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Abstract

Heterogeneous materials have been used extensively due to their desirable properties achieved

by combining various constituents and tailored local structures. More recently, the metamate-

rials have attracted extensive attention because of their exotic dynamic properties, which are

caused by either or both of the periodic and resonant local structures. Since the separation

of scales exists between the fine-scale features and the macroscopic structures, the multiscale

modeling and simulation of the elastodynamic behavior of the heterogeneous materials are es-

sential for their design, optimization and application. This thesis aims to develop computational

methods for the multiscale modeling of elastic wave propagation in heterogeneous materials.

Firstly, an analytical-numerical method is developed for the multiple scattering problem of

elastic media with interacting inhomogeneities under time-harmonic antiplane incident waves.

The main focus is on the detailed evaluation of the effectiveness and accuracy of the method in

the determination of the local dynamic behavior of such heterogeneous media with significant

numbers of inhomogeneities. The method is based on the eigenfunction expansion and the use

of a pseudo-incident wave technique. Then, by introducing the Helmholtz decomposition, the

method is extended to in-plane problems. The accuracy and effectiveness of the method for

dealing with multiple interaction problems are discussed in detail.

Then, for the periodic materials, an analytical-numerical method is developed for determin-

ing the eigenstate of the unit cell under designated frequency and propagation direction. Based

on the eigenfunction expansion and Floquet-Bloch theory, the nonlinear eigenvalue problem is

established. The Newton’s method is employed for computing the expansion coefficients as the
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eigenvector by which the eigenstate of the unit cell can be determined. The method is validated

by the comparison with the finite element method.

Based on the explicitly solved multiple scattering wave fields and the eigenstates of periodic

unit cell, two kinds of computational homogenization methods are developed. The first kind

is based on the domain averaging, and two methods are developed. The first method is based

on the volume averages of the field variables with considering the effective wave form, which

is iteratively adjusted using the self-consistent scheme. The second method is developed for

periodic materials based on the kinetic energy equivalence. The homogenization results are

verified by comparing the direct numerical simulations of the original heterogeneous material

and the homogeneous substitution with the obtained effective properties.

Another computational homogenization method is developed based on the boundary match-

ing technique. The effective material properties are obtained by being adjusted so that the

boundary response of the representative volume element has the minimum mismatch with that

of a congruent piece of homogeneous material. According to different frequency ranges and

materials, different RVE models are established. The validity of the homogenization is also

verified by the comparison of direct numerical simulations. The homogenization results ob-

tained by using boundary matching method and the domain averaging method are in a good

consistency.

At last, the multiscale modeling method is summarized by combining the developed meth-

ods. The method for recovering the local response from the homogenized model is developed.

The effectiveness and accuracy of the method are shown by general examples of elastic wave

propagation in heterogeneous materials with fine-scale local structures.
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The main body of this thesis is composed of three journal papers, which are publiched or in
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Chapter 2 and the first section of Chapter 4 are based on the published journal paper: Chen

Wang and Xiaodong Wang, “Modeling and simulation of wave scattering of multiple inhomo-
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2016. The thesis author conducted this research under the supervision by Dr. Xiaodong Wang.

Chapter 3 and Chapter 5 are based on a journal paper in preparation: Chen Wang and

Xiaodong Wang, “Computational homogenization for antiplane wave propagation in hetero-

geneous materials”. The thesis author conducted this research under the supervision by Dr.

Xiaodong Wang.

The second section of Chapter 4 is based on a journal paper in preparation: Chen Wang and

Xiaodong Wang, “A computational homogenization method based on the energy equivalence”.
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Chapter 1: Introduction

1.1 Background

Heterogeneous materials have been extensively used due to their desirable properties achieved

by combining various constituents and tailored local structures. For example, reinforced con-

cretes are the most widely used artificial materials in civil engineering because the steel rein-

forcing bar can compensate the relatively low tensile strength of the concrete. Carbon fiber

reinforced polymer has high strength-to-weight ratio and is ideal for the structure of aircraft

(Hashin, 1972). Since most of the working conditions involve dynamic loads, the evaluation

of their elastodynamic behavior is essential for the damage tolerance design against dynamic

failure. The ultrasonic non-destructive evaluation of the structure composed of heterogeneous

materials also relies on the understanding of the elastic wave propagation in such materials.

More recently, metamaterials, which are the artificial materials with unusual properties

caused by the well-designed local structures, have attracted extensive attention (Kadic et al.,

2019). By on the effects of Bragg scattering or the use of local resonant structures, the wave

propagation in the metamaterials can be manipulated. Based on the different types of wave on

which the metamaterials work, the metamaterials can be generally categorized into electromag-

netical metamaterials and mechanical metamaterials, which can be further classified by the ex-

istence of shear stress, into elastic metamaterials or acoustic metamaterials. Since the primary

waves are coupled with the shear waves in elastic metamaterials, the modeling and simulation

of their elastodynamic response plays a significant role in the design and optimization of the

1



microstructures of these materials.

1.2 Motivation

A major difficulty in the simulation of the elastic wave propagation in such heterogeneous me-

dia is the interaction among the multiple inhomogeneities involved, which form complicated

boundary/interface conditions. It is usually very difficult, if not impossible, to develop ana-

lytical solutions to this type of problems. As a result, dynamic modeling of such materials is

either based on pure numerical simulation or focused on the effective properties of homoge-

nized models.

The pure numerical simulation faces significant challenges when both the local and global

responses are important. The direct numerical modeling is inefficient to describe all the fine-

scale features as well as the macroscopic structures simultaneously. For example, with finite

element method (FEM), the local structures need to be discretized with fine elements which

has smaller lengthscale, then the element number will be too large to handle if the macroscopic

structure is discretized with the same meshing scheme. So the pure numerical simulations

becomes prohibitive due to the substantial separation of scales.

Accordingly, for the systems with complex structures in various scales, the multiscale mod-

els are usually necessary. The local structures are replaced by homogeneous materials with

effective properties in which the local response is incorporated approximately. Then the macro-

scopic structures can be modeled and simulated with well developed techniques.

Like the polymorphism in crystallography, the macroscopic properties can vary largely de-

pending on the underlying local structures, in spite of the same ingredients. The evaluation of
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the effective mechanical properties necessitates the analysis of the local response, which is usu-

ally an extremely complex problem with analytical methods. After the seminal work of Eshelby

(Eshelby, 1957) on the elastic field of an ellipsoidal inclusion, the theory of micromechanics

has been developed, and the homogenizaiton of heterogeneous materials under static loading

has been researched extensively. For the elastodynamic homogenization under very low fre-

quencies without any local resonance, the problem is quite similar to the static ones. When

the frequency rises, the metamaterials with local soft mode on the sub-wavelength structure

tend to have local resonances, which can result in negative effective properties. However, this

phenomenon is independent of the periodicity of the material. So the effective properties can

be obtained by the local dynamic analysis. When the frequency is so high that the wavelength

is comparative or shorter than the characteristic length of the local structure, there is no valid

effective material properties since the local structure can be resolved from the resultant wave

field. Therefore, for the frequencies under which the stop band is caused by Bragg scattering,

the interaction among the local structures is essential for the homogenization. In this work, the

interaction is solved numerically to facilitate the computational homogenization. The advan-

tage of explicitly solving the wave field is that more accurate prediction of the local response

can be provided, comparing with the approximate solutions in previous works (Nemat-Nasser

et al., 2011; Willis, 1997), in which the local response is approximated by using the expansion

of Green’s function and variational method.

The beginning of multiple scattering analysis may be traced back to the work of Lord

Rayleigh on the scattering of light (Rayleigh, 1870). Then multiple scattering problem in vari-

ous disciplines (e.g. acoustic wave, electromagnetic wave and electron wave) has been studied

3



extensively. However, due to the mode conversion in elastodynamic problems, the multiple

scattering of elastic waves has unique complexity. It is still necessary to develop an accurate

and effective technique to evaluate the local stress field when involving large number of inho-

mogeneities.

Therefore, in this work, an analytical-numerical method for the multiple scattering problem

is developed first. Then an efficient method for the eigenstate determination of periodic unit

cell is developed for periodic materials. Based on the computed local responses, the computa-

tional homogenization techniques are developed. Lastly, the multiscale model is developed by

combining the developed techniques.

1.3 Literature Review

1.3.1 Multiple scattering of elastic waves

The multiple scattering problem of waves in inhomogeneous media was first treated by assum-

ing the rays to be trajectories of particles. In 1945, Foldy originally considered the problem

by using the wave treatment. The scattering of scalar waves by isotropic scatterers were stud-

ied and the “configurational averaging” method was developed to take the average of resulting

waves over the ensemble of configurations (Foldy, 1945). Then to determine the wave field

explicitly, an important technique called “T-matrix” approach is developed by Waterman (Wa-

terman, 1969). The T-matrix is a linear transformation between the expansion coefficients of

incident wave and scattered wave. Based upon that, Varadan proposed the scattering matrix

approach to investigate the multiple scattering of elastic waves in a medium with multiple in-

4



homogeneities with arbitrary cross section (Varadan et al., 1978). Cai and Williams proposed

a technique called scatterer polymerization to reduce the actual scatterers to less abstract ones.

With the use of T-matrix, they developed a numerical procedure for large-scale multiple scat-

tering problems (Cai and Williams, 1999a,b). Biwa et al. and Sumiya et al. analyzed the

multiple scattering of SH wave (Biwa et al., 2004) and P/SV waves (Sumiya et al., 2013) in

unidirectional fiber-reinforced composite by using numerical collocation method. Wang and

Sudak investigated the multiple scattering of P/SV waves by cylinders with imperfect bond-

ing conditions (Wang and Sudak, 2007). By using the boundary integral method, Benites et al.

(Benites et al., 1992, 1997) and Dravinski and Yu (Dravinski and Yu, 2011) studied the multiple

scattering of elastic waves by multiple inhomogeneities with circular or arbitrary cross section.

1.3.2 Elastodynamic homogenization

A major part of the works on the elastodynamic homogenization are focused on the heteroge-

neous materials with periodic local structures. The static problems of periodic material have

been well studied by the method of asymptotic homogenization (Arabnejad and Pasini, 2013;

Sabina et al., 2002). In the dynamic context, with the assumption that the materials are perfect

periodic and infinitely extended, Bloch waves are admitted as the solutions. The asymptotic

homogenization method was extended to the dynamic problems at low frequencies (Parnell

and Abrahams, 2006). And recently, it has been extended to higher frequencies (Antonakakis

et al., 2014; Hui and Oskay, 2014). In the phononic crystal research field, the periodicity of

the local structures and the wave forms is also assumed inherently, and various numerical tech-

niques have been developed to determine the dispersion relations. These include the plane
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wave expansion method (Kushwaha et al., 1993; Sigalas and Economou, 1992), the multiple

scattering theory method (Liu et al., 2002; Mei et al., 2003), the finite-difference time-domain

method (Sigalas and Garcia, 2000), variational methods (Srivastava and Nemat-Nasser, 2014),

etc. Since the works are mainly focused on the band structures, the Bloch wave vector is pre-

scribed and the frequency of the incident wave is computed as the eigenvalue. In addition, the

Bloch wave vector is usually limited to the boundary of the irreducible Brillouin zone. So the

methods are inefficient to determine the effective wave fields under prescribed incident waves.

For the heterogeneous materials with random local structures, the configurational averaging

method was first developed by Foldy to take the average of resulting waves over the ensemble

of configurations (Foldy, 1945). Lax generalized the procedure (Lax, 1951) and introduced

the quasi-crystalline approximation to determine the effective field (Lax, 1952). Because of

the similarity of the wave phenomena, the retrieval method, which began with electromagnetic

waves, was subsequently extended to acoustic waves (Fokin et al., 2007) and elastic waves

(Zhang et al., 2013). Although the retrieval method is simple in principle, it is unreliable

when the frequency is high and the wave number in the heterogeneous medium is unknown.

Typical micromechanical models used in static problems, such as self-consistent (Kim, 1996,

2003; Norris and Conoir, 2011; Sabina and Willis, 1988) and generalized self-consistent models

(Yang and Mal, 1994, 1996), have also been extended to the dynamic problem for the evaluation

of the effective properties. However the existing methods are limited to the low frequencies,

low doping ratios or small mismatch of mechanical properties between the matrix and the in-

homogeneities.
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1.3.3 Multiscale modeling of elastodynamic problem

For multiscale modeling, the most important issue is the upscaling method, by which the ef-

fects of fine-scale features can be reproduced. There are two main categories of methods. The

first one is based on the effective properties obtained with various homogenization techniques.

Many of them are based on the averaging the field variables of local wave field with different

assumptions of the constitutive relation (Backus, 1962; Helbig and Schoenberg, 1987; Tsvankin

et al., 2010). By applying matrix and group theory, a general effective medium theory is de-

veloped by Schoenberg (Schoenberg and Muir, 1989) and tested by comparing the analytical

results with the ones obtained with a finite-difference method (Carcione et al., 2012). Later,

various numerical approaches have been developed with solving the local problem numerically

and averaging the field variables to extract the effective properties (Grechka, 2003; Rijpsma and

Zijl, 1998; Zijl et al., 2002). For the periodic fine-scale features, the asymptotic homogeniza-

tion can also be employed (Allaire, 1992). Since the effective properties should be independent

of the boundary condition, the separation of scales have to be assumed. So this category of mul-

tiscale methods is preferable for the structures with large difference between the characteristic

lengths of two scales.

Instead of computing the effective properties, the other category of methods is based on

combining the results computed in fine-scale into the simulations carried out in coarse-scale.

One of the most popular and earliest developments is the Multiscale Finite Element Method

by Hou and Wu (Hou and Wu, 1997). By constructing basis functions obtained from solv-

ing boundary value problem in fine-scale, the effect of the fine-scale features is incorporated

through the global stiffness matrix. More recently Gao et al. proposed a General Multiscale
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Finite Element Method in which the basis functions are constructed from multiple local prob-

lems (Gao et al., 2015a,b). Casadei and Ruzzene et al. developed a Geometric multiscale Finite

Element Method (Casadei and Ruzzene, 2012; Casadei et al., 2013, 2014, 2016). The method

is based on multi-node elements whose shape functions are computed numerically by means

of an auxiliary fine-scale discretization. In this category of multiscale methods, while the as-

sumption of separation of scales is relaxed, the computational cost is higher than that of the

homogenization-based methods.

1.4 Research objectives and outline

The overall objective of this work is to develop new multiscale methods for the analysis of

the elastic wave propagation in heterogeneous materials consisting of underlying local struc-

tures. The multiscale modeling is based on the effective properties obtained by homogenization

technique, which depends on the computation of the multiple scattering wave field or the eigen-

state of periodic unit cell in the fine-scale. Therefore, the work in this thesis is carried out in

following steps:

First, an efficient analytical-numerical method is developed for the multiple scattering prob-

lem of elastic waves in the infinite media consisting of significant numbers of circular inhomo-

geneities under both antiplane and in-plane incident wave loading.

Secondly, for efficiently computing the local response of periodic materials under given

loading, an analytical-numerical method for the eigenstate determination of the periodic unit

cell is developed.

Based on the explicitly solved wave field, the methods of computational homogenization
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are proposed to extract the effective elastodynamic properties of the heterogeneous material.

