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Abstract

Simultaneous Localization and Mapping(SLAM) has been very popular in the

past and is gaining more traction in the era of autonomous vehicle research

and robot manipulation. Computing accurate surface models from sparse Vi-

sual SLAM 3D point clouds is difficult. There have been works where this

problem was addressed by space carving methods using map points and lines

generated by those points. These methods come with their own drawbacks

as point clouds and lines alone don’t add sufficient structural information to

the scene. In this thesis, we try to take the natural step to also compute

and verify 3D planes bottom-up from lines. Our system takes the real-time

stream of new cameras and 3D points from a SLAM system and incrementally

builds the 3D scene surface model. In previous work, 3D line segments were

detected in relevant keyframes and were fed to the modeling algorithm for

surface reconstruction. This method has an immediate drawback as some of

the line segments generated in every keyframe are redundant and mark simi-

lar objects(shifted) creating clutter in the map. To avoid this issue, we track

the 3D planes detected over keyframes for consistency and data association.

Furthermore, the smoother and better-aligned model surfaces result in more

photo-realistic rendering using keyframe texture images. Compared to other

incremental real-time surface reconstruction methods, our model has less than

half the triangles, and we achieve better metric reconstruction accuracy on the

EuRoC MAV Benchmarks. We also tested our method on various off-the-shelf

cameras for better generalization.
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Preface

The inception of this thesis began with a course project on Model-based 3D

tracking where I developed a RAPID-based 3D tracker with equal contribution

from a project member Islam Ali. The 3D Computer Vision course (CMPUT-

615) and the project got my interest in concepts like Bundle Adjustment and its

application in SLAM systems for global mapping. Going through the literature

I realized the importance of 3D scene reconstruction in a real-time system and

how much can be done to improve it.

I started testing available codes on Line and Point based surface reconstruc-

tion algorithms on Benchmarks to analyze the drawbacks of these methods.

My supervisor Dr. Martin Jägersand helped me with new ideas that could be

used and tested on the SLAM systems. He motivated me towards introducing

a plane-based approach to incremental surface reconstruction. We discussed

and formulated ways to use planar information in scenes to optimize the mod-

eling process and enhance the qualitative and quantitative accuracy of 3D

reconstructed surfaces.

I conceived the idea of a new outlier removal method for 3D line segment

extraction to remove depth inconsistencies from line segments. This helped

me to get fewer and more relevant lines to detect planes in the scene. Un-

der the tutelage of Dr. Martin Jägersand, I conceived the idea of detecting

3D planes from intersecting 3D lines. I contributed further to this idea by

merging planes into major planar objects, validating and matching them over

keyframes. These ideas are detailed in Chapter 3 of this thesis. I tested my

method on EuRoC MAV data sequences and it outperformed existing point

and line-based reconstruction methods. These experiments concluded in sub-

mission to IEEE International Conference on Robotics and Automation (ICRA
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2023) titled ”Line and Plane based Incremental Surface Reconstruction” co-

authored by Junaid Ahmad, Sait Akturk, Martin Jägersand. Sait Akturk con-

tributed to setting up experiments in the lab with off-the-shelf cameras.
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Chapter 1

Introduction

Computing 3D surface models from images is an important yet difficult task

to be accomplished. In the age of convolutional neural networks, we often

forget the importance of the basic essence of geometry in images. One can

train networks on a barrage of images and still don’t completely comprehend

what features are being detected and tracked. In this thesis, we study and

propose a geometric approach to model a scene. These approaches rely on

feature keypoints that lie on high gradient regions and can be detected and

tracked over successive image frames. These methods were further enhanced

by using high-level features like lines and planes. Lines and planes provide a

more geometric understanding of the scene in the images that key points fail

to represent. These properties play an important role in reconstructing 3D

surfaces from a set of detected keypoints.

Reconstruction of 3D surfaces is an important task for a number of appli-

cations like augmented reality, mobile robot navigation, autonomous driving,

robot manipulation tasks, etc. The arrival of methods like bundle adjust-

ment made it possible to obtain 3D point clouds of scenes from a sequence

of image frames. Bundle Adjustment methods iteratively optimize a closed

solution whereas Structure from motion or Multi-View Stereo which makes

use of N-view geometry to globally obtain the 3D points from different views.

Some other approaches that use bundle adjustment for pose refinement are

SLAM(Simultaneous Localization and Mapping) algorithms which use multi-

ple images and cues in them to refine the pose of the camera over time. SLAM
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algorithms can also provide sparse or dense 3D point clouds of the scene which

can further be used for scene reconstruction [38]. The most commonly used

SLAM systems like ORB-SLAM [42] and LSD-SLAM [13] can provide good

enough 3D point clouds which can be used to reconstruct scenes incremen-

tally. Most of these SLAM systems require GPUs to provide usable dense

or semi-dense point clouds. However, ORB-SLAM can provide a reasonable

semi-dense mapping of the scene which can work on systems with only CPUs.

In this thesis, we make use of semi-dense point clouds given by ORB-SLAM

and use them to extract line and plane features from it for efficient scene recon-

struction. Surface reconstruction directly from the semi-dense point cloud is

expensive and not attainable in real-time using only CPUs.Another drawback

of using the point clouds directly is that they do not hold any geometric or

structural information about the scene. Hence, we simplify the point clouds

by getting lines and planar structures out of it, filtering the heap of points

given by the system.

The existing methods that involve structural information from the scene in-

clude model-based methods, segmentation-based methods, and methods with

structural semantics[17], [40], [45], [68]. Most of these methods use segmenta-

tion methods to segment planes, spheres, cuboids, and shape profiles, which

are expensive and require dense point clouds for proper segmentation for scene

reconstruction. The plane from points methods majorly focuses on major pla-

nar surfaces like floors, ceilings, and walls using a learning-based method[26].

These methods pose challenges in modeling the scene in real time consider-

ing the complexity and memory required for point clouds. The advancement

in line segment approach for surface reconstruction seems a less complex and

robust option that provides a decent reconstruction in real-time [4], [22], [49].

Some of the mentioned methods try to combine the lines and planes to avoid

using points to extract planes from keyframes [26], [68], [71]. These methods

use line segment extraction methods that involve inter-keyframe matching and

evaluation of 3D line segments which could pose problems in complex scenes

due to depth uncertainty. This issue can be avoided using semi-dense (CPU

capable) or dense point clouds (GPU required) generated from existing SLAM
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systems.

We can classify these methods based on the features used for the recon-

struction of 3D surfaces: point-based, line-based, plane-based, and hybrid

methods involving two or more of these features. Point-based approaches use

a SLAM or SFM system to get 3D points to reconstruct 3D meshes using a

voxel-based (TSDF) or 3D Delaunay Triangulation approach. These methods

use a large number of points and don’t have a reliable outlier removal technique

[23], [38]. Line-based approaches reduce the overload of points by using only

line segments to reconstruct surfaces [20], [22]. These methods do not have a

reliable clustering or line-matching scheme which results in the depth incon-

sistency of 3D line segments detected. It also does not guarantee an online

surface reconstruction system as their clustering algorithms are computation-

ally complex [21]. Plane-based approaches usually rely on a decent segmen-

tation/clustering algorithm to segment the point cloud [53] or pixels[61] into

planar and non-planar regions. They have a better outlier removal technique

resulting in superior qualitative reconstructions. Unfortunately, these tech-

niques are computationally complex and require GPU acceleration to achieve

real-time performance. Hybrid methods are a combination of point, line, and

plane-based approaches. The most common combination in many works is

lines and planes [32], [71]. Detecting 3D planes from lines reduces the com-

plexity of plane detection over RANSAC and Segmentation-based approaches.

The plane and line matching in consecutive keyframes reduce outliers pro-

viding more accurate points to the reconstruction algorithm. However, it is

important to constrain the number of planes detected to avoid redundancy

and speed up the reconstruction. Figure 1.1 shows the taxonomy of 3D recon-

struction methods based on features and the most common characteristics in

related works.

Here, we present a novel hybrid approach that combines the line segment

approach with point-plane approach for reconstructing the scene incremen-

tally. We reconstruct planes from intersecting 3D line segments. To detect 3D

line segments, we use a line segment detection approach similar to [21] where

He et al. use edge segments to fit 3D lines using the image and the depth
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Figure 1.1: Taxonomy of 3D reconstruction approaches. The list below these
approaches states the most common features of the reviewed methods.

plane. We improved on this method by checking for planar points only while

line fitting as their method failed to address whether the fitted lines belonged

to a single plane. Lines passing through multiple planes would result in erro-

neous surface reconstruction. We then extract planes from these line segments

using only intersecting lines for cluttered scenes. The extracted planes are

then validated and merged into larger planar surfaces. The planes extracted

are further reduced by inter-keyframe plane and line matching. This reduces

the expenses of reconstruction by only using relevant lines/ points for surface

reconstruction.

We divide this thesis into 5 chapters. Chapter 1 introduces and sheds

light on the motivation behind our work. Chapter 2 is a survey of the related

works in geometric computer vision. We discuss our proposed method and

experiments in detail in Chapter 3 and Chapter 4 respectively. Chapter 5

concludes our thesis with motivation for future research possibilities in this

direction.
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Chapter 2

Related Works

In this thesis, we mainly focus on monocular SLAM systems (sparse and semi-

dense) for surface reconstruction. We detect planar structures in the scene

aided by intersecting line segments in 3D space. We perform matching, val-

idation, and merging of planes into major planar regions in the scene. Our

method can be extended to stereo and RGB-D with minimal adaptation.

In this Chapter, we discuss the background of our work and detail the works

relevant to our approach. We begin with expanding on SLAM systems (Section

2.1) and their application in robotics and vision. We also discuss the sparse,

dense, and semi-dense versions of the SLAM system in subsections 2.2.1, 2.2.2,

and 2.2.3 respectively. In Section 2.3, we explore the 3D line segment fitting

approaches relevant to our method and expand on their limitations. We also

elaborate on the previous works which use a plane-based approach (Section

2.4) for scene modeling and reconstruction. Our major contribution combines

these two ideologies in a novel way for incremental surface reconstruction. We

also discuss approaches for surface reconstruction listing their advantages and

disadvantages which made us choose a specific approach.

2.1 Simultaneous Localization and Mapping

A SLAM system aims at tracking multiple feature key points from images

obtained by a moving camera (mobile robot, drone) to estimate the pose of

the camera. The camera pose is usually estimated using a constant velocity

motion model. With the estimated camera pose a 3D map of the tracked
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points is triangulated. The camera pose and the 3D map is further refined

using a non-linear optimization famously known as ‘Bundle Adjustment’[59].

