
Parallelization of Hierarchical Density-Based Clustering
using MapReduce

by

Talat Iqbal Syed

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Talat Iqbal Syed, 2015

Abstract

Cluster analysis plays a very important role for understanding various phenom-

ena about data without any prior knowledge. However, hierarchical clustering

algorithms, which are widely used for its representation of data, are compu-

tationally expensive. Recently large datasets are prevalent in many scien-

tific domains but the property of data dependency in a hierarchical clustering

method makes it difficult to parallelize. We introduce two parallel algorithms

for a density-based hierarchical clustering algorithm, HDBSCAN*. The first

method called Random Blocks Approach, based on the parallelization of Sin-

gle Linkage algorithm, computes an exact hierarchy of HDBSCAN* in parallel

while the second method, the Recursive Sampling Approach, computes an ap-

proximate version of HDBSCAN* in parallel. To improve the accuracy of the

Recursive Sampling Approach, we combine it with a data summarization tech-

nique called Data Bubbles. We also provide a method to extract clusters at

distributed nodes and form an approximate cluster tree without traversing the

complete hierarchy. The algorithms are implemented using the MapReduce

Framework and results are evaluated in terms of both accuracy and speed on

various datasets.

ii

To my Supervisor, Prof. Jörg Sander

For being the best teacher, mentor and colleague throughout my graduate

school.

iii

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Prof. Jörg

Sander, without whom, this dissertation would not have been possible. He is a

great source of inspiration and encouragement. His contructive feedback and

invaluable guidance has always helped me focus on research.

I would also like to thank Prof. Ricardo J. G. B. Campello, Dr. Arthur

Zimek, Dr. Davoud Moulavi and Jeeva Paudel with whom I had some of the

best discussions and for their useful feedback.

I would also like to express my gratitude to the committee members, Dr.

Osmar R. Zäıane and Dr. Eleni Stroulia for their suggestions to improve the

dissertation.

iv

Table of Contents

1 Introduction 1

2 Hierarchical Clustering Algorithms 4
2.1 Agglomerative Clustering Approach 6

2.1.1 Linkage . 7
2.1.2 BIRCH . 8
2.1.3 CURE . 9
2.1.4 ROCK . 10
2.1.5 CHAMELEON . 10

2.2 Divisive Clustering Approach 12
2.2.1 DIANA . 12
2.2.2 MONA . 12

3 Parallel Hierarchical Clustering Algorithms 14
3.1 PARABLE . 16
3.2 CLUMP . 17
3.3 SHRINK . 18
3.4 DiSC . 19

4 Hierarchical DBSCAN* 20
4.1 Algorithm DBSCAN* . 21
4.2 HDBSCAN* . 22
4.3 Hierarchy Simplification . 25
4.4 Computational Complexity of HDBSCAN* 27

4.4.1 Scenario 1: Dataset X is available 28
4.4.2 Scenario 2: Pairwise Distance Matrix, Xpd is already given 28

4.5 Extraction of Prominent Clusters 29
4.6 Cluster Extraction as an Optimization Problem 30

5 Parallel HDBSCAN* 34
5.1 Random Blocks Approach . 35

5.1.1 Dividing the Dataset 37
5.1.2 Generating Data Blocks for independent processing . . 37
5.1.3 Sending Data Blocks for parallel processing 39
5.1.4 Computation of an MST at a Processing Unit 39
5.1.5 Combining Local MSTs from different processing units 40

5.2 Recursive Sampling . 43

6 Data Summarization using Data Bubbles 58
6.1 Drawbacks of building hierarchy based only on Samples 58
6.2 Data Summarization Techniques 60
6.3 Data Bubbles . 62

v

6.4 Implementation of Data Bubbles in
PHDBSCAN . 67
6.4.1 Multi-Node Cluster Extraction 70
6.4.2 Shortcomings of using Binary method of cluster extraction 72

7 Implementation using the Map Reduce Framework 74
7.1 MapReduce Framework . 74
7.2 Implementation of Random Blocks Approach 76
7.3 Implementation of PHDBSCAN 79

7.3.1 PHDBSCAN Implementation using only Sampled Objects 80
7.3.2 PHDBSCAN Implementation using Data Bubbles . . . 84

8 Experiments and Results 91
8.1 Cluster Validation Measures 91
8.2 Experimental Setup . 93
8.3 Evaluation of the Quality of Results 94

8.3.1 Binary vs N-ary Approach 95
8.3.2 Multi-Node vs Single-Node Cluster Extraction 96
8.3.3 Recursive Sampling Approach: Data Bubbles vs Only

Sampled Objects . 98
8.3.4 Quality of Results on Real Datasets 99
8.3.5 Influence of Node Capacity 101

8.4 Evaluation of Execution Time 102
8.4.1 Random Blocks . 102
8.4.2 Recursive Sampling Approach with Data Bubbles using

the N-ary extraction method 104
8.4.3 Comparing with the Binary method of cluster extraction 106

8.5 Conclusions . 107

Appendices 114

A MapReduce Algorithms 115

vi

List of Figures

2.1 Sample Data . 5
2.2 Sample Dendrogram for the Data in figure 2.1 6
2.3 Agglomerative vs. Divisive Clustering 6

3.1 DiSC algorithm on MapReduce (adapted from [1]) 19

4.1 Core Object . 21
4.2 ε− reachable . 21
4.3 Density-Connected Objects 22
4.4 Example of a Cluster . 22
4.5 Core Distance of an Object 23
4.6 Minimum Spanning Tree from a Complete Graph 24
4.7 Cluster Dendrogram for a dataset 26
4.8 Cluster Tree for the given Dendrogram in 4.7 27
4.9 Illustration of Density function, Cluster Stability and Excess of

Mass . 32
4.10 Cluster Tree with their respective stabilities 32

5.1 Flow of Random Blocks Approach 36
5.2 Flow of Recursive Sampling approach 45
5.3 An example Dataset . 46
5.4 A set of sampled objects of dataset shown in figure 5.3 46
5.5 Illustration of Binary Extraction of Clusters shown in figure 5.4 48
5.6 Illustration of N-ary Extraction of Clusters 49
5.7 Illustration of clusters returned by Binary and N-ary Cluster

Extraction methods . 51
5.8 N-ary Cluster Extraction on Sampled Objects of cluster CA

from figure 5.6 . 51
5.9 All objects of cluster CY . 51
5.10 All objects of cluster CX . 53
5.11 All objects of cluster CZ . 53
5.12 Illustration of inter-cluster edges found sampled objects shown

in figure 5.4 using the N-ary method of cluster extraction . . . 55
5.13 Situation where the parent is born at a higher density level than

the density of its disappearance 57

6.1 Example where one of the sampled object z is dense 59
6.2 Example where one of the sampled object z is not dense . . . 59
6.3 Distance between two Data Bubbles - Non-overlapping Data

Bubbles . 64
6.4 Distance between two Data Bubbles - Overlapping Data Bubbles 65
6.5 Core Distance of a Bubble when nB < mpts 66
6.6 Recursive Sampling Approach with Data Bubbles 69
6.7 Example where noise would be excluded from further processing 70

vii

6.8 Example of a scenario where noise is included for further pro-
cessing . 70

6.9 Distributed Cluster Tree for data shown in figure 5.3 71

7.1 An example of a Map Reduce Framework 75
7.2 Flow of a Mapper in a MapReduce Framework 76
7.3 Flow of a Reducer in a MapReduce Framework 76
7.4 Flow of events at the Master Processing Node in the Random

Blocks Approach . 77
7.5 Mapper in the Random Blocks Approach 78
7.6 Reducer in the Random Blocks Approach 79
7.7 Simple flow of Random Block Approach in MapReduce Framework 79
7.8 Flow of Recursive Sampling without Bubbles in MapReduce

Framework . 81
7.9 Mapper in the Recursive Sampling Approach 82
7.10 Reducer in the Recursive Sampling Approach 83
7.11 Master Processing Node in the Recursive Sampling Approach . 84
7.12 Flow of Recursive Sampling using Bubbles in MapReduce Frame-

work . 85
7.13 Layer 1 Mapper in the Recursive Sampling Approach using Data

Bubbles . 86
7.14 Layer 1 Reducer in the Recursive Sampling Approach using

Data Bubbles . 87
7.15 Master Processing Node in the Recursive Sampling Approach

using Data Bubbles . 88
7.16 Layer 2. PHDBSCAN Mapper in the Recursive Sampling Ap-

proach using Data Bubbles . 89
7.17 Layer 2. PHDBSCAN Reducer in the Recursive Sampling Ap-

proach using Data Bubbles . 90

8.1 List of all possible approaches possible in PHDBSCAN 95
8.2 Adjusted Rand Index . 96
8.3 Jaccard Coefficient . 96
8.4 F-Measure . 96
8.5 Fowlkes Mallows Score . 96
8.6 Adjusted Rand Index . 97
8.7 Jaccard Coefficient . 97
8.8 F-Measure . 97
8.9 Fowlkes Mallows Score . 97
8.10 Adjusted Rand Index . 98
8.11 Jaccard Coefficient . 98
8.12 F-Measure . 99
8.13 Fowlkes Mallows Score . 99
8.14 Accuracy of IRIS Data (Comparison of HDBSCAN* and PHDBSCAN-

Recursive Sampling Approaches) 100
8.15 Accuracy of Gas Data (Comparison of HDBSCAN* and PHDBSCAN-

Recursive Sampling Approaches) 100
8.16 Accuracy of Youtube Data (Comparison of HDBSCAN* and

PHDBSCAN-Recursive Sampling Approaches) 101
8.17 Influence of PerNodeThreshold on Accuracy 102
8.18 Comparison of Execution time of the Random Blocks Approach

with HDBSCAN* on different values of mpts 103
8.19 Comparison of Execution time for different datasets of increas-

ing sizes using N-ary Approach 104

viii

8.20 Influence of number of distributed nodes on execution time of 1
million data objects using m1.medium instances of worker nodes 105

8.21 Influence of number of distributed nodes on execution time of
10 million data objects using c3.xlarge instances of worker nodes 105

8.22 Comparison of Binary Approach and N-ary Approach for dif-
ferent datasets . 106

ix

Chapter 1

Introduction

Clustering is an unsupervised learning task that aims at decomposing a dataset

into distinct groups called “clusters”. These clusters, simplify the represen-

tation of the complete dataset and help the user to understand the dataset

better. Although there is no universally agreed definition of a cluster [2],

many consider a group to be a cluster by considering the internal cohesion

called “homogeneity” and the external isolation called “separation” [3] [4],

i.e., patterns in the same cluster should be similar while the patterns from

different clusters should be relatively different. A cluster can also defined as

“densely connected regions in a multi-dimensional space separated by loosely

connected points” [4].

Clustering techniques play an important role in many applications. Cluster-

ing is an unsupervised learning task since prior information about data is not

known. Traditionally, clustering algorithms are broadly divided into two types:

1. Partitional Clustering

2. Hierarchical Clustering

Given a set of input data X = {x1, x2, ..., xn}, a partitional clustering al-

gorithm divides the entire dataset into k groups or clusters, where the clus-

ter set is represented as C = {C1, ..., Ck} such that Ci 6= ∅ and
⋃k
i=1Ci =

{X}. The membership of data objects to a cluster can be both hard, where

Ci ∩ Cj = ∅; i 6= j or fuzzy [5], where each pattern has a variable degree of

membership in each of the output clusters. The Hierarchical clustering [6]

1

on the other hand, generates tree-like nested partitions of the set X given by

H = {H1, ..., Hm};m ≤ n , such that if Ci ∈ Hp, Cj ∈ Hq and p > q then

Cj ⊆ Ci or Ci ∩ Cj = ∅.

Although hierarchical clustering algorithms have many advantages over parti-

tioning clustering algorithms, hierarchical clustering algorithms are typically

slower due to their quadratic run time complexity. Hence, hierarchical algo-

rithms do not scale well when compared to partitional clustering algorithms.

Specifically, with many real world applications generating very large datasets,

analysis of large data using hierarchical clustering becomes difficult and it be-

comes almost impossible to render the results on a single machine. Also, the

fact that hierarchical clustering algorithms require the (dis)similarity measure

between all pairs of data objects, introduces a constraint of computing the

algorithm on a single machine. This constraint does not allow the algorithm

to take advantage of parallel systems easily, making the algorithm essentially

sequential.

This dissertation proposes a way to parallelize the hierarchical clustering al-

gorithm HDBSCAN* [7] by data parallelism. HDBSCAN* is an hierarchi-

cal clustering algorithm that combines the aspect of density-based clustering,

where the data objects in a dense region are separated from objects belonging

to other dense regions, and hierarchical clustering, using hierarchical density

estimates. HDBSCAN* combines the advantages of both density-based clus-

tering (separating clusters based on their density) and hierarchical clustering

(forming a cluster hierarchy instead of partitions at a single density level).

In this dissertation we first present a parallel version to construct the exact

HDBSCAN* hierarchy, called “Random Blocks Approach”. We evaluate this

approach with varying parameter and discuss why the approach might not be

scalable with respect to the input parameter. The ”Random Blocks Approach”

is a generalized version based on the parallelization of the Single Linkage algo-

rithm. Then we propose a faster method to construct an approximate version

of HDBSCAN* hierarchy using parallel systems, called “Recursive Sampling

2

Approach”. The method is based on building the hierarchy based on the sam-

pled data objects, extracting the clusters using the HDBSCAN* hierarchy

and recursively refining each cluster to construct an approximate version of

the hierarchy. To improve the accuracy, we incorporate a data summarization

technique called Data Bubbles in to the Recursive Sampling Approach. This

technique helps in identifying the structure of the complete dataset using only

few summarized structures.

The rest of the dissertation is organized as follows. In Chapter 2, we discuss

various Hierarchical Algorithms, followed by an overview of existing Paral-

lel Hierarchical Clustering Algorithms in Chapter 3. Chapter 4 explains the

HDBSCAN* algorithm in detail and a method of cluster extraction. Chap-

ter 5 proposes a parallel version of HDBSCAN* called Parallel HDBSCAN*

or PHDBSCAN. Chapter 6 introduces a Data Summarization technique that

helps in improving the accuracy of PHDBSCAN. Chapter 7 proposes an im-

plementation of the PHDBSCAN algorithm using the MapReduce Framework.

Chapter 8 presents an extensive experimental evaluation of the proposed meth-

ods.

3

Chapter 2

Hierarchical Clustering
Algorithms

Hierarchical clustering [6] is a method of cluster analysis that builds a hier-

archy of clusters, a structure that is more informative than the unstructured

set of clusters returned by flat clustering. A hierarchical clustering hierarchy

is built gradually where objects change their cluster membership iteratively

between different sub-clusters at different levels. Hierarchical clustering algo-

rithms differ from Partitioning Clustering algorithms, which generates various

partitions and evaluates them based on some criterion. In an hierarchical ap-

proach, the clusters can be obtained at different levels of granularity. Hierar-

chical clustering methods can be further categorized into two broad categories,

agglomerative (bottom-up) and divisive (top-down) approaches. The process

of agglomerative clustering is initiated by considering every data object in the

dataset to be a singleton cluster. It then recursively merges two or more clus-

ters into one cluster, based on an appropriate criteria or cost function, until

all objects belong to one cluster. A cost function is a measure of similarity or

dissimilarity between any two objects, and is usually defined by

CostFunction, θ = dsim(·, ·)

This is opposed to the divisive approach where all the data objects are initially

considered to be one large cluster and gradually each cluster splits into two or

more clusters based on some criteria.

Hierarchical clustering has several advantages over partitioning clustering ap-

4

proach. Hierarchical approaches have the flexibility of forming clusters at

different levels of granularity. Once the complete hierarchy is created, clusters

can be extracted in a simple way by making a horizontal cut at any given level

based on the number of clusters required by the application or the level at

which clusters are to be formed. The clusters and sub-clusters are represented

in the form of a tree-like structure called “dendrogram”.

Dendrogram: A Dendrogram is an important tool for visualizing a hierarchy.

Figure 2.1: Sample Data

A dendrogram is a tree like diagram that records the sequences of clusters that

are formed as a result of merging or splitting of sub-clusters. It represents the

similarity among objects or group of objects. A dendrogram gives a complete

picture of the hierarchical clustering on a given dataset.

A dendrogram consists of leaves and clades. The terminal nodes are called

leaves and clades represents branches from where the (sub)cluster is split (di-

visive clustering approach) or merged (agglomerative approach). The height

(interchangeably used as distance in this context), as shown in figure 2.2, is

a measure of similarity or dissimilarity that exists between the clusters that

are merged or split. The arrangement of clades represents how similar the

data objects are, with respect to other clades and leaves. Dendrograms also

form a powerful tool to visualize and interpret the outliers. Figure 2.2 shows

5

Figure 2.2: Sample Dendrogram for the Data in figure 2.1

a dendrogram drawn corresponding to the data in figure 2.1.

Figure 2.3: Agglomerative vs. Divisive Clustering

2.1 Agglomerative Clustering Approach

The agglomerative approach of hierarchical clustering starts in a state where

all the data objects form a set of singleton clusters. To merge one cluster

6

with another, a metric is required. This metric could be one of the Linkage

Metric to measure the inter-cluster (dis)similarity or a compactness criterion

that measures the degree of closeness among the objects within a cluster at

any given level of granularity.

2.1.1 Linkage

The correspondence between any hierarchical system of clusters and a partic-

ular type of distance measure was proposed in [6]. The algorithm starts by

merging the most similar pair of clusters to form a cluster. Different linkage

criteria give rise to different hierarchical clustering techniques.

The generic algorithm for the agglomerative linkage is as follows

1. Initially, start with n objects of dataset X as n clusters where n = | X |

as n clusters, C = {Ci}, 1 ≤ i ≤ n

2. Until there is only one cluster remaining, i.e., | C |= 1 , do the following

(a) Find the two most similar clusters among the available clusters in

C, minsimilarity(Cj, Ck) ∀ Cj, Ck ∈ C.

(b) Combine them to form a single cluster Cj,k = Cj ∪ Ck.

(c) Remove the clusters Cj and Ck from the set C and add the cluster

Cj,k.

The minsimilarity(Cj, Ck) defines the linkage method for clustering. The fol-

lowing three examples of well-known linkage criteria given by

Single Linkage The single linkage is given as

dsingle = minsimilarity(Cj, Ck) = min
xj∈Cj ,xk∈Ck

{
d(xj, xk)

}
where the sets Cj, Ck contains all the data objects in their respective (sub)clusters

and d is the distance measure.

7

Complete Linkage The complete linkage is given by

dcomplete = minsimilarity(Cj, Ck) = max
xj∈Cj ,xk∈Ck

{
d(xj, xk)

}
Average Linkage The similarity measure for average linkage is given by

davg = minsimilarity(Cj, Ck) =
1

ni.nj

∑
xj∈Cj

∑
xk∈Ck

d(xj, xk)

where davg is the average distance among all pairs of objects between the sets

of Cj, Ck.

2.1.2 BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [8]

was proposed to achieve quick clustering over large datasets. The algorithm

was aimed at reducing the overall computational complexity of clustering, thus

allowing hierarchical algorithms to be scalable to large databases and reduce

the number of I/O operations. BIRCH finds the clusters in two phases, by

building clusters incrementally and dynamically. In the first phase, also called

pre-clustering phase, compact summaries are created for dense regions. The

compact summaries are represented in the form of a “Cluster Feature Tree”

(CF-Tree) using “Cluster Feature vectors” (CF vectors). Clustering Feature

vector is a triple given by the number of points, the linear sum of features and

sum of squares of features across every dimension.

ClusterFeature, ~CF = (n, ~LS, SS)

where n =number of points

LS =
N∑
i=1

~xi

SS =
N∑
i=1

~xi
2

The CF-Tree contains groups of data set into sub-clusters which are compact

and approximate. A CF-tree is a height-balanced tree with two parameters,

branching factor B and threshold T . Each non-leaf node consists of at most

B entries and each leaf node must have its diameter (or radius) less than the

8

threshold T . The CF-Tree is built incrementally where every data object is

added to the tree by traversing it and adding it to the closest found leaf node.

