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Abstract

Cyber-physical systems (CPSs) are an emerging technology with the poten-

tial to be transformational in the field of systems and control. They combine

wireless and virtual components with physical infrastructure to create systems

that are more adaptable, scalable, and resilient than their traditional coun-

terparts. Unfortunately, the connections in these wireless networks may be

vulnerable to attacks from hostile adversaries that seek to impair the system.

This is why the security of CPSs has become a popular area of research in the

past decade. Development of effective countermeasures requires a solid under-

standing of potential vulnerabilities, so it is necessary to study how attackers

could successfully degrade system performance while remaining undetected.

Two deterministic attack models with different stealthiness conditions are

considered. First of all, we study the properties and optimization of strictly

stealthy attacks that cannot be detected by output and innovation-based de-

tectors on CPSs. These attacks may target both actuator and sensor commu-

nication channels with the goal of impairing system performance. We provide

a necessary and sufficient condition for a system to be susceptible to a strictly

stealthy attack of any given time length. Furthermore, we analytically derive

the optimal attack out of all possible strictly stealthy attacks with a partic-

ular length based on an energy constraint and a summation-based quadratic

objective function.

Secondly, we examine optimal stealthy attacks that utilize a relaxed stealth-
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iness condition. This condition ensures that the attacks are difficult for any

innovation-based detectors to perceive. In order to determine the maximum

performance degradation that the attacks may cause, a general optimiza-

tion problem that can be solved numerically is formulated for a finite attack

length. For non-divergent systems over an infinite horizon, the optimal con-

stant and alternating attacks are derived analytically for any system configu-

ration. Characteristics of a novel low-dimensional sinusoidal class of attacks

are investigated and procedures for optimization are given. Furthermore, a

condition is provided for constant and alternating attacks to be superior to

most or all sinusoidal attacks. A mechanism to compare deterministic and

stochastic attacks is also presented.

Finally, we illustrate the theoretical results using several numerical exam-

ples to demonstrate the effectiveness of the designed attacks.
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Preface

• Chapter 2 has been published as: Donny Cheng, Jun Shang and Tong-

wen Chen,“Finite-Horizon Strictly Stealthy Deterministic Attacks on

Cyber-Physical Systems,” IEEE Control Systems Letters, vol. 6, pp.

1640–1645, 2022. The contents of the aforementioned paper were also

selected by the American Control Conference 2022 Program Committee

for presentation at the conference.

• Chapter 3 has been submitted for publication as: Donny Cheng, Jun

Shang, and Tongwen Chen, “Optimal Stealthy Deterministic Attack

Strategies on Cyber-Physical Systems”, IEEE Transactions on Control

of Network Systems.
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Chapter 1

Introduction

In this chapter, the area of cyber-physical system (CPS) security in re-

search is introduced. A survey of attack designs and countermeasures in re-

cent literature is then provided. Furthermore, the primary contributions of

this work are listed and an outline of the remainder of the thesis is given.

1.1 Research Background

In recent years, CPSs have been increasingly adopted for a variety of ap-

plications and industries. These systems utilize wireless communication net-

works to transmit data between components of the system, such as the sensors,

state estimator, controller, and actuator. This growth has been driven by ad-

vancements in communication technologies that have the capability of creating

systems that are less expensive and easier to maintain [35]. There are numer-

ous budding control applications for CPSs, including intelligent transportation

networks [40], smart medical devices [13], and more efficient manufacturing

[18]. CPSs also have potential in the process control [15] and power [42, 43]

industries as well.

However, the interconnections within CPSs also render them susceptible

to attacks from malicious agents [35, 36]. In fact, sophisticated attacks have

already been developed and launched, including multiple attacks on Ukraine’s

power grid in 2015 and 2016 [23] and the highly publicized Stuxnet attacks

in 2010 [17]. This is why there has been a surge of publications on how to
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protect CPSs from adversaries. However, developing suitable countermeasures

requires knowledge of potential attack strategies to evaluate the existing risk

and design effective mitigating actions. That is why an assortment of at-

tack models has also been studied thoroughly. Many of these attacks feature

minimal influence on signals available to the state estimator side of the CPS,

such as output and innovation, to remain stealthy from any detectors that are

equipped. This allows the attacker to cause more degradation over a longer

period of time by delaying the initiation of emergency responses [3].

1.2 Literature Survey

The thesis examines the design of optimal false data injection (FDI) attacks

on both actuator and output channels of closed-loop cyber-physical control

systems under two distinct stealthiness constraints. This section discusses the

classes of attacks and countermeasures that have been examined in recent

publications. Then, a detailed literature review of FDI attacks is presented.

1.2.1 Defensive Countermeasures

A variety of countermeasures have been developed to protect closed-loop

systems and remote state estimators from adversaries. Encryption of the data

sent over communication channels is an effective way to hinder most attacks.

For remote state estimation, optimal encryption strategies were developed

using a game theoretical approach under different assumptions of attacker

knowledge in [30]. Furthermore, a single-dimensional encryption scheme [33]

was introduced to secure state estimators and features reduced computational

complexity.

Advanced detection strategies have also been developed in order to identify

stealthy attacks that may otherwise remain hidden. For example, a summation

detector that extends the standard χ2 detector to include historical innovations

was introduced in [41]. Other detection mechanisms include causality-based

detectors [34], sequential data verification [19], encode–decode schemes [24]
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and watermark design for systems with unknown parameters [20]. Further-

more, resilient control and estimation policies have been proposed so that sys-

tems can operate effectively even while an attack is ongoing [38], [7]. Enhanced

actuator saturation has also been introduced as a way to limit the potential

damage an attack can cause [16]. Unfortunately, implementing some of these

countermeasures can result in sub-optimal system performance in the absence

of an attack [25].

1.2.2 Types of Attacks on Cyber-Physical Systems

A wide variety of attack formulations have been studied, and they can be

grouped into a few general categories. First of all, there are denial-of-service

(DoS) attacks that block communication channels to prevent data from being

transmitted from one system component to another. For these attacks, a

common problem that has been studied is optimal scheduling if the attacker

can only block channels a limited number of times. This was investigated in

[44] with the goal of maximizing an infinite-horizon linear quadratic Gaussian

(LQG) cost function. In [46], DoS attacks against the control channels in a

linear quadratic regulator (LQR) system were studied.

During replay attacks, the attacker saves a portion of transmitted data and

then overrides the system’s communications with this recording at a later time.

Replay attacks are relatively simple to design and are effective at evading any

innovation-based detectors [8]. Reset attacks are unique because they target a

remote state estimator directly instead of the communication channels around

it. They typically degrade the system by altering the stored state estimate,

such as resetting it to the initial value at each time step [28]. Unlike the

others, eavesdropping attacks do not seek to influence the system variables in

any way. Rather, they attempt to breach a system’s privacy by estimating the

system state [39]. This allows adversaries to obtain proprietary information

or initiate a more effective future attack.
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1.2.3 False Data Injection Attacks

FDI attacks, sometimes also known as integrity or deception attacks, have

attracted a lot of attention because they can be designed to severely impair

CPS performance while retaining desirable stealthiness properties. In con-

trast to other attacks, FDI attacks directly corrupt the transmitted data by

intercepting and modifying it appropriately. There are two primary models

used for designing integrity attacks: the stochastic attack framework and the

deterministic attack framework. They differ in how they handle the random

noises inherent in the system.

Stochastic attacks address the probabilistic noises of the system directly

and incorporate the influence of noise in their design. Stochastic attacks

against state estimation have been studied extensively. The landmark pa-

per is [10], in which it was found that the optimal stealthy linear attack that

has no effect on the innovation distribution is to simply flip the sign on the

transmitted residual. This was later extended in [11] with a relaxed stealthi-

ness condition based on the Kullback–Leibler divergence (KLD) between the

compromised and nominal innovation signals at each time step. Guo et al.

also considered the optimal stealthy attack when the attacker is able to inde-

pendently measure the system state, which is referred to as side information

[12].

For closed loop systems, the optimal stealthy attacks were derived with a

general attack form and the goal of maximizing the LQG control cost function

in [31]. Bai et al. also studied optimal attacks on LQG systems but used a

KLD stealthiness metric over an infinite sequence of outputs [1]. Attacks on

general fixed-gain feedback closed-loop systems were discussed in [4].

1.2.4 Deterministic False Data Injection Attacks

While stochastic attacks may be more robustly resistant to detectors, they

require the attacker to have consistent access to real-time data from the sys-

tem. The deterministic attack model focuses its attention at the deviation
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between system variables in attacked and healthy systems. Since these differ-

ences are all deterministic in nature, this allows attacks to be designed and

computed offline without any need for real-time data as long as the system

model is known. Furthermore, while the stochastic attack model typically

assumes that the noises are zero-mean Gaussian and that the system uses

fixed-gain feedback control, it can be shown that there is no need for any

assumptions on the noise distributions or control scheme for deterministic

attacks to be applicable.

The concept of stealthy deterministic attacks was first introduced in [26],

which only considered attacks on the measurement channel. These results

were later extended in [37] by incorporating attacks on the control channel as

well. Necessary and sufficient conditions for an attack on both channels to

be able to cause system states to diverge under strict and relaxed stealthiness

constraints were derived. When divergence is not possible, a method to find

a bound on the difference in the estimation error using the z-transform was

proposed. The concepts of strict and relaxed stealthiness from [37] are used

in this thesis.

In [45], a deterministic attack that completely eliminates its influence on

residuals during steady state was designed to destabilize a CPS. Deterministic

attacks against closed-loop control with network delays and state estimation

were also studied in [29] and [14], respectively. However, these two papers

assumed that the attacker had real-time knowledge of the data in the commu-

nication channels. Attempts to create attacks with highly limited information

sets have also been made, such as in [9], in which it is assumed that the

attacker has only the system state-space matrices available.

Almost all papers on deterministic attacks focus on destabilizing the target

system. As far as we are aware, there is nothing in the literature on fully

deterministic attacks that seek to maximize system performance degradation

when they are unable to affect system stability. In this thesis, we try to fill this

gap by studying the optimization of effective stealthy attack strategies in order
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to determine the extent to which system performance may be undermined.

1.3 Thesis Contributions

To identify the vulnerability of CPSs to FDI attacks, this thesis studies

optimal attacks under different stealthiness constraints. The major contribu-

tions are summarized as follows:

1. We extend the concept of strict vulnerability introduced in [37], which

focused on the behaviour of the attack as t→∞, to τ -step strict vulner-

ability. This is a weaker condition, but strictly stealthy attacks still have

the potential to cause substantial damage to τ -step strictly vulnerable

systems in a short time span. For a τ -step strictly vulnerable system, we

find the set of all possible (τ + 1)-step strictly stealthy attacks (strictly

stealthy attacks from time step 0 to τ). Then, we study the optimization

of deterministic strictly stealthy attacks by analytically deriving the op-

timal (τ +1)-step strictly stealthy attack that maximizes its effect while

utilizing limited attack energy.

2. The general optimization problem for the maximum performance degra-

dation of a system under a finite-horizon attack with a relaxed stealth-

iness constraint is formulated. Over an infinite-horizon, we derive the

optimal attack vectors for a stealthy fully constant or alternating at-

tack and show that these attacks are superior to all other alternating

attacks. Furthermore, we move the problem into the frequency domain

by introducing stealthy sinusoidal attacks and discuss how to charac-

terize these attacks to find the optimal attack parameters. We derive a

sufficient condition for constant and alternating attacks to be optimal

over all two-dimensional and most higher-dimensional sinusoidal attacks.

Finally, we provide a way to directly compare the performance of the

deterministic attacks in this thesis with optimal stochastic attacks in the

literature.
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1.4 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, we study

the set of deterministic attacks on a CPS that do not affect the system innova-

tion within a finite horizon and find the optimal attack out of all possibilities.