SLAM systems are classified into Direct and Indirect (feature-based) SLAM.

2.1.1 Direct SLAM

Direct SLAM methods make use of the pixel information directly without any

feature detection [12], [13], [18], [47]. These methods are more accurate and

robust in scenes with less texture making it difficult to extract useful features

from the scene. These methods rely on the minimization of the photometric

error to compute the depth associated with each pixel. The photometric error

between two images with pixel values xi and estimated depth values Zi can be

defined as follows:

Ephoto(ρ) =
∑
i

||Iref (xi)− I(ω(xi, Zi, ρi)||2 (2.1)

where I : R2 → R+ returns the pixel values for the given coordinates. ω

projects a point from the reference frame to the new frame. ρ is the camera

parameters to be estimated. The main assumption of this error is brightness

constancy, lambertian surfaces, and no lens distortion. This approach is in-

corporated by Engel et al. [12], to show that this error can be used in a sparse

set of points from images to to perform sliding window photometric bundle

adjustment in real time on CPUs.

2.1.2 Indirect SLAM

These methods use feature descriptors to get reliable 2D keypoints that can

be detected and tracked in images from different views of the scene [28], [29],

[43]. The features are a combination of the keypoints and their respective

descriptors. This reduces the image space to just these reliable features and

the other pixels can be ignored for tracking. These methods rely on the min-

imization of reprojection error which has better convergence properties than

direct methods. To estimate the camera parameters ρ, the minimization of
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the distance between xi
j and x̂i

j is given by:

Ereproj(ρ) =
∑

Ri,ti,Xj

||xij − (RiXj + ti)||2 (2.2)

where i is the number of views and j is the number of keypoints in each view.

R ∈ SO(3) and t is the translation vector. These methods work well in scenes

rich in texture consisting of edges and corners. The work of Raúl et al. [43] uses

this method to compute camera poses and form sparse and semi-dense maps

in real-time. We built upon this system for incremental surface reconstruction

using planes in 3D space.

2.2 Monocular SLAM

Monocular SLAM is a type of SLAM that relies on images from a single mov-

ing camera. The first monocular SLAMs used filtering methods like Extended

Kalman Filter (EKF) to estimate the camera pose and maps of the scene by

passing every frame through the filter. These methods were computationally

very expensive and also resulted in error accumulation due to the linearized

rotation assumptions. Due to this, Keyframe based approaches became more

popular as it significantly reduced the number of frames used by the system

for map generation [7]. The first monocular SLAM capable of real-time perfor-

mance was MonoSLAM [10] that uses EKF for refining camera pose and depth

of the probabilistic features. We will discuss the advancement of monocular

SLAMs from offline to online systems in the following subsections.

Generally, both classes of SLAM mentioned above are capable of producing

sparse, dense, and semi-dense point clouds from the scene at different process-

ing times. Monocular SLAMs can further be classified into Sparse, Dense, and

Semi-dense Monocular SLAMs [7].

2.2.1 Sparse Monocular SLAM

In the section above we discussed that filtering-based methods were expensive

so the keyframe-based approach was adopted. This idea was further optimized

by using parallel threads for camera tracking and mapping of the scene in
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Figure 2.1: Overview of ORB-SLAM [44]

PTAM [29] which was further improved with better relocalization and loop

closure [28]. This system generates sparse point clouds in real-time using

the multi-threaded approach. The tracking thread tracks all the keypoints

using FAST feature matching and the mapping threads collect this matched

information to triangulate them into 3D points. The mapping thread also

performs local Bundle Adjustment (BA) [59] to refine the poses of the camera

and the tracked points in the keyframes. It also performs global BA for global

pose refinement when a certain threshold in the pose error has been reached.

The work of Raúl et al. [44] further improved this multi-threaded system

by using ORB feature descriptor [52], using a local map based on covisibility

graph, building pose graphs out of it for pose graph estimation and using

Bag of Words (DBoW2) for place recognition to aid loop closing. Fig 2.1

shows the overview of the ORB-SLAM system. Unlike PTAM, ORB-SLAM

has an extra thread exclusively assigned for loop closing which makes the

process faster and more robust in real-time applications. It makes use of

the Pose Graph Optimization technique instead of BA as it is too expensive
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to perform BA and inaccurate when the initial solution is far from the real

solution. They use relative transformation error between two camera poses and

represent them in a graph structure. They also use Sim(3) instead of SE(3) or

SO(3) to account for scale drift in monocular systems. This graph structure

is then optimized using non-linear optimization methods like Gauss-Newton

or a weighted version of it known as Levenberg-Marquardt Optimization. The

cost function is defined as follows:

C =
∑

(i,j)∈χ

ρ(∥ erel(i, j) ∥2∑ ij) (2.3)

where erel is the relative pose error between camera/view i and j.
∑

ij repre-

sents the covariance which is used in Mahalanobis distance metric. The pose

graph optimization is performed using the g2o library but Ceres-solver is an

excellent alternative for non-linear optimization.

We must discuss the robust mapping of ORB-SLAM as we heavily use it in

our system and justify why it is a better choice than LSD-SLAM and PTAM

[13], [28]. ORB-SLAM creates many keyframes and mappoints after every key-

point matching and 50-frame parsing. These keyframes and mappoints would

be an overload if they are not filtered. Hence, they perform culling of map-

points and keyframes in the local mapping. This reduces the memory overload

and leaves the system with well-constrained and efficient keyframes and map-

points. This makes the process more robust and efficient than the other two

methods mentioned above. Unlike ORB-SLAM, LSD-SLAM and PTAM do

not use covisibility graphs which constrain the keyframes and mappoints to a

locally covisible area. Fig 2.2 shows the generation of the sparse point cloud

from the EuRoC MAV Vicon Room 101 dataset [6].
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Figure 2.2: Sample sparse point cloud by ORB-SLAM [43]

2.2.2 Dense Monocular SLAM

As discussed briefly in Section 2.1.1, direct SLAM methods can produce dense

point clouds if a larger number of pixels are used for pose estimation. These

methods do not require feature extraction and thus avoid finding keypoint cor-

respondences. These dense reconstruction methods can be substantially useful

in scene or object reconstruction but it is hard to make these methods work

in real-time. DTAM [47] and LSD-SLAM [13] are one of the best methods in

reconstructing dense point clouds while localizing the camera by photometric

optimization (see equation 2.1).

DTAM is one of the first dense reconstruction methods that work at frame

rate on GPU. It relies on refining of depth maps for smoothing using a reg-

ularized approach. The pose refinement is performed by image alignment to

minimize the photometric error between the reference frame and the current

frame. There are newer methods inspired by this approach and volumetric

point fusion technique that give better results at a frame rate as well [15], [48],

[65]. Polarimetric Dense Monocular SLAM is an interesting and progressive

work on dense reconstruction which makes use of DSO for pose estimation.

It uses a polarization camera to capture the scene under 4 polarization an-

gles. A depth map is initialized using stereo matching on image patches. The

matched depth is further optimized by minimizing a combined energy function

of photometric, polarimetric, and Spatio-temporal regularization constraints.

Figure 2.3 draws the comparison between their method and MonoFusion.
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Figure 2.3: Qualitative comparison of Polarimetric[65] against Mono-
Fusion[48] and Remode. i) Polarimetric ii) MonoFusion iii) Polarimet-
ric+MonoFusion iv) Remode

2.2.3 Semi-dense Monocular SLAM

Semi-dense map is a point cloud that contains more points in high gradient

areas of the map than a sparse map but much lesser points than a dense map.

Semi-dense maps are more useful than dense maps as they have lesser noise

and can be reconstructed cheaply. If generated in real-time can be useful for

several robotic applications. Systems like DTAM [47], LSD-SLAM [13], and

ORB-SLAM with Probability Mapping [42] were able to do so in real-time

without GPU acceleration. All of these methods make use of the inverse depth

parametrization [8] in one way or the other. DTAM was the first algorithm to

make use of inverse depth parametrization in its regularized cost function as

follows:

min
n

n∑
i=2

∫
Ω

|I1(x)− Ii(ω(x, u, ρi)|dx+ λ

∫
Ω

ψ(x)|∇u|dx (2.4)

where all the parameters are similar to Equation 2.1 except u = 1/Z is the

inverse depth, ψ(x) assigns small weights to strong gradient changes so that
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Figure 2.4: Qualitative comparison of semi-dense LSD-SLAM[65] against
sparse DSO. i) Semi-desne LSD-SLAM ii) Sparse DSO iii) Original Keyframe

large variations in ∇u doesn’t explode the cost function. Ω here is the pixel

space.

The reason the inverse depth parametrization is so effective is that struc-

tures that are far away (large depth values) correspond to substantially small

pixel space whereas surfaces that are in close proximity correspond to larger

pixel space. Hence, using inverse depth in error parametrization and regular-

izer alleviates this bias. The biggest challenge of these approaches for dense

reconstruction is that it requires large-scale optimization to compute the depth

of every corresponding pixel. LSD-SLAM uses a similar approach for its semi-

dense reconstruction but it only considers pixels with gradient values above a

certain threshold. Each inverse depth value calculated is associated with an

uncertainty value that is propagated over time pruning out the inverse depths

that are uncertain. Fig 2.4 shows an example of semi-dense reconstruction

using LSD-SLAM vs sparse reconstruction by DSO [12].

Another efficient method of semi-dense reconstruction is ORB-SLAM’s

Probabilistic semi-dense mapping [42] which adds a fourth thread to its original

ORB-SLAM system [44] for generating semi-dense point clouds. This thread

is only used exclusively for extracting 3D points and not refining the camera

poses as it is assumed to be already refined from local mapping. Like LSD-

SLAM, the search for high gradient points is made but along the epipolar lines

on neighboring keyframes. An inverse depth hypothesis (Gaussian Distribu-

tion) is proposed for every neighboring keyframe which is then smoothed using

an approach similar to LSD-SLAM. Since this method uses a larger baseline

than [13], there can be significantly higher outliers. Hence, it strictly com-
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Figure 2.5: ORB-SLAM vs LSD-SLAM in dynamic scene. Left column is
ORB-SLAM output and Right column in LSD-SLAM output i) Row 1 is Static
scene ii)Row 2 Object shifted from scene

pares the gradients and their orientation instead of comparing pixel intensities

directly over the epipolar lines. The pixels are then compared using a simi-

larity function that combines photometric error and gradient error. Another

reason this method is superior to [13] is that they included an inter-keyframe

depth checking module which removes outliers by projecting the pixels with

inverse depth values into neighboring keyframes and checking if it matches

the inverse depths in the neighborhood of 4 pixels. This is the reason we

prefer this method over LSD-SLAM for our scene reconstruction system. Fig

2.5 shows the comparison between ORB-SLAM and LSD-SLAM semi-dense

reconstruction in a dynamic scene where a person shifts objects in a scene.

