
UNIVERSITY OF ALBERTA

CAPSTONE	 PROJECT	
DDoS	 Detection	 And	 Mitigation	 Using	

OpenFlow	

Rahul Kumar, MINT

Supervisor, Ali Tizghadan, Telus

2

ABSTRACT
The solution is addressing the need of implementing DDoS mitigation at the network
level without necessarily employing dedicated hardware but rather using the router
platforms as efficient mitigation devices for certain clearly defined attack vectors. It also
facilitates the off-ramping of the suspicious traffic to specialized security gear for more
in-depth analysis and enforcement.

3

CONTENTS
ACRONYMS .. 4	
INTRODUCTION .. 5	
SOFTWARE DEFINED NETWORK ... 5	
OPENFLOW .. 6	
DDOS ... 6	

TYPES OF DDOS ... 7	
SYSTEM DESIGN APPROACH ... 8	
SYSTEM COMPONENTS .. 11	

ALERT LISTENER .. 11	
OPENDAYLIGHT CONTROLLER ... 12	
ARBOR PEAKFLOW SP .. 12	

SYSTEM IMPLEMENTATION .. 13	
STEP 1: INSTALLATION OF DEFAULT FLOW APPLICATION IN OPENDAYLIGHT CONTROLLER. 13	
STEP 2: CONFIGURE OPENFLOW IN JUNIPER MX960. ... 14	
STEP 3: CONFIGURE JFLOW IN JUNIPER MX960 ... 15	
STEP 4: RUN ALERT LISTENER APPLICATION ... 16	

SYSTEM WORKFLOW ... 16	
LAB SETUP .. 19	
TEST CASES .. 20	

TEST CASE 1 ... 20	
TEST CASE 2 ... 22	

DDOS DETECTION APPROACH .. 26	
OVERVIEW .. 26	

APPLICATION MODULES .. 27	
NETFLOW COLLECTOR ... 27	
ANALYSIS BASED ON ENTROPY .. 27	
SNMP BASED TRIGGER ... 29	

REFERENCES ... 30	

4

ACRONYMS
SDN Software Defined Network
DDoS distributed denial-of-service
UDP User Datagram packet
ICMP Internet control message protocol
TCP Transmission control protocol
IP Internet protocol
MPLS Multiprotocol Label switching
DPID Datapath ID
REST Representational state transfer
API Application protocol interface
VM Virtual machine
SNMP Simple network monitoring protocol

5

INTRODUCTION
DDoS is an attack that scales from large to small enterprises publishing their services
publically. Though nobody has been able to completely mitigate the attack without
service degradation but large enterprise do deploy solution to restrict the impact in their
network while segregating rogue request from legitimated ones. The service provider
network is another aspect of DDoS attack, where traffic for customer can choke low
bandwidth interfaces of service provider infrastructure.

Some of these enterprises are able to mitigate DDoS but still all the bandwidth is utilized
by DDoS traffic. They are able to protect their servers and services from DDoS traffic but
still all the legitimate users are unable to use it. In addition, DDoS attack affects service
provider network as well. It is a significant issue for both the customer and provider.

In the case of service provider network, the responsibility extends to protecting its own
network from over consumption and detecting affected customer. To protect their
network and customers they need to detect and mitigate at their end. When these attacks
occurs, the effective way to block them is to manually restrict the published server IP
traffic. This method is the last resort, which requires timely response and threat detection.

SOFTWARE DEFINED NETWORK
The last decade seen great many changes in server characteristics as ‘Virtualization’
became prominent part of server and application [1]. The concept of server also evolved
from centralized to distributed application and services. These application and services
made easy for server administrator to install, update, manage and move virtual systems
within and across the datacenters. On the contrary, the same level of control was required
from network infrastructure to centrally understand the distributed computation and
provide discrete service based on application requirement. The virtualization pushed
vendors to develop new technologies and protocols to provide dynamic communication
between server irrespective of network physical and logical capabilities.