In Chapter 3, we investigate the optimal attacks on CPSs under a relaxed

stealthiness constraint in general over a finite horizon and using constant, al-

ternating, and sinusoidal attack forms over an infinite horizon. Chapter 4

concludes this thesis and provides some potential ideas for future work.
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Chapter 2

Finite-Horizon Strictly Stealthy
Deterministic Attacks∗

This chapter studies strictly stealthy FDI attacks on both channels of

closed-loop CPSs. These attacks are designed to have zero influence on the

output and innovation for the duration of the incursion. The necessary and

sufficient conditions for a strictly stealthy attack of length τ to be possible

against a system with known parameters is derived. It is also shown that an

attack with length of n + 1 is possible if and only if an attack of arbitrary

length is also possible, where n is the order of the system. Furthermore, the

set of all such attacks is provided as the null space of a matrix. Assuming

the attacker also has a finite energy constraint, an optimization problem is

formulated and solved to find the optimal attack over all feasible options.

This chapter is organized as follows. In Section 2.1, we describe the CPS

and attack model. In Section 2.2, we present the main results. In Section 2.3,

we use a numerical example to illustrate the theoretical results and proposed

attack strategy.

∗A version of this chapter has been published as: Donny Cheng, Jun Shang and Tongwen
Chen, “Finite-Horizon Strictly Stealthy Deterministic Attacks on Cyber-Physical Systems,”
IEEE Control Systems Letters, vol. 6, pp. 1640–1645, 2022. The contents of this chapter
were also selected by the American Control Conference 2022 Program Committee for pre-
sentation at the conference.
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2.1 Problem Formulation

A diagram of a CPS under attack is provided in Fig. 2.1, which can

described as follows.

System 

False Data 

Detector

State 

Estimator 

Output 

Channel

𝑧𝑡
′

ො𝑥𝑡
′

Control 

Channel
Controller

𝑦𝑡
′

𝑢𝑡
′

𝑧−1Attack

Γ𝑎𝑦𝑡
𝑎

𝐵𝑎𝑢𝑡
𝑎

Figure 2.1: System architecture under attack.

2.1.1 System Model

The CPS is represented as a stochastic linear time-invariant discrete-time

state-space model:

xt+1 = Axt +But + wt (2.1a)

yt = Cxt + vt (2.1b)

where xt ∈ Rn, ut ∈ Rp, yt ∈ Rm are the state, control input, and measurement

output vectors, respectively. wt ∈ Rn and vt ∈ Rm represent the stochastic

process noise and measurement noise, respectively. A ∈ Rn×n is the system

matrix, B ∈ Rn×p is the input matrix, and C ∈ Rm×n is the output matrix.

We assume that (A,B) is controllable and (A,C) is observable.

The system is equipped with an Luenberger observer that provides a state

estimate, x̂t, with dynamics:

x̂t+1 = Ax̂t +But +K[yt+1 − C(Ax̂t +But)]
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where K ∈ Rn×m is chosen such that A − KCA is stable. Furthermore, the

innovation and estimation error are defined by:

zt+1 = yt+1 − C(Ax̂t +But), et = xt − x̂t.

In similar papers, a fixed-gain feedback controller is typically assumed. In

fact, we do not need to make any assumptions on the controller at all, and

the input ut can be arbitrarily designed from any available information.

2.1.2 Attack Model

In general, we assume the attacker can manipulate part of the control

input and sensor output signals in an additive manner. Then, the system

under attack can be described as:

x′
t+1 = Ax′

t +Bu′
t +Baua

t + wt

y′t = Cx′
t + Γayat + vt

where (·)′ denotes the variable (·) under attack, ua
t ∈ Rpa and yat ∈ Rma

are the actuator and sensor attack signals, respectively, and Ba ∈ Rn×pa and

Γa ∈ Rm×ma are the actuator and sensor attack matrices, respectively. Let

na = pa +ma, which is the attack’s total degrees of freedom.

We assume that Γa = [ei1 , . . . , eima
], where ei is the ith canonical basis

vector of Rm and {i1, . . . , ima} is the set of the indices of the compromised

outputs. Without loss of generality, Ba and Γa are assumed to have full

column rank. Furthermore, we assume the attacker has full knowledge of

the system parameters A, B, C, and K. In contrast to [37], the attacks on

the input and output channels start at time steps 0 and 1, respectively, for

notational simplicity.

The corresponding dynamics and definitions for the state estimate, control

input, innovation, and estimation error are given by:

x̂′
t+1 = Ax̂′

t +Bu′
t +K[y′t+1 − C(Ax̂′

t +Bu′
t)]

z′t+1 = y′t+1 − C(Ax̂′
t +Bu′

t), e′t = x′
t − x̂′

t.
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We define the following variables to represent the difference between at-

tacked and nominal systems:

∆xt := x′
t − xt,∆x̂t := x̂′

t − x̂t, ∆ut := u′
t − ut

∆yt := y′t − yt, ∆zt := z′t − zt, ∆et := e′t − et.

Remark 2.1. These difference variables are deterministic because the stochas-

tic parts of the attacked and nominal system are the same. Due to the linearity

of system (2.1), the noises wt and vt cancel each other out.

Remark 2.2. The difference variables are used to quantify both the impact

and stealthiness of the attack. In terms of impact, ∆et gives a measure of

how much the attack is impairing the system performance. For stealthiness,

false data detectors typically monitor the innovation of the system to find

potential anomalies. Thus, the magnitude of ∆zt can be used as a measure of

the attack’s stealthiness.

We can derive the following update equations:

∆et+1 = (A−KCA)∆et + (Ba −KCBa)ua
t −KΓayat+1 (2.2)

∆zt+1 = CA∆et + CBaua
t + Γayat+1. (2.3)

Conveniently, ∆et and ∆zt are both functions of only the attack inputs ua
t

and yat+1. Based on our assumptions, we have initial conditions ∆e0 = 0 and

∆z0 = 0.

Remark 2.3. In this thesis, we consider general attacks on both channels of

closed-loop control systems. However, it should be noted that this work can

be easily applied to remote state estimation as well. Because the control input

cancels itself out in the derivation of (2.2) and (2.3) for closed-loop control and

is not present for state estimation, these two equations apply to both. The

difference is that a control channel does not exist for remote state estimation,

so the terms with Ba and ua
t must be removed. Note that this is equivalent

to an attack only on the output channel of a closed-loop control system.
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2.1.3 System and Attack Classification

A false data detector that relies on innovation to detect faults will be

unable to distinguish an attacked system from the nominal one if:

∆zt = 0, ∀t ∈ N. (2.4)

Definition 2.1. As defined in [37], an attack sequence is said to be strictly

stealthy if (2.4) holds. Additionally, the system in (2.1) is said to be strictly

vulnerable if, for any M1 > 0, there exists a strictly stealthy attack such that:

lim
t→∞

sup ∥∆et∥ > M1.

Otherwise, a system is strictly invulnerable if there exists M2 > 0 such that:

lim
t→∞

sup ∥∆et∥ ≤M2

for any strictly stealthy attack.

This chapter extends the definition above. Some attacks may not be able

to satisfy (2.4) ∀t ∈ N, but they can achieve strict stealthiness in a finite

horizon:

∆zt = 0, ∀t = 1, 2, . . . , τ + 1. (2.5)

Systems that permit such an attack may be strictly invulnerable, but these

attacks can still deal significant damage in a short amount of time.

Definition 2.2. An attack sequence is said to be (τ + 1)-step strictly stealthy

if (2.5) holds. Additionally, system (2.1) is τ -step strictly vulnerable if, for

any M1 > 0, there exists a (τ + 1)-step strictly stealthy attack such that:

∥∆eτ+1∥ > M1. (2.6)

Remark 2.4. Due to the linearity of the system, any strictly stealthy attack

can be scaled to become arbitrarily large while still keeping ∆zt = 0. Thus, as

long as a (τ + 1)-step strictly stealthy attack exists for a given system (2.1),

we can scale it to achieve (2.6), and the system is τ -step strictly vulnerable.
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Remark 2.5. While an attack remains strictly stealthy, it can be shown that

∆zt = ∆yt = 0. In other words, the output from a strictly stealthy attack

is identical to the nominal one. Therefore, any detector that monitors the

output of the system will fail to detect a strictly stealthy attack as well.

2.1.4 Optimal Strictly Stealthy Attack Formulation

We shall use the following formulation to find an optimal (τ + 1)-step

strictly stealthy attack for a τ -step strictly vulnerable system. First, we need

to find an appropriate objective function and impose additional constraints

on our problem. For notational simplicity, let ζt = [ua
t ; y

a
t+1], which combines

the input and output attack vectors.

We can measure impact of the attack on the system using a summation of

a quadratic function of ∆et over τ + 1 time steps:

J =
τ+1∑
t=1

∆eTt W∆et (2.7)

where W ∈ Sn
+.

Note that if we do not create additional constraints on the attack input, ζt,

then we can take ∥ζt∥ → ∞ to maximize J , which is a relatively uninteresting

result. Instead, we will consider the case in which the attacker has limited

attack energy over these τ + 1 attacks. Let ζ = [ζ0; ζ1; . . . ; ζτ ]. Then, this can

be represented as a quadratic constraint:

ζTHζ ≤ ε (2.8)

where H ∈ S(τ+1)na

++ and ε is some scalar constant. Putting this all together

along with the strict stealthiness constraint in (2.5), we can form the opti-

mization problem below to find the optimal attack:

max
ζ

τ+1∑
t=1

∆eTt W∆et

s.t. ζTHζ ≤ ε

∆zt = 0, t = 1, 2, . . . , τ + 1.

(2.9)
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2.2 Main Results

2.2.1 Conditions for τ-Step Strict Vulnerability

During each step of a strictly stealthy attack, from (2.3), we haveKCA∆et+

KCBaua
t +KΓayat+1 = 0. Applying this to (2.2), the update equation for ∆et

during a strictly stealthy attack is:

∆et+1 = A∆et +Baua
t . (2.10)

Let Γ̄ be the matrix with columns being the canonical basis vectors of Rm

that are not present in Γa. Moreover, let Ba
z =

[
CBa Γa

]
and Ba

e =
[
Ba 0

]
,

the matrix coefficients of ζt in (2.3) and (2.10), respectively. For notational

simplicity, let Āi = Γ̄TCAiBa.

Lemma 2.1 below shows the equivalence between rank conditions and null

spaces of Mi, introduced in [37, Th. 1], and Ni, which has a simpler form.

Lemma 2.1. The following two conditions are equivalent:

rank(Nτ )− rank(Nτ−1) < pa (2.11)

rank(Mτ )− rank(Mτ−1) < na (2.12)

where:

Ni =


Ā0 0 . . . 0
Ā1 Ā0 . . . 0
...

...
. . .

...
Āi Āi−1 . . . Ā0



Mi =


Ba

z 0 . . . 0
CABa

e Ba
z . . . 0

...
...

. . .
...

CAiBa
e CAi−1Ba

e . . . Ba
z

 .

Moreover, the null space of Mi in the form Miζ = 0 is equivalent to the null

space of Ni in the form Niu
a = 0, where ua = [ua

0;u
a
1; . . . ;u

a
τ ] and:

yai+1 = −(Γa)TC
i∑

j=0

Ai−jBaua
j , i = 0, 1, . . . , τ. (2.13)
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Proof. Each block in Mi has ma more rows and columns compared to Ni

(corresponding to the addition of yat+1 to the attack vector) that are redundant.

The added rows are associated with position of the non-zero elements of Γa

in Mi. Since these rows include the only non-zero entry in a column (the 1

from Γa), they are linearly independent of the others. We can remove these

rows by multiplying on the left of each block by Γ̄T , noting that Γ̄TΓa = 0.

We then have the matrix Ni:

Ni =


Ā0 0 0 0 . . . 0 0
Ā1 0 Ā0 0 . . . 0 0
...

...
...

...
. . .

...
...

Āi 0 Āi−1 0 . . . Ā0 0

 .

Note that the only difference between Ni and Ni are several zero columns,

so they have the same rank. Additionally, since Ni is Mi with (i + 1)ma

linearly independent rows removed, then:

rank(Ni) = rank(Ni) = rank(Mi)− (i+ 1)ma. (2.14)

It can then be easily shown that (2.11) implies (2.12) and vice versa.