2.3 3D Lines from points

The features in images are mainly classified into two categories: low-level and

high-level. Low-level features are the ones that directly involve the pixel and
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its intensity value. High-level features are the ones that add more meaning to

the images in terms of geometry or structure. Key Points, blobs, and edges

are considered low-level features whereas lines, planes, shapes, and profiles

are considered as high-level features. They are considered high-level features

because they contain more information about the scene. The SLAM algorithms

discussed above primarily focus on the generation of sparse, dense, or semi-

dense point clouds of the scene. However, it is hard to use these 3D point clouds

directly for robotic tasks or surface reconstruction as it does not explain the

scene properly. Therefore, we ponder on methods to extract more information

about the scene from these 3D point clouds. Lines are one such feature that

preserves the structural information of the scene better than 3D points in

the point cloud. Extracting 3D line segments from 3D points is not difficult

but extracting meaningful lines from the scene is quite challenging. In this

section, we will discuss several methods that have been lately used for detecting

meaningful 3D lines and discuss their advantages and limitations.

There have been works that generate 3D lines from 2D images and match

them to generate structures [54], [55]. These works produce results that look

promising for surface reconstruction or scene modeling but they fail to work

at a frame rate in video sequences. There have been advancements in the

line matching methods where we can see methods able to produce efficient

line matching at frame-rate [62], [69]. LBD combined with LSD [18] has been

most commonly used in stereo-matching techniques for generating 3D line

segments. Lines being important structures are used in various line-based

SLAM systems as well as SFM (Structure from Motion) systems where lines

are used as major landmarks [4], [17], [21], [41], [49], [50], [70], [72]. These

methods use lines differently and also detect them in a variety of ways.

The most challenging part is detecting 3D lines from the 2D information

given in the image sequences. Some methods like Hough Line Transform [11],

LSD [18], and EDLines [2] use rudimentary edge detectors to fit 2D lines to

the edges. The lines-based SLAM methods use these line segment detectors

with line descriptors like LBD and MLSD to triangulate 3D lines. However,

these methods fail to consider that the line segments detected in 2D may not
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actually correspond to 3D structures leading to a large number of outliers.

Given the point cloud of the scene, we can also think about detecting line

segments directly from the scene using 3D points. Xiaohu et al. [39] describe

how 3D lines can be extracted directly from the point clouds using a robust

RANSAC-based approach but this method fails in semi-dense SLAM systems

where the earlier keyframes have fewer 3D points. It results in a few or no

lines at the initial keyframes and more or almost all the lines toward the end

of the keyframes. Hence, the lines detected in 3D space do not have sufficient

keyframe correspondence to represent real physical structure which makes this

approach unreliable in incremental surface reconstruction.

2.3.1 3D lines fitting using Line matching

SLAM methods that use multi-view stereo make use of 2D line matching tech-

niques. Kun et al. [50] use LSD [18] to detect lines in every frame and perform

stereo matching on the matched lines using LBD [69] detectors directly. They

also use the error from the stereo matching to refine the pose in the bundle

adjustment [50]. Their method works well in stereo SLAM but is hard to

implement in the monocular version. Using per-frame line matching is also

expensive and can be avoided using only inter-keyframe line matching. The

limitation of using line descriptors is that they are mostly patch-based and

can only work accurately for lines on a planar surface. These methods fail to

address the depth discontinuity of lines detected by rudimentary line detectors.

Hofer et al. [22] addresses this problem by obtaining 2D line correspon-

dences based on their known epipolar geometry [22]. They find the epipolar

lines of the endpoints of the line to be matched and intersect them with the

line (using a line at infinity approach [19]) in the neighboring frame. The

intersecting points obtained are used to form a similarity score for lines. Fig

2.6 shows the line-matching process explained above.

Another approach is the work of Hang et al. [72] uses a purely geometric

approach for evaluating the direction vector and depth of the points on the

line. They use rudimentary 2D line detectors and descriptors for matching 2D

lines. Once the lines have been matched in more than 2 keyframes they back-
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Figure 2.6: Line matching using epipolar constraints. The purple line on the
left is matched with the purple line on the left. The epipolar lines in yellow
are drawn from the endpoints of the line in the left image [22].

project the line onto the projective camera planes. Since parameterization of

the 3D lines is a complicated task they use the property that a family of planes

intersects at one line. The normal vectors of these planes are used to solve the

least square minimization to get the direction of the lines. The least squares

formulation was designed as follows:

ed = min
d

∑
i

|(R−1
i ni)d⃗|2 (2.5)

where R−1
i is the transformation from camera frame to world frame, ni is the

normal of the projective planes in the camera frame, and d⃗ is the direction

vector of the 3D line. Similarly, the points on the lines are reprojected and the

reprojection is minimized to get the depth values of the points. This method

also comes with the same drawback that the line matching would not result

in a decent number of lines as the 2D line detectors and descriptors assume

lines in the same 3D planar region. Figure 2.7 compares the point cloud with

the lines extracted by their method.

2.3.2 3D Line fitting using 3D points aided by 2D cues

Given the dense or semi-dense point cloud from SLAM or SFM, we can use

these points to fit lines by constraining the fitting algorithm with different

cues. Woo et al. [64] made use of the prior model of the building to get 3D

lines from the 2D lines fit the aerial images. The line correspondences were

found with the Digital Elevation model (DEM) of the building. Nakayama

et al. [45] makes use of RGB-D sensor to get approximate depth information
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Figure 2.7: Lines reconstructed by Hang et al. [72]

from the 2D points on the line. These 3D points are then used to fit 3D lines

in 3D space using a RANSAC-type approach. He et al. [21] also follows a

similar approach to get 3D lines but on monocular SLAM. They make use of

semi-dense SLAM points to get 3D points from the 2D points on lines in the

images. They only choose pixel chains that have depth values associated with

it and fit two 2D lines: one in the image plane and one in the projective plane

with depth values. This system overcomes the limitations of the methods that

use 2D line matching methods. This method uses Edge Drawing [2] to get the

edge maps in the form of pixel chains for line fitting. The filtered keychains

are passed to the line fitting algorithm which uses a robust Total Least Square

method to fit the line on the points. They also consider outlier detection using

a distance metric that marks points as outliers if they are not close enough to

both 2D lines (image plane and depth plane). They further go on to cluster

the lines to remove the clutter of lines detected around the high gradient areas.
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Figure 2.8: Qualitative Analysis of He et al. [21] against Line3d++ [22]

This clustering algorithm is based on the angle and distance threshold of lines

with neighboring lines. Fig 2.8 shows the qualitative analysis of their method

against other methods.

We improve upon this method to use it in our plane extraction method.

This method gives promising results in scene reconstruction as well but it

comes with its own limitations. The main drawback of this method is that it

does not address the fact the lines fitted in this algorithm may be inaccurate as

they contain points that lie in different planes. In indoor scenes which contain

man-made objects, this method fails to ensure that lines represent real edges

of the objects. Clustering is not a viable approach for this method as the

lines at the cluster centroid may not always lie on the edges of an object.

Inter-Keyframe line matching or tracking is important as the abundance of

lines around the same edges is due to the fact that the same lines are visible

at different positions in different Keyframes. This causes multiple small lines

around the untracked major line. We address these problems in our approach

and add a coplanarity threshold on the pixel chains during line fitting. We

also replace the clustering algorithm with plane (generated from lines) tracking

and use only those lines that were observed in more than 2 Keyframes.

2.4 3D Plane Reconstruction

As we discussed earlier, lines and planes are high-level features as they pro-

vide more structural information about the scene than points. The use of lines

for structural information comes with its own drawbacks. The 3D line recon-

struction methods discussed in 2.3 do not account for planar information and
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hence do not necessarily represent a 3D structure in the world frame. Lines

are detected based on high gradient pixels which can be present on a highly

textured surface that lies in the same plane. This problem can be addressed

by filtering the lines and points by adding planar information to them. These

filtered lines and points can be then used to reconstruct surfaces from the

scene making the scene reconstruction more robust and accurate.

In a 3D world coordinate system, a plane can be defined by 3 non-collinear

points. But doing an exhaustive plane search on all dense or semi-dense points

is an expensive task and is not feasible in a real-time system. There are

approaches that use a randomized sampling method as well as segmentation-

based approaches to extract planar structures from the scene. Plane matching

has been used to refine the pose of the camera, reducing the drift error and

some methods use planes to reconstruct the 3D scene [16], [26], [40], [68], [71].

Most of these works focus on 3D Plane reconstruction directly from the point

followed by segmentation and image alignment.

Early methods relied on the photometric information to disambiguate planes

that did not represent real surfaces [3]. Later, scene understanding was used

to enhance the performance of visual SLAM systems and dense mapping using

planar modeling of the scene [67]. Some approaches rely on segmenting the

pixels into superpixels or surfels and clustering them into major planar regions

[53], [60], [61]. These methods provide quite promising results of incremental

mapping which can be used for augmented reality applications.

Unlike these methods, our method does not focus on dense mapping of the

scene incrementally. We reconstruct surfaces incrementally using planes and

lines derived from a semi-dense point cloud of the scene which is discussed in

2.5. In the following subsections, we will discuss the related methods used for

plane reconstruction.

2.4.1 3D Planes fitting using Segmentation

Most of the systems we discussed above work with RGB-D sensors [24], [26],

[40], [53]. These approaches segment the point cloud generated by the sensor

using a common point cloud segmentation method [58]. Lingni et al. [40] de-
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Figure 2.9: Synthetic Scene Reconstruction [53]. Left: (planar+non-planar).
Right: The first row shows the color output and normal map, the Second row
shows the non-planar regions and planar regions.

fines a plane model which represents flat surfaces in the scene. They segment

every keyframe into planar and non-planar regions using agglomerative hierar-

chical clustering algorithms. A least square fit is done to the planar segments

detected in those keyframes to get the plane parameters. They perform plane

matching (using distance and angle thresholds) to use it in the bundle adjust-

ment for pose refinement. Mehdi et al. [24] segment the point cloud from

RGB-D data similar to the previous approach but they also smooth the seg-

ment neighborhood for calculating the surface normals. Renato et al. [53] uses

a similarity measure on a group of pixels (surfels) to assign labels to them that

belong with similar plane normals and distances. These clustered segments are

then used to fit planes using Principal Component Analysis (PCA). Figure 2.9

contrasts the synthetic reconstruction of the planar and non-planar regions.