By averaging the computed wave field inside the domain of RVE, two methods are developed.

The first one is based on the volume averages of the stress and strain with the averaging scheme

modified to consider the effective wave form, in which the effective wave number is determined

by self-consistent method. The second one is based on the assumptions of effective wave num-

ber and the kinetic energy equivalence.

Then the other kind of computational homogenization method is developed based on match-

ing the boundary response of the RVE. By defining the residue function, which indicates the

mismatch between the boundary responses of the RVE and the homogenized substitution, as

the objective function, the homogenization is reduced to an optimization problem. Then the nu-

merical optimization methods are employed to minimize the residue function over the complex-

valued material properties.

At last, the multiscale modeling method is summarized, which is capable of simulating the

scattering of waves with long wavelength relative to the local structures in large scale efficiently,

and accurately recovering the local response at any location on demand.
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Chapter 2: Multiple scattering of elastic waves

This chapter presents an analytical-numerical method for the two-dimensional multiple scatter-

ing problem of elastic composite media with interacting inhomogeneities under time-harmonic

elastic incident waves. The main focus is on the detailed evaluation of the effectiveness and

accuracy of the method in the determination of the local dynamic behaviour of such composite

media with significant numbers of inhomogeneities. The method is based on the eigenfunction

expansion of single inhomogeneity problem and the use of a pseudo-incident wave technique,

which allows the accurate determination of local stress field caused by the interaction. The

accuracy and effectiveness of the method for dealing with multiple interaction problems are

discussed in detail. Illustrative examples under different loading and geometric conditions are

considered to study the local dynamic field and the behavior of stop-band of wave propagating

for periodic inhomogeneity arrangements. Then the method is extended to in-plane problem by

introducing Helmholtz decomposition. This chapter stems from the published journal article

written by the author under the supervision by Dr. Wang. (Wang and Wang, 2016).

2.1 Introduction

One of the major issues in the study of elastic waves in inhomogeneous media is the accu-

rate determination of the local stress field, which is important for the the damage evaluation

of composite materials and for the recent study of elastic waves in periodic structures for

filter or resonator applications. For a single inhomogeneity, the scattering can be easily de-

termined by using well-known techniques (Waterman, 1969). The solution of the interaction
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problems is usually based on the proper superposition of the scattered waves from different

inhomogeneities. The scattering of antiplane shear waves by interacting cylindrical elastic in-

homogeneities was studied analytically using Fourier expansion and was used to evaluate the

effective properties of the material and the behavior of effective wave propagation (Bose and

Mal, 1974). By integrating the geometric relations between inhomogeneities in the solution,

an analytical solution is provided. A similar technique was used to investigate the scattering

of elastic waves in a medium containing multiple inhomogeneities (Varadan et al., 1978). To

deal with the large number of inhomogeneities needed when considering multiple interaction, a

multi-stage superposition process, scatterer polymerization, was developed to reduce the num-

ber of scatters in each stage (Cai and Williams, 1999a,b). The multiple scattering of SH wave

(Biwa et al., 2004) and P/SV waves (Sumiya et al., 2013) in unidirectional fiber-reinforced com-

posite were analyzed using the solutions mentioned in (Bose and Mal, 1974) by simplifying the

analytical solutions using collocation points at the fibers and the wave field was determined.

The multiple scattering of P/SV waves by cylinders with imperfect bonding conditions has also

been studied (Wang and Sudak, 2007). The boundary integral method has been used to study

the scattering of elastic waves by multiple inhomogeneities with circular or arbitrary cross sec-

tion (Benites et al., 1992, 1997; Dravinski and Yu, 2011; Manolis and Dineva, 2015; Parvanova

et al., 2013, 2014, 2015; Sheikhhassani and Dravinski, 2014). Although the general method-

ology for solving these problems have been extensively studied, the main issue that how to

accurately evaluate the local stress when large numbers of inhomogeneities still needs to be

evaluated carefully.

In the current chapter, a numerical procedure is studied to solve the multiple interaction
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between inhomogeneities in elastic heterogeneous media. The main idea is to provide a two-

step solution to this type of interaction problems by first developing the single inhomogeneity

solution as the building block and then assembling them into the governing equation of the

original problem using the pseudo-incident wave method. Heterogeneous media with circular

inhomogeneities subjected to antiplane shear wave is studied in detail. The displacement is ex-

pressed by Fourier expansion for the single inhomogeneity problem and the interaction problem

is formulated by using the pseudo-incident wave technique (Wang and Meguid, 1997), which

reduces the multiple scattering problem into coupled solutions of single scattering problems.

The accuracy and effectiveness of the scheme are discussed. As the examples of application,

the interaction among the inhomogeneities is studied for the determination of local stress field.

The feature of wave propagation in heterogeneous media with periodically arranged inhomo-

geneities is studied and the existence of stop band is demonstrated. At last, the method is

extended to in-plane problems by using the Helmholtz decomposition, which decouples the

P and SV waves. The current work is limited to cylindrical shaped inhomogeneities with no

damping considered. The method can be extended to inhomogeneities with different shapes

and different kinds of materials by using the method presented in this chapter with new general

solutions, which can be determined analytically or numerically.

2.2 Formulation of the problem

The problem considered is the dynamic interaction among multiple inhomogeneities embedded

in an elastic medium subjected to harmonic elastic waves. The inhomogeneities are cylindrical

in shape with the radii being Ri. The shear moduli of the matrix and the inhomogeneities
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are assumed to be µm and µi, and the mass densities are ρm and ρi. A Cartesian coordinate

system is used as the global coordinate system and polar coordinate systems are created for each

inhomogeneity, with origins at the centers of the inhomogeneities. The system is schematically

shown in Figure 2.1.

Figure 2.1: Schematic sketch of the model.

The displacement, strain and stress fields corresponding to a steady-state incident elastic

wave of frequency ω can be expressed in terms of the frequency ω , such that

A∗(x,y, t) = A(x,y)e−iωt , (2.1)

where A∗ represents a field variable, such as displacement or stress. For the sake of convenience,

in the following discussion the time factor e−iωt will be suppressed.

In what follows, the formulations of single scattering problem of one circular inhomogene-

ity will be summarized first. The numerical integration method will be developed to simplify

the solution and transfer it into a matrix format which is suitable for further evaluation of in-
13



teracting inhomogeneities. Then the pseudo-incident wave technique will be introduced to deal

with the interaction among multiple inhomogeneities.

2.2.1 The single scattering problem

The scattering problem for a single circular inhomogeneity in an elastic matrix is well under-

stood in general. The main formulation of the problem is summarized first in this section to

provide the theoretical background for the general interaction problems.

For antiplane problems, the displacement w in the x3 direction in the matrix and inhomo-

geneity is governed by the following Helmholtz equation (Achenbach, 1973),

(
∇

2 + k2)w = 0 (2.2)

where ∇2 is the Laplacian operator, k = km or ki, km = ω/cm and ki = ω/ci are the wave

numbers of the matrix and inhomogeneity, with cm and ci being the corresponding shear wave

speeds. In the cylindrical coordinate system, the governing equation can be expressed as

(
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2

)
w+ k2w = 0 (2.3)

where r is the distance measured from the center of inhomogeneity and the θ is the angular

coordinate measured from x axis of global coordinate system.

The general solution of the governing equation can be expressed in forms of Fourier expan-
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sion as (Waterman, 1969)

w(r,θ) =
∞

∑
n=−∞

[
Jn (kr)Bneinθ +H(1)

n (kr)Aneinθ

]
, (2.4)

where Jn and H(1)
n are the Bessel functions and the Hankel functions of the first kind, k is

the corresponding wave number and An and Bn are the unknown constants to be determined

from the boundary/interface conditions. For the scattered wave field in the matrix, the radiation

condition must be satisfied (Colton and Kress, 2013; Kupradze, 1976),

lim
r→∞

√
r
(

∂w
∂ r
− ikmw

)
= 0 . (2.5)

Substituting the equation (2.4) into equation (2.5) indicates that Bn must be zero. For the field

in the inhomogeneity, An must be zero to ensure that the field has a limited amplitude at the

center of the inhomogeneity r = 0. The displacements of the scattered wave field in the matrix

and the field in the inhomogeneity are

w(r,θ) =


∞

∑
n=−∞

H(1)
n (kmr)Aneinθ r > R In the matrix

∞

∑
n=−∞

Jn (kir)Bneinθ r < R In the inhomogeneity.

(2.6)

It is further assumed that the inhomogeneity and the matrix are perfectly bonded. The continuity

conditions along the interface can then be expressed as

wm|inter = wi|inter , τm|inter = τi|inter , (2.7)
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where τ is the shear stress τrz, and the subscripts m and i represent matrix and inhomogeneity

respectively.

When the system is subjected to an incident wave win, the wave field in the matrix can be

considered as the superposition of the incident wave field (win, τin) and the scattered wave field

(wsc, τsc), such that

wm = win +wsc , τm = τin + τsc . (2.8)

Then the continuity conditions become

win|inter +wsc|inter = wi|inter , τin|inter + τsc|inter = τi|inter . (2.9)

The coefficients An and Bn of the scattered wave and the refracted wave in the inhomogeneity

can be obtained by using the continuity condition along the interface and the orthogonality of

the expansion, such that


An

Bn

= [Tn]

ˆ 2π

0


win|inter

τin|inter

e−inθ dθ , (2.10)

where

[Tn] =−
1

2π

 H(1)
n (kmR) −Jn(kiR)

µmkmH(1)′
n (kmR) −µikiJ′n(kiR)


−1

(2.11)

with the prime (′ ) representing the derivative. The displacement of scattered wave and the

refracted wave inside the inhomogeneity can then be obtained by substituting the computed An

and Bn into equation (2.6).
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The above relation between the boundary value of the incident wave and the scattered wave

can be considered as a transfer function, which depends on the configurations of the inhomo-

geneity, the material properties, and the incident frequency. For the multiple scattering prob-

lem, the expressions of the input wave win|inter in the local polar coordinate system become

very complicated when the effects of the other inhomogeneities are considered.

An efficient way to establish the relation between the incident and the scattered waves is

replacing (2.10) by an equivalent discrete linear transformation from the boundary values of the

incident wave to the coefficients of the scattered wave. This is achieved by using only the values

of the incident wave at limited number of integration points along the interface, e.g. equally

spaced points, to complete the integration(Wang and Wang, 2016). As shown in equations

(2.10), the transformation will involve the integration of the exponential term e−inθ , which

will always fluctuate intensely when the order n becomes high. To ensure the accuracy of the

treatment, instead of discretizing the whole integrand, only the boundary value of the incident

wave along the interface is discretized and replaced by linear interpolation functions. Then

the original integral is replaced with a finite summation of analytical integrals of the piecewise

linear interpolation functions multiplied by the exponential factors. For the integration of the

displacement, for example,

ˆ 2π

0
win|intere−inθ dθ ≈

P

∑
j=1

ˆ
θ j+∆θ

θ j

f j(θ)e−inθ dθ , (2.12)

where P is the total number of the integration points, f j(θ) is the jth interpolation function, θ j

is the angular coordinate of jth integration point along the interface and ∆θ is the interval angle

between two neighboring integration points. For uniformly distributed integration points, for

17



example,

θ j =
2π

P
( j−1) , ∆θ =

2π

P
. (2.13)

The linear interpolation function of the displacement along the interface between two integra-

tion points θ ( j+1) and θ ( j) is

f j(θ) = a jθ +b j , (2.14)

where

a j =
w( j+1)

in |inter−w( j)
in |inter

∆θ
(2.15)

b j = w( j+1)
in |inter−θ j+1

(
w( j+1)

in |inter−w( j)
in |inter

)
∆θ

, (2.16)

with w( j)
in |inter being the displacement of the incident wave at the jth integration point. The

interpolation functions for the incident stress can be obtained similarly. The coefficients of the

expansion can then be determined by


An

Bn

= [Tn]
P

∑
j=1

ˆ
θ j+1

θ j


a jθ +b j

g jθ +h j

e−inθ dθ , (2.17)

where g j and h j are the counterparts of a j and b j for the interpolation functions of the shear

stress. By substituting (2.15) and (2.16) into (2.17), the coefficients An and Bn can be expressed

in terms of the values of the incident field at the integration points as

{A}= [Q]{ξin} , {B}= [R]{ξin} , (2.18)

where vector {ξ} is called the effect vector in this work, with the subscript indicating the wave
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by which the effect is caused, composed as

{ξin}=


{win|inter}

{τin|inter}

 , (2.19)

where {win|inter} and {τin|inter} are the vectors comprised by the displacements and the shear

stresses at the integration points along the interface due to the incident wave. [Q] and [R] are

the known transition matrices, given by

Qn j =


CnT (n, j) 1 6 j 6 P

DnT (n, j−P) P+1 6 j 6 2P .

(2.20)

where Cn and Dn are

Cn =
kiµiJ′n(kiR)

2π

[
kmµmJn(kiR)H

(1)′
n (kmR)− kiµiJ′n(kiR)H

(1)
n (kmR)

] , (2.21)

Dn =
−Jn(kiR)

2π

[
kmµmJn(kiR)H

(1)′
n (kmR)− kiµiJ′n(kiR)H

(1)
n (kmR)

] , (2.22)

and T (n, j) is

T (n, j) =



∆θ n = 0

α(n,1)+β (n,P) n 6= 0 , j = 1

α(n, j)+β (n, j−1) n 6= 0 , j > 1 ,

(2.23)

with

α(n, j) =
[

1
n2∆θ

(1− e−in∆θ )− i
n

]
e−in( j−1)∆θ , (2.24)
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β (n, j) =
[
− 1

n2∆θ
+

(
i
n
+

1
n2∆θ

)
e−in∆θ

]
e−in( j−1)∆θ . (2.25)

The element of matrix [R] is

Rn j =


EnT (n, j) 1 6 j 6 P

FnT (n, j−P) P+1 6 j 6 2P ,

(2.26)

where

En =
kmµmH(1)′

n (kmR)

2π

[
kmµmH(1)′

n (kmR)Jn(kiR)− kiµiH
(1)
n (kmR)J′n(kiR)

] , (2.27)

Fn =
−H(1)

n (kmR)

2π

[
kmµmH(1)′

n (kmR)Jn(kiR)− kiµiH
(1)
n (kmR)J′n(kiR)

] . (2.28)

Matrices [Q] and [R] provide direct transformations from the the values of the incident wave

at the integration points to the parameters An and Bn. From this relation the wave field due to a

single inhomogeneity in the matrix and in the inhomogeneity can be calculated.

