There are three kinds of death in this world. There’s heart death, there’s brain death, and
there’s being off the network.

— Guy Almes
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Abstract

Delay Tolerant Mobile Networks (DTMNs) provide communication despite the occasional
presence of disconnected subnetworks. They rely on finding a set of sequential opportunis-
tic encounters between pairs of mobile nodes. In this context, understanding mobile node
behaviour is essential to design effective and efficient network protocols. Previous studies
aimed to predict future encounters where predictions depend on exploring the probabil-
ity/age of encounters and integrated interactions in the mobile data. However, those pre-
vious solutions suffer from unstable predicted encounters with lack of routing information
such as encounter times. As an alternative to prediction, we propose to exploit periodicity
within mobile data to find stable (periodic) encounters for routing in DTMNs. In this the-
sis, we first present a generic methodology to model and find periodic encounter patterns by
using the auto-persistence function and detection techniques derived from it. Secondly, we
propose a novel graph model to capture periodic encounter patterns where routing problems
can be modelled and solved as optimization problems. Lastly, to connect disconnected sub-
networks that are strongly connected inside, e.g., by periodic encounters, in the networks we
introduce stationary relay nodes whose deployment is modelled as various k-connectivity
problems. Taking advantage of our studies, the experimental results demonstrate that in the
environment of DTMNs with the presence of disconnected sub-networks, message delivery
can benefit greatly from the underlying periodicity within mobile data. In addition, exploit-
ing periodicity opens up new research frontiers in several aspects such as designing novel
routing protocols, query dissemination and collection, and preserving privacy and security

in environments with the presence of periodic behaviours.
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Chapter 1

Introduction

1.1 Delay tolerant mobile networks

The increasing popularity of wireless mobile devices such as sensors, laptops, tablets and
smart-phones has created demand for novel techniques for effective and efficient commu-
nications in mobile networks. Mobile ad-hoc network (MANET) is one type of mobile
network that has been studied extensively for the past decade. A MANET is a highly dy-
namic network that is established amongst mobile devices, without any need from other
supporting infrastructure [90]. Each node participating in the network acts as both an end-
host and a relay. Even though wireless devices are mobile within MANET, they are typi-
cally assumed to constitute a connected network where at least one path between any pair
of nodes always exists. In addition, MANET has continuous bidirectional end-to-end con-
nectivity with symmetric communications and a relatively short propagation delay. Thus,
communications are possible if routing protocols adjust the routes in response to mobility.
In general, logical structures such as paths and trees on top of the physical topology are used
to guarantee optimal (or near-optimal) costs between sources and destinations. However, in
some application domains the physical topology may change often and nodes (or entire sub-
networks) may not always be connected. Disconnections in the network are possible due to
various forms of node movement as well as energy management or interferences [34].
Previous studies have shown that node movement does impact the connectivity of mo-
bile networks [20, 83, ]. Mobile movements may lead to a situation called network
partition where an end-to-end path may never exist because the network is divided into sev-
eral isolated sub-networks from time to time. In addition, nodes travelling at high speeds
in some environments, e.g., vehicular ad-hoc networks (VANETS) [67], means that discon-
nection in the network is the norm rather than the exception. In this type of environment,

traditional MANET route-discovery protocols are inefficient and ineffective regarding both
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Figure 1.1: Routing with opportunistic encounters
delivery ratio and resource consumption [0, 64, 70, 75, , ]. Frequently discovering

new routes imposes control overhead to the communication task and sometimes fails to re-
turn any result. In mobile wireless sensor networks, because each sensor has limited battery
capacity [7], the communication overhead of frequent route discovery is a severe drawback.
In summary, directly applying protocols from MANET does not meet the specific require-
ments of disconnected networks.

As an alternative solution, Delay Tolerant Networks (DTNs) [34], also called Disrup-
tion or Disconnection Tolerant Networks, provide communication despite the occasional
presence of disconnected sub-networks. In this thesis, we focus on Delay Tolerant Mobile
Networks (DTMNs) where a lack of continuous network connectivity is caused by node mo-
bility. To address the routing problem in such networks, communications depend on finding
a set of sequential opportunistic encounters between pairs of mobile nodes in a store-and-
forward fashion where an encounter is defined as a time period long enough so that mobile
nodes can directly communicate with each other. Unlike their roles in MANET, partici-
pants in DTMNs are not only end-hosts and relays, but also serve as temporary storage for
messages during routing. Messages will be exchanged when opportunistic encounters arise.

Figure 1.1 illustrates an end-to-end communication using opportunistic encounters due
to lack of continuous connection in a DTMNSs. Let us assume that source og has a message
for destination 03. An opportunistic encounter, indicated by a bidirectional arrow, arises
during interval Iy. At this encounter, oy forwards the message to an intermediate node
o1. Node o; carries the message until it encounters destination o3 during interval ;. At
this encounter, the message is indirectly delivered. As an alternative route, oy could hold
the message until it meets destination o3 directly during /,. Because communications are
asymmetric in DTMNs, the same path from og to o3 is not applicable if 03 has a message

for oy.




Within DTMNSs, opportunistic encounters are critical for routing. In this thesis, we
propose to utilize stable encounters, more specifically periodic encounter patterns, within

mobile data for routing in DTMNS.

1.2 Routing protocols in delay tolerant mobile networks

In this section, we concentrate on routing protocols and node mobility patterns that have
already been used in DTMNs. There are mainly four categories of routing protocols in
DTMNs: 1) mobility-unaware routing where protocols choose opportunistic encounters
without considering overall node movement, 2) mobility-aware routing where protocols
use the past history of node mobility to predict future encounters, 3) social-aware routing
where protocols compute routes based on social networks that are derived from aggregating
past encounters, and 4) periodicity-aware routing where protocols forward messages using

regular and periodic encounters within node movement.

1.2.1 Mobility-unaware routing

Under the circumstance that there is no knowledge about when and which pair of nodes will
encounter in the future, the epidemic routing protocol targets at providing promising deliv-
ery by utilizing all possible opportunistic encounters [129]. By flooding the message, every
node holding a copy of the original message transmits a replica to the one without a copy
at every opportunistic encounter. This protocol guarantees the delivery with the shortest
delay. However, it is inefficient with regard to energy consumption because of the mas-
sive number of retransmissions and is also inefficient regarding the storage where a large
number of replicas is distributed in the network. In contrast to epidemic routing, in direct
delivery [119] the source delivers the message if and only if it encounters the destination.
This protocol guarantees minimal storage and energy usage but with a potentially low de-
livery ratio because the probability of meeting the destination could be low. Epidemic and
direct delivery routing protocols set upper and lower bounds on resource usage and delivery
ratio in DTMNSs.

To improve epidemic routing, researchers have proposed protocols that control the
flooding in the network by limiting the number of replicas [128], diverting replicas individu-
ally [122], reducing the lifetime and the distance that replicas can travel in the network [69]
and limiting the maximum number of relay hops to reach the destination [45]. However,
it is difficult to accurately tune parameters in these protocols to adjust different mobile

environments for better performances. As alternative solutions to direct delivery, some pro-



tocols aim to maintain one copy of the message in circulation in the networks [66, 1.
For example, the first-contact routing protocol always forwards the message to the first en-
countered node [66], and randomized routing protocol randomly transmits the message to
a relay based on a forwarding probability [123]. In general, this single-copy forwarding
protocol has very low delivery ratio because of long delays and low encounter probabilities.
In contrast, flooding-based routing protocols achieve better performance while consuming
a large amount of network resources. Now, the trend of designing protocols in DTMNs
exploits node mobility where encounter patterns can be applied in routing.

With respect to inter-contact times and reachability of nodes, it has been shown that mo-
bility and pair-wise encounters can benefit communications in disconnected networks [20,

, 144]. In order to improve routing performance, solutions have been proposed to exploit
node mobility patterns. For example, FRESH [31] selects the node whose last encounter
with the destination is the most recent. PROPHET [85] uses the history of past encounters
to estimate the nodes’ delivery probabilities. In MaxProp [16] each node keeps track of
the probabilities of encountering other nodes. BubbleRap [60] relies on social structures
of the network for routing, which are aggregated on encounter histories. As we can see,
different aspects of node mobility have been used to predict opportunistic encounters. Both

mobility-aware and social-aware routing protocols are discussed next.

1.2.2 Mobility-aware routing

Mobility-aware routing protocols use the past history of node mobility to make forwarding
decisions. In general there are two categories of statistics being used to design mobility-
aware routing protocols. One category of protocol predicts the encounter probability based
on past encounters. The other category of protocol learns from the age of encounters such

as elapsed times since last encounters.

Probabilistic protocols

In previous studies, many protocols have been proposed to utilize encounter probabilities.
For example, MV exploits the frequency of encounters in the past [17]. OPF replicates
messages to achieve the maximum delivery probability [86]. 3R predicts the probabilities
to meet other nodes at a certain hour during weekdays and weekends [130]. In this section,
we focus on the most popular routing protocols in this category, which are PROPHET,
MaxProp, PREP and Prediction.

PROPHET was introduced to direct communications by learning from past encounters



and their transitivity properties [85]. In that paper, the authors introduced a metric called
delivery probability at every node to indicate the probability that it will deliver the message
to a given destination. Therefore, each node needs to maintain a list of delivery probabilities
for different nodes in the network. At the beginning, each node can only record delivery
probabilities for one-hop (directly encountered) neighbours. If a pair of nodes do not en-
counter each other in a while, delivery probabilities in both nodes decrease as time elapses.
Later, the property of transitivity helps to calculate delivery probabilities for indirectly en-
countered nodes. The observation is that if node A frequently encounters node B, and node
B frequently encounters node C, it implies that node B could be a good relay for messages
destined to node A from node C, and vice versa. Nodes exchange summary vectors con-
taining delivery probabilities and update their summary vectors accordingly. Last, if a node
has a message, it only delivers it to the nodes that have a higher delivery probability to
the destination than the current holder. Experiments showed that PROPHET achieved a
good performance while consuming less network resources, i.e., number of transmissions,
comparing to epidemic routing. However, one problem is that PROPHET was evaluated
using an unrealistic random mobility model so that, statistically, encounter probabilities do
not vary with time. In addition, delivery probabilities that were cumulated as long as the
experiments ran could not capture changes of encounter patterns within sub-periods.

MaxProp is another history-based protocol that calculates the delivery likelihood of a
message, which is the probability of meeting other mobile nodes [16]. Similar to PROPHET,
each node collects encounter probabilities for one-hop neighbours and then shares this local
information with other nodes. Whenever there is a message, the source needs to compute
the path with the best delivery likelihood based on collected probabilities. The difference
between MaxProp and PROPHET is that MaxProp concentrates on local encounter prob-
abilities where the probabilities of all possible paths for a source-destination pair can be
computed in order to find the best one, while PROPHET finds end-to-end probabilities with-
out further computation. In addition, MaxProp used acks for a better storage management
where nodes can drop acked messages from their buffers. However, just like PROPHET,
delivery likelihoods are cumulated for the whole duration of experiments, where changes
of sub-periods could not be captured.

Both MaxProp and PROPHET exchange up to O(n) number of messages at every en-
counter, where 7 is the number of nodes in the network. The total number of this exchange
process in the network could be up to O(n?) times. To address the problem of massive

exchanges, Encounter-Based Routing protocol (EBR) was proposed based on the observa-



tion that nodes experiencing a large number of encounters are more likely to successfully
pass the message to the destination than the ones who have less encounters [98]. In EBR, a
metric called Encounter Value was introduced to measure a node’s past rate of encounters
within a certain window length as an exponentially weighted moving average. The higher
the Encounter Value is, the higher the probability to deliver a message is. A sender always
transmits a copy of the message to one-hop neighbours with a higher Encounter Value. In
this protocol, control overheads are saved by only comparing their Encounter Values. How-
ever, using Encounter Values regardless of the identities of encountered nodes is not enough
to guarantee a good performance. For example, if high Encounter Values within a set of
nodes are mainly contributed by encounters among themselves, messages destined to other
nodes could get stuck within this set of nodes and never get delivered.

PREP is another protocol that takes advantage of node mobility. It plans routing by
predicting availabilities of encounters between mobile nodes and proposes message prior-
itization to reduce the burden on storage and bandwidth [113]. In PREP, a metric called
average availability is attributed to every pair of nodes to measure the average fraction of
time that two nodes encountered in the past. This value is reset to zero if both nodes have
not encountered for a while. With a neighbour discovery algorithm, each node obtains the
duration of encounters to its one-hop neighbours in the past. Then, average availabilities are
calculated to determine the availabilities of those encounters in the future. Whenever there
is a change of average availability at a particular node to its one-hop neighbours, an update
is disseminated into the network using epidemic routing. Therefore, the source node uses
Dijkstra’s shortest path algorithm to find the best route in terms of average availability. To
conserve network resources, a priority schema is used to decide when to drop a message
and which message to send first. This schema in PREP allows effective usage of network
resources leading to a good performance on delivery ratio. However, this priority schema
depends strongly on a set of thresholds. How to choose proper values for them in different
applications has not been addressed by the authors in that paper.

Another protocol called Prediction was proposed to use historical contact information to
estimate the encounter probability between every pair of nodes in the network [119]. Pre-
diction protocol estimates the contact probability based on a metric called timely-contact
probability that is the contact frequency between two nodes. To calculate this probabil-
ity, the duration of each input trace is partitioned into sequential intervals with the same
duration. For each pair of directly encountered nodes, their timely-contact probabilities

measure the fraction of how many intervals actually contain at least one encounter between



them. Over time, these direct contact probabilities are shared with all nodes in the net-
work. Therefore, indirect contact probabilities can be derived from them. If a sender has
a message, it transmits the message to a set of encountered nodes whose timely-contact
probability to the destination is higher than a threshold. Note that this protocol replicates
messages during routing. Comparing to PROPHET and MaxProp that are forwarding-based
protocols, Prediction pushes replicas into the network, which is inefficient regarding net-
work resources. In addition, different applications could have different mobile behaviours.
Selecting a proper granularity for partitioning and choosing a proper threshold for replicat-
ing to achieve good performances are critical issues. How to do that is not addressed in that

work.

Encounter age-based protocols

Besides predicting encounter probabilities from past histories, other protocols aim at using
the age of last encounter to measure the reliability of encounters between nodes in the
future.

FRESH is a protocol that directs routing by picking the next hop that encountered the
destination earlier in the past [31]. Each node in the network maintains records of time
elapsed since the most recent encounter with all other nodes. When a sender has a message
for the destination, it searches for one-hop neighbours who encountered the destination
more recent than the sender as the next relay. Then newly added relay keeps searching for
the next relay who encountered the destination more recently. The same procedure repeats
until the destination is reached. The assumption behind this protocol is that the distance
travelled during an interval is positively correlated with the duration of this interval. For
example, nodes encountered few minutes ago are probably closer than nodes that were
encountered few hours ago. FRESH improves the usage of network resource without ex-
changing the global knowledge of networks. However, in heterogeneous networks, time
may not be positively correlated to distance. Nodes who recently met the destination may
not always be the ones who are closer to the destination. In addition, it is incorrect to as-
sume that all nodes within the network encounter with each other. Added to that, in the
scenarios that networks are partitioned into sub-regions with very little interaction among
them, messages destined to other regions may never get delivered.

MEED is a method that keeps track of the disconnection time between node pairs and
uses this information to make routing decisions [71]. In the network, each node records

disconnection times with its one-hop neighbours. After sharing this information with other



nodes, each node obtains the topology of entire network described as a graph, whose ver-
tices are nodes, and edges connect pairs of encountered nodes with weights describing the
estimated delays between two consecutive encounters. If a node has a message, it computes
the path with the minimum estimated expected delay and sends the message to the first relay
on this calculated path. A note here is that nodes may not have exactly the same graph at the
same time. A relay may find a better path in its own graph that has more recent information
than the sender. Therefore, nodes have to locally recompute the path for every received
message to find a next hop. In addition, frequently distributing topology updates may also
limit the performance of MEED.

Similarly to using contact history in MEED, another link-state protocol, proposed by
Su et al., uses the history of inter-contact times to measure the relationship between two
nodes [126]. First, each node maintains perceived states of the network referred as a link-
state graph. In the graph vertices represent nodes, and edges represent encounters between
pairs of nodes. A weight on an edge is modelled as an exponentially weighted moving
average that captures the changes of inter-contact times. Over time, nodes will update their
link-state graphs and share updated entries with other nodes. The idea for routing is to
find the path with the minimum weight (inter-contact time) on the graph. Just like MEED,
frequently updating link-state graphs imposes control overheads in the network.

The EASE protocol exploits node mobility based on the time and the location of its
last encounter with every other node in the network [46]. Because every node only needs
to maintain a database of direct encounter information, no communication overhead is in-
curred to the network. To be a good relay, a node must either have a more recent encounter
with the destination or physically closer to the destination than the current holder. Again,
EASE assumes every node meets the rest of the network, which is not necessarily true. An-
other problem is that mobility patterns and speeds could degrade the performance in terms
of route length because both the time and location of last encounter become less stable in
irregular moving patterns or fast moving destinations.

Predict and Relay is another protocol that studies mobility history, specially contacts [
Because mobile nodes move between landmarks, where associated nodes can directly con-
tact with others, according to their social schedules, Predict and Relay protocol addresses
routing by calculating transition probabilities between landmarks based on contact history
at a certain time. Therefore, inter-node contact probabilities can be derived. After shar-
ing transition probabilities with the rest of the network, every node can calculate its own

probability to meet the destination. Messages are forwarded using a greedy approach to



select next hops with the highest encounter probability with the destination. The experi-
ments showed that this protocol had good performance in terms of delivery delay and ratio.
However, its performance will degrade as the number of landmarks increases in the net-
work. Increasing the number of landmarks increases the communication overhead because
each node needs to exchange up to O(m?) transition probabilities where m is the number
of landmarks in the network. In some scenarios, this is even worse than other probabilistic
protocols such as PROPHET and MaxProp with only O(n) updates, where n is the number

of nodes.

1.2.3 Social-aware routing

The performance of mobility-aware routing protocols depends highly on tuning parameters
and/or global sharing of local collected probabilities, which may lead to significant con-
sumption of energy, processing capability and bandwidth. As an alternative, social-aware
routing was proposed to use social relationships between nodes to make forwarding de-
cisions. This is because social relationships are thought to be less volatile than mobility
behaviours [60]. In social-aware routing, connectivity is modelled using a graph called a
social network. Each node is represented with a vertex, and an edge is assigned between
two vertices if they have a social relationship. The idea of communities is also introduced
in the network where people from the same community have stronger social relationships
compared to people from different communities.

LABEL is one of the first methods that exploited social relationships, especially com-
munities for routing in disconnected networks [59]. In that work, the authors distributed
iMotes to participants at INFOCOM where iMotes used Bluetooth to collect encounter in-
formation. Before handing out the mobile devices, four groups/communities of people were
carefully selected by labelling them with a group name. The inter-contact and intra-contact
distributions from collected contacts showed that people from the same group encountered
each other more frequently than people who are friends from different communities. In ad-
dition, friends from different communities encountered more frequently than people that are
neither friends nor from the the same community. In their LABEL strategy, group labelling
technique allows to forward messages directly to the destination or to a relay who also be-
longs to the same community as the destination. Experiments showed that forwarding based
on communities improved the delivery ratio and delivery cost in terms of total number of
transmissions. Additionally, forwarding between friends from different communities can

slightly improve the delivery ratio. However, the LABEL strategy depends on relays from



the same group as the destination. The delivery will fail if the sender never encounters any
member from the same group as the destination.

As we have seen in LABEL, sources forward messages to any member from the same
community as the destination if both source and destination do not meet directly. However,
in some scenarios, the source may never meet any member from the same group as the
destination. Even if the source does, relays that the source chooses may never meet the
destination within their own group. In those cases, choosing popular nodes within com-
munities and important nodes that connect different communities becomes critical. SimBet
proposed methods to identify both types of nodes within the context of social networks by
measuring nodes’ betweenness centrality and social similarity [27]. Betweenness centrality
captures how important a node is for connecting two other nodes from different commu-
nities who never encounter. Social similarity predicts the probability of future encounters
between two nodes. Both metrics are used to calculate the SimBet utility function where the
effects of the two metrics can be adjusted by tunable parameters in different applications.
When two nodes meet each other, they exchange their contact lists along with their similar-
ity and betweenness values. As a result, both nodes can update their metrics accordingly.
Forwarding decisions are based on local calculations to find next hops with stronger social
characteristics, i.e., similarity and betweenness. The results showed that this protocol had
good performance regarding delivery ratio and extremely low delivery cost in terms of total
number of transmissions. However, there is one big issue about SimBet. When two nodes
encounter, a lot of processes need to be performed such as sharing contact histories, com-
puting utility values (both betweenness and similarity) and exchanging a set of messages.
Its performance can easily degrade in scenarios where encounters have short durations.

Unlike SimBet, BubbleRap combines the knowledge of community structures and ranks
of nodes to make forwarding decisions [60]. Instead of manually labelling each group as in
their previous work (LABEL) the authors first classified nodes into communities based on
their social characteristics such as number of contacts and identities of encountered nodes.
Then, classified communities and local/global rankings of nodes derived from betweenness
centrality are applied to forward messages. Here, global ranking describes the popularity of
a node in the entire network whereas local ranking captures the popularity of a node within
its own community. Because a node may belong to multiple communities, it can have mul-
tiple local rankings. The forwarding strategy of BubbleRap is relatively simple. If a node
has a message, it first checks whether the destination is within the same community. If it

is, the message is bubbled up to relays who have higher local rankings until one of relay
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encounters with the destination. If the destination is from another community, the message
greedily bubbles up to relays with higher global rankings until a relay from the same com-
munity as the destination is found. Then, the same procedure in the first case is applied.
By detecting communities and forwarding with social rankings, this protocol achieved a
good performance regarding high delivery ratio and fewer transmissions. However, mes-
sages originated at nodes with low ranking could cause flooding because of exhaustively
searching for better relays from the bottom to the top of social ranks. Such a scenario will
affect the performance of this protocol.