Furthermore, solving for the rows of Miζ = 0 that are not included in Ni,

we can also recover the design of the attack on the output channel:

Γayai+1 +
i∑

j=0

CAi−jBaua
j = 0, i = 0, 1, . . . , τ. (2.15)

This is equivalent to (2.13). The solution for ua
i remains the same. To see

this, note that the solution for the remaining rows (represented by Niζ = 0)

and Niu
a = 0 are equivalent in terms of ua. ■

Theorem 2.1. A system is τ -step strictly vulnerable if and only if (2.12) is

satisfied.

Proof. The solution to the dynamics under attack in (2.10) is given by:

∆et+1 =
t∑

i=0

At−iBaua
i . (2.16)
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From (2.3) and (2.5), we have the following condition for the attack to be

strictly stealthy at a given time step:

CA∆et + CBaua
t + Γayat+1 = 0. (2.17)

Combining (2.16) and (2.17), we have:

Γayat+1 = −C
t∑

i=0

At−iBaua
i . (2.18)

Solving (2.18) for yat+1, we have (2.13) since (Γa)TΓa = Ima . In (2.13),

there is no freedom to design yat+1 since the equation is a fixed function of the

sequence of ua
t . Effectively, this formulation puts all of the degrees of freedom

for the attacker in ua
t , which is desirable as it is the part of the attack that

influences ∆et.

To meet the stealthiness condition in (2.18), we require it to have a solu-

tion. This can be represented as:

Γ̄TC
t∑

i=0

At−iBaua
i = 0. (2.19)

As long as this condition is met for some t = 0, 1, . . . , τ , then a strictly stealthy

attack exists up until time step τ (a sequence of τ+1 attacks). A combination

of these conditions up to and including the one for t = τ can be written in

matrix form as:

Nτu
a = 0. (2.20)

However, an attack sequence in the null space of Nτ is not sufficient to guar-

antee the existence of a (τ + 1)-step strictly stealthy attack. This is because

we assume the non-trivial attack starts from t = 0 on the input channel. An

attack vector with ua
0 = 0 will contradict this assumption.

In general, note that dimker(Nt+1) ≥ dimker(Nt) because we can always

take ua
0 = 0 in ker(Nt+1) to recover ker(Nt). Assuming dimker(N0) > 0,

we require dimker(N1) > dimker(N0) for a 1-step strictly stealthy attack

to exist. We further require dimker(N2) > dimker(N1) for a 2-step strictly
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stealthy attack to exist, and so on. In other words, a necessary condition for

a (τ + 1)-step strictly stealthy attack to exist is:

dim ker(Ni) > dimker(Ni−1), ∀i = 0, 1, . . . , τ (2.21)

where we can define dimker(N−1) = rank(N−1) = 0. From the rank-nullity

theorem, this is equivalent to:

rank(Ni)− rank(Ni−1) < pa, ∀i = 0, 1, . . . , τ. (2.22)

Now, we show by contradiction that if the condition in (2.22) holds for i =

τ , then it also holds for i = 0, 1, . . . , τ−1. Suppose rank(Nτ−1)−rank(Nτ−2) =

pa and rank(Nτ ) − rank(Nτ−1) < pa. Then, the last block row of Nτ−1 has

pa rows that are linearly independent of the other rows above it. However,

this also implies that the last block row of Nτ will have pa rows that are

linearly independent of the rows above such that rank(Nτ )−rank(Nτ−1) = pa,

regardless of Āτ . This is a contradiction. Thus, if rank(Nτ )−rank(Nτ−1) < pa,

then rank(Nτ−1)− rank(Nτ−2) < pa since the difference in rank cannot exceed

pa.

Along with (2.22) and Lemma 2.1, this proves the necessity. The condition

is also sufficient because a strictly stealthy attack can be designed against these

systems in accordance with Corollary 2.2. ■

Remark 2.6. Note that the proof of Theorem 2.1 also implies that if a system

is τ -step strictly vulnerable, then it is also i-step strictly vulnerable ∀i =

0, 1, . . . , τ − 1.

Corollary 2.1. A system is n-step strictly vulnerable if and only if it is also

∞-step strictly vulnerable.

Proof. From the Cayley–Hamilton theorem, we can write Ai with i ≥ n as a

linear combination of the next n smaller powers of A:

Ai = cn−1A
i−1 + · · ·+ c1A

i−n+1 + c0A
i−n. (2.23)
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For Nn, this means we can express Γ̄TCAnBa as a linear combination of the

n elements above it. Thus, we can use elementary row operations to obtain

the following matrix:

N̄n =


Ā0 0 . . . 0 0
Ā1 Ā0 . . . 0 0
...

...
. . .

...
...

Ān−1 Ān−2 . . . Ā0 0

0 Â1 . . . Ân−1 Ā0

 (2.24)

where Âj = Γ̄TC(An−j −
∑n−1

i=j ciA
i−j)Ba. If the system is n-step strictly

vulnerable, then the last block row has less than pa rows that are linearly

independent of all the other rows. Now assume the system is (τ − 1)-step

strictly vulnerable (τ > n). In Nτ , we can remove the first τ − n + 1 block

elements by subtracting the n block rows above it with appropriate coefficients.

Then, comparing with (2.24), it can be shown that the last block row has less

than pa rows that are linearly independent of all the other rows such that

rank(Nτ )− rank(Nτ−1) < pa. ■

Remark 2.7. Note that∞-step strictly vulnerability is equivalent to the strict

vulnerability defined in [37]. Condition (2.12) reduces to the one in [37, Th. 1]

when τ = n.

Corollary 2.2. All (τ + 1)-step strictly stealthy attack sequences for a τ -step

strictly vulnerable system must satisfy:

ζ ∈ ker(Mτ ). (2.25)

Proof. From Theorem 2.1, for a (τ + 1)-step attack to be strictly stealthy,

the input and output attack vector sequences must satisfy (2.20) and (2.13),

respectively. From Lemma 2.1, this is equivalent to (2.25). ■

2.2.2 Optimal (τ + 1)-Step Strictly Stealthy Attack

Theorem 2.2. The solution to the optimization problem in (2.9) is:

ζ∗ = ±
√
εZQ

[
0

vmax

]
(2.26)
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where Z = H− 1
2 , Q is from the QR factorization of (MτZ)

T , and vmax is

the normalized eigenvector corresponding to the dominant eigenvalue of W22,

defined from the following partition:

QTZT

τ+1∑
i=1

W (i)ZQ =

[
W11 W12

W21 W22

]
. (2.27)

Here, W11 ∈ Rr×r, W12 ∈ Rr×(τ+1)na−r, W21 ∈ R(τ+1)na−r×r, and W22 ∈

R(τ+1)na−r×(τ+1)na−r and the na × na submatrices in the jth block row and kth

block column of W (i) is given by:

W
(i)
jk =

{
(Ba

e )
T (Ai−j)TWAi−kBa

e j, k = 1, 2, . . . , i

0 otherwise.
(2.28)

Proof. From Corollary 2.2, to meet the stealthiness constraint in (2.5), the

attack must satisfy (2.25). Thus, we can replace the stealthiness condition

with the linear equality constraint:

Mτζ = 0. (2.29)

Using the solution for ∆et in (2.16), we can write (2.7) as a quadratic

function of ζ only: J = ζT W̌ ζ, where:

W̌ =
τ+1∑
i=1

W (i) (2.30)

and W (i) represents the contribution at the ith time step. We can partition

W (i) into a block matrix with τ+1 block rows and columns made up of na×na

submatrices. From direct computation, the element in the jth block row and

kth block column of W (i) is given by (2.28).

Now we will convert the energy constraint in (2.8) to a norm inequality.

Since H ∈ S(τ+1)na

++ , then Z = H− 1
2 exists. Let x = Z−1ζ ⇒ ζ = Zx. Then,

problem (2.9) becomes:
max

x
xTZT W̌Zx

s.t. xTx ≤ ε

MτZx = 0.

(2.31)
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Without the linear equality constraint, the solution to this optimization

problem is equal to the eigenvector corresponding to the dominant eigenvalue

of the quadratic matrix in the objective function scaled such that ∥x∥2 = ε.

Thus, our goal is to incorporate the linear equality constraint into the other

parts of the optimization problem. A procedure to accomplish this is given

in [6]. Let M̄τ = (MτZ)
T ∈ R(τ+1)na×(τ+1)m with rank r. There exists a QR

decomposition of M̄τ :

M̄τ = Q

[
R1 S
0 0

]
Π (2.32)

where Q ∈ R(τ+1)na×(τ+1)na is an orthogonal matrix, R1 ∈ Rr×r is a full rank

upper triangular matrix, S is some arbitrary matrix, and Π is a permutation

matrix. Now, let us split x into two separate arguments: x = Q[y; z], where

y ∈ Rr and z ∈ R(τ+1)na−r. The equality constraint becomes: M̄T
τ Q[y; z] = 0.

Applying the QR decomposition:

ΠT

[
RT

1 0
ST 0

]
QTQ

[
y
z

]
= 0⇒ ΠT

[
RT

1

ST

]
y = 0. (2.33)

Since Π is invertible and R1 has rank r, it is clear that the unique solution is

y = 0. The optimization problem in (2.31) simplifies to:

max
z

[
0 zT

]
QTZT W̌ZQ

[
0
z

]
s.t. zT z ≤ ε.

(2.34)

We can partition the matrix in the objective function as in (2.27). Then, we

have the standard optimization problem:

max
z

zTW22z

s.t. zT z ≤ ε.
(2.35)

This has a clear optimal solution: z∗ = ±
√
εvmax, where vmax is the eigen-

vector corresponding to the largest eigenvalue of W22. After reverting the two

transformations we made, the optimal attack sequence is given in (2.26). ■
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2.3 Simulation

We shall use the following system to numerically illustrate the results.

Suppose we have a fourth order system with parameters:

A =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 Ba =


1
0
0
0

 Γa =


1 0 0
0 1 0
0 0 1
0 0 0


and C = I4. ComputingMi, we have rank(M0) = 3, rank(M1) = 6, rank(M2) =

9, and rank(M3) = 13. Using Theorem 2.1, we can see that this system

is 2-step strictly vulnerable. The permissible 3-step attack sequences satisfy

M2ζ = 0, where ζ = [ζ0; ζ1; ζ2].

Let ε = 1. Take the quadratic weighting matrices to be:

W =


3 1 0 1.5
1 2 0 0
0 0 5 1
1.5 0 1 2

 H = I12. (2.36)

From here, we can compute W̌ using (2.28) and (2.30). Here, we can see

that Z = I12. Q, R1, and Π can be computed such that QTQ = I12 and

rank(R1) = r = 9. Then, computing QTZT W̌ZQ and partitioning, we can

find:

W22 =

 1.5000 0.3959 −0.0995
0.3959 1.8528 0.4514
−0.0995 0.4514 2.3139

 . (2.37)

The largest magnitude eigenvalue of W22 is λmax = 2.6957 and the cor-

responding normalized eigenvector is vmax = [0.1259; 0.5580; 0.8202]. From

(2.26), we can solve for one solution of ζ∗ as:

ζ∗0 =


0.4658
−0.4658

0
0

 , ζ∗1 =


0.1969
−0.1969
−0.4658

0

 , ζ∗2 =


0.0891
−0.0891
−0.1969
−0.4658

 .

The other solution is obtained by flipping the sign on all attack vectors.

Applying this attack, the cumulative objective value at each time step

is shown in Fig. 2.2. Within the figure, the box represents values within
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Figure 2.2: The cumulative objective values at each time step for the optimal
attack and a box plot for a set of random attacks.

the 25th and 75th percentile, the line within the box indicates the median,

and the whiskers mark the minimum and maximum values. This figure also

includes some statistics for the objective values from random attacks generated

from 10,000 Monte Carlo simulations to show the optimality of our solution.