The plane reconstruction has also been extended to monocular SLAM sys-

tems for scene mapping [61], [66]–[68]. Shichao et al. [66] model the scene

with a set of cuboid objects and major planes like walls, floor, and ceilings.

They segment the planes by detecting edges and choosing only those near a

ground-wall boundary by semantic segmentation using a learning-based ap-

proach. These 2D plane edges are back-projected to the 3D space. The back

projection of 3D points is given by the intersection of the ray passing through

the point and the ground plane. Wang et al. [61] associate multiple track-

ers to planar segments of the images called superpixels. These superpixels
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Figure 2.10: Plane Reconstruction by TTSLAM [61]. Left:Original Keyframe,
Middle: Template trackers and plane clusters, Right: 3D Reconstructed plane
clusters

are segmented using Simple Linear Iterative Clustering (SLIC) [1] per frame.

A template tracker is assigned to each superpixel and a set of homography

transforms is obtained which is later decomposed into camera pose and plane

parameters (n⃗,d). The plane normals are then clustered to obtain a sim-

plified multi-planar representation. The homography decomposition can be

represented by:

2H1 =
2R1 +

2t1
d
nT
1 (2.6)

where (R, t) are pose parameters and (nT,d) are plane parameters. The

plane clusters are further checked for fusion with neighboring planes in every

keyframe based on a plane’s normal and distance thresholds. Fig 2.10 shows

the tracking, clustering, and depth reconstruction of the planes. Their previous

work [60] on pose estimation using planar structures used a RANSAC-based

approach to remove outliers in plane clustering from multiple homographies.

They address the issue of pseudo-outliers i.e if an object has multiple instances

in the scene model. They invalidate all the points in the superpixel region

if it is above a certain inlier threshold claiming that it belongs to a distinct

plane. This prevents constant overlapping of points in other plane homography

reducing the redundancy.

2.4.2 3D Planes from points and lines

Taguchi et al.[56] proposed a RANSAC-based approach to extract planes and

match them in keyframes. They work on a handheld RGB-D sensor and make

use of the depth map provided by it. They randomly select reference points in
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the point cloud and fit planes using neighboring points. The pixel is labeled

as inliers and outliers based on the distance of the points from the extracted

planes. Later, the planes are filtered out by only selecting planes with more

than a certain inlier threshold. They later use point-to-point and plane-to-

plane correspondences to find the pose of the camera. The point-to-point

correspondence is solved by decoupling the rotation and translation compo-

nents of the pose. For any point set p, p̄ and p̄′ are the centroids of 3D point

sets. p̄ = 1
M

∑
i pi and p̄′ = 1

M

∑
i p

′
i. Let the correspondences be qi = pi − p̄

and q′
i = p′

i − p̄′. So the least square formulation for decoupled rotation and

translation can be written as follows:

min
R

∑
i

||q′i −Rqi||2 (2.7)

The rotation is calculated first and then the translation is evaluated as the

difference between rotated centroids.

t̂ = p̄′ − R̂p̄ (2.8)

Similarly, the plane-to-plane correspondence is evaluated by minimizing the

difference in rotated normals.

min
R

∑
j

||n′
j −Rnj||2 (2.9)

Here, the translation can be solved by solving a system of equations formed

by 3 or more planes under a linear constraint.

n′T
j t = dj − d′j (2.10)

Fig 2.11 shows the scene reconstruction from their proposed method.

Andrew et al. [16] proposed a similar approach with the main aim to

reduce the state space in tracking 3D points in conventional systems. Instead

of tracking all 3D points, planar structural components are used to represent

the mapped points on a common planar surface. This approach highly reduces

the state space and adds more meaning to the scene modeling. A RANSAC-

based approach is used to randomly sample points on planes from the current
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Figure 2.11: Scene Reconstruction by Taguchi et al. [56]. Top: Point Cloud,
Bottom: Planar scene reconstruction

map. A plane hypothesis is generated from the subset of randomly sampled

points under a chosen variance threshold in each dimension. A minimal set

of 3-point features is used to get the normal n⃗T and distance from origin d of

the plane. The plane representation used here is a 7-parameter state vector

m = [p0,θ1,ϕ1,θ2,ϕ2] where p0 is the plane origin and the orientation is the

cross product of two basis vectors on the plane. A consensus set is formed from

the points in the point set. A point is considered as an inlier of the consensus

set if the perpendicular distance from the plane is less than a distance threshold

and its Euclidean distance from the plane is less than a certain threshold. This

makes sure that the points are not too far apart. The plane hypothesis with the

most inliers in the consensus set from a subset of randomly sampled points

is considered as the best-fit plane. The distance from origin p0 is taken as

the mean of the distance of the points on the plane and the orientation is

determined from the principal components of the set of inlier points. Let’s say

we have m inlier points on the plane, we stack the points to form a m× 3

matrixA. The eigenvector ofATA with the smallest eigenvalue would give the

normal to the plane and the other two vectors represent the basis vectors lying

on the plane. As the SLAM system progresses, newly found 3D feature points

are checked if they lie in any of the best-fit planes using the same approach as

that for inliers mentioned above. They use a creative technique to define fixed

points on planes by checking if the variance of the 2D planar points becomes

smaller than a certain threshold. These points are later used to update the
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Figure 2.12: Real-time plane segmentation[16]: (Left) Camera Positions view
(Right) Detected planar regions in the map. The points marked with black
and white are converged 3D and 2D planar points respectively.

associated planar feature as the camera moves in the scene. Figure 2.12 shows

the extracted planes in real-time along with the inliers of the consensus set.

One of the recent work by Zhang et al. [71] relies on intersecting lines to

detect planes associated with these line features. It is a much more efficient

method than detecting planes from point clusters. This method reduces the

computational overhead of plane detection and allows the process to be per-

formed in real-time on the CPU. Their approach is only experimented with in

stereo SLAM for ease but can be expanded to a monocular setting with some

modifications. They first detect 2D line segments in both left and right image

frames using LSD [18] and then match them using LBD [69] descriptor. The

3D endpoints of the lines are calculated using stereo matching from the left

and right images. They claim that planes extracted from parallel lines may

have large errors so only lines that intersect are considered. The intersecting

lines are found by using the following constraints: i) angle between the lines

is larger than a threshold. ii) the distance between their midpoints is smaller

than the length of line iii) the endpoints of both lines lie on the same plane.

The normal of the plane is found by taking a cross product of the intersecting

lines.

n⃗ = li × lj (2.11)

where li and lj are direction vectors of the lines. The distance from the origin
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Figure 2.13: (Left) Map formed by 3D lines detected (Right) Map formed by
3D planes detected from intersecting lines

is taken as the arithmetic mean of the distances of endpoints from the plane.

Hence, the plane coefficients are π = (n⃗T , d̄k)
T .

d̄k = mean
d

(−n⃗ · (lxi/j, lyi/j, lzi/j)T ) (2.12)

The error in planes is tracked in every frame and is used in the bundle ad-

justment to reduce the drift error in the SLAM system. However, using

π = (n⃗T , d̄k)
T as plane parameters causes over-parameterization which would

require more computations during the optimization process. Hence, the plane

is parameterized using the azimuth and elevation angles of the norm instead

of the normal itself as τ = (ϕ,ψ,d)T .

τ = q(π) = (ϕ = arctan
ny

nx

, ψ = arcsinnz, d)
T (2.13)

The projection error of planes in the camera plane is hence defined as follows:

e(Tcw, πw) = q(πc)− q(T−T
cw , πw) (2.14)

where Tcw is the transformation matrix from world to camera coordinate

system, πw and πc are the plane coefficients in world and camera coordinate

system respectively. Figure 2.13 shows the map formed by 3D line segments

and the planes extracted from it.

This method produces a fine map of the planar landmarks but it comes with

its drawbacks. The line segment detection method does not guarantee the 3D

lines detected represent real structures. Hence, planes detected from these lines

are susceptible to inaccuracies and would not reconstruct surfaces accurately.

The coplanarity of lines is not considered thoroughly so the planes detected can
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be inaccurate. This approach is also hard to extend to a monocular setting as

line segment detection becomes computationally expensive. We address these

problems in our proposed approach to get a smooth and accurate surface

reconstruction from the planes.

2.5 3D Surface Reconstruction

The point cloud data recovered from SLAM systems or laser-based scanning

devices cannot be used directly in a vision-guided robotic system or AR-VR

applications. The point clouds are used to reconstruct meaningful surfaces

to create a model of an object or a scene [5]. Unlike systems with laser

scanners, SLAM systems don’t produce point clouds of the complete scene

instantly. SLAM systems produce streams of 3D points in an online system

while exploring the scene from different views. The indirect SLAM approach

reconstructs the feature points tracked over the keyframes while the indirect

approach reconstructs the depth map producing more points. These meth-

ods keep reconstructing 3D points as the camera moves over the scene which

requires the model to be updated over every keyframe incrementally. Hence,

modeling the scene in an online system could be computationally expensive if

all the points in the point cloud are used without filtering. Surface reconstruc-

tion methods are divided mainly into two categories based on the density of

points used in reconstruction: Sparse (Explicit) and Dense methods (Implicit)

[27], [33]. In the following subsections, we will briefly discuss these methods

and the inspiration behind our proposed method.

2.5.1 Sparse Reconstruction methods

The sparse methods are used to reconstruct meaningful surfaces from a 3D

point cloud which is sparse as it only consists of feature points in the scene.

These methods help in reducing the space and time complexity for modeling

large-scale environments. These methods use a 3D Delaunay triangulation to

discretize the space into a set of tetrahedrons such that every point is a vertex

of the tetrahedral. These points have information on the camera location
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through rays connecting the point and the camera( viewing ray). Previous

works classify the tetrahedron into free-space and occupied-space where the

face that connects these two approximately represents the required surface [23],

[34]–[36], [38]. The faces are in the form of triangles that are combined to form

a surface mesh. Faugeras et al. [14] explains how 3D Delaunay triangulation

is a computationally efficient method to represent geometric structures by

marking empty tetrahedrons. It is robust as it is easier to update surfaces

when new points are introduced in the system.

