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Abstract

Interface problems arise in many applications such as modeling of underground waste
disposal, oil reservoirs, composite materials, and many others. The coefficient a, the source
term f, the solution u and the flux aVu - are possibly discontinuous across the interface
curve [ in such problems. In realistic problems, the coefficient ¢ may have large jumps across
the interface curve, or it can be highly oscillatory across the whole domain. This leads to
accuracy deterioration and huge condition numbers of resulting linear systems. In order to
obtain reasonable numerical solutions, higher order numerical schemes are desirable.

In Chapter 2| we propose a sixth order compact 9-point finite difference method (FDM) on
uniform Cartesian grids, for Poisson interface problems with singular sources in a rectangular
domain. The matrix A in the resulting linear system Ax = b, following from the proposed
compact 9-point scheme, is independent of any source terms f, jump conditions, and interface
curves I'. We prove the sixth order convergence rate for the proposed compact 9-point scheme
using the discrete maximum principle. Our numerical experiments confirm the sixth order
of accuracy of the proposed compact 9-point scheme. This chapter has been published in
Computers and Mathematics with Applications in 2021.

In Chapter [3] elliptic interface problems with discontinuous and high-contrast piecewise
smooth coefficients in a rectangle are considered. We propose a high order compact 9-
point FDM and a high order local calculation for approximation of the solution u and the
gradient Vu respectively. The scheme is developed on uniform Cartesian grids, avoiding
the transformation into local coordinates. We also numerically verify the sign conditions of
our proposed compact 9-point scheme and prove the fourth order convergence rate by the
discrete maximum principle. Our numerical experiments confirm the fourth order accuracy
for the numerically approximated solution u in both Iy and [, norms, and the fourth/third
order accuracy for the numerically approximated gradient ((us)z, (us)y) in the ly/loc norm.

This chapter has been published in Applied Mathematics and Computation in 2022.
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In Chapter 4] we propose an efficient and flexible way to achieve the implementation of a
hybrid FDM in uniform Cartesian meshes for elliptic interface problems with discontinuous
and high-contrast piecewise smooth coefficients in a rectangular domain. The scheme utilizes
a 9-point compact stencil with a sixth order accuracy for interior regular points and 13-
point stencil with a fifth order accuracy for interior irregular points. Near the boundary,
the stencil is reduced to six points and near the domain corners - to four points, and the
corresponding discretization has a sixth order of accuracy on uniform Cartesian meshes, for
various boundary conditions (Dirichlet, Neumann and Robin). Our numerical experiments
confirm the flexibility and the accuracy order in /s and [, norms.

In Chapter [5| we present a sixth order compact FDM on uniform Cartesian meshes for
the Helmholtz equation with singular sources, and any possible combination of boundary
conditions (Dirichlet, Neumann, and impedance) in a rectangular domain. To reduce the
pollution effect, we propose a new pollution minimization strategy that is based on the aver-
age truncation error of plane waves. Our numerical experiments demonstrate the superiority
of the proposed compact finite difference scheme with reduced pollution effect, as compared
to several state-of-the-art finite difference schemes in the literature, particularly in the crit-
ical pre-asymptotic region where kh is near 1 with k being the wavenumber and h the mesh
size. This chapter has been submitted in STAM Journal on Scientific Computing.

In Chapter [6] we propose a sixth order compact 9-point FDM on uniform Cartesian
meshes for elliptic interface problems with particular intersecting interfaces and four dis-
continuous constant coefficients in a square domain, where the solution is smooth enough,
and interface curves are horizontal and vertical straight lines. The formulas of proposed
sixth order compact 9-point finite difference scheme are constructed explicitly for all grid
points (regular points, interface points, and the intersection point). We prove the order 6
convergence of our proposed compact 9-point scheme by the discrete maximum principle.
Our numerical experiments confirm the flexibility and the sixth order accuracy in Iy and [

norms of our proposed compact 9-point scheme.
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Preface

The results in Chapters [2| to [4 and [6] are joint work with Bin Han and Peter Minev. The
results in Chapter [5| are joint work with Bin Han and Michelle Michelle.
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Chapter 1

Introduction

1.1 Background

Interface problems are common in many practical problems such as modeling of composite
materials, oil reservoir simulations, nuclear waste disposal, and other flows in porous media
[BA]. For example, in groundwater or oil reservoir modelling the permeability of the porous
medium can change drastically across the interface between various geological layers and
this can significantly affect the transport process [04]. The coefficient of the heterogeneous
and anisotropic diffusion problem may also be highly oscillatory, and may contain a wide
range of various spatial scales, so very fine meshes are required in any standard finite differ-
ence/element discretization in order to capture small scale features. Thus, speed and storage
are two important criteria in choosing suitable algorithms for solving such problems.
Physical backgrounds for interface problems

By Darcy’s law [I[05], we have
k

U= ——Vau,

where v represents the velocity of the fluid flow through a porous medium, k is the perme-
ability, p is the viscosity of the fluid and wu is the pressure. Let p denote the density and ¢

denote the porosity of the medium. Then we have

d(¢p) L
WJFV'(PU) =/,

by the conservation law. To simplify the problem, we consider the elliptic case as follows:

V. (pt)=V" (—p%Vu) =-V- (aVu) = f, (1.1)



where a = pﬁ. When p is also a constant, a only depends on the permeability k. Because of

the porous medium, k£ can be discontinuous, i.e., a is discontinuous across the corresponding

interface.

Realistic applications that lead to interface problems

Groundwater or oil reservoir transport; the interface results from various geological

layers which significantly affects the speed and quantity of the oil pumping.
Water purification with porous materials like foam metals.

In catalytic reactions the catalyst is usually distributed in a very thin layer over an

interface, thus leading to problems with abrupt changes in material properties.

Problems with the discontinuous solution and/or discontinuous flux also appear in

multicomponent incompressible flows with or without the interfacial tension.

Motivations for higher order compact finite difference schemes

Due to the porous medium, the solution is highly oscillatory.

The coefficient a = pf in (1.1)) may have abrupt jumps across the interface, leads to

the pollution effect in the error.

To obtain a reasonable solution, a very fine mesh size is required for lower order

schemes.
The grid size requirement for high order schemes is less stringent than low order ones.

Compared with finite element or volume methods, in finite difference methods we do

not need to integrate high-frequency functions.

Since compact 9-point schemes only have nine non-zero bands in corresponding matri-

ces, it is efficient to assemble and solve such linear systems.

Difficulties with higher order compact schemes

(1)

(2)

The discontinuities of the coefficient a, the source term f, the solution u and the
flux aVu - 1 require the derivation of complicated transmission equations in order to

construct high order compact schemes.

Compared with the piecewise constant coefficient, the piecewise smooth coefficient

would significantly increase the complexity of the implementation.



(3) Higher order compact schemes need to use higher order derivatives of the interface

curve, so the computation of system matrices A is complicated.

(4) If two jump conditions are both inhomogeneous (i.e., the solution and the flux are both
discontinuous), the derivation of correction terms in b for higher order schemes is also

challenging.

(5) For high-frequency solutions, we need to solve systems Az = b, where the size of A is

very large.

(6) There are 72 different configurations in 2D (see Figs. to , depending on the way

the interface curve partitions the stencil.

(7) Compact schemes near corners of the domain are difficult to be derived (see Fig. [1.6)),

if the domain is rectangular and non-Dirichlet boundary conditions are imposed (see

Figs. [£.2] and [5.3).

(8) For elliptic interface problems with intersecting interfaces and four discontinuous coeffi-
cients (see Figs. [6.1]and |6.5)), many transmission conditions are used to derive compact

schemes with sixth order of accuracy.

The literature review
1. Poisson interface problems (the only singularity is from the source term)
One source of singularity in the solution of elliptic problems is the presence of singularities
in the source term. One possible regularization of Dirac delta functions is analyzed in [T02].
The finite difference discretization of Poisson interface problems are considered by [I03]. In
[60], the authors combine the idea of the immersed interface methods with a continuous finite
element discretization to derive a high order finite element method for Poisson equations with
jumps in the solution and its flux across smooth interfaces. Elliptic problems with point-
located Dirac delta source terms are considered in P6]. A second order approximation to
the singular source is combined with a second order finite difference approximation of the
operator on Cartesian grids with hanging nodes, that allow for local refinements around the
singular points. In [89], the third order compact finite difference scheme was constructed
for Poisson interface problems. Another finite difference version of the immersed interface
method is used to solve the heat diffusion with singular sources in [G3].
2. Elliptic interface problems
One possible approach to the resolution of the elliptic interface problem was provided by
the immersed interface methods (ITM) proposed by LeVeque and Li (see [69] [7T], [72], [74], [75], B9

and the references therein). The main idea behind this approach is to adjust the finite



difference approximation of the differential operators in the vicinity of the interface using
Taylor expansions, so that the approximation order remains similar to the order of the
approximation in the regions where no singularities are present, thus avoiding the need of
a local grid refinement. It has been combined with finite difference, finite volume, and
finite element spatial discretizations (e.g., the second order immersed finite volume element
methods [B0], the second order immersed finite element methods 2 B3]), with various
degree of accuracy. The second order explicit-jump immersed interface method (EJIIM),
introduced in [[I0], was based on the same idea, however, instead of modification of the
discrete operators, it modified explicitly the right hand side of the problem, and derived a
second order finite difference scheme for problems with discontinuous, piecewise constant
coefficients. In fact this approach is quite similar to the famous immersed boundary method
(IBM) of Peskin [@0]. 23] considered anisotropic elliptic interface problems whose coefficient
matrix is symmetric semi-positive definite and derived a hybrid discretization involving finite
elements away of the interfaces, and an immersed interface finite difference approximation
near or at the interfaces. The error in the maximum norm is order O(h*log ). [[I7] derived a
new fourth order IIM for elliptic interface problems with piecewise smooth coefficients. The
second order fast iterative immersed interface method (FIIIM) for the piecewise constant
case was proposed in [72].

Since the goal of Chapters [2] 3] [f and [f] is to develop a compact high-order finite differ-
ence scheme, we provide our literature review on the works employing such discretizations
as following. Exploiting the idea of the IIM, in [BH the authors constructed a fourth order
compact finite difference method for the Helmholtz equation with discontinuous coefficients
across straight vertical line interfaces. [[7] derived a compact finite difference method for
elliptic interface problems with piecewise smooth coefficients, so that the solution and its
gradient can both achieve a second order of accuracy. By adding intermediate unknow vari-
ables and using the Schur complement, [89 derived the third order compact FD method
for elliptic interface problems with piecewise constant but discontinuous coefficients. [75]
Section 7.2.7] proposed a fourth order compact finite difference scheme for elliptic interface
problems with piecewise constant coefficients. The fourth order compact finite difference
scheme for elliptic interface problems with intersecting interfaces was discussed in H]. More-
over, the fourth order compact finite difference schemes for the elliptic equations on irregular
domains were derived in [B9 [[5]. For elliptic interface problems with discontinuous coeffi-
cients in one-dimensional spaces, the section 3 of [BI] proved the existence of the compact
3-point finite difference scheme with arbitrarily high accuracy orders.

Furthermore, for the elliptic interface problems with discontinuous coefficients and sin-

gular sources, a high-order method was constructed by combining a Discontinuous Galerkin



(DG) spatial discretization and IBM in [I0], and the matched interface and boundary (MIB)
methods were proposed in [B9, [T2] I13] 018 [T9]. The related papers of MIB for the elliptic
interface problems can be summarized as: second order MIB [I13], fourth order MIB [I1J],
fourth order MIB with the FFT acceleration [BY, sixth order MIB [I12] [19].

High jumps in the coefficient functions can cause severe singularities in the exact solutions
of the equations [§ [4] A0, 64 67 66l 67 68 R7, 8BS, 02 O3]. In general, the solutions of such
problems have limited smoothness and the error analysis of their approximations by finite
elements, 7], and finite differences, [Q0], for problems with weak solutions could be used.
However, such error estimates show convergence rates that are lower than the observed in the
computational practice for interface problems. Thus, an accurate tailored approximation and
an error analysis which takes into account the specificity of such problem is an important and
challenging task. Singular solutions, induced by discontinuous coefficients of singular sources
can be approximated using a continuous finite element approximation, by enriching the basis
with singular functions located in the proper spatial locations, as considered in [6] T4, EQ F7],
60 67 6GF]. Alternatively, a posteriori error estimates can be used to devise grid refinement
algorithms, as demonstrated for example in [@3], where such estimates were provided in case
of interface problems with discontinuous coefficients. Several other numerical techniques for
elliptic interface problems are based on (continuous and discontinuous) finite element and
finite volume methods (e.g., see [ @ 29 B0 B2 @7 62 53 7).

In addition to the treatment of interface problems, Taylor expansions can be used to
derive high order compact finite difference schemes for regular elliptic problems. A family of
fourth and sixth order compact finite difference methods for the three-dimensional Poisson
equation were derived in [II4]. [O8] concluded that the highest order for a compact finite
difference method for the two-dimensional Poisson’s equation on uniform grids is sixth. There
also exist some sixth order compact finite difference schemes for the parabolic equation [3],
the Helmholtz equation ([88] 04 [[T1]) and the Burgers’ equation [@1].

3. Helmholtz equations

The authors in [B3] considered the interior impedance problem and discovered that the
quasi-optimality in the hp-finite element method setting can be achieved by choosing a poly-
nomial degree p and a mesh size h such that p > C'log(k) (for some positive C' independent
of k, h, p) and kh/p is small enough. The authors in 4] found that for sufficiently small
k**1h2r the leading pollution term in an upper bound of the standard Sobolev H'-norm is
k*’*1h2r This coincides with the numerical dispersion studied in [3} E8]. For order 2 finite
difference methods, [I6, 8] found that k*h? < C (for some positive C' independent of k, h)
is required to obtain a reasonable solution. Meanwhile, for order 4 finite difference method,
BT found that k°h* < C (for some positive C' independent of k, ) is required to obtain a



reasonable solution.

When a large wavenumber k is present, the mesh size used in the discretization of the
Helmholtz equation has to be very small to obtain a reasonable solution. That is, the
size of the coefficient matrix becomes very large. Additionally, the matrix arising from
standard discretization of the Helmholtz equation is sign-indefinite. In numerical computa-
tions, we observe these coefficient matrices are ill-conditioned especially in the region where
kh is small (i.e., the region where the approximated solution is reasonable). Thus, a lot
of research effort has been invested in developing ways to cope with these enormous ill-
conditioned linear systems. Various preconditioners and domain decomposition methods
have been developed over the years (see [4I] and references therein). Many variants of finite
element/Galerkin/variational methods have been explored. For example, [30 B7] relaxed the
inter-element continuity condition and imposed penalty terms on jumps across the element
edges. A class of Trefftz methods, where the trial and test functions consist of local solutions
to the underlying (homogeneous) Helmholtz equation, were considered in [B5 and references
therein. In recent years, multiscale finite element method has also become an appealing
alternative to deal with the pollution effect [@I]. By minimizing the ratio between the true
and numerical wavenumbers, [16] [I8] 21} M0T] [11] derived the schemes with minimum dis-
persion. The resulting stencils have accuracy orders 2 in [I0 [I§], 4 in 20, and 6 in [ITI].
The number of points used in the proposed stencil varies from 9 in [I8 I11], 13 in 22, and
both 17 and 25 in [2I]. Other studies on finite difference methods that do not explicitly
consider the numerical dispersion are [II] (a 4th order compact FDM on polar coodinates),
2 (a 4th order compact FDM), [I04] (a 6th order compact FDM), and [II6] (a 6th order
FDM with non-compact stencils for corners and boundaries). The authors in [R9] proposed
a 3rd order compact immersed interface method for Helmholtz interface problems. A char-
acterization of the pollution effect in terms of eigenvalues was done in [25]. The authors
in 200 showed that the order of the numerical dispersion matches the order of the finite
difference scheme for all plane wave solutions. It is widely accepted that the pollution effect
in standard discretizations arising from finite element and finite difference methods cannot
be eliminated for 2D and higher dimensions [f]. However, in 1D, the pollution free finite
difference methods were derived in [5] MO7, which are used to solve special 2D Helmholtz
equations [o1] [I0F].

4. Boundary Treatments

A comprehensive literature review of the finite difference approximation of mixed bound-
ary conditions in rectangular domains can be found in [f@]. In addition, one should also
mention the following literature concerned with the discretization of the boundary condi-

tions for elliptic/Helmholtz problems: the sixth order 6-point finite difference scheme for



1-side Neumann and 3-side Dirichlet boundary conditions of Helmholtz equations with con-
stant wave numbers [80], the sixth order 5-point or 6-point finite difference schemes for 1-
side Neumann/Robin and 3-side Dirichlet boundary conditions of Helmholtz equations with
variable wave numbers [[04], the fourth order MIB for 4-side Robin boundary conditions
of elliptic interface problems [B9], up to 8th order MIB for mixed boundary conditions of
Dirichlet, Neumann and Robin with all constant coefficients of Poisson/Helmholtz equations
B].

Finite difference methods have also been successfully applied to various boundary condi-
tions in non-rectangular domains. In [05] a fourth order MIB for Dirichlet, Neumann, and
Robin boundary conditions has been proposed. [II0] developed a second order explicit-jump
immersed interface method for problems with Dirichlet and Neumann boundary condition-
s, and [B9 [0 proposed fourth order finite difference schemes for various combinations of
boundary conditions. The method of difference potentials was studied in ([[3] fourth order
accuracy,[82] fourth and sixth order accuracy) to handle a domain with a smooth noncon-

forming boundary and mixed boundary conditions.

1.2 Preliminaries

1.2.1 Basic definitions

Let Q = (I4,12) x (I3,14) be a two-dimensional rectangular region. We define a smooth curve

I'={(z,y) € Q:¢Y(x,y) =0},

which partitions  into two subregions: Q, = {(z,y) € @ : ¥(x,y) > 0} and Q_ =
{(z,y) € @ : ¢(x,y) < 0}, where ¢(z,y) is a smooth function in 2D. We also define
ay = axa,, [+ = fxa. and ug := uxq,. Because we shall use uniform Cartesian meshes,
we require that the longer side of €2 should be a multiple of the shorter side of 2. Without
loss of generality, we can assume [y — l3 = Ny(lo — [1) for some positive integer Ny. For any
positive integer N1 € N, we define Ny := NyN; and then the grid size is h := (I — l;) /Ny =
(lg — I3)/Ns.

Let z; =y +ihand y; =g+ jhfori=1,... Ny —1land j=1,..., N, — 1. Because
in most chapters we are only interested in compact 9-point finite difference schemes on
uniform Cartesian grids, for a compact 9-point stencil centered at the center point (x;,y;),
the compact 9-point stencil involves nine points (z;+kh, y;+1h) for k,l € {—1,0,1}. Now the

interface curve I' splits these nine points into two groups depending on whether these points



lie inside 24 or Q_. The particular examples for ¢(x,y) = x*>+y?*—2 and ¢ (z,y) = y—cos(z)
are illustrated in Fig. [1.1]

Q. Q.

o2 o0

Q_

O\l =Q, UQ_ O\[ =0, UQ_

Figure 1.1: The problem region Q = (—m,7)? and the two subregions Q, = {(z,y) € Q
Y(x,y) >0} and Q_ = {(z,y) € Q : ¥(x,y) < 0} partitioned by the interface curve I' = {(x,y) €
Q : Y(z,y) = 0} with the functions ¥(z,y) = 22 + y? — 2 (left) and (x,y) = y — cos(x) (right).
Note that Q\I' = QL UQ_.

If a grid point lies on the curve I', then the grid point lies on the boundaries of both {2
and _. For simplicity we may assume that the grid point belongs to 2_ and we can use

the interface conditions to handle such a grid point. Therefore, we naturally define
d;fj ={(k,0) : k,0e{-1,0,1},¢(x; + kh,y; + th) > 0} (1.2)

and
d . ={(k,0) : k,0e{-1,0,1},¢(z; + kh,y; + (h) < 0}. (1.3)

i\j

That is, the interface curve I' splits the nine points in a compact 9-point stencil into two
disjoint sets {(2irx,yj40) : (K, 0) € df;} € Qp and {(zix, yj40) (K, 0) €d;;} CQ_UT.
We say that a grid/center point (z;,y;) is a regular point if d; = 0 or d;; = 0. That is,
the center point (z;,y;) of a stencil is regular if all its nine points are completely inside Q
(hence d;; = () or inside Q_UT (i.e., d;; = 0). See Fig. [1.2for an example of regular points.
Otherwise, the center point (z;,y;) of a stencil is called an irregular point if d;’j # () and
di; # (). That is, the interface curve I' splits the nine points into two disjoint nonempty sets.
As explained before, up to symmetry and a rigid motion, all the compact 9-point stencils at
an irregular point can be classified into nine typical cases, see Figs. to for these nine
typical cases.

Because some indices (k,¢) may come from d;fj while others from d; ;, we need to link

INE
information on €2, and Q_ at the base point (z},y;) € I'. To do so, instead of using the

8



level set function v to describe the interface curve I', we shall now assume that we have a
parametric equation for I" near the base point (z, Y; ). We can easily obtain such a parametric
equation by locally solving ¢ (x, y) = 0 near the base point (z}, ;) for either z or y. That is,
it suffices to consider one of the following two relatively simple parametric representations
of I:

v=t+tz;, y=rt)+y; or x=r(t)+tr;, y=t+y;, for t€(—ee€) with €>0,

(1.4)
for a smooth function r, since I' is assumed to be smooth. Note that the parameter corre-
sponding to the base point (z},y;) is t = 0 with 7(0) = 0. It is important to notice that
we do not need to actually solve 1(z,y) = 0 to get the function r, because we only need
the derivatives of r(t) at t = 0, which can be easily obtained from ¢ (x,y) = 0 through the
Implicit Function Theorem. To cover the above two cases of parametric equations in

for I' together, we discuss the following general parametric equation for I':
c=rt)+x;, y=st)+y;, ')+ ({#)?>0 for te(—ee) with e>0. (1.5)

Note that the parameter ¢ for the base point (z7,y;) is t = 0 and it is important to notice
that (0) = s(0) = 0.

Figure 1.2: An example of regular points. The curve in red color is the interface curve I'.

Before we discuss the schemes at a regular or an irregular point (z;,y;), let us introduce
some notations. We first pick up and fix a base point (z7,y;) inside the open square (z; —

h,z; + h) x (y; — h,y; + h), i.e., we can say

i =x; —voh and y;=y; —woh with —1<wvg,we<1. (1.6)



Figure 1.3: Examples for irregular points. The curve in red color is the interface curve I'.

/ y |
/ S //

/ /

Figure 1.4: Examples for irregular points. The curve in red color is the interface curve I'.

For simplicity, we shall use the following notions:

oMty

mm) .__ I "a
omxd™y

T Omaony Tirbi)

m(ﬁ N8
(1.7)
which are just their (m,n)th partial derivatives at the base point (x7,y;). Define Ny :=

al umn) = (zf,y;) and flmn) . —

N U {0}, the set of all nonnegative integers. For a nonnegative integer K € Ny, we define
Ag ={(m,n—m) : n=0,...,K and m=0,...,n}, K e N,. (1.8)

For a smooth function w, its value u(z + z},y + yj) for small z,y can be well approximated

through its Taylor polynomial below:

* * u
u(r + i,y +y;) = Z

(m,n)GAM+1

)
a™y" + O(hWMT2),  x,y € (—2h,2h). (1.9)

In other words, in a neighborhood of the base point (x, yj*), the function wu is well approx-
imated and completely determined by the partial derivatives of u of total degree less than
M + 2 at the base point (27, y;f), i.e., by the unknown quantities u™" (m,n) € Ap41. In
the same way, a(r +},y +y;) and f(z+z},y+y;) can be approximated similarly for small

x,y. For x € R, the floor function |z] is defined to be the largest integer less than or equal

10
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Figure 1.5: Examples for irregular points. The curve in red color is the interface curve I'.

to z. For an integer m, we define

0, if m is even,

1, if m is odd.

odd(m) :=

That is, odd(m) = m — 2|m/2] and |m/2] = %d(m)'

88 18 -

HEH HeT

08! 18 H

Figure 1.6: A compact 9-point scheme in the interior point (left), compact 6-point schemes in
boundary side points (middle) and compact 4-point schemes in corner points (right). Red points
are the centered points.

1.2.2 Error measures in numerical experiments

Let Q = (I3,15) x (I3,14) with Iy — 3 = No(ly — ;) for some positive integer Ny. For a given
J € Ny, we define h := (I3 — l;)/N; and let x; = [; +ih and y; =I5+ jh fori =0,1,...,N;
and j =0,1,..., Ny with Ny := NyN;y. Let u(x,y) be the exact solution and (uy);; be the
numerical solution at (x;,y;) using the mesh size h. If the exact solution is available, the

ln—tl> and [luy, — ulloc, where

accuracy of the scheme is verified by the errors

N1 Ny N1 N3
lun = wl3 = 12> > ((wn)iy — ulsy)*s ullf =5 Y (ulwiyy))°,
=0 7=0 =0 7=0

11



lun = wlloe := | max = |(un)ij = ulzi, ;)] -

Otherwise, we quantify the errors by

N1 N
2
lun = unpolly =02 Y ((un)ig — (unjz)izg)”
i=0 j=0
||Uh - Uh/2||oo = max ‘(Uh)” - (Uh/2>2i,2j| .

0<i<N1,0<5<N2

Let (ug(z,y), uy(2,y)) be the exact gradient of the exact solution and (((us)z)i, ((wn)y)i ;)
be its numerical approximation at (x;,y;) using the mesh size h. If the exact solution u is

available, the convergence rate of the numerical approximation of the gradient is verified by

the errors % and ||Vuy, — Vu||o, where
N1—1 N2—1 2 2
IV = Full3i= 02 > D" ()., = welwiws)) + (((un)y),, = wlaiv)
=1 j=1
Ni—1No—1
2 2
IVull3 =5 0 > (e, y7)* + (uy(2i,5)*,
=1 j=1
Hvuh - VUHOO = 1<i<N1£I11,a1}<(j<N2—1 ((uh)x)i,j - uw(wiv yj) + ‘((uh>y)i,j - uy(mi? yj) .

If it is not, we quantify the errors by [[Vuy — Vuy o2 and ||Vu, — V||, where

N1—1 Ng—l 2 2
IVup — Vuh/gHg = h? Z Z <((uh)x)” - ((uh/Q)x)Qi,Qg) + (((uh)y)” - ((“h/Z)y)Qi,zg’) ’
=1 j=1
IVun = Vunplloo = max (), = (Wng)e) gy + [ (@n)y)s s = ((n2)0) 15

1<iKN1 —1,1<G<N2—1

1.3 Thesis structure

In Chapter[2] we derive the sixth and seventh order compact 9-point finite difference schemes
at regular and irregular points for Poisson interface problems with two non-homogeneous
jump functions g, gl respectively (i.e., —V2u = f in Q\ T, [u] = ¢ and [Vu-7i] = g}
on I'). We provide an expression for the jump of certain derivatives of the solution, due to
the interface conditions. Using the discrete maximum principle, we prove the convergence
rate of order 6 for the proposed scheme. We provide numerical experiments to check the

convergence rate measured in /s and [, norms.
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In Chapter [3] we solve the elliptic interface problems with discontinuous, piecewise s-
mooth and high-contrast coefficients a, and two non-homogeneous jump functions g, gi
(ie., =V -(aVu) = fin Q\T, [u] = g} and [aVu -7i] = g} on I'). For the regular points, we
construct the explicit formulas of the fourth order compact 9-point finite difference scheme
for the numerical solution. For the irregular points, we derive the third order compact 9-
point finite difference scheme for the numerical solution. We numerically verify the sign
conditions of our proposed compact 9-point finite difference scheme and prove the fourth
order convergence rate by the discrete maximum principle. On the other hand, the formulas
for the local calculation of the gradient approximation at regular and irregular points are
also proposed. We provide numerical results to verify the convergence rate measured in the
ly and [, norms for the numerical solution u;, and the gradient approximation Vuy.

In Chapter 4], we also focus on the elliptic interface problems with discontinuous, piecewise
smooth and high-contrast coefficients on a rectangular domain. We derive the compact 9-
point finite difference scheme with sixth order accuracy for regular points. We propose the
6-point schemes with sixth order accuracy for the side points of the boundary conditions
(see Fig. for an illustration) % + au = gy in 09, % = g3 in 093 and % + Pu = g4
in 09|, with two smooth functions o and 5. We also construct the 4-point schemes with
sixth order accuracy for the corner points of the boundary conditions (see Fig. for an
illustration) 9% + au = gy in 90y, % = g3 in 005 and 2% + Bu = g4 in 004 with two
smooth functions a and 5. The 13-point finite difference scheme with fifth order accuracy
for irregular points is constructed too. In order to achieve the implementation effectively for
the 13-point scheme, we derive the details of efficient implementation. We present numerical
examples with contrast ratios sup(a,)/inf(a_) = 1073,1075,10° 107 in l; and [/, norms of
our proposed hybrid scheme.

In Chapter [0, we derive a sixth order compact 9-point finite difference scheme with
reduced pollution effect to solve Helmholtz interface problems with two non-homogeneous
jump functions g, gl (i.e., Au+k*u = fin Q\T, [u] = ¢} and [Vu-7] = g/ on I'). We
start our discussion by constructing the interior finite difference stencil with reduced pollu-
tion. Second, we construct the sixth order boundary (6-point) and corner (4-point) finite
difference stencils with reduced pollution. Third, we construct the compact 9-point interface
finite difference stencil. When constructing a discretization stencil, we start with a general
expression that allows us to recover all possible sixth order finite difference schemes. Then,
we determine the remaining free parameters in the stencil by using our new pollution mini-
mization strategy that is based on the average truncation error of plane waves. We present
several numerical experiments to demonstrate the performance of our proposed compact

scheme.
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In Chapter [6], we propose a sixth order compact 9-point finite difference scheme for elliptic
interface problems with particular intersecting interfaces and four discontinuous constant
coefficients (see Fig. for an illustration). Note that the solution is smooth enough, the
intersection point is the cross point of one horizontal straight line and one vertical straight
line. The uniform Cartesian mesh size h is chosen such that the centered points of all the
irregular points lie on the closure of the interface curve (see Figs.[6.4]and |6.5|for illustrations).
First, we construct the explicit formula of the sixth order compact 9-point finite difference
scheme for regular points. Second, we derive the explicit formula of the seventh order
compact 9-point finite difference scheme for interface points (see Fig. |6.4] for an illustration).
Third, we derive the explicit formula of the seventh order compact 9-point finite difference
scheme for the intersection point (see Fig. for an illustration). We prove the sixth order
convergence rate of our proposed compact 9-point finite difference scheme by the discrete
maximum principle. We provide numerical results to verify the convergence rate measured
in the /5 and [, norms for our proposed compact 9-point scheme.

In Chapter [7], we shall discuss some future work.

1.4 Contributions

Our contributions of Chapter [2| are as follows: To our best knowledge, so far there were
no compact 9-point finite difference schemes available in the literature, that can achieve
fifth or sixth order for Poisson interface problems with singular source terms. We construct
the sixth order compact 9-point finite difference schemes on uniform meshes for Poisson
interface problems with two non-homogeneous jump conditions and provide explicit formulas
for the coefficients of the linear equations. The explicit formulas are independent on how the
interface curve partitions the nine points in a stencil, so one can handle the 72 different cases
configurations of the nine-point stencil with respect to the interface. The matrix A of the
linear equations Az = b, appearing after the discretization, is fixed for any source terms, two
jump conditions and interface curves, and this allows for an easy design of preconditioners
if iterative methods are used for the solution of the linear system associated with interface
problems. The independence of A also allows us to directly use the zero extension and the
FFT acceleration in [39] to solve Az = b without adding new unknown variables to obtain the
augmented system and using the Schur complement to solve it. This is particularly useful in
case of moving boundary problems. Furthermore, we prove the order 6 convergence for the
proposed scheme using the discrete maximum principle. Our numerical experiments confirm
the flexibility and the sixth order accuracy in [, and [, norms of the proposed schemes.

Our contributions of Chapter |3| are as follows: To our best knowledge, so far there were
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no compact 9-point finite difference schemes available in the literature, that can achieve
third or fourth order for the elliptic interface problems with piecewise smooth coefficients
on uniform meshes. We construct a high order compact 9-point finite difference scheme for
the numerical solution on uniform meshes for elliptic interface problems with discontinuous,
piecewise smooth and high-contrast coefficients (the ratio sup(ay)/inf(a_) ~ 1072 and 109),
discontinuous source terms and two non-homogeneous jump conditions. We also numerically
verify the sign conditions of our proposed compact 9-point scheme and prove the fourth order
convergence rate by the discrete maximum principle. We compare our proposed compact
9-point finite difference scheme with the second order IIM, EJIIM, MIB and AMIB. Since
the accuracy order in irregular points of our proposed scheme is three, the numerical results
show that our proposed compact 9-point scheme produces smaller errors than the second
order IIM, EJIIM, MIB and AMIB. We also compare our proposed compact 9-point finite
difference scheme with the fourth order IIM, the numerical results show that our proposed
compact 9-point scheme also produces smaller errors than the fourth order IIM. Since our
proposed scheme does not require to change coordinates into the local coordinates and solve
an optimization problem which are two basic steps for IIM, it is simpler for readers to derive
our schemes, and perform the corresponding implementations. MIB methods do not use the
high order jump conditions, so our method could derive a higher order scheme than MIB
methods in the same number of points of the stencils. Conversely, for the same accuracy
order, our method could form a sparser matrix of the global corresponding linear system
than the MIB methods. Our numerical experiments confirm the flexibility and the fourth
order accuracy for the numerically approximated solutions uy, in both [, and [, norms, and
the fourth/third order accuracy for the numerically approximated gradients ((uh)x, (uh)y)
in the 5/l norm.

Our contributions of Chapter 4| are as follows: To our best knowledge, so far there were
no 13-point finite difference schemes for irregular points available in the literature, that can
achieve fifth or sixth order for elliptic interface problems with discontinuous coefficients.
We propose a hybrid (13-point for irregular points and compact 9-point for interior regular
points) finite difference scheme, which demonstrates six order accuracy in the [ and [, norms
in all our numerical experiments, for elliptic interface problems with discontinuous, variable
and high-contrast coefficients, discontinuous source terms and two non-homogeneous jump
conditions. The proposed hybrid scheme demonstrates a robust sixth-order convergence
for the challenging cases of high-contrast ratios of the coefficients ay: sup(a,)/inf(a_) =
1073,107%,105,107. From the numerical results, we find that if we only replace the 13-point
scheme for irregular points by the 9-point scheme in Chapter [3| then the numerical errors

increase significantly, while the condition number only slightly decreases. Thus, the proposed
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hybrid scheme could significantly improve the numerical performance with a slight increase
in the complexity of the corresponding linear system.

Our contributions of Chapter [5|are as follows: Our proposed compact (9-point, 6-point, 4-
point) finite difference scheme attains at least sixth accuracy order everywhere on the domain.
Our method differs from existing dispersion minimization methods in the literature in several
ways. First, our method does not require us to compute the numerical wavenumber. Second,
we use our pollution minimization procedure in the construction of all interior, boundary, and
corner stencils. Our proposed compact finite difference scheme with reduced pollution effect
outperforms several state-of-the-art finite difference schemes in the literature, particularly
in the pre-asymptotic critical region where kh is near 1. When a large wavenumber k is
present, this means that our proposed finite difference scheme is more accurate than others
at a computationally feasible grid size. For each corner, we explicitly provide a 4-point stencil
with at least sixth order accuracy and reduced pollution effect. For each side, we explicitly
give a 6-point stencil with at least sixth order accuracy and reduced pollution effect. To
the best of our knowledge, our present work is the first paper to comprehensively study the
construction of corner and boundary finite difference stencils for all possible combinations
of boundary conditions (Dirichlet, Neumann, and impedance boundary conditions) on a
rectangular domain. For the irregular points, we derive a seventh order compact 9-point finite
difference scheme to handle nonzero jump functions at the interface. Similar as Chapter [2]
for a fixed wavenumber k and for any given interface and boundary data, the coefficient
matrix of our linear system does not change; only the vector on the right-hand side of the
linear system changes. In the numerical experiments, we compare our proposed scheme with
the latest compact schemes. The numerical results show that our proposed scheme could
produce smaller errors even the coefficients of our scheme are simpler.

Our contributions of Chapter [0 are as follows: To our best knowledge, so far there were no
compact 9-point finite difference schemes available in the literature, that can achieve fifth or
sixth order for elliptic interface problems with intersecting interfaces. We construct the sixth
order compact 9-point finite difference scheme on uniform meshes with intersecting interfaces
and 4 discontinuous constant coefficients. The formulas of proposed sixth order compact 9-
point finite difference scheme are constructed explicitly for all grid points (regular points,
interface points, and the intersection point). We prove the sixth order convergence rate of
our proposed compact 9-point finite difference scheme by the discrete maximum principle.
Our numerical experiments confirm the flexibility and the sixth order accuracy in Iy and [

norms of our proposed compact 9-point scheme.
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Chapter 2

Sixth Order Compact 9-Point Finite
Difference Schemes for Poisson
Interface Problems with Singular

Sources

2.1 Introduction and problem formulation

The Poisson interface problem with singular sources arise in many applications. In chemical
reaction-diffusion processes, the solution u represents the chemical concentration [63] M5].
In case of catalytic reactions the catalyst is usually distributed in a very thin layer over an
interface I', and therefore the reaction can be considered as occurring on a d — 1-dimensional
manifold in a d-dimensional space. Such reactions result in a continuous chemical concen-
tration u, but a discontinuous gradient Vu across the interface T', i.e., g§ = 0 and g} # 0 on
['in (2.1). Problems with discontinuous solutions and/or discontinuous fluxes appear also
in multicomponent incompressible flows with or without interfacial tension. As discussed
by [0], if surface tension is present at the interface the incompressibility constraint, applied
to the momentum equation yields a pressure Poisson equation with a dipole source (the
gradient of the delta function representing the interfacial tension alongside the fluid-fluid
interface). Since such a source function is difficult to approximate, its effect can be modeled
via interface jump conditions for the pressure and its gradient. The solution for the velocity
is always continuous across the interface, however, If the viscosities of the fluids on both
sides of the interface differ, its flux has a jump there. So, both the velocity and the pressure

can be subject to elliptic problems with jumps of the solution or its flux across fluid-fluid or
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fluid-elastic-structure interfaces.

Let ©Q = (Iy,12) x (I3,14) be a two-dimensional rectangular region. Let also ¢ be a smooth
two-dimensional function and consider a smooth curve I' := {(z,y) € Q : ¢(z,y) = 0}, which
partitions 2 into two subregions: Q. = {(z,y) € Q : ¥(zr,y) > 0} and Q_ = {(z,y) €
Q : Y(z,y) < 0}. We define fi := fyxq, and uy = uyxq,. The particular examples for
P(z,y) = 22+ y* — 2 and ¢(z,y) = y — cos(x) are illustrated in Fig. . We now state the

Q4 fv Q4
f+ T

o2

St

Q\F:Q+UQ, Q\F:Q+UQ,

Figure 2.1: The problem region = (—n,7)? and the two subregions Q; = {(z,y) € Q
Y(z,y) >0} and Q_ = {(z,y) € Q : Y(x,y) < 0} partitioned by the interface curve I = {(z,y) €
Q : (x,y) = 0} with the functions ¥ (z,y) = 2% + y> — 2 (left) and (x,y) = y — cos(x) (right).
Note that Q\I' = Q4 UQ_.

Poisson interface problem with singular sources as follows:

—V2u=f in Q\ T,
[U] = %o on P) (21)
[Vu-7] =g} onT,

u=gq on 0f),

which, if gi = 0, can be equivalently rewritten as

—Vu=f—-glér inQ,
u=gq on 0f).

Here 7 is the unit normal vector of I' pointing towards €2, and for a point (xg, o) € T,

ul (o, = lim u(x,y) — lim u(x,y), 2.2
[)(zo, 40) (29)E01(.9) (z0.90) () (2)EQ— (2.9)— (0.90) (z,) (22)
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Ve l(T0,50) = o ) scomm © Y T o I oy © U Y) T (23)
The conditions in and are called jump conditions for interface problems. Note
that g}, g} : ' — R are essentially one-dimensional functions only defined on the interface
curve I'. To obtain our sixth order compact 9-point finite difference scheme in Section
near a given point (zj,y;) € I', we only need to employ one-dimensional functions go o
and g} o~ on (—0,0) by using a local parametric equation v : (—e¢,¢) — I' with € > 0,
7(0) = (#7,y;), and [|[7/(0)|l2 # O (see the proof of Theorem in Section for details).
But for simplicity of presentation, we often state both g} and g} as functions of z and y in
our numerical examples.

In this chapter we consider the Poisson interface problem in (2.1)) under the following

assumptions (Note that the main results in this chapter have been written in [32]):

(A1) The solution u and the source term f should be both smooth in each of the subregions
Q, and €2_. Precisely, u and f should have uniformly continuous partial derivatives of

(total) orders up to seven and five, respectively in each subregion.

(A2) The interface curve I' is smooth in the sense that for each (z*,y*) € I', there exists
a local parametric equation: vy : (—¢,e) — I' with € > 0 such that v(0) = (z*,y*)
and ||7/(0)|l2 # 0. Furthermore, z(¢) and y(¢) in (1.5) should both have uniformly

continuous derivatives of (total) order up to seven for the variable ¢t = 0.

(A3) g§ and g} are smooth on T in the sense that for each (z*,y*) € T, the one-dimensional
functions g o~y and g} o« have uniformly continuous derivatives of orders up to six

and seven, respectively, where « is given in (A2).

The remainder of this chapter is organized as follows.

In Section [2.2] we derive the sixth order compact 9-point finite difference scheme at
regular and irregular points, and discuss their consistency in Theorem and Theorem [2.5]
correspondingly. Here the center of a stencil is called a regular point if it, together with
all other eight points in the stencil are completely inside €2, or are completely outside 2.
Otherwise, it is called an irregular point. We also give a simple proof for the maximum order
of compact 9-point schemes which are based on Taylor expansion and our sort of technique at
regular points. In Theorem we provide an expression for the jump of certain derivatives
of the solution, due to the interface conditions. In 2D there are 72 different configurations
for the stencil, depending on how the interface curve partitions the nine points in it. Up to a
symmetry and rigid motion, all configurations at an irregular point can be classified into nine

typical cases, see Figs. [I.3|to[L.5]for a graphical representation of these configurations. Using
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the discrete maximum principle, we prove the convergence rate of order 6 for the proposed
scheme in Theorem 2.7l
In Section [2.3] we provide numerical experiments to check the convergence rate measured

in [y and [, norms. We test the numerical examples in the following six cases:

e u is known, I' is smooth and I' does not intersect 92 (includes a high frequency

example);
e v is known, I is smooth and I" intersects 92 (includes a high frequency example);
e v is known, I" is sharp-edged and I" does not intersect 0f2;

e u is unknown, I' is smooth and I' does not intersect 92 (includes a high frequency

example);
e y is unknown, I' is smooth and T' intersects 0€2;
e y is unknown, I' is sharp-edged and I' does not intersect 0f2.