2.2.2 Interaction of multiple inhomogeneities

For an elastic medium with N inhomogeneities, the wave field in the matrix can be considered

as the superposition of the incident wave and the scattered waves from each inhomogeneity.

w = w0 +
N

∑
i=1

w(i)
sc , (2.29)

where w0 represents the incident wave, w(i)
sc represents the scattered wave from the ith inhomo-

geneity and N is the total number of inhomogeneities. For the kth inhomogeneity, it is subjected
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to a pseudo-incident wave w(k)
ps which is the superposition of the real incident wave w0 and the

scattered waves from other inhomogeneities (Wang and Meguid, 1997), such that

w(k)
ps = w0 +

N

∑
i=1
i6=k

w(i)
sc , τ

(k)
ps = τ0 +

N

∑
i=1
i6=k

τ
(i)
sc , (2.30)

where τ
(i)
sc is the shear stress due to the scattered wave from ith inhomogeneity. As a result of

this pseudo-incident wave, the scattered wave from the kth inhomogeneity can be obtained from

equations (2.18), considering the pseudo-incident wave w(k)
ps as the incident wave in the single

scattering problem, such that {
A(k)
}
= [Q]k

{
ξ
(k)
ps

}
, (2.31)

where
{

A(k)
}

is the vector composed of the expansion coefficients of the scattered wave from

the kth inhomogeneity,
{

ξ
(k)
ps

}
is the effect vector of the pseudo-incident wave to the kth inho-

mogeneity. It is composed of the components of displacement and traction due to the pseudo-

incident wave at the integration points of kth inhomogeneity.

As shown in equation (2.30), the effect vector of the pseudo-incident wave is the super-

position of the ones of the original incident wave and the scattered waves from all the other

inhomogeneities, such that

{
ξ
(k)
ps

}
=
{

ξ
(k)
0

}
+

N

∑
i=1
i6=k

[M]ki

{
A(i)
}

, (2.32)

where
{

ξ
(k)
0

}
is the effect vector of the incident wave to the kth inhomogeneity. [M]ki

{
A(i)
}

is the vector corresponding to the effects of ith inhomogeneity on the kth, i.e. the scattered field
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from the ith inhomogeneity at the integration points of the kth inhomogeneity. Matrix [M]ki is

the matrix formed by the wave modes of the scattered field of the ith inhomogeneity, i.e. Hankel

functions. The element of matrix [M]ki are given by

M(ki)
st = H(1)

t (kmrski)eitθski (2.33)

M(ki)
(s+Pi)t

= cos(θski−θskk)µm
∂M(ki)

st

∂ rski
− sin(θski−θskk)

µm

rski

∂M(ki)
st

∂θski
, (2.34)

where rski and θski are the coordinates of the sth integration point of the kth inhomogeneity in

the local polar coordinate system of the ith inhomogeneity, and Pi is the number of integration

points of the ith inhomogeneity.

Then the set of linear equations for the expansion coefficients can be obtained by combining

the above equations and collecting the unknown coefficients, as



[I]1 −[Q]1[M]12 · · · −[Q]1[M]1N

−[Q]2[M]21 [I]2 · · · −[Q]2[M]2N

...
... . . . ...

−[Q]N [M]N1 −[Q]N [M]N2 · · · [I]N





{A(1)}

{A(2)}

...

{A(N)}


=



[Q]1{ξ
(1)
0 }

[Q]2{ξ
(2)
0 }

...

[Q]N{ξ (N)
0 }


(2.35)

where the matrices [I]k are the identity matrices with dimension 2×NT + 1, where NT is the

highest order the expansion is truncated to. The expansion coefficients can then be determined

by solving equation (2.35), from which the displacement and stress of the wave field in the

matrix can be computed. Then the refracted wave field coefficients in any inhomogeneity can

be determined by using its matrix [R] as shown in (2.18).
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2.3 Verification of the method

The computational errors of the developed procedure are mainly caused by the numerical in-

tegral process and the truncation of the infinite series. The two types of error are analyzed

respectively in the following subsections. The developed method is then tested under some

limiting cases. The robustness and the limitations of the method are discussed.

2.3.1 Evaluation of numerical integration

In the developed method, the integral along the interface, as shown in equations (2.10), is re-

placed by the numerical integration shown in equation (2.18). In order to evaluate the accuracy

of the numerical integration, the problem of single scattering is considered, since the scattered

wave in this simple situation can be obtained analytically.

The computational model is composed of an infinitely extended matrix and a circular inho-

mogeneity with radius R. The incident wave is a plane wave with unit displacement amplitude

propagating in the positive y direction, such that

win = eikmrsin(φ) (2.36)

where km is the wave number in the matrix, r and φ are the polar coordinates. The material

properties are set as µi/µm = 4 and ρi/ρm = 2, and the frequency is selected with dimensionless

parameter kmR = 2.4π .

The analytical solution is obtained by evaluating equations (2.10) using Mathematica. The
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series are truncated at 40th order, NT = 40. The procedure using numerical integration is shown

in equations (2.18) to (2.28). The first 40 orders are computed for comparison.

Since only the incident wave (or the pseudo-incident wave in the multiple scattering prob-

lem) is discretized and replaced by linear interpolation functions, the error of the numerical

integration depends on the distance between the numerical points compared with the wave

length in the matrix (λm). The ratio is defined as

δ =
λm
2πR

P

=
P

kmR
(2.37)

with P being the number of integration points. The maximum deviation of the computed coef-

ficients compared with the analytical ones is then evaluated, which is defined as

D = max | A(ana)
n −A(num)

n | (2.38)

where A(ana)
n and A(num)

n represent the nth order coefficients computed with analytical and nu-

merical method, respectively. The maximum deviations with different δ are shown in Figure

2.2
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Figure 2.2: Deviation of the computed coefficients compared with the analytical ones.

As shown in the figure, the maximum deviation of the numerical results reduce to less than

1× 10−3 when the wavelength-to-distance ratio δ = 45, and it can be further decreased as

long as δ is large enough. Figure 2.3 shows the normalized shear stresses along the interface

computed by the numerical method with δ = 45 and by the analytical method. The accuracy

of the numerical method is shown to be sufficient with the difference between the two sets of

results being insignificant.
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Figure 2.3: Comparison of the computed stresses from numerical and analytical results.

2.3.2 Convergence of the series

The error caused by truncating the infinite summation depends on the convergence of the series.

In order to examine the convergence, the difference made by each additional term of the series is

evaluated. The difference made by the kth order term can be indicated by the absolute difference

of displacements computed by the series with NT = k and NT = k− 1. The displacements are

collected at the same points, and the average of the absolute difference εk is calculated,

εk = 〈| wk−wk−1 | / | win |〉 , (2.39)

where wk and win are the calculated displacements for NT = k and the incident wave, respec-

tively. The angular brackets represent taking the average among the locations where the dis-

placements are collected.
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The example evaluated here contains two inhomogeneities with the same radius R, sub-

jected to an antiplane wave propagating in x direction. The configurations of the model are

kmR = 2.4π , µi/µm = 4, ρi/ρm = 2, D/R = 1 with D being the distance between the two in-

homogeneities, as shown by L1 in Figure 2.4. A total of 1000 points equally spaced along the

path between the inhomogeneities are selected, at which the displacements are collected. The

incident wave is assumed to be plane wave with unit displacement amplitude propagating along

the positive x direction.

Figure 2.4: Convergence of the series

The dependence of εk on k is shown in Figure 2.4 with a logarithmic axis. As shown in the

figure, the first 10 terms are important to the result. The differences made by the 10th-to-20th

terms decay rapidly. For higher order terms, the trend changes remarkably and becomes mono-

tonically decreasing. But extremely high order terms should be avoided since they may cause

numerical instability because of the precision limit of the computation. Considering that the

necessity of high order terms may vary as the frequency changes, NT could be taken around 20
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to achieve reasonable convergent results for typical problems.

2.3.3 Comparison with existing results

To further evaluate the current method, the static and dynamic interaction of two circular inho-

mogeneities are considered and compared with the corresponding analytical results (Wu, 2000)

and numerical results (Parvanova et al., 2014), respectively.

In the static case, the inhomogeneities, with identical radius and shear modulus, are ar-

ranged along the x axis, and are subjected to an antiplane shear stress τ0 applied at a 45◦ angle

from the x axis. The ratio of the shear modulus of the inhomogeneities to that of the matrix is

23.48. Figure 2.5 shows the comparison of the normalized stress τrz from the current method

and that from the analytical solution around the left inhomogeneity for different distances be-

tween the inhomogeneities d, which has been normalized by the radius of the inhomogeneities,

where φ represents the circumferential direction. The comparison of the normalized stress τφz

is also shown in Figure 2.6. Excellent agreement is observed for both stress components.
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Figure 2.5: Normalized stress τrz around the left inhomogeneity, compared with the analytical

solution.

Figure 2.6: Normalized stress τφz around the left inhomogeneity, compared with the analytical

solution.

In the dynamic case, the interaction of two circular cavities, which are simulated by setting
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the mass density and shear modulus to negligible small, with radius r1 = 1 and r2 = 2 is com-

puted. The cavities are arranged along the y axis. Three different distances, d = 2,0.1,0.01,

are considered. The incident wave is propagating along the positive y direction, with frequency

kmr1 = 0.001. The stresses τφz normalized by the incident wave around the smaller cavity are

shown in Figure 2.7. The results are compared with the ones computed by Parvanova et al. with

boundary element method in (Parvanova et al., 2014), and the results are in excellent agreement.

Figure 2.7: Normalized stress τφz around the smaller cavity, compared with the BEM results.

2.3.4 Limiting cases

In this section, the developed method is tested under several limiting conditions and the conti-

nuity conditions along the interfaces are checked to examine the accuracy and the robustness.

The first limiting case considered is to make the materials of the inhomogeneities and the

matrix to be same. Theoretically, the multiple scattering problem is reduced to the propagation
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of plane wave in a homogeneous medium, and the refracted wave becomes a plane wave as well

and the scattered waves are supposed to vanish. However, the computed scattered wave results

won’t be exactly zero due to various computational errors. So the computed scattered wave

indicates the level of the error. The same model as the one in section 2.3.2 is considered except

that the materials are set to be same. In the vicinity of the inhomogeneities, the displacement

amplitude of the scattered wave normalized by the amplitude of incident wave is computed,

and it is in a range of 0–3.953× 10−7. The maximum stress mismatch along the interfaces is

7.858×10−5, normalized by the stress amplitude of incident wave.

In order to test the method with large material mismatch, the second limiting case consid-

ered is to make the frequency to be very high and the distance between the inhomogeneities are

very small. The considered model is composed of two steel inhomogeneities embedded in the

rubber matrix. The inhomogeneities are vertically arranged with distance 2 µm and the radii

are both 10 mm. The material constants used are: ρsteel = 7670kgm−3, µsteel = 80.070GPa,

ρrubber = 1300kgm−3, µrubber = 0.832GPa. The incident wave is propagating along the pos-

itive x direction with amplitude of 1 µm, and the frequency is 400 kHz. So the dimensionless

parameter kmR here is 10π , which is rather high for common applications.
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Figure 2.8: The mismatch of normalized displacement under limiting condition.

Figure 2.9: The mismatch of normalized τrz under limiting condition.

Figure 2.8 and Figure 2.9 show the continuity condition between the different media along

the two interfaces. The maximum stress mismatch normalized by the stress amplitude of in-

cident wave is 1.946 × 10−2. A noteworthy feature of the mismatch distribution along the

interface is that the peak appears at the nearest point to the other inhomogeneity, where the
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stress is concentrated. It is because the radii are large and the distance is very small, indicating

very strong interaction.

2.4 Application examples

2.4.1 General case example

In this section, the general model considered is composed of infinitely extended matrix and

three inhomogeneities with different materials and radii. The material constants used are: ρ1 =

2730kgm−3, µ1 = 28.658GPa, ρ2 = 7670kgm−3, µ2 = 80.070GPa, ρ3 = 11400kgm−3, µ3 =

8.431GPa, ρm = 1300kgm−3, µm = 0.832GPa. The selection of these material properties is to

introduce different kinds of material mismatch: the wave speeds of matrix and inhomogeneity 3

are similar, but are very different from that of media 1 and 2. The incident wave is propagating

along the positive x direction with amplitude of 1µm, and the frequency is 200kHz. The radii

of the three inhomogeneities are R1 = 4mm, R2 = 5.5mm, R3 = 7mm, respectively, and the

position of their centers are (−8.5 mm, 0 mm), (0 mm, −10 mm), (14 mm, 0 mm), as shown in

Figure 2.10.
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Figure 2.10: Computational model of the general case.

The distribution of amplitudes of displacement, shear stress τxz and τyz are shown in Figures

2.11, 2.12 and 2.13. Figure 2.14 shows the distribution of stress amplitudes along lines L1 and

L2. As shown in the figures, in the matrix, standing waves are formed by the superposition of

the incident wave and the reflected wave from the inhomogeneities, and shadows are formed

behind the inhomogeneities. Inside the inhomogeneities, the fields are quite different because

of the material variance. For medium 3, standing waves are formed by the refracted wave and

the wave length is similar to the one in the matrix, since the wave speeds are similar. For media

1 and 2, the distribution of the fields show clearly stress concentration along the interfaces due

to the large material mismatch.
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Figure 2.11: Displacement amplitude of the general case.

Figure 2.12: τxz amplitude of the general case.
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Figure 2.13: τyz amplitude of the general case.

Figure 2.14: Stress amplitudes along L1 and L2.
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2.4.2 Interactions among the inhomogeneities

In this section, the effects of interactions among the inhomogeneities are evaluated. The model

is composed of infinitely extended matrix and two rows of identical inhomogeneities aligned

along the x direction. The materials of the matrix and inhomogeneities are same as media 1 and

2 in section 2.4.1. The radius is 6 mm and the distance between two adjacent inhomogeneities

is 3 mm. The incident wave is propagating along the positive x direction with amplitude of

1 µm. The shear stress τrz along the interfaces in one row are computed and plotted in Figures

2.15 and 2.16, for the cases with 6 and 8 inhomogeneities, respectively.

Figure 2.15: Stress amplitudes along each interface in the model with 6 inhomogeneities.
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Figure 2.16: Stress amplitudes along each interface in the model with 8 inhomogeneities.

The maximum of the stress appears around the most front of each inhomogeneity, and the

value decreases as the inhomogeneity position turns backward, since the effect of blocking

made by the front ones. Due to the existence of the inhomogeneities in the other row, the

distributions are not symmetric about 180◦. From the comparison between the two cases, it can

be observed that the stress along the first and the second inhomogeneity are not much affected

by the addition of the fourth one. However, for the third inhomogeneity, the stress distribution

becomes more similar to the second one, since it is replaced from the last one. And the stress

distributions of the last inhomogeneities in both cases are similar.

2.4.3 Stop band

In order to investigate the stop band feature, a model is set with a square arrangement with

6 inhomogeneities in the x direction and 15 inhomogeneities in the y direction, as shown in

Figure 2.17. The material constants used are µm = 1.73GPa, ρm = 1200kgm−3, µi = 8.36GPa

38



and ρi = 11300kgm−3. The volume fraction φ = 0.25. The incident wave is propagating along

the positive x direction. The amplitude of displacement at the points along the lines shown in

Figure 2.17 are collected. The normalized average value of the points along L1 are plotted

against kmR in Figure 2.18.

Figure 2.17: Computational model for showing stop band.

Figure 2.18: Displacement amplitude of the points right behind the arrangement.
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Figure 2.19 shows the amplitude of displacement collected along L2 at three typical fre-

quencies, kmR = 0.2,0.8,1.2, and the corresponding distributions of displacement amplitude of

the fields are plotted in Figures 2.20, 2.21, 2.22. As shown in the figures, the incident wave is

able to pass the arrangement with little attenuation when the frequency is relative low. For the

frequency in a higher range, the incident wave attenuates rapidly and barely pass the arrange-

ment. When the frequency is high enough, the energy can be transmitted.