Software Defined Network (SDN) a new term brought hope for evolution in the
architecture. SDN holds the future for new ideas, protocols, better control &
management, policing and flexible enough to support legacy components as well as
making it face new challenges and error-prone [2]. Network engineers were always
restricted in their approach to perform operation with limited set of tools. The implication
of programming on top of physical hardware and underlying operating system the SDN
has extended its arm to fine-tune network behavior with respect to application and
services.

The fundamentals of SDN includes separation of control and data plane [3]. The data
plane includes the forwarding logic which when receives the packet deals with it based
on actions such as forward, drop, reject, replicate or perform vendor proprietary

6

functions. All algorithm that decides and calculate what need to be done on the incoming
packet takes place in control plane. Once the decision is made in control plane it is
installed in the form of flow into the forwarding table. The purpose of control plane is to
maintain state of the network and synchronization with other devices on the network. In
the case of SDN the control plane is lifted from the devices making them dump
forwarding stations, all synchronized to a central software based controller which
provides instruction allowing them to perform actions on incoming traffic flows. The
software based controller provides a central view to programmer and network engineer to
control forwarding behavior across network through the open interface controlled by
north and south bound APIs.

OPENFLOW
OpenFlow [4] was developed as a research protocol and became part of Stanford
University research network. The basic scope of this protocol is to provide a ground to
new protocol that can work without the boundaries of layer 2 and layer 3 protocols, thus
reshaping the communication. After it’s initial result the Open Networking Foundation
(ONF) promoted this protocol stack so that service provider networks can test this
protocol in real environment.

The Openflow protocol follows a client server architecture where an agent is installed in
the switches to connect to the software based controlled. The controller provides an
openflow interface to communicate with the switches through the use of APIs. It is
important to understand here that controller function is nothing without the use
application of API. The open flow protocol itself is divided into two parts:

-‐ The wireline protocol is used to define the flow exchange and action
communicated to switch. This also provide pipelining for every table, in the case
multiple table deployment.

-‐ The second part uses NETCONF for the management of switches through
physical ports. It also provides other services such as maintaining redundant
connection for high availability and checking connection to the remote controller.

The Open flow protocol can be deployed in proactive mode where flow are installed
before the incoming packet or a reactive approach where flows are installed one the data
plane receives the incoming packet.

DDOS
A distributed denial-of-service (DDoS) attack is one in which a large number of
compromised systems attack a single target, thereby exhausting all resources of the target
system [5]. The flood of incoming messages to the target system essentially forces it to
shut down, thereby denying service to legitimate users.

7

Attackers build networks of infected computers, known as 'botnets', by spreading
malicious software through emails, websites and social media. These bots can be
controlled remotely and used to launch an attack against any target without the
knowledge of its owner (machine owner). Some botnets are millions of machines strong.
Botnets can generate huge floods of traffic to crash a target system. These floods can be
generated in multiple ways, such as sending more connection requests than a server can
handle, or sending huge amounts of random data to use up the targets bandwidth. There
are specialized online marketplaces to buy and sell botnets. Anyone can pay a nominal
fee to attack websites or disrupt an organization’s online operations.

Types of DDoS

UDP Flood

This DDoS attack leverages the User Datagram Protocol (UDP), a sessionless networking
protocol. In this type of attack numerous UDP packets are flooded to random ports on
remote host, causing the host to repeatedly check for the application listening at that port,
and (when no application is found) reply with an ICMP Destination Unreachable packet.
This process drains host resources, and can ultimately lead to inaccessibility.

ICMP Flood

It is similar to the UDP flood attack. An ICMP flood overwhelms the target resource with
ICMP Echo Request packets, generally sending packets as fast as possible without
waiting for replies. ICMP attack can consume both outgoing and incoming bandwidth, as
the target system will often attempt to respond with ICMP Echo Reply packets, resulting
a significant overall system slowdown.

SYN Flood

A “three-way handshake”, which is a reference to how TCP connections work, is the
basis for this form of attack. Wherein a SYN request to initiate a TCP connection with a
host must be answered by a SYN-ACK response from that host, and then confirmed by
an ACK response from the requester. In a SYN flood, the requester sends multiple SYN
requests, but either does not respond to the host’s SYN-ACK response, or sends the SYN
requests from a spoofed IP address. In any case, the host system continues to wait for
acknowledgement for each of the requests, binding resources until no new connections
can be made, and ultimately resulting in denial of service.