In Section [2.4] we summarize the main contributions of this chapter. Finally, in Sec-
tion [2.5] we shall provide the detailed proof for Theorem which plays a key role in our

development of the compact stencils at irregular points in Section [2.2

Remark 2.1. The general elliptic interface problem is given by replacing the partial differen-
tial equation and the second jump condition in by =V - (aVu) = f and [aVu - 7] = g1,
respectively, where the coefficient a is discontinuous across the interface curve I'. In ad-
dition to the finite element, the finite volume and DG methods, several methods such as
IIM ([69, 73, B9]), MIB ([I13] I19]), and EJIIM ([I10]) are proposed for the general elliptic
interface problem. The Poisson interface problem considered in this chapter is a special case
of the general elliptic interface problem with @ = 1 and we obtain a sixth order compact
9-point finite difference scheme for such Poisson interface problem. The main ideas in this
chapter for the simpler Poisson interface problem can be generalized to the general elliptic
interface problem which has been addressed in Chapter [3, However, as discussed in Chap-
ter |3| for the general elliptic interface problem, a compact 9-point finite difference scheme
near the interface curve can only achieve no more than third order accuracy. See Chapter

for details on the general elliptic interface problem.
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2.2 Sixth order compact 9-point finite difference schemes

using uniform Cartesian grids

Because the function wu is a solution to the partial differential equation in (2.1f), we shall see
that all the quantities u(™™, (m,n) € Apr4; are not independent of each other. In fact, we

have:

Lemma 2.2. Let u be a function satisfying —V>u = f in Q\T. If a point (z},y;) € Q\T,

then
Lm/2]

u(m,n) _ (_1)L7Ju(odd(m),n+mfodd(m))+ Z (_1>Zf(m725,n+2572)’ v (TTL, n) c A?\4+17 (24)
(=1

where the subsets A, and A3, of Avi1 are defined by

A2y o= Ay \ Ay with Ab ={(Ck—0) k=20, M+1—"{andl=0,1}

(2.5)
Proof. By our assumption, we have wu,, + u,, = —f in Q \ I'. Therefore, we obtain
ulmEE) gy (mnt2) — _ plmn) V'm,n € Np. (2.6)
Hence, for (m,n) € A3,,,, we have m > 2 and
wmm) = — fm=2n) _ g (m=2n+2) (m,n) € A?MH.
Then we can recursively apply the above identity %d(m) — 1 times to get . O]

For the convenience of the reader, see Fig. for an illustration of the quantities
ul™™ (m,n) € A}, and (m,n) € A3, ; in Lemma 2.2 with M = 6.
For M = 6, the identities in (2.4)) of Lemma [2.2| for u(™™ (m,n) € A2 can be explicitly
given by
WD) 2 O 03) 22) 1 p02) L 04) o 23) Z _p03) _,05) 4, (24) Z _p04) _ ,00)

w3 = _p05) _ 00 B0) — _p10) _(12) B — ) _(13)  (3:2) — _p(12) _,(14),

W33 = _p3) _y(108) B — () (106) g (40) — _ p(2,0) | p(0.2) 4 (04)

pD) = @) | p08) L 05) 4 42) - p(22) | p04) L (06) 4 (43) _ _p(2:8) | (05) |, 07)
uB0) = B0 4 p12) L) (51) L1 4 p(18) 4 (15 (5:2)  _ p(32) | (L) | (16)
w0 — _p(10) L p(22) _ p(04) _06)  (60) — _p(41) 4 p(23) _ £05) _,(07)

u(T0) = _ 5.0 4 (3.2) _ p(14) _,(.6)
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W00 4 1L0)
WO )
W02 L02)
W03 ()
W04 1)
W05 19)
W08 L 10)
107) {ulmm) (%) € A3}

{ul™™ + (m,n) € Ay}

Figure 2.2: Red trapezoid: {u™™ : (m,n) € A}WH} with M = 6. Blue trapezoid: {u(™") :
(m,n) € A3, } with M = 6. Note that Apry1 = Aj, UAG .

Note that the cardinality of Aps41 equals the sum of the cardinalities of A}, and Ap_s.
The identities in of Lemma show that every u(™™ (m,n) € Ap41 can be written
as a linear combination of the quantities u™™, (m,n) € Al,,; and f™ (m,n) € Apr_1.
Conversely, by , every f™™) (m,n) € Ay, and every u™" (m,n) € A}y can be
trivially written as linear combinations of u(™™ € Aj/.;. Because the source term f is
known, this can reduce the number of constraints on u(™™, (m,n) € A4 for the function
u satisfying . Now using , we can rewrite the approximation of u(x + 7,y +y5) in
(1.9) as follows:

(m,n) (m,n) (m,n)
u m, n __ u m, n u m, n
Z m!n! “yv= Z m!n! Ty Z m!n! Y
(mn)EAM 41 (mn)eA}, (m,n)eAd, .
== Z u(myn)GMJrl,m,n(xa y) + Z f(mm)QMJrl,m,n(-%a y)?
(m7n)eA}\4+1 (m,n)EAM 1

where G p41,mn and Qrr41,m.» are polynomials uniquely determined by the identities in ([2.4]).

Explicitly,

L]

GM+1,m,n(‘Tay) = (_1)4
(=0

0|3

:Em—&—%yn—%

22y (™ € M (2.7)
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and .
1+13) (1)l 2y n26+2

(m +20)!(n — 20+ 2)V

QM-I-l,m,n(xa y) = (m,n) € AM—I- (28)

/=1

From (12.4) we observe that G ps4+1.m., is @ homogeneous polynomial of total degree m+n for all
(m,n) € A}, 41, While Qpz41,m,, is @ homogeneous polynomial of total degree m +mn +2 for all
(m,n) € Ap—1. For M = 6, all the polynomials G7 ., (m,n) € AL and Q7.,.n, (m,n) € As
are explicitly given by

Groo=1 Gro1=vy, Gro2=3y>—32* Gros=1y’—12%, Gros=5y"+ 52" — 127

_ 1.5 1,2 3 1,4 _ 1,6 1,6 1,2 4 1,4, 2
G7,0,5 = 1209 — 13%7Y + 222L Y, G7,0,6 = 7309 — 7% — LY + LY,

_ 1 7 1 ,.4,3 1 .6 1 .25 _ _ _ 1 2 1..3
G(7,0,7 - 5040y + 1443: Yy - 7201’ y—- 240'Ij Y, G?,l,O =, G?,l,l =Ty, G7,1,2 - §:Cy - 6'77 )

_ 1.3 1,3 _ 1,4, 1 .5 1,32 _ 1 ..5_ 1,33 1.5

G713—53€y 8T Y G771,4—ﬂl’y + 1202 — 3TY, G7,1,5—m$y — 3627Y" + 1352 Y,
_ 1 ,.6 1,7 1,52 1,34

G116 = 7529 — 500 T 3% Y 1t Y

and
Q?,0,0 = _%1'2, Q7,071 = —%$2y, Q7,0,2 = ix‘l — %nyQ’ Q?,O,S — _T12$293 + ix4y7
Q104 = —7352° = 52°y" + 552"y, Qros = 1y’ — 737%y — 57’y Qraio = —§a°,
Qrin=—52%y, Qriz= 750" — %fc3y27 Q713 = 1352y — 3579,
Q7’1’4 - 7ﬁz7 + ﬁxByZ - ﬁz3y4, Q71270 = 7%‘:647 Q7,2,1 = 7ix4ya Q7,2,2 = %x6 - éﬁﬁlyza
Q723 =—17"y’ + 252%, Qrso=—1352", Qrs1=—1552"Yy, Qrz2= ﬁﬂ — 5152°y%,
Q7’4’0 = _77;)1.67 Q7’471 = _%x6yﬂ Q7,5,0 = _Wlll()x’?'

Hence, by (1.9)), the solution u to (2.1)) near the base point (z7,y;) can be approximated
by

u(atalyty) = Y uGhma@ )+ Y F " Qurma (@ y)+O(BM ),

(m,n)EA}V[_‘_1 (m,n)EAN—1
(2.9)
for x,y € (—2h,2h). We shall use the above identity in (2.9)) for finding compact 9-point

stencils achieving a desired accuracy order M.

2.2.1 Stencils for regular points

In this subsection, we discuss how to find a compact 9-point scheme centered at a regular
point (z;,y;), which has been well studied in the literature. The main purpose of this
subsection is to outline the main ideas. For simplicity, we just pick (z;,y;) as the base point
(z7,y;), that is, (z},y;) is defined in (1.6) with vy = wy = 0. Recall that M € N stands for

the desired accuracy order.
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Let us consider the following discretization operator at a regular point (z;,y;):

1 1 M+1
Ehu = h_2 Z Z C'M(h)u(xi + /{:h,yj + éh) with C}mg(h) = Z C}mg’php, (210)
k=—10=—1 p=0

with all ¢, being to-be-determined constants. We say that the coefficients of the above
compact 9-point stencil are nontrivial if C ¢(0) # 0 for at least some k,¢ = —1,0, 1, that is,
creo 7 0 for at least some k, ¢ = —1,0,1. Substituting (2.9)) into (2.10)), we obtain

1 1
Lou=h2Y Y C’M(h)< S u™IGypy (kb Ch)

k=—14¢=—1 (mn)eAy,
(mn)€AN 1

= > AL+ > T Taa(h) + (M), b0,

(TrL,7z)€1\A}VI_~_1 (m,n)EAN—1

where the polynomials Gar41,mn(2,y) and Qrr+1,mn(z,y) are defined (2.7)) and (2.8)), and

1 1 1 1
I (h) = Y > Cre(W)Grrsamn(khth) and  Jon(h) =Y > Cre(W)h>Qurs1,mn(kh, (h),
k=—1¢=-1 k=—1¢=-1
(2.12)
for m,n € Ny. Note that both I, ,(h) and J,,,(h) are polynomials of h because every
coefficient of z7y* in the polynomial Qasi1m.n(z,y) vanishes for all j + k < 2. Therefore,
the following compact 9-point finite difference scheme for —V?u = f at the regular point

(fi, y])
11
Lyup = h™? Z Z Cro(h)(un)igkjre = Z f(m’n)Jm,n(h)7 (2.13)
k=—1/0=-1 (m,n)GAM,l

has the accuracy order M for the numerically approximated solution wy, satisfying ([2.13]),
ie.,

Lo(u—up)=Lyu— Y (k) =0(kM),  h—0, (2.14)
(m,n)EAM_1
if the following conditions in (2.11]) are satisfied:
Lnn(h) = O(RM1?), h—0, forall (m,n) € Ay.,;. (2.15)

Note that the solutions of {Cy(h)}re=—101 to (2.15) are homogeneous in terms of its un-
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knowns, that is, a solution multiplied with a given polynomial of h to all coefficients is still
a solution. Hence, we say that a solution for the coefficients in a compact 9-point stencil is
nontrivial if Cy ,(0) # 0 for at least some k,¢ = —1,0,1. Since Gpr41,m» is a homogeneous
polynomial of degree m + n, we can write Gar1,mn(kh,lh) = grrs1mankeh™ ™™ for some
constants gar41,mnke¢- Hence, becomes

1

1

D Cralh)grsrmmpe = O(MT7") b0, forall (m,n) € A,y (2.16)
k=—1¢=—1

Because M +2 —m —n > 1 for all (m,n) € A}, the identities in (2.16]) automatically

imply X

1
Z Z Ck7g(0)gM+1,m,n7k7g = 0, for all (m,n) c AJl\/H_l. (2.17)

k=—1/¢=-1

By calculation, the maximum integer M for the linear system in (2.17) to have a nontrivial
solution {Cj¢(0)}ke=—101 is M = 6. More precisely, the rank of the matrix in (2.17)

(gMH,m,n,k,L’)(m,n)eA}MH,(k,é)e{—l,(),l}?;

is nine for M = 7 (hence has only the trivial solution for M = 7) and its rank is 8
for M = 6. Therefore, for a compact 9-point stencil using Taylor expansion and our sort of
technique, the maximum accuracy order M that we can achieve is M = 6. Moreover, up to
a multiplicative constant, such a nontrivial solution {Cj ¢(0)}r——101 to (2.17)) is uniquely
given by

Copo=—20, C190=C10=Co-1=Co1=4, C1 1=C11=C1=C1=1  (218)

For a constant solution of {Cy(0)}ke=—101 satisfying (2.17), such a constant solution
obviously satisfies also (2.16)) and therefore, it is a nontrivial solution to (2.15)).

Since Qar4+1,m,n is a homogeneous polynomial of degree m + n + 2, we can write

QM+1’m’n(kh’ fh) = qM+1,m,n,k,€hm+n+2

)

for some constants qas41.m k. Now plugging (2.18)) into the definition of J,, (k) in (2.12),
we easily deduce that

Joo(h) = =6, Joa(h) = Joo(h) == —3h*  Joa(h) = Jug(h) == —&h*,  Joo(h) := —h",

2 60

and all other coefficients J,, ,,(h) = 0. In summary, for a regular point (z;, y;), we obtain the
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following theorem which is well known in the literature (e.g., see [08 [T4] [09]).

Theorem 2.3. Let a grid point (z;,y;) be a regular point, i.e., either d;fj =0 ord;; =0.
Let (up)i; be the numerically approzimated solution of the exvact solution w of the partial

differential equation (2.1) at a regular point (z;,y;). Then the compact 9-point scheme:

1
] <(Uh)i—1,j—1 +4(up)ij—1 + (Un)it1,-1
+4(un)icry;  —20(un)iy  + 4(un)ir1g
ﬁhuh = (219)
+ (un)i—1j41 +4(un)ijer  + (uh)i+1,j+1>
_ —6f(0’0) . %hQ(f(O’Q) + f(2,0)) . 6_]6h4(f(0,4) + f(4,0)) . %5}7/4][(2’2),

achieves sixth order accuracy for —V*u = f at the regular point (x;,y;), where flmn) =

%(xi,yj). Moreover, the compact 9-point finite difference scheme of order four can be

obtained from (2.19) by dropping the terms —%h‘l(f(o"l) + f40) and —%h4f(2’2).

The maximum accuracy order M for a compact 9-point finite difference scheme which is

based on Taylor expansion and our sort of technique is M = 6.

2.2.2 Stencils for irregular points

Let (z;,y,) be an irregular point, that is, both dz’rj # ) and d;; # (). In this subsection, we
shall find a compact 9-point stencil at an irregular point (z;,y;) for a given accuracy order
M. The idea is essentially the same, although the technicalities are much more complicated.
Let (z;,9;) be an irregular point and we shall take a base point (z7,y;) € I'0 (z; — h,; +
h) x (y; — h,y; + h) on the interface I' and inside (z; — h, z; + h) X (y; — h,y; + h). That is,

as in (L.6),
z; =1r; —vh and yi =y; —woh with —1<wvg,wo<1 and (z},y;) €. (2.20)

Let uy and fi represent the solution u and source term f in 2, or €)_, respectively. As in
(1.7)), we define

m—+n
_ a *

(m,n) | U+, o & (m,n) ‘: aernf:l: ‘o
( )7 + : amxany(xwy])

u = —(zF,y
* omxony 7

Since the base point (7, y;‘) is now on the interface I', the equation —V?u = f is no longer
valid at the base point (z},y}). However, the curve I' is smooth and we assumed that the

solution u and f are piecewise smooth. More precisely, u, and f, on {2, can be extended
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into smooth functions in a neighborhood of (z},y;), while u_ and f_ on ©_ can be extended
into smooth functions in a neighborhood of (z7,y;). Therefore, Lemma still holds for
us+ and fi. In other words, the identities in hold by replacing v and f by uy and f4,
respectively. Consequently, the key identity in ([2.9)) still holds by replacing u and f with u
and fi, respectively. Explicitly,

Ui<$+$:, y"’y;) = Z US:nm)GM-l—l,m,n(ma y)+ Z f:&:mm)QM-i-l,m,n (337 ?J)+ﬁ(hM+2)>

(m,n)GA}VIH (m,n)EAN—1

(2.21)
for z,y € (—2h,2h), where the index sets A}, ; and Ay are defined in and (L.§),
respectively, while the polynomials Gari1mn(2,y) and Qur1.mn(x,y) are defined in (2.7)
and , respectively.
Because (z;,y;) is an irregular point, instead of using only —V?u = f in Section to
set a compact 9-point stencil, in this subsection we shall use the two jump conditions
and to set up the following compact 9-point stencil at an irregular point (z;,y;):

1 1 M
Liu:=h">">" Cro(hyu(a; + kh,y; + (h) with Cyp(h) =Y creph?,  (2.22)
k=—1¢=—1 p=0

with all ¢, being to-be-determined constants. Because the set {—1,0,1}? is the disjoint

union of d+- and d; ;, we have

1
hChu= Y > Cre(hu(w; + kh,y; +Lh) = Y Cru(h + (vo + k)h, ¥} + (wo + O)h)
k=-1¢0=-1 (k,0)ed},
+ > Crelh + (vo + k)h,y; + (wo + £)h).
(k£)ed;

By (2.21)) with M being replaced by M — 1, we have

> Crahyul} + (vo+ k)hy; + (wo+ Oh) = Y ul™IE (h)

(k,z)edffj (m,n)eA},
+h2 Z fmn)JiO( )—{—ﬁ(hM—H),
(m,n)EAN—2
where

Z Cro(h)Grtmn((vo + E)h, (wo + £)h),
(k.0)€dE;

TE0(h) = Y Cre(Wh™>Qurmn((vo + k)b, (wo + 0)).
(k.0)ed;

(2.23)
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Note that both I}, (h) and J29(h) are polynomials of h, because G asmn (2, y) and Quzmn (2, y)
are bivariate polynomials and every coefficient of z7y* of Qs (,y) vanishes for all j+k <
2.

Using the interface conditions in (2.1f), we now link the two sets {u(m’n) : (m,n) € A}, }
and {ufm) : (m,n) € AL} through the following result, whose proof is given in Sectlon

Theorem 2.4. Let u be the solution to the Poisson interface problem in (2.1)) and the base
point (x},y;) € I', which is parameterized near (z7,y;) by (L3]). Then

Wl S (T T )

(m, ”)GAM 2

+ ZTT?@O n' pgo;n + Z Tril ,n’ pgl,pa v (mlu TL,) S A}M

(2.24)

where L
b= i OO T 4] | p=01 M
1 dr . §
By = i (0O +LsO+HOVIOFFEOR] | o p=01 M,

and all the transmission coefficients T+, T9% ,T9 are uniquely determined by r k)(O) and
s®(0) for k = 0,...,M and can be easily obtained by recursively calculatmg Um =
usr ) u(_m/’n/), (m/ ,n) € AL, through the recursive formulas given in and -

Using ([2.24)) in Theorem we obtain
S = S Wt S (F )

(m/,n")eA}, (m’,n")eA}, (m, n)EAM 2
M
SR + 3 g T )+ zgw ,
p=0
where
(m/,n')eA},
o o o o (2.25)
J]D0 (h> = Z [m ,n' (h)Tm n',p? Jpl (h) = Z [m ,n' (h)Tm n',p*
(m/,n/)eA}, (m/,n")eA},
In the proof of Theorem in Section , we shall prove that Tnf wtmn = 0in (2.24) for

(m',n’) € A}, with m’ +n' < 2. So (2.23) implies that every coefficient of h* of JET(h) in
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(2.25) vanishes for all £ < 0. Consequently, for the stencil operator £} defined in (2.22), we

obtain

Lu= > ul™h L (h) + hFyp(h) + Gogr oo () + O(BM),  h—0, (2.26)

(m,n)eA},
with
Fug)i= 3 (S5 ) + T )
(m,n)EAN 2
M M-—1 (2'27)
_ T T
Gargpar () =B (D2 ab, T2 () + 3 gb a2t (),
p=0 p=0
where
Lnn(h) =1} (h) + 1, . (h), T (R) == JE0(R) + JET(h). (2.28)

Now the following compact 9-point finite different scheme at the irregular point (x;,y;):
11
Liup :=h™" > > Crp(h)(un)ishje = hFurg(h) + G gr gr (h), (2.29)
k=—1¢=—1

has the accuracy order M for the numerically approximated solution wy, satisfying ({2.29)),
ie.,

L (u = up) = Lyu— hFy p(h) = Gypgr or(h) = 6(0M), b =0, (2.30)
if I,,n(h) in (2.28) satisfies
Lnn(h) = ORMTY),  h—0, forall (m,n)€ A}, (2.31)

Due to the relations in (2.24]) of Theorem [2.4) we observe that the solution {Cf ¢(h)} k=101
in (2.18)) is also a solution to (2.31) with M = 7.
In summary, we obtain the following theorem for compact 9-point stencils at irregular

points.

Theorem 2.5. Let (uy,);; be the numerical solution of (2.1) at an irregular point (x;,y;).

Pick a base point (x}, y;) as in (2.20). Then the following compact 9-point scheme centered
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at the irreqular point (z;,y;):

1

%((uh)i—l,j—l +4(up)ij—1 +H(up)it1-1

‘Cguh = +4(Uh>z'—1,j —QO(U}L)Z'J —|—4(uh)i+17j = hF?,f(h) + G?,gg,g{(h)a (232)

F(un)i-1j41 +4(Un)ij +(uh)i+1,j+1>

achieves seventh order of accuracy at the irregular point (z;,y;), where the quantities Fr s(h)
and Gy gr o (h) are given in (2.27)). Moreover, the stencils for the accuracy order P = 3,4,5,6
can be easily obtained from the stencil in (2.32)) by dropping G7mn withm+n > P+ 1 and
Q7mn withm+n > P —1.

Remark 2.6. (1) If one of the values fy (7, y;) and f_(z},y;) is very large at some (27, y;) €
I while the other value is small, it is important to accurately determine the membership of
the nine points {(zi+x, yjre) + k, € € {=1,0,1}} in Q4 or Q_. In particular, for the general
elliptic interface problem with discontinuous and high-contrast coefficients in Remark
and Chapter |3 the solution could be sensitive near the interface curve where the coefficient
a has high-contrast ratios.

(2) For the parametric equation of I', (z(t),y(t)) = (t + a7, r(t) +y;) or (r(t) + i, t + )
in (L.4). If [2/(0)| is relatively large, we should use (x(t),y(t)) = (t + x7, r(t) +y7) in ([L.4).
Similarly, if [y(0)] is relatively large, we should use (x(t),y(t)) = (r(t) + =z, t +y;) in (L4).

(3) By (12.24), the sixth order compact 9-point finite difference scheme uses Cﬂgg;#‘ i and

LW | for k= 0,1,...,7 and (2(t),y(t)) € T’ which would make T2 7% d

a0 or k=20,1,...,7 and (z(t),y which would make T, ., m an

Til,m,’p complicated in (2.24])). While, after normalizing each entry of Tnf,m,’m’n, ngo’,n’,p and
I

T ngj,m,’p, we find that there exist many common factors. By using these factors, we can

significantly reduce the length of (2.24)).

2.2.3 Convergence analysis

We now prove the following convergence result for the sixth order compact 9-point finite
difference scheme developed in Sections [2.2.1| and [2.2.2]

Theorem 2.7. Under the assumptions (A1)-(A3) in Section the sizth and seventh

order compact 9-point finite difference schemes in Sections|2.2.1| and |2.2.2 for the Poisson

interface problem with singular source in (2.1)) has the convergence rate of order 6, that is,

there exists a positive constant C' independent of h such that

lu = unllo < CRE,
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where u and uy, are the exact solution and the numerical solution of (2.1)), respectively.

Proof. For simplicity of discussion, we assume = (0,1)? and let h = 1/N be the mesh
size with N € N. We define Q, := QN (hZ?), 0, := 00N (hZ?), Q, := QN (hZ?),
and (x;,y;) = (ih,jh). So Qy = {(zs,y;) : 0 < i,j < N} and we also define that
V(Q) :=={(v)i;: 0<i,j < N} with (v);; € R. To be consistent with the notation before,
we define that for any v € V(Qy,), (v);; represents the real value for v at the point (z;, y;).
By Theorems [2.3] and the compact 9-point finite difference scheme in Section [2.2] can be
equivalently expressed as: Find u;, € V(Q,) satisfying

Ahuh =F on Qh, Up =g oOn th,

where
1
(Apup)i 1=ﬁ< —20(up)iy + 4[(un)iz1,j + (Un)isry + (un)ijo1 + (un)ijsa] + [(un)ic1j—1
+ (up)ig1,j-1 + (Un)iz1,j41 + (uh)i-i-l,j-i-l])a at the regular point (x;,y;),
(Apup)ij = ( —20(up)iy + 4[(un)im1,j + (Un)isry + (n)ij—1 + (un)ijsa] + [(un)ic1j—1

1
h
+ (up)it1,j-1 + (un)iz1j+1 + (uh)iﬂ,jﬂ]), at the irregular point (z;,y;),

and F' at the regular point (z;,y;) is given in (2.19) by

(F)i,j = |:_6f(0,0) . %hZ(f(O,Q) + f(Q,O)) . 6_10h4(f(0,4) + f(4,0)) . %h4f(2’2):|

(ih.jh)’

and F' at the irregular point (z;,y;) is similarly given in (2.32). Let u(z,y) be the exact
solution and Uy, := {u(z;,y;) : 0 <i,j < N}. By Theorems and [2.5] there must exist
a positive constant C independent of h (C only depends on u, the data f, g}, g} and the

interface curve I') such that
AU, =F +R with U, Fand ReV(Q), ||R|le < Cmax(h® h") = Ch°.

More precisely, R represents the truncation error in our compact 9-point finite difference
scheme. Using the standard argument, we now prove the discrete maximum principle: for

any v € V(Qy,) satisfying Ayv > 0 on ), we must have max (v);; < max (v);;.
(%:,y5)€Qm (%i,y;) €0

Suppose that max (v);; > max (v);;. Take (2, yn) € ), where v achieves its
(%i,y5) €2 (wi,y;) €002,
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maximum in 2. So

4 {('U)mfl,n + (uh)erl,n + (U)m,nfl + (U)m,n+1]
+ [(U)mfl,nfl + (U)erl,nfl + (v)mfl,n+1 + (U)m+1,n+1] < 20(U>m,n

By (Apv)mn = 0, we have —h*(Apv)p, < 0 for s =1,2 and

2O(U>m,n =4 [(U)m—l,n + (uh)m+1,n + (U)m,n—l + (U)m,n+1]
+ [(U)m—l,n—l + (U)m—l-l,n—l + (U)m—l,n+1 + (U)m+1,n+1] - hs(Ahv)m,n < QO(U)m,nu

where s = 2 at the regular point and s = 1 at the irregular point. Thus, equality holds
throughout and v achieves its maximum at all its nearest neighbors of (x,,,y,). Applying
the same argument to the neighbors in €2, and repeat this argument, we conclude that v must
be a constant contradicting our assumption. This proves the discrete maximum principle.

Define Ej, := Uy, — uy, on §,. Then we have
AhEh = AhUh - Ahuh = (F + PL) —F=R on Qh with Eh =0 on th

Now we consider the comparison function ¢(z,y) = 5;[(x — 1/2)* + (y — 1/2)%] and & =
{¢(zi,y;) : 0< 4,7 <N} Then we can directly check that Ap® = w on Q and 0 < ¢ <
on [0,1]?, where w =1 on Q. Then by ||R||s < Ch®, we have

L
48

An(E, + Ch®®) = Ay Ep + ChSw = R+ Ch®w >0 on Q.
Therefore, by the discrete maximum principle, we have

max (Ej);; < max (B, + C’h6<I>)i,j < max (B, + ChGQ))i,j

(z3,9;)€Qn (z3,9;)€Qn (zi,y;) €0
< max  (Ep)i; +Chb/48 = Ch®/48.
(:Ci,yj)eaﬂh
A similar argument can be applied to —Ej,. Hence, |[u — upl|o = [|Enlloc < ShS. This

proves the convergence rate of the compact 9-point finite difference scheme developed in

Sections 2.2.1] and 2.2.2 O
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2.3 Numerical experiments

In addition, x denotes the condition number of the coefficient matrix. According to Theo-
rems and has the same coefficient matrix. So we only provide the values of x in
Table . For simplicity of presentation, we shall state both g) and g} in as functions
of x and y in our numerical examples, though as discussed in Section we only use the

fact that both gl, gl are functions defined on the interface curve T

2.3.1 Numerical examples with known u, smooth I' and I'N9Q = ()

In this subsection, we provide a few numerical experiments such that the exact solution u of
(2.1) is known, the interface curve I is smooth and I' does not touch the boundary of .

Example 2.1. Let Q = (—7,7)? and the interface curve be given by T' := {(z,y) € Q :
P(z,y) = 0} with ¢ (z,y) = 2 + y* — 2. Note that T N 9Q = @) and the exact solution u of

(2.1) is given by
uy = uxg, = sin(4r)(2 — (2% + y?))?, u_ = uxg. = cos(4y)(2 — (2 +y*))* + 100.

All the functions f, g}, 9], g in (2.1) can be obtained by plugging the above exact solution
into (2.1). In particular, g = —100 and g{ = 0. The numerical results are presented in

Table 2.1] and Fig. 2.3

Table 2.1: Performance in Example of the proposed sixth order compact 9-point finite differ-
ence scheme in Theorems and on uniform Cartesian meshes with h = 277/ x 27, & is the
condition number of the coefficient matrix.

% order | [|up — ul|s | order | ||up — upyo||2 | order | ||up — up 2|l | order K

3.65E4+00| O 3.55E+02 0 4.13E402 0 3.40E+02 0 |3.14E401
1.25E-01 | 4.868 | 1.90E+01 |4.224| 2.02E4-01 |4.352| 1.89E+401 |4.165|1.26E+02
6.60E-04 | 7.566 | 1.03E-01 |7.529 | 1.16E-01 |7.452 1.03E-01 | 7.528 | 5.03E+02
3.38E-06 | 7.610| 5.87TE-04 |7.456| 6.08E-04 |7.571| 5.83E-04 |7.459 |2.01E403
2.55E-08 | 7.048 | 4.27E-06 | 7.103| 4.63E-06 |7.036| 4.24E-06 |7.104|8.05E+403
2.40E-10 | 6.733 | 3.50E-08 |6.928| 6.60E-08 [6.133| 8.04E-08 |5.720 | 3.22E+04

00 3 O U = W Y

Example 2.2. Let Q = (—
. 2 22 .
Y(z,y) = 0} with o (z,y) = % + — 7. Note that I'N 9Q = 0 and the exact solution u

1+x2
of (2.1)) is given by

z, %)2 and the interface curve be given by I' := {(z,y) € Q :
y

uy = uxo, =sin(Kz)sin(Ky), u- =uyxqo = sin(Kz)sin(Ky)+3, with K =5, 50, 500.
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All the functions f, g}, g1, g in ([2.1) can be obtained by plugging the above exact solution

into (2.1). In particular, g = —3 and g = 0. The numerical results are provided in

Table 2.2 and Fig. 2.3

Table 2.2: Performance in Example of the proposed sixth order compact 9-point finite differ-
ence scheme in Theorems and on uniform Cartesian meshes with h = 277 x 1.

K=5 K =50 K =500

”“M&”Q order|||up, — u||so|order ”“M;”Q order|||u, — u||so|order ”“M;”Q order|||up, — u||so|order

1.6E-04] 0 9.8E-04 0 [44E+03| 0 | 3.4E+04 | 0 |4.2E+10 0 | 3.1E+11 | O
1.7E-06] 6.55 | 8.9E-06 |6.77|2.2E+01| 7.66 | 1.6E402 | 7.75 |6.0E+08| 6.14 | 5.3E4+09 | 5.88
1.5E-08]6.81 | 8.1E-08 |6.78|3.6E-01|5.92| 2.8E4-00 | 5.82|3.7E+06| 7.33 | 4.2E407 | 6.99
1.5E-10] 6.65 | 8.1E-10 |6.64|3.0E-03|6.91 | 3.2E-02 |6.41 |1.0E405| 5.20 | 9.6E+405 | 5.44
1.5E-1216.69 | 7.7E-12 |6.72|2.2E-05|7.12| 2.1E-04 |7.29|2.6E+02|8.61 | 3.7TE4+03 | 8.00
2.0E-07|6.77| 2.2E-06 |6.54 |1.7TE400| 7.22 | 4.2E+01 |6.49
1.5E-096.99 | 1.7E-08 |7.01|1.3E-02|7.02| 3.5E-01 |6.88
1.4E-04|6.53 | 3.3E-03 |6.75
1.4E-06|6.69 | 2.8E-05 |6.86
9.4E-09|7.22| 2.1E-07 | 7.06

= = =
Do S ©oo-o Uk Wy

2.3.2 Numerical examples with known u, smooth I' and I'N 92 # ()

In this subsection, we provide a few numerical experiments such that the exact solution u of

(2.1]) is known, the interface curve I" is smooth and I' touches the boundary of 2.

Example 2.3. Let Q = (=27, 27)? and the interface curve be given by I' := {(z,y) € Q:

¥(z,y) = 0} with ¢(z,y) = y — cos(z). Note that ' N IQ # () and the exact solution u of
(2.1]) is given by

uy = uxo, = —sin(z)(y — cos(x))?, u_ =uxaq = —cos(y)(y — cos(z))* — 10.

All the associated functions f, g, g1 , g can be obtained by plugging the above exact solution
into (2.1)). In particular, g5 = 10 and g} = 0. The numerical results are provided in Table

and Fig. 2.4

Example 2.4. Let Q = (0,1)? and the interface curve be given by I' := {(z,y) € Q :
P(x,y) = 0} with ¢(z,y) =y — =L — 1. Note that I' N 9 # ) and the exact solution u

5
of (2.1)) is given by

Uy = uxo, =sin(Kz), u_ =uxo_ =cos(Ky)—3 with K =5, 50, 500.

34



2,2
x“+y“2=0
314 y‘

157

-1.57

314 -1.57 0.00 157 3.14
X

yAi2exti(14x3)1110 = 0

0.25

05 L L L
05 -0.25 0 025 05

Figure 2.3: Top row for Example the interface curve I' (left), the numerical solution wuy
(middle) and the error u — uy, (right) with » = 277 x 27. Bottom row for Example with
K = 500: the interface curve I' (left), the numerical solution w;, (middle) and the error u — uy
(right) with h = 2712 x 1.

Table 2.3: Performance in Example of the proposed sixth order compact 9-point finite differ-
ence scheme in Theorems and on uniform Cartesian meshes with h = 27/ x 3.

J % order | |lup —ul|oo | order | |lup —upsplle | order | |lup — ups|lw | order
3 | 1L.72E-01 0 3.28E+00 0 4.81E4-00 0 3.22E4-00 0

4 | 3.78E-03 | 5.508 7.36E-02 5.476 1.20E-01 5.330 7.34E-02 5.454
5 | 1.28E-05 | 8.206 2.46E-04 8.224 4.29E-04 8.124 2.42E-04 8.244
6 | 1.97E-07 | 6.024 4.25E-06 5.856 6.88E-06 5.962 4.23E-06 5.839
7 | 1.03E-09 | 7.577 2.19E-08 7.603 3.64E-08 7.561 2.16E-08 7.611
8 | 1L.1TE-11 | 6.462 2.68E-10 6.348 4.53E-10 6.328 2.81E-10 6.265
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All the associated functions f, g}, g1, g can be obtained by plugging the above exact solution

into (2.1). Clearly, gf and gj are neither constants. The numerical results are provided in
Table 2.4] and Fig. 2.4

Table 2.4: Performance in Example of the proposed sixth order compact 9-point finite differ-
ence scheme in Theorems and on uniform Cartesian meshes with h =277 x 1.

K=5 K =50 K =500
% order|||uy, — u||so|order % order|||uy, — u||so|order % order|||uy, — u||so|order
7.5E-05] 0O 4.7E-04 0 |2.2E403] 0 | 1.0E4+04 | O |3.2E410 O | 2.0E4+11 | O
3.3E-07) 7.81 | 3.3E-06 |7.15|1.1E401| 7.73 | 1.1E4+02 | 6.56 |2.5E4-08| 7.00 | 2.1E+09 | 6.57
3.9E-09| 6.43 | 3.0E-08 |6.78 |1.2E-01|6.46 | 1.7TE400 | 5.97|2.4E406| 6.70 | 3.7E407 | 5.86
3.0E-11] 7.01 | 2.5E-10 [6.92 |4.4E-04|8.09 | 1.0E-02 |7.41|3.1E404|6.26 | 5.7E405 | 6.02
2.6E-13| 6.87 | 1.7E-12 | 7.15|2.0E-06 | 7.78 | 3.6E-05 |8.15 |1.3E+02| 7.87 | 1.9E403 | 8.25
3.0E-08|6.05| 5.4E-07 |6.04 |1.6E+00| 6.41 | 1.8E+01 | 6.67
4.8E-10(5.96 | 8.0E-09 |6.08|8.1E-03|7.59| 1.6E-01 |6.83
7.2E-05|6.81 | 1.4E-03 |6.84
3.6E-07|7.65| 7.8E-06 |7.51
1.9E-09 | 7.60 | 4.4E-08 |7.45

— = =
Do B8 ©oo-1o u b w

2.3.3 One numerical example with known u, sharp-edged I' and
rnot=10

In this subsection, we provide one numerical experiment such that the exact solution u of
(2.1)) is known, the interface curve I' is sharp-edged and I' dose not touch the boundary of
Q.

Example 2.5. Let Q = (—2F,20)? and the interface curve be given by I' := {(z,y) € Q :

¥(x,y) = 0} which is shown in Fig. More precisely, the sharp-edged interface is a square
with 4 corner points (—2,0), (0,2), (2,0) and (0, —2). Note that ' N9 = () and the exact

solution u of ({2.1)) is given by
uy = uxo, = sin(2z)sin(3y), u_ = uxg_ = cos(2z) cos(2y) + 3.

All the functions f, g0, 9},9 in (2.1) can be obtained by plugging the above exact solution
into ([2.1). Clearly, gi and g} are neither constants. The numerical results are presented in

Table 2.5 and Fig. 2.5

In order to make the programming easy, (7, y;) should not be the 4 corner points (-2, 0),
(0,2), (2,0) and (0, —2) in Example 2.5|and Example[2.14. Thus, for the complicated sharp-

edged interfaces in [I13], more work should be done in the future.
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Figure 2.4: Top row for Example the interface curve I' (left), the numerical solution uy,
(middle) and the error u — wuy, (right) with A = 277 x 37. Bottom row for Example with
K = 500: the interface curve I' (left), the numerical solution u; (middle) and the error u — up
(right) with h = 2712 x 1.

Table 2.5: Performance in Example of the proposed sixth order compact 9-point finite differ-
ence scheme in Theorems and on uniform Cartesian meshes with h = 27/ x 3.

[n—ull2

J B order | [jup —ull | order | |[[up —upsallz | order | [jup —ups2lloe | order
3 | 3.45E+01 0 8.90E+01 0 1.42E+02 0 8.84E+01 0

4 | 3.57E-01 | 6.596 | 1.36E+00 | 6.028 1.65E+00 6.420 1.36E4-00 6.025
5 | 3.58E-03 | 6.640 8.97E-03 7.247 1.59E-02 6.698 8.92E-03 7.248
6 1.82E-05 | 7.622 6.10E-05 7.201 8.30E-05 7.584 6.03E-05 7.209
7 | 1.22E-07 | 7.219 6.72E-07 6.504 5.63E-07 7.203 6.67E-07 6.499
8 9.41E-10 | 7.017 4.53E-09 7.213 4.31E-09 7.031 4.49E-09 7.217

47

236

0.00

-2.36

-47

471 -2.36

0.00

236

47

Figure 2.5: Example the interface curve I' (left), the numerical solution w;, (middle) and the
error u — uy, (right) with b = 277 x 3.
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2.3.4 Numerical examples with unknown u, smooth I' and I'N0S2 =

0

In this subsection, we provide a few numerical experiments such that the exact solution u of
(2.1]) is unknown, the interface curve I' is smooth and I" does not touch the boundary of €.

2

U(z,y) = 0} with ¢(x,y) = % + ‘7’2—2 — 1. Note that T N 9Q = () and the coefficients of (2.1

are given by

Example 2.6. Let Q = (—7,7)? and the interface curve be given by T' := {(z,y) € Q :
2

fi = fxa, —sin(32)sin(3y), - = fxa. = cos(3z)cos(3y),
gg = —exp(z — y) sin(z + y), glF = —exp(z + y) cos(x — y), g=0.

The numerical results are provided in Table [2.6] and Fig.

Example 2.7. Let Q = (—7,7)? and the interface curve be given by I' := {(z,y) € Q :
Y(z,y) = 0} with ¥(z,y) = % 42 % Note that TN 9IQ = @ and the coefficients of (2.1)

1+x2

are given by

f+ = fxa, = sin(3z)sin(2y), f- = fxa_ = cos(2x) cos(2y),
go = —sin(x)sin(y), gi = — cos(x)sin(y), g=0.

The numerical results are provided in Table 2.6] and Fig.

Table 2.6: Performance in Examples and of the proposed sixth order compact 9-point
finite difference scheme in Theorems 2.3 and 2.5] on uniform Cartesian meshes with the same mesh
size h = 277 x 2.

Example Example
lup, — upyo|l2 | order | |lup — upsolloo | order | [|up — wpyoll2 | order | ||up — wpjolloo | order
1.20E+00 0 1.48E4-00 0 2.33E4-02 0 4.01E+4-02 0

1.29E-01 3.222 9.76E-02 3.919 3.01E-02 12.922 6.00E-02 12.705
1.40E-03 6.519 1.01E-03 6.589 3.63E-04 6.371 9.18E-04 6.032
1.22E-05 6.847 1.01E-05 6.647 5.78E-06 5.973 1.44E-05 5.992
1.67E-07 | 6.195 4.52E-07 4.483 9.24E-08 5.968 2.61E-07 0.789

N O U W

Example 2.8. Let Q = (—7,7)? and the interface curve be given by T' := {(z,y) € Q :
P(x,y) = 0} with ¢(x,y) = 2* + 2y* — 2. Note that T' N IQ = () and the coefficients of ([2.1])

are given by

fo= fxo, =sin@e)sin@y),  fo = fxa = cos(2r —2y),
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Figure 2.6: Top row for Example the interface curve I' (left) and the numerical solution
uyp, (right) with h = 277 x 27. Bottom row for Example the interface curve I' (left) and the
numerical solution wuy, (right) with h = 277 x 27.

The numerical results are provided in Table 2.7 and Fig.

Example 2.9. Let Q = (—7,7)? and the interface curve be given by T' := {(z,y) € Q :
P(x,y) = 0} with ¢(z,y) = y* — 22° + 2 — 1. Note that ' N 9Q = @ and the coefficients of

(2.1]) are given by

[+ = [xa, = sin(2z)sin(3y), f- = fxa_ = cos(2x) sin(2y),
g9 =0, g =—explx—2y), g=0.