There are also other protocols that take advantage of social relationships such as Social-
Cast [26] and PeopleRank [97], which all use centralities and utility functions to find relays
with better social characteristics.

One criticism of using social networks for routing is that the delay is unknown because
we do not know when an encounter is going to take place in the social network [130]. An-
other problem is that social networks grow in complexity over time [54]. A social network
is built by aggregating encounter information. After a long time period, the social network
will become very complex, sometimes even becoming a complete graph. This affects the
utility function, and degrades the performance of routing. In addition, it has been shown
that a small number of good nodes, i.e., with high centrality, carry a significant amount
of the traffic in the network [110]. The performance of these protocols will significantly

degrade if any good node fails.

1.2.4 Periodicity-aware routing

Neither mobility-aware routing nor social-aware routing capture the regularity and period-
icity of node mobility. For example, even if two nodes are not highly socially connected
or have a low encounter probability in the past, they might still have a promising encounter
during a certain time every week. In this section, we discuss the most relevant routing
protocols that make forwarding decisions using periodic encounters.

In 2004, an algorithm was proposed for routing in disconnected networks based on an
assumption that every node has full knowledge of future encounters in the network [49].
Even though this assumption has nothing to do with regular and periodic nodal encounters,
it provided foresight to exploit deterministic encounter within node mobility. Because every
node is assumed to have the global knowledge of all encounters during all intervals, a tree
rooted at the source can be built for forwarding, where each level of the tree represents

encounters at a certain interval, &, that is k intervals away from the root. If nodes do not have
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global knowledge of encounters, they can exchange local encounter knowledge with their
one-hop neighbours. The same tree built on top of collected information is used to make
forwarding decisions. In a distributed approach, because nodes within the network do not
have exactly the same knowledge about the network, relays with a better path can make local
decisions to reroute the message through a better path. Unfortunately, no experiment was
conducted to demonstrate the performance of this work. The problem of this approach is
that routes are computed with time-varying encounters. If nodes do not move as predicted,
the path will be broken accordingly. This is the reason why we need to find those promising
encounters within node mobility. Another problem of this work is the tree itself. If nodes
have global information, the constructed tree could be very big because it has to record all
encounters in the network.

In another work, the authors introduced the idea of contacting sequence that describes
a sequential set of repetitive encounters within a time window [68]. It was assumed that
repetitive encounters are given and repeat themselves with a given period in the future.
Based on this assumption, a contact graph was built on top of repetitive patterns. Within
this contact graph, each vertex represents a node whereas an edge links two nodes with a
weight to describe the contact time within the period. Because in real life scenarios contacts
may not repeat at exactly the same time, a probability of the occurrence of a contact is
introduced as a part of the weight on an edge. Therefore, the weight on an edge is a tuple
with two parameters, the contact time and probability of occurrence. Within the graph, the
path to deliver a message is a sequence of contacts that occur in an increasing order of
time based on the weight on edges. At the beginning, a centralized algorithm is required
to calculate the best probability to access each edge from a specific source by examining
them in the right order of time. To find the best path (highest delivery probability) for
a given source-destination pair, another algorithm is used in a reverse fashion from the
destination by greedily adding the edge with the highest probability step by step. Finally,
a protocol makes forwarding decisions by only transmitting the message to the nodes that
are on the pre-calculated path. Experimental results showed it can achieve high delivery
ratio with no message replication. However, the problem is that a 2-tuple weight on an
edge makes computation extremely complicated. This is the reason that two algorithms
are used to find an end-to-end path. In that paper, a centralized algorithm was used to
sort all edges according to their contact times globally to calculate access probabilities of
using an edge for a specific source for routing. It is impractical to apply that approach in

distributed environment because getting such global information in real-time is extremely
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inefficient. The worse problem is that algorithms in this protocol have to recompute critical
information, i.e., access probabilities, for every source because the algorithm is source-
oriented.

One problem of existing solutions in periodicity-aware routing is that they all assumed
that repetitive encounter patterns are given. However, as far as we know, no previous
method is able to extract periodic patterns that can be used for routing. One objective

of our studies is to fill this gap.

1.3 Periodic behaviours within mobile data

One interesting characteristic that has emerged from node mobility is that mobile nodes
often have periodic behaviours [44, 68, ]. In many domains, mobile nodes have rela-
tively predictable and periodic patterns of movement. They tend to have a repeated, stable
sequence of activities because of their social and/or controlled behaviours. For example,
mobile robots in an automated factory have relatively invariant mobility traces because
they have predefined schedules and areas to work, and people use relatively stable routes
daily to commute to and from work. One outcome from these repeated activities is that each
mobile node may encounter a set of other nodes periodically, for example at approximately
the same time every day. We call these sequences of periodic encounters encounter pat-
terns. Compared to previous works that predict next relays for routing, periodic encounters
reveal useful information within node mobility where the time and node pairs of encounters
are much more stable. Hence, if we can obtain such periodic encounter patterns, we can
use this information to find routes to forward network packets in a more reliable way. Re-
calling the example in Figure 1.1, if all nodes have full knowledge of periodic encounters
during all three intervals, then indirect delivery has less delivery delay, and direct delivery
saves energy. Therefore, different performance metrics can be evaluated in the domain of
periodicity.

Mobile devices are usually carried by animals, human beings or equipment that is pro-
grammed or operated by humans. These devices may exhibit regular and periodic move-
ment patterns reflecting predefined schedules or social activities. Many applications such
as vehicular networks (i.e., public transportation network) [16], sensor networks for wild
life monitoring [143] and PeopleNet [96] rely on opportunistic encounters among mobile
nodes. If promising periodic encounters exist within node mobility, we should use them

for routing instead of wasting network resources because of inaccurate predications. We
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believe the periodicity within node mobility is more promising to make forwarding deci-
sions because both the time of periodic encounters and periods of periodic behaviours fill
the gap within previous works. In addition, all periodic nodes are equally treated where a
fair routing can be managed whereas traffic in mobility-aware and social-aware routings is

heavily loaded on hot nodes.

1.3.1 Applications

Many applications of DTMNSs can be extended to our problem because underlying mobile
nodes may exhibit periodic behaviours. In this section, we discuss some of the applications

that are closely related to our studies in this thesis.

Vehicular ad-hoc networks

One of the well-known DTMNs is a VANET where vehicles are mobile nodes in the net-
work. With on-board sensors and computers, it aims to provide both vehicle-to-vehicle
and vehicle-to-infrastructure communications. More specifically, for example, vehicle-to-
vehicle and vehicle-to-infrastructure communications help enhance highway safety with
cooperative collision avoidance [13], commercial advertising dissemination [81], entertain-
ment services such as on-line gaming [103] and health data collection [99]. In those appli-
cations, vehicles as mobile nodes in the network are mediums reflecting drivers’ movement
patterns. They do not move randomly but follow the driver’s intention to move around. One
of their patterns is periodic movement patterns.

Another typical example with periodic patterns of movement is a public transportation
system. A testbed called UMass DieselNet at the University of Massachusetts has been
deployed [120]. In this testbed, buses follow the same route periodically. The testbed con-
sists of 35 buses each with an on-board wireless device that allows information to be shared
and exchanged between buses. In addition, there is a commercialized product called First
Mile Solution [1], which implements the studies of DakNet [104]. Its objective is to pro-
vide internet services to remote villages with a relatively lower cost, and such systems have
already been deployed in India and Cambodia. Instead of building underlying infrastruc-
ture, the system is composed of stationary kiosks and mobile access points (MAPs) that
can be buses running between remote kiosks and internet gateways, and data is transmitted
in a store-and-forward fashion. In DakNet, the system does not provide real-time com-
munications where only asynchronous services such as email and voice mail are provided.

Because MAPs are usually equipped on vehicles, they have relatively high capacities in
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terms of buffer space. As a result, it can provide a relatively high throughput compared
to traditional telephone modem. In the setting of DakNet, vehicles running between cities
and remote villages have predefined routes and schedules. Because data transmission solely
depends on MAPs with periodic movement patterns, communications in such environments

could significantly be benefited by techniques presented in this thesis.

Wireless ad-hoc networks

One example of wireless ad-hoc networks is wireless sensor networks. Wireless sensor net-
works (WSNs) consists of spatially distributed mobile or stationary sensor nodes to monitor
physical or environmental conditions. Moreover, wireless sensors cooperate to pass data
through network to base stations. In WSNs, a key constraint for sensors is energy. Because
each sensor has limited battery capacity [7], different energy management frameworks have
been introduced. One of the strategies is to schedule sensor’s active time slots [8]. While
designing wake/sleep scheduling algorithms in WSNs, we can incorporate periodicity in
the design of scheduling by adopting the store-and-forward in DTNs. As a result, instead of
having a connected sensor network at all the time, sensor networks could be disconnected.
If data acquisition consumes significantly less energy than transmission, queries can be dis-
seminated and collected by scheduling a set of sequential connected sensors between data
sources and sinks.

Other than the famous ZebraNet [143], WSNs also have great impacts on measuring
and monitoring dynamic changes in agriculture [133]. Wireless technologies have been
introduced into agriculture to improve productivity and provide long term monitoring to
prevent harmful events. For example, several cattle monitoring systems have been proposed
in recent years with coverages from local farms to national wide control [111, , ,

]. Most studies just simply adopted routing protocols from MANET without considering
the constraint of energy consumption in the network. Because the monitored animals often
roam around separately in physical clusters that are disconnected from a central backbone
infrastructure, naively adopting routing protocols from MANET could reduce the life-time
of sensors, and it is very expensive and difficult to replace sensors if there are hundreds
or thousands of animals in the system. It has shown that animals have relatively invariable
mobility patterns because of their habits [15]. For example, cattle have predefined schedules
for feeding, milking, exercising and so on, and wide-life such as zebras know where to
feed and where to stay during the night. Understanding their movement patterns, specially

periodic patterns, could help set up proper networks and design efficient routing protocols
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to disseminate and collect data from those mobile nodes.

In addition, other projects such as the European Union’s Haggle Project [2], SARAH
project [5] and ResiliNets [61] have also been proposed to utilize opportunistic communica-
tions between mobile nodes. We believe exploiting periodic behaviours within mobile data

could help to design delay tolerant distributed services, resilient and survivable networks.

In summary, we discussed two major applications where periodic movement patterns can
be applied. In those applications, mobile nodes exhibit strong periodic movement pat-
terns. However, a total lack of knowledge about underlying periodicity limits the usage
of stable periodic encounters where existing solutions simply adopt routing protocols from
MANETs and DTNs that target predicting future encounters. In addition, some applica-
tions in MANETSs and DTMNSs, and VANETS particularly, need the assistance from station-
ary base-stations or roadside-units to enhance connectivity in the network. Sophisticated
analyses aimed at different metrics are conducted for optimal deployment without consid-
ering the diversity in the network, so that if a critical base-station or roadside-unit failed,
connectivity in the network could be significantly degraded.

Our studies are not limited by those applications. Utilizing periodic patterns is suitable
to any application with the involvement of people, animal and schedules. Because mobile
nodes must exhibit some types of movement patterns, as long as there is periodicity within

mobile data, our studies in this thesis could benefit communication services.

1.3.2 Opportunities and challenges in periodicity detection and utilization

As we have discussed in Section 1.2, both mobility-aware and social-aware routing suf-
fer from unstable predicted encounters with lack of routing information such as encounter
times. Protocols using probabilities or social relationships alone are not enough to guaran-
tee good performance. For example, even if two nodes are not highly socially connected
or have a low encounter probability in the past, they might still have a promising encounter
during a certain periodic time window. As an alternative solution, we propose to use regular
and periodic mobile behaviours from node mobility to address communications in DTMNs.
We believe the periodicity within node mobility is promising to make forwarding decisions
because both the time and the period length of periodic behaviours fill the gap within pre-
vious works. In addition, all periodic nodes are treated equally where a fair routing can be

managed.
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Fundamental challenges

There are two fundamental challenges in order to take advantage of periodic patterns of
node movements. First, we need to detect and extract periodic patterns from node mobility.

Secondly, we need to model and exploit the obtained periodic behaviour.

e Detecting and extracting periodic behaviours Studies have been done to under-
stand characteristics of different network environments and user groups, but it is dif-
ficult to generalize these findings to other applications. For instance, in [74], the
periodic property of node mobility was introduced to reveal periods within node mo-
bility and periods of association patterns from access points. There are also other
studies detecting periodicity with different statistics. For example, the re-appearance
probabilities of nodes to specific locations [56, 58, ] and the probabilities of users
returning to specific locations after a certain amount of time [44]. By examining
repetitive patterns of users and encounters, previous work has observed periodic be-
haviour in real mobility traces. However, finding routes in mobile networks needs
more than that. We need to find pairs of objects that encounter each other periodi-
cally. In addition, besides encounters between two objects, we need to know which
encounters are periodic, and which ones are not (since they may not be reliably used).
Finally, there are two important pieces of information from a periodic encounter pat-
tern: the period length and the promising encounter phase(s). The length defines
the duration of the pattern. The phase indicates the time(s) within the period where
periodic encounters occur. Because a pair of nodes may have several events where
their encounters for each event are periodic, we should be able to exploit them all.
For example, we may observe a frequent weekly encounter on Mondays and a less
frequent bi-weekly encounter on Thursdays. If we have to choose only one of these,

we may degrade routing performance for some source-destination pairs.

e Modelling periodicity Once we obtain the periodic patterns, the next step is to de-
fine a formal model that is flexible enough to reflect different assumptions and goals.
In conventional logical topologies graphs are usually applied to model network con-
nectivities at a particular time. Within a graph, an edge between two vertices means
that two mobile objects can directly communicate with each other, i.e., an encounter
occurs. If objects in the networks are mobile, the graph has to change whenever there
is a change in the physical topology. As we have discussed before, periodic patterns

contain both the period length and the periodic encounter phase(s). Within a periodic
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pattern there may be multiple periodic encounters at different times. Integrating en-
counters from multiple time instances is impractical because we will lose track of the
phases of periodic encounters. In addition, representing repetitive encounters in the

model becomes even more challenging.

¢ Relay node deployment In DTMNs where the network is partitioned into completely
disconnected sub-networks, deploying stationary relay nodes is one of the approaches
that enhance the connectivity by increasing encounter opportunities. In previous so-
lutions, the problem of deployment is treated as different optimization problems such
as the smallest connected dominating set. As a result, to satisfy different measure-
ment metrics such as minimizing the number of relays in the network, there may be
only one path between most of the node pairs. Because mobile networks can be very
dynamic, if a mobile node or a relay that is used to join disconnected sub-networks
fails, the whole network would fall apart and become disconnected again. Therefore,
increasing route diversity, i.e., the existence of multiple disjoint paths in the network,
is also very important with respect to relay deployment. How to properly model route
diversity in terms of mobile node failure, relay node failure and link failure is very

challenging.

Open challenges

As extensions to the fundamental problems, exploiting regularity and periodicity within
node mobility opens up new research frontiers in various aspects such as (1) designing
novel routing techniques that adopt periodic encounters, (2) disseminating and collecting
queries in delay tolerant environments, (3) integrating mobile nodes from different network

types and (4) preserving security and privacy in DTMN:ss.

Routing protocols In our proposal of modelling periodic patterns a centralized graph
model is built by integrating all periodic encounter patterns. Therefore, optimal al-
gorithms such as Dijkstra’s can be applied to find paths with the minimum weight
for end-to-end communications. In addition, the minimum weighted Steiner Tree
can be applied for mutlicast routing with the minimum cost. Theoretically, commu-
nication can be routed through those pre-calculated routes. However, in distributed
environments each mobile node has to discover periodic encounters online, and can

only obtain local information about its one-hop neighbours. Routing protocols with
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distributed solutions are required with cost-efficient methods to utilize local informa-
tion. In the discussion of mobility-aware protocols, there are several problems about
exchanging and updating local information. For example, updating local routing in-
formation implies control overhead, which wastes network bandwidth. In addition,
the inconsistency of local information is also a problem. For example, because of
diverse encounter times, the global sharing of local information is not consistently
distributed through the network. As a result, the optimal route to a destination com-
puted from one node may be different from the one from other nodes. In this situation,
the global optimization is not always guaranteed. How to balance or minimize those
constraints within the routing protocol becomes very challenging.

In addition to designing protocols with distributed solutions, protocols should also
be robust with respect to random and infrequent interruptions of periodic encounters.
The performance of routing under the circumstances of losing stable periodic part-
ners highly depends on the sensitivity of detection techniques to discover abnormal
behaviours. Slow reaction of routing protocols with respect to periodicity changes
may lead to poor performance with long delays and high costs of network resources.
Therefore, designing simple and robust periodicity detection techniques is also criti-

cal in the design of routing protocols.

Querying Querying is also an interesting problem in DTMNs. Of course, query
dissemination and result collection rely on different routing protocols depending on
query types. However, simply applying routing protocols for query processing in
DTMNs may not perform very well. In mobile ad-hoc networks where networks are
always assumed to be connected, queries are disseminated by forming a routing tree
originated at the source node called root [42]. A query is distributed along the tree
from the source to destinations that are leaf nodes in the tree. Once results are ready,
they are sent back to the source in a bottom-up fashion where query aggregating or
filtering such as finding the MAX or MIN value is performed by intermediate nodes
on the tree. Selecting a proper routing tree has a non-trivial impact on effectiveness
and efficiency of query dissemination and result collection. Unfortunately, such strat-
egy does not work in DTMNs because of 1) lack of connectivity in the network and
2) time-varying encounters. Lack of connectivity in DTMNs means a routing tree
may not exist in the network. Even though a routing tree may be found for query
distribution, this tree may disappear or its topology may change over time. If the

topology for routing tree has changed for result collection, pre-scheduled aggregat-
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ing or filtering at intermediate nodes in the old tree will fail.

In the domain of periodic encounters in DTMNS, routing trees can be established on
top of periodic encounters. However, unlike sharing one tree for both dissemination
and collection, two trees may be required because of time-varying encounters. An en-
counter may not be there when a result needs to be sent back from a node to its parent
in the tree. Therefore, one tree is used to distribute queries to all destinations where
the second tree is used to collect results, where results are aggregated and filtered at

the intermediate nodes in the second tree.

Mobile nodes and networks integration In our studies, we have found that typi-
cally only a small portion of nodes exhibit strong periodic mobile behaviours. This
is because interruptions or unexpected events could affect periodic encounter series
so that their periodicities are too weak to be detected. Our studies so far only focus
on periodic nodes of entire node population. For aperiodic nodes, we lose the benefit
of encounters that can be used to compute routes for routing. In DTMNSs integrating
both periodic and aperiodic mobile objects is vital. In addition, there are various net-
work types co-existing in real life. For example, cellular networks, wireless local area
networks and networks based on Bluetooth encounters such as Pocket Switched Net-
works. Mobile objects from these networks could exhibit periodic behaviours, where
they should not be isolated from each other. Otherwise, mobile objects from dif-
ferent applications could suffer from system constraints where communications are
limited within separated networks. New frameworks should coordinate requirements
and cooperate mobile objects from diverse DTMNs environments where communica-
tions cross platforms (networks) can be benefited. However, they (each network type)
should not be treated in isolation. Rather, the possibility of cooperation between dif-
ferent networks should be explored. How to integrate mobiles objects from different
networks and routing among objects in large-scale networks as well as non-mobile

networks requires more investigation.

Security and Privacy Delay Tolerant Networks (DTNs) have been studied exten-
sively for almost a decade. However, not much research has been done to address
the security of data transmission and protect the privacy of mobile objects who are
willing to participate routing processes. Because DTMNs are just general scenarios
of DTNs, they also face all security issues that target DTNs. In particular, authentica-

tion cannot guarantee environments free of malicious nodes because it is difficult to
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only deliver private keys to non-malicious objects in mobile environments. Once ma-
licious objects are inserted, messages such as queries and answers for queries could
be captured on the fly or even be replaced by malicious code. How to guarantee
data integrity and protect node privacy and confidentiality become even bigger prob-
lems. In the context of routing with periodic patterns, inserting a malicious node into
networks is relatively easy. Without authentication, if the movement of malicious ob-
jects is pre-planned to be periodic, or even if stationary malicious objects are placed
in the network, non-malicious objects encountering them regularly could consider
malicious objects as stable periodic one-hop neighbours. Therefore, how to prevent
intruders, protect privacy and avoid attacks are important issues to preserve secure

and reliable services while still benefiting from periodicity in DTMNSs.

1.4 Thesis contributions

Utilizing encounters within mobile networks from different perspectives can improve the
performance of routing protocols in DTMNs. Instead of predicting future encounters, we
concentrate on exploiting stable periodic encounter behaviours within mobile data. In this
thesis, we describe a series of studies: (1) finding and extracting periodic encounter patterns
from mobile data, (2) modelling periodic encounter patterns as a graph where routing prob-
lems can be addressed as optimization problems and (3) deploying stationary relay nodes in
DTMNs to connect disconnected subnetworks. In summary, this thesis makes the following

contributions.