Lovi et al. [38] proposed an online 3D surface reconstruction method that

efficiently works on sparse point cloud. They discretize the space via a 3D

Delaunay Triangulation of the input point stream partitioning the convex hull

of the point set into a set of tetrahedra. Based on visibility constraints the faces

of these tetrahedrons are marked as empty or occupied. As it is an incremental

process, some of the tetrahedra are deleted and replaced by new tetrahedra

upon the addition of new points in the system. All the new sets of tetrahedra

are associated with a set of all free-space constraints that intersect it. Hence,

the old set of tetrahedra determines the minimal constraint set to be tested

against. This saves a lot of time by avoiding triangulation on all points afresh

as batch reconstruction approaches [33]. Reusing the tetrahedrons stabilize the

model of the scene, and requires a smaller stream of input points to reconstruct

and update surfaces in the scene. They also propose a heuristic to avoid new

constraints if they have a high similarity score. The system works on PTAM

[29] which makes it less efficient compared to modern SLAM systems. Their

work was improved upon by developing a similar system upon ORB-SLAM2

[43] to incrementally reconstruct the surface on a CPU-only setting [25]. Figure

2.14 shows the reconstruction results of their approach.

Hoppe et al. [23] improved upon the labeling and visibility information

using graph-cut on a dual graph. They mainly focus on incrementally recon-

structing surfaces of pertinent objects using SFM systems akin to Labatut et

al. [31] which reconstructs the scene using multi-view stereo. Unlike Labatut

et al.[31], their method can operate in real time on 3D points from an online

SFM. The edges of the triangulated tetrahedral are weighted based on an en-
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Figure 2.14: Scene reconstruction by [38] on three data sequences: Shelves,
Fireplace, and House. (Left) Sample Image (Middle) Reconstructed Model
(Right) Texture Mapping

ergy function that combines smoothness and visibility information. They use

dynamic graph-cut to obtain the minimum cut efficiently. Dynamic graph cut

[30] ensures that the minimum cut is performed as an update on the previous

solution instead of recomputing the solution from the scratch. This makes

sure that the computational complexity is independent of the overall scene

size. Their work does not remove points with redundant visibility information

and hence it is susceptible to outliers in viewing rays. Langlois et al. [32] con-

sider a scene bounding box instead of the Delaunay Triangulation of points.

These bounding boxes are partitioned into 3D cells which are marked as full

or empty based on the visibility information of line segments. The intersec-

tion of these free and empty cells represents the reconstructed surface. They

minimize an energy function that penalizes lines segments that do not lie on

segmented surfaces, penalizing surfaces between the path of observation and

visibility ray, and penalizing complex shapes. Their method adapts well to a

sparse set of points and line segments.
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2.5.2 Dense Reconstruction methods

Unlike sparse methods, dense reconstruction methods discretize the space into

3D voxels which is further converted into a surface mesh. This approach works

best for dense depth maps to recover a volumetric representation of the scene.

Roldão et al. [51]use a Truncated Signed Distance Function (TSDF) [63]

voxel-based representation to reconstruct surface meshes from Lidar datasets.

In TSDF, a 3D environment is represented by a 3D grid of equally spaced

voxels where each voxel is defined by the position of its center. The signed

density function is used to assign a positive or negative value to each voxel

based on the distance between its center and nearest object surface. A weight

is also assigned to the voxels to assess the uncertainty of these values. A pos-

itive value determines free space (in front of the object) and negative value

determines occupied space (behind or inside the object). To avoid computa-

tional overhead, the signed density function is truncated for larger distances.

Equation 2.16 defines the TSDF values for each voxel where SDF is the signed

distance function and t is the truncation distance. For every voxel center vi,

pic(vi) is the projection of voxel center on to the depth image. camz(vi) is the

distance between camera and voxel along the principal axis. This makes sure

that points that are far away from an object do not interfere with the surface

reconstruction.

SDF (vi) = depth(pic(vi))− camz(vi) (2.15)

TSDF (vi) = max(−1,min(1, SDF (vi)
t

) (2.16)

Roldão et al.[51] propose multi-scale neighborhood definition to increase

the statistical robustness of neighboring surfaces. The neighborhood of each

voxel is represented by 8 adjacent voxels around it at a single level. By in-

creasing the level, the size of the neighborhood increases by a factor of (2k)3

where k defines the level. Since larger values of k will overly smooth the re-
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Figure 2.15: Overview of surface reconstruction by Roldão et al.[51].(1) The
Lidar point clouds are represented by a voxel grid, (2) An optimal neighbor-
hood level is estimated, (3) TSDF is performed on an optimal neighbourhood
level, (4) Marching Cubes is used to reconstruct surface mesh

gions with a high density of points, an optimal k value is chosen to compute

the optimal neighborhood for each vertex. Planar surfaces are estimated using

PCA based on these neighborhoods. The optimal value of k is estimated using

a multivariate Gaussian distribution to define the probability of each vertex

projected on the estimated planar surface belonging to the distribution. The

lowest k value that defines a normal distribution is used as the optimal neigh-

borhood value. The TSDF values are estimated for the optimal neighborhood

voxels. The TSDF is followed by Marching Cubes [37] to reconstruct surface

meshes for objects. Figure 2.15 is a schematic representation of their surface

reconstruction method.

Newcombe et al. [46] proposed a real-time SLAM system using Kinect (an

RGB-D sensor) to reconstruct local surfaces using the depth maps generated

by their infrared sensor. They used a TSDF-based approach which estimates

a cumulative weighted signed distance field from the depth maps recorded

by the sensor [9]. The camera pose is estimated using a multi-scale Iterative

Closest Point (ICP) alignment between the depth maps from sensor input and

predicted surface from raytraced global TSDF. Real-time performance was

achieved by paralleling the TSDF module on a GPU. A similar approach was

performed in a monocular setting in MonoFusion [48] which provides inspiring

results from single off-the-shelf cameras. Figure 2.16 shows the experimental

results of MonoFusion on nearby objects.
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Figure 2.16: Experimental results of MonFusion[48] on nearby objects

However, these methods are concentrated at reconstructing local surfaces

rather than modelling the complete scene. Voxel grid approaches heavily rely

on the memory available on the GPU as each voxel is allocated a block of

memory. These methods cannot be operated in real-time without the help of

a strong GPU or an RGB-D sensor.
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Chapter 3

Method

In this chapter, we discuss the pipeline of our system and detail our approach

for surface reconstruction. We briefly describe our system followed by im-

provements in 3D Line Segment detection and Plane detection.

3.1 System Overview

Our incremental SLAM system takes live video frames as input and produces

a 3D model. Figure 3.1 shows the pipelines of our proposed system. Our

system comprises of a SLAM system with semi-dense mapping [42], a 3D line

segment fitting approach, and a novel plane detection, validation, and merging

approach.

1. SLAM System: This system takes video frames as input and gives a

semi-dense point cloud of the scene.

2. 3D Line Segment Detection: It computes lines in 3D space from the

semi-dense point clouds incrementally.

3. Plane Extraction: It detects planes from 3D lines. The planes are

validated, matched, and merged over keyframes.

4. Surface Reconstruction : This thread is referred to as CARV mod-

elling in Figure 3.1. Once the planes are validated, the endpoints of the

line segments in the planes are used to reconstruct a 3D model using a

free-space Delaunay Triangulation-based approach [38].
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Figure 3.1: Pipeline of our Proposed System: (i) The video frames are passed
through a semi-dense ORB-SLAM [42], (ii) 3D lines segments are extracted
from the point cloud generated using our proposed Outlier Removal Method,
(iii) Our proposed Plane Extraction method extracts planes, validates and
merges them into major planar regions, (iv) Planar model points are fed to
free-space-carving method by Lovi et al. [38] for surface reconstruction.

The entire system runs on 5 threads in real-time on a CPU. No GPU acceler-

ation is required thanks to the efficient modeling using only points on planar

structures.

3.2 3D Line Segment Detection

Detecting all possible lines from a point cloud is a computationally complex

task with very minimal structural information. We limit the semi-dense map-

ping search space to high gradient edges to speed up the system and limit the

search space for line detection. The lines detected from the edge maps will

have fewer outliers with more structural information. We use a RANSAC-

based approach to remove the outliers from the pixel chain before fitting the

line. We use Edge Drawing [57] to detect edge maps of every keyframe. The

edge maps are a chain of interconnected pixels we use to detect 2D line seg-

ments. Here we fit two 2D lines, one in the image plane and another in the

plane orthogonal to the image plane. Unlike He et al. [21], we use a novel

outlier removal method that filters the non-planar pixels before the line fitting.

This outlier removal approach helps us remove depth inconsistency and detect

lines that mostly lie on a major planar structure.
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Figure 3.2: Removing outlier points from the pixel chain and fitting a 3D line
segment using points from the best-fit plane (Inlier Set)

Let Pc = {p1,p2,p3, ...,pn} be the pixel chain with associated depth

values where n is the minimum number of pixels required to fit a line. The

coordinates of the image frame are represented by (px,py) and (d,pz) in the

frame orthogonal to the image frame. d is the distance from the first pixel

to its projection in the x-axis, and pz is the depth associated with the pixel.

We perform our outlier removal method before fitting the 2D lines using Total

Least Square. We further remove the pixels if the distance between the pixels

and the two lines in the image and depth frame is greater than thresholds d1

and d2 respectively. The current line search is stopped and the new line is

searched if n consecutive pixels are outliers.

3.2.1 Outlier Removal

We use a RANSAC-based approach to remove pixels that do not lie on the

best-fit plane. m pixels are selected at random from the pixel chain to form

a A3×m matrix. This matrix is decomposed using Singular Value Decomposi-

tion (USV T ) where the U vector corresponding to the smallest singular value

is the normal n⃗ of the best-fit plane. Singular Value Decomposition (SVD)

is numerically more stable than finding an eigenvector corresponding to the

smallest eigenvalue of AAT. Proof: Let cov = AAT

n−1
be the covariance matrix

and A = USVT be the singular value decomposition.

Since the covariance matrix is symmetric, it can be diagonalized and the eigen-
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vectors can be normalized to become orthonormal:

AAT

n− 1
=
XDXT

n− 1
(3.1)

Now, formulating the above equality using SVD

AAT

n− 1
=

(USV T )(USV T )T

n− 1

=
(USV T )(V SUT )

n− 1

(3.2)

Since S is orthogonal, VTV = I

AAT

n− 1
=
US2UT

n− 1
(3.3)

It can be seen that the formation of AAT

n−1
will have a loss of precision whereas

SVD does not have that issue and is numerically more stable.