Because g = 0, the Poisson interface problem in (2.1]) simply becomes —V?u = f — gi or

in Q with the Dirichlet boundary condition u|s = ¢g. The numerical results are provided in

Table 2.7 and Fig. 2.7]
Example 2.10. Let Q = (0,1)? and the interface curve be given by I' := {(x,y) € Q :

P(x,y) = 0} with ¥(z,y) = (z — 1/2)* + 2(y — 1/2)> — 1/20. Note that T NI = O and the
coefficients of ([2.1)) are given by

or \* . (2 2
f+ = fxa, =2 (EWK) sin (%K:ﬁ) sin (gKy) . - = fxa. = 2K?cos(Kx)cos(Ky),
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Table 2.7: Performance in Examples and of the proposed sixth order compact 9-point
finite difference scheme in Theorems [2.3] and 2.5 on uniform Cartesian meshes with the same mesh
size h =277 x 2.

Example @ Example I@l
|up, — wpsall2 | order | |lup — upjolloo | order | [[up — upsolls | order | [lup — upjallo | order
1.11E401 0 8.15E+00 0 3.60E+02 0 5.64E+02 0
1.27E-01 6.443 1.01E-01 6.329 | 8.36E+00 | 5.428 1.92E4-01 4.878
3.11E-03 5.350 2.97E-03 5.092 4.85E-01 4.108 1.47E400 3.708
6.20E-05 5.650 8.57E-05 5.116 2.85E-03 7.413 9.31E-03 7.300
3.46E-07 7.487 6.83E-07 6.971 1.79E-05 7.313 5.83E-05 7.320

O Ul |y

x4+2 y4-2=0

3.14

157

> 0.00 -
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Figure 2.7: Top row for Example the interface curve I' (left) and the numerical solution
up, (right) with A = 277 x 27. Bottom row for Example the interface curve I' (left) and the
numerical solution wuy, (right) with h = 277 x 27.
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gy =sin(x) — 10, g¢¥ =cos(y), ¢g=0, with K =5, 50, 500.

The numerical results are provided in Table 2.8 and Fig.

Table 2.8: Performance in Example of the proposed sixth order compact 9-point finite
difference scheme in Theorems and on uniform Cartesian meshes with h =277 x 1.

K=5 K =50 K =500

llup, — wp, yallz2| order |lup — upalloo | order [[lup, — wp /oll2| order |llus, — up 2 lleo | order |lup — up /all2| order |[lus, — up, 2 lloo | order
1.5E-02| 0 | 14E-01 | 0 |6.3E4+03| 0 |4.1E4+04| 0 |9.2E4+09| 0 |6.3E+10| O

9.0E-05 |7.42| 1.1E-03 |6.95|1.6E+025.27| 1.3E+03 [5.03|1.3E+08(6.15| 1.2E+09 [5.76
2.5E-06 [5.15| 3.3E-05 |5.07|2.2E+00(6.20| 1.9E+01 [{6.07{1.4E+06|6.51| 1.7E+07 |6.13
3.2E-08 [6.33| 4.2E-07 |6.29| 3.8E-02 |5.87| 3.7E-01 [5.67|2.4E+04|5.88| 3.8E+05 [5.48
6.1E-04 [5.97| 7.5E-03 [5.61|5.0E+02(5.59| 7.2E+03 [5.69
7.4E-06 [6.36| 9.4E-05 |6.32|8.3E+001(5.91| 1.5E+02 [5.58
4.4E-01 |4.24| 6.0E400 |4.66
8.2E-03 |5.75| 1.1E-01 [5.78
5.8E-05 |7.13| 1.5E-03 [6.19

—_ =
DS ©ow-ao ok Wy

2.3.5 Numerical examples with unknown u, smooth I' and I'N0S2 #

0

In this subsection, we provide a few numerical experiments such that the exact solution u of

(2.1) is unknown, the interface curve I' is smooth and I' touches the boundary of €.

Example 2.11. Let Q = (—7,7)? and the interface curve be given by I' := {(z,y) € Q :
(x,y) = 0} with ¢(x,y) = y — cos(z). Note that ' NI # () and the coefficients of (2.1])

are given by

f+ = Fxa, = —sin(z) sin(3y), f- = fxa_ = —sin(2x)sin(y),
9(1; =0, g1 = sin(z), g=0.

Because gi = 0, the Poisson interface problem in (2.1)) simply becomes —V?u = f — gi or

in ) with the Dirichlet boundary condition u|gg = g. The numerical results are provided in
Table 2.9 and Fig. 2.9
Example 2.12. Let Q = (0,3.5)? and the interface curve be given by ' := {(z,y) € Q :

U(x,y) =0} with ¢(z,y) = %2 - ‘7’2—2 — 2. Note that T'N9Q # () and the coefficients of (2.1
are given by

f+ = fxa, = sin(nz) sin(27y), f- = fxa_ = sin(2nz) sin(my),
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(x-1/2)%+2 (y-1/2)>-1120 = 0

|

Figure 2.8: Top row for Example the interface curve I' (left), the numerical solution uy
with K =5, h = 277 x 1 (middle) and the numerical solution uj, with K = 50, h = 278 x 1 (right).
Bottom row for Example with K = 500 and h = 27! x 1: the numerical solution uy, in (0,1)?
(left), the numerical solution uy, in (0.32,0.4) x (0.34,0.4) (middle) and the numerical solution wuy,
in (0.25,0.3) x (0.4,0.5) (right).

g =0, g1 = —sin(27x) sin(27y), g=0.

Because g = 0, the Poisson interface problem in (2.1]) simply becomes —V?u = f — gi or

in  with the Dirichlet boundary condition u|sq = g. The numerical results are provided in

Table 2.9 and Fig. 2.9

Example 2.13. Let Q = (—7,7)? and the interface curve be given by I' := {(z,y) € Q :
W(z,y) = 0} with ¢(x,y) = y — sin(x) — 13—0. Note that I' N 9Q # () and the coefficients of

(2.1]) are given by

I+ = fxa, = sin(z)sin(3y), f- = fxa_ =sin(2z)sin(y),
g5 =0, g1 = —sin(2w), g=0.

Because g = 0, the Poisson interface problem in (2.1]) simply becomes —V?u = f — gi or
in Q) with the Dirichlet boundary condition u|s, = ¢g. The numerical results are provided in

Table and Fig. 2.10]
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Table 2.9: Performance in Exampl
finite difference scheme in Theorems

and h = 277 x 3.5 respectively.

1] and |

o

23and|ﬁ

2.12| of the proposed sixth order compact 9-point
on uniform Cartesian meshes with h = 277 x 27

Example |2. 11| Example |2. 12|

J | \lup — upsall2 | order | |lup — upjolloo | order | [[up — upsolls | order | [lup — upjallo | order
3 1.82E4-00 0 2.71E+00 0 2.11E-01 0 3.94E-01 0
4 | 1.52E-02 | 6.900 2.37E-02 6.840 | 1.96E-03 | 6.745 4.65E-03 6.406
) 1.09E-04 7.128 1.83E-04 7.017 1.73E-05 6.828 3.43E-05 7.085
6 7.03E-07 7.272 1.23E-06 7.211 1.39E-07 6.959 3.13E-07 6.773
7 4.11E-09 7.418 7.61E-09 7.340 8.11E-09 4.098 6.00E-08 2.383

344 y=cos(x)

05
157
> 0.00 -
-1.57
314 . :
-3.14 1.57 0.00 157 3.14
x2/2+yf/2-2=o

3.50

263

> 175

0.88

0.00

0.00 0.88

1.75 2.63

X

3.50

0.15

0.1

Figure 2.9: Top row for Example the interface curve I' (left) and the numerical solution
up, (right) with h = 277 x 27. Bottom row for Example the interface curve I' (left) and the
numerical solution uy, (right) with A =277 x 3.5.
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2.3.6 One numerical example with unknown u, sharp-edged I' and
rnoQ =40

In this subsection, we provide one numerical experiment such that the exact solution u of
(2.1 is unknown, the interface curve I' is sharp-edged and I' dose not touch the boundary
of Q.

Example 2.14. Let Q = (—37“, 37“)2 and the interface curve be given by I' := {(z,y) €
Q: ¢(x,y) = 0} which is shown in Fig. [2.10 More precisely, the sharp-edged interface is a
square with 4 corner points (—2,0), (0,2), (2,0) and (0, —2). Note that I' N 9Q = () and the

coefficients of ([2.1)) are given by

f+ = fxo, = 8sin(2z) sin(2y), f- = fxa_ = 8cos(2z) cos(2y),
Bo=-3 g=0  g=0.

The numerical results are provided in Table and Fig. 2.10]

Table 2.10: Performance in Examples and of the proposed sixth order compact 9-point
finite difference scheme in Theorems and on uniform Cartesian meshes with h = 27/ x 27
and h = 277 x 37 respectively.

Example |2.13| Example |2. 14|
lup, — upsalla | order | |[up — up ol | order | |lup — up ol | order | [up — up ol | order
8.61E-01 0 9.54E-01 0 7.44E+00 0 8.73E4-00 0

1.47E-03 9.196 2.36E-03 8.662 | 1.22E400 | 2.614 6.12E-01 3.835
3.11E-05 5.599 8.19E-05 4.846 3.88E-01 1.646 2.57E-01 1.254
2.81E-06 3.468 1.57E-05 2.382 5.30E-02 2.874 4.01E-02 2.679
5.71E-07 2.301 6.39E-06 1.299 6.58E-03 3.010 5.31E-03 2917

O U Wy

Remark 2.8. The interfaces of Examples and are shown in Fig. 2.10] Note that
I'NIQ # () and the angle between I' and 02 is not 7/2 in Example [2.13] and the interface
is sharp-edged in Example [2.14] Thus, the solutions of Examples and would both
contain singular functions which will affect the convergence rate (see Table for details).

2.4 Conclusion

To our best knowledge, so far there were no compact 9-point finite difference schemes avail-

able in the literature, that can achieve fifth or sixth order for Poisson interface problems
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Figure 2.10: Top row for Example the interface curve I' (left) and the numerical solution
up, (right) with h = 277 x 27. Bottom row for Example the interface curve I' (left) and the
numerical solution wuy, (right) with h = 277 x 3.

with singular source terms . Our contribution of this chapter is that, we construct the
sixth order compact 9-point finite difference schemes on uniform meshes for with two
non-homogeneous jump conditions and provide explicit formulas for the coefficients of the
linear equations. The explicit formulas are independent on how the interface curve partitions
the nine points in a stencil, so one can handle the 72 different cases configurations of the
nine-point stencil with respect to the interface. The matrix A of the linear equations Ax = b,
appearing after the discretization, is fixed for any source terms, two jump conditions and
interface curves, and this allows for an easy design of preconditioners if iterative methods
are used for the solution of the linear system associated with interface problems. The inde-
pendence of A also allows us to directly use the zero extension and the FFT acceleration in
B3I to solve Ax = b without adding new unknown variables to obtain the augmented system
and using the Schur complement to solve it. This is particularly useful in case of moving
boundary problems. Furthermore, we prove the order 6 convergence for the proposed scheme
using the discrete maximum principle. Our numerical experiments confirm the flexibility and

the sixth order accuracy in [y and /., norms of the proposed schemes.
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2.5 Proof of Theorem 2.4

Proof. Since the tangent vector at ¢ of the curve I" parameterized by ((1.5)) is given by (2/,y) =
(r'(t),s'(t)), the unit normal vector 7i(r(t) + 7, s(t) + y;) at the point (r(t) + z7, s(t) + y7)
pointing from €2_ to {2, is given by one of

A(r(t) + a5 s(t) + ) = £ =)y (&0, 2r(D)

VIR + (02 V@2 + (1)

Let us firstly consider

(S0, ~r'() )as
IO+ 502 2%

Now we shall use the interface conditions in ([2.1)). Plugging the parametric equation in (|1.5))

i(r(t) + a7, s(t) +y;) =

into the interface condition [u] = gg on T', near the base point (z},y;) we have

wy (r(t) + a7, s(t) + y;) — u_(r(t) + a7, 5(t) + ;) = g5 (r(t) + 27, s(t) + ), (2.34)
for t € (—e, €). Similarly, for flux, we have

(Vup)(r(t) + 7, 5(t) +y7) - 7i(r(t) + 27, 5(t) +y7) = (Vu)(r(t) + 27, s(t) +y5) - 2(r(t) + 27, s(t) + y5)
=gy (r(t) + a7, s(t) + 7).

for t € (—¢,€). Using the unit norm vector in (2.33)), the above relation becomes

(Vu)(r(t) + a7, s(8) + 57) = (Vu ) (r(t) + 27, s(t) + 57)) - (5'(2), —'(1))
= g1 (r(t) + 27, s(t) + y))V/ (' ()* + (s (t))?,

for t € (—e¢,€). Since all involved functions in (2.34) and ([2.35]) are assumed to be smooth, to

link the two sets u(ﬁv”) and u™" for (m,n) € A}, we now take the Taylor approximation
of the above functions near the base parameter ¢ = 0. By (2.21]) with M being replaced by

M — 1, we have

(2.35)

— U o (), 50) + Y A Quaman(r(8), 5(1) + O

(m,n)EAL, (m,n)€Ar—2
M

_ Z ug:m,n)gm’mp_'_ Z ﬂ(:m,n)qn”w * 4+ ﬁ(tM+1),
p=0 "\ (m,n)eA}, (mn)EAN—2
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where the constants g,, ,, and g, only depend on r¥(0) and s (0) for £ = 0,..., M, and
are uniquely determined by

M
Gan ngnp - tMJrl) and Qan Zanp - tMJrl)a tﬁo

More precisely,

1 dp(GMJn,n(T(t)v S(t)))

g — 1 dp(QM,m,n(r(t)7S(t)))
TP ) dep

y dm,n,p ‘= H dp

. p=0,...,M. (2.36)
t=0

t=0

Similarly, we have

M
g (r(t) + a7, s(t) + ) = > gh " + oM,
p=0

d? gy (r(t)+af,s(t)+y7) : .
ﬁ (sh T ») o for p = 0,..., M. Since Gy, is

a homogeneous polynomial of degree m + n and because r(0) = s(0) = 0, we must have
Gmnp =0 for all 0 < p < m+n by (2.36] - Define

where the constants gy, :=

gmn) .= uiLm’n) — (m,n) € Ay,
Consequently, we deduce from (2.34)) that

Z U(m’n)gm,n,p - Z (Usq-n " u(_m’n))gm,n,p = I, p=0,....M, (2.37)

(m,n)eA}, (m,n)eA},

where F{ 1= g&o and

Fp — Z <f£m,n)_ (mn)) an,p+gﬂp’ p:1’7M

(m,n)EAN—2

Note that goo0 =1 and gmnp = 0 for all 0 < p < m +n. We observe that the identities in
can be equivalently rewritten as

U0 = Fy = gb, (2.38)

and

|
—_

U( ’p)go7p,p + U L= 91,;; 1p = F - Z U(m n)gm NP p= M. (239)

(m,n)EA]l\/I,m+n<p
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On the other hand, (2.21)) with M being replaced by M — 1 implies that

Vug(r+al,y+y)) = > ul"VGeimale )+ > AV r,y)+O(WM),
(m,n)EAL, (m,n)EAN_2

(2.40)
for x,y € (—2h,2h). Using (2.40) and a similar argument, we have

Vs (r(t) + a5, s(8) + ) - (s'(8), = (1))
= 3 u"IVCMma(r(D), s(1) - (5(2), —r (1))

(m,n)eA},

+ S I Quma (r(8), s(1) - (5'(1), — ()

M-—1
_ ( (mn)gmnp+ Z f(mn)anp) * 4 ﬁ(tM),
(m

JEAL, (m,n)EAM—2

3

where the constants g, ,, and G, », are uniquely determined by

More precisely, for p=0,..., M — 1,

1L dP(VGarmn(r(t), s)) - (s'(t), —'(t)))

~mn = 241

t=0

and
- 1 (VQuma(r(t), s(t)) - (5'(t), —r'(1)))
Gmnp - P! dtp

=0
Note that each entry of VG s m.n(2,y) is a homogeneous polynomial of degree m+mn—1. By
r(0) = s(0) = 0 and (2.41), we observe that Gy, = 0 for all 0 < p < m + n — 1. Similarly,

we have

g1 (r(t) + a7, s(t) + )V (1) + gipt" + oY),

p=0

)_l
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as t — 0, where the constants g£p for p=20,..., M — 1 are uniquely determined by

r 1
gl,p . p| dtp

, p=0,....M—1.
t=0

(07 (r(0) + 2, (8) + ) VD)2 + (502

Consequently, (2.35)) implies that for all p=0,..., M — 1,

Z U(m’n)gm,nm = Z <u(+m R U(,mﬂ)) Gmnp = Gpa p=0,....M—1, (2‘42)

(m,n)eAL, (mn)EAL,

where

Gp - Z <f£m,n) _ (mn)) (jmnp +glp

(mvn)EAM—Q
Note that gopo = 0 and Gpnp = 0 for all 0 < p < m +n — 1. We observe that the identities
in can be equivalently rewritten as

U Gopp1+ UM DG 11 =Gpoy — Z U™ G mp1, p=1,..., M.
(m,n)EA}W,m+n<p

(2.43)
Using our assumption (r/(0))? + (s(0))* > 0 in (1.5, we now claim that

govpngl’p_17p_1 - gl7p_1’p§07p»p_1 > 07 vp = 17 et 7M'

Since the polynomial Gy . (z,y) in (2.7)) is a homogeneous polynomial of degree m +n, we

observe

Imnm+n = GM,m,n(T/(O)a 3/<0))> (ma Tl) € A}\/l

From the definition of G mn(z,y) in (2.7), we particularly have

L5]
-\ o (r'(0))*(s(0))P~* B ((0)) 2 (' (0))P~ 12
sz = )= 20)1(p — 20)! and g1, = Y (—1) =130

=0 =0
(2.44)
Clearly,
L) 41, if pis even, -1
VgJ = 5+ b and 2{]9 5 J +1=p, if p is odd. (2.45)

|22, if p is odd,
Similarly, we also have
gm,n,m-&-n—l = VGM,WJL(T,(O)’ 3,(0)) : (S/(0)7 _T/(O))7 (m7 n) € A}M
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From the definition of G (2, y) in (2.7), we deduce that

g(),p,p—l = VGM70,p(T,(0>7 S/(O)) : (S/(0)7 —T/(O))

L£]

B o (r'(0))* 71 (s (0))P 2
=2V i )

=1
L§]-1

—- > 1)

|

> (=)

((r(0)*F 1 (s'(0)) >

=0

20+ D)l(p— 20 —2)!

By (2.44)), (2.45)) and (2.46]), we conclude that

125

—1
el

() (0
20(p — 20 — 1)

1254
2 (T/(O))2Z+1(S/(O))p—2€—1
B ; (=1 20(p—20—1)1

)2£+1($ (0))P~ 20—1

gO,p,p—l p Z 26‘}‘ 1) (p QE ) _pgl,p—l,p'

Similarly,

By (2.44)), (2.45)) and (2.48]), we deduce that

Jrp-1p-1 = VGar15-1(r'(0),5'(0)) - (s(0),

125

(r'(0))*(s"(0)P~*

=2 (=1 (20)1(p — 1 — 20)!

B ) L0
- L D a1zt

(0))

—r
L5]-1

(r'(0) 2/ (02

(=1 (20 +1)!(p— 20— 2)!

:J
(=1)

(=1

~

,7
(M|

( (r'(0)*(s'(0))
20— Di(p— 200"

)%( '(0))r~*

J1p—1,p— 1—102

By @7 and @19,

Let

p 26) = P9o,p,p-

govp7p§17p_17p_1 - gl7p_17p§07p7p_1 = p(govp7p)2 +p(gl7p_17p)27 vZ) = ]‘ 7777 M'
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(2.48)

(2.49)

(2.50)
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125+

L] 2 2
_ _1)¢ P\ oyp/2—2 _1)t p 1/2+63(p—1)/2—¢
w <_O( ) <2£>ab + Zz:;)( ) 9041 a b

25 125
= i+ i+ pp—i=i 1)it+s p Ititjpp—1—i—j
Z- = (m) (27) P Y 2 (2#1)( : )“ b

1=0 j=0 =0 75=0 2‘7+1
2(2]  min(t,|2)) (2.52)

_ e P b pp—L
2 () )
£=0 i=max(0,£—|%])

QLPT_lJJrl min(f*l,l.pT_lJ)

S 2 (o) ()

i=max(0,{— LPTHJ )

Let us consider the first case: p is even and ¢ < [£]. Then

min(¢,| 2]) min(¢—1,| 25 |)

imax%_w(_l)g (5) <2(ep— i)) B 2. (Qii 1) (2(6 —pi) - 1)

i=max(0,0—| 2E* )

:;ﬁ;(‘”g@i)( D)2 (G ) e )

M

= (-1)" ::Z; (f) (2/0_ 2) - (—1):2;’5 (Z,Z) (%p_ Z) = (—1)K§;<—1)"(f) (zep— z)

_1)3 Z Coeff((l — x)P7 xi)coeff((l + x)?) 3;25—1') _ (—1)£Coeff((1 . :L,Z)p’ x%) _ <]Z>’

(2.53)

where the coeff(f(z),2™) function extracts the coefficient of 2™ in the polynomial f(x).
Similarly, we can prove that other cases can obtain the same result. By (2.51)), (2.52)) and

253).
W= Z( ) = (a0 = ("0 + (5'0)%) " (2.54)

According to (2.50), (2.51), (2.54) and (1.5)),

90,p.p91,p-1,p-1 — 91,p-1pG0,pp—1 > 0, Vp=1,..., M.
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Consequently, the associated 2 x 2 coefficient matrix in the linear system in - and -

is invertible and its inverse is given by

1 §1, —1p-1 —Y1p-1,
o [ ]

goyp’pg17p_17p_1 - glap_17pgo)p7p_1 _go,p,pfl gD,p,p

Hence, the linear equations in (2.39) and (2.43)) must have a unique solution {U») y(tr=11

with p = 1,... M, which can be recursively computed from p =1 to p = M by U®% = gl

due to (2.38) and

{7 (0.p)
U(lrpfl)

gOn,p+U(1n lgln 1,p
Ong()np 1+U(1n 1)gln 1,p—1

ZQp

], p=1,..., M.

(2.55)

Note that for p = 1, the above summation 22;11 is empty.
If the normal vector 7 in (2.33)) gives the direction from 2, to {2_, then we only need to
add a negative sign to all 7, ,,,. Since U (mn) — u(I“”) — u(,m’n), the identities in and
prove all the claims. O
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Chapter 3

A High Order Compact 9-Point Finite
Difference Scheme for Elliptic
Interface Problems with
Discontinuous and High-Contrast

Coeftlicients

3.1 Introduction and problem formulation

Elliptic interface problems with discontinuous coefficients appear in many real-world appli-
cations: composite materials, fluid mechanics, nuclear waste disposal, and many others. In
Chapter [2| we derived a sixth order compact 9-point finite difference scheme for the Poisson
equation with singular sources, whose solution has a discontinuity across a smooth interface.
The most important feature of the scheme in Chapter [2|is that the matrix of the resulting
linear system is independent of the location of the singularity in the source term. In this
chapter, we consider the more general case of an elliptic interface problem with a discon-
tinuous, piecewise smooth, and high-contrast coefficient, and a discontinuous source term.
The problem involves two non-homogeneous jump conditions across an interface curve, one
on the solution, and the other on the normal component of its gradient. In summary, the

goal of this chapter is to derive a high order compact 9-point finite difference scheme for the
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elliptic interface problem with piecewise smooth coefficients and sources:

(V. (aVu) = f inQ\T,

[ul = g onT, (3.1)
[aVu-7i]=gf onT, -

u=gqg on 0f).

\

Here 7 is the unit normal vector of I' pointing towards €2, and for a point (xg, o) € T,

[U](l’o, yO) = (ZB)IEI%Z+ U(iL', y) - (z,lyl)rel})_ U(l‘, y)v (32)
(z,y)—(0,%0) (z,y)—(0,Y0)
[aVu-ii|(xg,yo) == lim  a(x,y)Vu(zr,y)- 71— lim a(z,y)Vu(z,y)-7. (3.3)
(wy)eQy (zy)eQ_
(z,9)—(z0,y0) (z,y)=(z0,y0)

For the convenience of readers, an example for (3.1)) with ¢ (z,y) = 22 +y? — 2 is illustrated
in Fig. 3.1}

avu i =gl T
[u] = gg I+
7
o) D
g
O\[ =0, UQ_

Figure 3.1: The problem region Q = (—n,7)? and the two subregions Q; = {(z,y) € Q
Y(x,y) >0} and Q_ = {(z,y) € Q : P(z,y) < 0} partitioned by the interface curve I = {(z,y) €
Q : (x,y) = 0} with the function ¥(z,y) = 22 + 3% — 2.

In this chapter we consider the elliptic interface problem in (3.1)) under the following

assumptions (Note that the main results in this chapter have been written in [33]):

(A1) The coefficient a is positive, piecewise smooth and has uniformly continuous partial
derivatives of (total) orders up to four in each of the subregions €, and €2_. Note that

a can be discontinuous across the interface I'.

(A2) The solution u and the source term f have uniformly continuous partial derivatives of

o4



(total) orders up to five and three respectively in each of the subregions 2, and €2_.

Both v and f can be discontinuous across the interface I'.

(A3) The interface curve I' is smooth in the sense that for each (z*,y*) € T', there exists
a local parametric equation: 7y : (—¢,e) — ' with € > 0 such that v(0) = (z*,y*)
and [|7/(0)|l2 # 0. Furthermore, z(¢) and y(¢) in (1.5) should both have uniformly

continuous derivatives of (total) order up to three for the variable ¢t = 0.

(A4) The one-dimensional functions g} oy and gf o~ have uniformly continuous derivatives
of (total) orders up to three and two respectively on the interface I', where v is given
in (A3).

This chapter is organized as follows.

In Section |3.3.1] we construct the fourth order compact 9-point finite difference scheme
for the numerical solution at regular points. The explicit formulas at regular points are
shown in Theorem [3.2.

In Section [3.3.2] we derive the third order compact 9-point finite difference scheme for
the numerical solution at irregular points, and discuss its accuracy order in Theorem [3.4]

In Section [3.3.3] we numerically verify the sign conditions of our proposed compact 9-
point finite difference scheme and prove the fourth order convergence rate by the discrete
maximum principle in Theorem [3.6]

In Section 3.4} the explicit formulas for the local calculation of the gradient approximation
at regular and irregular points are shown in Theorem [3.7 and Theorem 3.8] respectively. Note
that the gradient computation is done explicitly.

In Section [3.5, we provide numerical results to verify the convergence rate measured in
the Il and [, norms for the numerical solution u;, and the gradient approximation Vu,. We
consider two test cases: (1) the exact solution is known and I' does not intersect 02 and
(2) the exact solution is unknown and I' does not intersect 0f2. Note that, we compare our
proposed compact 9-point scheme with the second order 1IM, EJIIM, MIB, AMIB, and the
fourth order IIM in Example [3.1] and choose the coefficient contrast as sup(a)/inf(a_) =~
107% and 10° in Examples [3.2] to

In Section [3.6] we summarize the main contributions of this chapter. Finally, in Sec-
tion [3.7, we present the proof of Theorem

3.2 Preliminary

We extend the results in (2.2)) of Poisson interface problems to the elliptic interface problems

by the following lemma:
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Lemma 3.1. Let u be a function satisfying —V-(aVu) = f in Q\I'. If a point (z},y}) € Q\T,
then
u(m’,n’) _ (_1)\_%/ju(odd(m’),n’—f—m’—odd(m’)) + Z A u(m,n)

m' n' mmn

(m, n)EAm Fnl—1

Lm’/2J )Ef(m —20,n'+20—2)

+Z

+ Z A?fw n' mnf(m’n)7 V( ) € AM+17

(m,n) EAm’+n’73

(3.4)
where the subsets Ay, and A3, of Ayry1 are defined by

A = At \ Ay with Ay o={(l,k—0) :k=(,...,M+1—Clandl=0,1},
(3.5)

and

A%’,n’,m,n = ( 00) ol Z m/ ,r/,m,n,k( H (a(i’j))dml " mnl]k)? (36)
(4,9

1,7 EAm/+n/71

Afn’,n’,m,n = 1f Z m’,n’ m,n,k ( H (a(id))dinl ' matsdd, k) ; (37)

(@(©.0)) %t i (11 €At

df

m/.n' mmn’

du

m’,n’

where all d*

e o gk and d mnijk @re no-negatie integers, Cy,

m’.n’ m/ n' mmn,k

and C’m, oo 0T€ two constants. All above constants are uniquely determined by the identity

in (3.8).

See Fig. and Fig. for an illustration of the quantities u™™ with (m,n) € A},
u™™ with (m,n) € A3, a™" with (m,n) € Ay and f™" with (m,n) € Ay_1 in
Lemma B.1] with M = 4.

Proof. By our assumption, we have au,, + auy, + a,u, + ayu, = —f in Q\ T, ie.,

a(lvo)u(l’o) + a(071)u(071) (0 ) f(0,0)
J— u ? J—

(2,0) — _
u - (0,0) q(0,0) "

(3.8)

Then it is clear that for all 24+n' < M + 1,

(0,n)
@) — _y0m2) Y _f 3 (m.n)
u =—u + A2 ,n/,m, nU CL(O’O) + AZ ,n/,m nf :

(m,n)eA! (m,n)eN,1_4

/+1
where AY

5t m.n and A;n,,m’n are defined in (3.6) and (3.7)) respectively. Similarly to (3.8]),
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we have a, Uz, + Qg + Qrllyy + AUy + Qpplly + Qpllyy + Qrylly + Gy, = —f in Q\ T So

50 _ 2a(1004(20) 1 (10)4,(0.2) 4 (2,0)4,(10) 1 (1,1, (0.1) 4 5(0.1),(1,1) s F0.0)
- —q(00) a0.0)"

(3.9)

Plugging (3.8)) into the right-hand side of (3.9]), we obtain

£0.0)

(3,0) — 12 (m,n) mn)
u + 30mn (1(00 30mn :

(m,n)EA] (m,n)EA

Then for all 3+n' < M +1,

/ / (1,n")
W3 — _u(l,n+2)+ Z Agn ol wmn) f ) + Z A3n mn

(mmn)eA;, ., (m,n)€EA,,/

Calculate the left w™ ™) (m/,n') € A3, by the order {u*® u®D . @M=" 5,50

wBD L aGM=Y Ly M“’O } and use the above identities recursively, to obtain (3.4]).
O
W00 (10
CEIRNRY
W02 L02)
W03 18)
WOh
(05
g RS —
~ g
(™™ s (my ) € Abgyy} {ul™m™ s (m,n) € Ajr40)

Figure 3.2: Red trapezoid: {u(™™ : (m,n) € A} } with M = 4. Blue trapezoid: {ulmn) .
(m,n) € A3, } with M = 4. Note that Apry1 = Aj, UAT .

Note that Apy1 = A,y U A3, . The identities in (3.4) of Lemma show that
every u(™™ in {u(™™ : (m,n) € Ajp41} can be written as a combination of the quantities
{umm™ : (m,n) € Ay}, {a™™ 2 (m,n) € Ay} and {f0 : (m,n) € Ay—1}. As the
coefficient a and the source term f are available in , could reduce the number of
constraints on {ul™" : (m,n) € Apy1} to {ul™ : (m,n) € A}, }. By @27, and
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Figure 3.3: Red trapezoid: {a™™ : (m,n) € Ay} with M = 4. Blue trapezoid: {f™" :
(m,n) € Apr—1} with M = 4.

(3.4)), the approximation of u(x + 27,y + y;) in (L.9) can be written as

mln!
(m,n)EANM 41 (7n,n)€/\}u_*_1 (m’;ﬂ')EA?VH_l
m',n’

! !
m n
= E E A w(mm) Ty I Af f(myﬂ) ™y
m’,n',m,n m/In/! z : 2 : m’,n’,;m,n m/In!!
(m’,n’)GA?VI+1 (mwn)eA:n/+n/_l (m/»n,)eA%/[+1 (mvn)EAm/Jrn’—B

(m,n) (m,n) (m’,n")
u u u ’ ’
§ — xmyn § :L,myn E M yn

I Lm'/2] £ p(m’—20,m'+20—2)
"'L/ !’ ! ! ’ 71 '
N Z (—1) ] (edd(m)n’+m’ —odd(m ) LY + E E )'f

m/In'!
(m/,n')eA?

m’ ’ﬂ/
ry

a(0-0) m/In'!
M+1 (m/,n')eA? =1

M+1
(m,n)
U m, n
+ Z m!n! Y

(mn)EA} L,

u xm'yn/ (m,n) f xmlyn/ (m,n)
- Z Z mnmen T u Z Z Am’,n/,m,n P
(m/,n (m/,n

. , , m/In/|
(m,n)eN}, e (m,n)eAN_2 et
m!/4n' >m4n+1 m!4+n’' >m+n+3

L3) 0 m+20, n—20 1+15] € m20, n—20+2
+ (—1)1‘ + Y u(m,n)_|_ (_l)x + Y + 1 f(m,n)
2\ 2 ey ( 2 ) e IR

£=0

(mn)eA}, YEANM 1 \L=1—[%]
== Z u(m’n)GM—}-l,m,n (33, y) + Z f(m,n)QM—l-l,m,n (.T, y)7
(m,n)GA}VIJrl (m,n)EAN—1

where for all (m,n) € A},

L3]

-1 €$m+2£ n—20 m', n'
Grirman(T,y) = =1 /

Ty
E T 3.10
(m +20)(n — 20)! * T /1 (310)

£=0 (m’,n’)EA?\/H_1 \A2

m—+n
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and for all (m,n) € Ay,

-1 éxm+2€yn—2é+2 1 :L.m’yn’
QM+1,m,n(x7 y) = ( ) 0.0 + Z Aﬁm’ n'mmn .70 "
(m+20)!(n — 20+ 2)! (00 T m/ In/|

/=1 (m’,n’)GA%{+1\AEn+n+2

(3.11)

From (3.10) and (3.11]), we observe that Gary1.mn(2,y) and Qrr41.mn(x,y) are polynomials
of total degree M + 1 for all (m,n) € Aj,,, and all (m,n) € Ap_1, respectively. Note that

every coefficient of 27y* in the polynomial Qas41.m..(x,y) vanishes for all j+k < m+n+2.
Thus, the approximation in ([1.9)) becomes

u($+x:7y+y;k) = Z u(mﬂ)GM—l—l,mm(l‘ay)_}' Z f(m7n)QM+1,m,n(x7y)+ﬁ(hM+2)a

(m,n)EA}MJrl (m,n)EAN—1

(3.12)
for x,y € (—2h,2h), where u is the exact solution for (3.1)) and (z},y;) is the base point.
Note that (3.12) is the key point to derive compact 9-point finite difference schemes for

regular and irregular points with the maximum accuracy order.

3.3 A high order compact 9-point finite difference scheme

for computing v using uniform Cartesian grids

In this section, we construct a compact 9-point finite difference scheme for numerical solutions

of the elliptic equation in (3.1)) at regular and irregular points.

3.3.1 Stencils for regular points

In this subsection, we discuss the derivation of the stencil for a compact 9-point finite d-

ifference scheme centered at a regular point (x;,y;). For the sake of brevity, we choose
(z7,y7) = (w5,5), i.e., (z,y;) is defined in (1.6) with vy = wy = 0. Similar to Section m,

we have

11
Lou:=h"? Z Z Cre(h)u(xi + kh,y; + Ch)
k=—16=—1

1 1
= > ™I NN ()G man (K, £h) (3.13)

(1’n,n)€/&}\4_~_1 k=—1/(=-1

+ Y g (h) + (M),

(mmn)eAr—1
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h — 0, where

M+1 1 1
Cre(h) =Y cruph®s  Tnn(h) = D> Cru(W)h™>Quis1man(kh, Lh), (3.14)
p=0 k=—1/¢=-1

and the polynomials G i1mn(z,y) and Quri1.mn(x,y) are defined (3.10) and (3.11)). Then
the following compact 9-point finite difference scheme (3.15) for —V - (aVu) = f at the

regular point (z;,y;):

1 1
Lyuy, == h™? Z Z Cre(h)(Un)ithkjre = Z £ 7 (R, (3.15)

k=—1/=-1 (m,n)GA]w,1

has the accuracy order M for the numerically approximated solution wuy, i.e., Lp(u — up) =
O(hM), h — 0, if

1 1
> Ceslh)Garsrmn(kh, th) = O(WM*?), h—0, forall (m,n) € Ay, (3.16)

k=—1¢=—1

By calculation, the largest integer M for the linear system in (3.16) to have a nontrivial
solution {Cj¢(h)}ri=_101 is M = 6. Define a,,, = a™"/a®" for m,n € Ny and m +
n > 0. Because in this chapter we are only interested in M = 4, one nontrivial solution
{Cre(h)}ke=—101 to (3.16) with M = 4 is explicitly given by

2 2 3 K 2 2 3
C_1,1(h) =1 —[ao,1 + a1,0lh + [§(a0,1 +a1,0)°]h° + [($ag 1 + Sa1,0a5 1 + F(al g —4a0,2 —5a11 —az0)ao,1 — 3)af
3 3 2
+ %(—ao0,2 + 6az,0 — 3a1,1)a1,0 + §(az,1 +ao,3 —az,o — a1,2)]h° + [4(a0,1 + a1,0)(ag, 1 +3a1,0aq 1)

2 4
+ (7aj ¢ — 2a0,2 — 2a1,1 — 3az,0)a0,1 + 7a§0 + (—2a0,2 — 8az,0 — 3a1,1)a1,0 + az2,1 + ao,3 + 2az,0 + 2a1,2]h",

2 3 2 2 3
C_1,0(h) =4 — [2a0,1 + 4a1 0]k + [2a1,0(a0,1 + a1,0)]h° + [ — a3 1 — Za1,0a5 1 + F(—10a] o +8ag 2 + 8a1,1 + 2a2,0)a0,1 + Fai o
3 4 3 2 2
+ (a0,2 — a2,0 + 3a1,1)a1,0 — 3(a2,1 —a0,3)]h° + [ — fag 1 — %ao,lal,o + i(—7a1,0 +2a0,2 + a1,1 + 3az2,0)ag

1 3 E P 1 4
+ 3 (=7ay o + (3ag,2 + Taz,0 + 3a1,1)a1,0 — a2,1 — a0,3 — a3,0 — a1,2)a0,1 — za1,0(—a1,0a1,1 + ao,3 +az,1)]h",

2 2 3 2 2
C_1,1(h) =1 —a1,0h+ [ao,1a1,0 + FaT o —a11]h” + [ = $a] o — $a0,10] o + $(4ad  —ao,2 +a1,1 +6az 0)a1,0

3 3
+ 2ap1 + $(—4a02 —az2,0 —a1,1)a0,1 + $a2,1 + ao,3 — $as0 — a1 2]h%, (3.17)
e/ h) =4 — [4 2 h+[La2 |, +2 3,2 - R2+[—ad, -3 2 3 _1
0,—1(h) =4 — [4ao,1 + 2a1,0lh + [gag,1 +2a0,1a1,0 + 547 o +a0,2 —a2,0]h” + [ —ag 1 —3a1,0a5,1 + Fa1,0a1,1 — 3a2,1
2 3 3 2 2 3
— %aoﬁg + i(712”’1,0 + 4ag,2 + 8a1,1 + 6az,0)ag,1]h” + [ — iao)lal‘o + i(73a1,0 +ai,1)agq + i(77“1,0
3 4
+ (ao,2 + 4az,0 + 2a1,1)a1,0 — a3,0 — a1,2)a0,1 + 5a1,0(—5aj o + (a0,2 + 4az0 + a1,1)a1,0 — az,0 — a1,2)]h*,
Co,0(h) = — 20 + [10ag,1 + 10a1 0]k + [ — 7ag,1a1,0 — 6a] § — 2a0,2 + 2a1,1 + 2a2,0]h° + [§af o + LLap 10] ¢
2 3 . 3
+ %(8%,1 —ag,2 — 5a1,1 —4azg)ai,0 +agq + $(—2a0,2 — 3az,0 — 5a1,1)a0,1 + 5(az,1 + ao,3 + as,o + a1,2)]h°,
2 2 2
Co,1(h) =4 — 2a1,0h + [ — §ag 1 + §ai o + ao,2 — az,0]h”,

[
C1,—-1(h) =1 —ag,1h + [%a%,l +ag,1a1,0 — a1,1]h%, C1,0(h) =4 — 2ap,1h, C1,1(h) = 1.

Thus, for a regular point (x;,y;), the following theorem proves the fourth order accuracy

for the compact 9-point scheme. This result is well known in the literature (e.g., see [8]

(14} 109 (I06] BT 79, B, T15]).
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Theorem 3.2. Let (z;,y;) be a regular point and (uy,);; be the numerical approzimation in
(3.15)) of the exact solution w of the partial differential equation in (3.1)) at (z;,y;). Then
the compact 9-point scheme centered at the regular point (x;,y;) in with M = 4 has a
fourth order consistency error at the reqular point (x;,y;), i.e., the accuracy order for uy, is

am+n

four, where Cy. o(h) are defined in (3.17)), a™™) = gnmx—%(xi,yj) and fmm) = mz—aj;(x,;,yj).

Furthermore, the maximum accuracy order M for the numerically approximated solution
at the regular point of a compact 9-point finite difference scheme which is based on Taylor
expansion and our sort of technique in (3.15) is M = 6.

3.3.2 Stencils for irregular points

The derivation of stencils for irregular points is similar to Section [2.2.2] while the discon-
tinuous coefficient a(z,y) causes some difficulties. So in order to help readers understand
clearly, we also provide all the details like Section [2.2.2] Let (z;,y;) be an irregular point
and we can take a base point (z},y;) € I'0 (z; — h, x; +h) X (y; — h,y; + h) on the interface
I and inside (z; — h,z; + h) X (y; — h,y; + h). That is, as in (1.6)), we have

vy =x; +voh and y; =yj+weh with —1<w,wo<1 and (z,y;)€Tl.

Let a4, us and fi represent the coefficient a, the solution u and source term f in 2.
As in (1.7)), we define

am—i—n am—i—n

(m,n) | a+

) = e ) O iy _ O
* omxdy

(7,95),  ug = Fmzony Ly, I = Graony

(@7, 7).

(3.18)
Similarly as the discussion for the irregular points in Section [2.2.2] the identities in (3.4]) and
(3.12) hold by replacing a, v and f by a4, uy and fy, i.e.,

ur(ztal,y+yl) = Y. wGE @)+ Y YR () O, (3.19)

(WL,n)EA}VIJrl (mn)eEAM_1

for x,y € (—2h,2h), where the index sets Aj, ; and Ap_; are defined in and (L.8),
respectively, and the polynomials Gﬂj}Hmm(:p,y) and Qf/[+17m7n(1’,y) are defined in (3.10)
and by replacing a by a4..

