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Abstract 
 

The abundance of data and advances in data acquisition technologies have made data-driven 

approaches attractive to solve a multitude of problems. Differential equations deliver 

underlying models for most physical processes. Obtaining the fundamental physics 

underlying any data in the form of partial differential equations (PDEs) will facilitate 

modelling and prediction for systems where first principles modelling might not be feasible. 

Handling high dimensional spatiotemporal data holds high priority as it forms the underlying 

basis of many canonical models. Data-driven discovery has been addressed in the literature 

using Gaussian processes, artificial neural networks, and more recently, sparse regression 

techniques. Sparse optimization methods are used in multiple domains such as compressive 

sensing, scientific computing and to learn important features from data sets as they promote 

parsimony. Although there are multiple works done to discover PDEs using the sparse 

regression approach, there is no study about the optimal methods that can be utilized for a 

multitude of systems. We have carried out a detailed study of the sparse regression 

framework by inferring the best gradient estimation method and the optimal sparsity 

regularization method for different noise levels. These inferences have provided knowledge 

about handling uncertainties in the sparse regression framework.  

We have utilized these inferences and extended the work to discover a system of PDEs using 

data-driven and hybrid modelling approaches. The hybrid modelling approach was 

implemented to utilize the process knowledge to discover the system of PDEs. Through this 

framework, any partial information about the process can be incorporated into the PDE 

discovery framework in the form of mathematical constraints. The hybrid modelling 
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approach improves the model accuracy due to the prior physical knowledge incorporated and 

also reduces the computational cost.  

Petroleum reservoirs are large scale distributed parameter processes from a systems and 

control theoretic perspective. We have developed an algorithm to discover parametric PDEs 

to explain the temperature dynamics of a steam-assisted gravity drainage(SAGD) process in 

an oil reservoir. The data required for the discovery was collected from a first-principles 

based commercial reservoir simulator and geomechanical simulator CMG-STARS 

sequentially coupled with FLAC3D. An ensemble of multiple realizations of temperature 

and permeability was generated which spanned across the spatial domain of the reservoir. A 

hybrid model was developed by incorporating the permeability values in the discovery 

framework and has higher accuracy compared to the data-driven model. PDEs were 

discovered for each realization and then integrated to form a spatially varying parametric 

PDE explaining the temperature dynamics in an oil reservoir.  
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Chapter 1 
 

Introduction 
 

 

1.1 Motivation and problem statement  
 

The application of data analytics in process control and optimization studies is gaining 

significant attention due to immense improvement in data collection and storage. The 

application of machine learning in various fields of engineering emphasises the importance 

of data storage. Data is utilized to build models that define the propagation of any process 

and can be used for the prediction of future states. The modelling and prediction framework 

has been part of process control for many decades. System identification deals with building 

data-driven models for given process inputs and outputs. Various model structures with 

different parametrizations and assumptions are assumed and the obtained models are 

validated. The data-driven models emerged due to complex processes for which the first-

principle models were intractable or computationally expensive. The most recent 

application of the data-driven models can be seen in multiple papers published about 

modelling the spread of the pandemic in specific regions by considering different factors 

and making certain assumptions[1][2]. However, the data-driven models have their 

advantages and limitations. Obtaining the physical interpretability of data-driven models is 

difficult if the process information is unknown. Various approaches are available in the 

literature, but are process specific and utilize different statistical techniques to obtain 

reduced order models or proxy models.  

Modelling physical processes or investigation of physical problems has attracted a lot of 

interest. Many complex processes, such as climate studies, neurosciences, epidemiology are 

the main areas of study as obtaining a physics-based model for such processes is not 

feasible. Similarly, in the engineering domain, studying the evolution of parameters of a 

complex process such as oil reservoirs, blast furnaces, etc. is a challenging task due to the 
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unavailability of data throughout the spatial and temporal domain of the process.  The 

implementation of data-driven modelling approaches for such processes is not feasible as 

the generated models will not sufficiently explain the process variability and physical 

interpretation of the model will be impossible. Differential equations are generally utilised 

to explain the variability of a particular variable over time or space. Ordinary differential 

equations (ODEs) model the variation of the process corresponding to time i.e., the 

evolution of any parameter over different time instants can be modelled using an ODE.  

Partial differential equations (PDEs) are utilized to model any process that propagates 

across time and space. Many physical and chemical engineering processes involve spatial 

variability and evolve over time.  

Inferring the model of any parameter using data-driven approaches from processes in which 

first principles modelling is infeasible is the discovery of differential equations from data. 

It can also be termed as model identification of dynamical systems. The obtained model has 

to explain the process variability and also should be parsimonious. For example, developing 

a model that explains the dynamics sufficiently but having a large number of parameters is 

not ideal. A similar ideology is utilized in the classic system identification framework as 

well, where the model selection is based on a trade-off between the number of parameters 

of the model and model fit percentage. The problem statement can be formulated as the 

data-driven discovery of parsimonious interpretable differential equations that govern the 

process under study.  

The discovery of physical laws from experimental data in the form of ODEs using symbolic 

regression was one of the important breakthroughs in the data-driven model discovery 

domain [3]. Identification of a parsimonious model of an ODE from a predefined candidate 

library and sparse regression framework was proposed in the sparse identification of 

nonlinear dynamics(SINDy) [4]. This work led to the emergence of a new area of model 

identification using the sparse regression framework. This work was extended to the 

identification of PDEs in the PDE-FIND algorithm [5]. The SINDy and the PDE-FIND 

algorithms led to various other works in model identification to overcome its limitations. 

Schaeffer et al. studied the implementation of L1 norm to the PDE discovery[6] instead of 

the STRidge as used in PDE_FIND. Various other works extended the SINDy algorithm to 
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stochastic dynamical systems[7], the discovery of biophysical processes, and also to model 

predictive control [8]. Various other methods were also employed to build ODE and PDE 

models from data. Bayesian regression[9], the application of convolutional neural networks 

using constrained filters [10][11],  using a feed-forward neural network as a function 

approximator [12], the application of genetic algorithms[13], and the integration of deep 

learning and genetic algorithms[14] are some of the noted works in the discovery of 

differential equations from data. The demonstrations shown in all the works are process-

specific and there is no inference provided about the optimal conditions of the algorithm to 

discover PDEs from any system. As the sparse regression framework is extensively used in 

the model discovery domain, we studied the impact of different parameters of the algorithm 

on the model accuracy for different noise levels. We employed the application of different 

gradient estimation methods and different sparsity regularization techniques and inferred 

the optimal and consistent methods that will yield a higher accuracy model and is applicable 

across different systems.  

As mentioned earlier, the physical interpretability of data-driven models remains 

unanswered. Various works in the literature consider the problem of estimating the 

parameters of a model for a known structure using data. Although these methods are data-

driven, the structure of the ODE/PDE is considered to be known and only the coefficients 

or parameters of the equations are estimated using data-driven methods. The concept of 

sparse regression is not required in such methods as the number of terms and parameters is 

known before the discovery. Such methods can be termed grey-box models as only the 

parameters are estimated for known structures of the PDE. Physics informed neural 

networks (PINNs) framework proposed a method for forward and inverse solutions of the 

PDE [15]. Hidden physics models[16] and machine learning of linear differential equations 

using Gaussian processes [17] proposed by Raissi et al. utilize Gaussian processes to obtain 

the underlying governing equations. 

The methods in the literature are either completely data-driven or assume complete 

knowledge of the structure of the equation. However, in reality, we end up in situations 

where data is available and there is some information about the process, but not enough to 

decide the complete structure of the equation. Therefore, we propose an intermediate 
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approach that utilizes the data and also incorporates the known information before the PDE 

discovery. This obtained model will be able to provide physical insights about the process 

and also explain the process variability. We demonstrate this approach on a system of PDEs.  

The form of PDEs generally considered for model discovery contains constant coefficients 

of the PDE. In reality, there are numerous cases where the coefficients of the PDE are 

functions of time or space, i.e., the dynamics of the process cannot be explained using 

constant coefficients. Each term will have a vector of coefficients varying in time or space, 

depending on the process. The PDE-FIND algorithm was extended with the assumption of 

parametric PDE by utilizing the group sparsity approach. Regression was performed at each 

time step if the dependency is on time or spatial location if the dependency is on spatial 

points [18]. A deep learning framework integrated with a genetic algorithm utilizing a dual 

neural network framework was employed to discover parametric PDEs[19]. Although these 

two data-driven methods can discover the PDE in its parametric form, a physics-based 

approach integrated with the data-driven method will yield interpretable results.  We 

consider the temperature dynamics in an oil reservoir as the subject of study and propose 

an algorithm to discover the governing parametric PDE, with the spatial dependency of the 

coefficients. A theoretical perspective of an oil reservoir with its states and parameters is 

shown in figure 2.1 to provide basic insights into the process[20]. We achieve this by 

generating an ensemble of realizations across the reservoir using the properties of the 

variogram and incorporating the information of petrophysical parameters into the discovery 

algorithm.  

 

 

Figure 1.1: Theoretical perspective of an oil reservoir 
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1.2 Thesis organization and contributions  
 

The remainder of the thesis is organized as follows.  

In Chapter 2, the data-driven discovery of partial differential equations for noisy data is 

performed. The work is based on and an extension of the work presented in [5]. The main 

contributions of this chapter include a detailed study of the impact of different gradient 

estimation methods and sparsity regularizations on the model accuracy in the sparse 

regression framework of the PDE discovery. The best gradient estimation method and the 

optimal sparsity regularization method that can be utilized to obtain the best PDE models 

for different levels of noise are developed. We also demonstrate an SVD based denoising 

framework and compare the model accuracies between with and without denoising the data 

for different noise levels.  

In Chapter 3, we propose a hybrid modelling approach to discover a system of PDEs from 

spatiotemporal data. The main contributions of this work include the development of a 

hybrid modelling framework, that incorporates any known process information in the form 

of mathematical constraints in the PDE discovery framework. The proposed method is an 

intermediate approach between data-driven and physics informed discovery methods that 

utilize both data and partially known process knowledge to obtain a parsimonious system 

of PDEs. We demonstrate the approach on three different complex systems of PDEs. Hybrid 

modelling for each case study utilizes different forms of process knowledge incorporation. 

We compare the data-driven and hybrid models for all the case studies.  

In Chapter 4, we propose a methodology to model the temperature dynamics of the SAGD 

process in an oil reservoir. The main contributions of this work include the discovery of a 

parametric form of PDE to model the temperature dynamics by creating an ensemble of 

realizations for temperature and permeability data using the properties of the variogram. 

We utilize data-driven and hybrid modelling approaches to obtain the parametric PDE and 

compare the model accuracies.  

Finally, the conclusions and possible future extensions of this thesis are presented in 

Chapter 5. 
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Chapter 2  
 

Data-driven discovery of partial differential 

equations for noisy data  
 

2.1 Introduction 
 

The abundance of data and advances in data acquisition technologies have made data-driven 

approaches, an attractive way to solve a multitude of problems and to be applied in different 

domains.  It is estimated that a huge proportion of the available data is generated in the last 

decade due to the significant plummeting cost of data acquisition through sensors, 

computational resources, and storage. Less explored is the field of developing physical 

models that govern the available data exhibiting spatiotemporal behaviour. Partial 

differential equations(PDEs) facilitate modelling of spatiotemporal data for many processes 

in science, for example Navier-Stokes’ equation in fluid dynamics, Euler’s equation in gas 

dynamics, Maxwell’s equation for electromagnetism and in many chemical engineering 

processes such as heat transfer, mass transfer and adsorption.  PDEs also model complex 

social systems such as population dynamics, financial markets, and epidemic models.  

The first-principle based models rely on the inherent physical property and behaviour of the 

system under study and are available for many processes in science and engineering. 

Nevertheless, there are complicated systems(for example, climate study, neuroscience, and 

power grids)  for which obtaining the first-principle based models is challenging because 

of the complexity in the translation of physical properties into variables and the selection 

of defining variables itself can be a difficult task. Data-driven modelling approaches to 

encode the governing physical laws in the form of PDEs and using them to make predictions 

of physical quantities outside the range of the measurement data are gaining significant 

attention. This broadens the domain of process modelling by eliminating the limitation of a 

mandatory first-principles model.  
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Machine learning provides numerous tools to investigate large datasets and to develop 

models. The discovery of physical laws from experimental data in the form of ordinary 

differential equations(ODEs) that govern the structure of the phenomena using symbolic 

regression are proposed by Lipson in [3] and [21]. As the development of parsimonious and 

interpretable models is of interest, sparse regression framework is most frequently utilized 

in several works related to data-driven modelling. Sparse regression identifies a few terms 

that constitute the governing equation from a large candidate library and promotes 

parsimony. Sparse identification of nonlinear dynamics (SINDy) [22] uses sparse 

regression to discover ODEs from data and the proposed algorithm in [4] is an extension of 

SINDy framework which uses an autoencoder framework to discover a coordinate 

transformation in a reduced space where the dynamics is sparsely represented. The PDE-

FIND [5] algorithm by Rudy, et al. and PDE discovery using L1 regularization [6] by 

Schaeffer, et al. utilize sparse regression framework to discover PDEs from data. 

Investigation on data-driven discovery using sparse regression has increased significantly 

since the introduction of  PDE FIND [5]. Dynamical system identification using group 

sparsity[23] demonstrates the discovery of ordinary differential equations from a family of 

datasets sharing the same physical laws but differs in bifurcation parameters, discovery of 

stochastic dynamical systems [7] extends the SINDy formulation to stochastic dynamical 

systems to model biophysical processes, discovery of dynamical systems using AIC 

criterion[24] concentrates on the model selection for SINDy algorithm using Akaike 

information criterion, discovery of PDEs is complex datasets [25] utilizes deep learning 

techniques for identification of governing equations. The identification of nonlinear 

dynamics with model predictive control [8] is an extension of the SINDy incorporating the 

actuation effects with a demonstration of enhanced MPC performance, Weak-SINDY uses 

the Fourier based implementation exploits separability of test functions for efficient mode 

[26], and deep learning based data driven discovery of PDE [27] integrates deep learning 

and sparse regression framework to discover PDEs.   

Other than sparse regression, neural networks and the Gaussian processes are also used in 

the discovery of governing equations. Physics informed neural networks(PINN) [15] 

provides a method for forward and inverse solutions of PDE utilizing automatic 

differentiation. Hidden physics models [16] and machine learning of linear differential 
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equations using Gaussian processes [17] proposed by Raissi et al. utilize Gaussian processes 

to obtain the underlying governing equations. The neural network and Gaussian based 

methods [15]–[17] require fewer data and are relatively less sensitive to noise, but the 

limitation is that they only estimate the coefficients of the known PDE structure and not the 

structure itself. A convolutional neural network-based approach using constrained filters 

was proposed by Long et.al in [10] and [11]; the PDE structure and coefficients were 

estimated but the results did not ensure parsimony.   

The challenges in most of the above methods are the incomplete candidate library and lack 

of handling noisy data. DLGA-PDE algorithm proposed by Xu et al.[14] uses a combination 

of deep learning and genetic algorithms to perform an evolutionary search based PDE 

structure discovery and regression to estimate its coefficients. Although the issue of the 

incomplete library is addressed for a few examples, application to industrial data or any 

other complex processes might not be suitable due to the possibility of genetic algorithm 

producing a local optimal solution and the possibility of losing the correct terms and 

coefficients over the generations.  The issue of noisy data is generally addressed by using 

finite difference approximations or cubic splines for interpolation, followed by partial 

differentiation of the fitted splines. DeepMoD, a deep learning approach, [12] employs a 

feed-forward neural network as a function approximator and also performs sparse 

regression within the neural network imposing lasso regularization. Moderate levels of 

noise and handled well and accurate PDEs are obtained in DeepMoD; however, for higher 

levels of noise, lasso regularization might not yield good results.  The use of polynomial 

interpolation for gradient estimation is suggested by Rudy et al. in [5] but there are no 

comparative results displayed.  Zhang et al. proposed the sparse Bayesian regression[9] 

which allows for error bars for each candidate term of the PDE and the idea of 

transformation of data from temporal to the spectral domain was proposed by Schaeffer in 

[6]. Both these methods were robust in applicability, but the noise was added only to the 

temporal derivative and not the data itself. Lagergren et al. proposed a single hidden layer 

artificial neural network approach for denoising followed by sparse regression for the PDE 

discovery[28], but the application was limited to first and second-order PDEs;  the only 

process models considered were biological transport models. 
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The objective of the data-driven discovery of PDE is to obtain parsimonious, interpretable 

equations that explain the variability in the data and can be used to make predictions with 

high accuracy. Each process has its properties and irregularities, which makes it difficult to 

develop a generalized algorithm for all the processes. For example, the PDE model 

discovered for some processes after denoising the data might not explain the physics of the 

process due to loss in important information. Learning from all the above-mentioned 

methods, we can infer that PDE discovery comprises three main components: gradient 

estimation, denoising, and regularizations imposed on the regression. In this work, we 

perform a detailed comparative study of all three components for various systems. Different 

gradient estimation methods such as finite differences, polynomial interpolation, spectral 

methods, and neural network based automatic differentiation are utilized to estimate 

gradients to generate the candidate library prior to sparse regression for different physical 

and chemical engineering processes. The influence of these different gradient estimation 

methods on PDE discovery at different levels of noise in the input data is studied. 

Regularization imposed on the regression is another important factor as it promotes 

parsimony in the discovered model. Furthermore, the impact of various regularizations, 

such as Lasso, Ridge, and sequential thresholding on the PDE discovery is investigated. 

Finally, the impact of denoising data before the PDE discovery on the obtained model 

adequacy is analysed. Model selection is necessary due to hyperparameters in the PDE 

discovery algorithm. We achieve this through the Akaike information criterion of known 

systems for the obtained models and infer the most generalizable values of hyperparameters 

to facilitate application to systems where the ground truth is unknown. PDEs of different 

orders from various processes are used as case studies to demonstrate the comparative 

study. Burgers equation, Korteweg–De Vries (KdV) equation, Kuramoto Sivashinsky 

equation, and PDE from chromatographic studies are the systems under study. Through this 

study, we can infer the optimal method of gradient estimation, regularization imposed on 

regression and the impact of denoising data for PDE discovery through sparse regression. 
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2.2 Data-driven discovery of partial differential equations  
 

2.2.1 Data generation 
 

Spatiotemporal data is the input for the PDE discovery algorithm and all related studies that 

follow. To validate the method, we generate data by solving a set of known PDEs of 

different orders from various systems and use this as an input for the PDE discovery. This 

facilitates us to investigate the robustness of the method involved and facilitates its 

extension to processes where the ground truth is unknown.  

The numerical solutions for the PDEs with pre-defined initial and boundary conditions were 

obtained using spectral differentiation i.e., fast Fourier transform and inverse fast Fourier 

transform (fft and ifft in MATLAB) integrated with Runge-Kutta-45 ODE- ode45 solver in 

MATLAB. The temporal discretization, spatial discretization, initial condition, and 

boundary conditions are different for each system; values are given in the results section. 