Although random attacks may be able to achieve higher objective values for

time steps 1 and 2, the attack from Theorem 2.2 has the largest impact on

the system over the three time steps as designed.
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Chapter 3

Optimal Stealthy Deterministic
Attack Strategies∗

This chapter also studies the problem of FDI attacks against both com-

munication channels of a closed-loop CPS. However, relaxed definitions of

stealthiness that differ from Chapter 2 are considered instead. It is still diffi-

cult for innovation-based detectors to detect these attacks, although they are

no longer undetectable. We formulate and simplify an optimization problem

for the attack over both finite and infinite horizons. Using the intuition from

the numerical solutions, we identify effective analytical attack forms for the

infinite-horizon, including constant, alternating, and sinusoidal attacks, and

optimize them. Algorithms are created to characterize the objective value of

two and three-dimensional sinusoidal attacks of any frequency, including edge

cases. Because the proposed analysis of sinusoidal attacks is computationally

intensive, a useful condition that is relatively easy to check is provided for a

constant or alternating attack to be superior to most sinusoidal attacks. We

also propose a method to compare these optimal infinite-horizon determinis-

tic attacks with their stochastic counterparts. Finally, simulations show the

effectiveness of the proposed strategies to degrade system performance.

This chapter is organized as follows. Section 3.1 introduces some additional

definitions and formulations required for this chapter. In section 3.2, the

∗A version of this chapter has been submitted for publication as: Donny Cheng, Jun Shang,
and Tongwen Chen, “Optimal Stealthy Deterministic Attack Strategies on Cyber-Physical
Systems”, IEEE Transactions on Control of Networked Systems.
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optimization problem for an optimal attack over a finite horizon is derived.

Section 3.3 discusses optimal constant and alternating attacks. The analysis

and optimization of sinusoidal attacks are studied in Section 3.4. Section

3.5 provides a condition for the optimal constant and alternating attacks to

outperform their sinusoidal counterparts. Section 3.6 discusses how we can

compare the performance of deterministic attacks with stochastic ones. We

then illustrate the effect of the proposed attack strategies using simulations

in Section 3.7.

3.1 Problem Formulation

3.1.1 Cyber-Physical System and Attack Model

This chapter is an extension of Chapter 2 to attacks that satisfy a relaxed

stealthiness condition. Therefore, the system and attack model for this chapter

is the same as in Chapter 2. Although a short summary is provided here, please

refer to Section 2.1 for details.

We consider a the state-space realization of a stochastic linear time-invariant

discrete-time system:
xt+1 = Axt +But + wt

yt = Cxt + vt
(3.1)

The system is equipped with a general controller and fixed-gain observer on the

remote side that generates a control input and state estimate, respectively, at

each time step. The attacker has the capability to intercept the signals being

sent over both communication channels and modify a component of these

transmissions. Additionally, the attacker has the system parameters A, B,

C, and K available. The analysis makes use of variables that represent the

difference between attacked and nominal systems, which are all deterministic

in nature. The dynamics for the two most important difference variables are

derived and reiterated here:

∆et+1 = (A−KCA)∆et + (Ba −KCBa)ua
t −KΓayat+1 (3.2)

∆zt+1 = CA∆et + CBaua
t + Γayat+1. (3.3)
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3.1.2 System and Attack Classification

For this chapter, some additional definitions for stealthiness are required.

An innovation-based false data detector will have difficulty distinguishing an

attacked system from the nominal one if:

∥∆zt∥ ≤ δ, ∀t ∈ N (3.4)

for some small constant δ > 0.

Definition 3.1. As defined in [37], an attack sequence is said to be stealthy if

(3.4) holds. Additionally, the system in (3.1) is said to be vulnerable if, for

any M1 > 0, there exists a stealthy attack such that:

lim
t→∞

sup ∥∆et∥ > M1.

Otherwise, a system is invulnerable if there exists M2 > 0 such that:

lim
t→∞

sup ∥∆et∥ ≤M2

for any stealthy attack.

When the focus is on infinite-horizon attacks, the stealthiness condition

can be further relaxed by only considering the stealthiness condition when

t→∞. This idea is similar to the notion of complete stealthiness introduced

in [45], for which the focus is the norm of the innovation as t→∞.

Definition 3.2. An attack sequence is said to be steady-state stealthy if the

following condition holds:

lim
t→∞
∥∆zt∥ ≤ δ. (3.5)

3.1.3 Optimal Stealthy Attack Formulation

In a finite horizon, to quantify the impact of the attack on the system, let

us consider a summation objective function to maximize over τ time steps:

J =
τ∑

t=1

∆eTt Q0∆et (3.6)
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for some weighting matrix Q0 ∈ Sn
+. Then, combining this with the stealthi-

ness condition, we can form the optimization problem:

max
ζ

τ∑
t=1

∆eTt Q0∆et

s.t. ∥∆zt+1∥ ≤ δ, t = 0, 1, . . . , τ − 1.

(3.7)

Now, moving to an infinite horizon, we consider a similar objective func-

tion. However, we are only interested in the step-by-step objective value at

the steady state, since the costs in a finite interval become negligible. Thus,

we have:

J = lim
τ→∞

1

τ

τ∑
t=1

∆eTt Q0∆et (3.8)

and the corresponding optimization problem, assuming that the attack must

also be steady-state stealthy, is:

max
ζ

lim
τ→∞

1

τ

τ∑
t=1

∆eTt Q0∆et

s.t. lim
t→∞
∥∆zt+1∥ ≤ δ.

(3.9)

Only invulnerable systems will be examined for the infinite-horizon case be-

cause attacks that are designed to create a divergent step-by-step cost as

t→∞ are possible for vulnerable systems, as discussed in [37].

3.2 Finite-Horizon Optimization Problem

3.2.1 Construction of the Optimization Problem

First, let us consider joint actuator and sensor stealthy attacks in a finite

horizon. Let Ā = A − KCA, B̄ = [Ba − KCBa,−KΓa], C̄ = CA, and

D̄ = [CBa,Γa]. Equations (3.2) and (3.4) can then be represented by the

following equation and constraint:

∆et+1 = Ā∆et + B̄ζt

∥∆zt+1∥ = ∥C̄∆et + D̄ζt∥ ≤ δ.
(3.10)

Although at the beginning of an attack, ∆e0 = 0, we do not make this assump-

tion below to allow us to chain many of these optimization problems together

in order to obtain an attack of arbitrary length.
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Proposition 3.1. The optimization problem in (3.7) is equivalent to a con-

cave objective, convex constraint quadratically constrained quadratic program

(QCQP) in terms of the attack vector ζ = [ζ0; ζ1; . . . ; ζτ−1]:

max
ζ

1

2
ζTQζ + fT ζ

s.t.
1

2
ζTH(i)ζ + g(i)

T

ζ + d(i) ≤ 0, i = 1, 2, . . . , τ

(3.11)

where Q =
∑τ

i=1Q
(i), f =

∑τ
i=1 f

(i), and:

Q
(i)
jk =

{
−2B̄T Ā(i−j)TQ0Ā

i−kB̄ j, k = 1, 2, . . . , i

0 otherwise

f
(i)
j =

{
−2B̄T Ā(i−j)T Āi∆e0 j = 1, 2, . . . , i

0 otherwise

Ξi = [C̄Āi−2B̄, C̄Āi−3B̄, . . . , C̄B̄, D̄, 0, . . . , 0]

H(i) = ΞT
i Ξi

g(i) = ΞT
i C̄Āi−1∆e0

d(i) = ∆eT0 Ā
(i−1)T C̄T C̄Āi−1∆e0 − δ.

Proof. For some initial condition, ∆e0, the solution of (3.10) is solely depen-

dent on the input, ζt:

∆et+1 =
t∑

i=0

Āt−iB̄ζi + Āt+1∆e0. (3.12)

For the objective function, we can write (3.6) as a sum of a linear and

quadratic function of ζ using (3.12) by direct computation. The terms of

(3.6) are taken into account separately and then summed together; Q(i) and

f (i) represent the contribution of the ith time step. Similarly, the stealthiness

constraint at each time step can also be written as a sum of a linear and

quadratic function of ζ as well as a constant by using (3.12) again. H(i), g(i),

and d(i) represent this constraint at the ith time step, associated with the

innovation ∆zi.

Given some matrix M ∈ Sn
+ and any compatible matrix A, ATMA ∈ Sn

+.

Since Q0 ∈ Sn
+, it is clear that −Q(i) ∈ Sn

+ ∀i. Q is the sum of τ negative semi-

definite matrices, so it is also negative semi-definite and the objective function
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is concave. Similarly, H(i) ∈ Sn
+ ∀i because it is the product of a matrix and

its transpose. Then, the search space is the intersection of τ convex sets, so

it is itself convex. ■

Remark 3.1. Unfortunately, due to the non-convexity of the objective func-

tion, it is non-trivial to find the global optimum of the optimization problem

in (3.11) numerically. Nonetheless, using a global non-convex solver, such

as MATLAB’s fmincon, yields a solution relatively efficiently and reliably.

Alternatively, we can attempt to obtain an approximate solution using the

semi-definite relaxation [21].

Remark 3.2. Numerically solving this optimization problem can give us an

optimal attack of length τ . However, if we make τ too large, it could make

the problem computationally intractable. Instead, we can solve a series of

these optimization problems by first solving one problem with a reasonably

small τ and then using the final state of the last problem, ∆eτ , as the initial

state, ∆e0, for the next problem. This allows us to create an attack sequence

of arbitrary length more effectively.

Remark 3.3. Although (3.11) is a difficult optimization problem to solve, nu-

merical solutions provide us with some insight into the most effective attack

strategies. The optimal attack tends to converge to either a steady-state

constant, alternating, or sinusoidal-like signal after a short transient. This

phenomenon is demonstrated using some of the examples in Section 3.7 in

Figs. 3.1, 3.2, and 3.5. Therefore, the remainder of this chapter will discuss

these attack strategies over an infinite horizon in detail.

3.2.2 Receding Horizon Implementation of the Solution

Particularly if the system is open-loop unstable, the solution to the opti-

mization problem in (2.9) may be greedy and generate a final state that causes

the next optimization problem to become infeasible if applied as ∆e0. That is,

for some systems and at some states that can be reached with stealthy attacks,

there may not exist any stealthy attack of an arbitrary length. Inspired by
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model predictive control, one possible solution to avoid this issue is to use a

receding-horizon implementation, which is summarized in Algorithm 1.

Algorithm 1: Receding Horizon Implementation for Attack Design.

Input: τ , tutil
begin

∆e0 ← 0;

Compute matrices Q and H(i);
Loop

Compute f , g(i), and d(i) from ∆e0;
ζ∗t ← solution of optimization problem (3.11) over τ time steps;
Find ∆etutil from (3.2) and the first tutil elements of ζ∗t ;
∆e0 ← ∆etutil ;

For the receding horizon implementation, we solve the optimization prob-

lem in Proposition 3.1 for some finite horizon τ but only apply a part of the

solution specified by a number of time steps tutil. Then, we solve the opti-

mization problem for the next τ time steps again. This prevents the attack

from approaching an infeasible point because it must ensure that a stealthy

attack is still possible past tutil, rather than only ensuring feasibility before

the current optimization problem ends. The effectiveness of this algorithm is

demonstrated using Fig. 3.3 from Section 3.7.

3.3 Alternating Constant Steady-State Attacks

First, we discuss attacks that are either constant or alternate over time.

These attacks take the form:

ζt = ζss + (−1)tζal (3.13)

where ζss and ζal are the constant and alternating components, respectively.

3.3.1 Optimal Fully Constant and Alternating Attacks

We first consider a fully constant or alternating attack, ζt = (±1)tζc. In

all subsequent equations, if there are two signs, the top and bottom signs
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correspond to a fully constant and alternating attack, respectively, to avoid

redundancy. We can solve (3.2) to obtain the steady-state solution. For

alternating attacks, the solution depends on whether the latest attack vector

was positive or negative:

lim
t→∞

∆et =
∞∑
i=0

ĀiB̄(±1)t+1+iζc.

