ixArgumen t s f l]) . boo l ea nV a lu eQ ;

}

i f (f ooGuard(a rg l , a rg2)) {
r e s u l t = t h i s . co m p on en t . f oo (a r g l , a rg2) ;

r e s u l t = fo o .S u f f i x (a rg l , a rg2 , r e s u l t) ;

r e t u rn r e s u l t ;

Show-I mi* SwnJtri' V f i s t - . *

Figure 5.5: Viewing Decorator Template

vo id methodAQ {

void methodBQ {

Figure 5.6: User Methods

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the code viewer, the user can examine how the generated code functions. There is

an underlined link at the top, indicating tha t a portion of the file is editable. When the

user clicks on the link, the editor shown in Figure 5.6 is displayed. If the appropriate

annotations are present in the source, the editor may display context information, allowing

the programmer to orient themselves. For example, if editing a method body, the context

information would likely include the method signature.

In order to display an editable template in the viewer, HTML is used. This means that

the code generator system will need to generate two copies of the source: one in HTML

form and one as plain Java. These two outputs can be seen as output of the post-processing

step in Figure 5.1. After coming out of the code generator, the source code goes through

a source code form atter (Jalopy). Since the source code form atter does not understand

HTML, annotated Java is used instead. Once the code has been formatted, it is post­

processed and converted to actual HTML. This HTML is then used directly in the CO2 P 2 S

code viewer. If the users performs any edits, files are created containing their code. These

files are subsequently used by the code generator. Figure 5.1 has dotted lines around User

Code Fragments and HTML Templates; this indicates that the items are not used in the

first phase of code generation. In the first phase, the Java source is generated along with

the first version of the HTML template. Using the HTML tem plate in the code viewer, the

CO2 P 2 S user may add their own code fragments. These code fragments are then used in

the second and subsequent cycles.

5.2 Output Formatting

The generated code should be as readable as possible. This means tha t whitespace should be

used appropriately. There are a number of issues th a t require special whitespace handling.

• User code fragments may required indenting. Though the user may have properly

indented their own code, the fragment may require additional indenting if it is within

an indented block of the source.

® When a macro returns code, we would like tha t code to be indented according to the

surrounding indentation level.

• Sometimes indentation is optional. For example, we may conditionally include an

i f () statem ent in the code. If the statem ent is included, the code it affects should be

indented.

Some of these issues can be handled in the code generator itself, but it leads to special

cases and fragile whitespace handling. The solution used here is to run the Jalopy source

code formatter on the output from the generator. The Jalopy source code formatter parses

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the source and reconstructs it from its individual tokens. This alleviates whitespace issues

and increases consistency in the generated code. If the user wishes to change the output style,

they may edit the g e n e ra to r /ja lo p y C o n v e n tio n s . xml file through a GUI tool provided

with Jalopy.

Because most source code formatters do not understand HTML, an extra step was re­

quired to handle the links allowing the user to add their owrn code fragments. Instead of

generating the HTML link right away, a special one line Java comment is added to the

source. The source code form atter then properly indents the one line comment. When the

source code has been formatted, the special comments are converted to HTML links. The

rest of the source is converted to HTML, escaping characters and adding tags as needed.

Sometimes the user may notice th a t the whitespace formatting is not correct. This

would be due to an error in the generated Java source tha t breaks the Jalopy parser. That

effect should be seen only by the pattern designer during the creation and debugging of the

pattern.

5.3 Language Syntax

One of the problems with the original generation system was tha t it spread the code gen­

eration for a single pattern file throughout many different input files. Method bodies were

contained in one file, the rest of the class source in another, and there was Java source code

tha t generated the non-trivial code fragments. The new code generation system allows for

the integration of all of these pieces within a single file. This makes the pattern tem plate

much easier to read and understand.

There are two ways tha t CGL annotations can be added to Java source. Lines th a t start

with # are treated as CGL statements. As well, the @ character can appear anywhere and

the value of the following expression will be inserted into the output source. The syntax of

CGL is simple and though it was designed with Java in mind, is not tied to any particular

language.

5.3.1 # Com mand Syntax

When a # is encountered at the start of a line, ignoring whitespace, it indicates that

everything up to the end of the line should be parsed as a CGL command. If needed, # #

can be used to generate a single # . This escape feature would be useful in generating C

code when lines like # in c lu d e < s td io .h > are needed.

5.3.2 @ Expressions

@ is used to insert the value of an expression into the Java source. In order to handle

syntax ambiguity, the expression can be wrapped in braces. Having braces also allows the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Informal Grammar --

’S’ PRIMARY

python-expresssion ’}’

PRIMARY = python-identifier
I PRIMARY ’.’ python-identifier
I PRIMARY ’.(’ python-arguments ’)’
I PRIMARY ’.[’ python-slice-expression ’] ’

 Examples --

@var
@var[3]
@var.method(;argument’)
@var.field
©function!)[4].field2
@{var + 1}
@{var}

Figure 5.7: Syntax of @ Expressions

use of an arbitrary expression. Figure 5.7 shows the informal grammar and some examples

of @ expressions. For the complete grammar of the Python non-terminals, see [7]. Note

that the contents of @ expressions are not CGL, but are plain Python expressions. Any

expression used in a form such as ©{EXPRESSION}, can also be used in locations such as # i f

EXPRESSION or # fo r VAR in EXPRESSION. No @ need be attached to those expressions; @

is only used to insert expression values into the Java source.

5.3.3 Choice of Characters

@ and # were chosen due to their limited use in Java and Python. In Java, @ is only

officially used in Javadoc comments. # is not used in the Java language. If @ occurs in

Java strings, it requires escaping. The parser will ignore # in Java strings, since it is not at

the start of a line. In Python, @ is also unused, where # is used only for comments.

The { } characters were chosen to delimit @ expressions when needed. Braces are only

used in Python to create dictionaries. Braces are used in a similar manner in languages

such as TCL, Perl, and various shell script dialects. [] and () were rejected due to

their frequent use in expressions. < > was rejected, since its use in comparison conditions

makes parsing difficult. A matching pair of characters was used to increase the clarity of the

code. Starting and ending an expression with an @ character can make lines with multiple

expressions difficult to read.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#rem This is a comment.
#rem
#rem Hopefully your comments are more useful than this.

Figure 5.8: Example of #rem

There were SnumberOfPigs pigs.
The wolf ate one.
@{numberOfPigs - 1} pigs remained.

Figure 5.9: Example of © expression Replacement

5.4 Language Features

This section will detail the requirements on a generation language and how CGL fulfills

those requirements. A simple example of each operation will also be shown.

5.4.1 D ocum entation

The ability to provide comments in the meta-language is helpful for those viewing or editing

the pattern template. It can be used to understand design decisions. Relying on the

comment features of the generated language is not sufficient, since the intended audience of

the comments is different.

Language Feature

The #rem command, short for remark, allows the insertion of random comments within CGL

code. See Figure 5.8 for an example.

5.4.2 Value Replacem ent

The ability to replace a special string of text with another string is essential in a generation

language. For example, the name of a method may be based on input provided by the user.

Language Feature

To implement the replacement, CGL provides the @ technique for inserting expressions

directly into the generated source. @ takes the string value of the expression and replaces

the @ expression with the string value. Figure 5.9 shows an example of string replacement

in CGL.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#if sky.colour = "blue"
System.out.println("It,s a nice day outside.");

#elif sky.colour = "red" and hour > 12
System.out.println("There is a sunset occuring.");

#else
System.out.printIn("The sky is @sky.colour.");

#end

Figure 5.10: Example of # i f

5.4.3 Conditional Code Inclusion

When generating code, it is often necessary to select between two or more code generation

alternatives. Sometimes, we may want to entirely omit a section of code.

Language Feature

CGL solves the conditional inclusion problem in a simple manner, similar to # ifd e fs in C

preprocessing. In the i f expression, standard operators such as n o t, or, and, =, <, >, !=,

<= and >= may be used. See Figure 5.10 for an example.

i f < c o n d itio n a l-e x p re ss io n >
e l i f < c o n d itio n a l-e x p re ss io n >
e ls e
#end

5.4.4 R ep etitive Code Inclusion

The ability to repeat a section of code during code generation is very useful. However,

instead of repeating the segments verbatim, we usually wish to modify the code fragments

in some manner.

Language Feature

In CGL, the iteration is performed explicitly through the use of a f o r statement. The loop

variable will sequentially be set to each element in the list expression during each iteration

of the loop. Figure 5.11 provides an example of this command.

fo r < loop-var> in < lis t- e x p re s s io n >
#end

Inside the loop, there are three additional variables available. If you wish to use these

variables within nested loops, you will need to ta s s ig n them to tem porary variables.

f i r s t Boolean variable indicating if this is the first iteration,

l a s t Boolean variable indicating if this is the last iteration.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Iterating Over the Contents of a List Variable ---

#for item in listvar
©item is at index ©index in the list.

#end

 Iterating Over Constant Lists --

#for suit in [’Hearts’, ’Clubs’, ’Diamonds’, ’Spades’]
#for value in range(1, 13)
There is a card in ©suit with a numeric value of ©value.

#end
#end

 Result of Second Example --

There is a card in Hearts with a numeric value of 1.
There is a card in Hearts with a numeric value of 2.

There is a card in Spades with a numeric value of 13.

Figure 5.11: Example of #f or

index Integer variable indicating the iteration count, starting from zero. This might be

used in operations such as splitting a long list of items based on a modulus.

5.4.5 K eeping Similar Code Together

Generated code often consists of similar or identical pieces of code. It is desirable to have a

single generalized instance of the code rather than maintaining multiple copies.

Language Feature

Aside from the types accessible from CGL, macros are provided to support common code.

The provided argument list may be empty, but the parentheses must be present. The

argument list is in the same form as those for Python functions. See Figure 5.12 for an

example. In the example, the i and j variables appear within single quotes. The quotes

are used to indicate to CGL that a literal value of “j ” is desired, rather than the contents

of the j variable.

#macro name (<argument-list>)
#end

5.4.6 Aliases and M odification

Sometimes names of variables within the code generator may become verbose. It is helpful

to have a way to access the data with a shorter name.

7.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Macro Definition --

#macro loop(var, from, to)
#if from < to
for(int @var = ©from; ©var <= ©to; @var++)

#else
for(int @var = ©from; ©var >= ©to; ©var—)

#end
#end

 Macro Usage --

@loop(’i’,1,5) {
(Sloop(’j ’ ,3,1) {
System.out.printIn("Numbers: " + i + " " + j);

}
>

 Result --

for(int i = 1; i <= 5; i++) {
for (int j = 3; j >= 1; j—) -[
System.out.printIn("Numbers: " + i + " " + j);

>

}

Figure 5.12: Example of #macro

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Example --

#assign methodCopy method
#assign methodCopy.name "newMethodName"

#rem Create a new instance of ResultType and make it the "void" type.
#rem Change the result type of the method copy.
#assign methodCopy.resultType ResultType("void")

©method

©methodCopy

 Result --

int myMethod(int argl, boolean arg2)

void newMethodName(int argl, boolean arg2)

Figure -5.13: Example of # ass ig n

Also, it may be easier to modify an existing object than to create an entirely new object.

As an example, a method signature may be close to what we want, however we need to

change the name. If we do not want to destroy the original version, we need some way to

copy it and modify the copy.

Language Feature

The # assig n statem ent is used to copy the value of an expression and store it into a given

identifier. The identifier may be part of an existing object. Note tha t the fields of types

are all documented within the type editor, allowing for easy editing. Figure 5.13 provides

an example. Note th a t the results of the example depend on the content of the method

variable. Arbitrary values have been provided for demonstration purposes.