Various levels of Gaussian noise(1% to 20%) are added to the datasets to identify the PDE 

under influence of noise.   

2.2.2 Construction of candidate library  
 

In this work, we discover underlying governing equations for a dataset that is assumed to 

be the solution to a PDE of the form                                                                        

 𝑢𝑡 = 𝐹(𝑢, 𝑢𝑥 , 𝑢𝑥𝑥 , 𝑢𝑥𝑥𝑥 , … . . 𝑢𝑢𝑥𝑥 , 𝑢
2𝑢𝑥𝑥 …) (2.1) 

 

𝑢 in (2.1) refers to the spatiotemporal data from which the PDE has to be discovered. The 

subscripts refer to partial derivatives; 𝑢𝑡 refers to the partial derivative of the data with 

respect to time. 𝑢𝑥 refers to the first partial derivative of the data with respect to spatial 

component and 𝑢𝑥𝑥 , 𝑢𝑥𝑥𝑥 … refers to higher-order partial derivatives with respect to the 

spatial component respectively. We consider only one spatial dimension in this study. For 

systems involving multiple spatial dimensions, the partial derivative with respect to all the 

spatial dimensions will be considered on the right-hand side of (2.1).   
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The assumption is that the function 𝐹 consists of only a few terms and is a sum of spatial 

derivatives, polynomials,  non-linear combinations of derivatives and polynomials of the 

input data 𝑢 and it is sufficient to explain the process dynamics of the input data. The 

assumption is based on the structure of the PDEs that are established and utilized in 

engineering and sciences [29].  This assumption makes 𝐹 sparse relative to many terms in 

the candidate library. Our objective is to find the function 𝐹 by constructing the candidate 

library followed by sparse regression.  

 𝑈𝑡 = Θ(𝑈)𝜉 (2.2) 

 

A large library of possible candidate terms that may be a part of 𝐹 is generated as shown in 

(2.2). The left-hand side of the equation, 𝑈𝑡 , will be a column vector with derivatives of the 

data with respect to time and the right-hand side is the candidate library matrix Θ containing 

each possible term in a different column with values at each time step and spatial location 

as shown in (2.3). 𝜉 is the sparse vector of coefficients. Since Θ contains significantly more 

terms than the terms necessary to describe the PDE and the terms representing the dynamics 

are within the span of Θ, most values in 𝜉 will be zero leading to a sparse solution.  

 Θ(𝑈) = [1  𝑈  𝑈2  𝑈3 ….  𝑈𝑥   𝑈𝑥𝑥   𝑈𝑥𝑥𝑥 …𝑈𝑈𝑥𝑥   𝑈
2𝑈𝑥𝑥 … ]   (2.3) 

 

For example, if we have the data of size 𝑛 × 𝑚, where 𝑛 represents the number of spatial 

measurements, 𝑚 representes the number of time points, and we use 𝑑 number of candidate 

terms in the library, then Θ will have 𝑛.𝑚 × 𝑑 entries, and left-hand side will have 𝑛.𝑚 × 1 

entries as shown in (2.4). The library is constructed after estimating the temporal and spatial 

derivatives of the data at each point in the grid.  
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[
 
 
 
 
 
 
 
 
 

𝑢𝑡(𝑥0, 𝑡0)

𝑢𝑡(𝑥1, 𝑡0)
⋮

𝑢𝑡(𝑥𝑛 , 𝑡0)

𝑢𝑡(𝑥0, 𝑡1)
⋮
⋮

𝑢𝑡(𝑥𝑛−1, 𝑡𝑚) 

𝑢𝑡(𝑥𝑛 , 𝑡𝑚) ]
 
 
 
 
 
 
 
 
 

 

 

 

 

= 

[
 
 
 
 
 
 
 
 
 
1 𝑢(𝑥0, 𝑡0) 𝑢𝑥(𝑥0, 𝑡0) … 𝑢3𝑢𝑥𝑥(𝑥0, 𝑡0)

1 𝑢(𝑥1, 𝑡0) 𝑢𝑥(𝑥1, 𝑡0) … 𝑢3𝑢𝑥𝑥(𝑥1, 𝑡0)
⋮ ⋮ ⋮ … ⋮
1 𝑢(𝑥𝑛, 𝑡0) 𝑢𝑥(𝑥𝑛 , 𝑡0) … 𝑢3𝑢𝑥𝑥(𝑥𝑛 , 𝑡0)

1 𝑢(𝑥0, 𝑡1) 𝑢𝑥(𝑥0, 𝑡1) … 𝑢3𝑢𝑥𝑥(𝑥0, 𝑡1)
⋮ ⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑢(𝑥𝑛−1, 𝑡𝑚) 𝑢𝑥(𝑥𝑛−1, 𝑡𝑚) … 𝑢3𝑢𝑥𝑥(𝑥𝑛−1, 𝑡𝑚)

1 𝑢(𝑥𝑛 , 𝑡𝑚) 𝑢𝑥(𝑥𝑛, 𝑡𝑚) … 𝑢3𝑢𝑥𝑥(𝑥𝑛 , 𝑡𝑚) ]
 
 
 
 
 
 
 
 
 

 

 

 

𝜉 

 

 

   

(2.4) 

 

 

2.2.3 Gradient Estimation 
 

Evaluation of the temporal and spatial derivatives is the most vital task in PDE discovery 

through a sparse optimization approach. The adequacy of the obtained model is highly 

dependant on the accurate gradient estimations. As our objective is to develop a method 

that can be utilized for PDE discovery for industrial and experimental processes, 

consideration of noise in the data becomes mandatory. Differentiating noisy data is 

challenging because of the amplification of noise when the data is differentiated using 

numerical methods. As we are modelling an unknown system, we are not aware of the 

highest order of the spatial derivative or polynomial involved in the PDE. Hence, we 

consider the spatial derivatives up to fourth or fifth-order in the candidate library depending 

on the complexity of the system to overcome the limitation of an incomplete library.   As 

the order of the derivative increases, effects of noise dominate the numerical derivatives 

leading to inaccurate values in the candidate library. An extensive study investigating the 

impact of different gradient estimation methods on PDE discovery for different processes 

was performed and we selected the best possible method in them that is least sensitive to 

noise. Finite differences, polynomial interpolation, spectral methods using the fast Fourier 

transform, and automatic differentiation using neural networks were utilized to estimate the 

gradients which were compared for different noise levels.  
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2.2.3.1 Finite differences   

 

The method of finite differences is the most common numerical technique used for gradient 

estimation. The central difference method is used on the interior points of the grid and the 

forward difference is applied at the boundaries to find the first-order derivatives [30]. The 

same rules are applied to estimate higher-order derivatives, but the corresponding previous 

order derivative values are considered for calculation. The accuracy of the finite difference 

method may be good for noiseless data but not preferred if the data is noisy. For example, 

if we have a grid spacing of order ℎ and noise with amplitude of order 𝜖, then derivative of 

order d will have a magnitude of noise approximately of the order 𝜖/ℎ𝑑 [5].  

 

2.2.3.2 Polynomial interpolation  

 

Polynomial interpolation is widely used for gradient estimation of noisy data [31]. The 

derivative of all the data points was approximated by fitting a polynomial of degree p to 

more than p data points and estimating the derivatives of the polynomial instead of 

calculating the data derivatives directly. The number of points used for the data fitting and 

the degree of the polynomial used played a crucial role in the accuracy of the gradients. 

Also, points close to the boundaries were excluded as it is difficult to differentiate those 

points using polynomial interpolation. We used the Chebyshev polynomial for fitting and 

the degree of the polynomial varied for each process. The best result obtained for all the 

processes is shown in the results section. A predefined function in the NumPy package of 

Python language was used for fitting the Chebyshev polynomial and estimating the 

derivatives. A more principled approach for polynomial differentiation is given in [32] 

 

2.2.3.3 Spectral differentiation  

 

Spectral methods involve the transformation of the data into the frequency domain, 

calculating the derivatives, and transforming the derivatives back to the time domain. 
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This is performed using the properties of the discrete Fourier transform algorithm(DFT). 

We transform the data into the frequency domain, and multiply it by (𝑖𝑘)𝑑, where 𝑘 in the 

wavenumber and 𝑑 is the order of derivative to be calculated. Wavenumbers are set based 

on the number of points and boundary conditions. Multiplication by (𝑖𝑘)𝑑 in the frequency 

domain is equivalent to taking the derivatives in the time domain [33]. The derivatives are 

transformed back into the time domain to form the candidate library. The limitation of this 

method is the data has to be on a periodic domain. We cannot always assume a periodic 

spatial domain and the Fourier transform cannot be used to obtain the temporal gradients. 

Finite differences or any other method has to be utilized to obtain the derivatives with 

respect to time. Spectral differentiation was implemented using predefined functions using 

the SciPy package in Python- fft to transform to the spectral domain, ifft to transform to the 

temporal domain. A command to perform the same operation is also directly available in 

MATLAB.  

 

2.2.3.4 Automatic differentiation  

 

Neural networks are universal function approximators and are used in various applications 

of machine learning. Physics informed neural networks [15] introduced utilize neural 

networks for forward and inverse solutions of PDE followed by the DL-PDE approach.[13]. 

Gradient estimation through automatic differentiation is executed with the help of neural 

networks. A feed-forward fully connected neural network was utilized and its structure is 

shown in figure 2.1.  

A neural network consists of an input layer, hidden layers, and an output layer. Two 

adjoining layers are connected as: 

 𝑧𝑙 = 𝜎(𝑊𝑙𝑧𝑙−1 + 𝑏𝑙), 𝑙 = 1.2,… 𝐿 − 1 (2.5) 

   

where 𝑙 denotes the index of the layer, 𝑊 denotes the weight matrix, 𝑏 denotes the bias 

vector and 𝜎 denotes the activation function.  The relationship between the input vector 𝑧0, 

and output 𝑧𝐿 can be expressed as:  
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 𝑧𝐿 = 𝑁𝑁(𝑧0; 𝜃) (2.6) 

𝜃 denotes the set of all weights and biases, that are learnt during the neural network training.  

 

 

Figure 2.1: Schematic representation of feed-forward fully connected neural network  

 

The first step in obtaining the gradients is training the neural network. The input comprises 

the spatial and temporal components (𝑥, 𝑡) and the output prediction is 𝑢(𝑥, 𝑡), where 𝑢 

denotes the value at that particular spatial and time stamp, respectively. The loss function 

of the neural network is defined as:  

 

𝐿𝑜𝑠𝑠 = ∑[𝑢(𝑥𝑖, 𝑡𝑖) − 𝑁𝑁(𝑥𝑖, 𝑡𝑖; 𝜃)]2
𝑁

𝑖=1

 

 

(2.7) 

where 𝑁 denotes the total number of points in the data, 𝑢(𝑥𝑖, 𝑡𝑖) represents the input 

spatiotemporal data and 𝑁𝑁(𝑥𝑖, 𝑡𝑖, 𝜃) represents the predicted output of the neural network. 

Adam optimizer is used to minimize the loss function.[34]  
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After the completion of training the neural network, gradient estimation using automatic 

differentiation is facilitated by the backpropagation property of neural networks. Automatic 

differentiation has the advantage of lesser sensitivity to noise compared to numerical 

methods of differentiation.  

2.2.4 Sparse regression    
 

The candidate library Θ as shown in equation (2.4) is assumed to be sufficiently rich 

spanning across all the possible terms in the PDE. The obtained PDE may be written as a 

weighted sum of the candidate terms. Each row in (2.4) can be represented as: 

 𝑢𝑡(𝑥) = ∑Θ(𝑢(𝑥, 𝑡))𝜉𝑗

𝑗

 (2.8) 

where 𝑗 represents a particular point on the grid. 

We can directly solve the least-squares problem for 𝜉 and obtain the corresponding 

parameters for each term in Θ. This rules out our objective of obtaining parsimonious PDE 

models since all the terms in Θ will have a non-zero coefficient. Also, for regression 

problems as defined in (2.8), least-squares estimation might not be reliable as errors in the 

gradient computation will be amplified when Θ is inverted. The gradient computation error, 

the Θ inversion numerical error, and the measurement error have a significant impact on the 

least-squares estimate. Hence, we use sparse regression as an alternative. 

 𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉 − 𝑈𝑡||2
2
+ 𝜆||𝜉||

0
 (2.9) 

  

Equation (2.9) assures that only limited terms whose effect on the error ||Θ𝜉 − 𝑈𝑡|| 

outweigh their addition to ||𝜉||
0
appear in the PDE. 𝑙0 is imposed in (2.9) which makes the 

problem np-hard. Convex relation of the 𝑙0 norm has to be performed to approximate the 

solution to (2.9).  

 𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉 − 𝑈𝑡||2
2
+ 𝜆||𝜉||

1
 (2.10) 
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Equation (2.10) represents the convex relaxation of the 𝑙0 optimization problem in (2.9). 

This is also called as 𝑙1norm imposition or least absolute shrinkage and selection 

operator(LASSO). As mentioned in section 2.1, we have studied the impact of various 

sparsity regularizations on the PDE discovery.  

The method of sequential thresholding coupled with ridge regression is proposed by Rudy 

et al. in [5]. In sequential thresholding, a hard threshold is placed on the regression 

coefficients once the predictor is obtained, and this process is repeated recursively on the 

remaining nonzero coefficients. Ridge regression is an imposition of the 𝑙2 norm to the 

least-squares problem.  

 𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉 − 𝑈𝑡||2
2
+ 𝜆||𝜉||

2

2
 (2.11) 

 

(2.11) represents the ridge regression. Combining this with the sequential thresholding 

mechanism, the resulting algorithm is called Sequential threshold ridge regression or 

STRidge [5]. For 𝜆 = 0, (2.11) reduces to sequential threshold least squares problem.  

The sparsity of the PDE obtained through STRidge is dependant on the threshold tolerance. 

Hence, a separate method is developed to estimate the best tolerance level. The detailed 

algorithm of STRidge [5] is shown below.  

Table 2.1: Sequential threshold ridge regression algorithm 

Algorithm: STRidge ( 𝚯,𝑼𝒕, 𝝀, 𝒊𝒕𝒆𝒓𝒔) 

𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉||Θ𝜉 − 𝑈𝑡||2
2
+ 𝜆||𝜉||

2

2
 #ridge regression  

𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠 = {𝑗: |𝜉𝑗| ≥ 𝑡𝑜𝑙} #selecting large 

coefficients  

𝜉[~𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠] = 0 #apply a hard 

threshold  

𝜉[~𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠] = 𝑆𝑇𝑅𝑖𝑑𝑔𝑒(Θ[: , 𝑏𝑖𝑓𝑐𝑜𝑒𝑓𝑓𝑠], 𝑈𝑡 , 𝑡𝑜𝑙, 𝑖𝑡𝑒𝑟𝑠 − 1) #recursive call  

return 𝜉  
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Table 2.2: Best tolerance estimation for STRidge 

Algorithm : TrainSTRidge(𝚯,𝑼𝒕, 𝝀, 𝒅𝒕𝒐𝒍, 𝒏𝒖𝒎𝒑𝒐𝒊𝒏𝒕𝒔, 𝒕𝒐𝒍𝒊𝒕𝒆𝒓𝒔, 𝑺𝑻𝑹𝒊𝒕𝒆𝒓𝒔)  

#Split the data into training and testing sets  

Θ → [Θtrain, Θ𝑡𝑒𝑠𝑡]  

𝑈𝑡 = [𝑈𝑡
𝑡𝑟𝑎𝑖𝑛, 𝑈𝑡

𝑡𝑒𝑠𝑡] 

 

#Set an appropriate 𝑙0 penalty. (Selected based on empirical evidence) 

𝜂 = 10−3𝜅(Θ) 

#Obtaining a baseline predictor  

𝜉𝑏𝑒𝑠𝑡 = (Θ𝑡𝑟𝑎𝑖𝑛)
−1

𝑈𝑡
𝑡𝑟𝑎𝑖𝑛 

𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 = ||Θ𝑡𝑒𝑠𝑡  𝜉𝑏𝑒𝑠𝑡 − 𝑈𝑡
𝑡𝑒𝑠𝑡||

2

2
+ 𝜂||𝜉𝑏𝑒𝑠𝑡||0 

#Searching through values of tolerance to find the best predictor  

𝑡𝑜𝑙 = 𝑑𝑡𝑜𝑙 

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟 = 1,… . , 𝑡𝑜𝑙𝑖𝑡𝑒𝑟𝑠: 

 𝜉 = 𝑆𝑇𝑅𝑖𝑑𝑔𝑒(Θ𝑡𝑟𝑎𝑖𝑛, 𝑈𝑡
𝑡𝑟𝑎𝑖𝑛, 𝜆, 𝑡𝑜𝑙, 𝑆𝑇𝑅𝑖𝑡𝑒𝑟𝑠) #Train and evaluate performance 

𝑒𝑟𝑟𝑜𝑟 = ||Θ𝑡𝑒𝑠𝑡𝜉 − 𝑈𝑡
𝑡𝑒𝑠𝑡||

2

2
+ 𝜂||𝜉||

0
 

#Is the error still dropping?  

𝑖𝑓 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡: 

  𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 = 𝑒𝑟𝑟𝑜𝑟 

𝜉𝑏𝑒𝑠𝑡 = 𝜉 

𝑡𝑜𝑙 = 𝑡𝑜𝑙 + 𝑑𝑡𝑜𝑙 

 #Or is the tolerance too high? 

𝑒𝑙𝑠𝑒: 

  𝑡𝑜𝑙 = max([0, 𝑡𝑜𝑙 − 2𝑑𝑡𝑜𝑙]) 

𝑑𝑡𝑜𝑙 =
2𝑑𝑡𝑜𝑙

𝑡𝑜𝑙𝑖𝑡𝑒𝑟𝑠 − 𝑖𝑡𝑒𝑟
 

𝑡𝑜𝑙 = 𝑡𝑜𝑙 + 𝑑𝑡𝑜𝑙   

𝑆𝑆𝐸 = ∑[Θ𝑡𝑒𝑠𝑡𝜉 − 𝑈𝑡
𝑡𝑒𝑠𝑡]2; 

𝑆𝑦𝑦 = ∑[𝑈𝑡
𝑡𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛(𝑈𝑡

𝑡𝑒𝑠𝑡)]2 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑦𝑦
   #Model adequacy  

𝑟𝑚𝑠𝑒 = √
𝑆𝑆𝐸

𝑛𝑢𝑚𝑝𝑜𝑖𝑛𝑡𝑠
     #Mean squared error  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜉𝑏𝑒𝑠𝑡 , 𝑅
2 , 𝑟𝑚𝑠𝑒  

80/20 split  
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Function arguments given to the STRidge algorithm are Θ, 𝑈𝑡 , 𝜆, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. Along with 

these, 𝑑𝑡𝑜𝑙 which deciding the step size while looking for optimal tolerance, 𝑡𝑜𝑙𝑖𝑡𝑒𝑟𝑠  

indicating the number of recursions to obtain the best tolerance and 𝑛𝑢𝑚𝑝𝑜𝑖𝑛𝑡𝑠  denoting the 

grid size from the data to calculate the mean square error for model comparison are passed 

into the TrainSTRidge algorithm.  