We can rewrite this solution as:

lim
t→∞

∆et = (±1)t+1

∞∑
i=0

(±Ā)iB̄ζc.

We see that the alternating attack causes limt→∞ ∆et to switch between two

states and effectively flips the sign for the system matrix Ā. Since we know

that Ā, and therefore also −Ā, are Schur, the infinite sum converges:

lim
t→∞

∆et = (±1)t+1(I ∓ Ā)−1B̄ζc. (3.14)

Then, the infinite-horizon objective function (3.8) becomes J = ζTc Mζc, where:

M = B̄T [(I ∓ Ā)−1]TQ0(I ∓ Ā)−1B̄. (3.15)

At steady state, the constraint in (3.10) becomes the condition:

∥[(±1)t+1C̄(I ∓ Ā)−1B̄ + (±1)tD̄]ζc∥ ≤ δ. (3.16)

Let:

N = [C̄(I ∓ Ā)−1B̄ ± D̄]T [C̄(I ∓ Ā)−1B̄ ± D̄]. (3.17)

Since N ∈ Sna
+ , its square root,

√
N , exists. Let rank(N) = r. We can then

define the QR decomposition of
√
N as:

√
N = Q

[
R
0

]
Π

where Q is a unitary matrix, Π is a permutation matrix, and R ∈ Rr×na is full

row rank. Now, we try to find the optimal value of ζc in the attack vector for

fully constant and alternating attacks with respect to our objective function.
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Theorem 3.1. Assume that ker(N) ⊆ ker(M). Let M ′ = QTMQ, N ′ =

RRT , and define the partition:

M ′ =

[
M11 M12

M21 M22

]
where M11 ∈ Rr×r. Then, the optimal fully constant or alternating steady-state

stealthy attack is given by:

ζc = δQ

[
N ′− 1

2 z
0

]
(3.18)

where z is the normalized eigenvector corresponding to the dominant eigen-

value of the matrix N ′− 1
2M11N

′− 1
2 .

Proof. From (3.15) and (3.16), the infinite-horizon optimization problem in

(3.9) can be written as:
max
ζc

ζTc Mζc

s.t. ζTc Nζc ≤ δ2.
(3.19)

A problem of this form can typically be solved as an eigenvalue problem simply

by making a transformation, ξ =
√
Nζc. However, this requires that N ∈ Sna

++,

which is not true in general, so this transformation may not be bijective.

However, note that attacks in ker(N) do not affect the objective function

because ker(N) ⊆ ker(M). Thus, we can use the QR factorization to remove

this subspace entirely from the optimization problem. Let:

ζc = Q

[
x
y

]
where x ∈ Rr and y ∈ Rna−r. Plugging this in:

√
Nζc = Π

[
RT 0

]
QTQ

[
x
y

]
= ΠRTx.

We can see that y represents the component of the attack vector in ker(N).

Since we have already established that these attacks are redundant because

they will not affect the objective function, we can set y = 0 for simplicity.

The objective then becomes:

J =
[
xT 0

]
QTMQ

[
x
0

]
.
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Then, we can optimize with respect to x only, noting that Π is an orthogonal

matrix:
max

x
xTM11x

s.t. xTN ′x ≤ δ2.

Now, N ′ ∈ Sn
++ so we can define z = N ′ 1

2x such that the optimization problem

becomes:
max

z
zTN ′− 1

2M11N
′− 1

2 z

s.t. zT z ≤ δ2.

The solution of this optimization problem is simply the eigenvector associated

with the dominant eigenvalue in the objective matrix scaled such that ∥z∥ = δ.

Then, reverting all transformations, we have the optimal attack in (3.18). ■

Corollary 3.1. If ker(N) ⊈ ker(M), then there exists a constant or alter-

nating steady-state stealthy attack with ζc ∈ ker(N) − ker(M) that can cause

arbitrarily large damage to the system.

Proof. An attack ζc ∈ ker(N) − ker(M) has no effect on the innovation but

does affect the objective value. Thus, by the linearity of the system, we can

scale ζc by an arbitrarily large constant, which would result in an arbitrarily

large amount of damage to the system. However, the attack would still have

zero impact on the innovation at steady state. ■

3.3.2 Optimality of Constant and Alternating Attacks

In fact, we do not have to consider any other form of the attack in (3.13)

other than the ones in Section 3.3.1. The following theorem explains why this

is so.

Theorem 3.2. The optimal combined constant and alternating steady-state

attack (3.13) is one that is fully constant, ζt = ζss, or fully alternating, ζt =

(−1)tζal.

Proof. Applying the general attack in (3.13), from (3.14), we have at steady

state:

lim
t→∞

∆et = (I − Ā)−1B̄ζss + (−1)t+1(I + Ā)−1B̄ζal.
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Therefore, the objective function (3.8) becomes:

J = ζTssM+ζss + ζTalM−ζal

where M+ and M− are the M matrices in (3.15) for the fully constant and

alternating cases, respectively. The cross term is removed because every two

time steps, it will cancel itself out due to the sign change of the alternating

component. The constraint in (3.10) changes every time step between:

∥[C̄(I − Ā)−1B̄ + D̄]ζss ± [C̄(I + Ā)−1B̄ − D̄]ζal∥2 ≤ δ2.

Let NT
+N+ and NT

−N− be the N matrices in (3.17) for the fully constant and

alternating cases, respectively. Expanding the norm, this is equivalent to:

ζTssN
T
+N+ζss + ζTalN

T
−N−ζal ≤ δ2 − 2|ζTssNT

+N−ζal|. (3.20)

Relax the problem by removing the cross terms on the right hand side of the

constraint:

ζTssN
T
+N+ζss + ζTalN

T
−N−ζal ≤ δ2.

The relaxed optimization problem becomes:

max
ζ̄ss,ζ̄al

ζTssM+ζss + ζTalM−ζal

s.t. ζTssN
T
+N+ζss + ζTalN

T
−N−ζal ≤ δ2.

Notice that the two optimization variables are completely decoupled in the

objection function and the constraint. Suppose we have a candidate optimal

solution:

ζss = aζ∗ss ̸= 0, ζal = bζ∗al ̸= 0

for some a, b > 0 ∈ R. Then, let M∗
+ = ζTssM+ζss, M

∗
− = ζTalM−ζal, N

∗
+ =

ζTssN
T
+N+ζss, and N∗

− = ζTalN
T
−N−ζal. Then, the objective and constraint are:

J = a2M∗
+ + b2M∗

−

a2N∗
+ + b2N∗

− ≤ δ2.

Since all parameters in the equation above are positive, we can always obtain a

more or equally optimal solution by decreasing a and increasing b if M∗
+ ≤M∗

−
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or vice versa if M∗
+ ≥ M∗

−. Therefore, the optimal attack will always have

a = 0 or b = 0, corresponding to a fully alternating and full constant attack,

respectively.

Since one of the decision variables is 0, the original constraint in (3.20) is

always satisfied as well since ζTssN
T
+N−ζal = 0. Since this is the optimal solution

of a more relaxed problem, it is also the solution of the original one. ■

3.4 Low-Dimensional Sinusoidal Attacks

3.4.1 Equivalent Attack Model

Note that in the stealthiness constraint introduced in (3.3) and (3.4), the

attack vector, ζt, is constrained to an offset hyper-ellipsoid in general. The

following lemma makes a transformation to introduce a new equivalent attack

vector, ζ̄t, that is instead constrained to a centered hyper-ellipsoid with a time-

varying size. Let P = D̄D̄+, the orthogonal projection matrix onto im(D̄).

Lemma 3.1. An equivalent system to (3.2) and (3.3) with stealthiness con-

straint (3.4) is:
∆et+1 = (Ā− B̄D̄+C̄)∆et + B̄ζ̄t

∥D̄ζ̄t∥2 ≤ δ2 − ∥(I − P )C̄∆et∥2
(3.21)

where:

ζt = ζ̄t − D̄+C̄∆et. (3.22)

Proof. From (3.3) with stealthiness constraint (3.4), we remove all of the com-

ponents of CA∆et in im(D̄) by shifting the attack vector as in (3.22). Then,

splitting CA∆et into the components within and orthogonal to im(D̄), the

innovation constraint becomes:

∥PC̄∆et + (I − P )C̄∆et + D̄ζ̄t − D̄D̄+C̄∆et∥ ≤ δ

which, due to orthogonality, simplifies to:

∥(I − P )C̄∆et∥2 + ∥D̄ζ̄t∥2 ≤ δ2

and thus we obtain the system in (3.21). ■
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For the design of sinusoidal attacks, we need to make the key technical

assumption that D̄ has full row rank. Note that D̄ must then be square or the

system becomes strictly vulnerable [5]. In this case, the constraint becomes

a hyper-sphere of constant radius δ, which means we can freely use spherical

coordinates of a fixed, centered (na − 1)-sphere.

Corollary 3.2. If D̄ ∈ Rm×m is invertible, then an equivalent system to (3.21)

is:
∆et+1 = (Ā− B̄D̄−1C̄)∆et + B̄D̄−1ζ ′t

∥ζ ′t∥2 ≤ δ2
(3.23)

where:

ζt = D̄−1ζ ′t − D̄−1C̄∆et. (3.24)

Proof. If D̄ is invertible, then P = I. The result is then a direct outcome of

defining ζ ′ = D̄ζ̄. ■

Remark 3.4. One of the simplest ways for the attacker to achieve an invertible

D̄ is by compromising the entire signal in the output channel such that D̄ =

Γa = I.

To simplify the design of sinusoidal attacks in the frequency domain, we

create a new system that represents ζ ′t →
√
Q0∆et. Then, the norm squared

of this system’s output is directly the average cost of the objective in (3.8).

This system has parameters denoted with ·̌ as follows:

Ǎ = Ā− B̄D̄−1C̄, B̌ = B̄D̄−1, Č =
√

Q0. (3.25)

As a further technical condition, we require Ǎ to be Schur in order for the

frequency response to have a valid interpretation. The dimension of the attack

refers to the length of the attack vector ζ ′t.

3.4.2 Two-Dimensional Sinusoidal Attacks

If ζ ′t ∈ R2, to fully utilize the constraint such that ∥ζ ′t∥ = δ, the sinusoidal

attack must satisfy the Pythagorean theorem, taking the form of polar coor-

dinates. There are two distinct cases, depending on whether the first element
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lags or leads relative to the second, respectively:

ζ ′t = δ[sin(wt); cos(wt)]

ζ ′t = δ[cos(wt); sin(wt)].

Remark 3.5. Without loss of generality, we can set the initial phases to zero

because we are looking at the steady-state behaviour. Furthermore, we will

only consider w ∈ [0, π] for these sinusoidal attacks to avoid aliasing, since the

Nyquist frequency is π.

Remark 3.6. Note that if w = 0 or w = π, then we have a constant or alter-

nating attack, respectively. However, there is a discontinuity in the objective

value at these limits. The reason is twofold:

1. The mean squared of a sinusoid A sin(wt + ϕ) when w → 0, π is A2/2,

but when w = 0 and w = π, the mean squared jumps to A2.

2. The initial phase of the sinusoids does not matter when w → 0, π, but it

does when w = 0, π as it determines where the attack vector is located

on the unit circle.

We can find the objective associated with each frequency, w, by repre-

senting each element i of the attack as a phasor with respect to w that has

a magnitude δ and a relative phase ϕi. This allows us to compute the ef-

fect of interference on the output side. If we set ϕ1 = 0 as our reference,

then ϕ2 = ±π
2
. Passing the phasors into system (3.25) scales the amplitude

and shifts the phase. The output phasors are then added together element-

wise. The magnitudes in this final phasor vector represent the amplitudes of

the output sinusoids at steady state, so the average steady-state step-by-step

cost of the attack is given by half of the norm squared of the output vector

amplitudes.

Denote the transfer function of (3.25) as a function of frequency as T (w).