If the leaf node can absorb this new data object such that the leaf node does

not violate the threshold requirement of T , the sufficient statistics of the leaf

node is updated. Else the leaf node is split into two (explained in detail in [8]).

Each leaf node represents a cluster made up of all the sub-clusters represented

by its entries.

The second phase of BIRCH algorithm scans all leaf nodes in the initial CF-

tree to rebuild a smaller CF-tree, while removing outliers and grouping dense

sub-clusters into a larger one. The next step is to cluster the summaries of all

leaf nodes using an existing clustering algorithm. BIRCH scales linearly with

respect to the number of objects in the dataset and the clusters can be formed

in a single scan. BIRCH can handle only numeric data and is sensitive to the

order of the input of the data objects (splitting of leaf nodes are based on the

order of the inserted data objects). It works well when there are spherical

clusters because it uses the notion of diameter to control the boundary of a

cluster.

2.1.3 CURE

Clustering Using REpresentatives (CURE) [9] is an algorithm developed to

overcome some of the shortcomings of BIRCH. The CURE algorithm uses

several representative points for clustering. These representative points can

be more than one per cluster. This allows the algorithm to represent arbitrary

shaped clusters. The algorithm starts with a constant number of points called

“scattered points”. These scattered points are selected randomly by sampling

the dataset of a substantial size that will preserve information about the ge-

ometry of clusters. The first phase of CURE partitions a randomly drawn

sample into p partitions. Each partition approximately contains n
p

data ob-

jects, where n is the input. Each partition is partially clustered until the final

number of clusters in each partition reduces to n
pq

, for some constant q > 1.

Then a second clustering pass is run on the n
q

partial clusters for all partitions

9

to get the final clustering result.

2.1.4 ROCK

ROCK (RObust Clustering using linKs) [10] is an agglomerative hierarchical

algorithm for categorical attributes where the clustering is based on “links”

between data objects instead of distances. The algorithm defines an object xj

as a neighbor of an object xk if dsim(xj, xk) ≥ θ for some threshold θ, given

a similarity function dsim(·, ·). The number of links between data objects xj

and xk, given by link(xj, xk), is the number of common neighbors between xj

and xk. If link(xj, xk) is large, then the probability of xj and xk belonging

to the same cluster is assumed to be high. Clusters are defined as a set of

objects with a high degree of connectivity; pairs of objects inside a cluster

have a high number of links, on an average. ROCK uses a “goodness measure”

which measures the goodness of clusters. The goodness measure for merging

clusters Cj and Ck is given by

g(Cj, Ck) =
link(Cj, Ck)

(nj + nk)1+2f(θ) − (nj)1+2f(θ) − (nk)1+2f(θ)

where nj =| Cj |, nk =| Ck | and n
1+2f(θ)
i gives an estimate of the total number

of links in cluster Ci.

The pair of clusters for which the goodness measure is maximum is the best pair

of clusters to be merged. Although it is intuitive to merge pairs of clusters with

a large number of cross-links (links between clusters), the goodness measure

is computed by normalizing the number of cross-links with an estimate of the

total number of links in the clusters. This is because a large cluster typically

would have a larger number of cross-links with other clusters and the larger

cluster may be merged with smaller clusters or outliers.

2.1.5 CHAMELEON

The hierarchical agglomerative algorithm CHAMELEON [11] uses a dynamic

modelling approach in cluster aggregation. It uses the connectivity graph G

10

corresponding to the k-Nearest Neighbor model sparsification of the connectiv-

ity matrix. That is, the edges from a given object to their k-Nearest Neighbor

are preserved and rest of the edges are pruned. Chameleon operates on the

sparse graph in which nodes represent the data objects and weighted edges

represent the similarities among the data objects. Data objects that are far

apart are completely disconnected. Sparsity of the graph leads to computa-

tionally efficient algorithms.

CHAMELEON is a two-phase algorithm. The first phase uses a graph par-

titioning algorithm to cluster the data items into several relatively smaller

sub-clusters. During the second phase, it uses an algorithm to find the clus-

ters by repeatedly combining these sub-clusters in agglomerative fashion. It

uses a dynamic modelling framework to determine the similarity between pairs

of clusters by considering the following two measures

1. Relative Interconnectivity, given by

RI(Cj, Ck) =
| EC(Cj, Ck) |
|EC(Cj)|+|EC(Ck)|

2

where EC(Cj, Ck), is the absolute interconnectivity given by the edge

cut (sum of the weight of edges that connect the two clusters); and E(Cj)

and E(Ck) is the internal interconnectivity, given by the sum of edges

crossing a min-cut bisection that splits the clusters into two roughly

equal parts.

2. Relative Closeness, computed by the average weight of edges connecting

the objects in cluster Cj to the objects in cluster Ck, is given by

RC(Cj, Ck) =
SEC(Cj, Ck)

|Cj |
|Cj |+|Ck|

SEC(Cj) + |Ck|
|Cj |+|Ck|

SEC(Ck)

where SEC(Cj) and SEC(Ck) are the average weights of the edges that

belong to the min-cut bisector of clusters Cj and Ck, and SEC(Cj, Ck)

is the average weight of the edges that connect the vertices in Cj and

Ck.

11

2.2 Divisive Clustering Approach

2.2.1 DIANA

DIvisive ANAlysis (DIANA) is one of the few divisive hierarchical algorithms.

The DIANA algorithm constructs a hierarchy of clusters, starting with one

cluster containing all n objects. The algorithm then divides each cluster until

each cluster contains only one data object. At each stage of division, the

cluster with the largest diameter is selected. The diameter of a cluster is the

largest distance between two data objects within that cluster. To divide the

selected cluster, one of the most disparate data object, xd, with the maximum

average dissimilarity to the other data objects in a cluster C is selected. This

object xd initiates a group called the “splinter” group. For each data object,

xp ∈ C, the average dissimilarity between xp and the set of elements that

are not in the splinter group as well as the dissimilarity between xp and the

splinter group is computed; an object xp is then assigned to the group with

smaller dissimilarity measure.

dissimavg(xp, Cj) =
∑

xj /∈Cs, xj∈Cj

d(xp, xj)

| Cj |

dissimavg(xp, Cs) =
∑
xj∈Cs

d(xp, xj)

| Cs |

where xp is the disparate data object with maximum

dissimilarity
(
max
xi∈Cjdissim(xi, Cj)

)
Cs is the splinter group

Cj is the old group from which xp was selected

2.2.2 MONA

MONothetic Analysis [12] is another divisive hierarchical clustering algorithm

which operates on a data matrix of binary variables. A variable is a feature

associated with a data object which can have only two values, 0 and 1. Each

division is performed using a well-selected single variable and hence the name

“Monothetic”. The algorithm starts with a single variable, and then divides

12

the whole dataset into two groups, with values 0 and 1. The variable that

divides the dataset into groups is the variable with the largest association

measure among all the available variables.

A(Vs) = max(A(Vi)); Vi ∈ V

where Vs is the selected variable, A(Vs) is the association of Vs and set V

contains all the binary variables.

13

Chapter 3

Parallel Hierarchical Clustering
Algorithms

Parallel clustering algorithms have been studied widely, but relatively less re-

search has been done on parallel hierarchical clustering algorithms. This is

due to the nature of hierarchical clustering where the hierarchy is constructed

based on a (dis)similarity measure computed between all pairs of data objects.

Single LINKage (SLINK) clustering algorithm [13] is one the most studied hi-

erarchical clustering algorithms for parallelization [14] [15] [16] [17]. The first

implementation of a parallel version of the SLINK algorithm was discussed

in [18], which proposed an implementation on a Single Instruction Multiple

Data (SIMD) array processor. SIMD is a class of parallel computers which

has multiple processing elements that can perform the same operation simul-

taneously on multiple data objects. These processors can execute a single

instruction across all the processing elements at any given time. In [19], the

parallelization of Single Linkage was translated to the problem of parallelizing

a Minimum Spanning Tree (MST) with data objects as vertices of a graph

and the distance between the objects as edge weights of edges connecting the

vertices. The algorithm generates an MST in parallel, using N
lgN

processors

in a time proportional to O(NlgN). The idea is to run the algorithm on a

tree structured searching machine [19] [20], containing different types of nodes

with different functionalities.

Another work on parallel hierarchical clustering algorithms is presented in [14].

14

The author proposed two algorithms based on the memory architecture of the

system used for parallelization. The first algorithm finds a Single Linkage hi-

erarchy in parallel on a shared memory architecture. The metric is calculated

on an n processor PRAM (Parallel Random Access Machines), where n is the

number of data objects that allow the processors to access a single parallel

memory simultaneously. Each cluster will be the responsibility of one pro-

cessor. When two clusters are agglomerated, the lower numbered processor

corresponding to the two clusters takes over full responsibility of the new clus-

ter. If the other processor is no longer responsible for any cluster, it remains

idle. The algorithm can be described as follows

1. Create a two dimensional array to store the inter-cluster distance be-

tween all data objects and a one-dimensional array storing the nearest

neighbor (and its corresponding distance) of each cluster.

2. Identify the pair of clusters separated by the smallest distance between

them and agglomerate them.

3. Send a broadcast message about the two clusters that were merged.

4. Update the data structure where each processor updates the inter-cluster

distance array to reflect the new distance between its clusters and the

new merged cluster. Each processor updates a single location in the

nearest neighbor array and the corresponding column in the inter-cluster

distance matrix.

5. Repeat the steps until there is only one cluster.

Similar approaches for the average link and complete link metrics on a PRAM

are also mentioned in [14]. The second algorithm for parallelizing Single Link-

age is designed for a distributed memory architecture, based on the parallel

minimum spanning tree algorithm given in [21]. The algorithm is described as

follows

1. Using some data structure D, keep track of the distances between each

object and the current minimum spanning tree, say MST (X ′) for a

15

dataset X.

2. Find the data object xp /∈MST (X ′) and xp ∈ X closest to the MST.

3. Add xp to MST (X ′), MST (X ′) = MST (X ′) ∪ xp.

4. Update the data structure D.

5. Repeat the steps until all the data objects are added to MST (X ′).

The notion of parallelization comes into picture when each processor responsi-

ble for a data object not in the minimum spanning tree identifies the distance

to the minimum spanning tree. The data structure D is distributed across

the processors such that the processor responsible for the cluster stores the

distances for that cluster. Each processor identifies the nearest distance by

comparing the current distance with newly added object to the tree and up-

dating it with the minimum distance.

Similar approaches have been examined across different architectures such as

GPUs [22] by parallelizing the computation of the minimum distance between

clusters. An OpenMP implementation for distributed memory architectures

was provided in [23] similar to that provided by [14] with a message passing

across multiple systems instead of processing elements. This improves the

overall running time from O(n2) to O(n
2

p
) where p is the number of available

distributed systems.

Some of the recently developed approaches for parallel computation of the

Single Linkage hierarchy are described in the following sections.

3.1 PARABLE

PArallel, RAndom-partition Based hierarchicaL clustEring (PARABLE) [24]

was designed for the MapReduce Framework. It is a two step algorithm, with

the first step computing local hierarchical clusterings on distributed nodes and

the second step integrating the results by a proposed dendrogram alignment

technique. First, the dataset is divided into random partitions. Given a dataset

16

X, it is divided into k partitions. The sequential algorithm is then computed on

these partitions locally to form intermediate dendrograms. These intermediate

dendrograms are then aligned with each other to form the final dendrogram

by recursively aligning the nodes from root to the leaves, by comparing the

nodes of two given dendrograms using a similarity measure. The similarity

measure is given by

Similarity(Cj, Ck) =
(LSj × LSk + SSj + SSk)

| Cj | × | Ck |

where LSj is the linear sum of all objects in cluster Cj

SSj is the sum of squares of all objects in cluster Cj

| Cj | is the cardinality of the cluster Cj

The authors claim that the “alignment procedure is reasonable when the den-

drograms to be aligned have similar structure” [24] and that a good sampling

strategy can lead to local dendrograms being similar. During the dendrogram

alignment technique, the algorithm fails to address the fact that addition of

new branches in a dendrogram (addition of new data objects to the dataset)

also affect the height at which the clades are formed.

3.2 CLUMP

CLUstering through MST in Parallel (CLUMP) [25] is one of first algorithms

that addresses the parallelization of hierarchical algorithms based on overlap-

ping datasets that can be processed on distributed nodes without any com-

munication between them. The authors use the “Linear Representation”(LR)

of the construction of an MST. LR is a list of elements of dataset X whose

sequential order is the same as the order in which these elements got selected

by the MST construction algorithm (which is Prims algorithm for constructing

an MST). CLUMP operates on a complete graph GX = (VX , EX) of a dataset

X in the following way

1. Partition the dataset GX into k subgraphs, {Gi = (Vi, Ei)}, 1 ≤ i ≤ k

where Vi is a set of vertices in Gi, Vj ⊂ VX and Ei is a set of edges in

Gi, Ej ⊂ EX .

17

2. Define Bipartite Graphs Bij = {Vi ∪ Vj, Eij} where Eij ⊂ EX is a set of

edges between vertices in Vi and Vj such that i 6= j.

3. Construct an MST Tii on each Gi, and MST Tij on each Bij in parallel.

4. Build a new graph G0 =
⋃
Tij, 1 ≤ i ≤ j ≤ k.

5. Construct an MST on this graph G0.

This algorithm has been adopted by many other approaches to find the Sin-

gle Linkage hierarchy in parallel. This approach is also the basis of one our

approaches explained later in section 5.1.

3.3 SHRINK

SHaRed-memory SLINK (SHRINK) [26] is a scalable algorithm to parallelize

Single Linkage hierarchical clustering algorithm. The strategy is to partition

the original dataset into overlapping subsets of data objects and compute

the hierarchy for each subset using Single Linkage. Construct the overall

dendrogram by combining the solutions for the different subsets of the data.

The algorithm for SHRINK is described as follows:

1. Partition the original dataset X into k subsets of approximately the same

size, X
′
1, X

′
2, ..., X

′

k.

2. For all pairs of subsets (Xi, Xj); 1 ≤ i, j ≤ k, i 6= j, compute the dendro-

gram of the dataset Xi ∪Xj.

3. Combine the dendrograms, two at a time, by processing the cluster

merges in order of increasing height, eliminating merges that combine

data objects already in the combined dendrogram. Repeat this until

only one dendrogram exists.

The authors have proposed the Union-Find (Disjoint Set) data struucture to

maintain the cluster membership for each data object as the dendrograms are

combined.

18

Other algorithms such as PINK [27] and DiSC [1] are based on the same idea

as CLUMP and SHRINK. While PINK is designed for a distributed memory

architecture, DiSC is implemented using the MapReduce Framework.

3.4 DiSC

Distributed Single Linkage Hierarchical Clustering (DISC) [1] algorithm is

based on the idea of SHRINK (explained in section 3.3) and implemented us-

ing the MapReduce framework. The data is divided into overlapped subsets

of data which are processed individually at different distributed nodes to form

the sub-solutions. The sub-solutions are then combined to form an overall

solution.

The MapReduce implementation of DiSC consists of two rounds of MapReduce

jobs (MapReduce framework is explained in detail in Chapter 7). The first

round of MapReduce, consists of a Prim’s Mapper, which builds a minimum

spanning tree on the subset of data sent to it and a Kruskal Reducer, which

uses a K-way merge to combine and get the intermediate result. The Kruskal

Reducer uses a UnionFind data structure [27] to keep track of the membership

of all the connected components and filter out any cycles. The second MapRe-

duce job, called the Kruskal-MR job consists of a Kruskal Mapper which is

just an identity mapper (rewrites the input as output) and a Kruskal Reducer,

which essentially does the same work as the reducer of first round. The flow

of DiSC algorithm on MapReduce is illustrated in figure 3.1.

Figure 3.1: DiSC algorithm on MapReduce (adapted from [1])

19

Chapter 4

Hierarchical DBSCAN*

Hierarchical DBSCAN* or HDBSCAN* [7] was a conceptual and algorithmic

improvement over the OPTICS [28] algorithm with a single input parame-

ter called the mpts, a classic smoothing factor for density estimates. The

hierarchy produced by HDBSCAN* can be used as a base for various other

post-processing tasks. One of these tasks include creating a compact hier-

archy, a hierarchy which only consists of those density levels where there is

prominent change, or extracting a set of the most prominent non-overlapping

clusters without using a single density threshold by making local cuts through

the cluster tree at different density levels. The hierarchy can also be trans-

formed for visualization. Some of the ways to visualize the hierarchy are by

converting the hierarchy into a reachability plot [28], a silhouette-like plot [29],

a dendrogram or a compact cluster tree. The authors in [7] have also explained

methods to identify outliers and measuring the level of outlierness by provid-

ing a score, called “Global-Local Outlier Score from Hierarchies”(GLOSH).

The HDBSCAN* algorithm is a hierarchical version of DBSCAN* which is a

reformulation of DBSCAN [30]. DBSCAN* conceptually finds clusters as con-

nected components of a graph in which the objects of dataset X are vertices

and every pair of vertices is adjacent only if the corresponding objects are

ε-reachable with respect to the parameters ε and mpts. The parameter mpts is

a smoothing factor which has been well studied in literature [28] [31] [32]. Dif-

ferent density levels in the resulting density-based cluster hierarchy will then

correspond to different values of the radius ε.

20

Figure 4.1: Core Object Figure 4.2: ε− reachable

In the following section, we describe the algorithm HDBSCAN* in detail as

presented in [7].

The following definitions help to formulate a relationship between DBSCAN*

with its hierarchical version HDBSCAN*.

4.1 Algorithm DBSCAN*

Let X = {x1,x2,...,xn} be a set of n d-dimensional data objects. Their pairwise

distances can be represented by a [n×n] matrix, Xpd, with any element of the

matrix Xi,j = d(xi, xj), 1 ≤ i, j ≤ n, where d(xi, xj) is some distance measure

between data objects xi and xj.

Definition 1. Core Object: An object xp is called a core object w.r.t.

ε and mpts if its ε-neighborhood, Nε(·), contains at least mpts objects, i.e.,

| Nε(xp) |≥ mpts, where Nε(xp) = {x ∈ X | d(x, xp) ≤ ε} and | · | denotes

cardinality of the enclosed set. An object is called “noise” if the object is not

a core object.

An example of a core object is shown in figure 4.1 with xp being the core object

w.r.t parameters ε and mpts = 6.

Definition 2. ε-reachable: Two core objects xp and xq are ε-reachable

w.r.t. ε and mpts if xp ε Nε(xq) and xq ε Nε(xp).

An example of ε-reachable objects xp and xq is shown in figure 4.2 where both

21

Figure 4.3: Density-Connected Objects Figure 4.4: Example of a Cluster

the objects, xp and xq are within the ε-neighborhood of each other.

Definition 3. Density-Connected: Two core objects xp and xq are density

connected w.r.t. ε and mpts if they are directly or transitively ε-reachable.

Figure 4.3 explains the concept of Density-Connected objects where xp, xq and

xr are density-connected (xp and xr are transitively ε-reachable through xq).

Definition 4. Cluster: A cluster C w.r.t. ε and mpts is a non-empty

maximal subset of X such that every pair of objects in C is density-connected.

An example of a cluster is shown in figure 4.4.

4.2 HDBSCAN*

HDBSCAN* is based on the concept that a hierarchy can be built from dif-

ferent levels of density based on different values of ε. HDBSCAN* can be

explained based on the following definitions:

Defintion 5. Core Distance: The core distance, dcore(xp), of an object

xp ∈ X w.r.t. mpts is the distance between xp to its mpts-nearest neighbor

(including xp).

The core distance is defined as the minimum radius ε such that a data object

xp satisfies the condition for it to be a core object with respect to ε and mpts.

Definition 6. ε-Core Object: An object xp ∈ X is called an ε-core object

for every value of ε that is greater than or equal to the core distance of xp

22

Figure 4.5: Core Distance of an Object

w.r.t. mpts, i.e., if dcore(xp) ≤ ε.