8

Ping of Death

A ping of death attack involves the attacker sending multiple malformed or malicious
pings to target system. The maximum packet length of an IP packet is 65,535 bytes. But
Data Link Layer usually poses limits to the maximum frame size of 1500 bytes over an
Ethernet network. So large IP packet is split across multiple IP packets known as
fragments, and the target system reassembles the IP fragments into the complete packet.
In a Ping of Death, following malicious manipulation of fragment content, the recipient
ends up with an IP packet, which is larger than 65,535 bytes when reassembled. This can
overflow memory buffers allocated for the packet, causing denial of service for legitimate
packets.

Reflected Attack

A reflected attack is where an attacker creates packets with source address of target
system that will be sent out to as many computers as possible. When these computers
receive the packets they will reply, but the reply will be a spoofed address that actually
routes to the target. All of the computers will attempt to communicate at once and this
will cause the target system to be bogged down with requests until its resources are
exhausted.

Peer-to-Peer Attacks

In this type of attack peer-to-peer server is exploited to route traffic to the target system
instead of using botnet. So peer-to-peer clients using file-sharing hub instead send data to
target system until it is overwhelmed and sent offline.

SYSTEM DESIGN APPROACH
We propose an automated solution to mitigate DoS attacks which operates at the network
level via software-defined networking (SDN). DDoS traffic is detected and notified to a
centralized controller, which can adaptively adjust peering routers to filter the DDoS
traffic using Openflow. The centralized approach of triggering the security action from
just one place (the SDN controller) will reduce the time that would be spent otherwise
implementing equivalent measures on each and every router. Also, with the right policies
in place on the SDN controller automatically triggering the security actions based on
various conditions, manual labor could be avoided.

By operating at the network layer, we are able to stop the traffic right at the edge of our

9

domain, which minimizes the impact of the attack across our network.

As a proof of concept, we design and implement our solution in the Telus SDN testbed
lab. We demonstrate how Openflow-enabled switches can be managed via a controller to
filter DDoS traffic.

§ The goal is to demonstrate that the IP/MPLS Core network SDN deployment can
be leveraged as part of the network-level security mitigation;

§ In the first phase, the assumption is that the security event detection is performed
by a separate system:

o e.g. for DDoS attacks the system used is the Core Arbor Peakflow
deployment;

o other systems may be used to detect the presence of malware, external
feeds with threat intelligence, etc.

§ In subsequent phases, we will explore leveraging SDN for the detection portion as
well;

§ The security event detection (DDoS attack) is performed by the system Core
PeakFlow SP collecting and analysing Netflow data from routers;

§ Alert trigger containing the 5-tuple (or parts of it) information is sent to the Alert
Listener via syslog messages;

§ SDN controller issues one of the following commands to the routers (via
Openflow):

o Drop/block (depicted in Figure 1);
o Steer (off-ramp) towards a security device directly attached to the Openflow

router defined destination (e.g. Security Pod TMS, sandbox, etc.). Figure 2
illustrates this process.

10

OpenFlow-‐enabled	
Router

NetFlow	 Collector/	
Attack	 Detector

SDN	 Controller	 /	 Alert	
Listener

5.	 Block	 Attack

1.	 DDoS	 Attack

3.	 Syslog	 message/Alert

Figure 1. Block Action

11

OpenFlow-‐enabled	
Router

NetFlow	 Collector/	
Attack	 Detector

SDN	 Controller	 /	 Alert	
Listener

5.	 Off-‐ramp1.	 DDoS	 Attack

3.	 Syslog	 message/Alert

Security	 Server

Figure 2. Off-ramp action

SYSTEM COMPONENTS
There are two applications deployed in two different virtual machines. The Alert Listener
is written in python while Opendaylight is in Java. Arbor PeakFlow is a third component
that is responsible for DDoS detection.