The i-th column and element on the i-th row and j-th column of T are denoted

ti and tij, respectively. We can then characterize all 2D attacks using Algo-

rithm 2. For the discretization of the frequencies, we can use a logarithmic-
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based discretization scheme in order to gain a higher resolution for smaller

frequencies.

Algorithm 2: Characterization of 2D Sinusoidal Attacks.

begin
W ← Discretization of frequencies on the interval (0, π);
Compute the discrete-time frequency domain response or Bode
plot, T (w), over W ;
for w ∈ W do

for i = 1, 2 do
j ← (i mod 2) + 1;
o← δti(w);

o← o+
√
−1δtj(w);

J
(i)
w ← ∥o∥2/2;

Jw ← maxi J
(i)
w ;

w∗, J∗ ← argmaxw Jw,maxw Jw;

Remark 3.7. For any dimensional attack, the edge cases for which w = 0, π

correspond to constant and alternating attacks. This gives us a simpler, alter-

native method for finding the optimal fully constant and alternating attacks

when the technical conditions for sinusoidal attacks are met. For a constant

attack, associated with a frequency of zero, let ζ ′ss be the attack vector. The

objective value is

J0 = (ζ ′ss)
TT T (0)T (0)ζ ′ss.

We then have the following optimization problem:

max
ζ′ss

(ζ ′ss)
TT T (0)T (0)ζ ′ss

s.t. (ζ ′ss)
T ζ ′ss ≤ δ2.

This is an eigenvalue problem once again, so the optimal attack is the eigen-

vector associated with the dominant eigenvalue of T T (0)T (0), λ∗
0, scaled to

have a norm of δ. The associated cost is δ2λ∗
0. Similarly, for w = π, which

represents a fully alternating attack, the optimal attack is the eigenvector

associated with the dominant eigenvalue of T T (π)T (π), λ∗
π, scaled to have a

norm of δ. The associated cost is δ2λ∗
π.
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3.4.3 Standard Three-Dimensional Sinusoidal Attacks

In the three-dimensional case, the sinusoidal attack takes the form of spher-

ical coordinates. Without loss of generality, there are six cases in total:

ζ ′t = δ[sin(w1t); cos(w1t) sin(w2t); cos(w1t) cos(w2t)]. (3.26)

and the same attack vectors with their elements permuted. We first consider

when w1, w2 ∈ (0, π). For attack elements with the product of two sinusoids,

the product-to-sum trigonometric identities can be used to separate the attack

into 3 distinct frequencies: w1, w1 +w2, and w1−w2. Conveniently, sinusoids

of different frequencies are mutually orthogonal, so in most cases, we can study

each frequency involved independently for convenience.

We can rewrite all elements of the attack vector (3.26) in terms of sine to

find the relative phase between them:

ζ ′t = δ

 sin(w1t)
1
2
[sin((w1 + w2)t) + sin((w1 − w2)t+ π)]

1
2

[
sin((w1 + w2)t+

π
2
) + sin((w1 − w2)t+

π
2
)
]
 .

The main difference compared to the two-dimensional attacks is that we

have to consider 3 different phasors at each output, associated with the three

different frequencies, and then add their associated objective values together.

Furthermore, we have to handle two special cases.

The first case is when one of the frequencies is outside of the range [0, π], it

may become equivalent to another one. The reason for this is that in discrete

time, given some frequency w ∈ [0, π], the following frequencies are equivalent:

w, −w, and 2π − w, perhaps with a phase shift of π. When this occurs, we

must merge the outputs of the same frequency together before taking the norm

as they are no longer orthogonal. This is only possible for two cases:

• For w1 + w2 to be equivalent to w1, we require w1 + w2 = 2π − w1 such

that 2w1 + w2 = 2π.

• For w1−w2 to be equivalent to w1, we require w1−w2 = −w1 such that

2w1 − w2 = 0.
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• It is impossible for w1 + w2 to be equivalent to w1 − w2 because this

would either require w1−w2 = −(w1+w2) or w1+w2 = 2π− (w1−w2)

such that w1 = 0 or w1 = π.

The second special case is if w1 + w2 = π and w1 = w2. Then, one of

the three frequencies becomes constant or alternating. In this case, we now

need to double the objective value that this signal contributes and also find

the optimal initial phase. There are two degrees of freedom for initial phase:

ϕ1 and ϕ2, associated with sinusoids of frequencies w1 and w2, respectively.

From the product-to-sum identities, the initial phases of sinusoids associated

with sinusoids of frequencies w1 + w2 and w1 − w2 are then ϕ1 + ϕ2 and

ϕ1−ϕ2, respectively. Since these phases are linearly independent with respect

to ϕ1 and ϕ2, we can arbitrarily choose the position of these constant and

alternating components on the unit circle. Say the indexes of the attack’s

constant components are α and β, which correspond to the second and third

elements of attack vector (3.26), respectively. The output of the constant

component is given by tα(0)y + tβ(0)x, where (x, y) is a point on the unit

circle. Then, we can optimize by solving:

max
y,x

[
y x

] [tα(0)T tα(0) tα(0)
T tβ(0)

tβ(0)
T tα(0) tβ(0)

T tβ(0)

] [
y
x

]
s.t. y2 + x2 ≤ δ2.

(3.27)

The solution is the eigenvector corresponding to the dominant eigenvalue of

the quadratic weighting matrix above. Then, the initial phases have to satisfy

ϕ1 − ϕ2 = arctan2(−y, x). The same can be done for an alternating compo-

nent by replacing all frequencies arguments with π. Furthermore, the initial

phase condition changes to ϕ1 + ϕ2 = arctan2(y, x). The characterization of

3D steady-state sinusoidal attacks in the interior of our search space can be

computed using Algorithm 3. When w1, w2 = 0, π, we also have discontinuities

that are handled separately below.
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Algorithm 3: Characterization of 3D Sinusoidal Attacks.

begin
W1,W2 ← Discretization of the frequencies on the interval (0, π);
Compute the discrete-time frequency domain response or Bode
plot, T (w), over W = W1 ⊕W2 ∪W1 ⊕ (−W2);
for w1 ∈ W1, w2 ∈ W2, and each permutation p of (3.26), with
indexes of the elements in order being i, j, and k do

o(w1) ← δti(w1);
if w1 = w2 then

// A constant attack component exists

Solve problem (3.27), with dominant eigenvalue λ∗
0;

o(−) ←
√

2λ∗
0/2;

else

o
(−)
1 ← −δtj(w1 − w2)/2;

o
(−)
2 ←

√
−1δtk(w1 − w2)/2;

if 2w1 − w2 = 0 then
// Frequencies w1 − w2 and w1 are equivalent

o(w1) ← o(w1) − o
(−)
1 + o

(−)
2 ;

o(−) ← 0;

else

o(−) ← o
(−)
1 + o

(−)
2 ;

if w1 + w2 = π then
// An alternating attack component exists

Solve problem (3.27), with dominant eigenvalue λ∗
π;

o(+) ←
√

2λ∗
π/2;

else

o
(+)
1 ← δtj(w1 + w2)/2;

o
(+)
2 ←

√
−1δtk(w1 + w2)/2;

if 2w1 + w2 = 2π then
// Frequencies w1 + w2 and w1 are equivalent

o(w1) ← o(w1) − o
(+)
1 + o

(+)
2 ;

o(+) ← 0;

else

o(+) ← o
(+)
1 + o

(+)
2 ;

J
(p)
w1,w2 ← (∥o(w1)∥2 + ∥o(+)∥2 + ∥o(−)∥2)/2;

w∗
1, w

∗
2, p

∗, J∗ ← argmaxw1,w2,p J
(p)
w1,w2 ,maxw1,w2,p J

(p)
w1,w2 ;

40



3.4.4 3D Sinusoidal Attacks with w1 = 0, π

If w1 = 0, we have the following attack vectors:

ζ ′t = δ[a; b sin(w2t); b cos(w2t)] (3.28)

where a, b ∈ R such that a2 + b2 = 1, and the same attack vectors with their

elements permuted.

Lemma 3.2. For a fixed w2 in (3.28), the optimal cost is achieved with either

a = 0 or b = 0.

Proof. Let ta, tbs, and tbc be the columns of T associated with the position of

the elements with a, b sin(w2t), and b cos(w2t) in the attack vector in (3.28),

respectively. Then, our objective function is:

J = δ2
[
a2 ∥ta(0)∥2 +

b2

2

∥∥∥tbs(w2) + tbc(w2)e
√
−1π

2

∥∥∥2
]
.

Since the terms with a and b are completely decoupled in the objective function

and this is a positive semi-definite function with respect to a and b, we select

a = ±1 if ∥t1(0)∥ ≥ 1
2

∥∥∥tbs(w2) + tbc(w2)e
√
−1π

2

∥∥∥ and b = ±1 otherwise for the

maximum. ■

Remark 3.8. Note that a = ±1 is a subset of the constant attack. As for

b = ±1, this is effectively a two-dimensional sinusoidal attack, leaving out

one of the elements in the attack vector. Thus, the problem can be directly

converted to the 2D equivalent by removing the element in ζ ′t and the column

of the B̄D̄−1 matrix in (3.23) associated with the position of a.

If w1 = π instead, then the analysis is equivalent to w1 = 0. The attack

vector in (3.28) becomes:

z′t = δ[(−1)ta;−b sin((π − w2)t); b cos((π − w2)t)].

We can show that a = 0 or b = 0 is optimal in a similar manner. The only

difference in this case is that the sine element leads the cosine element by π/2

rather than lagging. However, this is already addressed by swapping the sine
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and cosine terms in the attack vector of (3.28) anyways. Since we study all

frequencies w2 ∈ (0, π), then we are effectively surveying the same attacks and

frequencies. Thus, we can ignore the case when w1 = π.

3.4.5 3D Sinusoidal Attacks with w2 = 0

If w2 = 0, we have the attack vectors:

ζ ′t = δ[sin(w1t); c cos(w1t); d cos(w1t)] (3.29a)

ζ ′t = δ[cos(w1t); c sin(w1t); d sin(w1t)] (3.29b)

where c, d ∈ R such that c2 + d2 = 1, and the same attack vectors with their

elements permuted.

In this case, we have to consider the initial phase of the element with am-

plitude 1 in (3.29) since all elements have the same frequency; it will therefore

be involved in interference at the output. That is why we also include the case

in which we have cosine for this case only. Algorithm 4 can be used to find

the optimal attack when w2 = 0. The algorithm makes use of the following

lemma.

Let t1, tc, and td be the columns of T associated with the position of the

elements with amplitude 1, c, and d in the attack vector (3.29), respectively,

and ϕ0 = {±π
2
} be the relative phase of the elements with amplitude c and d

relative to the one with amplitude 1.

Lemma 3.3. Let x = [c; d]. The optimal values of c and d in (3.29) can be

obtained by solving the semidefinite programming problem:

max
X,x

Tr(XQ) + fx+ γ

s.t. Tr(X) ≤ 1[
X x
xT 1

]
⪰ 0

(3.30)
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where

Q =
δ2

2

[
t∗c(w1)tc(w1) t∗c(w1)td(w1)
t∗d(w1)tc(w1) t∗d(w1)td(w1)

]
f = δ2Re

(
e
√
−1ϕ0t∗1(w1)

[
tc(w1) td((w1))

])
γ =

δ2

2
t∗1(w1)t1(w1).

Proof. The cost from finding the output as a phasor of a fixed frequency w2

would be:

J =
δ2

2

∥∥∥∥t1(w1) + e
√
−1ϕ0

[
tc(w1) td((w1))

] [c
d

]∥∥∥∥2

.