Definition 7. Mutual Reachability Distance: The mutual reachability

distance between two objects xp and xq in the dataset X w.r.t. to mpts is

defined as

dmreach(xp, xq) = max
(
dcore(xp), dcore(xq), d(xp, xq)

)
Definition 8. Mutual Reachability Graph: A Mutual Reachability

Graph can be defined as a complete graph, Gmreach,mpts or Gmreach , w.r.t mpts,

in which the data objects of dataset X are the vertices, V, and edges, E, that

exist between every pair of vertices. The weights of edges between any two

vertices is defined by the mutual reachability distance of the corresponding

data objects in X.

Gmreach,mpts = Gmreach = (V,E)

where V = {vi}; 1 ≤ i ≤ n

E = {vi, vj, dmreach(xi, xj)}; 1 ≤ i, j ≤ n

An example of a Minimum Spanning Tree (MST) generated from a complete

graph is shown in figure 4.6 where edges that form the MST are shown using

solid lines and edges that are a part of the complete graph but not in the MST

are shown using the dotted line.

23

Figure 4.6: Minimum Spanning Tree from a Complete Graph

From defintions 4, 6 and 8, it can be deduced that the clusters created accord-

ing to DBSCAN* w.r.t partitions for ε ∈ [0,∞) can be produced in a nested

and hierarchical way by removing edges in decreasing order of weight from the

graph Gmreach . It is equivalent to applying Single Linkage on a transformed

space of mutual reachability distances and then making a horizontal cut at ε.

The set of connected components obtained are “clusters” while the singleton

objects are “noise” objects. All possible levels in a hierarchy can be extracted

by removing one edge at a time with decreasing values of ε starting with the

maximum value of ε from the graph Gmreach .

A density-based cluster hierarchy represents the fact that an object o is noise

below the level l that corresponds to o’s core distance. To represent this in

a dendrogram, we can include an additional dendrogram node for o at level

l representing the cluster containing o at that level or higher. To construct

such a hierarchy, an extension of Minimum Spanning Tree (MST) of the Mu-

tual Reachability Graph Gmreach is required. The MST is extended by adding

“self-edges” to each vertex with an edge weight equal to that of the core dis-

tance of o, dcore(o). This extended MST can be used to construct the extended

dendrogram by removing edges in decreasing order of weights.

24

The hierarchy can be computed by constructing an MST on the transformed

space of mutual reachability distances. The MST can be constructed quickly

by removing edges in decreasing order of the edge weights [4].

The pseudocode for HDBSCAN* algorithm is shown in Algorithm 1.

Algorithm 1: HDBSCAN* Main Steps

Input: Dataset X, Parameter mpts

Output: HDBSCAN* hierarchy

1. Given a dataset X, compute the core distances of all the data objects
in X.

2. Compute a Minimum Spanning Tree of the Mutual Reachability
Graph, Gmreach .

3. Extend the MST to obtain MSText, by adding a “self loop edge” for
each vertex with weight equal to that of its core distance, dcore(xp).

4. Extract the HDBSCAN* hierarchy as a dendrogram from MSText.

(a) All the objects are assigned to the same label, thus forming the
root of the tree.

(b) Iteratively remove all edges from MSText in decreasing order of
weights.

i. Edges with the same weight are removed simultaneously.

ii. After removal of an edge, labels are assigned to the connected
components that contain one vertex of the removed edge. A
new cluster label is assigned if the component has at least one
edge in it, else the objects are assigned a null label, indicating
it to be a noise object.

4.3 Hierarchy Simplification

A method of hierarchy simplification has also been proposed in [7]. The simpli-

fication of HDBSCAN* hierarchy is based on an observation about estimates of

the level sets of continuous-valued probability density function (p.d.f.), which

refers back to Hartigan’s concept of “rigid clusters”. In a divisive approach,

for a given p.d.f., there are only three possibilities for the evolution of the

connected components of a continuous density level sets when increasing the

25

density level.

1. The component shrinks but remains connected, up to a density threshold,

at which either

2. The component is divided into smaller ones, called a “true split”, (or)

3. The component disappears.

Based on the conditions given above, the HDBSCAN* hierarchy can be simpli-

fied into a hierarchy which only consists of those levels where there is a “true

split” or the levels at which an existing cluster disappears. Other levels of the

hierarchy, i.e., values of ε at which the data objects are assigned null labels

making them “noise” objects are the levels where a particular component has

shrunk, and those levels are not explicitly maintained in a simplified hierarchy.

Figure 4.7: Cluster Dendrogram for a dataset

Using optional parameter mclSize: Usually many applications require that

a connected component, in order to be considered a cluster, need at least a few

data objects that are very similar to each other. This requirement can easily

be incorporated in the HDBSCAN* hierarchy by the use of a parameter mclSize

which indicates the minimum size of a connected component to be considered

26

Figure 4.8: Cluster Tree for the given Dendrogram in 4.7

a cluster. Therefore the step 4.(b).(ii) of Algorithm 1, can be generalized

to accommodate the parameter mclSize and is described in Algorithm 2.

Algorithm 2: Step 4.(b).(ii) of Algorithm 1 with optional parameter
mclSize ≥ 1

4.(b).ii. After removal of each edge, process the cluster that contained
the removed edge (one at a time) as follows:

• Label spurious sub-components as noise by assigning them the null
label. If all the sub-components of a cluster are spurious, then the
cluster has disappeared. A sub-component is termed as spurious, if
the number of vertices in the sub-component are less than mclSize.

• If there is a single sub-components of a cluster that is not spurious,
then the original cluster label is maintained. This means that the
cluster has shrunk.

• If there are two or more sub-component of a cluster that are not
spurious, assign new labels to each of them. This means that the
parent cluster has not split into two clusters.

4.4 Computational Complexity of HDBSCAN*

There are two scenarios over which the computational complexity has been

calculated

27

4.4.1 Scenario 1: Dataset X is available

Given a dissimilarity function d(·, ·) that is used to measure the distance be-

tween two data objects, the distance between each pair of objects can be com-

puted in O(d) time, where d is the dimensionality of any given data object.

Therefore, step 1 of Algorithm 1 can be computed in O(dn2) time. The time

taken by Step 2 of the algorithm to construct an MST is O(n2 + e), assuming

a list based search version of Prim’s Algorithm, where e is the number of edges

in Gmreach . Since it is a complete graph, the number of edges, e = n(n−1)
2

. This

allows the MST to be built in O(n2) time. Step 3 can be computed in O(n)

time, since the distances have already been computed and this step requires an

addition of n self-edges to the graph. Step 4 requires sorting of edges, which

can be computed in O(nlogn). Step 4 relabels according to Algorithm 2 by

removing edges at different values of ε (in decreasing order of ε), which can be

achieved in O(n2). Therefore, the overall algorithm has a computational time

complexity of O(dn2).

The overall space taken by this scenario is only the space to store the dataset

X which is O(dn) for n d-dimensional data objects since the matrix Xpd is

computed on demand.

4.4.2 Scenario 2: Pairwise Distance Matrix, Xpd is al-
ready given

The availability of the pairwise distance matrix, Xpd reduces the overall com-

plexity of the algorithm to O(n2) instead of O(dn2) since there is no require-

ment for the computation of the distance d(·, ·) between any pair of objects

and they can be accessed in constant time.

The overall space complexity in this scenario however increases from O(dn) to

O(n2), since the matrix Xpd, which contains O(n2) values is to be stored in

the main memory.

28

4.5 Extraction of Prominent Clusters

A hierarchy is a good representation of the overall structure of the data. Many

practical applications however may require to extract a set of non-overlapping

clusters. Flat partitioning to extract clusters by a horizontal cut at a single

density threshold might not capture the notion of “true clusters”, which may

exist at different density levels. A procedure to extract the most prominent

clusters is given in [7]. This procedure aims at maximizing the overall cluster

stability from the set of clusters extracted from local cuts in a HDBSCAN*

hierarchy.

Hartigan’s model [33] shows that the density-contour clusters of a given density

f(x) on R at a given density level λ are the maximal connected subsets of the

level set defined as {x | f(x) ≥ λ}. DBSCAN* estimates density-contour

clusters using a density threshold λ = 1
ε

and a non-normalized k-NN estimate,

for k = mpts of f(x), given by 1
dcore(x)

.

HDBSCAN* produces all possible DBSCAN* solutions w.r.t. a given value of

mpts and all thresholds λ = 1
ε

in [0,∞). By increasing the density threshold

λ (decreasing ε), the clusters become smaller and are increasingly associated

with denser regions. Components which are connected only by longer edges

(lower density thresholds) disappear before the clusters that are associated

with higher density thresholds. This gives an intuition that more prominent

clusters tend to “survive” longer after they appear, which is essentially the

rationale behind the definition of “cluster lifetime” from classic hierarchical

cluster analysis [4].

The lifetime of a cluster in a traditional dendrogram is defined as the length

of the dendrogram scale along those hierarchical levels for which the cluster

exists. In a HDBSCAN* hierarchy, an existing cluster is considered to be

dissolved when the cluster disappears by diminishing into singleton objects, or

when the cardinality of the cluster at that level falls below mclSize, or when two

or more prominent clusters are formed due to the removal of edges. Since each

29

data object belonging to a cluster can become noise at a density different from

the density at which the cluster splits or disappears, stability of the cluster

not only depends on the lifetime of a cluster in the hierarchy but also on the

individual density profiles of all data objects present in that cluster.

The density contributed by a single data object xp towards a cluster stability

is defined as

λmax(xp, Ci)− λmin(Ci)

where, λmax(xp, Ci) is the maximum density at which the data object xp be-

longed to the cluster, i.e., the density at which the object xp or cluster Ci

disappears or the density at which the cluster membership of the object is

changed (cluster has been split into two or more clusters where the data ob-

ject now belongs to another cluster); λmin(Ci) is the threshold at which the

cluster first appears.

Using this definition, the stability S(Ci) of a cluster Ci can be defined as

S(Ci) =
∑
xj∈Ci

(λmax(xp, Ci)− λmin(Ci))

=
∑
xj∈Ci

(
1

εmin(xj, Ci)
− 1

εmax(Ci)

)

4.6 Cluster Extraction as an Optimization Prob-

lem

Let {C2, ..., Ck} be a collection of all clusters in the simplified cluster hierarchy

(tree) generated by HDBSCAN*, except the root C1, and let S(Ci) denote the

stability value of each cluster. The problem of extracting the most prominent

clusters by flat non-overlapping partitioning, is converted into an optimization

problem with the objective of maximizing the overall aggregated stabilities of

extracted clusters by

max
δ2,...,δκJ =

κ∑
i=2

δiS(Ci) (4.1)

30

subject to {
δi ∈ {0, 1}, i = 2, ..., κ∑
j∈Ih

(δj) = 1, ∀h ∈ L

where δi indicates whether cluster Ci is included into the flat solution (δi =

1) or not (δi = 0), L = {H | Ch is a leaf cluster} is the set of indexes of leaf

clusters, and Ih = { j | j 6= 1 and Cj is ascendant of Ch (h included) } is a

set of indexes of all clusters on the path from Ch to the root (excluded). The

constraints prevent nested clusters on the same path to be selected.

Algorithm 3: Solution to problem (4.1)

1. Initialize δ2 = ... = δκ = 1, and, for all leaf nodes, set Ŝ(Ch) = S(Ch).

2. Starting from the deepest levels, do bottom-up (except for the root)
If S(Ci) < Ŝ(Cil) + Ŝ(Cir) then

set Ŝ(Ci) = Ŝ(Cil) + Ŝ(Cir) and set δi = 0. else

Set Ŝ(Ci) = S(Ci) and set δ(·) = 0 for all clusters in Ci’s subtree.
end

To solve problem (4.1), we process every node except the root, starting from

the leaves (bottom-up), deciding at each node Ci whether Ci or the best-so-far

selection of clusters in Ci’s subtrees should be selected. To be able to make

this decision locally at Ci, we propagate and update the total stability Ŝ(Ci)

of clusters selected in the subtree rooted at Ci in the following recursive way:

Ŝ(Ci) =

{
S(Ci) if Ci is a leaf node

max{S(Ci), Ŝ(Cil) + Ŝ(Cir)} if Ci is an internal node

where Cil and Cir , are the left and right children of Ci (for the sake of simplicity,

we discuss the case of binary trees; the generalization to n-ary trees is trivial).

Algorithm 3 gives the pseudocode for finding optimal solution to the problem

(4.1). Figure 4.9 illustrates a density function, cluster stabilities and excess

of mass. Figure 4.10 illustrates the Cluster Tree corresponding to the density

function shown in figure 4.9. Cluster extraction through excess of mass and

optimizing the objective of maximizing the aggregated cluster stabilities for

Algorithm 3 is explained through figures 4.9 and 4.10.

31

Figure 4.9: Illustration of Density function, Cluster Stability and Excess of
Mass

Figure 4.10: Cluster Tree with their respective stabilities

It can be seen that the whole dataset (assuming it to be one cluster, C1) is ini-

tially divided into C2 and C3, and these clusters are subsequently divided into

other clusters, ultimately forming a set of leaf clusters = {C4, C6, C7, C8, C9}.

Clusters C3, C4 and C5 are the clusters with maximum area covered in the

graph in figure 4.9, which directly correspond to their stabilities. The op-

timization algorithm starts by first identifying the last formed leaf clusters,

adding their stabilities and comparing this sum with their parent. In this case,

32

the clusters, C8 and C9 are taken and compared with their parent C5. Since

S(C5) > S(C8)+S(C9), clusters {C8, C9} are discarded. If the parent’s stabil-

ity is smaller than the sum of stabilities of the children, S(C3) < S(C4)+S(C5),

the cluster C3 is discarded. The whole process is repeated until there are a

set of clusters found with the overall maximum stability which is given by

S(C3) + S(C4) + S(C5) for the clusters {C3, C4, C5} shown in figure 4.9 and

4.10.

33

Chapter 5

Parallel HDBSCAN*

The HDBSCAN* algorithm has several advantages over traditional partitional

clustering algorithm. It combines the aspects of density based clustering and

hierarchical clustering, giving a complete density-based hierarchy. It can be

visualized through dendrograms or other visualization techniques and does not

require an input stating the number of clusters. It is also flexible in that a

user can choose to extract clusters as a flat partition or analyze clusters using

a cluster tree.

HDBSCAN* algorithm requires the whole dataset to be available in order to

calculate the mutual reachability distances between all pairs of data objects to

compute the Mutual Reachability Graph, Gmreach using which the HDBSCAN*

hierarchy is computed. This requirement makes it difficult to parallelize the

HDBSCAN* algorithm. With an exponential growth in the amount of data

that is generated for analysis through many data centers, it is desirable to

have a scalable version of the HDBSCAN* algorithm that will take advantage

of parallel systems.

In this chapter, we introduce an algorithm called Parallel HDBSCAN* or

PHDBSCAN with two different approaches to compute the HDBSCAN* hi-

erarchy by data parallelism. The first approach called the “Random Blocks

Approach” is a parallel version of computing the HDBSCAN* hierarchy on

parallel and distributed nodes. The HDBSCAN* hierarchy computed using

Random Blocks Approach is an exact hierarchy that would have been found,

34

had the hierarchy been computed on a single machine. The second approach

called “Recursive Sampling Approach” is a faster method of computing an

approximate version of the HDBSCAN* hierarchy.

5.1 Random Blocks Approach

The HDBSCAN* algorithm can be seen as a generalized version of the Single

Linkage (SLINK) Clustering algorithm [13] addressing the main drawback of

SLINK called the “chaining effect”. A HDBSCAN* hierarchy with mpts = 2

will provide the same hierarchy produced by Single Linkage. The Random

Blocks Approach is in the same spirit as the algorithm that has been used to

parallelize a Minimum Spanning Tree (MST) in [25] by distributing the data

to different “processing units”. A “processing unit” is an independent entity

with its own memory and computational resources. It ranges from cores within

the same machine to independent and distributed systems on different servers.

The idea of Random Blocks Approach is to find an exact MST of the complete

dataset by dividing the complete dataset into blocks of smaller datasets called

“data blocks”. MSTs (with weights corresponding to mutual reachability dis-

tances) are computed on data blocks independently and in parallel at different

“processing units”. These independently computed MSTs are combined to get

an MST of the complete dataset. The overall MST is used to compute the

exact HDBSCAN* hierarchy of the complete dataset. The algorithm for the

Random Blocks Approach is described in Algorithm 4.

The steps explaining the Random Blocks Approach is described in Algorithm 4.

The flow of the Random Blocks Approach is shown in figure 5.1. The diagram

assumes that the mpts = 3 (for convenience of explaining the diagram) and

it is seen that each data block consists of 6 partitions among the k available

partitions.

35

Algorithm 4: Random Blocks Approach

Input: Dataset X, Parameter mpts

Output: HDBSCAN* hierarchy

1. Divide the dataset X into k non-overlapping partitions of roughly
equal size, such that k ≥ 2×mpts.

2. Generate
(

k
2×mpts

)
data blocks, Pl, 1 ≤ l ≤

(
k

2×mpts

)
, using the k

partitions with each data block consisting of 2×mpts unique
partitions.

3. For each data block, compute the local MST (based on mutual
reachability graph of the data block) at different processing units.

4. Combine the local MSTs by calling the Algorithm 5 “Combine MSTs”
to get the overall combined MST.

5. Extend the combined MST to obtain MSText, by adding a “self-edge”
for each data object with weight equal to the object’s core distance.

6. Extract the HDBSCAN* hierarchy as a dendrogram from MSText.

Figure 5.1: Flow of Random Blocks Approach

The steps are explained in detail as follows

36

5.1.1 Dividing the Dataset

Consider a dataset X = {xi}, 1 ≤ i ≤ n which consists of n d-dimensional

data objects. The whole dataset is divided into k partitions. The value of k

can be chosen based on the following criteria:

1. Select k such that k ≥ 2×mpts (and)

2. Number of available processing units.

The k partitions are given by X ′i, 1 ≤ i ≤ k such that X = X ′1 ∪, ...,∪ X ′k

5.1.2 Generating Data Blocks for independent process-
ing

Given a set of k partitions and the parameter mpts, “data blocks” are gener-

ated by combining partitions. Each data block consists of 2×mpts partitions

among the k available partitions. The reason for choosing 2×mpts partitions

per data block is to find the “true reachability distance” between a pair of data

objects in at least one of the data blocks (explained in detail using Lemma 1

and its proof). Each partition within a data block is unique and no two data

blocks consist of the same combination of partitions. By rule of combinations,

for k partitions and 2 × mpts partitions per data block, a total of
(

k
2×mpts

)
unique data blocks are generated. Each data block is represented by Yl, where

1 ≤ l ≤
(

k
2×mpts

)
.

Before explaining the reason to form data blocks by combining 2 ×mpts par-

titions, we define the following terms

Definition 1: True k-NN neighborhood: Given a data object xp, a subset

Y of a complete dataset X, such that xp ∈ Y and Y ⊆ X, then Y contains

true k-NN neighborhood of xp, only if

mpts-NN(xp, Y) = mpts −NN(xp, X)

where mpts-NN(xp, X) and mpts-NN(xp, Y) are the set of nearest neighbors

of xp in datasets X and Y respectively. This means that Y should contain all

37

the mpts neighbors of xp in X.

Definition 2. True Core Distance: True Core Distance for a data ob-

ject xp, dtrue-core(xp), w.r.t mpts is defined as the distance to its mpts-Nearest

Neighbor in their true mpts-NN neighborhood.

Definition 3. True Mutual Reachability Distance: The “true mutual

reachability distance” between two objects xp and xq is given by

dtrue-mreach(xp, xq) = max
(
dtrue-core(xp), dtrue-core(xq), d(xp, xq)

)
To find the true mutual reachability distance of a data object, it is required

to have at least 2×mpts partitions in each data block. The guarantee to find

the “true mutual reachability distance” is explained in proof of Lemma 1 as

follows:

Lemma 1: Given
(

k
2×mpts

)
data blocks generated using k non-overlapping

partitions of a dataset X, there is a guarantee that at least one data block

contains the “true mutual reachability distance” w.r.t. mpts for a pair of data

objects.