#assign <identifier> <expression>

5.4.7 Output Files

In the previous system, a single input file always created a single output file. It is sometimes

desirable to produce zero or more than one output files.

Language Feature

The #output command allows you to specify the base name (without the . j ava or . htm l

extensions) for the output files. When the generator is finished, files with . ja v a and .h tm l

extensions will have been generated with the given name as a base name. If no output file

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is specified, or if the output file is an empty string, no output will be produced. See Figure

5.14 for an example.

#output <basename>

5.4.8 D isplaying Generated Source

Certain files in the generated framework may be im portant to the application developer,

where other files may not be.

L anguage Feature

The # tem p la te command allows the pattern designer to specify tha t this file is im portant

and should be visible from the pattern tem plate menu in CO 2 P 2 S. By convention, the

tem plate command should come right after the # o u tpu t command, as demonstrated in

Figure 5.14.

5.4.9 Editing G enerated Source

In some frameworks, we want certain parts of the source to be editable. In the Wavefront

pattern [9], the bodies of certain methods are editable. The editable methods in the Wave-

front pattern contain sequential code th a t performs a calculation on an individual cell. The

pattern framework then takes those sequential methods and runs them in a parallel manner.

Language Feature

CGL provides six commands for the purpose of providing edit capabilities to the application

developer. # u ser_ co n tex t is used, in combination with one of the other commands, to

provide context information to help the user with their editing. The context information will

be displayed above and below the source being edited. # u ser and the other four commands

are used to create a user-editable code segment. The given name will be generated as an

HTML hyperlink, displaying: Edit <name>. The given name must uniquely identify the

code segment within its scope. Normally, the scope of the user code segment is per-file. In

that case, the names need only be unique within the file itself. However, if you want the

editable segment to be reachable from all the source files, use one of the -g lo b a l varieties

instead. Any place th a t uses a # u se r-g lo b a l with the same name will use the same code. If

you wish to provide default code for the editable section, use one of the -d e fa u lt varieties.

The default code should be placed between the #user_def a u l t and #end statements. The

#u ser_ d efau lt_ g lo b a l and # u ser_ g lo b a l_ d e fau lt commands combine the functionality

of the # u se r_ d e fau lt and #user_g lobal commands; there is no difference between them.

Figure 5.15 provides two examples of these commands. In the example, square brackets

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Example --

#for class in ["ImportantClass", "ClassA", "ClassB"]
#output class

#if class == "ImportantClass"
ttemplate

#end

class ©class {
void print() {

System.out.println("This is in file ©class.");
}

>

#end

— Result --

ImportantClass.java: (Viewable in GUI by Application Developer)

class ImportantClass {.
void print() {

System.out.printIn("This is in file ImportantClass.");
}

>

ClassA.java: (Not Viewable in GUI)

class ClassA {
void print() {

System.out.println("This is in file ClassA.");
>

}

ClassB.java: (Not Viewable in GUI)

class ClassB {
void print() {

System.out.printIn("This is in file ClassB.");
>

}

Figure 5.14: Example of #output and #template

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Example --

#user_global "Import List"

#user_context
int addNumber(int arg) {

#user_default "Body of addNumber Method"
return arg + 100;

#end
>

#end

 Result --

[Edit Import List]
import myconstants;

int addNumber(int arg) {
[Edit Body of addNumber Method]
return arg + myconstants.Constants.SUITABLE_VALUE;

>

Figure 5.1-5: Example of #user

indicate a hyperlink th a t links to an editor for the appopriate code fragment. The example

shows the HTML displayed in the CO 2 P 2 S GUI after the user has entered some values.

#user_context
#end

#user <name>

#user_global <name>

#user_default <name>
#end

#user_global_default <name>
#end

#user_default_global <name>
#end

5.4.10 W hitespace Control

Though not much of an issue when the code can be run through a comprehensive beautifier,

in general there is sometimes a need to have greater control over the places where whitespace

is generated. For example, if we are generating a list of arguments, we do not want each

argument to be on its own line.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L anguage Feature

By passing a string to the #em it call, the data will be output with no surrounding whites­

pace. See Figure 5.3 for an example of this command.

#emit <string expression>

5.4.11 Extension System

When learning a language, the fewer features there are, the easier it is to learn. CGL itself

is fairly small, facilitating fast understanding of the system. However, being small also

means that some desirable features cannot be included in the core language. Being able to

add features without making the core language more complex is desirable. In addition, it

is better if those extra features are as easy to find and learn as possible. Types serve to

package common functionality and make it easier to find.

Language Feature

All types in CGL are first created in the type editor, described previously. In the type

editor there is documentation for each type. When a user has learned the core of the CGL

language, they will be equipped to handle many code generation tasks. If a task arises where

the core language is inefficient, the user should look to the documented list of types within

the type editor for a solution. The type editor’s list of types is the only place the user would

need to look to find new functionality.

Types are instantiated by using their name followed by a pair of parentheses. The

parentheses may have arguments in them, depending on the type. The primitive types,

String, Boolean, Integer, and Float, must have a single argument passed to their constructor.

List constructors accept an optional list argument. Record types accept a list of zero or

more fields. See the example below for syntax.

Unlike primitives in Java, the primitives in CGL are objects themselves. This means

th a t the types may be treated as primitives for various operations such as addition, yet they

may also have extra functionality or state attached to them in the form of methods and

fields.

For examples of instantiating and using types, see Figure 5.16. In the results section,

arbitrary contents for v a rL is t are provided. The first two examples show two different ways

of doing nearly the same thing. Though the first technique is simpler and works in most

cases, there may be some cases where extra functionality of the I d e n t i f i e r or Type types

is needed.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Examples --
#rem Creating a new Variable, a type with two fields:
#assign var Variable(name=’newVar’ , type= ’ int ’)

#rem Or, using the correct types for the fields:
#assign var Variable(name=Identifier(’newvar1), type=Type(’int’))

#rem Creating a new ResultType, which is a string-based type:
#assign var ResultType(’void’)

#rem Accessing a user-defined function of the VariableList type,
#rem assuming varList if of type VariableList:
SvarList.arguments()

#rem Using a type’s default string representation:
SvarList

 Results of Last Two Examples --

iVar, bVar, oVar

int iVar, boolean bVax, Object oVar

Figure 5.16: Type Usage

5.4.12 Com plex O perations

The built-in operations presented so far are not sufficient for a fully functional code gener­

ator. As well, access to higher level operations and data structures could simplify the CGL

code considerably in some cases.

Language Features and E xam ples

One notable category of functionality not presented yet is the ability to modify strings.

CGL provides string manipulations through the Python s t r type. If an object is a string,

you may call string operations directly on the object itself. However, if the object is not yet

a string, it will first need to be converted. The Python documentation contains full details

[6]. Examples of string operations can be seen in Figure 5.17.

Sometimes the conditions of execution or contents of a particular code fragment can

be complex. M athematical expressions are a powerful way to concisely express complex

relationships. Instead of a table containing a large number of entries, a mathematical

expression can be used to represent the relationship between the entries. CGL allows access

to the usual Python expressions. These expressions can be placed where one would expect

to find an rvalue. Figure 5.18 provides examples.

Another useful class of code generation tools are general purpose data structures. These

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Example --

#assign s ’Some String’
#assign i 102030

#rem Uppercase s before placing the result in the code.
@s.upper()

#rem Remove all the zeros from an integer, after converting it to a str.
@str(i).replace(’0’,’

 Result --

SOME STRING

123

Figure 5.17: String Operations

@{10 * (v a r + 1) }

i f x > y-10 and b ito n e ~ b ittw o

#end

fo r i in ran g e(r+ 3)

#end

ass ig n u v /1 0 .0

Figure 5.18: M athematical Expressions

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

might include dictionaries or sets. A need for these sorts of data structures was observed

in advanced patterns such as the Wavefront. The #python directive allows direct insertion

of Python code. The #exec directive allows insertion of a single line of Python code.

Figure 5.19 show's an example of using sets and dictionaries for the Wavefront’s compass

dependency. Also included is an example of list creation and appending.

5.5 Generator Design Issues

Having already discussed the language itself, the upcoming section elaborates on some of

the im portant design decisions behind the language.

5.5.1 C om position versus Transformation

In creating a language for code generation, one of the most important decisions is whether

to make the language compositional or transform ational [17]. A compositional language

relies on forward refinement, moving from a higher level of abstraction to a lower one. See

Figure 5.20, adapted from [17], for an example.

A transformational generator is capable of performing horizontal transformations which

cross module boundaries. Transformational generators may also perform oblique transfor­

mations which combine horizontal and vertical refinements (see Figure 5.20).

CGL is primarily a compositional system. Though the compositional approach of CGL

can make it tricky to generate the shortest code possible, it fits most generation tasks well.

Creating a reasonable transform ation system would have taken a great deal more time than

the current compositional system.

There are a number of benefits to the compositional approach. The techniques used

for code generation in CO 2 P 2 S will be familiar to anyone who has used an object oriented

language and a macro processor. This lowers the learning curve for the system. Because

transformational systems are used to reshape code, the pattern designer would need to learn

not only how to modify the code, but how to indicate which portions of the original code

are to be modified. The use of the shaping tools is not always obvious, as it can involve

referring to grammar elements of the language being transformed [14, 16].

Transformational systems are often dependant on the language they are generating.

A transformational system for Java would have knowledge of Java syntax and semantics.

Though this makes it more efficient at producing code for Java, the same system could not

be used to process C code.

Transformational systems allow for better separation of concerns, but they also have

the potential to obscure the operation of code. In a compositional system, any changes

to the code are clearly visible in line with the rest of the code. W ith a transformational

approach, changes may be performed on distant code fragments, with little clue tha t such

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Example --

#python
dirDict = { ’north’ : Set([’north’, ’northwest’, ’northeast’]),

’south’ : Set([’south’, ’southwest’, ’southeast’]),
’west’ : Set([’west’, ’southwest’, ’northwest’]),
’east’ : Set([’east’, ’southeast’, ’northeast’]) }

userDirections = Set ([’northeast’, ’east’, ’southeast’])
#end

#rem Add north to the set of user directions.
#exec userDirections.add(’north’)

#rem Calculate the set of directions that do not include north.
#assign noNorth userDirections - dirDict[’north’]

#rem Create a list and append to it.
#assign 1 [’one’, ’two’, ’three’]
#exec 1.append(’four’)

 Result --

Contents of userDirections after first #exec:

Set of [’northeast’, ’north’, ’east’, ’southeast’]

Contents of noNorth after #assign:

Set of [’east’, ’southeast’]

Contents of 1 after final #exec:

[’one’, ’two’, ’three’, ’four’]

Figure 5.19: Directly Including Python

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H orizontal
T ransform ation

O blique
Transform ation

V ertical
Transform ation
(Forw ard
R efinem ent)

□ n□ □
□ □
□ □

Figure -5.20: Transformation Types

an operation is occuring. If a particular transform ation needs to be split into two or more

code fragments, CGL requires tha t those pieces be generated separately, perhaps through

the use of macros or types. A transformational system would be able to separate individual

aspects in a cleaner manner [24].

5.5.2 Size of CGL

The core of the CGL language is fairly small, acting as a macro processing layer with

loops and other simple operations. Aside from th a t, it acts as a layer of glue, exposing

functionality from the underyling scripting language.

Instead of adding many unfamiliar features, CGL seeks to leverage the power of an

existing scripting language. That said, most code generation can be done with almost no

knowledge of the underlying language itself. This approach is similar to those found in [13]

and [26].