Alert Listener
The purpose of this application is to receive DoS alert syslog from Arbor Peakflow SP on
a pre-defined IP address & port. It parses the alert to get information about type of DoS
attack, alert id, status, source IP address, destination IP address, protocol, port and
affected router name. It is not necessary that alert will contain all the information as it
depends on Arbor detection system. First, it checks if parsed alert id is already in the
database. If not then based on the information it generates a rule, which contains priority,
unique flow id, action (DROP) and switch DPID (each affected router has unique switch
DPID). Switch DPID is taken from a text file, which contains unique switch DPID for

12

each router. This file is created manually. Once rule is formed it uses REST API to send
it to Opendaylight controller and stores the flow id along with alert id and switch DPID.
Opendaylight controller stores this flow id, which is used in removing the flow later on.

In case alert id already exists in alert listener database it will check the status of alert. If
status is done, then it generates a rule to delete the corresponding flow from the affected
router. It sends the rule to Opendaylight controller using REST API.

Opendaylight Controller
We are using Opendaylight controller only to push/delete flows from connected openflow
router (Juniper MX960). We have developed a java application (default_flow.jar), which
runs on Opendaylight controller to install default flow to connected openflow router. The
purpose of this default flow is to forward traffic to control plane of openflow router. As
by default all the traffic is sent to controller if no matching flow is found. So in order to
keep routing decision at openflow router control plane this flow is installed.

The application listens for data packets sent by connected openflow router. Openflow
router registers itself with Opendaylight controller and start sending traffic, which it
receives, on openflow interface. As soon as first packet is received by the application it
pushes the default flow to the openflow router. As a result all traffic after that is handled
by openflow router control plane.

Arbor Peakflow SP
It is used to detect DoS attack on juniper MX960. It collects statistics of openflow
interface using JFLOW (Netflow) after pre-defined interval of time. The collected
statistics is analyzed and compared with the pre-defined threshold value for different type
of traffic by Arbor to detect DoS attack and details of attack i.e. type of DoS attack,
destination IP address, port, protocol and source IP address. Once DoS attack is detected
it sends syslog alert to Alert listener on pre-defined IP address and port with details of the
DoS attack.

13

SYSTEM IMPLEMENTATION

STEP 1: Installation of default flow application in Opendaylight
controller.
To install default_flow.jar application we use “install file:/path” command. After
installation is finished the application receives a bundle ID, which in our case happened
to be 253. The ID number will be defined in the command line output after installation.
The procedure is depicted in Figure 3.

Figure 3. Default flow installation

In order to start/run the bundle we simply issue a “start” command followed by bundle ID
number.

For verification, we execute “ss” command with the name of our bundle – “default”. The
output (Figure 4) indicates the bundle name and its state as active.

14

Figure 4. Starting the application

STEP 2: Configure Openflow in Juniper MX960.

A set of commands [6] needs to be executed in order to enable OpenFlow functionality in
the edge router MX960.

Figure 5. MX960 OpenFlow configuration

Default action should be “packet-in”. This means any packet/traffic on openflow
interface, which doesn’t matches any flow, will be sent to controller.

15

In order to verify resulting configuration, “show openflow switch” command is issued.

Figure 6. OpenFlow functionality verification

For the purpose of later communication, the Switch DPID is stored in mapping.txt along
with router name. Controller connection status is verified by the output of “show
OpenFlow controller” command, depicted in Figure 7.

Figure 7. Controller connection status

STEP 3: Configure Jflow in Juniper MX960

Jflow is a Juniper implementation of NetFlow and is essentially identical to original
protocol. NetFlow protocol is used as a basis for threat detection providing valuable flow
information about all source-to-destination communications. The generated statistics is
collected and sent to other components of the system for analysis.

Required configuration commands are defined in Juniper documentation [7].

16

STEP 4: Run Alert Listener application

To run Alert listener application we use “python alert_listener.py” command on Ubuntu
terminal.

Figure 8. Alert Listener execution

SYSTEM WORKFLOW
After forwarding device (Juniper MX960) connects to the controller its flow table will be
empty. As soon as first packet reaches an interface of the forwarding device it will be
redirected to the controller (depicted in Figure 9). At this point default_flow application
will receive the original packet and install a default flow in the flow table of the
forwarding device, as it is depicted on the screenshot (OFPP_NORMAL = 65530).