Finding periodic encounter patterns within mobile data

Our study is the first research to propose a method for extracting the specific encounter
patterns (both period and phase) for pairs of nodes that meet each other periodically. Other
work has stopped short of this, only proposing methods for detecting node pairs that have
periodic encounters. We conduct experiments on different network types including Blue-
tooth, cellular and wireless local area networks whereas previous studies only concentrated
on wireless local area networks. We also investigate the persistence of detected periodic
behaviours, i.e., how long they reliably project themselves in the future. Furthermore, the
small-world structure of networks formed by periodic encounters is examined. Our results
show that the majority of networks have a small-world structure where messages between

any pair of nodes can be delivered through a very small number of hops in the network.
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A graph model for periodic encounter patterns

To take advantage of periodic encounter behaviours, we introduce a graph model which in-
tegrates all encounter patterns. We show that both the minimum delay and minimum energy
consumption problems can be modelled as optimization problems. The only change be-
tween the graphs used to solve either problem is in the assignment of weights for the edges.
The minimum delay problem can be modelled as the shortest path tree problem whereas the
minimum energy consumption problem can be modelled as the minimum weighted Steiner
Tree problem. With a modification, we can use Dijkstra’s shortest path algorithm [29] to
find an optimal solution for the minimum delay problem. However, because the minimum
weighted Steiner Tree problem is NP-hard, we propose a polynomial time k-approximation
algorithm, where £ is the number of destinations, to find a multicast tree for routing. Exper-
imental results, using both real and synthetic datasets, show that our proposed approaches
always find better routes with regard to delivery delay and energy cost compared to other

state-of-art protocols in DTNs [34].

Deploying relay nodes to connect isolated subnetworks

Our studies showed that even mobile nodes with periodic behaviours can still be partitioned
into disconnected components. To address this disconnection problem, we propose deploy-
ing relay nodes in the network to connect disconnected components. In this thesis, we first
present an extension of our proposed graph model that can capture encounters in different
mobility environments. We also show that relay node deployment problem can be modelled
as various k-connectivity problems with the objective to build fault-tolerant networks: the
k-edge connectivity problem models the encounter failure problem; the k-vertex connec-
tivity problem captures the node failure problem; and the k-element connectivity problems
examines the relay node failure problem. In our study, we concentrate on the k-element
connectivity problem where we want to minimize the number of relay nodes in the network
such that the network is k-element connected. Finally, we present an integer programming
formulation to solve the problem. In addition, three polynomial time heuristic algorithms
are introduced to find solutions to k-element connectivity. Our simulation results show
significant improvement in network performance regarding the delivery ratio and delivery

delay by forming k-element connected networks.

22



1.5 Thesis organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce our methodol-
ogy to detect and extract periodic behaviours from mobile data. To characterize the per-
formance, we examine our method against both synthetic data and real-world traces. In
addition, we use real-world traces to explore periodic encounter behaviours and their prop-
erties. Chapter 3 presents our graph models regarding both unicast and multicast routing.
Mathematical optimization and optimal algorithms that capture the semantics of the dis-
covered encounter patterns are also discussed. Experiments against both synthetic data and
real-world traces are conducted to examine the performance of our algorithms in the graph
models with respect to different problems. In Chapter 4, we discuss the relay node deploy-
ment problem in order to obtain k-element connected networks. To address the problem, we
first present an integer programming formulation of the problem. In addition, three polyno-
mial time heuristic algorithms are used to solve the problem. Experiments and simulations
are conducted to demonstrate the performance of our heuristic algorithms and deployment
solutions. Finally, we conclude this thesis in Chapter 5 with a discussion of future research

directions.
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Chapter 2

Finding periodic encounter patterns
within mobile data

2.1 Introduction

Mobile nodes have been observed to exhibit periodic behaviours [44, 68, 95]. They tend
to have a relatively stable sequence of activities because of their social or controlled be-
haviours. For example, people often use the same routes daily to commute to and from
work. Farm animals and animals in the wild also exhibit predictable mobility behaviours in
terms of paths followed, places they rest, feed, etc. One result of these repeated activities is
that each mobile node may encounter one or more other nodes periodically. If we can detect
and extract these periodic encounters, we can know when and which pairs of nodes are go-
ing to encounter each other. Therefore, periodic encounters can be used to find and schedule
routes for communication. In order to utilize periodic encounter patterns, we first need to
detect and extract them from node mobility. In this chapter we propose a methodology to
find periodic behaviour within real mobility traces including MIT [32], USC [57], Dart-
mouth [76] and Nokia-MDC [80] traces and examine connectivities among mobile nodes

with periodic behaviour. Our studies in this chapter have the following contributions:

1. We propose a method for extracting the specific encounter patterns (both period and
phase) for pairs of nodes that meet each other periodically. Previous solutions have
stopped short of this, only proposing methods for detecting node pairs that have pe-

riodic encounters.

2. We conduct experiments on different network types including Bluetooth, cellular and
wireless local area networks whereas previous studies only concentrated on wireless

local area networks.
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3. We also investigate the persistence of detected periodic behaviours, i.e., how long
they reliably project themselves in the future, where similar work has never been

presented before.

4. Furthermore, we examine the small-world structure of networks formed by mobile

nodes with periodic encounter behaviours.

The remainder of this chapter is organized as follows. An overview of existing routing
protocols in DTN is discussed in Section 2.2. In Section 2.3, we introduce our method
to detect and extract periodic behaviours from traces. Section 2.4 presents two sets of
experiments that use synthetic traces and real mobility traces, respectively. Finally, future

work and a summary are given in Section 2.6 and Section 2.7.

2.2 Periodicity detection

In previous studies, analyses of human social network connectivity have been conducted
to demonstrate delivery between different human communities using their social relation-
ships [14, 27, 52, 59, 60]. However, routing with a social network does not offer control
over the time delay of delivery [130]. We know that people will encounter each other if they
are socially connected. However, we do not know when encounters will take place. There-
fore, mobility traces have also been studied to understand user mobility. Many researchers
have studied movement patterns. With respect to inter-contact times and reachability of
nodes, it has been shown that mobility and pair-wise encounters can benefit communica-
tions [20, 83, , ]. With respect to understanding periodicity within node mobility,
several authors recently have reported experiments to detect periodic behaviours [56, 95].

One study looks at the association of wireless devices with wireless access points
(APs) [56]. Device associations were captured every minute in a real network. These
associations were used to calculate a location similarity index, which is the percentage of
observations for which a given device is associated with the same AP. The network simi-
larity index was then calculated as the average of the location similarity index values for
all devices for a given time lag between successive observations. High values of the net-
work similarity index were observed close to a lag of 1 day. This indicates that nodes have
daily periodic behaviours. In addition, the second highest index was observed at a lag of
approximately 7 days. This suggests a weekly periodic behaviour.

Another study reports a spectral analysis of mobility traces to quantify the regularity

and periodicity of nodal encounters [95]. Real user traces were converted into time series
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of nodal encounters. Each trace was split up into consecutive intervals based on a given
granularity (e.g., 1 hour or 1 day). A binary time series was then created for each unique
pair of nodes. The length of each series equals the number of intervals in the trace at the
given granularity. During any interval, if there was an encounter between a pair of nodes, a
value of 1 was recorded. Otherwise, a 0 was recorded. The auto-correlation function was
then calculated to find periodic encounters at each lag [22]. Then, the discrete Fast Fourier
Transform was applied to the auto-correlation function to convert it from time domain to
frequency domain. Analysis in the frequency domain was quite elementary, and consisted
of looking for the frequency component with the largest amplitude. However, as the authors
stated, the results from using the Discrete Fourier Transform (DFT) include an artifact that
affects the accuracy of period detection. For example, the most significant period returned
from DFT could be 7 days and 10 hours whereas the true underlying periodicity is 7 days.
In our method, we examine the correlations between encounters at different times. If there
is an underlying periodic encounter behaviour within the time series, our method guarantees
an integer period instead of a fractional result.

In addition to spectral analysis, mining periodic events is a well-known problem in
data mining. Previous studies concentrated on finding “exact periodicity” and “partial
periodicity” in transactions with the characteristic that events are perfectly periodically
aligned [18, 48, 89, , ]. However, such a characteristic does not hold for real-user
mobility traces. In human routines, an event may occur on a regular basis; however, it is un-
likely to always occur at exactly the same time. To discover periodicity in human routines,
a new method was proposed to find the minimum routine period of events that have some
periodicity but do not always occur at the exactly the same time [10]. In that paper, given
sequences of events with the same type plus their occurrence times, the authors proposed
a method with two steps: (1) first, an algorithm is used to find a set of candidate period
lengths, and (2) second, given a set of candidate period lengths returned by the first step,
another algorithm using a sliding window is proposed to find the minimum period length of
the routine in the input sequence, if there is one. In summary, the method is based on the
use of a sliding window. Instead of examining every period length that is less than the input
sequence length, the authors used pruning to filter out the period lengths that are not valid
based on user-specified parameters. For a candidate period / that has been found, a sliding
window is used to examine each consecutive interval with length / in the original sequence
for aligned routines. A sequence has an aligned routing with period / if and only if the

number of adjacent intervals containing exactly one occurrence of the input event satisfies
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the user-specified constrains. Because the method proposed in [10] is based on a sliding
window, it depends on finding adjacent intervals containing exactly one occurrence of an
event. Noise such as extra events within those adjacent intervals affect the performance
of proposed method. As a result, some event sequences with periodic behaviour will be
overlooked. In contrast, our objective is to reliably find underlying periodicity that may be
buried under noise.

From previous studies, we learned that mobile nodes with regular encounters can be
identified with sliding windows, autocorrelation and spectral analysis. However, finding a
route in a mobile network needs more than that. We can find pairs of nodes that encounter
each other periodically. Just as in a social network, messages can be routed via such pairs of
nodes. However, we may lose control over delivery delay [130] without knowledge of when
the encounters will take place. In addition, among encounters between two nodes, we need
to know which encounter is a periodic encounter, and which encounter is just an occasional
or even random encounter. A route will likely fail if an occasional or random encounter is
selected. Also, in previous work, a pair of nodes can only have encounters of one period.
For example, they are allowed to have either a daily encounter, or a weekly encounter — but
not both. If there are multiple encounter events between a pair of nodes, we should be able
to exploit them all. For example, we may observe a frequent weekly encounter on Mondays
and a less frequent bi-weekly encounter on Thursdays. If we have to choose only one of
these, we may degrade routing performance for some source-destination pairs.

In traces with periodic encounter behaviours, encounters occur on a regular basis; how-
ever, they may not be perfectly periodic. To address this problem, we use granularity to
wrap encounters within consecutive intervals whose length equals the granularity. This
serves the same purpose as the “envelope” introduced in [10]. The challenge in our stud-
ies is to differentiate periodic encounters from random/occasional encounters. In addition,
missing periodic encounters are another challenge. If a trace is perfectly periodic, methods
using sliding windows or the Fast Fourier Transform are capable of detecting underlying
periodicity. However, noise and missing encounters can interfere with the Fast Fourier
Transform, leading to incorrect results. With sliding windows, noise encounters affect the
detected intervals where some of them may contain multiple occurrences of the same event.
As aresult, those intervals are not valid, and some traces with periodic encounter behaviours
will be overlooked.

In our work, in addition to detecting node pairs with periodic encounters, we propose

a method to extract their pattern(s) of encounters. From a periodic pattern, two important
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pieces of information can be found: (1) period length and (2) promising encounter phases.
For example, if a pair of nodes exhibits a weekly encounter pattern, our method can iden-
tify the weekdays that encounter takes place, e.g., Monday and Thursday. It is possible
that a trace contains multiple periodic encounter events between two nodes. Other work
has stopped short of this, only detecting one period. Our method finds the least-common
multiple at which encounters occur. For example, if encounters occur every two days and
every five days, our method would highlight an encounter pattern every ten days. The re-
sulting 10-day pattern will include both 2-day and 5-day patterns because both patterns

synchronize every 10 days.

2.3 Proposed methodology

In this section, we introduce the methodology used to find periodic patterns. First, we define
the terminology and model mobility traces. Second, we present our method to analyze time

series and produce periodic encounter patterns.

Definition 1. An encounter is defined as a time-period where wireless devices are physically

close enough to communicate with each other.

A mobility trace has a duration that is the monitoring time of mobile movement. Given
a granularity, e.g., 1 hour or 1 day, this duration can be broken into consecutive intervals
whose duration is equal to the granularity. We create an encounter series for every unique
pair of nodes where the length of the series equals the number of intervals after partitioning
the trace at the chosen granularity. If a pair of nodes has an encounter during a specific

interval, we record a 1 in that interval, otherwise, a O is recorded.

Definition 2. Given a monitoring duration ¢ and a granularity T, an encounter series for

& unique pair of nodes (x,3) is defined as:
Sx7y = {d17d27d37 e 7dn} Where

o
=|— d
n L‘L'J an
g — 1 ifx and y encounter at interval j € [1,n]
771 0 otherwise

Obviously, an encounter series is just a binary time series. All series derived from the
same mobility trace have the same length because all nodes are being monitored over the

same period of time.
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(a) A perfect encounter series
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(b) An imperfect encounter series
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Figure 2.1: Encounter series

Fig. 2.1 presents two periodic encounter patterns. Assuming the granularity of obser-
vation is one day, each series models a total of 21 days. The first one is perfectly periodic,
while the second one is imperfect. The perfect encounter series shows two nodes encounter-
ing each other every Monday and Friday, assuming the series starts on a Monday, whereas
the imperfect encounter series also has periodic encounters on every Friday with noise and
missing periodic encounters.

The general process of our method is shown in Figure 2.2. In this section, we will focus
on the core component of the process. We use the auto-persistence function, defined below,
to study the encounter series for each pair of nodes in the mobility trace. We normalize
the auto-persistence values by applying a filter to remove noise from occasional encounters
and missed periodic encounters. By analysing the result, we decide whether the encounter
series for a particular pair has periodic encounter patterns. We repeat the same process
for each node pair. If an encounter series has periodic encounter behaviours, its encounter
pattern is extracted by pattern recognition. In this section, we introduce three sub-steps of
the proposed method: (1) applying auto-persistence function and, (2) pre-processing the

results and (3) recognizing periodic encounter patterns.

Input: Mobile Traces Process

1) Auto-persistence
|| A function

2) Pre-processing
A

Encounter Series Output: Encounter

L patterns
1 TTTT10 3) Recognition
O TT1T1T1
(O[O IoTerord]
OTTTTTTT1

Figure 2.2: General procedure of our proposed method

2.3.1 Auto-persistence function

Previous work used the auto-correlation function, which examines encounters as a function
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of time between them [95]. As other works have suggested [124, ], while the auto-
correlation function is good for real-valued series, it provides less statistical information for
binary time series.

The auto-persistence function is calculated from the conditional probabilities of the
different combinations of two values in a binary time series that are separated by a given
lag k, that is k positions away in encounter series. There are, of course, four combinations
of two binary values. We concentrate on the combination where both intervals k-lags away

from each other have encounters. We define the auto-persistence function (APF) as:

APF (k) = P(dyy = 1|d; = 1) Q2.1

where k is the lag between intervals.
As an empirical counterpart to the auto-persistence function, the auto-persistence graph

(APG) is defined as:

n—k—1
n Z_ I{dt+k:1,d[:1}
APG(k) = =1 2.2
e S Y ) 22

where n is the size of encounter series, k is the lag, and / is the binary indication function,

whose value equals 1 if and only if the condition is satisfied.

Similar to the auto-correlation function, as the lag increases, the correlation between the
current interval and the interval that is k lags ahead usually decreases. However, in testing
for an encounter of period k, an encounter in a given interval will be highly correlated with
other encounters k intervals away. As the lag, k, increases, patterns with longer periods are
being tested. Therefore, to compensate for the decreasing number of intervals at greater
lags within a series of fixed length, the scalar n/(n — k) is introduced in the APG.

In the APG, different encounter rates have different behaviours where the encounter

rate of an encounter series is defined in Definition 3.

Definition 3. The encounter rate is the fraction of intervals within the encounter series

containing encounters:
n .
=14,

Ry = "

As an example, the APGs for two perfect encounter series, each with a time series of
length 100, are shown in Figure 2.3. The first encounter series has an encounter pattern with
period 10, with 3 phases containing regular encounters. The second series has an encounter

pattern with the same period length of 10, but with 8 encounter phases. As a result, the first

encounter series has a lower encounter rate of 30% while the second has an encounter rate
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Figure 2.3: APG graphs for two series with encounters of period 10

of 80%. The figure shows that both series have periodic behaviours because of the wave
representation. Waves appear at multiples of the minimum lag of 10 in both examples. The
repetition in the APGs comes from the underlying periodicity in the encounter series. If an
encounter series has an encounter pattern with length m, then this encounter series also has

encounter patterns with length 2 m, 3 % m and so on. An encounter pattern is defined as:

Definition 4. Given an encounter series Sy, and a user-defined threshold T € [0,1], if an

encounter pattern exists in Sy, this encounter pattern is defined as:

P)Zly:m,l?z,'“ , Pm Where

m < L%J and

U iff £ i > T [ 2] for j € [1,m), i€ [0, 2] — 1]
0 otherwise

pj=

This encounter pattern repeats itself with a period of m within S, . There are two impor-
tant parts to an encounter pattern: the pattern period and the encounter phase(s). The period
defines the duration of the pattern. The phase indicates the interval(s) within the period
where periodic encounters occur. In the original encounter series, d; = 0 means there is no
encounter between two nodes during this interval, and d; = 1 means there is an encounter.
However, in the encounter pattern, a p; = 1 means there is a regular periodic encounter,
whose probability is above the user-defined threshold, and has been observed between the
two nodes at this phase in the pattern, while p; = 0 means the opposite. To successfully
identify a periodic encounter pattern, we need to observe at least two repetitions of the
encounter patterns at the corresponding time lags m and 2 * m. Therefore, the length of

the input series must be greater than 4 * m, and this is the reason that m has the constraint

m < | 7] in Definition 4. Furthermore, when an encounter appears at the same phase during
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all observed periods with a frequency greater than the threshold thatis 7'* | % |, we consider
this encounter a periodic encounter. This explains the constraint for p; in the definition.

Figure 2.4 presents encounter patterns corresponding to the encounter series in Figure 2.1.

(a)Encounter pattern for the perfect series
(1][ofofo]1[0]0]

(b) Encounter pattern for the imperfect series
0]o[ofo]1[0]0]

Figure 2.4: Encounter patterns

The encounter pattern for the series in Figure 2.1(a) is shown in Figure 2.4(a). Even
through the imperfect encounter series has occasional aperiodic encounters, and is missing
a regular encounter on Monday in the third week, this does not mean that this series has no
periodic encounters. It still has the encounter pattern as shown in Figure 2.4(b) where a pe-
riodic encounter happens every Thursday. In both sample encounter series, the user-defined
threshold is 100%, T=100%. However, if T = 60% for periodic encounters, meaning that
encounters appearing 60% of time at a certain phase can be considered to be periodic, the
imperfect encounter series has another valid pattern shown in Figure 2.4(a) with at least a
60% matching probability in its phases.

In addition, it is possible that an encounter series has events at multiple periods. This
leads to multiple encounter patterns for the series. For example, the APG shown in Fig-
ure 2.5 arises from an encounter series with periodic encounters at two phases. One pattern
has a period of 4, and the other has a period of 5. Spikes occur in the APG at lags that
are multiples of four, and at lags that are multiples of 5. One interesting observation is that
the patterns overlap at lags that are multiples of both period lengths, in this example at lags
20 and 40. The overlapping of encounter patterns produces a fundamental encounter pat-
tern Pv. Instead of finding individual encounter patterns, selecting the maximum value in
the APG identifies this fundamental encounter pattern for a series with multiple encounter

events.

Lemma 1. If an encounter series Sy has multiple encounter patterns P\, P/}, - ',P)Zlyj
where no encounter length is the multiple of the minimum encounter length, then series
Sxy has a fundamental encounter pattern Py where m, equals the least common multiple
of all individual period lengths my,my,- - -,m;. The wave representation in the APG identifies

this fundamental encounter pattern.

Proof. Given such a series, let us assume this series is composed of several perfect periodic
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Figure 2.5: A series with two periodic encounter patterns

encounter series whose period lengths are m;, my and up to m;. In addition, let us assume,
all encounter lengths are not multiples of each other. An example of APGs for such a series
is shown in Figure 2.5.

When the time lag equals the period of each individual encounter pattern such as lag =
my, lag = my or lag = m, their periodic encounters match. Therefore, the conditional
probabilities for the individual encounter patterns reach their maximum values. When the
time lag equals m,,, the least common multiple, every individual encounter pattern has its

periodic encounter aligned on the encounter series. At this lag,

APG(m,) > APG(m)
APG(m,) > APG(mp)

APG(m,) > APG(m;)

Each inequality holds because at /ag = m,, all periodic encounter patterns contribute to the
conditional probability at that lag. As a result, the maximum values in the APG are repre-
sented by the fundamental lag and its multiples. Thus, according to the wave representation
of periodicity, the encounter pattern with the period of the fundamental lag will have the

maximum value. O

As suggested by Lemma 1, if there are multiple encounter events within a series, our

detection technique will return the fundamental encounter pattern, Pyy.