Similar as Theorem [2.4], according to the two jump conditions for the solution and flux in

(3.1]), we can link the two sets {u(_mn) }mmyeat, and {uT’n)}(mm)e a1, by the following theorem,
whose proof is given in Section . Since the coefficient function a(z,y) is discontinuous

across the interface curve I', we need to add T"f in the following theorem.

m’ n' mmn
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Theorem 3.3. Let u be the exact solution to the elliptic interface problem in (3.1). Assume
that the base point (x},y;) € I' and I' is parameterized near (z},y;) by (L.5). Then

" /) Z T:"f" m”u‘:n " + Z (Trt’,n’,m,nf(m " + T7; n' mnf(m n)>

(m,n)eA}, (m, n)EAM,z

+ZT5$n 90 T ZTffn Loy Y (mn') € AL,

(3.20)

where all the transmission coefficients T+, T, ng, T9 are uniquely determined by r(k)(O),

s®(0) fork=0,...,M and {aim’")}(mm)eAM_l, and the quantities g1 p, g, are defined to be

1 dP » *
Gop = Sy g 90 P+ s@ +9)]| . p=0.1 A, (3.21)
and
1 dP X *
Ay = g (0O +al 5@+ VEOF 0P| L p=0t M-t

(3.22)

Similar as Section [2.2.2) by (3.19) with M being replaced by M — 1 and two jump
conditions (3.2) and (3.3) at an irregular point (z;,vy;), we have

Lhu = Z ZCM u(a; + kh,y; + Ch)
k=—1/0=-1
Z Ckg l‘ + (vg +k>h yj w0+€ Z Cke x + (Uo +k‘)h yj (w0+€)h)
(k,0)ed]; (k0)ed;
= 3 R Y R () + Z TRET e ()
(m,n)EA}VI (mn)EAM—2 (m,n)eA}V[

+ho D U0 () + 6(hM)

(m,n)EAM_2

(3.23)
where
M
Cro(h) = ckeph?s  Lio(h) = Y Cra(h)Giy (0 + k)b, (wo + O)h),
0 (k.O)edy (3.24)
Ta0(h) = > Cra(h)h Qi n((vo + k), (wo + )R).

+
(k, e)edw

Note that both I (h) and J39(h) are polynomials of h, because G an(:c y) (3.10) and
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Qimvn(x,y) (3.11]) are bivariate polynomials and every coefficient of z7y* of Qim,n(x,y)

vanishes for all j + k < 2. Using (3.20) in Theorem we obtain

SoWd™ O, sy = 3 W Ty Y (fim’")Jnt:f(h)

(m/;n’)eAy, (mn)eAl, (m,n)E€AN—2
M M—-1
ST R)) A+ D g T I () + 3 gb b
p=0 p=0
where
J#LJ,%T(h) = Z ]T_n’,n’(h>T:rLL-"_,n’,m,n’ J;‘rtl,’?j‘;(h) = ];L’,n’(h)h QTrzrf’n ,m,n’
(m’,n’)GA}w (m’,n’)EA}u
r r
JEm) = N L WTS L, TR = S L (T,
(m/,n')eAl, (m/,n")eAl,

(3.25)

In the proof of Theorem in Section , we shall prove that Tnf = 0in (3.20) for
(m/,n') € AL, with m/ +n" < 2. So (3.24) implies that every coefficient of h* of Jk(h) in

(3.25)) vanishes for all £ < 0. Similar as Section [2.2.2] let define

1 1

Lhup:=h™t Z Z Ch,e(h)(un )ik, j+e

k=—16=——1

o ) M1 ) (3.26)
= > n () S ) R (ST )+ Y gl (),
(m,n)EANM—2 p=0 p=0

where

Lnn(h) =1 (h) + JunT(h), Ty (h) == Jon(h) + ok (h). (3.27)

Then the compact 9-point finite different scheme (3.26) at the irregular point (z;,y;) has

the accuracy order M for the numerically approximated solution wuy, i.e., L} (u — up) =

OhM), h— 0, if I,,,(h) in (3.27) satisfies
Lnn(h) = O(RMTY),  h—0, forall (m,n)€ A}, (3.28)

Now we obtain the following theorem for a compact 9-point finite difference scheme at

irregular points with the accuracy order M.

Theorem 3.4. Let (x;,y;) be an irreqular point and wy, be the numerical approzimation in

(3:26) of the exact solution u to (3.1) at (w;,y;). Pick a base point (x},y;) € I' as in (L.6).
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Then the maximum integer M is 3 for the linear system induced by (3.28|) to have a nontrivial
solution {Ce(h)}ri=—101 and its corresponding compact 9-point finite difference scheme in
(3.26) with M = 3 at the irreqular point (x;,y;) has the accuracy order 3.

With the help of free parameters in {C ¢(h) }xr=—1,01 in Theorem we shall numerical-
ly demonstrate in Section [3.3.3]that one can always obtain a compact 9-point finite difference
scheme in Theorem satisfying the discrete maximum principle for sufficiently small h.
Thus, we shall prove in Section that the compact 9-point finite difference scheme in
Theorem satisfying the discrete maximum principle must have the convergence rate of

order 4.

Theorem 3.5. The maximum accuracy order for the numerical approrimation u, at an
wrreqular point of a compact 9-point finite difference scheme which is based on Taylor expan-
sion and our sort of technique in (3.26)) is three, i.e., the largest M such that the nontrivial

solution {Cye(h)}ri=—101 exists for (3.28) is M = 3.

Proof. Let us consider the following simple case: I' = {(z,y) € Q : ¢(z,y) = 0} with
Y(ry) =20 —y, o =y; =0, 3.1 = yj1 = —h, Tip1 = yj1 = h, 2] = 1 = 0,

y; = y; = 0and 1 = (2\’/_51) (see Fig. for an illustration). From (3.28]), the source
term f1 and the two jump functions g§ and g} do not affect the existence of the nontrivial

solution {Cy ¢(h) }re=—1,01 of (3.28). To further simplify the calculation, we can assume that
f+ =95 =gi =0. Then it is easy to check that all {Cy ¢(h)}xr=—101 of (3.28)) are zeros at
h =0 for M =4 and a_(0,0) # a.(0,0). So (3.28) only has a trivial solution for M = 4.

]
(=h.h) (0.n) /h)

(=h,0) (O, (h,0)

(=h,—h) f(0,—h) (h,—h)

/

Figure 3.4: One simple example for irregular points. The curve in red color is the interface curve
I'={(z,y) € Q : 2z —y =0}, the left of T" is Q_ and the right of I" is Q.

Finally, for any finite difference schemes of accuracy order M in (3.15)) at regular points
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and in (3.26)) at irregular points, we always have

> ) Cre(h)=0. (3.29)

k=—1¢=—1

Indeed, u = 1 is the solution to with f =0, g6 = g1 = 0 and g = 1. For regular
points, we plug the exact solution u = 1 into and conclude from that S(h) :=
S S Cru(h) = O(hM+2) as h — 0, which forces S(h) = 0 due to deg(S) < M + 1
by . Similarly, for irregular points, we plug v = 1 into (3.23) and conclude from ({3.28|)
that S(h) == S ,__ S2__, Cre(h) = O(hM*Y), which forces S(h) = 0 due to deg(S) < M
by .

3.3.3 Convergence analysis

For the immersed finite element/volume methods as in [B0, @2], when the interface passes
through elements, special nodal basis functions are constructed to approximately satisfy the
two jump conditions in and . Then the authors form the corresponding immersed
finite element/volume space to obtain the error estimates. By using an auxiliary function,
2] could transfer the model problem with nonhomogeneous jump conditions to an equivalent
problem with homogeneous jump conditions.
For finite difference schemes, if we have the following sign conditions on the coefficients

Cre(h):

Cre(h) <0, if (k,0) =(0,0),

Cre(h) >0, if (k,0) #(0,0),

(3.30)

then we can prove the convergence rate using the discrete maximum principle. Theorem 4.1
in [T4] theoretically proves that a particular 5-point scheme with the first accuracy order can
satisfy the sign conditions for any (z7,y;) € T N [(xi,y;) + (—h, h)?] satisfying |z; —
o} + |y; — y;] < V2h. Note that the points (z7,y}) = (z;+ ch, y; +ch) € [(z:, y;) + (—h, h)?]
do not satisty the last condition if ‘/75 < ¢ < 1. Then [74 Theorem 4.4] derives a theoretical
proof for the first order convergence rate of the 5-point scheme. While for the second order

9-point scheme, here we provide the following example:

ri=x; + §h, Yi =y — 1—0h, r(0)=1, §'(0)= —p G+ = 1, a_ =10,
(z; + kh,y; —h) € Q_, for k=—1,0,1, (3.31)

(x; + kh,y; +th) € Q,, for k=-1,0,1, (=0,1.
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We can directly check that for any f, gi and gi, it is impossible to have a second order 9-
point scheme coefficients {Cy ¢(h) }r——1,01 satisfying for the example in . Note
that (z7,y;) is not the orthogonal projection of (z;,%;) in (3.31). For the second order
compact 9-point finite difference schemes, [[4] and [I7] proposed Conjectures 5.1 and 4.1 for
the sign restrictions and then numerically proved the second order convergence rate
by the discrete maximum principle. [74] and [I7] also numerically verify the existences of
sign conditions of the second order 9-point schemes, where (z7,y;) is the orthogonal
projection of (z;,y;) in [[4] and (z},y;) = (¥7,y;) or (x;,y;) in [[. The theoretical proof
for the convergence rate of the first order compact 5-point scheme is not complete (due to
the required condition |z; — z}| + |y; — y;| < v/2h which often fails for a general interface I')
and the convergence rate of the second order compact 9-point scheme is unsolved in [74].

The goal of this subsection is to numerically prove that our proposed compact 9-point

finite difference scheme in Sections [3.4.1] and [3.4.2] has the convergence rate of order 4. For
any regular point (x;,y;), it is obvious that {Cj¢(h)}rr=—101 in (3.17)) satisfies the sign
condition in (3.30)) for sufficiently small A.

For any irregular point (z;,y,), we now numerically show that one can always obtain a

compact 9-point finite difference scheme in Theorem satisfying the discrete maximum
principle for sufficiently small A. Without loss of generality, we can assume (z;,y;) € Q4;
otherwise, we can consider the level set function — instead of v so that )_ for the level
set function 1 becomes (2, for the level set function —¢). Up to rotations and symmetry
transformations, for any interface curve I', we essentially have a total of 5 typical irregular
points cases for sufficiently small h, which is illustrated in Fig. 3.5

When h is sufficiently small, the interface I' near (7, y;) essentially behaves like a s-
traight line. For simplicity of discussion, after translation of the irregular point (z;,y;) to
(0,0), without loss of generality, we can assume that (z7,y;) is the orthogonal projection
of (21,3) = (0,0), or (x1,45) = (af.;) = (25,0) or (xf.4) = (z0,55) = (0.85). (0) = 1,
§'(0) = k and the intersection point of I' and x = 0 is (0, hb). For each of the five cases

in Fig. [3.5] to maintain the same set d;

;;» we naturally have restriction conditions on the

parameters k and b as follows:
(1) For d;; = {(=1,1)}, we have k € (0,00) and b € (max{k, 1}, 1+ k).
(2) For d;; = {(=1,1),(0,1)}, we have k € (0,1) and b € (max{l — k, k}, min{1, k +1}).

(3) For d;; = {(~1,0),(-1,1),(0,1)}, we have k € (0,2) and b € (max{l — kk —
1}, min{1, k}).

(4) For d; = {(-1,1),(0,1),(1,1)}, we have k € (-3, 3) and b € (max{0,k},1 — k).
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/

(1) di; ={(-1,1)} (@) d; = {(=1,1),(0, 1)} (3) d; = {(=1,0), (~1,1), (0, 1)}

/

B /
/
7

(4) di; ={(=1,1),(0,1), (1, 1)} () d; ;=(=1,~-1).(~1,0),
’ (=1,1),(0,1)}

Figure 3.5: Five cases of irregular points when h is sufficiently small. The curve in red color is
the interface curve I'. The center point is the irregular point (x;,y;).

(5) For d;; = {(=1,-1),(=1,0),(=1,1),(0,1)}, we have k € (1,00) and b € (max{0,k —
2}, min{1,k — 1}).

For each ¢ € {1,...,5}, we define D, to be the open domain described in the above
). For d;; = {(=1,1),(0,1)} of case (2) in Fig. , if k =1and b = 1, then
{( ,0), ( ,1),(0,1)} by and (L.3); similarly, if k = 1 and b = 1, then
(—1,0), (-1 1) (0,1),(1,1)}. These are the special limiting/boundary cases of (2)
in Flg. and can be easily covered by considering the closure D, of the open region D,
in case (2), i.e., k € [0,1] and b € [max{1l — k, k}, min{1,k + 1}]. To include all the special
limiting cases for cases (1)—(5), our analysis below considers the closure of the open regions
in cases (1)—(5).

For each case ¢ = 1,...,5, let {Cre(h) = Z;];W:o Ckeph?}ri——101 be a nontrivial solution

case (q

in Theorem for the stencil at the irregular point (x;,y;). If we normalize Cp(0) = —20,

then we have

—20, if (k,¢) = (0,0),

Cr(0) =
arsc+deg, ifk 0=—1,0,1and (k,0) # (0,0),
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with ¢ being a free parameter, where a,, and dj, only depend on a(io ’0), k and b. Moreover,

for a particular (K, ¢') # (0,0), ap ¢ = 1 and dpp = 0, ie., Cp(0) = c. For each case
g=1,...,5, it is easy to observe that the sign condition in (3.30) holds for sufficiently small

h if and only if there exists a constant c satisfying all the following conditions:

dk;,é > 0, if Ak, = 0,

c> _::_’za if Age > 0, v (k7€) € {_1>07 1}\{(()’0)}’ (3'32)
c< —:’“—”“’, if apy <0,

k¢

for every given (k,b) € D, in case (q) of Fig.[3.5. Due to the long complicated expressions of
ap¢ and dy ¢ for each case ¢ = 1,...,5, a theoretical proof of the existence of c is necessarily
complicated and technical and hence we leave this as a future research topic. Here, we
numerically verify the condition . More precisely, for each case ¢ = 1,...,5 in Fig. [3.5]
we take a dense enough set S, C E. We can easily numerically verify that for each (k,b) €
Sg, there always exists c satisfying (3.32)), where (2], y;) is the orthogonal projection of (z;, y;)
and (z7,y5) = (2},y;) or (z;,y;). This numerically proves that for every irregular point
(wi,y;), there always exists {Cj ¢(h) }rr=—1,01 in Theorem [3.4]satisfying the sign condition in
for sufficiently small A and hence such compact 9-point finite difference scheme satisfies
the discrete maximum principle. Thus, we have the following result on the convergence rate
of our proposed compact 9-point finite difference scheme in Theorems and [3.4}

Theorem 3.6. Under the assumptions (A1)-(A4) in Section[3.1, we consider the compact 9-
point finite difference scheme using {Cre(h) bro=—1,01 i1 for reqular points, and
the compact 9-point finite difference scheme mn Theorem using the above discussed
{Cre(h)}ke=—101 satisfying the sign condition in for irreqular points and sufficiently
small h. Then the compact 9-point finite difference scheme for the elliptic interface problem
mn has the convergence rate of order 4 for sufficiently small h, that is, there exists a

positive constant C' independent of h such that
lu — unlloo < ORY,

where u and uy, are the exact solution and the numerical solution of (3.1]), respectively.

Proof. For simplicity, we assume Q = (0,1)? and h = 1/N with N € N. We define Q;, :=
QN (RZ?), 0, == 00N (hZ?), Q, := QN (hZ?), and (z;,y;) := (ih, jh). So Q, := {(zi, ;) :
0 <i,j < N} and we also define V() := {(v);; : 0<i,j < N} with (v);; € R, and for
any v € V(Qy,), (v),; represents the value of v at the point (z;,v;). Using £, in (3.15) at an
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regular point (z;,y;), we define

(Ahuh)m = Ehuh and Flﬁj = Z f(m’n)t]mm(h)

(m,n)€As

By Theorem , we have L (u — up) = O(h*) as h — 0. Similarly, using £} in (3.26) at an

irregular point (z;,y;), we define
(Apun)ij = Lyup and  F ;= hF3 p(h) + Gy gr v ().

By Theorem we have £} (u — up) = O(h3) as h — 0. Therefore, the compact 9-point
finite difference scheme in Theorems [3.2] and can be equivalently expressed as: Find
uy, € V() satisfying

Apup =F on € with u, =g on 0.

Using (3.29) and (3.30]), we now prove the discrete maximum principle: for any v € V()

satisfying Apv > 0, we must have max(q, y,)eq, V(T3 ¥;) < MaxX(y, y,)co0, V(Ti, Y;)-

Suppose that max (v);; > max (v);;. Take (2, y,) € ), where v achieves its
(x4,95)€Qm (wi,y;) €02,

maximum in €2,. Because all the stencils satisfying (3.29) and the sign condition in (3.30)),

we have

Z Cre(D) (V) ms ke < —Coo(h)(0)mm-

k,ec{—1,0,1}
k#£0, ££0

0 < hs(AhU)m,n == CO,O(h)(U)m,n + Z Ck,@(h)(v>m+k,n+€7

k,te{—1,0,1}
k#£0, €£0

where s = 1,2, we have

~Coo(M)Wma < Y Cre(W)@)msnare < =Coo(h)(0)mn-

k,e{—1,0,1}
k#0, 0£0

Thus, equality holds throughout and v achieves its maximum at all its nearest neighbors of
(Tm, Yn). Applying the same argument to the neighbors in €, and repeat this argument, we
conclude that v must be a constant contradicting our assumption. This proves the discrete
maximum principle.

Define Uy := {u(2i,Yj) } (s, 4,)e0,- Our results in Sections |3.3.1 and [3.3.2] (more precisely,
(3.15) with M = 4 and with M = 3) show that there exists a positive constant C'
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independent of h such that

AU, =F + R with ||Rlgn0.llc < Ch' and ||R|q, |leo < Ch®, (3.33)

Qir

where ;, is the set of all irregular points (z;, y;) € Q. Define Ej, := U, —uy, on Q. Because

Apup, = F, we have
AhEh = AhUh - Ahuh =R on Qh with Eh =0 on 8Qh

Let n be the unique weak solution to —V - (aVn) = 1 on Q with the Dirichlet boundary
condition n = 0 on 092 and two jump conditions [n] = [aVn-7] = 0 on . Then 7 is
continuous and piecewise smooth. Without loss of generality, we assume that the inner
region is €)_ as illustrated by Fig. |3.1} otherwise, we can replace the level function ¢ with
—1) so that the inner region is {2_. We define a function ¢ on 2 such that ¢ =7 on Q, and

¢ =n—1o0n Q_. Then it is trivial to observe that ¢ is a solution to

;

V-(@Ve)=1 inQ\T,

ol =1 on (3.34)
[aVe-n] =0 on I,

=0 on 0f).

\

Because ¢ is bounded, there exists a positive constant Cy such that ® := ¢ + Cy, = 0 on Q.
Obviously, ® = Cy on 0. From (j3.29), we trivially have £,1 = 0. By (3.15) and (3.14))

with M = 4 at any regular points (z;,y;), we have
Ahq) = th) = £h¢ + C¢£h1 = £h¢ =1 + ﬁ(h),

dueto —V-(aV¢) = 1in (3.34). In particular, for sufficiently small h, we obtain 2C(A,®); ; =
2C' +2C0(h) = C. Now by (3.33)), we have

(AhEh + 20h4Ah<I))i7j = (AhEh)i,j —|— 2Ch4(Ahq>)i7j 2 R(l’i,yj) —|— Ch4 2 0,

at any regular points (z;,y;), because |R(z;,y;)] < Ch* in (3.33).
Now we consider an irregular point (z;,y;) € Q. By (3.29), we trivially have £]1 = 0.
Consequently, by (3.26)) and (3.27) at an irregular point (x;,y;) € €, we have

MA@ =L, 0=Lro+Cylil=Lrop=h"+0(1),
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where h ™! is from [¢] = 1 in (3.34). In particular, for sufficiently small i, we obtain 2CA,® =
2Ch™' 4+ 2C0(1) = Ch™' at the irregular point (z;,y;). Thus, for sufficiently small h, by

(3.33), we have

(AhEh + 2Oh4Ahq))i,j = (AhEh)i,j + 2Ch4(Ahq))i’j 2 R(mi,yj) + Oh3 2 0,

at any (@, y;) € Qir, because |R(z;,y;)| < Ch? in (3.33) for irregular points (2, y;) € Q.
In summary, we proved A, (E), + 2Ch*®) > 0 on Q,. Now by the discrete maximum
principle of Ay, ® > 0 on €2, and Ej, = 0 on 02, we conclude that

max (Ep)i; < max (B, +20h'®),; < max (E), +2Ch*®),

7

(z4,5) € (z4,y5) € (%4,y5) €0,
< max  (Ep)i; +2Ch* max (®);; = 20C,h*,
(%4,y5) €0 (wi,y;) €002,

where C' is the constant in (3.33)) and we used ® = Cy on 9€). This proves max(s, ,yeq, (En)i; <
2CCyh*. Similarly, we can consider —FE), to obtain max,, ;. )ecq,(—FEp)i,; < 2CCsh*. Hence,
we proved ||Ep|le = [Ju — uplso < 2CC,h* and established the convergence rate of order 4

of our proposed compact 9-point finite difference scheme. O

3.4 A high order local approximation for computing

Vu using uniform Cartesian grids

In Section [3.3] we derived a high order compact 9-point finite difference scheme for the
elliptic interface problem. After obtaining the numerical solution described by Theorem
and Theorem [3.4] we can locally compute the gradient approximation without constructing
and solving a global linear system. For the convenience of the readers, in this section, we
derive a high order approximation for the gradient by using the already computed numerical

solution in Section 3.3

3.4.1 Compute Vu at regular points

In this subsection, we discuss the derivation of a compact 9-point approximation of the

gradient at regular points. The calculation is local and does not require to solve a global

linear system. As in Section|3.3.1} we choose (7}, y}) = (74, y;), i.e., vo = wo = 0 in (L.6). For
a positive integer M, we consider the following compact 9-point stencil for approximating
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the partial derivative u,(z;,y;):

1 1 M
Ex,hu = h_l Z Z ék,g(h>u($z + kh, Y; + gh) with C’k,g(h) = Z Ek,&php,
k=—1/(=-1 p=0
where ¢t ¢, are to-be-determined constants. Using (3.12) with 27 = z; and y; = y; and
M = M — 1 we have

Lopu= > u™ )+ > b (h) + O(hM),

(m,n)GA}\Z (mn)eN;_,
where y(mmn) — ;nmw—%(xi,yj), flmn) .= %(xi,yj), and the polynomials fmyn(h) and

Jimn(h) are
1 1
T Z Z Crot ()G g (R th) and  Jo n(h) = > > Cra(Mh>Qyy (KD, €h).

k=—1¢=-1 k=—1¢=-1

Therefore, we conclude from the above identities that if

Lio(h) = h+ O™ and L, ,(h) = O(A™H),  h — 0 for all (m,n) € AL\{(1,0)},
(3.35)

then we must have the following approximation order (but using the exact solution u):

Logu—h > f (k) = u + O(07) = ug(wi,y;) + O(hM),  h— 0. (3.36)

(m,n)eA;_,

Now assume that the numerical solution u; to the exact solution u has an accuracy order

M near (z;,y;), i.e
(un)irkjre = w(w; + kh,y; + €h) + O(hM), h—0 forall k,¢e€{-1,0,1}. (3.37)

Then we trivially have £, ,(u — uy) = O(hM~1) as h — 0. Hence, by (3.3€]), the following
approximation of u,(z;,y;) from the numerical solution wu;, must have the approximation

order min(M, M — 1) satisfying

Dyjun = Lopun—h > f0 T (h) = g, yy)+ O (REM=D) - h 0, (3.38)

(mn)eA;_,
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where

1
Lo pup :==h~ E E Choo(R) (un)ithjre-

k=—1¢=-1

We find that the maximum integer M is 4 for (3.35) to have a solution {ék7g}k7g:_17071.
Moreover, a particular such solution {Ck ¢}k e=—101 to (3.35) with M = 4 is given by

~ 2 2 3
Cfl,fl(h)zlf[%a011+%a10}h+[7 040,1**0401‘1104’ a10+12a027—a20+ all}h +[7£ ag,1

o0l

9 2 2 13 1 13 23
— 2ag 1a1,0 — (3307 o — $3a0,2 — 3faz,0 — $3a1,1)a0,1 — §a1 o0+ 23 (a0,2 + $5a2,0+a1,1)a10

- Q(021+00%+030+01 2)]h3,

C_1,0(h)=4— 2Ba; oh+ [§ a01+ Hag,1a1, o %0*3%21‘&‘12,0*%“1,1}h2+[%“8,1+T2ag,1“1,0+(%“?,0

— 18402 — £Lay g)ag,1 + 23 (~a1,0a1,1 + ao,3 + az,1)]h® (3.39)
6_'71,1(h):1*[ﬁa01+§a10}h+[*2a31*24a01a10+ a10+ Baga+ 12a11**a20]h21
Co,—1(h) =4+ % — [2ao1 + Zar 0]k + [ a01+ ‘101‘110*1‘111}}1 +[2 a10+12001a10+(£ 1~ 3aoe

— 2Tas0)a1,0 + 43 (—ap,1a1,1 +as,0 + a1,2)]h®

~ 2 2
Co,0(h) =—-20— 3 +[Z a01+67a10}h+[71a0173—a01a107%§a10+ Za11+ gaz,0]h®,

Co,1(h) =4+ %+ [2a01 — Za1,0]h, C1,—1(R) =1+ % — Zag,1h, Cio(h) =4+ %, Cia(h) =1+ %,

where a,, ,, := a™" /a(®% for m,n € Ny and m+n > 0. Therefore, we proved the following

theorem:

Theorem 3.7. Let (z;,y;) be a reqular point and uy, be a numerical solution such that w,
satisfies the approximation order M = 4 in to the exact solution u (this is guaranteed
by our finite difference scheme discussed in Theorem . Then the local compact 9-point
approzimation Dy pup in to the partial derivative u, of the exact solution u of prob-

lem (3.1) at (x;,y;) achieves the approzimation order 3 with {ék,g(h)}k7g:,170’1 in (3.39).
Furthermore, the local compact 9-point approximation D, pup to u, with the approximation

order 3 can be obtained similarly.

3.4.2 Compute Vu at irregular points

In this section, we will discuss the derivation of the local 25-point computation of the gradient
approximation at irregular points. As in Section [3.4.1, we choose (z7,y}) = (74,y;), ie.,
vg = wo = 0 in (1.6). We assume that (3.18) and (3.19)) hold. To simplify the calculation,

we also assume that (x;,y;) € Q, and define

el ={(k,0) : k,0€{-2,-1,0,1,2},¢(x; + kh,y; + (h) > 0}.

17_7

For a positive integer M, we consider the following stencil for approximating u,:

M
Loyu=h"" 3" Cpolh)ulz;+kh,y;+(h) with Cp(h):=> ¢
(k0)eef; p=
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where ¢ ¢, are to be-determined constants. By the same argument as in Section [3.4.1], we

obtain

Cou=h=t > Wl )y +h > AT () + 60N, h— o,

(m,n)EA}G] (mn)eAy_,

where

and

= > Ciulh h?Qr L (kh,th).

(k, E)Gew

Therefore, by the same argument as in Section [3.4.1] if

L) = h+ @) and T (h) = (M), h— 0 for all (m,n) € AL\{(1,0)},
(3.40)
then
Lou—h > TR () =gl y) + O(M), b 0.

(mn)eA;_,

If a numerical solution u; has the accuracy order M by satisfying (3.37), then we must have

Loyun—h > T (B) = ug(w, ) + O(REMED) g,

(mvn)eA]ﬁ[_Q

where

Lhup=h"" Z Croo(R)(un) ik je-
(k,e)eeij

In summary, we have the following result:

Theorem 3.8. Let (x;,y;) be an irregular point and wy, be a numerical approximation of the

exact solution u satisfying (3.37) with M = 4. Then (3.40) with M = 3 always has a solution

{ék,é}(k Heer - Consequently, the following approximation scheme has the approzimation
) .7

order 3:

Dy pup =Ly yup — h Z mn)fr (h) = uy(xs,y;) + O(h*), h—0.

(m,n)eA

Furthermore, the local approximation D;huh to u, with the approximation order 3 can be

obtained similarly.
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3.5 Numerical experiments

3.5.1 Numerical examples with © known

In this subsection, we provide numerical results of 3 test problems with an available exact
solution u of . In Example , we compare our proposed compact 9-point finite dif-
ference scheme with second order IIM [69] M17, (7], second order EJIIM [II0], second order
MIB [I19], second order AMIB with the FFT acceleration [39] and fourth order IIM [I17].
The number of points in the left hands of stencils in the above schemes are: 9 points [I7],
second order IIM], 6 points [69 second order IIM], 4 points [IT17 second order IIM], 6 points
10 second order EJIIM |, 10 points [I19, second order MIB], 11 points [B9, second order
AMIB], and 8 points [T, fourth order ITM].

Example 3.1. Let Q = (—Iy,/1)? and the interface curve be given by I' := {(z,y) € Q :
Y(x,y) = 0} with ¥ (z,y) = 22 + y*> — 1/4. Note that T NIQ = 0 and r? := 22 + 3, the
coefficient a and the exact solution u of (3.1)) are given by

Case 1: ay =axo, =b, a_=axo_ =2+ +1,
uy =uxa, = (1—9/(8b))/4+ (r* + 2r*)/(2b) + C'log(2r) /b,
U_ = UXQ_ = z? + y2.
Case 2: ay =axo, =0, a_=axo_ =2,
uy =uxg, = (1—9/(8)/4+ (r* +2r*)/(2b), u_ =uxq =2°+y°
Case 3: a; =axo, =cos(zr+y)+2, a_ =axq =sin(z+y)+2,
uy =uxo, =log(x* +y*+1), u_=uxo =sin(z+y).
Case 4: ay =axq, =100, a_ =axo_ =1,

uy = uxo, = sin(3r)sin(3y), u_ =uxq = exp(—2*® —y*/2).

All the functions f, g, gi,g in (3.1) can be obtained by plugging the above coefficient and
exact solution into (3.1). The numerical results are presented in Tables to[3.4

Example 3.2. Let Q = (—7,7)? and the interface curve be given by T' := {(z,y) € Q :
P(x,y) = 0} with ¢(z,y) = y*> — 222 + 2* — 1/4. Note that TN IQ = (), the coefficient a and
the exact solution u of (3.1]) are given by

ay = axa, = 107'(2 + sin(x) cos(y)), a_ = axq_ = 10*(2 +sin(z) cos(y)),
uy = uxo, = 10sin(5z) sin(5y)(y* — 22° + 2* — 1/4),
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Table 3.1: Case 1 of Examplewith b=10,C =0.1, 2= (-1,1)% and h = 2/N;y. The ratio ry
is equal to ||up —ul|co of [69] 2nd-1IM] divided by ||up —u||oo of our proposed method and the ratio ro
is equal to ||uj — ul| of [[I0, 2nd-EJIIM] divided by ||uj, — ||« of our proposed method. In other
words, for the same grid size h with h = 2/Ny, the errors of [69 2nd-IIM] and [[10, 2nd-EJIIM]
are r; and ro times larger than those of our proposed method, respectively.

69, 2nd-1IM] | [II0, 2nd-EJIIM] | Proposed
Ny | un — uflo lun —ulloo | flun —ullo | 1| 12
20 3.5E-03 7.6E-04 4.6E-04 7.6 | 1.7
40 7.6E-04 2.4E-04 6.5E-05 | 11.7 | 3.7
80 1.7E-04 7.9E-05 7.0E-06 | 24.4|11.4
160 3.6E-05 2.2E-05 8.3E-07 | 43.5 | 26.6
320 8.4E-06 5.3E-06 8.8E-08 | 95.7 | 60.4

Table 3.2: Case 1 of Examplewith C=0.1,Q0=(-1,1)2 and h = 2/N;y. The ratio r; is equal
to |lup — ul|eo/|u(1,1)| of MIM 2nd-1IM] divided by |lup — ul|co/|u(1,1)| of our proposed method
and the ratio ry is equal to ||up — ul/eo/|u(1,1)| of [[IT 4th-IIM] divided by ||up — ulleo/|u(1,1)]
of our proposed method. In other words, for the same grid size h with h = 2/Nj, the errors of
17 2nd-1IM] and [II7, 4th-IIM] are r; and ry times larger than those of our proposed method,
respectively.

b=10"" b=10"?
17 2nd-IIM||[IT7] 4th-IIM]Proposed| [T 2nd-1IM][II7] 4th-IIM|Proposed

N [un—ulle Tun—ullo [un—ulle Tun—ullo Tun—ulloo Tun—ullo

u(L1)] [u(L1)] o] | | [u(L1)] u(L1)] w@yl | "

20| 4.66E-03 6.76E-05 |6.67E-04] 7.0 0.10 2.89E-02 4.94E-04 |5.71E-03] 5.1 0.09
40 1.94E-03 1.40E-04 |7.86E-05/24.6[1.78 1.91E-02 1.05E-03 |3.28E-04/58.2| 3.2
80| 5.29E-04 2.56E-05 |9.96E-06/53.112.57| 5.16E-03 2.44F-04 |4.83E-06/106850.4

[

b=10"° b=10"*
17 2nd-IIM||[IT7] 4th-IIM]Proposed| [IT7 2nd-1IM][IT7] 4th-IIM|Proposed
N il [l | Tw—ul= | .. |, T —ulloc [l | [o—el= | . |,
! [u(1,1)] [u(1,1)] [u(i,1)] L [u(1,1)] [u(1,1)] [u(1,1)] 1] 2

20  9.57E-02 3.64E-03 |8.81E-02| 1.1 |0.04 1.26E-01 1.08E-02 [3.36E-01| 0.4 0.03
40|  6.16E-01 9.16E-03 |1.60E-043861| 57 | 2.85E-01 4.72E-02  |2.98E-02| 9.6 1.58
80| 8.88E-02 2.43E-03 |4.41E-052014]| 55 1.39E-01 2.54E-02 |1.81E-03| 77 14.1

u_ = uxo_ = 10"?sin(5x)sin(5y)(y* — 22 + 2* — 1/4) + 500.

All the functions f, g, 91,9 in (3.1) can be obtained by plugging the above coefficient and
exact solution into ([3.1]). In particular, gf = —500 and g} = 0. The numerical results are
presented in Table 3.5 and Fig. [3.6]

Example 3.3. Let Q = (—3.5,3.5)% and the interface curve be given by T' := {(z,y) € Q :
¥ (z,y) = 0} which is shown in Fig. Precisely, the sharp-edged interface is a square with
4 corner points (—2,0), (0,2), (2,0) and (0, —2). Note that ' N9Q = (), the coefficient a and
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Table 3.3: Case 2 of Example With b=10, Q= (—1,1)2 and h = 2/N;. The ratio r; is equal
to |Jup — ulleo of [[19] 2nd-MIB] divided by ||up — u||eo of our proposed method and the ratio ro is
equal to [|up —ul[oo of 63 2nd-1IM] divided by |lu, —ulle of our proposed method. In other words,
for the same grid size h with h = 2/Ny, the errors of [IT9 2nd-MIB| and [69 2nd-IIM] are r; and
ro times larger than those of our proposed method, respectively.

19 2nd-MIB] | [69 2nd-1IM] | Proposed
Ny | flun = ufloo lun = ulloo | lun —tlloc | 1 ry
20 2.852E-04 2.167E-03 4.737E-04 | 0.60 | 4.57
40 7.707E-05 5.000E-04 6.228E-05 | 1.24 | 8.03
80 2.069E-05 1.131E-04 7.645E-06 | 2.71 | 14.79
160 5.131E-06 2.748E-05 9.824E-07 | 5.22 | 27.97
320 1.257E-06 6.781E-06 1.111E-07 | 11.32 | 61.06

Table 3.4: Case 3 and Case 4 of Example The ratio r; is equal to ||u, — ul|s of [ 2nd-IIM]
divided by ||up, — ul|co of our proposed method and the ratio re is equal to ||up — ulloo of B9, 2nd-
AMIB] divided by ||up, —u||oo of our proposed method. In other words, for the same grid size h, the
errors of [I7 2nd-IIM] and B9 2nd-AMIB] are r; and ry times larger than those of our proposed
method, respectively.

Case 3 Case 4
O=(—1,1)%and h = 2/N, Q=(Z2. 1 andh= 2 Q= (&, =) and h = ;5
7] 2nd-1IM] Proposed B9 2nd-AMIB]J Proposed B9 2nd-AMIB]J| Proposed
Ny lun = ulloo |lun = ulloe| 11 | No | JJun = ulloo [lun —ulloo Yo | N1 | |lun —tllo  [lun = tfloc| 12
16| 1.0E-03 1.4E-03 0.7 32 4.4E-03 7.9E-03 |10.6| 32 2.7E-03 3.9E-03 |0.7
32| 3.8E-04 1.4E-04 |2.7| 64 1.2E-03 1.4E-03 |0.9]| 64 9.5E-04 5.0E-04 (1.9
64| 8.0E-05 1.5E-05 |5.2]128 3.6E-04 1.2E-04 |2.9]128 2.0E-04 74E-05 | 2.8
128 2.3E-05 1.8E-06 (12.6/256 8.3E-05 2.1E-05 |3.9(256 4.5E-05 1.2E-05 | 3.9
256/ 5.7E-06 2.2E-07 25.6/512 1.9E-05 2.0E-06 |9.6|512 1.2E-05 1.3E-06 |8.9
512 1.5E-06 2.8E-08 53.41024 4.9E-06 2.5E-07 [19.41024 3.1E-06 1.5E-07 [20.8

Table 3.5: Performance in Example of our proposed method on uniform Cartesian meshes
with h =277 x 2.

J % order | ||up — u|l | order W order | ||[Vu, — Vul|» | order
5 | 1.5785E-02 0 1.8642E4-01 0 6.5837E-02 0 4.4162E+02 0

6 | 1.2083E-03 | 3.7 | 1.6060E+00 | 3.5 | 3.2683E-03 | 4.3 2.2133E+4-01 4.3
7 | 8.3619E-05 | 3.9 1.2258E-01 3.7 | 2.0640E-04 | 4.0 2.6279E+400 3.1
8 | 4.7447TE-06 | 4.1 8.4474E-03 | 3.9 | 1.3500E-05 | 3.9 2.6734E-01 3.3
9 | 3.2341E-07 | 3.9 | 5.9899E-04 | 3.8 | 9.4036E-07 | 3.8 3.5506E-02 29
10 | 1.9622E-08 | 4.0 | 4.1601E-05 | 3.8 | 7.0430E-08 | 3.7 4.8334E-03 2.9

the exact solution u of ([3.1)) are given by

a, =10,

a_ =103,

uy = 1073 sin(4a — 4y),

7

u_ = 10? cos(4x) cos(4y) + 1000.
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Figure 3.6: Top row for Example the interface curve I' (left), the coefficient a(x,y) (middle)
and the numerical solution uy (right) with h = 278 x 27. Bottom row for Example the error
|up, — u| (left), the numerical (up,), (middle) and the error |(up), — ug| (right) with h = 278 x 27.

All the functions f,g{, g}, g in (3.1) can be obtained by plugging the above coefficient and
exact solution into (3.1). Clearly, gi and g} are not constants. The numerical results are
presented in Table [3.6] and Fig.

Table 3.6: Performance in Example of our proposed method on uniform Cartesian meshes
with h =277/ x 7.

J % order | ||up — ul|ls | order W order | [[Vu, — Vul|» | order
5 | 8.8954E-02 0 2.1581E+02 0 2.4814E-01 0 3.2146E+03 0

6 | 3.7639E-03 | 4.6 | 1.3830E+401 | 4.0 | 1.3965E-02 | 4.2 2.7688E4-02 3.5
7| 1.7450E-04 | 4.4 | 6.8185E-01 | 4.3 | 7.26567E-04 | 4.3 1.5547E+01 4.2
8 | 1.1627E-05 | 3.9 | 5.2208E-02 | 3.7 | 3.9462E-05 | 4.2 8.8775E-01 4.1
9 | 8.6688E-07 | 3.7 | 3.8840E-03 | 3.7 | 2.4032E-06 | 4.0 5.2936E-02 4.1

3.5.2 Numerical examples with © unknown

In this subsection, we provide 3 numerical experiments such that the exact solution u of

(3.1) is unknown.
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Figure 3.7: Top row for Example the interface curve I' (left), the coefficient a(x,y) (middle)
and the numerical solution uy (right) with h = 278 x 7. Bottom row for Example the error
|up, — u| (left), the numerical (up,), (middle) and the error |(up), — ug| (right) with h =278 x 7.

Example 3.4. Let Q = (—27/3,27/3)? and the interface curve be given by T' := {(z,y) €
Q: Y(x,y) = 0} with ¢(z,y) = 2* + 2y* — 2. Note that T'N 92 = @ and (3.1)) is given by

ay = axo, =2+ cos(z —y), a_ = axq. = 103(2 + sin(x) cos(y)),
f+ = fxa, =sin(3z)sin(3y),  f- = fxa_ = cos(3)cos(3y),
g =sin(z), g1 =cos(y), g=0.

The numerical results are provided in Table [3.7 and Fig.

Table 3.7: Performance in Example of our proposed method on uniform Cartesian meshes
with h =277 x 47/3.

llup, — wp a2 | order| ||up — wpjallo | order | || Vuy, — Vg jo||2 | order| || Vuy, — Vg, jo|| o | order

J

5| 4.7877E-01 | O 1.7752E-01 0 5.2967E-01 0 4.3910E-01 0

6| 5.4887E-02 | 3.1 | 1.9966E-02 | 3.2 6.1966E-02 3.1 5.0909E-02 3.1
7| 3.8920E-03 | 3.8 | 1.4235E-03 | 3.8 4.4494E-03 3.8 4.9900E-03 3.4
81 2.4772E-04 | 4.0 | 9.0274E-05 | 4.0 2.8557E-04 4.0 7.6614E-04 2.7

Example 3.5. Let Q = (—2.5,2.5)% and the interface curve be given by T' := {(z,y) € Q :

79



x*2yt2=0

l | |
111

Figure 3.8: Example the interface curve I (first panel), the coefficient a(x,y) (second panel),
the numerical solution u, (third panel), and the numerical (uy,), (fourth panel) with h = 278 x 47 /3.

P(x,y) = 0} with ¢(z,y) = y*> — 22% + 2 — 1/4. Note that TN 9Q = @ and (3.1)) is given by

ay = axqa, = 10*(2 + cos(z — y)), a_ = axq. = 107%(2 +sin(z +v)),
fi = fxa. = simfdna)sin(dny),  f- = fxo. = cos(dn(z — p)),
o = cos(z)cos(y) — 1, gF =sin(z)siny), g=0.

The numerical results are provided in Table [3.§ and Fig.