Proof: Consider two data objects xp and xq belonging to one of the data

blocks Yl but different partitions, X ′p and X ′q respectively. In order to find the

“true mutual reachability distance” between xp and xq, we need the true core

distances for both xp and xq. Given the worst case scenario where the mpts

neighbors of both xp and xq belong to different partitions, such that no two

objects in the set mpts-NN(xp) ∪mpts-NN(xq) belong to the same partition,

then there is at least one data block composed of 2×mpts partitions with each

partition containing one object of the set mpts-NN(xp) ∪mpts-NN(xq) (since(
k

2×mpts

)
contains all possible combinations). This property guarantees that

there is at least one data block for each xp, xq ∈ X such that dtrue-mreach(xp, xq)

can be computed. �

38

5.1.3 Sending Data Blocks for parallel processing

There is a “master processing unit” that orchestrates the processing by all

other processing units and serves the data blocks to them. Each processing

unit receives a data block for further processing and the procedure of sending

the data blocks depends on the framework used for implementation.

5.1.4 Computation of an MST at a Processing Unit

Each data block, Yl, is sent to a processing unit. At a processing unit, compute

the core distances w.r.t mpts for all data objects in Yl and form the Mutual

Reachability Graph, Gmreach . A Minimum Spanning Tree, MSTlocal(Yl) is then

constructed on Gmreach . The MSTlocal(Yl) is returned to the master processing

unit.

Algorithm 5: Combine MSTs

Input: Set of
(

k
2×mpts

)
local MSTs

Output: Single combined MST

1. Add all the edges from all the local MSTs to form a set of edges,
Elocal.

2. Sort all the edges in Elocal ascendingly based on their edge weights.

3. Initialize GMST for storing the combined MST. Currently, GMST does
not contain any edges.

4. While Elocal 6= ∅

(a) Remove the edge e with the least weight in Elocal and add it to
GMST .

(b) If an edge e′ in GMST has the same vertices as that of e, then
update w(e′) = min{w(e′), w(e)} and discard e.

(c) If addition of e to GMST causes a loop in GMST , remove the edge
from GMST .

5. Return GMST , the combined MST

39

5.1.5 Combining Local MSTs from different processing
units

Once all the local MSTs constructed at different processing units have been

received by the master processing unit, the next step is to combine them to

get the MST of the complete dataset. The algorithm to combine the MSTs is

explained in Algorithm 5: “Combine MSTs”.

Consider all the edges from all the local MSTs and add them to a set of edges,

Elocal. Sort all the edges in Elocal in ascending order of their weights. Initialize

MSTcombined that would maintain the overall combined MST of the complete

dataset. Remove the edge e with the least weight from Elocal and add it to

MSTcombined. If there is another edge e′ in MSTcombined with the same vertices

as that of edge e, update the edge weight of e′ with the minimum edge weight

of e and e′ and discard e. If edge e creates a loop in MSTcombined, remove e

fromMSTcombined. Duplicate edges are possible since many data blocks contain

overlapping data objects, translating to common set of nodes in many local

Mutual Reachability Graphs. Different edge weights are possible for edges

with the same end vertices because all data blocks do not contain the true

mutual reachability distance as edge weight. Minimum value is chosen for the

edge weight to be updated, since the true mutual reachability distance is the

least possible weight for an edge, as per Lemma 2. According to Lemma 1,

there will be at least one edge with weight corresponding to the true mutual

reachability distance. The process is continued until all the edges in Elocal

are removed. The MSTcombined thus constructed is the MST of the complete

dataset.

Lemma 2: Given two data objects, xp and xq, with a list of m measures of

their mutual reachability distances D = {d1, ..., dm} obtained for the pair of

object (xp, xq) from m different processing units, the true mutual reachability

distance between xp and xq is the minimum distance in the set D.

dtrue-mreach(xp, xq) = min{d1, ..., dm}

40

Proof: According to Definition 2, it is known that the true core distance of

any data object xp is the distance to its mpts-Nearest Neighbor in their true

mpts-NN neighborhood. Consider a set of data objects Y ⊂ X, with the mpts-

neighborhood of xp in sets X and Y are given by mpts-NN(xp, X) and mpts-

NN(xp, Y) respectively. If mpts-NN(xp, X) 6= mpts-NN(xp, Y), then mpts-

NN neighborhood of xp in Y is not a true mpts-neighborhood. By definition

of nearest neighbor, there exists at least one object, xr in mpts-NN(xp, Y) that

is at a distance, d ≥ dtrue-core(xp). Therefore, the core distance of xp w.r.t mpts

in dataset Y , dcore(xp, Y) ≥ dtrue-core(xp). For any given set of core distances

for l different subsets of X, dtrue-core(xp) is given by

dtrue-core(xp) = min{dcore(xp, Y1), ..., dcore(xp, Yl)} (5.1)

Similarly for an object xq, the true core distance is given by

dtrue-core(xq) = min{dcore(xq, Y1), ..., dcore(xq, Yl)} (5.2)

and d(xp, xq) is always a constant irrespective of the partitions to which xp and

xq belong. By definition of true mutual reachability distance, a true mutual

reachability distance is computed based on the true core distances of xp and

xq. By combining equations 5.1 and 5.2 and the property of d(xp, xq), it can

be concluded that for a given set of mutual reachability distances between

objects xp and xq, true mutual reachability distance is given by

dtrue-mreach(xp, xq) = min{d1, ..., dm}

�

It is required to prove that the constructed tree is a global Minimum Spanning

Tree. In order to prove this, the following two lemmas are provided

Lemma 3: The output of the combination of all local MSTs after pruning is

a spanning tree.

Proof: During the merging procedure, while adding edges to the final global

MST, MSTcombined, no edges creating cycles are included in MSTcombined. All

41

duplicate edges are also pruned in the process. The only other requirement

is to show whether all the vertices have been added to the global MST. The

output is a combination of all MSTs generated from the data blocks Yl which

is composed of subsets given by X ′i, 1 ≤ i ≤ k so that X = X ′1∪, ...,∪X ′k. Each

partition is therefore available in at least one of the data blocks and local MSTs

are created based on the complete mutual reachability graph corresponding to

all the objects in the data block. Therefore, vertices corresponding to all nodes

are available in MSTcombined. �

Lemma 4: If M(G) is the global spanning tree of the complete dataset X by

combining all the local MSTs, then M(G) is the global Minimum Spanning

Tree.

Proof: Assume that MST (G) is a global Minimum Spanning Tree of X and

let w(MST (G)) denote the total weight of the MST. Since w(MST (G)) is the

minimum weight of a spanning tree for X, any other spanning tree T must

satisfy the condition w(MST (G)) ≤ w(T). We will show by contradiction

that w(M(G)) ≤ w(MST (G)).

Let us assume w(M(G)) > w(MST (G)) and let E(MST (G)), E(M(G)) be

the set of mutually exclusive edges of the graph MST (G) and M(G) respec-

tively. This implies that E(MST (G)) ∩ E(M(G)) = ∅. As spanning trees of

graph G, MST (G) and M(G) must have the same number of edges (since the

number of vertices are equal), and the number of edges in sets E(MST (G))

and E(M ′(G)) are equal. Thus the weights of the MSTs, MST (G) and M(G)

are different. There is at least one pair of edges with different weights that are

not common in MST (G) and M(G). Therefore, E(MST (G)) and E(M ′(G))

must be non-empty.

Let e = (xp, xq) be an arbitrary edge of E(MST (G)). Adding e to the

spanning tree M(G) will induce a single cycle in M(G) and there would

be a unique path (xp, xq) 6= e in M(G). Let Eh be the set of edges in

this path, not contained in MST (G). Since MST (G) contains e but not

42

the complete cycle, Eh is not empty. If there was always some e′ ∈ Eh

such that w(e′) ≤ w(e), M ′(G) = M(G) − {e′}
⋃
{e} would be a spanning

tree with w(M ′(G)) ≥ w(M(G)) that has one more edge in common with

MST (G), and since MST (G) and M(G) are finite, M(G) can be converted

into MST (G) without reducing its weight, contradicting our assumption that

w(M(G)) > w(MST (G)). Thus, if w(M(G)) > w(MST (G)), there must be

some such set Eh and edge e with w(e′) > w(e) for all e′ ∈ Eh.

Next, we will prove by contradiction that the set Eh = ∅ , by showing that

the (xp, xq)-path in M(G) must not contain any edge of Eh. Let e = (xp, xq).

As every pair of data objects are distributed to some data block along with

their true mpts-NN neighborhood, there will be some local MST generated by

processing unit containing e which includes the path (xp, xq) with weight no

more than w(e). When the MSTs of different data blocks are merged, a path

e′ = (xp, xq) from a different MST may be removed from MSTcombined result

if there is some (xp, xq) in the current solution that has weight no more than

w(e). The path e′, is not added to Eh. As this observation holds true for

every step of the merging procedure, Eh will never contain any path (xp, xq)

such that w(e′) ≤ w(e) and the final merged output, M(G) must contain a

(xP , xq)-path composed of edges with weight no more than w(e). Also, since

w(e′) > w(e)∀e′ ∈ Eh, this (xp, xq)-path cannot contain any edge of Eh, con-

tradicting the initial definition of Eh as a set of edges along the (xp, xq)-path

in M ′(G). �

5.2 Recursive Sampling

The second approach to parallelize the HDBSCAN* algorithm is called “Recur-

sive Sampling Approach”. Unlike the Random Blocks Approach, the Recursive

Sampling Approach eliminates the processing of overlapping datasets at mul-

tiple processing units. This is achieved by “intelligent” data division, which

divides the data to be processed at different processing units based on the

structure of the data.

43

For a data object not to be duplicated across multiple nodes, it is required

that the overall coarse structure of the data is captured and the data blocks

are created according to the data divided on this coarse structure. The data

blocks are sent to different processing units for further refinement. Depending

on the capacity of the processing units, the data blocks can be recursively

divided into smaller data blocks until the data blocks are of sizes that can be

processed by a processing unit.

The algorithm for “Recursive Sampling Approach” is shown in Algorithm 6.

Algorithm 6: Recursive Sampling

Input: Dataset X, Parameters mpts and mclSize, Processing Capacity τ ,
Division Method div

Output: HDBSCAN* hierarchy

1. Call Algorithm 7: Recurse(X,mpts,mclSize, div) to get a set of
edges EMST and Einter.

2. Call Algorithm 8: Combine (EMST , Einter) to get an MST,
MSTcombined.

3. Construct HDBSCAN* hierarchy as a dendrogram from
MSTcombined.

The algorithm of Recursive Sampling Approach can be broadly divided into

two major steps, (i) Recurse step and (ii) Combine step. The Recurse step

intelligently divides the datasets into smaller datasets based on the structure of

data. The Recurse step returns two sets of edges, EMST and Einter. Set EMST

contains edges of all the local MSTs and the second set Einter contains the

inter-connecting edges. Inter-connecting edges are the shortest edges between

different components identified. The Combine step combines all the edges to

form the MST of the complete dataset using which the HDBSCAN* hierarchy

can be extracted.

44

Algorithm 7: Recurse

Input: Dataset Y , Processing Capacity τ , Parameter mpts, Division
Method div, Sampling Tolerance ςmax

(optional) Output: Set of Local MSTs, Set of Inter-connecting Edges

1. Call the Algorithm 10: Divide(Y , mpts, div, ςmax) to get a set of k
components {Y1, ..., Yk} and Einter. If “fail” was returned from Divide,
return ;

2. foreach YC ∈ {Y1, ..., Yk} do
if | YC |≤ τ then

Call Algorithm 11: Compute MST(YC) to get MSTlocal and
Einter.
return MSTlocal and Einter.

else
Call Algorithm 7: Recurse(YC , τ,mpts).
If “fail” was returned, goto step 1

end
end

A step by step approach of an example dataset is illustrated using figures

5.2 through 5.11. Figure 5.2 shows the flow of Recursive Sampling Approach.

Figure 5.3 shows an example dataset which consists of three large clusters and

each cluster is recursively divided into sub-clusters.

Figure 5.2: Flow of Recursive Sampling approach

45

Given a dataset X with n data objects, a random sample S of m objects is

drawn from X. The value of m should be high enough to reflect the coarse

structure of the dataset. The sampled objects are given by

Samplingrandom(X) = S = {sj}; 1 ≤ j ≤ m

The unsampled data objects belong to a set US such that US = X − S.

Sampled objects of the dataset in figure 5.3 are shown in figure 5.4.

Figure 5.3: An example Dataset

Figure 5.4: A set of sampled objects of dataset shown in figure 5.3

46

Algorithm 8: Combine

Input: Set of all local MSTs M , Set of Inter-connecting edges E
Output: Overall HDBSCAN* hierarchy

1. Initialize set Ecombined.

2. foreach M ′ ∈M do
Add all edges in M ′ to Ecombined.

end

3. foreach E ′ ∈ E
Add all edges in E ′ to Ecombined.

end

4. Set Ecombined consists of all edges that form the MST, MSTcombined, of
the complete dataset.

5. Extract the HDBSCAN* hierarchy using MSTcombined.

Cluster Extraction: Calculate the core distances for all objects in S w.r.t

mpts and compute the Mutual Reachability Graph, Gmreach . Construct a min-

imum spanning tree MSTlocal on Gmreach and extract HDBSCAN* hierarchy

from MSTlocal. The most prominent clusters are extracted from HDBSCAN*

hierarchy in one of the following two ways:

1. Binary Extraction: This is a simple version of extracting the clusters

where the first formed clusters are immediately extracted. Binary ex-

traction is fast since it does not have to traverse through the complete

hierarchy for the first formed clusters to be identified.

Initially, the edges in MST (Gmreach(S)) are sorted in descending order

of their edge weights. Edge with the largest edge weight is removed

(if there are multiple edges with the same edge weights, they are re-

moved simultaneously) to form two or more disconnected components.

After the removal of any given edge(s) of weight ε, if there are two or

more disconnected components which form prominent clusters (given by

| componenti | ≥ mclSize), then the data objects belonging to these com-

ponents are assumed to be prominent clusters.

47

This means, for any given dataset, if there is a clear demarcation between

two clusters, this approach will identify it very quickly and distribute the

dataset to different processing units for further refinement. The Binary

extraction method applied on the dataset in figure 5.3 is shown in fig-

ure 5.5, which shows that the sampled data objects are divided into two

clusters, CA and CB. The algorithm for Binary Extraction is explained

in algorithm 9.

Algorithm 9: Binary Extraction

Input: Minimum Spanning Tree M , Parameter mclSize

Output: Set of Clusters C = {C1, ..., Ck}
(a) Initialize set C = ∅ and a tree T

(b) Sort the MST M in descending order of weights of its edges

(c) while edges exist in M do

i. Remove the edge(s) with the maximum weight from M .

ii. Find the set of connected components CC.

iii. If (there are at least two components in CC such that their
size ≥ mclSize) then
Add components with size ≥ mclSize to set C;

return;

end

end

Figure 5.5: Illustration of Binary Extraction of Clusters shown in figure 5.4

48

2. N-ary Extraction: This approach of extracting the prominent clusters

traverses through the complete hierarchy, by removing the edges with

the maximum edge weight, until all edges have been removed and then

forms a cluster tree. Once the cluster tree has been formed, the most

prominent clusters are extracted in the form of non-overalapping cluster

sets on the basis of excess of mass explained in section 4.6. The final

result is a set of clusters {C1, ..., Ck} with each cluster containing objects

from S. The N-ary extraction method applied on the dataset in figure

5.3 is shown in figure 5.6, which shows that the sampled data objects

are divided into three clusters, CA, CB and CC .

Figure 5.6: Illustration of N-ary Extraction of Clusters

Inclusion of Noise objects to current clusters: It is evident from the

HDBSCAN* cluster extraction, that not all data objects in dataset S are

assigned to a cluster. Objects in S that are not included in one of the extracted

clusters are called “noise” objects and are added to the set O.

S = (C1 ∪ ... ∪ Ck) +O

| S |=
(k∑
i=1

| Ci |
)

+ | O |

The HDBSCAN* hierarchy is built based on the sampled objects and the

objects in O are “noise” objects only with respect to the sampled set of objects

49

and not with respect to the complete dataset. In order to reduce data loss,

these noise objects are added back to one of the clusters.

The data objects in set O are added back to hierarchy in the following way:

1. For each object xo ∈ O, find the nearest neighbor of xo in (C1∪ ...∪Ck).

The nearest neighbor is denoted by 2-NN(xo).

2. Find the cluster membership of the 2-NN(xo), among the set of clusters

identified, C1, ..., Ck.

Co = member(2-NN(xo))

3. Add the data object xo to the cluster Co.

Co = Co ∪ {xo}

Classification of unsampled objects: The set of unsampled data objects

are assigned to one of the clusters which contains the nearest neighbor of the

data object (similar to how the noise objects were classified to the clusters).

For each object xu in the set US, find the cluster membership of the nearest

neighbor of xu, Cu = member(2-NN(xu)). Add xu to the cluster Cu, given

by Cu = Cu ∪ {xu}. The clusters that are formed are mutually exclusive and

there is no common data object between any two given clusters.

Ci ∩ Cj = ∅, 1 ≤ i, j ≤ k; i 6= j

The first level of recursion has been completed. The result for the dataset

shown in figure 5.3 is shown in figure 5.7 for both Binary and N-ary extraction

methods. Binary methods consists of only first two found clusters, {CA,CB}.

whereas the N-ary method consists of 3 most prominent clusters, {CA,CB,CC}.

Each component is sent to a different processing unit for further refinement.

Figures 5.8 through 5.11 shows how the data of Cluster CA is divided into

components (sub-clusters) in the next recursive level. Figure 5.8 shows the

sampled objects of Cluster CA and the clusters that were formed for CA at a

50

processing unit. Each component here is the data block which is sent to 3 other

processing units for refinement. The recursion continues until each processing

unit receives data blocks, which can be processed without sampling, i.e., the

data block is small enough for the HDBSCAN* hierarchy to be computed on

the data block by a single processing unit with an acceptable execution time

(depending on the application and the hardware used).

Figure 5.7: Illustration of clusters returned by Binary and N-ary Cluster Ex-
traction methods

Figure 5.8: N-ary Cluster Extraction
on Sampled Objects of cluster CA from
figure 5.6 Figure 5.9: All objects of cluster CY

51

Algorithm 10: Divide

Input: Dataset Y , Parameter mpts, Division Method div, Sampling
Tolerance ςmax

Output: Set of Divided Components: {Y1, ..., Yk}, Set of
Inter-connecting Edges Einter

1. Draw a sample S of size m from Y . The unsampled objects belong
to the set US = Y − S.

2. With dataset S of m d-dimensional data objects, construct a
HDBSCAN* hierarchy:

(a) Construct HDBSCAN* hierarchy w.r.t. mpts based on the
Mutual Reachability Graph, Gmreach(S). Gmreach(S) is a
complete graph constructed on dataset S.

(b) Extract prominent clusters from the constructed HDBSCAN*
hierarchy, CS = {Csi}, 1 ≤ i ≤ k along with a set of “noise”
objects, O. Clusters are extracted using different approaches
based on the Division Method div.
if div = Binary

Call Algorithm 9 BinaryDivision (HDBSCAN*
hierarchy)

else
Extract a flat-partitioning of most prominent clusters from
HDBSCAN* hierarchy using the concept of Excess of Mass
as shown in Algorithm 3.

3. Classify the noise objects in O into one of the existing clusters by
finding the cluster label of the nearest neighbor in the set S −O of
each object in O.

4. For each object xs in the set US, find the nearest neighbor of xs in S
and classify xs to the same cluster as its nearest neighbor, resulting in
Y = {YC1 ∪ ... ∪ YCk}, where YCi is the set of data objects with cluster
label Ci.