CGL has a simple syntax and only provides the common and necessary operations for

code generation. This means th a t a user can quickly learn how to generate most code with

the system. However, when complexity of the generated code threatens the simplicity of

the tem plate, the advanced data structures and operations of the scripting language can be

used to simplify the code. Instead of inventing additional language features in CGL, the

already well-considered features of the underlying language were used.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.3 Choice of Language

For an underlying language, using a low level language, requiring the user to worry about

memory management or string length checking, would be unacceptable. Clearly, a high level

language must be used; however, there are many high level languages. Ruby, Scheme, TCL,

Perl, and Python are all widely used languages which were considered.

Because of the object-oriented nature of the types, a language with native objects is

desirable. In addition, dynamic manipulation of those types makes the implementation of

the generator easier. Python and Ruby are the most clean and poweful in the category of

objects.

During code generation, string manipulation occasionally needs to occur. Many scripting

languages, including those above, provide powerful string manipulation facilities.

The presence of data structures such as lists, dictionaries, and sets were an im portant cri­

teria, as they had demonstrated their usefulness in avoiding complexity. Along with the data

structures, dynamic types were desired to avoid constant casting of results from container

operations. Python not only provides those data structures, but also handy operations such

as list splice operators, and list map and apply functions.

Python is well known for its ease of use. It takes only hours to get started writing useful

Python programs. The syntax is simple and clean.

There was also excellent support for writing the code generator itself using Python.

Instead of running the code using its own machinery, the CGL parser converts the code to

Python and then runs the Python. Some Python tools that were useful during code generator

construction were reflection, runtime stack examination, runtime object field modification,

and inter-file code execution.

Though CGL itself is mostly language agnostic, Python was selected due to its ease of

use and the general clarity of Python code. Using a single language provides a common

ground for pattern designers viewing the work of other designers.

5.6 The New Decorator

Appendix B shows the template that the pattern designer wrote for the new Decorator

pattern . The next chapter will provide a comparison of the old and new decorators, showing

how the CO2 P 2 S system has been improved.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Evaluation and Conclusion

This chapter will examine the improvements brought about by the new code generation

system. First, a quantitative evaluation of the Decorator pattern is presented. Included

next is a summary of how the initial goals of the research were met, leading to an improved

pattern creation process. Future work is discussed before the dissertation concludes.

6.1 Evaluation

This section provides a comparison of the Decorator pattern under the old and new CO 2 P 2 S

systems. As well, improvements to the type system will be highlighted.

Figure 6.1 shows a quantitative comparison of the number of lines of code needed to

implement the Decorator pattern in the old and new systems. In determining lines of code,

the formatting of the source was standardized using a form atter (Jalopy) and by removing

comments and blank lines. It should be noted th a t the original Decorator GUI provided the

ability to automatically im port the interface of an existing class. Since there was not time

to implement automatic interface importing in the new version, the code for importing was

removed for comparison purposes.

The most im portant result to notice is the reduction of the Decorator-specific code to

12% of its previous level. This new Decorator, in Appendix B, is much shorter than the

old Decorator, shown in Appendix A. Also of note is the fact tha t the original Decorator

pattern spread the static code for a single class among four different files, where the new

system needs only one.

The number of possibilties for code reuse has increased. While the primary type orig­

inally used for the Decorator pattern was only useful in the Decorator pattern, the types

provided now are more flexible and could easily be used within a pattern such as the Com­

posite.

Though achieving approximately the same level of functionality, the types in the new

system are only 45% the size of the types in the old system. In addition to being smaller,

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Category Original System Nevj System,
Decorator-Specific Java GUI Source 194 0
Decorator-Specific Java G enerator Source 173 0
Decorator-Specific GUI and Generator Source 40 0
Decorator-Specific Template Source 44 ■56
Decorator-Specific Total Lines of Code 451 56
Reusable Java GUI Source 818 484
Reusable Java Generator Source 71 0
Reusable Java GUI and Generator Source 641 0
Reusable Type Python/C G L Source 0 216
Reusable Type Total Lines of Code 1530 700
Total Lines of Code 1981 756
Template Files for Decorator Class 4 1
Number of Reuseable Types used in Decorator 4 23

Figure 6.1: Decorator Pattern Comparison

the unified API allowed for some additional functionality and consistency in the types. As

an example, a “Cancel” button was added to the CO2 P 2 S GUI to allow users to back out

changes they may not have wanted. Previously, no such button existed as it required manual

creation within every available type.

The number of reuseable types indicates that the granularity of the types is now much

smaller. The new types are easy to combine and reuse in alternative combinations. The

existing types did not have such flexibility. In order to implement the Decorator-specific

type, the programmer needed to understand the API for the method list type and extend it

for use in the Decorator m ethod element type. In the new system, the types are combined

more as building blocks rather than as extensions to existing frameworks. Instead of having

a single type perform code generation for a single pattern option, the new system lets the

programmer use multiple types during the code generation process.

During the recreation of the Decorator pattern, an additional optimization was discov­

ered. Instead of having a prefix method for each argument, a list was used to return modified

method values. Because Java 1.4 does not provide auto-boxing (conversion of primitives to

objects), a TypeWrapper type was created to simplify the repetitive task. TypeWrapper is

another example of a type th a t can be easily reused.

Learning the new types is easier than learning the old types. Documentation for the

types has been centralized into the Type Editor. If the original types were to be extended,

the programmer would need to analyze the structure of a large type involving hundreds

of lines of code. In the new system, each type can be discovered on its own, and then

combined into larger, more powerful types. Also, because the new system has many small

generic types, the foundations for new types are more likely to be available.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.1 P attern Creation Process

In addition to the decrease in the quantity of code required, there were also improvements

in the entire pattern creation process. This section compares the original pattern creation

process with the new' one.

O ld S y stem

Presented here, are the steps needed to create a typical pattern using the old CO 2 P 2 S

system.

1. Determine options needed to configure the pattern for use in various applications.

2. Provide M etaC02P2S with the following information:

(a) Name of pattern.

(b) Path to directory containing images used in the pa tte rn ’s GUI.

(c) Name of Java package containing ex tra classes used in the pattern GUI and for

code generation.

(d) List of all classes used in the pattern framework. In addition to class names that

were user-specified, the system required the pattern designer to specify the fixed

list of classes with names derived from the user-specified classes.

(e) List of options used to configure the pattern. Other customization information

was entered based on the type of the option.

(f) Finally, a GUI for the pattern is defined using text and image elements.

3. The source code for the pattern must be provided. During this phase, the programmer

either uses the very limited macro language or creates the resulting Java source using

other Java code. As well as providing the outline for each class, the programmer needs

to provide separate files for each method body. Methods could not be included inline

with the class definition.

(a) Write Java tem plate using limited macro language.

(b) Write Java for generator to create custom code of any complexity.

(c) Create method bodies in separate files. These files were named with a specially

form atted version of the method signature.

4. Though not always, it was frequently the case tha t the pattern designer required

additional types and GUIs to represent the pattern options. If they were needed, the

pattern designer learned the CO2 P 2 S API and created Java source to perform GUI

display and code generation for custom types.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N ew S ystem

This section looks at the steps of pattern creation in the new system and compares them

with the original steps.

1. Determine options needed to configure the pattern for use in various applications.

This step remains essentially unchanged from the previous version of CO 2 P 2 S.

2. Provide MetaCCUPzS with the following information:

(a) Name of pattern. The previous version also required the user to specify a di­

rectory for images and a package for user classes. Since each pattern has been

collapsed into a single directory, the images for the pattern reside in a standard

location th a t need not be specified. As well, the previous version also required

the input of a Java package name where extra classes would be located. Now, no

pattern-specific Java source need be written at all.

(b) The MetaCC>2 P 2 S user no longer needs to specify the entire list of classes needed

in the pattern. The names of classes are simply treated as regular options.

(c) List of options used to configure the pattern . This step remains largely un­

changed.

(d) Finally, a GUI for the pattern is defined using text and image elements. The

mechanisms behind the GUI display are more consistant in the new version. In

addition, the actual specification of the GUI has been simplified slightly with the

removal of unnecessary options.

3. The source code for the pattern must be provided.

(a) Write a Java template using the CGL meta-language. Though the CGL language

has a simple syntax and a limited number of built-in commands, it is far more

flexible and powerful than the previous macro language. In addition, many types

are available to assist in generation tasks. Instead of writing custom Java code

for non-trivial templates, CGL can handle most cases. If additional power or

complex data structures are needed, mechanisms have been provided to easily

include arbitrary Python code.

(b) The bodies for the methods are now included inline with the rest of the class

definition. This makes it easier to read the class and understand its function.

4. W ith the increased number of available types, custom types will be needed far less

frequently. If a custom type is needed, the architecture now allows for simple combi­

nation of existing types. The new types are smaller and are focused on GUI display

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and basic code generation. The old types tightly coupled GUI display and code gen­

eration, creating many pattern-specific types. As an example, the Decorator method

GUI could not be reused in a Composite pattern, since the Java code also performed

code generation specific to the Decorator pattern. The code generation for the types

within the new system is focused on the core tasks of the specific type and CGL is able

to combine these core types in more flexible and powerful ways than was previously

possible.

6.2 Work Completed and Goals Accomplished

The overall goal of this research was to simplify the creation of generative design patterns,

specifically within the context of the CO 2 P 2 S system. To achieve this goal, the following

tasks were completed:

• A system of types was created for use in generative design patterns. These types are

object-oriented and are manipulated through a type editor, which was also created

during the course of the research. Previously, creating a type involved the creation

of large amounts of Java code. Now, only small amounts of code are needed for the

creation of a new' type.

• Along with the system of types, many types were created for use in constructing design

patterns. Most of these types have parallels in the code they are creating, such as a

Method type, representing a m ethod signature, or a V a riab le type representing a

named variable with a certain Java type. To learn about these types, one can visit the

type editor where the documentation for each type is displayed in an editable format.

• The CO2 P 2 S Generation Language was created. The language is capable of manip­

ulating source on its own, but is intended to be used in combination with the many

available types.

• Finally, CO2 P 2 S and M etaC02P2S were rewritten to support the new type system

and code generator, creating a complete generative design pattern system.

6.2.1 C om pleted Goals

Generative design pattern systems, such as CO 2 P 2 S, need to provide many ready-made

patterns in order to be of much use to application developers. If generative design patterns

are difficult to create, few patterns will exist. Because of this, the primary goal of this

research was to simplify the pattern creation process.

The system created through this research reduces the level of expertise required to create

patterns. Where previously, a pattern designer was often required to implement new types

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in CO2 P 2 S, now most patterns can be built using the existing types. P attern designers no

longer need the skillset of the type designer. The task of the type designer has also been

simplified. A well defined structure has been provided in which type designers can work.

Tasks tha t were previously the responsibility of the type designer are now handled by the

system. The type designer need only handle the core functionality of the new type being

created.

The original system contained a number of limitations and complexities. In removing

these, the pattern creation process was simplified. As an example, some of the tags in

the original system were used merely to overcome the limitiations of JavaDoc as a code

generator.

Using object-oriented types lowers the learning curve for developers using the system.

Since they will already be familiar with Java, the types in the new system will be familiar.

The new types are smaller and more easily composable than the previous types. This makes

individual types easier to understand and simplifies the job of the type designer.

The new system is easier to learn than the previous system. The documentation for each

type is easily accessed from within the CO2 P 2 S environment; there is no need to consult

external documents. Previously, pattern designers needed to know the CO 2 P 2 S type API,

the CO 2 P 2 S macro language, the JavaDoc processor tags, the use of M etaCC^PaS, and a

number of directory locations. As part of this research, M etaC 0 2 P 2 S and the directory

structure was simplified. Instead of creating types and using the adhoc constructs for code

generation, now pattern designers use the more flexible CGL to glue together some of the

many available types.

