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Abstract

Human pose estimation and shape modeling serve as critical elements in a wide

range of computer vision applications. While most existing research employs

RGB cameras for their accessibility and cost-effectiveness, emerging camera

technologies and imaging modalities are relatively underexplored. These novel

technologies often introduce unique features that can provide new avenues

for advancement in the fields of human pose estimation and shape modeling.

Therefore, this thesis aims to investigate human pose estimation and shape

modeling from and particularly beyond RGB cameras by exploring the poten-

tial opportunities presented by emerging camera technologies. Our research

is organized into three key areas: the exploration of new cameras, the devel-

opment of novel approaches, and the creation of large-scale multi-modality

datasets for human pose estimation and shape modeling.

1) Our research in 3D skeletal pose estimation, tracking, and motion fore-

casting for multi-person scenarios using RGB cameras addresses complexi-

ties like intra-frame occlusions. We propose a unified spatiotemporal trans-

former with spatiotemporal deformable attention to simultaneously execute

these tasks in one computational pass. 2) We further explore event cameras,

innovative sensors that balance high temporal resolution with low energy con-

sumption, for energy-efficient parametric shape estimation and tracking. Our

approach includes a two-stage deep learning method that primarily uses event

data, initially requiring only the first gray-scale frame, and later, an end-to-

end approach using Spiking Neural Networks (SNNs) for efficient pose track-
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ing from events alone. 3) Utilizing polarization cameras, which capture robust

geometric surface cues, we propose a framework for reconstructing detailed,

clothed human shapes, beyond skeletal poses or basic parametric shapes. 4)

Finally, we turn our focus to the complex task of animating clothed humans

with natural clothing deformations, leveraging point-cloud sequences captured

by depth sensors that provide valuable geometric insights into the structure of

the clothing. We introduce a diffusion-based method for clothed human model-

ing that integrates dynamics, progressive, and diversified modeling, addressing

gaps in current data-driven approaches.

To overcome the limitations of existing datasets primarily based on RGB

cameras, we developed a cost-effective motion capture system that synchro-

nizes multi-modality cameras and a pipeline for annotating 3D parametric pose

and shape. This led to the creation of several large-scale datasets for human

pose estimation and shape modeling: 1) PHSPD with 527K frames featur-

ing polarization and multi-view RGB-Depth images, 2) MMHPSD with 240K

frames containing event streams and RGB-Depth images, and 3) SynEven-

tHPD, a synthesized event-based dataset. Together, PHSPD, MMHPSD, and

SynEventHPD form the most extensive and varied 3D human motion capture

datasets available, with their multi-modality property holding significant po-

tential for driving existing and new research directions in the computer vision

community.

In summary, this thesis demonstrates that emerging camera technologies

such as polarization cameras, event cameras, and point-clouds provide new

perspectives and effective solutions for related tasks in the fields of human

pose estimation and shape modeling. Extensive experiments across various

projects further validates the effectiveness of the novel approaches we propose

for these tasks.

iii



Preface

This thesis is an original work by Shihao Zou.

Chapter 3 of this thesis has been published under the title: [268] S. Zou,

Y. Xu, C. Li, L. Ma, L. Cheng, and M. Vo, “Snipper: A spatiotemporal

transformer for simultaneous multi-person 3d pose estimation tracking and

forecasting on a video snippet,” IEEE Transactions on Circuits and Systems

for Video Technology (IEEE TCSVT), 2023. I implemented the technical

design with the assistance of Y. Xu, C. Li, L. Ma, and M. Vo. The experiment

results and analysis are my original work.

Chapter 4 of this thesis has been published under the title: [266] S. Zou,

C. Guo, X. Zuo, S. Wang, P. Wang, X. Hu, S. Chen, M. Gong, and L. Cheng,

”Eventhpe: Event-based 3d human pose and shape estimation,” in IEEE/CVF

International Conference on Computer Vision (ICCV), 2021. I led the dataset

capture with the assistance of C. Guo, X. Zuo, S. Wang, X. Hu, S. Chen, M.

Gong, and L. Cheng. I also primarily implemented the technical design and

experiments, with support from C. Guo and P. Wang.

Chapter 5 of this thesis has been submitted for review and currently

preprinted under the title: [267] S. Zou, Y. Mu, X. Zuo, S. Wang, and L.

Cheng, ”Event-based human pose tracking by spiking spatiotemporal trans-

former,” arXiv preprint arXiv:2303.09681, 2023. I led the dataset synthesis

with the assistance of Y. Mu, X. Zuo and S. Wang. I also primarily imple-

mented the technical design and experiments, with support from Y. Mu and

L. Cheng.

Chapter 6 of this thesis has been published under the title: [269] S. Zou,

X. Zuo, Y. Qian, S. Wang, C. Xu, M. Gong and L. Cheng, ”3d human shape

reconstruction from a polarization image,” in European Conference on Com-

iv



puter Vision (ECCV), 2020. The following work has been published under

the title: [270] S. Zou, X. Zuo, S. Wang, Y. Qian, C. Guo, and L. Cheng,

”Human pose and shape estimation from single polarization images,” IEEE

Transactions on Multimedia (IEEE TMM), 2022. I led the dataset capture

with the assistance of X. Zuo, S. Wang, C. Xu and C. Guo. I also primar-

ily implemented the technical design and experiments, with support from Y.

Qian, M. Gong and L. Cheng.

Chapter 7 of this thesis has been submitted for review and S. Zou is

the first author of this work. I implemented the technical design with the

assistance of co-authors. The experiment results and analysis are my original

work.

v



To the silent moments in the early hours of the morning,

where inspiration struck and perseverance was tested.

vi



We can only see a short distance ahead, but we can see plenty there that

needs to be done.
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Chapter 1

Introduction

1.1 Background

Human pose estimation and shape modeling serve as the backbone for a

wide array of applications in computer vision, such as action recognition, bio-

mechanics and medical diagnostics, human-computer interaction, autonomous

driving, video surveillance, digital human, Virtual Reality (VR) and Aug-

mented Reality (AR) technology [193], [208].

Within specific domains, these technologies assume specialized functions.

For example, in the domains of action recognition and bio-mechanics, these

techniques assist in the classification and analysis of human activities. Specif-

ically, they offer valuable tools for scrutinizing gait, posture, and joint dy-

namics, thereby enhancing applications in sports analytics and medical diag-

nostics. In the realm of video surveillance, they excel in tracking individuals

within crowded spaces and identifying unusual activities based on atypical

body movements or postures. In the context of human-computer interaction,

these technologies have revolutionized user engagement by enabling more intu-

itive, gesture-based controls, thus eliminating the need for conventional input

devices such as keyboards or mice. In the field of autonomous driving, they

improve safety by accurately identifying pedestrians, discerning their inten-

tions, and predicting their subsequent movements. Within the digital human

space, these technologies facilitate the creation of photorealistic avatars and

digital doubles, which are employed in cinematic productions, video games,

and virtual social interactions. Finally, in VR and AR experiences, pose esti-
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mation and shape modeling contribute to immersive user engagement by cre-

ating photorealistic avatars and seamlessly translating real-world movements

into virtual environments. This has far-reaching ramifications across a diverse

range of fields including education, training simulations, and entertainment.

Over the past decade, significant advancements have been made in the

field of human skeleton pose estimation [24], [55], [70], [90], [142], [144], [146],

[150], [209], [212], [249], [252]. As depicted in Fig. 1.1 (a), earlier studies

commonly employ a skeletal representation, comprised of predefined joints

such as shoulders, pelvis, knees, ankles, neck, nose, wrists, and elbows. This

skeleton-based parameterization offers a straightforward and effective way to

represent human poses in 2D or 3D contexts.

With the advent of parametric models of human pose and shape, such as

SMPL [116] and SMPL-X [153], the landscape of pose estimation techniques

has expanded considerably [10], [19], [48], [91], [92], [97], [101], [117], [156],

[253], [271]. As depicted in Fig. 1.1 (b), these parametric models offer a com-

pact, low-dimensional statistical representation of human shapes, employing

only 82 parameters in the case of the SMPL model to define the human shape

of a triangular mesh comprising 6890 vertices. Such models are learned on

extensive datasets of minimally-clothed human bodies.

In addition to these advancements, the past decade has seen the emer-

gence of deep learning techniques that have revolutionized human pose and

shape estimation. Researchers have developed various end-to-end deep learn-

ing methods for human pose estimation or parametric shape estimation [24],

[55], [70], [91], [92], [97], [142], [144], [150], [156], [209], [212], [249], [252], effec-

tively demonstrating the capabilities of deep learning in this research domain.

Unlike earlier skeletal or parametric representations, recent focus has shifted

toward deep learning-based human shape reconstruction [74], [78], [121], [157],

[172], [173], [244], [257], [264]. This transition is largely driven by the power-

ful learning capabilities of deep learning algorithms. As illustrated in Fig. 1.1

(c), where clothed human bodies are inferred from 2D images using end-to-

end deep learning methods and represented in diverse forms, such as volumes,

point-clouds, or meshes. This representation is usually more attractive as it
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(a) Articulate Skeleton 

Representation of Human Pose

(b) Parametric Representation 

of Human Pose and Shape

(c) Volume / Point-cloud / Mesh 

Representation of Clothed Human Shape 

Figure 1.1: Three commonly used ways to represent human pose and shape.
(a) Articulate skeleton representation of human pose [24]. (b) Parametric
representation of human pose and shape [91]. (c) Volumetric, point-cloud or
mesh representation of clothed human shape [74], [173].
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captures the entire appearance of an individual, including intricate details of

clothes.

1.2 Motivations

Most current research in human pose estimation and shape modeling primarily

utilizes RGB cameras due to their widespread availability, affordability, and

ease of integration into a variety of computer vision applications. However, as

new types of cameras and imaging modalities emerge, there has been limited

exploration into the potential opportunities they present. The unique features

of these emerging technologies often provide new perspectives and solutions in

our field of study. To this end, we outline some of these camera technologies

below.

• RGB cameras are widely available and relatively affordable, making them

cost-effective and easy to integrate into plenty of computer vision appli-

cations like object detection [65], semantic segmentation [28], and human

pose estimation and shape modeling [24], [91], [173]. However, their high

bandwidth requirements for transmitting high-frame-rate images limit

their effectiveness in low-energy applications. Additionally, they lack di-

rect capabilities for capturing depth or geometric information, leading

to ambiguities in 3D vision tasks.

• Event cameras are an emerging category of bio-inspired sensors that

produce sparse data, easing both processing and storage demands. These

sensors can optionally deliver high-frame-rate gray-scale video as well.

These sensors excel in low latency, energy efficiency, and resistance to

motion blur. However, they generally come at a higher cost and offer

limited color and depth information.

• Polarization cameras, built upon the physical law that reflected light

is usually polarized, can provide additional geometric clues and reduce

glare from surfaces like water or glass. Despite these advantages, they
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are complex, costly, and computationally demanding in terms of data

processing.

• Point-clouds, generated by Time-of-Flight sensors such as Kinect [131]

or Lidar [177] cameras, provide rich spatial information and are versatile

and flexible, making them valuable for a range of applications from 3D

modeling to object recognition. However, they come with challenges

such as high data volume, sensitivity to sensor noise, and the absence of

semantic and topology information.

While imaging techniques have significantly advanced in recent years, it’s cru-

cial to recognize that each imaging technology carries its own set of pros

and cons, suited to particular applications and constraints. RGB cameras,

which are widely used and cost-effective, are adept across various applications.

Nonetheless, for industrial needs where low power consumption and real-time

performance are paramount, such as in video surveillance or object detection

in autonomous driving, event cameras could be a promising alternative. In

contrast, while RGB images or event streams fall short in providing accurate

depth or 3D information for intricate tasks like human shape modeling, alter-

natives like polarization images or point clouds might be suitable, albeit with

higher costs and lower frame rates. Therefore, each imaging modality brings

its own set of trade-offs, necessitating careful selection based on the applica-

tion’s unique demands. Expanding on our exploration of these cutting-edge

camera technologies, we propose that integrating diverse sensor types could

significantly improve pose estimation accuracy under varied conditions.

Consequently, this thesis will delve into the realm of human pose estima-

tion and shape modeling from and particularly beyond RGB cameras to explore

the potential opportunities presented by these emerging camera technologies.

Specifically, our research in this thesis is structured around three pivotal com-

ponents: the exploration of new cameras, the development of novel approaches,

and the creation of large-scale multi-modality datasets for human pose esti-

mation and shape modeling.

Following the history of human pose and shape representation outlined in
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Fig. 1.1, our research begins with 3D skeletal pose estimation and tracking

using RGB cameras, as detailed in Chapter 3. This chapter delves into the

practical yet challenging task of multi-person pose estimation, tracking and

motion forecasting. We then shift our focus to an energy-efficient approach

for human parametric shape estimation and tracking in Chapters 4 and 5.

Here, we leverage the unique features of event cameras and advance efficient

sparse deep learning techniques, i.e., spiking neural networks (SNNs). To

reconstruct more detailed and realistic clothed human shapes as opposed to

minimally-clothed parametric shapes, Chapter 6 explores the use of polariza-

tion cameras, which provide robust geometric clues of human clothing surface

details. Lastly, going beyond this static shape reconstruction, Chapter 7 in-

vestigates the challenging task of learning to animate clothed humans with

natural clothing deformations based on point-cloud sequences, as they offer

valuable spatial insights into the geometry of clothing.

Significantly, our research into the use of emerging camera technologies

for human pose estimation and shape modeling reveals a notable gap: the

lack of publicly available, specialized datasets. To address this, another major

contribution of this thesis is the creation of three multi-modality datasets. We

have developed an in-house motion capture system that synchronizes multi-

view RGB-Depth cameras with a polarization camera and an event camera.

Additionally, we have established a pipeline for annotating 3D parametric

human poses and shapes. Further details on these datasets will be provided

in the following sections and chapters.

1.3 Overview

1.3.1 Multi-Person Pose Estimation from RGB Cam-
eras

While the field has extensively studied single-person pose estimation [91], [97],

[142], [252], multi-person skeletal pose estimation, tracking, and motion fore-

casting from RGB videos are of greater practical relevance but also pose in-

creased challenges due to intra-frame occlusions. Existing methods [24], [52],
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Shape Modeling 

from and beyond 

RGB Cameras
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Clothed Human Animation 
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Figure 1.2: Overview of the thesis. We focus on human pose estimation and
shape modeling from and particularly beyond RGB cameras to explore the
potential opportunities new cameras present.

[222] generally concentrate on a single task, or isolate each task and employ

multi-stage strategies to solve each task individually. However, pose estima-

tion and tracking are intrinsically correlated: accurate 3D pose estimation

facilitates tracking, while robust tracking provides informative temporal clues

for pose estimation within the video, particularly when persons are occluded

in a single frame. Additionally, tracking accumulates vital historical data

that facilitates accurate future motion prediction. Prior studies often overlook

these correlations, resulting in sub-optimal decisions at each stage of these

inter-connected tasks.

To overcome the aforementioned challenges, Chapter 3 introduces a unified

framework designed to concurrently estimate, track, and forecast multi-person

3D poses from RGB video snippets. Utilizing our proposed spatiotemporal

deformable attention, this framework effectively encodes spatiotemporal rela-

tionships between frames, thereby mitigating the issue of intra-frame occlu-

sions common to RGB cameras. Experimental results reveal that our model

outperforms specialized baseline models, demonstrating competitive effective-

ness across all three tasks: pose estimation, tracking, and motion forecasting.
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This work has been published as [268].

1.3.2 Parametric Shape Tracking from Event Cameras

Different from traditional frame-based cameras, event cameras [59] have been

an emerging bio-inspired imaging sensor that bypasses the usual trade-off be-

tween high temporal resolution and low energy consumption. In the context of

frame-based cameras, high temporal resolution is typically synonymous with a

high frame rate. The most important concept of event cameras is an ”event”,

which is defined as a triplet (x, t, p), indicating a significant brightness change

at a specific pixel location x at time t with its binary polarity as p. Events are

triggered only when brightness changes exceed a preset threshold. Rather than

capturing images at a fixed frame rate, events are asynchronously registered

at per-pixel level in event cameras. The stream of events is also spatially much

sparser compared to conventional frame-based cameras, where each image is

densely packed with a full stack of per-pixel values. Consequently, event cam-

eras excel at capturing local motions as a series of sparse, asynchronous events.

It should be noted that event cameras can optionally provide high-frame-rate

gray-scale video as well. With their unique advantages—high temporal reso-

lution, low latency, low power consumption and high dynamic range—event

cameras have found applications in various computer vision tasks. These in-

clude tracking [63], [135], [245], [246], recognition [3], [57], [95], 3D recon-

struction [166], [248], and a wide array of applications in robotics, virtual and

augmented reality, and autonomous driving [59].

The potential of event signals in estimating 3D human parametric pose

and shape has been rarely explored. Prior method [227] depends not only on

events data but also on an auxiliary gray-scale video for initial pose estima-

tion at each time step. This limitation prompts us to explore the feasibility

of using events as the primary input source for estimating 3D human poses

over time in Chapter 4. In this chapter, we utilize only the first gray-scale

frame generated by event cameras to extract the beginning pose and shape.

Subsequently, events data is employed to track the following poses and shapes

over time. We propose utilizing optical flow inferred from events to reduce
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dependency on the entire gray-scale video as additional input. We also in-

troduce a novel coherence loss to ensure alignment between event-based flow

(optical flow) and shape-based flow (movements of vertices on human shapes).

Our empirical results show that our proposed approach outperforms several

state-of-the-art baselines. Additionally, we provide the Multi-Modality Human

Pose and Shape Dataset (MMHPSD), featuring 240k frames across multiple

imaging modalities, including event cameras. To our knowledge, MMHPSD

is the largest event-based 3D human pose and shape dataset and the first to

be publicly available. Its multi-modality property enhances its potential in fa-

cilitating existing and new research directions. This work has been published

as [266].

Furthermore, existing methods either require the presence of additional

gray-scale video or frame [227], [266], which may not be feasible in practice,

or treat the event stream as frame-based dense images [23], [170] and input

them directly into the ANNs models, which ignores the inherent sparsity of

event signals. Motivated by the above observations, our subsequent work aims

to tackle a relatively new problem of tracking 3D human poses solely based

on event streams from an event camera, thus completely eliminating the need

for additional dense images as the input. To address this problem, Chap-

ter 5 introduces a novel end-to-end sparse deep learning approach, which is

entirely built upon Spiking Neural Networks (SNNs), thus having the promise

of being more efficient than the dense deep learning models built upon ANNs.

Extensive empirical experiments demonstrate the superior performance of our

approach over existing state-of-the-art methods [227], [266] and several ANNs

baselines [26], [98], [115]. Additionally, this is achieved by utilizing merely

around 20% of the computation (in FLOPs) and 3% of the energy consumption

required by the ANNs baselines. Additionally, a large-scale dataset, SynEven-

tHPD, is constructed for the task of event-based 3D human pose tracking. It

consists of synthesized events data from multiple motion capture datasets and

consequently covers a variety of motions with a total size of 45.72 hours event

streams – more than 10 times larger than MMHPSD [266], the largest existing

event-based pose tracking dataset. This subsequent work has been published
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as [267].

1.3.3 Human Shape Reconstruction from Polarization
Cameras

RGB images usually lack geometric cues of an object’s surface, which normally

results in the ambiguity of 3D pose estimation or human shape reconstruction.

This observation inspires us to investigate a new imaging modality: polariza-

tion camera, which means we consider the problem of estimating human pose

and reconstructing human shape from a single polarization image. Polariza-

tion camera is built upon a basic physics principle: a light ray reflected from

an object is usually polarized. This polarized signal thus carries sufficient geo-

metric cues of the object’s surface, enabling more reliable inference of surface

normals [9], [231]. It is worth mentioning the biological fact that light polar-

ization could be directly perceived by some species of bees, ants, and shrimp

for purposes such as 3D navigation [42], [218].

Inspired by these physical and biological observations, Chapter 6 presents

a dedicated two-stage method, named HumanSfP, for estimating human pose

and shape using geometric cues from polarization images. The first stage,

Polar2Normal, focuses on generating accurate surface normal maps from a

single polarization image, leveraging relevant physical laws as priors. These

predicted surface normals are then used in the second stage, Polar2Shape, to

reconstruct a clothed human shape based on an initially estimated parametric

shape.

In tackling this new problem, we have created a dedicated dataset, the

Polarization Human Shape and Pose Dataset (PHSPD). It consists of ∼527K

frames along with corresponding parametric pose and shape annotations. Over-

all, there are 21 different subjects performing 31 unique actions, and ∼9.5

hours of videos are recorded in total. Empirical evaluations on a synthetic

dataset, SURREAL dataset [199], as well as our real-world dataset, PHSPD

dataset, demonstrate the effectiveness and applicability of our approach. Our

work showcases that, for estimating 3D human poses and shapes, 2D polar-

ization cameras could be a viable alternative to conventional RGB cameras.
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This work has been published as [269], [270].

1.3.4 Clothed Human Animation from Point-clouds

With the advancements in hardware technology, depth sensors have increas-

ingly become an accessible tool for capturing 3D point-clouds of objects. In

contrast to other 3D formats, such as depth maps, meshes, and voxel grids,

point-clouds can be acquired more effortlessly and provide an intuitive, effi-

cient, and general representation of 3D objects.

Leveraging the capabilities of point-clouds, Chapter 7 concentrates on

clothed human shapes, which offer a more comprehensive representation than

skeletal poses or minimally-clothed parametric shapes, capturing intricate de-

tails such as the folds and flow of clothing. These details are essential for

applications ranging from filmmaking and game development to virtual and

augmented reality. In this chapter, our research extends beyond static hu-

man shape reconstruction to focus on the complex task of animating clothed

humans with natural clothing deformations. We approach this challenge by

utilizing point-cloud sequences, which provide valuable geometric insights into

the structure of the clothing.

Specifically, clothed human modeling aims to learn clothing deformation

dynamics from a set of 3D point-clouds or meshes of clothed human bodies,

facilitating the generation of naturalistic clothing details in target motion ani-

mations. This task is inherently challenging owing to the variety of clothes and

human motions. Traditional methods typically employ either basic rigging-

and-skinning techniques [11], [114] or rely on physics-based simulations [152],

[195], which requires intensive computations and specialized expertise to cre-

ate a simulation-ready clothing mesh. In contrast, recent data-driven ap-

proaches [32], [40], [68], [83], [108], [111], [119], [121], [174], [224], [244], [256],

either using implicit or explicit representations, have yielded promising results

in this field of research.

Notably, multiple studies [111], [118], [119], [121], [244] have demonstrated

the efficacy of point-based representation of clothing shapes, attributed to the

compactness and topological flexibility of point-clouds. Despite the encourag-
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ing achievements, there remain unresolved challenges in this field of study. The

first challenge resides in the dynamics modeling of clothed humans, where the

clothing deformations are supposed to be natural and smooth, both spatially

and temporally, when a person performs various motions. However, existing

learning-based approaches [32], [111], [118], [119], [121], [174], [244] focus on

the clothing deformations associated with a single pose only, overlooking the

underlying correlation and continuity of clothing deformations across a motion

sequence. The second challenge relates to the progressive modeling of clothed

humans, a process that mirrors the iterative refinement typically seen in arti-

fact creation. Earlier works either model clothed humans in a single step [121],

[174], [244], or employ a two-step coarse-to-fine strategy [111], [119], thereby

missing the opportunity to fully exploit the benefits of progressive refinement

in modeling clothes. The third challenge lies in the diversified modeling of

clothed humans, which is in accordance with the real-world observation that

identical outfits and motions can yield varying patterns of cloth wrinkles. Ex-

isting methods [111], [119], [121], [174], [244] are mostly deterministic, thereby

limiting the range of variations in response to specific outfits and motions.

To address these challenges, we propose ClothDiffuse in Chapter 7, a

diffusion-based method that learns the dynamics of clothing deformations for

the realistic generation of clothing details in target motion animations. Our

key insight is to involve all three significant aspects in our framework: dy-

namics modeling, progressive modeling, and diversified modeling of clothed

humans.

1.4 Summary of Contributions

As new types of cameras and imaging modalities emerge, their utility remains

largely underexplored, especially in the domain of human pose estimation and

shape modeling. The unique features of these emerging technologies often

provide new perspectives and solutions in this field of study. Therefore, our

thesis delves into the realm of human pose estimation and shape modeling

from and particularly beyond RGB cameras to explore the potential of these
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emerging cameras. Specifically, our research in this thesis is structured around

three pivotal components: the exploration of new cameras, the development

of novel approaches, and the creation of large-scale multi-modality datasets

for human pose estimation and shape modeling.

The contributions of this thesis are summarized as follows:

• Chapter 3 (Skeletal Human Poses): Compared with single-person pose

estimation, multi-person pose estimation, tracking and motion forecast-

ing from RGB video snippets are usually more practical in real-world

applications, but with more challenging cases due to the intra-frame

occlusion between multiple persons. To address this, we introduce a

unified framework that employs innovative spatiotemporal deformable

attention module to encode the spatiotemporal relationships between

images, which overcomes the intra-frame occlusion problem with RGB

cameras for simultaneous implementation of three tasks in a single frame-

work.

• Chapter 4 (Parametric Human Shapes): Event cameras, inspired by

biological vision systems, present new potential for energy-efficient 3D

human pose estimation or tracking. Unlike traditional sensors that cap-

ture static images, event cameras record changes in pixel intensity, mak-

ing them well-suited for capturing motion dynamics. To address this,

we introduce a two-stage deep learning approach that estimates human

pose and shape primarily using event data, while requiring only the first

gray-scale frame instead of the entire gray-scale video. We also introduce

MMHPSD, a new dataset that is the first of its kind to be publicly avail-

able. It stands as the largest event-based dataset for 3D human pose

and shape estimation.

• Chapter 5 (Parametric Human Shapes): Our subsequent event-based

work further eliminates the need for the first gray-scale frame or the en-

tire gray-scale video as input, and proposes a dedicated end-to-end sparse

deep learning approach based on Spiking Neural Networks (SNNs) with
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a novel spiking spatiotemporal transformer, enabling low power con-

sumption for human pose tracking. Additionally, a large-scale synthetic

dataset, SynEventHPD, is constructed for the task of event-based 3D

human pose tracking. It consists of synthesized events data from multi-

ple motion capture datasets and consequently covers a variety of motions

with a total size of 45.72 hours event streams – more than 10 times larger

than MMHPSD.

• Chapter 6 (Clothed Human Shapes): Polarization cameras are known

to preserve detailed surface normal maps following the physical laws of

light polarization. Motivated by this physical fact, we propose a dedi-

cated two-stage framework that leverages surface cues from polarized im-

ages for human pose estimation and shape reconstruction. A dedicated

dataset, PHSPD, has been created. It consists of ∼527K frames along

with corresponding pose and shape annotations. Overall there are 21 dif-

ferent subjects performing 31 unique actions, and ∼9.5 hours of videos

are recorded in total. Empirical evaluations on the synthetic SURREAL

dataset [199], as well as our real-world PHSPD dataset, demonstrate the

effectiveness and applicability of our approach, showcasing that for 3D

human poses and shapes estimation, 2D polarization camera could be a

viable alternative to conventional RGB cameras.

• Chapter 7 (Clothed Human Shape Animation): Depth sensors, known

for their ability to intuitively, efficiently, and generally represent 3D ob-

jects, have emerged as a straightforward tool to capture 3D point-clouds.

Meanwhile, going beyond static human shape reconstruction, our re-

search focuses on the complex task of animating clothed humans with

natural clothing deformations, leveraging point-cloud sequences that pro-

vide valuable geometric insights into the structure of the clothing. Exist-

ing data-driven approaches often overlook three crucial aspects in clothed

human modeling: dynamics modeling, progressive modeling and diver-

sified modeling. To tackle these challenges, we introduce ClothDiffuse,

a diffusion-based method that seamlessly integrates these three crucial
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aspects into clothed human modeling.

• We perform comprehensive experiments in each project to assess the

effectiveness of both emerging camera technologies and innovative ap-

proaches. Our findings demonstrate that beyond traditional RGB cam-

eras, alternative emerging sensors like event cameras, polarization cam-

eras, and point-clouds offer promising avenues for advancements in hu-

man pose estimation and shape modeling.
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Chapter 2

Literature Review

2.1 Related Research Topics

2.1.1 Human Pose Estimation

In the past few years, 3D human pose estimation from single images, mainly

based on RGB or depth images, has been extensively studied. Many early

efforts [2], [27], [207], [259] utilize dictionary-based learning strategies to cap-

ture prior knowledge from large motion-capture datasets. Recent efforts focus

on end-to-end deep learning based methods, including CNNs [104], [150] and

Graph CNNs [22], [39] to estimate 3D human poses. In particular, a common

framework has been adopted by a number of recent works [70], [124], [155],

[196], [205], [209], [232], [252], [260], which first infer 2D poses (either 2D joint

positions or heatmaps) and then lift those poses to 3D. Self-supervised learning

[70], [209] and adversarial learning [205], [232] are also considered to exploit

the benefits of additional re-projection or adversarial constraints.

Going beyond pose estimation, the availability of parametric human shape

models, such as SMPL model [116], has fueled growing attention in single

image-based human shape estimation. SMPL is a statistical low-dimensional

representation of human shape, realized by principal component analysis of

empirical body shapes of naked and minimally dressed humans. Early ef-

forts focus on optimization-based methods to fit SMPL model to point-clouds

or annotated pose [10], [19], [47], [48]. Recent deep learning based meth-

ods [91], [147], [199] instead learn to predict SMPL parameters under various
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constraints such as 2D/3D pose, silhouette, and adversarial examples. Hu-

man body pixel-to-surface correspondence maps are also considered in [228]

for parametric shape estimation. In [99], optimization and regression are in-

tegrated to form a self-improvement loop. There are also a number of recent

efforts to exploit temporal information in inferring human poses and shapes

from videos, including temporal constraints [93], [98], dynamic cameras [239]

or event signals [227], [266]. Sensing modalities other than the classical RGB

images have also been explored for human pose estimation, including polar-

ization image [270], IMUs [202] and head-mounted devices [250].

2.1.2 Human Shape Modeling

In terms of human shape modeling, volume-based methods [172], [198], [233],

[257], [258] are popular in reconstructing detailed body shapes. They unfortu-

nately suffer from the limitation of computation scalability and lack of reliable

3D cues. The recent work, PaMIR [257], combines the parametric body model

with the free-form deep implicit function to reconstruct human shapes. Unlike

surface normal, the implicit field cannot provide explicit cues of human body

and leads to inaccurate reconstructed shapes. Saito et al. [172], [173] introduce

a pixel-aligned implicit surface function to encode detailed body surface. How-

ever, these two works are not able to handle complex poses, partly owing to

the lack of complex poses in their training set. A closely related work is [264],

which considers a hierarchical framework to incorporate robust parametric

shape estimation and flexible 3D shape deformation. It, however, employs

a network trained on additional small dataset to infer shading information,

which are inherently unreliable given the lack of ground-truth information

of surface normal, albedo and environmental lighting. Another related work

is [192], which iteratively integrates rough depth map and the estimated sur-

face normal for improved clothes details.

Clothed human modeling aims to learn clothing deformation dynamics from

a set of 3D point-clouds or meshes of clothed human body, facilitating the gen-

eration of naturalistic clothing details in target motion animations. Existing

methods can be divided into two main categories based on their implicit and

17



explicit representation of humans:

(i) Implicit representation commonly defines surfaces as a level set of scalar

implicit function. Powered by multi-layer perceptrons (MLPs), this function

learns to predict the occupancy value for any given 3D position in continuous

camera space for shape reconstruction [34], [37], [38], [130], [149]. Instead of

relying on pre-defined templates, implicit surfaces are topologically free and

are able to model diverse complex topology. This promising technique is also

widely applied in human reconstruction [49], [82], [148], [172], [173], [178], [257]

and clothes modeling [17], [31], [32], [40], [108], [132], [160], [174], [194], [213],

[224], [256]. Most of these methods [31], [32], [40], [49], [108], [132], [174], [194],

[213], [224] adapt the pipeline of reconstructing clothed human in canonical

space first and then animating with predicted skinning weights and pose-aware

clothing deformation, while some others [17], [82], [148], [160] follow the part-

based modeling of clothed humans. However, implicit human modeling is

known to require a cubic increase in both time and computation with respect

to the resolution of discretization for reconstructing explicit surfaces [34], [111],

[121], [244].

(ii) Explicit representation is another popular stream that assumes a spe-

cific mesh-based template is provided or predicted for human clothes model-

ing [16], [18], [21], [68], [83], [94], [141], [152], [221]. Although these template-

based approaches have shown their robustness and efficiency in clothes model-

ing, they are still limited to the generalization ability of various typologies and

also the requirement of registration or canonization to raw scans. Following

efforts [120], [175], [180] attempt to alleviate this limitation by using a gener-

ative model to produce template mesh of flexible topology. They still suffer

from the expressiveness of a specific template. On the contrary, point-based

representation supports both compactness and arbitrary topology. Earlier

works [1], [53], [109] generate sparse point set for 3D object reconstruction,

and following works [12], [45], [66] group point-clouds into structured patches

with each patch representing a 2D UV map, allowing dense sampling of points

on the patch to model detailed surface geometry. SCALE [118] is the first work

that successfully applies to human clothes modeling and the following effort,
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POP [121], further demonstrates the ability of a single model for arbitrary

clothes types. To address the issue of varying topology of clothes, FITE [111]

proposes to learn an implicit model to reconstruct a coarse template of clothes

and then add explicit pose-dependent deformation. A similar idea is also em-

ployed in SkiRT [119] that introduces a coarse-to-fine process. The most recent

work, CloSET [244], suggests to learn pose features on a body surface to tackle

the discontinuity of the UV map used in [118], [121].

2.1.3 Multi-Person Pose Estimation and Tracking

Multi-person pose estimation from monocular images has been extensively

investigated in the past few years. Existing methods can be divided into

three categories: bottom-up [24], [51], [52], [67], [103], [125], [158], [241], top-

down [33], [35], [36], [64], [137], [167], [197], [206], [215] and single-stage [14],

[86], [127], [145], [181], [189], [214], [217].

Bottom-up methods detect 2D joints first and estimate 2D or 3D pose with

different association approaches, such as integer linear program [158], [241] or

part affinity fields [24]. In addition, Gu et al. [67] formulate 3D pose estimation

as a Perspective-N-Point optimization problem based on detected multi-person

2D poses via [24] and shows good performance with high efficiency for 3D pose

estimation. Recently, Fabbri et al. [51] extends 2D heatmaps to 3D compressed

volume for 3D joints detection for multiple persons. There is also effort [125]

using depth map for efficient multi-person 2D pose estimation with CNNs and

knowledge distillation at multiple architecture levels. A most recent work [103]

trains a Hourglass model [142] to predict multi-person 2D keypoints heatmap

with peak regularization and employs greedy keypoint association to obtain

multi-person 2D poses.