Table 3.8: Performance in Example of our proposed method on uniform Cartesian meshes
with h =277 x 5.

l|up, — up o2 | order| ||up — up)alloo | order | || Vuy, — Vg jo|l2 | order| || Vuy, — Vg, jo| o | order

24131E4+00| 0 | 7.9478E+00 | O 2.4730E+01 0 1.5123E+02 0

1.6162E-01 | 3.9 | 5.8890E-01 | 3.8 1.5033E+-00 4.0 1.2649E+-01 3.6
7.8706E-03 | 4.4 | 3.4649E-02 | 4.1 1.0738E-01 3.8 1.4253E+-00 3.1
4.9064E-04 | 4.0 | 2.1766E-03 | 4.0 8.1468E-03 3.7 1.9083E-01 2.9

© 0~ Oy

Y2kt aia=0

"

1500
1000
500
0

Figure 3.9: Example the interface curve I' (first panel), the coefficient a(x,y) (second panel),
the numerical solution uy, (third panel), and the numerical (uy,), (fourth panel) with h = 278 x 5.
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Example 3.6. Let Q = (—1.5,1.5)% and the interface curve be given by I' := {(z,y) € Q:
Y(x,y) = 0} with ¢ (z,y) = 22* + y* — 1/2. Note that T'N9Q = P and (3.1) is given by

ay = axa, = 10*(2 + sin(x) sin(y)), a_ = axq._ = 107%(2 + cos(x) cos(y)),
I+ = fxa, = sin(4rz)sin(4my), f- = fxa_ = cos(4rx) cos(4my),
gy = sin(z 4 y) — 10°, g1 = cos(x —y), g=0.

The numerical results are provided in Table and Fig. [3.10}

Table 3.9: Performance in Example of our proposed method on uniform Cartesian meshes
with A =277 x 3.

|un — unsall2 |order | ||up, — wp)al|oo |0rder ||| Vun, — Vg o2 |order | ||[Vu, — Vuy, oo | order

J

5(1.0037E4+00| 0 | 2.2166E+00 | O 1.1762E+01 0 3.9078E+01 0
6] 6.5117E-02 | 3.9 | 1.2140E-01 | 4.2 5.8901E-01 4.3 3.4589E+00 3.5
7| 3.3958E-03 | 4.3 | 7.7527E-03 | 4.0 4.5420E-02 3.7 5.1817E-01 2.7
8| 2.0302E-04 | 4.1 | 4.8001E-04 | 4.0 3.2275E-03 3.8 4.7358E-02 3.5
91 9.5975E-06 | 4.4 | 3.1181E-05 | 3.9 2.3421E-04 3.8 4.3064E-03 3.5

2x* 211220

&

Figure 3.10: Example the interface curve I (first panel), the coefficient a(x,y) (second panel),
the numerical solution uy, (third panel), and the numerical (uy,), (fourth panel) with h = 278 x 3.
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3.6 Conclusion

To our best knowledge, so far there were no compact 9-point finite difference schemes avail-
able in the literature, that can achieve third or fourth order for the elliptic interface problems
with piecewise smooth coefficients on uniform meshes. The third or fourth order compact 9-
point IIM methods for the elliptic interface problems with discontinuous constant coefficients
on uniform meshes are derived in [89 [75].

Our contributions of this chapter are as follows:
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(1)

We construct a high order compact 9-point finite difference scheme for the numerical
solution on uniform meshes for (3.1)) with discontinuous, piecewise smooth and high-
contrast coefficients (the ratio sup(ay )/ inf(a_) ~ 1073 and 10° in Examples[3.2]to[3.6)),

discontinuous source terms and two non-homogeneous jump conditions.

In Tables to of Example , we compare our proposed compact 9-point finite
difference scheme with the second order IIM, EJIIM, MIB and AMIB. Since the ac-
curacy order in irregular points of our proposed scheme is three, the numerical results
in Tables to show that our proposed compact 9-point scheme produces smaller
errors than the second order IIM, EJIIM, MIB and AMIB.

In the Table of Example , we also compare our proposed compact 9-point finite
difference scheme with the fourth order IIM, the numerical results in Table |3.2] show

that our proposed compact 9-point scheme also produces smaller errors than the fourth
order 1IM.

Since our proposed scheme does not require to change coordinates into the local coordi-
nates and solve an optimization problem which are two basic steps for IIM, it is simpler

for readers to derive our schemes, and perform the corresponding implementations.

MIB methods do not use the high order jump conditions, so our method could derive
a higher order scheme than MIB methods in the same number of points of the stencils.
Conversely, for the same accuracy order, our method could form a sparser matrix of

the global corresponding linear system than the MIB methods.

For the irregular points case, Eq.(7.73) in [[3 Section 7.2.7] expands the Taylor series
of u(x,y) to O(h®), while we only need to expand the Taylor series of u(z,y) to O(h*),
which significantly reduces the computational costs to calculate the coefficients of the

proposed schemes.

We numerically verify the sign conditions of our proposed compact 9-point finite dif-
ference scheme and prove the fourth order convergence rate by the discrete maximum
principle in Theorem [3.6]

Our numerical experiments confirm the flexibility and the fourth order accuracy for the
numerically approximated solutions wu in both Iy and [, norms, and the fourth/third
order accuracy for the numerically approximated gradients ((us)s, (up)y) in the l/lo

norm.
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3.7 Proof of Theorem (3.3

Proof of Theorem[3.3. Similar as the proof of Theorem [2.4] by the parametric equation in
(1.5 for the interface I' near (z},y;), the two jump conditions in (3.1)) can be rewritten as

ur(r(t) + 7, s(t) + y;) —u-(r(t) + 25, 5() +37) = 90 (r(1) + 27, 5(8) +y57), (3.41)

(a4 Vur)(r(t) + 27, s(t) + 7)) —(a-Vu_) (r(t) + 27, s(t) + y;)) - ( (t))

= g1 (r(t) + 7, s(t) + yj)\/(T’(’f))2 + (S (t))27

for t € (—e¢,€). Because all involved functions in (3.41)) and ([3.42]) are assumed to be smooth,

to link the two sets {u™™ : (m,n) € AL} and {u™™ : (m,n) € AL}, we now take the

Taylor approximation of the above functions near the base parameter ¢t = 0. (3.19)) with M
being replaced by M — 1 implies

(3.42)

u(r(t) + a7, 5(t) + yj)
= > a"G 050 YD QN (), s(0) + O

(m,n)EA}w (m,n)EAN_2
M
= STt Y e | P e,
p=0 \(m,n)eA}, (m,n)EAN—2
where
g LG @ sO)) L L@ @50
P ! dtp t=0 TP pl dtp t=0 o

(3.43)
By the definition of gg , in (3.21]), we have g (r(t) + a7, s(t) +y}) = Zﬁio 9o t7 + O (M) as
h — 0. Since every coefficients of 27y* of the bivariate polynomial G}Lm,n(x’ y) vanishes for

all j +k < m+n and r7(0) = s(0) = 0, we have g, , , =0 for all 0 < p < m+n by (3.43).

Thus, (3.41)) leads to

Z usfl?n)g:@,n,p - u(jn7n)g;1,n,p = Fp7 p= 0,..., M’ (344)

(m,n)eA},

where Fy := g5, and

Fp = g(lip + Z f(fmﬂ)q;z,n,p - im7n)q;;,n7p7 p - 17 et M'

(mn)EAN_2
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Note that g(jfo’o =1 and gi,nyp =0 for all 0 < p < m + n. We observe that the identities in

(3.44) become

0,0 0,0
e T 9000 (3.45)
and
0p), — Lp-1) — 0, Lol
u p)go,p,p +ul? )gl,pfl,p = “Sr p)gar,p,p T ugr ’ )gipfl’p —
+ Z usrmm)gr—;,n,p - u£m7n)gr717n,p’ b= 1a cee 7M' (346)
(m,n)EA;71

By (3.10) with M being replaced by M — 1,

Grrmn(@,Y) = Gioun (T, Y) + Gifon(,9), (3.47)

where L

|3

J _
(_1)Z$m+2fyn 20

Gyt = 3.48
M,m,n(x7y) — (m+2€)|(n_2€)'7 ( )

:|:,2 e u xm/yn/ 1
GM7m7n<LE, y) = E m/’n/’m’n—m/!n/! 3 \V/<m, n) < AM (349)

(m/,n’)EAZ \A2

m-+n

Since every coefficient of z7y* of Gﬁ?myn(x,y) vanishes for all j + £k < m 4+ n + 1 and

s(0) =r(0) =0, (3.43) leads to

+ _ ldp(Gﬁ\E/[,,lm,n({r<t>7 S(t)))
gm,n,p - p| dtp

) (m7n> S {(O7p)7 (1,]9 - 1)} (350)

t=0
For the flux jump condition ([3.42)), (3.19)) with M being replaced by M — 1 implies

V(ug(z+afy+y) = Y. al"V(GE L @y)+ Y V(R (@) + O(M),

(m,n)GA}V] (m,n)EAM_2
(3.51)
for x,y € (—2h,2h) and clearly
ol M
ax(z + a7,y +yj) = Z i ™y + O(h™), (3.52)

(m,n)EAM, 1

for z,y € (_2h7 2h) By " and ‘ )

ax(z + 27,y +y;) Vux (r(t) + a7, s(t) + y7) - (s(8), =’ (1)
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= > WG ). s0) (SO, )+ Y QT (1), s(1) - (1), = (1))

(m,n)EA}V[ (mn)EAM—2
M—-1

= S Y G, | o,
p=0 (m,n)eA}, (m,n)EAM—2

where

(m,n)
=~ a
Gl\i/l,m,n(xv y) = VG%Lm,n (z,y) < Z - xmyn> )

m!n!
(m,n)EAM_1

(m,n)
~ a
Q) = v%,m,mw( >, = My)

m!n!
(m,n)EAM-1

o (G (r(),5(8) - (5'(), —' (1))

o @i (1) 5(0) - (1)~ (1))
Immp * p!dtp

p=p’ dmamip pldtp t=0
(3.53)

Note that each entry of G M.m.n 18 @ homogeneous polynomial of degree > m +n — 1. By

r(0) = s(0) = 0 and -, we can say that gmnp =0 for all 0 < p < m + n — 1. Similarly,
by the definition of g5, in , we have

M-1
g1 (r(t) + a7, s(t) +y;) v/ (1) + gipth + oY), h—0.
p=0
Therefore, (3.42)) implies
S>oour gt ™ =G p=0,. M -1, (3.54)

(m,n)EAL,

where

. T m,n) m,n)
Gp =Gy + E f Qmnp — f+ mn,p

(myn)EAN—2

Clearly, ggf(m =0 and g,;—“wp =0 forall 0 <p <m+n—1. We observe that (3.54)) become

2 0P G- 1,p—1) ~— 0, 1,p—1
—ngpp 1+U( T )glp 1,p— 1—Uip)90pp 1+“S-p )glp 1,p—1 —Gp1
" Z ug_mn)g:;np ) u(mn)g?;np L op=1,... M. (3.55)
(mn)eA]
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Since each entry of G}fmn(m, y) is a homogeneous polynomial of degree > m + n + 1 and

s(0) =r(0) =0, (3.53)) (3.47), (3.48) and leads to

0l A (VG (. y) - (50, =7 (1))
gm,n,pfl = (p — 1)| dtp—1

L mm e {0.),(Lp— 1)

(3.56)
According to the assumption (/(0))? + (s'(0))? > 0 in (L.5), al®® +£0in and the proof
of Theorem , , and imply

+ 4+ + ~ _
govpvpgl7p717p71 - glvp717pg07p7p71 > 07 v p — 1’ T M. (3.57>
Let
+ + ~+ +
Wt o | e Jie-te | g oFf = 1 Iip-1p-1 “9ip-1p
P ~ ~+ p - + ~+ _ 4* ~+ - + :
90.pp-1 91p-1p-1 90.p,p91,p—1,p—1 ~ 91,p—1,p90,p,p—1 | ~Y0,p,p—1 90.p,p

Then, by (3.57), we have W;EQ;E = Iy, where I, is a 2 by 2 identity matrix.

Therefore, the solution {u(_o’p T _1)}13:17_“ u of the linear equations in ([3.46)) and ([3.55)

can be recursively and uniquely calculated from p =1 to p = M by W0 = uf’o) — gg’ o due

to (3.45) and

(07 ) (07 ) p—1 (O,n) (1,7),71)
ul— pl _ Q7W+ u1+ pl _ Qf Fp + Z Qf ;’L—l- g({n,p + u+1 ) g;r,n—l,p
u(*p : e uiva : 8 Gp—l n=1 8 Sr,n) ~(—)~_,n,p—1 + ugrm )gi’:n—l,p—l
-1 0,n 1,n—1
3 — u_ )go,n,p + u& 91 n—1,p
- Qp 0,n) ~— (I,n—1) ~ ’
n=1 UGy p—1 T U J1n—1p-1
(3.58)
for p=1,..., M. Note that for p = 1, the above summation Zf;ll is empty. O]
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Chapter 4

Hybrid Finite Difference Schemes for
Elliptic Interface Problems with
Discontinuous and High-Contrast
Variable Coefficients

4.1 Introduction and problem formulation

In Chapter 3|, we developed a compact 9-point finite difference scheme for elliptic problems,
that is formally fourth order accurate away from the interface of singularity of the solution
(regular points), and third order accurate in the vicinity of this interface (irregular points).
The numerical experiments in Chapter |3| demonstrate that the proposed scheme is fourth
order accuracy in the Iy norm. Using Taylor expansion and our sort of technique, the
maximum accuracy for compact 9-point finite difference stencil at regular points is six, and
a 13-point stencil at irregular points can achieve a fifth order of accuracy, so in the present
chapter we derive a hybrid scheme that utilizes a 9-point stencil for regular points and
a 13-point stencil for irregular points, for the case of elliptic problems with discontinuous
scalar coefficients. In Chapter [2, we demonstrated that if the coefficient of the problem
is continuous the stencil of a 9-point scheme in 2D can be partitioned into 72 different
configurations by the interface of singularity of the solution. In the case of discontinuous
coefficients, we need to use a 13-point stencil at irregular points and this results in more
possibilities for the stencil partitioning (see figure Fig. . Thus, in this chapter, we also
derive an efficient way to achieve the implementation of the proposed hybrid scheme. In

Chapter [5, we discussed the 6-point and 4-point finite difference schemes with sixth order
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accuracy for the side points and corner points of the Helmholtz equations respectively with
a constant wave number k in a rectangle. In this chapter, we also extend the above results

in Chapter 5| to the elliptic equations with variable coefficients and mixed combinations of

Dirichlet u = g; in 9€|;, Neumann 2% = g; in 09|; and Robin % + au = g in 09| with

on

smooth functions «, g;, g; and g, where 0€2|;, 99Q|;, Q| for 4, j, k = 1,2,3,4 is one side of
the rectangle (see Fig. for an example of the mixed boundary conditions).

Figure 4.1: For irregular points, the 9-point scheme (left) and the 13-point scheme (right). The
curve in red color is the interface curve I.

Let Q = (l3,13) x (I3,14) and ¥ be a smooth two-dimensional function. Consider a
smooth curve I' := {(z,y) € Q : ¢¥(x,y) = 0}, which partitions €2 into two subregions:
Qp ={(z,y) € Q : Y(z,y) >0} and Q_ = {(z,y) € Q : Y(z,y) < 0}. We also define

ay = axo,, [+ = [xa, and uy := uxq,. The model problem in this chapter is defined as

follows:
.
=V - (aVu) = f in Q\T,
ul =g), [aVu-7] =gF on I,
[u] = gq [ = (4.1)
Blu = g1 on (9Q|1 = {ll} X (13, 14), BQU = go ONn 8Q|2 = {12} X (lg, l4>,
\Bgu = g3 On 89’3 = (ll, lg) X {lg}, B4’LL = (g4 ON 89|4 = (ll, lg) X {l4},
where f is the source term, and for any point (xg,y) € ',
ul(xo, = lim w(x,y) — lim w(x,y),
@090 = o B a0 ™) T e o sanam Y
aVu - 1) (xg, = lim aVu(x,y) -1 — lim aVu(x,y) - n,
| 1E050) = e 8 o Y O A e B Y AT Y)
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where 77 is the unit normal vector of I" pointing towards 2. In (4.1]), the boundary operators
Bi,...,By € {1, % + al;}, where I, represents the Dirichlet boundary condition, when
a =0, % represents the Neumann boundary condition, when « is a smooth 1D function,

a% + aly represents the Robin boundary condition. An example for the boundary conditions

of (4.1]) is shown in Fig. [4.2

Byu = % + Bu = g4
004

Biu = 2% + au = ¢|0Q] 0Q|Byu = u = go

995

p)
Byu = g% = g3

Figure 4.2: An example for the boundary configuration in (4.1]), where « and /5 are two smooth
1D functions in y and = directions respectively.

We derive a hybrid finite difference scheme to solve (4.1]) given the following assumptions
(Note that the main results in this chapter have been written in [34]):

(A1) The coefficient a is positive, piecewise smooth and has uniformly continuous partial
derivatives of (total) orders up to six in each of the subregions Q, and Q_. The

coefficient a is discontinuous across the interface I'.

(A2) The solution u and the source term f have uniformly continuous partial derivatives of
(total) orders up to seven and five respectively in each of the subregions €, and Q_.

Both u and f can be discontinuous across the interface I'.

(A3) The interface curve I' is smooth in the sense that for each (z*,y*) € I, there exists
a local parametric equation: v : (—¢,e) — I' with € > 0 such that v(0) = (z*,y%)
and ||7/(0)|l2 # 0. Furthermore, z(¢) and y(¢) in (1.5) should both have uniformly

continuous derivatives of (total) order up to five for the variable ¢t = 0.

(A4) The 1D interface functions g o+ and g} o have uniformly continuous derivatives of

89



(total) orders up to five and four respectively on the interface I', where 7 is given in

(A2).

(A5) Each of the 1D boundary functions gy, . .., g4 in (4.1) and « in the Robin boundary con-
ditions has uniformly continuous derivatives of (total) order up to five on the boundary
r

j-

The organization of this chapter is as follows.

In Section we derive the compact 9-point finite difference scheme with sixth order
accuracy for regular points in Theorem [.1]

In Section [£.2.2.1], we propose the 6-point schemes with sixth order accuracy for the side
points of the boundary conditions % + au = g1 in 09y, % = g3 in 093 and % + Bu = g4
in 094 in Theorems {4.2f to 4.4 with two smooth functions a and f.

In Section [£.2.2.2] we construct the 4-point schemes with sixth order accuracy for the
corner points of the boundary conditions % + au = gy in 00}, % = g3 in 093 and
% + pfu = g4 in 04 in Theorems and with two smooth functions « and f.

In Section we first propose a simpler version of the transmission equation for the
interface curve I' in Theorem [£.7] Then the 13-point finite difference scheme with fifth order
accuracy for irregular points is shown in Theorem[4.8] In order to achieve the implementation
effectively for the 13-point scheme, we derive efficient implementation details using (4.31)) to
(14.40]).

In Section [4.3] we present 10 numerical examples, including 5 examples with exact
known solutions u, for our proposed hybrid finite difference scheme with contrast ratios
sup(ay)/inf(a_) = 1073,1076,105,107. Our numerical experiments confirm the flexibility
and the sixth order accuracy in Iy and [, norms of our proposed hybrid scheme. For the
coefficients a(z,y), two jump functions g, g}, interface curves I' and boundary conditions,

we test the following cases:

e Either ay/a_ or a_/a, is very large on the interface I" for high contrast coefficients a.

e The jump functions g} and gt are both either constant or non-constant.

The interface curve I' is either smooth or sharp-edged.

4-side Dirichlet boundary conditions.
e 3-side Dirichlet and 1-side Robin boundary conditions.

e 1-side Dirichlet, 1-side Neumann and 2-side Robin boundary conditions.

In Section [4.4] we summarize the main contributions of this chapter. Finally, in Sec-
tion [4.5] we present the proofs for results stated in Section [4.2]
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4.2 Hybrid finite difference methods using uniform Carte-
sian grids
Recall Q = (I1,15) x (I3,14) and
xi=1U+ih, i=0,...,N;, and y;,=Il3+jh, j=0,...,Ns. (4.2)

i =x; —voh and y;=y; —woh with —1<wg,we<1. (4.3)
Throughout the chapter, we shall use the following notations:

d"a, (n) . d" g,

al™ = " (y;), a'" = " (Y7),
5( ) = drm (z7), 93( )= dxmg (z7), 94( )= dx"? (7)), (4.4)
omtng omtny, 8m+nf
(mmn) . * ok (m,n) — * (m,n) — .
' amxany (w’b ) yj )’ amxany (mz ) y] )7 f amxany (xz ) y] )7

which are their (m,n)th partial derivatives at the base point (z7,y;). Recall that
Ay ={(mn—-m) : n=0,.... M+1 and m=0,...,n}, M+1€eNy, (4.5)

Ayt = A \ ALy, with AVL ={(0k—0) ck=¢...,M+1—( and £=0,1},

+ +
(4.6)
H:‘ . . V, ] y
AMil = {(nam) : (m7n) S AM]—H?] = 172} (47)
For all (m,n) € Az‘\/2[1+17 we define
v L5 (_1)Z$m+2ﬂyn725 v xm’yn’
GM+1’m’n(x7 y) = (m + 26)'(71 — 26)' + Z Am”,n/,m,n m/!n/! ’ (48)
£=0 (m/ n)EAY S \AVS
and for all (m,n) € Ay,
1+ n / /
. B \_2J (_1)zxm+2£yn—2€+2 1 AV,f T yn
Qis1,mn (T, Y) = (m +20)!(n — 20 + 2)! a(0:0) * Z minmn i/l
=1 (m””’)GAﬁil\Ax{in
(4.9)
where Ar‘:;}fn’,m,n and Ar‘;,f ' mn € constants which are uniquely determined by {atmm) .

(m,n) € Ay}, and the floor function |x| is defined to be the largest integer less than or
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equal to z € R.
For all (m,n) € AJ;t,, we define

SE

L5 ro

_1)€yn+2€xm—2€ i, m yn
aH : ( E A _— 4.10
M+17m7n<x?y) (n+2€)'<m . 26)' + m/ n’ mmn ( )

m/\n/!’
— H,2 H,2
£=0 (m’,n’)EAM+1\A

m—+n

and for all (m,n) € Ap—1,

LYy,

m’ n ,m,n /'n/|’

H,2
(m’,n’)EAM_'_I\Am_,_n_,'_2

(_1) yn+25 m—20+2
QJ\H4+1,m,n('r’y) = )

(n+20)!(m — 20+ 2)! a(0:0)

(4.11)

where Ag “n mn and AZ fn mn are constants which are uniquely determined by {a(m’”)

(m,n) € Ay}, and the floor function |x] is defined to be the largest integer less than or
equal to z € R.

Similar to (3.12) and (5.10]), we have

U(ZE—}-I:, y—l—yj*) = Z u(m’n) GJ‘\//I+1,m,n(x7 y)+ Z f(mﬂ) QJ‘\/4+1,m,n(m7 y)—f—ﬁ(hM+2)’

(m,n)eA]‘CﬁH (m,n)EAN—1
(4.12)
for x,y € (—2h, 2h) where u is the exact solution for , the index sets Ay_; and AM+1
are defined in and (4.6) respectively, and the functlons GY, +1mn and QY, ‘lmn aTe

defined in (4.8)) and (4.9) respectively. Similar to (3.12) and (5.11]), we also have

w(atal,y+y)) = Y WGy Y RN y) O,

(m, n)EAMJrl (m,n)EAN—1

where the index sets Aj;_; and Aﬁil are defined in (4.5) and (4.7) respectively, and the
functions G, .., and Q. ., are defined in ([4.10) and ([.11)) respectively.

For the sake of better readability, all technical proofs of this section are provided in
Section [4.5] For simplicity, we cancel the (h) in L, (h), Jma(h), Cre(h) and other related

notations.

4.2.1 Stencils for regular points (interior)

We now extend the fourth order compact 9-point scheme in Theorem to a sixth order

compact 9-point scheme. We only need to choose M = 6 and replace Gy, Q. and A}, 41
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in Chapter 3 by G}y in @), Qi1 mn in (£9), and A]\V/’[lJrl in (4.6). We choose (z7,y;)
to be the center point of the 9-point compact scheme, i.e., (7, y;) = (i, ;) and vo = wy = 0

in (£.3).

Theorem 4.1. Let a grid point (z;,y;) be a reqular point, i.e., either d;fj =0 ord; =0
and (x;,y;) ¢ 092. Let (uy);; denote the numerical approzimation of the exact solution u of
the elliptic interface problem (4.1)) at an interior reqular point (z;,y;). Then the following
difference scheme on a stencil centered at (x;,y;):
1
ﬁ(cfl,fl(uh)ifl,jfl +Co,71(uh)i,j71 +Cl,fl<uh)i+1,jfl
Lyup = +C_10(up)i1 +Co0(un)i +C1o(un)it1 - Z f(m’n)‘]m’”’

(m,n)EAs
+C_11(un)ic1j+1 +Coa(up)ijsr  +Cia (Uh>i+1,j+1)

achieves sizth order of accuracy for =V - (aVu) = f at the point (z;,y;), where

1

1
T =Y Y Creh?QY,,, (kh,th), for all (m,n) € As,

)

k=—1/¢=-1
M+1
Ck7g(h) = Z Ckx,php, k’,g c {—1,0, 1},
p=0

and {ckep} is any non-trivial solution to the linear system induced by (3.15) with M = 6.

The maximum accuracy order of a compact 9-point finite difference scheme using Taylor
expansion and our sort of technique for —V - (aVu) = f at the point (x;,y;) is six. To verify
Theorem with the numerical experiments in Section [4.3, we use the unique solution
{Crup} toO with M = 6 and the normalization condition c¢_; _;9 = 1, setting to zero

all €-1,0,7, €0,—1,7, €0,0,65 €0,0,75 C—1,1,p1» €0,1,p2» C1,—1,p2» C1,0,p3» C1,1,p4 for py = 1,6,7, p, = 5,6,7,
p3 =4,5,6,7and py = 2,3,4,5,6,7.

4.2.2 Stencils for boundary and corner points

In this subsection, we extend Section and discuss how to find compact (6-point, 4-point)
finite difference schemes with accuracy order six centered at (z;,y;) € 02. For clarity of

presentation, we consider the following boundary conditions

Biu = %4_@/“:91 on 09|, Byu=u =gy on 9, (4.13)

Bau = % = g3 on 09|, Byu = % + fu = g4 on 0y,
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where a and (8 are two smooth 1D functions in y and x directions. For the 6-point and
4-point schemes in this subsection, we choose (77,y;) = (74,9;) and vy = wo = 0 in (4.3).
An illustration of (4.13)) is shown in Fig. 4.2} For the following identities in (4.15)) and (4.19)),

we define

dao =1 and d,p:=0 fora#b.

4.2.2.1 Side points on the boundary 0f2

Theorem 4.2. Let (uy,);; denote the numerical approzimation of the exact solution u of the

elliptic interface problem (4.1) at the point (x;,y;). The following discretization on a stencil
centered at (xo,y;) € 0Q;:

1
E(Céfl_l(uwo,j—l +OPL (up) 151

5
Clun = +CB(uw)o;  +CBu), = Y FUURIEL D ghTE

(m,n)eAy
+Cp1 (un)oj1 +Cfi(uh)1,j+1)
(4.14)
achieves sixth order of accuracy for Byu = % + au = g1 at the point (zo,y;) € 01, where

1

1
JEL =" CEnTQY,,, (kb th),  for all (m,n) € Ay,

k=0 (=—-1

JP = ZZ LGV, (K, LR, forall n=0,....5,

k=0 {=-1
Cri(h) chphp ke {0,1},0 € {-1,0,1},

and {Cf}p} 1 any non-trivial solution to the linear system induced by

1 1
SN ool ( ton(kh, Ch) + Z ( ) oG, (kb Ch) (1 — 5n,6>>

k=0 f=—1 (4.15)

= 0O(h"), forall n=0,1,...,6.

The maximum accuracy order of a 6-point finite difference scheme using Taylor expansion
and our sort of technique for Biu = % + au = ¢y at the point (z¢,y;) € 0Qf; with two

smooth functions a(y) and a(z, y) is six. In our numerical experiments in Section 4.3 we

use the unique solution {cr" p} to (4.15) with the normalization condition cllg 10 = 1, where

all cooﬁ,c€115,c€116,c§31_1p1,c?5p2,cl1p3 for py = 1,4,5,6, po = 3,4,5,6, and p3 = 2,3,4, 5,6,
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are set to zero. In particular, if @ in (4.1)) is a discontinuous constant coefficient and Byu =

g—g + au = g, with a constant «, then the coefficients in (4.14)) are

8 16 16 8 34
Col = =-a®h? + —ah+2, CPl=—a’h® — —a'h* + ___o®h® — —a’h? — —ah - 10,
0.1 75 + + 00 = g75° 675 225 25" “
8 8 8
B B B B B B
ofi =1, clj)— o 4h4+—225 3h3—75 o®h? + ah+4 CoLy = Cg, 011_0111

Similarly, we could obtain the following Theorems [4.3] and [4.4]

Theorem 4.3. Let (up);; be the numerical approzimation of the exact solution u of the
elliptic interface problem (4.1)) at the point (x;,y;). Then the following discretization stencil
centered at (x;,yo) € 0K3:

1( B B B

—(C o(un)i-10 +Cop(un)io  +CT8(un)it1,0 5

LBy = RV ’ ’ = > fmngB 4N gl B
+C% (un)icra +CG8 (un)in +018,?i(uh)i+1,1) (m,n)€As =

(4.16)
achieves sizth order of accuracy for Bsu = % = g3 at the point (z;,y0) € 0|3, where
11
T =" N O, (kb th),  for all (m,n) € Ay,
k=—1 =0
JBs = — Z Zc,f;aﬁnl kh,th), forall n=0,...,5,
k=—1 =0
6
=> gy ke {-1,0,1},0€{0,1},
p=0
and {cf}i”e’p} 1s any non-trivial solution to the linear system induced by
Z Zc H o(kh,th) = G(K"), forall n=0,1,...,6, (4.17)

k=—1 ¢=0

The maximum accuracy order of a 6-point finite difference scheme using Taylor expan-
sion and our sort of technique for Bsu = 2% = g3 at the point (z;,y0) € 093 with a
smooth function a(x,y) is six. For our numerlcal experiments in Section , we use the
unique solution {ck %) to (4.17) with the normalization condition cﬁ 30 = 1, presetting to
zero all 0006,03311p1,0033’17p2,cf%p3, clf?’lm for p = 1,5,6, po = 4,5,6, p3 = 3,4,5,6, and

ps = 2,3,4,5,6. In particular, if a is a discontinuous constant coefficient in (4.1]), then the
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coefficients in (4.16) are
B B B B B B B
01% =2, C'1,?i =1, Co,% = —10, Oogi =4, C :io = Cl .07 C—?i,l = C1,?i

Theorem 4.4. Let (up);; be the numerical approzimation of the exact solution u of the
elliptic interface problem (4.1)) at the point (x;,y;). Then the following discretization stencil
centered at (x;,yn,) € 0y:

(CBlfl(uh)l 1,-1 +C(l)3:471(uh)i,71 +Cﬁ‘i1(uh)i+1,,1
+C8 olun)i-10 +C§fé(uh)i,o —i—C’f‘é(uh)HLO)

5
= D SR A e
n=0

(m,n)€Ny

B -
£h4uh L=

(4.18)

achieves sizth order of accuracy for Byu = % + Bu = g4 at the point (x;,yn,) € 04, where

1 0
JEL =) O QY, (kb th),  for all (m,n) € Ay,

k=—1(=—1

1

0
ngfff = Z Z CE%GgM(kh,ﬂh), forall n=0,...,5,

k=—1/=-1
Zc,;;php ke{-1,0,1},¢ e {-1,0},

and {C%&p} 15 any non-trivial solution to the linear system induced by

1 0 5

> > Gl ( ateoin) - 3 ()5 ”>Gm<kh,£h><1—5n,ﬁ>>

k=—1/¢=-1 i=n

=0O(h"), forall n=0,1,...,6.

(4.19)

The maximum accuracy order of a 6-point finite difference scheme using Taylor expansion
and our sort of technique for Byu = %% + Bu = g4 at the point (z;,yn,) € 0Qs with two
smooth functions f(x) and a(x, y) is six. For our numerical experiments in Section[4.3] we use
the unique solution {c o) to (4.19) with the normalization condition cﬁ{ 10 = 1, presetting

B B B B B :
to zero all 00,7176,0 4105,6 4106,00‘51,1, C1i 1 pys Clops With p1 = 4,5,6, p2 = 2,3,4,5,06, p3 =

1,3,4,5,6. In particular, if a is a discontinuous piecewise constant coefficient and Byju =
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g—g + pu = g4 with a constant [, then the coefficients in (4.18]) are

8 8 8 2
084 -1 034 - - 4h4 - 3h3 = 2h2 ZBh 4
1,—1 v Co1 675/3 + 225/3 755 + 55 + 4,

1 1
Oy = = *h + £ fh+2

8 s 16 16 8 34
- h5__4h4 _3h3__2h2__ h—lO
6755 6755 + 2255 255 5 b ’
CBi_ =Crty, CBiy=Cry

By __
CO,O -

4.2.2.2 Stencils for corner points

Theorem 4.5. Let (up);; be the numerical approximation of the exact solution u of the
elliptic interface problem (4.1)) at the point (z;,y;). Then the following discretization on a

stencil centered at the corner point (xg,yo):

1
- <08,36 (un)oo  +CT3 (un)10

Eﬁluh .= h
—I-C(ff (un)oa +C§f (Uh)1,1>

5 5
SO LETEERS oY SRS o R
n=0 n=0

(m,n)€EAs

(4.20)

achieves sizth order of accuracy for Biu = % + au = g1 and Bsu = % = g3 at the point
(xo,Y0), where {lezl}k,ée{ol}f {Jgfn}(m,n)em, {J;iln o and {J;;ln > _o can be calculated by
replacing Byu = g—g — itku = g1 by Biu = % + au = g1 i Theorem with M = My =
Mgy, = Mgy, = 6, and replacing Gy, s Qyrmns Giima and QY. in Chapter@ by (4.8),
(#.9), (4.10) and (4.11), respectively.

The maximum accuracy order of a 4-point finite difference scheme using Taylor expansion
and our sort of technique for Byu = %+au = gy and Bsu = % = g3 at the point (zg, yo) with
two smooth functions «a(y) and a(x,y) is six. In particular, if a in (4.1)) is a discontinuous

piecewise constant coefficient, and Byu = %—l—au = g; with a constant «a, then the coefficients
in (4.20) are
8 8 4 17

4
CT\’,1:_5h5__4h4 —3h3—— 2h2——h—5
00 = 575 675" " T 525 25 5T
1 1
Cly = 7—5a2h2 + goéh+2,
Ri—  — o*ht + ioﬁhi” - ioﬁfﬂ + 1ah +2 CcR=1
10 675 225 75 5 I '
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Theorem 4.6. Let (up);; be the numerical approzimation of the exact solution u of the
elliptic interface problem (4.1)) at the point (x;,y;). Then the following discretization on a

stencil centered at the corner point (o, yn,):

1
— (Cgfl(uh)o,er +C§il(uh)l,N271

L'Zfzuh L= h
+C32 (un)o,n, +Cf2 (Uh)l,N2>

5 5
DDA DU AP D S et
n=0 n=0

(m,n)€Ay

(4.21)

achieves sizth order of accuracy for Biu = % +au = ¢, and Byu = % + Bu = g4 at the
point (o, yn,), where {CF7 neoryeet-10y: {IRz2 mmenss {Jgtae and {J230 can be
calculated by replacing Byu = % — iku = g1 and Byu = % — iku = g4 by Biu = % +au = g
and Byu = % + Bu = g4 respectively in Theorem with M = My = My, = My, =6
and replacing Gy v Qirmn: Gimn and QY. . in Chapter@ by (4.8), ([(.9), and
, respectively.

The maximum accuracy order of a 4-point finite difference scheme using Taylor expansion
and our sort of technique for Byu = %+au = g1 and Byu = g—g+ﬁu = g4 at the point (z¢, yn,)
with three smooth functions a(y), 5(z) and a(x,y) is six, where a(yn,) # B(xo). Again, if a
in is a discontinuous constant coefficient, Biu = % +au = g, and Byu = % + fu = g4
with a and 8 being constant, then the coefficients on the left hand side in are

1 1
Cr2 = (40° — 6B + 6a°B* — 40 B*)W° + —(4a* — 60°B + 6a°B* — 4a3°)h*

0-1 7 675 675
1 1
——(9a® + 6308 — 368%*)h? + — (13583 + 135 )h + 2
1 1
Ce = 55(—4044 + 6038 — 6025% 4 4aB*)ht + 55(8043 — 18028 — 30a8% + 165°%)h3
1 2 2\ 1,2 1
+ 225( 3602 — 35703 — 368%)h? + 225( 7650 — 7653)h — 5,
cR2. = 1 —4a* + 6038 — 6026% + 4o Rt + 1,
L= 675
1 1
10 = 597 - o 995\
Ccr (4a® — 60°B + 603> — 4833 + ——(—12a% + 2103 + 33%)h*
07 925 225
1

(4.22)
When o = 3, we further have Cg?il = C’Z%’ = % 3%h* + 2Bh + 2 and C’fﬁl = 11in (4.22).
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4.2.3 Stencils for irregular points

Let (z;,y;) be an irregular point (i.e., both de and d;; are nonempty, see Fig. for an
example) and choose the base point (z7,y;) € I'N (v; —h, z;+h) x (y; —h,y; +h). By (4.3),

we have
r; =z —vh and yj=y; —woh with —1<wy,wy<1 and (27,y;) €. (4.23)

Let a4, uy and fi represent the coefficient function a, the solution u and source term f in
QO*. Similar to (4.4), we define that

am—i—n am—i—nu

ot fy

a = —(T;,Y;), U = S TION = ;Y5 ).
+ 8mx8"y( i yj) + Gmxany( y]) fi 8mx8”y( ?JJ)
Similar to (4.12]), we have
we(+aly+y) = WG L@+ Y AR @) + O,
(m, n)EAMirl (m,n)EAN—1

for x,y € (—2h,2h), where Ay, and AM+1 are defined in and respectively,
GJ:::/jKl,m,n<$’y) and QM+17m7n(x,y) are obtained by replacing {a™™ : (m,n) € Ay} by
{a{™™ : (m,n) € Ay} in and (4.9). Similarly to the definition of the 9-point compact
stencil in and , we define the following 4-point set for the 13-point scheme:

e;Lj ={(k,0) : (k,0) € {(=2,0),(0,-2),(0,2),(2,0)},¢(z; + kh,y; + ¢h) > 0}, and
e;j = {(k7€) : (kvé) S {(_2’())7 (07 _2)7 (072)7 (2a0>}’¢($i + khayj + fh) < 0}
(4.24)

In the next theorem we present a simplified version of Theorem [3.3] adapted to the aim

of developing of a fifth order hybrid 13-point scheme for irregular points.

Theorem 4.7. Let u be the solution to the elliptic interface problem in (4.1) and let T' be
parameterized near (z},y;) by (L.5). Then

u(_m/,n’) _ Z Tu+ (m,n) + Z ( f(m ) + T* f(m n)>

(771,71)6A]‘\//}1 (m,n)EAM—2

m+n<m’+n’ (425)

M-
+ZT5;’npgop ZT;ilnpglp, v (m' ') €AY
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where

1 dP
goap T p| dtp [90 (T(t) + ZL‘i,S(t) + yj)j| t:O’ P = O, 1, e ,M,
F 1 dp F * * / 2 / 2
91p = o [91 (r(t) + «f, s(t) —l—yj)\/(r ()2 + (s'(1)) ] , p=0,1,...,M —1,
’ t=0

and all the transmission coefficients T+, T%,T% T9 are uniquely determined by r*)(0),
s®(0) for k = 0,...,M and {aim’n) : (myn) € Ay—1}. Moreover, let Th be the

transmission coefficient of usrm’") in (4.25) with (m,n) € AAV/’Il, m—+n=m'+n" and (m',n') €
A]‘\/f. Then T'F only depends on r®(0), s (0) for k =0,...,M of (L.5) and afo).

m’,n’,m,n

Particularly,
T(;L,O+,O,O =1 and T::LJ’F,n’,O,O =0 Zf (m/> Tl/) 7é (07 O) (426>

Next, we provide the 13-point finite difference scheme for interior irregular points.

Theorem 4.8. Let (uy);; be the numerical approximation to the solution of (4.1) at an
interior irreqular point (v;,y;). Pick a base point (x7,y;) as in (4.23). Then the following
18-point scheme centered at the interior irregular point (x;,y;):

+Co,—2(un)ij—2

+C_1 —1(up)i—1j-1 +Co,—1(un)ij—1 +Ci—1(un)it1j—1
Ljup = %(C—z,O(Uh)z‘—z,j +C10(un)i-1, +Co.0(un)i, +Cr0(un)iv1, +02,O(uh)i+2,j)
+CO_11(un)i—1,j+1 +Co,1(un)ij+1 +C1 1 (Un)it1,j+41
+Co2(un)i j+2
(4.27)

5 4
r r
D D £ Gl S S ALY W el N Rl LIS S e/ L

(m,n)EAs (m,n)€A; p=0 p=0

achieves fifth order accuracy, where all {Cy e} in (4.27) are calculated by (4.28)-(4.39) with
M =5, Jy, = J50 + J5T for all (m,n) € As,

TEO = > Crgh 2 Qa o ((vo + B)h, (wo + O)h),  ¥(m,n) € As,
(k,0)€d;Uef,
JENe= > L, hTTE L Y(mn) € As,
(m',n')EAg’1
Ipnwi= Y. CruGsi (0o + k)b, (wo + O)R), V(m,n) € AL,
(k,0)€d; Ve,
JP =S L T Wp=0,..5  J0i= S I T Up=0,... 4.
(171',71/)61\‘;)/’1 (m/,n')eAé/‘1

The maximum accuracy order of a 13-point finite difference scheme using Taylor expan-
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sion and our sort of technique for (4.1)) at an interior irregular point (z;,y;) is five. For the
13-point scheme in Theorem 4.8} if only one point in the set {(x; — h,y; — h), (x; — h,y; +
h), (x;+ h,y; — h), (z; + h,y; + h)} belongs to Q_ and the other 12 points all belong to Q,
we can set Cyp = 0 for (z; + kh,y; + (h) € Q_, xf = x;, y7 = y; to achieve sixth order
accuracy in (x;, y;).