The elastic-net algorithm that is a linear combination of the LASSO and ridge regression, 

was also utilized for the PDE discovery.  

 𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉 − 𝑈𝑡||2
2
+ 𝜆1||𝜉||1 + 𝜆2||𝜉||2

2
 (2.12) 

 

Elastic net is considered to overcome the limitation of the LASSO of underperforming when 

the variables are highly correlated [35]. The LASSO and ridge regression are special cases 

of the elastic net. If 𝜆1 = 0, then (2.12) will be ridge regression. If 𝜆2 = 0, then (2.12) is 

LASSO.  

We compared the LASSO, STRidge, and elastic nets based on the accuracy of the PDE 

discovered for various systems. The LASSO performed poorly as the columns in Θ are 

highly correlated. Elastic nets outperformed LASSO but did not yield good results for PDEs 

containing higher-order derivatives. Although elastic nets provided better results for a few 

systems, STRidge was able to produce consistently good results for all the systems under 

study. Detailed analysis of all the systems is given in the results section.   

 

2.2.5 Model selection  
 

Many models can be obtained due to the variation of hyperparameters in the algorithm. 

There is the possibility that the obtained models are significantly different from each other, 

which makes it challenging to make a selection. A model selection framework can 

overcome the disadvantage of the standard method that limits the number of models 

obtained by reducing the range of hyperparameters. Mangan et al. proposed a framework 

that utilized the Akaike information criteria(AIC) to hierarchically rank models, enabling 
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the selection of the model explaining the highest variability in the data [24]. We utilize the 

same framework to rank the obtained PDE models, developing a more principled approach 

to obtain a better model. We try to minimize the range of hyperparameters, generalizing the 

method for the data where the underlying equation is unknown by comparing the obtained 

models across systems. This also helps to reduce the computational cost for high 

dimensional systems.  

To obtain different models from the sparse regression framework using STRidge, the 

tolerance value and number of iterations were varied to obtain models of different sparsity 

levels. Sparsity is altered by decreasing the tolerance values up to 0.1 and increasing the 

number of iterations to 50. We evaluate all the obtained models using the AIC framework 

and rank them by the AIC score, and the model with the lowest AIC value is selected as the 

best model. A demonstration is provided for the different models obtained for the  Burgers’ 

equation in the results section. After a detailed study with various systems, we suggest 

performing the STRidge with 25 iterations to obtain an optimum value for most cases. It 

was difficult to obtain a definite value for the tolerance level but it was evident that a 

tolerance level of less than 1 was unnecessary as it did not have a significant impact on the 

result and would increase the computational cost. The detailed algorithm for model 

selection is shown below.  

Table 2.3: Model selection using AIC criterion 

Algorithm – PDE discovery and model selection  

Estimate time derivatives and spatial derivatives from data (Y) 

Generate the candidate library Θ 

For different tolerance levels(𝑑𝑡𝑜𝑙) and the number of iterations(𝑖𝑡𝑒𝑟𝑠): 

 Model discovery by sparse regression 

Simulate the obtained model (X’)  

Compute AIC between the Y and X’ 

Sort the models and rank them based on the AIC score  

Return the model with the least AIC score.  
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2.2.6 Denoising data 
 

A practical challenge in the discovery of dynamical systems is the presence of noise in the 

data. As gradient estimation is a crucial step in the PDE discovery, it is a challenging task 

to model the PDEs from noisy data as the effect of noise gets amplified during derivative 

calculation and continues to increase as the order of the derivative increases. Therefore, it 

is necessary to explore the denoising methods and their influence on the PDE discovery.  

We first utilized the proper orthogonal decomposition(POD), which is an equation-based 

framework to denoise the data using a reduced-order modelling approach [36]. The POD is 

an extension of the singular value decomposition(SVD) algorithm applied to PDEs. It is a 

dimensionality reduction technique available to study complex, spatiotemporal systems. 

POD provides a low-rank representation of the dynamics by the selection of the most 

dominant modes from the left singular matrix of the SVD of the snapshot matrix developed 

from the data. We exploit this property of the POD, utilize it to extract the most dominant 

modes and use them to reconstruct the snapshot matrix. The modes significantly 

contributing to the process dynamics are extracted and the noise factor is removed through 

this method. A schematic representation of the POD-denoising algorithm is shown below. 

Table 2.4: POD based denoising (model-based framework)  

Algorithm: POD based denoising 

𝑋 =  [
⋮ ⋮ ⋮ ⋮
𝑢1 𝑢2  … 𝑢𝑚

⋮ ⋮ ⋮ ⋮
]    #Build a snapshot matrix X, rank m 

𝑢𝑘 = [𝑢(𝑥1, 𝑡𝑘)   𝑢(𝑥2, 𝑡𝑘)  … 𝑢(𝑥𝑛 , 𝑡𝑘)]
𝑇  #Constructed by sampling at a time 𝑡𝑘  

𝑋 = 𝑈Σ𝑉∗    #Perform SVD on the snapshot matrix  

𝑋̃ = 𝑈̃Σ̃𝑉 ∗̃    

𝑈̃ =  [
⋮ ⋮ ⋮ ⋮

𝜓1 𝜓2  … 𝜓𝑟

⋮ ⋮ ⋮ ⋮
]    #Selected optimal basis modes of rank r, r<<m 

𝑢(𝑡) ≈ 𝜓𝑎(𝑡)   #𝑎(𝑡) is the low-rank representation and 𝜓 is the set of optimal basis 

modes. 

Reconstruction of the snapshot matrix from 𝑎(𝑡) and optimal basis modes.  
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We added different levels of artificial noise to the generated data for studying the effect of 

denoising on the PDE discovery. We concluded that denoising aided the discovery of PDE 

models with higher accuracy compared to that of without denoising case. However, for up 

to moderate levels of noise, few gradient estimation methods yielded PDE models with the 

same accuracy without apriori data denoising. For higher noise levels, it is suitable to 

integrate denoising with the gradient estimation method least sensitive to noise.  

As mentioned earlier, the POD algorithm is an equation-based approach and cannot be used 

directly for data-driven purposes. The POD implementation was performed only to 

understand the impact of denoising on PDE discovery. To perform denoising for data-

driven systems, there are a few established methods in the literature. Denoising using single 

hidden layer artificial neural networks is proposed in [28] but it is validated only for 

biological transport systems with 2nd order PDEs. We utilize a framework proposed by Epps 

and Krivitsky for denoising the data [37]. The noise filtering and reconstruction framework 

uses the SVD algorithm, calculates the root mean square error(rmse) of the SVD modes and 

filters the noise using only the SVD modes that have low enough rmse. This method was 

selected for denoising as we had validated the impact of denoising using POD, which also 

utilizes the SVD algorithm and Galerkin projection for reconstruction. The difference 

between POD and this method lies in the selection of the optimal bases modes and 

procedures used for reconstruction. A brief description of the steps involved in data-driven 

denoising is mentioned below.  

Table 2.5: SVD based denoising (data-driven) 

1. Perform SVD on the noisy data matrix. 

2. Estimate the measurement error and the spatial correlation parameter by fitting a 

Marchenko–Pastur distribution to the tail of the noisy singular values[37] 

3. Estimate the root mean square error of the modes[38] 

4. Estimate the rank for minimum-loss reconstruction[37] 

5. Reconstruct an estimate of the clean singular values  

6. Reconstruct an estimate of the clean data using clean singular values.  

Detailed analysis of the impact of denoising on PDE discovery using different gradient 

estimation methods is given in the results section.  
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2.3 Results and discussions  
 

In this section, we demonstrate the methods explained in section 2.2 using classical physical 

processes which are described by Burgers’ equation, Korteweg–De Vries (KdV) equation, 

Kuramoto Sivashinsky equation, and a chromatographic process. All the PDEs in this 

section are represented using the format in equation (2.1).  

2.3.1 Burgers’ equation  
 

The 1-D Burgers’ equation is a second-order non-linear partial differential equation 

simulating the propagation and reflection of shock waves [39]. It is derived from the Navier 

Stokes equation for the velocity field.  It is used in various applications of fluid dynamics, 

nonlinear acoustics, and applied mathematics. The 1-D Burgers’ equation is given by, 

 𝑢𝑡 = −𝑢𝑢𝑥 + 𝑎𝑢𝑥𝑥 (2.13) 

where 𝑎 is the diffusion coefficient, considered 0.10 in this case for data generation. The 

𝑢𝑥𝑥 term in (2.13) prevents the shock formation, unlike the inviscid Burgers’ equation (𝑢𝑡 +

𝑢𝑢𝑥 = 0).  

Data is generated by simulating (2.13) with initial condition 𝑢(0, 𝑥) =

− sin (
𝜋𝑥

8
) , 𝑥𝜖[−8,8]  and periodic boundary conditions with timestamps from 0 to 10. The 

number of spatial and temporal points after uniform discretization is 256 and 101 

respectively. We consider the highest order of the polynomial and spatial derivative in the 

candidate library to be 4.  

For polynomial interpolation, 4th order Chebyshev polynomial is used and 10 points are 

used for fitting. We used a higher-order polynomial to generalize the method for all systems. 

A 3rd order polynomial will also yield the same results for Burgers’ equation. To facilitate 

automatic differentiation, a nine-layer deep neural network with 20 neurons per hidden 

layer was utilized; tanh(x) was used as the activation function. The PDE discovered using 

different gradient estimation methods for different levels of noise is shown in tables 2.6 to 

2.9.  
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To demonstrate the model selection algorithm, we altered the sparsity by changing the 

tolerance values up to 0.1 and increased the number of iterations to 50. The different models 

obtained and their respective AIC values are shown in table 2.10. 

Table 2.6: PDE discovered using finite differences 

Gradient estimation method: Finite differences  

Correct PDE : 𝑢𝑡 = −𝑢𝑢𝑥 + 0.1𝑢𝑥𝑥 

 𝑢 𝑢2 𝑢𝑥 𝑢𝑢𝑥 𝑢𝑥𝑥 𝑢2𝑢𝑥𝑥 𝑢3𝑢𝑥𝑥𝑥 

Clean     -1.002 0.102   

1%     -0.985 0.115   

2%     -0.974 0.119   

5%    -0.008 -0.921 0.104   

10%   -0.015 -1.354 0.068 -0.125 -0.014 

20% 0.257 -0.357 -0.142 -0.912 0.027 -0.258  

 

Table 2.7: PDE discovered using polynomial interpolation 

Gradient estimation method: Polynomial interpolation  

Correct PDE : 𝑢𝑡 = −𝑢𝑢𝑥 + 0.1𝑢𝑥𝑥 

 𝑢 𝑢2 𝑢𝑥 𝑢𝑢𝑥 𝑢𝑥𝑥 𝑢2𝑢𝑥𝑥 𝑢3𝑢𝑥𝑥𝑥 

Clean     -1.003 0.101   

1%     -0.998 0.108   

2%     -0.986 0.096   

5%     -0.971 0.115   

10%   -0.009 -1.125 0.074   

20%  -0.147 -0.0078 -1.944 0.038 -0.0987 0.00015 

 

Noise level 

Noise level 
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Table 2.8: PDE discovery using spectral methods 

Gradient estimation method: Spectral differentiation   

Correct PDE : 𝑢𝑡 = −𝑢𝑢𝑥 + 0.1𝑢𝑥𝑥 

 𝑢 𝑢2 𝑢𝑥 𝑢𝑢𝑥 𝑢𝑥𝑥 𝑢2𝑢𝑥𝑥 𝑢3𝑢𝑥𝑥𝑥 

Clean     -0.989 0.107   

1%     -1.214 0.119   

2%     -0.841 0.072   

5%     -0.789 0.138  0.0087 

10%    -0.0145 -0.758 0.074  0.0076 

20% -0.089 -0.254 -0.0014 1.358 0.041 -0.087 0.00023 

 

 

Table 2.9: PDE discovery using automatic differentiation 

Gradient estimation method: Automatic differentiation    

Correct PDE : 𝑢𝑡 = −𝑢𝑢𝑥 + 0.1𝑢𝑥𝑥 

 𝑢 𝑢2 𝑢𝑥 𝑢𝑢𝑥 𝑢𝑥𝑥 𝑢2𝑢𝑥𝑥 𝑢3𝑢𝑥𝑥𝑥 

Clean     -1.002 0.107   

1%     -1.003 0.119   

2%     -0.998 0.072   

5%     -0.974 0.115   

10%    -0.854 0.063   

20%   -0.0157 1.415 0.071 -0.0041  

 

STRidge algorithm was used in studying the impact of gradient estimation methods on PDE 

discovery for different levels of noise based on the literature survey [5], [13], [28]. As we 

Noise level 

 

Noise level 
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can observe from tables 2.6 to 2.9, it is evident that automatic differentiation outperforms 

the other three methods in presence of noise. Polynomial interpolation is less sensitive for 

lower and moderate noise levels, but coefficients start to diverge and wrong terms appear 

for relatively higher noise levels. We utilized two model adequacy metrics to assess the 

performance of the obtained models: the coefficient of multiple determination(𝑅2) and root 

mean square error(RMSE). 𝑅2 is a measure of amount of variability of the data explained 

by the model. Root mean square error is the square root of the variance of the residuals. It 

indicates the absolute fit of the model to the data. The lower the RMSE, the better the model 

fits the data. 𝑅2 is a relative measure of fit, whereas RMSE is an absolute measure of the 

fit.  

 
𝑆𝑆𝐸 = ∑[Θ𝑡𝑒𝑠𝑡𝜉 − 𝑈𝑡

𝑡𝑒𝑠𝑡]2
𝑛

𝑖=1

;  Θ𝑡𝑒𝑠𝑡 , 𝜉, 𝑈𝑡
𝑡𝑒𝑠𝑡𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 2.2 

 

(2.14) 

 

 
𝑆𝑦𝑦 = ∑[𝑈𝑡

𝑡𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛(𝑈𝑡
𝑡𝑒𝑠𝑡)]2

𝑛

𝑖=1

 
 

(2.15) 

 

 
 𝑅2 = 1 −

𝑆𝑆𝐸

𝑆𝑦𝑦
, =

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
  

(2.16) 

   

 
𝑅𝑀𝑆𝐸 = √

𝑆𝑆𝐸

𝑛𝑢𝑚𝑝𝑜𝑖𝑛𝑡𝑠
      

(2.17) 

 

 

2.3.1.1 Comparison of obtained PDE models with and without data denoising  

 

The model adequacy report for the study shown in Tables 2.6 to 2.9 is shown in figures 2.2 

and 2.3. The same procedure for PDE model discovery using different gradient estimation 

methods was followed after denoising the data using the method explained in section 2.2.6. 

Figures 2.4 and 2.5 present the model adequacy report of PDE discovery after denoising. 

The results clearly depict that for higher levels of noise, denoising data is preferable but for 
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lower and moderate levels of noise, using automatic differentiation will provide 

parsimonious interpretable results. Also, for systems where there is a possibility of 

information loss by denoising, automatic differentiation is preferable over other methods as 

it is able to provide good results even in the presence of noise as shown in figures 2.2 and 

2.3.  

 

Figure 2.2: Model adequacy report (𝑅2) for different gradient estimation methods without 

denoising(Burgers’ equation) 

 



28 
 

 

Figure 2.3: RMSE report for different gradient estimation methods without 

denoising(Burgers’ equation) 

 

Figure 2.4: Model adequacy report(𝑅2) for different gradient estimation methods with 

denoising(Burgers’ equation) 
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Figure 2.5: RMSE report for different gradient estimation methods with 

denoising(Burgers’ equation) 

Comparing the above figures, we can infer the following: 

1. Automatic differentiation aids in obtaining the best PDE model compared to the 

other method of gradient estimation for noisy data.  

2. Denoising has a significant impact in improving the PDE discovery if any method 

other than automatic differentiation is used for gradient estimation. 

3. For higher levels of noise, denoising may be preferred even if automatic 

differentiation is utilized for PDE discovery.  

2.3.1.2 Comparison of obtained PDE models for different sparsity regularizations 

imposed. 

 

As explained in section 2.2.4, different sparsity regularizations were imposed to the sparse 

regression framework and obtained models were analysed to determine the most applicable 

method to the PDE discovery framework. LASSO, STRidge, and elastic nets were utilized 

to discover the PDE models. Based on the analysis in section 2.3.1.1, automatic 

differentiation was used for estimating gradients and denoising was performed for data 

having noise >10%. Since no significant difference was observed in the 𝑅2 𝑎𝑛𝑑 𝑅𝑀𝑆𝐸 
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values across the obtained models for different noise levels, average values of both the 

metrics are plotted and presented in figures 2.6 and 2.7.  

 

Figure 2.6: Model adequacy report (𝑅2)  for different regularization methods(Burgers’ 

equation) 

 

Figure 2.7: RMSE reports for different regularization methods(Burgers’ equation) 
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From the above plots, we can infer that STRidge provides the best model compared to 

LASSO and elastic nets. The performance of LASSO is based on the correlation between 

columns of Θ. If the columns are highly correlated, as is true in our case, LASSO tends to 

perform poorly. Elastic nets overcome this limitation and may provide the best results for a 

few systems but cannot be considered as robust as STRidge. Model adequacy reports for 

other systems are presented in other sections 2.3.2 to 2.3.4.  

2.3.1.3 Model selection  

 

The tolerance values and number of iterations are varied in the STRidge algorithm to alter 

the sparsity of the obtained equation. A different model is obtained for different values of 

tolerance and iterations. The algorithm utilized is explained in section 2.3. We decrease the 

tolerance values up to 0.1 and increase the number of iterations up to 50. The AIC values 

were computed for each model and sorted. The model with the least AIC value was selected. 

The list of models obtained and their AIC values are shown in table 2.10.  