For the current results, the incident wave is in the positive x direction. Changing the angle

of the incident wave is equivalent to changing the characteristic length of the structure. Later

results for different structures show similar stop bands if this characteristic length remains in

the same level.

Figure 2.19: Displacement amplitude decays for the specific frequency.
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Figure 2.20: Distribution of displacement amplitude when kmR = 0.2.

Figure 2.21: Distribution of displacement amplitude when kmR = 0.8.
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Figure 2.22: Distribution of displacement amplitude when kmR = 1.2.

2.5 In-plane problem

2.5.1 Formulation of the problem

In this section, the developed numerical method for the multiple scattering of antiplane waves

is expanded to in-plane problems. For the harmonic in-plane problem, the governing equation

in terms of the displacement vector u in the matrix or any inhomogeneities is

μ∇2u+(λ +μ)∇(∇ ·u)+ρω2u= 0 , (2.40)

where μ and λ are the Lame constants of the matrix or the inhomogeneities.
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By using Helmholtz decomposition,

u= ∇ϕ +∇×ψ , (2.41)

where ϕ and ψ are the displacement potentials, the displacement vector field can be decom-

posed into an irrotational vector field and a solenoidal vector field, which represent the longitu-

dinal wave and transverse wave, respectively. In the two-dimensional problem with cylindrical

coordinate system, the displacement field can be expressed as,

ur =
∂ϕ

∂ r
+

1
r

∂ψ

∂θ
, uθ =

1
r

∂ϕ

∂θ
− ∂ψ

∂ r
, (2.42)

where ψ is the z component of the vector potential ψ in equation (2.41). Then the governing

equation becomes two decoupled Helmholtz equations,

∇
2
ϕ + k2

Lϕ = 0 , ∇
2
ψ + k2

T ψ = 0 , (2.43)

where kL and kT are the wave numbers of longitudinal wave and shear wave in the matrix or

inhomogeneities, which depend on the frequency and wave speeds, as

kL =
ω

cL
, kT =

ω

cT
, (2.44)

where

cL =

√
λ +2µ

ρ
, cT =

√
µ

ρ
. (2.45)
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The solutions of the governing equations are in the form of Fourier expansion,

ϕ(r,θ) =
∞

∑
n=−∞

[
BnJn (kLr)einθ +AnH(1)

n (kLr)einθ

]
, (2.46)

ψ(r,θ) =
∞

∑
n=−∞

[
DnJn (kT r)einθ +CnH(1)

n (kT r)einθ

]
. (2.47)

where An, Bn, Cn and Dn are the unknown constants to be determined from the boundary con-

dition. For the scattered wave fields in the matrix, the radiation conditions must be satisfied

(Colton and Kress, 2013; Kupradze, 1976),

lim
r→∞

√
r
(

∂ϕ

∂ r
− ikLmw

)
= 0 , (2.48)

lim
r→∞

√
r
(

∂ψ

∂ r
− ikT mw

)
= 0 . (2.49)

Substituting equation (2.46) into equation (2.48) and equation (2.47) into equation (2.49)

indicates that Bn and Dn must be zero. For the field in the inhomogeneity, An and Cn must be

zero to get limited amplitudes at the center. Therefore, the solution of the governing equations

can be expressed as

ϕ(r,θ) =


∞

∑
n=−∞

AnH(1)
n (kLmr)einθ r > R In the matrix

∞

∑
n=−∞

BnJn(kLir)einθ r < R In the inhomogeneity.

(2.50)
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ψ(r,θ) =


∞

∑
n=−∞

CnH(1)
n (kT mr)einθ r > R In the matrix

∞

∑
n=−∞

DnJn(kTir)einθ r < R In the inhomogeneity.

(2.51)

Along the interface, the continuity conditions of displacement and traction are assumed.

ups|inter +usc|inter = ure|inter , tps|inter + tsc|inter = tre|inter , (2.52)

where displacement vector u is (ur,uθ )
T and traction vector t is (σrr,σrθ )

T , and the subscripts

(ps, sc and re) represent the pseudo-incident wave, scattered wave and refracted wave, respec-

tively.

By substituting the displacement and traction of the scattered and refracted waves with the

potentials and using the numerical technique developed above, the transformation from the

effect vector of pseudo-incident wave to the unknown coefficients for kth inhomogeneity can be

obtained as 
A(k)

C(k)

= [Qk]
{

ξ
(k)
ps

}
,


B(k)

D(k)

= [Rk]
{

ξ
(k)
ps

}
, (2.53)

where the effect vector of pseudo-incident wave is composed as,

{
ξ
(k)
ps

}
=



{
u(ps)

r |inter

}
{

u(ps)
θ
|inter

}
{

σ
(ps)
rr |inter

}
{

σ
(ps)
rθ
|inter

}


k

, (2.54)
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and the [Qk] and [Rk] are the transition matrices of kth inhomogeneity. With considering the

interactions among inhomogeneities, the effect vector
{

ξ
(k)
ps

}
is composed of the effects of

incident wave and other scattered waves, such as

{
ξ
(k)
ps

}
=
{

ξ
(k)
0

}
+

N

∑
i=1
i6=k

[Mki]


A(i)

C(i)

 , (2.55)

where matrix [Mki] represents the influence of the ith inhomogeneity to the kth. Then, a set

of linear equations for the expansion coefficients can be obtained in the same form of equa-

tion (2.35). By solving the linear equations, the potentials can be determined, and then the

displacement and stress fields can be computed directly.

2.5.2 General example

The model in section 2.4.1 is considered here again as a general example. The incident wave is

a harmonic plane P wave propagating along the positive x direction with amplitude 1µm.
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Figure 2.23: Amplitude of displacement in x direction (m).
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Figure 2.24: Amplitude of displacement in y direction (m).

The amplitude of displacements in x and y direction are shown in Figure 2.23 and Fig-

ure 2.24. It can be observed that, due to the large mismatch on the longitudinal wave speed,

the displacement in x direction is weak. However, for the displacement in y direction, which
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is mainly caused by the SV wave, can be observed with the standing wave pattern inside the

medium 3 where the transverse wave speed is similar as the matrix. The distributions of the

amplitude of stress σxx, σyy and σxy are shown in Figure 2.25, Figure 2.26 and Figure 2.27.

The stress concentration due to the material mismatch can be observed along the interfaces.

The comparison between these results with the ones of the antiplane problem reveals that the

in-plane wave fields are distributed in more complicated patterns, which indicates the mode

transition occurs between P and SV wave.
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Figure 2.25: Amplitude of stress σxx (Pa).
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Figure 2.26: Amplitude of stress σyy (Pa).
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Figure 2.27: Amplitude of stress σxy (Pa).

The continuity condition across the interfaces are checked for showing the validity of the

method. As shown in Figure 2.28, the normalized mismatch can be controled below 3.238×

10−3.
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Figure 2.28: The mismatch of normalized displacement and traction.

2.6 Conclusion

In this chapter, a computational procedure for simulating the multiple scattering of P/SV/SH

wave in composite media is presented. The procedure is based upon the use of pseudo-incident
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wave method and the simplification of scattering problem. By discretizing the superposition of

scattered wave fields, the scattering mechanism can be simplified to a linear transformation and

then the expansion coefficients can be obtained by solving the linear equations. The validity and

robustness of the procedure have been demonstrated by verifications and tests under limiting

conditions. This procedure is proved to be capable of simulating the multiple scattering by

a large number of circular inhomogeneities with various properties. Furthermore, the wave

propagations in the medium with periodically arranged inhomogeneities are simulated and the

stop band is demonstrated.
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Chapter 3: Elastic waves in periodic materials

This chapter presents an analytical-numerical method for the determination of eigenstates of

the periodic unit cell with one circular inhomogeneity under designated frequency and angle of

the wave propagation. The method is based on the eigenfunction expansion in Chapter 2 and

the use of the Newton’s method for solving the nonlinear eigenvalue problem. The accuracy of

the method is verified by comparing the results with the finite element method. This chapter

stems from the journal paper in preparation: “Computational homogenization for antiplane

wave propagation in heterogeneous materials”, written by the author under the supervision by

Dr. Wang.

3.1 Introduction

The determination of local response of the microscopic structure is essential for the homoge-

nization process. For the computational homogenization, since the local response is computed

explicitly from the solution of a specific model, the effect of the boundary condition should be

eliminated to avoid the loss of generality. For a heterogeneous material with periodic micro-

scopic structures, the unit cell with periodic boundary condition is equivalent to the one inside

a piece of the periodic material which is infinitely extended in all directions. Therefore, the

local response of the unit cell with periodic boundary condition is ideal for the homogenization

of the periodic material.

The local response is comprised by the eigenstates of the periodic unit cell, which is de-

termined by the solution of eigenvalue problem. The existing works on solving the eigenvalue
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problem for periodic materials are mainly focusing on the band structure determination. The

most used methods include plane wave expansion method (Kushwaha et al., 1993; Sigalas and

Economou, 1992), the multiple scattering theory method (Liu et al., 2002; Mei et al., 2003),

the finite-difference time-domain method (Sigalas and Garcia, 2000), the finite element method

(Axmann and Kuchment, 1999; Huang and Chen, 2011; Oudich et al., 2010), variational meth-

ods (Srivastava and Nemat-Nasser, 2014), etc. However, the methods for band structure deter-

mination are inefficient for computing the eigenstates for a specific frequency, which is evalu-

ated as the eigenvalue with the Bloch wave vector designated.

For calculating the wave number as the eigenvalue with the frequency and propagation

direction designated, various methods have been developed, which include the Dirichlet-to-

Neumann map method (Zhen et al., 2012), boundary element method (Li et al., 2012), and

finite element method (Veres et al., 2013). However, since the band structure determination only

requires the wave vectors on the edge of irreducible Brillouin zone, these works only apply to

the polynomial eigenvalue problems which can be solved through linearization (Mehrmann and

Voss, 2004). Moreover, since the dimensions of matrices in these numerical methods depend

on the fine meshes, the problem of stability and computational cost may arise.

In this chapter, an analytical-numerical method for the determination of the periodic unit

cell under the given frequency and propagation direction is developed. By using the eigen-

function expansion, the nonlinear eigenvalue problem with the expansion coefficients being

the eigenvector is established. Then the Newton’s method is employed to solve the nonlinear

eigenvalue problem. The accuracy is discussed through the comparison with finite element

method.
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3.2 Formulation of the problem

In periodic materials, which can be assumed to be continuous with periodically varying prop-

erties, the elastic waves are in the form of Bloch wave (Kittel, 2004), as

w(r) = w̃(r)eik∗·r , σi j(r) = σ̃i j(r)eik∗·r , (3.1)

where k∗ is the Bloch wave vector, w̃ and σ̃i j are periodic functions with the same periodicity

as the lattice. So, for the unit cell shown in Figure 3.1,

w3(y) = w1(y)eik∗ cos(θ)a , w4(x) = w2(x)eik∗ sin(θ)a ,

t3(y) =−t1(y)eik∗ cos(θ)a , t4(x) =−t2(x)eik∗ sin(θ)a ,

(3.2)

where wi and ti (i = 1 − 4) are the antiplane displacement and traction along the edges, θ is

the angle between k∗ and the horizontal positive direction, and a is the lattice constant.

L1

Figure 3.1: Model of unit cell under periodic boundary condition
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In the local structure, the materials of the inhomogeneity and the matrix are homogeneous.

The governing equations for the displacement fields in both media are the Helmholtz equations,

as shown in equation (2.3), with different wave numbers. Therefore, by using the eigenfunction

expansion as in equation (2.6) and additionally expanding the incident wave, the displacement

field can be expressed as

w(r,ϕ) =


∞

∑
n=−∞

AnH(1)
n (kmr)einϕ +

∞

∑
n=−∞

BnJn(kmr)einϕ r > R In the matrix

∞

∑
n=−∞

CnJn(kir)einϕ r < R In the inhomogeneity

(3.3)

where r and ϕ are the polar coordinates measured from the center of the inhomogeneity, Jn

and H(1)
n are the Bessel functions and Hankel functions of the first kind, km and ki are the

corresponding wave numbers. An, Bn and Cn are the unknown constants to be determined from

the boundary/interface conditions.

Since the inhomogeneity and the matrix are perfectly bonded, the continuity condition along

the interface of the inhomogeneity and matrix can be given as,

wm|r=R = wi|r=R , τm|r=R = τi|r=R , (3.4)

where τ denotes the shear stress τrz, and the subscripts m and i represent matrix and inhomo-

geneity respectively. By substituting the solution in equation (3.3) and using the orthogonality
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of the expansion, for any n,


AnH(1)

n (kmR)+BnJn(kmR) =CnJn(kiR)

µmkm

[
AnH(1)′

n (kmR)+BnJ′n(kmR)
]
= µiCnkiJ′n(kiR)

(3.5)

Then the coefficients Bn can be substituted by An, and the displacement field in the matrix can

be completely expressed by the expansion with An being the unknown coefficients.

Therefore, after selecting 4M collocation points uniformly along the unit cell boundary and

truncating the series at the order of N, the vectors of boundary values at the collocation points

can be represented by An as,



w1

w2

−t1

−t2


4M

= [Z1]4M×N {A}N ,



w3

w4

t3

t4


4M

= [Z2]4M×N {A}N , (3.6)

where [Z1] and [Z2] are the matrices which are formed by the series basis for displacement or

traction at the node positions, as

[Zα ](p,n) =
[
H(1)

n (kmrp)+TnJn(kmrp)
]

einϕp

[Zα ](p+2M,n) = (−1)α
µmkm

[
H(1)′

n (kmrp)+TnJ′n(kmrp)
]

einϕpnrp+

(−1)α
µm(in)

[
H(1)

n (kmrp)+TnJn(kmrp)
]

einϕpnϕ p ,

(3.7)

where α = 1 or 2, p ∈ [1,2M] indicates the pth node, nr and nϕ are the cosines of the outward
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normal vector at the node relative to the positive r and ϕ direction, and the Tn is the relation

between An and Bn as

Tn =
µikiJ′n(kiR)Hn(kmR)−µmkmJn(kiR)H

(1)′
n (kmR)

µmkmJn(kiR)J′n(kmR)−µikiJ′n(kiR)Jn(kmR)
(3.8)

Then, by using the periodic boundary condition (PBC) in equation (3.2), the nonlinear

general eigenvalue problem with non-square matrices (4M×N) is derived as

[Z2]{A}= [S][Z1]{A} , (3.9)

where [S] is the diagonal matrix composed of the 2M factors for the phase shift in x direction

and 2M factors for the phase shift in y direction, as

[S] =



eik∗ cos(θ)a

. . .

eik∗ sin(θ)a

. . .


. (3.10)

By decomposing the matrix [Z2] with singular value decomposition,

[Z2] = [U ][Σ][V ∗] , (3.11)

and multiplying the conjugate transpose of matrix [U ] on both sides, the dimension of the matrix
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can be reduced, and the nonlinear eigenvalue problem can be derived as

[U∗SZ1−ΣV ∗]{A}= [Z]{A}= 0 , (3.12)

where matrix [Z] nonlinearly depends on the Bloch wave number k∗, with dimension of N×N.

When the frequency is in the pass-band, the normalized Bloch wave number k∗a can be obtained

as the real eigenvalue and the coefficients An are obtained as the elements of the eigenvector.