Figure 9. MX960 Flows information

17

This default flow will be injected in the flow table with the lowest priority set. The
purpose of this flow entry is to redirect all subsequent traffic to the control plane of the
forwarding device. For every incoming packet the flow table is being checked first and if
there are no other matching flows entries (with higher priority) all traffic will be handled
by local control entity.

This is the original state of the forwarding plane unless it has been altered for DoS
mitigation purposes.

Alert Listener is an independent software module interprets alert notifications (depicted
in Figure 10) generated by security mitigation device (Arbor PeakFlow) and creates a
corresponding flow messages. Each flow message contains a specific flow rule to block
or divert illegitimate traffic. Alert Listener’s messages are then pushed to the controller
via REST API. As an abstract layer of forwarding plane controller is responsible for
injection of flows into forwarding tables of network devices.

Figure 10. Alert information

All generated flows are saved in local database of Alert Listener and will remain in active
status unless it receives a new notifications from Arbor PeakFlow. Every alert
notification is compared to the database and may represent a new alert, status change or
alert over. If the alert state changes to “done”, Alert Listener will generate a flow

18

message to remove the flow from forwarding table of corresponding network device.

Figure 11. REST API Authentication

For security purposes REST API of the Controller has authentication policy in place and
every received message have to be authenticated. The output in Figure 11 shows that
“Admin” user credentials were used by Alert Listener to send a flow messages to the
controller.

Figure 12. MX960 Installed flows information

19

After alert is generated, the corresponding flow entry is installed in the forwarding table
of network device (shown in Figure 12). The flow with higher priority will be first to
check. In case all fields match:

• Protocol

• Destination IP Address

• Destination Port

The defined action is executed and in our case the packet is dropped. All other incoming
packets are matched over a default flow and redirected to local control plane of network
device, which handles these packets. In that way, for every alert, a specific flow is
installed or removed depending from the instructions provided by Alert Listener
Application.

LAB SETUP

NetFlow	 Collector/	
DDoS	 detection

SDN	 Controller

Security	 Analysis	 Tool

Attacker	 (IXIA)

Victim	 (IXIA) Alert	 Listener

Alert	 Trigger

REST	 API

NetFlow

OpenFlow	 command

Initial	 Attack	 Traffic

Blocked/Off-‐ramped	 Attack	 Traffic

Figure 13. Lab topology

20

TEST CASES

Test Case 1

Objective
Connecting Juniper MX960 to Opendaylight and installing flow to forward traffic to
router control plane.

Source
• Name: Ixia Attacker
• IP: 10.x.x.x
• Interface: Card 12 port 3
• Traffic: Normal
• Protocol: ICMP

Destination
• Name: Ixia Victim
• IP: 10.x.x.x
• Interface: Card 12 port 5
• Protocol: ICMP

Openflow Router
• Hostname: Bluemoon
• Model: Juniper MX960
• OS: JUNOS 13.3R1.6 with SDN software suite
• Openflow version: 1.0
• Switch DPID: 00:00:84:18:88:09:2f:c0
• Openflow Interface (Incoming): xe-4/3/0.0
• Non-openflow Interface (Outgoing): xe-4/2/3

Controller
• Name: Opendaylight

21

• Version: Hydrogen Base Edition

Platform: Ubuntu 12.04.3 LTS Desktop VM
• IP: 10.0.30.3
• Port: 6633
• Bundle: default_flow.jar

Traffic is sent from Ixia (Attacker) to Ixia (Victim) through MX960 Openflow interface
xe-4/3/0.0. As soon as first packet reaches Openflow interface it is sent to the controller
as there is no flow installed on MX960. The controller will receive the packet and install
the default flow with lowest priority and action (Output port = 65530) in MX960. This
default flow installed will match each incoming packet and forward the packet to the
router’s control plane.

In this test we have installed a default flow, which will forward each packet to router
control plane. The route to Ixia (Victim) exists in the router routing table. So after the
rule is installed packets from Ixia (Attacker) can reach Ixia (Victim) based on router
control plane.