Table 2.10: Discovered models and their AIC score(Burgers’ equation) 

Discovered PDE AIC score 

Correct PDE : 𝑢𝑡 = −𝑢𝑢𝑥 + 0.1𝑢𝑥𝑥 -- 

𝑢𝑡 = +(0.027)𝑢 −  (0.109)𝑢2  +

 (0.131)𝑢3 − (0.010)𝑢𝑥  −  (1.010)𝑢𝑢𝑥  +

 (0.535)𝑢2𝑢𝑥 − (0.656)𝑢3𝑢𝑥  +

 (0.067)𝑢𝑥𝑥  + (0.248)𝑢𝑢𝑥𝑥 −

(0.485)𝑢2𝑢𝑥𝑥  +  (0.343)𝑢3𝑢𝑥𝑥 −

(0.005)𝑢𝑥𝑥𝑥  +  (0.029)𝑢𝑢𝑥𝑥𝑥 −

(0.020)𝑢2𝑢𝑥𝑥𝑥  − (0.027)𝑢3𝑢𝑥𝑥   

 

 

333 
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𝑢𝑡 = +(0.022)𝑢 − (0.084)𝑢2  +

 (0.100)𝑢3 − (1.160)𝑢𝑢𝑥  +

 (0.630)𝑢2𝑢𝑥  −  (0.677)𝑢3𝑢𝑥 +

(0.070)𝑢𝑥𝑥  +  (0.237)𝑢𝑢𝑥𝑥  −

 (0.462)𝑢2𝑢𝑥𝑥 + (0.317)𝑢3𝑢𝑥𝑥  −

 (0.005)𝑢𝑥𝑥𝑥  +  (0.037)𝑢𝑢𝑥𝑥𝑥 −

(0.048)𝑢2𝑢𝑥𝑥𝑥  

 

 

 

354.6 

𝑢𝑡 = −(1.074)𝑢𝑢𝑥  +  (0.386)𝑢2𝑢𝑥  −

 (0.446)𝑢3𝑢𝑥 + (0.085)𝑢𝑥𝑥  +

 (0.125)𝑢𝑢𝑥𝑥  −  (0.262)𝑢2𝑢𝑥𝑥 +

(0.186)𝑢3𝑢𝑥𝑥  +  (0.026)𝑢𝑢𝑥𝑥𝑥  −

 (0.043)𝑢2𝑢𝑥𝑥𝑥  

 

 

360.25 

𝑢𝑡 = −(1.022)𝑢𝑢𝑥  +  (0.087)𝑢𝑥𝑥  +

 (0.096)𝑢𝑢𝑥𝑥 − (0.097)𝑢2𝑢𝑥𝑥  

351.28 

𝑢𝑡 = −(1.064)𝑢𝑢𝑥  +  (0.571)𝑢𝑢𝑥𝑥  

−  (0.593)𝑢2𝑢𝑥𝑥 

641 

 

𝑢𝑡 = −(1.010)𝑢𝑢𝑥  +  (0.103)𝑢𝑥𝑥 0 

 

 

2.3.2 Korteweg–De Vries (KdV) equation 
 

The KdV equation is a third-order nonlinear PDE. It is an asymptotic simplification of Euler 

equations used to model waves in shallow water [40]. It is an extension of the Burgers’ 

equation with a dispersive term. It was discovered by Korteweg and de Vries when studying 

small amplitude and longwave motion in shallow water. The equation is given by:  

 𝑢𝑡 = −𝛼𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥 (2.18) 

where 𝛼 is a constant and is assumed to be 6 in our case for data generation. Data is 

generated by simulating (2.18) with initial condition 𝑢(0, 𝑥) = −cos (πx), 𝑥𝜖[−30,30]  

and periodic boundary conditions with timestamps from 0 to 20. The number of spatial and 
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temporal points after uniform discretization is 512 and 201 respectively. We consider the 

highest order of the polynomial and spatial derivative in the candidate library to be 4.  

For polynomial interpolation, 4th order Chebyshev polynomial is used and 10 points are 

used for fitting. To facilitate automatic differentiation, a five-layer deep neural network 

with 50 neurons per hidden layer was utilized; sin(x) was used as the activation function as 

it was found to be more stable than tanh(x) for this case.  

We performed PDE discovery using different gradient estimation methods for different 

noise levels. The process was repeated after denoising the data as well. A similar 

observation as in section 2.3.1 was obtained. Automatic differentiation outperformed the 

other three methods and was found to be the optimal method among the studied approaches. 

The PDE discovered from using automatic differentiation after denoising for different noise 

levels is presented in table 2.11. The methodology used is explained in section 2.3.1. 

 

Table 2.11: PDE discovered for different noise levels(KdV equation) 

Correct PDE : 𝑢𝑡 = −6𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥 

Noise level Discovered PDE 

Clean data 𝑢𝑡 = −5.977𝑢𝑢𝑥 − 1.005𝑢𝑥𝑥𝑥 

1% noise 𝑢𝑡 = −6.174𝑢𝑢𝑥 − 0.974𝑢𝑥𝑥𝑥 

2% noise 𝑢𝑡 = −6.18𝑢𝑢𝑥 − 1.124𝑢𝑥𝑥𝑥 

5% noise 𝑢𝑡 = −5.737𝑢𝑢𝑥 − 0.976𝑢𝑥𝑥𝑥 

10% noise 𝑢𝑡 = −6.981𝑢𝑢𝑥 − 1.547𝑢𝑥𝑥𝑥 

20% noise 𝑢𝑡 = −5.871𝑢𝑢𝑥 − 0.874𝑢𝑥𝑥𝑥 + 0.002𝑢2𝑢𝑥 
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2.3.2.1 Comparison of obtained PDE models with and without data denoising  

 

Figure 2.8: Model adequacy report(𝑅2) for different gradient estimation methods without 

denoising(KdV  equation) 

 

Figure 2.9: RMSE report  for different gradient estimation methods without 

denoising(KdV  equation) 
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Figure 2.10: Model adequacy report(𝑅2)  for different gradient estimation methods with 

denoising(KdV  equation) 

 

 

Figure 2.11: RMSE report  for different gradient estimation methods with denoising(KdV  

equation) 
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Analysing figures 2.8 to 2.11, we can validate the results obtained for Burgers’ equation. 

Automatic differentiation provides optimal results in the case of the KdV equation as well. 

Here, we discovered a third-order non-linear PDE through a sparse optimization approach 

using different gradient estimation methods. The complexity of PDE discovery increases as 

the order of the PDE increases since the possibility of numerical errors in gradient 

estimation and regression increases.    

2.3.2.2 Comparison of obtained PDE models for different sparsity regularizations 

imposed. 

 

As explained in section 2.2.4, different sparsity regularizations were imposed to the sparse 

regression framework and obtained models were analysed to infer the most applicable 

method to the PDE discovery framework. LASSO, STRidge, and elastic nets were utilized 

to discover the PDE models. Based on the analysis in section 2.3.2.1, automatic 

differentiation was used for estimating gradients and denoising was done for data having 

noise >10%. Since no significant difference was observed in the 𝑅2 𝑎𝑛𝑑 𝑅𝑀𝑆𝐸 values 

across the obtained models for different noise levels, average values of both the metrics are 

plotted and presented in figures 2.12 and 2.13.  

 

Figure 2.12: Model adequacy report (𝑅2) for different regularization methods(KdV 

equation 
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From figures 2.12 and 2.13, we can observe that elastic nets and the STRidge, both provide 

comparable results in the case of the KdV equation whereas LASSO does not perform well. 

The STRidge is the most consistent method when compared to LASSO and elastic nets. 

This analysis is revalidated in sections 2.3.3 and 2.3.4 where we study the Kuramoto 

Sivashinsky equation and a chromatographic system respectively 

.  

Figure 2.13: RMSE reports for different regularization methods(KdV equation) 

 

2.3.2 Kuramoto Sivashinsky equation 
 

The Kuramoto Sivashinsky(KS)  equation is a fourth-order PDE. It is utilized in the context 

of multiple physical systems driven far from equilibrium by intrinsic instabilities [5]. It is 

considered to be a canonical model of pattern-forming systems with chaotic behaviour. KS 

equation provides a diffusive regularization similar to the Burgers’ equation given by 𝑢𝑡 +

𝑢𝑢𝑥 = 0. Stabilization is achieved by the fourth order diffusion term as the second order 

diffusion corresponds to backwards diffusion equation. The KS equation is given by,  

 𝑢𝑡 = −𝑢𝑢𝑥 − 𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥  (2.19) 
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Data is generated by simulating (2.19) using spectral methods. The number of spatial and 

temporal points after uniform discretization is 1024 and 251 respectively. We consider the 

highest order of the polynomial and spatial derivative in the candidate library to be 5 to 

prevent the problem of an incomplete library. PDEs governing systems having an order 

greater than 3 is unusual but not impossible. Generally, considering a candidate library of 

order 4 are sufficient for most of the systems but we can include higher orders if we have 

any prior information about the process or if we are aware of any known similar physical 

system with a governing PDE of higher order.  

For polynomial interpolation, a 4th order Chebyshev polynomial is used and 10 points are 

used for fitting. To facilitate automatic differentiation, a nine-layer deep neural network 

with 20 neurons per hidden layer was utilized; tanh(x) was used as the activation function. 

We performed PDE discovery using different gradient estimation methods for different 

noise levels. The process was repeated after denoising the data as well. Models obtained for 

different noise levels using the automatic differentiation after denoising the data is shown 

in table 2.12. The methodology used is explained in section 2.3.1.  

Table 2.12: PDE discovered for different noise levels(KS equation) 

Correct PDE : 𝑢𝑡 = −𝑢𝑢𝑥 − 𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥 

Noise level Discovered PDE 

Clean data 𝑢𝑡 = −0.989𝑢𝑢𝑥 − 0.995𝑢𝑥𝑥 − 0.998𝑢𝑥𝑥𝑥𝑥 

1% noise 𝑢𝑡 = −0.745𝑢𝑢𝑥 − 0.812𝑢𝑥𝑥 − 0.761𝑢𝑥𝑥𝑥𝑥 

2% noise 𝑢𝑡 = −0.712𝑢𝑢𝑥 − 0.845𝑢𝑥𝑥 − 0.709𝑢𝑥𝑥𝑥𝑥 

5% noise 𝑢𝑡 = −1.210𝑢𝑢𝑥 − 0.5874𝑢𝑥𝑥 − 0.6415𝑢𝑥𝑥𝑥𝑥 

10% noise 𝑢𝑡 = −0.451𝑢𝑢𝑥 − 0.481𝑢𝑥𝑥 − 0.492𝑢𝑥𝑥𝑥𝑥 

20% noise 𝑢𝑡 = −0.381𝑢𝑢𝑥 − 0.411𝑢𝑥𝑥 − 1.234𝑢𝑥𝑥𝑥𝑥

− 0.0087𝑢2𝑢𝑥𝑥 
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2.3.3.1 Comparison of obtained PDE models with and without data denoising  

 

The performances of finite differences, polynomial interpolation, and spectral 

differentiation are found to be worse for high levels of noise in the case of the KS equation 

compared to Burgers’ and KdV equations due to the presence of a fourth-order derivative, 

and calculation of 5th order derivative to construct the candidate library.  

 

 

Figure 2.14: Model adequacy report(𝑅2)  for different gradient estimation methods 

without denoising(KS  equation) 
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Figure 2.15: RMSE report for different gradient estimation methods without  

denoising(KS  equation) 

 

Figure 2.16: Model adequacy report(𝑅2)  for different gradient estimation methods with 

denoising(KS  equation) 
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Figure 2.17: RMSE report for different gradient estimation methods with  denoising(KS  

equation) 

 

2.3.3.2 Comparison of obtained PDE models for different sparsity regularizations 

imposed. 

 

In the case of the KS equation, only STRidge imposition led to PDE models with higher 

accuracy. Compared to STRidge, the elastic nets and LASSO failed to produce satisfactory 

results. Similar procedure as sections 2.3.1.2 and 2.3.2.2 is followed to obtain the average 

𝑅2and RMSE values. 
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Figure 2.18: Model adequacy report(𝑅2) for different regularization methods(KS 

equation) 

 

 

Figure 2.19: RMSE reports for different regularization methods(KS equation) 
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2.3.3 Chromatography  
 

Finally, we tested the PDE discovery method along with investigating the optimal gradient 

estimation method, regularization imposition and impact of denoising on a chromatographic 

PDE. Chromatography is a technique used for the separation of a mixture.The separation is 

based on the differential partitioning between the mobile and stationary phases. Subtle 

differences in a compound's partition coefficient result in differential retention on the 

stationary phase and thus affect the separation.  

We consider a solute transport equation for illustration. It is known as the equilibrium 

dispersive model and the adsorption equilibrium is described using a linear isotherm with 

the Henry’s constant, H [41]. A single component solute propagation can be explained using 

this equation, 2.20.  

The PDE for a particular single component separation is given by: 

 
(1 +

1 − 𝜀

𝜀
𝐻) 𝐶𝑡 +  𝑣𝐶𝑥 − 𝐷𝐶𝑥𝑥 = 0 

 

(2.20) 

where H is the Henry’s constant, 𝜖 is the void fraction of the bed, and 𝐶 is the solute 

concentration. For data generation, we consider 𝜖 = 0.4, 𝐷 = 0.00087𝑐𝑚2/𝑠, 𝐻 = 2.79. 

Substituting these values and rearranging, we get  

 𝐶𝑡 = − 0.0145𝐶𝑥 + 0.00012𝐶𝑥𝑥  

 
(2.21) 

Data is generated by simulating (2.21) with the initial condition 𝐶(𝑥, 𝑡 = 0) = 0,

𝑥𝜖[0,20], 𝑡𝜖[0,2500] and boundary conditions 𝐶(𝑧 = 0, 𝑡) = 4 𝑎𝑛𝑑 𝐶𝑥|𝑧=𝐿 = 0. The 

number of spatial and temporal points after uniform discretization is 201 and 2501 

respectively. We consider the highest order of the polynomial and spatial derivative in the 

candidate library to be 4.  

For polynomial interpolation, 4th order Chebyshev polynomial is used and 10 points are 

used for fitting. To facilitate automatic differentiation, a nine-layer deep neural network 

with 20 neurons per hidden layer was utilized; tanh(x) was used as the activation function. 

We performed the same detailed studies on this data as in sections 2.3.1 to 2.3.3. Results 
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corresponding to discovered PDE for automatic differentiation after denoising, model 

adequacy reports for different gradient estimation methods, and analysis of different 

regularizations imposed are presented in table 2.13 and figures 2.20-2.25, respectively.  

Table 2.13: PDE discovered for different noise levels(Chromatography) 

Correct PDE :  𝐶𝑡 = − 0.0145𝐶𝑥 + 0.00012𝐶𝑥𝑥  

Noise level Discovered PDE 

Clean data 𝐶𝑡 = − 0.01481𝐶𝑥 + 0.00014𝐶𝑥𝑥 

1% noise 𝐶𝑡 = − 0.0151𝐶𝑥 + 0.00015𝐶𝑥𝑥  

2% noise 𝐶𝑡 = − 0.0168𝐶𝑥 + 0.00022𝐶𝑥𝑥  

5% noise 𝐶𝑡 = − 0.0114𝐶𝑥 + 0.000262𝐶𝑥𝑥 

10% noise 𝐶𝑡 = − 0.0175𝐶𝑥 + 0.000090𝐶𝑥𝑥 

20% noise 𝐶𝑡 = − 0.0098𝐶𝑥 + 0.000451𝐶𝑥𝑥 

As it is a linear second-order PDE, utilizing denoising prior to the discovery and automatic 

differentiation for gradient estimation, we were able to obtain a good approximation of the 

PDE even for higher levels of noise. 

 

Figure 2.20: Model adequacy report(R2) for different gradient estimation methods without  

denoising(Chromatography) 
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Figure 2.21: RMSE report for different gradient estimation methods without  

denoising(Chromatography) 

 

Figure 2.22: Model adequacy report(R2) for different gradient estimation methods with  

denoising(Chromatography) 
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Figure 2.23: RMSE report for different gradient estimation methods with  

denoising(Chromatography) 

 

Figure 2.24: Model adequacy report(R2) for different regularization 

methods(Chromatography) 
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Figure 2.25: RMSE reports for different regularization methods(chromatography). 

From figures 2.24 and 2.25, we can observe that all the regularizations provide comparable 

results, yet STRidge can be considered the best method based on the metrics and its 

consistency over all the different systems containing PDEs of different orders.  

 

2.4 Conclusions   
 

In this work, a detailed study of different uncertainties involved in the data-driven, sparse 

regression framework of PDE discovery is studied and the best possible approaches to 

mitigate the uncertainties are proposed. Gradient estimation and regression are the two 

major components of the PDE discovery algorithm. A numerical scheme such as finite 

differences, approximation strategies using polynomial interpolation, gradient estimation in 

the spectral domain using the fast Fourier transform, and a deep learning-based approach 

that utilizes the automatic differentiation are all implemented for various systems under 

study to infer the best gradient estimation method. To make inferences about practical 

scenarios, different levels of noise were added to the data and the obtained results were 

compared. Automatic differentiation was inferred to be the optimal gradient estimation 
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method compared to the other three methods mentioned. However, utilizing polynomial 

interpolation also yielded good models at lower noise levels. As we are interested in 

parsimonious solutions, the impact of the type of sparsity regularization used was also 

studied for different noise levels. LASSO, Sequential threshold ridge regression, and elastic 

nets were studied in this work. Although using elastic nets could provide good models for 

a few case studies, consistency across different systems was missing. Sequential threshold 

ridge regression, which utilizes the L2 norm, was able to generate higher accuracy models 

for all systems with different derivative orders. An SVD based denoising approach [37] was 

utilized to study the impact of denoising data prior to the PDE discovery. Denoising the 

data may be recommended for higher levels of noise due to the significant difference 

between the model accuracies obtained with and without denoising. However, for lower 

levels of noise, considering the trade-off between computational cost and difference in the 

obtained model accuracies, utilizing automatic differentiation or polynomial interpolation 

for gradient estimation will compensate for the denoising framework. The inferences 

obtained in this chapter will be utilized in chapter 3 for the development of hybrid models 

and in chapter 4 for the development of parametric PDE models for temperature dynamics 

in an oil reservoir.  Solutions of PDEs of different orders, such as Burgers’ equation(2nd 

order), KdV equation(3rd order), KS equation(4th order) and a PDE from the 

chromatographic study were utilized to demonstrate the detailed study of all the different 

algorithms.   
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Chapter 3 
 

 

A hybrid modelling approach to discover a 

system of partial differential equations 

 

3.1 Introduction 
 

Partial differential equations(PDEs) are utilized to explain numerous physical 

systems and conservation laws. A wide variety of problems in solid-state physics, fluid 

dynamics, electromagnetism, climate modelling, chemical engineering, etc. are 

formulated by PDEs. While some systems can be explained by a single PDE, some 

complex systems require multiple PDEs, also called a system of PDEs to formulate the 

dynamics. Burgers’ equation, KdV equation, KS equation as shown in chapter 2 are 

some examples for individual PDEs. A popular example for a system of PDEs is the 

Navier-Stokes equations which describe the motion of viscous fluid substances. 

Mathematically, they express the conservation of momentum and conservation of 

mass for Newtonian fluids. They are accompanied by an equation of state which is 

related to pressure, temperature and density. Few other illustrations of a system of 

PDEs can be given by microscopic Maxwell’s equations, resistive 

magnetohydrodynamics equations [42], Reaction-diffusion system [39], Keller Segel 

equations of chemotaxis [43], etc.  

The general form of a linear system of PDEs can be illustrated as,  

 𝑢𝑡 = 𝐿[𝑢] + 𝑓1(𝑡)𝑢 + 𝑔1(𝑡)𝑤 

𝑤𝑡 = 𝐿[𝑤] + 𝑓2(𝑡)𝑢 + 𝑔2(𝑡)𝑤 

 

(3.1) 
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Where L can be any linear differential operator in the spatial coordinates x1, x2, … . . xn 

with any derivative order. f1, g1, f2, g2 can be any arbitrary functions or constant 

coefficients of u and w. ut and wt are the time derivates of u and w, respectively. 