When patterns are easier to create, the pattern designer has more time to focus on

design issues without getting lost in the implementation details. Instead of dealing with the

limitations of the system, the pattern designer is freed to work on the code for the design

pattern itself. As well as easing the pattern creation process, one of the goals was to reduce

the possibility of error. Though there are no explicit measures in place to catch errors,

the possibility of errors has been reduced through the overall improvement to the system.

As an example, where previously users had to view the contents of multiple files and Java

source to see the code to be generated, now the generated code for a class can be determined

primarily from the contents of a single file. The use of small and well-defined types also

reduces the chance of errors within the system. Instead of building a single type with a great

number of conditions, smaller types with few conditions can be combined while retaining

their individual correctness. The amount of “copy and paste coding” has been reduced in

the new system. Techniques such as loops, macros, data structures, and arithmetic all serve

to reduce the redundancy present in the pa tte rn ’s code. Since less code needs to be written,

the chance of making a mistake is decreased.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Lim itations and F u tu re Work

Because the code generator is a compositional system, it has little ability to manipulate

pieces of code from a higher level. Transformational elements could lead to better separation

of concerns and cleaner code. In addition, the use a tranform ational layer within the system

could open the door for source-to-source optimizations and additional error checking not

possible with a purely compositional system.

The new system provides a good foundation for inter-option checking, but the imple­

mentation is not complete. The ability to enable options based on the contents of other

options is desirable. Additionally, validation of option values based on other options is also

useful. MetaC 0 2 P 2 S would need to be extended to allow the pattern designer to specify

the relationships between different options.

Some of the types within the system are not intended for use on their own. As an

example, the M ethodGuard does not provide a full GUI. A way to prevent the direct use

of these types would be desirable. Alternatively, a more advanced method of combining

GUIs could be used to reduce the number of types that are not directly usable in pattern

creation. Types used only during code generation could also be excluded from the list of

types available to the pattern designer in M etaC 0 2 P-2 S.

There are some types missing which need to be added to the system. An Enum eration

type, which would allow the user to select one of many options, is the most important of

these. Another useful type is the CompassDependencies type, allowing a user to specify

dependencies for grid computations. Though these types are simple to create, time did not

permit their present existence. Some pieces of the GUI models were left undeveloped. For

example, the support for numeric fields is lacking in the current implementation.

Though there are limitations and areas for future improvement, the present system may

be used to create flexible generative design patterns with little interference from the system

itself.

6.4 Conclusion

This research has produced a system that simplifies the creation of generative design pat­

terns. The system of types in combination with the code generation language provide a

simple and flexible platform upon which to create generative patterns. Though not well

tested, we expect the contributions of this research to make the pattern creation process

easier, faster, and more reliable.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Angie, h ttp ://angie.d-s-t-g .com /.

[2] Cops web site, http://w w w .cs.ualberta.ca/ system s/cops/.

[3] Jalopy (java source code formatter), http://ja.lopy.sourceforge.net/.

[4] Javadoc. h ttp ://java.sun.com /j2se/javadoc/.

[5] Perl, h ttp ://w w w .perl.o rg /.

[6] Python, h ttp ://w w w .python .org /.

[7] Python grammar, h ttp ://w w w .python.org/doc/current/ref/gram m ar.tx t.

[8] Python method resolution order. http://wwwT.python.org/2.3/m ro.htm l.

[9] John Anvik. Asserting the utility of CO 2 P 3 S using the cowichan problems. M aster’s
thesis, Departm ent of Computing Science, University of A lberta, 2002.

[10] D. Batory and S. O ’Malley. The design and implementation of hierarchical software
systems with reuseable components. ACM Transactions on Software Engineering and
Methodology, l(4):355-398, October 1992.

[11] Peter Bosch. Inheritance vs. delegation: Is one better than the other?
http://w w w cpython.org/ftp/python/doc/delegation.ps.

[12] Steven Bromling. Meta-programming with parallel design patterns. M aster’s thesis,
Department of Computing Science, University of Alberta, 2002.

[13] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and Patsy S. Yu. Automatic
code generation from design patterns. IB M Systems Journal, 35(2): 151—171, 1996.

[14] F. Castor and P. Borba. A language for specifying java transform ations. In V Brazilian
Symposium on Programming Languages, pages 236-251, May 2001.

[15] J. Cordy, C. Halpern, and E. Promislow. Txl: A rapid prototyping system for pro­
gramming language dialects. In Proceedings of the IE E E International Conference on
Computer Languages, pages 280-285, 1988.

[16] J. Cordy and M. Shukla. Practical metaprogramming. In Proceedings of the 1992 IBM
Centre for Advanced Studies Conference, pages 215-224, November 1992.

[17] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications, chapter 9. Addison Wesley, 2000.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

[19] Zhuang Guo. Developing network server applications using design pattern templates.
M aster’s thesis, Departm ent of Computing Science, University of Alberta, 2003.

[20] J. Lindskov Knudsen. Name collision in multiple classification hierarchies. In ECOOP
(European Conference on Object-Oriented Programming), pages 93-109. Springer-
Verlag, 1988.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://angie.d-s-t-g.com/
http://www.cs.ualberta.ca/
http://ja.lopy.sourceforge.net/
http://java.sun.com/j2se/javadoc/
http://www.perl.org/
http://www.python.org/
http://www.python.org/doc/current/ref/grammar.txt
http://wwwT.python.org/2.3/mro.html
http://wwwcpython.org/ftp/python/doc/delegation.ps

[21] H. Lieberman. Using prototypical objects to implement shared behavior in object-
oriented systems. In Norman Mevrowitz, editor, Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), vol­
ume 21, pages 214-223, New York, NY, 1986. ACM Press.

[22] Steve MacDonald, Duane Szafron, Jonathan Schaeffer, John Anvik, Steve Bromling,
and Kai Tan. Generative design patterns. In 17th IEEE International Conference
on Automated Software Engineering (A SE '), pages 23-34, Edinburgh, UK, September
2002 .

[23] Marek M ajkut. Syntactic unit trees for the implementation of software product lines.
In Lecture Notes in Computer Science. Volume 2323. Object-Oriented Technology.
ECOOP 2001 Workshop Reader, pages 135-149, 2001.

[24] Kevin 0sterbye. Refill - a generative java dialect. In Lecture Notes in Computer
Science. Volume 2548. Object-Oriented Technology. ECOOP 2002 Workshop Reader,
pages 15-29, 2002.

[25] Vojislav D. Radonjic. A generative approach to expressing and using object-oriented
design patterns. In Lecture Notes in Computer Science. Volume 2323. Object-Oriented
Technology. ECOOP 2001 Workshop Reader, pages 135-149, 2001.

[26] Richard J. Rodger. Jostraca: a tem plate engine for generative programming. In Lecture
Notes in Computer Science. Volume 2548. Object-Oriented Technology. ECOOP 2002
Workshop Reader, pages 15-29, 2002.

[27] Lynn Andrea Stein. Delegation is inheritance. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pages
138-146. ACM Press, 1987.

[28] John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is a viable alter­
native to multiple inheritance in class based languages. Technical Report CS-98-03, 2,
1998. ftp://ftp.cs.virginia.edu/pub/techreports/CS-98-03.ps.Z .

[29] Kris De Voider. Generative logic m eta programming. In Lecture Notes in Computer
Science. Volume 2323. Object-Oriented Technology. ECOOP 2001 Workshop Reader,
pages 135-149, 2001.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.cs.virginia.edu/pub/techreports/CS-98-03.ps.Z

Appendix A

Original Decorator Pattern

This Appendix shows the code created by the pattern designer to implement the Decorator
pattern in the original CO 2 P 2 S system.

A .l Decorator Class
In the original CO2 P 2 S system, the pattern designer needed to create a Java source file for
each of the classes in their framework. Note th a t almost no code generation is done inside
the source file itself. Looking at the class source provides no idea of what the decorator code
might look like. W hat follows are the contents of the FrameworkCLASS_Decorator. java
file. Note tha t the SextParam and SframeworkSuperclass tags do most of the work by
delegating to the Java code.

/**
* This class represents the abstract superclass of a concrete Decorator
* from the Decorator pattern.
*
* Suserlmports
* SuserCodeAllowed
* OextParameter methods
* OframeworkSuperclass FrameworkCLASS_DecoratorSuperclass
* /

public abstract class FrameworkCLASS_Decorator {

/ * *
* The decorated component.
* /

private FrameworkCLASS_ComponentClass component;

/ * *
* Constructor that sets the decorated component to the given component.
* /

public FrameworkCLASS_Decorator(FrameworkCLASS_ComponentClass c){

}

/ * *
* Returns the decorated component.
* /

public FrameworkCLASS_ComponentClass getDecoratedComponent() -(

}

/ * *
* Sets the decorated component to the given component.
*/

9 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void setDecoratedComponent(FrameworkCLASS_ComponentClass c){

}

// Insert user methods here.

A .2 Decorator M ethods
Instead of having normal method bodies, the old system required tha t the method bodies
be placed in files of their own. The following files were created to fill the method bodies.

A .2.1 FrameworkCLASS JDecorator.FrameworkCLASS_ComponentClass
t h i s . component = c ;

A .2.2 getD ecoratedC om ponent
re tu r n t h i s . component;

A .2.3 setDecoratedCom ponent.Fram eworkCLASS_Com ponentClass
t h i s . component = c ;

A .3 Decorator M ethod List Element
The original CO2P2S system provided a MethodList class which allowed the user to work
with a list of methods. The type of the methods in the list was specified by entering the
name of a custom class in M etaCC^PsS. W hat follows is the custom class th a t was created
for the Decorator pattern. Note th a t this file contains GUI display and code generation
source. To display and generate the code for the list of methods, the method list system
would make calls to certain methods in this file. W hat follows are the contents of the
D ecorato rM ethodL istE lem ent.java file.

package co p s .g u i .p a t t e r n s .d e c o ra to r ;

im port c o p s .u t i l .* ;
im port j a v a . aw t. e v e n t .* ;
im port ja v ax .sw in g .* ;
im port j a v a . i o .* ;
im port j a v a .u t i l . * ;

p u b lic c la s s D ecoratorM ethodListE lem ent ex tends M ethodListElem ent
{

/ / C o n s ta n ts .
p r iv a te s t a t i c f i n a l S tr in g DELEGATOR = " d e le g a to r" ;
p r iv a te s t a t i c f i n a l S tr in g PREFIX = " p r e f ix " ;
p r iv a te s t a t i c f i n a l S tr in g SUFFIX = " s u f f ix " ;
p r iv a te s t a t i c f i n a l S tr in g GUARD = "gu ard " ;
p r iv a te s t a t i c f i n a l S tr in g UNSET = " u n se t" ;
p r iv a te s t a t i c f i n a l S tr in g METHOD_NAME_ERR =

"You must e n te r v a l id method names fo r p r e f ix , s u f f ix and guard m ethods.";

/ / In s ta n c e v a r ia b le s .
p r iv a te D ecorato rE ditP ane e d itP a n e ;

/ * *
* C lass C o n s tru c to r .
*
* Sparam id th e id of t h i s param eter
* Qparam name th e v is u a l name of t h i s param eter

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* ©param menuText the menu text for setting this parameter
* /

public DecoratorMethodListElement(String id, String name, String menu)
{
super(id, name, menu);

editPane =
new DecoratorEditPane(true, UNSET, true, UNSET, true, UNSET, true);

>

/ * *
* Gets the body of the method mapped to the specified key for the code
* generator, as it should appear in the specified class.
*
* Qparam className the name of the class to retrieve the method body for.
* Sparam key the key mapped to the method to retrieve a body for.
* ©return t h e method body text to insert.
* /

public String getCodegenBodyByKey(String className, String key)
{
boolean returnsVoid = getReturnTypeQ.equals("void");

if (!className.equals("FrameworkCLASS_Decorator"))
return "";

if (key.startsWith(PREFIX))
{
String argName = key.substring(PREFIX.length());

if (argName.equals(""))
return

else
return "return " + argName +

>

else if (key.equals(SUFFIX))
{
if (returnsVoid)
return

else
return "return returnValue;";