Top-down methods first detect the person bounding box and then apply

single person pose estimation on the cropped region. A pose proposal genera-

tor is employed in [168] followed by a pose refinement regressor. RootNet [137]

infers multi-person 3D pose by detecting absolute 3D root localization first and

then estimating root-relative single-person 3D pose. Wei et al. [219] present

a view-invariant hierarchical correction network on top of an initial estimated
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single-person 3D pose to learn the 3D pose refinement under consistent views,

and then use a view-invariant discriminative network to enforce high-level

constraints over body configurations. HMOR [206] encodes interaction in-

formation of multiple persons as the ordinal relations of depths and angles

hierarchically. The recent effort [35] applies graph and temporal convolutional

neural networks for multi-person pose estimation in a video. In general, top-

down methods estimate more accurate poses than bottom-up counterparts,

but with the expense of more computation. Integrating bottom-up and top-

down is considered in [36] to complement each other. Multi-view top-down

approaches are investigated in [167], [197], where humans are detected and

integrated from multi-view sources in a 3D volume and then regressed to esti-

mate 3D poses. A most recent effort [215] proposes knowledge transfer network

to learn the 2D-3D correspondences for multi-person 3D dense pose estimation

because of insufficient and imbalanced 3D labels.

Single-stage methods are emerging in recent years for both pose estima-

tion [14], [15], [86], [127], [145], [181], [217], [254] and parametric human shape

estimation [189]. They achieve multi-person pose estimation in a single stage,

wherein the entire inference process is conducted in a single forward pass using

a unified end-to-end model. These approaches eliminate the need for person

detection as required in top-down methods and joints association typical in

bottom-up methods.

Multi-person pose tracking aims to track multi-person poses in a video.

Recently, [191] provides a survey of multiple pedestrian tracking based on the

tracking-by-detection framework. For 2D pose tracking, Girdhar et al. [64]

use top-down approaches to estimate frame-based multi-person poses and then

link predictions over time using bipartite matching. [79], [222] employ a simi-

lar top-down detection strategy to achieve multi-person pose estimation, but

rely on a flow-based similarity to perform tracking. Wang et al. [211] ex-

tend HRNet [187] with temporal convolutions and show impressive joint pose

estimation and tracking. In contrast, Raaj et al. [161] propose an efficient

bottom-up approach by extending the spatial affinity fields to spatiotemporal

affinity fields in an RNN model. For 3D pose tracking, multi-stage approaches
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are proposed in [127], [240] where per-frame multi-person 3D pose estimation

is followed by a temporal constraint optimization or fitting step. In contrast,

[52], [167] aggregate temporal information within the model to estimate the

multi-person pose trajectory. The most recent top-down works [162], [163]

achieve tracking by using 3D representation of people or predicting the future

state of the tracklet, including 3D location, appearance, and pose. Besides,

there are also efforts [251] exploring pose tracking with cross-view correspon-

dence for occlusion-aware 3D tracking.

2.1.4 Shape from Polarization (SfP)

SfP focuses on inferring an object’s shape (normally represented as surface

normal) from a polarization image, where each channel captures the polari-

metric information of the reflected light under a linear polarizer at a different

angle. There are two main issues involved in SfP: angle ambiguity and the

discrimination of specular and diffuse reflection. Previous efforts are mainly

physics-based, which rely on additional information or assumptions to eluci-

date the possible ambiguities, such as smooth object surfaces [8], coarse depth

map [89], [231] and multi-view geometric constraints [29], [41]. The first deep

learning based method is conceived in [9] that integrates physical priors (am-

biguous normal maps) with deep models for estimating normal maps. It has

shown that deep models can learn to leverage the angle ambiguity and environ-

mental noise. A follow-up work [269] advocates to first classify each pixel into

different types of ambiguous angles and then obtain a fused normal map, which

is shown to extract more explicit geometric cues from polarization images.

2.1.5 Event Camera and Its Applications

Event cameras [59], as a new bio-inspired technology of silicon retinas, differ

notably from the conventional frame-based imaging sensors, such as RGB or

Time-of-Flight cameras, including but not limited to its asynchronous and

independent address-event representation. The output of event cameras is a

sequence of “events” or “spikes”. Consider the binary polarity status p that

represents either brightness increase or decrease. Each readout event can be
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represented as a tuple (x, t, p), where the event corresponds to a change in

brightness at pixel position x (referred to as the ’address’) that surpasses a

predefined threshold at time t. Instead of densely capturing pixel value at a

fixed frame rate for frame-based cameras, event cameras record the intensity

change for each of the pixels asynchronously and independently, in case a

motion occurs. Hence the temporal resolution of event cameras is much higher

than conventional frame-based cameras. Moreover, as its output consisting of

a spatially much sparser stream of events, event cameras typically consume

considerably less energy in operation.

Event-based vision applications have witnessed a substantial increase in re-

cent years, including camera pose estimation [60], feature tracking [63], optical

flow [71], [263], multi-view stereo [166], [248], hand gesture recognition [3] and

pose estimation [170], motion deblurring [85], [188], image restoration and

super-resolution [210], image classification [57], [58], object recognition [95]

and tracking [135], [245], [246], semantic segmentation [190], events from/to

video [61], [62], depth estimation [247], among others.

As for the task of event-based human pose estimation, DHP19 [23] is per-

haps the first effort in engaging CNNs models for event camera based human

pose estimation. EventCap [227] aims to capture 3D motions from both events

and gray-scale images provided by event cameras. This work starts with a

pre-trained CNN-based 3D pose estimation module that takes a sequence of

low-frequency gray-scale images as input. The estimated poses serve as the ini-

tial state and are used to infill intermediate poses for high-frequency motion

capture, constrained by detected event trajectories from [63] and silhouette

information gathered from the events. These methods, however, require full

access to the corresponding gray-scale images as co-input. EventHPE [266]

reduces this demand by the milder need of only a single gray-scale image of

the starting pose. To do this, a dedicated CNNs module is trained to infer

optical flow by self-supervised learning, which is used alongside with the input

event stream to track 3D parametric human shapes.
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2.2 Related Model Architectures

2.2.1 Spiking Neural Networks (SNNs)

SNNs have been an emerging learning framework in recent years. Spiking

neuron, the basic element in SNNs, works by imitating the transmitting mech-

anism in mammalians’ visual cortex [59]. A spiking neuron maintains a mem-

brane potential, which could be changed only when spikes (events) are received

from its connected preceding neurons. A spike is produced when the neuronal

potential exceeds a preset threshold. Different from the neuron in traditional

artificial neural networks (ANNs), no output would be produced by spiking

neurons as long as their potentials are below spiking threshold, thus no com-

putation takes place – the root cause of the remarkable efficiency and sparsity

of SNNs when comparing to the dense and computational-heavy ANNs.

Training large-scale SNNs from scratch presents a significant challenge. To

address the non-differentiable issue of neuronal spiking function, one branch

of research focuses on converting trained ANNs to SNNs [44], [72], [106], [171],

[229] (ANN2SNN). Typically, these methods map the non-linear activation

layer in a trained ANNs to the neuron spiking layer, and then scale its thresh-

old or the weights connected to other neurons accordingly. It is worth not-

ing that only in the realm of classification tasks, excellent results have been

demonstrated by the SNNs methods. The performance is still unclear in fine-

grained regression tasks and specifically in human pose estimation. Meanwhile,

another branch of research focuses on training SNNs from scratch, often by

following the back-propagation through time (BPTT) framework and apply-

ing surrogate derivatives [107] to approximate the gradient of neuronal spiking

function. This line of works has delivered impressive performance in classifi-

cation tasks [57], [58], [107], [235], [236], [262] as well as regression tasks [71].

There have also been efforts [234], [245] in proposing mixed frameworks blend-

ing SNNs and ANNs, in order to maintain a good balance in efficiency and

performance for event-based tasks.
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2.2.2 Transformer

Transformer is originally proposed in [200] where self-attention is used and

achieves the state-of-the-art results on many sequence-based tasks. DETR [26]

and VisTR [216] are recent inspiring attempts to apply transformer in the

end-to-end object detection and instance segmentation. Besides, multi-object

tracking with Transformer has also been investigated in [129], [242]. However,

due to the high computational requirement of the dot-product attention, both

DETR and VisTR can only process low-resolution feature maps, which limit

their accuracy. Deformable attention mechanism is proposed in [265] to tackle

this issue, showing strong accuracy in detecting small objects. Transformer is

recently applied to single person pose estimation, where self-attention module

is directly applied to the positions of joints or mesh vertices [105], [110], [255],

and also multi-frame image features [204], [214]. The most recent work [181]

has also employed transformer for multi-person pose estimation, where the

query-based self-attention transformer is used to regress multi-person poses

for a single frame.

Spiking Transformer has emerged very recently as a new SNNs architecture.

To avoid confusion, it is important to clarify that the spiking transformers

presented in [245], [247] are not SNN-based transformers, but rather ANN-

based or mixed models. The two recent works [235], [262] are most related to

our proposed spiking spatiotemporal transformer. In MA-SNN [235], multi-

dimensional attention is proposed in an SNNs framework, yet this attention

is instead based on real values of membrane potentials, thus in a sense vio-

lating the efficiency design of SNNs. The most recent work, Spikformer [262],

proposes to remove softmax function to accelerate the computation of self-

attention on binary spike tensors. But a scaled dot-product is directly adopted

to compute the similarity score of binary spike vectors.

2.2.3 Diffusion Generative Models

Diffusion model is a paradigm of generative neural models based on the stochas-

tic diffusion process. Originating from Thermodynamics [184], the diffusion
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process gradually adds a small amount of Gaussian noise to a sample from the

data distribution. The reverse process is to recreate the true sample from a

Gaussian noise, where a neural model is learned to gradually denoise the sam-

ple. Finally, sampling from the learned data distribution is done by denoising

from Gaussian noise. Earlier works [75], [186] successfully apply diffusion mod-

els in image generation. Following works [46], [76], [143], [164], [169] further

scale up the generation resolution and show the superiority of diffusion models

in many generation tasks, including class and text-conditioned image genera-

tion, image super-resolution and inpainting. There are also recent attempts to

employ diffusion models in 3D representation, such as shape generation and

completion [243], 3D object reconstruction [226], text-to-3D generation [159]

and also human shape reconstruction [179].

Regarding the generative models in clothed human shape modeling, SM-

PLicit [40] proposes to learn a latent representation of body shapes and gar-

ments for the generation of clothed humans in 3D space. Similarly, gDNA [31]

learns latent codes to generate detailed 3D canonical shapes of people in a vari-

ety of garments with corresponding skinning weights. A concurrent work [179]

introduces diffusion models into the iterative stereo matching network for high-

quality human shape reconstruction.

2.3 Related Datasets

A number of human pose and shape datasets have been released in recent

years, including MPII [2], MS COCO [112] and PoseTrack [5], which pro-

vide in-the-wild RGB images and 2D pose annotations. Human3.6M [80],

MPI-INF-3DHP [126] and 3DPW [123] are three benchmark datasets with

3D annotations for human pose estimation from RGB images. There are also

human shape datasets [172], [192], [258] that mainly consist of RGB-Depth

images and the corresponding human shape annotations. However, these ex-

isting datasets are limited to RGB and/or depth images, constraining their

utility in some projects in this thesis that investigate the application of new

cameras or modalities for human pose estimation and shape modeling. We
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summarize a tally of widely-used RGB-based human pose and shape datasets

in Tab. 2.1, compared in terms of number of subjects (Sub), number of actions

(Act), multi-modality dataset or not (MM), annotated poses (Pose) and shapes

(Shape). Compared with other datasets in Tab. 2.1, our PHSPD dataset, de-

noted as a multi-modality dataset, encompasses not only RGB images but

also includes depth, polarization images and/or event streams. A few visual

examples are shown in Fig. 2.1.

Dataset Sub Act MM RGB Depth Pose Shapse
MS COCO [112] - - ✗ 330K ✗ 2D ✗

MPII [2] - - ✗ 40K ✗ 2D ✗

PoseTrack [5] - - ✗ 22K ✗ 2D ✗

MPI-3DHP [126] 8 - ✗ 1.3M ✗ 3D ✗

3DPW [123] 7 8 ✗ 51K ✗ 3D ✓

Human3.6M [80] 11 15 ✗ 3.6M 0.45M 3D ✗

PHSPD (ours) 21 31 ✓ 2.1M 2.1M 3D ✓

Table 2.1: A tally of widely-used datasets for human pose and shape estima-
tion.

Additionally, event-based datasets are crucial for data-driven approaches

to attain their satisfactory performance. This has motivated a variety of event-

based datasets released in recent years, including DvsGesture [3] for hand ges-

ture recognition, CIFAR10-DVS [102] and ES-ImageNet [113] for object clas-

sification, DSEC-Semantic [190] for semantic segmentation and EED [135] and

FE108 [246] for object tracking. Unfortunately, existing benchmark datasets [43],

[80] are mostly based on conventional RGB or depth cameras for human pose

estimation, thus are infeasible to be directly used in event-based tasks, given

the fundamental differences between event and conventional cameras. DHP19

dataset [23] is the earliest one but has limited amount of events data and lacks

pose variety. Therefore, we create our own in-house multi-modality dataset,

MMHPSD [266]. To our knowledge, MMHPSD is the largest real event-based

3D human pose and shape dataset, and is the first publicly available dataset

of such type.

Furthermore, although MMHPSD dataset provides more than 4.5 hours

event stream and 21 different types of action, it still lacks pose variety because

of in-house constrained environment. We further augment MMHPSD dataset
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Dataset R/S Sub Str
Len
(hrs)

AvgLen
(mins)

Pose

DHP19 [23] Real 17 33 0.80 1.46 ✓
EventCap [227] Real 2 6 - - ✓
MMHPSD [266] Real 15 178 4.39 1.48 ✓

EventH36M Syn 7 835 12.46 0.90 ✓
EventAMASS Syn 13 8028 23.54 0.18 ✓
EventPHSPD Syn 12 156 5.33 2.05 ✓
SynMMHPSD Syn 15 178 4.39 1.48 ✓

SynEventHPD (Total) Syn 47 9197 45.72 0.30 ✓

Table 2.2: A tally of event-based datasets for 3D human pose estimation and
tracking.

by synthesizing events data from multiple human motion capture datasets (i.e.,

Human3.6M [80], AMASS [122], PHSPD [270] and MMHPSD-RGB [266]),

and finally provide a large-scale synthetic dataset, SynEventHPD, with a rich

variety of poses for event-based human pose tracking in [267]. We present

a tally of event-based datasets for human pose estimation and tracking in

Tab. 2.2, compared in terms of real or synthetic data (R/S), number of sub-

jects (Sub), number of event streams (Str), total time length of all the event

streams in hours (Len), average time length of each stream in minutes (Av-

gLen), annotated poses (Pose). Visual examples of our datasets are provided

in Fig. 2.2.
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Figure 2.1: Exemplar multi-view figures with annotated shape and pose of our
PHSPD dataset.
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Figure 2.2: Exemplar multi-view figures with annotated shape and pose of our
MMHPSD dataset.
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Figure 2.3: Exemplar figures with annotated shape and pose of our synthetic
event-based SynEventHPD dataset.
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Chapter 3

Multi-Person 3D Pose
Estimation Tracking and
Forecasting on an RGB Video
Snippet

3.1 Introduction

Understanding multi-person 3D pose from RGB videos is a crucial research

area in computer vision. This problem primarily comprises three complex

tasks: multi-person pose estimation, tracking, and motion forecasting. These

three tasks have broad applications, including but not limited to human action

recognition, behavior analysis, pedestrian tracking, re-identification, human-

computer interaction, and video surveillance [13], [138], [185], [191]. For in-

stance, in the context of analyzing human behavior in crowded settings, multi-

person pose estimation and tracking are instrumental in generating accurate

behavioral data. Similarly, motion forecasting aids in predicting behavior and

refining future areas of interest for the system.

Prior research has generally focused on either individual tasks [14], [24],

[67], [103], [125], [191], [197], [215], [219], [270] or employed multi-stage meth-

ods that address multiple tasks independently [25], [52], [162], [167], [222].

However, these approaches often fail in complex scenarios featuring significant

occlusions, as shown in Fig. 3.1. Such limitations can adversely affect both

pose estimation and individual tracking in videos, leading to unreliable motion
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Figure 3.1: A practical yet challenging example to track multi-person pose
and motion forecasting.

forecasting due to incorrect historical data.

Three primary shortcomings contribute to these failures: 1) Single-task

methods usually neglect temporal information, which is especially evident in

single-frame-based multi-person pose estimation [24], [67], [103], [125], [215].

2) Multi-stage approaches often make sub-optimal decisions by treating the

tasks separately, without unified reasoning. For example, previous works [25],

[69], [201], [203] typically consider pose tracking and motion forecasting as

disconnected modules. 3) The existing methods do not adequately leverage

the interrelationships among the three tasks. Intuitively, accurate multi-person

pose estimation can facilitate more robust tracking. In turn, robust tracking

enriches the context for pose estimation and generates the essential historical

data needed for reliable motion prediction.

To overcome these challenges, we introduce Snipper, a unified framework

designed to concurrently estimate, track, and forecast multi-person 3D poses

across a sequence of contiguous RGB frames. Unlike traditional approaches,

Snipper performs these three tasks in a unified space, outputting 2.5D multi-

person pose trajectories along with future motion predictions from a video

snippet in a single processing stage. The framework draws inspiration from

the query-based DETR framework for object detection [26], [216], [265]. There

is also a recent effort proposing TubeDETR [230] for spatio-temporal video

grounding, which focuses on reasoning within the realms of space, time, and

language. However, Snipper distinguishes itself with a novel contribution: an
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efficient and powerful spatiotemporal deformable attention module specifically

tailored for fine-grained video understanding tasks.

In particular, our attention mechanism employs sparse spatial deformable

attention [265] to handle high-resolution, multi-scale image features, which

is crucial for better image-aligned tasks. A straightforward extension of this

mechanism to video—by regressing a space-time offset and sampling directly in

3D space—presents challenges. Specifically, interpolating in the time domain

becomes ambiguous without temporal correspondences, and the image features

at identical spatial locations can vary across frames due to object or camera

motion.

To address these issues, we propose limiting the temporal offset to pre-

defined integer frame indices and confining the spatial offset regression to those

specific frames. This approach enables the aggregation of per-frame image fea-

tures across both space and time. Unlike the self-attention mechanism used

in the work by Carion et al. [26], our technique is not only efficient but also

preserves the spatiotemporal relationships among multi-frame and multi-scale

features. This is accomplished through the deformable attention mechanism,

which aggregates spatiotemporal features. Compared to the spatial attention

described in [265], our strategy incorporates additional temporal considera-

tions. This optimized approach is particularly crucial for compensating for

information loss caused by occlusions or motion blur within a video snippet.

Further details and comparative analysis are provided in Sec. 3.2.3 and 3.3.4,

as well as in Fig. 3.11.

Leveraging our novel spatiotemporal deformable attention module, we con-

struct a deformable transformer designed for the simultaneous execution of all

three tasks: pose estimation, tracking, and motion forecasting. Specifically, an

encoder, detailed in Sec. 3.2.4, first processes the multi-frame feature volume

extracted by a CNN backbone. It employs our attention module to update

the features of each voxel by aggregating spatiotemporal information. This

enriched feature volume serves as the memory input for the transformer de-

coder, as described in Sec. 3.2.5. Multi-person pose queries then accumulate

pose trajectory features from this memory using the same attention module.
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Ultimately, these queries are used to regress and predict multi-person pose tra-

jectories in observed frames, as well as to forecast future motions (Sec. 3.2.6).

To ensure consistent tracking across an entire video, Snipper operates on over-

lapping snippets and correlates pose trajectories based on common frames

between consecutive snippets. Importantly, this approach eliminates the need

for additional appearance descriptors for tracking.

Our contributions are summarized as follows:

• We propose Snipper, a unified framework for simultaneous multi-person

3D pose estimation, tracking, and motion forecasting from a video snip-

pet. To our knowledge, the proposed framework is the first one that

jointly solves these three tasks in a single stage.

• We propose an efficient yet powerful spatiotemporal deformable attention

mechanism in the transformer to aggregate spatiotemporal information

from multi-scale and multi-frame feature volumes. Its effectiveness and

efficiency are discussed in Sec. 3.2.3 and validated in Sec. 3.3.4, and

our proposed spatiotemporal attention module is also general to other

image-aligned video understanding tasks. 1.

• We validate the proposed framework on three challenging datasets: JTA [52],

CMU-Panoptic Studio [88], and PoseTrack18 [4]. We show that a generic

Snipper model presents competitive performance on all three tasks of

pose estimation, tracking, and motion forecasting compared with spe-

cialized baselines that tackle only one or two tasks.

3.2 Method

Snipper is a unified framework that simultaneously addresses three tasks from

an RGB video snippet of T observed frames: multi-person 3D pose estimation,

tracking, and forecasting for the future Tf frames. An overview of our pipeline

is shown in Fig. 3.2. Taking a snippet of T consecutive RGB images as the in-

put, a CNN is used to extract per-frame image features, which are stacked into

1Our code is publicly available at https://github.com/JimmyZou/Snipper
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Figure 3.2: Overview of our proposed approach, Snipper.

a multi-frame feature volume. This feature volume is fed into the transformer

encoder (Sec. 3.2.4) that employs a novel spatiotemporal deformable attention

(Sec. 3.2.3) to aggregate features. Given the spatiotemporally aggregated fea-

ture volume from the encoder, the transformer decoder (Sec. 3.2.5) aggregates

pose features from it via spatiotemporal deformable attention. Those aggre-

gated pose features are used to update pose queries for N people of T observed

frames and Tf future frames. The updated queries are regressed to estimate

each person’s 3D pose tracking over T + Tf frames. We use Hungarian match

to find an optimal permutation of a fix set of predicted 3D pose trajectories to

a set of target trajectories to compute the multi-person pose losses for training

(Sec. 3.2.6).

3.2.1 Preliminary

Star pose representation. We represent the 3D human pose as P =

{J,V, o} where J = {Ji : Ji ∈ R3}NJ
i=1 is the set of joint locations, V =

{Vi : Vi ∈ [0, 1]}NJ
i=1 is the joint visibility, and o ∈ [0, 1] represents the prob-

ability of a person’s occurrence. Each individual joint position Ji is modeled

by the offset Joffset
i = {∆x,∆y,∆d} from the global root J root = {x, y, d}, i.e.,

Ji = J root + Joffset
i , where (x, y) are the 2D image location of the joint and d is

its depth to the camera center respectively.

Depth and joint offset normalization. As the absolute root depth

d depends on the camera focal length fc, we normalize the root depth by

d̃ = d/fc, similar to [35]. In addition, the magnitude of 2D joint offset (∆x,∆y)

is in pixel distance and thus depends on the depth of the person. That is, a
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person’s joint offset will become smaller if it moves far away from the camera,

which tends to make the training unstable.

We assume the camera’s intrinsic parameters are (fc, cx, cy) where fc is

the focal length and (cx, cy) is the center of image. According to the pinhole

camera model, we have x = X
d
· fc + cx and y = Y

d
· fc + cy, where (X, Y, d)

is the 3D position and (x, y) is the projected 2D position on the image. We

can avoid predicting the focal length by normalizing the depth d with fc,

i.e., d̃ = d/fc. Then for the joint offset (∆x,∆y), we have ∆x = ∆X
d

· fc and

∆y = ∆Y
d
·fc, which shows that the magnitude of the 2D offset in pixel distance

is proportional to fc/d. Therefore, we propose to normalize the joint offsets

with the normalized depth, i.e., ∆x̃ = ∆x · d̃ and ∆ỹ = ∆y · d̃. Then, (∆x̃,∆ỹ)

has the identical magnitude to the joint offset (∆X,∆Y ) in 3D space. Thus,

the magnitude of 2D normalized joint offset only depends on the pose of the

person, which is more consistent across identities.

During inference, we assume the camera’s intrinsic parameters are known

and that they have a fixed aspect ratio. Otherwise, we use a default focal

length and pad the image to the predefined aspect ratio. Finally, a 3D joint

position (X, Y, d) can be converted from the 2.5D joint representation (x, y, d̃).

3.2.2 Frame-Level Feature Extraction

Given an RGB video snippet of T frames, a CNN is used to extract per-frame

features of size H × W × C. We stack these T frame-level features through

time and obtain the multi-frame feature volume F ∈ RT×H×W×C . Note that

the multi-scale pyramid features {Fl} extracted by the CNN can be easily

applied in the subsequent Transformer Encoder and Decoder for fine-grained

spatiotemporal feature extraction. Details are illustrated in Sec. 3.2.3 and

Fig. 3.5.

3.2.3 Spatiotemporal Deformable Attention

Spatiotemporal deformable attention module is shown to produce more infor-

mative features for pose tracking from the stack of multi-frame feature volume
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F ∈ RT×H×W×C (validated in Sec. 3.3.4). Such aggregation is crucial to mit-

igate common issues of inter-frame information loss, such as self and partial

occlusion.

We summarize our proposed spatiotemporal deformable attention in Fig. 3.3.

Let q ∈ RC be the query specified at the position p = (xq, yq, tq) of the multi-

frame feature volume, where xq, yq ∈ [0, 1] are the normalized pixel spa-

tial positions and tq is the integer frame index of the query q. Then, q is

passed through two MLPs to regress 2D offsets ∆pt,k(q) and corresponding

attention weights αt,k(q) normalized by the soft-max function. t is an inte-

ger specifying the temporal frame in a pre-defined set of neighboring frames

S(tq) = {tq − 1, tq, tq + 1}, and k indexes the offsets on each temporal frame.

Note that we do not regress time offset, but only 2D spatial offsets ∆pt,k on

each frame of S(tq). We execute this process in parallel by multiple inde-

pendent heads h and form the final aggregated feature qfinal by passing the

concatenated feature from each head through a linear layer. This process is

described as

qfinal =
∑︂
h

W ′
h

[︂∑︂
t,k

αt,k(q) ·WhF
(︁
p+∆pt,k(q)

)︁]︂
, (3.1)

where Wh and W ′
h are parameters of the linear layers.

Discussion. There are several alternatives to implement spatiotemporal

attention with details displayed in Fig. 3.4:

• (a) Self-attention. Following VisTR [216], we flatten multi-frame features

to a 2D matrix of shape THW × C and applies attention to all THW

voxels. This attention mechanism is costly for high-resolution feature

maps and also breaks the local spatiotemporal relationship for better

image-aligned tasks.

• (b) Näıve spatial deformable attention [265]. We reshape the feature

volume F to the shape H × W × CT , where the channel size becomes

CT after concatenating multi-frame temporal features at the same image

position. Then the spatial deformable attention is applied on the spatial

domain H × W to aggregate spatiotemporal features. However, this
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Figure 3.3: Spatiotemporal deformable attention.

näıve extension fails to consider object or camera motions within a video

snippet. With these motions, image features at the same spatial position

across frames often change, but the temporal features are still aggregated

at fixed spatial positions.

• (c) Direct 3D sampling. This approach regresses space-time offsets and

directly samples in the 3D space T × H × W , where the interpolation

is performed in both spatial and temporal domain, i.e., t ∈ [1, T ] is a

fractional value instead of an integer frame index. However, the tempo-

ral interpolation is costly and ill-defined without known correspondences

between frames such as optical flow, which leads to defects in the aggre-

gated temporal features.

• (d) Entire snippet sampling. Another scheme is to sample on all frames

of the input snippet for the query at (xq, yq, tq), with offsets restricted

on each temporal frame in the snippet.

• (e) Neighboring frame sampling (ours). Our approach limits the sam-

pling range to be the immediate neighboring frames S(tq). Despite the

short temporal connection at each spatiotemporal deformable attention
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Figure 3.4: Discussion of different attention mechanisms.

module, the temporal information is still fully accumulated due to the

multiple layers of the attention module in the transformer encoder. Com-

pared with the approaches mentioned above, our proposed mechanism

requires less computation, but without any performance reduction. More

results and analysis are presented in Sec. 3.3.4 and Fig. 3.11 that validate

the effectiveness and efficiency of our proposed strategy.

In summary, our deformable attention mechanism surpasses the conven-

tional convolution used in CNNs in terms of flexibility for feature aggregation,

as it does not rely on a fixed receptive field like traditional convolution. In

contrast to self-attention, which processes the entire feature volume, our de-

formable attention focuses on aggregating features around the query position.

This targeted approach significantly reduces feature redundancy, especially for

elements far from the query position, enhancing the efficiency and effectiveness

of our model.

Extension to multi-scale features. Our proposed spatiotemporal de-

formable attention mechanism can be naturally applied to multi-scale multi-

frame features extracted by the CNN backbone. The process is summarized
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in Fig. 3.5. For the query vector q at the position p = (xq, yq, tq), we pass it

through two linear layers to regress the sampling offsets ∆pt,k,l and the atten-

tion weights αt,k,l for all scales in parallel, where l indexes the feature volume

scale. We use the offsets ∆pt,k,l to sample the image features at multiple scales

and linearly combine these sampled features using the weights αt,k,l. This

process is mathematically expressed as

qfinal =
∑︂
h

W ′
h

[︂∑︂
t,k,l

αt,k,l(q) ·WhF
l
(︁
p+∆pt,k,l(q)

)︁]︂
, (3.2)

where Wh and W ′
h are parameters of the linear layers.

Sampling at the higher scale focuses more on local features with a relatively

shorter field of perception, while at the lower scale, it obtains more global

features with a relatively broader field of perception. Unlike self-attention,

which is costly when attending to the feature volume globally and is unable

to extend to multi-scale features, our spatiotemporal deformable attention

is efficient as it sparsely samples the image feature and approximates global

attention by repeating sparse sampling through several stages.
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Figure 3.6: Architecture of transformer encoder and decoder with spatiotem-
poral deformable attention module.

3.2.4 Spatiotemporal Transformer Encoder

The goal of the transformer encoder is to generate spatiotemporally aggregated

feature volume from the CNN-extracted multi-frame features. Fig. 3.6 (a) de-

scribes our transformer encoder with single layer of attention. In the encoder,

for the voxel at position (x, y, t) of multi-frame feature volume F, its voxel

feature acts as the query in the attention module to aggregate spatiotempo-

ral features from the feature volume. This process covers every voxel in the

volume to create a spatiotemporally aggregated feature volume.

The encoder consists of multiple layers of the attention module, where the

refined feature volume is used as input to the next layer to iteratively aggre-

gate spatiotemporal features. In each layer, all the voxels in all-scale feature

volumes act as the query to aggregate multi-scale spatiotemporal features.

The updated feature volumes are used as input to the next layer of attention

module iteratively. The process is summarized in Fig. 3.7.

Spatiotemporal positional encoding. The positional encoding of the

pixel location is essential to the transformer attention mechanism. Our encod-

ing scheme follows Wang et al. [216] for a video snippet. Each location (x, y, t)

is independently encoded using C/3 sine and cosine functions with different

frequencies, as in Vaswani et al. [200], to generate encodings. These encodings

are concatenated to form the final C channel positional encoding, which is

then added to the feature volume F and fed into the transformer encoder.

Joint heatmap supervision. Pose estimation is often better aligned with
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the input image when derived from the joint heatmap or body part segmenta-

tion. [198]. Inspired by Habibie et al. [70], we enforce the first NJ channels of

each temporal slice in the volume to be the multi-person joints heatmap, de-

noted by Ht. Empirically, we find that this intermediate supervision improves

3D pose accuracy by 2.9% of 3D-PCK.
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Figure 3.7: Multi-layer transformer encoder.

3.2.5 Spatiotemporal Transformer Decoder

A person pose query q ∈ RC in the decoder is a feature vector or embedding

corresponding to a single person’s pose at a specific time. Given a fixed number

of N(T +Tf ) learnable person pose queries, the decoder updates these queries

by accumulating pose features from the spatiotemporally aggregated feature
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volume F. These pose queries are used to regress N people’s 3D pose trajec-

tories in a single shot. Each person’s trajectory is composed of T observed

poses and Tf future poses.

Temporal positional encoding. Since the pose queries of each person

are agnostic about the chronological order and need to predict a pose tra-

jectory, we add T + Tf learnable temporal positional encoding to each query

to make it aware of its order before feeding to the transformer decoder. We

empirically observe that this helps in estimating a more accurate 3D pose

trajectory.

Pose querying. The process is illustrated in Fig. 3.6 (b). In the decoder,

a learnable person pose query qt ∈ RC at time t first regresses a reference

position (x, y, d), and then conducts spatiotemporal deformable attention at

the position (x, y, t) of the spatiotemporally aggregated feature volume to ag-

gregate useful pose features. The updated person pose query passes through

three MLPs to predict the refinement over reference position (∆x,∆y,∆d),

joint offsets Joffsets with joint visibility V, and the person occurrence proba-

bility o at time t. The refined reference position is regarded as person root

joint and together with joint offsets and occurrence probability, the person’s

3D pose Pt at time t can be constructed.

Similarly, the decoder stacks multiple layers of the attention module to

iteratively update the pose query. The process is illustrated in Fig. 3.8. In each

attention layer, these pose queries accumulate pose features and reconstruct

3D poses iteratively. In the first layer, assuming a person pose query at time

t is q0t , we use it to regress a reference position (x1, y1, d1) and feed it into

the attention module as the query to aggregate pose features at the sampling

position (x1, y1, t) in multi-scale feature volumes. The output is the updated

person pose query q1t for the first layer. It is regressed to predict the joint

offsets and occurrence probability to construct 3D pose P1
t in the first layer, as

well as position refinement (∆x1,∆y1,∆d1, ) to update the reference position

for the next layer. Generally, for the n-th layer, the attention module takes

the updated person pose query from the last layer qn−1
t , and aggregates pose

features at the position (xn, y,n dn) = (xn−1 + ∆xn−1, yn−1 + ∆yn−1, dn−1 +
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∆dn−1). The updated pose query for the n-th layer is regressed to construct

the 3D pose Pn
t in the n-th layer.

person pose 

query at time t

reference

position (x, y, d) 

at time t

Linear

output: updated 

person pose query

MLP

reference position 

refinement

person root joint 

joint 

offsets

person 

occurrence

MLP MLP

Multi-scale

Spatiotemporal 

Deformable 

Attention

construct 3D pose 

(star pose representation)

in Layer 1

p
o

si
ti

o
n

 (
x

, 
y

, 
t)

 

Layer 1

Layer n

reference

position (x, y, d) 

at time t

output: updated 

person pose query

MLP

reference position 

refinement

person root joint 

joint 

offsets

person 

occurrence

MLP MLP

Multi-scale

Spatiotemporal 

Deformable 

Attention

construct 3D pose 

(star pose representation)

in Layer n

p
o

si
ti

o
n

 (
x

, 
y

, 
t)

 

update

multi-scale

feature volume from 

the encoder

multi-scale

feature volume from 

the encoder

Figure 3.8: Multi-layer transformer decoder.