Verification

Connection between MX960 & Opendaylight Controller
The log on Opendaylight controller can verify MX960 connection to Opendaylight
controller. The logs will show Openflow Switch DPID (depicted in Figure 14).

Figure 14. Controller logging information

Flow installation
First we run “show openflow flows detail” command on juniper MX960 to verify there
are no flows installed (depicted in Figure 15). Then we will send ICMP traffic from Ixia
(Attacker) to Ixia (victim). The traffic will be sent to Opendaylight controller.

22

Figure 15. MX960 flow information

Now, we will deploy Default_flow.jar in Opendaylight controller. Again send ICMP
traffic and run “show openflow flows detail” command on juniper MX960. A new flow is
installed with all values set to wildcard (means any) except priority 0 and action output
port 65530.Traffic will reach Ixia (Victim).

Figure 16. MX960 flow information (new flow installed)

Test Case 2

Objective
Detection of DoS attack on Juniper MX960 (Openflow interface) and mitigation by
installing flow to drop DoS traffic.

Detection
• Name: Arbor Peakflow SP
• Protocol: Jflow

23

Alert Listener
• Name: Alert_listener
• IP: 10.0.30.2
• Port: 10000
• Platform: Ubuntu 12.04.3 LTS Desktop VM
• Programming Language: Python

Source
• Name: Ixia Attacker
• IP: 10.x.x.x
• Interface: Card 12 port 3
• Traffic: DoS
• Protocol: ICMP/TCP

Destination
• Name: Ixia Victim
• IP: 10.x.x.x
• Interface: Card 12 port 5
• Protocol: ICMP

Openflow Router
• Hostname: Bluemoon
• Model: Juniper MX960
• OS: JUNOS 13.3R1.6
• Openflow version: 1.0
• Switch DPID: 00:00:84:18:88:09:2f:c0
• Openflow Interface (Incoming): xe-4/3/0.0
• Non-openflow Interface (Outgoing): xe-4/2/3

Controller
• Name: Opendaylight
• Version: Hydrogen Base Edition
• Platform: Ubuntu 12.04.3 LTS Desktop VM
• IP: 10.0.30.3
• Port: 6633
• Bundle: Default_flow.jar

24

DoS traffic is sent from Ixia (Attacker) to Ixia (Victim) through MX960 Openflow
interface xe-4/3/0.0. MX960 Jflow collects the flow information (Openflow interface)
and sends it to Arbor system for analysis. Arbor detects DDoS attack and generates a
corresponding syslog alert for Alert Listener application. Alert Listener parses the alert
and generate corresponding drop flow. It sends flow to Opendaylight controller using
REST API. Opendaylight controller installs the flow in MX960.

Once the drop flow is installed all the DoS traffic matching the flow will be dropped.

Verification

Detection
The log on alert _listener will verify that DoS attack is detected and it has received syslog
alert containing details of the attack from Arbor peakflow SP.

Figure 17. Alert Listener Log

Mitigation
The logs on Opendaylight controller will verify that it has received request. Secondly, it
will be reflected in the output of “Show openflow flows details” command in MX960. A
new flow to drop specific traffic (DoS traffic) is installed.

25

Figure 18. MX960 flow details

The DoS traffic is blocked and is not reaching Ixia (victim).

26

DDOS	 DETECTION	 APPROACH	

Overview
In this we will be replacing the Arbor Peakflow SP with a DDoS detection application to
detect DDoS attack. This application uses Entropy based approach to detect DDoS attack.
Once it is detected the application will generate an alert and send it to alert listener. To
optimize entropy based detection approach SNMP trigger will be used. A predefined
threshold will be set on interface and monitored using SNMP. The application is divided
into three modules namely Netflow collector, analysis based on Entropy and SNMP
based trigger.

NetFlow	 Collector/	 DDoS	
Detection	 Application

SDN	 Controller

Security	 Analysis	 Tool

Attacker	 (IXIA)

Victim	 (IXIA) Alert	 Listener

Alert	 Trigger

REST	 API

SNMP

OpenFlow	 command

Initial	 Attack	 Traffic

Blocked/Off-‐ramped	 Attack	 Traffic

NetFlow

Figure 19.