2.3.2 Pre-processing

The APG is the tool we use to detect periodicity within each encounter series. With APGs
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such as those in Figure 2.3, we can easily find the top-k lags within an encounter series
and then check whether these lags are multiples of each other. This approach works for
a perfect encounter series. However, occasional or random encounters will add noise to
our encounter series, and mask periodicity to a greater or lesser extent. The APG for a
noisy series still exhibits periodic behaviour but requires extra processing, which we call
pre-processing.

We start the discussion by presenting an example of a real encounter series. Figure 2.6
shows the APG for an encounter series derived from real mobility traces with a 1 hour gran-
ularity. We choose a 1 hour granularity because this scale of APG is easy to demonstrate.
This figure exhibits a strong periodic behaviour represented by the dashed line. Three spikes

appear at lags 168, 336 and 504. These lags represent exactly 7 days, 14 days and 21 days.
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Figure 2.6: APG for a real trace [57]

0.

s

168 336
Time Lag

This example shows that, unlike perfect encounter series, the periodicity in a noisy
series is implicitly embedded within the APG spikes. The inset in Figure 2.6 shows the
APG coefficients immediately adjacent to lag 336. In this example, the top three lags are at
335, 336 and 337 rather than at 168, 336 and 504. Therefore, just selecting the top-k spikes
in the APG will not identify the top-k periods. We propose two steps to pre-process the
APG: (1) filtering and (2) spike simplification.

Filtering One problem with the auto-persistence function is that there is still a low
conditional probability for two encounters separated by some arbitrary length of time,
even when those encounters are not periodic. Small conditional probabilities like
these cause the small spikes in Figure 2.6. We propose to filter out these spikes as

follows.

Definition 5. A filter is a boundary chosen by considering the overall property of
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Filter=Mean+2*STD
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Figure 2.7: APG filtering

APG values to remove insignificant values. It is defined as:
F=m+K=xo

where m is the estimated mean of the APG values, G is the estimated standard devia-

tion and K is a constant.

We assume the APG coefficients at different lags are normally distributed, and set
K = 2 to filter out all but approximately the top 2% of the spikes. Figure 2.7 shows
the filter value as a horizontal line. Compared to Figure 2.6, spikes above the filter
value are more significant. This makes the APG much less sensitive to spikes from

aperiodic behaviours.

Spike simplification The second step is to concentrate spikes. Figure 2.6 and 2.7
show that each spike is composed of a group of APG values from consecutive lags.
To have a better representation of the spike, in this example we merge each spike
into a single lag by using the highest value in the range to represent the whole spike.

Figure 2.8 is the simplified APG of Figure 2.7.

Filter=Mean+2*STD

Al |

Figure 2.8: APG simplification

336 504
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With these two steps, we have removed irrelevant spikes and simplified the APG.
From this simplified APG, if an encounter series has periodic encounter behaviours,

their representation can be found. We now look for spikes with maximum values,
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where a spike is a lag with smaller preceding and following APG values. For exam-
ple, there are three spikes in Figure 2.8, at lags 168, 336 and 504. We conclude that
this encounter series exhibits a weekly periodic encounter because the other two lags

are multiples of the fundamental, 168.

2.3.3 Periodic pattern recognition

From the APG after pre-processing, we are able to declare whether an encounter series
has a periodic encounter behaviour or not. In addition, we can identify the period of the
behaviour. Once the period is known, we can extract the encounter pattern from the original

encounter series using alignment, where each encounter series is split into several disjoint
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Figure 2.9: Pattern recognition

segments, each of whose length equals the period previously detected. We note that, in
general, multiple encounter behaviours with different periods could appear in a lengthy
segment; thus, we use the term period to refer specifically to the interval over which a
behaviour repeats (irrespective of phase), and segment to refer to a fixed-length portion
of a trace. After breaking the trace into segments, we stack the segments vertically as
shown in Figure 2.9. In each vertical phase, we examine the probability that encounters
appear. Given the length of the input series, 7, and the period length, m, there would be | 2 |
complete segments. We consider an encounter a periodic encounter if it has a frequency
greater than the threshold, T x L%J, at the same phase during all observed periods. As an
example, given the input series S, , and 7' = 100% in Figure 2.9, the periodic encounter
pattern is P/, = {0,0,0,0,1,0,0}.

In the detection process, an encounter is considered to be noise if an encounter appears

at different phases. For example, let us assume we have the encounter series in Figure 2.10

containing observations of an event over 28 days. For example, this may represent a person
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attending church, where his/her cellphone connects to the WiFi access point in the church.
In the example series, this person goes to church every Sunday (assuming the week starts
on Monday), and may occasionally drop by on another day during the week. The encounter
series has an underlying weekly encounter pattern on Sunday. In other words, this encounter

series has a period length of 7 days and the phase of the encounter is Sunday.

(oo eNoNoNE o [o [0 1o o[ 1 [OleTEIoTofofaTo[o o oo[o]1]

Figure 2.10: A noisy series

In this example, encounters happening other than on Sunday would be considered as
noise. If any encounter is missing on Sunday, such a missing encounter would be considered
a missing periodic encounter.

In summary, our method takes a set of encounter series as inputs. Each series represents
the sequential encounters of a unique pair of nodes. The analysis described above is applied
to each individual encounter series separately. If an encounter series has periodicity after
pre-processing and recognition, an encounter pattern is derived from this encounter series

by alignment. The process repeats for the next series for the next unique pair of nodes.

2.4 Experimental results

In this section, we present a set of experiments to examine our method. There is no previous
work to which we can compare our method, so we first conducted a set of experiments in a
controlled environment. We controlled the synthetic generation of encounter series. After

this, we conducted experiments using real mobility traces.

2.4.1 Experiments using synthetic encounter series

We use synthetic traces to understand the performance of our method. By constructing syn-
thetic traces, we can control the characteristics of the encounter patterns, including period
lengths and the phase(s) of encounters within a pattern. This allows us to see how robust
and noise-tolerant our method is.

We propose four controlled variables to create synthetic encounter series.
1. Period length m is used to control the length of an encounter pattern Py,

2. Probability p, is used to control the chance of missing an encounter within a pe-
riodic pattern. In other words, p, controls the probability that a periodic encounter

does not occur.
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3. Probability pg is used to control the chance of an unexpected/occasional encounter

occurring at a non-encounter phase.
4. Threshold T defines the probability of a periodic encounter appearing at a phase.

Period length is controlled for consistency. Given fixed values for py and pg, the longer
the period, the higher the chance that an event will be changed. In order to keep probabilities
consistent, period length m is controlled as well.

To produce an encounter series, we need to select a series length, n. In our experiments,
n is set to be 1440 to model a duration of one day with a one minute granularity, or 60
days with a 1 hour granularity and so on. We first choose a period length and create an
encounter pattern with the chosen length. Note that there is at least one encounter within an
encounter pattern. Then, encounter patterns are concatenated until the desired series length
n is reached. If probabilities py and pg equal zero, then we have a perfect encounter series.
As both probabilities increase, they bring more and more noise into the encounter series.

For the following, we set T = 80%. We generated 100,000 encounter series for each
combination of the remaining three variables and applied our method to produce the results
in Figure 2.11 and 2.12. For all the results in Figure 2.11, m = 100. In the figures, each
x-axis label includes the encounter series with a encounter rate that is less or equal to the
current label but greater than the previous label. One note is that the series without any en-
counter is not covered by point 10% in all figures. For example, the point at 30% encounter
rate on the x-axis covers series with 20% < R, < 30%

In Figure 2.11(a), we set both py and pg to zero in order to see the performance of
our method for several perfect encounter series. The results present the detection rates for
encounter series with ten different encounter rates, Ry ,. The point at 10% includes series
with R, , < 10% where rate 0 is not included, the point at 20% covers series with 10% <
Ry, < 20%, etc. Figure 2.11(a) shows that our method is able to find over 99.9% of the
encounter patterns except for patterns with high encounter rates (R, > 90%). Series with
R,y = 100% are not detected because those series have no wave representation. However,
a pre-scan of the series can easily solve this problem.

In Figure 2.11(b), we increase both py and ppg slightly to 0.01. The results are similar
to Figure 2.11(a), however the detection rate for series with low Ry, (< 10%) and high
R,y (> 90%) has decreased. Similar results were observed in previous work as well [56].
The conditional probabilities for series with encounter rates at both ends of the scale are

sensitive to noise. The encounter probabilities are easily changed with even a small amount
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of noise.

In Figure 2.11(c), we fixed the period length m = 100 and py = 0.01 to examine the
effect of pg. Increasing pg decreases the detection rate dramatically, as expected. The
increasing amount of noise in the encounter series degrades the APG. Therefore, we are not
able to detect periodic encounters.

We also tested the effect of encounter rate on detection rate (see the results in Fig-
ure 2.11(d)). Here, the detection rates are very low for series with R, , < 20%. The lack
of periodic encounters lets unexpected encounters dominate the results, so the encounter
series lose their periodicity.

We tested the effect of py the same way we tested pg. We fixed the period length to
be 100 and set pg = 0.01. Figure 2.11(e) is very similar to Figure 2.11(c). The increasing
amount of noise makes the encounter series less and less representative.

Lastly, we examined detection rates at different encounter rates (see Figure 2.11(f)).
The results are symmetric to those in Figure 2.11(d). pq affects series with high R, , while
pp affects series with low Ryy. Missing periodic encounters clearly affect the APG. En-
counters from other lags and phases are able to dominate the conditional probability and
mask the true periodicity when the encounters are very dense.

The results shown in Figure 2.12 are produced by fixing py and pg to be 0.01 while
varying m and the calibration. Calibration is the percentage of the total length of the series
used to detect periodicity. For example, if the calibration is 40%, then we use the first 40%
of the series in our analysis. The purpose of varying m is to examine how sensitive the
detection is to the period of the pattern. The purpose of varying calibration is to see how
sensitive detection is to the length of the acquired series. In Figure 2.12(a), the period length

is 100 and the length of each encounter series is 1440. The results show that no encounter

40



—T=20%
091+ - - T=40%,
0.8 == T=60%
o T=80%

0.96

Accuracy
o
©
®

2 3

o
©
8
Distribution
o o o
o

4
©

0.88| f 04

10% 20% 30% 40% 50% 60% 70% 80% 90% 100 o

Threshold 0 0.2 0.4 0.6 ---1;8" 1
Accuracy
(a) Varying T (b) CDF of accuracy

Figure 2.13: Varying T with 50% calibration

patterns are found until the calibration is over 30%. This is because we need an encounter
series that is at least 4 times the period length for detection. The first portion of an encounter
series whose length is twice the period is used to detect the first repetition of the pattern.
Then the second repetition is used to confirm the pattern. Figure 2.12(b) demonstrates the
same result from a different point of view. Patterns with length greater than 360 could not
be found in these experiments because the time series are only of length 1440.

With the APG, we are able to detect periodicity and extract encounter patterns. How-
ever, we still need to validate the extracted patterns to ensure they persist throughout the
series. We do this by examining the series, and the extracted patterns, at a given calibration.
For example, with 50% calibration, we use the first 50% of the series for periodicity and
pattern detection. If we detect a periodic encounter in the first half of the series, we extract
the corresponding pattern and label it promising. Then we use the second 50% of the series
for validation. For each promising pattern, we calculate the fraction of times an encounter
appears where it should. We call this the accuracy of the pattern.

We now illustrate the results of accuracy testing. In the following set of experiments,
we set m = 100, pg = pg = 0.01 and varied T. We used 50% calibration to find the en-
counter patterns in the series, and then we used the remaining 50% to check the accuracy
of detection. Figure 2.13(a) shows that increasing the detection threshold increases the ac-
curacy. This is because we include fewer non-periodic encounters that affect the accuracy
of detection. Figure 2.13(b) supports this conclusion by presenting the CDF of accuracy.
With T =20%, 10% of the encounter patterns are detected with an accuracy less than 90%.
However, by increasing the threshold to 40%, less than 5% of the patterns are detected
with an accuracy lower than 90%. Therefore, our experiments suggest that a high detection

threshold should be used.
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These experiments show that our method is robust and tolerates a certain amount of
noise. Figure 2.11(c) and (e) show that approximately 20% to 30% noise is acceptable
(above this range the slope of the curve changes dramatically). The stability of periodic
encounters, which is affected by py, and the stability of non-encounter phases, which is
affected by ppg, are equally important to our method. We also learned that encounter se-
ries whose encounter rate is in the middle of the range, i.e., R, , = 50%, exhibit stronger

periodicity than those whose encounter rate is nearer either extreme.

2.4.2 Experiments using real mobility traces

Now we change our focus to real traces. A database called CRAWDAD provides numer-
ous datasets that have been collected by researchers over the years [28]. In general, there
are two types of publicly available real-world traces [56, 95]: (1) encounter-based traces
and (2) AP-based (access point based) traces. In encounter-based traces, each wireless mo-
bile device such as an iMote [32, 82] or NOKIA 6600 [116] is equipped with a Bluetooth
module. The devices frequently broadcast a beacon signal to announce their presence in a
neighbourhood. They also acknowledge the beacon signal from other devices. Once a de-
vice receives an acknowledgement, an encounter is recorded with a timestamp. AP-based
traces are usually GSM traces [32] or WLAN traces [9, 57, 76]. When a mobile devices
enters the coverage area of an AP, the AP records the arrival of the device with a timestamp
or the duration of the association. If other mobile devices are associated with this AP at the
same time, we first assume there is an encounter between each pair of the then-associated
devices. Durations of encounters are derived from the association times with the AP. We
then treat each access point as a stationary relay in the network. Encounters are derived
when two mobile nodes or a mobile and a stationary node are physically close enough.
Experiments are conducted for both scenarios.

Encounter-based traces are ideal for our analysis. However, as shown in Table 2.1,
the available encounter-based traces are composed of small numbers of nodes observed for
very short durations. In contrast to encounter-based traces, the available AP-based traces
are rich in nodes and cover a much longer duration. In previous studies, encounters are
derived from AP-based traces by assuming that two mobile devices encounter each other if
they are associated with the same AP at the same time. In our study, we do not make this
assumption. However, we consider each cellular tower or AP as a stationary relay in the
network. The reason is because the association between a mobile node and a cellular tower

or an AP is a type of encounter. If two mobile nodes never encounter, no message can be
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Table 2.1: Real-world traces

Source nodes |Duration |Type
Milano [94] 44 19 days |PMTR
UMPC [82] 36 12 days |iMote
Cambridge [116] 12 6 days iMote
MIT Bluetooth [32] 95 282 days |Bluetooth
MIT Cellular network [32] |95 282 days |Cellular
USC Summer 05 [57] 5580 |111 days |WLAN
USC Spring 06 [57] 25481(95 days |WLAN
Dartmouth [76] 13888|1178 days| WLAN
Nokia-MDC Bluetooth [80]|38 548 days |Bluetooth
Nokia-MDC GSM [80] 38 548 days |Cellular
Nokia-MDC WLAN [80] |38 548 days (WLAN

Milano = University of Milano

PMTR = Pocket Mobility Trace Recorder
UMPC = University Pierre et Marie Curie
USC = University of South California

exchanged directly between them. However, if both of them associate with the same AP or
cellular tower at different times, the message could be exchanged between the mobile nodes
indirectly by using the AP or cellular tower as a relay. Although relaying is not currently a
feature of cellular base stations or APs, we believe there is merit in exploring the potential
benefit of adding this functionality, as it would enable the diverse applications of DTNs.
Initially, we looked at the MIT traces [32], Dartmouth College traces [76], USC traces [57]

and the Nokia-MDC traces [80] shown in Table 2.1. In the MIT, Dartmouth College and
USC traces, the duration of each encounter is given. However, in the Nokia-MDC traces,
each encounter has a corresponding timestamp. From that, we need to calculate the duration
of each encounter. In Figure 2.14, mobile node A encounters nodes B and C at timestamp 7;.
At the next timestamp, A only meets node C. We assume that A stops seeing B right before
T;11. Therefore, the encounter for node pair {A,B} starting at 7; has a duration of 7; | — T;
time units. Similarly, the encounter for node pair {A,C} starting at 7; has a duration of
Ti+» — T; time units. Using this approach, there are two complete encounters, {A, B} and

{A, C}, starting at T;.

Ti Tis1 Ti+2

: : : P» Time

B,C C D

Figure 2.14: Encounter history of mobile node A

At the time of examining the Nokia-MDC traces, we also considered another approach
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to define encounter duration that is based the characteristics of inter-encounter times. We
use Figure 2.14 to explain the second approach. In Figure 2.14, mobile node A encounters
nodes B and C at timestamp 7;. At timestamp 7;;, A only meets node C. Similarly, A only
encounters node D at timestamp 7;,. We first extract the individual inter-encounter times.
In this example, there would be two inter-encounter times: (1) 7,11 — 7; and (2) Ty — Tiy .
We then calculate the average of all inter-encounter times as 74V¢. In our example, the
encounter for node pair {A,B} starting at 7; has an inter-encounter time of 7;;; — T; time
units. If the inter-encounter time of 7;,; — 7; time units is less then 74V, the duration of
this encounter will be 7;;; — 7; time units. Otherwise, the duration of this encounter is set
to be T4V¢. We conducted experiments on the Nokia-MDC traces using both methods for
calculating encounter durations. The results showed that both methods returned very similar
results. This is because all encounter series are derived with a 1-day granularity. The
assumptions about encounter duration have a very small impact on generating encounter
series, and thus they have a very small impact on our final results. In the rest of this chapter,
durations derived from real-world traces are based on the first approach, and encounter
series are derived with a 1-day granularity. With respect to periodicity, the USC traces were
the only ones to exhibit periodicities extending over their full lengths because the USC
traces are relatively short, i.e., 95 days, as noted in Table 2.1. We will discuss the reason
for this shortly while in this section we present our experimental results based on the USC
Spring traces from 2006.

From our previous results, we know we need a series of at least 4 times the period
length to detect a periodic encounter pattern. This means we will only be able to detect
patterns with periods less than 23 days in the USC spring traces. By using the complete
length of each series (100% calibration), we were able to detect 2536 encounter series,
where the encounters involve 2394 unique nodes. There are 25481 nodes in the USC spring
traces, so only a relatively small fraction of them — less than 10% — are involved in periodic
encounters.

As before, we find that the number of patterns detected changes with the calibration.
Figure 2.15 shows a zigzag curve for the number of patterns detected while increasing the
calibration. This is because different lengths of encounter series can only accommodate
encounter patterns with a certain period. For example, 30% calibration can detect periods
up to [(95%0.3)/7] = 4.

We note a drop in the detection curve at 60% calibration. At 60% calibration, each

encounter series contains encounter information from |(95%0.6)/7] = 8 weeks. Because
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the user-defined threshold 7" was set at 80%, an encounter series is noted as having under-
lying periodic encounter behaviour if and only if it has the encounter at the same phase in
[8%0.8] = 7 out of 8 weeks. Many of the encounter series fail to pass this high threshold
value because of missing encounters. As a result, we observe this drop in the detection
curve. The increase in the number of patterns detected after 60% calibration suggests: (1) a
new encounter series with a 14-day periodicity has been detected, and (2) an encounter se-
ries that failed at 60% calibration has been detected again due to including more encounter

information.
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Figure 2.15: Number of patterns detected

Figure 2.16 presents the CDF for periods found at different calibrations. When the
calibration is 20%, the majority of patterns have lengths of 2, 3 or 4 days. However, when
the calibration reaches 40%, the majority of patterns have length 7 days. As we increase
the calibration, over 99% of the patterns are of weekly or multi-week periodicity.
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Figure 2.16: Detected period length using different calibrations

In Figure 2.17, we present the average accuracy of encounter patterns for each cali-
bration. This figure shows that using a longer series in detection leads to better accuracy.
However, there is a drop in accuracy from calibration 80% to 90%. This is an artifact be-

cause the last 10% of a series may not be as long as the period of the pattern being validated.
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This leads to a degradation in performance.
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Figure 2.17: Accuracy using different calibrations

Figure 2.18 shows the CDF for accuracies at different calibrations. Here again, we
see that longer encounter series provide better results. When the calibration reaches 80%,
approximately 50% of the detected patterns have 100% accuracy.

We have examined the effects of varying calibrations in terms of the quality of detected
patterns. Furthermore, we conducted experiments to examine the effect of the threshold,
which controls the promising phases. In the following experiments, we use 50% calibration
to detect encounter patterns, and the remaining 50% of the series to examine the accuracy

of the detected patterns.
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Figure 2.18: Accuracy distributions using different calibrations

As we noted earlier, one of the inputs to our method is the user-defined threshold 7.
This defines whether the encounter occurs over a significant enough fraction of time at a
particular phase to be considered periodic. By increasing the threshold, we place heavier
constraints on the phases that qualify. On one hand, fewer patterns satisfy the threshold,
leading to a decrease in detections as shown in Figure 2.19. On the other hand, the phases
yielded by a higher threshold value provide encounter patterns with better accuracy, as

shown in Figure 2.20.
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2.5 Analysis of results

Our experimental results indicated that there are detectable weekly periodic encounter pat-
terns within real-world traces. In order to apply those periodic encounters for routing in
DTMNs, we need to understand the characteristics of periodic encounter patterns from
three main perspective: (1) the persistence of periodic encounters, (2) the connectivity
among nodes with periodic encounter behaviours and (3) the structure, i.e., small-world
structure, of the networks formed by periodic nodes. In this section, we present the results

regarding these characteristics.

2.5.1 The persistence of periodicity within real mobility traces

In our experiments, we applied our detection techniques to four different traces. Only the
USC traces exhibit periodic behaviour for the full duration of the series. However, this does
not mean that there is no periodic behaviour that lasts for shorter periods in the other traces.