Finally, we provide a way of achieving an efficient implementation for the 13-point scheme
in irregular points in Theorem [1.8|

Efficient implementation details:

By Theorem a simpler Jt" in (8.25]) can be written as:

uy, T E - U
‘]m,n T [m/,n’Tm’,n/,m,n' (428)
V,1
(m/,n")eAy;
m/+n'>m+n

Replacing AL, by A} for ([3.27) and (3.28)), we have
I+ Jel = o(hM), h— 0, forall (m,n) e Ay} (4.29)

Replacing G o and dfj by Gﬁ};m, £V and dfj U efj for (3.24)), we obtain

m,n? Mm,n

Z Ck,ZG]\Jr/I’,‘:n,n(UOh =+ kha woh + gh) + Z In;/,n’T:z’tn/,m,n = ﬁ(h’MJrl)u

V,1
(k,[)ed:erj:j (m/,n")eAy;
m/4n’'>m+n

and

> GG, (voh + kb, woh + Ch)
(k0)ed} vel
+ ) S CriGiihy (ol + khywoh + ()Tt = (M),
(m/ n)eAY; (kO)Ed; Ve,

m'4+n'>m+n

So, (4.29) is equivalent to

Yo Cre > Gy (voh 4 kb woh + ()Tt

(k,0)Ed; ey, (m/\n")e);!
m/4+n'>m+n

+ ) CriGiinn(voh + kb woh + th) = O(BMFY), for all (m,n) € A}
(k) ed uel

(4.30)
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Let
M

Cre=> croih’,  Xio = (Cheo,Chts-- - Coons)’ - (4.31)
i=0

Since Gﬁ‘fnn((k + vg)h, (£ + wp)h) is the polynomial of h and the degree of h of every term
in Gﬁ‘;n((kj + vg)h, (¢ + wp)h) is non-negative, we deduce that

CroaG i n((k +v0)h, (€ +wo)h) = DAL Xy + O (WM, (4.32)

Chru Z G;iffn,7n,((k +vo)h, (€ + wo)h)TF = DA X+ O, (4.33)

m/ .n’ mmn
V1
(m/,n)eA,;
m/+n'>m-+n

where

D= (h° A, ... B,

an » 18 Independent for h for all (m,n) € A,; . So (4. 18 equivalent to
d A" is independent for h for all Ayt So ([E:30) is equival

S DA X+ Y. DA X = 0(0MTY),  forall (m,n) € A}
(k0)ed] uet (k0)ed; Ve,

(4.34)

Define

200Ey 1 Z’
A=k g (4.35)

Then (4.34) is equivalent to
A™MX =0, for all (m,n) € Ay},
where

mmn __ m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n
A - (A—L—l? A—1,07 A—l,la AO,—la AO,O ) AO,l ) Al,—l? ALO ) Al,l ) A—Q,O? AQ,O ’ AO,—Q? AO,Q )7
(4.36)

and

T T T T T T T T T T T T T \T
X = (X—l,—la X—1,07 X—l,lv XO,—la XO,O? XO,lﬁ Xl,—lv Xl,Oa X1,1> X—Q,O» X270’ XO,—Q’ X0,2) .
(4.37)
Let
T

A= ((AO,(J)T’ <A0,1>T’ . (AO,M)T’ (Al,O)T’ (Al,l)T’ . (Al,Mfl)T) (438)
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Finally, (4.30) is equivalent to
AX =0. (4.39)

Since we use 13-point scheme for the irregular points, we have 13 components in and
(4.37). If we use 9-point compact scheme for the irregular points, we only need to delete
the last four components in and . For the 25-point or 36-point schemes for the
irregular points, the only change is to add more A}}" and Xy, in (4.36) and (4.37). Even

there are many different cases for the 13-point schemes for the irregular points depending
on how the interface curve I' partitions the 13 points in it, we can repeatedly use Ai’em’" in
, and to cover all the cases which significantly reduce the computation
cost and make the implementation very effective and flexible. Furthermore, if we want to
obtain the lower or higher finite schemes for irregular points, we only need to delete or add
some A% and A" ! in (4.38).

After the above simplification, we find that the A in (4.39) is a 36 by 78 matrix for the
13-point scheme with fifth order accuracy while A is a 16 by 36 matrix and the 9-point

scheme with third order accuracy. Observing the following identity (whose proof is given in

Section

1 1

Co,—2,i T €204 + C20,i + Co2,i + Z Z Chei =0, for i=0,1,..., M, (4.40)
——

we can further reduce the size of the matrix A in (4.39)) to 30 by 72 for the 13-point scheme.

4.3 Numerical experiments

4.3.1 Numerical examples with known u

In this subsection, we provide five numerical examples with a known solution u of .
Using Taylor expansion and our sort of technique, the maximum accuracy order for the
compact 9-point finite difference scheme in irregular and regular points, for elliptic interface
problems with discontinuous coefficients, is three and six, respectively. So, in Examples
and we compare the proposed hybrid scheme with the compact 9-point scheme of a
sixth order of accuracy at regular points and third order of accuracy at irregular points.
That is, both uses the same compact 9-point stencils with accuracy order six at all regular
points, and they only differ at irregular points such that the proposed hybrid scheme uses
13-point stencils having fifth order accuracy, while the compact 9-point scheme uses 9-point

stencils having third order accuracy. Their computational costs are comparable, because the
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percentage of the number of irregular points over all the grid points decays exponentially to
0 at the rate €(277), e.g., this percentage is less than or around 1% at the level J = 9 for
all our numerical examples.

The five numerical examples can be characterized as follows:

e Examples and compare the proposed hybrid scheme and the 9-point compact

scheme.

e In all examples, either a, /a_ or a_/a, is very large on I' for high contrast coefficients

a.
e 4-side Dirichlet boundary conditions are demonstrated in Examples and [4.5]

e 1-side Dirichlet, 1-side Neumann and 2-side Robin boundary conditions are considered

in Examples [£.3] and [4.4]

e Results for smooth interface curves I' are presented in Examples [4.1] and [4.3] to [£.5]
e Results for a sharp-edged interface curve I' are demonstrated in Example 4.2

e Results for two constant jump functions g5 and g} are shown in Examples and
to .5

e Results for two non-constant jump functions g{ and g} are presented in Example .

Example 4.1. Let Q = (—1.5,1.5)? and the interface curve be given by I' := {(z,y) €  :
P(z,y) = 0} with ¥(z,y) =y + x%le — 1. The functions in (4.1)) are given by

ay = 10*(2 + sin(z) sin(y)), a_ = 107%(2 + sin(x) sin(y)), g5 = —200, g; =0,
uy = 1073 sin(4x) sin(4y) (y*(2* + 1) + 2> — 1),

u_ = 10%sin(4x) sin(4y) (y*(2* + 1) + 2% — 1) + 200,

u(—=1.5,9) = g1, u(1.5,y) = go, for y € (—1.5,1.5),

u(z, —1.5) = gs, u(z,1.5) = g4, for xr € (—1.5,1.5),

the other functions f*, g1,..., g4 in ([4.1)) can be obtained by plugging the above functions
into (4.1). Note the high contrast a, /a_ = 10° on T'. The numerical results are presented

in Table and Fig. [4.3]
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Table 4.1: Performance in Example of our proposed hybrid finite difference scheme and
compact 9-point scheme on uniform Cartesian meshes with h = 27/ x 3. & is the condition number
of the coefficient matrix.

Our proposed hybrid scheme

Compact 9-point scheme

MTun—ull2
[lwll2

order

[un — ulloo

order

K

MTun—ull2
[lwll2

order

[un — ullo

order

K

1.493E-01
3.124E-03
6.081E-05
1.238E-06
1.803E-08

0
5.6
5.7
5.6
6.1

1.362E+02
3.872E4-00
7.168E-02
1.490E-03
3.305E-05

0
5.1
5.8
5.6
5.5

2.136E+-02
4.262E4-02
6.261E4-03
1.701E4-04
1.169E+05

5.465E-01
4.751E-02
2.464E-03
2.745E-04
1.557E-05

0
3.5
4.3
3.2
4.1

4.515E+02
4.453E+01
2.890E4-00
3.318E-01
1.894E-02

0
3.3
3.9
3.1
4.1

8.685E+01
4.896E+02
2.069E4-03
9.171E403
4.054E4-04

© 0 ~1 o U]

9.053E-07| 4.1 | 1.185E-03 | 4.0 |1.648E4-05

Figure 4.3: Example the interface curve I (first panel), the coefficient a(x,y) (second panel),
the numerical solution u; (third panel), and the error |uj — u| (fourth panel) with h = 278 x 3,
where wuy, is computed by our proposed hybrid finite difference scheme.

Example 4.2. Let Q = (—4.5,4.5)% and the interface curve be given by T' := {(z,y) € Q :
¥ (x,y) = 0} which is shown in Fig. 4.4l Precisely, the sharp-edged interface is a square with
4 corner points (—2,0), (0,2), (2,0) and (0, —2). The functions in (4.1)) are given by

a, =107, a_ = 10% uy = 10%sin(x —y), wu_ = 1072 cos(z) cos(y) + 1000,
u(—4.5,y) = g1, u(4.5,y) = g2,  for  ye(-4.54.5),
u(z, —4.5) = gs, u(z,4.5) = g4, for x € (—4.5,4.5),

the other functions f*, g{, ¢}, g1,...,94 in (£.1)) can be obtained by plugging the above
functions into (4.1). Clearly, gi and g} are not constants. Note the high contrast a_/a, =

10° on I'. The numerical results are presented in Table 4.2/ and Fig.

Example 4.3. Let Q = (—2.5,2.5)? and the interface curve be given by I' := {(z,y) € Q :
Y(x,y) = 0} with ¢(z,y) = 2* + 2y* — 2. The functions in (4.1 are given by

r

ay = 1073(2 + sin(z) sin(y)), a_ = 103(2 + sin(z) sin(y)), g, =

uy = 10%sin(47x) sin(47y) (z* + 2y* — 2),

= —10°,

9% 0,
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Table 4.2: Performance in Example of our proposed hybrid finite difference scheme and
compact 9-point scheme on uniform Cartesian meshes with h = 27/ x 9. k is the condition number
of the coefficient matrix.

Our proposed hybrid scheme

Compact 9-point scheme

MTun—ull2
[lwll2

order

[un — ulloo

order

K

MTun—ull2
[lwll2

order

[un — ullo

order

K

7.431E-03
4.505E-04
5.701E-06
4.937E-08
6.087E-10

0
4.0
6.3
6.9
6.3

2.062E+-01
1.322E+00
1.778E-02
1.869E-04
2.942E-06

0
4.0
6.2
6.6
6.0

1.337E+03
1.020E+04
6.394E4-04
3.920E+05
2.132E+07

6.254E-02
1.110E-02
6.953E-04
2.993E-05
1.155E-06

0
2.5
4.0
4.5
4.7

1.574E+02
2.837E4-01
1.929E+00
1.059E-01
4.177E-03

0
2.5
3.9
4.2
4.7

1.238E+03
6.529E+03
4.152E4-04
3.286E+05
1.474E+06

© 0 ~1 o U]

8.390E-08| 3.8 |3.391E-04 | 3.6 [1.006E+07

&

Figure 4.4: Example the interface curve I (first panel), the coefficient a(x,y) (second panel),
the numerical solution u; (third panel), and the error |uj — u| (fourth panel) with A = 277 x 9,
where wuy, is computed by our proposed hybrid finite difference scheme.

u_ = 1072 sin(47x) sin(4my) (z* + 2y* — 2) + 107,

— uy(—2.5,y) + au(—2.5,y) = g1, for ye (—2.5,2.5),

z € (—2.5,2.5),

a = sin(y),

B = cos(x),

w(2.5,y) = g,

— uy(z, —2.5) = gs, uy(x,2.5) + fu(x,2.5) = g4, for

the other functions f*, g,..., g4 in ([#.1)) can be obtained by plugging the above functions
into (4.1). Note the high contrast a_/a, = 10° on I'. The numerical results are presented
in Table [4.3] and Fig. [4.5

Table 4.3: Performance in Example of our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h =277 x 5.

Tun—ull2

J ]2 order | [|up, — ul|oo | order | ||up — upjall2 | order | ||up — up/2l|eo | order
5(8167E-01| 0 |1.758E405| O 1.811E+05 0 1.734E4-05 0
6|1.123E-02 | 6.2 |2.488E+03| 6.1 | 2471E+03 | 6.2 2.441E+03 6.2
712.059E-04 | 5.8 [4.711E401| 5.7 | 4.550E4+01 | 5.8 4.640E+01 5.7
813.035E-06 | 6.1 | 7.028E-01 | 6.1 6.701E-01 6.1 6.919E-01 6.1
914.632E-08| 6.0 | 1.087E-02 | 6.0 9.946E-03 6.1 1.037E-02 6.1
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-y

Figure 4.5: Example the interface curve I (first panel), the coefficient a(x,y) (second panel),
the numerical solution wuy, (third panel), and the error u —uy, (fourth panel) with h = 278 x 5, where
up, is computed by our proposed hybrid finite difference scheme.

Example 4.4. Let Q = (—2,2)? and the interface curve be given by I' := {(x,y) € Q :
Y(z,y) = 0} with ¢(z,y) = 2* + y* — 2. The functions in ([4.1)) are given by

ay = 1032 +sin(z + y)), a_ =107*(2 +sin(z + y)), g6 = —10%, g =0,
uy =103 cos(4(z — y))(2* + 3> — 2), u_ = 10%cos(4(x — y))(2* + y* — 2) + 107,
—uz(—2,y) + au(—2,y) = g1, u(2,y) = g2, a=sin(y), for ye€ (-2,2),
— uy(x, —2) = gs, uy(z,2) + pu(z,2) = g4, B =cos(z), for ze€(-2,2),

the other functions f*, g1,..., g4 in ([4.1]) can be obtained by plugging the above functions
into (4.1). Note the high contrast ay/a_ = 10° on I'. The numerical results are presented

in Table [£.4 and Fig. [4.6]

Table 4.4: Performance in Example of our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h = 277/ x 4.

J % order | [Jup — ul|oo | Order | ||up — unsal2 | order | |Jup — up/2l|o | order
8.087E-01 0 4.191E+03 0 2.568E+03 0 4.141E4+03 0
1.443E-02 | 5.8 |1.061E402| 5.3 4.623E401 5.8 1.048E+02 5.3
2.679E-04 | 5.8 |2.154E+00| 5.6 8.629E-01 5.7 2.132E+00 5.6
3.432E-06 | 6.3 | 3.518E-02 | 5.9 1.100E-02 6.3 3.477E-02 5.9

6.625E-08 | 5.7 | 6.192E-04 | 5.8 2.120E-04 5.7 6.118E-04 5.8

00 31 O Ot i~

Example 4.5. Let Q = (—2.5,2.5)? and the interface curve be given by T' := {(z,y) € Q :
Y(z,y) = 0} with ¥(z,y) = y* — 22% + 2* — ;. The functions in ([£.1) are given by

ay =103 2 +sin(z —y)), a_ =10*2+sin(x —y)), g =-1.5x10",  gf =0,
uy = 10%sin(16(z + y))(y* — 22° + 2* — 1/4),
u_ = 10"3sin(16(x + y))(y* — 22° + 2* — 1/4) + 1.5 x 10*,
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Figure 4.6: Example the interface curve I (first panel), the coefficient a(x,y) (second panel),
the numerical solution uy (third panel), and the error |u; — u| (fourth panel) with h = 278 x 4,
where wuy, is computed by our proposed hybrid finite difference scheme.

y € (—2.5,2.5),
x € (—2.5,2.5),

'11,(257 y) = g2, for

u(z,2.5) = ga,

u<_257 y) = g1,

u(z, —2.5) = gs, for

, g4 in (4.1) can be obtained by plugging the above functions
into (4.1). Note the high contrast a_/a; = 10° on I'. The numerical results are presented
in Table [4.5] and Fig. [4.7]

the other functions f*, g1,...

Table 4.5: Performance in Exampleof our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h =277/ x 5.

J % order | |lup — ul|oo | order | |lup — upyo||2 | order | [Jup — up/2l|o | order
5(8627E-01| 0 [9.480E404| O 4.284E4-04 0 9.338E4-04 0

6 | 2.854E-02 | 4.9 |2.758E+03| 5.1 | 1.360E403 | 5.0 2.736E4-03 5.1
7|4.543E-04| 6.0 |5.673E+01| 5.6 | 2.128E+01 | 6.0 5.658E+01 5.6
8 16.195E-06 | 6.2 |1.184E+00| 5.6 2.856E-01 6.2 1.177E400 | 5.6
918902E-08| 6.1 | 1.738E-02 | 6.1 4.441E-03 6.0 1.788E-02 6.0

g8

sk

Figure 4.7: Example the interface curve I' (first panel), the coefficient a(x,y) (second panel),
the numerical solution u;, (third panel), and the error |ujy — u| (fourth panel) with h = 278 x 5,
where uy, is computed by our proposed hybrid finite difference scheme.
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4.3.2 Numerical examples with unknown u

In this subsection, we provide five numerical examples with unknown w of (4.1). They can

be characterized as follows.

e In all examples, either ay/a_ or a_/a, is very large on I for high-contrast coefficients

a.

4-side Dirichlet boundary conditions are demonstrated in Examples [4.6] and [4.9]

3-side Dirichlet and 1-side Robin boundary conditions in Examples [£.7] and [£.8]

1-side Dirichlet, 1-side Neumann and 2-side Robin boundary conditions in Exam-
ple 4.10]

All the interface curves I' are smooth and all the jump functions g and gl are non-

constant.

Example 4.6. Let Q = (—2.5,2.5)? and the interface curve be given by I' := {(z,y) € Q :
Y(x,y) = 0} with ¢(z,y) = 2* + 2y* — 2. The functions in ([4.1)) are given by

ay = 2+ cos(z) cos(y), a_ = 10*(2 + sin(z) sin(y)), gy = sin(x)sin(y) — 1,
f+ = sin(4nz) sin(4my), f- = cos(4mx) cos(4my), gi = cos(z) cos(y),
u(—2.5,y) =0, u(2.5,y) =0 for  ye (—2.5,2.5),

u(x,—2.5) =0, u(z,2.5) =0, for  z€(-25,2.5).

Note the high contrast a_/a; ~ 10 on . The numerical results are presented in Table
and Fig. [1.§

Table 4.6: Performance in Example of our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h = 277 x 5.

lup, — upyoll2 | order | [|up — up/al/o | order
9.83385E+02| 0 |3.29078E+02| O
1.93678E+01 | 5.7 |6.50631E4-00 | 5.7
3.13024E-01 | 6.0 | 1.04785E-01 | 6.0
947776E-05 | 5.8 | 3.20754E-05 | 5.8

0 O U x|

Example 4.7. Let Q = (—7,7)? and the interface curve be given by I' := {(x,y) € Q :
Y(x,y) = 0} with ¢ (z,y) = 2* + y* — 2. The functions in (4.1)) are given by

a; =2+ cos(z —vy), a_ =10*(2 + cos(z — y)), g5 = sin(x —y) — 2,
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Figure 4.8: Example the interface curve I' (left), the coefficient a(z,y) (middle) and the
numerical solution uy, (right) with h = 278 x 5, where uy, is computed by our proposed hybrid finite
difference scheme. In order to show the graph of a(z,y) clearly, we rotate the graph of a(z,y) by
/2 in this figure.

f+ = sin(8z) sin(8y), f— = cos(8x) cos(8y), g1 = cos(x + ),
— ug (=, y) + cos(y)u(—,y) = cos(y) + 1, u(m,y) =0, for ye(-mmn),

u(z, —m) =0, u(z,m) =0, for  x € (—mm).

Note the high contrast a_/a, = 10® on I'. The numerical results are presented in Table
and Fig. 4.9

Table 4.7: Performance in Exampleof our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h =277/ x 27.

|un, — upsall2 | order | |lup — up/alloo | order
7.02037E+02 0 1.84708E+-02 0
9.69424E+00 | 6.2 | 2.54978E+00| 6.2
2.26556E-01 | 5.4 | 5.97145E-02 5.4
2.57284E-03 | 6.5 | 6.79725E-04 | 6.5
5.07886E-05 | 5.7 | 1.34801E-05 | 5.7

00 ~1 O Ut |y

2 2
31 24 16 08 00 0.8 16 2.4 3.1 x y
x

Figure 4.9: Example the interface curve I' (left), the coefficient a(z,y) (middle) and the
numerical solution uy, (right) with h = 278 x 27, where uy, is computed by our proposed hybrid
finite difference scheme. In order to show the graph of a(x,y) clearly, we rotate the graph of a(zx,y)
by 7/2 in this figure.
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Example 4.8. Let Q = (—%,%)? and the interface curve be given by I' := {(z,y) € Q :
Y(x,y) = 0} with ¥ (z,y) =y + x%”jfl — 1. The functions in (4.1)) are given by

a, = 10%(2 + sin(z + v)), a_ =10"%(2 + cos(z — y)), gy = sin(x) cos(y) — 2,
f+ = sin(6z) sin(6y), f- = cos(6x) cos(6y), g = cos(z +v),
Sy Feosu(=Z,y) =sin(y+ )y —35).  ulGy) =0, for ye (=5, 2),
m

u(z, —g) 0, u(z, 5) =0, for =x€ (—g

— Uy(—
)-

);
"2

The high contrast a; /a_ = 10° on I'. The numerical results are presented in Table and

Fig. 4.10]

Table 4.8: Performance in Exampleof our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h =277/ x 7.

|up, — upyol|2 | order | ||up, — up 2| | order
1.17512E-01 0 1.95534E-01 0
1.34603E-03 | 6.4 | 5.01334E-03 | 5.3
2.97345E-05 | 5.5 | 9.62920E-05 | 5.7
3.63705E-07 | 6.4 | 1.11523E-06 | 6.4

0 3 O Oy

242 x2(x?+1)-1=0

S e v
g2 888 88
8 8888 8

Figure 4.10: Example the interface curve I' (left), the coefficient a(x,y) (middle) and the
numerical solution uy (right) with h = 278 x 7, where uy, is computed by our proposed hybrid finite
difference scheme.

Example 4.9. Let Q = (—2.5,2.5)% and the interface curve be given by I' := {(z,y) € Q:
Y(z,y) = 0} with ¢ (z,y) = y* — 222 + 2* — . The functions in are given by

a, = 10°(10 + cos(z) cos(y)), a_ = 107°(10 + sin(z) sin(y)), g6 = sin(z) — 2,
f+ = sin(4nx) sin(4my), f- = cos(4mx) cos(4my), gt = cos(y),

u(—2.5,y) =0, u(2.5,y) =0, for  y e (-2.5,2.5),

u(x,—2.5) =0, u(zx,2.5) =0, for x € (—2.5,2.5).
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The high contrast a; /a_ =~ 10° on T'. The numerical results are presented in Table and

Fig. A.10]

Table 4.9: Performance in Example of our proposed hybrid finite difference scheme on uniform
Cartesian meshes with h = 277 x 5.

|un — unsall2 | order | ||up — up/al/oo | order
6.18678E+00| 0 |9.88338E+00| O
9.69535E-02 | 6.0 | 2.17089E-01 | 5.5
1.67043E-03 | 5.9 | 3.52407E-03 | 5.9
2.43148E-05 | 6.1 | 5.22530E-05 | 6.1

00 3 O U

y2-2 x?+x*114=0

oo | i
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Figure 4.11: Example the interface curve I' (left), the coefficient a(x,y) (middle) and the
numerical solution uy, (right) with A = 278 x 5. In order to show the graph of u;, clearly, we rotate
the graph of uy, by 7/2 in this figure.

Example 4.10. Let Q = (—7,7)? and the interface curve be given by ' := {(z,y) € Q :
Y(z,y) = 0} with ¥(x,y) = 2% + y*> — 4. The functions in (4.1]) are given by

ay = 10(2 4 cos(z — y)), a_ = 107%(2 + sin(z) sin(y)), go = sin(y) — 10,
f+ = sin(6x) sin(6y), f- = cos(6x) cos(6y), gi = cos(z),
— Uy (—m,y) + sin(y)u(—m,y) = cos(y), u(m,y) =0, for ye(—m, ),

— uy(x, —m) = sin(x — ), uy(z, ) + cos(x)u(x, ) = cos(z) + 1, for x € (—m,m).

The high contrast a; /a_ =~ 10" on I'. The numerical results are presented in Table and
Fig. 1.12

4.4 Conclusion

To our best knowledge, so far there were no 13-point finite difference schemes for irregular
points available in the literature, that can achieve fifth or sixth order for elliptic interface

problems with discontinuous coefficients. Our contributions of this chapter are as follows:
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Table 4.10: Performance in Example of our proposed hybrid finite difference scheme on
uniform Cartesian meshes with h = 277 x 2.

J | |lun — upy2ll2 |order | ||up — wp /2|l | order
1.60217TE4+04 | 0 |1.39059E+404 | O
2.94197E+02 | 5.8 |2.79828E+02 | 5.6
4.54676E4+00 | 6.0 |6.36193E+00 | 5.5
0.82759E-02 | 6.3 | 1.02577E-01 | 6.0

o ~J O Ot

30

3.1
31 24 16 08 00 0.8 16 2.4 3.1
x

Figure 4.12: Example the interface curve I' (left), the coefficient a(z,y) (middle) and the
numerical solution wuy, (right) with h = 278 x 27, where uy is computed by our proposed hybrid
finite difference scheme.

e We propose a hybrid (13-point for irregular points and 9-point for interior regular
points) finite difference scheme, which demonstrates six order accuracy in all our nu-
merical experiments, for elliptic interface problems with discontinuous, variable and
high-contrast coefficients, discontinuous source terms and two non-homogeneous jump

conditions.

e The proposed hybrid scheme demonstrates a robust high-order convergence for the
challenging cases of high-contrast ratios of the coefficients ay: sup(ay)/inf(a_) =
103,107,106, 107.

e Due to the flexibility and efficiency of the implementation, it is very simple to achieve
the implementation for 25-point or 36-point schemes for irregular points of elliptic in-

terface problems and Helmholtz interface equations with discontinuous wave numbers.

e From the results in Tables and [£.2] we find that if we only replace the 13-point
scheme for irregular points by a 9-point scheme, then the numerical errors increase
significantly, while the condition number only slightly decreases. Thus, the proposed
hybrid scheme could significantly improve the numerical performance with a slight

increase in the complexity of the corresponding linear system.

e We also derive a 6-point /4-point schemes with a sixth order accuracy at the side/corner

points for the case of smooth coefficients o and  in the Robin boundary conditions
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%—FO&U—gland L+ Pu = gy.

e The presented numerical experiments confirm the sixth order of accuracy in the /5 and

lo norms of our proposed hybrid scheme.

4.5 Proofs of Theorems

4.1

to

4.8

In this subsection, we provide the proofs to all the technical results stated in Section [4.2]

Proof of Theorem[{.1. Choose M = 6 and replace Gy, Qmpn and A}, in Theorem [3.2 by

G given in @8), QY ., in @), and Ay7, in (E6) .

O

Proof of Theorem [{.2, Since —u, + au = g; on 99|y, we have u:™ = 3" (") a0 i) —
ggn) forallm=0,...,M — 1. By (4.12) with M being replaced by M — 1,

w(x + i,y + yj)

= Z u(m,n) GJ‘\/J,m,n (xv y) + Z

QY (@, y) + O(RMTY

(m n)eAy;! (m,n)EAM—2

= Zu(on GMOn T,y) + U(l n)GM,l,n(ﬂﬁ y) +

>

PO QN () + O (WM

n=0 (m,n)eAr—2
M-1 n n ) )

_ Zuw VG0 (e,1) + (7)ol 0 - )Gl
n=0 =0

n

M-1M-1 n M-1
= ZU(O” (z,y) + <i>a(n_2)u(0ﬂ)GV NED 9§H)Gz‘(4,1,n(% y)
=0 n=i n=0
+ Z QY (@, y) + O(RMT
(m,n)EAM,Z
M—1 M—1M-1 ;
= M)GMO vz, y) + Z u(o’")Gz‘\//f,o,n(x,y) + (n)a( R n)GM,l,z(x Y)
n=0 n=0 i=n
- Z Ay + > QY (@) + O, for wy € (=20, 2h).

(mJL)EA]\/[_Q
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So, zj = x; and y; = y; lead to
1
LBy = - > ) Clulw + khyy; + th)

k
M M—-1
=D uOInTtE Y T SR+ Y g Uh T, = o),
n=0

n=0 (mn)EA_2

as h — 0, where

15 = Z Z Ces (GMO” (kh, Ch) + Z ( > al™MGY, | (kh, th)(1 — 5n,M)) ,

k=0 ¢=—1 (4.41)

JB = Z Z Coh2QY (kb CR),  JB = — Z Z CoLGYp 10 (KD, Ch),

k=0 (=—1 k=0 (=—1
dao =1, and 9, = 0 for a # b. Let
1L M-1
Cotun =3 30 3 Cliwdivegre = D fOORIEL Y gh IR, (442)
k=0 ¢{=-1 (m7n)eA]\{72 n=0

We have
L3 (u—uy) = O(hM),

if [51 = o(hM*1Y) in (A.41) for all n =0,..., M. So ([4.42) with M = 6 results in (4.14)).

[l
Proof of Theorem[{.3 The proof is almost identical to the proof of Theorem [4.2] O
Proof of Theorem[{.4] The proof is almost identical to the proof of Theorem [4.2] O

Proof of Theorem[{.5. The proof is similar to the proof of Theorem [5.4l Precisely, replace
Biu = % — iku = g1 by Biu = a—“ + au = ¢; in the proof of Theorem With M= M; =
M,, = My, = 6, and replace Gy, 0, Qirmns Gimn and QF . in Theoremby (.3,
(4.9), (4.10) and (4.11).

Proof of Theorem[{.6. The proof is similar to the proof of Theorem [5.5] Precisely, replace
Biu = %—iku = g, and Byu = %—iku = g4 by Biu = g—g—i-ozu = g, and Byu = %—i—ﬁu =gy
respectively in the proof of Theoremwith M = My = M, = M, = 6and replace aY Mo

Q}(me, Gﬁmm and Qﬁmn in Theorem by , , and (4.11] . O
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Proof of Theorem[{.7. (4.26]) can be obtained by W = uf 0 _ 90,0 and (3.58). The rest of
the proof is straightforward and follows from (3.48]), (3.50)), (3.56)), and (3.58)). O

Proof of Theorem[{.8, Choose M = 5, replace Ay, G, . Q% aljE in (3:23)-(3-28) by AV
GEv IV dfj U efj in this chapter. O]

Mm,n> Mm,n>?

Proof of (4.40)). Replace A}, mn, Qi di in Chapterlby AV1 GE‘ZM, an, djE Ue

in this chapter. Consider IO,O(h) = ﬁ(hMJrl in (3.28). According to and -,
Ipo(h) = O(hM*1) implies

S G balh + F )+ YD L (0T g = OO

(k,f)EdeUe:j (m " /)GAVl
m+n’>0

(4.43)

By (4.26), (4.43) is equivalent to

Z C’k,e(h)G;\rj}&O(voh + kh,woh + €h) + I o(h) = O (hM+YY,
(k0)ed] vet

ie.,

> Creh)GRiGooh+khywoh+eh)+ > Cra(h)Grpg o(voh+kh,woh+th) = O(hMT).

(k,0)ed] Uef (k,0)€d; ;Ue; ;
(4.44)
According to the proof of Lemmas 2.2/ and 3.1 and (4.8)),
+V :
Ghioo(@,y) = 1. (4.45)

Consider the coefficients of h® for i = 0,1,..., M in - then (4.45]) implies

Z Ck’g,i—}- Z Crei = 0, for 1 :0,1,...,M.

(k0)ed] vel (k0)ed; Ve,

This proves (4.40)). O
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Chapter 5

Sixth Order Compact Finite
Difference Methods for 2D Helmholtz

Equations with Singular Sources and
Reduced Pollution Effect

5.1 Introduction and problem formulation

The Helmholtz equation is challenging to solve numerically due to several reasons. The first
is due to its highly oscillatory solution, which necessitates the use of a very small mesh size
h in many discretization methods. Taking a mesh size h proportional to the reciprocal of
the wavenumber k is not enough to guarantee that a reasonable solution is obtained or a
convergent behavior is observed. The mesh size h employed in a standard discretization
method often has to be much smaller than the reciprocal of the wavenumber k. In the
literature, this phenomenon is referred to as the pollution effect, which has close ties to the
numerical dispersion (or a phase lag). The situation is further exacerbated by the fact that
the discretization of the Helmholtz equation typically yields an ill-conditioned coefficient
matrix. Taken together, one typically faces an enormous ill-conditioned linear system when
dealing with the Helmholtz equation, where standard iterative schemes fail to work [28].

Let Q = (I3, 15) x (I3, 4) and 1 be a smooth two-dimensional function. The model problem
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is explicitly defined as follows:

.
Au+ K= f in Q\ T,
ul =g, [Vu-ii]=g" on I,
[u] = g5 [ =g (5.1)
Blu = (g1 on (9Q|1 = {ll} X (lg, l4), BQU = g2 ONn 8Q|2 = {12} X (13, 14),
\Bgu = g3 On 89’3 = (ll, lg) X {lg}, B4u = g4 ON 8Q|4 = (ll, lg) X {14},
where k is the wavenumber, f is the source term, and for any point (xq,yo) € T,
ul(xg, = lim u(x,y) — lim u(x,y),
el@0:90) = e ) cos Y T e oo on) VY
Vu - 1] (xg, yo) := lim Vu(x,y) -1 — lim Vu(zx,y) -1,
Vo (0. 0) = o B i Y T e 8 oy ¥ )

where 7 is the unit normal vector of I" pointing towards €2, . In , the boundary operators
By,...,By € {1y %, % — ikI;}, where I corresponds to the Dirichlet boundary condition
(sound soft boundary condition for the identical zero boundary datum), Z corresponds
to the Neumann boundary condition (sound hard boundary condition for the identical ze-
ro boundary datum), and % — ikl (with i being the imaginary unit) corresponds to the
impedance boundary condition. Moreover, the Helmholtz equation of with g5 = 0 is
equivalent to finding the weak solution u € H'(Q) of Au+ k*u = f + ¢g}'ér in Q, where dp is
the Dirac distribution along the interface curve I'. From the theoretical standpoint, as long
as an impedance boundary condition appears on one of the boundary sides, the solution to
Helmholtz equations exists and is unique as studied in [d4]. When an impedance boundary
condition is absent, we shall avoid wavenumbers that lead to nonuniqueness. The rigorous
stability analysis of the problem of Helmholtz equations with gi = gl = 0 was also done
in [50 B4]. For the situation where g, g} # 0, the well-posedness, regularity, and stability
were rigorously studied in [85].

We shall use the following assumptions in the derivation of our finite difference scheme

(Note that the main results in this chapter have been written in [31]):

(A1) The solution u and the source term f have uniformly continuous partial derivatives of
(total) orders up to seven and six respectively in each of the subregions 2, and €_.

However, both u and f may be discontinuous across the interface I'.

(A2) The interface curve I' is smooth in the sense that for each (z*,y*) € T', there exists
a local parametric equation: 7 : (—e,e) — I' with € > 0 such that v(0) = (z*, y*)
and [|7/(0)|l2 # 0. Furthermore, z(¢) and y(¢) in (1.5) should both have uniformly

continuous derivatives of (total) order up to eight for the variable ¢ = 0.
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(A3) The one-dimensional functions g} oy and gf o~ have uniformly continuous derivatives

of (total) orders up to eight and seven respectively on the interface I', where 7 is given
in (A2).

(A4) Each of the functions ¢y, ..., g4 has uniformly continuous derivatives of (total) order

up to seven on the boundary 092;.

The organization of this chapter is as follows.

In Section [5.2] we explain how our proposed sixth order compact finite difference scheme
with reduced pollution effect is developed. We start our discussion by constructing the
interior finite difference stencil with reduced pollution. Second, we construct the sixth order
boundary and corner finite difference stencils with reduced pollution. Third, we construct the
interface finite difference stencil. In Section [5.3], we present several numerical experiments to
demonstrate the performance of our proposed sixth order compact finite difference scheme
with reduced pollution effect. In Section [5.4) we summarize the main contributions of this
chapter. In Section [5.5], we present the proofs of several theorems stated in Section [5.2]

5.2 Sixth order compact finite difference schemes with
reduced pollution effect using uniform cartesian
grids

Our focus of this section is to develop sixth order compact finite difference schemes with

reduced pollution effect on uniform Cartesian grids. Recall that

z; =1l +ih, i=0,...,Ny, and y;=Ils+jh, j=0,... Ny, (5.2)

x; =x; —voh and y; =y; —woh with —1 <wy,wy < 1. (5.3)

Similar as Lemma [2.2] and Lemma [3.1] since the function u is a solution to the partial
differential equation in (5.1)), all quantities u(™™ (m,n) € Ap4; are not independent of

each other. The next lemma describes this dependence.

Lemma 5.1. Let u be a smooth function satisfying Au + Ku = f in Q\ T. If a point
(z7,y;) € Q\ T, then

|

M‘E

1i-

—

m o . m ) ) , — 1 o . )
u(m,n) — (_1)L7J <L 2 J) k21u(odd(m),2L?J+nf2z)_'_ (_1)1—1 (l . )kz(zgl)f(mQZ,nJrQ])

J

i
=)

i

1y

(5.4)
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(0,0) ¢ (LO) T 4, (2.0)  4,(3,0) ¢, (40) 4, (5,0)  ,(6,0) ,(7,0)

wOD (LD, (20,31 4, (41, (5,1) 4, (6,1)

(02) 4,(1,2) 2(5:2)

w(0:3) 4, (1,3)

(0,4) o, (1,4)

u(0:5) ¢, (1,5)

(0,6)  4,(1,6) < P
~

(0,7 {u(m™) : (m,n) 1)

m,n) . V1
{ul™™ : (m,n) € Ay}
Figure 5.1: Red trapezoid: {u(™™ : (m,n) € AX41+1} with M = 6. Blue trapezoid: {u(™" :

(m,n) € Ay} with M = 6. Note that Aprpq = Ayj, UAYS .

for all (m,n) € A]‘\/ﬁrl, where

Ay = A \ MY with Ay ={(tk—¢) :k={,....M+1—{ and {=0,1}.
(5.5)
Define
Ay = {(nym) : (myn) € AY/, 15 = 1,2},

If a point (z},y;) € Q\T, then

H 5] i1 ,
( _ L%J ) |5 ]+m—2i,0dd(n)) l 1ft— (i—3—1) p(m+24,n—2i)
() e (e
i=1 j=0
(5.6)
for all (m,n) € AJ7 .
Proof. The proof is similar to the proof of Lemma and Lemma O

See Figs. and and for illustrations of how each u(™™ with (m,n) € A; is catego-
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402 (12,22 62 42 62

{ulm) + (m,n) € Ay}

{ulm) + (m,n) € AfF1 1} <

\

Figure 5.2: Red rectangle: {u(™™ : (m,n) € Aﬁi_l} with M = 6. Blue triangle: {u(™"

(m,n) € AJ7% .} with M = 6. Note that Aprpq = Ajyr UAY .

rized based on A‘7/’j and Af 7 with j € {1,2}. From (5.4), we have

=
(mm) _ { _1)l%] 24 2y, (odd(m),2[%j+n72i)}
( )ZA2 min! " ( )ZA2 m!n! (=1) 4_O<Z)
mn)EAT mn)EA =
Ry P

"™y
+ Z m!n!{A

V,2
(mn)eA "
NS

where the first summation I; above can be expressed as

_ (— 1)%2@” ([t 2i, (0,204n—2i)
L= ), (20)n! ZO i)

1=

n !
i Z ( 1)£ 2ty sz (1,204n—24)
20+ 1D)nl £

V,2 =0

3

2€+1 n—2€‘

n=2 (=1 i=

M+1 L3] n—or £ M 5] e ¢
_ - ( 1)e$2ey %Z (€>k22 (0,n—21) +Z - )f 2€+1 2 ()k2z (1,n—24)
|
0

(—1) gm2tyn—2t Ny [ 2iq, (mn—20)
u b
(m+20)(n — 20)! &= \i ’
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and the second summation /5 above can be expressed as

1+|— -1 m~+20, n—20+2

— (-1 x
I, — _1)¢t K2(=p=1) p(m,n+2(p+1-1)) Y
? 2. 2 2. ( P ) / (m + 20)1(n — 20+ 2)!

(mm)eAp—1 =1 p=0

1+(2]

_ m+20,,j—20+2
- X 2y e (L)
(myn)EAn_1 Tgf{nj[@pmlel\i%} (=14150 o (m + 26) (.7 — 20 + 2)

M— 1 m—n n
L J1+lpt+3 ] me20y 2p-+nt2-20

C—1Y\ o x _—
- Z Z >, | ( )k (m+2€)!(2p+n+2—2€)!f( -

EAM 1 {=14+p p

-

—.0OV
_'Q]\4+1,m,n(x’y)

J/

(5.8)
Hence, using the right-hand side of ([1.9)) and the definitions of A}@lﬂ, AXfH in ([5.5)), we have

LEJ Lij ( 1>€xm+2€yn—2€

T"Y" ) — O\ | 2 (m,n—2i)
I — = k*u
i Z min! " Z < (m + 20)!(n — 20)! < )

(m,n)eAY:! (m,n)eAV;t =0 =i

k1 Jegmreg g
DD VD O e G

i€{n+2p|peNy, i—n
(m TL)EA]\/I+1 n+2p<M+1—m} t= 2

| MLm= | |3

Z m+2€ n—+2p—24
- Xy Yoy )<
m+2€ N(n+2p —20)!

(m, ”)EAM+1\ ,

(5.9)

—.V
GMJer,n( 7y)

Suppose z,y € (—Qh, 2h). The lowest degree of h for each polynomial Gy, . .(z,y) with

(m,n) € _/\]‘\//IJrl in is m 4 n. The lowest degree of & for each polynomial QYy,,, (%, )
with (m,n) € AV M1 in (5.8)) is m + n 4+ 2. Therefore, by (5.7)-(5.8), we can rewrite the
approximation of u(x + x},y + yj) with (z,y) € (=2h,2h) in (L.9) as follows:

u(w—i—xf,y—&-yj*) = Z u(m7n)G1‘CI+17m,n<x7y)+ Z f(mm)Q]‘\//[ijLm,n(x’y)—’—o(hl\/l—i_z)’ (510)

(TVL,TL)EA]\VJ':J (m,n)EAM; -1

where M, M; € Ny and My > M. By a similar calculation, for (z,y) € (—2h,2h), we also
have

U(I+vay+y;) = Z u(m’n)C:J\HI-‘,-l,m,n(xvy)+ Z f(m’n)Qg{/If-‘rl,m,n(xvy)+o(hju+2)v (511)

(m, n)GAM}rl (m,n)EAMf,l
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where M, My € Ny, My > M and

Glritmn(Ty) = G]\V“Ln,m(y,:z:), foralln € {0,1},m € Ny, and m+n < M +1
Qﬁﬁl,m,n(zzz, y) = Q&erl’n,m(y, x), forall m,n €Ny, and m+n < M;— 1.
(5.12)
Identities — are critical in finding compact stencils achieving a desired accuracy
order.

In the following subsections, we shall explicitly present our stencils having at least accu-
racy order 6 with reduced pollution effect for interior, boundary and corner points. As we
shall explain in details in Section 5.5, we construct such stencils by first finding a general ex-
pression for all possible discretization stencils achieving the maximum order based on Taylor
expansion and our sort of technique. Then we minimize the average truncation error of plane
waves to determine the remaining free parameters in each stencil to reduce pollution effect.
For simplicity, we cancel the (h) in I, ,(h), Jmn(h), Cke(h) and other related notations.