5. Add the edges in MSTsample that connect objects in different clusters
to Einter.

6. Check for sampling tolerance ς. If ς > ςmax, return “fail” message to
the calling function.

52

Figure 5.10: All objects of cluster CX
Figure 5.11: All objects of cluster CZ

Algorithm 11: Compute local MST and inter-cluster edges

Input: Dataset Y
Output: Minimum Spanning Tree Mlocal, Set of inter-connecting edges

Einter

1. Calculate core distances of all data objects in Y w.r.t mpts.

2. Compute the Mutual Reachability Graph, Gmreach(Y).

3. Compute an MST (MSTlocal) on Gmreach(S).

4. Construct HDBSCAN* hierarchy based on the MST formed.

5. Extract a flat-partitioning of most prominent clusters from
HDBSCAN* hierarchy as shown in Algorithm 3.

Finding Inter-Cluster Edges: Before the data objects are sent to different

processing units for refinement based on the clusters to which they belong, it

is required to find the edges between different clusters. These edges are called

as “inter-cluster edges” or “inter-connecting edges”. Set of inter-cluster edges

play an important role in maintaining the link between different clusters and

to complete the overall combined MST which is constructed by combining the

edges of many local MSTs.

Randomly selecting a vertex, each from a cluster Ci and Cj and considering

them as inter-cluster edge is not a good approximation of distance between two

53

clusters. We propose two different strategies for finding the inter-connecting

cluster that estimate the distance between the clusters.

1. Using already existing edges: This approach estimates the shortest

edge between clusters based only on sampled objects. Every node in the

MST formed on the sample set S is transitively reachable to every other

node. This property is used to find the edges that will connect different

clusters. Below are the steps shown to identify the inter-cluster edges :

(a) Re-label all the nodes in MSTlocal with the cluster label of objects

corresponding to the nodes in MSTlocal. Each node is a cluster

identified using cluster label and MSTlocal becomes a multigraph

(graph where each pair of nodes is permitted to have more than

one edge).

(b) Construct a minimum spanning tree MSTinter on this multigraph

by eliminating all the self-edges (edges with same nodes in both

ends) and any possible duplicate edges by keeping only edges with

the minimum weight.

(c) Add edges in MSTinter to Einter. The edges in Einter are the inter-

cluster edges.

An example of inter-cluster edges (shown as solid lines) for the dataset

shown in 5.3 extracted from the Minimum Spanning Tree, with clusters

extracted using N-ary method is shown in figure 5.12.

2. Estimating the shortest edges using all objects: This method can

be used with only shared memory architecture since maintaining data

structures across distributed nodes will increase the communication cost

considerably. All unsampled objects are added to one of the clusters

by finding the cluster membership of their nearest neighbor. To find the

nearest neighbor, each unsampled object is compared with all the objects

in S. These distances can be used to estimate the shortest distance and

the corresponding edge between two clusters. The steps are as follows:

54

Figure 5.12: Illustration of inter-cluster edges found sampled objects shown in
figure 5.4 using the N-ary method of cluster extraction

(a) Initialize a set D to store the shortest edge between every pair of

clusters. D = {eshort(Ci, Cj)}, 1 ≤ i, j ≤ k; i 6= j.

(b) For each object xu in set US, while finding the nearest neighbor in

S, whose cluster memberships are already known, store the shortest

edge to each cluster in a set D′ = eshort(xu, Cj), 1 ≤ j ≤ k.

(c) After assigning xu to a cluster Cu which consists of 2-NN(xu),

update all the edges eshort(Ci, Cj) in set D with corresponding edges

in D′ such that i = u and 1 ≤ j ≤ k if the weight of edge in D′ is

smaller than the weight of edge in D.

(d) Construct an MST based on the edges in D to get the inter-cluster

edges.

The inter-cluster edges are sent to the calling function when this procedure

returns.

Dividing the data and sending it to different processing units: Data

55

objects that belong to the same cluster are considered to form a “data block”.

The number of data blocks created is equal to the number of most prominent

clusters that are formed at any recursive step. Data blocks are given by a

set of mutually exclusive datasets {Y1, ..., Yk}. Each data block is sent to a

different processing unit for further refinement. In the processing unit, if the

overall size of the data block is greater than the capacity of the processing

unit, τ , the steps are repeated by calling the Algorithm 7: Recurse with Yi

as the dataset. The capacity of the processing unit might vary from system

to system depending on the hardware and processing power of the unit. The

allocation of a data block to a processing unit depends on the architecture of

the multi-core or multi-node system on which the algorithm runs.

Optional Sampling Tolerance check: The sampling tolerance check is a

way of finding if the hierarchy based on the sampled objects reflected the over-

all structure at least at a coarse level. It is an optional parameter and can

identify discrepencies in the hierarchy. Consider the subset of data shown in

figure 5.13, with sampled objects a and b, each belonging to clusters A and B

respectively. All other objects are assigned to the nearest object among a and

b. The distance between clusters A and B is given by the distance eAB. This

distance reflects the density level λAB at which clusters A and B are created.

The cluster A is passed on to a different processing unit, for futher refinement

and similar scenario is repeated with x and y as the sampled objects belonging

to clusters C and D with other objects are assigned to one of the two sampled

objects. Let eCD denote the weight of the inter-cluster edge between C and

D and gives the density at which clusters C and D appear. If eCD > eAB, it

indicates that the cluster A was born at a higher density level and its children,

clusters C and D were born at a lower density level than A. This scenario

occurs if the sampled set is skewed and not distributed uniformly.

This issue could be immediately addressed at Processing unit 2 and the hier-

archy can be repaired by resampling the dataset available at Processing Unit

1. Addition of unsampled data objects and a different sample set at the next

56

Figure 5.13: Situation where the parent is born at a higher density level than
the density of its disappearance

level can induce such errors which can be controlled by a parameter ς. The

sampling tolerance parameter gives the notion of ratio of the eCD to eAB. A

sampling tolerance value of ς = 1 is a strict sampling tolerance since it does

not allow any child cluster to be created at a lower density than its parent. If

there are multiple children with multiple edges in a set Einter between them,

then ς is compared to every edge in Einter.

57

Chapter 6

Data Summarization using Data
Bubbles

6.1 Drawbacks of building hierarchy based only

on Samples

There are several drawbacks of constructing a HDBSCAN* hierarchy based

on sampled objects. They are explained as follows:

1. Capturing the structure: Since the dataset that is used to build the

HDBSCAN* hierarchy is based on a set of sampled objects, there is no

guarantee that the overall structure of the data is captured. This directly

affects the structure of the final hierarchy.

2. Estimating the inter-cluster edges: The shortest edge between two

clusters is considered to be an inter-cluster edge. While using the PHDB-

SCAN on sampled objects, the inter-cluster edges are estimated by only

using the set of sampled objects belonging to a cluster. But, better esti-

mates of the weight of inter-cluster edges can be identified if the weights

are calculated based on some inexpensive technique involving the com-

plete dataset and not just the set of sampled objects.

3. Re-inclusion of “Noise” objects: Including noise objects back to

the dataset until the final level of recursion may affect the quality of

intermediate hierarchies constructed at distributed nodes.

Consider the datasets shown in figure 6.1 and 6.2 where each dataset

58

has a set of data objects with the sampled data objects {x, y, z}. Let

us assume that the sampled data object z has been identified as a noise

object while extracting the clusters from the HDBSCAN* hierarchy on

the dataset. Figure 6.1 shows that the density around object z is rela-

tively high while in figure 6.2 the neighborhood of the sampled object

z is relatively less dense. The density around z is not known during

cluster extraction since the extraction is based only on the sampled ob-

jects. Re-including noise objects that are not dense will propagate the

noise objects to all the levels of recursion, and these noise objects will

be available until the final overall hierarchy is computed.

Figure 6.1: Example where one of the sampled object z is dense

Figure 6.2: Example where one of the sampled object z is not dense

4. Problems pertaining to the parameter mclSize: The parameter

mclSize is used when extracting clusters as a set of connected compo-

nents from the HDBSCAN* hierarchy with each component consisting

of at least mclSize objects. The parameter mclSize is application depen-

dent and typically specified with the complete dataset in mind. Since

the clusters are extracted based on the hierarchy built on the sampled

59

objects and the sample set is relatively smaller compared to the com-

plete dataset, using mclSize on a smaller dataset would fail to capture

the clusters. Altering the mclSize based on the sampling ratio will not

capture the clusters on sampled objects since the density of the sampled

objects is not known before the cluster extraction.

Due to the drawbacks of building a HDBSCAN* hierarchy based on sampled

objects, we consider data summarization techniques that reflect the structure

of the data better than the sampled objects.

6.2 Data Summarization Techniques

The well-known hierarchical clustering algorithms are data dependent since

the distance measure between every pair of data objects is to be computed.

The simplest way of decreasing run time of the algorithm is to decrease the

size of the dataset on which the expensive data mining algorithm runs. This

can be achieved by sampling the larger datasets and running the complete

algorithm on the set of sampled objects.

Consider a dataset X with n d-dimensional data objects {xi}, 1 ≤ i ≤ n and

a set Xs of s randomly sampled d-dimensional data objects where s << n.

If the runtime complexity of a clustering algorithm on X is O(n2), then the

execution time of the same algorithm on Xs (only on sampled objects) is con-

siderably reduced to order of O(s2). With fewer number of data objects, the

quality of the clustering result can be considerably compromised. A trade-off

between clustering quality and execution time is required.

Data summarization techniques were introduced to scale-up clustering algo-

rithms by applying a summarization technique on the data before applying

the clustering algorithm, reducing the size of the dataset and thus the over-

all execution time, but also trying to maintain more information about the

whole dataset than a sample of the same size would contain. For partitional

clustering algorithms, sufficient statistics have been proposed in [8]. BIRCH

introduces the sufficient statistics, called “Clustering Features” (CF). BIRCH

60

computes compact descriptions of a sub-cluster c using a CF which is defined

as

CFc = (nc, LSc, SSc)

where, nc = number of objects in c

LSc = Linear Sum
(∑
xi∈c

~xi

)
SSc = Sum of Squares

(∑
xi∈c

~xi
2
)

that are included in the sub-cluster c.

More details about BIRCH have been discussed in section 2.1.2.

Based on the definition of sufficient statistics, a method of data compression

was proposed in [34] for scaling up the k-means algorithm. It uses the sufficient

statistics of BIRCH by summarizing different sets of data objects or their

summaries independently. These sets can be categorized into

• Points that are unlikely to change their cluster membership in different

iterations of the clustering algorithm.

• Data summaries that represent sub-clusters of data objects that are con-

sidered to be tight.

• Set of data objects which show anomalous behaviour and cannot be

assigned to any of the other data summarizations.

Squashing [35] is another approach where the dimensions of the data space are

partitioned and grouped into different regions. A set of moments like mean,

minimum, maximum and second order momentums like X2
i and XiXj are cal-

culated and stored. The higher the order of momentums, the higher is the

degree of approximation. The moments of the squashed items approximate

those of the actual data set for each region that was defined.

Using Clustering Features or Random Sampling with hierarchical clustering

algorithms, such as OPTICS [28], the clustering results suffered from two ma-

jor problems, “Structural distortion” and “Size distortion” [36]. Structural

61

distortion occurs when the structure of the clusters after applying a cluster-

ing algorithm on clustering features or random sampling do not represent the

structure of the database (visualized using a reachability-plot). Size distortion

refers to the distortion in sizes of clusters, where the reachability-plots are

stretched and squeezed. Also, at very high compression rates, the distance

between the representative objects or the sampled objects do not reflect an

approximate distance between components of the original database. As a so-

lution to these distortion problems, Data Bubbles were introduced in [37] and

applied on

OPTICS algorithm [36].

Data Bubbles overcome these drawbacks by estimating the true reachability

distance between sets of data objects, thus providing sufficient statistics suit-

able for hierarchical clustering. Data Bubbles will be described in the next

section in more detail.

6.3 Data Bubbles

Definition of Data Bubble: Let a dataset X be defined as a set of n d-

dimensional data objects X = {xi}, 1 ≤ i ≤ n. Then a Data Bubble with

respect to X is defined as a tuple

BX = (rep, n, extent, nnDist)

• rep is a representative for the set of data objects in X (the representative

object need not necessarily be an object of X).

• n is the number of data objects in X.

• extent is a real number such that most objects of X are located within

a distance of extent around the representative. It is also called “radius”

of the Data Bubble.

• nnDist is a function denoting the estimated average k-nearest neighbor

distances within the set of objects X for values of k, k = 1, ...,mpts.

62

Mathematically, the properties of the Data Bubble are computed by the fol-

lowing functions:

• Representative Object ∑
i=1,...,n

Xi/n

• Extent √√√√ ∑
i=1,...,n

∑
j=1,...,n

(Xi −Xj)2

n(n− 1)

The extent can be computed from the sufficient statistics of the clustering

feature of BIRCH, by the following expression:

extent =

√
2× n× SS − 2× LS2

n(n− 1)

• Assuming that the distribution of data objects within the Data Bubble

is uniform, Nearest neighbor estimate is given by

nnDist(k,BX) =

(
k

n

) 1
d

× extent

Initializing Data Bubbles: Given a dataset X with n d-dimensional data

objects, m Data Bubbles can be constructed using X by applying the following

steps:

1. Draw a random sample of m data objects from the n objects in X. This

set of m objects is called the “seed set”, S. Each object in S is called

“seed object”.

2. Initialize a set of m Data Bubbles with each Data Bubble containing one

seed object from S.

3. For each object in X − S, find the nearest seed object in S and update

the sufficient statistics, such as n, LS and SS, from which a Data Bubble

tuple can be calculated.

63

Using the definition of Data Bubbles and its properties, such as extent, repre-

sentative and nearest neighbor estimate, other metrics can be defined for Data

Bubbles.

Distance between two Data Bubbles: Consider two Data Bubbles, B =

(repB, nB, extentB, nnDistB) and C = (repC , nC , extentC , nnDistC), then

the distance between two Data Bubbles B and C can be defined as

dist(B,C) =

0 ifB = C
dist(repB, repC)− (extentB + extentC) ifdist(repB, repC)−

+nnDist(1, B) + nnDist(1, C) (e1 + e2) ≥ 0
max(nnDist(1, B), nnDist(1, C)) otherwise

This means that the distance between two Data Bubbles is equal to zero if the

Data Bubbles are same (B = C). If two Data Bubbles do not overlap with

each other, i.e., when the distance between the representatives of the Data

Bubbles exceed the sum of their radii, the distance between two Data Bubbles

is given by the distance of their centers minus their radii plus their expected

nearest neighbor distances. When two Data Bubbles overlap, then the dis-

tance between two Data Bubbles is the maximum of their estimated neighbor

distances. The distance between two data Bubbles is illustrated using figures

6.3 and 6.4.

Figure 6.3: Distance between two Data Bubbles - Non-overlapping Data Bub-
bles

Core Distance of a Data Bubble: We adapt the definition of core dis-

tance of a Data Bubble from [36] to suit the definition of core distance of the

64

Figure 6.4: Distance between two Data Bubbles - Overlapping Data Bubbles

HDBSCAN* algorithm [7]. The core distance of a Data Bubble defined for OP-

TICS, is designed w.r.t. ε-neighborhood and mpts while the mpts-neighborhood

in HDBSCAN* is not restricted by the parameter ε.

Let N be a set of m Data Bubbles for a given dataset X with n data objects.

Consider a Data Bubble B = (repB, nB, extentB, nnDistB), then the core

distance of a Data Bubble B is given by

core-distmpts(B) = dcore(B) = dist(B,C) + nnDist(k, C)

where C is a Data Bubble in the set of Data Bubbles, N , such that the distance

between B and the closest Data Bubble C (along with all the Data Bubbles

which are closer to B than C) contain together at least mpts objects.∑
X∈N

dist(B,X)≤dist(B,C)

n ≤ mpts

and the value of k is given by

k = mpts −
∑
X∈N

dist(B,X)≤dist(B,C)

n

If the Data Bubble B, contains more than mpts data objects in it, then C = B

and the core distance is given by nnDist(k, C), i.e., the definition states that

if the Data Bubble represents at least mpts objects, then core distance is the

65

estimated mpts neighbor distance of that Data Bubble. If the Data Bubble B

contains less than mpts data objects in it, find a Data Bubble C such that all

Data Bubbles that are nearer to B than C (Data Bubbles P and Q in figure

6.5) together with Data Bubble B have sum of the number of data objects

contained in them less than mpts, and the core distance is given by the sum

of the distance between Data Bubbles B and C and the k-nearest neighbor

estimate in C, with k defined as above.

Figure 6.5: Core Distance of a Bubble when nB < mpts

Mutual Reachability Distance: The HDBSCAN* hierarchy is created on

the basis of constructing a Minimum Spanning Tree on the mutual reachability

graph. Therefore we introduce the definition of the mutual reachability distance

between a pair of Data Bubbles. The mutual reachability distance between two

Data Bubbles, B and C, with respect to mpts, is given by

dmreach(B,C) = max(dcore(B), dcore(C), dist(B,C))

66

6.4 Implementation of Data Bubbles in

PHDBSCAN

This section explains the implementation of PHDBSCAN using Data Bubbles.

The algorithm has two major steps, “Recurse” and “Combine” similar to that

explained in Algorithm 6 in section 5.2. Data Bubbles are implemented in the

Divide method of the Recurse step which is shown in Algorithm 12.

Figure 6.6 illustrates the flow of the Recursive Sampling Approach using Data

Bubbles. Each data block is divided into clusters which are further refined by

sending the clusters to a processing unit, dividing the data recursively until

the leaf MSTs are formed.

We will only discuss the procedures that are different from the implementation

of PHDBSCAN on sampled objects explained in Chapter 5.

Exclusion of Noise objects: For a given dataset Y , data objects in Y that

belong to Data Bubbles in set O (set of Data Bubbles considered noise) can

be discarded as noise objects. All data objects that belong to Data Bubbles

in set O are indeed noise objects. This is proved by considering the following

two scenarios:

1. Size of a Data Bubble is greater than mclSize: Any given Data

Bubble, Bp = (repp, np, extentp, nnDistp), with np ≥ mclSize is always

classified as a cluster. Therefore, no Data Bubble with np ≥ mclSize is

added to O.

2. Size of a Data Bubble is less than mclSize: All Data Bubbles which

are added to set O are Data Bubbles with np < mclSize. While extracting

clusters, any Data Bubble (or set of connected Data Bubbles) formed due

to the removal of an edge or edges with weight ε, are considered noise.

Since a Data Bubble represents all the data objects included in it and the

property of the Data Bubble np is used to calculate if a set of connected

Data Bubbles can form a cluster, any Data Bubble (and the data objects

it comprises) in set O can be safely assumed to be noise.

67

Algorithm 12: PHDBSCANbubbles Divide

Input: Dataset Y , Parameter mpts, Division Method div
Output: Set of Divided Components: {Y1, ..., Yk}, Set of

Inter-connecting Edges Einter

1. Draw a sample S of size m from Y . The unsampled objects belong
to the set US = Y − S.

2. Using S as the seed set of size m, initialize set of m Data Bubbles
B = {B1, ..., Bm}.

3. For each object in US, find the nearest neighbor in S and update the
corresponding Data Bubble in B.

4. With a set of Data Bubbles B, construct a HDBSCAN* hierarchy:

(a) Compute an MST, MSTbubbles on the Mutual Reachability Graph,
Gmreach(B) computed on Data Bubbles.

(b) Construct HDBSCAN* hierarchy based on MSTbubbles.

(c) Extract prominent clusters from the constructed HDBSCAN*
hierarchy, CS = {Csi}, 1 ≤ i ≤ k along with a set of “noise”
objects, O. Clusters are extracted using different approaches
based on the Division Method div.
if div = Binary

Call Algorithm 9 BinaryDivision (HDBSCAN*
hierarchy)

else
Extract the most prominent clusters from
HDBSCAN* hierarchy using the concept of Excess of Mass
as shown in Algorithm 3.

Cluster extraction returns a list of clusters sets C = {C1, ..Ck} and a
set of Data Bubbles considered to be noise O. Each set consists of all
the Data Bubbles classified to one of clusters in C or the set O.