By expanding the norm, we can formulate the following QCQP to optimize

this objective value with respect c and d:

max
x

xTQx+ fx+ γ

s.t. xTx ≤ 1.
(3.31)

Since this is a QCQP with one constraint, we can solve this with the semidef-

inite programming relaxation in (3.30) quickly and precisely [2]. ■

3.4.6 3D Sinusoidal Attacks with w2 = π

If w2 = π, we only have three unique attack vectors:

ζ ′t = δ[sin(w1t); (−1)tc cos(w1t); (−1)td cos(w1t)] (3.32)

and the same attack vectors with the sine element permuted. This is equivalent

to

ζ ′t = δ[sin(w1t); c cos(w
′
1t); d cos(w

′
1t)]

where w′
1 = π −w1. We no longer have to consider the case in which the sine

and cosine elements are swapped in each attack vector because this would

lead to the same relative phase between elements with the same frequency.

Considering that c, d ∈ R, this greatly simplifies the optimization problem in

(3.31) to have:

Q =
δ2

2

[
t∗c(w

′
1)tc(w

′
1) t∗c(w

′
1)td(w

′
1)

t∗d(w
′
1)tc(w

′
1) t∗d(w

′
1)td(w

′
1)

]
f = 0

(3.33)
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Algorithm 4: Characterization of 3D Steady State Sinusoidal At-
tacks when w2 = 0.

begin
W1 ← Discretization of the frequencies on the interval (0, π);
Compute the discrete-time frequency domain response or Bode
plot, T (w), over W1;
for w1 ∈ W1, ϕ ∈ {±π/2}, and each valid permutation p of
(3.29), with indexes of the elements in order being i, j, and k do

o1 ← ti(w1)δ;

oc ← tj(w1)δe
√
−1ϕ;

od ← tk(w1)δe
√
−1ϕ;

ocd ← [oc, od];
Q← o∗cdocd/2;
f ← Re(o∗1ocd);
γ ← o∗1o1/2;
Solve optimization problem (3.31) and store optimal objective

value in J
(p,ϕ)
w1 and optimal arguments c and d in c

(p,ϕ)
w1 and

d
(p,ϕ)
w1 , respectively.;

w∗
1, p

∗, ϕ∗, J∗ ← argmaxw1,p,ϕ J
(p,ϕ)
w1 ,maxw1,p,ϕ J

(p,ϕ)
w1 ;

c∗, d∗ ← c
(p∗,ϕ∗)
w∗

1
, d

(p∗,ϕ∗)
w∗

1
;
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which can be solved as an eigenvalue problem because there is no linear term.

Then, [c; d] is the eigenvector corresponding to the largest eigenvalue of Q

scaled to have a norm of 1. Algorithm 5 can be used to find the optimal

attack when w2 = π.

Algorithm 5: Characterization of 3D Steady State Sinusoidal At-
tacks when w2 = π.

begin
W1 ← Discretization of the frequencies on the interval (0, π);
W ′

1 ← {π − w1 | w1 ∈ W1};
Compute the discrete-time frequency domain response or Bode
plot, T (w), over W1 ∪W ′

1;
for w1 ∈ W1 and each valid permutation p of (3.32), with indexes
of the elements in order being i, j, and k do

ocd ← [tj(w
′
1), tk(w

′
1)];

Q← o∗cdocd;
γ ← t∗i (w1)ti(w1);
{λmax, vmax} ← dominant eigenvalue and corresponding
eigenvector of Q;

[c
(p)
w1 , d

(p)
w1 ]

T ← vmax;

J
(p)
w1 ← δ2 [λmax + γ] /2;

w∗
1, p

∗, J∗ ← argmaxw1,p J
(p)
w1 ,maxw1,p J

(p)
w1 ;

c∗, d∗ ← c
(p∗)
w∗

1
, d

(p∗)
w∗

1
;

3.5 Comparison of Attack Strategies

As shown in Section 3.4, the design of sinusoidal attacks is quite an involved

process. Thus, it is desirable to find a fast and easy way to check if constant or

alternating attacks are optimal so that we can avoid performing unnecessary

analysis. Here, we provide a condition for pure sinusoidal attacks to be sub-

optimal.

Theorem 3.3. Let t̄ij be the largest magnitude value of tij(w) over all w ∈

[0, π]. Jsin, the average step-by-step cost from sinusoidal attacks without a
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constant or alternating component, is upper bounded by:

Jsin ≤
δ2

2

n∑
i=1

na∑
j=1

na∑
k=1

t̄ij t̄ik. (3.34)

Proof. Without loss of generality, the sinusoidal attack along each element

of the attack vector is taken from the set of spherical coordinates from a

(na − 1)-sphere of radius δ. That is, the set:

{δ cos(θ1), δ sin(θ1) cos(θ2), δ sin(θ1) · · · cos(θna−1), δ sin(θ1) · · · sin(θna−1)}

where θi = wit. From the product-to-sum trigonometric identities, the product

of n sinusoidal functions can be written as a linear combination of 2n sinusoidal

functions, each with magnitude 2−n and a frequency in the set of values that

can be represented with η1w1 + η2w2 + · · · + ηnwn, where ηi ∈ {1,−1}. Let

W be the set of all frequencies that are included in the attack from the any

element of the attack vector. Then, the cost from a single output element, i,

is:

Jsin,i =
1

2

∑
w∈W

∣∣∣[ti1(w), ti2(w), . . . , tina(w)]Φ
(w)
0 v(w)

∣∣∣2
where v(w) is a vector that represents the magnitude of the sinusoid with fre-

quency w for each element of the attack and Φ
(w)
0 is a diagonal matrix with

elements that contain the relative phase between them. To meet the stealth-

iness condition, the sum of all v(w) is a vector of δ. Because we are looking

for an upper bound for the sinusoidal attacks, we assume all interference is

perfectly constructive to maximize the output amplitude. This can be repre-

sented as:

Jsin,i ≤
1

2

∑
w∈W

∣∣[|ti1(w)|, |ti2(w)|, . . . , |tina(w)|]v(w)
∣∣2 .

For further simplicity, we remove the dependency on w by using the maximum

magnitude of each element of the transfer function:

Jsin,i ≤
1

2

∑
w∈W

(
[t̄i1, t̄i2, . . . , t̄ina ]v

(w)
)2

.
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By expanding the vector multiplication and the square, this simplifies to:

Jsin,i ≤
1

2

∑
w∈W

na∑
j=1

na∑
k=1

t̄ij t̄ikv
(w)
j v

(w)
k .

Since v
(w)
j v

(w)
k ≤ δv

(w)
j and

∑
w∈W v

(w)
j = δ, then:

Jsin,i ≤
δ2

2

na∑
j=1

na∑
k=1

t̄ij t̄ik.

Summing up all of the contributions from all n outputs, we have (3.34). ■

Corollary 3.3. Let λ∗ = max(ρ[T T (0)T (0)], ρ[T T (π)T (π)]). Then, a suffi-

cient condition for the constant or alternating attack to be optimal over any

two-dimensional sinusoidal attack is:

λ∗ ≥ 1

2

n∑
i=1

na∑
j=1

na∑
k=1

t̄ij t̄ik.

It is also a sufficient condition for constant or alternating attacks to be optimal

over any three-dimensional sinusoidal attacks except those that satisfy w1 = w2

or w1 + w2 = π.

Proof. From Remark 3.7, the optimal cost of a constant or alternating attack

is δ2λ∗. Two-dimensional sinusoidal attacks may not have any constant or

alternating components whereas three-dimensional attack only have constant

or alternating components if w1 = w2 or w1+w2 = π. The result then directly

follows from Theorem 3.3. ■

3.6 Comparison with Stochastic Attacks

In this section, we will provide a framework in which deterministic attacks

may be compared to stochastic attacks in order to compare their impact on the

system. From a stochastic attack perspective, the work that is most analogous

to this chapter is [11], which utilized a norm bound on the KLD from the

original innovation to the compromised innovation at each time step as their

stealthiness condition. Although Guo et al. studied attacks on remote state
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estimation using a Kalman filter rather than closed-loop control, our attack

methods can still be used as explained in Remark 2.3.

To facilitate the comparison for this section, we match the assumption

in [11] that the process and measurement noises follow zero mean Gaussian

distributions: wk ∼ N (0, Q) and vk ∼ N (0, R), where Q ∈ Sn
+ and R ∈

Sm
++. Furthermore, we assume that the state estimator uses a Kalman filter

that has reached steady state. Then, we can make a connection between the

stealthiness condition in (3.4) and the KLD:

Proposition 3.2. The KLD from the distribution of the original innovation

to the compromised innovation at each time step of a stealthy attack is upper

bounded by:

DKL(z
′
t∥zk) ≤

λmaxδ
2

2
(3.35)

where λmax is the dominant eigenvalue of (CPCT +R)−1.

Proof. It can be shown that the KLD from one k-variate normal distribution,

N1(µ1,Σ1), to another, N0(µ0,Σ0), is:

DKL(N0∥N1) =
1

2

[
tr(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)− k + ln

(
|Σ1|
|Σ0|

)]
(3.36)

Given our assumption on the noises, the nominal innovation at each step also

follows a zero mean Gaussian distribution: zt ∼ N (0, CPCT + R), where

P is the steady-state error covariance. During a deterministic attack, the

compromised innovation at each time step is simply the nominal one shifted

by ∆zt, so it follows the Gaussian distribution: z′t ∼ N (∆zt, CPCT + R).

Then, applying this to (3.36) and simplifying, we obtain:

DKL(z
′
t∥zt) =

1

2
∆zTt (CPCT +R)−1∆zt

From the Rayleigh quotient and the stealthiness constraint, since ∆zTt ∆zt ≤

δ2, then ∆zTt (CPCT +R)−1∆zt ≤ λmaxδ
2. ■

This can be considered a tight upper bound in some sense because the

bound is achievable.
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3.7 Simulation

For simplicity, we will assume that δ = 1 and Q0 = I for all numerical

examples unless otherwise stated. First, we will demonstrate the results of

Section 3.3 with an invulnerable system for which the attacker does not have

many degrees of freedom. For comparability, we analyze the double integrator

system used in [37] and [27]:

xt+1 =

[
1 0
1 1

]
xt +

[
1
0

]
ut + wt

yt = xt +

[
1
0

]
yat + vt

and estimator gain K =

[
0.6 0
−1.4 1.6

]
. If we compute and apply the fully

constant attack, we have:

ζt = 1.6, lim
t→∞
∥∆et+1∥ = 1.7088, J = 2.92.

For this system configuration, this is optimal over the fully alternating attack:

ζt = 0.2392(−1)t, lim
t→∞
∥∆et+1∥ = 1.0473, J = 1.0969.

Figs. 3.1 and 3.2 show the objective value and ∥∆zt∥, respectively, of the

attack at each time step. We can see in these figures that the constant attack

is in agreement with solving (3.11) using numerical methods as well. For

most systems, the attack converges to a steady state very quickly. Because

we designed the attacks to be steady-state stealthy, it is guaranteed that

limt→∞ ∥∆zt∥ = δ. However, it is not necessarily a stealthy attack because

the stealthiness constraint could be violated during the transient.

We will also use this system to demonstrate the effectiveness of the re-

ceding horizon implementation of the solution to optimization problem (2.9),

as described in Section 3.2.2. Simulations of the attacks computed using the

receding horizon and normal implementations are presented together in Fig.

3.3. At the end of the horizon, the attack that uses the nominal solution

causes the ∆et to move away from the origin. This may be beneficial because
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Figure 3.1: Step-by-step objective values of optimal fully constant, fully al-
ternating, and numerical attacks on a double integral system.

the objective value is maximized during these time steps, but if this final state

is used as ∆e0 in the next optimization problem, the problem becomes infea-

sible. In contrast, the receding horizon implementation, which uses τ = 40

and tutil = 20, avoids this issue by keeping ∆et constant throughout.

Now, consider a similar system with the same K matrix in which the

attacker has more degrees of freedom:

xt+1 =

[
0.6 0
1 0.5

]
xt +

[
1
0

]
ut + wt

yt = xt + yat + vt

such that yat ∈ R2. We calculate the upper bound for sinusoidal attacks, J̄sin,

in Theorem 3.3 and the constant and alternating attack objective value, λ∗,

in Corollary 3.3:

J̄sin = 15.2818, λ∗ = 10.2912.