In the numerical implementation, for the frequencies under the higher limit of first stop

band, convergence tests were conducted for the selection of the series top order N. Based

on these tests, N = 14 is selected with the number of collocation points being 20N or M =

70. The Newton’s method is used for solving the nonlinear eigenvalue problem numerically.

Since the dimension of the problem is reduced to N, the determinant of the matrix [Z] can be

computed directly. So the approximation of the eigenvalue is obtained accurately by scanning

the determinants of matrix |Z|(k∗a) and selecting the k∗a at which the determinant is minimum.

The scanning range is k∗a ∈ [0,π) because the |Z|(k∗a) is periodic and symmetric about π .

Then, the iterations are carried out, as

T (i) = [Z]−1[Z′]A(i) , A(i+1) = T (i)/|T (i)| , (3.13)

where [Z′] is the derivative of matrix [Z] with respect to k∗a, such as,

[Z′] = [U∗S′Z1−ΣV ∗] , (3.14)
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where [S′] is the derivative of matrix [Z] with respect to k∗a,

[S′] =



i cos(θ)eik∗ cos(θ)a

. . .

i sin(θ)eik∗ sin(θ)a

. . .


. (3.15)

The convergence criteria is

|A(i+1)−A(i)∗A(i+1)A(i)|< ε , (3.16)

where ε is the tolerance, and set to be 1× 10−10 in this work. Then the eigenstate of the unit

cell can be determined by substituting the evaluated coefficients. As an example, Figure 3.2b

shows the eigenstate of the model with θ = 30◦.

2

1

0

1

2

3

Figure 3.2: Eigenstate of the unit cell.
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3.3 Verification of the method

In order to verify the method, the dispersion relation and eigenstates of a periodic material are

evaluated and compared with the results obtained by using finite element method (FEM). The

commercial software COMSOL Multiphysics 5.2a is utilized.

The considered model is composed of circular inhomogeneities, with the radius Ri = 6mm,

embedded with square lattice, with the lattice constant a= 20mm, in an elastic matrix. The unit

cell is shown in Figure 3.1 schematically. The material constants used are ρm = 7670kgm−3,

μm = 84.3GPa, ρi = 11400kgm−3, μi = 8.43GPa. The direction of the Bloch wave is set to

be the positive x direction, and the first two branches are computed.
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Figure 3.3: Dispersion relation comparison.

Figure 3.3 shows the comparison of the dispersion relation computed by using the method

developed and FEM with 29288 triangular elements. It can be observed that the results agree

well on both the branches, which means that the eigenvalues can be obtained accurately for a
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large frequency range.

For validating the eigenvectors, which is the series coefficients of scattering wave, the eigen-

state of the unit cell is computed and compared with the one obtained by using FEM with 29288

triangular elements. The considered model is the same as the previous one. The frequency is

set to be 35.015kHz so that the k∗a = 0.6, and the angle of the Bloch wave vector is set to be

30◦. Along the horizontal center line, as shown in Figure 3.1, the normalized amplitude of the

antiplane displacement |w|, stress |τxz| and |τyz| of the eigenstate are plotted in Figure 3.4, Fig-

ure 3.5 and Figure 3.6. As shown in the figures, the results obtained by the developed method

can well match the ones computed by FEM.
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Figure 3.4: Normalized displacement amplitude |w| along L1.
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Figure 3.5: Normalized stress amplitude |τxz| along L1.

−0.50 −0.25 0.00 0.25 0.50

x/a

0.2

0.4

0.6

0.8

1.0

|τ y
z
|

This work

FEM

Figure 3.6: Normalized stress amplitude |τyz| along L1.
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3.4 Conclusion

In this chapter, a computational method for evaluating the eigenstates of unit cell with periodic

boundary condition is developed. Based on the eigenfunction expansion of the wave field, the

nonlinear eigenvalue problem with the Bloch wave number being the eigenvalue is established.

And, by using the expansion coefficients as the eigenvector, the dimension of the problem can

be reduced so that the nonlinearity caused by the arbitrarily specified propagation angle can be

handled efficiently. The accuracy of the method is validated by comparing the results with the

ones obtained by using FEM.
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Chapter 4: Homogenization based on domain averaging

This chapter presents two homogenization methods for periodic heterogeneous materials with

averaging the explicitly solved wave fields. The first one is based on the volume averages of

the stress and strain field, and the second one is based on the kinetic energy equivalance of

the wave fields in the domain of unit cell. The first section of this chapter stems from the

published journal article written by the author under the supervision by Dr. Wang. (Wang and

Wang, 2016). The second section of this chapter stems from the journal paper in preparation:

“A computational homogenization method based on the energy equivalence”, written by the

author under the supervision by Dr. Wang.

4.1 Volume average

The effective properties of the heterogeneous materials can be determined based on the volume

averages of the field variables. In this section, the formulations of the elastostatic homoge-

nization with volume averages will be summarized first. By expanding the formulations to

the harmonic elastodynamic cases, the physical meaning of the volume averages of the wave

fields is shown. Then the computational homogenization method based on the concept of self-

consistent across different scales is developed.

4.1.1 Basic concepts of the elastostatic homogenization

Since the length scale of the load is much larger than that of the RVE, an RVE can be considered

only as a material point in the macroscopic field. Thus, the point possesses a stress state σ∗i j
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and a strain state ε∗i j. The asterisk superscript means macroscopic fields. The objective of

homogenization is to find the moduli C∗i jkl , which represents the relation between σ∗i j and ε∗i j.

However, in the microscopic view, the RVE occupies a domain in which the stress σi j and

strain εi j may vary, as shown in Figure 4.1. The general idea of finding C∗i jkl is to establish

the relation between (σ∗i j, ε∗i j) and (σi j, εi j) by defining boundary condition of the RVE and

averaging method, and the relation between σi j and εi j by solving the boundary value problem

of the RVE (Mura, 1987; Qu and Cherkaoui, 2006).

Macroscopic

Microscopic

Figure 4.1: RVE for elastostatic homogenization.

Under the assumption that the lengh scale of the load is much larger than the dimensions of

RVE, the variation of stress and strain in the vicinity of the RVE can be neglected. So, from the

continuity of traction and displacement,

σi j(x)n j

∣∣∣
∂Ω

= σ
∗
i jn j

∣∣∣
∂Ω

, ui(x)
∣∣∣
∂Ω

= ε
∗
i jx j

∣∣∣
∂Ω

, (4.1)
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where Ω is the domain of the RVE, x is the position vector defined in Ω and n is the outward

normal along the boundary ∂Ω. If the material in the RVE is homogeneous, the stress and strain

will trivially equal to the macroscopic stress and strain regardless of the RVE shape (Hashin,

1972),

σi j(x) = σ
∗
i j , εi j(x) = ε

∗
i j . (4.2)

For the RVEs composed of heterogeneous materials, the stress or strain won’t be trivially

constant under the boundary conditions in equation (4.1). But the volume average of stress and

strain still equal to the macroscopic ones,

〈
σi j(x)

〉
= σ

∗
i j ,

〈
εi j(x)

〉
= ε

∗
i j , (4.3)

where the angle brackets are defined as volume average operator,

〈 f (x)〉= 1
V

ˆ
Ω

f (x)dv , (4.4)

where V is volume of domain Ω. These can be respectively proved as follows.

Firstly, the corollary of divergence theorem used in the following discussion is

ˆ
Ω

fi, jdv =
ˆ

∂Ω

fin jds , (4.5)

where n is the outward normal vector. This is because, for any constant vector a, we have

ˆ
Ω

fi, ja jdv =
ˆ

Ω

( fia j), jdv . (4.6)
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And by using the divergence theorem,

ˆ
Ω

fi, ja jdv =
ˆ

∂Ω

fin ja jds . (4.7)

Since this holds for any constant vector a, the equation (4.5) must be true.

Under the equilibrium condition, the divergence of stress is zero, so

(σikx j),k = σik,kx j +σikδ jk = σi j . (4.8)

Substitute the σi j in to the volume average,

〈
σi j
〉
=

1
V

ˆ
Ω

σi jdv =
1
V

ˆ
Ω

(σikx j),kdv . (4.9)

By using the divergence theorem,

〈
σi j
〉
=

1
V

ˆ
∂Ω

σikx jnkds (4.10)

Under the traction boundary condition defined in equation (4.1), we have

〈
σi j
〉
=

1
V

σ
∗
ik

ˆ
∂Ω

x jnkds (4.11)

After using the divergence theorem again,

〈
σi j
〉
=

1
V

σ
∗
ik

ˆ
Ω

x j,kdv = σ
∗
ikδ jk = σ

∗
i j (4.12)
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Corresponding to the equilibrium condition for the stress, the strain is under kinematically

admissible condition, so 〈
εi j
〉
=

1
2V

ˆ
Ω

(
ui, j +u j,i

)
dv (4.13)

By using divergence theorem,

〈
εi j
〉
=

1
2V

[ˆ
∂Ω

uin jds+
ˆ

∂Ω

u jnids
]

(4.14)

Under the displacement boundary condition defined in equation (4.1), we have

〈
εi j
〉
=

1
2V

[
ε
∗
ik

ˆ
∂Ω

xkn jds+ ε
∗
jk

ˆ
∂Ω

xknids
]

(4.15)

After using the divergence theorem again,

〈
εi j
〉
=

1
2V

[
ε
∗
ik

ˆ
Ω

xk, jdv+ ε
∗
jk

ˆ
Ω

xk,idv
]
=

1
2

[
ε
∗
ikδk j + ε

∗
jkδki

]
= ε

∗
i j (4.16)

Therefore, by averaging the local stress and strain fields, the macroscopic stress and strain

can be evaluated, from which the effective constitutive relation can be obtained.

4.1.2 Basic concepts of the elastodynamic homogenization

For elastodynamic problems, the strain is also kinematically admissible. So the relation be-

tween the volume average of strain in RVE and the macroscopic strain still holds. However, the

relation for stress doesn’t hold because of the inertial force, as shown in Figure 4.2.
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Macroscopic

Microscopic

Figure 4.2: RVE for elastodynamic homogenization.

In the macroscopic field, the governing equation of stress becomes

σ
∗
i j, j + f ∗i = 0 , (4.17)

where the body force f ∗i = −ρ ü∗ represents the inertial force. So, comparing with the static

case, the material point in macroscopic view has the body force as one more state in addition

to the stress and strain. Similarly, under long wavelength assumption, the microscopic body

force fi is assumed to be constant all over the RVE with the same magnitude and direction of

the macroscopic body force f ∗i , as

fi(x) = f ∗i =−σ
∗
i j, j . (4.18)

Since the macroscopic field becomes static after applying the inertial force, the RVE should be
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static as well. So the body force in RVE should be balanced by the resultant force applying

along the boundary. Therefore the stress in the vicinity of the RVE cannot be assumed as

constant anymore otherwise the resultant force of the traction will be zero,

σi j(x)n j

∣∣∣
∂Ω

= σ
∗
i jn j

∣∣∣
∂Ω

=⇒
ˆ

∂Ω

σi j(x)n jds = σ
∗
i j

ˆ
∂Ω

n jds = 0 . (4.19)

So, instead of a constant, the stress in the vicinity of the RVE is assumed as a linear function.

Accordingly, the boundary condition becomes

σi j(x)n j

∣∣∣
∂Ω

=
(

σ
∗
i j +σ

∗
i j,kxk

)
n j

∣∣∣
∂Ω

, (4.20)

where σ∗i j,k is the macroscopic stress gradient, which is a constant three-order tensor in the

RVE. Then the resultant of the traction becomes

ˆ
∂Ω

σi j(x)n jds =
ˆ

∂Ω

(
σ
∗
i j +σ

∗
i j,kxk

)
n jds

= σ
∗
i j,k

ˆ
∂Ω

xkn jds

= σ
∗
i j,kδ jkV

= σ
∗
i j, jV ,

(4.21)

which balances the resultant of the body force, as

ˆ
∂Ω

σi j(x)n jds+
ˆ

Ω

fi(x)dv = σ
∗
i j, jV + f ∗i V = 0 . (4.22)

So, subjected to the body force defined in equation (4.18) and the traction defined in (4.20), the
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RVE will be in equilibrium.

Now, consider the stress volume average of the RVE under such traction boundary condi-

tion. Due to the body force fi, the divergence of stress becomes − fi. Thus the equation (4.8)

becomes

(σikx j),k = σik,kx j +σikδ jk = σi j− fix j . (4.23)

So the volume average of stress becomes

〈
σi j
〉
=

1
V

ˆ
Ω

σi jdv =
1
V

ˆ
Ω

[
(σikx j),k + fix j

]
dv

=
1
V

ˆ
∂Ω

(σikx j)nkds+
1
V

ˆ
Ω

fix jdv .

(4.24)

Substitute the traction boundary condition defined in equation (4.20) and body force defined in

equation (4.18),

〈
σi j
〉
=

1
V

ˆ
∂Ω

(
σ
∗
ik +σ

∗
ik,lxl

)
x jnkds− 1

V
σ
∗
ik,k

ˆ
Ω

x jdv . (4.25)

The position vector of the centroid of RVE (c) is defined as

ci =
1
V

ˆ
Ω

xidv . (4.26)
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Thus, 〈
σi j
〉
=

1
V

ˆ
∂Ω

σ
∗
ikx jnkds+

1
V

ˆ
∂Ω

σ
∗
ik,lxlx jnkds−σ

∗
ik,kc j

=
1
V

σ
∗
ik

ˆ
Ω

x j,kdv+
1
V

σ
∗
ik,l

ˆ
Ω

(xlx j),kdv−σ
∗
ik,kc j

= σ
∗
ikδ jk +σ

∗
ik,l(δklc j +δ jkcl)−σ

∗
ik,kc j

= σ
∗
i j +σ

∗
ik,kc j +σ

∗
i j,lcl−σ

∗
ik,kc j

= σ
∗
i j +σ

∗
i j,lcl .

(4.27)

By selecting the centroid of RVE as the origin, cl becomes zero.

Therefore, in the dynamic problems with long wavelength assumption and selecting the

centroid of RVE as the origin, the macroscopic stress can also be obtained by the volume

average of stress in the RVE. However, when the frequency is high, the RVE has a non-uniform

body force distribution, and the volume average of the local stress differs from the macroscopic

stress.

4.1.3 Formulations and results

This section presents a computational homogenization method based on the explicitly solve

wave fields and the concept of self-consistent across different scales. The considered heteroge-

neous models are composed of an isotropic elastic matrix with periodically embedded circular

inhomogeneities, under harmonic antiplane incident wave.

With the long wavelength assumption, the macroscopic wave field can be considered as

propagating plane waves in an effective medium, as shown in Figure 4.3 schematically, with

the field variables in the form of

f ∗(x) = A∗eik∗·x , (4.28)
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where A∗ is the complex amplitude of the macroscopic field and k∗ is the effective wave vector.

Then the effective properties can be obtained by the relation among the complex amplitudes.

Figure 4.3: Computational model of homogenization.