Grey box modelling in the computational modelling framework incorporates a prior 

theoretical structure of the model before estimation of the parameters. Grey box models are 

dissimilar to both black-box models where the model structure is assumed to be unknown 

and white-box models which are theoretical or first principle-based. Knowledge from the 

data and some prior information about the model structure is utilized to build the model. In 

the PDE discovery literature, notable work assuming the complete knowledge of the 

structure is presented in Physics informed networks(PINNs) by Raissi et. al.[15]. All other 

works consider a black box architecture, i.e., an unknown PDE structure. However, grey 

box modelling is extensively used in control of the chemical engineering processes. 

Identification of linearly parametrized dynamic regression model using physical knowledge 

and Bayesian techniques was first introduced by Tulleken [44]. Non-linear system 

identification by combining partial information about the process to a neural network to 

capture the dynamics of the process was proposed by Xiong et al [45]. The proposed method 

yielded in a reduction of the neural network size, the number of data points, and ensured 

faster convergence to the optimal value. As an extension of the control application stated 

above, Sohlberg designed a model predictive controller for a heating process based on the 

conservation of energy and measured data from the experiment [46]. These are some of the 

illustrations of the application of grey box modelling in model identification and control. A 

review of different branches of grey box modelling, such as constrained black box 

identification, semi-physical modelling, mechanistic modelling, hybrid modelling, 

distributed parameter modelling, and its application to various chemical engineering 

processes is presented by Sohlberg. et al[47].  

The hybrid modelling framework is utilized mainly for the optimization and control of 

different physical and biological processes. Knowledge of the process from different levels 

is integrated to obtain interpretable models. The type of knowledge or prior information 

that is incorporated can be different for each process. Process knowledge may be inferred 

from the first principle model, or conservation laws governing the process. The prior 
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information can be utilized to determine the model structure, applied as a constraint to the 

optimization problem, or any other way aiding us to obtain a better model. The method of 

incorporating the physical knowledge and solving the optimization problem will be 

dependant on the model identification procedure followed and the properties of the process 

under study. Application of hybrid modelling was introduced to bioprocess optimization 

and control by Schubert et. al, by integrating mathematical models, neural nets, and 

incorporating fuzzy expert systems [48]. Recently, the study and application of hybrid 

modelling and optimization are gaining significant attention, mainly in chemical 

engineering and process systems engineering. Process optimization of distillation reflux 

condition by combining first principle models of distillation and statistical approaches like 

least squares regression applied on the measured data was presented by Taguchi et al.[49]. 

Model enhancement and development of a digital twin framework by combining 

mechanistic models and data-driven models for continuous pharmaceutical manufacturing 

was proposed by Bhalode et al.[50] demonstrating the advantages of hybrid modelling in 

process industries. A detailed review of hybrid semiparametric modelling and parameter 

identification techniques and their applications in the area of process monitoring, control, 

optimization, scale-up, and model reduction is done by Stosch et al.[51] displaying the 

importance and growing application of hybrid modelling in the process systems engineering 

discipline. Hybrid models are best suited to improving the accuracy of the data-driven 

model by incorporating any physical knowledge prior to the model identification. As it 

ensures improvement in model accuracy, a hybrid modelling framework is best suited for 

applied research and real-time applications.  

Integrating physical knowledge with the data-driven approach while modelling the process 

dynamics generates a physical insight into the obtained model. Models with higher accuracy 

will lead to better predictions and optimal control strategies. In this work, we propose a 

hybrid modelling framework to discover PDEs by incorporating any available physical 

knowledge a priori to the PDE discovery framework. This aids in the reduction of 

uncertainties in the data-driven PDE discovery, such as incomplete candidate library and 

unknown order of the PDE. The system of PDEs generally describes a complex system for 

which the discovery of PDEs using data-driven approaches might lead to low accuracy 

models. Incorporating prior process knowledge and building a hybrid model for such 
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complex systems will yield better interpretable PDE models. The optimal gradient 

estimation method, sparsity regularization technique for the data-driven PDE discovery, has 

been inferred in chapter 2.  We utilize these inferences and integrate them with process 

knowledge to build PDE models for various systems of PDEs. To conduct a detailed study 

and construct a robust approach, we demonstrate PDE discovery considering multiple 

different cases of incorporating the prior knowledge for a system of PDEs. The order of the 

PDE, coupled nonlinear terms of the system, and the uncoupled terms of the system is 

assumed to be known in each case; the co-efficient of the assumed part and structure of the 

remaining PDE is discovered and the obtained model is tested for accuracy. Another case 

of functional approximation for a complex section of the PDE is considered as prior 

information and discovery of such systems is also demonstrated. The improvement in model 

accuracy by utilizing the hybrid approach for noisy data is presented for various systems by 

comparing the data-driven models and hybrid models. Reaction-diffusion equation, Keller-

Segel equations for chemotaxis and coupled PDE from chromatographic studies are 

considered as case studies to demonstrate the proposed approach. We validate the 

advantages of the hybrid modelling approach in the PDE discovery domain.  

 

3.2 Hybrid modelling framework for discovery of a system 

of PDEs 
 

The objective of the work is to discover a system of PDEs from data incorporating any 

known information about the process. The form of the system of PDEs assumed is described 

in equation (3.1). Modifications are done to the candidate library construction and sparse 

regression algorithm to facilitate the discovery of a system of PDEs and incorporate prior 

information. Inferences about gradient estimation and sparsity regularizations from chapter 

2 are utilized to obtain a high accuracy model.   

A set of a known system of PDEs with pre-defined initial and boundary conditions were 

solved using spectral differentiation combined with 𝑜𝑑𝑒45 solver in MATLAB for 

validating the proposed method. The specific values corresponding to each case study is 
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explained in the results section. Various levels of Gaussian noise were added to the data to 

compare the data-driven and hybrid model accuracy at different levels of noise.  

 

3.2.1 Candidate library   
 

The system of PDEs may consist of ′𝑛′ number of individual PDEs, where 𝑛 > 1. The 

number of PDEs required to describe a process will be dependant on the complexity of the 

process and the variables involved. To demonstrate our method, we consider a system of 2 

PDEs; however, it can be extended to systems with more than 2 equations as well. The 

general form of a system of 2 PDEs for the PDE discovery can be expressed as,  

 𝑢𝑡 = 𝐹(𝑢, 𝑢𝑥 , 𝑢𝑥𝑥 , … . . 𝑢𝑢𝑥𝑥 , 𝑢2𝑢𝑥𝑥 …𝑤,𝑤𝑥, 𝑤𝑥𝑥 , 𝑤𝑤𝑥𝑥 , … 𝑢𝑤, 𝑢𝑥𝑤𝑥 , 𝑢𝑥𝑤𝑥𝑥 … ) 

𝑤𝑡 = 𝐹(𝑤,𝑤𝑥, 𝑤𝑥𝑥 , 𝑤𝑤𝑥𝑥 , 𝑢, 𝑢𝑥 , 𝑢𝑥𝑥 , … . . 𝑢𝑢𝑥𝑥 , 𝑢2𝑢𝑥𝑥 … ,…𝑢𝑤, 𝑢𝑥𝑤𝑥, 𝑢𝑥𝑤𝑥𝑥 … ) 

 

(3.2) 

 

𝑢𝑡 and 𝑤𝑡 are time derivatives of the spatiotemporal data 𝑢 𝑎𝑛𝑑 𝑤 obtained from the 

solution of the PDE. The right-hand side of the equation constitutes a linear combination of 

spatial derivatives of different orders of 𝑢 𝑎𝑛𝑑 𝑤, polynomials of different orders of 

𝑢 𝑎𝑛𝑑 𝑤, and their combinations. If multiple spatial dimensions are involved, derivatives 

with respect to all the spatial dimensions and corresponding combinations will also be a 

part of the candidate library.  

The problem is formulated based on the assumption that the function 𝐹 in (3.2) is 

parsimonious and consists of a few terms and is sufficient to explain the process dynamics.  

 𝑈𝑡 = Θ(𝑈,𝑊)𝜉1 

𝑊𝑡 = Θ(𝑊,𝑈)𝜉2  

 

 

(3.3) 

𝑈𝑡 and 𝑊𝑡 are column vectors with time derivatives of the input data 𝑢 𝑎𝑛𝑑 𝑤 respectively. 

The candidate library Θ consists of all the possible terms of the PDE formed by the 

combination of spatial derivatives and polynomials of 𝑢 𝑎𝑛𝑑 𝑤 as described in (3.2). 

𝜉1 𝑎𝑛𝑑 𝜉2 are the sparse vector of coefficients corresponding to 𝑢 𝑎𝑛𝑑 𝑤 respectively. 

Since Θ contains significantly more terms than the terms necessary to describe the PDE and 
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the terms representing the dynamics are within the span of Θ, most values in 𝜉1𝑎𝑛𝑑 𝜉2 will 

be zero leading to a sparse solution. Utilizing the inference from chapter 2, automatic 

differentiation is used to calculate the gradients involved in the candidate library.  

From the structure of the candidate library shown in (3.2), and comparing it with the 

candidate library structure shown in (2.4), we can observe that number of terms involved in 

the candidate library in the case of a system of 2 PDEs is significantly higher, almost thrice 

the number of terms in the case of a single PDE. For a data-driven approach, the 

computational cost and the possibility of errors continue to increase as the system 

complexity increases. The obtained models become less reliable, especially in the presence 

of noise. Hence, to obtain reliable models with higher accuracy, the incorporation of prior 

process knowledge to the PDE discovery framework becomes essential.  

 

3.2.2 Sparse regression   

The objective of sparse regression is to obtain parsimonious models. From the candidate 

library pool, we need to identify the terms which are contributing to the PDE governing the 

system. From equation (3.3), we can perform least squares estimation and obtain 

coefficients for all the terms in Θ, but it is not practically reasonable to have a PDE with all 

the terms in the library. For example, if we had 50 terms in the library, our discovered PDE 

model would contain 50 terms and violates our objective of discovering parsimonious 

models. In this case, since Θ contains numerous candidate terms,  the least-squares estimates 

are significantly affected by inversion numerical error. To promote parsimony and reduce 

the inversion error, sparse regression is utilized.  

 

 𝜉1̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉1 − 𝑈𝑡||2
2
+ 𝜆||𝜉1||0 

𝜉2̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉2 − 𝑊𝑡||2
2
+ 𝜆||𝜉2||0 

 

(3.4) 

Equation (3.4) assures that only limited terms whose effect on the error ||Θ𝜉 − 𝑈𝑡|| 

outweigh their addition to ||𝜉||
0
appear in the PDE. 𝑙0 is imposed in (3.4) which makes the 

problem np-hard. 
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There are multiple ways of convex relaxation of the 𝑙0 norm, such as LASSO, Ridge, Elastic 

nets, etc. Detailed explanation and study of different sparsity regularization imposition on 

the PDE discovery have been presented in chapter 2, and STRidge was determined to be 

the optimal regularization method that yielded consistent results across various systems.  

The method of sequential thresholding coupled with ridge regression is proposed by Rudy 

et al. in [5]. In sequential thresholding, a hard threshold is placed on the regression 

coefficients once the predictor is obtained, and this process is repeated recursively on the 

remaining nonzero coefficients. Ridge regression is an imposition of the 𝑙2 norm to the 

least-squares problem.  

 

 𝜉1̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉1 − 𝑊𝑡||2
2
+ 𝜆||𝜉1||2

2
 

𝜉2̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉̂||Θ𝜉2 − 𝑊𝑡||2
2
+ 𝜆||𝜉2||2

2
 

 

 

 

(3.5) 

(3.5) represents the ridge regression. Combining this with the sequential thresholding 

mechanism, it is called Sequential threshold ridge regression or STRidge [5]. For 𝜆 =

0, (3.5) reduces to sequential threshold least squares problem.  

As a system of PDEs is involved, sparse regression was performed recursively, changing 

the variable involved each time. For example, from equation (3.3) 𝑈𝑡 was considered for 

the first iteration and corresponding 𝜉1 was estimated. 𝑊𝑡 was considered for the second 

iteration and corresponding 𝜉2 was estimated. Θ remains constant for all the iterations. The 

number of recursions is equal to the number of equations in the PDE system or the number 

of measured variables under study. The system of PDEs governing the process is presented 

after all the recursions are completed. A brief description of the sparse regression algorithm 

for a system of 2 PDEs is presented below in table 3.1.  
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Table 3.1: Sparse regression for a system of PDEs 

Algorithm: STRidge ( 𝚯,𝑼𝒕,𝑾𝒕 𝝀, 𝒊𝒕𝒆𝒓𝒔) 

𝜉1̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉||Θ𝜉1 − 𝑈𝑡||2
2
+ 𝜆||𝜉1||2

2
 #ridge regression  

𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠 = {𝑗: |𝜉𝑗| ≥ 𝑡𝑜𝑙} #selecting large 

coefficients  

𝜉1̂[~𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠] = 0 #apply a hard 

threshold  

𝜉1̂[~𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠] = 𝑆𝑇𝑅𝑖𝑑𝑔𝑒(Θ[: , 𝑏𝑖𝑓𝑐𝑜𝑒𝑓𝑓𝑠], 𝑈𝑡 , 𝑡𝑜𝑙, 𝑖𝑡𝑒𝑟𝑠 − 1) 

 

#after 𝜉1 is obtained, proceed to estimate 𝜉2 

 

𝜉2̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉 ||Θ𝜉2̂ − 𝑈𝑡||
2

2

+ 𝜆||𝜉2||2
2
 

 

𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠 = {𝑗: |𝜉𝑗| ≥ 𝑡𝑜𝑙} 

 

𝜉1̂[~𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠] = 0 

 

𝜉2̂[~𝑏𝑖𝑔𝑐𝑜𝑒𝑓𝑓𝑠] = 𝑆𝑇𝑅𝑖𝑑𝑔𝑒(Θ[: , 𝑏𝑖𝑓𝑐𝑜𝑒𝑓𝑓𝑠],𝑊𝑡 , 𝑡𝑜𝑙, 𝑖𝑡𝑒𝑟𝑠 − 1) 

 

#recursive call  

return 𝜉1  ̂ 𝑎𝑛𝑑 𝜉2 ̂   

 

 

 

The sparsity of the PDE obtained through STRidge is dependent on the threshold tolerance. 

Hence, a separate method is developed to estimate the best tolerance level. The algorithm 

for a system of 2 PDEs is explained below in table 3.2.  
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Table 3.2: Estimation of  best tolerance for a system of PDEs 

Algorithm : TrainSTRidge(𝚯,𝑼𝒕 ,𝑾𝒕 𝝀, 𝒅𝒕𝒐𝒍 , 𝒏𝒖𝒎𝒑𝒐𝒊𝒏𝒕𝒔 , 𝒕𝒐𝒍𝒊𝒕𝒆𝒓𝒔, 𝑺𝑻𝑹𝒊𝒕𝒆𝒓𝒔)  

#Split the data into training and testing sets  

Θ → [Θtrain , Θ𝑡𝑒𝑠𝑡]  

𝑈𝑡 = [𝑈𝑡
𝑡𝑟𝑎𝑖𝑛 , 𝑈𝑡

𝑡𝑒𝑠𝑡] 

 

#Set an appropriate 𝑙0 penalty. (Selected based on empirical evidence) 

𝜂 = 10−3𝜅(Θ) 

#Obtaining a baseline predictor  

𝜉𝑏𝑒𝑠𝑡 = (Θ𝑡𝑟𝑎𝑖𝑛)
−1

𝑈𝑡
𝑡𝑟𝑎𝑖𝑛  

𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 = ||Θ𝑡𝑒𝑠𝑡  𝜉𝑏𝑒𝑠𝑡 − 𝑈𝑡
𝑡𝑒𝑠𝑡 ||

2

2
+ 𝜂||𝜉𝑏𝑒𝑠𝑡||0 

#Searching through values of tolerance to find the best predictor  

𝑡𝑜𝑙 = 𝑑𝑡𝑜𝑙 

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟 = 1, … . , 𝑡𝑜𝑙𝑖𝑡𝑒𝑟𝑠 : 

 𝜉 = 𝑆𝑇𝑅𝑖𝑑𝑔𝑒(Θ𝑡𝑟𝑎𝑖𝑛 , 𝑈𝑡
𝑡𝑟𝑎𝑖𝑛 , 𝜆, 𝑡𝑜𝑙, 𝑆𝑇𝑅𝑖𝑡𝑒𝑟𝑠) #Train and evaluate 

performance 

𝑒𝑟𝑟𝑜𝑟 = ||Θ𝑡𝑒𝑠𝑡𝜉 − 𝑈𝑡
𝑡𝑒𝑠𝑡||

2

2
+ 𝜂||𝜉||

0
 

#Is the error still dropping?  

𝑖𝑓 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡: 

  𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 = 𝑒𝑟𝑟𝑜𝑟 

𝜉𝑏𝑒𝑠𝑡 = 𝜉 

𝑡𝑜𝑙 = 𝑡𝑜𝑙 + 𝑑𝑡𝑜𝑙 

 #Or is the tolerance too high? 

𝑒𝑙𝑠𝑒: 

  𝑡𝑜𝑙 = max([0, 𝑡𝑜𝑙 − 2𝑑𝑡𝑜𝑙]) 

𝑑𝑡𝑜𝑙 =
2𝑑𝑡𝑜𝑙

𝑡𝑜𝑙𝑖𝑡𝑒𝑟𝑠 − 𝑖𝑡𝑒𝑟
 

𝑡𝑜𝑙 = 𝑡𝑜𝑙 + 𝑑𝑡𝑜𝑙   

𝑆𝑆𝐸 = ∑[Θ𝑡𝑒𝑠𝑡𝜉 − 𝑈𝑡
𝑡𝑒𝑠𝑡]2; 

𝑆𝑦𝑦 = ∑[𝑈𝑡
𝑡𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛(𝑈𝑡

𝑡𝑒𝑠𝑡)]2 

80/20 split  
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𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑦𝑦
   #Model adequacy  

𝑟𝑚𝑠𝑒 = √
𝑆𝑆𝐸

𝑛𝑢𝑚𝑝𝑜𝑖𝑛𝑡𝑠
     #Mean squared error  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜉𝑏𝑒𝑠𝑡 , 𝑅
2, 𝑟𝑚𝑠𝑒  

#𝑠𝑎𝑚𝑒 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑖𝑠 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑈𝑡𝑤𝑖𝑡ℎ 𝑊𝑡 . 𝜉1 𝑤𝑖𝑡ℎ 𝜉2 

 

3.2.3 Hybrid modelling approach  
 

In earlier sections of this chapter, we have discussed the method to discover a system of 

PDEs through a data-driven approach. However, the motivation for the development of 

hybrid models has been discussed in section 3.1. From the candidate library construction 

and sparse regression algorithms, it is evident the computational complexity is significantly 

higher in the discovery of a system of PDEs. The hybrid modelling framework has been 

utilized to increase model accuracy in many other optimizations, identification and control 

domains[51]. Therefore, considering the uncertainties in PDE discovery and advantages of 

hybrid modelling, we incorporated the physical knowledge prior to the model discovery, to 

reduce the computational complexity yielding higher accuracy models.  