>

else if (key.equals(GUARD))
return "return true;";

else if (key.equals(DELEGATOR))

CopsMethod suffix = getUtilityMethod(SUFFIX);
CopsMethod guard = getUtilityMethod(GUARD);
List args = getArguments();
String returnType = getReturnTypeQ;
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
StringBuffer argBuf = new StringBuffer();
StringBuffer newArgBuf = new StringBuffer();
String argText = null;
String newArgText = null;

Iterator argslt = args.iterator();
while (argslt.hasNext())
{
String argName = ((CopsArgument) argslt .nextQ) .getNameO ;

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

argBuf.append(argName);
newArgBuf.append("_").append(argName).append("_");

if (argslt .hasNextQ)
{
argBuf.append(", ") ;
newArgBuf.append(", ") ;

>
>

argText = argBuf .toStringO ;
newArgText = editPane.hasPrefix() ? newArgBuf.toStringO : argText;

if (!returnsVoid)
{
pw.print(new CopsArgument(returnType, getArrayDimensionO,

"returnValue"));
// for (int i = 0; i < getArrayDimensionO; i++)
// pw.print("[]");

pw.print(" = ");

if (ICopsUtility.isPrimitiveType(returnType) II
(getArrayDimensionO >0))

pw.print("null");

else if (returnType.equals("boolean"))
pw.print("false");

else
pw.print("0");

pw.printlnO ;") ;
pw.printlnO ;

>

if (editPane.hasPrefixO)

String prefixName = editPane.getPrefixName();

// If the method has arguments, make calls to each argument’s prefix,
if (args.size() > 0)

argslt = args.iterator();
while (argslt.hasNextO)
{
CopsArgument arg = (CopsArgument) argslt.next();
String argName = arg.getNameO ;
CopsArgument newArg = new CopsArgument(arg);
newArg.setName("_" + argName + "_");
pw.pr intIn(newArg.toStringO + " = " + prefixName + + argName

"(" + argText + ");");
}

>

// Otherwise call the single generic prefix,
else
pw.println(pref ixName + "(" + argText + ");");

pw.printlnO ;
}

if (guard != null)
pw.printlnO'if (" + guard.getName() + "(" + newArgText + "))");

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if ('returnsVoid)
{
pw.printIn("returnValue = this.component." + getNameQ + "(" +

newArgText +
}

else
pw.println("this.component." + getNameQ + "(" + newArgText +

pw . p r i n t l n O ;

if (suffix != null)
{

if (!returnsVoid)
{
pw.print("returnValue = " + suffix.getNameQ + "(" + newArgText);

if (newArgText. lengthQ > 0)
pw.print(", ");

pw.print("returnValue);");
>

else
pw.print(suffix.getNameQ + "(" + newArgText + ");");

>

if (!returnsVoid)
pw.println("return returnValue;");

try

p w .c lo se () ;
s w .c lo s e () ;
r e tu r n s w . to S t r in g O ;

>

catch (IOException exception)
{
return "";

>
>

else
return

}

/ **
* Gets the comment for the method mapped to the specified key for the code
* generator, as it should appear in the specified class.
*
* Sparam className the name of the class to retrieve the method body for.
* Sparam key the key mapped to the method to retrieve a body for.
* Sreturn the method body text to insert.
* /

public String getCodegenCommentByKey(String className, String key)
{
if (!className.equals("FrameworkCLASS_Decorator"))
return

String prototype = getBasicMethodO.toStringO;

if (key.startsWith(PREFIX))
{

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String argName = key.substring(PREFIX.lengthO);

if (argName.equals(""))
{
return "Called by: " + prototype +
"\nto do any necessary computations before delegation occurs.";

>

else
{
return "Called by: " + prototype +
"\nto precompute the value of " + argName + " passed to the " +
"decorated component.\nThis method may have side effects or do any" +
" other computations required\nbefore delegation occurs. The " +
"original value is returned by default.";

>
>

else if (key.equals(SUFFIX))
{
boolean returnsVoid = getReturnTypeO.equals("void");
return "Called by: " + prototype +
"\nto do any necessary computations after delegation occurs" +
(returnsVoid ? ". Does\nnothing by default." : ", as well as\n" +
"generate a return value. The value returned by the decorated component"
+ "\nis returned by default.");

>

else if (key.equals(GUARD))
{
return "Called by: " + prototype +
"\nto determine if delegation should occur. Returns true if delegation" +
"Ynshould occur and false otherwise. Returns true by default.";

>

else if (key.equals(DELEGATOR))

return "Delegates work to the method with the same prototype of the" +
"\n decorated component.";

>

return "";
}

/**
* Returns whether th e method mapped t o th e provided key should appear
* in th e p rov ided c l a s s .
*
* ©return whether or n o t th e method should appear in th e c l a s s .
* /

p u b l ic boolean a p p e a r s ln C la s s (S t r in g className, S t r in g key)
{

r e tu r n e d i tP a n e .g e tD e le g a te Q ;
>

* S ubclasses supply a S t r in g t h a t w i l l be used to r e f e r to th e b a s ic method.
*
* ©return a S t r in g mapped to th e b a s i c method.
* /

p u b l ic S t r in g getBasicMethodKey()
{

r e tu r n DELEGATOR;

1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

* Objects of a subclass can save any other fields they declare so that
* they may be restored later.
*
* ©return subclass fields encoded as a <code>String</code>.
* /

public String saveFieldsToStringO
{
StringBuffer buf = new StringBuffer();
buf.append(editPane.getDelegateO);
buf.append(",")•append(editPane.hasPrefix());
buf.append(",").append(editPane.hasSuffix());
buf.append(",").append(editPane.hasGuardO);
buf,append(",").append(editPane.getPrefixName()) ;
buf.append(",") •append(editPane.getSuffixName()) ;
buf.append(",") ■append(editPane.getGuardNameO);
return buf . toStringO ;

}

/**
* Objects of a subclass can restore their fields that have been saved as
* a String.
*
* Sparam source the <code>String</code> to read from.
* /

public void loadFieldsFromString(String source)
{
StringTokenizer tokenizer = new StringTokenizer(source,
editPane. setDelegate((new Boolean (tokenizer .nextTokenO)) .booleanValueO);
editPane. setHasPref ix((new Boolean(tokenizer .nextTokenO)) .booleanValueO) ;
editPane. setHasSuf fix ((new Boolean (tokenizer. nextTokenO)) .booleanValueO);
editPane.setHasGuard((new Boolean(tokenizer.nextTokenO)) .booleanValueO);
editPane.setPrefixName(tokenizer.nextTokenO);
editPane.setSuf f ixName(tokenizer.nextToken());
editPane.setGuardName(tokenizer.nextTokenO);
validateEditPaneO ;

}

/**
* Returns a pane that will be added to a <code>MethodListElementDlg</code>
* for editing this DecoratorMethodListElement.
*
* ©return a component with gui widgets.
* /

public JComponent getEditPaneO
{
return editPane;

}

/**
* Tells this MethodListElement to update itself according to the user
* input from the edit pane.
*
* ©return <code>null</code> if the settings in the pane are valid, or
* an error message otherwise.
* /

public String validateEditPaneO
{
String returnType = getReturnTypeO;

1 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clearUtilityMethodsO ;

if (editPane.getDelegateO)
{

if (editPane.hasPrefixO)
{

Iterator args = getArguments().iterator();
String prefixName = editPane.getPrefixName();
if (!CopsUtility.isValidMethodName(prefixName))
return METHOD_NAME_ERR;

// If the method has arguments, generate one prefix method for each,
if (args.hasNext())
{
while (args.hasNext())
{
CopsArgument arg = (CopsArgument) args.next();
CopsMethod prefix = new CopsMethod(getBasicMethodO);
prefix.setName(prefixName + + arg.getName());
prefix.setType(arg.getTypeO);
pref ix.setArrayDimension(arg.getArrayDimension());
putUtilityMethod(PREFIX + arg.getNameQ, prefix);

>
}

// Otherwise generate one generic prefix method,
else

CopsMethod prefix = new CopsMethod(getBasicMethodO);
pref ix.setName(pref ixName);
prefix.setType("void");
prefix.setArrayDimension(O);
putUtilityMethod(PREFIX, prefix);

>

>

if (editPane.hasSuffixQ)

String suffixName = editPane.getSuffixNameO;
if (!CopsUtility.isValidMethodName(suffixName))
return METHOD_NAME_ERR;

CopsMethod suffix = new CopsMethod(getBasicMethodO) ;
suffix.setName(suffixName);

11 Add an extra argument if the basic method returns a value,
if (!returnType.equals("void"))
suffix.addArgument(returnType, getArrayDimensionO , "returnValue");

putUtilityMethod(SUFFIX, suffix);
}

if (editPane.hasGuardO)
{
String guardName = editPane.getGuardName();
if (!CopsUtility.isValidMethodName(guardName))
return METHOD_NAME_ERR;

CopsMethod guard = new CopsMethod(getBasicMethodO);
guard.setName(guardName);
guard.setTypeC'boolean");
guard.setArrayDimension(0);
putUtilityMethod(GUARD, guard);

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

return null;
}

/**
* Called after all of the data of an imported method is set to allow
* this object to set its own fields accordingly.
* /

public void importCompleteO
{
String methodName = getNameQ;
editPane.setPrefixName(methodName + + PREFIX);
editPane.setSuffixName(methodName + + SUFFIX);
editPane.setGuardName(methodName + + GUARD);
validateEditPaneO ;

/**
* This is the pane that DecoratorMethodListElements add to instances of
* <code>MethodListElementDlg</code> for editing fields particular to the
* former.
* /

private class DecoratorEditPane extends JPanel implements ActionListener
{
// Constants.
private static final String PREFIX = " Prefix Method ";
private static final String SUFFIX = " Suffix Method ";
private static final String GUARD = " Guard Method ";
private static final String PREFIX_NAME = " Prefix Name ";
private static final String SUFFIX_NAME = " Suffix Name ";
private static final String GUARD_NAME = " Guard Name ";
private static final String DELEGATE =

" Delegate work to decorated component ";

// Gui widgets.
private JCheckBox hasPrefix, hasSuffix, hasGuard, delegate;
private JTextField prefixName, suffixName, guardName;

/**
* Constructor.
*
* Sparam hasPrefix whether or not this method has a prefix method.
* Sparam prefixName the name of the prefix method.
* Sparam hasSuffix whether or not this method has a suffix method.
* Sparam suffixName the name of the suffix method.
* Sparam delegate whether or not this method should delegate work to
* the decorated component.
* /

public DecoratorEditPane(boolean hasPrefix, String prefixName,
boolean hasSuffix, String suffixName,
boolean hasGuard, String guardName,
boolean delegate)

this.setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));

this.delegate = new JCheckBox();
this.delegate.setActionCommand(DELEGATE);
this.delegate.addA ctionListener(this);
this.delegate.setSelected(delegate);

this.hasPrefix = new JCheckBox();
this.hasPref ix.setActionCommand(PREFIX);

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this.hasPrefix.addActionListener(this);
this.hasPrefix.setSelected(hasPrefix);

this.hasSuffix = new JCheckBox();
this.hasSuffix.setActionCommand(SUFFIX);
this.hasSuffix.addActionListener(this);
this.hasSuffix.setSelected(hasSuffix);

this.hasGuard = new JCheckBox();
this.hasGuard.setActionCommand(GUARD);
this.hasGuard.addActionListener(this);
this.hasGuard.setSelected(hasGuard);

this.prefixName = new JTextField(prefixName);
this.suffixName = new JTextField(suffixName);
this.guardName = new JTextField(guardName);