To discover short-term periodic behaviour, we break the traces into disjoint segments
with the same length. For example, each daily encounter series in the Nokia-MDC traces
could be broken down into 19 segments where each segment is 30 days in length. For daily

encounter series, we apply our detection techniques to segments with length varying from
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1 day to the maximum duration of each trace, with a 1 day increment.

As shown in Figure 2.21 (a), (c), (e) and (g), 35-day segments in the Dartmouth, MIT
and Nokia-MDC traces have the largest number of detected periodic encounters. However,
in Figure 2.21(g), 33-day segments have the largest number of detected periodic encounters
in the USC traces. The USC Spring traces in Figure 2.21(g) have a sudden drop after the
33-day segments. This is caused by an artifact. The USC Spring traces have a duration of
95 days. At 34-day segments, each encounter series could be broken down into 3 segments.
The first two segments each cover 34 days whereas the last segment only contains 27 days.
As aresult, even though there may be weekly periodic patterns within the last segment, we
can only detect periodic patterns up to 6 days, L%J = 6. Therefore, we lose a large number
of detections in the last segment of all encounter series.

To understand these periodic behaviours at the segment size with the largest number
of detected periodic encounters, Figure 2.21(b), (d), (f) and (h) provide more details about
detected periodic behaviour by presenting the CDF of their periods. The results indicate
that there is a strong weekly encounter behaviour in all the mobility traces.

Once the period length is known, we can extract periodic encounters from the original
segments using alignment. For alignment, each segment is split into disjoint sub-segments
where the length of each sub-segment equals the period length previously detected. Then,
we stack all sub-segments vertically to examine the probability that encounters appear in a
particular column. When the probability of encounters in a column is greater than a user-
defined threshold, we consider that encounter as a periodic encounter. This process is the
same as the pattern recognition described before.

From our discussion above, we discovered mobility traces do not have long-term peri-
odicity. If we still examine the accuracy of detected periodic encounters within segments
against the whole traces, the overall accuracy for each periodic pattern will be very low.
Therefore, instead of evaluating the accuracy, we examine how long those periodic patterns
reliably appear in the future. We call this time range the projected persistence.

After extracting periodic encounters, we evaluate their projected persistence by using
the remaining encounter series following a given segment. For example, if the very first
35-day segment in the Nokia-MDC traces has periodic encounters, we use the remaining
548-35=513 days to evaluate the persistence of detected periodic encounters. Similarly,
if the second 35-day segment has periodic encounters, we use the remaining 513-35=478
days to evaluate its persistence. We first partition the remaining encounter series into dis-

joint intervals, I, whose size equals the previously detected period. To evaluate projected
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persistence, we introduce two thresholds:

1. the matching probability of periodic encounters within an interval, 8. Given an in-
terval, 8 measures the probability that this interval has periodic encounters. For
example, if detected periodic encounters take place every Monday and Friday, and a
given interval only has an encounter on Monday, then 6 = 1/2 = 0.5 for the given

interval.

2. the acceptable number of intervals without periodic encounters, A. Because of un-
expected events, periodic encounters may be interrupted. Therefore, A is used to
tolerate the number of intervals that suffer from missing periodic encounters because

of interruptions.

Using Figure 2.22 as an example, let us assume that from the very first 35-day segment,
we detected periodic encounters repeating every 7 days. Since the period length is 7 days,
we partition the remaining encounter series into intervals whose size equals 7 days and
calculate 0 for each interval. Given thresholds at 6 = 0.9 and A = 0, only /; satisfies the
6 threshold; therefore, the projected persistence is 7 days. If thresholds are 6 = 0.9 and
A =1, by treating I, as the tolerated non-periodic interval, I4 is the interval furthest in the
future for which the thresholds are satisfied, therefore, the projected persistence is 28 days.
Similarly, if thresholds are 8 = 0.9 and A = 2, the projected persistence is 42 days.

Tables 2.2 and 2.3 show the average projected persistence for each mobility trace at the
segment length with the largest number of detected periodic encounters. On one hand, as
0 increases, the average persistence decreases because we are looking for intervals with
highly persistent and stable periodic encounters. On the other hand, as A increases, we have

longer projected persistence because we are more tolerant of interruptions in the patterns.

Segment L b I Iy Iy Iy L

| Joofos |t 1t Jo2foojos]
35 42 49 56 63 70 77 84

P Time

Figure 2.22: Accuracy with different thresholds

This explains why we did not detect any long-term periodic behaviour in the full-length
traces: their persistence is interrupted from time to time. Due to various limitations such
as students changing schedules each semester, or seasonal road construction, it is possible
that periodic behaviours have been changed, or those behaviours just change. Therefore,

long-term periodic behaviour is not detected.

50



Table 2.2: A = 0, projected persistence by varying 6

Trace types Threshold 6
0.1 03 05 0.7 0.9
35_]3$t$(;ﬁms 87.01 days| 63.49 days |46.14 days [30.32 days| 19.31 days
31\54{12;3?;;‘12;28 40.5 days | 32.56 days | 26.65 days |22.04 days| 15.56 days
351\_4(11;(;:;1$§;ts 20.37 days| 19.84 days | 19.01 days|13.84 days| 12.67 days
33‘_?35 f;;ﬁ‘fms 23.77 days| 22.49 days |20.12 days|15.21 days| 14.9 days
3;{2;5;‘;?;‘:6 27.07 days| 26.08 days | 24.12 days|21.14 days| 18.38 days
?Soﬁfyiiugi"e‘ﬁ 54.68 days| 39.9 days |29.01 days|22.28 days| 14.59 days
351_\21‘;1;26;511&“ 70.72 days| 54.45 days |33.72 days|23.64 days| 14.18 days
35N_31;;ase‘x’gﬁfts 61.63 days| 47.87 days | 34.94 days 23.55 days| 14.58 days
Table 2.3: 6 = 0.9, projected persistence by varying A
Trace types Threshold 6
0 1 2 3

3}3:;2:;:11& 19.31 days|20.74 days|27.83 days|35.15 days

3?22?;22223; 15.56 days|18.89 days|20.17 days|23.88 days

351\.4(11;1(;:21:11:;3 12.67 days|14.03 days|15.92 days|17.54 days

33i§§ :elj;‘:egnts 14.9 days [20.11 days|26.15 days|29.98 days

Sgigyi‘;f;ni‘:ts 18.38 days|20.15 days[20.92 days|21.04 days

;‘goﬁz"ylzi‘;i‘;‘:t}; 14.59 days|17.29 days|23.41 days|29.17 days

35111‘;1;26(;1\:% 14.18 days|14.18 days|25.83 days|31.41 days

323?;3&1;&126 14.58 days|14.58 days|25.28 days|28.54 days
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(a) Bluetooth (b) GSM (c) WLAN

Figure 2.23: Connectivity in different network types from Nokia MDC traces

In addition, both 2.2 and 2.3 reveal information about the persistence range. As shown
in this table, for a certain value of A, periodic behaviour can last up to a few months on
average. For example, given A = 3 in the Dartmouth traces, the projected persistence can

be up to 35+35.15=70.15 days (segment length plus projected persistence).

2.5.2 Network connectivity

We also built graphs based solely on periodic encounter series. The connectivity graph
G = (V,E) is an undirected graph, which is defined as follows. Given a set of encounter
series with periodic behaviour, P, V is the set of nodes participating in P. For a pair of
nodes u and v, the edge ¢,, € E if and only if s,,,, € P.

The Nokia-MDC datasets include mobility datasets from different network types. The
three types of datasets are Bluetooth, GSM and WLAN. Bluetooth traces track direct en-
counters between mobile nodes. Both GSM and WLAN traces record associations between
mobile nodes and either access points or cellular towers. Using the Nokia-MDC traces
as an example, the connectivity graphs for 35-day segments shown in Figure 2.23 repre-
sent connectivity between nodes with periodic behaviour from different network types. In
this figure, connection graphs derived from Bluetooth, GSM and WLAN traces consist of
several star shapes. In the Nokia-MDC datasets, we have a total of 38 participants whose
encounters are recorded. As a result, the centre of each cluster is one of the participants
whereas leaf nodes are external MAC addresses whose encounter series is unknown, except
for one encounter with a non-leaf node. All three graphs are composed of multiple isolated
clusters where nodes from different network types cannot communicate with each other.
In real life there are various co-existing network types. For example, in the Nokia-MDC

datasets we have cellular networks, wireless local area networks and Bluetooth encounters.
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Figure 2.24: The integrated network from Figure 2.23

Mobile nodes could exhibit different periodic behaviours within each network type. As
shown in Figure 2.24, integrating periodic encounter series from different network types
presents a better connected graph, which could substantially improve the effectiveness, and
likely efficiency, of communication overall. Nonetheless, there still exist isolated clusters.
As shown in Figure 2.23, the networks containing periodic nodes are composed of isolated
star-shape components where the centre of each component is one of the 38 participants in
the Nokia-MDC datasets.

Unlike social networks, which are generally connected, the periodic nodes in our stud-
ies do not form a single connected component. As a result, conventional DTN routing pro-
tocols cannot be immediately applied to take advantage of periodic encounter behaviour.
Providing services between the clusters in such networks still requires further research.
One solution would be using some underlying infrastructure such as the Internet to con-
nect access points in isolated clusters. An alternative solution could be deploying relays

(throw-boxes [149]) in the network.

2.5.3 Small world structure

In this section, we examine the properties of the connectivity graphs that are composed by
periodic patterns in different mobility traces. To create connectivity graphs, we selected the
periodic patterns detected using the segments with the highest number of detections, i.e., 35-
day segments from the Nokia-MDC, MIT and Dartmouth traces but 33-day segments from
the USC traces. The connectivity graph shown in Figure 2.23 is an example derived from the
Nokia-MDC traces. In these graphs, we may have several clusters. Since some evaluations

can only be used on connected graphs, we present our analyses on the largest cluster in each
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graph from each mobility trace.

Degree distribution

The node degree distribution for the largest clusters in each mobility trace follows the
power-law distribution with a heavy tail (see Figure 2.25(a)). However, these large clus-
ters contain a relatively small fraction of the users. To investigate further, we rank nodes in
descending order based on their node degree. Plotting the sorted nodes in Figure 2.25(b),
we find that the USC, MIT and Dartmouth traces follow the power-law distribution. Even
though the overall distribution of the Nokia-MDC traces is non-trivial, the first 38 nodes in
the distribution follow the power-law distribution. This number matches the total number of
participants in the Nokia-MDC datasets whereas all other nodes are external nodes whose
complete mobility is unknown. This strongly suggests that by building a network using
nodes with periodic behaviour, we can obtain a scale-free network rather than a random

network.

The small-world network

Based on the Watts-Strogatz mechanism [134], a graph with a small-world structure must
satisfy two properties: (1) short average path lengths, and (2) clustering coefficient is orders
of magnitude higher than its random equivalent. Table 2.4 presents calculations regarding
small-world structure. In the Nokia-MDC traces, the average node degree is d = 2.51. In-
vestigating the small-world structure in this network, we find that the average path length,
L, between any pair of nodes in the network is 3.12. We observe that the average path
length is approximately equal to the logarithm of the number of nodes in the network,
3.12 ~ log(2025) = 3.30. This is a good indication that the network has a small-world
structure [134]. In addition, we calculate the clustering coefficients for all nodes in the net-
work. There are two types of cluster coefficient: local and global, which measure the num-
ber of triangles with respect to the number of open triplets in the graph [53, ]. In other
words, cluster coefficients measure whether a graph forms a clique. If it is not, it tells how
close the graph is to a clique. Our calculations show that 99.9% of the nodes in the Nokia-
MDC datasets are external nodes whose local cluster coefficient equals zero as shown in
Figure 2.25(c). Therefore, the global cluster coefficient of the network equals the relatively
small value of 0.0015. If we consider a node in a random graph, the probability that two of
its neighbours are connected is equal to the probability that two randomly selected nodes

are connected. Consequently the global cluster coefficient of a random graph equals d/N.
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Figure 2.25: Comparison between datasets for small-world structure in log-log scale

Since the global cluster coefficient for the network in the Nokia-MDC datasets is very close
to that from a random graph, 2.51/2025 = 0.0012, we conclude that the network does not
have a small-world structure even though the average path length still satisfies the small-
world bound. One possible reason is that the traces of external nodes are unknown, and we
may be losing periodic encounter series among them. As a result, the graph still consists of
multiple star-shaped components.

To show that networks formed by nodes with periodic behaviour have a small-world
structure, we present our studies about the other three traces. In the USC connectivity graph,
the largest cluster contains 4961 mobile nodes. As shown in Figure 2.25(a) and 2.25(b), the
node degree distribution in the USC traces follows the power-law distribution. It is clear that
these traces come from a scale-free network. To further explore the network, we calculate
the average path length for its connectivity graph. The value at 3.34 is a good indication of
the small-world structure, where 3.34 = log(4961) = 3.69. In addition, the global cluster
coefficient shown in Table 2.4 is much greater than the one from a random graph. Therefore,
we conclude the network formed by the periodic nodes in the USC traces has a small-world
structure. The same analyses can be applied to the MIT and Dartmouth traces where we

also conclude that graphs composed by the periodic nodes have a small-world structure.

2.6 Future work

Similar to previous work [56], we have an encounter series for every pair of nodes in the
mobility traces. Our objective is to detect and extract periodic encounter patterns in the
encounter series with the presence of random/noise encounters that could affect the detec-

tion. However, experimental results showed that our method had a low detection rate for
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Table 2.4: Small-world statistics from different mobility traces

Network N |APL| d | GCC
Nokia-MDC [2025|3.12| 2.51 |0.0015
Random Graph|2025|3.12| 2.51 |0.0012
USC 4961(3.34|19.44/ 0.139
Random Graph|4961|3.34/19.44|0.0039
MIT 268 (2.72|4.07 | 0.13
Random Graph| 268 |2.72|4.07 | 0.011
Dartmouth |3642|3.75|9.47 | 0.197
Random Graph|3642|3.75| 9.47 |0.0026
N=number of nodes in the network
APL=average path length
d=average node degree
GCC=global clustering coefficient
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(a) Encounter series shown in Figure 2.25
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Figure 2.26: The effects of using different thresholds by varying constant K

node pairs with frequent encounters where such pairs are clearly important relays. If we
can clean the encounter series by distinguishing regular encounters from the random ones,
we may detect more patterns and/or have detection with better persistence. Therefore, there
could be two ways in general to improve our techniques: 1) pruning the search space by
excluding series with only random encounters, and 2) cleaning random encounters within
each encounter series. One possible solution inspired by other studies is to generate ran-
dom mobile traces and prune encounter series or encounters within series that have similar
characteristics comparing to the ones from random traces.

In our method, the filtering described in Section 2.3.2 plays an important role to identify
periodic lags in auto-persistence functions. To prune spikes representing random/aperiodic
behaviours, we proposed a threshold defined as F = m + K * ¢ where 7 is the estimated
mean of the APG values, o is the estimated standard deviation and K is a constant. Given
an encounter series, in the definition of the threshold its value is controlled by the constant

K because both m and o are fixed. Therefore, how to choose a proper constant becomes
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critical. In Figure 2.26, examples are presented to demonstrate the effects of using different
K values. Given the encounter series in Figure 2.26 (a), we have shown that this encounter
series has an underlying weekly encounter pattern. When K equals 1, because three spikes
found at lags 7, 10 and 14 are not correlated, we can not detect the underlying periodic-
ity. When K is equal to 1.5, spikes located at lags 7 and 14 indicate the weekly patterns.
However, if we increase the value of K to 2, no spike can be discovered leading to a failed
detection. From those examples, the value of the threshold can affect detection results be-
cause a tight threshold could overlook periodic encounters whereas a loose threshold could
include aperiodic behaviours in the detection process. To address the problem, we could
examine some properties such as rankings of all returned APG coefficients to find a proper
threshold instead. An alternative solution could define a range for K instead of having a
constant value, and examine every possible value of K with a granularity within the range

for periodic encounter patterns.

2.7 Summary

Understanding user mobility, and the patterns of encounters between nodes, is critical for
communications within a DTN. Instead of blindly using opportunistic encounters, periodic
encounters can be used in routing messages between nodes. In this chapter, we explore the
periodicity and regularity within encounter series by applying the auto-persistence graph.
Our experimental results show that our method is robust and can detect and extract the peri-
odic behaviours in synthetic traces. It can also detect and extract encounter patterns in real
traces with up to 100% accuracy. Our experiments show that noise in the form of unex-
pected encounters, and in the form of missing periodic encounters, affect the fidelity of our
method equally. Nonetheless our experiments showed that there is no long-term periodic-
ity within mobility traces whereas periodic behaviours could be interrupted by unexpected
events from time to time. Experimental results suggest that periodic behaviours are highly
likely to change after a few months. This helps us to determine how stable and persistent
a pattern is, which explains why one is not able to find a pattern that lasts the whole du-
ration of the mobility trace. To understand the properties of networks formed by periodic
encounter series, our studies show that networks are scale-free networks, and some of them
satisfy a small-world structure where messages between any pair of nodes can be delivered

through a very small number of hops in the network.
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Chapter 3

A graph model for periodic
encounter patterns

3.1 Introduction

In Chapter 2, we proposed a methodology to detect and extract periodic encounter patterns
within mobile data. Given periodic encounter patterns, the next task is how to properly
model them in order to find routes to deliver packets through periodic encounters. To il-
lustrate the benefits of encounter patterns, an example is presented in Figure 3.1 where we
have four nodes. In this example, node og is a stationary base station, while the other three
are mobile nodes. Encounters, represented by directed lines, occur during four consecutive
time intervals. In the example, at the beginning of interval Iy, node oy wants to send a
packet to node o3. If routing protocols from mobile ad-hoc networks start route exploration
immediately at interval Iy, no route will be found until interval /3. Until then the routing
discovery process is simply a waste of energy. In contrast to those protocols, and assuming
one knows the encounter pattern for this scenario, two routes can be found to disseminate
the packet from og to 03. The first route is that node oy holds the packet and sends it to

destination 03 during interval /3. The second route is that node og transmits the packet to

i 3 )
o; . o %
. * \\(\JI /,‘
(a) Snapshot at (b) Snapshot at (c) Snapshot at (d) Snapshot at
interval I interval [ interval I, interval I3

Figure 3.1: Encounters during four consecutive intervals
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node o{, and node o; carries the packet and disseminates it to 0. The packet is eventually
delivered to node o3 by node 0, during interval I;. The first route saves energy, but is not
the most efficient in terms of delay, whereas the second route has less delay but consumes
more energy.

In this chapter, we introduce a graph model which integrates all periodic encounter
patterns. Using the graph model, both the minimum delay and minimum energy consump-
tion problems can be modelled as optimization problems. The only change between the
graphs used to solve either problem is in the assignment of weights for the edges. The
minimum delay problem can be modelled as the shortest path tree problem whereas the
minimum energy consumption problem can be modelled as the minimum weighted Steiner
Tree problem. With a modification, we can use Dijkstra’s shortest path algorithm [29] to
find an optimal solution for the minimum delay problem. However, because the minimum
weighted Steiner Tree problem is NP-hard, we propose a polynomial time approximation
algorithm to find a multicast tree for routing. The experiments show that our algorithm
can quickly find sub-optimal routes whose energy cost is typically 2-3 orders of magnitude
smaller than the cost of state-of-art solutions in delay tolerant networks [34].

The remainder of this chapter is organized as follows. An overview of existing models
to capture encounters and periodic patterns is discussed in Section 3.2. In Section 3.3, we
introduce a graph model that captures the semantics of the discovered encounter patterns.
Mathematical optimization and algorithms are presented in Section 3.4 to solve routing
problems. Experimental results shown in Section 3.5 present the performance of our algo-
rithms regarding both unicast and multicast routing. Finally, conclusions and suggestions

for future work are given in Section 3.7.

3.2 Existing graph models

In communication networks, graphs play an important role in route design and optimiza-
tions. In MANETS, a graph is used to capture the network connectivity during a certain pe-
riod of time with the assumption that the topology does not change. Many routing protocols
can take advantage of this assumption to provide end-to-end, i.e., unicast, communication
in the network [64, 70, ]. However, in DTNS, such a static graph is not sufficient to cap-
ture topology changes. To address the problem, previous studies proposed a complex graph
system, called time-varying graphs [19], dynamic networks [78] or temporal graphs [135].

Although different names are used, they are very similar to each other, and all of them can
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model topology changes in DTNs. The proposed graph systems contain a set of consec-
utive static graphs where each static graph captures the network topology at a particular
timestamp or during a certain interval. The problem of the proposed graph systems is that
they generally are very large and complicated. To model large mobile traces, they will cre-
ate hundreds or thousands of static graphs for different snapshots or intervals. In addition,
the same node in different static graphs at different time instances is not connected. It is
difficult to track the same node over multiple time instances. Finding routes among static
graphs over multiple time instances becomes even more difficult.

With respect to periodic encounter patterns, several studies have been proposed to use
different logical structures to model them. In [49], the authors assumed every node has the
global knowledge of all encounters during all intervals. A tree rooted at the source can be
built for forwarding, where each level of the tree represents encounters at a certain interval,
k, that is k intervals away from the root. The problem of this approach is that different
trees have to be built at different intervals in order to accurately capture future encounters.
In another work, a contact graph was built on top of repetitive patterns [68]. Within this
contact graph, each vertex represents a node whereas an edge links two nodes with a weight
to describe the contact time within the period. Because in real life scenarios contacts may
not repeat at exactly the same time, a probability of the occurrence of a contact is introduced
as a part of the weight on an edge. The problem of the contact graph is that a 2-tuple weight
on an edge makes computation extremely complicated. This is the reason that the authors
used two algorithms to find an end-to-end path.