3.2.6 Trajectory Matching Loss

Snipper predicts a fixed number of N people’s trajectories within the snippet

in a single shot, where each trajectory can be represented as Γi = {P(i)
t }T+Tf

t=1 .

To supervise Snipper, we use Hungarian algorithm [100] to find the optimal

matches between the predicted and target pose trajectories, and compute the

pose trajectory loss for backpropagation.

Hungarian matching cost. Let Γ = {Γi}Ni=1 and Γ̂ = {Γ̂i}Mi=1 be the

sets of predicted and target pose trajectories, respectively. We use Hungarian
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algorithm to find an optimal permutation σ̂ of Γ with the lowest bipartite

matching cost,

σ̂ = argmin
σ

M∑︂
i=1

Locc(Γσi , Γ̂i) + Ltraj(Γσi , Γ̂i) + Lvis(Γσi , Γ̂i), (3.3)

where Locc(Γσi
, Γ̂i) is the negative average probability of occurrence,

Locc(Γσi , Γ̂i) = −
∑︁

t 1(ô
(i)
t ̸= ∅) · o(σi)

t∑︁
t 1(ô

(i)
t ̸= ∅)

, (3.4)

where ô
(i)
t ̸= ∅ means the i-th target person occurs at time t, Ltraj(Γσi

, Γ̂i)

measures the average L1 distance between the predicted and visible target

pose trajectory,

Ltraj(Γσi , Γ̂i) =

∑︁
k

∑︁
t ∥V̂

(i)
k,t · (J

(σi)
k,t − Ĵ

(i)
k,t)∥1∑︁

k

∑︁
t V̂

(i)
k,t

, (3.5)

and Lvis(Γσi
, Γ̂i) is the average L2 distance between the predicted and target

joint visibility,

Lvis(Γσi , Γ̂i) =

∑︁
k

∑︁
t ∥V

(σi)
k,t − V̂

(i)
k,t∥22

Nj(T + Tf )
. (3.6)

In the above cost definition, we simplify the notations with
∑︁

t as the itera-

tion over all the time steps {1, . . . , T + Tf}, and
∑︁

k as the iteration over all

the joints {1, . . . , NJ}. We follow Carion et al. [26] and adopt the detection

probability instead of the log-probabilities in Locc(Γσi
, Γ̂i). We have observed

improved matching behavior between the predicted and target pose trajecto-

ries, especially in the earlier epochs, with this strategy.

Training loss. Given the optimal permutation σ̂, the matched predic-

tions are used to compute both person’s occurrence and 3D pose losses. The

remaining unmatched predictions are only used to compute person occurrence

loss. We define the total training loss as

Ltrain =

M∑︂
i=1

(︂
L′
occ(Γσ̂i

, Γ̂i) + Ltraj(Γσ̂i
, Γ̂i) + Lvis(Γσ̂i

, Γ̂i)

+ Loffset(Γσ̂i
, Γ̂i) + Lsmooth(Γσ̂i

, Γ̂i)
)︂
+ Lheatmap(H, Ĥ),

(3.7)

where L′
occ is the negative log-likelihood for person occurrence prediction,

L′
occ(Γσ̂i

, Γ̂i) = −
∑︂
t

1(ô
(i)
t ̸= ∅) · log o

(σ̂i)
t . (3.8)
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Ltraj(Γσ̂i
, Γ̂i) and Lvis(Γσ̂i

, Γ̂i) are defined in Eq. (3.5) and (3.6) with the per-

mutation replaced with the optimal one σ̂i for the computation of training

loss.

For the following losses, we drop the superscript σ̂i and i from Joffset and

Ĵ
offset

for simplicity. Loffset(Γσ̂i
, Γ̂i) measures the average L1 distance between

the predicted and target visible joint offsets for the supervision of a single

person’s pose,

Loffset(Γσ̂i
, Γ̂i) =

∑︁
k

∑︁
t ∥V̂ k,t · (Joffset

k,t − Ĵ
offset
k,t )∥1∑︁

k

∑︁
t V̂ k,t

, (3.9)

Lsmooth(Γσ̂i
, Γ̂i) is the average L2 smoothness of predicted joint offsets between

frames within a video snippet,

Lsmooth(Γσ̂i
, Γ̂i) =

∑︁
k

∑︁
t ∥Joffset

k,t − Joffset
k,t−1∥22

Nj(T + Tf − 1)
, (3.10)

and Lheatmap is the average L2 distance of joints heatmaps,

Lheatmap =
1

T

∑︂
t

∥Ht − Ĥt∥22, (3.11)

where the joints heatmaps are produced by the transformer encoder as is

described in Sec. 3.2.4.

Note that although Eq. (3.5) already captures Eq. (3.9) to some extents,

it couples the root and the offsets, thus potentially impeding learning. We

empirically observe that adding Eq. (3.9) leads to faster convergence. As

the camera motion at each frame is unknown and our predicted root joint

is relative to the camera coordinate, Lsmooth factors out the root motion and

ensures smooth joints motion.

We apply intermediate pose supervision by computing the losses in Eq. (3.7),

except for the heatmap loss, for each layer of the decoder to guide the learning.

Additionally, we normalize these losses by the number of target trajectories

within a batch to maintain approximate consistency in magnitude across dif-

ferent batches.
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3.3 Experiments

We evaluate our approach on three datasets: JTA [52], CMU-Panoptic [88]

and Posetrack2018 [4].

Evaluation Metrics. Our method involves three tasks, multi-person pose

estimation, tracking and motion forecasting. For 3D pose estimation, Mean

Per Joint Position Error (MPJPE) is used to evaluate the 3D pose accuracy

in terms of millimeters, which is defined as

MPJPE =

∑︁
k

∑︁
t V̂

(i)
k,t · ∥J

(σi)
k,t − Ĵ

(i)
k,t∥2∑︁

k

∑︁
t V̂

(i)
k,t

, (3.12)

where σi is defined in Eq. (3.3). MPJPErel refers to the MPJPE calculated

after aligning the root joint Jroot, defined as

MPJPErel =

∑︁
k

∑︁
t V̂

(i)
k,t · ∥(J

(σi)
k,t − J

(σi)
root,t)− (Ĵ

(i)
k,t − Ĵ

(i)
root,t)∥2∑︁

k

∑︁
t V̂

(i)
k,t

. (3.13)

To compare with [14], we report the Percentage of Correct 3D Keypoints

(3D-PCK), where a joint is considered as correct if its distance from the corre-

sponding target joint is less than 150 millimeters. Formally, 3D-PCK is defined

as

3D-PCK =

∑︁
k

∑︁
t V̂

(i)
k,t · 1(∥(J

(σi)
k,t − Ĵ

(i)
k,t)∥2 < 150mm)∑︁

k

∑︁
t V̂

(i)
k,t

, (3.14)

where 1(·) represents the indicator function, outputting 1 if the condition

within the function is met, and 0 otherwise. To compare with [36], [51] on

JTA dataset, we also report F1 @thr ∈ {0.4, 0.8, 1.2} meters, where a joint is

considered as true positive if its distance from the corresponding target joint

is less than thr. Formally, F1 is defined as

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

,

Precision =

∑︁
k

∑︁
t 1(V

(σi)
k,t > 0.8) · 1(∥(J (σi)

k,t − Ĵ
(i)
k,t)∥2 < thr)∑︁

k

∑︁
t 1(V

(σi)
k,t > 0.8)

,

Recall =

∑︁
k

∑︁
t V̂

(i)
k,t · 1(∥(J

(σi)
k,t − Ĵ

(i)
k,t)∥2 < thr)∑︁

k

∑︁
t V̂

(i)
k,t

.

(3.15)
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Note that the total number of predicted joint is based the probability of visibil-

ity V
(σi)
k,t , where we use a threshold of 0.8 to determine whether a joint is visible

or not, represented as 1(V
(σi)
k,t > 0.8). In this context, Precision denotes the

percentage of true positive predictions among all the visible predicted joints,

while Recall represents the percentage of true positive predictions among all

the visible target joints. To compare with [24], [52], [79], [161], [211], [238], we

also report the AP defined in [4] on JTA and Posetrack datasets. Specifically,

we first define the 2D or 3D keypoint/joint similarity (OKS) as

OKSk,t = 1(∥J (σi)
k,t − Ĵ

(i)
k,t∥2 < 0.5 ∗ s(i)head), (3.16)

where s
(i)
head is the size of head for the person i. Then we have the OKS for

the predicted joint J
(σi)
k,t along with its visibility score V

(σi)
k,t as the confidence

of prediction. Next, assume there are m joints in total for one video in the

evaluation set. We rank all the predicted joints in descending order based on

their visibility scores, and get the corresponding ordered OKS as {OKSrank
j }mj=1.

Then we have the Average Precision defined as

AP =
1

m

m∑︂
n=1

∑︁n
j=1OKSrankj

n
. (3.17)

For tracking, we follow [4], [167] to report MOTA metrics defined either on

2D or 3D keypoint/joint. Specifically, we assume frame t has mk,t visible

target joints k with corresponding tracking ID and nk,t visible predicted joints

k. According to Eq. (3.16), we have its similarity between the target and

matched predicted joint, denoted as {OKS
(i)
k,t}

mk,t

i=1 . Then, for joint k, we can

define the False Negative (FN) as the number of missing detected target joints

and False Positive (FP) as the number of incorrectly detected joints, which

are formulated as

FNk,t = mt −
mt∑︂
i

OKS
(i)
k,t,

FPk,t = mt −
mt∑︂
i

OKS
(i)
k,t,

MOTAk = 1−
∑︁

t FNk,t + FPk,t + IDSk,t∑︁
tmt

,

(3.18)

where IDS refers to the number of times a tracking ID switches between con-

secutive frames t − 1 and t. In other words, a target joint that has the same
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Method
Pose Estimation Tracking

AP F1@0.4m F1@0.8m F1@1.2m 3D-PCK MOTA
OpenPose(2019) [24] BU 50.1 - - - - -
THOPA(2019) [52] BU 59.3 - - - - 59.3
LoCOn(2020) [51] BU - 50.8 64.8 70.4 - -

PandaNet(2020) [14] SS - - - - 83.2 -
Cheng et al.(2021) [36] BU+TD - 57.2 68.5 72.9 - -

Ours (t=4+1) SS 66.5 56.2 67.9 73.1 83.8 -
Ours (t=4+2) SS 64.5 53.2 65.9 71.2 82.8 -
Ours (T=1) SS 65.3 59.7 70.7 75.7 83.4 61.4
Ours (T=4) SS 70.5 60.3 71.5 76.4 85.7 63.2

Table 3.1: Quantitative results of 3D pose tracking on JTA dataset.

tracking ID in frames t − 1 and t is matched with a predicted joint that has

a different tracking ID. Finally, the MOTA is calculated by averaging over all

joints. For motion forecasting, we report MPJPErel for 3D pose estimation

and 3D path error of root joint, following [25], in Tab. 3.2.

Implementation Details. For feature extraction, we employ ResNet50

as the CNN backbone to create multi-scale features from each image. These

features are then chronologically stacked into a feature volume denoted by Fl,

where l = 3, 4, 5 represents the index of the convolution stage of the respective

feature map. A 1×1 convolution transforms these multi-scale feature volumes

to have a consistent channel size of C = 384.

Within the Snipper framework, we utilize 6 transformer encoder and de-

coder layers. Each layer is equipped with 8 heads in the deformable attention

module, which is centered on the frame. All heads are initialized with the

same attention weights, and their initial offsets are uniformly distributed in

angular directions, ranging from 0 to 360 degrees.

Snipper is trained on 8 V100 GPUs with a batch size of 16. We employ

multiple datasets: JTA [52] at 6FPS, CMU-Panoptic [88] at 3FPS, and Pose-

track2018 [4] at 7.5 FPS. Additionally, we incorporate the COCO dataset by

applying a 2D transformation to create a video snippet. Across all datasets,

we adhere to a 14-joint format, as specified in MPII [6].

Ours (T=1) and Ours (T=4) denote the evaluation of model trained on a

snippet of 1 and 4 frames. To ensure a fair comparison, we train and test our

model exclusively on the corresponding dataset, in line with previous studies.
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To achieve multi-person tracking over the whole video, for two consecutive

snippets (T=4) consisting of frames {t, ..., t + 3} and {t + 3, ..., t + 6}, the

association of tracking ID is based on the common frame t+3 with the nearest

3D pose matching measured in Euclidean distance. The process is shown in

Fig. 3.10. For snippet (T=1), whole-video tracking is achieved by Hungarian

matching on poses of two consecutive frames t and t+1. For motion forecasting,

Tf=2 is used based on T=4 observed frames. Ours (t=4+1) and Ours (t=4+2)

denote the evaluation on predicted pose at the 1st and 2nd future frame. The

average inference time for a single snippet of 1 and 4 frames on the JTA dataset

is 76ms and 266ms, respectively, on a single V100 GPU. The models have 40M

and 43M parameters, respectively.

3.3.1 JTA Evaluation

For the JTA dataset, we adjust the input image resolution to 540 × 960 and

downsample the video to 6 FPS. As no prior work has concurrently evalu-

ated all three tasks on this dataset, we present a comprehensive assessment

in Tab. 3.1. Here, we compare our method with state-of-the-art approaches

for multi-person 3D pose estimation, tracking, and motion forecasting. For

pose estimation, our method outperforms the single-stage PanadaNet [14],

registering improvements of 0.2% and 2.5% in 3D-PCK for Ours (T=1) and

Ours (T=4), respectively. In comparison with [51] and [36], Ours (T=4) demon-

strates an F1@0.4m increase of around 10% and 3%, respectively. For tracking

accuracy, Ours (T=4) achieves a roughly 4% improvement in MOTA compared

to THOPA [52]. As for motion forecasting, our single-stage architecture com-

petes favorably against existing methods like [24], [33], [52]. Specifically, it

outperforms them in predicting future motion for the next two frames, evi-

denced by F1@0.4m and 3D-PCK scores of 66.5 and 83.8, respectively.

Tab. 3.2 compares our framework with HMP [25], the only other work that

forecasts 3D poses from RGB images. ”No forecasting” means to keep the

last observed pose for evaluation without motion prediction. For fair com-

parison, we retrain HMP [25] to take only 4 frames as input and forecast the

next 2 frames. The evaluation is done for the deterministic mode of HMP. We
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Method 3D Path Error (mm) MPJPErel (mm)
Forecasting Time 166ms 333ms 166ms 333ms

No forecasting 353.5 409.1 123.5 139.1
HMP1 [25] 90.3 112.6 35.4 39.5
HMP2 [25] 94.5 121.8 48.5 61.4

HMP (Hourglass [142]) 95.2 123.3 46.8 60.6
Ours 92.3 117.7 37.9 43.0

Table 3.2: Quantitative results of motion forecasting on JTA dataset.

use the ground truth history 2D pose in HMP1 but added Gaussian noise of

N (0, 3) pixels to the ground truth history 2D pose for HMP2. HMP (Hour-

glass), means HMP is trained with 2D poses estimated by Hourglass [142].

Our method jointly estimates the poses in the observed frames and forecasts

the future motion, which shows comparable accuracy with noise-free HMP

but noticeably outperforms it when adding noise to the history pose or using

the estimated poses. This highlights the advantages of jointly solving pose

estimation, tracking, and forecasting within our framework. The performance

gains we observe are primarily attributable to our effective spatiotemporal

deformable attention module.

3.3.2 CMU-Panoptic Evaluation

For multi-person pose estimation or tracking, there are mainly 2 data split

protocols used in prior works [14], [167]. Protocol 1 follows [167], where 3 views

HD cameras (3, 13, 23) and all the haggling videos of version 1.2 are used. The

training and testing video split follows [87], [167], and the evaluation metrics

follow [167], [197]. Protocol 2 follows [14], [51], where 4 scenarios (Haggling,

Mafia, Ultimatum, Pizza) are selected. The testing set is composed of HD

videos of camera 16 and 30, and the training set includes videos of the other

28 cameras. The evaluation metrics follow [14], [51]. Since this dataset’s

motion speed is slower than that of the JTA dataset, we downsample it to

3 FPS to minimize redundancy during training and use a 540 × 960 image

resolution. We also provide test results of 6 FPS with the model trained on 3

FPS, denoted by Ours (T=4, 6 FPS).

The results of protocol 1 are shown in Tab. 3.3. Our method outper-
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Method Backbone MPJPE MPJPErel MOTA
VoxelPose(2020) [197] TD ResNet50 66.9 51.1 -
TesseTrack(2021) [167] TD HRNet 18.9 - 76.0
VoxelTrack(2022) [251] TD DLA-34 66.4 - -

Ours (t=4+1) SS ResNet50 49.0 40.8 -
Ours (t=4+2) SS ResNet50 50.7 41.3 -

Ours (T=4, 6 FPS) SS ResNet50 45.1 37.3 80.9
Ours (T=1) SS ResNet50 48.4 37.5 78.1
Ours (T=4) SS ResNet50 44.3 37.1 81.7

Table 3.3: Quantitative results on CMU-Panoptic dataset in protocol 1.

forms VoxelPose [197] by 22.6mm (+33%) on MPJPE and 14mm (+27%)

on relative MPJPE. As for its following work, VoxelTrack [251], we also ex-

ceeds 22.1mm on MPJPE. Compared with TesseTrack [167], Ours (T=4) shows

higher pose tracking accuracy (81.7 vs 76.0 of MOTA), but lower accuracy

on MPJPE, which might be the reason that TesseTrack uses HRNet as the

backbone (around 100M parameters) while our method uses ResNet50 (only

43M parameters).

Method
MPJPE

F1 MOTA
Hag. Maf. Ult. Piz. Avg.

MubyNet(2018) [241] BU 72.4 78.8 66.8 94.3 72.1 - -
LoCO(2020) [51] BU 45 95 58 79 69 89.2 -

PandaNet(2020) [14] SS 40.6 37.6 31.3 55.8 42.7 - -
Benzine et al.(2021) [15] SS 70.1 66.6 55.6 78.4 68.5 - -

Jin et al.(2022) [86] SS 63.7 58.5 52.3 69.1 60.9 - -
Wang et al.(2022) [217] SS 53.3 51.2 49.1 61.5 53.8 - -

Ours (t=4+1) SS 41.4 38.8 41.6 44.9 40.3 88.7 -
Ours (t=4+2) SS 43.0 40.9 42.9 47.4 42.4 85.5 -

Ours (T=4, 6 FPS) SS 37.3 37.1 39.0 42.6 38.2 90.0 93.0
Ours (T=1) SS 37.6 38.5 39.7 45.0 39.4 89.4 92.9
Ours (T=4) SS 36.8 36.9 38.6 42.5 37.9 90.1 93.4

Table 3.4: Quantitative results on CMU-Panoptic dataset in protocol 2.

For protocol 2, we show comparisons with six recent works [14], [15], [51],

[86], [217], [241] in Tab. 3.3.2. Snipper outperforms in F1 scores and MPJPE

across all six sequences, with the exception of the Ultimatum sequence, where

PandaNet [14] achieves 7.3mm lower than ours. For tracking, Snipper achieves

over 90% in MOTA. For motion prediction, ours (t=T+1) and ours (t=T+2) in

both protocols 1 and 2 yields competitive results on MPJPE, only about 3

and 5mm worse than ours (T=4) with observed motion (see Tab. 3.3.2).
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Method Head Sho Elb Wri Hip Kne Ank Avg
DetTrack(2020) [211] TD 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

PT CPN++(2018) [238] TD 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9
TML++(2019) [79] BU - - - - - - - 74.6
STAF(2019) [161] BU - - - 64.7 - - 62.0 70.4

Ours (T=1) SS 86.5 85.6 71.5 67.9 78.1 72.0 62.6 74.9
Ours (T=4) SS 86.7 85.9 71.6 68.6 78.3 72.5 63.6 75.3

Table 3.5: Quantitative results (AP) of pose estimation on Posetrack2018 val
set.

Method Head Sho Elb Wri Hip Kne Ank Avg
DetTrack(2020) [211] TD 74.2 76.4 71.2 64.1 64.5 65.8 61.9 68.7

PT CPN++(2018) [238] TD 68.8 73.5 65.6 61.2 54.9 64.6 56.7 64.0
Rajasegaran et al.(2021) [162] TD - - - - - - - 55.8
Rajasegaran et al.(2022) [163] TD - - - - - - - 58.9

TML++(2019) [79] BU 76.0 76.9 66.1 56.4 65.1 61.6 52.4 65.7
STAF(2019) [161] BU - - - - - - - 60.9

Ours (T=1) SS 82.0 82.0 58.8 53.8 72.3 61.1 40.2 64.2
Ours (T=4) SS 82.1 82.3 59.0 53.7 72.7 61.7 41.7 64.7

Table 3.6: Quantitative results (MOTA) of tracking on Posetrack2018 val set.

3.3.3 Posetrack2018 Evaluation

We use Posetrack2018 [4] to validate that our method is flexible to 2D pose

tracking task by simply skipping joint depth prediction. Since the provided

annotations of PoseTrack2018 dataset are in 7.5 FPS, we downsample the in-

put video to 7.5 FPS accordingly in both training and testing. We report our

results on the validation set following prior works [79], [161], [211]. Tab. 3.5

and 3.6 present the results of Snipper on 2D pose estimation (AP) and pose

tracking (MOTA). When comparing with bottom-up approaches, our method

exceeds STAF [161] for about 4% in AP and MOTA, and also shows compet-

itive results with TML++ [79]. For the most recent top-down methods [211],

our method is around 6% AP and 4% MOTA worse, which could attribute

to the fact that our method jointly performs multi-person detection and pose

tracking, while [211] relies on a specialized person detector to obtain the multi-

person detection. When comparing with the most recent works [162], [163],

our method still achieves around 8.9% and 5.8% MOTA better, which is largely

credited to the inclusion of pose estimation that helps robust tracking.
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Figure 3.9: Qualitative results on JTA, CMU Panoptic and Posetrack2018
datasets.

3.3.4 Ablation Study

We present several key ablation studies (discussed in Sec. 3.2.3) on JTA dataset

to highlight the effectiveness and efficiency of our proposed spatiotemporal

deformable attention and the correlation between pose estimation and tracking

in Tab. 3.7. The comparison of five attention strategies in terms of training

time vs. performance is shown in Fig. 3.11 to illustrate the effectiveness and

efficiency of our proposed attention module.

3D Pose Estimation Tracking
Method

AP F1@0.4m F1@0.8m F1@1.2m 3D-PCK MOTA

Self attention 53.2 42.0 55.0 62.4 71.0 49.9
Spatial deform. att. 69.0 53.8 69.3 75.3 84.4 62.3

Direct 3D sampl. 62.8 54.3 65.0 71.6 83.2 55.9
Entire snippet 71.2 59.3 70.3 76.2 85.0 63.4

Ours (single scale) 54.5 43.1 56.8 64.1 73.4 50.2
Ours (2D bbx tracking) 66.5 58.1 69.0 71.8 81.9 54.6
Ours (2D pose tracking) 67.1 59.5 69.3 73.4 83.3 55.9
Ours (w/o smooth loss) 69.1 59.7 70.7 75.9 86.1 62.4
Ours (w/o temp. enc.) 67.3 56.5 68.3 73.7 84.9 55.0
Ours (trajectory query) 69.3 58.6 71.1 76.3 85.0 62.9
Ours (w/o offset norm.) 69.1 57.1 70.8 75.2 78.5 62.4
Ours (encoder layers 4) 67.1 58.0 69.3 74.4 85.3 60.6
Ours (encoder layers 2) 61.8 52.2 63.6 69.1 81.7 53.4

Ours (w/o heatmap) 68.8 57.4 70.1 74.8 82.6 61.6
Ours (1 FPS) 68.5 58.8 69.1 73.4 84.0 62.1
Ours (30 FPS) 69.2 59.2 70.5 75.2 84.2 62.7

Ours 70.5 60.3 71.5 76.4 85.7 63.2

Table 3.7: Quantitative results of ablation study on JTA dataset.
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Figure 3.10: Association between two consecutive snippets.
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Figure 3.11: Comparison of five attention strategies in terms of training time
v.s. performance (3D-PCK).
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Self-attention [216]. Our method outperforms self-attention (more than

20% in all metrics), which can be attributed to two main factors: 1) destruc-

tion of spatiotemporal local context within the multi-frame features and 2)

prohibitive compute for high-resolution multi-scale image features needed to

estimate pose of small people.

Näıve spatial deformable attention [265]. This strategy performs

slightly worse than ours, especially in accurate pose estimation (53.8 vs 60.3

of F1@0.4m) as it does not account for scene, camera, or object motions over

time, where the temporal features at the same image position are not corre-

sponding.

Direct 3D sampling. This strategy also outperforms self-attention, show-

ing that deformable attention in 3D space is an essential technique to encode

spatiotemporal information from multi-frame features. However, it is still

worse than ours by a large margin, mainly because the interpolation in tem-

poral domain is ill-defined without known correspondences between frames

such as optical flow, leading to the aggregated features incorrect in time.

Entire snippet sampling. Our mechanism requires less computation

cost and takes only 50% training time of the model with attention over the

entire snippet, but gives similar performance, which showcases the efficiency

of our approach.

Ours (2D pose tracking) and Ours (bbx tracking) denote that the

association between snippets is based on 2D pose or 2D bounding box instead

of 3D pose, which reduces 7.3% on MOTA and 2% on 3D-PCK for 2D pose and

8.6% and 3.4% for 2D bounding box. Compared to 2D pose, 3D pose alleviates

the issues of occlusion between people on an image since depth information

is considered, which demonstrates that effective pose estimation facilitates

tracking.

Ours (w/o smooth loss) denotes the model trained without joint smooth-

ness loss Lsmooth in Eq. 3.7 for a snippet of 4 frames as the input. The pose

scores are lower than our full model, illustrating that contextual information

for tracking also helps improve pose estimation. However, this model without

the smoothness loss still performs better than our model but with 1-frame
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input, indicating the effectiveness of the spatiotemporal attention model.

Ours (1 FPS) and Ours (30 FPS) denote the model trained with video

snippets at 1 FPS and 30 FPS respectively. The pose tracking performances

are slightly worse than using 6 FPS, which can be the factor that very high

frame rate introduces too much redundancy and easily results in overfitting

during training, while very low frame rate introduces too much discrepancy

and results in missing clues for tracking and forecasting.

No temporal encoding is proposed to make the pose queries aware of

the chronological order within a trajectory. Without temporal encoding, the

pose tracking accuracy decreases by over 8% on MOTA, which may attribute

to more frequent person ID switches without trajectory temporal encoding.

Trajectory query. In Snipper, there are N(T + Tf ) queries with each

query focusing on the pose of each queried person at each time. To illustrate

the effectiveness of N(T +Tf ) queries strategy, we compare it with the strategy

of N queries where each query focuses on the trajectory of each queried person.

We can see from Tab. 3.7 that N queries strategy produces worse accuracy of

pose tracking (69.3 vs. 70.5 for AP and 62.9 vs. 63.2 for MOTA) since there

is bottle-neck between the dimension of query embedding (each embedding is

of size 384) and pose trajectory (each T = 4 trajectory is of size 240 with 15

3D joints and visibility), especially for large T .

W/o offsets normalization. For 3D pose estimation, we propose to

normalize 2D joint offsets by the depth to overcome the issue of scale on 2D

image. The accuracy reduction, especially the 3D-PCK (-7.2%), illustrates the

effectiveness of our proposed normalization strategy.

Number of layers of encoder. The transformer encoder is the key com-

ponent to encode spatiotemporal features of the input snippet. The number

of layers in the encoder is able to illustrate the effectiveness of spatiotemporal

deformable attention to encode these features, as is shown in Tab. 3.7.

Heatmap supervision. This corresponds to supervising the first NJ

channels of each temporal slice in the volume to be the multi-person joints’

heatmap. As can be seen in Tab. 3.7, this intermediate supervision improves

the 3D pose accuracy (2.9% of 3D-PCK).
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Figure 3.12: Visualization of deformable attention in the transformer decoder
and heatmaps of root joint.

3.3.5 Discussion

Correlations among three tasks. Pose estimation and tracking are cor-

related with each other. Accurate 3D poses facilitate tracking, while robust

tracking provides informative temporal clues for pose estimation within the

snippet. This is validated by consistently better pose estimation and tracking

performance of Ours (T=4) than Ours (T=1) or multi-stage methods [51], [163],

[197], [206] on the three datasets in Tab. 3.1, 3.3, 3.3.2, 3.5 and 3.6.

On the other hand, pose tracking builds the crucial history for motion

forecasting demonstrated by the better forecast motion of Ours than no fore-

casting in Tab. 3.2. Though in this paper, we cannot demonstrate that motion

forecasting in turn helps pose tracking, as the performance of pose tracking

does not increase when we include an extra task of future motion forecasting

in our framework. We include the important task of motion forecasting for

two additional purposes: efficiency and robustness. For efficiency, the encoded

spatiotemporal features within the video snippet capture crucial history for

motion forecasting. Thus, we can address the three tasks in a single stage

with our unified framework for efficiency, i.e., running one network vs. many

networks. TesseTrack [167] (∼100M params) addresses only pose tracking,

while our method (only 43M params) addresses all three tasks. For robust-

ness, existing work, such as HMP [25], on motion forecasting uses off-the-shelf
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Figure 3.13: Failure cases.

pose estimators for the history pose estimation. But the pose estimators could

fail unpredictably and thus cause forecasting to fail. Solving them jointly can

be robust to pose tracking errors. We validate that our unified framework helps

motion forecasting in Tab. 3.2, where our method shows better performance

than the multi-stage method, HMP (Hourglass [142]).

Generalization ability. To validate the generalization ability of our

method, we train our model on a hybrid of datasets, MuCo [128], COCO [112],

Posetrack2018 [4] and JTA [52]. Then we test our model to predict 3D pose

tracking on the unseen MuPoTS [128] and Posetrack val set (no 3D pose an-

notations). The predicted 3D pose is smooth and the tracking is consistent

across the entire videos, even in occlusion cases. The qualitative results are

included in the supplementary video 2.

Attention visualization. We visualize the attention maps of the last

layer in the transformer decoder in Fig. 3.12, where the sampling positions for

each person’s pose queries are presented by the same color and “×” means

the root joint position. Our proposed spatiotemporal deformable attention

samples around each person’s whole body and later aggregates these sampled

features together to update pose queries. Compared with self-attention, our

2Link of supplementary video.
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proposed deformable attention typically preserves better spatial and temporal

relationships for correct pose regression, and compared with the näıve spa-

tial deformable attention, our method considers the motion changes between

frames as is indicated by the root joint positions ”×” of each person in the

video snippet in Fig. 3.12.

Failure case and limitations. Our method could suffer from fast camera

movements as shown in Fig. 3.13, where there are quite large discrepancies

between neighboring frames at 7.5 FPS. In this special case, the problem

can be alleviated when we use video snippet at 30 FPS as the input due

to preserve the correlation between frames. Another limitation lies in the

spatiotemporal positional encoding that does not consider the correspondence

between frames, especially when the camera motion exists between frames.

Future work could explore the approach to explicitly use the camera poses

such as ray-based position encoding and the low-resolution optical flow to

guide the feature aggregation.

3.4 Conclusion

We present Snipper in the chapter, a unified spatiotemporal transformer for

simultaneous multi-person 3D pose estimation, tracking and motion forecast-

ing on a video snippet. We propose an efficient yet powerful spatiotemporal

deformable attention module to aggregate spatiotemporal information across

the snippet. We demonstrate the effectiveness of Snipper on three challenging

public datasets where a generic Snipper model rivals specialized state-of-the-

art baselines trained for 3D pose estimation, tracking, and forecasting.
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Chapter 4

Event-based 3D Human Pose
and Shape Estimation

4.1 Introduction

optical flow

events stream

estimated shapes 

through time

first frame of 

gray-scale image

Figure 4.1: An overview of our approach, EventHPE.

Human pose and shape estimation plays a pivotal role in the field of com-

puter vision, drawing significant research interest over the years [136], [176].

Traditional approaches primarily rely on conventional RGB cameras for im-

age capture [91], [93], [98], [228], [264]. However, the advent of event cam-

eras introduces a transformative imaging paradigm [59]. Unlike frame-based

cameras, event cameras asynchronously measure changes in pixel brightness,
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making them particularly adept at capturing localized object motion. This

innovation has sparked research across various computer vision applications,

including camera pose estimation [60], gesture recognition [3], and 3D recon-

struction [166]. Moreover, it has attracted commercial interest in diverse appli-

cation areas such as robotics, augmented and virtual reality, and autonomous

driving [59]. Despite these advancements, the potential of event cameras in

3D human pose and shape estimation remains largely untapped.

DHP19 represents an early attempt to estimate 2D human poses, treating a

cluster of events as a dense, frame-based image [23]. A more recent initiative,

EventCap, takes a step further by capturing 3D human motions using an

event camera [227]. However, EventCap depends not only on event data but

also on an auxiliary sequence of gray-scale images for initial pose estimation

at each time step. This limitation prompts us to explore the feasibility of

using events as the primary input source for estimating 3D human poses over

time, assuming that the beginning pose and shape are either known or can

be extracted from the first gray-scale frame. Fig. 4.1 outlines our two-stage

methodology, named EventHPE.

Given that both event data and optical flow are intrinsically linked to hu-

man motion, and that optical flow offers explicit geometric information to

characterize body movements, our framework incorporates optical flow infer-

ence from events, referred to as FlowNet, in its initial stage. This stage is

trained without supervision. The integration of optical flow allows us to pri-

marily rely on event data for estimating human poses and shapes, thereby

eliminating the need for a supplementary stream of gray-scale images. In the

subsequent stage of our framework, called ShapeNet, the focus shifts to esti-

mating temporal parametric shape variations using both the event data and

the inferred optical flows as inputs. We introduce a novel flow coherence loss to

ensure consistency between two modalities: the event-based flow represented

by optical flow, and the shape-based flow represented by the movement of ver-

tices on the human body. Both types of flow emerge from the same underlying

human motion, making coherence between them crucial.