5.2.1 Stencils for regular points (interior)

In this subsection, we state one of our main results on a sixth order compact 9-point finite
difference scheme (with reduced pollution effect) centered at a regular point (z;,y;) and
(zi,y5) ¢ 02 We let (x,y;) be the base point (x7,y;) by setting v = wo = 0 in (5.3)). The

proof of the following theorem is deferred to Section |5.5]

Theorem 5.2. Let a grid point (z;,y;) be a reqular point, i.e., either d;fj =0 ord; =0
and (z;,y;) ¢ 0L Let (uy);; be the numerically approzimated solution of the exact solution
u of the Helmholtz equation (5.1) at an interior regular point (z;,y;). Then the following
discretization stencil centered at (z;,y;)

1
ﬁ (Cl,l (uh)ifl,jfl +Ol,0(uh)i,jfl "‘Cl,l(uh)z#l,jfl

Lyup, = —i—C’l,g(uh)i,Lj +Co’0(uh)i,j +C1,0(Uh)i+1,j = Z f(m’n)Jm,m
(m,n)EAe
+Cra(up)io1j41 +Cr0(un)ijt +Ol,l(uh)i+1,j+l>

(5.13)
achieves the sizth order accuracy for Au+ K*u = f at the point (@i, y;) with reduced pollu-

11
tion effect, where Jon = > > Croh Qg (kb Lh) for all (m,n) € A, QY. (2,y) is

k=—10=—1
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defined in (5.8)), and

C1=0C11=0C1=C11, Coig=Cy_1=Cy1=Chp,

Cl,l =1 357462387 kh + 1001065991 (kh>2 _ 196477327(kh>3 + 1155977087(kh)4

25x1010 2x1010 2x1012 1012
_ 111635315313 (kh)5 + 125?3?2641 (kh)G,
Cro =4 = “gaion K+ 5500 (kh)” — S50 (kh) — 255G (k) (5.14)
+ 21;53(917021349 (kh)5 _ 34gi211001§01 (kh)G,
0070 = 920+ 31’)27;)1221%%7 kh + 5798190394009(kh)2 _ 9{52957151%%7(/(]1)3 _ 1965?;<7fgg709<kh)4
+ 405?56%719(1(}1)5 + 7951905111403(/(}1)6.

The maximum accuracy order of a compact 9-point finite difference scheme using Taylor

expansion and our sort of technique for Au + k*u = f at the point (z;,y;) is six.

5.2.2 Stencils for boundary and corner points

In this subsection, we discuss how to find compact (6-point, 4-point) finite difference schemes
centered at (x;,y;) € 0L

5.2.2.1 Boundary points

We first discuss in detail how the left boundary (i.e., (z;,y;) € 001 = {l1} x (I3,14)) stencil
is constructed. The stencils for the other three boundaries can afterwards be obtained by
symmetry. If Bju =u = g; on 99|, then the left boundary stencil can be directly obtained
from (5.13)-(5.14) in Theorem [5.2) by replacing (up)o,j—1, (un)o,j, and (up)oj+1 With g1 (y;-1),
91(y;), and g (y;+1) respectively, where y; € (I3,14), and moving terms involving these known
boundary values to the right-hand side of . The other three boundary sides are dealt
in a similar straightforward fashion if a Dirichlet boundary condition is present. On the
other hand, the stencils for the other two boundary conditions are not trivial at all. The
following theorem provides the explicit 6-point stencil of accuracy order at least six with
reduced pollution effect for the left boundary operator B; € {% — ikly, %}. The proof of

the following result is deferred to Section [5.5]

Theorem 5.3. Assume Q = (Iy,13) x (I3,14). Let (up);; be the numerically approximated
solution of the exact solution u of the Helmholtz equation (5.1)) at the point (z;,y;). Consider
the following discretization stencil centered at (xg,y;) € 0Q|; for Biu = g1 on 0Q}; with
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By, € {% — ikly, %}

1
E(in(uh)o,j—l +C7P (up)1,j1 :
Coun = +CB o, +CP%uw)y; = 2, FORIEL Y gMhT B (5.15)
B, B, (m,n)EAs n=0
+Coi(un)ojr1 +01,1(Uh)1,j+1>

11
where {Cﬁ}}ke{o’l},ge{,l’oyl} are polynomials of kh, JB', = %> 3 C’,ﬁ}h_2Qéfmm(kh,€h) for

k=0/{=—-1

11
all (m,n) € g, Q4 .., i defined in (5.8), gin) = ‘g;—g,}(yj), JBo=—% C’,f;G}{l,n(kh,fh)

k=0/{=-1

foralln =0,...,7, Gglm is defined in (5.9)), C’(lfl_l = C’égj, and Cff_l = Cf}.
(1) For By = % — ikly, the coefficients for defining Efluh in (5.15) are given by

Cfi =1 218737123 kh + 66986228931kh _ 1620223367(kh)2 o 12027259891<kh)2

109 1010 1010 1010
3105005559 3 1252107029i 3 3412232989 4 1505046263i 4
+ 1011 (kh) - 1011 (kh> - 1012 kh) - 1012 (kh) )
Bi1 _ 218737123 1139724579 3034055489 2 19679777330 2
C’0,1 =2- 5% 108 kh + 109 kh — 1010 (kh) - 1010 <kh)
1090897501 3 7T785677273i 3 | 98544681 4 | 1218033221} 4
+ 25%109 (kh) - 10171 (kh) + 4x109 (kh) + 5% 1010 (kh) J (5 16)
Bi __ 4 _ 8749484921 2279449157/ 1,7, _ 946955529 2 1967977733i 2 ’
C’1,0 =4 1010 kh + 109 kh 2x109 <kh> 5x109 <kh)
2905342517 3 1542150899i 3 | 2645544603 4 | 302693249i 4
+ 5x10m0 (kh) T T BEx1010 (kh) + 1012 (kh) + o109 (kh) )
B __ 218737123 202754213 7851597997 2 2846864471i 2
C'0,0 = —10+ =7 5s kh +- 2x10° kh +- 1010 (kh)” — 1010 (kh)
1147746931 3 | 2236631341i 3 1738692843 4 898631349i 4
5% 109 (kh) + 1010 (kh) 5% 1010 (kh) 25x109 (kh) :

Then the finite difference scheme in (5.15) achieves sixth order accuracy for Biu =
% — iku = g1 at the point (o, y;) € 0y with reduced pollution effect.

(2) For By = %, the coefficients for defining L2 uy, in (5.15) are given by

Cfi =14+ 1915061419(kh>2 + 3019639439(kh)4,

25%x109 1012
CPY = 2+ S08L0 (p)? — LOTLISES (ep ), —
Cf’(l) _ 4 + 10641188827(kh)2 _ 1071:3?3831(kh)4, '
Oy = —10 + LLOBTTI6 ()2 _ 1200891400 (47, )4,

Then the finite difference scheme in (5.15)) achieves seventh order accuracy for Byu =
g—g = g1 at the point (zo,y;) € 0Ny with reduced pollution effect.

Using Taylor expansion and our sort of technique, the maximum accuracy order of a
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6-point finite difference scheme for Biu = 8—“ — iku = g at the point (zo,y;) € 3Q|1 is six,
and the maximum accuracy order of a 6- pomt finite difference scheme for Byu = 5= = ¢g; at
the point (z¢,y;) € 09|, is seven.

By symmetry, we can immediately state the stencils for the other three boundary sides.
Same accuracy order results as in Theorem hold. First, consider the following discretiza-
tion stencil for Bou = go on 02|y with By € {% — ikIy, %} centered at (xy,,y;) € 0Qs:

0 1
1 n
L2uy, = h DY O mngre = Y, fURIE + E gy h T

k=—10¢=—1 (m,n)EAe

0 1
where C% , = O} for all k € {0,1}, € € {—1,0,1}, JB2, = 5> 5 C2h~2QY,, . (kh, (h)
k=—1/¢=-1
0 1
for all (m,n) € Ag, g8 = T2(y;), JB, = > 3 CFGY,,(kh,(h) for all n =0,....7.

gz,n
k=—10=—1
Second, the stencil for B3U = g3 on 0f)|3 with B; € {% — ikIy, %} centered at (x;,y0) €

89’3 is

1 1 7
1
Citue=2 D Y Cpylun)ine = Y S RIT + 3 g0,

k=—1 ¢=0 (m,n)€As n=0

where Cp¢ = Cpy for all k € {0,1}, £ € {—1,0,1}, JB = ;Mzoc,f;h Q1 . (kh, Ch) for
1

all (m,n) € Ag, Q. is defined in (5.12), g5 == L% (z;), JB, = — 3 5 CBGE. | (kh, (h)
k=—10=0
for all n =0,...,7, and G{, , is defined in (5.12).
Third, the stencil for Byu = g4 on 09[4 with By € {% — ikIy, %} centered at (x;,yn,) €

8Q|4 18

1 0 v
1 n
£f“uh = 7 Z Z Cﬁ%(uh)i+k,NQ+z = Z fFrmmh JB4 + Zgi 1J£4nv
n=0

k=—14=-1 (m,n)€Ae

1 0
where Cjt | = Cl forall k € {0,1}, € € {—1,0,1}, J&:, = kzuleﬁ;h—Qngm(kh,ﬁh) for

1 0
all (m,n) € Ag, " = 99 (x;), and JB1, = S 3 CHIGE, | (kh, (h) foralln =0,...,T.

dx™ g4,n
k=—14¢=-1
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5.2.2.2 Corner points

For clarity of presentation, let us consider the following boundary configuration

Biu = % —iku = g1 on 09, Bou = u = gy on 09|, (5.18)
Bau = % = g3 on 09|, Byu = % —iku = g4 on 0Q4. '
See Fig. for an illustration.
B4u:%—iku:g4
29,4
0,
I
Buu= 9% — ik = 5,001, A
995

o)

Figure 5.3: An illustration for the boundary configuration in (5.18)), where 9 (z,y) = 22 +y? — 2.

The corners coming from other boundary configurations can be handled in a similar way:.
When a corner involves at least one Dirichlet boundary condition, we can use Theorem
and subsequent remarks to handle it. We denote the bottom left corner (the intersection of
09, and 09[3) by Ry, and the top left corner (the intersection of 9|, and 09|4) by Rs.
In what follows, we discuss in detail how the bottom and top left stencils are constructed.
The following two theorems provide the 4-point stencils of accuracy order at least six with

reduced pollution effect for the left corners. Their proofs are deferred to Section [5.5|

Theorem 5.4. Assume Q = (l1,l2) X (I3,14). Let (up)i; be the numerically approximated
solution of the exact solution u of the Helmholtz equation (5.1) at the point (x;,y;). Then
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the following discretization stencil centered at the corner point (o, yo):

L/ar R
gy T TR S 3
+C§f(uh)o,1 +Cff(uh)1,1) (m,n)€Ag n=0 n=0
(5.19)
where
CRi =1 2041580737 o | SOCOLLSTOIyj, _ 1213438540 (4p\2 _ 24TISSSSI ()2
- 2993TT60 (p )3 | A30TIOSOTONp )3 _ SIIOV0GNO ()4 _ ASHOSTI08 gy
CRi =2~ 2041580757 o | SOOCOLISS yp, _ 156034200 (p )2 _ L6204331STi )2
| 18SS012150 (p )3 | 4533004 ()3 _ SITOSIONSD ()4 4 256TTTES (fy 4. 520
Cg?f — 9 — 204ISBOTSTyp, | SGOCOLISSI Yy, _ SSOTS2IS ()2 _ 1620433157y )2 '
| 3206071983 ()3 _ 39551006491 )3 4 154671341 ()4 | 23UITOTS] (op 4,
0(7),% — 5 SLOOTASA i | GOUOLSION Y, | 2002TIIGHT (4p 2 S9405460I (4 )2
_ 289280517 ()3 4 320861 4p ) | SI65403 ()4 _ 99895509491 p )4,
g%n) = C;:—g,f(yo), ggn) = Cﬁ;ﬁ? (xo) for all n = 0,...,7, and {erf}n}(m,n)e,\ﬁ, {Jg}n}zzo,
{JRL 3T _o are well-defined stencil coefficients that uniquely depend on {C;Zf[l}k,fe{o,l}, achieves

sizth order for Biu = % — iku = g1 and Bsu = g—g = g3 at the point (xg,yo) with reduced

pollution effect.

The maximum accuracy order of a 4-point finite difference scheme using Taylor expansion
and our sort of technique for Biu = g—g —iku = g1 and Bsu = % = g3 at the point (xg,yo) is

six.

Theorem 5.5. Assume Q = (I1,13) x (I3,14). Let (up);; be the numerically approximated
solution of the exact solution u of the Helmholtz equation (5.1) at the point (x;,y;). Then

the following discretization stencil centered at the corner point (xo,yn,):

1
[ E(Cﬁ?(uh)O,Nz—l +C§31(Uh)1,1v2—1
p Up =
—I—CS?OQ (un)o,n, +C'717?§ (uh)1,N2) 7 (5.21)
= 2 SO D o > e
(m,n)EAs n=0 n=0
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where

01%1 -1= 535927359 kh + 131913924/kh o 4650641357(kh)2 _ 3255802571/(kh)2

5x10° 108 1010 1011
_ 180?%??661(kh)3 _ 132750551)821i(kh)3 _ 1é2651i5156z§9(kh)4 _ 39203%&1);19;(%)4’
CR2 =9 4228>7<éﬂ)%87 Kkh - 223812598479i kh, — 5338059089 kh)? — 2;2;)?(312088%( kh)? 52
4 15§i711011§27(kh)3 _ 5753X113§4i(kh)3 n 209%??921(%)4 4 112(19123319,'(%)47 '
Cg% _ 54 13§§§11%?;97kh 1 20431%%%0211'% _ 15%?1788742(%)2 _ 28350>§<’>§gg97i(kh>2
_ 8251;153857(%)3 i 34011%51?)461/'(%)3’_1_1425031685577(%)4 4 4391120%?797/'(%)4,
97" = GEum). 9 = ) Jor alln = 0,7, and {J2 Y ammens: T35 0.
{JR2}T_y are well-defined stencil coefficients that uniquely depend on {lez}ke{o’l},ge{_lp}
with Cg?il = C’Z%’, achieves seventh order accuracy for Byu = g—:fi — iku = g1 and Byu =

g—g — iku = g4 at the point (xq,yn,) with reduced pollution effect.

The maximum accuracy order of a 4-point finite difference scheme using Taylor expansion
and our sort of technique for Biu = % — iku = ¢g; and Byu = % — iku = g4 at the point
(x0,yn,) is seven. Note that the right-hand sides of and can be explicitly
recovered. See the proofs of Theorems [5.4) and [5.5] in Section [5.5] for details.

5.2.3 Stencils for irregular points

Let (z;,y;) be an irregular point (i.e., both d:j and d;; are nonempty) and let us take a
base point (z7,y;) € I' N (z; — h,zi + h) X (y; — h,y; + h) on the interface I' and inside
(x; — h,x; +h) x (y; — h,y; + h). By (5.3)), we have

r; =z —vh and yj=y; —woh with —1<wy,wy<1 and (27,y;) €. (523)

Recall that uy and fi represent the solution u and source term f in €2, or 2_, respectively,

and
= _amﬂui( i Y;) (man) ,_ 0" £ (g7 o)
Uy = ooy LisY;5)s + = ooy iy Y;)-
Identity similar to ((5.10)) still holds:
ur(@+aly+y) = > w"Gaa@n)+ Y AN (@ y) + ORM ),
(m,n)GAx/}il (m,n)eAMf,l

for z,y € (—2h, 2h), where AX/fH is defined in (5.5)), Apr,—1 is defined in (L8), G}y (2,9)
is defined in (5.9)), Q}\Qf 1mn(T,y) is defined in (5.8).
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Theorem 5.6. Let u be the solution to the Helmholtz interface problem in (5.1) and the base
point (x7,y;) € I' be parameterized near (z7,y;) by (L.5). Then

u(_m/’”/) - ug_m/’”/) + Z (Tﬂt/,n’,m,nf(m & + Tn: n' mnf(m n)>

(mn)€An—2
+ ZTiO wpdop Z TS, ,0h, Y () €AY},
where all the transmission coefficients T+, T9% T are uniquely determined by r®) (0), s%*)(0),
and k for k=20,..., M.
Proof. The proof closely follows from the proof of Theorem [2.4] m
Next, we state the compact 9-point finite difference stencil for interior irregular points.

Theorem 5.7. Let (uy);; be the numerical solution of (5.1)) at an interior irreqular point
(zi,y;). Pick a base point (x7,y}) as in (5.23). Then the following compact 9-point scheme

centered at the interior irreqular point (z;,y;)

1
E<Cl,1<uh)i71,jfl +CI,O(Uh)i,jfl +Cl,1(uh>1+1,j 1
r .
Lyuy = +Co(up)iz1, +Coo(un)i; +Ch0(up)it1,
+Cra(un)ic1 o1 +Cio(up)ijr1 +C1ia(up)ivr j+1 )

= > gt Y +Zgop 1J90+Zg1p g

(m,n)€As (m,n)€As

achieves seventh order accuracy, where {Cy o} roc{-1,013y are defined in (5.14)), Jnj;m = J$:2+
JEL for all (m,n) € Ag,

JE0 = Y Cuuh QY ((vo + k)b, (wo + £)h),  V(m,n) € Ag,

(k.0)ed,
JEle= > L, hTTE L Y(man) € Ag,
(m’,n’)EAg‘l
JP =S I T Wp=0,..8, JR = S L TH L Wp=0,...7,
(m/, n')EAV'l (mﬂn')EAX’l
Lun:=" > CuuG¥pn((vo+k)h, (wo+0h), ¥(m,n)e Ay
(k,0)ed; ;

The maximum accuracy order of a compact 9-point finite difference stencil using Taylor

expansion and our sort of technique for (5.1)) at an interior irregular point (x;,y;) is seven.
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Proof. The proof closely follows from the proof of Theorem [2.5] O]

5.3 Numerical experiments

In the following numerical experiments, ‘[20]’, ‘[[04]’ and ‘[ITI]’ correspond to the sixth order
compact finite difference methods proposed in 0], [I04] and [IIT] respectively. ‘Proposed’
corresponds to the sixth order compact finite difference method with reduced pollution effect
in Section of this chapter. Recall that i—’,fb corresponds to the number of points per

wavelength.

5.3.1 Numerical examples with no interfaces

We provide four numerical experiments here.

Example 5.1. Consider the problem (5.1) in Q = (0,1)? with f = 0 and all Dirichlet
boundary conditions such that the boundary data g¢y,..., g4 are picked such that the exact
solution u(zx,y,0) = exp(ik(cos()z +sin(f)y)) is the plane wave with the angle §. We define

the following average error for plane wave solutions along all different angles 6 by

_ N- N 2
Jun —ullow 1 Nil it 2jmo (un)igm — ulwi, y;, 0k))
]|, Ny & Yoo Sty (ulwi . 06))

where Ny = 27, 0, = khg,hy = 21/N;3 for J,N3 € Ny, and (up);jx is the value of the
numerical solution wuy, at the grid point (z;,y;) with a plane wave angle 6. See Table for

numerical results.

Example 5.2. Consider the problem (5.1)) in = (0,1)? with the boundary conditions

w(0,y) =¢g1, and wu(l,y)=go for y e (0,1),
u(z,0) = g3, and wuy(z,1) —iku(z,1) =0 for z € (0,1),

where g1, ..., g4 and f are chosen such that the exact solution u = (y—1) cos(ax) sin(5(y—1))
with a, 8 € R. See Table for numerical results for various choices of o and f.

Example 5.3. Consider the problem (5.1) in © = (0,1)? with boundary conditions in
(5.18). Le., Biu = g—g —iku = g1 on 99|y, Bou = u = gy on 0Q|z, Byu = % = g3 on 0)|3 and

Byu = % —iku = g4 on 09|y, where gq,..., 94 and f are chosen such that the exact solution
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Table 5.1: Numerical results for Example with h = 1/27. The ratio r is equal to llun—ullzw

l[uall2,w

20 divided by % of our proposed method. In other words, for the same mesh size h with

h =277, the error of [20] is r times larger than that of our proposed method.

k = 50, N3 = 50 k =150, N3 = 30 k =450, N3 = 30
Proposed 2] Proposed 20 Proposed
Tun—ull2.w|Tun—ull2,w o2 Tur—ull2,w | Tun—ull2,w 2m Tun—ull2,w [Tun—ull2,w 21
o | Tolw PTG | 7 | il | Tolow P70 4 | 7 | il | Talaw OPdeY g | T

9.83E-+04.87E-01 2.020.2
1.57E-021.01E-03| 8.9 |4.0(15.5
5.01E-051.20E-05 6.4 |8.04.193.67E+06.25E-02 2.758.7
2.35E-071.77E-07) 6.1 [16.1]1.33/6.04E-036.82E-04] 6.5 | 5.4 8.85
2.78E-092.72E-09 6.0 32.2]1.022.56E-059.25E-06 6.2 |10.72.77|1.26E+05.43E-02 3.6123.1
1.78E-071.40E-07] 6.0 21.41.274.72E-037.83E-04] 6.1 |7.1|6.03
2.25E-051.13E-05 6.1 {14.31.99
1.85E-071.75E-07] 6.0 28.6(1.06

—_ =
DS © o Otk

Table 5.2: Numerical results of Example with h = 1/27 and k = 300. The ratio r; is equal
to lun—ullz o [[04] divided by len—ullz oy oqy proposed method and the ratio ro is equal to llen—ullz

llull2 l[ull2 l[ull2

of [IT] divided by lun=ullz ¢ gy proposed method. In other words, for the same grid size h with

fTull2
h = 277, the errors of [I04] and [IT] are r; and ry times larger than those of our proposed method,
respectively.

a =50, B =290 a =100, B =275 a =150, B = 255

Proposed l” ] l I Proposed I] “4' Proposed
2r [ [un—ull2 | Tun—ulle | [un—ull2 r | o Tun—ufle | [un—ull2 | Tun—ull2 r| o [un—ullz [ [un—ull2 | Tua—ull2
kh [lull2 [lwll2 llull2 [[ull2 llull2 [lull2

[ule | Tullz | ull> "
2.7 [1.1E+0[9.8E-02[3.8E-02[29(2.6[2.4E+0[2.1E-01[4.4E-02| 54 | 4.6 [4.4E+0[1.2E-01[5.8E-02] 77 [2.1
5.4 [8.6E-03/6.1E-04/1.3E-04/65(4.6|1.2E-02(1.3E-03|3.1E-04] 40 | 4.4 |1.7E-028.3E-04{1.3E-04(134/6.5
10.7/1.2E-04/8.4E-06/2.8E-06/43)3.0|1.7E-04/1.8E-05/5.7E-06| 30 | 3.2 [2.4E-04[1.1E-052.0E-06/1215.7
21.4/1.8E-06/1.2E-07)4.6E-08/39|2.6[2.6E-06[2.7TE-07/9.2E-08| 28 | 2.9 |3.7E-06/1.7E-07/3.3E-08114/5.1
a = 200, 8 = 200 a = 250, 3 = 160 a =290, 3 =50
Proposed Proposed Proposed

2 [ un—ull2 [Tun—ull2 | Tun—ull2 Tun—ull2 [ Tun—ull2 [ Jun—ull2 r| o Tun—ull2 | lup—ull2 | [lup—ull2 | r
[|ue]l2 [luell2 [luel2 [lull2 [|u]l2 [luell2 [lue]l2 [lull2 [lul2

2.7 1.1E+0[1.3E-01|1.4E-01| 8 |0.9/6.0E+0|1.8E-014.8E-02/125| 3.7 |8.9E+40(1.3E-01|5.5E-02/162(2.4
5.4 [7.5E-03(9.7E-04(3.8E-04|20|2.6|4.0E-02|1.1E-038.1E-051492(14.1|9.8E-03|7.4E-04/1.5E-04| 66 (4.9
10.7]1.1E-04|1.3E-05|3.4E-06/33|3.9|5.6E-04/1.6 E-052.1E-06|264| 7.6 |1.5E-04/1.0E-05/1.6E-06| 92 6.2
21.4/1.7E-06[2.0E-07|4.5E-0838|4.4|8.6E-062.3E-07|3.7E-08|234| 6.3 [2.3E-06|1.5E-07|2.3E-08101/6.4

S © 00 | N

= © 00 | &
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u = sin(ax + By) with «, f € R. See Table for numerical results for various choices of «
and f3.

Table 5.3: Numerical results of Example H with h = 1/27 using our proposed method.

k = 450, oo = 400, 8 = 200 k = 600, o = 300, 8 = 500

2 | [w—dl 2r | Junu]
i [ Bl Joudafllu —wpallforder F T TR Torderflun — upalls[order

1.79 11.3753E4-01 9.8073E+00 1.34 19.0200E4-01 6.4272E+01
3.57 | 1.7358E-02 9.630| 1.2212E-02 [9.649| 2.68 | 9.4259E-02 |9.902| 6.6801E-02 {9.910
7.15 | 1.6528E-04 [6.715| 1.1540E-04 (6.725| 5.36 | 2.7428E-04 [8.425| 1.9430E-04 (8.425
14.30( 2.4370E-06 [6.084| 1.6971E-06 [6.087(10.72| 1.7971E-06 |7.254| 1.2453E-06 |7.286
28.60| 3.9410E-08 |5.950 21.45| 4.5869E-08 |5.292

—_ =
— o © 00 | Y

Example 5.4. Consider the problem in Q = (0,1)* with boundary conditions in
(5.18), where f(z,y) = k®sin(8z)cos(6y), g1 = sin(5y), go = 0, g5 = (v — 1)sin(4x), and
g4 = cos(bx). Note that the exact solution u is unknown in this example. See Table and
Fig. [5.4] for numerical results.

Table 5.4: Numerical results of Example H with h = 1/2”7 using our proposed method.

k = 200 k = 400 k = 800
% \|lup, — wpjalldorder| [Jup||2 i—z |up, — wpjalldorder| [Jup|| i—; |up, — wpjol|order) |Jup |2
2.01| 8.776E-01 5.81E-01
4.02] 3.716E-03 |7.889.84E-01/2.01| 7.936E-01 5.28E-01
8.04| 4.430E-05 |6.399.81E-01/4.02| 7.410E-03 |6.749.76E-01/2.01 | 8.453E-01 5.08E-01
16.08 9.80E-01|8.04| 8.579E-05 [6.43(9.75E-01/4.02| 1.486E-02 |5.839.70E-01
16.08 9.74E-01|8.04| 1.715E-04 |6.449.70E-01

16.08 9.69E-01

[ —Y
= e =

5.3.2 Numerical examples with interfaces

We provide three numerical experiments here.

Example 5.5. Consider the problem in Q = (—3/2,3/2)? with boundary conditions in
(5-18), where k = 100, I" := {(x,y) € Q : ¢(z,y) = 0} with ¢(z,y) = y?/2+2?/(14+2%)—1/2
(see Fig. (left)), g6 = —1, and gi = 0. The boundary data g;,...,gs and fi are
chosen such that the exact solution u is given by u; = uxq, = cos(50z)cos(80y) and
u_ = uyxq_ = cos(50x) cos(80y) + 1. See Table [5.5| for numerical results.
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Figure 5.4: First row: the real part of u; in Example |5.4) where k = 200 and h = 1/2° (left),
k = 400 and h = 1/2'° (middle), k = 800 and h = 1/2!! (right). Second row: the imaginary part
of uy, in Example [5.4) where k = 200 and h = 1/2° (left), k = 400 and h = 1/2'° (middle), k = 800
and h = 1/2!1 (right).

yi2exi(1+x)=112 xh2yt=112 y22 =112

075 05

075 05 At

I I I I I I E I I
5 0.75 0 0.75 15 - 05 0 0.5 1 2 -1 0 1 2
X X X

Figure 5.5: y2/2 +22/(1 + %) = 1/2 (left), 2* + 2y* = 1/2 (middle), and y? — 222 + 2% = 1/2
(right).
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Example 5.6. Consider the problem in Q = (—1,1)? with boundary conditions in
(5.18), where k = 300, T := {(x,y) € Q : ¥(z,y) = 0} with ¢¥(z,y) = 2* + 2y* — 1/2 (see
Fig.[5.5| (middle)), f, = 75%sin(3(z+y)), f- = 75 cos(4x) cos(3y), gb = sin(2mz) sin(27y) +
3, and g} = cos(27wz) cos(2my). The following boundary data are given by g, = €Y + e,
g2 =0, g3 = (r — 1)e”, and g4 = sin(2x). Note that the exact solution u is unknown in this
example. See Table for numerical results.

Example 5.7. Consider the problem in Q = (—2,2)? with boundary conditions in
(5-18), where k = 150, I' := {(2,y) € Q : ¢(z,y) = 0} with ¢(z,y) = y* — 22° + 2* — 1/2
(see Fig. [5.5] (right)), fy = sin(5(z — y)), f- = 10*sin(5x) sin(5y), gi = sin(27(z — y)), and
gl = cos(2m(z + y)). The following boundary data are given by g, = cos(y)sin(y), go = 0,
g3 = sin(2x — 4), and g, = e”sin(z). Note that the exact solution w is unknown in this
example. See Table for numerical results.

Table 5.5: Numerical results of Examples to with h = (I3 — 11)/27 using our proposed
method.

Example @With h= 2% Example @with h= 2—2] Example @with h= 247
J % ”ul}\Lu_HZ”Q order|uy, — wp/2|Jorder % l|lun, — wp 2l|order||uy 2|2 % |un — wpo]|20rder||wup 2|2
712.71.28E+00 2.90E+00
815.412.44E-03| 9.0 | 5.51E-03 | 9.0 |2.7| 1.06E+01 7.039 |2.7| 8.19E400 3.467
910.75.82E-06| 8.7 | 1.31E-05 | 8.7 [5.4| 1.49E-02 | 9.5 | 7.037 |5.4| 7.96E-03 |10.0| 3.469
1021.4{3.98E-08| 7.2 | 9.27E-08 | 7.1 |10.7] 1.69E-04 | 6.5 | 7.035 [10.7] 7.66E-05 | 6.7 | 3.468

5.4 Conclusion

Our contributions of this chapter are as follows:

(1) Our proposed compact finite difference scheme attains at least sixth accuracy order

and reduced pollution effect everywhere on the domain for the problem ([5.1)).

(2) Our method that reduces the pollution effect differs from existing dispersion minimiza-
tion methods in the literature in several ways. First, our method does not require us
to compute the numerical wavenumber. Second, we use our pollution minimization

procedure in the construction of all interior, boundary, and corner stencils.

(3) We provide a comprehensive treatment of mixed inhomogeneous boundary conditions.
In particular, our approach is capable of handling all possible combinations of Dirichlet,
Neumann, and impedance boundary conditions for the 2D Helmholtz equation defined

on a rectangular domain.

135



(4) Our proposed compact finite difference scheme with reduced pollution effect outper-
forms several state-of-the-art finite difference schemes in the literature, particularly in
the pre-asymptotic critical region where kh is near 1. When a large wavenumber k is
present, this means that our proposed finite difference scheme is more accurate than

others at a computationally feasible grid size.

(5) For the irregular points, we derive a seventh order compact finite difference scheme to
handle nonzero jump functions at the interface. For a fixed wavenumber k and for any
given interface and boundary data, the coefficient matrix of our linear system does not

change; only the vector on the right-hand side of the linear system changes.

(6) In the numerical experiments, we compare our proposed scheme with the latest compact
schemes. The numerical results show that our proposed scheme could produce smaller

errors even the coefficients of our scheme are simpler.

5.5 Proofs of Theorems |5.2/ to [5.5

In this section, we prove the main results stated in Section [5.2] The idea of proofs is to first
construct all possible compact stencils with the maximum accuracy order based on Taylor
expansion and our sort of technique, and then to minimize the average truncation error of

plane waves over the free parameters of stencils to reduce pollution effect.

Proof of Theorem[5.9. Let us consider the following discretization operator at a regular point
(l'i, y] ):

1 1 M+1
ﬁhu = h_2 Z Z Ck,g(h)u(l’z + l{?h, yj + gh) with Ck,g(h) = Z Ck,g,p<kh)p,
k=—1/¢=-1 p=0

where ¢4, € R for all k,¢ € {—1,0,1}. Furthermore, we let C_1 _1 =C_1; =C1_1 =Cy;
and C_;9 = Cp_1 = Cp1 = Cyp for symmetry. Approximating u(z; + kh,y; + (h) as in

(-10) with z7 = x; and y; = y;, we have

L= > u™ Lo+ Y [, =00M), h—0,

(m.n)eAY, (m,n)€Anr, -1
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where

1 1 1 1
L= Y Y CetGrrpimnlkh,th), and  Jon:i= > > Crih QY 41 (kh, (D).
k=—1/=-1 k=—1/=-1
(5.24)
Let
1 1
Lyup, = h~" Z Z Croe(Un)ivi,jre = Z F T (5.25)
k=—1/¢=-1 (m,n)GAMf,l
Then
Ly(u—up)=Lyu— Y [, =00"), h—0
(m,n)GAMf,l
if I, in (5.24)) satisfies
Lnn =02, h—0, forall (m,n)e Ay, (5.26)

By calculation, we find that M = 6 is the maximum positive integer such that the linear
system ([5.26) has a non-trivial solution. All such non-trivial solutions for M = 6 can be

uniquely written (up to a constant multiple) as

Ci = co(kh)™ 4 c3(kh)® + ca(kh)® + c1(kh)* + (=12¢o 4 ¢4 — 6cg + 24c10 + 6¢11 + 24c9)(kR)? 4 (1/15
+4cp + 2¢5 — 8¢y — 2cg — 8c3) (kh)? + (—240cy + 15¢4 — 120c6 + 480c¢10 + 120¢1; + 480¢9 ) (kh) + 1
C1.0 = c10(kh)” + c7(kh)® 4 c6(kh)® + c5(kh)* + ca(kh)® + (1/15 + 16¢; + 8cs — 32¢7 — 8cg — 32¢3)(kh)?
+ (=960cy + 60cs — 480cg + 1920¢10 + 480c1; + 1920¢9 ) (kh) + 4
Co.o = c11(kh)” + cg(kh)® + (92co — (9/2)cy + 4dce — 192¢19 — 48¢11 — 192¢9) (kh)® + (—3/10 + 20c; + 8cs
— 48c7 — 12¢3 — 4803)(kh)4 + (—1392¢q + 82c4 — 696¢6 + 2784¢19 + 696¢11 + 278469)(kh)3
+ (82/15 — 80¢; — 40cs5 + 160cy + 40cg + 160c3) (kh)? + (4800cy — 300¢4 + 2400c5 — 9600c10
— 2400¢;; — 9600¢o) (kh) — 20,
(5.27)

where ¢; € Rfori =1,...,11 are free parameters. Note that any interior symmetric compact

9-point stencil has accuracy order 6 if and only if the 7th-degree Taylor polynomials of the

stencil coefficients are given by (5.27). Choosing M; = 7 in (5.24) and (5.25)) yields the
right-hand side of ([5.13)).
Next, consider a general compact 9-point stencil {C'}év o kee{—1,01) parameterized by CY, O €

R satisfying
CV_VL_I = CV_VLI = Ci":—l - Ci’:’l? CV_VLO - C(\;\:—l - C(‘;‘:l - C‘ll\jo, and C[‘;\ZO - _20,
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where we normalized the stencil by Cyy = —20. Take a plane wave solution u(x,y,0) =
exp(ik(cos(8)z+sin(f)y)) for any 6 € [0,27). Clearly, we have Au-+k*u = 0. Hence, the trun-
cation error associated with the general compact 9-point stencil coefficients {C},}x ref—1,0.1)
at the grid point (z;,y;) ¢ 0Q is 75 (T(0|kh))s, y,, where

(T(O|kh))zy ;= Z ZC'MeXp (ik(cos(8) (z; + kh) + sin(8)(y; + Ch))).

k=—1¢=-1

Recall that a—z is the number of points per wavelength. Hence, it is reasonable to choose

kh € [1/4,1]. Without loss of generality, we let (2;,3;) = (0,0). Define S := {} + 525 : s =
0,...,1000} and let
B _ 27
(G, (kh), (¥ (kh)) = arg min / (T(8]kh))oo|*dd, Kh € S. (5.28)
' Cy 1,0y 0eR Jo

We use the Simpson’s 3/8 rule with 900 uniform sampling points to calculate

2T \(T(0]kR))oo|?d. Now, we link Cog, Cy,Cly in with C¥o, CY(kh), CYy (kh) in
for kh € S. To further simplify the presentation of our stencil coefficients, we set
Cg =cjo=c11 =01in so that the coefficients of the polynomials in for degree 7
are zero. Because Cp'y = —20 is our normalization, we determine the free parameters c; for

i=1,...,8in (5.27) by considering the following least-square problem:

(é1,62,...,6) = argmin Y |C11(kh) — Cf; (kh)Coo(kh)/(—20)|?
€1,62,--58ER | o g

+[Cro(kh) — CYy (kh)Coo(kh) /(—20) .

For simplicity of presentation, we replace each above calculated coefficient ¢; with its approx-

imated fractional form [10%¢;]/10%, where [-] is a rounding operation to the nearest integer.

Plugging these approximated fractional forms into coefficients ¢; for ¢ = 1,...,8 in ([5.27)),
we obtain ([5.14]). O

Proof of Theorem[5.3 We only prove item (1). The proof of item (2) is very similar. Since
—uy —iku = g1 on 991, we have ™ = —iku®™ — g™ for alln = 0,..., M, —1. By (5.10)
with M, My being replaced by M — 1, My — 1 and choosing M, > M, we have

u(x + x7,y + yj5)
= Z (m n)GXI m, n( >y) + Z f(m,n)Q]‘\//[f,m,n(x7 y) + ﬁ(hM+1)’

(m,n)EAX{1 (m, n)GAMf_

M
= Z u (Om GX4O n Z u(l " GX/[ 1 n y) + Z f(m’n)QXIf,m,n(xay) + ﬁ(h’M+1)

(m,n)e!\]wf,2
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= Z U(O n)GV Z U’(l n)GV 1, n(xv y) + Z f(m’n)Qfo’m#n(xﬂ y) + ﬁ(hM—H)

(mm)EAMf —2

Mgl—l
= Zu MG on(my) = Y (ku® +g)GY a@n)+ D SN, (e y)
n—0 (mn)€EAM;—2
+ ﬁ(hl\/[+1)
M-—1
= w0 o () + 3w (Gl y) — kG (9)) Z 9(")GV 1n(@3)
n=0

+ Z f(m’")Q]‘\//[f’m’n(x,y) + ﬁ(hMH), for x,y € (—2h,2h).
(m,n)EAMf_g
We set C’E}V, = Zfo(cup + idyp)(kh)P, where cgrp,dre, € R for all £ € {0,1} and
¢ e {-1,0,1}. Furthermore, we let CBl 1= 05311 and Cfl_l = C’1 for symmetry. So, xf = z;
and y; = y; lead to

1 1
1
LBy = == > Z Coyu(x; + kh,y; + (h)
k=0 ¢=-—1
M Mg, —1
=Y ORI Y g S g, = o),
n=0

n=0 (mvn)EAl\lf—Q

as h — 0, where

5= Z Z Coy (Glron(kh, th) —kGY, , , (kh, (h)(1 = 6,11)) .

k=0 ¢{=-1

(5.29)
1 1

TEL =) CanTQY, (K, Ch), B = — Z Z CRyGhr,. 1n(kh, Ch),

k=0 ¢=—1 k=0 ¢t=—1
dao = 1, and 9, = 0 for a # b. Let
1 3 & Mg, —1
Cfluh = E Z Z Uh itk g+l = Z f(m’n)hjn%n + Z 9§n)h ljﬁln' (5-30)
k=0 ¢{=-1 (m,n)EAMf_g n=0
We have
L (u—up) = O(WM),
if 151 in (5.29) satisfies
P = o(hM*Y), forall n=0,..., M. (5.31)
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By calculation, we find that M = 6 is the maximum positive integer such that the linear
system of has a non-trivial solution. To further simplify such a solution, we set
coefficients associated with kh of degrees higher than 4 to zero; i.e., we now have polynomials
of kh, whose highest degree is now 4. All such non-trivial solutions for M = 6 can be uniquely

written (up to a constant multiple) as

C'f,ll = (cz +icr)(kh)* + (o +ice)(kh)® + 12(ics — (7i/3)ea + (7i/3)es + (13i/3)cr + (7/3)er + (13/3)c3 + ca
+(7/3)cg — 4/135)(kh)? — 60(icy + 2ics + (i/2)cq + icg — 4i/225 — (1/2)cs + ca — ¢5 — 2¢7)kh + 1
OBy = (e1 + ics) (kh)* + 13(icr + (20i/13)cs + (7i/26)ca + (12i/13)cg — 17i/1170 — (7/26)cs + (12/13)cs — c5

- (2 0/13)07)(kh)3 + 18(ics — (22i/9)e2 + (22i/9)cs + (40i/9)er + (22/9)er + (40/9)cs + ca + (22/9)cs
—11/324)(kh)* — 120(ic; + (2i)es + (i/2)cq + icg — 29i/1800 — (1/2)cs + ca — ¢5 — 2¢7)kh + 2
Cﬁb = (cq4 +icg)(k ) + 18(icy + (4i/3)cs + (i/6)ca + (8i/9)ce — i/90 — (1/6)cs + (8/9)ca — ¢5
— (4/3)er)(kh)® + 36(ics — (22i/9)ca + (22i/9)cs + (40i/9)cr + (22/9)cr + (40/9)es + 4 + (22/9)cg
—49/1620)(kh)? — 240(icy + (2i)cs + (i/2)ca + ice — 29i/1800 — (1/2)cs + o — 5 — 2¢7)kh + 4
C(?,B = —4(icg — (3i/2)ca + (2i)es + (Ti/2)er + 2¢1 + (7/2)cs + e + (3/2)ce — 1/80)(kh)* — 80(icy + (2i)es
+ (i/2)cy + (39i/40)ce — Ti/720 — (1/2)cg + (39/40)co — c5 — 2¢7)(kh)? + 84(icg — (32i/21)cy
+(32i/21)cs + (T4i/21)er + (32/21)er + (T4/21)es + ca + (32/21) e + 1/3780)(kh)? + 600(ic; + (2i)cs
+ (i/2)eq +icg — 291/4500 — (1/2)cg + co — ¢5 — 2¢7)kh — 10,

(
(

where each ¢; € R for ¢ = 1,...,8 are free parameters. Choosing M; = M, = 8 in ([5.29)
and yields the right-hand side of .
Next, consider a compact 6-point stencil {C}; }refo,1}.0e{~1,01} parameterized by CY';, Gy, O €
C with
CyY_,=CVy, Gy =0Cyy, and Cf, = —10,

where we normalized the general stencil by Cy, = —10. Take a plane wave solution
u(z,y,0) = exp(ik(cos(0)z+sin()y)) for any 6 € [0,27). Clearly, we have Au+k*u = 0 and

— iku = g1 # 0 on 09|, where g; and its derivatives are explicitly known by plugging
the plane wave solution u(z,y,#) into the boundary condition. Hence, the truncation error
associated with the compact 6-point general stencil coefficients {C;\év,e}ke{o,l},eq—l,o,l} at the
grid point (g, y;) € 0Q; is 3 (T(0]kh))sq,y,, Where

1 1

(T(O1kR))agy, == D > Cityexp(ik(cos(0)(xo + kh) + sin(0)(y; + (h)))
k=0 (=-—1

+3 gD YOG, (kh, th),
n=0

k=0 ¢=-1
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Without loss of generality, we let (zg,y;) = (0,0). Afterwards, we follow a similar mini-

mization procedure as in the proof of Theorem to obtain the concrete stencils in Theo-

rem [5.9] O

Proof of Theorem[5.4 Clearly, we have

ut™ = —jku O™ — gﬁn) and  u™Y = —gém) for all m,n € Ny. (5.32)

bl

Let C,?el = C,ft}’v + C,?QH for k,¢ € {0,1}, where C,fg’v and C,?QH are to be determined
polynomials of kh. Note that ¥} = z; and y; = y;. Approximating u(zo + kh,yo + (h) by
, with M, My being replaced by M — 1, My — 1, choosing My, > M, My, > M,
and using , we have

1 1
1
Citus =3 0> (G + O ulwo + kh, yo + (h)

k
M
SY O L Y A S s,

n=0 (m,n)€AN ;2
Mg, —1 Mg, —1
+ Y g hTERY Y g KR oY),
n=0 m=0
where
IR = Z Z Cry Gl o(kh, th),
k=0 ¢=0
IRV .= ZZC,?; GYX1.0.m(kh, €h) —iKGY |, (Kh, Ch)(1 — 6, 01))
k=0 ¢=0
1 1
SR =33 h? (C,Z?;Vc,gxh,mm(kh, th) + CRyQY, . (kh, Eh)),
k=0 ¢=0
1 1 1 1
KoV = =33 8V Gy, an(khth), and  KR0H = NN CORPIGE (kb D).
k=0 ¢=0 k=0 ¢=0

By replacmg u™9 for m = 2,..., M with (5.4), using (5.32)), and rearranging some terms,
3)) implies

L% |24
WL u = w0 (I&“V e 19 e N o D 0 K Z IR S A K
p=1

(0,2041) R1,V
+ E, I2Z+1
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]W 1 L%J M — lJ
p - , . ,
+ Z (020 ( Z (_1>p(€)k2(p Z)I;;LH_,’_I Z (_1)p+1<£)k2(l7 e)+11 Rt —|—I7§1 v)

p=max{¢,1} p=max{/l,1}
LMglfz
M M| R R > 20+1) R
+ 40204 ]) (( )L J]éL34J ]éLaij) (1 __§L%§J7LA251J) + 2{: g§ )}(2€i1
=0
Mq1 1 Mg, —1
L [—5—]
+ Z e (ke Ty (1 ()OO~ I
p=max{¢,1}
Mgy, —1 AR VYR [t AP e e S

i Z ggz)KR1 + Z Z f(€23+1)h251 2j+1+ Z Z Z f(21z+7,2j)

~v€{0,1} £=0
Lwa2 fyj

—r—1
< Z (_1)10—2_1(17 ; >k2(p —j— 1)[;21“ +h2553w2g> _1_ﬁ(hM+1)7 h—s 0.
p=max{j+£¢+1,1}

p=0
A tpy Oktps Chpps dpop € Rforall k € {0,1} and ¢ € {—1,0,1}. By calculation, M = 6 is the

maximum positive integer such that the linear system, obtained by setting each coefficient
of u®™ for n = 0,...,6 to be €(h7) as h — 0, has a non-trivial solution. Afterwards, to

We set C’,f@l’v =M (ag.ep + ibrep)(kh)?P and C’Rl’ = Zﬁio(ckvg,p + idkep)(kh)P, where

further simplify such a solution, we can set remaining coefficients associated with (kh)3
(kh)® to zero.