5. For each object in Y , find the cluster membership of Data Bubbles
among the set {C1, ..., Ck} to which the object was mapped in Step 2
and assign the data object to that cluster. Objects that belong to
Data Bubbles in O are considered noise and are discarded.

6. Add the edges in MSTbubbles that connect Data Bubbles in different
clusters to Einter.

Scenario where noise objects w.r.t. complete dataset are not elim-

inated: Although all noise objects identified can be safely removed, not all

68

Figure 6.6: Recursive Sampling Approach with Data Bubbles

noise objects are identified immediately using Data Bubbles in the PHDBSCAN

algorithm. Consider the dataset shown in figure 6.7, with seed objects denoted

by x,y and z for Data Bubbles A, B and C respectively. The Data Bubble C

is identified as noise and eliminated from the hierarchy. For the same dataset

when different seed objects have been selected, as shown in figure 6.8, the data

objects which were removed as noise in the previous scenario are now a part

of a Data Bubble C which cannot be eliminated and which is recursively sent

for further processing.

Finding Inter-Cluster Edges: The Inter-cluster edges are identified in a

similar way as finding the inter-cluster edges using sampled objects (explained

in section 5.2). The shortest edges between the extracted prominent clusters

are added to the set Einter. Edges in Einter have weights corresponding to

the shortest mutual reachability distance between Data Bubbles in different

clusters. These identified edges give a better estimate of the shortest distance

between clusters than the estimate computed using only sampled objects.

69

Figure 6.7: Example where noise would be excluded from further processing

Figure 6.8: Example of a scenario where noise is included for further processing

Dividing Data and sending it to different Processing Units: Data

objects which belong to the same cluster form a data block. Different data

blocks are sent to different processing units for further refinement.

6.4.1 Multi-Node Cluster Extraction

In the N-ary method of Recursive Sampling Approach using Data Bubbles,

at each level of recursion, PHDBSCAN algorithm finds a number of promi-

nent clusters by constructing a HDBSCAN* hierarchy and extracting the most

prominent clusters as flat non-overlapping partitions. The cluster stabilities

used to find the prominent clusters are based on the Data Bubbles which gives

an estimate of the stabilities of clusters with respect to the complete dataset.

Using these stabilities, it is possible to construct a “Distributed Cluster Tree”

70

by identifying cluster stabilities at distributed nodes across all levels of re-

cursion. This Distributed Cluster Tree can be used to extract the prominent

clusters with respect to the complete dataset without combining the local

MSTs to form a combined MST and computing the HDBSCAN* hierarchy

from a combined MST.

Consider the dataset shown in figure 5.3 in chapter 5. Using the N-ary ap-

proach, the Distributed Cluster Tree (illustrated in figure 6.9) is identified. In

figure 6.9, leaf clusters are shown using shaded squares and the data blocks

within the same processing units are shown using rectangles with broken lines.

The stability of each cluster extracted at the processing unit is computed im-

mediately. The parent-child relationship is maintained by keeping track of the

clusters sent for further processing. The parent cluster is the component that

is sent for further refinement and children clusters are clusters identified in the

next immediate level of refinement.

Figure 6.9: Distributed Cluster Tree for data shown in figure 5.3

The flat non-overlapping partitioning from a distributed cluster tree can be

seen as an optimization problem similar to the one given in equation 4.1 and

solved using Algorithm 3. It can be extracted by solving an optimization prob-

lem with the objective of maximizing the overall stabilities of the extracted

clusters. We process every node except the root, starting from the leaves

(bottom-up), deciding at each node Ci whether Ci or the best-so-far selection

of clusters in Ci’s subtrees should be selected. To be able to make this deci-

71

sion locally at Ci, we propagate and update the total stability Ŝ(Ci) of clusters

selected in the subtree in the following recursive way:

Ŝ(Ci) =

S(Ci), if Ci ∈ leaf clusters

max

{
S(Ci),

∑
Cic∈{Cic}

Ŝ(Cic)

}
if Ci /∈ leaf clusters

where set Cic is the set of child clusters of node Ci and Ŝ(·) gives the stability

of the respective clusters.

6.4.2 Shortcomings of using Binary method of cluster
extraction

There are a couple of shortcomings of using the Binary extraction method in

the Recursive Sampling Approach.

1. The Binary division method has a drawback with respect to the sizes of

the clusters that are formed. If the data is distributed in such a way that

the first formed clusters almost always end up getting divided into two

clusters, a very large and a relatively smaller cluster, then the number

of recursion steps becomes very large. With a larger depth of recursion,

the amount of resources needed to maintain the recursion stack also

increases. The overhead for maintaining the additional resources may

not be negligible causing a serious overhead on computation and time.

The binary approach works well for the data that is distributed in such

a way that the first 2 clusters that are extracted are indeed the most

prominent clusters for the complete dataset.

2. The other drawback of using Binary division method is that the “Multi-

node cluster extraction” cannot be implemented. Multi-node cluster ex-

traction depends on the cluster stabilities estimated at distributed nodes

to construct the Distributed Cluster Tree. The cluster stabilities cannot

be computed in the Binary division method since the data is immediately

sent for further processing as soon as the first two prominent clusters are

identified from the HDBSCAN* hierarchy. The hierarchy is not traversed

any further and hence computing the cluster stabilities is not possible,

72

making multi-node cluster extraction not viable for the Binary division

method.

73

Chapter 7

Implementation using the Map
Reduce Framework

7.1 MapReduce Framework

MapReduce is a programming framework [38] to process large scale data in a

massively data parallel way. MapReduce Framework has several advantages

over the other existing parallel processing frameworks. The programmer is not

required to know the details related to data distribution, storage, replication

and load balancing, thus hiding the implementation details and allowing the

programmers to develop applications/algorithms that focus more on processing

strategies. The programmer has to specify only two functions, a map and a

reduce function. The framework (explained in [39]) is summarized as follows:

1. The map stage passes over the input file and output (key, value) pairs.

2. The shuffling stage transfers the mappers output to the reducers based

on the key.

3. The reduce stage processes the received pairs and outputs the final result.

Due to its scalability and simplicity, MapReduce has become a promising tool

for large scale data analysis. The MapReduce framework interleaves sequential

and parallel computation. MapReduce consists of several rounds of computa-

tion. For a given set of distributed systems (nodes), without any communica-

tion between nodes, each round distributes the data among the set of available

74

nodes. After the data is distributed, each node performs the required computa-

tion on the data available to them. The output of these computations is either

combined to form the final result or sent to another round of computation

depending on the application’s requirement. In the MapReduce programming

Figure 7.1: An example of a Map Reduce Framework

paradigm, the basic unit of information is a (key, value) pair where both key

and value are binary strings. The input to any MapReduce algorithm is a set

of (key, value) pairs. Operations on a set of (key, value) pairs occur in three

different stages, Map, Shuffle and Reduce. They are explained as follows:

Map Stage: In the map stage (illustrated in figure 7.2), the map function of

the mapper takes a single (key, value) pair as input, and produces an output

in the form of (key, value) pairs. The number of outputs produced by the

mapper is the number of times the map function is called, i.e., the number

of (key, value) pairs that were provided to the mapper. The reason that the

map operation operates on only one pair of (key, value) at a time is to make

it stateless, allowing the process of parallelization to be easy and data inde-

pendent on different nodes [39].

Shuffle Stage: During the shuffle stage, the system that implements MapRe-

duce sends all values associated with an individual key to the same machine.

75

Figure 7.2: Flow of a Mapper in a MapReduce Framework

This is an inbuilt scheme of MapReduce and the programmer does not have

to be aware of the implementation of distribution of data with the same key

to a single node.

Reduce Stage: During the reduce stage, the reducer takes all values associ-

ated with a single key k, and outputs a set of (key, value) pairs. This portion

of computation is the sequential aspect of MapReduce. Successful completion

of all mappers is the only criterion for a reducer to start its computation. Any

sequential steps for the subset of data that are mandated by the algorithm

or the process could be implemented in the reduce stage. The flow within a

reducer in a MapReduce framework is illustrated in figure 7.3.

Figure 7.3: Flow of a Reducer in a MapReduce Framework

7.2 Implementation of Random Blocks Approach

The implementation of Random Blocks Approach is similar to that explained

in [1] without the use of special data structures. The algorithms for the im-

76

plementation of Random Blocks Approach is shown in Algorithm 13, 14 and

15. Master Processing Node: The master processing node is responsible

for generating the data blocks and calling the mappers and reducers. Each

data block is considered a “data split”. A “data split” or “split” is a file or

part of a file that is sent to a mapper for independent processing. The size of

a “split” is called “split size”. Data blocks are created in such a way that the

size of a data block should not exceed the maximum split size allowed by the

implementation of MapReduce. If the split size exceeds, then the split is di-

vided into smaller data splits on which the true reachability distances between

all pairs of data objects cannot be computed in at least one of the several

available data blocks. The flow is illustrated in figure 7.4.

Figure 7.4: Flow of events at the Master Processing Node in the Random
Blocks Approach

Mapper: The original dataset is divided into k partitions that are combined

to form l “data blocks” as explained in section 5.1. Each data block is sent to

a mapper. Each mapper consists of a map function which takes the input in

the form of a (key, value) pair. The number of times a map function is called

within a mapper is the number of data objects available within a data block.

Each data block consists of a unique identifier which serves as the key and

the data object serves as the value. A data object consists of a data object

identifier, DataObjectID and its feature vector. Once all the data objects with

the same key (data objects within the same block) are aggregated by the map

function, compute the core distances of all the objects w.r.t mpts. Compute

77

a mutual reachability graph, Gmreach on which the local Minimum Spanning

Tree is computed. The output of this local MST is stored in the file system

in the form of a (key, value) pair. Since all the local minimum spanning trees

are sent to one single reducer, a common value for key is used (say, 1) and

the edge given by (u, v, dmreach(u, v)) is the corresponding value. Figure 7.5

illustrates the Mapper in the Random Blocks Approach.

Figure 7.5: Mapper in the Random Blocks Approach

Reducer: The single reducer takes in all the local Minimum Spanning Trees

from all the nodes. Reducer implements its own version of Spanning Tree

algorithm to prune larger edges. Kruskal implementation of the Minimum

Spanning Tree algorithm is more efficient for sparse graphs. Algorithm 15 ex-

plains the steps at the reducer. The final output of the reducer is a combined

MST which is written back to the file system in the form of (key, value) pairs.

Since the reducer returns to the master node, the key is null and each edge

of the combined MST is the value. Figure 7.6 illustrates the Reducer in the

Random Blocks Approach.

A simple architecture to implement this method is shown in the figure 7.7.

78

Figure 7.6: Reducer in the Random Blocks Approach

Figure 7.7: Simple flow of Random Block Approach in MapReduce Framework

7.3 Implementation of PHDBSCAN

The recursive model of the PHDBSCAN algorithm can be converted into an

iterative algorithm to fit the MapReduce framework. At the time, the exper-

iments were designed, the MapReduce framework did not include a setup to

79

support recursion.

7.3.1 PHDBSCAN Implementation using only Sampled
Objects

Recursive Sampling Approach using only sampled objects is the first method

implemented using MapReduce Framework. Consider a whole dataset Y is

available in a file or set of files in a directory called “input directory”. The

master processing node draws a random sample and HDBSCAN* hierarchy is

built based on these sampled objects followed by the extraction of the most

prominent clusters. The data objects along with their cluster label is written

to a file called “Hierarchy file”.

The master processing node calls the mappers with the input directory. The

MapReduce framework is responsible to send all the files to different dis-

tributed nodes. Each file is sent to a different node if the size of the file

is less than the “split size”. Maximum allowed split size per split depends on

the version of implementation of the MapReduce framework (e.g., Hadoop). If

the size of any file in the input directory is more than the split size, the file is

divided into two or more data splits and sent to different mapper nodes. Each

data split corresponds to a data block.

The hierarchy file is sent to all mappers by the master processing node. Send-

ing the same file to all the distributed nodes can be achieved by using the

“distributed cache” mechanism in MapReduce framework. The framework

sends the hierarchy file to all the nodes assigned to be the mappers.

Master Processing Node: The Master Processing Node, also called “Driver

Node” or “Driver”, is the starting point of the algorithm. The input and output

directory are given as input arguments with all the other parameters (mpts,

mclSize, τ , div) stored in the configuration file that is accessible by all the

nodes. A single call to a set of mappers and reducers is called a “job”. Each

job has its own input and output directory.

80

Figure 7.8: Flow of Recursive Sampling without Bubbles in MapReduce
Framework

At Driver, a random sample for the complete dataset is drawn and a “Hier-

archy file” is created. A job is created with input and output directories as

input arguments along with the hierarchy file in distributed cache. The job

then makes a call to mappers and reducers.

Recursive Sampling Mapper: A mapper receives the data split and the

hierarchy file. A mapper in this approach is used to classify all the data ob-

jects to one of the clusters extracted using HDBSCAN* hierarchy on sampled

objects. Within each mapper, the map function is called with a (key, value)

pair. The key is the data split identifier (which is assigned by the framework)

and the value is a data object, xp. A map function is used to identify the

cluster membership of the nearest neighbor of xp in the set of sampled objects

(available in the hierarchy file), and assign the cluster label to xp. The output

of map function is also a (key, value) pair, where key is a cluster label and

value is a data object.

Shuffle Stage: The Shuffle stage is an inbuilt mechanism of MapReduce

81

Figure 7.9: Mapper in the Recursive Sampling Approach

framework and is not required to be explicitly written by the programmer.

The Shuffle stage gathers the output from all the map functions of all the

mappers and redirects the data (stored in value of the output (key, value)

pairs) associated with an individual key to the same node, called reducer. All

the data objects that are classified to a single cluster (by having the same

cluster label) are sent to the same reducer. The number of reducers called

will correspond to the number of clusters that were formed using the sampled

objects.

Recursive Sampling Reducer: The reducer implements the sequential as-

pect of the MapReduce framework. Reducer starts immediately after all the

mappers are terminated successfully. Each reducer checks for the number of

data objects (corresponding to the number of values) received by it. If the

number of data objects are greater than the processing capacity of the node,

given by τ , a random sample is drawn from the set of available data objects.

HDBSCAN* hierarchy is computed on sampled objects w.r.t mpts, prominent

clusters are extracted on the hierarchy and data objects along with their clus-

ter membership are written to a “Hierarchy file”. The inter-cluster edges

are also computed and written to a different directory called “Inter Cluster

82

Edges”. The optional parameter of ς to check the sampling tolerance can be

used here, once the inter-cluster edges are identified. If the sampling toler-

ance is not satisfied, the reducer can return with a fail status. All the data

objects in this reducer are written to an output directory which will serve as

an input directory for future iterations. Each reducer writes its output in a

unique directory. If the number of data objects are less than τ , then an MST

is computed based on all the data objects w.r.t mpts and the output is written

to a different directory called “local MST directory”. Reducer returns to the

master processing node with a success status.

Figure 7.10: Reducer in the Recursive Sampling Approach

Master Processing Node: Every time a reducer returns a success flag, a new

job is created with the next available output directory written by a reducer.

This output directory will serve as an input directory for future jobs. The

iteration continues until all the output directories written by all the reducers

across all the jobs have been processed. When all the jobs are completed, the

Driver reads all the data available within Inter Cluster Edges and local MST

directory. All the edges combined together gives the approximate combined

MST of the complete dataset on which the HDBSCAN* hierarchy can be com-

83

puted. The algorithms for Recursive Sampling approach with only sampled

objects are explained in Algorithms 16, 17 and 18.

Figure 7.11: Master Processing Node in the Recursive Sampling Approach

The flow of a single iteration of the explained method is shown in figure 7.8.

The whole dataset is divided into “data splits” by the framework where every

data split is sent to one of the available mappers. Output from all the mappers

are sent to the shuffle stage (shown by dotted arrows between the Mappers

and the Reducers) which directs output from all the Mappers with the same

key to the same reducer. The Reducer generates an output based on the

threshold τ . The output can either be a subset of data with sampled objects

for future iterations or ”local MSTs” (shown with a sample MST in reducer 2

of figure 7.8). If the output is not a local MST, then the subset of data along

with the Hierarchy file and inter-cluster edges are written to their respective

directories for further processing.

7.3.2 PHDBSCAN Implementation using Data Bubbles

The PHDBSCAN algorithm using Data Bubbles is implemented using two

layers of mappers and reducers. The first layer is used to create Data Bubbles,

84

build HDBSCAN* hierarchy based on Data Bubbles and extract clusters based

on the created hierarchy. The second layer classifies all the data objects and

refines the hierarchy. The flow of such a setup is shown in figure 7.12.

Driver (Master Processing) Node: The “Driver” first draws a sample

set called Seed set and writes it to a file, “Seed file”. This Seed set is sent

to all the mappers of Layer 1, called “Bubble Mappers” through distributed

cache. The complete dataset which is stored in the file system is distributed to

different mappers as data splits. The flow of events of the Mapper are shown

in figure 7.3.2.

Figure 7.12: Flow of Recursive Sampling using Bubbles in MapReduce Frame-
work

Layer 1. Bubble Mapper: Bubble Mapper receives a data split along with

the Seed file. The seed file consists of a set of seed objects S. For each

seed object in S, initialize a Data Bubble. Let the set of Data Bubbles built

85

on a data block l be represented as set B(Yl) = {B(Yl)1, ..., B(Yl)m} where

Yl is the set of data objects in data block l and m is the number of seed

objects. Each map function within a mapper receives the input in the form of

(key, value) pair where key is a unique identifier of a data split and value is a

data object. For each object xp received by the map function, find the nearest

neighbor in S and update the corresponding Data Bubble in Bl with sufficient

statistics. Update the data object received with the Data Bubble Identifier

(BubbleID) to which it was mapped. For each Data Bubble in B(Yi), write

the output in the form of (key, value) pair with key = 1 and the value is

the “Data Bubble” which consists of the BubbleID (as a one to one mapping

with the seed object) and a tuple (n, LS, SS). An output key of 1 across all

Bubble Mappers makes sure that all the output values reach a single reducer.

Layer 1. Bubble Reducer: The layer 1 consists of a single reducer which

Figure 7.13: Layer 1 Mapper in the Recursive Sampling Approach using Data
Bubbles

aggregates the sufficient statistics from l Bubble Mappers, where l corresponds

to the number of data splits (and the number of successful mappers that were

executed). Each Data Bubble set consists of m Data Bubbles and there are l

such sets. Each Data Bubble in a set is aggregated with Data Bubbles across

86

other Data Bubble sets with the same identifier is given by

B(Y)i = B(Y1)i ++B(Yl)i; 1 ≤ i ≤ m

where i is a unique identifier of a Data Bubble and Data Bubbles are aggre-

gated across l partitions.

Given two Data Bubble sets from data blocks Y1 and Y2, B(Y1) = {B(Y1)1, ..., B(Y1)m}

and B(Y2) = {B(Y2)1, ..., B(Y2)m}, each Data Bubble containing the sufficient

statistics (n, LS, SS), the Data Bubbles inside these sets are individually ag-

gregated by

B(Y1)i +B(Y2)i =
(
nB(Y1)i + nB(Y2)i , LSB(Y1)i + LSB(Y2)i , SSB(Y1)i + SSB(Y2)i

)
using which the properties of Data Bubbles can be computed when required.

Figure 7.14: Layer 1 Reducer in the Recursive Sampling Approach using Data
Bubbles

After aggregating all the Data Bubbles into set B, HDBSCAN* hierarchy is

computed on B w.r.t mpts by computing a minimum spanning tree on the mu-

tual reachability graph of B. Extract the clusters on this hierarchy. Find the

inter-cluster edges from the computed minimum spanning tree. The output of

the reducer is a “Bubble Cluster Membership file” FB and a set of inter-cluster

87

edges “Inter-Cluster Edges”, which are written to the file system. FB contains

all the Data Bubbles along with their cluster membership. Any Data Bubble

which was considered noise is discarded and not added to FB.

At Driver Node: The Driver Node, creates another job with the same data

splits of Layer 1 but with the “Cluster Membership file” added to the dis-

tributed cache. The mapper and the reducer of Layer 2 are called “PHDBSCAN

Mapper” (illustrated in figure 7.3.2) and “PHDBSCAN Reducer” (illustrated

in figure 7.3.2) respectively.