Our main contributions are summarized below.
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• We introduce a novel approach to the challenging task of estimating

3D human parametric pose and shape primarily using event data. Our

approach utilizes optical flow, inferred from events, to minimize the de-

pendency on additional gray-scale image sequences. We also implement a

unique coherence loss to enforce consistency between two types of motion

representation: event-based flow, indicated by optical flow, and shape-

based flow, marked by the movement of vertices on the human body.

Empirical assessments reveal that our method outperforms several exist-

ing state-of-the-art methods.

• We introduce a home-grown dataset called the Multi-Modality Human

Pose and Shape Dataset (MMHPSD) 1. Comprising 240k frames, each

frame in MMHPSD contains 12 images captured through various imag-

ing modalities, including an event camera. To the best of our knowledge,

MMHPSD is the largest event-based 3D human pose and shape dataset

currently available. It is also the first dataset of its kind to be pub-

licly released, as the EventCap dataset [227] is not publicly accessible.

The multi-modal nature of MMHPSD enhances its utility, making it a

valuable resource for both existing and emerging lines of research.

FlowNet

CNN

RNN

ShapeNet

event flow

pose 

variations

event flow

: a set of events collected from time         to

Figure 4.2: Pipeline of our EventHPE framework that consists of two stages,
FlowNet and ShapeNet.

1Our code and dataset are available at https://github.com/JimmyZou/EventHPE.
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4.2 Our EventHPE Approach

Event cameras generate a continuous stream of event signals, where each

event is a triplet denoted as (x, t, p). These cameras also typically output low-

frame-rate gray-scale images. In our work, this event stream is partitioned

into a sequence of N event packets, expressed as E = {Eti}Ni=1. Each packet,

Eti , contains the events collected within the time interval from ti−1 to ti, as

illustrated in Fig. 4.2. Subsequently, each event packet Eti is divided into

M temporally-ordered subsets. These subsets are aggregated to form indi-

vidual channels of an event frame, Iti [62]. As a result, each event frame Iti

is composed of M channels, arranged in temporal sequence. Our approach

to structuring these temporal channels is both straightforward and effective,

enabling the inclusion of crucial temporal information for human pose esti-

mation. Additionally, we assume the event camera to be static, with known

intrinsic parameters.

Parametric human pose and shape is represented by SMPL model [116].

Represented as a differentiable function v = M(β,θ) ∈ R6,890×3, the SMPL

model takes shape and pose parameters, β and θ respectively, and outputs

a triangular mesh v composed of 6,890 vertices. The shape parameters,

β ∈ R10, act as the linear coefficients of a Principal Component Analysis

(PCA) shape space, which primarily determines individual body character-

istics like height, weight, and body proportions. This PCA space is learned

from a large dataset of minimally-clothed body scans. On the other hand, the

pose parameters θ ∈ R72 mainly describe the articulated pose. They consist

of a global body rotation and the relative rotations of 24 joints, represented in

axis-angle format. The parametric human shape is generated by first applying

both shape-dependent and pose-dependent deformations to a template body.

Subsequently, forward kinematics articulates this template into its target pose.

The surface mesh is then deformed via linear blend skinning. Concurrently,

both 3D and 2D joint positions, denoted as J3D and J2D, can be derived

through linear regression from the output mesh vertices.

Our method, EventHPE, is summarized in Fig. 4.2, which consists of two
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stages. 1) The initial stage focuses on optical flow inference from input events

and is detailed in Sec. 4.2.1. Here, the event stream is transformed into a

sequence of event frames, which are then input into a CNN model for optical

flow prediction. 2) The subsequent stage deals with temporal parametric shape

estimation and is elaborated in Sec. 4.2.2. In this phase, a series of event

frames, along with their corresponding optical flows, are processed through

another CNN model. This extracts vectorized feature representations, which

are subsequently input into a Recurrent Neural Network (RNN) for estimating

both pose and global translation variations over time.

In our framework, we assume that the beginning pose and shape are known.

If they are not, they can be estimated using pre-trained CNN-based methods,

such as VIBE [98], akin to previous approaches like EventCap [227]. Impor-

tantly, we require the pose and shape information solely for the starting time

point or the first gray-scale frame generated by event cameras. Following this,

the time-sequenced parametric shapes can be derived accordingly with the

estimated pose and translation variations.

4.2.1 Unsupervised Learning of Optical Flow

Building on the observation that both events and optical flow are intrinsically

linked to human motion on an image, we propose to incorporate the optical

flow inferred from events to furnish additional geometric insights. Specifically,

we employ a CNN model, referred to as FlowNet, to predict the optical flow

Oti , using the event frame Iti as input.

The architecture of FlowNet resembles an encoder-decoder structure and

is trained via unsupervised learning. The training employs a warping loss

calculated between two consecutive gray-scale images (Iti−1
, Iti). Similar to

existing work [263], the model uses two types of loss functions: photometric

loss and smoothness loss. Upon obtaining the predicted optical flow Oti , the

warped image Î ti−1
can be generated by transforming the second image Iti to

align with the first image Iti−1
through bilinear sampling. The photometric

loss quantifies the disparity between Iti−1
and the warped image Î ti−1

. We
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define the warping process and the corresponding loss as

Lphoto(u, v; Iti−1
, Iti , Oti) =

∑︂
x,y

ρ(Iti−1
(x, y) − Iti(x + u(x, y), y + v(x, y))),

(4.1)

where ρ is the Charbonnier loss function defined as ρ(x) =
√
x2 + ϵ2 with ϵ

being a small constant to make sure the loss function is always non-zero, and

(u, v) is the 2D direction of the predicted flow Oti at pixel (x, y). The Char-

bonnier loss has been demonstrated to offer greater robustness compared to

a simple absolute difference [263]. On the other hand, the smoothness loss

serves to regularize the output flow. It achieves this by minimizing the dispar-

ity between the flow at each individual pixel and the flows at its neighboring

pixels,

Lsmooth(u, v;Oti) =
∑︂
x,y

∑︂
i,j∈N (x,y)

ρ(u(x, y) − u(i, j)) + ρ(v(x, y) − v(i, j)),

(4.2)

where N (x, y) is the neighbors of pixel (x, y).

To summarize, FlowNet is trained by minimizing the loss

Loptical-flow = Lsmooth + Lphoto. (4.3)

4.2.2 Pose and Shape Estimation

For each time interval (ti−1, ti), the event frame Iti and its associated optical

flow Oti are concatenated. This combined data is then processed through a

CNN model to generate a vectorized feature representation. Subsequently, a

sequence of these time-sensitive features is fed into a Gated Recurrent Unit

(GRU) model, which yields the target outputs. These outputs include inter-

frame pose variations, represented as ∆θ̂ti ∈ R144, and global translation vari-

ations, denoted by ∆d̂ti ∈ R3, for each time interval. Once the beginning pose

and shape are provided, the estimated parametric shapes can be sequentially

derived.

Specifically, the estimated global translation d̂ti at time ti can be calculated

using the formula d̂ti = d̂ti−1
+ ∆d̂ti . This equation gives rise to the global
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translation loss as

Ltrans =
∑︂
ti

∥dti − d̂ti∥22, (4.4)

where dti is the target global translation at time ti.

As for the estimated pose θ̂ti at time ti, we propose to adopt a 6D ro-

tation representation instead of the traditional 3D axis-angle representation

used in the SMPL model. This alternative has been shown to offer superior

performance in human pose estimation [261]. Consequently, the output for

inter-frame pose variations, ∆θ̂, is a 144-dimensional vector, where each of

the 24 joints is represented by a 6-dimensional vector. Given the estimated

pose variations ∆θ̂ti , the j-th relative rotation at time ti can be expressed as

follows:

θ̂
j

ti
= R−1

(︁
R(∆θ̂

j

ti
)R(θ̂

j

ti−1
)
)︁
, (4.5)

where R(·) is the function converting the 6D rotational representation into a

3× 3 rotation matrix. Instead of employing the Euclidean distance metric, we

propose the use of the geodesic distance within the SO(3) group to evaluate

the discrepancy between the predicted and target poses, which is defined as

follows:

Lpose =
∑︂
ti

∑︂
j

arccos2
(︂Tr

(︁
R(θj

ti)
⊤R(θ̂

j

ti
)
)︁
− 1

2

)︂
. (4.6)

We additionally take into account the positional errors of both the 3D and 2D

joints, which are quantified as follows:

L3D =
∑︂
ti

∑︂
j

∥Jj
3D,ti

− Ĵ
j

3D,ti
∥22, (4.7)

L2D =
∑︂
ti

∑︂
j

∥Jj
2D,ti

− π(Ĵ
j

3D,ti
)∥22, (4.8)

where Ĵ
j

3D,ti
is the predicted 3D position of joint j at time ti and π(·) serves

as the projection function, utilizing default camera intrinsic parameters. This

measure helps to minimize the accuracy of the joint position estimations in

both 3D and 2D spaces.

Finally, we propose a novel coherence loss between two types of flows, event-

based flow (optical flow) and shape-based flow (movement of vertices on the
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Image-based flow Shape-based flowImage-based flow Shape-based flow

(example 1) (example 2)

Figure 4.3: An illustration of event-based and shape-based flows.

human body shape). Both types of flow originate from the same underlying

human motion, making it crucial to ensure their consistency for more accurate

motion estimation. The optical flow Oti , as detailed in Sec. 4.2.1, represents

the event-based flow. On the other hand, the shape-based flow is derived

by projecting sequential human body shapes onto the image plane and then

calculating the vertex 2D displacements, which is defined as

Fshape
ti = π(v̂ti) − π(v̂ti−1

), (4.9)

where Fshape
ti ∈ R6890×2. In parallel, the event-based flow corresponding to

the shape vertices is acquired through bilinear sampling on the optical flow,

defined as

Fimg
ti = BilinearSample(Oti , π(v̂ti−1

)). (4.10)

The coherence loss is then quantified as the cosine distance between the two

types of flows:

Lflow =
∑︂
ti

∑︂
v

⟨Fshape
ti,v ,Fimg

ti,v ⟩
∥Fshape

ti,v ∥2 · ∥Fimg
ti,v∥2

, (4.11)

where v is the index of vertices and ⟨·⟩ means the inner product.

In summary, we train the ShapeNet by minimizing the loss

L = λtransLtrans + λposeLpose + λ3DL3D + λ2DL2D + λflowLflow, (4.12)

where λpose, λtrans, λ3D, λ2D and λflow are the weights of corresponding losses.
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4.2.3 Our MMHPSD Dataset

We have curated an in-house multi-modality dataset, MMHPSD, specifically

for the empirical evaluation of our approach. This dataset fills a significant gap

in available resources, as the only existing comparable dataset, EventCap [227],

is not publicly accessible.

Data Acquisition. During the data acquisition phase, we employ a multi-

camera system containing 4 distinct imaging modalities: an event camera, a

polarization camera, and five RGB-Depth cameras. The layout of the camera

system is illustrated in Fig. 4.4. Specifically, the event camera is CeleX-V with

resolution 1280 × 800 [30]. Frame-based camera images are soft-synchronized

with the gray-scale images generated by the event camera, and events between

consecutive gray-scale images are collected synchronously. We engage 15 par-

ticipants for data collection, comprised of 11 males and 4 females. Each subject

performs 3 groups of actions (21 different actions in total) for 4 times, where

each group includes actions of fast/medium/slow speed respectively. Conse-

quently, we acquired 12 short video clips from each participant. Each clip

consists of approximately 1,300 frames and lasts about 1.5 minutes, captured

at a frame rate of 15 FPS. The dataset exhibits an average event rate of ap-

proximately one million events per second. In total, MMHPSD contains 240k

frames, each featuring a gray-scale image, inter-frame events, a polarization

image, and five-view RGB and depth images.

Annotation. Annotations for SMPL shape and pose primarily rely on

data from the five-view RGB-Depth cameras. For each frame, OpenPose [24]

is used to detect 2D joints within the RGB images from all five views. The

depth information for these joints is subsequently acquired by mapping the

corresponding depth images onto the RGB images. We then average the initial

3D poses across the five views and fit these skeletal poses to the SMPL male

model using 3D SMPLify-x [154] to generate initial SMPL parameters. For

higher accuracy, the initial shape is further refined. This is achieved by fitting

it to a point-cloud assembled from the depth images across the five views,

using the L-BFGS optimization algorithm [20]. In this refinement process, the
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objective is to iteratively minimize the average distance between each vertex

of the SMPL shape and its closest point in the point-cloud. Representative

samples and corresponding annotations are depicted in Fig. 4.4.

activity 

area
Kinect

Figure 4.4: Layout of multi-camera acquisition system and examples of our
pose and shape annotations.

Dataset Comparison. We provide a comparative analysis of our dataset

against two existing event-based human motion datasets in Tab. 4.1. Metrics

for comparison include the number of action sequences per subject (Seq#),

total number of subjects (Sub#), number of frames (Frame#), availability of

annotated poses (Pose) and shapes (Shape), as well as multi-modality (MM).

Our dataset excels in terms of the total number of frames and events. While it

may not have as many subjects or sequences as the DHP19 dataset, our dataset

is unique in its multi-modality nature and the inclusion of precise annotations

for both 3D pose and SMPL shape, offering considerable advantages for a

variety of research applications.
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Dataset Seq#/Sub# Frame# Pose Shape MM
DHP19 [23] 33/17 87k Yes No No

EventCap [227] 2/6 - No No No
MMHPSD (ours) 12/15 240k Yes Yes Yes

Table 4.1: A tally of existing event-based human motion datasets.

4.3 Experiments

In this section, we outline the implementation details relevant to training

and explain the reported evaluation metrics. Subsequently, we compare our

method with various existing baselines, including event-based, frame-based,

and video-based methods. We conclude this section with ablation studies to

demonstrate the contributions of individual components within our method.

Implementation Details. For training, event packets are converted into

4-channel event frames (M = 4), each channel aggregating events over ap-

proximately 15 milliseconds. We also tried 1, 2, 8 and empirically found 4

gave better results. These event frames are resized to dimensions of 256×256.

During testing, however, we remove the constraint on the temporal length of

event packets, allowing it to be dynamically determined by the rate of event

generation, as faster motions tend to produce events more quickly. We employ

ResNet50 [73] as our backbone CNN architecture and use a single-layer GRU

with a hidden dimension of 2048 for ShapeNet’s RNN component. The weights

λpose, λtrans, λ3D, λ2D, λflow are set to 20, 10, 1, 10, 0.1 respectively. The sequence

length for both training and testing in ShapeNet is 16, roughly corresponding

to a one-second duration. The batch size for training is set at 16. The learning

rate for FlowNet starts at 0.0001 and remains constant for 15 epochs, while

that for ShapeNet starts at 0.001 for 5 epochs before decaying to 0.0001 after

the third epoch. All models are trained on a single RTX 2080Ti GPU.

Evaluation. Similar to prior studies [91], [98], we evaluate our approach

using five metrics: Mean Per Joint Position Error (MPJPE), Procrustes-

aligned MPJPE (PA-MPJPE), Pelvis-aligned MPJPE (PEL-MPJPE), Per-

centage of Correct Keypoints (PCKh@0.5), and Per Vertex Error (PVE).
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MPJPE is defined as follows:

MPJPE =
1

24

24∑︂
j=1

∥Jj
3D − Ĵ

j
3D∥2, (4.13)

where Ĵ3D,J3D ∈ R24×3 are the predicted and target 3D joints. PEL-MPJPE

refers to the MPJPE computed after aligning the root joint of both the pre-

dicted and the target poses, which is defined as

PEL-MPJPE =
1

24

24∑︂
j=1

∥(Jj
3D − Jroot,3D)− (Ĵ

j
3D − Ĵroot,3D)∥2, (4.14)

where Jroot,3D and Ĵroot,3D are the root joint positions. PA-MPJPE means

MPJPE after performing a rigid transformation, denoted as (R, t), to align

the predicted pose with the target pose, which is defined as

PA-MPJPE =
1

24

24∑︂
j=1

∥Jj
3D − (Ĵ

j
3D ·R+ t)∥2. (4.15)

Note that the rigid transformation parameters (R, t) are determined by min-

imizing the average distance between the target 3D joints J3D and the trans-

formed predicted 3D joints (Ĵ3D · R + t). For PCKh@0.5, it denotes the per-

centage of correctly predicted joints whose PEL-MPJPE is less than 50% of

the head length, defined as

PCKh@0.5 =
1

24

24∑︂
j=1

1(∥(Jj
3D − Jroot,3D)− (Ĵ

j
3D − Ĵroot,3D)∥2 < 0.5 ∗ shead), (4.16)

where shead is the height of head and 1(·) is the indicator function. PVE

is calculated as the Euclidean distance between each vertex on the predicted

SMPL mesh and its corresponding vertex on the target mesh, defined as

PVE =
1

6890

∑︂
i

∥vi − v̂i∥2, (4.17)

where v̂,v ∈ R6890×3 are the predicted and target SMPL vertices.

4.3.1 Empirical Results

The DHP19 dataset [23] is limited to multi-view event streams and motion-

capture data for joints; it lacks gray-scale images and SMPL shape annota-

tions. So we only use this dataset to demonstrate the effectiveness of optical
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Figure 4.5: A sampled sequence of event frames, corresponding optical flows
and the estimated shapes with two alternative views.

Models Input MPJPE↓ PA-MPJPE↓ PEL-MPJPE↓ PCKh@0.5↑ PVE↓
DHP19 [23] E 80.08 74.55 131.73 0.80 -

DHP19 + Flow E+F 76.76 71.68 130.37 0.82 -

Table 4.2: Quantitative evaluations on DHP19.

flows in event-based pose estimation. We extend the DHP19 method by adding

FlowNet-predicted optical flows trained on our MMHPSD dataset, referred to

as DHP19+Flow. Quantitative results presented in Tab. 4.2 indicate that the

incorporation of optical flows leads to a reduction in joint position errors, as

evidenced by a decrease of more than 3mm in both MPJPE and PA-MPJPE

metrics. Conversely, PEL-MPJPE does not demonstrate a significant improve-

ment. This discrepancy can be attributed to the fact that our method focuses

on detecting 2D joints rather than the entire body shape, meaning that root

translation alignment could inadvertently increase distance errors for other

joints. Nonetheless, the PCKh metric consistently improves with the inclusion

of optical flows as an additional input. These findings validate the effectiveness

of our proposal to integrate optical flow for enhanced geometric information

extraction from events, thereby improving event-based pose estimation.

MMHPSD dataset offers a rich array of data sources and well-aligned

pose and shape annotations, allowing for a comprehensive comparison of our

event-based approach with various baseline methods. Quantitative outcomes

are detailed in Tab. 4.3, while qualitative insights are visually represented in

Fig. 4.6. We also present a supplementary video2 for better illustration of our

results.

2Link of supplementary video.
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Models Input MPJPE↓ PA-MPJPE↓ PEL-MPJPE↓ PCKh@0.5↑ PVE↓
HMR [91] G - 64.78 95.32 0.61 -
VIBE [98] V - 50.86 73.10 0.76 -

EventCap(HMR) [227] E+G - 62.62 89.95 0.64 -
EventCap(VIBE) [227] E+G - 50.35 71.85 0.77 -

DHP19 [23] E 72.42 65.87 74.04 0.81 -
EventHPE(HMR) E+F - 53.72 77.80 0.71 -
EventHPE(VIBE) E+F - 48.87 69.58 0.79 -

EventHPE E+F 71.79 43.90 54.96 0.85 53.90

Table 4.3: Quantitative results on MMHPSD dataset.

HMR [91] serves as a frame-based baseline, while VIBE [98] is employed as a

video-based counterpart. It should be noted that both HMR and VIBE rely on

a weak camera model that lacks global translation. Additionally, they utilize

the neutral SMPL model, in contrast to the male-specific model featured in

the MMHPSD dataset. Consequently, we refrain from reporting quantitative

evaluations for MPJPE and PVE metrics in these cases.

We consider three additional categories of event-based baselines for com-

parison. First, DHP19 [23] employs a 2D pose estimation approach using event

data, with the ground-truth depths of the detected 2D joints assumed to be

known for 3D comparison. Second, EventCap(HMR) and EventCap(VIBE) in-

dicate configurations where HMR or VIBE is integrated into EventCap [227]

to infer pose and shape from a sequence of gray-scale images, serving as ini-

tial pose estimates over time. Since the original code and evaluation dataset

from EventCap are not publicly available, we re-implemented it using the Py-

Torch L-BFGS optimizer [20], [151] and PyTorch3D differential renderer [165].

Lastly, in our approach, denoted as EventHPE, we have two variants: Even-

tHPE(HMR) and EventHPE(VIBE). These variants use HMR or VIBE to

estimate the initial pose and shape based on the first frame of the gray-scale

image sequence. These are analogous to the initial pose estimation methods

used in EventCap. We also include a version of EventHPE that employs the

ground-truth pose and shape as the starting point for evaluation.

For a fair comparison with DHP19, which uses ground-truth depths for

detected 2D joints to obtain 3D pose, we contrast its performance against

our approach, EventHPE. The quantitative results indicate that EventHPE
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Figure 4.6: Qualitative results on MMHPSD dataset.

outperforms DHP19, showing more than a 20mm reduction in joint errors for

PA-MPJPE and PEL-MPJPE metrics, while achieving less than a 1mm er-

ror in MPJPE. This improvement can likely be attributed to the design of

our method, which predicts the entire body shape subject to topological con-

straints. In contrast, DHP19 focuses on detecting individual joints in isola-

tion. Consequently, our method yields significantly lower joint errors following

alignment procedures.

For a comprehensive comparison between EventCap and our approach,

EventHPE, we examine quantitative results across different configurations:

EventCap(HMR) vs. EventHPE(HMR), and EventCap(VIBE) vs. Even-

tHPE(VIBE). Notably, our method only requires beginning pose and shape

estimation from the first frame of gray-scale images, whereas EventCap ne-
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cessitates such estimations across the entire sequence of gray-scale images.

Although the accuracy of these initial estimates influences the performance of

both methods, EventHPE demonstrates marked improvements in joint errors

and PCK metrics.

In the HMR configuration, EventCap(HMR) shows a roughly 2mm re-

duction in PA-MPJPE, a 5mm reduction in PEL-MPJPE, and a 0.03 in-

crease in PCK compared to HMR alone. In contrast, our method, Even-

tHPE(HMR), achieves improvements of approximately 11mm, 17mm, and 0.1,

respectively—over three times the gains observed in EventCap(HMR). A simi-

lar trend emerges in the VIBE configuration. EventHPE(VIBE) demonstrates

a roughly 2mm improvement in PA-MPJPE, 3.5mm in PEL-MPJPE, and 0.03

in PCK over VIBE alone, while EventCap(VIBE) shows only 0.5mm, 1.5mm,

and 0.01 improvements, respectively.

Furthermore, we note that the performance gains in the VIBE configura-

tion are not as pronounced as those in the HMR configuration. This may

be due to the already strong performance of VIBE, which leaves less room

for improvement. However, both EventCap and EventHPE yield consistently

better results in the VIBE setup than in the HMR setup. This suggests that

the quality of the initial estimates can significantly impact the overall per-

formance of both methods, but EventHPE is more robust to this variability.

This robustness likely stems from our method’s reliance solely on events and

predicted optical flows as input after establishing initial pose and shape es-

timates. In contrast, EventCap’s performance is constrained by potentially

inaccurate initial estimates throughout the sequence of gray-scale images.

The qualitative outcomes presented in Fig. 4.6 further validate the efficacy

of our EventHPE method. Eight examples have been selected from two test

sequences for illustration. It is evident that even when the beginning pose

and shape estimates—obtained from either HMR or VIBE and depicted in the

first row of each sequence—are not perfectly aligned or accurate, EventHPE

is capable of correcting subsequent predictions to yield well-aligned poses and

shapes. In contrast, EventCap demonstrates limited capability for such cor-

rections. This is because EventCap relies on continuous estimates from HMR
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Models Input MPJPE↓ PA-MPJPE↓ PEL-MPJPE↓ PCKh@0.5↑ PVE↓
EventHPE(w/o flow) E 80.99 49.43 60.90 0.82 59.77

EventHPE(w/o flow loss) E+F 78.48 47.36 57.09 0.83 56.58
EventHPE(w/o geodesic) E+F 77.29 49.02 60.55 0.83 59.84

EventHPE(w/o joints) E+F 73.79 44.59 55.91 0.84 54.73

Table 4.4: Quantitative results of ablation study on MMHPSD dataset.

EventHPE w/o geodesic w/o joints EventHPEw/o jointsw/o geodesicw/o flow lossw/o flow w/o flow lossw/o flow

Figure 4.7: Qualitative results of ablation study.

or VIBE for every gray-scale image in the sequence, thus confining its capacity

for significant adjustments over time. This qualitative evidence substantiates

EventHPE’s robustness and ability to refine pose and shape estimates, even

when initiated with less-than-ideal conditions.

4.3.2 Ablation Study

In this section, we perform an ablation study to assess the contributions of

various components within our EventHPE method. The following variants are

considered:

• EventHPE(w/o flow): This variant excludes both the optical flow and

the flow coherence loss from our approach.

• EventHPE(w/o flow loss): Here, the optical flow is incorporated into the

input, but the flow coherence loss is not applied.

• EventHPE(w/o geodesic): This version employs Euclidean distance in

the training process as opposed to the geodesic distance.
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• EventHPE(w/o joint): In this configuration, neither 3D nor 2D joint

supervision is used during training.

The quantitative and qualitative assessments are presented in Tab. 4.4 and

Fig. 4.7. Upon comparing the four ablation variants with the full EventHPE

model, several key observations can be made. Specifically, the exclusion of

optical flow or geodesic distance leads to an approximate 6mm increase in

joint errors as well as shape vertex errors. In the version that omits the flow

coherence loss, error rates grow by 3-4mm. On the other hand, removing

joint supervision during training results in a more modest increment of 1-

2mm in error margins. These results highlight the crucial contribution of each

component in enhancing the overall efficacy of the EventHPE model.

The qualitative evaluations presented in Fig. 4.7 further reinforce the sig-

nificance of incorporating optical flow and geodesic distance into our method-

ology. The absence of these components compromises the model’s ability to

align the human body accurately with the background gray-scale images. This

underscores the advantage of using geodesic distance over Euclidean distance

for quantifying human pose variations in SO(3). Additionally, it indicates that

the integration of optical flow, along with flow coherence loss, contributes to a

more robust extraction of geometric information essential for accurate human

shape estimation from events.

4.4 Conclusion

In this chapter, we have presented a method for estimating parametric human

shapes, with a focus on leveraging event-based data. Our empirical results

validate the effectiveness and versatility of our approach. However, a limita-

tion of our current framework is its dependency on obtaining an initial pose

and shape, either pre-supplied or detected in the first frame of gray-scale im-

ages. As future work, we plan to address this constraint by aiming to create

an enhanced model that can infer 3D human shapes solely from event-based

signals.
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Chapter 5

Event-based Human Pose
Tracking with SNNs

5.1 Introduction

As we discussed in Chapter 4, visual human pose tracking has attracted in-

creasing research attentions in recent years. While most current research ef-

forts have been focused on RGB cameras [91], [93], [98], [99], [104], [110], [150],

[156], [182], [207], [209], [225], [228], [239], [252], [259], event cameras [59], as

an emerging vision sensor, present new opportunities in this area. As a novel

and biologically-inspired vision system, event cameras are considerably dis-

similar to the conventional frame-based cameras. In particular, by adopting

its unique asynchronous and independent address-event representation, event

cameras are capable of imaging high-speed motions with a very low power

consumption. This innovative imaging paradigm has sparked a multitude of

research efforts in the field of event-based vision, such as tracking [63], [135],

[245], [246], recognition [3], [57], [95], 3D reconstruction [166], [248], and a

diverse range of applications in robotics, augmented and virtual reality, and

autonomous driving [59].

Recently, data-driven approaches have shown their potential for effective

pose estimation from event cameras [23], [170], [227], [266]. One of the earliest

approaches [23] uses a CNN model to estimate 2D human poses from event

frames. EventCap [227] expands upon this by capturing fast 3D human motion

based on a stream of 2D events, as well as a sequence of gray-scale images to
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Figure 5.1: Overview of our end-to-end sparse deep learning approach.

establish initial poses over time. Our prior work, EventHPE [266] presented

in Chapter 4, reduces the reliance on gray-scale images by using only the first

gray-scale frame to extract the starting pose, then relying solely on the event

stream for subsequent pose tracking. The concurrent work of [170] instead

focuses on static hand pose estimation from event camera, by engaging the

ANNs models. Unfortunately, existing methods either require the presence of

additional gray-scale images [227], [266], which is not always practical in real-

world applications, or treat the event stream as dense frame-based images [23],

[170] and input them directly into the ANNs models, which ignores the inherent

sparsity of event signals. As a result, the full potential of human pose tracking

based only on events remains largely unexploited.

Meanwhile, ANNs, such as ResNet [73] and standard Transformer [200],

have demonstrated their competence in various event-based vision tasks [3],

[57], [58], [61], [62], [95], [135], [170], [190], [210], [246], [263]. However, com-

pared with dense RGB or gray-scale images, event streams are spatiotemporally

much sparser, resulting in a growing interest in seeking novel ways dedicated to

efficiently process event signals. One promising strategy is based on the SNNs.

Unlike traditional ANNs, spiking neurons are employed in SNNs to imitate the

event generation process, thus bypassing the unnecessary computations of in-

active or non-spiking neurons. Previous efforts have shown the superiority of

SNNs in classification tasks, including converting ANNs to SNNs [44], [72],

[106], [171], [229], or training SNNs from scratch [57], [58], [107], [235], [236],

[262]. There are also attempts [234], [245] proposing a mixed framework of

SNNs and ANNs to balance the efficiency and performance in event-based
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regression tasks. However, the challenge of conducting pose tracking solely

using event signals, and exclusively engaging the SNNs architecture to fully

exploit the innate sparsity in events data, remains unaddressed. This may

be attributed to the following three challenges. 1) Unlike spike votes used

in classification, regression is sensitive to the output values, which may re-

sult in additional quantization errors in pose prediction due to the compact

spike representation in SNNs. 2) As opposed to high-level label prediction in

the static classification tasks, pose tacking requires fine-grained regression of

poses over time. 3) Spikes are typically unfolded over time, which naturally

preserves only one-directional temporal dependency in SNNs. This may lead

to insufficient pose information, especially when the character is not moving

in the starting phase and thereby few events are observed for pose estimation.

Motivated by the above observations, our work aims to tackle a relatively

new problem of tracking 3D human poses solely based on event streams from

an event camera, thus completely eliminating the need for additional input

dense images. As presented in Fig. 5.3, our approach is an end-to-end sparse

deep learning approach that estimates parametric human poses over time solely

from events. This model is entirely built upon SNNs, thus having the promise

of being more efficient than that of the dense deep learning models (i.e. ANNs).

The input event stream goes through a preprocessing step to form a sequence

of event voxel grids; SEW-ResNet [57] is then employed as the SNNs backbone

to extract pose spike features; this is followed by the proposed Spiking Spa-

tiotemporal Transformer that carries bi-directional fusion of the acquired pose

spike features, allowing for the distribution of pose information especially to

those in the early time. In our spiking transformer, the attention score between

binary spike vectors is based on the normalized Hamming similarity, which, as

shown in Proposition 1, amounts to the scaled dot-product similarity between

the real valued vectors used in the standard transformer [200]. In the final

step, 2D average pooling is applied to the spatiotemporally aggregated spike

features, which is followed by a direct regression to output the parametric 3D

human poses over time.

Our contributions can be summarized as follows:
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• This work addresses a relatively new task of 3D human pose tracking

solely based on events from an event camera.

• We propose an end-to-end SNNs approach, which specifically incorpo-

rates a novel Spiking Spatiotemporal Transformer module to tackle the

one-directional temporal dependency issue. This allows for the propaga-

tion of pose-related information to facilitate pose estimation especially

for the early time steps. Extensive empirical experiments demonstrate

the superior performance of our approach over existing SOTA methods,

including EventCap [227], EventHPE [266] and ANNs baselines [26], [98],

[115].Extensive empirical experiments demonstrate the superior perfor-

mance of our approach over existing state-of-the-art (SOTA) methods,

utilizing merely around 20% of the FLOPs and 3% of the energy cost

consumed by the ANNs. Additionally, our approach also outperforms

SOTA SNNs baselines [57], [235], [262] in this regression task of human

pose tracking.

• A large-scale dataset, SynEventHPD, is constructed for the task of event-

based 3D human pose tracking. It consists of synthesized events data

from multiple motion capture datasets, i.e., Human3.6M [80], AMASS

[122], PHSPD [270] and MMHPSD-Gray [266]. Consequently, it cov-

ers a variety of motions such as juggling, moon-walking, jumping rope,

vaulting and scampering, with a total size of 45.72 hours event streams

– more than 10 times larger than MMHPSD [266], the largest exist-

ing event-based pose tracking dataset. The details are summarized in

Tab. 5.1, and empirical studies have showcased the usefulness of our new

dataset. 1

5.2 Preliminary Backgrounds

Spiking neuron model commonly refers to the leaky integrate and fire

(LIF) model, a fundamental unit in SNNs. Its working process is shown in

1Our code and dataset are available at
https://github.com/JimmyZou/HumanPoseTracking SNN
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Figure 5.2: (a) Illustration of spiking neuron model. (b) Feedforward in SNNs.
(c) Backpropagation Through Time in SNNs.