The process information converted into mathematical form has to be incorporated in the 

model identification framework. In our case, candidate library construction and sparse 

regression are the two vital sections that decide the accuracy of the model. Any known 

process information has to be incorporated in one of these sections. If we consider the 

candidate library construction section, we have to reduce the number of terms in the 

candidate library either by elimination or by the selection of a few terms before the sparse 

regression. Another possible option is to convert the physical information into constraints 

in the sparse regression framework.  

In this work, we concentrate on incorporating the process knowledge into the candidate 

library and reduce the number of terms before the sparse regression. It is not practically 

feasible to develop a common framework to incorporate physical knowledge of different 

systems due to the varying properties and behaviour of each system. However, we know 

that any physical knowledge when converted to mathematical form, will have a few similar 
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features. To develop a robust method applicable across processes, we directly consider the 

different mathematical forms of the physical knowledge that can be incorporated into the 

candidate library. Hybrid modelling specific to a process is explained in detail in chapter 4. 

We consider three different cases of inducing process knowledge into the candidate library. 

a) Knowledge about the order of the PDE: Based on the conservation laws or 

governing laws of the process, sometimes we can assume the highest possible order 

of the derivative in the process. By considering this assumption, we can set the 

highest order of the spatial derivative in the candidate library and eliminate all 

higher-order derivatives and their combinations.  For example, if we infer that the 

highest derivative order is 2, we need not calculate the 3rd or higher-order derivatives 

for the PDE discovery. This significantly reduces the computational cost for 

gradient estimation and also reduces the error during sparse regression.  

 

b) Knowledge of coupled terms in the PDE: Multiple variables involved in the system 

of PDEs are the reason for increased complexities. Most of the PDE systems contain 

coupled non-linear derivative terms which are challenging to identify using data-

driven approaches due to high correlation in columns of Θ and numerical errors in 

gradient estimation. If we can obtain information about the possible coupled terms 

in the governing equation, we can modify the sparse regression framework to 

estimate the coefficients of these known coupled terms excluding them from the 

threshold values. Hence, we are forcing the regression framework to estimate the 

coefficients of known coupled terms integrated with sparse regression for the 

remaining terms. This approach increases the model accuracy as we are enforcing 

the selection of a known term. Also, as we know the coupled terms of the governing 

PDE, we can exclude all the other coupled terms that are generated due to the 

combination of derivatives and polynomials.  

 

c) Knowledge of other terms in the PDE: We are aware of many complex systems of 

PDEs in chromatographic studies, adsorption studies where multiple component 

transfers are involved leading to complicated terms in the PDE. Such terms are 
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neither generated by a combination of derivatives and polynomials nor can be 

assumed without prior process knowledge. Identification of these terms may be 

important to describe the process dynamics using the obtained model. This aids in 

significantly improving the model accuracy. 

All the abovesaid three cases are validated using various systems of PDEs; detailed 

results are given in the results section.  

 

3.3 Results and discussions 
 

The extension of sparse regression framework to a system of PDEs and the hybrid 

modelling approach explained in section 3.2 is validated using the solutions of various 

systems of PDEs from physics and engineering. As we are demonstrating the proposed 

hybrid approach to a complex system of PDEs, it can be applied to single PDE systems as 

well to improve the model accuracy subject to prior process knowledge. We utilize systems 

of 2 PDEs and multiple spatial dimensions to demonstrate the hybrid modelling approach. 

The reaction-diffusion equation, Keller-Segel equation for chemotaxis, and a system of 

PDEs from chromatographic studies are considered case studies.  

3.3.1 Reaction-diffusion equation  
 

The reaction-diffusion systems are extensively used to study pattern formations in 

mathematical physics [5]. Many patterns such as spiral waves, sawtooth behaviour can be 

observed and studied through reaction-diffusion systems. We consider a reaction-diffusion 

system that exhibits spiral waves on a 2D domain with periodic boundaries. It is commonly 

known as the 𝜆 − 𝜔 system[39].  

 

 𝑢𝑡 = 0.1∇2𝑢 + 𝜆𝑢 − 𝜔𝑣 

𝑣𝑡 = 0.1∇2𝑣 + 𝜔𝑢 − 𝜆𝑣 

𝜔 = −𝛽(𝑢2 + 𝑣2), 𝜆 = 1 − (𝑢2 + 𝑣2) , 𝛽 = 1  

 

(3.6) 
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After simplification,  

 𝑢𝑡 = 0.1𝑢𝑥𝑥 + 0.1𝑢𝑦𝑦 + 𝑢 − 𝑢𝑣2 − 𝑢3 + 𝑣3 + 𝑢2𝑣 

𝑣𝑡 = 0.1𝑣𝑥𝑥 + 0.1𝑣𝑦𝑦 + 𝑣 − 𝑢𝑣2 − 𝑢3 − 𝑣3 − 𝑢2𝑣 

 

 

(3.7) 

We have two spatial dimensions 𝑥, 𝑦𝜖[−10,10], and timestamps from 0 to 10. The number 

of spatial and temporal points after uniform discretization is 256 and 201, respectively.  

For this specific case, we compare the models obtained from the data-driven method with 

the hybrid model approach. For the data-driven method, similar to the case studies shown 

in section 2.3, we construct a library with the highest spatial derivative order and 

polynomial order as 4 and perform the sparse regression. For the hybrid modelling, we 

utilize the approach explained in 3.2.3(a). We assume that we know the highest order of the 

spatial derivative and the polynomial order in the PDE system. In this way, the physical 

knowledge about the system is utilized to constrain the candidate library and reduce the 

possible candidate terms significantly. Different levels of Gaussian noise are added to the 

generated data to compare the model accuracy of both methods at various noise levels. As 

the efficiency of the hybrid model is the main concern of study in this chapter, we do not 

utilize the denoising framework. However, from the inferences of data-driven discovery of 

PDEs in chapter 2, we know that denoising the data will yield higher accuracy models. 

Since the systems under study are complex and the denoising framework is not used, we 

add up to 5% Gaussian noise to the data. 𝑅2 𝑎𝑛𝑑 𝑅𝑀𝑆𝐸(explained in table 3.2 and 

equations 2.14 - 2.17) are used as metrics to compare the models obtained by different 

methods.  

The PDEs discovered from the data-driven approach for different noise levels are shown 

below in table 3.3.  

Table 3.3: Reaction-diffusion PDEs discovered from the data-driven approach 

Correct PDE :  

𝑢𝑡 = 0.1𝑢𝑥𝑥 + 0.1𝑢𝑦𝑦 + 𝑢 − 𝑢𝑣2 − 𝑢3 + 𝑣3 + 𝑢2𝑣 

𝑣𝑡 = 0.1𝑣𝑥𝑥 + 0.1𝑣𝑦𝑦 + 𝑣 − 𝑢𝑣2 − 𝑢3 − 𝑣3 − 𝑢2𝑣 
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Noise level Discovered PDE 

Clean data 𝑢𝑡 = 0.1𝑢𝑥𝑥 + 0.1𝑢𝑦𝑦 + 1.001𝑢 − 1.021𝑢𝑣2 − 0.951𝑢3 + 0.98𝑣3 + 1.01𝑢2𝑣 

𝑣𝑡 = 0.1𝑣𝑥𝑥 + 0.1𝑣𝑦𝑦 + 1.002𝑣 − 0.994𝑢𝑣2 − 0.998𝑢3 − 1.00𝑣3 − 1.04𝑢2𝑣 

 

1% noise 𝑢𝑡 = 0.25𝑢𝑥𝑥 + 0.14𝑢𝑦𝑦 + 1.21𝑢 − 1.31𝑢𝑣2 − 0.95𝑢3 + 1.21𝑣3 + 1.38𝑢2𝑣

+ 0.35𝑢 

𝑣𝑡 = 0.132𝑣𝑥𝑥 + 0.211𝑣𝑦𝑦 + 0.758𝑣 − 0.954𝑢𝑣2 − 1.325𝑢3 − 1.054𝑣3

− 1.025𝑢2𝑣 + 0.254𝑣 

 

2% noise 𝑢𝑡 = 0.232𝑢𝑥𝑥 + 0.324𝑢𝑦𝑦 + 1.35𝑢 − 1.75𝑢𝑣2 − 0.754𝑢3 + 0.865𝑣3

+ 1.65𝑢2𝑣 + 0.489𝑣 + 0.0057𝑢𝑣 

𝑣𝑡 = 0.3411𝑣𝑥𝑥 + 0.2415𝑣𝑦𝑦 + 1.42𝑣 − 1.24𝑢𝑣2 − 0.865𝑢3 − 0.841𝑣3

− 0.68𝑢2𝑣 + 0.354𝑢 

 

5% noise 𝑢𝑡 = 0.568𝑢𝑥𝑥 + 0.354𝑢𝑦𝑦 + 1.39𝑢 − 0.415𝑢𝑣2 − 1.687𝑢3 + 1.524𝑣3

+ 0.714𝑢2𝑣 + 0.0681𝑢2 + 0.2541𝑣𝑢𝑥 

𝑣𝑡 = 0.415𝑣𝑥𝑥 + 0.654𝑣𝑦𝑦 + 1.68𝑣 − 0.678𝑢𝑣2 − 1.561𝑢3 − 1.392𝑣3

− 0.841𝑢2𝑣 + 0.0687𝑢𝑣𝑥 + 0.498𝑢 

 

 

The system of PDEs discovered through the hybrid modelling approach for different noise 

levels is shown in table 3.4 

Table 3.4: Reaction-diffusion PDE system discovered using the hybrid approach 

Correct PDE :  

𝑢𝑡 = 0.1𝑢𝑥𝑥 + 0.1𝑢𝑦𝑦 + 𝑢 − 𝑢𝑣2 − 𝑢3 + 𝑣3 + 𝑢2𝑣 

𝑣𝑡 = 0.1𝑣𝑥𝑥 + 0.1𝑣𝑦𝑦 + 𝑣 − 𝑢𝑣2 − 𝑢3 − 𝑣3 − 𝑢2𝑣 

 

Noise level Discovered PDE 

Clean data 𝑢𝑡 = 0.1𝑢𝑥𝑥 + 0.1𝑢𝑦𝑦 + 1.00𝑢 − 1.00𝑢𝑣2 − 1.01𝑢3 + 0.99𝑣3 + 1.01𝑢2𝑣 

𝑣𝑡 = 0.1𝑣𝑥𝑥 + 0.1𝑣𝑦𝑦 + 1.00𝑣 − 0.99𝑢𝑣2 − 1.02𝑢3 − 1.00𝑣3 − 1.01𝑢2𝑣 
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1% noise 𝑢𝑡 = 0.12𝑢𝑥𝑥 + 0.14𝑢𝑦𝑦 + 1.08𝑢 − 1.11𝑢𝑣2 − 0.96𝑢3 + 1.151𝑣3

+ 1.230𝑢2𝑣 

𝑣𝑡 = 0.11𝑣𝑥𝑥 + 0.101𝑣𝑦𝑦 + 0.899𝑣 − 0.988𝑢𝑣2 − 1.115𝑢3 − 1.004𝑣3

− 1.005𝑢2𝑣 

 

2% noise 𝑢𝑡 = 0.132𝑢𝑥𝑥 + 0.189𝑢𝑦𝑦 + 1.12𝑢 − 1.35𝑢𝑣2 − 0.899𝑢3 + 0.862𝑣3

+ 1.35𝑢2𝑣 

𝑣𝑡 = 0.3411𝑣𝑥𝑥 + 0.2415𝑣𝑦𝑦 + 1.42𝑣 − 1.24𝑢𝑣2 − 0.865𝑢3 − 0.841𝑣3

− 0.88𝑢2𝑣 

 

5% noise 𝑢𝑡 = 0.143𝑢𝑥𝑥 + 0.147𝑢𝑦𝑦 + 1.24𝑢 − 0.729𝑢𝑣2 − 0.758𝑢3 + 1.224𝑣3

+ 0.814𝑢2𝑣 + 0.065𝑣 

𝑣𝑡 = 0.115𝑣𝑥𝑥 + 0.198𝑣𝑦𝑦 + 1.27𝑣 − 1.198𝑢𝑣2 − 1.211𝑢3 − 0.854𝑣3

− 1.154𝑢2𝑣 + 0.049𝑢 

 

 

 

Figure 3.1: Model adequacy report(𝑅2) for Reaction-diffusion equation 
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Figure 3.2: RMSE report for Reaction-diffusion equation 

 

From figures 3.1 and 3.2, we can infer that the hybrid modelling approach provides better 

models compared to the data-driven models. Hybrid models are much suited for practical 

applications as they perform significantly better than black-box models in the presence of 

noise. In this case, we utilized the physical information to constrain the candidate library 

by limiting the maximum order of the PDE leading to a significant reduction in the 

computational errors, therefore obtaining a better model.  

3.3.2 Keller-Segel equation for chemotaxis   
 

The Keller-Segel equations describe the evolution of the density of cells and chemical 

secretion in the chemotactic attraction of biological systems.[43] It consists of 2 PDEs, 

explaining the drift diffusion in the first PDE and reaction diffusion of the chemical in the 

second PDE. [12] 

 

 

 

𝑢𝑡 = ∇. (𝐷𝑢∇𝑢 − 𝑋𝑢∇𝑤) 

𝑤𝑡 = 𝐷𝑤Δw − kw + hu 

 

(3.8) 
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Here 𝑢 represents the density of cells and 𝑤 represents the secreted chemical. 𝐷𝑢 is the 

diffusion coefficient of the cells, 𝑋 is the chemotactic sensitivity, 𝑘 𝑎𝑛𝑑 ℎ represent the rate 

of production and degradation of the chemical by the cells respectively. For data generation 

we consider 𝐷𝑢 = 0.5,𝐷𝑤 = 0.5, 𝑋 = 10.0, 𝑘 = 0.05, ℎ = 0.1. Unlike the reaction-

diffusion equation explained in section 3.3.1, the Keller-Segel equation has only one spatial 

dimension but it consists of coupled derivative terms because the chemotactic sensitivity 𝑋 

is a measure for the strength of their sensitivity to the gradient of the secreted chemical, 𝑤.  

After substituting the above values and simplifying the terms, the Keller Segel equations 

are, 

 

 

 

𝑢𝑡 = 0.50𝑢𝑥𝑥 − 10𝑢𝑤𝑥𝑥 − 10𝑢𝑥𝑤𝑥  

𝑤𝑡 = 0.50𝑤𝑥𝑥 − 0.05𝑤 + 0.1𝑢 

 

(3.9) 

We compare the models obtained from the data-driven method with the hybrid model 

approach. We implement the following approaches and compare the obtained models, 

a) Data-driven approach – No prior assumptions are made. The candidate library is 

constructed with the highest order of spatial derivative and polynomials as 4 

followed by sparse regression. 

b) Hybrid model_1 – Similar to 3.3.1, we assume that we know the highest derivative 

and polynomial order and constrain the candidate library to that corresponding 

value. Here, we set the highest order of the derivative to 2 and the highest 

polynomial order to 1. This reduces the number of possible candidate terms aids in 

the reduction of computational error.  

c) Hybrid model_2 -  As explained in 3.2.3(b), the presence of coupled derivative terms 

makes the PDE discovery challenging for noisy data. In this case, the coupled term 

also becomes vanishingly small over most of the domain. As we are aware of the 

process from which the data is derived, utilizing the property of chemotactic 

sensitivity and its relation with cell density and secreted chemicals, we assumed that 

the coupled term, 𝑢𝑥𝑤𝑥 is known and that there are no other coupled terms. We 

estimate the coefficient of 𝑢𝑥𝑤𝑥 without considering the sparsity threshold value 

and perform sparse regression for other candidate library terms. We enforce the 
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regression to choose 𝑢𝑥𝑤𝑥 irrespectively of this coefficient value. This also ensures 

that if the coupled term is vanishing over the domain but is a contributing term to 

the PDE, it is selected even though the values may be far below the sparsity 

threshold.  

Gaussian noise with different magnitudes is added to the generated data to compare the 

model accuracy of the three methods at various noise levels.  

 

 

Figure 3.3: Model adequacy report(𝑅2)  for Keller Segel equation 
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Figure 3.4: RMSE report for Keller Segel equation 

 

We can conclude that incorporating the knowledge about the order of the PDE generated 

better models than the data-driven approach for higher noise levels. However, incorporating 

the knowledge about the coupled term of the PDE increases the model accuracy compared 

with the first hybrid approach. Hence, we conclude that  incorporating detailed process-

specific knowledge into the PDE discovery algorithm leads to higher accuracy models.  

 

3.3.3 Chromatographic studies  
 

Chromatography is an efficient tool for separations in pharmaceutical, food, and 

agrochemical industries. The solute movement in fixed bed and moving bed adsorption 

columns is studied using the equilibrium theory of chromatography. The solute movement 

is described only by considering convection and equilibrium between solid and fluid phases. 

The mass transfer and dispersion effects are neglected. The equilibrium theory provides 

accurate descriptions of the propagation of shocks, waves, and semishocks. Equilibrium 
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theory provides explicit solutions when applied to simple isotherms, such as the Langmuir 

isotherm for single and multicomponent systems [41]. 

We consider a system of PDEs corresponding to the equilibrium theory for the binary 

chromatography of a species applied to the general Langmuir isotherm.  

 

 𝜕𝐶1

𝜕𝑡
+  𝑣

𝜕𝐶1

𝜕𝑥
− 𝐷

𝜕2𝐶1

𝜕𝑥2
+

1 − 𝜀

𝜀

𝜕𝑞1

𝜕𝑡
 = 0 

 
𝜕𝐶2

𝜕𝑡
+  𝑣

𝜕𝐶2

𝜕𝑥
− 𝐷

𝜕2𝐶2

𝜕𝑥2
+

1 − 𝜀

𝜀

𝜕𝑞2

𝜕𝑡
 = 0 

 
𝜕𝑞2

𝜕𝑡
 = 𝑘2(𝑞

∗
2
− 𝑞2) 

 
𝜕𝑞1

𝜕𝑡
 = 𝑘1(𝑞

∗
1
− 𝑞1) 

 

𝑞∗
1

= 
𝐻11𝐶1

1 + 𝐾11𝐶1 + 𝐾12𝐶2
+ 

𝐻21𝐶1

1 + 𝐾21𝐶1 + 𝐾22𝐶2
 

 

𝑞∗
2

=  
𝐻12𝐶2

1 + 𝐾11𝐶1 + 𝐾12𝐶2
+ 

𝐻22𝐶1

1 + 𝐾21𝐶1 + 𝐾22𝐶2
 

 

(3.10a) 

 

(3.10b) 

 

(3.11a) 

 

(3.11b) 

 

(3.12a) 

 

(3.12b) 

 

 𝐶1, 𝐶2 are fluid and solid phase concentrations, 𝜈 is the interstitial velocity, 𝜖 is the void 

fraction of the bed, 𝐻𝑖 is Henry’s constant, and 𝐾𝑖 is the adsorption equilibrium constant of 

component 𝑖.   