Figure 7.15: Master Processing Node in the Recursive Sampling Approach
using Data Bubbles

Layer 2. PHDBSCAN Mapper: Each PHDBSCAN Mapper receives a

data split and “Bubble Cluster Membership file”, FB. Each map function re-

ceives the input in the form of (key, value) pair with key as a unique identifier

of a data split and value is a data object. For each object xp received by

the map function, find the cluster membership of the Data Bubble to which

the data object belongs and assign xp to the same cluster. The PHDBSCAN

Mapper at Layer 2 is shown in figure 7.3.2.

88

Figure 7.16: Layer 2. PHDBSCAN Mapper in the Recursive Sampling Ap-
proach using Data Bubbles

Layer 2. PHDBSCAN Reducer: The Reducer is similar to the Recur-

sive Sampling Reducer of PHDBSCAN implementation using only sampled

objects explained in section 7.3.1 but with a modification. Instead of creating

a hierarchy file when the size of the dataset received by the receiver exceeds

the processing capacity τ , it just draws a sample which will be considered as

Seed set for future iterations and writes to the file system as “Seed file”, FSS.

The flow of events within the PHDBSCAN Reducer at Layer 2 is shown in

figure 7.3.2

Driver Node: Once the Reducer returns successfully, the driver checks for

any output directory to be processed. If there are any directories to be pro-

cessed, the driver creates another pair of jobs that run one after another, with

each calling the mappers and reducers of Layer 1 and Layer 2 respectively.

Once all the directories are processed, the edges are aggregated to form the

combined MST, MSTcombined and HDBSCAN* hierarchy is computed. The

algorithms are explained in Algorithm 19, 20, 21, 22 and 23, and the flow is

explained in figure 7.12.

89

Figure 7.17: Layer 2. PHDBSCAN Reducer in the Recursive Sampling Ap-
proach using Data Bubbles

90

Chapter 8

Experiments and Results

In this chapter, we will present an experimental evaluation of the proposed

parallelization approaches and compare them with HDBSCAN* in terms of

the quality of results and the execution time. The experiments are conducted

on various datasets in both pseudo-distributed and distributed environments.

8.1 Cluster Validation Measures

This section explains the clustering validation measures used in our experi-

ments.

Adjusted Rand Index: The Adjusted Rand Index is based on the Rand

Index or Rand Measure [40], which is a measure of similarity between two

data partitions/clusterings. The Rand Index lies between 0 and 1. When the

two partitions agree perfectly, the Rand Index is 1. The Rand Index can be

defined in the following way:

Given a set of n objects X = {x1, ..., xn} and two partitions of X, R and S.

R = {r1, ..., rp} and S = {s1, ..., sq}, the Rand Index is given by

Rand Index =
a+ d

a+ b+ c+ d

where a,b,c and d are given by

• a = the number of pairs of elements in X that are in the same set in R

and in the same set in S.

91

• c = the number of pairs of elements in X that are in the same set in R

and in different sets in S.

• b = the number of pairs of elements in X that are in different sets in R

and in the same set in S.

• d = the number of pairs of elements in X that are in different sets in R

and in different sets in S.

The Adjusted Rand Index (ARI) is a version of Rand Index that is cor-

rected for chance, which was proposed in [41], and which assumes the general-

ized hypergeometric distribution as the model of randomness. The ARI yields

negative values if the index is less than the expected index. The general form

for adjustment of an index by chance, for an index with a constant expected

value, is given by

Adjusted Rand Index =
Index− Expected Index

Max Index− Expected Index

Given the definition for the Rand Index, the Adjusted Rand Index is defined

by

ARI =
a− (a+c)(a+b)

a+b+c+d

2a+b+c
2
− (a+c)(a+b)

a+b+c+d

where a, b, c and d are defined as above for the Rand Index.

Jaccard Index: The Jaccard Index or Jaccard Similarity coefficient is an-

other measure of similarity between two partitions. The jaccard co-efficient is

given by

J =
a

a+ b+ c

where a, b and c are defined as above for the Rand Index.

F-Measure (F1 Score): The F-measure or the F1 Score is an evaluation

measure based on the harmonic mean of precision and recall. Precision is

defined as the fraction of objects that are correctly assigned to a cluster, and

Recall is the extent to which a cluster contains all the objects of a specified

class.

92

Precision, P =
TP

TP + FP

Recall, R =
TP

TP + FN

F -measure =
2× P ×R
P +R

where TP = number of True Positives, FP = number of False Positives and

FN = number of False Negatives.

Fowlkes-Mallows Index: The Fowlkes-Mallows [42] index is an external

validation measure to determine the similarity between two partitions. Fowlkes

Mallows is given by

FM =

√
TP

TP + FP
× TP

TP + FN

where TP , FP , FN are same as defined for F-Measure.

We report the following four cluster validation measures for all experiments

to evaluate the quality of results: Adjusted Rand Index, Jaccard Co-efficient,

F-Measure and Fowlkes-Mallows.

8.2 Experimental Setup

Pseudo-distributed system: Some of the experiments, designed to test the

quality of PHDBSCAN clustering solutions, are run on a local machine and

implemented using the Hadoop implementation of the MapReduce Framework

(version 2.4.0). The distributed components of the MapReduce Framework

are invoked sequentially, starting from the driver, followed by the mappers

and reducers (all the mappers and reducers would run sequentially) before

returning to the driver for final processing and termination.

Implementing the algorithm in MapReduce on a single machine satisfies the

following conditions:

93

• The order of execution of various components in the framework is same as

the MapReduce on a distributed environment. For example, no reducer

is started before the successful completion of all the mappers.

• Memory is not shared between different components. Although machine

and hardware for the execution of different tasks is the same, the objects

are not shared between different tasks. This means that the data on

which a mapper is executed is not available to another mapper (the same

condition holds good for reducers too), thus simulating a distributed

environment.

Distributed Environment: To identify the improvements on execution time

of PHDBSCAN over HDBSCAN*, a true distributed architecture is used. For

these experiments, the algorithms are run on the Hadoop implementation of

the MapReduce framework on Amazon Elastic MapReduce (EMR). The ver-

sion used for our experiments is Hadoop 2.4.0 (AMI version 3.3.1). We use

Amazon Simple Storage Service (S3) as the object storage system to store the

results and data. Experiments on Amazon EMR were conducted with three

different types of instances (nodes) with the following configurations:

Instance Type vCPU Memory(GiB) SSD Storage(GiB)
m1.medium 1 3.75 1 × 4

m1.large 2 7.5 1 × 32
c3.xlarge 4 7.5 2 × 40

Whenever Amazon EMR is used for conducting an experiment, the types of

instances used for a set of experiments are mentioned explicitly in the section

describing the experiment. In a distributed environment, two broadly classified

node types are used; “master node” and “core node”. A master node is where

the driver runs and core node is one of the distributed nodes that operate in

parallel (for mappers and reducers).

8.3 Evaluation of the Quality of Results

Different combination of approaches can be used to extract the final clustering

results of PHDBSCAN. Figure 8.1 illustrates the various combinations of the

94

possible approaches where results can be extracted differently by following a

unique path.

Figure 8.1: List of all possible approaches possible in PHDBSCAN

8.3.1 Binary vs N-ary Approach

This section shows the comparison of the Binary method with the N-ary

method of cluster extraction in PHDBSCAN Recursive Sampling Approach

using Data Bubbles. The Binary approach extracts the first formed prominent

clusters (at least two clusters) while the N-ary approach traverses the complete

hierarchy to find all the prominent clusters. Experiments were conducted on a

dataset with 20000 2-dimensional data objects. The data was generated by a

data generator with a mix of 19 randomly generated gaussian distributions and

1000 objects generated in random within the data space. The PHDBSCAN

parameters were set to mpts = mclSize = 5 and τ = 1000. Experiments are

repeated with 15 independently selected sample sets. Clustering results of

HDBSCAN* with same mpts and mclSize are used as the ground truth for mea-

suring various indexes. The results for various indexes and different sample

sizes are shown in figures 8.2 through 8.5. The results show that for both

Binary and N-ary cluster extraction, the clustering results are very similar

or almost identical. This is due to the fact that the clustering solution of

the PHDBSCAN hierarchy is not dependent on the depth of the recursion

95

Figure 8.2: Adjusted Rand Index Figure 8.3: Jaccard Coefficient

Figure 8.4: F-Measure Figure 8.5: Fowlkes Mallows Score

at which a cluster (that is a part of the final clustering solution) is formed.

The final clustering solution will still comprise of the same clusters extracted

irrespective of the approach.

8.3.2 Multi-Node vs Single-Node Cluster Extraction

Multi-Node cluster extraction is a method of forming a cluster tree based

on the clusters extracted at distributed nodes using Data Bubbles. Multi-

Node Cluster extraction is explained in detail in section 6.4.1. Single-Node

cluster extraction is extracting the most prominent clusters on the combined

MST at the Driver node. Experiments were conducted on a dataset with

9000 10-dimensional data objects. The data was generated by the same data

generator with a mix of 17 randomly generated gaussian distributions and 500

data objects generated in random within the data space. The PHDBSCAN

parameters were set to mpts = mclSize = 5 and τ = 1000. Experiments are

repeated with 15 independently selected sample sets. Clustering results of

HDBSCAN* with same mpts and mclSize are used as the ground truth. The

quality of the results for different sample sizes are shown in figures 8.6 through

96

Figure 8.6: Adjusted Rand Index Figure 8.7: Jaccard Coefficient

Figure 8.8: F-Measure Figure 8.9: Fowlkes Mallows Score

8.9. The results show that for both Multi-node and Single-node extraction,

the clustering solutions tend to converge after certain sampling rate since the

stabilities captured in a distributed cluster tree (explained in section 6.4.1)

reflect the stabilities of the clusters in the final cluster tree formed at a single

node.

Different datasets are evaluated to compare the clustering solutions produced

by HDBSCAN* and the PHDBSCAN algorithms. By default, and unless ex-

plicitly stated otherwise, all experiments to compare the quality of results are

conducted using the PHDBSCAN Recursive Sampling Approach (both using

sampled objects and Data Bubbles) with the N-ary method of finding promi-

nent clusters at each recursive step and final prominent clusters are extracted

at a single node. The experiments were repeated 15 times with 15 randomly

and independently selected sample sets and the average values for all the val-

idation measures are reported in the figures.

The first set of experiments compares the performance of the methods on

97

Figure 8.10: Adjusted Rand Index Figure 8.11: Jaccard Coefficient

datasets with well separated clusters. Two datasets were generated with

clearly defined clusters. The first dataset was generated with 7 clusters of

20000 2-dimensional data objects with no noise objects. The data was gener-

ated with a mix of gaussian distributions such that there are 7 well-separated

clusters of different shapes. Both algorithms, HDBSCAN* and PHDBSCAN,

clearly identified all 7 clusters with no object identified as a noise object. The

second dataset consisted of 100000 8-dimensional data objects with 7 clusters.

For both experiments, parameters were set at mpts = 10 and mclSize = 100.

Sample sets were drawn at 0.5% sampling rate. The results were identical

for both HDBSCAN* and PHDBSCAN (both using only sampled objects and

Data Bubbles) identifying 7 clusters without any noise objects.

8.3.3 Recursive Sampling Approach: Data Bubbles vs
Only Sampled Objects

To compare the quality of results of PHDBSCAN using only sampled objects

with that of PHDBSCAN using Data Bubbles (explained in detail in sections

5.2 and 6.4 respectively), we conducted experiments on a dataset with the

20000 2-dimensional data objects used in section 8.3.1. The parameters were

set to mpts = mclSize = 5 and τ = 1000. Different validation measures are

shown in figures 8.10 through 8.13. It is inferred from the figures that using

Data Bubbles on the dataset improves the accuracy of the clustering results.

98

Figure 8.12: F-Measure Figure 8.13: Fowlkes Mallows Score

8.3.4 Quality of Results on Real Datasets

To test the accuracy on algorithms with real datasets, three different datasets

were used.

IRIS: Iris dataset is a part of the UCI repository [43] and it is one of the

most used datasets in the pattern recognition literature. The dataset contains

3 classes of 50 instances each with 4 features, where each class contains a type

of iris plants described by the length and the width of their petals and sepals.

Experiments were conducted with parameters mpts = mclSize = 4 for both

PHDBSCAN and HDBSCAN* (similar to the parameters used in [7]). Sam-

ple sets consisted of at least 21 objects. The results for different validation

measures are shown in figure 8.14. The results show that the PHDBSCAN

with both sampled objects and Data Bubbles give similar measures. This is

due to the fact that the dataset is small and the size of the sample set (21 out

of 150) is relatively large that both methods converge to the same measures.

Smaller sample sets will have the tendency to be skewed unless the sample is

carefully chosen to accommodate equal samples from all three possible classes.

Gas Sensor Array Drift Dataset: The “Gas Sensor Array Drift Dataset” [44]

consists of 13910 observations from 16 chemical sensors utilized in simulations

for drift compensation in a discrimination task of 6 gases at various levels

of concentration. The dataset is gathered for a period of 36 months in a

gas delivery platform facility situated at the ChemoSignals Laboratory in the

BioCircuits Institute, University of California San Diego. Each observation

consists of a 128 dimensional feature vector across 16 sensors, each described

99

Figure 8.14: Accuracy of IRIS Data (Comparison of HDBSCAN* and
PHDBSCAN-Recursive Sampling Approaches)

by 8 features. The dataset contains of 6 distinct classes of 6 different gaseous

substances, namely Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol, and

Toluene, dosed at a wide variety of concentration levels. The objective of a

clustering method is to find these distinct classes by identifying the state of

the levels of the gases across various sensors. Experiments were conducted

with parameters mpts = mclSize = 5. The results for the different validation

measures are shown in figure 8.15. The results of PHDBSCAN using Data

Bubbles are better than the PHDBSCAN using only sampled objects.

Figure 8.15: Accuracy of Gas Data (Comparison of HDBSCAN* and
PHDBSCAN-Recursive Sampling Approaches)

100

YouTube Multiview Video Games Dataset: The third dataset is the

“YouTube Multiview Video Games Dataset” [45]. This dataset consists of fea-

ture values and class labels for about 120000 videos (instances). Each instance

is described by up to 13 feature types, from 3 high level feature families: tex-

tual, visual and auditory features. The dataset contains 31 class labels, corre-

sponding to popular video games. Out of the available 13 feature families with

thousands of features, 87 video features were selected for experiments which

were available for 95% of the dataset. The missing values were replaced with

the Expectation-Maximization algorithm using IBM SPSS Statistics Desktop

version 22.0 tool. The results are shown in figure 8.16. The results show that

for this dataset, the PHDBSCAN - Recursive Sampling Approach with Data

Bubbles approximate the solutions of HDBSCAN* than the PHDBSCAN -

Recursive Sampling Approach with only sampled objects.

Figure 8.16: Accuracy of Youtube Data (Comparison of HDBSCAN* and
PHDBSCAN-Recursive Sampling Approaches)

8.3.5 Influence of Node Capacity

The τ gives a measure of the maximum number of objects that can be processed

by a node. The threshold can be set based on the hardware used. To measure

the influence of the parameter τ , we conducted experiments on the youtube

dataset with mpts = 10 and mclSize = 100. The results for values of τ between

1000 and 20000 are shown in figure 8.17. The results show that there is

101

almost no difference in performance, indicating very little dependence on the

parameter τ .

Figure 8.17: Influence of PerNodeThreshold on Accuracy

8.4 Evaluation of Execution Time

To evaluate the runtime of our proposed methods, the following experiments

are run on Amazon EMR with S3 for storing objects. The MapReduce pa-

rameters for speculative execution are set to off at both task level and job

level.

8.4.1 Random Blocks

The Random Blocks Approach is an approach that randomly divides the data

into multiple overlapping datasets called data blocks. Each data block is pro-

cessed independently and finally combined at a single reducer. The whole

process is divided into two parts

• Independently finding the local Minimum Spanning Tree (MST) at every

node.

• Combining the local MSTs into a single overall MST.

The experiments to evaluate the execution time of the Random Blocks Ap-

proach were run on Amazon Elastic Cloud Computing using the Amazon EMR

102

framework. The dataset consisted of 1 million 2-dimensional data objects. The

experiments are run on a distributed environment with 10 core nodes and 1

master node, all instances of type m1.medium. The 10 core nodes are respon-

sible for calculating the local Minimum Spanning Trees and one of them is

used as the reducer to combine all the local MSTs.

We measured the execution time of the dataset for different values of mpts

varying from 2 to 5 with mclSize = 1000 and τ = 100000. The figure 8.18

shows the increase in processing time with respect to the change in mpts. The

processing time for the Random Blocks approach works well for smaller val-

ues of mpts and for mpts > 4 , the execution time exceeds the execution time

of HDBSCAN* algorithm on a single node. This is due to the fact that the

number of data blocks created increases considerably with a small change in

mpts and the total number of edges aggregated by all the local MSTs increase

with increase in the number of local MSTs. This behaviour severely limits the

applicability of the Random Blocks Approach to speed up density-based hier-

archical clustering. Values for mpts > 4 are rather the rule than the exception

in applications of density-based clustering.

Figure 8.18: Comparison of Execution time of the Random Blocks Approach
with HDBSCAN* on different values of mpts

103

8.4.2 Recursive Sampling Approach with Data Bubbles
using the N-ary extraction method

Set of experiments was conducted to compare the execution time of PHDBSCAN

using the N-ary extraction method for datasets of different sizes. We used 6

synthetic datasets with 1, 2, 3, 4, 5 and 10 million data objects, respectively,

and at 0.5% sampling rate. The experiments were conducted with 10 different

samples using 3 c3.xlarge instances as core nodes and a c3.xlarge instance as

master node. The average runtime over the 10 different samples is shown in

figure 8.19. It is observed that increase in execution time with respect to the

increase in size of the input is much lesser than the usual quadratic run time

complexity of HDBSCAN*.

Figure 8.19: Comparison of Execution time for different datasets of increasing
sizes using N-ary Approach

A set of experiments was also conducted to study the influence of the number

of distributed core nodes, given the same dataset with same the sampling

rate. Figures 8.20 and 8.21 show the execution time on 2 synthetic datasets,

consisting of 1 million and 10 million data objects, respectively. From figure

8.20 and 8.21, we can infer that the performance gain is initially large by adding

more core nodes but with addition of more core nodes, the performance gain is

marginal. This is due to the fact that the number of required reducers (where

the sequential aspect of the algorithm runs and consumes the maximum time)

are dependent on the number of clusters that are extracted at each level.

104

Therefore, an increase in number of core nodes may render some of the core

nodes to be idle at some iterations, depending on the number of extracted

clusters. The marginal increase in performance is due to the fact that the

mappers, that are operated in parallel, are dependent on the number of data

splits (each data split goes to a mapper as discussed in section 7.3.1) and in the

experiments that were conducted, the number of data splits is always larger

than the number of distributed nodes.

Figure 8.20: Influence of number of distributed nodes on execution time of 1
million data objects using m1.medium instances of worker nodes

Figure 8.21: Influence of number of distributed nodes on execution time of 10
million data objects using c3.xlarge instances of worker nodes

105

8.4.3 Comparing with the Binary method of cluster ex-
traction

We also conducted a set of experiments to evaluate the execution time of the

PHDBSCAN Recursive Sampling Approach with Data Bubbles using the Bi-

nary method of extraction. Experiments were conducted with 10 independent

sample sets at 0.5% sampling rate for three different datasets using both N-

ary and Binary methods. The first two sets of experiments were conducted

with two different datasets consisting of 1 million data objects, described by

2-dimensional and 10-dimensional feature vectors, respectively. These first

two sets of experiments were conducted with 4 core nodes on the m1.medium

instance. The third set of experiments was conducted on the same 1 million

2-dimensional data, but on the c3.xlarge instance. Figure 8.22 illustrates that

Figure 8.22: Comparison of Binary Approach and N-ary Approach for different
datasets

the execution time using the Binary method is many times larger than the

execution time using the N-ary method of cluster extraction using the same

parameters and core node configuration. This is due to the fact that in Binary

method, at all levels of iterations, the number of clusters extracted are almost

always 2. This increases the number of iterations that are required to complete

the execution of the Recursive Sampling Approach of PHDBSCAN using the

Binary method. Adding more iterations to the processing induces additional

job setup time, time to assign nodes for particular files, time for the shuffle

106

stage for more rounds and data I/O.