27

APPLICATION	 MODULES	

Netflow Collector
The main purpose of this component is to collect Netflow data and store it in database for
further analysis. We are using open source application Nfdump to collect Netflow data
from openflow router. Nfdump [8] uses nfcapd daemon to read the Netflow data and
store data into a file. These files contain Netflow data in binary format. In this Netflow
collector module we are using Nfdump command to read nfcap files and store the
Netflow data in MySQL database for further analysis.

NetFlow	 Collector

MySQL	 Database

OpenFlow	 Router

Figure 20.

Analysis Based on Entropy
The entropy-based detection mechanism is utilized to find the measurement of
randomness of particular values in the network packet fields. Any packet field’s value
can be chosen as a basis for calculations, such as source or destination IP addresses, port
numbers etc. As an example, if the network attack detector receives a flow of 100
packets, it can calculate the randomness of each individual IP address among this series
of packets.

28

The nature of DDoS attacks is characterized by high volume of traffic and considerable
increase of incomplete connection requests. All data packets are mainly constructed by
attackers and have a very random source IP addresses. This distinct characteristic will be
analyzed in order to detect an abnormal traffic behavior – the DDoS attack.

Based on computation of a continuous series of packets an entropy could be measured.
The measured entropy value shows a level of random distribution of the source IP
addresses. High value of entropy indicates a high level of source IP address’ randomness.
In case of low entropy, the source IP addresses randomness is low and some of the
sources may prevail among others. The entropy value always varies, even during normal
network operation. However, during the attack entropy will change significantly.
Through the analysis of entropy value, the source IP distribution alteration can be
detected giving sufficient information to mitigate the attack.

Source IP address distribution analysis serves as a detection mechanism for the system.
Entropy value measurement is a base of the DDoS detection model [9] and can be
improved with additional analytical algorithms. Entropy calculation formula is as
follows:

𝐻 = − 𝑝! log! 𝑝!

!

!!!

Where:

H – entropy;

𝑝! – the appearance probability of each individual source IP address;

n – the total number of packets in the series.

This module fetches all the required data to calculate entropy from MySQL Database. It
compares new entropy value with the pre-defined average range of entropy. In case new
entropy value is not in range, it generates alert message (which contains Destination IP
under attack, port or protocol) and sends it to alert listener.

29

Alert	 GeneratorEntropy	
Algorithm

Database	
Interface

SNMP	
Handler

NetFlow	 Collector

MySQL	 Database

SNMP SNMP

SNMP

DDoS	 Detection	 Application

Figure 21.

SNMP Based Trigger
This module acts as SNMP handler. It collects SNMP data from openflow router to
calculate input bandwidth utilization of openflow interface. A pre-defined bandwidth
threshold will be set. In case the bandwidth utilization is greater than the threshold, an
alert will be sent to ‘Analysis’ module to calculate Entropy of the incoming Netflow data.

30

REFERENCES
[1] R. Jain and S. Paul, “Network virtualization and software defined networking for
cloud computing: a survey,” 2013

[2] H. Kim and N. Feamster, “Improving network management with software defined
networking,” 2013.

[3] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Dec. 2013.

[4] ONF, “Open networking foundation,” 2014. https://www.opennetworking.org/

[5] Qijun Gu, Peng Liu, “Denial of Service Attacks,” 2007.

[6] Juniper TechLibrary, “Configuring Support for OpenFlow on MX Series Routers,”
http://www.juniper.net/documentation/en_US/junos13.3/topics/task/configuration/junos-
sdn-openflow-configuring-mx-series.html

[7] Juniper TechLibrary, “Configuring Inline Flow Monitoring on MX Routers,”
http://www.juniper.net/techpubs/en_US/junos12.1/topics/task/configuration/inline-flow-
monitoring-mx80.html

[8] Nfdump , http://nfdump.sourceforge.net/

[9] L. Li, J. Zhou and N. Xiao, “DDoS Attack Detection Algorithms Based on Entropy
Computing,” 2007.