Initial conditions: 𝐶(𝑥, 𝑡 = 0) = 0 

Boundary conditions: 𝐶1(𝑥 = 0, 𝑡) = 4;       𝐶2(𝑥 = 0, 𝑡) = 4 

   
𝜕𝐶

𝜕𝑥
|𝑥=𝐿 = 0  

Constant values used for data generation are, 

𝑧𝜖[0, 𝐿]     𝐿 = 20𝑐𝑚, length of the column,  
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𝑡𝜖[0, 𝑡𝑠𝑝𝑎𝑛]     𝑡𝑠𝑝𝑎𝑛 = 1500 seconds ,         

𝜈 = 0.075 𝑐𝑚/𝑠 - interstitial velocity ,  

D = 0.00087,  

𝜖 = 0.697,   

𝑘1 = 0.1𝑠−1, 𝑘2 = 0.1𝑠−1, 

 𝐾11 = 0.12
𝑚𝐿

𝑚𝑔
, 𝐾21 = 0.015

𝑚𝐿

𝑚𝑔
 ,  

𝐾12 = 0.33
𝑚𝐿

𝑚𝑔
, 𝐾22 = 0.015

𝑚𝐿

𝑚𝑔
, 

𝐻11 = 1.32 
𝑚𝐿

𝑚𝑔
,         𝐻12 = 3.63 

𝑚𝐿

𝑚𝑔
,  

𝐻21 = 1.47 
𝑚𝐿

𝑚𝑔
,        𝐻22 = 1.47 

𝑚𝐿

𝑚𝑔
.  

  

In this case, obtaining a black box model without incorporating any prior information is not 

feasible due to the presence of  
𝜕𝑞𝑖

𝜕𝑡
 , 𝑖 = 1,2.  We have to incorporate the time derivative of 

𝑞𝑖 as the prior information, or using the equilibrium theory of chromatography, we have to 

simplify equation (3.11) using (3.12) and substitute the resulting terms for the time 

derivative of q in the system of PDEs (3.10). We considered both cases and compared the 

obtained models.  

Hybrid_1 approach: As we have the data of 𝐶1, 𝐶2, 𝑡, 𝑥, 𝑞1, 𝑎𝑛𝑑 𝑞2, we assume the highest 

order of the PDE as 2 and incorporate the time derivative of 𝑞1𝑎𝑛𝑑 𝑞2 in the candidate 

library along with spatial derivatives and polynomials of 𝐶1, 𝐶2.  

Hybrid_2 approach: Instead of calculating the temporal derivatives of 𝑞1𝑎𝑛𝑑 𝑞2, we 

substitute the simplified equation derived from the model equation and generalized 

Langmuir isotherm.  
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A model adequacy comparison for models obtained using the Hybrid_1 and Hybrid_2 

approaches among different levels of noise in the data is shown in figures 3.5 and 3.6.  

Substituting (3.11) and other constant values to (3.10), 

 𝜕𝐶1

𝜕𝑡
+  0.075

𝜕𝐶1

𝜕𝑥
− 0.0087

𝜕2𝐶1

𝜕𝑥2
+ 0.434[0.1(𝑞∗

1
− 𝑞1)] = 0      

 

 
𝜕𝐶2

𝜕𝑡
+  0.075

𝜕𝐶2

𝜕𝑥
− 0.0087

𝜕2𝐶2

𝜕𝑥2
+ 0.434[0.1(𝑞∗

2
− 𝑞2)] = 0        

 

(3.13a) 

 

 

(3.13b) 

 

After simplification of 𝑞1
∗ 𝑎𝑛𝑑 𝑞2

∗ , long division is performed to obtain a linear combination 

of terms. The first four terms of the resultant long division were considered as an 

approximation. 𝑞1
∗ 𝑎𝑛𝑑 𝑞2

∗ are functions of 𝐶1 𝑎𝑛𝑑 𝐶2.  

 
𝑞1

∗ = 1.45𝐶1 + 0.632𝐶2 +
0.124𝐶2

𝐶1
+

4.067𝐶2
2

𝐶1
 

𝑞2
∗ = 3.10𝐶1 + 1.258𝐶2 +

0.574𝐶2

𝐶1
+

2.145𝐶2
2

𝐶1
 

(3.14a) 

 

(3.14b) 

 

Substituting the value of 𝑞1
∗ 𝑎𝑛𝑑 𝑞2

∗ in 3.13a and 3.13b,  

 

 𝜕𝐶1

𝜕𝑡
= − 0.075

𝜕𝐶1

𝜕𝑥
+ 0.00087

𝜕2𝐶1

𝜕𝑥2
− 0.2058(1.45𝐶1 + 0.632𝐶2 

+
0.124𝐶2

𝐶1
+

4.067𝐶2
2

𝐶1
− 𝑞1) 

 
      

𝜕𝐶2

𝜕𝑡
= − 0.075

𝜕𝐶2

𝜕𝑥
+ 0.00087

𝜕2𝐶2

𝜕𝑥2
− 0.2058(3.10𝐶1 + 1.258𝐶2

+
0.574𝐶2

𝐶1
+

2.145𝐶2
2

𝐶1
− 𝑞2) 

 
 

(3.15a) 

 

 

 

 

(3.15b) 
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Based on equations 3.15a and 3.15b, we enforce the sparse regression to estimate 

coefficients of 𝐶1, 𝐶2,
𝐶2

𝐶1
,
𝐶2

2

𝐶1
 without considering the sparsity threshold. Gaussian noise with 

different magnitudes is added to the generated data to compare the model accuracy of both 

methods at various noise levels. The system of PDEs discovered for clean data is shown in 

3.16a and 3.16b followed by model adequacy report and RMSE reports. 

 

The system of PDEs discovered for clean data is,  

 𝜕𝐶1

𝜕𝑡
= − 0.0699

𝜕𝐶1

𝜕𝑧
+ 0.0008

𝜕2𝐶1

𝜕𝑧2
− 0.2881𝐶1 + 0.1294𝐶2

+
0.0224𝐶2

𝐶1
+

0.8379𝐶2
2

𝐶1
− 0.2049𝑞1 

 
 

       
𝜕𝐶2

𝜕𝑡
= − 0.0687

𝜕𝐶2

𝜕𝑧
+ 0.0008

𝜕2𝐶2

𝜕𝑧2
− 0.1745𝐶1 + 0.2519𝐶2

+
0.1098𝐶2

𝐶2
+

0.4407𝐶2
2

𝐶1
− 0.2051𝑞2 

 

(3.16a) 

 

 

 

 

(3.16b) 

 

Figure 3.5: Model adequacy report(𝑅2) for the chromatographic PDE system 



72 
 

 

Figure 3.6: RMSE  report for the chromatographic PDE system 

Although a completely data-driven approach was not feasible for the chromatographic 

system of PDEs, we can observe that the first approach generates higher accuracy models 

than the second approach. This is because we are directly using the available 𝑞1, 𝑞2 data, 

calculating their time derivatives and incorporating those values into the candidate library. 

However, in the second approach, we perform functional approximations of the model 

equations which may be the reason for relatively lower accuracy values. If we are able to 

produce better approximations of equations 3.13a and 3.13b and incorporate those terms 

into the candidate library, we will be able to generate better models using the model 

simplification approach as well.  

The common conclusion from all the three case studies discussed in section 3.3 is that 

incorporating any known process information prior to the PDE discovery will enhance the 

model accuracy, reduce the computational cost, and yield interpretable results. The hybrid 

modelling approach is able to generate models even for a complex system such as the 

chromatographic system of PDEs for which a black box model approach is highly 

infeasible. The hybrid modelling approach can be extended to the discovery of single PDE 

and discovery of PDE systems with more than 2 equations as well.   
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3.4 Conclusions 
 

In this work, the sparse regression framework coupled with the hybrid modelling approach 

is introduced to discover a system of PDEs. A recursive framework is introduced to obtain 

a system of PDEs by extending the candidate library and recursively performing the sparse 

regression. To reduce the computational costs and to provide physical insights into the PDE 

discovery, a hybrid modelling approach was proposed where physical information about 

process was incorporated in the form of mathematical constraints prior to performing the 

PDE discovery. We make assumptions directly in mathematical format and incorporate 

them into the discovery framework to formulate a robust approach and study the advantages 

of hybrid modelling. We consider different cases of prior knowledge and incorporate them 

to minimize the computational errors due to the coupled derivative terms, and simplification 

of the known set of complicated terms of the PDE. We utilize the Keller-Segel equation of 

chemotaxis, the reaction-diffusion equation, and a system of PDEs obtained from 

chromatographic studies based on the equilibrium theory applied to the general Langmuir 

isotherm to demonstrate the various cases of hybrid modelling applied to the discovery of 

a system of PDEs.  
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Chapter 4 
 

 

Modelling temperature dynamics of SAGD 

process in an oil reservoir 
 

 

4.1 Introduction  
 

Process models are developed based on first principles modelling, proxy modelling 

approaches, or data-driven methods. First-principle based models rely totally upon the 

physics of the process and can be infeasible to obtain for complex processes due to 

computational complexity or insufficient physical knowledge. Proxy or surrogate models 

are utilized for such processes which is an integration of different statistical techniques to 

achieve interpretable and reliable models. The data-driven models are based completely on 

the data retrieved from the past. Although data-driven models are proven to be reliable 

within a particular range of operating conditions, reliability outside the operating range or 

long-term prediction accuracy can be lower compared to physics-based models. Each 

process is governed by a few states and parameters. The evolution of the states over time 

and space provides information about the progress of the process itself. Studying the 

dynamics of these states by the development of governing equations for them helps in the 

prediction of future states, leading to better control and optimization. In this work, we focus 

on developing partial differential equation(PDE) models to explain the temperature 

dynamics in a petroleum reservoir. Petroleum reservoirs have a huge geographical spread 

and involve multiphase fluid flow through porous media. They are a large scale distributed 

parameter process with spatiotemporal variations involving multiple inputs and outputs 

[20].  
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The two main categories of oil and bitumen extraction are surface mining and in-situ 

recovery. Surface mining is utilized for shallow reservoirs, in which bitumen can be 

extracted using mechanical equipment. However, only 20% of the Canadian oil sands are 

shallow enough for surface mining. The remaining 80% have to be extracted using in-situ 

methods. Steam assisted gravity drainage(SAGD), Cyclic steam stimulation(CSS), and In-

situ combustion are the thermal recovery technologies used for in-situ recovery. SAGD was 

invented by Dr Roger Butler in the 1970s. SAGD is an enhanced oil recovery technology 

for producing heavy crude oil and bitumen [52].  A pair of horizontal wells are drilled into 

the oil reservoir. High-pressure steam is continuously injected into the injector well which 

is placed above the producer well which reduces the viscosity of the surrounding bitumen 

in the oil sands. The less viscous oil flows down to the producer well due to gravity and is 

pumped out for further processing. The oil reservoir consists of a caprock layer, an 

impermeable layer, and the oil sands layer. Caprock is the topmost layer containing the oil 

and gas moving out from the oil sands layer. The oil sands layer holds the bitumen and the 

impermeable layer is at the bottom. The oil reservoirs generally consist of multiple injector 

and producer wells which are responsible for high pressure and temperature in the reservoir. 

Figure 4.1 shows the schematic of a SAGD process with a two-well injector and producer 

running in parallel [53]. We are interested in modelling the temperature dynamics for the 

reservoir by studying the steam chamber evolution across the reservoir at different instants 

of time. We obtain the data using CMG-STARS, a commercial reservoir flow simulator 

based on first principles [20][54]. 

In chapter 2 and chapter 3, we explored the areas of PDE discovery using data-driven and 

hybrid approaches. We tried to provide the best possible estimate of the PDEs in the 

presence of noise using denoising and various gradient estimation framework. The issues 

of interpretability, high computational cost, and discovery of a system of PDEs for complex 

systems were addressed by incorporating prior physical knowledge into the PDE discovery 

framework. However, in both cases, the PDEs were assumed to have constant parameters, 

i.e., the terms on the right-hand side of Equations 2.1 and 3.2 do not have an explicit 

dependence on time or space. Extracting the temporal or spatial variations of the 

coefficients in the PDE gives us the freedom to study many more systems and to discover  
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Figure 4.1: Schematic representation of SAGD process(front view) 

 

governing equations using data-driven or hybrid modelling approaches. Rudy et al. 

proposed the sequential group threshold regression (SGTR) to discover the parametric 

PDEs using data-driven approaches [18]. A separate regression is constructed for each time 

step to obtain the corresponding time-varying coefficients. Similarly, it can be extended to 

spatial variations also. However, a general form of the varying coefficients cannot be 

estimated in this method. SGTR also has the limitation of an incomplete candidate library. 

To overcome some of these limitations, Xu et al. proposed the step-wide deep-learning 

genetic algorithm PDE (DLGA_PDE) approach which is an integration of deep-learning 

and genetic-algorithm approaches[55]. A dual neural network is utilized; the first neural 

network obtains the structure of the PDE and discovers the type of variation in the process. 

The second neural network calculates the values of varying coefficients for the terms 

identified by the first neural network. However, both the methods are data-driven and the 

physical interpretability of the model development framework and the obtained model in 

the above-said methods is not clear.  
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The parametric variation in each process can be characterised by the process parameters. 

Geostatistical simulation packages use a set of algorithms to generate spatial properties[56]. 

They can be classified as geostatistical estimation algorithms and geostatistical simulation 

algorithms. The estimation algorithms are used to obtain unbiased estimates of the reservoir 

properties such as porosity and permeability using interpolation techniques. However, the 

simulation algorithms provide multiple equally probable realizations of the property to be 

estimated. The simulation algorithms are preferred over estimation algorithms as they 

incorporate spatial variability of the property while generating multiple realizations. The 

spatial variability of reservoirs is incorporated in the algorithm using a variogram.  

A variogram is a measure of the average correlation of spatially related properties and can 

be described as shown in equation 4.1.  

 
𝛾(ℎ) =

1

2𝑁(ℎ)
[{𝑍(𝑢 + ℎ) − 𝑍(𝑢)}2] 

(4.1) 

 

𝑍(𝑢) is the value of the spatial property, ℎ is the lag distance, and 𝑁(ℎ) is the number of 

pairs of points under study. 

The sequential Gaussian simulation(SGS) is widely used to generate an ensemble of 

equiprobable spatial distributions of the reservoir property that are consistent with a 

specified variogram.  

In the case of reservoirs, we know that the parameters are available only at discrete spatial 

locations, but have a significant impact on the reservoir productivity. Permeability of the 

rocks is an important property contributing to reservoir productivity. Therefore, studying 

the spatial variability of the permeability across the reservoir and incorporating it into the 

temperature modelling framework is important.  

In this work, we utilize the generated ensemble of 200 realizations of permeability through 

SGS utilizing the properties of the variogram in [54]. By doing this, we are developing a 

permeability distribution across the reservoir. Flow simulation is carried out using CMG-

STARS to obtain an ensemble of 200 realizations of temperature and pore pressure. As 

mentioned earlier, our objective is to obtain PDE models to explain the temperature 
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dynamics across the reservoir. Generating 200 realizations of temperature facilitates us to 

extract the spatial parametric variations involved across the reservoir. The permeability 

which is one of the petrophysical parameters of the reservoir is used as prior physical 

knowledge and utilized in the hybrid modelling to improve the model accuracy. We develop 

data-driven and hybrid models that govern the temperature dynamics in an oil reservoir. 

The obtained PDE models have spatial parametric variation i.e., unlike the case studies 

shown in sections 2.3 and 3.3, the coefficients of the terms on the right-hand side of the 

equation will have a spatial dependency.  The general parametric PDE with spatial 

variations is shown in equation 4.2   

 𝑢𝑡 = 𝑁(Θ(𝑢); [𝜉1(𝑥), 𝜉2(𝑥),…… . . 𝜉𝑛(𝑥)]) 

Θ(𝑢) = [𝑢, 𝑢2 , 𝑢, 𝑢𝑥, 𝑢𝑥𝑥 , . . 𝑢𝑢𝑥𝑥 , 𝑢2𝑢𝑥𝑥 …𝑢𝑦 , 𝑢𝑦𝑦 , . . 𝑢𝑢𝑦𝑦 , 𝑢2𝑢𝑦𝑦 …𝑢𝑥𝑢𝑦 . . ] 

 

(4.2) 

(4.3) 

where 𝑢𝑡 refers to derivatives of the data with respect to time, t. Θ(𝑢) denotes the candidate 

library consisting of all the potential terms of the PDE. 𝑥 𝑎𝑛𝑑 𝑦 correspond to the spatial 

dimensions and Θ consists of derivatives of the data with respect to 𝑥 𝑎𝑛𝑑 𝑦, polynomials 

and their combinations. 𝜉1 ……𝜉𝑛 denote the vector of varying coefficients, 𝑛 being the size 

of the candidate library. 𝑁 represents the linear combination of the terms in Θ.   

 

4.2 Modelling temperature dynamics using data-driven 

and hybrid approaches  
 

We develop PDE models to explain the temperature dynamics in an oil reservoir using a 

data-driven and hybrid approach. The data for both approaches is obtained using CMG-

STARS, a commercial simulator used for reservoir flow simulation. The method of data 

generation is explained in section 4.2.1 and is taken from the work done by Ganesh et 

al.,2019 for uncertainty quantification of the factor of safety in a SAGD process [54].  
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4.2.1 Data generation and visualization  
 

The data utilized to model the temperature dynamics was generated by Ganesh et al.[54]. A 

sequentially coupled simulation platform, consisting of CMG-STARS for reservoir flow 

simulation and FLAC3D was used to generate the required data. The coupling framework 

enables us to visualize the interactions between flow and deformation response in 

subsurface modelling in the SAGD process. The pore pressure and temperature obtained 

from CMG-STARS are used to compute the stress and strain through FLAC3D which is 

utilized to update the porosity and permeability of the reservoir. This updated information 

is used to re-compute the pore pressure and temperature and the loop continues[57]. As 

explained in section 4.1, SGS is used to generate realizations of permeability using the 

properties of the variogram aiding the study of spatial parametric variations.  A schematic 

of the coupled reservoir-geomechanics simulation is shown in figure 4.2[54]  

 

 

Figure 4.2: Sequentially coupled simulation between the CMG-STARS and FLAC3D 

 

A wellpad of the McKay river oil sand area is selected and utilized for the coupled 

simulations study. A total of 6 well pairs operate in the pad with well spacing of 100m. The 

grid sizes and numbers are non-uniform to retain the heterogeneity due to the sedimentation 

process. The schematic of the reservoir model with different layers and grid sizes is shown 

in figure 4.4. The Till formation corresponds to the overburden and was set to 120m. Part 

of the overburden (50m) was included in the CMG-STARS model. (STARS 2015.10). The 
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caprock corresponds to the Clear Water formations and the reservoir corresponds to the 

Wabiskaw and McMurray formations. The grid sizes were 5m per cell in the overburden 

(5m*10 grids); 5m per grid in the caprock (5m*6 grids); 2m per grid in the reservoir (2m*35 

grids); and 5m per grid in the underburden (5m*10 grids). The other main parameters for 

the flow simulator are summarized in Table 4.1. The schematic of the reservoir model with 

permeability distributions and the geomechanical model is shown in figures 4.3 [54]. 