Box delegateBox = Box.createHorizontalBoxO;
delegateBox.add(new JLabel(DELEGATE));
delegateBox.add(this.delegate);
this.add(delegateBox);

Box prefixBox = Box.createHorizontalBoxO;
prefixBox.add(new JLabel(PREFIX));
prefixBox.add(this.hasPrefix);
prefixBox.add(new JLabel(PREFIX_NAME));
prefixBox.add(this.prefixName);
this.add(prefixBox);

Box suffixBox = Box.createHorizontalBoxO;
suffixBox.add(new JLabel(SUFFIX));
suffixBox.add(this.hasSuffix);
suffixBox.add(new JLabel(SUFFIX_NAME));
suffixBox.add(this.suffixName);
this.add(suffixBox);

Box guardBox = Box.createHorizontalBoxO;
guardBox.add(new JLabel(GUARD));
guardBox.add(this.hasGuard);
guardBox.add(new JLabel(GUARD_NAME));
guardBox.add(this.guardName);
this.add(guardBox);

enableComponents();
>

/**
* Sets wether or not this method has a prefix method.
*
* Sparam hasPrefix whether or not this method has a prefix.
*/

public void setHasPrefix(boolean hasPrefix)
{
this.hasPrefix.setSelected(hasPrefix);
enableComponents();

}

/ **
* Returns whether or not this method has a prefix method.
*
* ©return whether or not this method has a prefix method.
*/

public boolean hasPrefixO

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
return hasPrefix.isSelectedO;

}

/**
* Returns the name of the prefix method.
*
* ©return the name of the prefix method.
* /

public String getPrefixName()
{
return pref ixName. getTextQ .trimQ ;

>

/ * *
* Sets the name of the prefix method.
*
* Sparam name the new name of the prefix method.
*/

public void setPrefixName(String name)
{
pref ixName.setText(name);

}

/ * *
* Sets whether or not this method has a suffix method.
*
* Sparam hasSuffix whether or not this method has a suffix method.
* /

public void setHasSuffix(boolean hasSuffix)
{
this.hasSuffix.setSelected(hasSuff ix);
enableComponents();

}

/**
* Returns whether or not this method has a suffix method.
*
* ©return whether or not this method has a suffix method.
* /

public boolean hasSuffix()
{
return hasSuffix.isSelectedO;

}

/**
* Returns the name of the suffix method.
*
* ©return the name of the suffix method.
* /

public String getSuffixName()
{
return suffixName.getText().trimO;

>

/ * *
* Sets the name of the suffix method.
*
* Sparam name the new name of the suffix method.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*/
public void setSuffixName(String name)
{

suffixName . setText (name) ;
>

/ * *
* Sets whether or not this method has a guard method.
*

* Sparam hasGuard whether or not this method has a guard method.
* /

public void setHasGuard(boolean hasGuard)
{
this.hasGuard.setSelected(hasGuard);
enableComponents();

}

/**
* Returns whether or not this method has a guard method.
*
* ©return whether or not this method has a guard method.
*/

public boolean hasGuardQ
{
return hasGuard.isSelectedO;

>

/**
* Returns the name of the guard method.
*
* ©return the name of the guard method.
* /

public String getGuardName0
{
return guardName.getTextO .trimO ;

>

/**
* Sets the name of the guard method.
*
* Sparam name the new name of the guard method.
* /

public void setGuardName(String name)
{
guardName.setText(name);

>

/ * *
* Returns whether or not this method delegates work to the decorated
* component.
*
* ©return whether or not work is delegated.
* /

public boolean getDelegateO

return delegate.isSelectedO;
}

/**

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Sets whether or not this method delegates work to the decorated
* compoenent.
*
* Oparam delegate wether or not work is delegated.
*/

public void setDelegate(boolean delegate)
{
this.delegate.setSelected(delegate);
enableComponents();

>

/ * *
* Callback for the check boxes.
*
* Qparam event generated by the check boxes when their state changes.
* /

public void actionPerformed(ActionEvent event)
■c

enableComponents() ;
>

/**
* Enables or disables the gui widgets according to the state of the
* check boxes.
* /

private void enableComponents()
{

if (delegate. isSelectedO)

hasPrefix.setEnabled(true);
hasSuffix.setEnabled(true);
hasGuard.setEnabled(true);

prefixName.setEnabled(hasPrefix.isSelectedO);
suffixName.setEnabled(hasSuffix.isSelectedO);
guardName.setEnabled(hasGuard.isSelectedO);

>

else

hasPrefix.setEnabled(false);
hasSuffix.setEnabled(false);
hasGuard.setEnabled(false);
prefixName.setEnabled(false);
suffixName.setEnabled(false);
guardName.setEnabled(false);

>
}

>
}

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix B

CGL Decorat or Pattern

This Appendix shows the code created by the pattern designer to implement the Decorator
pattern in CGL.

B .l Decorator Class
#output decorator
#template

#user "User Imports"
/**
* This class represents the abstract superclass of a concrete Decorator
* from the Decorator pattern.
* /

public abstract class Qdecorator ©inherits(decoratorSuperclass) {
/**
* The decorated component.
* /

private QcomponentClass component;

/**
* Constructor that sets the decorated component to the given component.
* /

public Qdecorator (QcomponentClass c){
this.component = c;

>

/**
* Returns the decorated component.
*/

public QcomponentClass getDecoratedComponent(){
return this.component;

>

/**
* Sets the decorated component to the given component.
* /

public void setDecoratedComponent(QcomponentClass c){
this.component = c;

}

#user "User Methods"

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/*
* Methods Generated From Delegated Method List
* /

#for method in methods

#rem This next line also sets an internal variable that is used to pass
#rem the appropriate result variable to the method suffix.

#assign resVar method.resultVariableO'result")

#rem If there is no suffix, our code requires no result variable. We set
#rem the type to "void" to avoid its creation. These six lines of code
#rem merely simplify the resulting code without changing its correctness.

#if not method.suffixRequired
#assign resVar.type "void"
#assign handleResult "return"

#else
#assign handleResult resVar.assign()

#end
/ * *
* Delegation Method. This method is responsible for performing the actual
* decoration. The delegated method is called according the the results
* from the optional prefix and guard methods. The optional suffix method
* can modify the return value of this method, if there is one.
* /

©method {
©resVar. declareWithDef ault ()

©method.pref ix()

©method.guardStart()
©handleResult this.component.©method.call();

©method.guardEnd()

©method.suffix()

©resVar. optionalReturnO
>

©method.pref ixMethod()

©method.guardMethod()

©method.suff ixMethod()

#end

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix C

GUI Skeleton Java Source

C .l D isplay G UI Skeleton Java Source
/* This class is used inside COPS to display an option of this type. The

option will be displayed in a dialog box, however you only need to worry
about filling a panel. DataCopsGui eventually extends from JPanel and
that is the panel you can fill with widgets.

Note that the Data* classes provide many models that can immediately be
combined with the Java GUI widgets. Often you will be able to create the
GUI inside of initializePanelO and then forget about it. If it is tricky
to associate one of the existing models with a widget, you can use the
dumpToModel() method to do the data transfer from the GUI. Note that
dumpToModel() will always be called, even if the dialog box is cancelled.
It can be used to do GUI cleanup if needed.

In addition to the regular data access methods that are part of the Data*
types, the following methods may be used:

model.getParameters()
If you set parameters for a type within the MetaCOPS code, you will
need to retrieve and use them here. This method returns a
DataRecord that contains the parameter fields for the particular
type being accessed. Note that the parameters are shared between
all list elements within a DataList.

model.getPanel()
Get the JPanel connected with the type. This will call
the appropriate initializePanelO and dumpToModel() methods
automatically.

model.toString()
Get the string representation of the data item.

getSuperPanel(String type)
If a type has an ancestor, you may grab the GUI panel of the
ancestor by specifying the name of the ancestor. If the ancestor
panel cannot be found, a panel with an error message will be
returned. Notice that the method is not part of the model,
it is called directly.

getSuperString(String type)
If a type has an ancestor, you may grab its string representation
by calling this method. If the ancestor cannot be found, an error
string will be returned.

The values in the parameters DataRecord structure are those that have been
set by the pattern designer in MetaCOPS. As an example, suppose there was
a numeric type that allowed the pattern designer to set the maximum and
minimum values that the COPS user could enter. Those parameters would
be set in MetaCOPS and this class would be responsible for using the
parameters to limit the user’s choice in some manner.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By default the JPanel has a vertical BoxLayout. If you wish, you can
simply add() a widget to it and then call addSpacerQ to leave a small
gap before you add your next widget,

void addSpacerQ

Note that the add(Component) method is overriden. The overriden version
sets the maximum height of the component to the preferred height.

Component add(Component c)

There is also the addLabel(String) utility method that may be used to add
an informative text box label. It will also add a spacer below itself,

void addLabel(String message)

IMPORTANT:
If the COPS system is unable to instantiate this class, it will not appear
in the type list in MetaCOPS, nor will it be usable from COPS. The
initializePanel(Data model) method must be specified in order to get the
type to appear in the type list.

package cops.types.TYPENAME.gui;

import cops.typesystem.data.*;

public class TYPENAME_cops extends DataCopsGui {
/* If you need access to any part of the GUI after it’s created, you will

want to create private instance variables to store that state. */

/ * This method is responsible for initializing the model of this type.
If anything in the model should have a non-default (zero, false, "")
value, it should be set here. If this method is not provided,
the default values will be used. */

// public void initializeModel(Data model) {
/ / }

/* This method is responsible for creating the GUI and adding it to the
panel represented by ’this’. The GUI’s values should be initialized
according to the values stored in the model. */

// public void initializePanel(Data model) {
/ / >

/* This method is responsible for collecting data from the GUI and placing
it in the model that is passed in. If you discover an error at this
point (for example, an alphabetic string was entered for an integer
value), simply return a String indicating what has gone wrong. If no
error occured, return null. This method will be called whether the user
accepts or rejects the current changes. It can be used to perform
operations like stoping edits on tables. */

// public String dumpToModel(Data model) {
// return null;
/ / >

/* Before storing, the model is validated to ensure that it contains no
faulty data. This will be called when the user tries to close the
dialog showing the option. If validation does not succeed, the dialog
will persist. If an error is detected, return a String describing the
error. If no error is found, simply return null. Our validation
method will be called before the validation methods of our ancestors
and our children. */

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// public String validateModel(Data model) {
// return null;
/ / >

/* COPS may desire to display the data for this type as a string. By
providing this method, you can control the string that is generated. */

// public String toString(Data model) {
// return
/ / >

C.2 Param eters GUI Skeleton Java Source
/* This class is used inside MetaCOPS to display the parameters for options of

this type. DataMetaGui eventually extends from JPanel and that is the panel
you must fill with widgets.

Note that the Data* classes provide many models that can immediately be
combined with the Java GUI widgets. Often you will be able to create the
GUI inside of initializePanelO and then forget about it. If it is tricky
to associate one of the existing models with a widget, you can use the
dumpToModelO method to do the data transfer from the GUI. Note that
dumpToModel() will always be called, even if the dialog box is cancelled.
It can be used to do GUI cleanup if needed.