This process is repeated multiple times (3 times in our case) to get the

most robust plane. An inlier set Is is formed from the pixel chains by checking

whether the perpendicular distance of the point from the best-fit plane (n⃗ ·Pc)

is less than a threshold (2 cm). Only inlier pixels are used to fit the 2D lines

using the Total Least Squares, ensuring that the 3D lines detected lie on a real

planar structure. Figure 3.2 shows the removal of the outlier points that do

not lie on the best-fit plane followed by line fitting on the inlier set resulting

in a 3D line segment that lies on the best-fit plane.

Our method drastically reduces the number of lines detected in every

keyframe. While some methods require large number of lines or points to

reconstruct surfaces, detecting planar structures benefits from fewer lines as

explained in the Section 3.3. Figure 3.3 compares our outlier removal approach

against He et al. [21]. Table 4.1 shows that our outlier removal method filters

large number of lines making it easier to detect planar structures accurately.

3.3 Plane Detection

Detecting planes from point clouds is a computationally expensive task and

hard to implement in a real-time system. Therefore, we reduce our search

space by detecting planes from intersecting 3D line segments detected from
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Figure 3.3: Keyframe:Vicon Room 101 [6] (Top): 3D line fitting without
Outlier Removal (Bottom): Proposed outlier removal method

a semi-dense point cloud. We exclude planes from parallel lines as they may

create ambiguities in man-made structures (e.g. windows on walls). Two

vertical or horizontal lines can be detected on a surface but they may not

represent an actual physical structure. We perform an exhaustive search of

3D planes from intersecting lines. This search is constrained by the following

conditions:

(a) The angle between the lines must be greater than a threshold (15◦)

(b) The lines must be at least 15 cm long

(c) The lines must not be associated with more than 3 planes.

(d) The lines must not be skewed, hence concurrency must be confirmed

This exhaustive search detects a large number of plane hypotheses πk =

(n⃗,d)T, most of which are either redundant or lie within the vicinity of an

existing major planar structure. Let px and pe be the endpoints of the line

segment then the direction vector can be defined as a unit vector of their dif-

ference. The normals of the planes are evaluated by taking the cross-product
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of their direction vectors.

dir = | < psx, psy, psz > − < pex, pey, pez > |

n⃗ = diri × dirj
(3.4)

The plane parameters can also be computed using the points on the lines by

SVD as discussed in Section 3.2.1. With the computed normal vector, the d

value can be defined as,

d = −n⃗· < px, py, pz > (3.5)

where < px,py,pz > are the points on the line. We use the endpoints of

the line to define the d value. We validate each plane hypothesis in the pro-

cess called merging and growing, which is constrained by the angle between

the normals and the distance between the planes. This process also involves

filtering the excess lines being matched in every keyframe, thus reducing the

complexity of the process. Algorithm 1 describes the validation, merging, and

growing process of our proposed system.

Three Point Method: Let π = (n⃗,d)T define the plane parameters and

Xi be the homogeneous coordinates of points on the plane.XT
1

XT
2

XT
3

 π = 0 (3.6)

The null space gives the parameters of the plane

π = (D234,−D134, D124,−D123)
T (3.7)

where Dijk is the determinant of the ijk rows of the 3× 4 matrix X. For any

three points on the non-collinear lines, the plane equation can be derived by:

n⃗ = (X̃1 − X̃3)× (X̃2 − X̃3) (3.8)

d = (−X̃3
T
(X̃1 × X̃2)) (3.9)

Notations: We define Sp = [li, lj] as a list of line pairs that define the

planes, P = [n⃗, d] is the list of planes corresponding to the line pairs in Sp.

We group the validated planes in Vp = [n⃗, d] and the lines are added to a
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Algorithm 1 Plane Validation: Merging and Growing

Input Sp = [li, lj],P = [n⃗, d]
Output Vp = [n⃗, d], CS = {[li, lj] : n⃗}

1: procedure Validation,Merging and Growing
2: // Remove Redundant planes
3: for [n⃗i, d] in P : do
4: temp ← [n⃗i, d]
5: if |n⃗i.n⃗j| > λp and |di − dj| < ψp then
6: Vp ← temp
7: P .pop()
8: // Form Consensus Set
9: // Let diri:-Direction vector & Pts:-Endpoints
10: for [li, lj] in Sp : do
11: for n⃗ in Vp : do
12: if |dir.n⃗| < λl and |Pts.n⃗| < ψl then
13: CS ← {[li, lj] : n⃗}
14: Sp.pop()
15: else continue
16: // Validation
17: for n⃗ in Vp do
18: if Count(CS[n⃗]) > ValidationThresh : then
19: Vp → VALIDATED

20: //Merging in InterKeyFrame Matching

consensus set CS = {[li, lj] : n⃗}. We also introduce λ and ψ as the angle and

distance thresholds with p and l subscripts defining plane and line thresholds

respectively.

Firstly, we remove all the planes with similar normals and distances that

are usually detected by multiple lines near the major structure. The cosine

of the angle between the plane normals can be calculated by |n⃗i · n⃗j| and the

distance between them is determined by |di − dj|. This is an important step

before matching of planes in subsequent keyframes as it avoids ambiguity while

matching planes. Once the redundant planes are filtered, we form a consensus

set of the lines that lie in the detected planes. The cosine of the angle between

the plane normal and the line is smaller than λl and the distance between

the endpoints of the line and the plane is smaller than ψl, the line is added

to the consensus set CS. The consensus set also maps every plane with the
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lines associated with it. If a plane is associated with a number of lines greater

than the validation threshold, the plane is deemed valid and is considered

for InterKeyframe matching. The plane matching is followed by merging and

growing planes into major planar structures as we discover new areas or parts

of existing planar regions in new keyframes. However, the length of planar

structures is constrained to avoid the seamless merging of planes into larger

planar regions (e.g., wall, ceiling, floor).

3.4 InterKeyframe Plane Matching

Once planes are detected in a keyframe they must be tracked over keyframes

for consistency. This ensures that the planar structures discovered are mapped

and modeled accurately in an incremental way. The plane matching is per-

formed similarly to the filtering of the redundant planes but over keyframes

instead of planes in a single keyframe. Once the planes are matched, we also

match the line segments associated with the planes. The lines are matched

using the angle between them and the distance between their centers.

cos β =
d⃗iri · d⃗irj
|d⃗iri · d⃗irj|2

(3.10)

D = ||mid(li)−mid(lj)||2 (3.11)

If the angle between the lines (β) and the distance (D) between them does

not exceed the line matching threshold (β = 2◦ and D = 0.02), the lines are

flagged as matched. The matched planes must contain a minimum number of

lines matched lines to be considered valid for modeling.

We introduce the merging and growing of planes to find major planar

structures in the scene. We also group the lines of merged planes into a single

group. This drastically reduces the number of planes in the scene and the

search space in every new keyframe. During the plane matching, planes with

their normals inclined at an angle less than the merging threshold (10◦) and

the distance between them is smaller than a distance threshold(25 cm) are

merged into a single plane. The planes and lines associated with them are

merged into a single group with a common normal of the plane with a larger
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Figure 3.4: Top: Two planes with normals inclined at a near-similar angle
under a distance threshold are merged into a single plane bound by distance
thresholds of lines defining them; Bottom: A sample example of two planes
combining to represent the cushions in the keyframe.

number of lines associated with it. Lines associated with more than 2 planes

are discarded. The d̃ value is updated to be the mean of d values of both

planes.

d̃ = mean(di, dj) (3.12)

We also constrain the growth of the major planes by the number of lines as-

sociated with them. The planes associated with more than 30 lines are not

considered for the merging and growing process. This helps prevent planar

structures from merging into much larger planes like walls, ceilings, and floors.

Figure 3.4 gives a brief idea of the merging and growing process. It is worth

noting that the merging and growing parameters can be tuned based on in-

door/outdoor scenes for better surface reconstruction. The merging thresholds

must be noticeably higher for outdoor scenes.

3.5 Surface Reconstruction

Once we obtain the valid planes of the keyframe, we use the 3D lines in

these planes to incrementally reconstruct the surfaces of the scene. We use a
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lightweight pipeline of surface reconstruction based on 3D Delaunay Triangula-

tion [38]. We choose this method as it is compact and faster than voxel-based

approaches discussed in the literature. It also has a robust outlier removal

method to remove viewing rays of outlier points in the model. The creation

and update of the model are fast and robust upon the insertion of new points.

Space is discretized into tetrahedrons such that each new 3D point passed

to the system is included by inserting a vertex and adjusting the neighboring

tetrahedrons. For each frame, visibility information is used to carve out (re-

move) all tetrahedrons where a viewing ray is connecting a visible 3D feature

point to the camera center. We use an improved version of this system [21] by

applying a graph-cut-based approach to categorize the tetrahedral. This also

takes into account the smoothness of the surface to reduce the effects of an

outlier viewing ray.

Point and line-based reconstruction methods use a large number of points

to reconstruct surfaces. In 3D line-based reconstruction method [20], the re-

sults from clustered 3D line segments are worse than the unclustered lines. One

potential justification for such an anomaly is that fewer points have insufficient

information, however, closer inspection suggests that the clusting method is

a larger contributor. The lines are clustered based on a nearest-neighbor ap-

proach which results in spurious line segments distorting the surface. Our ex-

perimental results demonstrate that better results can be achieved with fewer

lines and points passed to the system. Our plane detection method provides

the surface reconstruction system with fewer, but accurate points with planar

information, resulting in a more accurate representation of surfaces. We use

this method to build upon ORB-SLAM for surface reconstruction [25]. End

points of the planar lines are fed to this system to compute the scene model.

Our system is modular and can easily be adapted to a newer real-time SLAM

system in the future.

We will further briefly discuss the components of our surface reconstruction

system. There are mainly two components of our reconstruction system:

(a) 3D Delaunay Triangulation with Viewing rays
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Figure 3.5: Tetrahedral mesh update with 3D Delaunay Triangulation (a)
Initial tetrahedral mesh (b) A new vertex in Red is added to the the mesh
for mesh update (c) The updated mesh shows that the surfaces near the new
vertex are only updated leaving the rest of the model unchanged

(b) Identifying Free Space and Occupied Space from Tetrahedrons

3.5.1 3D Delaunay Triangulation and Viewing rays

Once points are passed to the system, 3D points are triangulated to form

a tetrahedral mesh. Using 3D Delaunay triangulation, the new entries can

be inserted locally and incrementally updating the current mesh. Figure 3.5

shows how the mesh can be incrementally updated upon new entries without

updating the whole model. This results in a fast and efficient update of the

model.

Every new 3D point we add to the mesh has visibility information with it.

We can connect the camera position of every keyframe to its corresponding 3D

point in the mesh which is termed as the viewing ray. These rays help deter-

mine free-space and occupied space in the tetrahedrons. All the tetrahedrons

intersecting these rays are updated with ray counts after every new entry.