Although we are not utilizing the geomechanical model in this work, we have provided 

information about it as the permeability values are updated based on the geomechanical 

simulation.  

 

 

Figure 4.3: The working reservoir model in 3D with permeability I distribution along with 

the well pairs 
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Table 4. 1 CMG-STARS simulation parameters [54] 

 Porosity Permeability 
J (md) 

Permeability 
J (md) 

Permeability 
K (md) 

𝑆𝑜  
Oil 

saturation 

𝑆𝑤 
Water 

saturation 

Overburden N/A 100 100 50 0.0 1.0 

Caprock 0.1 1 1 0.001 0.0 1.0 

Reservoir 
sand 

0.3 5000 5000 3330 0.85 0.15 

Reservoir 
shale 

0.1 50 50 33 0.15 0.85 

Underburden 0.1 1 1 0.001 0.0 1.0 

 

 

 

Figure 4.4: Schematic of the reservoir model with grid size 

The Wabiskaw and McMurray formations are included in both the reservoir and 

geomechanical model, whereas the Till, Clearwater, and Devonian formations are not 

included in the reservoir model for computational efficiency, as the flow in these formations 

can be neglected due to low permeability. The injectors open from day 1 for preheating of 

the cold bitumen near the wellbore and the producers open in 150 days for production; 

hence, for the purpose of modelling, data from day 160 and onwards is considered. A 

pseudorandom binary sequence (PRBS) input for the well BHP for injectors and producers 

is designed to provide excitation to the system and generate suitable data for the purposes 

of modelling and identification. 

0m 200 grid horizontally (X and Y) with 5m length 

-50m

Till formations 10 grids with 5m thickness

-80m
Clear Water formations 6 grids with 5m thickness

-100m Wablskaw formations 10 grids with 2m thickness

-150m

McMurray formations 25 grids with 2m thickness

-200m

Devonian formation 10 grids with 5m thickness

X

Z
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As we are interested to study spatial parametric variability in the PDE models, we generate 

an ensemble of realizations. Since we consider working with a two-dimensional reservoir 

problem, we conduct a single heterogeneous three-dimensional simulation and use each 

two-dimensional slice perpendicular to the well direction (XZ) as a separate realization. 

This approach considers the cross-flow terms capturing the true dynamic flow behaviour 

during the SAGD process, and is, therefore, our preferred approach for creating 2D 

realizations. To summarize, 200 XZ frames along the Y direction of the 3D model are used 

as 200 2D realizations to construct the ensemble. The procedure of obtaining 200 

realizations from a 3D simulation is shown in figure 4.5 [54].  

 

 

Figure 4.5: Procedure of obtaining 200 realizations 

 

Data at every instant T has 200 grid points in X, 200 grid points in Y and 6 grid points in Z 

taken over 29 time-frames. In sequential coupling, the permeability distribution is updated 

at each time step. The posterior permeability distributions obtained after all the updates will 

be used in hybrid modelling and are depicted in figure 4.6 [54]. 
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Figure 4.6(a): Average reservoir XZ permeability over all realizations at time t=1. 

 

Figure 4.6(b): Average reservoir XZ permeability over all realizations at time t=10. 

 

 

Figure 4.6(c): Average reservoir XZ permeability over all realizations at time t=25. 

4.2.2 Parametric PDE discovery  
 

The sparse regression framework explained in chapters 2 and 3 is extended to discover the 

parametric PDE from multiple realizations. The conclusions made from chapter 2 about the 

best gradient estimation method and the optimal sparsity regularization were validated in 

chapter 3 for a system of PDEs. We utilize the same validated approaches to model the 

temperature dynamics of the oil reservoir. The model accuracies obtained from data-driven 

and hybrid modelling approaches are compared and detailed results are shown in the results 

section.  
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From section 4.2.1, we have 200 realizations of temperature and permeability data obtained 

from the sequential coupling of CMG-STARS and FLAC3D. Each realization has two 

spatial dimensions X, Z and temporal dimension T. The process of discovering parametric 

PDEs involves the disintegration of the ensemble into individual realizations. PDE of 

constant-coefficient is discovered for each realization using a similar approach and all the 

200 PDEs obtained are integrated to form a parametric PDE explaining the temperature 

dynamics of an oil reservoir. As the realizations are representations of temperature at 

different spatial locations, the obtained parametric PDE will have the terms which 

contribute significantly to the temperature dynamics and the coefficients of those terms will 

be a function of spatial points in the reservoir and will represent the spatial variation of the 

temperature dynamics.  

The temperature dynamics is expressed by the 1-D heat transfer equation in a first principle 

model[58][59]. The one-dimensional heat transfer ahead of a moving steam chamber 

interface is expressed as,  

 𝜕2𝑇

𝜕𝜉
+ (

𝑈

𝑎
)(

𝜕𝑇

𝜕𝜉
) = (

1

𝛼
) (

𝜕𝑇

𝜕𝑡
)  

(4.4) 

 

where T is the temperature, 𝜉 in the perpendicular distance from the steam interface,and 𝛼 

is the reservoir thermal diffusivity. 

All the first principle-based modelling approaches to obtain models for the SAGD process 

consider multiple assumptions based on conservation laws and operating conditions. 

Although the assumptions made are different in each work in the literature, the physics 

governing the unit processes remains the same. The 1-D heat equation is always considered 

while explaining the heat transfer in a steam chamber. As we are interested in modelling 

the temperature dynamics, we tried incorporating some information from the 1-D heat 

equation into the PDE discovery framework.  

Also, from the data generation, we have 200 realizations of the permeability data for the 

same spatial locations and time frames as the temperature data. Permeability is one of the 

main petrophysical parameters which is directly related to reservoir productivity and also 
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to the states of the reservoir. As the temperature is one of the states of the reservoir, we 

incorporated the permeability data in discovering the PDE for the temperature dynamics.  

We discovered the temperature dynamics using two different approaches and compared the 

models obtained.  

a. Data-driven modelling: Although hybrid models proved to generate better PDE 

models as shown in chapter 3, the development of data-driven models is important  

as the availability of data for the petrophysical parameter might not be available for 

some cases. We developed 2 different data-driven models with modifications in the 

candidate library based on information obtained from the 1-D heat equation. In the 

first trial, we set the highest order of the polynomial and the spatial derivative to be 

2. In the second trial, we considered the normal assumption of the data-driven 

approach in which the highest order of the polynomial and the derivative is 4. Sparse 

regression was performed in both methods(table 2.1 and 2.2) to obtain parsimonious 

PDE models. This process was repeated for 200 realizations and the obtained 

equations were re-integrated to form a parametric PDE.  

b. Hybrid Modelling approach:  Incorporating any prior information into the PDE 

discovery framework will improve the model accuracy and also provides physical 

interpretability to the obtained model. Hence, we utilized the available permeability 

data to develop hybrid models for temperature dynamics. The permeability is 

assumed to be directly proportional to the gradient of temperature in the first 

principle modelling frameworks. Although some works assume proportionality of 

permeability to the second-order derivative of the temperature, most works consider 

the first-order derivative. As the permeability values are available for each spatial 

location and each time step for the reservoir (Wabiskaw and McMurry formations), 

the values of the first-order spatial derivative of the data for Wabiskaw and 

McMurry formations were scaled using the corresponding permeability values. This 

is equivalent to providing weights to the first-order spatial derivatives using the 

permeability values before the sparse regression. This procedure was repeated for 

200 realizations, and permeability values of that particular realization were used to 

scale the values of the temperature gradient. After obtaining PDE models for 200 
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realizations, they were integrated to form a parametric PDE by calculating the 

average value of the coefficient of each parameter across all 200 realizations to form 

the PDE governing the temperature dynamics. Similar trials by modification of the 

candidate library as described for data-driven approaches was performed.  

A flowchart summary of the framework utilized for modelling temperature dynamics in 

an oil reservoir is shown in figure 4.7.  
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Figure 4.7: Flowchart for discovery of parametric PDE to discover the PDE for temperature dynamics 
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4.3 Results  
 

The parametric PDE models obtained after re-integrating the individual PDEs resulted from 

multiple realizations through data-driven and the hybrid approach are presented in this 

section. 𝑥 𝑎𝑛𝑑 𝑦 in the figures correspond to the spatial dimensions.  The model accuracies 

are analysed using the R-Squared(R-sq) and root mean squared error (RMSE). The 

description of these accuracy metrics is shown in equations (2.14-2.17).  

 

Figure 4.8: Sparse representation of the temperature dynamics - data-driven approach 

(maximum order- 2) 

 

Figure 4.8 depicts parsimonious solution with the contributing terms and their spatial 

variation in 200 realizations for the data-driven approach when the maximum order of the 

library was set to 2. Figure 4.9 represents the sparse representation of the temperature 

dynamics obtained using the hybrid modelling approach with the highest order of the 

candidate library being 2.  
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Figure 4. 9 Sparse representation of the temperature dynamics - Hybrid modelling 

approach (maximum order- 2) 

 

From Figures 4.8 and 4.9, we can observe the presence of common terms and their 

variations in the data-driven and hybrid modelling approach. However, the hybrid model 

has fewer terms compared to the data-driven approach. The model accuracy of the hybrid 

model is higher than that of the data-driven model. Detailed results and values are provided 

in figure 4.16.  
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Figure 4.10: Sparse representation of the temperature dynamics – data-driven approach 

(maximum order- 4) 

 

Figure 4. 11 Sparse representation of the temperature dynamics – Hybrid modelling 

approach (maximum order- 4) 
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Figures 4.10 and 4.11 represent the temperature dynamics discovered by the data-driven 

and hybrid modelling approach respectively for the highest order in the candidate library 

being 4. Comparing the sparse solutions obtained from four different cases, although the 

model accuracies are varying, the significantly contributing terms remain the same across 

the realizations and in all the cases.  

The R-sq and RMSE values for all four cases are presented in figures 4.12 and 4.13 

respectively. The labels for the methods in figures 4.12 and 4.13 are:  

Method A – Data-driven approach with highest order in the library as 2. 

Method B – Hybrid approach with highest order in the library as 2. 

Method C – Data-driven approach with highest order in the library as 4. 

Method D – Hybrid approach with highest order in the library as 4.  

 

Figure 4. 12 Model adequacy report (𝑅2) for four different methods 
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Figure 4. 13 RMSE values for models obtained through different methods 

 

From figures 4.12 and 4.13, we can observe that the hybrid modelling approach is able to 

generate models with better accuracy. However, limiting the order of the candidate library 

to 2 cannot be suggested as the accuracy of the models obtained are significantly lower 

compared to the other case where the order is 4. The magnitude of R-sq values seems to be 

low compared to the case studied displayed in chapters 2 and 3. This may be due to a lot of 

uncertainties and the possibility of errors in the data generation framework. For the case 

studies in chapters 2 and 3, we had solved the PDE using standard solvers and white noise 

was added to the solution to study the effect of noise. In the case of oil reservoirs, the data 

is generated using an industrial simulator which is a combination of multiple algorithms 

and first principle-based models. Obtaining the permeability realization from the variogram 

involve multiple assumptions and random sampling strategies. Furthermore, CMG-STARS 

and FLAC3D also involve many steps prone to errors due to the assumptions made in the 

reservoir model.   
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We successfully determined the terms involved in explaining the temperature dynamics of 

the oil reservoir and also presented its spatial variation by considering an ensemble of 

realizations. Parametric PDE was discovered using the prior physical knowledge about the 

spatial variation and also by incorporating the permeability values in the algorithm. Further, 

we tried to build probability distributions of the coefficients of each contributing term 

obtained from the data-driven approach across realizations. This can be compared with the 

probability distribution of permeability, which is calculated by taking the average 

permeability of each realization.  

An example of this study is shown below by presenting the probability distributions of 

permeability, 𝑢 𝑎𝑛𝑑 𝑢𝑦𝑦.  The data was standardized before developing the probability 

distribution. The probability distributions can be utilized for uncertainty quantification and 

related studies.  

 

Figure 4. 14 Probability distribution for permeability 
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Figure 4. 15 Probability distribution for coefficients of 'u' 

 

 

Figure 4. 16 Probability distribution for coefficients of 'u_yy' 
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4.4 Conclusions 
 

Modelling complex processes and their parameter variations over time and space plays a 

crucial role in prediction, control, and optimization. In this chapter, we focus on developing 

parametric PDE models to explain the temperature dynamics of a SAGD process in an oil 

reservoir. The governing PDE for the temperature dynamics is unknown and the data 

required for PDE discovery is obtained using commercial industrial simulator CMG-

STARS coupled with the FLAC3D simulator. The variograms obtained from surveys and 

studies are converted to permeability distributions using the SGS algorithm to obtain the 

distribution of permeability over the spatial domain. An ensemble data containing 200 

realizations of temperature and permeability are obtained from the simulators. These 

realizations span over the entire spatial domain of the reservoir and explain the steam 

chamber evolution over time as well.  We obtain different PDE models for each realization 

and then integrate them to obtain a PDE that explains the temperature dynamics and the 

coefficients of the PDE are functions of space,i.e., they have spatial variation. As the 200 

realizations are spanned across the reservoir, the spatial variation of the coefficients of the 

PDE is captured by integrating the individual PDEs of all realizations. We also provide the 

probability distributions of each term involved in the PDE  explaining its spatial variation. 

A data-driven and hybrid modelling approach is implemented to discover the parametric 

PDE and the model accuracies are compared. The hybrid model, which was developed by 

incorporating the permeability values in the discovery algorithm yields the best model to 

explain the temperature dynamics in an oil reservoir.    
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Chapter 5 
 

Conclusions  
 

5.1 Summary  
 

The objective of this thesis is to demonstrate the discovery of partial differential equations 

from spatiotemporal data using data-driven and physics-based hybrid modelling 

approaches. The first-principles based modelling framework is not feasible for complex 

processes due to computational cost or insufficient knowledge about the process. A well 

known data-driven approach to model the PDEs from spatiotemporal data obtained from 

experiments or industries is the sparse regression framework. However, the algorithm has 

its limitations and uncertainties. Temporal and spatial gradient estimation in the presence 

of noise has a significant impact on the model discovery. We performed a detailed study to 

infer the best possible gradient estimation method for different levels of inherent noise in 

the data. The reduction in numerical errors in the gradient computation will lead to higher 

accuracy models. The parsimony in the obtained models is driven by sparse regression. A 

comparative study of different sparsity regularizations was performed on different systems. 

The regularization approach which generated higher accuracy models promoting parsimony 

consistently across systems of a different order was inferred as the optimal norm that can 

be reliable for PDE discovery.  

With the inferences obtained about handling uncertainties in the PDE discovery algorithm 

from the earlier study, we proposed an approach to discover a system of PDEs using data-

driven and hybrid modelling approaches. The computational complexity and cost of the 

discovery of a system of PDEs were addressed by incorporating prior physical knowledge 

about the system into the algorithm. We utilized the process knowledge to constrain the 

candidate library, to enforce the sparse regression to select the known terms of the PDE, 

and incorporated simplified or functional approximations of the known complex terms of 

the PDE. The proposed hybrid modelling approach reduced the computational cost 
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significantly and yielded higher accuracy models for noisy data due to the physical 

knowledge incorporated in the system. The proposed algorithm was demonstrated on three 

different complex PDE systems with coupled equations and can be extended to PDE 

systems with a higher number of equations as well.  

The development of PDE models for process parameters in an oil reservoir is a challenging 

task due to the availability of data only at specific discrete locations. We utilized the 

variogram properties to generate an ensemble of realizations throughout the spatial domain 

of the reservoir. This was accomplished by sequential coupling of industrial simulators, 

CMG-STARS and FLAC3D.  Parametric PDE models describing the temperature dynamics 

in an oil reservoir were obtained by data-driven and hybrid modelling approaches. PDEs 

discovered for the ensemble was integrated to form a parametric PDE, which ensured spatial 

dependency of the coefficients of the PDE terms. The probability distributions explaining 

the spatial dependency of PDE term across the reservoir is also provided for further 

investigations.    

Summarizing chapters 2,3, and 4, we developed data-driven and hybrid modelling 

frameworks to discover the underlying partial differential equation that governs the process. 

We inferred the best approaches to handle the uncertainties in the sparse regression 

framework. The inferences and the algorithm were utilized to discover PDEs, a system of 

PDEs, and PDEs for complex industrial processes with spatial parametric dependency.  

The discovery or the identification of the PDE models has a wide range of applicability. 

Some of the possible applications in chemical engineering and process control are listed 

below. 

• PDE identification helps in understanding the governing mechanism of an unknown 

system by identification of the underlying PDE. We may be able to interpret the 

nature of the process for which only experimental spatiotemporal data is available 

by analyzing the order of the PDE terms obtained. This will give us a better physical 

insight to the system under study and reduces the uncertainties involved.  

• As the identified PDE explains the propagation of the specific property through time 

and space, we will be able to study a multidimensional system, such as an oil 

reservoir, in a lower-dimensional space. The process dynamics of the multiple 
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dimensions are captured in a lower-dimensional representation using a PDE. The 

obtained PDE can model the dynamics of multiple spatial dimensions, temporal 

dimensions, and also spatial and temporal parametric variations. In the case of an 

oil reservoir, modelling the temperature or pressure dynamics accurately reduces 

the cost of frequent data measurement from discrete locations and can also help in 

the reliability estimation of equipments that are working in extreme conditions.  

• Modelling differential equations play an important role in reaction kinetics. We can 

try to model a whole reaction network with a set of equations and identify the driving 

mechanism of the reaction and also the important nodes of the network. Also, when 

multiple complex mechanisms are involved, such as integration of chemical 

reactions and transport within the network, the development of the differential 

equation model assists reduce the complexity in the development of the solution. 

• Discovery of PDE models in a process industry can assist in the fault diagnosis in 

the process or any particular equipment. For example, any heat loss occurring in a 

heat exchanger network can be identified or predicted if the model is developed by 

incorporating historical data involving heat loss under certain conditions which 

might be challenging and costly through black box approaches.  

• The hybrid modelling framework of PDEs assists in improving the working range 

of the model predictive control(MPC) framework when compared with the data-

driven models. Data-driven MPC or soft sensors are limited to the range of the data 

utilized for the model development, however, the hybrid models will be more 

efficient even outside the range of the data due to the incorporated physical 

knowledge of the system.  

 

 

 

 

 



99 
 

5.2 Future work  
 

Some possibilities for future work are highlighted below: 

• Designing of controllers for processes using the PDE models obtained.  

• Developing a graph based network to study causal relationship and identify the 

important nodes of the system.  

• Extending the PDE discovery to chemical reaction engineering domain to obtain 

data-driven insights to reaction dynamics.  

• Performing uncertainty quantification for parametric PDE models obtained.  

• Obtaining PDE models by considering uncertainties in the data, for example, 

missing data, addition of colored noise, etc.  

• Performing real-time optimization and development of model predictive control 

strategies.  

• Integrating generative adversarial networks (GANs) to the PDE discovery 

algorithm to obtain interpretable models from fewer data points.  

• Working towards development of a robust hybrid modelling approach that can be 

applied to multiple processes.  
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