The tree passed in corresponds to the structure of the type specified in
MetaCOPS. For example, take the following structure:

Record (TypeA)
+fieldB (TypeB)
+fieldC (List)

+Boolean

In this example, the user-created types are TypeA and TypeB. If we wish
to access the parameters of the TypeA record, we simply take the DataTree
that was passed in and call getParametersO on it.

tree.getParameters()
If we wanted to access the parameters of TypeB, we would go:

tree.getField("f ieldB").getParameters()
If we wanted to access the parameters of the Boolean value, we would go:

tree .getField ("fieldC") .getElementQ .getParametersO

In addition to the methods used to access the tree, you can also use the
following methods:

tree.getPanel()
Gets the JPanel connected with the type. This will call
the appropriate initializePanelO and dumpToModelO methods
aut omat i c ally.

getSuperPanel(String type)
If a type has an ancestor, you may grab the GUI panel of the
ancestor by specifying the name of the ancestor. If the ancestor
panel cannot be f ound, a panel with an error message will be
returned. Notice that the method is not part of the model,
it is called directly.

The DataTree tree structure mirrors the main structure of the type. The
DataRecord returned by getParameters() has its contents defined by the
Parameters structure defined in the type editor.

By default the JPanel has a vertical BoxLayout. If you wish, you can
simply add() a widget to it and then call addSpacer() to leave a small
gap before you add your next widget.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void addSpacerO

Note that the add(Component) method is overriden. The overriden version
sets the maximum height of the component to the preferred height.

Component add(Component c)

There is also the addLabel(String) utility method that may be used to add
an informative text box label. It will also add a spacer below itself,

void addLabel(String message)

If you’re using the default method for creating your panel, you will likely
want to call addFillerO when you’re done adding widgets to the panel. This
will fill any space that remains,

void addFillerO

package cops.types.TYPENAME.gui;

import cops.typesystem.data.*;

public class TYPENAME_metacops extends DataMetaGui {
/* If you need access to any part of the GUI after it’s created, you will

want to create private instance variables to store that state. */

/* This method is responsible for initializing the model of this type.
If anything in the model should have a non-default (zero, false, "")
value, it should be set here. If this method is not provided,
the default values will be used. */

// public void initializeModel(DataTree tree) {
/ / }

/* This method is responsible for creating the GUI and adding it to the
panel represented by ’this’. The GUI’s values should be initialized
according to the values stored in the model. */

// public void initializePanel(DataTree tree) {
/ / }

/* This method is responsible for collecting data from the GUI and placing
it in the model that is passed in. If you discover an error at this
point (for example, an alphabetic string was entered for an integer
value), simply return a String indicating what has gone wrong. If no
error occured, return null. This method will be called whether the user
accepts or rejects the current changes. It can be used to perform
operations like stoping edits on tables. */

// public String dumpToModel(DataTree tree) {
// return null;
/ / >
/■* Before storing, the model is validated to ensure that it contains no

faulty data. This will be called when the user tries to close the
dialog showing the option. If validation does not succeed, the dialog
will persist. If an error is detected, return a String describing the
error. If no error is found, simply return null. Our validation
method will be called before the validation methods of our ancestors
and our children. */

// public String validateModel(DataTree tree) {
// return null;
/ / >

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix D

D T D s for XM L Used in Type
System

To promote the ability to separate the CO 2 P 2 S modules, XML has been used as the standard
inter-module communication mechanism. The DTDs in this appendix show the structure
of those XML files.

D .l DTD for CO 2 P 2 S Types
Types in CO2 P 2 S system are stored in the following format.

<!ELEMENT Type (Species,
TypeName,
Ancestors?,
Fields?,
ElementType?,
Parameters?,
Documentation?)>

<!ELEMENT Species (#PCDATA)>
<«ELEMENT TypeName (#PCDATA)>
<!ELEMENT Ancestors ((AncestorName)*)>
<!ELEMENT AncestorName (#PCDATA)>
<!ELEMENT Fields ((Field)*)>
<!ELEMENT Field (FieldName, (FieldReferenceI Type))>
<!ELEMENT FieldName (#PCDATA)>
<!ELEMENT FieldReference (#PCDATA)>
<!ELEMENT ElementType (ElementReferenceIType)>
<!ELEMENT ElementReference (#PCDATA)>
<!ELEMENT Parameters (Type)>
<!ELEMENT Documentation (#PCDATA)>

D .2 DTD for Type D ata
When the types are used, their instance data is stored in the formats indicated in this file.
DataTree is used to store the tree structure of which the parameter records are a part.
<!ELEMENT CopsData:DataTree (CopsData:DataTreeParameters?,

CopsData:DataTreeRecord?,
CopsData:DataTreeList?)>

<!ATTLIST CopsData:DataTree type NMTOKEN #REQUIRED>
<!ELEMENT CopsData:DataTreeParameters (CopsData:Data)>
<!ELEMENT CopsData:DataTreeRecord (CopsData:DataTreeField*)>
<(ELEMENT CopsData:DataTreeField (CopsData:DataTreeKey, CopsData:DataTree)>
<!ELEMENT CopsData:DataTreeKey (#PCDATA)>

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<!ELEMENT CopsData:DataTreeList (CopsData:DataTree)>

<!ELEMENT CopsData:Data (CopsData:Record|
CopsData:List i
CopsData:String I
CopsData:Float|
CopsData:Integer I
CopsData:Boolean)>

<!ATTLIST CopsData:Data type NMTOKEN #REQUIRED>
<!ELEMENT CopsData:Record (CopsData:Field*)>
<(ELEMENT CopsData:Field (CopsData:Key, CopsData:Data)>
<!ELEMENT CopsData:Key (#PCDATA)>
<!ELEMENT CopsData:List (CopsData:Data*)>
<!ELEMENT CopsData:String (#PCDATA)>
<!ELEMENT CopsData:Float (#PCDATA)>
<!ELEMENT CopsData:Integer (#PCDATA)>
<!ELEMENT CopsData:Boolean (#PCDATA)>

D.3 DTD for Pattern Definition
This DTD specifies the format of the XML files tha t define the user interface provided for
each pattern in CO 2 P 2 S. Note the use of CopsData.
<!— Include CopsData:* declarations — >
< (ENTITY datadecls SYSTEM "CopsData. dtd">
y.datadecls;

<!ELEMENT CopsPattern:patternInfo (CopsPattern:patternName,
CopsPattern:constants,
CopsPattern:options,
CopsPattern:guilnfo)>

<(ATTLIST CopsPattern:patternInfo
xmlns:CopsPattern CDATA #REQUIRED

>

<!ELEMENT CopsPattern:patternName (#PCDATA)>

<!ELEMENT CopsPattern:constants (CopsPattern:constant)*>
<!ELEMENT CopsPattern:constant (CopsPattern:constantID,

CopsPattern:const antValue)>
<!ELEMENT CopsPattern:constantID (#PCDATA)>
<!ELEMENT CopsPattern:constantValue (#PCDATA)>

<!ELEMENT CopsPattern:options (CopsPattern:option*)>
<!ELEMENT CopsPattern:option (CopsPattern:optionMenu,

CopsPattern:representsPatternName?,
CopsPattern:optionType,
CopsPattern:enabled?,
CopsPattern:parameters)>

<!ATTLIST CopsPattern:option optionldentifier CDATA #REQUIRED>
<(ELEMENT CopsPattern:optionMenu (#PCDATA)>
<!ELEMENT CopsPattern:optionType (#PCDATA)>
<(ELEMENT CopsPattern:representsPatternName (#PCDATA)>
<!ELEMENT CopsPattern:enabled (#PCDATA)>
<!ELEMENT CopsPattern:parameters (CopsData:DataTree)>

<!ELEMENT CopsPattern:guilnfo (CopsPattern:visualElements)>
<(ELEMENT CopsPattern:visualElements (CopsPattern:tElement*,

CopsPattern:gElement*)>
<!ELEMENT CopsPattern:gElement (CopsPattern:gElementID,

CopsPattern:gElementLocationX,
CopsPattern:gElementLocationY,
CopsPattern:gElementlmages?,

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CopsPattern:gElementCurImageParts?)>
<!ELEMENT CopsPattern:tElement (CopsPattern:tElementID,

CopsPattern:tElementLocationX,
CopsPattern:tElementLocationY,
CopsPattern:tElementMaxLength,
CopsPattern:tElementJustification,
CopsPattern:tElementUpdateType,
CopsPattern:tElementText?,
CopsPattern:tElementUpdateVal?) >

<!ELEMENT CopsPattern:gElementID (#PCDATA)>
<!ELEMENT CopsPattern:gElementLocationX (#PCDATA)>
<!ELEMENT CopsPattern:gElementLocation? (#PCDATA)>
<!ELEMENT CopsPattern:gElementImages (CopsPattern:gElementImage)*>
<!ELEMENT CopsPattern:gElementImage (CopsPattern:gElementImageName,

CopsPattern:gElementImageLoc) >
<!ELEMENT CopsPattern:gElementImageName (#PCDATA)>
<!ELEMENT CopsPattern:gElementImageLoc (#PCDATA)>
< 'ELEMENT CopsPattern:gElementCurlmageParts (CopsPattern:gElementCurImagePart*)>
<!ELEMENT CopsPattern:gElementCurlmagePart (CopsPattern:gElementCurlmagePartVal,

CopsPattern:gElementCurImagePartType)>
<!ELEMENT CopsPattern:gElementCurlmagePartVal (#PCDATA)>
<!ELEMENT CopsPattern:gElementCurImagePartType (#PCDATA)>
<!ELEMENT CopsPattern:tElementID (#PCDATA)>
<!ELEMENT CopsPattern:tElementLocationX (#PCDATA)>
<!ELEMENT CopsPattern:tElementLocationY (#PCDATA)>
<!ELEMENT CopsPattern:tElementMaxLength (#PCDATA)>
<!ELEMENT CopsPattern:tElementText (#PCDATA)>
<!ELEMENT CopsPattern:tElementJustification (#PCDATA)>
<!ELEMENT CopsPattern:tElementUpdateType (#PCDATA)>
<!ELEMENT CopsPattern:tElementUpdateVal (#PCDATA)>

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix E

Type System A PI

This appendix contains a description of the entire type system API. Because this section
could be used as a stand-alone reference, some pieces have been included from Chapter 4.

The classes are divided into three categories. D ata access classes are used to read and
write the data contained within the type instances. Framework classes make up the inherited
framework th a t the type designer works within. Finally, the GUI classes provide some useful
widgets for the type designer to work with.

E .l D ata Access Classes

E . l . l DataTree
The DataTree class is used within the Param eters GUI to access the parameters th a t are
part of the type. This was explained in Section 4.2. The getPanelQ method allows the
type designer to use the Param eter GUIs provided by the children shown in Section 4.2.

class DataTree {
public DataRecord getParameters();
public DataTree getField(String key);
public DataTree getElement();

public JPanel getPanelQ;
}

E .l .2 D ata
This is the superclass for the remainder of the data access classes. It provides common
functionality.

class Data {
// Access Methods
public DataRecord getParameters();
public JPanel getPanel0 ;
public boolean createDialogO ;
public String toStringO;

// Casting Methods
public DataString asStringO;
public DataBoolean asBooleanQ;
public DataBoolean aslntegerf);
public Datalnteger asFloatO;
public DataList asList();
public DataRecord asRecordO;

// Low Level Access Methods
public OptionType getTypeQ;

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p u b lic D ataTree ge tD ataT reeQ ;
}

g e tP a ra m e te r s () Returns the param eters associated with this data item. If none are
available, n u l l is returned.

g e tP an e lQ Returns the JP anel for this d ata item. This method is used to access the GUIs
of child elements. If no panel is available, n u l l will be returned.

c rea teD ia lo g Q Creates a dialog whose contents are the same as the panel returned by
g e tP a n e lQ . The dialog will have “OK” and “Cancel” buttons. If “Cancel” is selected,
any changes to the model will be rolled back. Cancelling a higher level dialog will
also cancel the changes made by dialogs created from inside the higher level dialog.
c re a te D ia lo g Q returns t r u e if the dialog is “OKed” , f a l s e otherwise.

to S tr in g Q Returns the string representation of this data item.