3.5.2 Free Space and Occupied Space

The free space and the occupied space are efficiently identified using a min-

imum graph cut problem. Two terminal nodes are added to the vertices of

tetrahedrons known as the source and the sink. If the edges connecting the

source and the vertex are cut then the associated tetrahedron is labeled as oc-

cupied space or free space if the edge connecting is cut. Here we categorize the
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edges as: the source and the sink edge, based on their connection to the source

or the sink. These edges can be grouped together as visibility edges. We use

a regularized smoothing factor to account for outliers. The edges connecting

the adjacent tetrahedron are called smoothing edges. The total cut weight is

minimized by the following least square solution:

Wtotal =
∑
Evis

wvis + λsmooth ∗
∑

Esmooth

wsmooth (3.13)

where λsmooth is a scaling factor to balance the weights, wvis is the weight for

visibility, and wsmooth handles the smoothness between adjacent tetrahedrons.

The weights are positive and non-zero volumes of tetrahedrons when an edge

is connected to either the source or sink. Hence, the edges with the opposite

label are cut. wsmooth is calculated for all the edges with shared triangles of

two adjacent tetrahedral. The edges provide the labels(free space/ occupied

space) for the tetrahedron once Wtotal is minimized.
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Chapter 4

Experiments and Analysis

In this chapter, we discuss the qualitative and quantitative results achieved by

our method on challenging datasets. We evaluate our system on the bench-

marks EuRoC MAV Datasets [6] including Vicon Room 101(VR101), Vicon

Room 201(VR201), and Machine Room 101 sequences. The scenes in VR101

and VR201 are challenging and poorly textured, thus common texture-based

stereo does not work. Point-based free-space methods [34], [35], [38] struggle

to align the model with the physical scene structure. The planes extracted

from our method help the model match scene planes.

4.1 Implementation

All experiments were performed on a laptop with Intel i7-9700k Quad-core

CPU with 16 GB of RAM. We built our system on sparse/semi-dense ORB-

SLAM [42] with a lightweight Delaunay Triangulation-based reconstruction

pipeline [38]. Our system reconstructs surfaces in real-time over 6 threads.

Our system is tested on the latest libraries (e.g., OpenCV, CGAL) and ROS

versions. Parameters for our line segment extraction method are ϵ = 2cm,

minPixels = 25, and minInlierSet = 18. Our plane fitting and matching pa-

rameters are λp = cos(5◦), λl = cos(85◦), ψp = 2cm, ψl = 0.02cm, Validation

Threshold = 18 lines. The line matching parameters are β = 2◦ and D = 0.02

cm. The plane merging thresholds are 10◦ and 25 cm for angle and distance

respectively.
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4.2 Quantitative Analysis

We compare metric 3D reconstruction errors for our method, line, and point-

based methods using the 3D scanned point cloud provided by the benchmarks.

For the comparison, we manually register the SLAM coordinates with the 3D

scans. There are very few works and codes available for assessing the accuracy

of 3D reconstructed models. We follow the metrics used by [32] to evaluate the

closeness of reconstructed models with the ground truth point cloud. Since

the ground truth point cloud has a different coordinate than our SLAM-based

system, we calculate the global Euclidean Transform and transform the point

clouds to the same scale by performing Iterative Closest Point(ICP) search.

This way we can align both clouds together to compare them. All vertices of

the mesh are transformed and scaled to the same Euclidean transform before

evaluation.

Completeness is the measure of the distance from the ground truth (GT)

points to the 3D model and counts the percentage of ground truth points that

is within 25 mm of the model. This metric tells us how close the ground

truth points are to the reconstructed model. To evaluate this, we traverse

through all the ground truth points and calculate the orthogonal distance to

the nearest triangle of the mesh using barycentric coordinates. Note that

Visual SLAM provides much fewer 3D points than the scanned ground truth

points. Hence completeness also measures how well the surface reconstruction

generalizes across featureless surfaces. Doing this fill-in well as a motivation

for developing our plane-based method. Walls, doors, and sides of man-made

objects often lack visual features, and need to be filled in.

Precision is the measure of the distance from each vertex in the computed

triangulation to the ground truth scan. We report the fraction of points within

25 mm of the ground truth. Precision measures how good a method is at

choosing accurate 3D model vertices for triangulation, but not how well the

model generalizes over the whole scene. These two metrics go hand in hand as

completeness helps to prove that the precise points can reconstruct a surface

that generalizes well also where there are no SLAM features. We use the
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Figure 4.1: Histogram of distance errors(d) from Ground Truth for VR101
sequence

Ground Truth 3D point cloud provided by the benchmark to perform our

calculations. the VR101 and VR201 provide 3.1 million ground truth points.

In Figure 4.1 and Figure 4.2, d refers to the distance from the ground truth and

the arrows point to the 25mm mark of d value. It shows that around 89% and

86% of the ground truth points are closer than 25 mm to our reconstructed

model for VR101 and VR201 sequences respectively. The precision of our

model shows that about 96% and 93% of our points used for reconstruction

are closer than 25 mm to the ground truth for VR101 and VR201 sequences

respectively.

Table 4.1 compares our model with the point and line-based models based

on these metrics. It can be seen that the Precision of the model increases on

moving from points to lines but the Completeness is comparatively similar for

point and lines based methods. This means that the model reconstructed by

the point and line methods does not correspond well with the ground truth.

Higher precision in the line-based approach means that the endpoints of most

of the lines used as vertices of the reconstructed mesh are closer to the ground

truth than using just points. For sequence VR101, Precision increases from

74.5% to 88.33% for line based method. It further increases to 96.8% once

we filter all the lines that are not associated with real planar structures. The

completeness for VR101 only changes from 70.98% to 77.21% from points to

46



Figure 4.2: Histogram of distance errors(d) from Ground Truth for VR201
sequence

Method Lines Vertices Prec[VR101] Comp[VR101] Prec[VR201] Comp[VR201]
He et al.[21] 15693 31386 88.33% 77.21% 72.93% 69.00%

Hofer et al.[22] 13278 26556 79.17% 73.08% 71.55% 65.93%
Lovi et al.[38] 0 72588 74.5% 70.98% 69.48% 68.21%
Ours(Lines) 9951 19902 91.41% 82.57% 78.98% 75.10%

Ours(Lines + Planes) 5843 13617 96.8% 88.62% 93.17% 86.33%

Table 4.1: Quantitative Results: Average number of Lines and Vertices for
other datasets are similar. (Prec: Precision, Comp: Completeness)

line-based method which means the model correlates less with the ground

truth for both line and point-based methods. The outliers in the line-based

approach affect the model drastically which widens the gap between preci-

sion and completeness. We address these issues in our plane-based approach

making our model closer to the ground truth for both sequences. It is worth

noting that our model uses a significantly lower number of lines and points

to reconstruct a 3D model that more closely fits the physical model than the

others.

Table 4.2 shows the average number of lines, planes, and vertices used

by our method for surface reconstruction. The Machine Hall sequence has a

drastically lesser number of planes as the scene does not have many planar

objects. This is a challenging scenario for our method but Figure 4.3 shows

that our method still outperforms the line and point-based methods in terms

of the quality of reconstruction. The number of planes detected for Vicon
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Sequence Lines Planes Vertices

Vicon Room 101 9951 174 13617
Vicon Room 201 6624 109 11387
Machine Hall 01 8052 93 16588

Table 4.2: Average number of Lines, Planes, and Vertices for Sequences
VR101,VR201, and MAH01

Method Vicon Room 101 Vicon Room 201 Machine Hall 01

He et al.[21] 31386 28996 36044
Hofer et al.[22] 26556 17411 10387
Lovi et al.[38] 72588 42097 68396
Ours(Lines) 19902 22568 27240

Ours(Lines+Planes) 13617 11387 16588

Table 4.3: Comparison of the average number of vertices in the reconstructed
mesh for VR101,VR201, and MAH01

Room sequence is higher as there are more planar objects in the scenes hence

the reconstruction results are also more accurate. Table 4.3 shows the average

number of vertices in the reconstructed mesh by point, lines and plane-based

method. It can be seen that the fluctuation in the number of vertices for

different sequences is too high for [22] as the number of 3D lines detected in

every run varies by a big margin. This makes this method very unreliable

for 3D line segment extraction in real time. The Completeness and Precision

percentages in Table 4.1 further prove the unreliability of Hofer et al.[22]. The

number of vertices used for reconstructing the mesh in our method is fewer than

the other approaches(except for [22] but it has worse reconstruction results)

making the modeling faster.

4.3 Qualitative Analysis

We compare our system against point-based and line-based reconstruction

methods on challenging datasets. For point-based approaches we compare our

system against Lovi et al.[38] as it is lightweight and one of the only real-time

systems available to public. We also compare our method against line-based

methods like Hofer et al.[22] and He et al.[21] but these methods do not guar-

antee a real-time solution. We also perform an ablation study of our system

48



Figure 4.3: Qualitative Results on EuRoc MAV VR101 with Model and Tex-
ture mapping

with only lines and then lines + planes. Tables 4.1 and 4.3 show the quantita-

tive results of our ablation study. Our 3D model aligns well with the physical

scene surfaces and also improves texture mapping. Lines play an important

role in the detection of planes. Line3D++ [22] uses geometric line matching to

reconstruct 3D lines from 2D lines using only geometric constraints of the line.

This leads to ambiguities and an inconsistent number of lines generated over

keyframes. It is quite unreliable as it reconstructs very few lines in complex

scenes like Machine Hall 01 sequence [6]. On the contrary, He et al.[21] relies

heavily on the accuracy of the semi-dense point clouds. This approach recon-

structs 3D lines with depth inconsistencies which causes some lines on planar

structures to deviate out of the planes. Their clustering method only provides

an approximate idea of an object or structure in the scene as it does not match
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the lines over keyframes. Figure 3.3 shows the lines that are supposed to be

on the same plane having depth inconsistencies. Our novel outlier removal

method ensures that the 3D lines detected lie on an actual planar structure.

This filters the outliers and makes the texture mapping more accurate. Table

4.1 depicts the higher Precision of our approach proving that the lines used by

our method actually align with real physical structures. The accurate texture

mapping by our approach can be observed in Figure 4.3. The vertices are

mapped accurately by our method hence the texture distorts less on camera

motion. Line and point based methods fail to align the vertices accurately to

the texture image leading to severe distortions upon camera motion.