In such expression, the exponential term represents the overall waveform and the local

response of the microscopic structure is encapsulated in the complex amplitude. Accordingly,

by assuming the real wave field to be in the form of

f (x) = Ã(x)eik∗·x , (4.29)

the microscopic wave field is represented by the function Ã(x). Then, as employed in (Wang

and Gan, 2002), the complex amplitude of macroscopic wave field is assumed to be the volume

average of the microscopic wave field,

A∗ =
〈
Ã(x)

〉
=

1
V

ˆ
V

f (x)e−ik∗·xdV . (4.30)
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where, instead of taking the volume average directly, the overall fluctuation of the effective

wave is eliminated before the averaging.

The average field variable f in the heterogeneous medium, representing both displacement

and shear strains, can be expressed in terms of the corresponding average values in the matrix

and the inhomogeneities as

〈 f 〉= φ 〈 f 〉i +(1−φ)〈 f 〉m , (4.31)

where φ is the volume fraction of the inhomogeneities, and the subscripts i and m represent

averaging in the inhomogeneities and the matrix, respectively.

Based on the currently developed solution of interacting inhomogeneities, the relation be-

tween the strains and displacements of inhomogeneity and matrix can be obtained, by selecting

a proper RVE, as

〈w〉i = M 〈w〉m (4.32)〈γxz〉i〈
γyz
〉

i

=

N1 N2

N2 N1


〈γxz〉m〈

γyz
〉

m

 , (4.33)

where matrix N has only two independent elements N1 and N2 for an isotropic homogenized

material. Then the average displacement and shear strains can be expressed in terms of the

average value in the matrix as

〈w〉= (φM+1−φ)〈w〉m , (4.34)

〈γxz〉〈
γyz
〉
=

φN1 +1−φ φN2

φN2 φN1 +1−φ


〈γxz〉m〈

γyz
〉

m

 . (4.35)
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Using the constitutive relations given by

p =−iωρw (4.36)

τxz

τyz

=

µ 0

0 µ


γxz

γyz

 , (4.37)

with p being the momentum density, the average moment density 〈p〉 and shear stresses [〈γxz〉 ,
〈
γyz
〉
]T

can be expressed as

〈p〉=−iω[ρiφM+ρm(1−φ)]〈w〉m , (4.38)〈τxz〉〈
τyz
〉
=

µiφN1 +µm(1−φ) µiφN2

µiφN2 µiφN1 +µm(1−φ)


〈γxz〉m〈

γyz
〉

m

 . (4.39)

Then the effective mass density and effective elastic constants can be obtained as

ρe =
−iω[ρiφM+ρm(1−φ)]

φM+1−φ
, (4.40)

[C] =

µiφN1 +µm(1−φ) µiφN2

µiφN2 µiφN1 +µm(1−φ)


φN1 +1−φ φN2

φN2 φN1 +1−φ


−1

. (4.41)

By using the element of the principal diagonal of the matrix [C] as the shear modulus, the

effective wave number k∗ can be obtained, which is supposed to be equal to the one used in

the volume average defined in equation (4.30). So, in order to make it to be consistent with

the assumed value, the computed k∗ is used in the next iteration step until the effective wave

number converges. The computed effective wave number is a complex number, with the real
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part kre corresponding to the phase velocity c=ω/kre and the imaginary part kim corresponding

to the attenuation of the wave.
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Figure 4.4: Effective phase velocity for the square and hexagonal arrangement

In Figure 4.4, the effective phase velocity is plotted as a function of the dimensionless

parameter kmR, which is corresponding to the frequency of incident wave. Two models with

same material constants and different arrangements, square and hexagonal, are considered.

The averages of field variables are taken in the center unit cell which is surrounded by three

layers of inhomogeneities. The numbers of inhomogeneities are 49 and 37 in the cubic and

hexagonal arrangements. The material constants used are µm = 1.73GPa, ρm = 1200kgm−3,

µi = 8.36GPa and ρi = 11300kgm−3. The volume fraction φ = 0.25. Figure 4.5 shows the

attenuation of the material under incident waves with different frequencies. A considerable

increase can be observed when kmR = 0.4–1.1, corresponding to the first stop band. Since

the two models have the same volume fraction and the same characteristic length, similar stop

bands are observed, indicating that the phenomenon is not sensitive to the details of the lattice
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structure.
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Figure 4.5: Attenuation of the square and hexagonal arrangement

4.2 Energy equivalence

In this section, another computational homogenization method for periodic materials by av-

eraging the computed wave field is developed based on the kinetic energy equivalence. In

the following discussion, the formulations will be introduced in detail, and the validity of the

method is verified by comparing the obtained effective properties with the existing results under

quasi-static limit load, and comparing the simulation results of the original heterogeneous ma-

terial and its homogenized substitution. Then, as an example, the method is applied to compute

the effective material properties under different frequencies in the first pass-band.
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4.2.1 Formulations

The considered model is composed of isotropic elastic matrix with circular inhomogeneities

embedded periodically in a square lattice. If the periodic material is assumed to extend in-

finitely, the wave field is in the form of Bloch wave, as shown in equation (3.1). The compari-

son of this wave form with that of the effective wave shown in equation (4.28) reveals that the

exponential term of the Bloch wave represents the macroscopic wave motion, and the Bloch

wave number can be used as the wave number of the effective wave.

Therefore, by modeling the RVE with the unit cell and solving the eigenvalue problem

by using the method shown in Section 3, the effective wave number k∗ can be obtained as

the eigenvalue. With assuming the effective material to be isotropic, the wave speed and the

relation between material properties of the effective material can be determined as

c∗ =
ω

k∗
=

√
µ∗

ρ∗
, (4.42)

where ω is the frequency, µ∗ and ρ∗ denote the shear modulus and effective mass density,

respectively.

After solving the eigenvalue problem, the eigenstate of the unit cell is also obtained, with

which the kinetic energy of the unit cell can be obtained as

T =

¨

A

1
2

ρω
2wwda , (4.43)

where w is the antiplane displacement and the superscript bar denotes the complex conjugate.
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Then, hypothetically, the local response in that region can be replaced by an effective wave field

w∗, which possesses the same kinetic energy as

T = T ∗ =
1
2

ρ
∗
ω

2
¨

A

w∗w∗da (4.44)

where the w∗ denotes the effective displacement field.

In addition, the effective displacement field in the region is assumed to have the minimum

mismatch with the one of the real local response. So the effective displacement field can be

obtained by fitting an assumed wave form to the displacement distribution of the eigenstate in

the unit cell region. Then, by substituting the obtained w∗ and T ∗ into the equation (4.44), the

effective mass density can be obtained, and then the effective shear modulus can be evaluated

by using the relation in equation (4.42).

In this work, two wave forms are considered. One is the linear function,

w∗(x) = a ·x+w0 , (4.45)

which is corresponding to the constant strain assumption. And the other is the plane wave,

w∗(x) = w0eik∗·x . (4.46)

The a and w0 are the constants to be determined by using the least square method.

In the numerical implementation, a vector of displacement values are collected from an

array of points in the unit cell. For the linear distribution, the Moore-Penrose inverse of the
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matrix composed of row vectors [x1,x2,1] are used to get the constants. For the plane wave

distribution, because the Bloch wave vector is used as the effective wave vector k∗, the constant

w0 can be directly determined by the inner product of the vector of displacement and the vector

composed of e−ik∗·x, divided by the dimension of the vector.

Since the eigenstate is corresponding to an unidirectional wave propagation, for canceling

the effect of the direction to get the isotropic material properties, multiple cases with different

angles between 0◦− 45◦ are computed, and the averages are used as the isotropic effective

material properties.

4.2.2 Verification of the method

In order to validate this method, the effective material properties at the quasi-static limit fre-

quency are computed and compared with the existing results. The material of the matrix and

inhomogeneities are steel (ρm = 7670kgm−3, µm = 84.3GPa) and lead (ρi = 11400kgm−3,

µi = 8.43GPa) respectively. Since the frequency approaches zero, the wave forms in equa-

tion (4.45) and equation (4.46) become equivalent.

The computed effective shear moduli for different volume fractions of the inhomogeneity,

compared with existing results (Parnell and Abrahams, 2006), are shown in Figure 4.6. The re-

sults computed with the method of this work coincide with the ones computed with the asymp-

totic homogenization method and self-consistent method in the range of low volume fraction.

For the materials with volume fraction higher than 0.3, the results of the three methods start to

diverge within the range between the lower and upper bounds.

The validity of the elastodynamic homogenization are verified by comparing the direct nu-
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Figure 4.6: Comparison with existing results

merical simulations of the wave fields scattered by multiple inhomogeneities and the homoge-

neous replacement with the effective properties. As shown in Figure 4.7, the multiple scattering

model is composed of an array of circular inhomogeneities arranged in a rectangular lattice.

The radius of the inhomogeneities is 6mm and the lattice constant a = 20mm. The material

constants used are ρm = 7670kgm−3, μm = 84.3GPa, ρi = 11400kgm−3, μi = 8.43GPa. The

incident wave is a plane SH wave propagating along positive x direction with the frequency

which is set to be 26.3818kHz so that kma = 1.

The dimension of the array should be large enough to show the properties of the material.

To determine the sufficient dimension, models with different dimensions were tested. And, for

the frequency kma = 1, the dimension is set to be 20×20, which is sufficiently large so that the

effective properties become insensitive to the change of dimension of the array.
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Figure 4.7: Direct numerical simulation models for comparison

In the homogenized model, the array of inhomogeneities is replaced by a rectangular inho-

mogeneity with the same dimensions and effective material properties, which are obtained as

9216.07kg/m3 and 53.4968GPa with the constant strain assumption, or obtained as 9087.92kg/m3

and 52.7529GPa with the plane wave assumption. The multiple scattering model is solved by

using the method in the Section 2, and the homogenized models are solved with boundary ele-

ment method. The displacement distribution of the wave fields at the same phase are shown in

Figure 4.8, where only the one with the constant strain assumption is used as the homogenized

model.
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Figure 4.8: Comparison between the displacement fields of the periodic model and homoge-
nized model

The overall displacement distribution of the homogenized model shows good accordance

with the one of the model with multiple inhomogeneities, especially for the locations outside of

the inhomogeneous region. For the inhomogeneity locations, since the material of the inhomo-

geneity is softer and heavier than the matrix material, the displacement of multiple scattering

model has larger amplitude than that of the homogenized model, in which the material is ho-

mogeneous and the displacement varies more smoothly.

The normalized amplitudes of displacement |w|/|w0| and stress |τxz|/|τ0| along the lines

marked in the Figure 4.7 are plotted in the Figure 4.9 and Figure 4.10 with dashed lines. It can

be observed that the fields match well in general.
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Figure 4.9: Normalized displacement amplitude |w| along the lines

For the displacement distribution inside the region, −10 < x/a < 10 and −10 < y/a < 10

along L1 and L3, the homogenized model shows larger deviations to the multiple scattering

model, while the peak values got approximated accurately.
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Figure 4.10: Normalized stress amplitude |τxz| along the lines

In the comparison of the stress τxz outside the region of inhomogeneity, there is also a good

agreement between the two models. Inside the region, the stress amplitude distribution in the

multiple scattering model shows intensive fluctuations, which the homogenized model fails to

follow, since the twenty peaks in the curve of the multiple scattering model are corresponding to

the twenty inhomogeneities in a row. However, the result of homogenized model can correctly

follow the general trend.

From the above comparison, it can be observed that the difference made by using the dif-

ferent fitting wave forms is mainly around the peaks inside of the inhomogeneous region, and

is negligible for other locations.
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4.2.3 Effective properties

In this section, the effective material properties of the same periodic material as in the Sec-

tion 4.2.2 under a range of frequencies are evaluated as an example. The considered frequency

is ranging from the quasi-static limit to 48.7834kHz, above which the Bloch wave does not exist

for some angles. Two fitting wave forms, equation (4.45) and equation (4.46), are used and the

obtained effective mass density and shear modulus are shown in Figure 4.11 and Figure 4.12.
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Figure 4.11: Effective mass density.

The effective mass density starts from the static weighted average of the two materials

8724.63kg/m3, and increases monotonically as the frequency increases. The results with two

different fitting wave forms both converge to the quasi-static limit and agree well with each

other under low frequencies. With increasing the frequency, the effective mass density obtained

by using the plane wave assumption becomes lower, because the form of plane wave allows

larger displacement which requires less weight to get the same kinetic energy. Equivalently, the
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constant strain assumption demands the effective material to be stiffer, which is consistent with

the comparison in Figure 4.12.
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Figure 4.12: Effective shear modulus.

4.3 Conclusion

In this chapter, two elastodynamic homogenization methods are developed based on the domain

averaging of the explicitly solved wave fields. In the first method, the volume average scheme

with considering the effective wave form is employed, in which the effective wave number

is determined by self-consistent method. The effective phase velocity and attenuation of the

effective material can be obtained under a wide range of frequency. And the convergence of

the effective wave number provides a guideline for the assumption of the effect wave form.

Then, by assuming the effective wave number to be the same as the Bloch wave, the second

homogenization method for periodic materials is developed based on the kinetic energy equiv-

alence. The homogenization results for both quasi-static and dynamic cases are verified by
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comparing with the existing results and the direct numerical simulations. And the applicability

of the method is demonstrated by evaluating the effective material properties under a range of

frequency.
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Chapter 5: Homogenization based on boundary matching

This chapter presents a computational homogenization method for the determination of effec-

tive material properties under time-harmonic antiplane incident waves, based upon the opti-

mization of boundary integral of explicitly solved multiple scattering wave fields or eigenstates

of unit cell with periodic boundary condition. Depending on the different frequencies and

materials, different representative volume elements are modeled for determining the boundary

response. The applicability of the method is shown via the homogenization of random mate-

rials and periodic materials under a wide range of frequency. The accuracy and effectiveness

are discussed through the comparison of direct numerical simulations of homogenized mod-

els and the original models with local structures. Illustrative example of the determination of

multiple scattering wave field in different scales is considered to study the multiscale model-

ing of the elastic wave propagation in heterogeneous materials. This chapter stems from the

journal paper in preparation: “Computational homogenization for antiplane wave propagation

in heterogeneous materials”, written by the author under the supervision by Dr. Wang.

5.1 Introduction

The effective properties of a piece of heterogeneous material can be considered as the transfer

characteristics of a black box system, which can be identified by analyzing the relation between

the input and output. Based on the concept of system identification, various homogenization

methods have been developed, which includes retrieval method (Fokin et al., 2007; Zhang et al.,

2013), coherent potential approximation (CPA) methods (Hu et al., 2008; Wu et al., 2007). In
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the retrieval method, the experiments or numerical simulations are carried out on a piece of

heterogeneous material which is subjected to an incident wave. Then the effective material

properties are obtained by analyzing the relation among the incident wave, reflected and trans-

mitted waves which are measured or computed. Although it is simple in principle, the retrieval

method becomes unreliable when the frequency is high and the wave number in the heteroge-

neous material is hard to predict. The CPA method is based on the equivalence of the Green’s

function or its counterpart, for example, the T-matrix of scatterer. With combining the concept

of projection, which is essentially similar to the homogenization, the method based on matching

the boundary response in the macroscopic modal space is developed (Yang et al., 2014). Most

works on CPA are focused on the analytical solutions, which usually require more assumptions.

This chapter presents a computational method for the elastodynamic homogenization of

heterogeneous materials based on the optimization of boundary integral of explicitly computed

wave fields. The proposed method is applicable to both periodic materials and random materials

under the frequencies beyond the long-wavelength limit, without assuming the macroscopic

mode shape functions.