The previous work shows different approaches to model encounters and encounter pat-
terns. However, they fall short in two ways: (1) they do not present a formal model that
is simple and flexible enough to reflect different assumptions and goals, and more impor-
tantly, (2) they do not provide an algorithmic approach to solve the problem optimally. The

research presented in this chapter fill both gaps.

3.3 Proposed graph model

Given a set of mobile nodes O = {0¢,01,02,....0,_1}, we assume that a set of periodic
encounter patterns with period length m is given. The encounter patterns are considered
given for the purposes of this chapter. In a periodic encounter pattern, the duration of each
phase is equal to a given granularity; this term was defined in Chapter 2. As a result, each

phase has the same duration. Let us define the duration of a phase as 7.
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The period length m of the encounter pattern indicates the total time over which the
pattern repeats itself. For example, if the duration of each phase is one day and m = 21, the
encounter pattern represents the regular interactions between nodes x and y over a three-
week period. The phase ¢ indicates the interval within the period where regular encounters
occur. For example, continuing the previous example, if pg = 1 then nodes x and y encounter
each other regularly on the first Sunday in the three-week period, assuming po occurs on a
Monday.

During an encounter between two nodes, and at no other time, messages can be ex-
changed between the two encountering nodes. For instance, in Figure 3.1(a), oo encounters
o1 during phase . Furthermore, mobile nodes can relay packets among themselves. For
instance, as illustrated in Figure 3.1, a message can be routed from og to 0 through o at

the cost of two transmissions.

Table 3.1: Encounter matrix for Table 3.2: Encounter matrix for

node Og. node O;.

Po|P1|P2|P3 Po|P1\P2|P3
0O1//111101]0 Op||1]11(01]0
0,/[0(0/0/0 O,1]11(0]1
0310/10(0]1 03//0]0(01]0

Table 3.3: Encounter matrix for Table 3.4: Encounter matrix for
node O;. node Os.

Po|P1|P2|P3 polpi|p2lps

Using encounter patterns, we can solve a variety of problems in routing a message from
a source to one destination (unicast), or from a source to a set of destinations (multicast),

such that either the energy cost or the time delay for message delivery is minimized.

Definition 6. The encounter matrix summarizes all periodic encounters for a given node.

We define the encounter matrix M* = [mlj‘,] for mobile node oy, as:

m

1 0 otherwise

where 0 <k<(n—1), k# jand 0 <t <(m—1).

We note that the number of nodes encountered by any given node, and thus the number

of rows in M¥, is expected to be much smaller than n. The encounter matrices for the four
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nodes in Figure 3.1 are given in Tables 3.1-3.4.

3.3.1 The encounter graph for unicast routing

If we combine the encounter matrices for all the mobile nodes in the network, we can create
an encounter graph that represents all the observed periodic patterns for a given set of nodes.
For example, Figure 3.2 gives the encounter graph corresponding to the behaviours shown

in Figure 3.1.

t=0 t=1 =2 =3

Figure 3.2: An unicast graph model reflecting the encounter patterns in Figure 3.1

In this graph, there are four nodes in the network, and all node pairs have periodic
encounter patterns with a period of four intervals. In order to represent a mobile node
during different intervals, each node is modelled using a vertex with the same shape at four
time intervals in the graph. To denote the same node at different interval and encounters
between node pairs, two types of edges, horizontal edges and vertical edges, are used in the

graph respectively:

e Horizontal edges connect vertices with the same shape to represent the same node
at different intervals. This type of edge only connects vertices with the same shape
during two adjacent intervals. Because this graph models periodic encounters, when
the last interval of a period is reached, a horizontal edge connects the node back to
the first interval of the next period to reflect the encounter pattern repeating in the

next period.

e Vertical edges link two nodes at the same interval to illustrate encounters between
these nodes. Encounters happen only within one time interval, so links from one

node at one interval to another node at another interval are not permitted.

With this model, unicast routing with respect to both the minimum end-to-end energy

consumption and minimum end-to-end delay problems can be treated as shortest path prob-
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lems. The two problems can be instantiated by assigning different edge weights in the

graph.

e Communication Delay In this problem, if a node decides to store the message and
carry it on to the next time interval to disseminate it in the future, this yields a commu-
nication delay equal to the duration of the current time interval. Because all intervals
in the graph model have the same duration, each horizontal edge has the same weight.
In contrast, if a node decides to transmit the packet immediately, it needs to prepare
the message for transmission, and then the message needs to propagate over the wire-
less channel. However, these delays have already been embedded in the duration of
the corresponding interval. Thus, all vertical edges have a zero weight.

e Energy consumption In the energy consumption problem, if a node decides to carry
the message on to the next time interval and disseminate it in the future, this requires a
very small amount of energy for data storage during the current time interval. There-
fore, all horizontal edges have a relatively small non-zero weight. In contrast, if
a node transmits the message during an interval, each vertical edge has a constant

energy cost that is much larger compared to the energy required for message storage.

Another important function from networks is to deliver messages to multiple destina-
tions, i.e., multicast routing. However, our model presented in Figure 3.2 targeting at single
source and destination is not able to address problems of multicast routing. In wireless
communications, specially in time division multiple access, all neighbours within the trans-
mission range can hear from the source. The energy cost only needs to be counted once no
matter how many receivers are within the neighbourhood. However, in our previous graph
model, costs of transmission to neighbours will be added separately. For example, in Fig-
ure 3.1, node o] can transmit to nodes op and o0, at the same time during interval Iy. In the
graph, because both outgoing edges from o; to og and 0, have non-zero energy weights, the
total energy cost for this single transmission will be counted twice. Thus, the graph model

in Figure 3.2 is not suitable for multicast routing.

3.3.2 The encounter graph for multicast routing

To mimic scenarios of multiple receivers of a single transmission, in the graph model for
multicast routing shown in Figure 3.3, two vertices now are used to represent a node during
an interval: one describes the receiving/processing module carried by this node, and the

other one stands for the transmitting module. The receiving/processing module is described
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using a regular vertex, and the transmitting module is represented by a dotted vertex with the
same shape. As an example shown in Figure 3.3, this graph model has the same connectivity

as the graph model for unicast routing in Figure 3.2.

t=0 t=1 t=2

Figure 3.3: A multicast graph model reflecting the encounter patterns in Figure 3.1

There are four nodes whose encounters are represented in the graph. The nodes are
each represented by a different shape (triangle, circle, trapezoid and diamond). There is an
implicit time axis in this graph, from left to right. The four different solid-line instances of
each shape represent the same node during four successive time intervals. That is, the left-
hand solid triangle represents node og during period ¢t = 0, and the right-hand solid triangle
represents og during period ¢t = 3.

The horizontal left-to-right directed edge from one solid-line shape to the next instance
of the same solid-line shape to the right represents the possibility for a node to buffer a
message and carry it forward to successive instants in time. The final edge, from the furthest
right-hand instance of a solid-line shape back to the furthest left version of the same solid-

line shape represents the possibility for a message to be carried forward in time to the next
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repetition of the observed behaviours.

In this example, all encounter patterns have a period length of m = 4, so the graph has
four instances of each solid-line shape. If we had patterns with different period lengths, the
graph would have a width equal to the least-common multiple of the periods.

There are four solid-line instances of each shape, and four dotted-line instances. They
enable us to differentiate between the node in receiving mode (solid), and the same node
in transmitting mode (dotted). For example, the possibility of a transmission from og to o
during t = 1 is represented by the directed vertical arc from the dotted triangle in interval
t =1 to the solid circle in the same interval. Messages can only be transmitted from one
node to another during the same interval. Thus, transmission arcs cannot cross intervals.
They may, however, be directed vertically either up or down, depending simply on the
relative positions where two nodes have been positioned in the graph. The vertical arcs
represent the encounters in the binary time series; it is these encounters that make message
transmission possible.

Lastly, there is a single “darker solid” lined version of each shape. This is a convenient
representation of each node as a potential destination vertex in the graph model. For exam-
ple, if our goal is to find the minimum delay path for a message from o to 0, one possibility
is to send it from og to 01 during t = 1, and then from o, to 0, during r = 2. This route could
be found algorithmically by asking for the shortest path (under a few constraints) from oq
att =0to o2, i.e., to the destination version of 0;.

In summary, we use three types of vertices in our graph model: receiving vertices V%,
transmitting vertices V7 and destination vertices VP. The edges used to connect these

vertices can be grouped into four categories:

e Horizontal edges connect vertices with the same shape to represent the possibility for
a node to buffer and carry a message from one phase to the next. We denote these
edges as eﬁo where subscript ¢ indicates the phase number, and subscript o defines the

node number.

e Internal edges connect a node’s receiver to its transmitter. The weight on an internal
edge can be used, for example, to represent the energy cost of transmission. These

edges are denoted ¢] .

e Vertical edges link two nodes in the same phase, and represent an encounter between

Vv

! ol.o2» Where o1 and 02 are the indices of the two

these two nodes. They are denoted e

nodes.
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e Destination edges link receivers to their destination vertex to capture the fact the

message has been delivered to its destination. They are denoted e{?o.

We now use this terminology to describe the situation where a node can deliver a mes-
sage to a set of destinations. Here, we assume that each node at a particular phase either
broadcasts the message to all encountered neighbours or does not transmit at all. Using the
encounter matrices M*,0 < k < n— 1, the encounter graph is the weighted directed graph

G = (V,E,W) where:

o VR = {vfi |0<i<n—1,0<rtr<m—1} €V denotes the receiving modules for a
set of n nodes during a period of length m phases,

o VI = {vzi |0<i<n—1,0<t<m—1} €V denotes the transmitting modules for
a set of n nodes during a period of length m phases,

o VP ={yP|0<i<n—1} €V denotes destination vertices for a set of n nodes,

o = {ef’, = (v;,v} 1) Yoi € 0, 0 <t <m— 1} € E denotes the horizontal edges,

o EY —{et” v R)Vol,ojeO 0 <t <m-—1} € E if and only 1fm =1}
denotes the vertical edges,

o E'={e}, = (VF,v];)Yoi € 0, 0 <t <m—1} € E denotes the internal edges,

o EP = {ef; = (v};,WP) Yoi € 0, 0 <t <m—1}} € E denotes the destination edges
and

e W represents a function on an edge returning the weight assigned to it.

This graph is generic enough to be used to represent both energy and delay costs simply by

adjusting the weights W assigned to each edge in G. We discuss this next.

Communication delay

The encounter graph can be used to solve the minimum delay problem as follows. If a
node decides to store the message and carry it on to the next phase to disseminate it in the
future, this yields a communication delay equal to 7, i.e., the duration of the current phase
p:. Transmission preparation (the weight for internal edges) yields a small amount of delay
between the receiving module and the transmitting module, and signal propagation (the
weight for vertical edges) also introduces another delay. However, we can treat both delays
as zero because both are embedded within the weight of the horizontal edges 7, which is the
duration of each phase. In addition, the weight of destination edges is always zero because
they are artificial edges which do not add any delay in the physical environment. Therefore,

the weights of the edges for minimum delay routing are (see Figure 3.4):
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Figure 3.4: Graph model for the minimum delay problem

o Vell cEH W(et)=r1.
o Ve cEV, W(e)=0.
o Vel cEI, W(e!) =0.

o VeP c EP W (eP) =0.

Energy consumption

The encounter graph can also be used to find the minimum energy consumption for routing
a message. If a node decides to carry the message on to the next phase and disseminate it
in the future, this requires a very small amount of energy for data storage during the current
phase p;. In this chapter, we let € be the energy cost for a node to store data during a
phase with duration 7. If a node carries the message on to the next phase, this results in an

energy cost, &, to store the message. In contrast, if the node decides to transmit the message
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Figure 3.5: Graph model for the minimum energy consumption problem

immediately to a set of encountered nodes during the current phase, a certain amount of
energy, depending on the application, is required. In this chapter, we assume homogeneous
networks where each transmission costs the same amount of energy, p. However, our model
can be used to model the case where the energy required to transmit a message between two
nodes depend on when and where they meet. For instance, in some encounters the nodes
can be closer or further apart. Formally, to model energy costs for routing, the weights of

horizontal and vertical edges can be defined as follows (see Figure 3.5):
o Vel c EH W (el) =e.
o V" cEV, W(e") =0.
o Vel cEI, W(e!) =p.
o Vel c EP, W(eP) =0.
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3.3.3 Domain constraint

In some scenarios, an intermediate node within two consecutive encounters during the same
phase may participate in the optimal route. For example, if node og has a packet for node
0, during phase pg, the route with the minimum delay in Figure 3.3(a) is Vg,o — v&o —
Vlf,o — v1T70 — v§70 — vlz) with zero delay if the propagation delay and processing delay are
negligible. In this route, the intermediate node o; acts as a bridge for two consecutive trans-
missions during the same phase. However, because the encounters between node o; and
nodes og and o, both take place during the same phase and the order of encounters is un-
known in the graph model, we forbid such type of retransmissions during the same phase.
Therefore, we propose a domain-oriented constraint called NOT (NO reTransmissions dur-
ing the same phase in the graph). However, if a retransmission is required for a node during
a particular phase, e.g., node o) at phase py with a transmission from node oy during the
same phase, it has to wait for the same phase during the next repetition of the periodic
encounters. As a result, each retransmission costs an additional delay that equals the to-
tal period of time of such a periodic pattern. Because of this domain-oriented constraint,
conventional shortest path algorithms cannot be used to find optimal routes satisfying the
constraint. In the next section, we discuss mathematical optimization and modifications
of Dijkstra’s algorithm [29] that enforce the NOT constraint in their results for both the

minimum delay and minimum energy consumption problems.

3.4 Mathematical optimization and algorithms

One of basic functions of a network is to distribute information to various groups of des-
tinations with the objective to minimize the usage of resources including overall energy
consumption or/and communications delay. Given a set of destinations, our objective is to
distribute the packet to them using the minimum delay or the minimum energy consump-
tion. We need to find a tree structure rooted at the source that connects desired destinations
in the graph. The tree in our graph model is a Steiner Tree. Our objective is to find the
minimum weighted Steiner Tree that connects the source to all destinations [91, 92].

In this section, we introduce two approaches, binary integer programming and opti-
mal/approximate algorithms, to find routes for communications in our graph model. We

discuss the multicast version of the problem as the unicast is a special case of multicast.
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3.4.1 Binary integer programming

Mathematical programming is a powerful tool that can be used to solve optimization prob-
lems. Targeting both the minimum energy consumption and minimum delay problems by
assigning different weights on our graph model, the optimal route is a set of sequential
edges where the summation of weights on those edges is the minimum. If we treat all edges
as variables, an edge either does participate in an optimal route (its value is 1) or does not
(its value is 0). This general approach is called the binary integer programming. In this
section, we define the formulation to find a minimum weighted Steiner Tree that satisfies

our constraints in the graph model.

The minimum delay problem

In the minimum energy consumption problem, our goal is to find the Steiner Tree whose
total weight is the minimum. This is because the energy cost on the path from the source to
a destination is isolated from other paths. The total weight of a tree is the cumulative cost
of all these paths. However, this strategy is incorrect for the minimum delay problem where
there are multiple destinations in a packet. The reason is that the time to deliver a packet
to one destination may partially overlap the time to deliver the packet to other destinations.
For example, as shown in Figure 3.3 a), if node 0, has a packet for nodes og and o3 at the
beginning of phase pg, the minimum delay will be 27 instead of 37 because the delay (7)
to deliver the packet from 0, to o is embedded within the delay (27) of path from o, to 03.
Therefore, when we count the minimum delay, it is incorrect to simply add delays from all
paths. This special phenomenon cannot be modelled by linear programming, but we can

solve this problem algorithmically; this is discussed in detail in the next subsection.

Qi

&

Figure 3.6: Illustrations for edge notations

70



The minimum energy consumption problem

In this binary integer program, each edge in the graph has a weight. Each edge either
participates in the minimum weighted Steiner Tree or it does not. Therefore, if we set each
edge as a variable, this variable has value either one or zero. Because each edge also has a
weight, our goal is to minimize the total weight of the Steiner tree being used in order to
connect all desired destinations. To define the formulation of all edges, we first have a look
at different types of vertices. As we described before, we have three types of vertices in
our graph model. Receiving and processing vertices have five categories of edges in either
incoming and outgoing directions. Transmitting vertices have only incoming internal edges
and outgoing vertical edges. Lastly, destination vertices have only incoming destination
edges.

A vertex vf, € VR has five types of incoming and outgoing edges as shown in Figure 3.6:
a set of vertical incoming edges, a set of horizontal incoming edges, a set of horizontal out-
going edge, a set of vertical outgoing edge to the transmitting module and an edge to 7.
The combinations of their corresponding values are also presented in Table 3.5. The total
weight of all incoming edges must be zero or one. Otherwise, it violates the definition of a
tree structure where there is only one path from the root to every node on the tree. In addi-
tion, a vertex vfl. € VR has four different roles in routing. First, it can be the source vertex.
As shown in the seventh column of Table 3.5 where the cross sign represents the invalid
combination of values, it has no incoming edge, and the edge to its destination vertex must
not be enabled. Second, this type of vertex can be the vertex on the tree which directly con-
nects to its destination vertex. The third role for this type of vertex is to be an intermediate
vertex, which does not directly connect to the destination vertex. The last one is a vertex
that does not participate to form the tree. Similar to the last two roles, intermediate vertices
and vertices which are not on the tree also have some invalid combinations. In Table 3.5,
the last column summarizes all invalid scenarios for the last three roles of receiving and
transmitting vertices.

A vertex vZ ; has the following properties shown in Figure 3.6:

1. if vtT7 ; € VT is an intermediate vertex on the tree, e{’i = 1 while Ze}%k > 1 for all

VR

o €0ifmi, =1.

2. if vl; € VT is not on the tree, e/ ; = 0 while Y ¢/;, =0 for all o, € O if m, = 1.
R

Vt,k

A vertex cP has the following properties shown in Figure 3.6:
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subject to

o 1 if used in the minimum Steiner tree
~ | 0 otherwise

{ 1 ifvPeD

0 otherwise

e£17i+efl- =0 where vfi =R

st,s

m—1
D __
Z €
t=0
\%
Yerit
Vz.f

I | H R _
e ;e >1 where v, = vR

E er7i§1 where vfi#vfm and Vo;,0;€ Oand 0 <t <m—1
T
Vi

14 H [ H D R 4 R
Zet,/}i +el ;<€ +e;+e;where v #vg and Vo;,0; € Oand 0 <t <m—1
T

vt‘j

e; <efl | where vl # V8 “and Vo;,0;€ Oand 0 <t <m—1

Ze}iji +eﬁ1’i > ef{i where vfi # vf,_s and Vo;,0;€ Oand 0 <t <m—1
T

Vi j

Zezﬂ > efi where vfi # vft’s and Vo;,0; € Oand 0 <t <m—1
T

Vij

Vij

Zexh,-—i—eﬁhi < ef,-%— 1 where vﬁi # vfm and Vo;,0; € Oand 0 <t <m—1
T

Vi

eii SZeXw- where Vo;,0; € Oand 0 <t <m—1
R

vt,j

eii > exw- where Vo;,0; € Oand 0 <t <m—1 ifm;t =1

Figure 3.7: Binary Integer program for routing in our graph model
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1. Z:":_Ol efi = 1ifv? is one of the destinations
2. sz:_ol e?i = 0if v? is not one of the destinations

To enforce all properties regarding different types of vertices, we have the formulation
shown in Figure 3.7. Given a directed graph G, let w(e) be the cost of an edge e € E. Given

a source vertex VR

+,s and a set of destination vertices D, we present our BIP formulation for

the minimum edge-weighted directed Steiner tree problem.

Table 3.5: Combinations of edge values to identify i € V¥

Constraint ‘ ZVZj etT’ ji ‘ et’i 1i ‘ e{’i ‘ efl- ‘ efi ‘ vﬁl/s ‘ vfi % ‘
0 0 0 0 0 X vV
Co 0 0 0 0 1 X X
Cg 0 0 0 1 0 Vi X
Cs,Cy 0 0 0 1 1 X X
C; 0 0 1 0 0 Vv X
C7,Cy 0 0 1 0 1 X X
C7,Cg 0 0 1 1 0 Vv X
C7,Cs,Cy 0 0 1 1 1 X X
Cs 0 1 0 0 0 X X
Co 0 1 0 0 1 X X
0 1 0 1 0 X vV
Co 0 1 0 1 1 X X
0 1 1 0 0 X vV
Co 0 1 1 0 1 X X
0 1 1 1 0 X V
Co 0 1 1 1 1 X X
Cs 1 0 0 0 0 X X
1 0 0 0 1 X vV
1 0 0 1 0 X vV
1 0 0 1 1 X vV
Cy 1 0 1 0 0 X X
C; 1 0 1 0 1 X X
C; 1 0 1 1 0 X X
C; 1 0 1 1 1 X X
Co 1 1 0 0 0 X X
Cs 1 1 0 0 1 X X
Cs 1 1 0 1 0 X X
C10 1 1 0 1 1 X X
Cs 1 1 1 0 0 X X
Cii 1 1 1 0 1 X X
1 1 1 1 0 X vV
1 1 1 1 1 X V
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There is a total of 13 constraints in our formulation.!

e Constraint C treats each edge as a variable to determine whether that edge is on the

optimal Steiner tree.

e Constraint C, controls destination vertices. All desired destination vertices on the
tree must have one incoming edge. Other destination vertices that do not belong to

the destination set D must not have any incoming edge at all.

e Constraints C3 and C4 are used to constrain the source. A source has no incoming
edge (see C3). In addition, it must have at least one outgoing edge except the destina-

tion edge (see Cy).

e Constraints Cs to Cy; are used to regulate receiving and processing vertices. For
example, constraint Cs requires that every receiving and processing vertex can only

have one incoming vertical edge.

e Constraints Cj» and Cj3 are used to control each transmitting vertex. If its internal
edge is on the tree, at least one of the vertical outgoing edges must also be on the tree.