By using the minimization procedure described in the proofs of Theorems [5.2] and [5.3]
we can verify that Coq" = C1V = Ciy = ofp™ =0, CfY COO, Y =,
C’Rl’ CO 1, and C’Rl’ = [ 1, where {C,?j breetoy are defined in (5.20). Given these
{CR Meeqony and {C5H breeqo.ny, we set My = My, = M, = 8 and plug them into the

following relations

{M””J

Jgf}% K;%l’ + Z 1Pt (g)k (= K)I;;ﬁ [?I’Htsz,o, t=0,..., L_MQ{IJ )
p=max{{,1}
R ) M9172 R ) —
J;izéﬂ KM}H KZO?"'aL—Q J7 J;;l—Kl 0=0,...,M, —1,
TR = RSRL L 0=0,. . My —2j—3,j=0,..., LMJ;* _ 1J . and
25|
p—b—1 p—L—1 2(p—t—j—1) 7R1,H 2
J%"F%QJ - Z (=1) j k Ly th SQ“—’Y 2j°
p=max{j+¢+1,1}
(5.34)

where v € {0,1}, 7 =0,..., L@J —(—1,and £ =0,..., {@J — 1. This completes the
proof of Theorem [5.4] ]
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Proof of Theorem[5.5. The proof is almost identical to the proof of Theorem Note that
we need to replace u™1 = —g{™ with u(m) = iku™ 4 g™ for all m € Ny in (5.32). O
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Chapter 6

Sixth Order Compact 9-Point Finite
Difference Schemes for Elliptic
Interface Problems with Particular

Intersecting Interfaces

6.1 Introduction and problem formulation

In Chapters [3| and [ we derive high order finite difference schemes for the elliptic interface
problems with smooth interfaces and discontinuous coefficients. In this chapter, we consider

the elliptic interface problems with intersecting interfaces. Let Q = (I1,13) X (I1,13), O =

(lh %) X (%7 12)7 Qp = (h;b,b) X (h;l27l2)7 Q3 = (l1-§l27l2) X (lh 11—512)7 Q4 = (llv ll%b)

(llall—gl2)7 I‘1 = {(#ﬂy) : % <y < l2}7 I‘2 = {(#JJ) : ll <y < %}7 FS =

{(z,03) : il < 5 < L}, Ty = {(z,282) : |} < 2 < E2} We define ¢; := axq,,

fi == fxaq, and u; := uxq, for i =1,2,3,4. Then we consider the following elliptic interface

X

problem with intersecting interfaces as following:

-V (aVu) = f, in Q\ T,

[u] = 0, on I, (6.1)
[aVu - i = on I';,

U = g, on 02,
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where ' = I'y UL, U3 U Ty, for (§,y) € I', with p = 1,2 and € = (1 + 12)/2 (i.e., on the
vertical line of the cross-interface),

(€)= Tim u(e.y) — i u(eg), 6Vuea(Ey) = Tim (o) 55 0) — T a(e) 3G

Tz—E~ Tz—E~

while for (z,&) € ', with p = 3,4 and £ = (I; + [2)/2 (i.e., on the horizontal line of the
cross-interface),

[u](z, &) = lim+ u(z,y) — lim u(z,y), [aVu-7d](z,§) = lim a(x,y)g—z(a:,y) — lim a(m,y)g—z(m,y).

y—§ y—§ y—Et y—E~

The direction of 7 is shown in Fig. . See Fig. for an illustration of (6.1)). In this
chapter, we derive a sixth order compact 9-point finite difference scheme to solve (6.1)) given

the following assumptions:

(A1) The coefficient axq, is a positive constant for i = 1,2, 3,4, and coefficient a is discon-

tinuous across the interface I'; for 1 = 1,2, 3, 4.

(A2) The solution u and the source term f have uniformly continuous partial derivatives of
(total) orders up to seven and five respectively in each €; for i = 1,2,3,4. f can be

continuous or discontinuous across the interface I'; for i = 1,2, 3, 4.

(A3) The 1D function ¥; in (6.1]) has uniformly continuous derivatives of (total) orders up

to six on the interface I'; for i = 1,2, 3,4.

0 I, Qs ap 1(y) a2 Uy Us
ne
F4 F?) 1 i
Ya(2) V3(z) i i
ne
Q4 FQ Q3 Qg w2<y) as Uy us

Figure 6.1: An illustration for (6.1))

This chapter is organized as follows.
In Section [6.2.1], we construct the sixth order compact 9-point finite difference scheme for
regular points. The explicit formula of the scheme at regular points is shown in Theorem [6.1]
In Section [6.2.2] we derive the seventh order compact 9-point finite difference scheme

for interface points. The explicit formula of the scheme at interface points is shown in

Theorems [6.2] to [6.51
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In Section [6.2.3] we derive the seventh order compact 9-point finite difference scheme for
the intersection point. The explicit formula of the scheme at the intersection point is shown
in Theorem [6.6]

In Section [6.2.4] we prove the sixth order convergence rate of our proposed compact
9-point finite difference scheme by the discrete maximum principle in Theorem [6.7]

In Section [6.3] we provide numerical results to verify the convergence rate measured in
the [, and [, norms for our proposed compact 9-point scheme.

In Section [6.4] we summarize the main contributions of this chapter. Finally, in Sec-
tion [6.5], we present the proofs of Theorems [6.2] to [6.6]

6.2 Sixth order compact 9-point finite difference schemes

using uniform Cartesian grids

Since ) = (I1,12) X (I1,12) in this chapter, we define that

lo =1

J}Z:ll—l—Zh, iZO,...,Nl, and yj:l1+jh, jZO,...,Nl, h = N R
1

where NV; is an even integer. By the setting of , we can say that the centered points of
compact 9-point schemes of all the irregular points in this chapter lie on the closure of the
interface curve (see Figs. and for illustrations). Furthermore, by the definitions of €2,
and T, for p = 1,2,3,4 in (6.1, we should choose (z},y;) = (z;,y;) in this chapter. Recall
that

Ay ={(mn—m) : n=0,...,M+1 and m=0,...,n}, M+1eNy, (6.2)

Ay = A \ Ay, with AVL ={(tk—0) :k=¢...,M+1—£ and £=0,1},
(6.3)
A= {(n,m) s (myn) € Ay}, 5= 1,2}, (6.4)

The illustrations for AY', AY? A AF? are shown in Figs. and .

By (2.9), (4.12)), a, := axq, is a positive constant, f, := fxq,, up := uxq, forp =1,2,3,4,
and choose (77,y5) = (74,y;), we have

up(z+ 2y +y5) = Y WM GY (T, Y)

V1
(mn)EAL

+ Z fzgm’n)Q]\V/[-l-l,m,n(xa y) + ﬁ(hM+2), for T,y € [—h, h],

(m,n)EAM_1

(6.5)
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u}()0,0) ul()l,O) uz()2,0) ul()3,0) ul()4,0) ul()570) u}()670) u}()?,O)
u;)O,l) Ul()l’l) u}()Q,l) U1(93’1) ul(;l,l) ul()f),l) UI()6,1)

(0,2) (1,2) Z()2,2) ul()3,2) ul()472) ul()572)

(0,3) ( (

u}()0,4)

u1()0’5)

ué0,6) P
07 [ - (m,m) € AR}

{uy™" : (m,n) € AY;'}

Figure 6.2: Red trapezoid: {u;m’n) :(m,n) € A]\V/’Il} with M = 7 and p = 1,2, 3, 4. Blue trapezoid:
{ud™™ : (m,n) € AV} with M =7 and p = 1,2,3,4. Note that Ay =AYt UAY2.

wp(rtany+y) = Y "G (@)
(7’n,7’b)EAJ\H/[’i1 (66)
> QN ma(z,y) + ORMTR), for a,y € [~ h],
(m,n)EA]\4,1
where p = 1,2, 3,4,
v L%J ' xm+2€yn—2ﬁ Vi
GM-i-l,m,n(wa y) = <_1) (m + 26)'(71 - 26)'7 (m> n) € AMJrl (67)
o ! !
1+l3) 0, m+20, n—20+2
(_1) xm+ yn + 1
QV mn(‘r7 y) = ) (ma n) €Ayt (68)
M+1,m, ; (m+20)!(n — 204 2)! a(x;, y;)
= L3 (_1)€yn+2€$m—2£ o1
GM—l—l,m,n(mv y) = (TL + 26)'(7’” _ 2€)|a (m’ n) € AJ\/f—&—h (69)
o ! !
5 0, n+26, . m—20+2
(—1)fynt2tgm—2tt 1
QH mn(xa y) = s (m, n) € AM—l, (610)
M+1,m, — (n+20)/(m — 20+ 2)! a(z;, ;)
m,n am—i—nup m,n am-}—nfp
U/I() n) = amwany(ﬂfz,y]) and flg n) = m(ﬂf“yj), p = 1,2,3,4, (611)
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o) - u;gO,O) u}(gl’o) uélo) u}(j’)ao) u7(94’0) u](fao) u7(96’0) u](o7,0)
SR Ay
lw™: (mon) € A} \ [0 00 o0 60 @0 60 6

1(70,2) ul()l,Q) u}(?2,2) 1(73,2) u](34,2) Uz()5’2)

(™™ (m,n) € AE2} <

p
\
(m,n)

Figure 6.3: Red rectangle: {uy :(m,n) € Aﬁ’l} with M =7 and p = 1,2, 3,4. Blue triangle:
{u](gm’n) :(m,n) € AJ\H/[’Z} with M =7 and p =1,2,3,4. Note that Ay = A/\]\H/[’1 U AJ\H/[’Z.

d"s
d™y

(), ¢§" = %(:ci), (m) . — dm%(a;i). (6.12)

dmx dmx

) ._ A"

o= ) v =

6.2.1 Stencils for regular points

The following sixth order compact 9-point finite difference scheme for (6.1) at the regular
points is straightforward by Theorem [2.3]

Theorem 6.1. Let a grid point (x;,y;) be a reqular point, i.e., either d;fj =0 ord;; =0.
Let (up);; be the numerically approzimated solution of the exact solution w of the partial

differential equation (6.1) at a regular point (z;,y;). Then the compact 9-point scheme:

ay
e <(Uh)i—1,j—1 + 4(up)ij—1  + (Un)it1,-1
+4(up)ic1y —20(un)iy;  +4(un)it1y
Loy, = (6.13)
+ (up)ic1 1 +4Hup)ije  + (Uh)z‘+1,j+1)
_ —6f(0’0) . %hQ(f(O’Q) + f(2,0)) . 6_]6h4<f(0,4) + f(4,0)) . %5}7/4][(2’2),

achieves sixth order accuracy for —V- (aVu) = f at the regular point (z;,y;), where flmm) =

m—+n
;ij;(%,yg) and ar = a(l‘iv y])

6.2.2 Stencils for interface points

In this subsection, we discuss how to find a seventh order compact 9-point finite difference
scheme centered at (z;,y;) € I'), for p=1,2,3,4 and (z;,y;) ¢ I'1 UT'aNI's UT, (see Fig. (6.4
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for an illustration).

Iy
[ J o
ay ° PY as ay Iy
[ ] o
T, Iy ® 0 o r, r, o
e e e o
® 0 © o
o (]
a4 o ® as a4 I
[ J o
[y

Figure 6.4: Compact 9-point schemes for irregular points of (6.1)) (the center red point is not the

intersection point)

Theorem 6.2. Let a grid point (z;,y;) be an irreqular point such that (z;,y;) € I'y and
(i,y;) ¢ L1 Uy N T3 UTLy (see Fig. for an illustration). Let (uy);; be the numerically
approximated solution of the exact solution u of the partial differential equation (6.1)) at the

irregular point (x;,y;). Then the compact 9-point scheme:

1
- (C—1,—1 (un)ic1,j—1 +Co—1(un)ij—1 +Ci—1(un)it1,-1

h
r R
Lylun = +C_yo(un)i1; +Coo(un)ij +C1o(un)it1,;
+C11(un)ic1j+1 +Coa(un)ijv +01,1(uh)i+1,j+1>
6
= > AR Y BTURIR D R T,
n=0

(m,n)€As (m,n)€As

achieves seventh order accuracy at the irreqular point (z;,y;) € I'1, where

a 2(a1 +a
Caa= gL 2Aure g oy
2 2
4a —10(a; + a
Cip = a—17 Coo = %; Cio =4,
2 2
a 2(a1 + a
Coa=, Coy = At 02) Cri=1,
Qa2 a2
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(6.15)



1 1 1
T =Y Coah QY W (=hth), T2, =" Z Croth™* Q7 (kD LR),
k=0 (=—1

{=—1

(6.16)
ounim = 3 Ca 6t hotn)
=—1
Theorem 6.3. Let a grid point (z;,y;) be an irreqular point such that (z;,y;) € 'y and
(wi,y;) ¢ 1 U NI ULy (see Fig. for an illustration). Let (uy);; be the numerically
approximated solution of the exact solution u of the partial differential equation (6.1)) at the
irreqular point (x;,y;). Then the compact 9-point scheme:

1
E (0—1,—1 (uh)i—l,j—l +CO,—1(uh)i,j—1 +C’17_1 (Uh)z'+1,j—1

r
Ly up = +C10(un)io1j +Coo(un)i; +Co(un )it

+C 11 (un)ic1j+1 +Coa(un)ijt +Cl,1(uh)i+1,j+l>

6
> AR D ST Y T T,
n=0

(m,n)EAs (m,n)€As

achieves seventh order accuracy at the irreqular point (z;,y;) € I's, where

2
Ci1= Z‘* Co1 = M Cri =1,
3 3
4 ~10
e
3 3
2(ay +
C= Cpy = Hasta) Cii=1,
CL3 as

1

1 1
‘]r{”:l,n = Z C—Léh_2Q¥,m,n(_h7€h)7 Jr];in = Z Z Ck,Zh_QQ"Y/:m,n(khﬂ Eh)a

(=—1 k=0 ¢=-1

Jyon : ZC,H Gy 1n(=h, th).
=1
Theorem 6.4. Let a grid point (x;,y;) be an irregular point such that (x;,y;) € I's and
(i,y;) ¢ L1 Uy N T3 ULy (see Fig. for an illustration). Let (uy);; be the numerically
approximated solution of the exact solution u of the partial differential equation (6.1)) at the
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irreqular point (x;,y;). Then the compact 9-point scheme:

1
E (C—l,—l (Uh)i—l,j—l +CO,—1(uh)i,j—1 +CL—1 (uh)z'+1,j—1

r .
Ly up = +C10(un)iz1j +Coo(un)i; +Ch0(un)it1,

+C_11(un)i—1j41 +Coa(un)ijt1 +Cl,1(uh)i+1,j+1>

6
= D BRI Y BRI D
m=0

(m,n)EAs (m,n)EAs

achieves seventh order accuracy at the irreqular point (z;,y;) € I's, where

a 4a a
Cfl,fl = _37 CO,*I = _37 Cl,fl = _37
as ag Q2
2(@3 + CLQ) —10(&3 + az) 2(&3 + ag)
O  g= 28172 Ohg= 3172 Oy g= 2872
1,0 as ) 0,0 as ’ 1,0 as )
Cfl,l = 17 CO,l = 47 Cl,l = 17

1

1 1
TP = Coah QY (kb =h), T, = > Crh QY (kh, (),

k=—1 k=—1 (=0

1
1
Joam =~ c,f,_la—gG;{m,l(kh, —h).
k=—1
Theorem 6.5. Let a grid point (z;,y;) be an irreqular point such that (z;,y;) € 'y and
(wi,y;) € LU NI ULy (see Fig. for an illustration). Let (uy);; be the numerically

approximated solution of the exact solution u of the partial differential equation (6.1)) at the
irreqular point (x;,y;). Then the compact 9-point scheme:

1
E (C—L—l (uh)i—l,j—l +OO,—1(Uh)i,j—1 +Cl,—1 (Uh)z‘+1,j—1

r
Ly up = +C_qo(up)i-1 +Coo(un)i; +Cho(un)it1,
(

+C_11(un)i—1j+1 +Coa1(un)ij+1  +Cia Uh)i+1,j+1>

6
= D KR Y AR D
m=0

(m,n)EAs (m,n)eAs
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achieves seventh order accuracy at the irreqular point (z;,y;) € I's, where

4
Coyr = Comt = —, Cro1 ==,
1 1 1
2 —10 2
O—I,O = (a4 i al)a CO,O = (a4 i al)) CI,O = (a4 i a1>7
ai ai ai
CLlezl) C%J :ZL Cilzzla

Jf = ZO,Hh QY . (kh,—h), Jh = ZZCMh 2QY . . (kh, (h),

k=—1 k=—1 ¢=0
Tm ch_l oGl (kb —h).
k=-—1

6.2.3 Stencils for the intersection point

In this subsection, we discuss how to find a seventh order compact 9-point finite difference
scheme centered at (z;,y;) =11 Ul's N3 ULy (see Fig. for an illustration).

aq Iy as

Qy FQ as

Figure 6.5: An illustration for the compact 9-point scheme for the intersection point of (6.1))

Theorem 6.6. Let a grid point (x;,y;) be an irregular point such that (z;,y;) = 't UTl's N
I3 Uy (see Fig. for an illustration). Let (up,); ; be the numerically approzimated solution
of the exact solution u of the partial differential equation (6.1) at the irregular point (x;,y;).
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Then the compact 9-point scheme:

1
E(Cq,fl(l‘h)wl,j—l +Co,—1(un)ij—1 +C1—1(un)it1,-1
S
Liun = +C_qo(up)i-1; +Coo(un)i; +Cho(un)is
+O—111(uh>i—17j+1 +CO,1<uh)i,j+1 +OLI(U}1)1‘+1’]‘+1> (617)
6
= Y wERL S hFa+ Y R S h,,
(m,n)gAf 1 (m n €A5 (m ’VL)EAH 1 m=0

achieves seventh order accuracy at the irreqular point (z;,y;), where

C L= a1a4(a2 + Cl3) CO L= 2&4(@2 + a3)(a1 + CLQ) Cl CL3
- - - —7 y - b _]. -
’ a3(a; + aq) a3(ar + ay) as’
C _ 2@1((12 —+ CL3) C _ —5(6L2 + (l3)(a1 + CLQ) C _ 2(@2 + a3)
—1,0 — a% ) 0,0 CL% ) 1,0 as )
2
2
Co1y= a;(CLQ + as) Cor = al<a22+ as)(ar + a2)7 Chy =1,
a3(ay + ayq) as(ay + ay) 6.15)
and Fiyy . Fron, Ui o Wz, are defined in (651), (6:52), (6:53), (654), {Cyy : k =

—1,0,0=—1,0,1} and {C},: k=0,1,0 = —1,0,1} are defined in (6.58).

6.2.4 Convergence analysis

We now prove the following convergence result for the sixth or seventh order compact 9-point
finite difference schemes developed in Theorems [6.1] to [6.6]

Theorem 6.7. Under the assumptions (A1)-(A3) in Section[6.1, we consider the compact
9-point finite difference scheme in Theorems to[6.6. Then the compact 9-point scheme
for the elliptic interface problem in (6.1)) has the convergence rate of order 6, that is, there

exists a positive constant C' independent of h such that
Ju — unlle < CRS, (6.19)

where u and uy, are the exact solution and the numerical solution of (6.1]), respectively.

Proof. Clearly, all the {Cy ¢}r=—1,01 in Theorems [6.1] to [6.6] satisty the following sign con-
dition,

Ck,ﬂ < 07 if (kag) = (070)7

Ck,f > 07 if (k7€> 7& 070)7

—~



and the summation condition,

1 1
Y Cu=0.

k=—1¢=—1

So by the proof of Theorem (3.6, we could obtain (6.19)).

6.3 Numerical experiments

Example 6.1. Let Q = (0,1)%
a1 =axe, =107°,  az =axe, =
Uy = uxgo, = (
U = UXq, = — sin(27
Uz = uXq, = — sin(
Ug = UXQy = (

10°,

The functions in (6.1)) are given by

as = axa, = 10*5,

= —sin(27x) exp(—y) — sin(2w(—y + 1)) exp(—y),

ay = axq, = 105,

(= + 1)) exp(—y) — sin(27(—y + 1)) exp(~y),

—sin(27x) exp(—y) — sin(27y) exp(—y),

2r(—z + 1)) exp(—y) — sin(27y) exp(—y),

the other functions f,, 1, for p = 1,2,3,4 in (6.1)) can be obtained by plugging the above
functions into ([6.1). The numerical results are presented in Table [6.1] and Fig. [6.6]

Table 6.1: Performance in Example of our proposed sixth order compact 9-point finite differ-
ence scheme on uniform Cartesian meshes with h = 277 x 1.

J

[[un—ull2
llul2

order

[[un = ulloo

order

N O U~ W N

8.2852E-04
1.1540E-05
1.7254E-07
2.6489E-09
4.1095E-11
7.5388E-13

0
6.16588
6.06356
6.02534
6.01031
D.76847

1.1208E-03
1.8687E-05
2.9743E-07
4.7148E-09
7.4568E-11
1.3224E-12

0
5.90641
5.97331
5.97921
2.98251
2.81727

Example 6.2. Let Q) =

ar = axo, =
U =uUxo, =
Uy = UXQy =
Uz = UXQs =
Ug = UXQy =

107,
(@ + (1 -
(1—2)"+
((
(

3

(0,1)2.

az = axq, = 10~ 3
y)®) exp(—z +y),
(1—y)*) exp(—z +y),

1—2)° 4+ y*) exp(—z + ),

2® +y*) exp(—z + y),
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The functions in (6.1)) are given by

asg = axo, = 104,

ay = axq, = 10’6,



a| = 107° Ay = 10°

ay = 105 as = 1075

Figure 6.6: Example the coefficient a(x,y) (left), the numerical solution u;, (middle) and the
error |uy, —u| (right) with h = 277 x 1, where uy, is computed by our proposed sixth order compact
9-point finite difference scheme.

the other functions f,, 1, for p = 1,2,3,4 in (6.1)) can be obtained by plugging the above
functions into (6.1). The numerical results are presented in Table and Fig. m

Table 6.2: Performance in Example of our proposed sixth order compact 9-point finite differ-
ence scheme on uniform Cartesian meshes with h =277 x 1.

J % order | ||up — u|le | order
1.6488E-05 0 4.0342E-06 0
2.5239E-07 | 6.02960 | 5.8604E-08 | 6.10514
3.9327E-09 | 6.00398 | 8.9118E-10 | 6.03913
6.1615E-11 | 5.99611 | 1.3797E-11 | 6.01326

9.5329E-13 | 6.01421 | 2.0797E-13 | 6.05185

D O W N

Example 6.3. Let = (0,1)%. The functions in (6.1 are given by

a; = axo, = 10_4, Ay = axq, = 105, az = axq, = 10_4, a4 = axq, = 106,
u = uxq, = sin(rz)sin(ry)2z(2 — 2y),

Uy = uxg, = sin(mz)sin(ry)(2 — 22)(2 — 2y),

ug = uXq, = sin(mz) sin(ry)(2 — 2x)2y,
() sin(ry)

Uy = uxgq, = sin(wx) sin(my)2z2y,

the other functions f,, v, for p = 1,2,3,4 in (6.1) can be obtained by plugging the above
functions into (6.1). The numerical results are presented in Table and Fig. .
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a; = ].07

Ao — 10_3

a4 = 1076

az = 104

Figure 6.7: Example the coefficient a(z,y) (left), the numerical solution uj (middle) and the
error |uy, —u| (right) with h = 276 x 1, where uy, is computed by our proposed sixth order compact

9-point finite difference scheme.

Table 6.3: Performance in Example of our proposed sixth order compact 9-point finite differ-

ence scheme on uniform Cartesian meshes with h = 277 x 1.

J

[un—ull2
[aal]2

order

[un = ullo0

order

N OO W N

6.2929E-04
4.1295E-06
7.1880E-08
1.1898E-09
1.8897E-11
3.9230E-13

0
7.25162
0.84423
5.91684
2.97638
5.59003

6.6139E-04
2.5461E-06
4.1784E-08
6.6635E-10
1.0523E-11
1.8095E-13

0
8.02110
5.92915
5.97054
5.98470
5.86181

a; = 10~4

a9 = 105

ay = 106

as = 1074

Figure 6.8: Example the coefficient a(z,y) (left), the numerical solution u;, (middle) and the
error |up, —u| (right) with A = 277 x 1, where uy, is computed by our proposed sixth order compact

9-point finite difference scheme.
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6.4 Conclusion

To our best knowledge, so far there were no compact 9-point finite difference schemes avail-
able in the literature, that can achieve fifth or sixth order for elliptic interface problems with

intersecting interfaces (6.1)). Our contributions of this chapter are as follows:

(1) We construct the sixth order compact 9-point finite difference scheme on uniform mesh-
es for (6.1)) with 4 discontinuous constant coefficients.

(2) The formulas of the proposed sixth order compact 9-point finite difference scheme
are constructed explicitly for all grid points (regular points, interface points, and the

intersection point).

(3) We prove the sixth order convergence rate of our proposed compact 9-point finite

difference scheme by the discrete maximum principle.

(4) Our numerical experiments confirm the flexibility and the sixth order accuracy in Iy

and [, norms of our proposed compact 9-point scheme.

6.5 Proofs of Theorems 6.2 to @

Proof of Theorem[6.3. Since [u] = 0 and [aVu - 7] = ¢y on Ty, ul™” ugo’o) =0 and a;ul"” —
asu$"” = ¢! Then we have u!*" = o« and u{"™ = @ ug — iwgn) for all n =
0,...,M. By (6.5) with M being replaced by M —1, for z,y E [ h, h], we have

ui(z + i,y +y;) + O(BMH)
= Y W)+ Y Ay,

(m n)EAV’1 (m,n)EAM—2

M-

_Zu(lonGI\/[Onxy Z 1n)GM1nxy)+ Z (anan(xy)

(m,n)EANM—2

— al ”

=0 (m,n)eAN —2 (620)
1

M-
0,n) az 1 n
_Z“( GJY/IOnﬂfy)+ P GJY/[lnl‘y Z ¢1 )G}Cfln( Y)

=0
(m,n)EANM—2
M—-1

(n)
m,n) (A2 lﬁ m,n
- Z ug )(;1) M ,m,n :E y Z M 1,n ;E y) + Z fl( )QXLm,n(x’y)v

(m,n)eA;! (m,n)EAM—2
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and

Usg (x + Ti, Y —+ y]) = Z (m ’I’L)Gﬂ m,n (x, y) + Z Q(m)n)Q]\V/I,m,n (x7 y) + ﬁ(h’M+1)' (6.21)

(m,,n)EAV L (m,n)EAM—2
From ([6.7) and (6.8), we observe that

w (i, y +yj) + ﬁ(hMH)

M—
m,n) [ @2 m,n

(m,n)e A]\C{l n=0 (mun)eAM—Q
M
Z Ghron(0,y) = us(mi,y +y5) + O(KMH),
=0
ie.,
ur (25, y +y;) = ua(wi, y +y5) + ﬁ(hMH)a y € [=h,hl. (6.22)

By (6.20]), (6.21]) and (6.22)), we could define that

1
n (C—1,—1u1($i —h,y; —h) +Co_1us(x;,y; —h) +Ci_yus(x; + h,y; — h)

L)'= +C_q gur(z; — h, y;) +Co,0uz(zi, y;) +Ch gua(z; + h,y;)
+C,1,1u1(:€l- — h, yj -+ h) +0071U2(£E@', y]’ -+ h) +0171U2(l'@' + h, yj + h))

= Y R S R,

(mn)eA ;! (m,n)EAr—2

+ Y gk +Z¢1” pm = OM), as h—0

(mn GAM 2

where
M
Ckyg = ch%php with Ckep € R,
p—O
a 11
Z C_M< 2) (B th) + 375" CeGYy (b, Ch),
=1 k=0 (=—1
- (6.23)
Jrjizl,n = Z C*Leh72Q§\//[,m,n<_h7€h)7 J?{"in = Z Z Ck,@h72Q]‘\//[,m,n(kh7 gh)’
(=—1 k=0 =—1
Jppm = — Z O_M—GMM( h, (h).

{=—1
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Let

1

1
1
Lpluy = 5 Z Z Cre(Un)ivkjre

k=—1(=—1
Mol (6.24)
= X AR 3 BRI 3w
(mmn)EApN 2 (m,n)EAN—2 n=0
Then
L (= up) = O(h™),
if I, in (6.23)) satisfies
Ly = O(RMTY), forall n=0,..., M. (6.25)

By calculation, the maximum integer M for the linear system in (6.25)) to have a nontrivial
solution {C (0 )}k ¢=—1,01 is M = 7. In particular, one nontrivial solution of - with

M = 7 is given in So and (| - ) with M = 7 result in -, and

(6.16). O

Proofs of Theorems[6.3 to[6.5. The proofs are similar to the proof of Theorem [6.2] O

Proof of Theorem[6.6 Since [u] = 0 and [aVu-7] = 13 on Fg ) ugo,o) —ul”® = 0 and
a;;uéo’l) — aguéo’l) = —¢§0). Then we have uém’o) = ugm’o) and uy (m1) _ Z—guém’l) - él/’:(’,m) for

allm=20,...,M. By with M being replaced by M — 1, for x,y € [—h, h|, we have

U3(5U+$i7y+yj)+ﬁ(hM+l)
D D Gt N ) R S SO £ Lo} A R 1)}

(m,n)eAf/I’l (m,n)EAM—2
M M—-1
0 1 ,
= > w0 o) + D Gy Y AR (),
m=0 m=0 (mn)EAM—2
M M—-1

(

m=0 m=0 as oy (m,n)EAN 2
M M1 M1
m,0 2 m,1 m
> ud" G molw ) + 30 e VG e y) = D0 oG y)
=0 m=0 m=0

+ > AN (),

(mn)EAM—2

3 a3
(mn)eA?t m=0 (m,n)E€AN—2

M-

,_.
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ie.,

M-1
myun) [ A2 1 m)
u3<x+x27y+yj): ug )<CL3) CTYZ\I_I/Imn:Ij y a_31/1 Mm,l(x>y>
(mn)ent m=0 (6.26)
+ Y Qe y) + OO, xy € <R,
(mvn)EAM—Q
Similarly, we have
a R |
N 1
wlr+r,y+y) =y ul” )(a—4> () = Y a—4¢§m)GMm1(fv y)
(1n,n)€/\]\H4’1 m=0 (627)
Y AMQN e y) + OWMY, zy € [—h, b,
(M,H)GAM_Q
w(x+ i,y +y;) = Z ugm’")Gﬂmm(x, )
(mm)eAss - (6.28)
Y Q)+ O,z € [~ b,
(m,n)E€AN—2
ug(x + x4,y +y;) = Z ugm’")Gﬂmm(x, )
(mm)eAss - (6.29)
Y R y) + OMMT), wy € [<hh).
(m,n)EAN—2
On the other hand, we have
I
w0 = ug‘)’"), ult = %ug’n) — =" for n=0,..., M, (6.30)
ai a
0, if m is even,
odd(m) := (6.31)
1, if m is odd,
0 (6.30) and (6.31)) lead to
(0,n+m) . .
u%Odd(m)’Mmedd(m)) = 2 7 i is even, for all (m,n) € AXf,
azq bt Lyl i s odd,
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ie.,

,(0dd(m) m-tm—odd(m)) _ (@ )Odd(m)u(odd(m),m—i—n—odd(m))

1 2
@ (6.32)
dd m-Tn—o m ‘
_ (m) § Fn—odd( )), for all (m,n) € A]‘(/’IQ.
(45]
(2.4) implies
"L (1) ozt
ugm,n) :( ) m | (odd(m) n+m—odd(m)) + Z — fl(mf n+20— )7 v (m, n) c AJ‘(/}Q, and i = 1,2.
=1 v
(6.33)
From ([6.32)) and (66.33)), we observe that
ad dd s (—1)* 2,n+20-2
ugmvn) — (—l)L?Jugo (m)vn+m_0 (m)) _I__ Z fl(m_ 7n+ - )7
aj
=1
m odd(m) m _
_(—1)'3) (@) ploddm)mtn=oddm) _(_1y(%] Odd(m)wgmm odd(m) (G 34)
ai aq
s (=1)" n—2tmr20-2) 1%
- m—24,n+20— 2
’ for all Ay
_|_Z - fi 7 or all (m,n) € A},
=1
and
[m/2] ( )g
ugm,n) :( 1)|_ J (odd(m) n+m— odd(m)+ Z f2(m—2€,n+2€—2)’ for all (m,n) c AE2
=1

(6.35)
Note that for m = 0, 1, the summation ZLm/ 2 n (6.34) and (6.35)) is empty. From Figs.
and . we have AT\ AY? = {(0,0),(0,1),(1,0),(1,1)}. So (6.35) implies

Lm/2J
uém ,n) _ (_1)\_%Jugodd( m),n+m—odd(m)) + Z m 2€,n+2f—2), v (m’n) c Afjl
(6.36)
From ([6.30)),

ugo,o) _ ugo,o)) ugo,l) _ u§0,1)7 ( |
1 1 6.37

ugl,o) _ @ugm) _ _2/150)7 ugm) _ %ugm) _ _wgl).

ay a ay ay
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So AP\ AY? = {(0,0),(0,1),(1,0),(1,1)}, (6.34) and (6.37) result in

m,n m | a2\°dd(m)  (oqdq(m ;m+n—odd(m modd(m m+n—odd(m
ol ):(_1)L2J<£> podd(m)mn=odd(m) _ (117 ag )¢§ +n—odd(m))

I/} o (6.38)
+Z flm mHHED o (myn) € ALY

By (6.28) and (6.38)), we have
uy (¢ + i,y + ;) + O(RMH)
= Z u(m " GJV[ m, n(x y) + Z l(m,n)QJ\H/I,m,n (1’, y)7

(m,n)eAt? (m,n)€EAM—2

m az odd(m) odd(m),m+n—odd(m m Odd(m) m-+n—odd(m
_ Z ((_1)L2J(a) Ué (m),m+ ( ))_(_1)L2J7¢§ + (m))

(mn)EAH’1 a“
Lm/2J 20 20—-2
N G @ Y QR (@)
(m,n)E€AN 2 (639)
a Odd(m) 0 m),mrn—o m

R (g oy

(m,n)EAﬁ1 !
lm/2]

odd(m)  (m+n—odd(m)) (1) (m—26,nt20-2)
X (ome +2. h )Gl (@:9)

H,1 —
(m,’ﬂ)EAM' (=1

+ > AN (), wy e [~hhl.

(m,n)EAM—2

Similarly, (6.29)) and (6.36)) imply

(T + x5,y +y5) + o (hMTh
_ Z ( 1)|_ J (odd(m)n+m odd(m Gan($ y)

H,21
(m,n)eA,;

Lm/2J (6 40)
m—24,n+20— '
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(6.26) and (6.36) imply

uz(x + x4,y +y;) + O(RMT)
O n+m-—o m a/ n
S Y (el et ()G ()

(m,n)EAH 1 3
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m=0

(m, n)eAH Lot=1

+ Z f3 )QI]_VI[,m,n(x’y)7 T,y € [_h7h]

(m,n)EAM—2

(6.27) and (6.38) imply
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. odd(m)
= Y (-pt= (%)

H,1
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2wi1 | ( A2\ °MCUHD) 44 (2041), 20414+ 1—odd(2w+1))
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By (60) and (53,

us(z + x4,y + y;)
= Z u(2m n)( ) GM ,n+m—odd(n),odd(n) (l’, y)
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By 9). ©19). (9. and [©T0), we have
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Similarly, by (64), (637, (-9), and (6.10), we have
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Now, by (6.44)—(6.49), we could define that
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0717,1 = 0:17_1, 007,1 = C(i—l + C()+7—17 Cl -1 = ClJr 15

Co10=0CC, Coo = Co + Ciy, Cro = Ciy,

0*1,1 = C’:1,17 C’0,1 = C(il + C({l? C171 = Cl+1
Then

L5 (u—uy) = 0(hM),
if I,,,, in (6.50]) satisfies

Ly = O(KMTY), forall n=0,...,M.

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

By calculation, the maximum integer M for the linear system in (6.57) to have a nontrivial
solution {C¢(0)}xe=—101 is M = 7. In particular, one nontrivial solution of (6.57) with
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M =71is

a1a4(a2 + a3) _ 2a4(CL2 + ag)(al + ag)

+ _
- = C__ i ? CO,—]. - 07
Corm a3(a1 + as) ' 0,-1 a3(a1 + aq)
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Clip a2 ) 0,0 a2 ,
- a%(ag + as) o— — 2a1(ag + asz)(a; + ag), CaLl _o,
L a2(ar + ag) 0,1 a3(ay + ayq) ;

So (6.55), (6.56) and (6.58) with M = 7 imply (6.17) and (6.13).
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Chapter 7

Future Work

In Chapter[5], we have derived a compact finite difference scheme with reduced pollution effect
for huge wave numbers k. In case of elliptic interface problems with discontinuous coefficients,
high-contrast coefficients across the interface must also lead to pollution errors. So, motivated
by the method in Chapter |5, we plan to construct a robust compact finite difference scheme
with the higher order accuracy and reduced pollution effect for elliptic interface problems
with high-contrast coefficients. By the efficient implementation in Chapter [ it is very
easy to achieve implementation for the higher order compact finite difference scheme for the
Helmholtz interface problems with discontinuous wave numbers. Clearly, the high-contrast
discontinuous wave numbers also result in pollution effects. So we also plan to extend the
new pollution minimization strategy in Chapter [5| to the Helmholtz interface problems with
discontinuous, high-contrast, and variable wave numbers. We can also construct a compact
finite difference scheme with a reduced pollution effect for the Helmholtz equation with a
perfectly matched layer (PML) boundary condition.

In Chapter [3, we numerically verify the sign conditions of our proposed compact finite
difference scheme and prove the convergence rate by the discrete maximum principle. Mo-
tivated by the numerical verifications, we plan to construct a complete theoretical proof for
sign conditions of the compact scheme in Chapter [3] Similarly, we also plan to derive the
complete theoretical proof for the convergence analysis of the proposed hybrid scheme in
Chapter {4 Furthermore, if we could not prove the sign conditions for 9-point scheme and
13-point scheme for irregular points. Then we would try to derive a sixth order 25-point finite
difference scheme which theoretically satisfies the sign conditions for the irregular points for
the elliptic interface problems with discontinuous coefficients. As the 25-point scheme will
give us more free parameters, it is highly possible to achieve this goal. Since the irregular
points only exist along the interface, compared with the whole domain €2 in 2D, irregular

points can be considered as 1D data. Thus, the entire computation cost will not increase too
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much, if we only modify the irregular points in the finite difference scheme. We also plan
to construct the higher order compact finite difference scheme and derive the convergence
analysis for the problem —V - (AVu) = f in Q\ T, [u] = ¢g{ and [AVu - 7i] = gf on I, where

a b
A= (b > is a symmetric positive definite matrix.
c

Since we have done the compact finite difference schemes for the Poisson (Chapter [2)),
elliptic (Chapters and @, and Helmholtz (Chapter [5)) interface problems, it is natural
to extend our methods to more complicated and popular problems: Maxwell interface prob-
lems [B7], Stokes interface problems [II, B8 [@9], elliptic equations with complex interfaces or
boundaries [2 9 [[]], and other interface problems in [I00]. It is straightforward to derive
the higher order compact finite difference scheme for the singularly perturbed problems in
M3l B4 by the method in Chapter . While the small € in singularly perturbed problems
would also cause the pollution errors, so we also plan to extend the method in Chapter |5 to
the most general singularly perturbed problems to reduce the pollution effect. Furthermore,
we can use wavelet bases in [49] [61] 62] to construct numerical schemes with bounded condi-
tion numbers which can reduce the relative errors for the numerical solutions in the elliptic
interface problems with high-contrast coefficients. We also plan to derive a new efficient and
highly parallelizable compact finite difference scheme for the Navier-Stokes equations in the
spirit of the schemes described in 45 Ef]. Finally, we can use parallel computation skills to

achieve the implementation for 3D equations with high-frequency solutions.
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