5.2 Methodology

The problem considered is the determination of effective isotropic material properties with

which the homogeneous material can be approximately equivalent to the heterogeneous mate-

rial, which is composed of multiple circular inhomogeneities embedded in an elastic medium,

and subjected to harmonic antiplane elastic waves. The model is schematically shown in Fig-

ure 5.1.
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Figure 5.1: Schematic sketch of the model

The properties of macroscopically homogeneous materials can be approximated by those

of their RVE. For the periodic heterogeneous materials, any repeating units, which are com-

posed of one or multiple unit cells, can be considered as an RVE. For the random materials

with uniformly distributed inhomogeneities, the RVE should be large enough so that its statis-

tical properties become insensitive to its size and location. Since the RVE interacts with the

surrounding media only through the interface, the mechanical behavior of the RVE can be en-

capsulated by its boundary response, which can further be represented by the relation between

the two types of boundary conditions, which are the antiplane displacement w and the traction

t = σzini in this case, as shown in Figure 5.1. The relation between them can be expressed by

the boundary integral equation, as

c(x)w(x)+
ˆ

S

∂G(x,y)

∂n(y)
w(y)ds(y) =

ˆ
S

G(x,y)t(y)ds(y) , (5.1)
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where S is the boundary of the RVE with the n being the outward normal vector. The constant

c(x) depends on the geometry of the boundary at position x, and equals to 0.5 if S is smooth

around x. And G(x,y) is the Green’s function in which the local mechanical properties are

incorporated.

If the RVE is substituted by a piece of isotropic homogeneous material with effective mass

density (ρ∗) and effective shear modulus (µ∗), it can be expected that the relation between w and

t can still be established by the fundamental solution for the effective homogeneous material,

with introducing a residue R(x), defined as

R(x) = c(x)w(x)+
ˆ

S

∂G∗(x,y)
∂n(y)

w(y)ds(y)−
ˆ

S
G∗(x,y)t(y)ds(y) , (5.2)

where G∗(x,y) is the fundamental solution of the effective medium, expressed as

G∗(x,y) =
i
4

H(1)
0 (kr) , (5.3)

where H(1)
0 is the zero order Hankel function of the first kind, k is the wave number of the

effective homogeneous material, and the r is the distance between x and y. The wave number

depends on the frequency ω and the transverse wave speed c, which depends on the mass

density ρ∗ and shear modulus µ∗ of the material,

k =
ω

c
, c =

√
µ∗

ρ∗
. (5.4)

The comparison between equation (5.1) and (5.2) reveals that when the R(x) vanishes at any
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position along the interface for any pair of w and t, the effective fundamental solution G∗(x,y)

will be exactly the same as the Green’s function G(x,y), which is impossible if the effective

material is assumed to be homogeneous. However, the amplitude of residue R(x), defined as

A(ρ∗,µ∗) =

√ˆ
S

R(x)R(x)dx , (5.5)

can indicate how close the effective homogeneous material can respond as the RVE, and the

best approximation can be made when A(ρ∗,µ∗) is minimized by adjusting the effective mass

density and shear modulus.

In the numerical implementation, the boundary is discretized into N linear pieces with N

nodes, and the boundary integrals are computed by using Gaussian quadrature, which can be

linearized as

{R}= [H]{w}− [G]{t} , (5.6)

where {w} and {t} are vectors composed of N values of the explicitly computed displacement

and traction at the nodes, respectively. When multiple loading cases, such as ones under inci-

dent waves with different angles, are considered simultaneously, the residue vector {R} can be

expanded to a matrix in which each column is corresponding to a loading case,

[R] = [R1,R2, . . . ,RM] = [H][w1,w2, . . . ,wM]− [G][t1, t2, . . . , tM] , (5.7)

and the amplitude of residue defined in equation (5.5) becomes the Frobenius norm of the
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matrix, as

A(ρ∗,µ∗) = ‖R‖F =

√√√√ N

∑
i=1

M

∑
j=1

Ri jRi j . (5.8)

Then, by employing the optimization algorithm, the effective properties can be obtained when

the minimum A is reached. Since the gradient is hard to obtain, in this work, the Nelder-Mead

method is employed for local minimization and the Basin-hopping method is used as the global

optimization technique for enlarging the search space.

5.3 RVE modeling

The determination of the RVE response is essential for the developed homogenization method.

In this section, two different RVE modeling methods are respectively developed for the materi-

als with inhomogeneities distributed randomly and periodically.

5.3.1 Random material

For random materials, the response of the RVE is collected from the multiple scattering wave

field of a large arrangement of circular inhomogeneities randomly embedded in an infinite

medium, as shown in Figure 5.1 schematically. The model is solved by using the multiple

scattering method developed in Section 2.

Although the integral path in equation (5.2) can be defined arbitrarily, RVEs in circular

shape are used in this work for convenience. It is worthy to note that, for the circular RVE, its

boundary inevitably crosses the interfaces of inhomogeneities and the matrix. By comparing

the results with the ones obtained by the RVE with curve boundary which avoids the crossing,
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it can be concluded that the crossing of the interfaces doesn’t affect the homogenization in an

obvious way.

For random materials with uniformly distributed inhomogeneities, the RVE should be large

enough so that its effective properties become insensitive to its size and location. In this work,

a number of circular RVEs in different locations are used for determining the appropriate RVE

size by examining the coefficients of variation (CV). And the size with which the RVEs render

results with CV that is less than 5% is accepted as sufficient. Then the effective properties are

obtained by averaging the results from the RVEs with the size.

5.3.2 Periodic material

For the periodic heterogeneous material, when the frequency is in the pass-band, the RVE is

defined as the unit cell with periodic boundary condition. And the local response is determined

as the eigenstate of the unit cell, which can be computed by using the method developed in

Section 3. For the frequencies in the stop-band, there is no traveling Bloch wave exists in

the periodic structure. Equivalently, there is no real-valued eigenvalue for the equation (3.12).

Although it may be possible to find the complex eigenvalue with sophisticated numerical meth-

ods, solving the multiple scattering wave field as in the Section 2 is much easier to obtain the

boundary values. With large number of same unit cells surrounding, the RVE can have similar

ambient wave field as the one with periodic boundary condition. The details and validity of this

model will be discussed in the following section.

In spite of the fact that orthotropic materials are better approximations for the heterogeneous

materials with cubic lattice, the isotropic constitutive relation is also adequate for this periodic
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material due to the circular shape of the inhomogeneity. So the isotropic constitutive relation is

employed for simple Green’s function in this work. In order to get the effective isotropic ma-

terial properties, multiple angles of incident wave are considered simultaneously. Accordingly

the matrix of residue defined in equation (5.7) is expanded with each column corresponding to

a loading case with a specific incident angle.

5.4 Verification of the method

5.4.1 Random materials

For the random heterogeneous materials, the sufficient size of the RVE should be determined

first. In this work, the model is established by embedding 1600 circular inhomogeneities ran-

domly with uniform distribution inside the area of 800× 800mm2 in an infinitely extended

matrix,with the radius Ri = 6mm, as shown in Figure 5.2a.
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(a) Multiple scattering model
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(b) Homogenized model

Figure 5.2: Direct numerical simulation models for comparison
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The material constants used are ρm = 7670kgm−3, μm = 84.3GPa, ρi = 11400kgm−3,

μi = 8.43GPa. The incident wave is a plane SH wave propagating along positive x direction

with the frequency which is set to be 17.5879kHz so that kmRi = 0.2. In the region, 5×5 equally

spaced positions are selected as the centers of the circular RVEs. Then, for each RVE radius Re,

25 pairs of homogenization results are obtained by the RVEs on 25 different positions. Then

the CVs of the results are calculated and plotted in Figure 5.3. Both the CVs of mass density

and shear modulus decrease as increasing the radius of RVE. When the RVE radius increases

to 10 times of the radius of the inhomogeneity, the CV decreases below 5%, which is deemed

as sufficient accurate in this work.
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Figure 5.3: Coefficients of variation obtained by RVEs with different radii

The averages of the effective properties among different RVEs with same sizes are plotted

in Figure 5.4. It can be observed that the effective properties tend to converge when the RVE

radius increases 14 times of the radius of inhomogeneity.
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Figure 5.4: Averages of effective properties obtained by RVEs with different radii

The validity of the homogenization results are verified by comparing the direct numerical

simulations of the wave fields scattered by multiple inhomogeneities and the homogeneous re-

placement with the effective properties. As shown in Figure 5.2, in the homogenized model,

the array of inhomogeneities is replaced by a rectangular inhomogeneity with the same dimen-

sions and effective material properties, which are obtained as 8899.49kg/m3 and 52.9635GPa.

The multiple scattering model is solved by using the method introduced in Section 2, and the

homogenized model is solved by using boundary element method.

The displacement distributions of the scattering wave fields at the same phase are shown

in Figure 5.5. The overall distributions show good accordance. The difference lies primarily

inside the region of inhomogeneities, where the multiple scattering model shows more random

perturbations on the general pattern due to the random local structures.
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Figure 5.5: Comparison between the displacement fields of the random model and homoge-

nized model

The normalized amplitudes of displacement |w|/|w0| and stress |τxz|/|τ0| along the lines

marked in the Figure 5.2 are plotted in the Figure 5.6 and Figure 5.7, where the w0 and

τ0 = ikmμmw0 represents the displacement and stress caused by the incident wave. For the wave

fields outside the region of inhomogeneities, the general trend in the multiple scattering model

can be followed by the homogenized model. And, for the wave fields inside the region, the ran-

dom fluctuations can be observed due to the randomly distributed inhomogeneities. However,

the fluctuations are carried by the pattern which is generally described by the wave fields in the

homogenized model.
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Figure 5.6: Normalized displacement amplitude |w| along the lines in the random model and

homogenized model
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Figure 5.7: Normalized stress amplitude |τxz| along the lines in the random model and homog-

enized model

5.4.2 Periodic materials

The homogenization methods for periodic materials are also verified by the comparison be-

tween the multiple scattering model and the homogenized model. As shown in Figure 5.8, the

multiple scattering model is composed of 20× 20 identical circular inhomogeneities arranged

in a rectangular lattice. The radius of the inhomogeneities is 6mm and the lattice constant

a = 20mm. The material constants used are same as in the Section 5.4.1. The incident har-

monic SH wave is propagating along the positive x direction. In the homogenized model, the

array of inhomogeneities is replaced by a rectangular inhomogeneity with the same dimensions.
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Figure 5.8: Direct numerical simulation models for comparison
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Figure 5.9: Normalized displacement distributions of the two models

For the frequencies in the pass-band, the frequency f is set to be 26.3818kHz so that kma =

1. The unit cell with PBC developed in Section 3 is employed and 45 angles ranging from 0

to π/4 are considered. The effective properties are obtained as: ρ∗ = 9162.13kg/m3, µ∗ =

51.2334GPa. The computed imaginary parts are less than a hundredth of the real parts, and are
102



neglected.

Figure 5.9 shows the normalized displacement distribution of the two models at the same

phase. Although, at the inhomogeneity locations, the displacement field of the multiple scatter-

ing model includes more details comparing to the one of the homogenized model, the overall

distributions show good accordance.
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Figure 5.10: Normalized displacement amplitude |w| along the lines in the pass-band

The normalized amplitudes of displacement |w|/|w0| and stress |τxz|/|τ0| along the lines

marked in the Figure 5.8 are plotted in the Figure 5.10 and Figure 5.11. From the comparison of

the results, it can be observed that both the displacement w and stress τxz match well outside the

region of inhomogeneities, which is −10< x/a< 10 and −10< y/a< 10. For the comparisons
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inside the region, larger deviations can be observed. The stress amplitude fluctuates intensively

in the multiple scattering model, while get smoothed with the correct trend in the homogenized

model.
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Figure 5.11: Normalized stress amplitude |τxz| along the lines in the pass-band
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Figure 5.12: Homogenization model for frequencies in the stop-band

As the frequency increases to the first stop-band, because of the difficulty in getting the

complex eigenvalue, the RVE model with PBC is substituted by the model with the unit cell

surrounded by a number of identical cells for simulating the ambient multiple scattering wave

field, as shown by the solid line in Figure 5.12 schematically. In order to validate the approxi-

mation, the effective properties obtained by using the center unit cells in the arrays of 7×7 and

17× 17 unit cells are compared with the ones obtained by using the RVE with PBC, under a

range of frequencies in the pass-band. The results are plotted in Figure 5.13 with triangles. It

can be observed that, despite the center unit cell models agree well with the PBC model under

the low frequencies, the results diverge when the frequency approaches stop-band.
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Figure 5.13: Comparison between the effective properties obtained by the RVEs with multiple

scattering and PBC

The reason is the effect of the finite size of the array. Since the array can be regarded as an

inhomogeneity with finite size, there will be reflections of waves, which put different unit cells

into different load environments. Therefore, the effective material properties obtained may alter

slightly as selecting different unit cells to be the RVE. In order to cancel this effect, multiple

unit cells are used, as shown by the dashed line in Figure 5.12. Then the matrix of residue

defined in equation (5.7) is expanded with each column corresponding to a unit cell. The result

obtained by using 3× 3 adjacent unit cells in an array of 12× 12 unit cells is plotted in the

Figure 5.13 denoted by circles, which show better accordance. So it can be concluded that the

RVE with multiple unit cells embedded in an array is valid as an alternative to the RVE with

PBC.

For the validation of the homogenization results obtained by the proposed model, the same

comparison by direct numerical simulation as the pass-band case is made. The frequency

f is set to be 51.9667kHz. The obtained effective properties are complex-valued: ρ∗ =

(−1002.61+ 8284.78i)kg/m3, μ∗ = (3.30358+ 34.9685i)kg/m3. The normalized displace-
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ment distributions of the two models at the same phase are shown in Figure 5.14.
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Figure 5.14: Normalized displacement distributions of the two models in stop-band

Similar as the comparison of the pass-band case, the overall distribution show good ac-

cordance except for the locations close to the inhomogeneities. The normalized amplitude of

displacement |w|/|w0| and stress |τxz|/|τ0| along the lines marked in the Figure 5.8 are respec-

tively plotted in the Figure 5.15 and Figure 5.16. From the figures of L1, it can be observed that,

inside the region of inhomogeneities, the wave amplitude in homogenized model agrees well

with the general trend of the one in multiple scattering model and decays exponentially. There

is also a good agreement between the wave fields outside the region of the inhomogeneities of

the two models.
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Figure 5.15: Normalized displacement amplitude |w| along the lines in the stop-band
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Figure 5.16: Normalized stress amplitude |τxz| along the lines in the stop-band

5.5 Effective material properties of periodic material

In this section, the effective material properties of the same periodic material as in the Sec-

tion 5.4.2 under different frequencies are evaluated. The considered frequency is ranging from

the quasi-static limit to the higher boundary of the first stop-band, 0− 54.2320kHz. As men-

tioned above, different RVE models are used according to the frequency. When the frequency

is below 48.7832kHz, which is the limit of the Bloch wave in x direction, the RVE with PBC is

used. When the frequency is in the stop-band, 51.5682−54.2320kHz, the RVE with multiple

unit cells is used. For the frequencies in between, 48.7832−51.5682kHz, although they are in
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the pass-band, real-valued Bloch wave numbers don’t exist for some of the angles, so the latter

RVE model is used too.