C a s tin g M e th o d s These methods simply perform a cast to one of the indicated D ata
types.

g e tT y p e Q Returns the underlying OptionType. See Section E.2.4 for details.

g e tD a ta T ree Q Returns the underlying D ataTree node, or n u l l if no such node exists.

E .l .3 D ataString
D a ta S trin g is a container for a Java S tr in g . This class implements the Document interface,
providing a convenient model for use in text widgets.

c la s s D a ta S trin g ex tends Data
implements Document

I
p u b lic S tr in g g e tQ ;
p u b lic vo id s e t (S t r in g s) ;

>

g etQ This method returns the underlying S tr in g . Each of the other types uses similar ac­
cessor methods, the only difference being the type of the value passed into or returned
from the methods.

se t() This method sets the underlying S tr in g to the passed in value.

E .l .4 D ataBoolean
DataBoolean acts as a wrapper for a b oo lean Java primitive. It also provides the ButtonModel
interface for easy manipulation using various button-like widgets. JCheckBox is able to take
advantage of the ButtonModel interface.

c la s s DataBoolean ex tends Data
implements ButtonModel

{
p u b lic boolean g e tQ ;
p u b lic vo id se t(b o o le a n b) ;

}

E .l .5 D atalnteger
This class acts as a wrapper for a long Java primitive.

c la s s D a ta ln te g e r ex tends D ata {
p u b lic long g e tQ ;
p u b lic vo id s e t(lo n g 1) ;

}

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E.1.6 D ataFloat
This class acts as a wrapper for a double Java primitive.

class DataFloat extends Data {
public double get();
public void set(double d);

>

E.1.7 DataList
This class acts as a full featured list d ata type. It implements a number of Java interfaces
for easy access to the underlying type. Operations such as sorting can be accomplished
through the L is t interface. GUIs can be created based on ListM odel or ComboBoxModel.
Note tha t the DataList performs checks to ensure tha t only elements of the right type can
be added. Elements of the right type can be created using the c r e a te factory methods
shown below. Creating an element does not add it to the list; this must be performed as
usual through the L is t interface methods.

class DataList extends Data
implements List,

RandomAccess,
ListModel,
ComboBoxModel

{
// Factory Methods
public Data createO ;
public DataString createStringO;
public DataBoolean createBooleanO ;
public Datalnteger createlnteger();
public DataFloat createFloat();
public DataList createList();
public DataRecord createRecordO;

// Casting Accessor Methods
public Data getData(int index);
public DataString getString(int index);
public DataBoolean getBoolean(int index);
public Datalnteger getInteger(int index);
public DataFloat getFloat(int index);
public DataList getList(int index);
public DataRecord getRecordCint index);

// Internal Method
public void fireContentsChanged(int indexO, int index1);

>

create() This method is used to create a new Data item. The DataList knows the structure
of its children and the new item will be created fully formed.

g e tD a ta Q Given an index, this method returns the Data item at the appropriate location
in the list.

C asting M eth ods The remainder of the get and create methods merely cast the result of
the previous methods into the different data types.

fireC ontentsC hanged() Though normally this method would not be needed, the current
list is unaware of when its child elements change. If a child element changes in a way
th a t modifies the appearance of the list, this method must be called to update the
associated GUI list models.

E.1.8 DataRecord
This class provides the Map interface for manipulating records. Note th a t the optional
c le a r () , p u t () , p u tA llO , and remove() methods are not supported.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TYPE_cops

DataGui

DataCopsGuiDataMetaGui

User-Created User-Created
Parameters GUI Display GUI

Figure E .l: Type Framework

class DataRecord extends Data
implements Map

{
public Data getData(String key);
public DataString getString(String key);
public DataBoolean getBoolean(String key);
public Datalnteger getlnteger(String key);
public DataFloat getFloat(String key);
public DataList getList(String key);
public DataRecord getRecord(String key);

}

g e tD a ta Q Given a key, this method returns the D ata element associated with the given
key. If the key is not in the record, n u l l will be returned.

C a s tin g M e th o d s These methods simply cast the g e tD a taO result to the appropriate
form.

E.2 Framework Classes
The types in this section are used in the creation of the display and parameters GUIs.
Remember that the GUI source includes not only GUI creation, but also initialization and
validation. The class hierarchy is shown in Figure E .l with the user created types at the
bottom.

E.2.1 DataG ui
At the highest level, the DataGui class provides functionality th a t is common to both the
param eter and display GUIs. This class is itself a JPanel. In the constructor, the JPanel is
set to use a vertical box layout.

class DataGui extends JPanel {
public Component add(Component c);
void addSpacerO;
void addFiller();
void addLabel(String text);

>

add() The add method is similar to JPanel’s add() method, only it sets the maximum
height of the widget to be the preferred height of the widget. Normally widgets
should be added using this method to avoid problems with display in MetaCC>2 P 2 S.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ad d S p acerQ Adds a small blank area to the GUI below the last component that was
added.

a d d F ille r() Used in the parameters GUI, this method should be called to fill the empty
space after all the other components have been added.

ad d L a b e l(S tr in g te x t) This can be used as a convenient way to add a stand-alone la­
bel to the GUI. It will produce the type of box-framed labels that can be seen in
M etaC 02P 2S.

E.2.2 D ataM etaG ui
This class is used as the superclass for all of the ‘‘Param eter GUI” classes. It provides
default implementations of the four methods th a t need to be overridden.

class DataMetaGui extends DataGui {
// Type designer should override some of these methods
public void initializeModel(DataTree tree);
public void initializePanel(DataTree tree);
public String dumpToModel(DataTree tree);
public String validateModel(DataTree tree);

// This method provides access to ancestors,
protected JPanel getSuperPanel(String ancestor);

>

im itializeM odelQ This method is responsible for initializing the contents of the given tree
of parameters. If it is not overridden, the model will be initialized with empty lists,
zero numeric values, empty strings, and false booleans.

in itia lizeP an el() Responsible for creating the GUI panel. If this method is not overridden,
the Parameters panel will not be provided in M etaC 02P 2S. The contents of the panel
must reflect the information in the provided tree.

d u m p T o M o d e lQ If the GUI does not automatically update the underlying models, this
method can be used to store the values from the GUI into the model. If all is well,
n u l l should be returned. If an error occured, a string indicating the problem should
be returned.

v a lid a teM o d e lQ This method is used to confirm th a t the contents of the tree are correct.
If they are, n u l l should be returned. If they are not, an error string should be returned.

g e tS u p e rP a n e lQ Given the name of an ancestor type, this method will retrieve the GUI
panel used to display and manipulate the ancestor’s parameters.

E.2.3 D ataCopsG ui
This class is used as the superclass for all of the “Display GUI” classes. It provides default
implementations of the five methods that need to be overridden.

class DataCopsGui extends DataGui {
public void initializeModel(Data model);
public void initializePanel(Data model);
public String dumpToModel(Data model);
public String validateModel(Data model);
public String toString(Data model);

protected JPanel getSuperPanel(String ancestor);
protected String get SuperStr ing(Str ing ancestor);

}

in itia lizeM o d e lQ This method is responsible for initializing the contents of the given
model. If it is not overridden, the model will be initialized with empty lists, zero
numeric values, empty strings, and false booleans.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initializePanelQ Responsible for creating the GUI panel. If this method is not overridden,
the type will not be available for selection in MetaCCUP-jS. The contents of the panel
must reflect the information in the provided model.

d u m p T o M o d elQ If the GUI does not automatically update the underlying models, this
method can be used to store the values from the GUI into the model. In CO 2 P 2 S,
this method will be called when a dialog is accepted or even cancelled. If all is well,
n u l l should be returned. If an error occured, a string indicating the problem should
be returned.

validateM o del () This method is used to confirm tha t the contents of the model are correct.
If they are, n u l l should be returned. If they are not, an error string should be returned.

toS trin g() Returns the string representation of the type. If to S tr in g O is not provided
and the type is based on a String, Boolean, Integer, or Float value, the simple string
representation of the value will be used. For Records and Lists, default strings will be
automatically generated but they are not particularly helpful. If the type designer is
creating a Record or List based type th a t might be displayed in a list or as part of a
pattern GUI, the designer should override this method.

g e tS u p e rP a n e lQ Given the name of an ancestor type, this method will retrieve the GUI
panel used to display and manipulate the ancestor’s structure.

getSu p erS trin g() Given the name of an ancestor type, this method will retieve the string
generated by the ancestor type.

E.2.4 O ptionType
Though this class should not need to be used by the type designer, it is mentioned due to its
importance. OptionType is the Java class th a t contains the entire description of each type.
If the type designer wished to create a complicated GUI tha t could be used for different
types, the OptionType class would be used to access the internal description of the type.
See the OptionType source[2] for full details on type internals.

E.3 GUI Classes

E.3.1 D ataJTable
In combination with DataJTableModel, the DataJTable type provides a flexible way to
display lists of editable items. It is based on the Java JT able class. Figure 3.7 includes two
of these tables.
class DataJTable extends JPanel {

public DataJTable(DataList list, String title);

public DataJTable(DataList list);
public void addField(String field, String title);

public boolean stopEditingO;
>
D ataJT able(list, title) This constructor is used to created single column tables. It cur­

rently supports the display of lists of string values. A title should be provided for the
table column.

D ataJT ab le(list) This constructor is used to create a table based on a list with record
children. Afer the table is created, the a d d F ie ld () should be called.

ad dF ield () Given the name of a field and a title for the table column, this method adds
the record field as an editable column within the JTable. It currently only supports
string fields.

stop E ditin g() This method should be called when the dialog tha t created the JTable is
closed. It can be called from dumpToModelO methods. The method will stop any
currently occuring edits in the table and commit the changes. If the entry could
not be accepted, s to p E d itin g O would return f a ls e . Presently, this method should
always return tru e .

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E.3.2 D ataJList
The DataJList class provides an editable list of arbitrary elements. The only requirement is
that the list elements provide a sane toStringO implementation. The widget will created
a titled frame if a non-empty and non-null title is provided. Figure 3.6 provides an example
of the list.

class DataJList extends JPanel {
public DataJList(DataList list, String title);

}

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix F

Generator Skeleton Python
Source

The code in this file will end up in a class, similar to this:
#
class TYPENAME(ancestor1, ancestor2, ancestor3):
THE
CODE
FROM
THIS
FILE
#
The self parameter must be specified as the first parameter for all methods
in this file. It represents the instance of the type and is used to access
the fields and methods within the type.

This method is used to initialize the state of the type. By default, it
passes and does nothing. Note that the the values of primitive types
cannot be set from this method. The primitive types are those based on
String, Boolean, Integer, or Float. Additional fields may be added to the
type simply by assigning to the field (ex. self.myfield = 3) . The init()
method will be called for all types in the hierarchy, starting from the
least specific (last entry in method resolution order).
def init(self):

pass

This method is used to convert the type to a string. If your type is already
a primitive, you don’t need to supply this method. If your type is not a
primitive, you should supply it. Inside of this method you are free to use
cgl() calls. If you return a string value, it will be used in place of
any code produced by means of cgl() calls. To find the correct string()
method, the system will use the default python method resolution order.
def string(self):

pass

If you desire, the methods may be specified using CGL code rather than
python code. The r’’’ string syntax is used to avoid the need to
escape backslashses. Here is an example:
c g l (r ’ ’ ’
#macro s t r in g (s e l f)
i f s e l f . conditionVariable
x = S s e l f . varOne;
e ls e
x = Sself.varTwo;
#end
#end
” ’)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