From Corollary 3.3, we can see that there is no guarantee that the con-

stant and alternating attacks are optimal over all sinusoidal attacks. Thus, it
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Figure 3.2: Evolution of ∥∆zt∥ under optimal fully constant, fully alternating,
and numerical attacks on a double integral system.

is necessary to perform some analysis of two-dimensional sinusoidal attacks.

Applying Algorithm 2, we can compute and plot the impact of sinusoidal

attacks as a function of frequency, as shown in Fig. 3.4.

The optimal sinusoidal attack achieves J = 11.1701 when the first element

leads at w = 0.3271, surpassing the constant attack by a sizable margin. In

Fig. 3.5, ∆et is shown for the system under this optimal sinusoidal attack

along with the numerically optimal attack obtained by solving (3.11). An

initial phase of 0.65π was added to the sinusoidal attack in order to align the

two attacks. We can see that although the optimal numerical attack has a

complex structure, it is well approximated by the optimal sinusoidal attack.

Correspondingly, the difference between the objective values of the two attacks

is relatively small. Over these 60 time steps, the costs of the sinusoidal and

numerical attacks are 645 and 694, respectively. A significant part of this

discrepancy is due to the difference in the transient during the first few time

steps.

We now consider a third-order system, which has a sinusoidal attack analy-
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Figure 3.3: Evolution of ∥∆et∥ under attacks using the receding horizon and
normal implementations.

sis that is substantially more complex than the two-dimensional case. Consider

the system:

xt+1 =

0.83 −0.04 1.05
0.26 0.60 0.33
0.27 −1.12 −0.33

xt +

10
0

ut + wt

yt =

−1.34 −1.05 2.00
1.02 1.36 −0.85
−1.05 −1.97 0.11

xt + yat + vt

(3.37)

and an estimator gain of:

K =

 1.86 −1.77 −1.41
−0.47 1.63 1.39
1.71 1.25 −1.04

 .

We can then characterize all the three-dimensional sinusoidal attacks and the

edge cases using Algorithm 3. The results of this characterization are shown

in Figs. 3.6 and 3.7. For brevity, note that these plots show the maximum

value over all permutations of the attack vector at each given frequency. Fur-

thermore, a comparison between the optimal attacks in each case is provided

in Table 3.1. The “format” column shows how the elements of the attack
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Figure 3.4: 2D sinusoidal attack objective values of varying frequencies com-
pared with constant and alternating attacks.

vector is constructed using the indexes from (3.26), (3.28), (3.29), and (3.32),

respectively.

Table 3.1: Properties of optimal sinusoidal attacks on system (3.37).

Attack Objective Frequency Format Other

Standard 537
w1 = 0.5248

3,2,1
w2 = 0.0023

w1 = 0 778 w2 = 0.5219 3,2,1

w2 = 0 1114 w1 = 0.5206
1,2,3 c = 0.6983

(3.29b) d = 0.7158

w2 = π 558 w1 = 2.6282 3,1,2
c = −0.7295
d = 0.6840

For this system, the value of sinusoidal attacks is clear as they are capable

of performing over four times better than the optimal constant and alternating

attacks, which have objective values of only 248 and 34, respectively.

Finally, we examine the second order system parameters and noise covari-
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Figure 3.5: Evolution of ∆et under optimal sinusoidal and numerical attacks,
represented by the solid and dashed lines, respectively.

ance matrices from [11], which is used below to compare the performance of the

optimal deterministic attacks discussed in this chapter with their stochastic

counterparts:

A =

[
0.7 0.2
0.05 0.64

]
C =

[
0.5 −0.8
0 0.7

]
Q =

[
0.5 0
0 0.7

]
R =

[
1 0
0 0.8

]
.

The Kalman filter then has a steady state gain of:

K =

[
0.2647 0.2064
−0.2650 0.4188

]
.

As the stealthiness constraint, we assume that the KLD from nominal to

compromised innovation at each time step has to be less than 1. Then, from

Proposition 3.2, we can compute that δ = 1.3949. For both types of attacks,

we shall use the step-by-step objective function in (3.8). We do not use the

estimation error covariance to compare because the compromised covariance

is the same as the nominal one for deterministic attacks studied in this thesis.

However, note that the second moment with respect to the origin of the esti-

mation error distribution, which changes during a deterministic attack, may
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Figure 3.6: Objective values of 3D sinusoidal attacks with frequencies w1 and
w2.

also be used for comparison to some optimal stochastic attacks [32] but is not

considered here.

Applying Theorem 3.3, we can see that the sinusoidal upper bound is

8.4702, which is lower than the optimal objective value for the constant attack

of 8.8354. Since this is a two dimensional system, we can then guarantee that

the constant attack is better than a sinusoidal attack of any frequency. For

reference, the alternating attack only achieves an objective value of 0.1798, so

it is disregarded.

We can compare this attack performance with the optimal solution from

[11]. For the stochastic attack, we first let the system run for 20 time steps

in order to ensure that it reaches a steady state; then we apply the attack

starting at the 21st time step. Furthermore, we perform 10,000 Monte Carlo

simulations to obtain an average of the objective value at each time step.

The objective values over the first 40 time steps of each attack is provided in

Fig. 3.8. We can see that the attack performance is comparable, although the

stochastic attack is superior by a small margin. This is reasonable because the
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Figure 3.7: Objective values of 3D sinusoidal attacks at the edge cases.

stochastic attack assumes the attacks have a significantly larger information

set available than the deterministic one. In other words, the attacker requires

real-time knowledge about how the noises affect the system. Although this

comparison is informative, it should be noted that it is not definitive. Neither

attack can be considered strictly optimal. On one hand, the deterministic

attack does not make full use of the stealthiness constraint since we utilize the

upper bound in (3.35). On the other hand, the goal of the stochastic attack

is to maximize the compromised estimation error. Although they are related,

the objective measure presented in this thesis is different, resulting in some

suboptimality.
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Figure 3.8: Evolution of objective values for optimal deterministic and stochas-
tic attacks.
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Chapter 4

Conclusions and Future Work

In this chapter, remarks are provided to conclude this thesis, and then

some potential research directions are suggested for future work.

4.1 Conclusions

This thesis studies the design of optimal stealthy attacks on the commu-

nication channels of CPSs. The goal of this research is to identify system

vulnerabilities and determine the risk that is present. This will facilitate the

design of defensive countermeasures and other mitigating actions. The main

results of this thesis are summarized as follows:

1. CPSs were studied with respect to their vulnerability to strictly stealthy

deterministic attacks. A necessary and sufficient condition was pre-

sented for a system and associated attack parameters to permit a strictly

stealthy attack of a particular length. It was shown that strict vulner-

ability in [37] is a special case of τ -step strict vulnerability introduced

in this thesis. Then, a method for finding all possible strictly stealthy

attacks of a certain length was given. Out of these possibilities, the opti-

mal attack was obtained analytically given an energy constraint and an

objective function. Finally, a numerical example was used to illustrate

the proposed concepts and attack strategy.

2. We investigated optimal deterministic FDI attacks on CPSs with a re-
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laxed stealthiness constraint. Given some basic model parameters, we

derived the optimization problem that can be solved to obtain the most

effective attack over a finite horizon. For invulnerable systems, these at-

tacks tend to quickly converge to a constant, alternating, or a sinusoidal-

like signal. Thus, we determined the optimal constant and alternating

attacks analytically. Furthermore, two and three-dimensional sinusoidal

attacks were characterized in detail, including a number of edge cases.

In order to reduce unnecessary computations, a sufficient condition was

obtained for the optimal constant and alternating attack to outperform

any two-dimensional and most three-dimensional sinusoidal attacks. Fi-

nally, we introduce an approach to directly compare the optimal stealthy

deterministic and stochastic attacks.

4.2 Future Work

A few directions for future research on CPS security are provided below:

1. Investigate the exact detection rate of deterministic attacks at each time

step with respect to a specific detector. This information would be useful

for both attackers and defenders alike for a more direct and intuitive

measure of stealthiness than a bound on ∆zt or the KLD. This may

be difficult to solve analytically but should be possible using numerical

methods. For example, assume there are zero-mean Gaussian noises, a

Kalman filter is used as the state estimator, and that the system has a

χ2 detector equipped. Then, z′t must remain within an ellipsoid centered

on the origin in order to remain undetected. For a deterministic attack,

the compromised innovation follows a multivariate Gaussian distribution

with a non-zero mean. The detection rate would then be one minus

the integration of the probability distribution function of z′t over the

centered ellipsoid. For example, this computation can be performed

using the pmvnEll function in the R programming language by treating

the Gaussian distribution as centered at the origin and the ellipsoid
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as offset. Studying the detection rate and its properties for a more

relaxed assumptions or a broader set of detectors would be an interesting

research topic.

2. Develop countermeasures that are catered towards detecting or mitigat-

ing deterministic FDI attacks. Although many countermeasures have

been studied in the literature, there has been little research on how to

exploit the properties of deterministic attacks to determine appropri-

ate defensive actions. In general, deterministic attacks are invulnerable

against additive watermarks in linear systems because the attacks them-

selves are additive in nature. Furthermore, detectors would no longer

be effective if a system is strictly vulnerable. Instead, two avenues of

investigation are suggested:

(a) A robust countermeasure that should be effective is encryption, as

discussed in [30]. It would be interesting to examine the effect of

encrypted communication channels on a system under FDI attacks

and evaluate its effectiveness under a deterministic framework.

(b) A major weakness of deterministic attacks is that they cause the

compromised innovation distribution to no longer be zero-mean.

Thus, an obvious countermeasure that can be deployed is one that

monitors the average of the transmitted innovation. In this context,

the technical design and theoretical properties of such a detector,

such as detection and false alarm rates, should be a relatively simple

but compelling research problem.

Fortuitously, the suggested two defense mechanisms would have no neg-

ative impact on the nominal system.

3. As shown in Chapter 3, for some systems, there are some values of ∆et

that are reachable under stealthy attacks but do not permit a future

stealthy attack of an arbitrary length. For such systems, it would be
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interesting to find a general method to analytically or numerically de-

termining the “sustainable stealthy attack set”, or values of ∆et from

which stealthy attacks are always possible. One idea to determine such

a set is as follows. Let P be projection matrix in Section 3.4.1. First,

a stealthy attack on the current time step is only possible if ∆et falls

within the set:

A0 = {∆et | ∥(I − P )CA∆et∥ ≤ δ}

From here, a stealthy attack from ∆et ∈ A0 on the next time step after

is only possible if there exists a stealthy attack vector that can take an

element of A0 to ∆et. Otherwise, it should be removed from the set,

formingA1. This process can be repeated to obtain progressively smaller

sets Ai until a sufficiently accurate estimate of the sustainable stealthy

attack set is obtained. Ideally, we would compute limi→∞Ai = A, which

is the exact sustainable stealthy attack set. Note that if ∆et ∈ Ai, then

there exists an attack sequence such that a feasible stealthy attack will

be possible at ∆et+i. This method is similar to the techniques used

to compute control invariant sets, also known as viability kernels [22].

Viewing the design of stealthy attacks as a system with input constraints,

the reachable set of ∆et could also be investigated to obtain a holistic

understanding of attacker capabilities.

4. Extend some of the work on comparing the performance between stochas-

tic and deterministic attack designs that was presented in Section 3.6.

This may include applying the comparison to more general system mod-

els, such as for closed-loop control systems or an arbitrary stabilizing

fixed-gain estimator, rather than just Kalman filtering at steady state.

Even more interesting results could be obtained by proposing and study-

ing some standard unified attack model that combines or incorporates

elements of both stochastic and deterministic attacks.

5. Study the design of optimal attacks when there is a greatly limited infor-
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mation set or there is some uncertainty in the system model available to

the attacker. In almost all studies on FDI attacks on CPS, it is assumed

that the attacker knows most system parameters exactly. However, this

information is likely proprietary and would be difficult to obtain in prac-

tice. Data-driven and model-less control methods could be investigated

and extended in order to design effective and stealthy attacks using only

the transmitted data available to the attacker.
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