10 20 30 40 50

Frequency (kHz)

1.0

1.5

2.0
M
a
ss

d
en

si
ty

(k
g
/
m

3
)

×104

50

60

70

80

S
h
ea
r
m
o
d
u
lu
s
(G

P
a
)

Mass density

Shear modulus

Figure 5.17: Effective material properties in the first pass-band

Figure 5.17 shows the computed effective properties in the first frequency range. The quasi-

static limits of the mass density and shear modulus respectively converge to the weighted av-

erage of mass density, 8724.63kg/m3, and the effective shear modulus obtained by asymptotic

homogenization (Parnell and Abrahams, 2006), 52.6875GPa, with relative errors of 0.23% and

1.7% at the frequency of 4.9kHz. The effective mass density increases monotonically with in-

creasing the frequency, while the effective shear modulus first shows a slight reduction followed

by rising sharply.

The comparison of the results obtained by the current method and by the methods based

on energy equivalence, with constant strain and plane wave assumption, introduced in Chap-

ter 4.2 is shown in Figure 5.18 and Figure 5.19. The three methods agree well for the lower

frequencies, and tend to converge at the higher limit. For the higher frequencies in between,
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larger deviations can be observed, while the result obtained by the current method remains in

the middle between the other two.
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Figure 5.18: Comparison of the effective mass density obtained by different methods
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Figure 5.19: Comparison of the effective shear modulus obtained by different methods

By using the RVE with multiple unit cells, the effective properties under the frequencies
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in the range of 48.7832− 54.2320kHz are computed and plotted in Figure 5.20, where the

stop-band boundary, 51.5682kHz, is drawn with dash-dot line. It can be observed that the first

part of the curves continue the trend in the Figure 5.17. It is worthy to note that the imaginary

parts of the effective properties start to increase, which indicates that, for some of the angles,

the Bloch waves start to decay due to the complex-valued wave number. When the frequency

approaches the lower boundary of the stop-band, the effective properties increase dramatically,

which is corresponding to the resonance of the structure. Then, after passing the boundary, the

real parts of the effective properties vanish while the imaginary parts drop to nonzero values and

vary smoothly with increasing the frequency. For the frequencies around the higher boundary

of the stop-band, the optimization process fails to converge to reasonable values. It indicates

that the higher limit of the homogenization algorithm is reached.
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Figure 5.20: Effective material properties in the first stop-band
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5.6 Multiscale modeling

In this section, the multiscale modeling method based on the developed computational homog-

enization method is shown by a general example of multiple scattering in large scale. Then, the

recovery of the local response is demonstrated for evaluating the local stress concentration.

5.6.1 Multiple scattering in large scale

As shown in Figure 5.21a, the model considered is composed of three identical regions of

inhomogeneities embedded in an infinite medium. The lattice constants, inhomogeneity radius

and materials used are the same as the ones in the Section 5.4.2. In the homogenized model,

the regions of inhomogeneities are replaced by the rectangular pieces of effective homogeneous

material, as shown in Figure 5.21b. The incident wave is a harmonic SH plane wave propagating

along the positive x direction with wave number kma = 1.

x
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L3

(a) Multiple scattering model

x

y

L1

L2

L3

(b) Homogenized model

Figure 5.21: Direct numerical simulation models for multiple scattering
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The models were solved by using the multiple scattering algorithm and BEM as in previous

sections. For solving the homogenized model, the CPU time and memory used are 339s and

0.7443GB, which are 7.15% and 6.02% of those, 4741s and 12.36GB, for solving the multiple

scattering model. Figure 5.22 shows the normalized displacement distributions obtained by the

two models. Excellent agreement of the general pattern can be observed. The valley of the

wave amplitude is formed by the surrounding blocks. In the top region, due to the material

difference and angled incident wave, the refracted plane wave can be observed.
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Figure 5.22: Normalized displacement distributions of the two models of multiple scattering

In Figure 5.25 and Figure 5.24, the normalized displacement amplitude |w| and stress ampli-

tude |τrz| along the circles marked in Figure 5.21 are plotted in polar coordinates, respectively.

It can be observed that, for the positions outside the regions of inhomogeneities, the two mod-

els match well, even for the gaps between to regions along L2. For the positions inside, the

homogenized mode shows the averaged amplitude of the local perturbations and follows the

general trend of the multiple scattering field.

114



0°

45°

90°

135°

180°

225°

270°

315°

0.3 0.6 0°

45°

90°

135°

180°

225°

270°

315°

1
2

0°

45°

90°

135°

180°

225°

270°

315°

1 2

Multiple scattering model
Homogenized model

L1 L2 L3

Figure 5.23: Normalized displacement amplitude |w| along the circles
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Figure 5.24: Normalized stress amplitude |τrz| along the circles

5.6.2 Recovery of the local response

For the damage tolerance design of engineering structures against dynamic failure, it is essen-

tial to evaluate the local stress concentration, which is smoothed inherently in the multiscale

models. In this section, the method for the recovery of the local response is developed by

calculating the local fields based on the known values given by the homogenized model.
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By using the eigenfunction expansion in equation 3.3 and the relation of the coefficients in

equation (3.5), the relation between the coefficients and the boundary values of resultant wave

field along the unit cell boundary can be established. After discretizing the boundary into M

segments uniformly and truncating the series at the order of N, the vector of boundary values

can be represented by An as

{ξ}= [Z]{A} , (5.9)

where {ξ} is the boundary values of the resultant wave field, which is the superposition of the

incident wave and scattered wave, along the unit cell boundary. The element of matrix [Z] is

[Z](2p−1,n) =
[
H(1)

n (kmrp)+TnJn(kmrp)
]

einϕp

[Z](2p,n) = µmkm

[
H(1)′

n (kmrp)+TnJ′n(kmrp)
]

einϕpnrp+

µm(in)
[
H(1)

n (kmrp)+TnJn(kmrp)
]

einϕpnϕ p ,

(5.10)

where p ∈ [1,M] indicates the pth node, nr and nϕ are the cosines of the outward normal vector

at the node relative to the positive r and ϕ direction, and the Tn is the relation between An and

Bn as shown in equation (3.8).

From the solution of the multiple scattering wave field in large scale with BEM, the vector

{ξ} along the boundary of any unit cell can be obtained. Therefore, the coefficients An of that

unit cell can be determined as the least squares solution by solving the equation (5.9) with SVD.

Then, the local wave fields in that unit cell can be obtained by substituting the coefficients into

the series in equation (3.3).

As an example, the unit cell in the 6th row and 11th column of the lower left array in
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Figure 5.21 is selected. Its boundary values are extracted from the multiple scattering wave

field in large scale as shown in Figure 5.22b. The local response is recovered and compared

with the one obtained from direct numerical simulation as shown in Figure 5.22a.

2.0

2.2

2.4

2.6

2.8

3.0

(a) Multiple scattering model

2.0

2.2

2.4

2.6

2.8

3.0

(b) Multiscale model with recovery

Figure 5.25: Comparison of the recovered local response with the direct numerical simulation.

The comparison of displacement amplitude distributions in the unit cell is shown in Fig-

ure 5.25. It can be observed that, comparing with the result of direct numerical simulation, the

local response is mostly recovered. Figure 5.26 shows the displacement amplitude along the

horizontal center line across the unit cell. The recovered displacement amplitude can follow the

trend of the original one with a smaller error comparing with one of the homogenized model.
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Figure 5.26: Normalized displacement amplitude |w| along the center line.

The stress amplitude |τxz| and |τyz| are shown in Figure 5.27 and Figure 5.28, respectively.

It can be observed that the stress at the interface, where the stress concentration occurs, can be

well recovered, while the homogenized model fails to express the detailed distributions.
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Figure 5.27: Normalized stress amplitude |τxz| along the center line.
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Figure 5.28: Normalized stress amplitude |τyz| along the center line.

The amplitudes of displacement and stress along the interface of the circular inhomogeneity

are shown in Figure 5.29, Figure 5.30 and Figure 5.31. Although, for the displacement ampli-

tude, the homogenized model follows the trend in general, there are large errors for the stress

amplitudes, while the recovered stress show good accordance with the original distributions.
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Figure 5.29: Normalized displacement amplitude |w| along the interface.
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Figure 5.30: Normalized stress amplitude |τrz| along the interface.
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Figure 5.31: Normalized stress amplitude |τθz| along the interface.

5.7 Conclusion

In this chapter, a computational homogenization method based on the optimization of boundary

integral is presented. The boundary values of explicitly solved multiple scattering wave fields

or eigenstates of RVEs with PBC are determined as the boundary responses of the RVE. The

residue function which indicates the mismatch between the boundary responses of the RVE and

the homogenized substitution is first defined as the objective function to be minimized over the

complex-valued material properties. For the random materials, the circular RVE with sufficient

size is defined inside of the large region of inhomogeneities. The wave field is explicitly solved

by using multiple scattering method. For the periodic materials under frequencies in the pass-

band, the RVE is defined as the unit cell with PBC, and its eigenstate is obtained by solving the

non-linear eigenvalue problem. For the periodic materials under frequencies in the stop-band,

the RVE with PBC is substituted by multiple unit cells surrounded by a number of identical
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cells for approximating the ambient wave field in infinitely periodic structure. The validity of

the homogenization method have been demonstrated by the direct numerical simulations of the

original multiple scattering model and the homogenized model. The homogeneous material

with the obtained effective material properties is adequate in approximating the heterogeneous

material in multiple scattering problem in large scale. The effective properties of the periodic

material under different frequencies are computed. The frequencies are ranging from quasi-

static limit to the top limit of first stop-band, which shows the applicability of the developed

method in a wide range of frequency. The obtained effective properties agree well with the ones

obtained in Section 4.2. At last, the multiscale modeling method is summarized. The multiple

scattering in large scale can be simulated efficiently with reasonable accuracy, and the local

response can be accurately recovered on demand.
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Chapter 6: Contributions and future work

6.1 Main contributions

This thesis developed the computational methods for the multiscale modeling of elastic wave

propagation in heterogeneous materials. Throughout this project, four major techniques essen-

tial to the elastodynamic multiscale modeling have been developed, (i) an efficient method for

solving the elastic waves scattered by large number of inhomogeneities; (ii) an efficient method

for the determination of eigenstates of periodic unit cells under designated frequency and prop-

agation direction; (iii) two computational homogenization methods based on the domain aver-

aging of the computed wave fields; (iv) a computational homogenization method based on the

boundary matching with the use of the boundary values of computed wave fields.

The main contributions of this thesis are summarized as follows.

6.1.1 Efficient method for solving the multiple scattering problem

By using the eigenfunction expansion and discretizing the superposition of scattered wave

fields, the scattering mechanism has been simplified to a linear transformation and then the

expansion coefficients can be obtained by solving the linear equations. The validity and robust-

ness of the procedure have been demonstrated by verifications and tests under limiting condi-

tions. This method is proved to be capable of simulating the multiple scattering of P/SV/SH

waves by a large number of circular inhomogeneities with various properties.
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6.1.2 Efficient method for eigenstate determination

An efficient analytical-numerical method has been developed for computing the local response

of periodic materials under designated frequency and angle of wave propagation. By the use of

eigenfunction expansion, the nonlinear eigenvalue problem is established with the expansion

coefficients being the eigenvector, which facilitates the numerical solution of the nonlinearity

caused by the arbitrarily specified propagation angle. The accuracy of the method is validated

by comparing the obtained dispersion relation and eigenstate with the ones computed by using

finite element method.

6.1.3 Homogenization methods based on domain averaging

Based on the domain averaging of the explicitly solved wave fields, two computational homog-

enization methods for periodic materials have been developed. In the first method, the volume

average scheme with considering the effective wave form is employed, in which the effective

wave number is determined by the self-consistent method. The convergence of the effective

wave number provides a guideline for the assumption of the effect wave form. The second

homogenization method is based on the assumption of the effective wave number and kinetic

energy equivalence. The homogenization results for both quasi-static and dynamic cases are

verified by comparing with the existing results and the direct numerical simulations.
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6.1.4 Homogenization method based on boundary matching

A new computational homogenization method has been developed based on matching the

boundary response of the RVE. The residue function which indicates the mismatch between

the boundary responses of the RVE and the homogenized substitution is defined as the objec-

tive function which is to be minimized over the complex-valued material properties. Depend-

ing on the different frequencies and materials, different RVEs are modeled for determining the

boundary response. The method is applicable to both random materials and periodic materials,

and applicable to a wide range of frequency, which includes the first stop-band of the periodic

material. The method is verified by the comparison between the direct numerical simulations.

At last, the multiscale modeling method is demonstrated. The multiple scattering in large

scale can be simulated efficiently with reasonable accuracy, and the local response can be ac-

curately recovered on demand.

6.2 Future works

Based on the developments achieved in this thesis, attentions will be paid on the following

topics in the future.

6.2.1 Extension to in-plane wave problem

Although the in-plane multiple scattering problem is solved in Section 2.5, this thesis is mainly

focused on the antiplane shear wave. The developed methods can be expanded to in-plane wave

problems, which is more common in practical applications.

125



For the eigenstate determination method, since the periodic boundary condition still holds,

the eigenvalue problem can be derived with the series coefficients being the eigenvector and the

Bloch wave number being the eigenvalue. The difference will be at the relation between the

coefficients and the boundary values. The dimension of the problem will be doubled because the

P wave and SV wave are coupled, two sets of coefficients need to be determined simultaneously

by the boundary condition.

For the homogenization methods, if the effective material is assumed to be isotropic, one

more modulus will be needed. Therefore, one more assumption will be needed for the energy

equivalence method, and two more independent variables need to be adjusted for the boundary

matching method.

6.2.2 Different shapes of inhomogeneity

The inhomogeneities considered in this thesis is limited to circular in shape. In practical ap-

plications, different inhomogeneities with different shapes may exist. When different shapes

are considered, the eigenfunctions will need to be replaced for its single scattering problem,

which can be determined analytically or numerically. However, the developed computational

framework for solving the multiple scattering problem can still be used with different transfer

matrices which represent the mechanical behaviors.

Since the developed homogenization methods are all based on the explicitly solved wave

fields, the algorithms are independent to the details of the solution determination procedures.

So the homogenization methods can be directly applied to evaluate the effective properties.
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6.2.3 Viscoelastic materials

To furher extend the applicablity of the developed methods of this work, the materials of the

matrix and inhomogeneities can considered to be with viscosity. For harmonic incident waves,

the wave number in viscoelastic materials will be complex-valued, which implies that the am-

plitude of wave decreases and the energy is dissipated as the wave propagating. The method for

solving the local wave field can be applied by extending the wave number to complex domain.

Since the effect of scattered waves decays, the multiple scattering method can be further ac-

celerated by neglecting the interaction between two inhomogeneities with long distance. After

solving the local wave field, the homogenization methods can be applied directly.

6.2.4 Experimental verifications

Experiments can be conducted for verifying the developed methods. The experimental model

can be set up for measuring the reflection and transmission of the heterogeneous material. Then

the homogenization methods can be validated by comparing the reflection and transmission

predicted by the homogenized model with the experimental results.
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