Fig. 5.2 (a). A LIF neuron maintains a membrane potential u[t] with a leaky

constant τ , which may be modified only when new spiking trains X[t] are re-

ceived from its connected neurons in T time steps. The neuron then outputs

a spike s[t] and reset its potential by Vth − urest, if its potential exceeds a pre-

determined threshold, Vth, where soft reset [57] is adopted in our work. The

model is formulated as follows:

h[t] = u[t−1] −
1

τ
(u[t−1] − urest) + X[t], (5.1)

s[t] = Θ(h[t] − Vth), (5.2)

u[t] = h[t] − (Vth − urest)s[t], (5.3)

where Θ is the Heaviside step function,

Θ(h[t] − Vth) =

{︄
1, if h[t] − Vth ≥ 0

0, otherwise.
(5.4)

Feedforward in SNNs consists of multiple layers of connected spiking

neurons, shown in Fig. 5.2 (b). Assume there are N (l) neurons in the l-th

layer, and use the vector forms of u
(l)
[t] ∈ RN(l)

and s
(l)
[t] ∈ {0, 1}N(l)

to represent

their respective membrane potentials and output spikes at time step t. Let

Wl ∈ RN(l)×N(l−1)
denote the connecting weights between layer l − 1 and l,

λ = 1 − 1
τ

be the leaky constant of LIF neuron model, and set urest to 0,
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feedforward in SNNs becomes

h
(l)
[t] = λu

(l)
[t−1]⏞ ⏟⏟ ⏞

leak

+W(l)s
(l−1)
[t]⏞ ⏟⏟ ⏞

charge

, (5.5)

s
(l)
[t] = Θ(h

(l)
[t] − Vth)⏞ ⏟⏟ ⏞
spike

, (5.6)

u
(l)
[t] = h

(l)
[t] −Vths

(l)
[t]⏞ ⏟⏟ ⏞

reset

. (5.7)

Computation and energy consumption of SNNs are often lower

than ANNs, partly owing to the binary output of spiking neurons. Accord-

ing to previous works [235], [262], the l-th linear layer in the ANNs requires

O(TN (l−1)N (l)) FLOPs 2, measured in terms of multiply-and-accumulate (MAC)

operations. In the context of SNNs, when assuming a spiking rate of ρ for l-

th linear layer, as derived Eq. (5.5), it only requires O(ρTN (l−1)N (l)) FLOPs

measured in terms of accumulate (AC) operations, where the computation of

inactive neurons (s
(l−1)
[t] = 0) can be skipped. As for the energy consumption,

we assume the data for various operations are 32-bit floating-point implemen-

tation in 45nm technology [77], in which EMAC = 4.6pJ and EAC = 0.9pJ .

Backpropagation through time in SNNs is shown in Fig. 5.2 (c).

Given the backpropagate gradients from the last layer ∂L
s
(l)
[t]

, we can unfold the

iterative update of membrane potential for T time steps and calculate the gra-

dients ∂L
∂s

(l−1)
[t]

and ∂L
∂W(l) respectively. As is analysed in [223], since the derivative

of the Heaviside step function is 0 almost everywhere, we can detach the neu-

ron reset operation from the computational graph and do not backpropagating

gradients in this path.

Considering only s
(l)
[k] (k ≥ t) depends on s

(l−1)
[t] , the loss function can be

described as

L
(︃
s
(l)
[t]

(︂
h
(l)
[t]

(︁
s
(l−1)
[t]

)︁)︂
, s

(l)
[t+1]

(︂
h
(l)
[t+1]

(︂
h
(l)
[t] (s

(l−1)
[t] ), s

(l)
[t] (h

(l)
[t] (s

(l−1)
[t] ))

)︂)︂
, s

(l)
[t+2]

(︂
...
)︂
, ...

)︃
.

(5.8)

Then we have the gradient of loss with respect to s
(l−1)
[t] from layer l to layer

2FLOPs refers to the number of floating-point operations.
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l − 1 as

∂L
∂s

(l−1)
[t]

=
∂L
∂s

(l)
[t]

∂s
(l)
[t]

∂h
(l)
[t]

∂h
(l)
[t]

∂s
(l−1)
[t]

+
∂L

∂s
(l)
[t+1]

∂s
(l)
[t+1]

∂h
(l)
[t+1]

(︃
∂h

(l)
[t+1]

∂u
(l)
[t]

∂u
(l)
[t]

∂h
(l)
[t]⏞ ⏟⏟ ⏞

leak path

∂h
(l)
[t]

∂s
(l−1)
[t]

+
∂h

(l)
[t+1]

∂u
(l)
[t]

∂u
(l)
[t]

∂s
(l)
[t]

∂s
(l)
[t]

∂h
(l)
[t]⏞ ⏟⏟ ⏞

reset path

∂h
(l)
[t]

∂s
(l−1)
[t]

)︃
+ . . .

=
∂L
∂s

(l)
[t]

∂s
(l)
[t]

∂h
(l)
[t]

∂h
(l)
[t]

∂s
(l−1)
[t]

+
∂L

∂s
(l)
[t+1]

∂s
(l)
[t+1]

∂h
(l)
[t+1]

(︃
λ⏞⏟⏟⏞

leak path

−Vth

∂s
(l)
[t]

∂h
(l)
[t]⏞ ⏟⏟ ⏞

reset path

)︃
∂h

(l)
[t]

∂s
(l−1)
[t]

+ . . .

=

T∑︂
k=t

∂L
∂s

(l)
[k]⏞ ⏟⏟ ⏞

gradient from
last layer

∂s
(l)
[k]

∂h
(l)
[k]⏞ ⏟⏟ ⏞

surrogate
gradient

(︂
1+

k−1∏︂
τ=t−1

(︁
λ− Vth

∂s
(l)
[τ ]

∂h
(l)
[τ ]⏞ ⏟⏟ ⏞

surrogate
gradient

)︁)︂
W(l)

detach
reset≈

T∑︂
k=t

λk−t ∂L
∂s

(l)
[k]

∂s
(l)
[k]

∂h
(l)
[k]

W(l).

The loss at time step t only depends on h
(l)
[k] where k ≤ t,

Lt

(︂
h
(l)
[t]

)︂
= Lt

(︄
h
(l)
[t]

(︃
W(l),u

(l)
[t−1]

)︃)︄

= Lt

(︄
h
(l)
[t]

(︃
W(l)⏞ ⏟⏟ ⏞

charge path

, u
(l)
[t−1]

(︂
h
(l)
[t−1]

(︁
W(l)

)︁⏞ ⏟⏟ ⏞
leak path

, s
(l)
[t−1]

(︁
h
(l)
[t−1](W

(l))
)︁⏞ ⏟⏟ ⏞

spike and reset path

)︂)︃)︄
.
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So we have the unfolded gradients of ∂L
∂W(l) as

∂L
∂W(l)

=

T∑︂
t=0

∂L
∂W(l)

=

T∑︂
t=0

∂L
∂h

(l)
[t]

∂h
(l)
[t]

∂W(l)
,

=

T∑︂
t=0

∂L
∂h

(l)
[t]

(︂ ∂h
(l)
[t]

∂W(l)⏞ ⏟⏟ ⏞
charge path

+
∂h

(l)
[t]

∂u
(l)
[t−1]

∂u
(l)
[t−1]

∂h
(l)
[t−1]

∂h
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[t−1]

∂W(l)⏞ ⏟⏟ ⏞
leak path

+
∂h

(l)
[t]

∂u
(l)
[t−1]

∂u
(l)
[t−1]

∂s
(l)
[t−1]

∂s
(l)
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∂h
(l)
[t−1]

∂h
(l)
[t−1]

∂W(l)⏞ ⏟⏟ ⏞
spike and reset path

)︂
,

=

T∑︂
t=0

∂L
∂h

(l)
[t]

(︂
s
(l)
[t] + λ

∂h
(l)
[t−1]

∂W(l)
− λVth

∂s
(l)
[t−1]

∂h
(l)
[t−1]

∂h
(l)
[t−1]

∂W(l)

)︂
,

=

T∑︂
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∂L
∂h

(l)
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(︂
s
(l)
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(︁
1− Vth

∂s
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[t−1]

∂h
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[t−1]

)︁ ∂u(l)
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over time

)︂
,

=

T∑︂
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∂L
∂s

(l)
[t]⏞ ⏟⏟ ⏞

gradient from
last layer

∂s
(l)
[t]

∂h
(l)
[t]⏞ ⏟⏟ ⏞

surrogate
gradient

(︃
s
(l)
[t] +

t−1∑︂
k=0

(︂ t−1∏︂
τ=k

λ
(︁
1− Vth

∂s
(l)
[τ ]

∂h
(l)
[τ ]⏞ ⏟⏟ ⏞

surrogate
gradient

)︁)︂
s
(l)
[k]

)︃

detach
reset≈

T∑︂
t=0

∂L
∂s

(l)
[t]

∂s
(l)
[t]

∂h
(l)
[t]

(︃ t∑︂
k=0

λt−ks
(l)
[k]

)︃
.

Training SNNs from scratch is difficult mainly due to the non-differentiable

property of Heaviside step function and the problem of gradient vanishing.

Existing efforts summarized in [107] solve it by using surrogate derivatives

to approximate the gradients of Heaviside step function. Following [57], the

surrogate gradient function we used in this work is

∂s[t]
∂h[t]

=

{︄
c

2(1+(π
2
c(h[t]−Vth))2)

, if s[t] = 1

0, otherwise
(5.9)

where c is the hyper-parameter to control the smoothness of the surrogate

gradients.

Scaled dot-product attention is defined as

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V, (5.10)

in the standard transformer [200], where Q,K ∈ RN×dk are queries and keys

and V ∈ RN×dv is values, with N being the length of input sequence, dk the

dimension of a single query q or key k, and dv the dimension of a single value

v. The scaling factor of 1/
√
dk is to normalize the dot-product qk⊤ to have
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mean 0 and variance 1, assuming the components of q and k are independent

variables with mean 0 and variance 1.

5.3 Our approach
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Figure 5.3: Pipeline of our sparse deep learning approach.

As summarized in Fig. 5.3, our approach consists of four main sections.

1) Preprcessing in Sec. 5.3.1, is to convert an stream of event into a sequence

of event voxel grids [59] with the same time interval. 2) SEW-ResNet [57] in

Sec. 5.3.2, is employed as the backbone to extract pose spike features from the

input sequence of event voxel. 3) Since SEW-ResNet only considers the one-

directional temporal relationship, we propose a novel Spiking Spatiotemporal

Transformer for the bi-directional fusion of pose spike features in Sec. 5.3.3,

allowing for the compensation of missing pose information, especially for the

early time steps. 4) The final stage, illustrated in Sec. 5.3.4, is to apply average

pooling to the spatiotemporally aggregated spike features and then regress the

parametric poses over time. In this work, a stream of events is the sole source

of input, thus eliminating the reliance on gray-scale input images as in [227] or

a prior knowledge of the starting pose as in [266]. Furthermore, our model is

completely built upon SNNs instead of traditional ANNs or mixed architecture.

5.3.1 Preprocessing

Instead of a sequence of RGB frames captured by an RGB camera, an asyn-

chronous stream of independent event signals is assembled by an event cam-
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era as the input signals. This event stream is decomposed into a sequence

of T packets of events, with each packet spanning the same length of time,

E = {E[t]}Tt=1. Here, t indexes a specific event packet in the sequence. Follow-

ing [62], [266], an event packet, E[t], is represented as a voxel grid H ×W ×C

with each voxel corresponding to a particular spatial and temporal interval.

The voxel value will be 1 if the number of events within the voxel is larger

than a preset threshold, and 0 otherwise. This representation better preserves

the temporal information of events, rather than collapsing them onto a single

frame as mentioned in [59]. The processed sequence of event voxel grids is

then fed into SNNs as input, denoted as Sin ∈ {0, 1}T×H×W×C . 3

5.3.2 Spike-Element-Wise Residual Networks

Basic Block

SEW Function

Spiking

Spiking

Conv2D 

(stride=1, k=3)

BatchNorm2D

Conv2D 
(stride=1, k=3)

BatchNorm2D

Downsample Block

SEW Function

Spiking

Spiking

Conv2D 
(stride=2, k=3) 

BatchNorm2D

Conv2D 
(stride=1, k=3) 

BatchNorm2D

Spiking

Conv2D 
(stride=1, k=1) 

BatchNorm2D

Deal with channel size

Downsample block

Downsample block

Downsample block

Conv2D 
(k=7, stride=2) 

BatchNorm2D

Spiking

MaxPool2D
(k=3, stride=2)

SEW-ResNet34

Basic block

Basic block

Basic block

Basic block

Figure 5.4: Architecture of SEW-ResNet34.

SEW-ResNet, proposed in [57], ranks among the most popular SNNs archi-

tectures. Originated from ResNet [73], significant differences are made in the

redesign of identity mapping for SNNs using the SEW Function, which applies

3For clarity, we will generally refer to the size of input spike tensor for different blocks
or modules as T ×H ×W × C in subsequent sections.
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element-wise addition to spike tensors rather than the pre-spiking membrane

potentials. This design not only establishes the identity mapping of residual

learning in SNNs, but also addresses the vanishing or exploding gradient issue.

In our pipeline, it is incorporated as the SNNsbackbone to extract spike pose

features. The spatial size of the output is 1/32 of the input with a channel

size of 512 for SEW-ResNet18, 34 and 2048 for SEW-ResNet50, 101, 152. The

detailed architecture of SEW-ResNet34 is presented in Fig. 5.4.

SEW-ResNet consists of two types of blocks: the downsample block and

the basic block. The downsample block normally reduces the spatial size of in-

put spike tensor by 2 and expands the channel size by 4 through convolutional

layers, while the basic block keeps the size of input spike tensor unchanged for

residual learning. The final layer in both types of blocks is element-wise iden-

tity mapping via SEW Function, where spike-element-wise functions between

two input spike tensors are applied, such as ADD, AND or IAND. Given the

input spike tensor Sin ∈ {0, 1}T×H×W×C , the output spike tensor is assumed

to be Sout ∈ {0, 1}T×H
32

×W
32

×Cout
where Cout = 512 for SEW-ResNet18 and 34,

Cout = 2048 for SEW-ResNet50, 101 and 152.

5.3.3 Spiking Spatiotemporal Transformer

Spiking Spatiotemporal Transformer is shown in Fig. 5.5 (a). Given the

input Sin ∈ {0, 1}T×H×W×C , the first step is to apply spiking spatiotemporal

attention to combine bidirectional space-time features. A more comprehensive

explanation of the attention module will be given later. It is followed by two

linear spiking layer with batch normalization, also known as Feed-Forward

Network (FFN) in the standard transformer [200]. The final step in the module

is to apply SEW Function to the output of FFN and input spike tensor for

residual learning. Then we get the output Sout ∈ {0, 1}T×H×W×C . This entire

module can be stacked by N layers similar to the standard transformer [200].

Spiking Spatiotemporal Attention is illustrated in Fig. 5.5 (b). This

module introduces self-attention that spans the entire space-time domain of

spike tensors, effectively addressing the issue of one-directional temporal de-

pendency flow in spiking layers of SNNs. Specifically, starting with the in-
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(b) Spiking Spatiotemporal Attention(a) Spiking Spatiotemporal Transformer
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Figure 5.5: (a) Architecture of our Spiking Spatiotemporal Transformer. (b)
Architecture of Spiking Spatiotemporal Attention.

put spike tensor Sin ∈ {0, 1}T×H×W×C , we use two linear spiking layers with

positional encodings and batch normalization to map the channel size from

C to Ck. Subsequently, we flatten it across the spatiotemporal dimensions

T × H × W to obtain the spike query and key tensors, denoted as Sq,Sk ∈

{0, 1}THW×Ck . Similarly, we obtain the real-valued tensor V ∈ RTHW×Cv by

applying a non-spiking linear layer and positional encodings to transform the

channel size from C to Ck and then flattening it across the spatiotemporal

dimensions. The rationale for utilizing a non-spiking layer is to delay spik-

ing until after feature aggregation has been achieved through self-attention.

Next, the similarity between the spiking queries and keys is calculated using

the function α = f(Sq,Sk), which serves as the attention scores for values

aggregation, αV. The details of f(·) will be covered later. The aggregated
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value tensor is then unflattened to be RT×H×W×Cv , followed with a batch nor-

malization and spiking layer. Afterwards, we use a spiking linear layer with

batch normalization to map the channel size from Cv back to C. Finally, the

SEW Function is applied to the attention output and the input spike tensor

for residual learning, resulting in the output as Satt ∈ {0, 1}T×H×W×C . It is

important to note that our model also supports multi-head attention.

Positional encodings are added in the first layer of the spiking spatiotem-

poral attention module, aiming to make the model aware of ordinal information

in the input sequence. As the input of the attention module is binary spike

tensor while positional encodings are float, direct addition would violate the

fast computation in SNNs. So we add the encodings after the linear layer, but

before the batch normalization and spiking layer. Besides, as the spiking layer

generates spikes by rolling over T time steps, we scale the positional encodings

by 1/T to maintain consistency across models with varying T . The definition

mostly follows [200] as

PE(pos, 2i) =
1

T
sin(pos/100002i/Ck),

PE(pos, 2i + 1) =
1

T
cos(pos/100002i/Ck),

where pos represents the position in the sequence, while 2i or 2i + 1 denotes

the position of Ck channel.

Attention scores in both the standard transformer [200] and the re-

cently introduced spiking transformer [262] are commonly computed using

dot-products. However, this approach is not well-defined for binary spike vec-

tors. When there are zero components in the spike key vector, the dot-product

will invariably disregard the values of corresponding components in the spike

query vector. As an example, consider two spike query vectors, sq1 and sq2,

which differ only in the c-th element such that sq1[c] = 0, sq2[c] = 1. For a

spike key vector with its c-th element equal to 0 (sk[c] = 0), the dot-product

will always yield the same attention score for the two different spike queries:

sk⊤ · sq1 = sk⊤ · sq2. Only when the c-th element is equal to 1 (sk[c] = 1), the

spike key vector can differentiate between these two different queries. This

means that the dot-product used in [200], [262] is actually unable to precisely
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measure the similarity between two binary spike vectors.

Lemma 1 (Johnson–Lindenstrauss Lemma on Binary Embedding [81], [237]).

Let {xi}Mi=1 be set of M real-valued points, define its one bit quantization of

the projections,
s(x) = sign(Ax),

where s(x) ∈ {0, 1}Ck is the binary embedding of x ∈ Rdk and A ∈ RCk×dk is

a projection matrix with each entry generated independently from the normal

distribution N (0, 1). Given Ck>
logM

δ2
, for any two points among M ,

|fH(si, sj)− fC(xi,xj)| ≤ δ (5.11)

holds true with probability at least 1 − 2e−δ2Ck . Here fH is the normalized

Hamming distance defined as

fH(si, sj) =
1

Ck

Ck∑︂
k=1

1(sik ̸= sjk), (5.12)

and fC is cosine distance defined as

fC(xi,xj) =
1

π
arccos

(︂ x⊤
i xj

∥xi∥∥xj∥

)︂
. (5.13)

Proposition 1. Let qi,kj ∈ Rdk be a single query and key of real-valued points

in the standard transformer. Define sqi , s
k
j ∈ {0, 1}Ck as the corresponding

binary embedding defined as

sqi (qi) = sign(Aqi), skj (kj) = sign(Akj),

where A ∈ RCk×dk is a projection matrix with each entry generated indepen-

dently from the normal distribution N (0, 1). Given that Ck>
logM

δ2
, we have

g(dH(s
q
i , s

k
j )− δ) ≤ dC(qi,kj) ≤ g(dH(s

q
i , s

k
j ) + δ), (5.14)

with probability at least 1−2e−δ2Ck . Here g(x) = cos(π(1−x)) is a continuous

and monotone function for x ∈ [0, 1], M is the number of all possible keys and

queries given by the finite training set, dH ∈ [0, 1] is the normalized Hamming

similarity defined as

dH(s
q
i , s

k
j ) = 1− 1

Ck

Ck∑︂
c=1

1(sqic ̸= skjc), (5.15)

and dC ∈ [0, 1] is cosine similarity defined as

dC(qi,kj) =
q⊤
i kj

∥qi∥∥kj∥
. (5.16)
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Proof. By substituting xi,xj, si, sj in Eq. (5.11) with qi,kj, s
q
i , s

k
j respectively,

we have
fH(s

q
i , s

k
j )− δ ≤ fC(qi,kj) ≤ fH(s

q
i , s

k
j ) + δ.

After replacing fH, fC defined in Eq. (5.12) and (5.13) with dH, dC defined in

Eq. (5.15) and (5.16), we have

1− dH(s
q
i , s

k
j )− δ ≤ 1

π
arccos

(︂
dC(qi,kj)

)︂
≤ 1− dH(s

q
i , s

k
j ) + δ

cos
(︂
π
(︁
1− dH(s

q
i , s

k
j ) + δ

)︁)︂
≤ dC(qi,kj) ≤ cos

(︂
π
(︁
1− dH(s

q
i , s

k
j )− δ

)︁)︂
.

Define the function g(x) = cos(π(1 − x)), we have

g(dH(sqi , s
k
j ) − δ) ≤ dC(qi,kj) ≤ g(dH(sqi , s

k
j ) + δ).

Proposition 1 reveals that cosine similarity dC between real-valued queries

and keys is bounded within [g(dH − δ), g(dH + δ)], where dH is the nor-

malized Hamming similarity between corresponding binary spike queries and

keys. When the channel size Ck is large enough, dC approximates g(dH) with

high probability. Given that g is a continuous and monotonic function for

dH ∈ [0, 1], we propose a direct utilization of dH to compute the attention

scores between binary spike queries and keys in our Spiking Spatiotemporal

Transformer, which imitates the scaled dot-product similarity for real-valued

vectors in the standard transformer [200].

The gradient of normalized Hamming similarity does not exist since

Eq. (5.15) is a non-differentiable function. Thus we approximate dH by

dH(sqi , s
k
j ) ≈ 1 − 1

Ck

Ck∑︂
c=1

[︁
sqic · (1 − skjc) + (1 − sqic) · skjc

]︁
. (5.17)

As a result, the approximate gradients of normalized Hamming similarity func-

tion are given by:

∂dH(sqi , s
k
j )

∂sqi
≈

2skj − 1

Ck

,
∂dH(sqi , s

k
j )

∂skj
≈ 2sqi − 1

Ck

.
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5.3.4 Parametric Pose and Shape Regression

Parametric human pose and shape used in this work is SMPL model [116].

Given the shape parameters β, pose parameters θ and global translations d,

the model outputs a triangular mesh with 6,890 vertices at each time step,

that is M(β,θ,d) ∈ RT×6890×3 for T time steps in total. The shape param-

eters at time step t, denoted as β[t] ∈ R1×10, are linear coefficients of PCA

shape space, learned from a large number of registered body scans. These

parameters mainly describe individual body features such height, weight and

body proportions. The pose parameters at time step t, denoted as θ[t] ∈ R1×72,

represent the articulated poses of the triangular mesh, consisting of a global

rotation and relative rotations of the 24 joints in axis-angle form. The global

translations of human body at time step t is denoted by d[t] ∈ R1×3. To pro-

duce the final parametric shapes, the template body is deformed using shape-

and pose-dependent deformations, articulated through forward kinematics to

its target pose, and further transformed through linear blend skinning and

global translation. Meanwhile, the 3D and 2D joint positions, denoted as J3D

and J2D, are obtained by regressing from the output vertices and projecting

the 3D joints onto the 2D images.

We show the process in Fig. 5.6 where we apply the 2D average pooling

to the input spike tensor and then directly regress the shape parameters β̂,

pose parameters θ̂ and global translations d̂ via three linear layers in parallel.

Based on the predicted parameters, we obtain the corresponding parametric

shapes and joint positions Ĵ3D, Ĵ2D by SMPL model across T time steps. When

projecting 3D joints on 2D images, as the global translations under the camera

coordinate are predicted, we can use predefined camera intrinsic parameters

to reduce the redundancy of prediction.

The training losses for our model are introduced as follows:

L = λposeLpose + λshapeLshape + λtransLtrans + λ3DL3D + λ2DL2D,

where λpose, λshape, λtrans, λ3D and λ2D are the corresponding loss weights.

For the poses loss, we use the 6D representation of rotations, which has been

shown to perform better than the 3D axis-angle representation in [261], [266]
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Figure 5.6: Human poses and shapes regression.

for human pose estimation. Then we use the geodesic distance in SO(3) to

measure the distance between the predicted and target poses:

Lpose =
T∑︂
t=1

24∑︂
j=1

arccos2
(︂Tr

(︁
R⊤(θj

[t])R(θ̂
j

[t])
)︁
− 1

2

)︂
, (5.18)

where R(·) is the function that transforms the 6D rotational representation to

the 3 × 3 rotation matrix and j is the joint index. Other losses are basically

Euclidean distances between the predicted and target values as follows:

Lshape =
T∑︂
t=1

∥β[t] − β̂[t]∥2,

Ltrans =
T∑︂
t=1

∥d[t] − d̂[t]∥2,

L3D =
T∑︂
t=1

24∑︂
j=1

∥Jj
3D[t] − Ĵ

j

3D[t]∥2,

L2D =
T∑︂
t=1

24∑︂
j=1

∥Jj
2D[t] − Ĵ

j

2D[t]∥2.

5.3.5 Our SynEventHPD Dataset

Currently, the largest event-based dataset for human pose estimation is MMH-

PSD, which includes 15 subjects, 21 different actions and a total of 4.39 hours

of event streams [266]. However, this dataset’s limited variety of motions re-

stricts the generalization ability of trained models. To address this issue, we

propose to synthesize event data from multiple motion capture datasets, in-

cluding Human3.6M [80], AMASS [122], PHSPD [270] and MMHPSD-Gray [266],
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Figure 5.7: t-SNE visualization of poses from each sub-dataset in our Syn-
EventHPD dataset.

Dataset R/S
Sub
#

Str
#

Len
(hrs)

AvgLen
(mins)

Pose

MMHPSD [266] Real 15 178 4.39 1.48 ✓
EventH36M Syn 7 835 12.46 0.90 ✓

EventAMASS Syn 13 8028 23.54 0.18 ✓
EventPHSPD Syn 12 156 5.33 2.05 ✓
SynMMHPSD Syn 15 178 4.39 1.48 ✓

SynEventHPD (Total) Syn 47 9197 45.72 0.30 ✓

Table 5.1: Summary of event-based datasets for 3D human pose tracking,
including existing MMHPSD dataset and 4 sub-datasets in our SynEventHPD
dataset.

to construct a large-scale synthetic dataset. Our synthetic dataset, called Syn-

EventHPD, is a meta dataset consisting of 4 sub-datasets: EventH36M, Even-

tAMASS, EventPHSPD and SynMMHPSD. In total, it contains 45.72 hours of

event streams, which is more than 10 times the size of MMHPSD. The distri-

bution of poses across all these datasets are visualized in Fig. 5.7 to highlight

the variety. Other details are summarized in Tab. 5.1.

The synthesizing process of our new dataset is mainly based on the

workflow proposed in [61]. Given an RGB video, we first detect the bound-

ing box of the person in each frame using 2D pose annotations or 2D pose

detector like OpenPose [24]. After calculating the global bounding box, we
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crop each RGB frame accordingly and resize to 512 × 512 to maintain a same

image size across different sub-datasets. Next, we apply the approach pro-

posed in [84] for frame interpolation guided by the predicted optical flows to

increase the frame rate of provided videos. After converting the high frame

rate RGB videos to gray-scale images, we generate events by checking the

brightness change at each pixel over time, where the contrast thresholds for

positive and negative events are 0.3 and the minimum waiting period before

a pixel can trigger a new event is 1e-4 seconds. This process is straightfor-

ward for Human3.6M [80], PHSPD [270] and MMHPSD [266], as they contain

RGB or gray-scale videos. We name the three sub-datasets as EventH36M,

EventPHSPD and SynMMHPSD respectively. Since the three datasets pro-

vide corresponding SMPL pose and shape annotations, we keep them in our

dataset while calculating an optimal global translation for each frame by align-

ing projected 3D poses with annotated 2D poses on the image, using the default

camera intrinsic (focal length, center) = (671.72, 256.4). The FPS of pose an-

notations in EventPHSPD and SynMMHPSD is 15 while FPS in EventH36M

is 10 based on the observations that the motions in Human3.6M are relatively

slow.

AMASS [122] dataset only contains motion capture data without any RGB

videos. In this regard, for each motion capture sequence, an avatar is randomly

picked from 13 different avatars shown in Fig. 5.8, animated and rendered to

form its corresponding RGB videos of size 512 × 512, obtained using one of

the 4 predefined lightning conditions displayed in Tab. 5.2. These 4 lightning

conditions represent the positions of top center, left and right top, left and

right bottom with different strength of illumination ranging from 0 to 1. The

following process of events generation is the same with the 3 sub-datasets men-

tioned above. As for the SMPL pose and shape annotations, the additional

preprocessing step for AMASS is to properly scale the trajectory of each se-

quence to avoid out of camera scope. We observe the FPS of AMASS motion

sequences contains 60, 100 and 120. To make FPS of annotations across all the

sequences, we downsample the FPS of motion to 20 before animation. Finally,

we obtain the sub-dataset EventAMASS.
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Figure 5.8: Front and back views of 13 avatars used in EventAMASS dataset.

Lightning (Position, Color)

1 ([0, 0, -300], [1.0, 1.0, 1.0])

2
([-300, -300, -300], [0.8, 0.8, 0.8])
([300, -300, -300], [0.8, 0.8, 0.8])

3
([300, 0, -300], [1, 1, 1])

([-300, 0, -300], [0.4, 0.4, 0.4])

4
([300, 0, -300], [0.4, 0.4, 0.4])

([-300, 0, -300], [1, 1, 1])

Table 5.2: Four predefined lightning conditions used for rendering in EventA-
MASS dataset.

Annotations provided in our dataset include pose and shape parameters of

SMPL model, corresponding 2D/3D joint positions and the global translation

under the default camera intrinsic parameters. We demonstrate the effective-

ness of our large-scale synthetic dataset by showing four examples of images,

event frames, and annotated poses in Fig. 5.9. We also show a motion clip

from each sub-dataset in Fig. 5.10 to illustrate the efficacy of our synthetic

events.
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MMHPSD (Real) SynMMHPSD

EventAMASS

EventH36M

EventPHSPD

Example Samples from Each Dataset

Figure 5.9: Sample examples of the synthesized event signals.

MMHPSD (Real) SynMMHPSDImage Pose EventH36MImage Pose EventAMASSImage PoseEventPHSPDImage Pose

Figure 5.10: Example sequence from each sub-dataset in our SynEventHPD
dataset.

5.4 Experiments

5.4.1 Empirical Results on MMHPSD Dataset

In this section, we start by outlining the implementation details for training

and explaining the reported evaluation metrics. Subsequently, we compare our

method with recent video-based and event-based human pose estimation ap-

proaches, emphasizing the competence of event signals for human pose track-

ing. We also compare our SNNs model with three popular ANNs models,

illustrating the efficiency and effectiveness of our SNNs approach. Moreover,

we contrast our approach with five recently proposed SNNs models, showcasing

the superiority of our Spiking Spatiotemporal Transformer for bi-directional
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Model
ANN/
SNN

Architecture

VIBE [98]

ANN

ResNet50 + GRU-1024hidden-bidirectional

MPS [220] ResNet50 + Temporal Attentive Module

EventHPE [266] ResNet50 + GRU-1024hidden-bidirectional

ResNet-GRU [98] ResNet50 + GRU-1layer-1024hidden-bidirectional

ResNet-TF [26]
ResNet50 +

Transformer-Encoder-2layers-384hidden-8heads +

Transformer-Decoder-2layers-384hidden-8heads

Video-Swin [115]
Swin Tiny-96hidden-depths=[2,2,6,2]-

heads=[3,6,12,24]-window size=(8,8,8)

SEW-ResNet-TF Mix
SEW-ResNet50 +

Transformer-Encoder-2layers-384hidden-8heads +

Transformer-Decoder-2layers-384hidden-8heads

MA-SNN [235]

SNN

SEW-ResNet50 + Multi-dimensional Attention

SpikeFormer [262] 16x16patch-10layers-512hidden

Ours
ResNet50 + SpikingSpatiotemporal

Transformer-2layers-1024-1head

Table 5.3: Architecture of different baseline models.

temporal information fusion in human pose tracking.

Implementation Details. For a fair comparison with prior works [227],

[266], we follow the train and test set split for the MMHPSD dataset from [266],

where subject 1, 2 and 7 are designated for testing and the remaining 12 sub-

jects for training. We present the results of model trained with T = 8 time

steps and T = 64 time steps. For event stream preprocessing, we convert

each event packet into a voxel grid of size 256 × 256 × 4. Empirically, we

find that C = 4 is the best choice, as higher values do not show performance

improvements in the ablation study. To fairly compare with other baselines in

terms of the number of parameters, we use SEW-ResNet50 [57] as the back-

bone and configure the Spiking Spatiotemporal Transformer with 1024 hidden

dimension, 1 attention head and 2 layers, resulting in 47.7M parameters. The

architecture details of other baseline models are displayed in Tab. 5.3.
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During training, to ensure robustness against both fast and slow motions,

we augment the training samples in two ways: randomly selecting event stream

of (0.5, 1, 2, 3) seconds for T = 8 and (4, 8, 16, 32) seconds for T = 64 as

the input, spatially rotating the voxel grid with a random degree between

-20 and 20. We use parametric LIF neuron with soft reset and retain the

backpropagation of reset path in SNNs, where SpikingJelly [56] is used to

implement the model. The loss weights λpose, λshape, λtrans, λ3D and λ2D are

set to be 10, 1, 50, 1 and 10 respectively. We train the two models for 20 and

25 epochs respectively with batch size being 8. The learning rate starts from

0.01 and is scheduled by CosineAnnealingLR, with maximum epoch number

of 21 and 26. The models are trained on a single NVIDIA A100 GPU. For

testing, 1 and 8-second event streams are used for T = 8 and T = 64 models

respectively.

Evaluation metrics. Similar to previous works [98], [266], we report

three different metrics, mean per joint position error (MPJPE), pelvis-aligned

MPJPE (PEL-MPJPE) and Procrustes-Aligned MPJPE (PA-MPJPE). MPJPE

is defined as

MPJPE =
1

24

24∑︂
j=1

∥Jj
3D − Ĵ

j
3D∥2, (5.19)

where Ĵ3D,J3D ∈ R24×3 are the predicted and target 3D joints. Pelvis-aligned

MPJPE (PEL-MPJPE) means MPJPE after root joint alignment between the

predicted and target pose, which is defined as

PEL-MPJPE =
1

24

24∑︂
j=1

∥(Jj
3D − Jroot,3D)− (Ĵ

j
3D − Ĵroot,3D)∥2, (5.20)

where Jroot,3D and Ĵroot,3D are the root joint positions. Procrustes-aligned

MPJPE (PA-MPJPE) means MPJPE after aligning the predicted pose with

the target by a rigid transformation (R, t), which is defined as

PA-MPJPE =
1

24

24∑︂
j=1

∥Jj
3D − (Ĵ

j
3D ·R+ t)∥2. (5.21)

Note that (R, t) are calculated by minimizing the average distance between

the target 3D joints J3D and the transformed predicted joints (Ĵ3D ·R + t).
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Method
ANNs/
SNNs

Input Params
T=8 (1 sec)

FLOPs Engy MPJPE ↓ PEL-MPJPE ↓ PA-MPJPE ↓
VIBE [98]

ANNs
V 48.3M 43.4G 0.19 - 73.1 50.9

MPS [220] V 39.6M 45.6G 0.20 - 68.0 48.2

EventCap(VIBE) [227]

ANNs

V+E 48.3M 185.0G 0.85 - 71.9 50.4

EventCap(MPS) [227] V+E 39.6M 187.2G 0.86 - 66.6 47.8

EventHPE(VIBE) [266] G+E 49.0M 49.0G 0.22 - 69.6 48.9

EventHPE(MPS) [266] G+E 39.6M 49.3G 0.22 - 65.1 46.5
†EventHPE(GT) [266] G+E 46.9M - - 71.8 55.0 43.9

ResNet-GRU [98]

ANNs

E 46.9M 43.6G 0.20 111.2 60.0 45.3

ResNet-TF [26] E 41.3M 50.5G 0.23 108.5 59.9 44.1

Video-Swin [115] E 48.9M 44.7G 0.20 124.1 66.5 49.0

SEW-ResNet-TF Mix E 47.0M 24.5G 0.097 110.8 58.9 44.2

ANN2SNN [171]

SNNs

E 46.9M 12.5G 0.011 140.3 74.1 55.8

SEW-ResNet [57] E 25.8M 9.1G 0.008 116.8 62.5 48.3

MA-SNN [235] E 30.2M 7.5G 0.007 115.2 61.6 47.6

SpikeFormer [262] E 36.8M 13.2G 0.011 112.5 60.2 46.8

Ours SNNs E 47.7M 9.4G 0.008 107.1 58.8 44.1

Table 5.4: Quantitative results of human pose tracking on the MMHPSD test
set with T being 8.