Otherwise, both incoming and outgoing edges must not be included on the tree.

Even though we have discussed the domain-oriented constraint in the previous section,
no constraint in our formulation is dedicated to it. However, if we have a close look at
Table 3.5, our domain-oriented constraint is enforced by combining different constraints in
the formulation. We know that in a logical tree, each vertex has only one incoming edge and
at least one outgoing edge. However, if we look at two valid scenarios presented by the last
two rows in Table 3.5, both incoming vertical and horizontal edges can be included on the
tree. It seems that they are contradictions to the definition of a logical tree, but this is valid
because of our domain constraint and the repetition of periodic encounters. For example, if
a node receives a packet from another node (one of the incoming vertical edges is enabled),
this node can store the packet and transmit it in the future. If the best time to transmit this
packet is at the same phase during the next period, as a result, both incoming horizontal and

vertical edges will be included on the tree.

3.4.2 Optimal and approximate algorithms

We have to treat the minimum energy consumption and minimum delay problems differ-

ently. This is because the nature of time in the minimum delay problem is quite different

ITable 3.5 provides details about the functionalities of each constraint in this group. In that table, cross
signs represent violations; check signs represent valid scenarios.
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from that of energy usage in the minimum energy problem. In this section, we present
approaches that address these two problems separately.

1) The minimum delay problem:

The minimum delay problem in routing is relatively simple. The main result can be

found in the following theorem.

Theorem 1. The minimum delay in routing for a set of destinations equals the maximum of

all pair-wise minimum delays between the source and destinations.

Proof. We prove this theorem by induction. Let us use d to represent the number of desti-
nation nodes in the graph.

If d = 1, then a path with minimum delay from the source to that node must also yield
the the minimum delay for unicast routing.

If d = 2, we can pick one node first and find a path with the minimum delay from the
source to it. Then, we find a path with the minimum delay from the source to the second
node. If the delay to reach the second node is less than the delay to reach the first node,
the delay to reach the second node must be embedded in the delay to reach the first node.
Otherwise, the minimum delay to reach the second node must include the delay to reach the
first node. Therefore, in either case, the maximum of the minimum pair-wise path delays
among two nodes is the minimum delay in multicast routing.

Let us assume our theorem is true whend =n — 1.

If d equals n, for every combination of n — 1 destination nodes, the minimum delay
to reach those n — 1 destinations is the maximum of all minimum path delays between the
source and n — 1 destinations. By introducing one extra destination node, we need to show
that the theorem statement holds as well. We can now use the same argument for the case

where d = 2 to complete the induction argument. O

From our theorem, many classical shortest path algorithms can be used to solve the
minimum delay problem with small modifications. The algorithm used in this chapter for
the minimum delay problem is a modification of Dijkstra’s algorithm [25]. Its pseudo-code
is presented as Algorithm 1. There is one difference with respect to the original algorithm
in [25]: the if-statement at lines 18 to 21 is inserted to enforce the NOT constraint. This if-
statement does not re-direct the optimal route; it only adjusts the weight of related vertices
to avoid transmissions that violate the NOT constraint. For example, in line 19, if the
predecessor and successor of the current vertex on the route are from the same phase, it is a

violation of the NOT constraint. If the retransmission must be part of the optimal route, that
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means the edge in the graph for the retransmission represents the only encounter between
both intermediate nodes. In other words, there is only one path between the source and the
destination. Because of our domain-oriented constraint, the retransmission to its successor
has to wait, or the packet has to be held until the same phase in the next period. As shown
in line 20, data storage requires an additional energy cost, € X m units of energy, to store the
message for a whole period with m phases. The principle of the modification in Algorithm 1
is: whenever there is a violating retransmission, we eliminate the retransmission by having

the node to store the packet until the same encounter at the next period in time. Because the

Algorithm 1 ModifiedDijkstra(G, D, w, s)
1: for each vertex v € V|G| do

2: d[v] //initialize the distance to be infinite
3:  plv] < null  /lset the predecessor to be empty
4: end for
5. d[s]«+ 0 /finitialize the source distance
6: S0
7. Q<+ VI[G] //initialize the priority queue
8: while Q # 0 do
9 u = EXTRACt-MIN(Q)
10:  if u € D then
11: D < D\{u}
12:  end if
13:  if D == 0 then
14: break
15:  end if
16:  for each vertex v € Ad j[u] do
17: if d[v] > d[u] +w(u,v) then
18: /Icheck whether the predecessor/successor and the current vertex are from the
same phase
19: if phaseOf(v) == phaseOf(p[u])
& & phaseOf(v) == phaseOf(u) then
20: dv] < d[u]+€*xm
21: else
22: d[v] < d[u] +w(u,v)
23: end if
24: plv] < u
25: end if

26:  end for

27: end while

28: // retrieveTree function retrieves the tree by traversing the predecessor recorded at each
destination back to the source

29: T =retrieveTree(G,D,s)

30: return T
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cost of storing the message has already been included in the final cost in Algorithm 1, the
route returned is an optimal route that does not violate the NOT constraint. Note that if we
remove lines 18 to 21 from the algorithm, this part of the algorithm is exactly the same as
Dijkstra’s algorithm. In other words, the path to each destination generated by the algorithm
which satisfies our constraint is guaranteed to be the optimal route, and furthermore, it can
be found in polynomial time based on the complexity of Dijkstras algorithm. In summary,
our modified Dijkstra’s algorithm finds a shortest-path tree for a given set of destinations.
Based on Theorem 1, the minimum delay to reach all destinations equals the weight of the
longest shortest path on the tree.

In order to prove the correctness of Algorithm 1, we prove that the tree returned from

that modified algorithm is the shortest path tree.

Theorem 2. Given a source and a set of destinations, Algorithm 1 returns a shortest path

tree satisfying the NOT constraint.

Proof. As we discussed before, the only difference between Algorithm 1 and Dijkstra’s
algorithm is that we enforce the NOT constraint from line 18 to 21. As a result, Algo-
rithm 1 only examines paths that satisfy the NOT constraint, and does not change the logic
of Dijkstra’s algorithm. Therefore, the path to each one of the destinations returned by Al-
gorithm 1 satisfies the NOT constraint, and must be the shortest based on the correctness
of Dijkstra’s algorithm. Because all optimal paths originate from the same source, if we
combine those optimal paths, the tree returned must also be a shortest path tree satisfying

the NOT constraint. O

Using Theorems 1 and 2, the weight of the longest path between the source and any
destination returned by Algorithm 1 is the minimum delay in order to deliver a packet to
multiple destinations.

It is obvious that the if-statement from line 18 to 21 only updates the weight of the cor-
responding vertices. It does not bring additional complexity into the algorithm. Therefore,
based on the complexity of Dijkstra’s algorithm, our algorithm has polynomial complexity.

2) The minimum energy consumption problem:

As we mentioned before, the minimum energy consumption problem can be solved
by finding the minimum weighted Steiner Tree in the graph where the destination vertices
are leaf nodes [101]. However, the minimum weighted Steiner Tree problem is a classical
NP-hard problem [41] and has been well studied [62, 63, ]. The minimum weighted

Steiner tree problem can be further divided into two categories: node-weighted Steiner
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tree and edge-weighted Steiner problem. The minimum energy consumption problem in
our graph model falls into the second category. In graph theory, the minimum weighted
Steiner tree problem is NP-hard in general; however, studies have shown that the Steiner
tree problem can be solved in polynomial time in many special graph types such as Series-
Parallel graphs, Halin graphs, K-planer networks and strongly chordal graphs [121, 1.
Unfortunately, our graph model does not belong to any one of these graph types.

Previous works have presented both exact algorithms and approximation algorithms
that are based on some heuristics. The exact algorithms that have been proposed are all
exponential algorithms [30, 47, 84]. They are not practical for graph models with a large
number of vertices. Therefore, we focus on approximation algorithms which can find the

result faster, although without the guarantee of optimality. Many works have been con-

ducted on heuristics [77, , , ]. The most well-known heuristics are from
[77] and [127]. In their paper, , used the min-
imum spanning tree heuristic on source and destinations; used

Algorithm 2 Shortest Path Heuristic to find minimum weighted directed Steiner
tree(G,D,w,s)

I: T+ {s} /finitialize the result tree

2: shortestPathTree = null

3: while D #£ 0 do

4:  minCost ¢ oo

5 P<«0 /Ithe set used to hold the selected path

6: V< null
7. d <+ null
8
9

for each vertex v € T do
if shortestPathTree[v] == null then

10: shortestPathTree[v]<—ModifiedDijkstra(G,D,w,v)

11: for each destination d € D do

12: if cost(path(v,d)eshortestPathTree[v])<minCost then
13: minCost = cost(path(v,d))

14: Vv

15: d«d

16: P<«—path(v,d)

17: end if

18: end for

19: end if

20:  end for

21:  T«TUP\{v}
22:  D«D\{d}
23: end while

24: return T
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the minimum cost paths heuristic. Both algorithms can achieve a O(knlogn) complexity
where k is the number of destinations; however, these algorithms do not work on directed
graphs.

In order to find a heuristic for directed graphs, we decided to modify previous heuristic
algorithms for undirected graphs. The minimum spanning tree heuristic cannot be applied
to our graph model because the destination vertices has no outgoing edges. The algorithm
cannot construct a complete graph among the source and all destination vertices. Therefore,
we focus on the minimum cost path heuristic.

In the minimum path cost heuristic [127], the algorithm first finds a path from the source
to one of the destinations that has the minimum cost among all destinations. Using the path
as the base of a tree, the algorithm selects the next destination that is the closest to the base
tree and merges the selected path to that tree. The algorithm keeps doing this until the last
destination vertex has been included in the tree. This is why the algorithm has O(knlogn)
complexity. There are k destinations in the tree, and each one of them is required to run
Dijkstra’s algorithm once. As we just mentioned, the destination vertices in our graph
model have no outgoing edge. Thus, there is no path to any vertex in the graph by using
the destination vertex as the source. To change that, we make a small modification from
the original algorithm. Instead of running Dijkstra’s algorithm from destination vertices,
the next closest destination vertex can be used by running Dijkstra’s algorithm from all
intermediate vertices on the result tree. A detailed algorithm is described in Algorithm 2.
In the algorithm, we introduce a storage space, shortestPathTree, to store the shortest-path
tree rooted at each intermediate vertex that is returned by our modified Dijkstra algorithm in
Algorithm 1. In addition, path(v,d) represents the shortest path from vertex v to destination
d in the shortest-path tree rooted at v. In summary, Algorithm 2 incrementally builds the
heuristic tree by inserting a path to one of the destinations at a time.

In the following analysis, we show that our algorithm is a k-approximation algorithm in

the worst case.

Theorem 3. Given any directed graph G = (V,E), a source vertex s and a set of destina-
tions D where D C'V and |D| = k, Algorithm 2 always provides a solution to the minimum

weighted directed Steiner tree problem that is at most k times the optimal solution.

Proof. According to Algorithm 2, there is an order among all destinations for the sequence
that each one has been added into the tree. For simplicity, we name the destination vertices

as dy,dp,---d,. A destination vertex with a smaller index is inserted into the result tree
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earlier. Correspondingly, the same sequence can be used to name the destination vertices in
the optimal directed Steiner tree.

Given the optimal tree for the minimum weighted directed Steiner tree problem for k&
destinations, T9FT, let ¢°F7 (u,v) be the weight of the path between vertices u and v on the
optimal tree. For the tree that is incrementally built by Algorithm 2, let ¢(x,y) be the weight
of the path between vertices x and y. Vertices without OPT notation are in the tree built by

Algorithm 2, and the ones with OPT notation are from the optimal tree.

Insert d, into our tree T

O

S

TOPT

Figure 3.8: Partial tree 77 and

At the beginning, our algorithm creates a path with the smallest cost connecting the
source and one of the destinations. As a result, our partial tree 77 is a single path as shown
in the left part of Figure 3.8 2.

Because the path selected by Algorithm 2 is the shortest path between the source and

any one of the desired destinations, the following inequality holds.
c(s,di) < O (s,dy) (3.2)

Next, the algorithm adds another destination d, into the tree. For illustration, please
refer to Figure 3.9. When our algorithm adds the second destination d5 into the tree, there
is an intermediate vertex on the path (s,d;) in the left part of Figure 3.8 that has the smallest
cost to connect dy. Let us call this vertex v,. Both v, and d; in this example can be mapped
to ¥ and d in Algorithm 2 at each iteration. Similarly, there is a corresponding vertex on
the optimal tree, T9F7, that connects d to the path between s and d;. Let us call it v9*7.

Because the path between v, and d, has the smallest cost over all paths between s and d,

we have the following inequality.

2 All the figures in this proof are for demonstration only, vertices such as vy, v20P T and so on can be any

vertex on the corresponding trees.
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c(va,dy) < c(shortestPath(s,d;))
< COPT (S,VZOPT) +C0PT (VZOPT,dz)
(3.3)
Insert d,into our tree T

S

TOPT

Figure 3.9: Partial tree 7, and

When our algorithm adds the third destination d3, with the same argument before, there
are vertices v3 and v?P T in our tree and the optimal tree connecting d3. Because of the
shortest path heuristic in Algorithm 2, the cost between path v3 and ds in our tree must be

less than or equal to the any path between s and d3 in the graph. Therefore,

c(v3,d3) < c(shortestPath(s,ds))
S COPT (S, V?PT) + COPT (V3OPT ’ d3) (3'4)
Insert d,into our tree T

TOPT

Figure 3.10: Partial tree 75 and

The same analysis applies to each insertion of one destination. When the last destination

dy is inserted, we have the inequality shown in Equation 3.5.
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c(vi,dy) < c(shortestPath(s,dy))

< COPT (S, V]?PT) 4 COPT (kaPT,dk) (35)

After including all destinations, the cost of our tree, T, is:
c(T) =c(s,dr) +c(va,da) + -4 c(vi,dy) (3.6)

Similarly, the cost of the optimal tree, TOPT is:

COPT(T) — COPT (S,dl) +C0PT (VQOPTadZ)

4o OPT(VOPT ) (3.7)

By applying the inequalities in Equations 3.2, 3.3, 3.7 and so on, we have:

o(T) < O (s,dr) 4+ (s,097T) + O (V7T )

+”__i_COPT(S,v]?PT) _i_COPT(v]?PT’dk)
k
— C(TOPT)+ZCOPT(S,V?PT)
i=2
and
k
c(T) < 1+Zi:2C0PT(S7V?PT)
C(TOPT) — C(TOPT)

(3.8)

. . Z/\ COPT (S V(JPT) . . OPT\ :
Therefore, our algorithm is a 1+ ':ZL(TW approximation where c(s,v"" ) is the

shared weight with the existing subtree in the optimal solution for a destination when it is
added into the tree. There are two extreme cases for this shared weight. First, the newly
added destination does not use any edge from existing subtree; second, the newly added
destination fully utilize edges on existing subtree to be reachable by the source s. Therefore,

it is easy to see that 0 < 97 (5,v9PT) < ¢(TOPT). In the worst case scenarios where all

cOPT (5, v9PT) = ¢(TOFT), we have

_ oPT
c(T) Sl—i—(k 1)xc(T ):k
c(TOPT) c(TOPT)
As aresult, ¢(T) < k*c(TOT) and Algorithm 2 is a k-approximation algorithm. O

In Algorithm 2, almost every vertex on the result tree has to run the modified Dijkstra’s

algorithm in Algorithm 1 using itself as the source. Only vertices from the path to connect
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the last destination do not need to do that. Therefore, given the resulting tree from our algo-
rithm with |7;| vertices, the running complexity of our algorithm is at most O(|T;|nlogn).
In 1997, Zelikovsky showed that there exists a [-restricted (level-restricted) Steiner tree
that can achieves an approximation guarantee of factor kT to the optimal tree for directed
acyclic graphs [142]. To generalize and extend that study to arbitrary directed graphs,
Charikar et al. presented a [(l — l)k%—approximation algorithm with the running time of
O(n'k?) for any tree level [ € [1,n], where n is the number of vertices, and k is the number
of terminals [21]. An improvement on this approach, resulting in a time complexity of
O(n'k! + n’k 4 nm), where m is the number of edges was presented by in [55].
Compared to previous results, our algorithm has several advantages. First of all, our
bound of k is the worst case, and the results from our algorithm on most cases are much
closer to the optimum and sometimes are the optimum. Secondly, our algorithm is sim-
ple. Our k-approximation runs in O(nlogn) time complexity, which is dominated by the
complexity of Dijkstra’s algorithm, and can be implemented more efficiently using data
structures such as binary heap and Fibonacci heap. In other studies, the algorithm has a
running time of O(n?k?) even for a 2 level restricted Steiner tree. Lastly, our approximation
only depends on one parameter, k, whereas the /(! — l)k% approximation mainly depends
on the factor of /(/ —1). In some graphs (like the ones in our graph mode), there is no
guarantee about the depth of the returned /-restricted Steiner tree. In other words, there
may not exist /-restricted Steiner tree with a small number /. Therefore, as the returned
level [ increases, the factor /(/ — 1) will become worse. For example, if & is equal to 5, a

3-restricted Steiner tree with a factor 3(3 — 1)5% is worse than ours with a factor of 5.

3.4.3 Unicast and broadcast versus multicast

In the previous discussion, distributing packets aiming at a set of destinations is called
multicast whereas unicast and broadcast are just special cases of multicast. When there is
only one destination, finding the minimum Steiner tree requires finding the shortest path
between the source and the destination. Both the minimum delay and minimum energy
consumption problems in unicast routing are relatively easy to solve by using Algorithm 1.
To achieve broadcast in our model, our objective is to connect the source to all destination
vertices with the minimum Steiner tree rather than finding the minimum spanning tree to
connect all vertices in the graph. With some variations, our graph models can also solve

unicast and broadcast routing by treating them as special cases of multicast routing.
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3.5 Performance evaluation

In order to evaluate our method, we propose two sets of experiments where one set uses

synthetic traces, and the other one uses real traces.

3.5.1 Evaluation metrics

The complexity of the network is controlled by two different parameters: the number of
nodes in the network and each node’s radio range. Increasing the number of nodes will in-
crease the number of vertices and horizontal edges. In addition, increasing the radio range
increases the coverage area of each sensor, which leads to more encounters. In this section,
we first present experiments using synthetic traces in which we evaluate the effectiveness
and efficiency of our algorithms with respect to two parameters: (1) the number of nodes, #,
and (2) the radio range, r. In addition, a third parameter that is the number of destinations
in a packet, d, is introduced for multicast routing. Next, experiments using real mobile
traces are presented. We compare our algorithm to those results obtained via two straight-
forward delay tolerant network routing protocols, epidemic [129] and direct delivery [119]
protocols, because both protocols exhibit optimal bounds on either delivery ratio or net-
work resources. In order to make a fair comparison, we make the assumption that there are
unlimited buffers and energy supply in each node to guarantee the maximum delivery ratio.

Two metrics are examined in our experiments: (1) delivery delay and (2) energy cost.
Regarding both metrics, the lower their values are, the better the performance is. In addition,
in order to have accurate results, each measurement is calculated by taking the average of
each metric from running 100 packets individually with different sources and destinations.
In our simulation, we arbitrarily choose an integer number as the base unit to calculate the
energy costs at different radio range. However, the energy costs in real-life applications can
be obtained based on different transmission standards [38].

In our experiments, we evaluate both unicast and multicast communications. This is

because in some application one type of communications may be preferred over the other.

3.5.2 Experiments using synthetic traces

First, we examine the running time of our algorithm. Our experiments are implemented
in Java with JDK 1.6. All mobility traces are generated using NS2 [3] random way-point
mobility model. Because this mobility model is complex and takes far too long to generate

traces for a large number of nodes, the maximum number of nodes used in our experiments
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is 250. In addition, experiments are conducted within a 400x400 square meter area and all
nodes have a radio range up to 50 meters. Finally, we make the assumption that transmitting
a message is much more expensive than simply holding on to a message during a phase.
This is related to how one assigns cost to the vertical and horizontal edges in our graph
model, respectively. We set the ratio of the energy cost to transmit a message over the
energy cost to store-and-carry a message to be 1000:1. In our experiments, the energy cost
grows quadratically with the radio range [39]. In addition, the duration of each phase is set

to be 60 seconds.

Unicast

In unicast routing, we focus on a special case of multicast where there is one destination. As
we mentioned earlier, both the number of nodes in the network, n, and node’s radio range, r,
are controlled in our experiments. By default, n = 150 and r = 30. The performance of our
algorithm is presented in Figure 3.11 that contains two sets of experiments. The first column
presents experimental results with varying n while maintaining a fixed 30 meters radio
range. The second column shows results for varying radio range while keeping 150 nodes
in the network. We compare our algorithm with direct delivery and epidemic routings. In
order to be as fair as possible to epidemic routing we just accounted for the energy and
delay spent until a route is found. This applies to the rest of our experiments.