Point-based approaches [23], [35], [38] use the SLAM sparse point cloud

to form tetrahedral volumes using Delaunay triangulation. The sparse point

clouds produced by the SLAM system can be prone to error, which can create

holes or triangulate with model edges not matching scene edges. Further-

more, the larger model size (many triangles) is harder to parse semantically

into structures than a small model succinctly representing the scene. Model

misalignment and surface normals deviating from the scene surfaces distort

the texture mapping. It can be observed that the line-based model is supe-

rior to the point-based model but has holes and distorted structures due to

depth inconsistency. The detection and merging of planes into major planes

aid the accurate and undistorted reconstruction of physical structures. To

demonstrate the better generalization of our method, we compare our method

over three challenging sequences of data. Figure 4.4 shows the qualitative

superiority of our models in complex scenes. In VR101 sequence, it can be

observed that [38] fails to reconstruct the stack of cushions and the boxes

around it given the textured board of April tags. This shows the sensitivity

of the 3D Delaunay Triangular method to outlier points around accurately re-

constructed 3D points. The results seem to improve when these outlier points

are filtered using the line segment approach [21]. The lines-based model seems

to reconstruct the stack of cushions well around the board of April tags but

fails to align the model with the physical structure. This is large because the

lines fed to the surface reconstruction model have less structural information
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Figure 4.4: Experimental results on benchmarks EuRoC MAV Vicon Room
101, Vicon Room 201, and Machine Hall 01

due to which the reconstructed surfaces are not aligned properly. We address

this issue by grouping the lines into planar structures and filtering the lines

which do not lie on the planar structure. This highly reduces the outliers

around the planar physical structures which would distort the shape of the

object during 3D triangulation. It can be observed that our model was able

to reconstruct the stack of cushions and the boxes around it with more accu-

rate shape alignments. We further test our method on the more complex and

cluttered scenarios in VR201(Middle - Figure 4.4). It can be observed that

the point and line-based models fail to reconstruct the boxes or the cushions

around them whereas our model is able to reconstruct most of the meaningful

structures from the clutter. During the modeling process, we parse through
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the planes reconstructing the scene plane by plane that is arranged close to

one another during the merging and growing process. It is worth noting that

the surfaces in line and point-based models seamlessly merge into larger pla-

nar regions(e.g., wall, floor, ceiling). We further test our method on Machine

Hall 01 sequence (Right - Figure 4.4) which consists of mostly non-planar

objects like pipes. It is a challenging dataset as our method heavily relies on

planar structures to reconstruct surfaces. It is worth noting that our model

still outperforms the point and line-based methods by reconstructing the pipes

into rectangular columns while the other approaches fill in the empty volume

around the pipes into a single planar surface(like a wall). Figures 4.5 and 4.6

show the texture mapping of the models on Machine Hall 01 and Vicon Room

201 sequence respectively. It can be observed that our model has the most

accurate and undistorted texture mapping of the three models.

We further used our system to run in a real-time setup organized in our

lab. Figure 4.7 shows a textured 3D reconstruction of our setup from different

viewpoints. We choose this setup to motivate applications of our work in assis-

tive robotics and predictive display for simple robotic manipulation tasks(e.g.,

pick-up and place tasks).
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Figure 4.5: Qualitative Analysis: Texture Mapping on Machine Hall 01 se-
quence

Figure 4.6: Qualitative Analysis: Texture Mapping on Vicon Room 201 se-
quence
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Figure 4.7: Textured Reconstruction of a 3D scene in a real-time setup. Rows
1 and 3 are the reference keyframes and Rows 2 and 4 show the reconstructed
model from four different viewpoints
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4.4 Runtime Complexity

To deduce the runtime complexity of our system, we analyze the runtime of

line segment extraction, plane extraction and validation, and surface recon-

struction. The line segment extraction method is mostly linear in the number

of pixels in the pixel chains detected by the edge detector[57]. Our RANSAC-

based outlier detection method makes it a bit slower than He et al.[21] but is

still fast enough to operate in real-time. We avoid their clustering algorithm

which is O(N2) in complexity for detecting N number of line segments. Their

clustering algorithm is slow and also gives inaccurate 3D line segments for

reconstruction. Our line segment extraction method reduces the number of

detected drastically which helps make the plane extraction and surface recon-

struction faster. The worst-case complexity of our plane extraction method

is O(N2) where N is the number of lines in every keyframe. Practically, it is

faster as the search space decreases when the planes are either merged or inval-

idated. Table 4.4 shows the average time taken per keyframe for line segment

extraction, plane extraction, and validation over three data sequences. Figure

Sequence Lines Planes Validation

Vicon Room 101 8.53 1.18 0.003
Vicon Room 201 8.14 1.02 0.002
Machine Hall 01 8.00 1.02 0.002

Table 4.4: Average Time (in milliseconds) for Line segment extraction, Plane
extraction, and Plane Validation for Sequences VR101,VR201, and MAH01

4.8 shows the average runtime of the surface reconstruction model by points,

lines, and plane-based methods over the VR101 data sequence. It must be

noted that the timestamps were recorded after every model update. Since the

modeling thread runs parallel to the SLAM and Lines+Plane detection thread

it does not update at every keyframe. The model also updates only when

a certain number of new vertices are inserted into it. The time is taken to

update the model increases as the model size increases. Therefore, the point-

based model performs poorly as the model becomes large very quickly and the

model update takes longer. It is worth noting that all three methods start at
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Figure 4.8: Runtime Complexity of Point, Line and Plane(Ours) based surface
reconstruction. The timestamp represents the average time(in milliseconds)
taken for a model update at a Keyframe.(Blue) Point based Modeling (Green)
Line based modeling (Red) Line+Plane based modeling(Ours).

a similar pace until 25 keyframes as the semi-dense point cloud boost the line

segment detection and plane extraction which is initially used for reconstruc-

tion. However, the planes and lines are filtered out during plane matching

making the model update faster as new planar structures are discovered.
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Chapter 5

Conclusion

In this thesis, we proposed a novel incremental surface reconstruction approach

using 3D points and views from Visual SLAM to reconstruct surfaces using

planes and lines combined with view-ray constraints to create a free-space

scene volume. We analyzed previous approaches and found that one of the

biggest concerns in surface reconstruction(from lines) is outlier removal in 3D

line segment detection. We improved upon this approach and showed that this

method has better outlier detection and removal resulting in a model closer to

Ground Truth 3D point cloud on EuRoC MAV benchmarks.

As most of the scenes in benchmarks as well as real-world scenarios are com-

prised of man-made objects that are mostly planar (boxes, windows, doors,

buildings, tables), we used this to leverage the surface reconstruction by de-

tecting planes and using it to triangulate 3D surfaces. Our method aims to

reconstruct texture-less areas of objects better than lines and point-based ap-

proaches. We were able to achieve real-time performance on our semi-dense

reconstruction model over dense or direct triangulation approaches. We were

able to show that, compared to methods using dense point cloud and direct

triangulation, with fewer model triangles but ensuring that these are more

accurately aligned with the scene lines and planes, we get a small model which

succinctly represents the scene and objects therein. Our plane and line match-

ing methods make the data association more accurate and in line with the real

physical structures.
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Limitations and Future Work: Although our method surpasses the exist-

ing reconstruction methods in real-time scenarios, we observed that the results

in highly non-planar environments were not satisfactory. Our set of experi-

ments shows that the reconstruction result was poor for the EuRoC Machine

Hall data sequence which consists mostly of cylindrical pipes and machinery

that is not planar. Practically, these results do not allow robotic teleoperation

tasks like pipe replacement in hazardous environments. But we can ponder on

these situations and think if the use of conics or shape profiles can be used for

such environments. A possible solution to address the issue of non-planar ob-

jects in the scene could be a hybrid method of planar and shape profile based

approach. For more precise tasks like pipe replacement tasks, the knowledge

of semantics would help in a top-down reconstruction of the scene.

Tracking and Modeling in a monocular setup using off-the-shelf cameras

is always a challenging task in a localized environment. Plane-based SLAM

methods would not necessarily perform the best in scenes without loop closures

for reconstructing surfaces as loop closure facilitates the reduction of camera

pose errors for a consistent global map. For a local setup like a table-based

setup for a robot pic-up and place tasks, an RGB-D sensor-based reconstruc-

tion would be more efficient in reconstructing local surfaces like in MonoFusion.

Reconstruction using point clouds from feature based SLAMs like ORB-

SLAM does not produce accurate results in dynamic scenes. A possible solu-

tion is to cull keyframes that have changed to a threshold and replacing them

with newer keyframes and points. Inertial Movement Unit (IMU) can be used

to enhance the detection of changed keyframes and update them.

Plane and line-based reconstruction methods are reliable in many scenarios

to accurately and efficiently reconstruct scenes but they can be generalized for

non-planar environments with the help of RGB-D sensors or shape profiles

which is an open research problem.
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“Slic superpixels compared to state-of-the-art superpixel methods,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 11, pp. 2274–2282, 2012. 21

[2] C. Akinlar and C. Topal, “Edlines: Real-time line segment detection by
edge drawing,” in 2011 18th IEEE International Conference on Image
Processing, 2011, pp. 2837–2840. 14, 17

[3] A. Bartoli, “A random sampling strategy for piecewise planar scene seg-
mentation,” Comput. Vis. Image Underst., vol. 105, pp. 42–59, 2007.

19

[4] A. Bartoli and P. Sturm, “Structure-from-motion using lines: Repre-
sentation, triangulation, and bundle adjustment,” Computer Vision and
Image Understanding, vol. 100, no. 3, pp. 416–441, 2005. 2, 14

[5] M. Berger, A. Tagliasacchi, L. Seversky, et al., “A Survey of Surface
Reconstruction from Point Clouds,” Computer Graphics Forum, p. 27,
2016. doi: 10.1111/cgf.12802. 26

[6] M. Burri, J. Nikolic, P. Gohl, et al., “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, 2016. 9, 36, 44, 49

[7] C. Cadena, L. Carlone, H. Carrillo, et al., “Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception
age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332,
2016. 7

[8] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth parametriza-
tion for monocular slam,” IEEE Transactions on Robotics, vol. 24, no. 5,
pp. 932–945, 2008. 11

[9] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques, ser. SIGGRAPH
’96, New York, NY, USA: Association for Computing Machinery, 1996,
pp. 303–312, isbn: 0897917464. doi: 10.1145/237170.237269. [Online].
Available: https://doi.org/10.1145/237170.237269. 30

59

https://doi.org/10.1111/cgf.12802
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269


[10] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007. 7

[11] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” vol. 15, no. 1, pp. 11–15, 1972. 14

[12] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018. 6, 12
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