We also report FLOPs in terms of the number of MAC or AC and energy

consumption (Engy) in term of joule J to show the cost-efficiency of SNNs.

Comparison with SOTA Methods. We compare our method with four

prior works to highlight the competency of using event signals only for human

pose tracking: VIBE [98], MPS [220], EventCap [227], and EventHPE [266],

where VIBE [98] and MPS [220] are two most recent methods for video-based

human pose estimation. In Tab. 5.4 and 5.5, we use V, G and E to represent

the input data of gray-scale video, first gray-scale image and event streams

respectively. VIBE and MPS are applied as the most recent video-based base-

lines with ResNet50 as the backbone. Note that both methods use weak

camera model without global translation, so we will not report their MPJPE.

To extract initial poses from the gray-scale video as required by EventCap,

we make use of pre-trained VIBE and MPS methods for the extraction, la-

beled as EventCap(VIBE) and EventCap(MPS). Since the authors have not

published their code, we re-implement EventCap using PyTorch LBFGS opti-

mizer and PyTorch3D differential render, following [266]. Besides, EventCap
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Method
ANNs/
SNNs

Input Params
T=64 (8 secs)

FLOPs Engy MPJPE ↓ PEL-MPJPE ↓ PA-MPJPE ↓
VIBE [98]

ANNs
V 48.3M 344.9G 1.58 - 75.4 53.6

MPS [220] V 39.6M 348.3G 1.60 - 69.2 50.1

EventCap(VIBE) [227]

ANNs

V+E 48.3M 1477.7G 6.79 - 74.1 52.9

EventCap(MPS) [227] V+E 39.6M 1481.1G 6.81 - 68.1 49.5

EventHPE(VIBE) [266] G+E 49.0M 354.0G 1.62 - 71.6 50.2

EventHPE(MPS) [266] G+E 39.6M 354.2G 1.63 - 66.8 48.1
†EventHPE(GT) [266] G+E 46.9M - - 74.5 58.1 45.3

ResNet-GRU [98]

ANNs

E 46.9M 348.6G 1.60 115.0 64.2 49.5

ResNet-TF [26] E 41.3M 403.8G 1.85 114.2 66.0 50.1

Video-Swin [115] E 48.9M 359.6G 1.65 130.9 72.5 53.1

SEW-ResNet-TF Mix E 47.0M 199.7G 0.79 113.2 65.3 49.3

ANN2SNN [171]

SNNs

E 46.9M 98.8G 0.089 148.2 81.1 60.9

SEW-ResNet [57] E 25.8M 56.7G 0.051 122.8 66.3 52.3

MA-SNN [235] E 30.2M 55.3G 0.055 120.1 64.8 48.9

SpikeFormer [262] E 36.8M 96.3G 0.086 118.1 64.1 48.4

Ours SNNs E 47.7M 63.4G 0.058 111.8 61.7 45.6

Table 5.5: Quantitative results of human pose tracking on the MMHPSD test
set with T being 64.

is an iterative optimization approach, which typically requires much more

FLOPs than end-to-end methods as is indicated in Tab. 5.4 and 5.5. For Even-

tHPE, we also use VIBE and MPS for the starting pose extraction, denoted as

EventHPE(VIBE) and EventHPE(MPS). We also report the results of Even-

tHPE with ground-truth starting pose known, denoted as EventHPE(GT).

This method is considered the upper bound as it is assumed to have perfect

information of the starting pose in the first frame, without any pose errors

induced by VIBE or MPS.

As shown in Tab. 5.4 and 5.5, the most recent MPS outperforms VIBE by

approximately 9mm in PEL-MPJPE and 5mm in PA-MPJPE for both T = 8

and T = 64. This trend is also evident when comparing EventCap(MPS) with

EventCap(VIBE) or EventHPE(MPS) with EventHPE(VIBE), indicating that

the performance of the two prior works [227], [266] is significantly impacted by

the accuracy of initial poses provided by the pre-trained video-based methods.

When the initial poses are inaccurate, they might fall into a local minimum

and only improve the initial states by up to 3mm in PEL-MPJPE and 2mm in
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PA-MPJPE. In constrast, our end-to-end approach directly uses event streams,

which are better to capture the motion dynamics than images. Consequently,

our SNNs model achieves the best performance with the smallest gap to the

upper bound EventHPE(GT) while using only about 6% of FLOPs required

by the optimization-based EventCap and 20% of FLOPs needed by the Even-

tHPE. This is further illustrated in Fig. 5.11, where the inaccurate initial or

starting poses given by MPS lead to sub-optimal pose tracking outcomes com-

pared to ours. We also provide a supplementary video4 for better illustration

of the results.

Comparison with ANNs models. To further illustrate the advantages

of SNNs over ANNs in event-based human pose tracking, we compare our

model with three popular ANNs models: ResNet with GRU used in [98], [266]

(ResNet-GRU), ResNet with standard transformer [200] used in DETR [26]

(ResNet-TF) and Video Swin Transformer proposed in [115] (Video-Swin).

For fair comparisons, we select the architecture with about 45M parameters

for all the models. The settings for training these ANNs models mostly follow

those of our approach, except the learning rate, which starts from 0.0001 and

is scheduled by StepLR with a 0.1 decay after 15 and 20 epochs for both T=8

and T=64, respectively. This is because ANNs models do not converge well

using a higher learning rate, such as 0.001.

For the models of T = 8 in Tab. 5.4 and 5.5, our approach achieves slightly

lower pose errors than ResNet-GRU and Video-Swin, while presenting compet-

itive performance with ResNet-TF, which also achieves 44.1mm in PA-MPJPE.

In the case of T = 64, where longer temporal dependencies are necessary for

perception, the performance decline of the three ANNs models is noticeably

larger than that of our SNNs model, with over 4.1mm vs. 1.5mm drop in

PA-MPJPE. Furthermore, our model requires only 9.4G and 63.4G FLOPs

for T = 8 and T = 64, respectively, which is less than 20% of the FLOPs

needed by the three ANNs models. These results demonstrate the superiority

of our SNNs approach in efficiently encoding long-term temporal dependen-

cies within event streams, primarily due to the fundamentally different working

4Link of supplementary video.
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Figure 5.11: Qualitative results of ours compared with state-of-the-art meth-
ods.

mechanisms of spiking neurons compared to conventional artificial neurons.

Comparison with SNNs models. In Tab. 5.4 and 5.5, we compare our

approach with five recently proposed SNNs models to highlight the superiority

of our Spiking Spatiotemporal Transformer for human pose tracking. SEW-

ResNet-TF acts as a baseline of mixed architecture that employs SEW-ResNet

as the SNNs backbone followed by an ANN-based standard Transformer for

pose tracking. The model architecture settings are similar to our approach.

ANN2SNN refers to the conversion of the ANNs model of ResNet-GRU to

the SNNs model using [171]. SEW-ResNet [57] is the backbone used in our

approach without Spiking Spatiotemporal Transformer. MA-SNN [235] rep-

resents multi-dimensional attention SNNs where SEW-ResNet50 is used for

a fair comparison. SpikeFormer [262] indicates an SNNs-based vision trans-

former (ViT) [50], where dot-product is directly adopted in the self-attention

module.

Compared to the mixed model SEW-ResNet-TF, our approach exhibits

slightly lower pose errors while requiring less than 50% of FLOPs. As for

the entirely SNNs-based models, although ANN2SNN has shown its excellent

performance in the image classification task, it falls short in the regression
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task of pose tracking, producing much higher pose errors than other directly

trained SNNs. This is primarily due to the quantization errors introduced dur-

ing the conversion process. When compared to SEW-ResNet, our approach

yields much lower pose errors – 48.3 vs. 44.1mm in PA-MPJPE for T = 8

– and the performance gap widens for T = 64, at 52.3 vs. 45.6mm. This

demonstrates the importance of bi-directional temporal information provided

by the proposed Spiking Spatiotemporal Transformer. In terms of MA-SNN,

although it requires fewer FLOPs than our approach due to its lower spiking

rate of 16.4% vs. ours of 22.6%, its performance is still inferior. Additionally,

our approach presents moderately lower pose errors and fewer FLOPs than

SpikeFormer, which is attributed to the proposed normalized Hamming simi-

larity in the spiking attention module, as opposed to the ill-posed dot-product

between spike tensors.

5.4.2 Empirical Results on SynEventHPD Dataset

Although this dataset covers a variety of motions, as illustrated in Fig. 5.7,

the potential domain gap between synthetic and real events data remains an

open question. In this section, we aim to demonstrate the value of our Syn-

EventHPD dataset. We select five models from Tab. 5.4 and 5.5 including one

ANNs model (ResNet-GRU [98]), one mixed model (SEW-ResNet-TF) and

three SNNs models (SEW-ResNet [57], MA-SNN [235] and Ours). All models

are evaluated on the real MMHPSD test set, but trained using either the real

MMHPSD train set, the synthetic SynEventHPD dataset or a combination of

both synthetic dataset and the real train set.

The quantitative results are displayed in Tab. 5.6. It is evident that, com-

pared to models trained using the real MMHPSD train set, the pose errors are

generally higher for models trained on the synthetic SynEventHPD dataset.

This is largely due to the domain gap between the synthetic and real events,

which results in inferior performance when training only on synthetic data and

then evaluating on real data. However, after combining both real and synthetic

datasets for training, all the models in Tab. 5.6 achieve improved performance

compared to using either the real MMHPSD train set or the synthetic Syn-
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Model
ANN/
SNN

Training
Set

T=8 (1 sec)

MPJPE ↓ PEL-MPJPE ↓PA-MPJPE ↓

ResNet-GRU [98] ANN

Syn 113.6 62.2 47.5

Real 111.2 60.0 45.3

Syn&Real105.4 (5.8) 58.9 (1.1) 44.6 (0.7)

SEW-ResNet-TF Mix

Syn 114.1 60.6 45.5

Real 110.8 58.9 44.2

Syn&Real104.2 (6.6) 58.4 (0.5) 43.5 (0.7)

SEW-ResNet [57]

SNN

Syn 120.3 63.6 49.1

Real 116.8 62.5 48.3

Syn&Real113.1 (3.7) 61.7 (0.8) 47.8 (0.5)

MA-SNN [235]

Syn 119.0 63.1 48.8

Real 115.2 61.6 47.6

Syn&Real112.5 (2.7) 60.7 (0.9) 46.9 (0.7)

Ours

Syn 110.7 59.4 45.0

Real 107.1 58.8 44.1

Syn&Real103.1 (4.0) 58.4 (0.4) 43.8 (0.3)

Table 5.6: Quantitative results on the real MMHPSD test set with models
trained on real/synthetic datasets.

EventHPD dataset alone. This highlights the effectiveness of the proposed

SynEventHPD dataset. We also present qualitative results in Fig. 5.12, il-

lustrating the performance of our model trained solely on the synthetic Syn-

EventHPD dataset and applied to unseen scenarios. The left two examples

show predictions on synthetic events generated from webcam videos, while the

right example displays test results on real data. Despite being trained on the

synthetic dataset, our model still demonstrates its generalization ability and

applicability.

5.4.3 Empirical Results on DHP19 Dataset

DHP19 dataset [23] only provides 2-view events stream and joint positions

without available gray-scale images and SMPL pose and shape parameters.

As a result, we follow the settings in [23] where event frames are the input

and the 2D joint heatmaps are the output. Then, using the predicted 2-

view 2D joint positions, 3D pose can be reconstructed. We report the joint

errors in Tab. 5.7, where DHP19 [23] uses CNNs to regress the joint heatmaps,

SEW-ResNet [57] uses SNNs and Ours uses SNNs with our proposed spiking

spatiotemporal transformer. Unlike SMPL pose, the 3D pose in this dataset is
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Figure 5.12: Generalization ability of our model, trained solely on the synthetic
SynEventHPD dataset and applied to unseen scenarios.

Model
ANN/
SNN

T=8 (1 sec)

FLOPs MPJPE ↓ PEL-MPJPE ↓ PA-MPJPE ↓
DHP19 [23] ANN 42.4G 80.1 131.7 74.6

SEW-ResNet [57] SNN 8.7G 75.7 118.1 70.9

Ours SNN 10.1G 70.7 110.1 68.6

Table 5.7: Quantitative results on DHP19 dataset.

unconstrained, resulting in the higher joint errors after aligning root joint. The

quantitative results show that our approach and SEW-ResNet exceed DHP19

by a large margin while requiring less than 25% FLOPs, which could attribute

the properties of temporal dependencies in SNNs. When comparing to SEW-

ResNet, our approach still gives much lower joint errors, demonstrating the

effectiveness of our proposed spiking spatiotemporal transformer for better

bi-directional temporal information fusion.

5.4.4 Ablation Study

In this section, we perform ablation studies to assess several crucial compo-

nents in our approach. The quantitative results can be found in the corre-

sponding sub-figures of Fig. 5.13.

(i) Score function in Spiking Spatiotemporal Transformer: We

compare the proposed normalized Hamming similarity between spike vectors

to scaled dot-production similarity, normalized Euclidean similarity and nor-
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malized Manhattan similarity as detailed below:

Nomalized Hamming similarity 1− 1

Ck

Ck∑︂
c=1

1(sqic ̸= skjc),

Scaled dot-product similarity
1√
Ck

Ck∑︂
c=1

sqic · s
k
jc,

Normalized Euclidean similarity 1− 1

Ck

Ck∑︂
c=1

(sqic − skjc)
2,

Normalized Manhattan similarity 1− 1

Ck

Ck∑︂
c=1

|sqic − skjc|.

The quantitative results of PEL-MPJPE depicted in Fig. 5.13 (i) reveal that

our approach outperforms the other three commonly used similarity functions

by over 3mm, showcasing the effectiveness of the normalized Hamming simi-

larity as the score function for spike vectors.

(ii) Channel C of input voxel: We compare channel sizes of 1, 2, 4, 6

and 8 in terms of PEL-MPJPE in Fig. 5.13 (ii). The results show that C = 4

yields lower joint errors compared to sizes of 1 and 2, while nearly the same

errors as sizes 6 and 8. Therefore, C = 4 is empirically determined to be the

appropriate choice for the channel size.

(iii) # of attention layers: We compare our model with 0, 1, 2, 4

and 6 layers in Spiking Spatiotemporal Transformer in Fig. 5.13 (iii). The

improvement of PEL-MPJPE is noticeable when using 1 or 2 layers of attention

in our spiking transformer. However, this improvement is minimal for 4 and 6

layers, accompanied by a dramatic increase in the number of parameters from

47.7M to 87.4M.

5.4.5 Discussions

Attention scores maps are shown in Fig. 5.14. For better visualization, we

transform the attention score matrix from THW ×THW to T ×T , where the

attention weights of spatial positions at each time step are summed together.

The two examples illustrate that our attention mechanism allows the query

at t = 1 to focus predominantly on features originating from subsequent time

steps, thereby providing a more accurate and efficient prediction of body part
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Figure 5.13: Ablation studies of three components in our proposed Spatiotem-
poral Spiking Transformer.
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Figure 5.14: Visualization of attention score maps.

positions even when they are obscured. The success of these examples can be

attributed to its ability to globally adapt to the temporal dependencies present

in the input event stream. By emphasizing the relevant features from temporal

context, our method can effectively compensate for the lack of information due

to occlusion in the initial stages. This results in more accurate and robust pose

tracking through time from events only.

Failure cases are displayed in Fig. 5.15, where the pose are not accurately

estimated from the events. These cases were primarily attributed to the pres-

ence of body part occlusion and the absence of temporal context. The impact
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of occlusion can be significant, as it hinders the model’s ability to detect and

analyze essential features required for pose estimation. Moreover, unlike the

examples in Fig. 5.14, the lack of temporal context further compounds this

issue, as the model cannot effectively leverage information from previous or

subsequent frames to compensate for missing or obscured data. Recognizing

and addressing these failure cases is crucial for improving the robustness and

reliability of our event-based pose tracking method.

Events 

(Input)

Predicted 

Poses

Images

(reference 

only)

Figure 5.15: Failure cases.

5.5 Conclusion

We present in this chapter a dedicated end-to-end SNNs approach for event-

based pose tracking, where events are the only source of input, thus removing

the need of additional RGB or gray-scale images. Our approach is based

entirely upon SNNs, with the proposed Spiking Spatiotemporal Transformer

demonstrating its effectiveness for bi-directional temporal feature compensa-

tion. A large-scale synthetic dataset is also constructed, featuring a broad

and diverse set of annotated 3D human motions, as well as longer hours of

event stream data. Empirical experiments demonstrate the superiority of our

approach in both efficacy and efficiency measures.
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Chapter 6

Human Pose and Shape
Estimation from Single
Polarization Images

6.1 Introduction

A critical computer vision problem is to predict 3D human poses, i.e., 3D

body joint locations, from single images. In recent years, rapid progress is

made in 3D human pose prediction from RGB images [55], [70], [90], [144],

[146], [150], [209], [212], [249], [252]. Moreover, fueled by the development in

parametric human shape modelling, such as SCAPE [7] and SMPL [116], it

becomes feasible to estimate human body shapes from a single RGB image,

as is evidenced by a number of end-to-end deep learning methods [10], [19],

[48], [91], [92], [97], [101], [117], [156], [253], [257], [264], [271]. On the other

hand, the problems of 3D human pose and shape estimation from single RGB

images are still far from being solved. This is mainly due to the inherent lack

of 3D cues in an RGB image. Furthermore, as the human shape models (e.g.

SMPL) are usually learned from large sets of scanned human naked bodies,

they are often lacking in clothing details.

The above observation inspires us to investigate a new imaging modality,

polarization images, in this paper. That is, we consider the problem of esti-

mating human pose and shape from a single polarization image. Polarization

camera is built on a basic physics principle: a light ray reflected from an ob-

ject is usually polarized. The polarized signal thus carries sufficient geometric
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cues of object surface details to reliably infer its surface normal [9], [231]. It is

worth mentioning the biological fact that light polarization could be directly

perceived by some species of bees, ants, and shrimps for purposes such as 3D

navigation [42], [218]. Motivated by the physical and biological facts, we pro-

pose a dedicated two-stage approach for human pose and shape estimation by

integrating the geometric cues from the input polarization images.

As shown in Fig. 6.1, our approach, also called HumanSfP, contains two

main stages. Stage one, Polar2Normal, concentrates on predicting accurate

surface normal maps from single polarization images by exploiting the asso-

ciated physics laws as priors. It is then fed into stage two, Polar2Shape, to

reconstruct a clothed human shape guided by the obtained surface normal and

an initial SMPL naked shape.

polarization image predicted normal

clothed body shape

Polar2Normal

Polar2Shape

Deformation

initial body shape

Figure 6.1: An overview of our HumanSfP approach that consists of two main
stages: Polar2Normal and Polar2Shape.

Different from previous efforts in estimating detailed depth map [192],

[264], our stage one focuses on surface normal estimation from a polarization

image. By explicitly integrating the underlying physical principles, it gives rise

to more reliable estimation. To achieve this goal, two main challenges need

to be addressed, namely π-ambiguity of the azimuth angle and the possible

environmental noise in practical applications. Based on the physical laws of

polarization, two ambiguous normal maps m1 and m2 (Sec. 6.3.1) can be di-
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rectly calculated from a polarization image. It is often reasonable to assume

light reflected by human clothes is dominated by diffused reflection. Then,

different from [9], we consider a two-branch strategy: one branch is employed

to categorize each pixel into three categories: the two ambiguous normal maps

and background; the second branch is to infer a coarse surface normal map.

A fused normal map is produced by incorporating the classification results as

well as the two ambiguous normal maps. Finally, as is revealed by [269], the

fused normal map might still be noisy, owing to the environmental noise and

the digital quantization of the polarization camera. Instead, we work with the

normal residual, calculated as the difference between the coarse and the fused

normal maps, to refine the coarse normal map and produce our final normal

estimation.

Based on the raw polarization image and final surface normal output of

stage one, stage two concerns the estimation of 3D human pose and the recon-

struction of its clothed shape. It starts from estimating an initial parametric

shape, i.e., SMPL shape, as 3D pose, which is then deformed by leveraging

the geometric details from the surface normal to reconstruct the final clothed

human shape. Different from previous works [91], [92], [269], geodesic distance

is employed in SMPL shape estimation, since the pose representation of SMPL

is naturally in the product space of SO(3), a classical example of Lie group.

Empirical evidence shows that our two-stage pipeline can faithfully infer de-

tailed surface normals and accurately estimate human poses and clothed body

shapes.

To summarize, there are three main contributions in our work:

• A new problem, namely human pose and shape estimation from single

polarization images, is proposed. A dedicated deep learning approach,

HumanSfP, is proposed, where the detail-preserving surface normal maps

are obtained following the physical laws of light polarization, and are

shown to estimate more accurate pose and body shape.

• In tackling this new problem, a dedicated Polarization Human Shape

and Pose Dataset, PHSPD, has been created. It now consists of ∼527K
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frames and their corresponding pose and shape annotations. Overall

there are 21 different subjects performing 31 unique actions, and ∼9.5

hours of videos are recorded in total. 1.

• Empirical evaluations on a synthetic dataset, SURREAL dataset, as well

as our real-world dataset, PHSPD dataset, demonstrate the effectiveness

and applicability of our approach. Our work showcases that, for estimat-

ing 3D human poses and shapes, a 2D polarization camera could be a

viable alternative to a conventional RGB camera.

6.2 Preliminary Backgrounds

6.2.1 Polarization Image Formation

The light reflected from an object’s surface mainly includes three compo-

nents [41], the polarized specular reflection, the polarized diffuse reflection,

and the unpolarized diffuse reflection. A polarization camera is equipped with

an array of linear polarizers mounted right on top of its CMOS imager, in

place of the RGB Bayer filters. During the imaging process, a pixel’s intensity

typically varies sinusoidally with the angle of the polarizer [231]. In this work,

we assume that the light reflected from human clothes is dominated by polar-

ized diffuse reflection and unpolarized diffuse reflection. Then, for a specific

polarizer angle ϕpol, the illumination intensity at a pixel with dominant diffuse

reflection is

I(ϕpol) =
Imax + Imin

2
+

Imax − Imin

2
cos
(︁
2(ϕpol − φ)

)︁
. (6.1)

Here φ is azimuth angle of the surface normal, Imax and Imin are the upper

and lower bounds of the illumination intensity. Imax and Imin are mainly de-

termined by the unpolarized diffuse reflection, and the sinusoidal variation is

mainly determined by the polarized diffuse reflection. If the intensity images

I(ϕpol) under three or more different polarizer angles can be obtained, such

as I(0◦), I(45◦) and I(90◦), φ can be solved in closed form. Note that there

1The dataset and our code are publicly available at
https://github.com/JimmyZou/PolarHumanPoseShape
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is π-ambiguity in the azimuth angle φ in Eq. (6.1), which means that φ and

π + φ will result in the same illumination intensity of the pixel. As for the

zenith angle θ, it is related to the degree of polarization ρ,

ρ =
Imax − Imin

Imax + Imin

. (6.2)

According to [8], when diffuse reflection dominates, the degree of polarization

ρ becomes a function of the zenith angle θ and the refractive index n,

ρ =
(n− 1

n
)2 sin2 θ

2 + 2n2 − (n + 1
n
)2 sin2 θ + 4 cos θ

√︁
n2 − sin2 θ

. (6.3)

The solution of θ in Eq. (6.3) is thus a close-form expression of n and ρ.

The refractive index of human clothing typically varies between 1.3 and

1.5 [134]. In most instances, polarized diffuse reflection is the predominant

component of light reflected from clothing. Beyond clothing, other human sur-

faces captured by polarization cameras include skin, such as faces and limbs

exposed when wearing t-shirts or shorts. The refractive index of human skin is

similar, ranging from 1.35 to 1.55 [134]. However, there are instances, partic-

ularly when skincare products are applied to the face, where polarized diffuse

reflection becomes a major component. This variation can slightly impact our

approach, which primarily assumes that polarized diffuse reflection dominates.

It is important to note that our dataset contains only a limited number of such

cases.

6.2.2 Special Orthogonal Group

Mathematically, a Lie group [139] is a group as well as a smooth manifold. 3D

rotation transformations, also known as the Special Orthogonal group SO(3),

is exactly a Lie group and could be characterized by

SO(3) = {R ∈ R3×3|R⊤R = I, det(R) = +1}. (6.4)

The tangent space of Lie group SO(3) at identity I3 is referred to as its Lie

algebra so(3). An element of so(3) is a 3×3 skew-symmetric matrix Ŵ defined

as

Ŵ =

⎛⎝ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞⎠ . (6.5)
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Essentially, so(3) spans a 3-dimensional vector space, denoted by w = (w1, w2, w3)
⊤.

The mapping from a Lie algebra vector Ŵ ∈ so(3) to a point in the manifold

R ∈ SO(3) is formulated as an exponential map exp : so(3) → SO(3) as

R = exp (Ŵ ) = I +
sin(∥w∥)

∥w∥
Ŵ +

1 − cos (∥w∥)

∥w∥
Ŵ

2
, (6.6)

where ∥ · ∥ denotes the vector norm. The geodesic distance of two points in

the manifold, R1, R2 ∈ SO(3), is defined as the angular difference between the

two rotations, which is

D(R1, R2) =
⃓⃓⃓
cos−1

(︂Tr(R⊤
1 R2) − 1

2

)︂⃓⃓⃓
. (6.7)

6.3 Our HumanSfP Approach

There are two main stages in our approach. 1) Stage one shown in Fig. 6.2 is

our Polar2Normal pipeline for surface normal estimation from a polarization

image. After inferring two ambiguous normal maps, (m1, m2), as physical

priors from the polarization image (see Sec. 6.3.1 for details), a two-branch

strategy is adopted: one branch classifies each image pixel as belonging to

either of the two normal maps or the background, thus obtaining the fused

normal m3; a second branch regresses the coarse normal map m4 as an in-

termediate result. They are followed by the final step, which focuses on the

residual refinement of coarse normal map to integrate the fused and the coarse

normal maps as well as the normal residual to regress the final surface nor-

mal. Note that modules in the gray dash-line box are specifically designed

for polarization images, to leverage the physical prior knowledge that reflected

light from an object is polarized; these modules are unfit in dealing with RGB

images. 2) Stage two shown in Fig. 6.3 is our Polar2Shape pipeline of clothed

body shape reconstruction from a polarization image, accomplished in two

steps. The first step focuses on estimating the parameters of SMPL model, a

rough & naked shape model parameterized by Θ. The next step is to deform

the initial SMPL shape according to the estimated surface normal in Sec.6.3.1,

to reconstruct the refined 3D human shape with clothing details.
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6.3.1 Polar2Normal: Surface Normal Estimation
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Figure 6.2: Our Polar2Normal pipeline for surface normal estimation from a
polarization image.

The polarization image in our work consists of four channels, and each

channel corresponds to one of the four polarizer angles: 0◦, 45◦, 90◦ and 135◦.

Taking into account the π-ambiguity of φ, we have two possible solutions to

the surface normal for each pixel, that form the physical priors, denoted as

ambiguous normal maps m1(φ, θ) and m2(π + φ, θ). We propose a two-step

architecture to estimate the surface normal from the polarization image. The

details are presented in Fig. 6.2.

In the first step, two encoders are used to extract visual features from the

polarization image and the two ambiguous normal maps separately, which are

then followed two decoders. One decoder is to capture a coarse surface normal

of the human body denoted by m3, where Huber loss is employed to train the

network, defined as

H(x, α) =

{︄
0.5x2, |x| < α

α (|x| − 0.5α), otherwise.
(6.8)

The loss of the coarse surface normal becomes

Lcoarse =
∑︂
i,j

H
(︁
1 − ⟨m3[i,j],m[i,j]⟩, α

)︁
, (6.9)

where m is the target normal map with (i, j) being the pixel coordinate,

⟨m3[i,j],m[i,j]⟩ is the cosine similarity between the two normal vectors, and

α controls the trade-off between the squared and the absolute losses. Now,
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the second decoder is to classify each pixel into three categories: background,

ambiguous normal m1, and ambiguous normal m2, with the corresponding

pixel-wise probabilities p0, p1, and p2, respectively. The fused normal is thus

obtained by

m4 = (1 − p0) ·
p1m1 + p2m2

∥p1m1 + p2m2∥2
, (6.10)

where 1− p0 acts as a soft mask for the foreground human body. The classifi-

cation loss is measured by the cross entropy between the predicted pixel-wise

category and the target category,

Lcategory =
∑︂
i,j

∑︂
c

yc[i,j] log pc[i,j] + (1 − yc[i,j]) log(1 − pc[i,j]). (6.11)

Here c indexes among the three categories. yc[i,j] ∈ {0, 1} is the multi-class

label indicating which category the pixel [i, j] belongs to. Note that the label

yc[i,j] is created by discriminating whether the pixel is background or which

ambiguous normal has higher cosine similarity with its target normal.

Next let us look at the second step. Different from our previous work [269]

that directly regresses the normal map given the polarization image and fused

normal, we propose a residual update scheme to produce a more detailed

and accurate surface normal estimation, as displayed in Fig. 6.2. Due to the

environmental noise and the digital quantization of the polarization image

formation process, the fused normal map m3 is often noisy and non-smooth.

Given the coarse normal map m4 and fused normal map m3, the normal

residual mr is evaluated by

mr[i,j] = 1 − ⟨m3[i,j],m[i,j]⟩. (6.12)

A denoising network is then trained to take both normal maps m3,m4 and the

normal residual mr as input, to produce a smoothed and detailed normal m̂.

In the residual update scheme, the coarse normal m3 is replaced by the final

predicted normal m̂ to produce the new normal residual mr, which is then

employed to regress an updated normal map m̂. The loss for m̂ is defined by

Lfinal =
∑︂
i,j

⃓⃓
1 − ⟨m̂[i,j],m[i,j]⟩

⃓⃓
. (6.13)
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Here | · | denotes the absolute value.

Finally, our surface normal estimation model is learned by minimizing the

following loss

Lpolar2normal = Lcoarse + Lcategory + Lfinal. (6.14)

6.3.2 Polar2Shape: Human Shape Reconstruction

polarization image

CNN

SMPL model

initial body shape

clothed body shape

Polar2Normal

predicted normal

concatenate

Deformation

Figure 6.3: Our Polar2Shape pipeline of clothed body shape reconstruction
from a polarization image, accomplished in two steps.

Stage two of our approach, also referred to as Polar2Shape, focuses on the

reconstruction of clothed body shape from a polarization image, accomplished

in two steps. In the first step, the naked initial body shape, represented by

SMPL model [116], is estimated. The following step is to deform the initial

human body shape with the estimated surface normal, and finally the clothed

body shape is reconstructed. This process is shown in Fig. 6.3.

Initial Shape Estimation. The core of SMPL model [116] lies in a

differentiable function M(β,θ) ∈ R6890×3 that outputs a triangular mesh with

6890 vertices from 82 parameters [β,θ]. θ ∈ R72 are the pose parameters to

characterize pose articulations in axis-angle representation, consisting of one

global rotation of the body and the relative rotations of its 23 joints. Human

119



pose is therefore represented as θ = (θj)
24
j=1, where θj ∈ R3, and j denotes the

index of relative rotation in axis-angle. The shape parameters β ∈ R10 are the

linear coefficients of a PCA shape space that mainly determine individual body

features such height, weight and body proportions. The PCA shape space

is learned from a large dataset of naked and minimal clothed human body

scans. A specific SMPL shape is produced by first applying pose-dependent

and shape-dependent deformations to the template pose, then using forward-

kinematics to articulate the body to its current pose, and finally deforming

the surface mesh by linear blend skinning. At the same time, the 3D joint

positions, denoted by J3D ∈ R24×3, are obtained by linear regression from the

output mesh vertices. In addition to the SMPL model parameters, the global

translation of the human body is also a necessary factor in aligning with the

projection in the 2D image space, denoted by t ∈ R3. This results in an 85-

dimensional parameter space, Θ = [β,θ, t], that are used by SMPL to dictate

a specific intial human shape.

Under mild assumption, the axis-angle representation of human pose in

SMPL, (θj)
24
j=1, has a bijective map to the corresponding 24-dim product space

of so(3) manifold. Existing efforts, such as [269], normally predict the pose

in axis-angle representation, and measure the Euclidean distance between the

predicted pose and target pose as
∑︁24

j=1 ∥θ̂j −θj∥2. However, as the two poses

corresponds to two points in the aforementioned curved space, their distance

is better characterized by the geodesic distance, which is not necessarily the

Euclidean distance. Thus we propose to represent the human pose as a set of

rotation matrices {Rj}24j=1 in SO(3) with Rj = exp (θj). The geodesic distance

between the predicted pose and target pose becomes

Lpose =
24∑︂
j=1

D(Rj, R̂j) =
24∑︂
j=1

⃓⃓⃓
cos−1

(︂Tr(R⊤
j R̂j) − 1

2

)︂⃓⃓⃓
, (6.15)

which is also referred as the pose estimation loss. Moreover, the losses for
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SMPL shape, global translation and joint positions are defined as

Lshape = ∥β − β̂∥22, (6.16)

Ltrans = ∥t− t̂∥22, (6.17)

Ljoints = ∥J3D − Ĵ3D∥22. (6.18)

At the moment, our initial shape estimation is learned by minimizing the

following loss

Lpolar2shape = Lpose + λshapeLshape + λtransLtrans + λjointsLjoints, (6.19)

where λshape, λtrans and λjoints are the tuning parameters of the corresponding

loss terms.