8.5 Conclusions

MapReduce framework is a programming paradigm that processes massive

amounts of unstructured data in parallel across a distributed cluster. Hierar-

chical clustering algorithms, that have many advantages over the traditional

partitional clustering algorithms, were difficult to operate in parallel due to

their constraints. In this dissertation we introduced two different approaches

to parallelize the hierarchical density-based clustering algorithm called HDB-

SCAN* by data parallelism. The first method called the “Random Blocks Ap-

proach” finds an exact HDBSCAN* hierarchy while the second method called

“Recursive Sampling Approach” finds an approximate version of HDBSCAN*

hierarchy. These approaches were implemented using the MapReduce frame-

work by converting the recursive problem of dividing the data to a MapReduce

problem, allowing the hierarchical clustering algorithm to run on parallel ma-

chines.

We also evaluated different validation measures in terms of the quality of

results, and also measured the improvement in execution time of the algo-

rithms. The quality of results show that PHDBSCAN Recursive Sampling

Approach, approximately identifies the clustering partitions generated by the

HDBSCAN* algorithm. Implementing the Recursive Sampling approach with

a data summarization technique called Data Bubbles, improves the accuracy

of the clustering solutions.

We first evaluated the execution time to construct the exact HDBSCAN* hi-

erarchy using the Random Blocks Approach with varying mpts. The Random

Blocks Approach fails to improve the execution time using parallel systems due

to the increase in the number of files to be processed and repeatedly computing

edges between same vertices at multiple nodes. Therefore, the Random Blocks

Approach does not really take advantage of the available parallel processing

units.

107

The parallel systems are best used using the Recursive Sampling Approach.

We showed empirically, the improvements in execution time of PHDBSCAN

using Recursive Sampling Approach on parallel processing units over the HDB-

SCAN* algorithm on a single processing unit. The PHDBSCAN Recursive

Sampling Approach is also scalable and the results were shown for dataset of

upto 10 million data objects. The PHDBSCAN has a loss of quality in the

results due to approximation; loss of quality is a trade-off for the time required

to compute an exact HDBSCAN* hierarchy. Given the amount of time taken

by the HDBSCAN* algorithm to run on large datasets, a quick clustering can

be obtained using PHDBSCAN Recursive Sampling approach. We also pro-

posed a method to quickly find a Distributed Cluster Tree which can be used

to find the set of most prominent clusters without the need to combine the

individual solutions from various distributed nodes and creating a hierarchy

on the combined solution. This helps to quickly analyze the approximate clus-

ters, and take decisions based on it.

The idea of using Distributed Cluster Tree can be extended to identify the

outlier scores immediately. The original HDBSCAN* paper [7] introduces

an outlier score for noise objects called “Global-Local Outlier Score from Hi-

erarchies”(GLOSH). These scores can be approximately computed using the

Distributed Cluster Tree and thus approximately assigning a degree of outlier-

ness for the noise objects extracted at various levels of density.

108

Bibliography

[1] C. Jin, M. M. A. Patwary, A. Agrawal, W. Hendrix, W.-k. Liao, and

A. Choudhary, “Disc: A distributed single-linkage hierarchical clustering

algorithm using mapreduce,” work, vol. 23, p. 27.

[2] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis. Wiley Publish-

ing, 4th ed., 2009.

[3] P. Hansen and B. Jaumard, “Cluster analysis and mathematical program-

ming,” Math. Program., vol. 79, pp. 191–215, Oct. 1997.

[4] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[5] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338 –

353, 1965.

[6] S. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32,

no. 3, pp. 241–254, 1967.

[7] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering

based on hierarchical density estimates,” in Advances in Knowledge Dis-

covery and Data Mining, pp. 160–172, Springer Berlin Heidelberg, 2013.

[8] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data

clustering method for very large databases,” 1996.

[9] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering algo-

rithm for large databases,” in Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’98, (New

York, NY, USA), pp. 73–84, ACM, 1998.

109

[10] S. G. Rajeev, R. Rastogi, and K. Shim, “Rock: A robust clustering al-

gorithm for categorical attributes,” in Information Systems, pp. 512–521,

1999.

[11] G. Karypis, E.-H. S. Han, and V. Kumar, “Chameleon: Hierarchical clus-

tering using dynamic modeling,” Computer, vol. 32, pp. 68–75, Aug. 1999.

[12] L. Kaufman and P. J. Rousseeuw, Monothetic Analysis (Program MONA),

pp. 280–311. John Wiley & Sons, Inc., 2008.

[13] R. Sibson, “SLINK: An Optimally Efficient Algorithm for the Single-Link

Cluster Method,” The Computer Journal, vol. 16, pp. 30–34, 1973.

[14] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel

Computing, vol. 21, pp. 1313–1325, 1995.

[15] H.-R. Tsai, S.-J. Horng, S.-S. Lee, S.-S. Tsai, and T.-W. Kao, “Parallel hi-

erarchical clustering algorithms on processor arrays with a reconfigurable

bus system.,” Pattern Recognition, vol. 30, no. 5, pp. 801–815, 1997.

[16] C.-H. Wu, S.-J. Horng, and H.-R. Tsai, “Efficient parallel algorithms for

hierarchical clustering on arrays with reconfigurable optical buses.,” J.

Parallel Distrib. Comput., vol. 60, no. 9, pp. 1137–1153, 2000.

[17] S. Rajasekaran, “Efficient parallel hierarchical clustering algorithms,”

IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 6,

pp. 497–502, 2005.

[18] E. M. Rasmussen and P. Willett, “Efficiency of hierarchic agglomerative

clustering using the icl distributed array processor,” J. Doc., vol. 45,

pp. 1–24, Mar. 1989.

[19] J. L. Bentley, B. W. Weide, and A. C. Yao, “Optimal expected-time

algorithms for closest point problems,” ACM Trans. Math. Softw., vol. 6,

pp. 563–580, Dec. 1980.

110

[20] J. L. Bentley and H.-T. Kung, “Two papers on a tree-structured par-

allel computer,” Tech. Rep. CMU-CS-79-142, Carnegie-Mellon Univer-

sity.Computer science. Pittsburgh (PA US), 1979.

[21] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, “Relaxed

heaps: An alternative to fibonacci heaps with applications to parallel

computation,” Commun. ACM, vol. 31, pp. 1343–1354, Nov. 1988.

[22] D.-J. Chang, M. M. Kantardzic, and M. Ouyang, “Hierarchical clustering

with cuda/gpu.,” in ISCA PDCCS (J. H. Graham and A. Skjellum, eds.),

pp. 7–12, ISCA, 2009.

[23] Z. Du and F. Lin, “A novel parallelization approach for hierarchical clus-

tering,” Parallel Computing, vol. 31, no. 5, pp. 523 – 527, 2005.

[24] S. Wang and H. Dutta, “PARABLE: A PArallel RAndom-partition Based

HierarchicaL ClustEring Algorithm for the MapReduce Framework,” The

Computer Journal, vol. 16, pp. 30–34, 2011.

[25] V. Olman, F. Mao, H. Wu, and Y. Xu, “Parallel clustering algorithm for

large data sets with applications in bioinformatics,” IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, vol. 6, no. 2, pp. 344–

352, 2009.

[26] W. Hendrix, M. Ali Patwary, A. Agrawal, W. keng Liao, and A. Choud-

hary, “Parallel hierarchical clustering on shared memory platforms,” in

High Performance Computing (HiPC), 2012 19th International Confer-

ence on, pp. 1–9, Dec 2012.

[27] W. Hendrix, D. Palsetia, M. Ali Patwary, A. Agrawal, W. keng Liao, and

A. Choudhary, “A scalable algorithm for single-linkage hierarchical clus-

tering on distributed-memory architectures,” in Large-Scale Data Analy-

sis and Visualization (LDAV), 2013 IEEE Symposium on, pp. 7–13, Oct

2013.

111

[28] M. Ankerst, M. M. Breunig, H. peter Kriegel, and J. Sander, “Optics:

Ordering points to identify the clustering structure,” pp. 49–60, ACM

Press, 1999.

[29] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis,” Journal of Computational and Applied

Mathematics, vol. 20, no. 0, pp. 53 – 65, 1987.

[30] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm

for discovering clusters in large spatial databases with noise,” pp. 226–231,

AAAI Press, 1996.

[31] T. Pei, A. Jasra, D. Hand, A.-X. Zhu, and C. Zhou, “Decode: a new

method for discovering clusters of different densities in spatial data,” Data

Mining and Knowledge Discovery, vol. 18, no. 3, pp. 337–369, 2009.

[32] G. Gupta, A. Liu, and J. Ghosh, “Automated hierarchical density shav-

ing: A robust automated clustering and visualization framework for large

biological data sets,” IEEE/ACM Trans. Comput. Biol. Bioinformatics,

vol. 7, pp. 223–237, Apr. 2010.

[33] J. A. Hartigan, Clustering Algorithms. New York, NY, USA: John Wiley

& Sons, Inc., 99th ed., 1975.

[34] P. Bradley, U. Fayyad, and C. Reina, “Scaling clustering algorithms to

large databases,” pp. 9–15, AAAI Press, 1998.

[35] W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon,

“Squashing flat files flatter,” in Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

KDD ’99, (New York, NY, USA), pp. 6–15, ACM, 1999.

[36] M. M. Breunig, H. P. Kriegel, P. Kröger, and J. Sander, “Data bubbles:

quality preserving performance boosting for hierarchical clustering,” in

SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international con-

112

ference on Management of data, (New York, NY, USA), pp. 79–90, ACM,

2001.

[37] M. M. Breunig, H.-P. Kriegel, and J. Sander, “Fast hierarchical clustering

based on compressed data and optics,” in Proceedings of the 4th Euro-

pean Conference on Principles of Data Mining and Knowledge Discovery,

PKDD ’00, (London, UK, UK), pp. 232–242, Springer-Verlag, 2000.

[38] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[39] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation for

mapreduce,” in Proceedings of the Twenty-first Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’10, (Philadelphia, PA, USA),

pp. 938–948, Society for Industrial and Applied Mathematics, 2010.

[40] W. Rand, “Objective criteria for the evaluation of clustering methods,”

Journal of the American Statistical Association, vol. 66, no. 336, pp. 846–

850, 1971.

[41] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-

tion, vol. 2, no. 1, pp. 193–218, 1985.

[42] E. B. Fowlkes and C. L. Mallows, “A Method for Comparing Two Hi-

erarchical Clusterings,” Journal of the American Statistical Association,

vol. 78, no. 383, pp. 553–569, 1983.

[43] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[44] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and

R. Huerta, “Chemical gas sensor drift compensation using classifier en-

sembles, sensors and actuators b,” 2012.

[45] O. Madani, M. Georg, and D. A. Ross, “On using nearly independent

feature families for high precision and confidence,” Machine Learning,

vol. 92, pp. 457–477, 2013.

113

Appendices

114

Appendix A

MapReduce Algorithms

Algorithm 13: Random Blocks Approach: Driver

Input: Dataset X, Parameter mpts, Number of partitions k
Output: HDBSCAN* Hierarchy
System: Master Node

1. Divide the dataset X into k partitions.

2. Generate l =
(

k
2×mpts

)
data blocks, each with a unique identifier.

3. Call Algorithm 14 with a set of data blocks as input. The output is a
set of Minimum Spanning Trees, MSTlocal = {MST1, ...,MSTl} as set
of edges.

4. Call Algorithm 15 with the set of local Minimum Spanning Trees
MSTlocal. Output is a combined MST, MSTcombined, as a set of edges.

5. Extract HDBSCAN* hierarchy as a dendrogram from MSTcombined.

Algorithm 14: Random Blocks Approach : Mapper

Input: Data Block containing dataset Y and Unique Identifier i,
Parameter mpts

Output: Local Minimum Spanning Tree, MSTi on file system
System: Set of Distributed Nodes

1. For each object in Y , compute core distance w.r.t. mpts

2. Compute a Mutual Reachability Graph Gmreach using the core
distances.

3. Compute an MST, MSTi on Gmreach .

4. For each edge in MSTi, the (key, value) pair is given by (1, e) where e
is given by (u, v, dmreach).

115

Algorithm 15: Random Blocks Approach : Reducer

Input: Set of local Minimum Spanning Trees
Output: Combined MST
System: Single Reducer

1. Add all edges from all the input MSTs to a set E and sort E according
to weight of the edges in E.

2. Initialize the overall combined MST, MSTcombined with no edges.

3. Starting from the edge with the least weight, do the following:

(a) Remove the edge from E and add the edge to MSTcombined.

(b) If edge e is a duplicate edge of e′ ∈MSTcombined, remove the edge
with the maximum weight between e and e′.

(c) If addition of edge e induces a cycle in MSTcombined, remove e
from MSTcombined.

116

Algorithm 16: Recursive Sampling Approach Driver

Input: Dataset X, Parameter mpts, mclSize, Processing Capacity τ ,
Arguments input and output directories

Output: HDBSCAN* Hierarchy
System: Master Node

1. Draw a random sample S from X such that | S |≤ τ .

2. Find the most prominent clusters on HDBSCAN* hierarchy on dataset
X w.r.t. mpts and mclSize.

3. Write the data objects in S with their cluster membership in a
hierarchy file FH .

4. Create a job with configuration files and add FH to distributed cache of
MapReduce.

5. Run the job (Executing Algorithm 17 and 18 one after another).
Output is either a list of directories to be processed with a Hierarchy
file and Inter-Cluster Edges directory (or) local MST directory.

6. while there exists a directory in “Output Directory” to be processed do

(a) Select an input directory D from the list of unprocessed
directories.

(b) Create job with D as input directory.

(c) Add the corresponding Hierarchy file to distributed cache.

(d) Run the job with the configuration files and arguments.

(e) if returned with a “fail” status then
Re-Sample the dataset and run the job again

else
Mark the directory D as “processed”.

end

end

7. Add all the edges from the MSTs in the directory “local MST
directory” and all the inter-cluster edges in the directory “Inter Cluster
Edges” to a set of edges, MSTcombined.

8. Extract HDBSCAN* hierarchy as a dendrogram from MSTcombined.

117

Algorithm 17: Recursive Sampling Approach Mapper

Input: Data Block with dataset Y , Hierarchy file FH , Configuration file
Output: Set of (key, value) pairs
System: Set of Distributed Nodes (Mappers)

1. For each object xp in Y , find the nearest neighbor of xp, 2-NN(xp),
among the data objects in FH .

2. Identify the cluster membership of 2-NN(xp) and assign xp to the
same cluster.

3. Write the output in the form of (key, value) pair as
(ClusterLabel,DataObject).

Algorithm 18: Recursive Sampling Approach Reducer

Input: Set of (key, value) pairs, Configuration file
Output: Directory “local MST directory” (or)
Output: Output Directory, set of inter-cluster edges “Inter-Cluster

Edges”, “Hierarchy File”
System: Set of distributed nodes (Reducers)

1. Aggregate all the (key, value) pairs into set Y ′.

2. if | Y ′ |≤ τ then

(a) Compute the Minimum Spanning Tree, MSTlocal, on the mutual
reachability graph created on dataset Y ′ w.r.t. mpts.

(b) Write the edges of MSTlocal to one or more files in “local MST
directory”.

else

(a) Draw random sample S from Y ′.

(b) Extract most prominent clusters on S using HDBSCAN*
hierarchy and write the cluster membership of objects in S to
“Hierarchy file”.

(c) Identify the inter-cluster edges and write the edges to “Inter
Cluster Edges”. Check for the optional sampling tolerance
parameter ς. If not satisfied, return “fail” as status.

(d) Add the data objects to a unique output directory in a parent
directory “Output Directory”.

end

118

Algorithm 19: Recursive Sampling Approach with Data Bubbles -
Driver

Input: Dataset X, Parameter mpts, mclSize, Processing Capacity τ ,
Arguments input and output directories

Output: HDBSCAN* Hierarchy
System: Master Node

1. Draw a random sample S, called the “Seed set” from X such that
| S |≤ τ .

2. Write the data objects in S to a cluster file FSS.

3. Create a job with configuration files and add FSS to distributed cache
of MapReduce.

4. Run the job (Executing Algorithm 20 and 21 one after another).
Output is a file FB with aggregated Data Bubbles and their respective
cluster membership.

5. Create a job with configuration files and add FB to distributed cache of
MapReduce.

6. Run the job (Executing Algorithm 22 and 23 one after another).
Output is either a list of directories to be processed with Seed file and
Inter-Cluster Edges directory (or) a directory local MST directory.

7. while there exists a directory in “Output Directory” to be processed do

(a) Select an input directory D among the list of unprocessed
directories.

(b) Create a job, Layer1Job with D as the input directory and add
the corresponding FSS to distributed cache.

(c) Run the Layer1Job with the configuration file and input
arguments. Output is the file FB.

(d) Create another job Layer2Job, with D as the input directory and
add FB to distributed cache and run it. Output is either a local
MST or an unprocessed output directory with a Seed file, F ′SS.

(e) Mark the directory D as “processed”.

end

8. Add all the edges from the MSTs in the directory “local MST
directory” and all the inter-cluster edges in the directory “Inter-Cluster
Edges” to a set of edges, MSTcombined.

9. Extract HDBSCAN* hierarchy as a dendrogram from MSTcombined.

119

Algorithm 20: Layer 1 - Bubble Mapper

Input: Data Block with dataset Y , Seed file FS, Configuration file
Output: Set of (key, value) pairs
System: Set of Distributed Nodes (Mappers)

1. Initialize a Data Bubble for each seed object in FS.

2. For each object xp in Y , find the nearest neighbor of xp, 2-NN(xp),
among the seed objects in FS.

3. Update the corresponding Data Bubble.

4. Write the output in the form of (key, value) pair as (1, DataBubble).

Algorithm 21: Layer 1 - Bubble Reducer

Input: Set of (key, value) pairs, Configuration file
Output: “Cluster Membership file” FB, set of inter-cluster edges

“Inter-Cluster Edges”
System: Single Reducer node

1. Aggregate all the Data Bubbles with same Data Bubble identifiers to
get a set of Data Bubbles B.

2. Compute HDBSCAN* hierarchy on B w.r.t. mpts and extract the
prominent clusters.

3. Find the inter-cluster edges and add them to “Inter-Cluster Edges”.

4. Write the Data Bubbles with their cluster membership to FB.

Algorithm 22: Layer 2 - PHDBSCAN Mapper

Input: Data Block with dataset Y , File FB containing set B of Data
Bubbles and their cluster membership, Configuration file

Output: Set of (key, value) pairs
System: Set of Distributed Nodes (Mappers)

1. For each object xp ∈ Y which belong to a Data Bubble Bxp , find the
cluster membership of Bxp in B and assign xp to the same cluster.

2. Write the output in the form of (key, value) pair as
(ClusterLabel,DataObject xp).

120

Algorithm 23: Layer 2 - PHDBSCAN Reducer

Input: Set of (key, value) pairs, Configuration file
Output: Directory “local MST directory” (or)
Output: Output Directory, “Seed File”
System: Set of distributed nodes (Reducers)

1. Aggregate all the (key, value) pairs into set Y .

2. if | Y |≤ τ then

(a) Compute the Minimum Spanning Tree, MSTlocal, on the mutual
reachability graph created on dataset Y w.r.t. mpts.

(b) Write the edges of MSTlocal to one or more files in the directory,
“local MST directory”.

else

(a) Draw random sample S from Y .

(b) Add the objects in S to a Seed file, FS.

(c) Add the data objects to a unique output directory in the parent
directory “Output Directory”.

end

121