Shape Reconstruction. The initial human shape obtained by SMPL

representation still lacks fine surface details. Therefore, the aim of this step

is to refine the initial SMPL shape guided by our surface normal estimate, as

follows. The SMPL body shape is rendered on the image plane to form an

initial depth map. The technique of [140] is then engaged here to obtain an

optimized depth map Id from the predicted surface normal m̂ and the initial

depth map Îd by minimizing the objective function,

E(Id) = λnEn(Id) + λdEd(Id) + λsEs(Id), (6.20)

which contains three energy terms. The first term, En(Id), ensures the pre-

dicted normal to be perpendicular to the tangents of the optimized depth

surface,

En(Id) =
∑︂
x,y

Tu[x,y]m̂[x,y] + Tv[x,y]m̂[x,y]. (6.21)

Here [x, y] denotes a pixel coordinate. u and v represent the horizontal and

vertical direction of the image plane, respectively. The tangents Tu and Tv are

defined as

Tu =

(︃
1

fu

(︃
∂Id
∂u

(u− pu) + Id

)︃
,

1

fv

∂Id
∂u

(v − pv),
∂Id
∂u

)︃⊤

, (6.22)

Tv =

(︃
1

fu

∂Id
∂u

(v − pv),
1

fv

(︃
∂Id
∂v

(v − pv) + Id

)︃
,
∂Id
∂v

)︃⊤

, (6.23)
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where fu and fv denote the focal length, pu and pv define the camera center

coordinate, respectively. The second term, Ed(Id), encourages the optimized

depth to be close to the initial depth,

Ed(Id) =
∑︂
x,y

[︂(︂
(
x− pv
fv

)2 + (
y − pu
fu

)2 + 1
)︂(︁

Id[x,y] − Îd[x,y]
)︁]︂2

. (6.24)

The third and final term preserves smoothness of nearby pixels over the opti-

mized depth map,

Es(Id) =
∑︂
x,y

∑︂
[x′,y′]∈N (x,y)

⃦⃦
Id[x,y] − Id[x′,y′]

⃦⃦2
. (6.25)

Our depth map is therefore obtained as a solution of the above mentioned

linear least-squares system. Finally, our clothed body shape is produced by

upsampling and deforming the SMPL mesh according to the Laplacian of the

optimized depth map.

6.3.3 Our In-house PHSPD Dataset

To facilitate empirical evaluation of our approach in real-world scenarios, a

home-grown dataset is curated, which is referred as Polarization Human Pose

and Shape Dataset or PHSPD. The layouts of our multi-camera acquisition

system for PHSPDv1 and v2 are shown in Fig. 6.4. In PHSPDv1, 7 cameras,

comprising three RGB-Depth cameras and a polarization camera, are synchro-

nized, and in PHSPDv2, we extend the number of cameras in our system to

be 12, including five RGB-Depth cameras, a polarization camera and an event

camera. In what follows, we start by presenting the early version, PHSPDv1,

as well as the more recent addition, PHSPDv2.

PHSPDv1. It is the early version used in our preliminary work [269].

During PHSPDv1 data acquisition, a system of 4 soft-synchronized cameras

is used, consisting of a polarization camera and three RGB-Depth cameras.

12 subjects are recruited in data collection, in which 9 are male and 3 are

female. Each subject performs 3 different sets of actions (out of 18 distinct

action types) for 4 times, plus an additional period of free-form motion at the

end of each session. Thus for each subject, there are 13 short videos (around
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Figure 6.4: The layout of multi-camera system in our PHSPDv1 and PHSPDv2
datasets.

1,800 frames per video in 10-15 FPS). The total number of frames for each

subject amounts to 22K. Overall, PHSPDv1 dataset consists of 287K frames.

Each frame here contains a synchronized set of images: one polarization image,

three RGB and Depth images. The examples are presented in Fig. 6.5 and all

the types of actions are summarized in Tab. 6.1.

Polar 

camera
RGB-D 

view 1

RGB-D 

view 2

RGB-D 

view 3

Figure 6.5: Exemplar multi-view figures with annotated shape and pose in
PHSPDv1.

PHSPDv2. It contains the newly acquired data, where our multi-camera

acquisition system is extended to 12 cameras of different modalities: one polar-

ization camera, one event camera and five RGB-Depth cameras. 15 subjects

are recruited for the data acquisition, where 11 are male and 4 are female.

Each subject is required to perform 3 groups of actions (21 different actions

in total) for 4 times, where each group includes actions of fast/medium/slow

speed, respectively. Finally, 12 videos are collected for each subject and each

video has around 1,300 frames in 15 FPS. In total, there are 180 videos, with

123



group actions

1
warming-up, walking, running, jumping,

drinking, lifting dumbbells

2
sitting, eating, driving, reading,

phoning, waiting

3
presenting, boxing, posing, throwing,

greeting, hugging, shaking hands

Table 6.1: Summary of action types performed by subjects in PHSPDv1.

group speed actions

1 medium
jumping, jogging, waving hands,

kicking legs, walk

2 fast
boxing, javelin, fast running,

shooting basketball, kicking football,
playing tennis, playing badminton

3 slow
warming up elbow/wrist ankle/pectoral,

lifting down-bell, squating down, drinking water

Table 6.2: Summary of action types performed by subjects in PHSPDv2.

each video lasting about 1.5 minutes. This amounts to 240k frames with each

frame including one polarization image and five RGB & Depth images. The

examples are presented in Fig. 6.6 and all the types of actions are summarized

in Tab. 6.2.

To summarize, our PHSPD dataset contains 334 videos of 21 different

subjects performing 31 types of actions. It totals approximately 527K frames,

equivalent to about 9.5 hours of recorded footage. Each frame in the dataset

contains a synchronized set of images including both a polarization image and

RGB & Depth images.

Multi-camera Synchronization. The multi-camera system in our PH-

SPD is mostly soft synchronized. In PHSPDv1, each camera is connected with

a desktop, where the desktop connected to the polarization camera is the mas-

ter and the other three ones connected to three Kinects V2 are clients. The

master desktop uses TCP-IP protocol to communicate with the other clients.

After receiving a specific message, each client copies the most recent frame

data captured by the Kinect into the desktop memory. At the same time, the

master desktop sends a software trigger to the polarization camera to capture

one frame into the camera buffer. For PHSPDv2, three latest RGB-Depth
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Figure 6.6: Exemplar multi-view figures with annotated shape and pose in
PHSPDv2.

cameras, Azure Kinects [131], and two Kinects V2 are used. The three Azure

Kinects are hard-synchronized and connected to one client desktop. Then,

with three Azure Kinects, the other two Kinects are soft synchronized with

the master desktop that is connected to a polarization camera and an event

camera. Compared with expensive motion capture system used in [80], our

multi-camera system does not require the subject to wear a number of sensors,

which gives rise to a more natural appearance in the images.

Annotation. There are three main steps in the pipeline of our SMPL

shape and pose annotation. 1) The first step is to obtain an initial 3D pose

(joints position) from the multi-view RGB-Depth cameras. For each frame,

the 2D joints of all the color images are detected by OpenPose [24] and the

depth of each 2D joint is obtained by warping the depth image to the color

image and finding the depth of its neighboring pixels. 2) The second step is

to fit the SMPL male or female model to the initial pose via 3D SMPLify-

x [154] and get the initial SMPL parameters. 3) The last step is to fine-tune

the initial shape to fit the point-cloud collected from multi-view depth images

using the L-BFGS [20] algorithm, where the average distance of shape vertex to

125



subject # gender raw # annotated # discarded #
1 female 22561 22241 320 (1.4%)
2 male 24325 24186 139 (0.5%)
3 male 23918 23470 448 (1.8%)
4 male 24242 23906 336 (1.4%)
5 male 24823 23430 1393 (5.6%)
6 male 24032 23523 509 (2.1%)
7 female 22598 22362 236 (1.0%)
8 male 23965 23459 506 (2.1%)
9 male 24712 24556 156 (0.6%)
10 female 24040 23581 459 (1.9%)
11 male 24303 23795 508 (2.1%)
12 male 24355 23603 752 (3.1%)

total - 287874 282112 5762 (2.0%)

Table 6.3: Detail number of frames for each subject in PHSPDv1.

subject # gender raw # annotated # discarded #
1 male 15911 15911 0 (0.0%)
2 male 15803 15803 0 (0.0%)
3 male 16071 16071 0 (0.0%)
4 male 16168 16152 16 (0.01%)
5 male 16278 16262 16 (0.01%)
6 male 16715 16384 331 (2.0%)
7 female 16091 16091 0 (0.0%)
8 male 16257 15642 715 (4.4%)
9 male 15467 15461 6 (0.03%)
10 male 16655 16655 0 (0.0%)
11 male 16464 16443 21 (0.13%)
12 male 16186 16186 0 (0.0%)
13 female 16064 14562 1502 (9.4%)
14 female 15726 15166 560 (3.6%)
15 female 14193 14075 118 (0.8%)

total - 240049 236764 3285 (1.4%)

Table 6.4: Detail number of frames for each subject in PHSPDv2.
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Figure 6.7: Exemplar figures to show that fine-tuning the initial SMPL shape
to fit the point-clouds can give more accurate annotated shape and pose.

its nearest point in the point-cloud is minimized iteratively. Fig. 6.7 illustrates

the effectiveness of the fine-tuning step to give more accurate shape and pose.

Normally the initial pose is coarse because of the errors of depth or 2D joints

detection. The iterative fine-tunning process can adjust the SMPL shape to

fit the human body point-clouds better.

Empirically, we find that SMPL male model gives better annotations than

female SMPL model for female subjects in light that our recruited female sub-

jects have similar body proportion with SMPL male model. Thus our dataset

adopts SMPL male model for all subjects. Some examples of multi-view anno-

tated shape are displayed in Fig. 6.5 and 6.6. The details of annotation results

for the PHSPDv1 and PHSPDv2 dataset are reported in Tab. 6.3 and 6.4.

Comparison with Existing Datasets. Our PHSPD dataset is compared

side-by-side with six widely-used human pose and shape datasets in Tab. 6.5,

in terms of number of subjects (Sub), number of different actions (Act), multi-

modality (MM), number of RGB (RGB) and depth (Depth) frames, availability
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Dataset Sub Act MM RGB Depth P S
MS COCO [112] - - ✗ 330K ✗ 2D ✗

MPII [2] - - ✗ 40K ✗ 2D ✗

PoseTrack [5] - - ✗ 22K ✗ 2D ✗

MPI-3DHP [126] 8 - ✗ 1.3M ✗ 3D ✗

3DPW [123] 7 8 ✗ 51K ✗ 3D ✓

Human3.6M [80] 11 15 ✗ 3.6M 0.45M 3D ✗

PHSPD (ours) 21 31 ✓ 2.1M 2.1M 3D ✓

Table 6.5: A tally of widely-used human pose and shape datasets.

of annotated poses (P) and shapes (S) for each frame. The datasets, MPII [2],

MS COCO [112] and PoseTrack [5], provide only RGB images with 2D pose

annotations, where depth images and shape annotations are not considered;

MPI-INF-3DHP [126] contains 1.3M in-house frames with 3D pose annota-

tions, but without depth images. 3DPW [123] has 51K frames with extreme

pose and SMPL shape annotations, meanwhile it does not possess depth im-

ages. Compared with Human3.6M [80], our PHSPD dataset comes with 3D

shape annotations, RGB images of higher resolution, more depth images with

higher resolution, more subjects, and more action types. More importantly,

PHSPD is the only dataset that comes with polarization images for human

pose estimation and shape modelling.

6.4 Experiments

Our proposed approach is empirically examined in two major aspects, namely

surface normal estimation, and pose and shape estimation from a polarization

image. Sec. 6.4.1 focuses on the empirical evaluations of surface normal esti-

mation on the widely used SfP benchmark [9] in shape from polarization, as

well as our PHSPD dataset. Sec. 6.4.2 and 6.4.3 evaluate 3D pose estimation

on the synthetic SURREAL dataset [199] and the PHSPD dataset, and shape

estimation on our PHSPD dataset. Ablation study is presented in Sec. 6.4.4

to analyze the effect of individual components in our approach.

Evaluation Metrics. For surface normal estimation, we report mean

angle error (MAE), which measures the angle error between the target and
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estimated normal map, formally defined as

MAE =
∑︂
x,y

|1− ⟨m̂[x,y],m[x,y]⟩|, (6.26)

where m̂ and m are predicted and target normal maps and x, y are the pixel

indices of the normal map. For human pose and shape estimation, we report

the Mean Per Joint Position Error (MPJPE), defined as

MPJPE =
1

24

24∑︂
j=1

∥Jj
3D − Ĵ

j
3D∥2, (6.27)

where Ĵ3D,J3D ∈ R24×3 are the predicted and target 3D joints. Pelvis-aligned

MPJPE (PEL-MPJPE) means MPJPE after root joint alignment, which is

defined as

PEL-MPJPE =
1

24

24∑︂
j=1

∥(Jj
3D − Jroot,3D)− (Ĵ

j
3D − Ĵroot,3D)∥2, (6.28)

where Jroot,3D and Ĵroot,3D are the root joint positions. Procrustes-aligned

MPJPE (PA-MPJPE) means MPJPE after aligning the predicted pose with

the target by a rigid transformation (R, t), which is defined as

PA-MPJPE =
1

24

24∑︂
j=1

∥Jj
3D − (Ĵ

j
3D ·R+ t)∥2. (6.29)

Note that (R, t) are calculated by minimizing the average distance between

the target 3D joints J3D and the transformed predicted joints (Ĵ3D · R + t).

Percentage of correct key-points (PCK) means the percentage of joints whose

PEL-MPJPE is less than 100mm, which is defined as

PCK =
1

24

24∑︂
j=1

1(∥(Jj
3D − Jroot,3D)− (Ĵ

j
3D − Ĵroot,3D)∥2 < 100mm), (6.30)

where 1(·) is the indicator function. As for the evaluation of human shape,

3D point to surface error (P2S) is employed, where the iterative closest point

(ICP) alignment between predicted body mesh and the ground-truth human

body point-cloud is applied. For each vertex of the human body mesh, its

closest point in the point-clouds is identified to form a pair, and the average

distance of all the pairs is computed as P2S.
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Evaluation Datasets. The widely-used SfP dataset [9] is employed to

evaluate the performance of our proposed Polar2Normal component. We fol-

low the typical training (236 polarization images with 1224× 1024 resolution)

and testing (27 images) scheme as in [9], where a 256 × 256 patch on a image

is randomly cropped for training. For testing, 20 overlapped patches in one

image are first cropped for evaluation and then fused to form the final pre-

dicted normal map. We also demonstrate the effectiveness of our approach on

SURREAL [199], a synthetic dataset containing color images rendered from

motion-captured SMPL human shapes. Polarization images can be synthesized

using color and depth images provided by SURREAL dataset, which will be

covered later. We choose subset ”run1” and down-sample over time to recruit

one from every 20 consecutive frames. Finally, the train set comprises 123,860

samples and test set has 26,650 samples. SURREAL dataset is only used for

the evaluation of normal and pose estimation due to the lack of ground truth

point-clouds of the clothed human bodies.

A polarization image (polarizers of 0◦, 45◦, 90◦ and 135◦) can be synthesized

from the rendered depth and color image in SURREAL dataset. In detail, from

the depth image, we obtain the normal map and calculate the corresponding

zenith and azimuth angles. From the color image, we get the gray-scale image

and take it as the polarization image under 0◦ degree polarizer, denoted by

I(0◦). Assuming diffuse reflection of the human body surface, the degree of

polarization ρ can be calculated according to the equation,

ρ =
(n− 1

n
)2 sin2 θ

2 + 2n2 − (n + 1
n
)2 sin2 θ + 4 cos θ

√︁
n2 − sin2 θ

, (6.31)

with the calculated zenith angle θ for each pixel and refractive index n known

as 1.5. Then the upper and lower bound of the illumination intensity Imax and

Imin can be solved in closed form with the constraints as follows,

ρ =
Imax − Imin

Imax + Imin

, (6.32)

and

I(0) =
Imax + Imin

2
+

Imax − Imin

2
cos(2φ). (6.33)
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Finally, we can use the equation,

I(ϕpol) =
Imax + Imin

2
+

Imax − Imin

2
cos(2(ϕpol − φ)), (6.34)

to get the image under polarizer ϕpol of 45◦, 90◦ and 135◦, or any arbitrary

degree. To make it close to the real-world applications, we add Gaussian

noise with the standard deviation as σ = 1/255 to each pixel of the synthetic

polarization image and then quantize the intensity value to 8 bits. Due to

the fact that we only have geometric information for the human bodies, the

synthetic polarization images only have valid values in the human body areas.

Implementation Details. Our real-world PHSPD dataset is involved in

the evaluations of all three tasks of normal estimation, pose estimation and

clothed shape estimation. The target surface normal is obtained by fusing

multi-view normal maps calculated from multiple depth images. For a spe-

cific pixel on the polarization image, we find its corresponding position on the

multi-view depth images via the calibrated extrinsic parameters between the

polarization camera and each depth camera. Then the multiple normal direc-

tions are obtained for this pixel and they are averaged together to obtain the

final target surface normal map. Subject 4, 7, 11 in PHSPDv1 and subject 1,

2, 7 in PHSPDv2 are chosen to form the test set, resulting in 117,860 samples.

The training set consists of the rest 400,785 samples.

For Polar2Normal, each of the encoders and decoders contains 6 sequential

blocks, with each block having one up- or down-sampling layer and two con-

volutional layers. The Polar2Normal model is trained for 600 epochs on SfP

dataset, 30 epochs on SURREAL dataset and 8 epochs on PHSPD dataset

with Adam optimizer [96]. The learning rate is 0.001, which decays to 0.0001

after training 200 epochs, 10 epochs, and 6 epochs, respectively. The batch

size is 16 for training on three datasets. For Polar2Shape model, ResNet50 [73]

is used as the backbone CNN model. The extract 1024-dimensional feature

is directly regressed to the final outputs: β, θ, and t. The pose estimation

model is trained for 30 epochs on SURREAL dataset and 8 epochs on PHSPD

dataset with Adam optimizer [96]. The learning rate is 0.001 and decays to

0.0001 after training 10 epochs and 4 epochs respectively. The batch size for
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training is 32. The trade-off parameter α is set to 0.5. The tuning parameters

of the loss terms are set to λshape = 0.1, λtrans = 0.1 and λjoints = 10, respec-

tively. The three weights used in the Polar2Shape stage, namely the normal

term λn, the depth data term λd, and the smoothness term λs are empirically

set to 1.0, 0.06, and 0.55, respectively.

6.4.1 Evaluation of Surface Normal Estimation

In this task, our approach is compared with three baselines: a conventional

method HeightfP [183], a most recent work DeepSfP [9] and our preceding

work HumanSfP1 [269]. Compared with HumanSfP2 in Fig. 6.2, HumanSfP1

does not include the computation of coarse normal maps and a further step of

normal residual refinement.

From the quantitative results in Tab. 6.6 and the qualitative results in

Fig. 6.8, our method consistently outperforms the state-of-the-art SfP meth-

ods, HeightfP [183] and DeepSfP [9], for the task of shape from polarization.

The poor performance of HeightfP [183] could be attributed to its noise-free

assumption that may not hold in the captured images. Though DeepSfP [9]

incorporates the ambiguous normal maps as physical priors, the ambiguous

normal maps are directly concatenated with the polarization image to form

its input, which may overlook the implicit geometric clues. As a result, it per-

forms less well when comparing to our method, especially in complex scenes

such as Christmas, Dragon and Horse, where the results of our method achieve

∼ 3◦−5◦ improvement. It is also demonstrated in the visual results of Fig. 6.8.

Comparing to our previous work HumanSfP1 [269], as illustrated in Tab. 6.6,

our new method, HumanSfP2, exceeds HumanSfP1 in most scenarios, espe-

cially Horse and Dragon, where we have ∼ 2◦ improvement. Only for the

two scenes of Box and Christmas, the results of both HumanSfP1 and Hu-

manSfP2 are almost identical. The observation demonstrates the advantages

of our newly proposed two-step strategy for surface normal estimation.

We also evaluate the normal estimation of human body surface on both

SURREAL dataset and our PHSPD dataset. Through both the quantitative

results of Tab. 6.7 and the visual results of Fig. 6.9, it is observed that our
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Figure 6.8: Exemplar results of normal map prediction on SfP dataset in terms
of MAE.

method consistently outperforms the state-of-the-art surface normal prediction

methods, namely HeightfP [183], DeepSfP [9] and HumanSfP1 [269]. Similar

to the results presented in Tab. 6.6, the conventional method HeightfP shows

least appealing performance, which possibly results from its assumptions of

polarization images with high-precision pixel intensity and ideal noise-free en-

vironment. This is in contrast to the deep neural network based approaches

that are often more robust to environmental noise and polarization images

with standard pixel representation. Rather than directly concatenating and

feeding the input polarization image and the corresponding ambiguous normal

maps into a deep model, HumanSfP1 and HumanSfP2 categorize each pixel

into one of the ambiguous normal maps, and obtain a fused normal that incor-

porates explicit geometric information for normal estimation. This could be

the main factor that our methods exceed the state-of-the-art DeepSfP on both

SURREAL and PHSPD datasets. Moreover, HumanSfP2 out-performs Hu-
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Scene
HeightfP

[183]
DeepSfP

[9]
HumanSfP1

[269]
HumanSfP2

(ours)
Dragon 49.16 21.55 18.71 16.88
Horse 55.87 22.27 21.27 19.64

Christmas 39.68 13.50 8.56 8.57
Box 31.00 23.31 21.94 22.04

Flamingo 36.05 20.19 20.51 20.44
Vase 36.88 10.32 9.20 9.18

Whole Set 41.44 18.52 17.22 16.73

Table 6.6: Quantitative results of surface normal estimation on SfP dataset in
terms of MAE.
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ECCV 2020
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ECCV 2020

HumanSfP2

(ours)

Polarization 

Image

Figure 6.9: Exemplar results of normal map prediction on PHSPD dataset.

manSfP1 over both datasets, which may be attributed to the two-step model

proposed in HumanSfP2, where the first step focuses more on the coarse nor-

mal map, and the second step pays more attention to the fine normal details.

Qualitative results in Fig. 6.9 also demonstrate the superior results of the

proposed HumanSfP2.

6.4.2 Evaluation of Pose Estimation

This section concerns the qualitative and quantitative evaluation of the es-

timated SMPL poses. Our comparison methods consist of HMR [91] and

SPIN [99]. Since both HMR and SPIN are trained on single RGB images (C),
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Method SURREAL PHSPD

HeightfP [183] 20.03 39.95
DeepSfP [9] 7.59 23.08

HumanSfP1 [269] 7.08 22.06

HumanSfP2 (ours) 6.79 21.36

Table 6.7: Quantitative results of surface normal estimation on SURREAL
and PHSPD datasets in terms of MAE.

Method Input
SURREAL

PEL-MPJPE↓ PA-MPJPE↓ PCK↑
HMR [91] C 135.95 100.66 0.53
SPIN [99] C 95.08 80.67 0.58

HMR (polar) P 113.82 86.85 0.55
HumanSfP1 [269] P 84.78 60.82 0.72

HumanSfP2 (ours) P 59.17 46.58 0.85

Table 6.8: Quantitative results of human pose estimation on SURREAL
dataset.

for PHSPD dataset, images from an RGB camera having similar angle of view

with the polarization camera are used as the input for evaluation. In addition

to HMR and SPIN, for fair comparison, HMR (polar) is included as another

baseline, where HMR model is trained from scratch on the polarization images

(P) from either SURREAL dataset or our PHSPD dataset. HumanSfP1 [269]

is also employed as another baseline that uses Euclidean distance to measure

the distance between the predicted and target poses. We also provide supple-

mentary video2 for better visualization of our results.

From Tab. 6.8 and 6.9, it is observed that our HumanSfP2 method produces

the lowest errors in MPJPE, PEL-MPJPE and PA-MPJPE, and the highest

PCK score among all competing methods. Comparing to HMR and SPIN

that take RGB images as the input source of data, and HMR (polar) that

takes polarization images as the input, our HumanSfP2 out-performs them

consistently by a large margin on both SURREAL and PHSPD datasets. Such

superior performance lies in two important factors.

The first is the engagement of normal map as part of the input, which will

be explained in Sec. 6.4.4 in detail. It is of interest to point out that normal

map as part of the input data source is capable of reducing the average joint

error by about 10−20 mm in MPJPE, PEL-MPJPE and PA-MPJPE, while the

2Link of supplementary video.
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Figure 6.10: Exemplar results of human pose estimation on PHSPD dataset.

Method Input
PHSPD

MPJPE↓ PEL-MPJPE↓ PA-MPJPE↓ PCK↑
HMR [91] C - 106.27 68.58 0.57
SPIN [99] C - 91.92 49.79 0.64

HMR (polar) P 113.74 88.24 59.05 0.68
HumanSfP1 [269] P 66.97 63.12 42.08 0.83

HumanSfP2 (ours) P 62.04 54.98 36.88 0.88

Table 6.9: Quantitative results of human pose estimation on PHSPD dataset.

three competing methods do not include the normal clues in pose estimation.

The second factor is the introduction of geodesic loss to measure the pre-

dicted and target SMPL poses. Comparing to HumanSfP1, our approach im-

proves the joint error by about 5mm and PCK by 0.05 in PHSPD dataset, and

15mm and 0.13 in SURREAL dataset. The quantitative results illustrate the

effectiveness of leveraging geodesic distance in pose estimation. Visual results

in Fig. 6.10 also demonstrate the effectiveness of our HumanSfP2 approach,

where the input RGB and polarization images are shown in the 1st and 4th

row and poses from two side views are also presented to better evaluate the

predicted results. HumanSfP1 may predict unnatural poses as the Euclidean

distance is not suitable in measuring joint displacements due to relative joint
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Method Input P2S

DepthHuman [192] C 83.86
PIFuHD [173] C 67.05

PIFu [172] C 62.13
HMD [264] C 43.72

PaMIR [257] C 47.24

HumanSfP2 (initial) P 39.79
HumanSfP2 (ours) P 38.24

Table 6.10: Quantitative results of clothed human shape estimation.

rotations.

6.4.3 Evaluation of Shape Estimation

Color Image DepthHuman

ICCV 2019

HMD

TPAMI 2021

PIFu

CVPR 2019

PIFuHD

CVPR 2020

HumanSfP(ours)Polarization 

Image

PAMIR

TPAMI 2021

Side 

Views

Figure 6.11: Exemplar estimation results of clothed body shapes.

Considering there is no previous work in this new task of single polariza-

tion image based clothed human shape reconstruction, four RGB-based meth-

ods are recruited for comparison. They are DepthHuman [192], HMD [264],

PIFu [172], PIFuHD [173] and PaMIR [257], where RGB image having closest
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Figure 6.12: Exemplar estimation results of clothed body shapes, obtained on
polarization images from new scene context.

view with polarization image is used as the input for evaluation. The esti-

mated clothed shape is then compared with human point-cloud to calculate

3D point to surface error (P2S).

Quantitative results are displayed in Tab. 6.10. Here, DepthHuman per-

forms the worst, which may be partly attribute to its consideration of the

surface depth instead of the entire body shape. PIFu [172] and PIFuHD [173]

show similar results, with PIFuHD having slightly larger error. The explana-

tion is PIFu requires human mask as a prior, while PIFuHD does not have such

assumption. However, both methods do not take human pose into consider-

ation when predicting their implicit surfaces. The 3D error from HMD [264]

is relatively small, possibly due to the accurate initial shape estimation. Our

SfP approach achieves the best performance, which should be credited to its

exploitation of the estimated normal maps.

Exemplar visual results are presented in Fig. 6.11. It is observed that for

DepthHuman, only a partial mesh with respect to the view in the input im-

age is produced, as is also evidenced in Tab. 6.10. HMD, on the other hand,

does not work well, as evidenced by the often error-prone surface details. This

may be attributed to the less reliable shading representation, given the new

environmental lighting and texture ambiguities existed in these RGB images.

PIFu [172] and PIFuHD [173] are able to predict human with clothing details,

but both suffer from the relative inaccurate pose inference, making their re-

sults ill-aligned with the subject in the image space. PaMIR [257] estimates

reasonable poses but reconstructs in-accurate human shapes, which could at-

tribute to the in-correct information provided by its deep implicit function.

Our HumanSfP approach is shown capable of producing reliable prediction of
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Method SURREAL PHSPD

HumanSfP2 (color) 13.44 24.79
HumanSfP2 (no-prior) 12.16 24.75

HumanSfP2 (ours) 6.79 21.36

Table 6.11: Ablation study of our normal estimation component on SURREAL
and PHSPD datasets.

Method Input
SURREAL

PEL-MPJPE ↓ PA-MPJPE ↓ PCK ↑

HumanSfP1
[269]

Polar 99.33 70.19 0.65
Polar+Mask 95.28 (4.05) 67.84 (2.35) 0.67 (0.02)

Polar+Normal 84.78 (14.55) 60.82 (9.37) 0.72 (0.07)

HumanSfP2
(color)

Color 96.27 74.88 0.69
Color+Mask 84.84 (11.43) 62.74 (12.14) 0.73 (0.04)

Color+Normal 80.28 (15.99) 59.39 (15.49) 0.76 (0.07)

HumanSfP2
(ours)

Polar 74.12 56.39 0.78
Polar+Mask 72.20 (1.92) 55.48 (0.91) 0.78 (0)

Polar+Normal 59.17 (14.95) 46.58 (9.81) 0.85 (0.07)

Table 6.12: Ablation study of hybrid input in human pose estimation on SUR-
REAL dataset.

clothed body shapes, which again demonstrates the applicability of polariza-

tion imaging in shape estimation, as well as the benefit of engaging the surface

normal maps in our approach.

Qualitative results presented in Fig. 6.12 showcase the generalization ability

of our approach. Note the polarization images are acquired at different physical

locations with distinct background scenes that are very dissimilar to those in

the training images.

6.4.4 Ablation Study

Polarization and RGB modalities for normal estimation. Here we

want to compare the performance of normal map reconstruction from RGB

images vs. polarization images. Let HumanSfP2 (color) denote the model

that uses only RGB image, HumanSfP2 (no-prior) be the model without in-

corporating the ambiguous normal maps as the physical priors and with only

the polarization image as input. The quantitative results are summarized in

Tab. 6.11. We observe that HumanSfP2 (ours) exceeds HumanSfP2 (color)

by ∼ 7◦ in SURREAL dataset and ∼ 3.5◦ in PHSPD dataset. The larger

improvement of MAE in SURREAL dataset may be the fact that SURREAL
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Method Input
PHSPD

MPJPE ↓ PEL-MPJPE ↓ PA-MPJPE ↓ PCK ↑

HumanSfP1
[269]

Polar 85.74 83.70 54.90 0.72
Polar+Mask 75.76 (9.98) 73.04 (10.66) 50.59 (4.31) 0.77 (0.05)

Polar+Normal 66.97 (18.77) 63.12 (20.58) 42.08 (12.82) 0.83 (0.11)

HumanSfP2
(color)

Color 88.55 77.97 54.32 0.74
Color+Mask 80.79 (7.76) 71.58 (6.39) 44.55 (9.77) 0.80 (0.06)

Color+Normal 76.34 (12.21) 68.23 (9.74) 41.95 (12.37) 0.84 (0.10)

HumanSfP2
(ours)

0.78 70.73 63.82 44.05 0.83
Polar+Mask 68.95 (1.78) 60.28 (3.54) 41.58 (2.47) 0.85 (0.02)

Polar+Normal 62.04 (8.69) 54.98 (8.84) 36.88 (7.17) 0.88 (0.05)

Table 6.13: Ablation study of hybrid input in human pose estimation on PH-
SPD dataset.

dataset is synthesized from naked and minimal dressed body shapes, such that

the normal maps of human body are smooth and are relatively easier to pre-

dict than the real-world PHSPD dataset. Moreover, similar MAE results are

presented by HumanSfP2 (no-prior) and HumanSfP2 (color), which showcases

the importance of ambiguous normal maps in our approach that carries the

critical geometric clues for high performance in surface normal estimation from

polarization images.

Normal maps for pose estimation. This section demonstrates the sig-

nificant performance gain that normal maps provides in pose estimation. As

in Tab. 6.12 and 6.13 with round bracket showing the improvement over the

case of polar/RGB as the sole input, the three methods of HumanSfP1[269],

HumanSfP2 (color) and HumanSfP2 (ours) are equipped with different input

combinations: polar/RGB image, polar/RGB image with foreground mask,

and polar/RGB image with predicted normal map. Within each method, the

performance gain is particularly significant when normal map is incorporated

as input. This may be attributed to the rich geometric information encoded

in the normal map representation. Less significant gain is obtained when only

mask is incorporated as input, which further demonstrates the effectiveness of

geometric information in pose estimation. When comparing across polariza-

tion and RGB modalities in HumanSfP2 (ours) and HumanSfP2 (color), there

is still noticeable improvement in HumanSfP2 (color), which combines RGB

image with normal map as the input. However, the overall performance of
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HumanSfP2 (color) is worse than that of HumanSfP2 (ours). The explanation

is that the normal maps estimated from RGB images are not as reliable as

those obtained from the polarization image counterparts.

6.5 Conclusion

We tackle in this chapter a new problem of estimating human shapes from

single 2D polarization images. Our work exemplifies the applicability of en-

gaging polarization cameras as a promising alternative to the existing imaging

modalities for human pose and shape estimation. Moreover, by exploiting the

rich geometric details in the surface normal of the input polarization images,

our SfP approach is capable of reconstructing human body shapes of surface

details. We expect this could be a useful tool in many downstream applica-

tions.
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Chapter 7

Point-based Clothed Human
Modeling via Diffusion Models

7.1 Introduction

Clothed human modeling aims to learn clothing deformation dynamics from a

set of 3D point-clouds or meshes of clothed human body, facilitating the gen-

eration of naturalistic clothing details in target motion animations. This task

is inherently challenging owing to the the variety of clothes and human mo-

tions. Traditional methods typically employ either basic rigging-and-skinning

techniques [11], [114] or rely on physics-based simulations [152], [195], which re-

quires intensive computations and specialized expertise to create a simulation-

ready clothing mesh. In contrast, recent data-driven approaches [32], [40], [68],

[83], [108], [111], [119], [121], [174], [224], [244], [256], either using implicit or

explicit representations, have yielded promising results in this field of research.

Notably, multiple studies [111], [118], [119], [121], [244] have demonstrated

the efficacy of point-based representation of clothing shapes, attributed to the

compactness and topological flexibility of point-clouds. POP [121] stands out

as a pioneer in modeling pose-dependent clothed humans using point-clouds,

showcasing the capability of a singular model to manage arbitrary clothes.

Subsequent efforts, like FITE [111] and SkiRT [119], adopt a coarse-to-fine

strategy, leveraging implicit or explicit techniques to reconstruct a coarse tem-

plate first. The latest work, CloSET [244], learns pose features directly from

the continuous body surface, aiming to address the discontinuity presented by
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Figure 7.1: Progressive modeling of clothed humans performing a target mo-
tion via diffusion models.

the UV map used in earlier research [118], [121].

Despite the encouraging achievements, there are still unresolved challenges

in this field of study. The first challenge resides in the dynamics modeling

of clothed humans, where the clothing deformations are supposed to be na-

ture and smooth, both spatially and temporally, as a person performs various

motions. However, existing learning-based approaches [32], [111], [118], [119],

[121], [174], [244] focus on the clothing deformations associated with a single

pose only, overlooking the underlying correlation and continuity of clothing

deformations in a motion sequence. The second challenge relates to the pro-

gressive modeling of clothed humans, a process that mirrors the iterative re-

finement typically seen in artifact creation. Earlier works either model clothed

humans in a single step [121], [174], [244], or employ a two-step coarse-to-fine

strategy [111], [119], thereby missing the opportunity to fully exploiting the

benefits of progressive refinement in modeling clothes. The third challenge

lies in the diversified modeling of clothed humans, which is in accord with

the real-world observation that identical outfits and motions can yield varying

patterns of cloth wrinkles. Existing methods [111], [119], [121], [174], [244] are

mostly deterministic, thereby limiting the range of variations in response to

specific outfits and motions.

To address these challenges, we propose ClothDiffuse, a diffusion-based

method that learns the dynamics of clothing deformations for the realistic gen-
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eration of clothing details in target motion animations. Our key insight is to

involve all the three significant aspects in our framework: dynamics modeling,

progressive modeling, and diversified modeling of clothed humans. Specifically,

we take sequential frames of unclothed posed bodies, such as SMPL body

shapes, as the input. The dynamic features of vertices on the input bodies,

including 3D positions, velocities and accelerations, are mapped to UV posi-

tional maps and then processed through a 3D CNN to encode the dynamic

features of the motion sequence. Simultaneously, we utilize a learnable tensor

to represent pixel-aligned garment features. For a specific query point on the

unclothed bodies, we sample the respective dynamic motion feature and gar-

ment feature. The shape decoder, conditioned on these features, progressively

denoises a Gaussian noise for multiple steps to yield the final prediction that

includes motion-dependent clothing wrinkle displacements and the normal di-

rection of the query point, referred to as dynamic and progressive modeling.

The stochastic nature of sampling process results in a diverse but genuine out-

comes for each inference, termed as diversified modeling. After applying local

transformation and dense querying on the input unclothed bodies, we achieve

the generation of point-based clothed humans in accord with the target motion.

Our contributions are summarized as follows:

• We propose ClothDiffuse, a diffusion-based approach designed to learn

the dynamics of clothing deformations. This enables the realistic gener-

ation of clothing details in animations with target motions, focusing on

motion-dependent dynamics rather than pose-dependent static features.

• To our knowledge, we are the first learning-based approach that involves

all the three critical aspects in clothed human modeling: dynamics mod-

eling, progressive modeling, and diversified modeling. This unique com-

bination allows for a more nuanced and effective representation of cloth-

ing deformation dynamics. Empirical experiments demonstrate that our

approach outperforms multiple baselines on two challenging benchmarks.
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Figure 7.2: Overview of our approach for clothed human modeling.

7.2 Method

Our objective is to model clothed humans given N consecutive frames of posed

but unclothed human bodies as input. This model is trained with a set of

3D point-clouds or mesh sequences of clothed human bodies. We assume

the corresponding fitted or registered unclothed bodies, such as SMPL [116]

or SMPL-X [153], are known, in accordance with prior works [111], [119],

[121], [244]. The overview of our approach is illustrated in Fig. 7.2. We

begin by introducing the motion-dependent feature encoding in Sec. 7.2.1, then

proceed to detail the progressive modeling of clothing using diffusion models

in Sec. 7.2.2, and finally outline the procedure of training and inference in

Sec. 7.2.3.

7.2.1 Motion-Dependent Feature Encoding

Pose Encoder. We use V 1:N = {v1:Ni }Ms
i=1 to indicate a sequence of N frames’

3D point-clouds of clothed bodies with the n as the frame index. The corre-

sponding fitted or registered unclothed bodies are represented as P 1:N . Using

the unclothed bodies P 1:N as input, we first map the dynamic features of each

point pni ∈ R9 on the surface to the corresponding 2D position ui ∈ R2 on a

UV positional map, denoted as Inui
= pni . These dynamic features include 3D

position, velocity and acceleration. Then we obtain the UV positional maps

I ∈ RN×Hin×Win×9 and forward to the a 3D CNN as encoder to extract the

dynamic features of the motion sequence, M ∈ RN×H×W×Cm . Meanwhile, we

employ G ∈ RH×W×Cg as a learnable variable to encode pixel-aligned garment

feature.
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Existing works [111], [119], [121], [244] mainly focus on the pose-dependent

modeling of clothed humans, overlooking the correlation and continuity of pose

features for a motion sequence. In contrast, we propose to encode motion-

dependent features directly, aiming for enhanced modeling of clothed humans

in a motion. Furthermore, as the UV map of template body maintains a fixed

topology, the 3D CNN encoder is able to consistently extract vertex-aligned

motion features, where the vertex pni in each frame is mapped to an identical

position ui on the UV map. While the PointNet-based encoder in [244] permits

continuous surface sampling, its dynamics extension [54] may struggle to ro-

bustly extract temporal information in 3D space, particularly for fast-moving

limbs. This limitation arises because the point aggregation in PointNet does

not take into account topology constraints.

7.2.2 Diffusion-based Cloth Modeling

Diffusion Models. To be general, we represent x1:N
0 as a N -frame data

sample drawn from the true data distribution. In the forward diffusion process,

we add small amount of Gaussian noise to the sample over T steps, generating

a sequence of noisy samples denoted as {x1:N
t }Tt=1. This process is described

by

q(x1:N
t |x1:N

t−1) = N (
√︁

1 − βtx
1:N
t−1, βtI), (7.1)

where the step sizes are controlled by a variance schedule {βt ∈ (0, 1)}Tt=0 and

I represents the identity matrix. When the number of steps T is sufficiently

large, x1:N
T approaches a normal distribution, N (0, I). As noted in [75], for a

specific diffusion step t, instead of repeatedly adding noises to x1:N
0 , we can

directly derive x1:N
t through

x1:N
t =

√
ᾱtx

1:N
0 +

√
1 − ᾱtϵ, ϵ ∼ N (0, I), (7.2)

where αt = 1 − βt and ᾱt =
∏︁t

k=0 αk.

The reverse process aims to reconstruct a true data sample from Gaussian

noise x1:N
T ∼ N (0, I), utilizing a neural model fθ that progressively denoises

146



x1:N
T over T steps. This allows us to sample from the learned data distribution

by gradually denoising a Gaussian noise. Formally, the process is defined as:

pθ(x
1:N
t−1|x1:N

t , x1:N
0 ) = N (µθ(x

1:N
t , x1:N

0 , t, y), β̃tI), (7.3)

where t is the diffusion step, y encompasses prior conditions, such as text,

category label and image, and β̃t = 1−ᾱt−1

1−ᾱt
βt. According to previous work [75],

[164], fθ(x
1:N
t , x1:N

0 , t, y) can be defined in three different ways to recover µθ:

(i) the denoised sample at t − 1 directly, fθ = x̂1:N
t−1, (ii) the Gaussian noise,

fθ = ϵ̂, or (iii) the unnoised sample, fθ = x̂1:N
0 . Subsequently, the training of

fθ is to minimize corresponding loss function, expressed as:

L =

⎧⎪⎨⎪⎩
Et∈[1,T ],x1:N

t−1∼q(x1:N
t−1)

[∥x1:N
t−1 − x̂1:N

t−1∥] (i),

Et∈[1,T ],ϵ∼N (0,I)[∥ϵ− ϵ̂∥] (ii),

Et∈[1,T ],x1:N
0 ∼q(x1:N

0 )[∥x1:N
0 − x̂1:N

0 ∥] (iii).

(7.4)

During inference, µθ can be obtained as follows:

µθ =

⎧⎪⎨⎪⎩
x̂1:N
t−1 (i),
1√
αt

(x1:N
t − 1−αt√

1−ᾱt
ϵ̂) (ii),

√
αt(1−ᾱt−1)

1−ᾱt
x1:N
t +

√
ᾱt−1(1−αt)

1−ᾱt
x̂1:N
0 (iii).

(7.5)

In this work, we employ method (iii), which directly predicts the unnoised

sample. This approach has been shown in [164] to yield better performance.

Then we can obtain µθ as follows:

µθ =

√
αt(1 − ᾱt−1)

1 − ᾱt

x1:N
t +

√
ᾱt−1(1 − αt)

1 − ᾱt

x̂1:N
0 , (7.6)

where fθ = x̂1:N
0 .

Shape Decoder. In our scenario, the term x1:N
i,t in Eq. (7.1) consists of

motion-dependent wrinkle displacements r1:Ni ∈ R3 and the normal direction

n1:N
i ∈ R3 of p1:Ni on the surface of unclothed posed bodies. To reconstruct

x1:N
i,0 , we first extract the corresponding dynamic features z1:Ni ∈ RN×Cm from

M and the garment feature gi ∈ RCm from G at ui on each temporal frame.

Combined with the sampling position ui, these features form the prior condi-

tions defined in Eq. (7.3), denoted as y = [z1:Ni , gi, ui]. At diffusion step t, our
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Figure 7.3: Process of inference via our diffusion-based model.

shape decoder is trained to directly predict unnoised sample x1:N
i,0 , expressed

by

x̂1:N
i,0 = fθ(x̂

1:N
i,t , t, y). (7.7)

During the stage of inference, the shape decoder progressively denoise random

Gaussian noise x̂1:N
i,T to produce the final prediction, x̂1:N

i,0 = [r̂1:Ni , n̂1:N
i ]. Details

regarding training and inference are provided in the subsequent Sec. 7.2.3.

After getting wrinkle displacements and the normal direction of p1:Ni , the local

transformation Ti is applied to derive the clothing points for the query points

p1:Ni across the motion sequence, expressed by

v̂1:Ni = Ti · r̂1:Ni + p1:Ni . (7.8)

Through the dense querying on the posed but unclothed bodies, we achieve the

generation of clothed humans with motion-dependent clothing deformations,

represented as V̂
1:N

= {v̂1:Ni }Mp

i=1.

7.2.3 Training and Inference

Training. To train our diffusion-based model, following [75], [164], we first

uniformly sample a diffusion step t and obtain the corresponding noisy sam-

ple x1:N
i,t . Meanwhile, we obtain the conditions y = [z1:Ni , gi, ui] for the query

points p1:Ni . After feeding them to the shape decoder and applying local trans-

formation, we obtain the final outputs, including motion-dependent wrinkle
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displacements r̂1:Ni , the normal direction n̂1:N
i , and clothes points v̂1:Ni over the

sequence.

The training loss is defined as

L = λcLc + λnLn + λdLd + λrLr + λgLg, (7.9)

where the λ· are the weights to balance each loss. Specifically, Lc is the normal-

ized Chamfer Distance that measures the average bi-directional squared dis-

tances between the predicted pointclouds V̂
1:N

and ground-truth V 1:N , which

is defined as:

Lc =
1

N

N∑︂
k=1

Lk
c , (7.10)

Lk
c =

1

Ms

Ms∑︂
i=1

min
j

∥vki − v̂kj∥22 +
1

Mp

Mp∑︂
j=1

min
i

∥vki − v̂kj∥22.

Ln is the average L1 distance of normal between each predicted point and its

nearest neighbor in the ground-truth point-clouds:

Ln =
1

NMp

N∑︂
k=1

Mp∑︂
i=1

∥n̂k
i − nk

j ∥1, (7.11)

where j = arg minvkj ∈V k ∥v̂ki − vkj ∥2. Ld is the dynamic loss to regularize the

acceleration of predicted point-clouds in a sequence:

Ld =
1

(N − 2)Mp

Mp∑︂
i=1

N−1∑︂
k=2

∥(r̂ki − r̂k−1
i )− (r̂k+1

i − r̂ki )∥22. (7.12)

The last two losses, Ld and Lg, are the regularization of the norm for the

predicted displacements and garment feature respectively, which is described

by

Lr =
1

NMp

N∑︂
k=1

Mp∑︂
i=1

∥r̂ki ∥22, Lg =
1

HWCg
∥G∥22. (7.13)

Inference. The process of inference is to sample from the learned dis-

tribution fθ by iteratively denoising a Gaussian noise N (0, I). As is illus-

trated in Fig. 7.3, at the denoising step t, we first predict the unnoised sample

x̂1:N
i,0 = fθ(x

1:N
i,t , t, y), and then diffuse it to x̂1:N

i,t−1, which will be the input of fθ

at next step. After T steps of denoising, we get the final output x̂1:N
i,0 .
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Benefits. Our method enjoys two significant benefits compared with pre-

vious works [111], [119], [121], [244]: 1) Progressive refinement : The sampling

process takes T steps to yield the final prediction, imitating the process of

iterative refinement typically seen in artifact creation. This process prioritizes

the broader outline initially and refines intricate details subsequently, which

is known to produce the final results with improved details than prior stud-

ies that aim at modeling clothed human in a single step. 2) Diversity in cloth

modeling : Our approach not only surpasses prior techniques that solely offered

deterministic clothed human inferences but also captures a realistic diversity

in clothes modeling. The inherent stochastic nature of our sampling process

means that each inference produces a diverse and also genuine outcome. This

is particularly in accord with the real-world observation that the same out-

fit and motion can present varied cloth wrinkle patterns. In addition, our

approach also allows deterministic modeling of motion-dependent clothing by

directly utilizing the Gaussian mean values at every diffusion step in Eqs. (7.2)

and (7.3) to bypass random sampling from the Gaussian distributions.

Unseen Clothes Modeling. Our approach is also able to tackle unseen

clothes, following the similar scheme described in [121]. Given a sequence of

raw scans, we fixed the parameters of pose encoder and shape decoder, and

optimize an initialized garment feature tensor to minimize the loss defined in

Eq. (7.9). Loss masks are applied when the sequence length is less than N .

7.3 Experiments

Datasets. We evaluate our method and compare with baselines on two com-

monly used datasets. CAPE [120] is a captured real dataset containing clothed

human scans under a variety of motions. We follow [120] to split training

and test sets from 3 subjects (00096, 00215, 03375) in 14 different outfits.

ReSynth [121] is a synthetic dataset with a larger variation in outfit shapes

and motions. We follow [121] for training and test sets split.

Implementation Details. The length of input sequence N is 8 and the

input positional maps are of size 128× 128. The pose encoder in our model is
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Methods

Outfits

anna-001 beatrice-025 christine-027 janett-025 felice-004 carla-004 alexandra-006 eric-035 all

knee dress
short sleeve

knee dress
long sleeve

knee dress
short sleeve

short skirt
long sleeve

long dress
tank top

puffy jacket
long pants

loose blouse
long pants

blazer jacket
long pants

-

CD NML CD NML CD NML CD NML CD NML CD NML CD NML CD NML CD NML

SCALE [120] - - - - - - - - - - - - - - - - 1.49 1.04

SCANimate [174] 1.34 1.35 0.74 1.33 3.21 1.66 2.81 1.59 20.79 2.94 0.90 1.52 2.28 1.84 2.54 1.94 4.30 1.77

POP [121] 0.62 0.82 0.34 0.75 1.72 0.97 1.24 0.89 7.34 1.24 0.51 1.02 1.71 1.29 1.34 1.16 1.36 1.02

SkiRT [119] 0.58 0.81 0.31 0.77 1.54 0.99 1.10 0.82 6.45 1.25 0.48 1.06 1.51 1.29 1.30 1.17 - -

CloSET [244] - - - - 1.49 0.97 - - 6.01 1.16 0.49 1.04 - - - - - -

Ours 0.54 0.81 0.33 0.76 1.30 0.97 1.03 0.81 5.58 1.14 0.47 1.05 1.50 1.29 1.29 1.15 1.13 1.01

Table 7.1: Quantitative results on ReSynth dataset across diverse clothes.

Methods

Outfits

blazerlong shortlong all

CD NML CD NML CD NML

SCALE [120] 1.07 1.22 0.89 1.12 - -

POP [121] 0.78 1.29 0.57 1.24 0.59 1.11

CloSET [244] 0.71 1.15 0.54 1.09 - -

Ours 0.68 1.12 0.49 1.08 0.54 1.09

Table 7.2: Quantitative results on CAPE dataset.

a 7-layer 3D UNet while shape decoder consists of 8-layer MLPs. The motion

and garment feature sizes, Cm and Cg, are set to be 64. Note that when only

pose-dependent features are considered, i.e., N = 1, our model has comparable

parameters with prior works [121], [244]. The predefined querying positions

on the motion and garment features are on the grid of size 256×256, resulting

in around 43K points for each temporal frame. We follow [133] to encode

displacements r1:Ni , normal n1:N
i and sampling position ui with frequency being

6, as well as diffusion step t with frequency being 16. For both datasets, the

number of diffusion steps is 100 and linear variance schedule of β is used. Our

model is trained with uniformly sampled diffusion step for 90 epochs for both

datasets on a single A100 GPU. The learning rate is 0.0001 and decay by 0.01

after training 70 epochs. The batch size during training is 4 for N = 8 and 8

for N = 1.

Evaluation Metrics. Following previous works [119], [121], [244], we

report the averaged Chamfer Distance (CD) defined in Eq. (7.10) and the av-

eraged L1 normal distance (NML) defined in Eq. (7.11) across all test samples

in the unit of ×10−4m2 and ×10−1 respectively. To holistically reflect the

performance of our model on different outfits, especially on challenging ones,
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Figure 7.4: Qualitative results on ReSynth dataset.

we list the results for each subject that wears different outfits. We also re-

port Dynamic Errors (DE) as defined in Eq. (7.12) in the unit of ×10−4m2 to

measure the smoothness of predicted point-based clothed human in a motion.

7.3.1 Comparison with State-of-the-Art Methods

We compare our approach with recent state-of-the-art methods: one implicit

approach SCANimate [174], and four point-based approaches SCALE [120],

POP [121], SkiRT [119] and CloSET [244].

We present the quantitative results on the ReSynth dataset in Tab. 7.1, cat-

egorized by different outfits. The results reveal that all four recent point-based

methods outperform the implicit method, SCANimate [174], by a significant

margin. This underscores the advantages of using point-cloud representations

for human clothing models. In comparisons with POP [121], our technique

demonstrates superior or competitive performance in both CD and NML across

various evaluated outfits. These enhancements are likely due to our use of

motion-dependent feature encoding and progressive refinement through a dif-

fusion process. Moreover, our method slightly improves upon the CD and NML

scores reported by SkiRT [119] for most outfits. Notably, we achieve a 13.4%
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improvement in CD for the challenging long dress outfit (”felice-004”), with

scores of 5.58 compared to SkiRT’s 6.45. Although SkiRT utilizes a coarse-to-

fine strategy, our results affirm the value of multi-step progressive refinement

for challenging outfits. Similar observations can be made when contrasting our

method with CloSET [244]. While CloSET encodes features on the continu-

ous body surface instead of UV map, it overlooks the importance of dynamics

and progressive modeling of clothed humans. The qualitative results depicted

in Fig. 7.4 demonstrate that our model generates motion-dependent clothed

humans with smooth and natural cloth wrinkles. These results are notably

superior to those from the four pose-dependent baselines [111], [121], [174],

[244], highlighting the importance of dynamics modeling for this task. More-

over, our method produces denser point-clouds in regions where the clothing

is distanced from the human body, an improvement attributable to the pro-

gressive modeling facilitated by our diffusion-based framework.

The quantitative results on CAPE dataset are summarized in Tab. 7.2,

which includes the results for the ”blazerlong” and ”shortlong” outfits, as well

as the average performance across all outfits. When compared to SCALE [120],

our method demonstrates substantial improvements for both listed outfits.

The inferiority of SCALE is primarily due to its reliance on low-resolution

point-clouds. In relation to POP [121], our technique yields improvements of

8.5% and 1.8% in CD and NML, respectively, when averaged across all outfits.

These gains attest to the efficacy of our motion-dependent feature encoding

and progressive modeling techniques for clothed human figures. Furthermore,

these factors also contribute to our method’s outperformance of CloSET [244].

While CloSET does achieve superior results by learning features on a contin-

uous body surface, it falls short in adequately addressing the dynamics and

progressive aspects of clothed human modeling.

7.3.2 Ablation Study

In this section, we conduct an ablation study to investigate the contributions

of two core components in our approach: motion-dependent temporal feature

encoding and the progressive diffusion process.
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Methods

Outfits

christine-027 janett-025 felice-004 alexandra-006 eric-035 all

knee dress
short sleeve

short skirt
long sleeve

long dress
tank top

loose blouse
long pants

blazer jacket
long pants

-

CD NML DE CD NML DE CD NML DE CD NML DE CD NML DE CD NML DE

Ours 1.35 0.97 3.20 1.03 0.81 2.79 5.58 1.14 3.08 1.50 1.29 3.10 1.30 1.15 3.71 1.14 1.01 3.12

w/o temp. 1.39 0.97 3.32 1.10 0.83 2.85 5.87 1.16 3.30 1.56 1.29 3.19 1.31 1.16 3.92 1.20 1.02 3.23

w/o diff. 1.66 0.97 3.25 1.20 0.87 2.82 6.93 1.23 3.16 1.67 1.30 3.12 1.33 1.16 3.78 1.30 1.02 3.18

w/o both 1.72 0.97 3.36 1.23 0.89 2.88 7.30 1.24 3.37 1.70 1.31 3.25 1.35 1.17 3.99 1.36 1.02 3.27

Table 7.3: Quantitative results of ablation study on ReSynth dataset. In each
column, we underline key comparisons for enhanced clarity of ablation results.

The study comprises three scenarios: 1) Without dynamics modeling, la-

beled by w/o temp., means that only pose-dependent features are considered

without motion-dependent temporal features. 2) Without progressive model-

ing, denoted by w/o diffusion, indicates that the progressive denoising process

is omitted, and predictions are predicted in a single stage only. 3) Without

both components, denoted by w/o both, refers to the exclusion of both afore-

mentioned elements, resulting in a pipeline similar to that of POP [121].

We present the quantitative results of our ablation study on the ReSynth

dataset in Tab. 7.3. For enhanced clarity, we underline key comparisons in

each column. Significantly, the model without motion-dependent temporal

feature encoding shows substantially larger errors in capturing the dynamics

of clothed humans across a variety of outfits. This is particularly evident in the

”christine-027”, ”felice-004” and ”eric-035” outfits. These findings emphasize

the critical role of motion-dependent features encoding for the dynamics mod-

eling of clothed humans. Meanwhile, when the diffusion component is absent,

there is a noticeable increase in CD errors, especially in the challenging cases

involving loose outfits, such as ”felice-004,” where the score rises from 5.58

to 6.93. Similar trends are observed in three other outfits: ”christine-027”,

”janett-025” and ”alexandra-006”. These results underscore the efficacy of

our proposed multi-step denoising process, wherein progressive modeling sig-

nificantly enhances the representation of loose-fitting garments relative to the

underlying unclothed bodies.
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7.4 Conclusion

In this chapter, we introduce ClothDiffuse, an innovative end-to-end diffusion-

based method that integrates all three significant aspects, dynamics modeling,

progressive modeling, and diversified modeling, for the modeling of clothed

humans in a motion. Empirical results show that ClothDiffuse surpasses ex-

isting benchmarks, marking a significant advance in the field of clothed human

modeling.
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Chapter 8

Conclusion

8.1 Summary

In summary, this thesis focuses on the field of human pose estimation and

shape modeling from and particularly beyond RGB cameras, which attempts

to explore the potential opportunities presented by emerging cameras, such as

event cameras, polarization cameras and point-clouds.

Specifically, RGB cameras, renowned for their widespread use and cost-

effectiveness, excel in a multitude of applications ranging from everyday pho-

tography to basic surveillance systems. However, when it comes to industrial

scenarios demanding low power consumption and instantaneous response, such

as in sophisticated video surveillance systems or the nuanced object detection

required in autonomous vehicles, event cameras emerge as a superior alter-

native. These cameras, distinguished by their ability to capture pixel-level

changes at high speed, are particularly advantageous in dynamic, fast-paced

environments. On the other hand, tasks that necessitate detailed depth per-

ception and 3D modeling, like intricate human shape modeling or advanced

spatial analysis, reveal the limitations of standard RGB cameras and event

streams. In these contexts, polarization imaging and point cloud technologies

offer viable solutions. Polarization cameras, which detect light waves’ orien-

tation, can discern surface characteristics and angles with precision, making

them ideal for complex geometrical modeling. Point clouds, generated by

depth sensors, provide comprehensive 3D spatial data but come with higher

costs and typically lower frame rates compared to conventional imaging meth-
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ods. Each imaging modality, therefore, presents a unique spectrum of strengths

and weaknesses. The choice of technology hinges on balancing these attributes

against the specific needs and constraints of the intended application. In light

of this, our continued research into these advanced camera technologies leads

us to advocate for the integration of various sensor types.

Our research in this thesis is structured around three pivotal components:

the exploration of new cameras, the development of novel approaches, and the

creation of large-scale multi-modality datasets for human pose estimation and

shape modeling. Consequently, we end up with the corresponding chapters in

this thesis.

Chapter 3 (RGB cameras): Multi-person pose estimation, tracking and

motion forecasting from RGB videos are usually more practical in real-world

applications, but with more challenging cases due to the intra-frame occlu-

sion of multiple persons. In Chapter 3, we introduce a unified framework to

address these interconnected tasks. Our framework leverages spatiotemporal

deformable attention to encode the relationships between images, effectively

overcoming the issue of intra-frame occlusion frequently encountered in multi-

person settings. Unlike existing methods that usually focus on isolated tasks

or employ cascaded strategies, our unified approach acknowledges the interde-

pendence of pose estimation and tracking tasks. Accurate 3D pose estimation

aids robust tracking, which in turn offers valuable regions-of-interest for fur-

ther pose estimation and serves as a basis for sensible future motion prediction.

Through extensive experiments, we demonstrate that our generic model out-

performs specialized baselines, exhibiting competitive performance across all

three crucial tasks of pose estimation, tracking, and motion forecasting.

Chapter 4 and 5 (Event Cameras): In these two chapters, we have turned

our attention to the energy-efficient event cameras for human parametric pose

and shape tracking. These cameras offer unique advantages including high

temporal resolution, low latency and low power consumption. In contrast to

frame-based cameras, event cameras asynchronously register changes in pixel

brightness, resulting in a much sparser and more efficient data stream. Rec-

ognizing the untapped potential of event data for 3D human pose and shape
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estimation, we have developed innovative approaches that primarily rely on

event signals. Initially, we introduced a method using optical flow inferred

from events, accompanied by a coherence loss function for consistency be-

tween event-based and shape-based flows. To evaluate our work, we created

the Multi-Modality Human Pose and Shape Dataset (MMHPSD), the first

public dataset of its kind, featuring multiple imaging modalities including

event cameras. Subsequently, we pushed the envelope further by developing

a novel end-to-end sparse deep learning approach based on Spiking Neural

Networks (SNNs), which we refer to as Spatiotemporal Spiking Transformer.

This model outperforms existing state-of-the-art methods while requiring only

about 20% of the computational resources and 3% of the energy consumption.

To support this advanced research, we also constructed a larger dataset, Syn-

EventHPD, dedicated to event-based 3D human pose tracking. This dataset is

more than ten times larger than the existing MMHPSD, featuring 45.72 hours

of event streams and covering a broad range of motions.

Chapter 6 (Polarization Cameras): In this chapter, we introduce a new

imaging modality using polarization cameras to estimate human pose and

reconstruct clothed human shapes. Our proposed two-stage approach, Hu-

manSfP, leverages geometric cues from single polarization images to estimate

human pose and shape. The first stage, Polar2Normal, predicts surface normal

maps by incorporating physical laws as priors. These predictions then guide

the second stage, Polar2Shape, in reconstructing a clothed human shape, in-

formed by both the surface normal and an initial parametric shape estimated.

To facilitate this research, we have created the Polarization Human Shape

and Pose Dataset (PHSPD), comprising approximately 527K frames, 21 sub-

jects, 31 unique actions, and around 9.5 hours of recorded video. Empirical

evaluations on synthetic and real-world datasets validate the efficacy of our

approach, suggesting that polarization cameras offer a promising alternative

to traditional RGB cameras for 3D human pose and shape estimation.

Chapter 7 (Point-clouds): With the advancements in hardware technol-

ogy, depth sensors have emerged as a straightforward tool to capture 3D point-

clouds of objects, known for their intuitive, efficient, and general representa-
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tion. Meanwhile, clothed human shapes offer a more comprehensive represen-

tation of clothing details. Going beyond static human shape reconstruction,

our research focuses on the complex task of animating clothed humans with

natural clothing deformations, leveraging point-cloud sequences that provide

valuable geometric insights into the structure of the clothing. Traditional

techniques, relying either on simplistic rigging-and-skinning or physics-based

simulations, require intensive computations and specialized expertise to cre-

ate a simulation-ready clothing mesh. Recent data-driven methods have made

strides, but they still lack in several key areas: dynamics modeling of clothing

deformations in a motion sequence, progressive modeling for iterative refine-

ments of clothing deformations, and diversified modeling to capture variations

in clothing wrinkle patterns. Our diffusion-based approach integrates these

three essential elements and learns the dynamics of clothing deformations for

the realistic generation of clothing details in target motion animations.

The comprehensive experimental validations undertaken across these dif-

ferent projects substantiate the effectiveness of our proposed methods. Collec-

tively, this work marks a significant advancement in computer vision, providing

robust, efficient, and versatile solutions for human pose estimation and shape

modeling.

In addition to these technical contributions, we have developed large-scale,

multi-modal datasets—PHSPD, MMHPSD, and SynEventHPD—that serve as

valuable resources for the research community. These datasets not only set a

new benchmark in terms of scale and diversity but also open avenues for future

research by incorporating multiple sensing modalities beyond traditional RGB

images.

8.2 Outlook

Human pose estimation and shape modeling are crucial components in com-

puter vision, with applications in an array of sectors, including but not limited

to AR/VR, gaming, film, healthcare, and digital humans.

Future research could beneficially explore a wider range of emerging cam-
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eras or data modalities in the field of human pose estimation and shape model-

ing. For example, light field cameras, which capture the intensity of light from

various directions in a scene, allow for post-capture focus adjustments and 3D

imaging. Additionally, thermal imaging cameras, increasingly more compact

and affordable, offer unique insights based on heat signatures and are find-

ing applications in healthcare, building inspections, and wildlife monitoring.

Beyond imaging modalities, Inertial Measurement Units (IMUs) are also note-

worthy. They measure and report a body’s specific force, angular rate, and

occasionally orientation, through a combination of accelerometers, gyroscopes,

and sometimes magnetometers, with recent studies investigating their use in

pose estimation. Ultrasonic sensors, which detect distances and movements

using ultrasonic waves, represent another potential avenue for exploration.

In addition to the exploration of emerging cameras or data modalities, there

are also pronounced challenges and bottlenecks to explore for future research.

One challenge could be the integration of multiple modalities and physics-

based constraints into the existing frameworks. The integration of multi-modal

data such as inertial measurement unit, accelerometers, gyroscopes, and bio-

metric sensors with the image data could supplement the shortcomings of a

single imaging modality, and thus drastically improve the robustness and ac-

curacy of pose and shape analysis. Additionally, integrating physics-based

constraints could rectify physically implausible pose predictions, creating a

more realistic and reliable model. By leveraging this multi-modal fusion and

physical realism, we could build systems that are both comprehensive and

deeply rooted in real-world mechanics.

Another challenge might be the ability to handle challenging poses or mo-

tions under various conditions, such as moving cameras, partial occlusions, and

intricate backgrounds. One potential pathway to resolve this issue could be

the utilization of unsupervised or semi-supervised learning techniques. Build-

ing foundation models trained on large-scale unlabeled data could make the

systems better at generalizing across different conditions. These models could

subsequently be fine-tuned with smaller, labeled datasets for specific applica-

tions, thus creating a more adaptive and resilient pose estimation framework.
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Another under-explored yet highly pertinent area is data acquisition, par-

ticularly for broader applications in digital humans. The digital human paradigm

not only demands high-fidelity pose and shape modeling but also requires de-

tailed data on other human aspects like speech, text, motion, facial expression,

hand gestures, and hair and clothing simulation. The absence of comprehen-

sive datasets that combine all these aspects has been a major roadblock. How-

ever, if a large, rich dataset comprising all these elements could be constructed

or synthesized, we would likely see significant advancements in AI-Generated

Content (AIGC) specific to digital humans. This could revolutionize the way

we interact with digital humans, making them more lifelike and responsive

across various communication modes.

In summary, the challenges of integrating multiple modalities and physics-

based constraints, dealing with complex and variable conditions, and acquiring

comprehensive, multi-faceted data represent some pressing bottlenecks in hu-

man pose estimation and shape modeling. Tackling these issues effectively

will likely yield transformative results, pushing the boundaries of what is cur-

rently achievable in applications ranging from AR/VR to the next generation

of digital humans.
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to events: Recycling video datasets for event cameras,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[62] D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-
to-end learning of representations for asynchronous event-based data,”
in IEEE/CVF International Conference on Computer Vision, 2019.

[63] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “Asynchronous,
photometric feature tracking using events and frames,” in European
Conference on Computer Vision, 2018.

[64] R. Girdhar, G. Gkioxari, L. Torresani, M. Paluri, and D. Tran, “Detect-
and-track: Efficient pose estimation in videos,” in IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018.

[65] R. Girshick, “Fast r-cnn,” in IEEE/CVF International Conference on
Computer Vision, 2015.

[66] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A
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