Figures 3.11(a) and (b) show the end-to-end delay obtained by running our algorithm.
Recall that both our approach and the epidemic routing provably yield the optimal delay,
thus a comparison is not relevant in this case. As expected, with more nodes (or with greater
radio range) the larger the number of encounters and the higher the probability that a shorter
route is found. This causes decreasing trends in all three approaches in both experimental
settings. However, the direct delivery method has the highest delay because the source
has to wait until it meets the destination directly. In addition, this method does not have
obvious decreasing trends because of the random mobility model where the probabilities to
meet other nodes do not vary significantly.

Figure 3.11(c) shows that the obtained energy cost is fairly insensitive to the the number
of nodes in the network. It turns out that for a given default radio range, all packets can
be optimally delivered in a fairly small number of hops. We believe this is an artifact,
rather than a characteristic, due to the size of the area of interest. In this experiment, direct
delivery uses the least amount of energy because only one transmission is required to deliver

the packet whereas epidemic protocol costs the most because of flooding the packet to
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Figure 3.11: Unicast performance regarding delay and energy cost

every encountered node that does not have a copy of the packet. Our algorithm has a
performance very similar to that of direct delivery. When the radio range increases as shown
in Figure 3.11(d), the energy cost increases for both direct delivery and our algorithm.
This may sound contradictory as larger radio ranges lead to more encounters and thus
more chances of creating better routes. However, as in the case of Figure 3.11(c), the actual
number of hops in the optimal is fairly constant. The curves goes up due to the well known

fact that the energy cost increases quadratically (at least) with the radio range. This increase
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Figure 3.12: Multicast performance regarding delay and energy cost

in energy usage itself dominates any energy savings by having better routes. In contrast, the

energy cost for epidemic algorithm increases at the first, then it drops after a certain point

of time. This is because the increasing usage of energy first dominates the performance,

then as the number of encounters increases, the saving from having better routes dominates

the energy cost. If we keep increasing the radio range to a certain point of time where all

nodes encounter each other during the same phase, the epidemic protocol will always find

a route with only one transmission just like direct delivery.
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In Figure 3.11(e), direct delivery has only approximately 60% of successful delivery
ratio because of the random mobility model. This ratio increases to approximately 75%
as the radio range increases in Figure 3.11(f) because more encounters in the network in-
creases the probability of meeting a certain node. The performance of direct delivery in the
previous studies is calculated based on successful deliveries whose total number is much
less than that of our algorithm and the epidemic protocol. Therefore, its performance could
be overestimated. To cancel this effect, we compare the three approaches considering only
the packets that are deliverable using direct delivery. The result in Figures 3.11(g) and (h)

shows that our algorithm performs as well as direct delivery.

Multicast

In addition to the number of nodes in the network, n, and the node’s radio range, r, we
introduced the number of destinations, d, in our experiments for multicast routing. By
default, n = 150, » = 30 and d = 50. Three sets of experimental results are presented in
Figure 3.12. The first column presents experimental results with varying the number of des-
tinations while maintaining 150 nodes in the network and the radio range to be 30 meters.
The second column shows results for varying the number of nodes in the network while
keeping 30 meters radio range and 50 destinations. The third column gives experimental
results for varying radio range where we use 150 nodes in the network and packets with
50 destinations. In general, the experimental results are similar to the results for unicast
routing except multicast routing costs more time and energy.

Figures 3.12(a), (b) and (c) show the packet delay obtained by the different methods
when varying three parameters. Those results show that direct delivery has the highest
delay in all circumstances because of the random mobility model where the probabilities
to meet other nodes do not vary significantly. As the number of destinations increases,
both our algorithm and the epidemic protocol spend more time searching in the network to
deliver the packet to all destinations. For the other two parameters, as expected with more
nodes and greater radio range both cause more encounters in the network leading to less
time to reach all destinations.

For energy cost, epidemic routing has the highest energy cost in all three settings be-
cause of its nature of flooding, and direct delivery always has the lowest cost. Figure 3.12(d)
shows that more energy is required in order to reach more destinations whereas the results
in Figures 3.12(e) and (f) are very similar to the results for unicast routing. As shown in

Figure 3.12(e), energy cost is fairly insensitive to the the number of nodes in the network
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because of the artifact from the random mobility model due to the size of the area of in-
terest. The energy cost increases as the radio range increases because the energy cost is
quadratically related to the radio range while the actual number of hops in the result is
fairly constant. In general, our algorithm has performance similar to direct delivery.
Similar to what we have discussed in unicast routing, direct delivery is not able to reach
all destinations. Figures 3.12(g), (h) and (i) present the percentage of reachable destinations
for each method. Direct delivery can only reach approximately 60% of the destinations on
average if we vary the number of destinations and the number of nodes in the network.
This probability is determined by the random mobility model. However, the percentage
of reachable destinations increases as the radio range increases because there are more
encounters in the network. Because our results are calculated by taking an average of
delivering packets to all reachable destinations, only delivering to a portion of destinations
makes direct delivery appear to be the best approach. For a fair comparison, we compare
the results of three approaches prorated to the percentage of reachable destinations in direct
delivery. In Figures 3.12(j), (k) and (1) our algorithm has either equal or better performance

compared to direct delivery after prorating the result.

3.5.3 Experiments using real mobile traces

In this section, we use traces collected from real mobile nodes. There are three traces used in
our experiments. Table 3.6 presents the details of these traces. We derived encounters from
each trace and assume derived encounters are periodic encounters, which repeat themselves

at every discrete period of time.

Table 3.6: Real user traces

Source Number Duration Type Analysed|Analysed

of Users Users |Duration
Milano [94] 44 |19 days PMTR encounters| 44 19 days
UMPC [82] 36 | 12 days | iMote encounters 36 12 days

Cambridge [116]| 12 6 days |iMote encounters 12 6 days

Milano = University of Milano

PMTR = Pocket Mobility Trace Recorder

UMPC = University Pierre et Marie Curie

In our experiments, we again compare our algorithm to epidemic and direct delivery.
Each measurement is calculated by taking the average of 100 unicast/multicast packets
where packets are generated randomly. For each trace, we use the same set of packets

across three routing approaches to guarantee a fair comparison.
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Unicast

Regarding delay, the optimal results from our algorithm are equal to those returned by
the epidemic routing protocol. This is shown by the experimental results in Figure 3.13(a).
When we compare our method to direct delivery routing, the routes found by direct delivery

always have longer delays than our method.
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Figure 3.13: Unicast and multicast performance regarding delay and energy cost in
real mobile traces

For the energy cost, a node has to transmit whenever there is an encounter in the epi-
demic protocol. This approach causes many more redundant transmissions compared to
direct delivery and our optimal routing. As shown in Figure 3.13(c), the average energy
cost from epidemic routing is an order of magnitude higher than for direct delivery and
our optimal algorithm. Our algorithm can always find an optimal route that has an energy
cost less than or equal to that from direct delivery. The prorated energy cost is presented in

Figure 3.13(e).
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Multicast

For the delay problem, our algorithm finds the shortest path tree whose delay equals the
delay of the longest branch. This delay is the same as the delay returned by the epidemic
protocol. As shown in Figure 3.13(b), the result of our algorithm is the same as the epidemic
algorithm. In the direct delivery protocol, it always has to wait for the direct encounter. In
general, the source has to wait until all reachable destinations are encountered. Therefore,
the delay for each packet in direct delivery protocol is longer than the delay to deliver the
message to destinations in our algorithm and the epidemic algorithm.

For the energy cost in the multicast, our algorithm and direct delivery consume much
less energy compared to the epidemic protocol as shown in Figure 3.13(d). Experimental
results show that our heuristic multicast tree works better than direct delivery in all three

traces. Again, the prorated energy analysis is presented in Figure 3.13(f).

3.6 Future work

In order to simplify our model, we assume that periodic encounter patterns have the same
period length. However, our assumption may not be true in some scenarios. For example,
a person may go to a gym everyday, but only go to a church once a week. As a result,
our graph model is not able to capture periodic encounter patterns with distinct period
lengths. In this section, we present two approaches that modify encounter patterns and
our graph model so that periodic encounter behaviours with different period lengths can
be accommodated. We use three periodic encounter patterns in Table 3.7 for the following
discussion. One note here is that the proposed modifications currently only focus on unicast

routing. We leave multicast routing for future work.

Table 3.7: Periodic patterns with different period length

Node pair|Periodic pattern
og<ror [Py, =110
og<ro1 [Py, =1011
o1<r0y [P0, =101110

To combine encounter patterns with different lengths, we can expand them because of
their property of repetition. If an encounter series has an encounter pattern with length m,
then this encounter series also has encounter patterns with length 2m, 3m and so on. After
calculating the least common multiple of all period lengths, encounter patterns shown in

Table 3.7 can be extended to the ones in Table 3.8. Because the least common multiple
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equals 12 for integers 3, 4 and 6, in the extended encounter patterns, each pattern just

repeats itself until it reaches the length of 12.

Table 3.8: Extended periodic patterns

Node pair|Periodic pattern
op<ro; |P)2, =110110110110

00,01

oo<o0; P2 =101110111011

00,01

010, P2 =101110101111

01,02

There are two ways we can model extended patterns: (1) building the encounter graph
based on extended encounter patterns and (2) modifying the encounter graph to adopt ex-

tended patterns.

Applying the proposed graph model

Similar to our discussion in Section 3.3, if we combine all the extended patterns,
we can create an encounter graph where all periodic patterns are synchronized by
their least common multiple. For example, Figure 3.14 presents the encounter graph
corresponding to the extended patterns in Table 3.8. In the encounter graph, we have
12 intervals matching 12 phases in the extended patterns.
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Figure 3.14: The encounter graph adopting extended patterns

Applying the proposed graph model to model a pattern with different lengths, our
analyses presented in this chapter can be applied to solve routing problems in the
proposed graph model. With respect to both unicast and multicast routing, the mini-
mum energy consumption and minimum delay problems can be solved by finding the
shortest path and minimum weighted Steiner tree. However, this approach uses the
extended patterns whose lengths are usually multiples of the original ones. The re-

sulting graph can be very large and be composed of a substantial number of vertices.

Modifying the proposed graph model As an alternative, we can modify the original
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Period Length=12

Figure 3.15: The compact encounter graph

encounter graph to have a compact graph with many fewer vertices. Because periodic
encounters are synchronized by extending the patterns to the length of their least
common multiple, the input to the modified encounter graph is still the extended
patterns. However, instead of containing 12 intervals as in our last approach, we
compress the total number of intervals into 6, which is the length of the longest
encounter pattern in its original form in Table 3.7. The modified encounter graph is
shown in Figure 3.15 where the constraints on vertical edges indicate the phases of
periodic encounters. For example, at interval ¢+ = 13, there is a periodic encounter
between op and 0; because constraint 13 =1 (mod 12) is indicated on the second
vertical edge between op and o;. Similarly, there is no periodic encounter among
three nodes at interval ¢t = 17 because no vertical edge in the encounter graph has a

constraint 17 =5 (mod 12).

The modified encounter graph is relatively simple and small. However, the phase
constraints on vertical edges need to be considered in the design of algorithms and
routing protocols. In addition, in our graph model we already have another constraint
called NOT (NO reTransmissions during the same phase). Adopting both constraints

could complicate our graph model.

We briefly presented two approaches to model encounter patterns with different lengths.

Each one of them has different advantages and disadvantages. However, more studies are

required with respect to routing problems in the modified encounter graphs.

In addition to assuming patterns with the same length, we assume that each mobile node

has exactly the same mobility behaviours during every consecutive period in time. However,

mobility behaviours are often disturbed by unexpected events. Furthermore, unexpected

events may cause delays on a sequences of activities. How to handle these incidents requires

further study. Our future work is to extend the proposed models to account for uncertainty
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in the encounter patterns. Also, all calculations and computations are currently performed
in a centralized manner. In applications where there are thousands of mobile nodes, this
may be not practical. Like conventional routing protocols, mobile nodes should be able
to make local decisions based on their mobility patterns. How to distribute this process is

another interesting direction for further research.

3.7 Summary

Assuming a scenario of a mobile wireless network where disconnections are more the norm
than the exception, we explored the ways mobility patterns of nodes can be used to improve
routing in such networks. We proposed a novel graph model built on top of mobility patterns
that is flexible enough to accommodate several different assumptions. Analyses on two hard
problems in wireless communications were conducted to show the benefits of having the
knowledge about mobility patterns. Algorithms were developed to solve the complementary
problems of forwarding a packet with minimum delay, and with minimum energy, both in
polynomial time. In addition, our experiments show the effectiveness and efficiency of our

solutions.
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Chapter 4

Relay node deployment

4.1 Introduction

In DTMNs, communications depend on finding a set of sequential opportunistic encounters
between pairs of mobile nodes in a store-and-forward fashion. However, it is still possible
that the network is partitioned into isolated subnetworks where there is no path between
mobile nodes from unconnected subnetworks. Messages that must travel between discon-
nected subnetworks cannot be delivered simply because no path exists.

To connect isolated components, additional encounter opportunities are required to de-
liver messages across different subnetworks. In general, there are two approaches to address
the problem: (1) message ferrying and (2) deploying stationary relay nodes. Message fer-
rying aims to provide extra encounter opportunities by either having dedicated nodes or
changing the trajectories of existing nodes in the network. The key problem of message
ferrying is to design effective routes for ferries. Deploying relays adds additional nodes
into the network that serve as buffers for nodes that visit the same relays at different times.
Therefore, finding the optimal locations for deployment becomes critical. Having dedicated
ferries or using existing mobile nodes as ferries by changing their original movements can
be expensive and infeasible in some applications. Therefore, we focus on the relay deploy-
ment problem, which aims to optimally place relays to enhance connectivity in the network.

When the network is disconnected, there is no direct encounter between mobile nodes
from different isolated subnetworks. However, it is possible that mobile nodes from dif-
ferent subnetworks visit the same locations but at different times. For example, in the
university people from different departments rarely physically encounter each other, but
they frequently meet people from the same department. Most of the time different groups
of people are disconnected from each other. It would be very difficult to deliver a message

through people from one department to the other. However, there are locations that both
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groups of people may visit, e.g., cafeteria during lunch time and LRT/bus stations during
commute time. By setting up message boards at these locations, people from one depart-
ment can write message on the boards, and people from another department can read the
message when they visit the locations of the message boards. In this example people can be
treated as mobile nodes whereas message boards serve as relays in the network. In discon-
nected environments, effectively deploying relays can help increase encounter opportunities
leading to the improvement of network connectivity and performance.

In relay deployment, relay failure may pose significant degradation to the performance
of the whole network. In addition, encounters in mobile networks may be interrupted by
unexpected events leading to link failures. If a link is critical to join disconnected subnet-
works, its failure will disconnect the whole network. Similarly, mobile node failure is also
detrimental to network connectivity. Therefore, instead of deploying the minimum number
of relays in the network simply to reduce delivery delay for example, the route diversity
in the network is also very important to improve routing robustness so that the network is
more resilient to relay node failures, encounter (link) failures and mobile node failures. In
this chapter, route diversity is defined as the existence of multiple disjoint paths for routing
between mobile nodes in the network.

The relay deployment problem can be modelled as various k-connectivity problems:
(1) node failure can be modelled as the k-vertex connectivity problem, (2) encounter failure
can be modelled as the k-edge connectivity problem, and (3) relay node failure can be
modelled as the k-element connectivity problem. In this chapter we concentrate on the k-
element connectivity problem in which we find the minimum number of relays where the
network is tolerant regarding relay node failure. Our study in this chapter has the following

contributions:

e We extend the graph model presented in Chapter 3 to capture encounters in differ-
ent mobility environments. With the extended graph model, the relay deployment

problem can be addressed in both AP-based and trajectory-based mobility traces.

e We model the relay deployment problem as a k-connectivity problem. In discon-
nected environments, relays can be deployed to guarantee route diversity in the net-

work where k disjoint paths exist between mobile nodes.

e We propose two different approaches to solve the relay deployment problem: (1)

exact solutions using linear programming and (2) heuristic algorithms. Experiments
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and simulations are used to evaluate the performance of our heuristic algorithms and

understand how various deployment approaches impact the network connectivity.

The remainder of this chapter is organized as follows. An overview of message fer-
rying and relay deployment is discussed in Section 4.2. In Section 4.3, we introduce the
extended graph model that captures encounters in different mobility environments. Sec-
tion 4.4 presents the formal problem statement and approaches to solve the problem. To
examine the performance of proposed algorithms and deployment solutions, experimental
and simulation results that use synthetic data and real mobility traces are discussed in Sec-
tion 4.5 and Section 4.6, respectively. Finally, future work and a summary are given in

Section 4.7 and Section 4.8.

4.2 Related work

There are mainly two approaches to join disconnected subnetworks: message ferrying and
deploying relays. Message ferries act as mobile relays that travel between disconnected
nodes whereas stationary relays buffer messages for mobile nodes who visit the same places

at different times.

4.2.1 Message ferrying

In message ferrying, the network is composed of two components: partitioned regular nodes
that can be either mobile or stationary and message ferries. Dedicated ferries or regular
nodes acting as ferries change their trajectories to carry and forward messages between reg-
ular nodes in permanently partitioned environments [51, , , 148]. This technique can
be applied in battlefield communication, communications after disasters, wide area sensing
and surveillance where ferries, for example, can be unmanned aerial vehicles [132, ].
Message ferrying introduces new node movements to the network and exploits such move-
ments to improve message delivery ratio. Therefore, the key problem in message ferrying
is the message ferry route problem targeting at finding the optimal routes. In previous stud-
ies, researchers addressed the problem using optimization techniques such as solutions from
Travelling Salesman problem [147] and connected dominating set problem [ 109]. However,
changing or disrupting the original trajectories of regular nodes is not feasible in many ap-
plications.

Most studies of message ferrying assumed that ferries have the full knowledge of the

network. In other words, every ferry knows the exact locations of all other nodes at all

97



times. However, because of obstacles and limited communication range, ferries may only
cover a sub-region of the network. This is called partial ferry observation. To solve the
problem, studies were conducted using partially observable Markov decision process with
the assumption of the Markovianess of node mobility [50, 87]. However, because mobile
nodes in real-life such as animals and vehicles do not move randomly, the assumption of

randomness is unrealistic in some applications.

4.2.2 Relay node deployment

Another solution to enhance network connectivity is to deploy stationary relays, also called
throw-boxes [149] in DTNs. Its objective is to build an unconnected infrastructure that
helps message delivery by increasing transmission opportunities, i.e., connectivity.

In DTNSs, previous studies have shown the impact of adding relays to the network
with respect to increasing connectivity (delivery ratio) and decreasing average delivery de-
lay [12, 35, 37, , ]. In [149], the authors deployed throw-boxes (relays) to impose
additional encounter opportunities to enhance message delivery ratio. In their analyses, dif-
ferent deployment approaches are considered based on the availability of contact histories
and/or traffic demands of mobile nodes in the network. To extend that work, the authors
in [11] proposed an energy management strategy for throw-boxes to increase their perfor-
mance in DTNs. Another study also considered the use of base stations [12]. In that study,
the authors investigated the trade-offs of three different infrastructure deployment: relays,
base stations and meshes. The authors showed that with the ease and cost of deployment,
a mesh network or disconnected relays is a better choice compared to deploying base sta-
tions in many scenarios. However, to achieve similar performance in a network with base
stations, it requires twice the number of mesh nodes or five times the number of relay nodes.

Aiming at Vehicular Delay Tolerant Networks (VDTNs), a special network of DTMNs,
Pereira et al. presented different challenges in VDTNs [105]. To address the routing prob-
lem in VDTN, the same research group focused on the optimal deployment of relay nodes.
The authors argued that finding the smallest Connected Dominating Set is a feasible solu-
tion to their problem. Because the complexity of finding an optimal deployment in general
is a NP-hard problem, two greedy-based heuristic algorithms were proposed to minimize
(1) the average hop count and (2) the average message delivery time with the deployment
of relays [35, 37].

To connect a large area of isolated regions, Farahamand et al. proposed a wireless burst

switching network architecture targeting at providing low-cost communications for isolated

98



regions with no infrastructure [36]. In the scenarios where the network is composed of
disconnected communities that are internally connected, relays are placed where mobile
vehicles can pick up and drop off messages which are destined to different e-koisks known
as community gateways. To build such a network, the authors introduced three greedy-
based heuristic algorithms to solve the relay deployment problem with the objectives to

minimize the number of relays in the network and/or the delivery delay.

For the relay deployment problem, previous studies assumed that trajectories of mobile
nodes are given. However, in many applications, no trajectory is provided. For example,
real mobility traces such as Dartmouth, USC and MIT traces only contain associations be-
tween mobile nodes and APs, e.g., wireless routers or cellular towers. Therefore, solutions
from previous studies cannot be generalized to those applications. Furthermore, previous
solutions mainly aimed to increase delivery ratio and reduce delivery delay without con-
sidering route diversity in the network. Because mobile networks can be very dynamic, if
relays that are used to join disconnected subnetworks fail, the whole network would fall
apart and become disconnected again. Therefore, increasing route diversity is also very

important with respect to relay deployment.

4.3 Extended graph model

In this section, we extend the graph model presented in Chapter 3 to capture encounters
from both AP-based and trajectory-based traces with the presence of relays.

In AP-based traces, associations are recorded when mobile nodes associate with APs.
If two nodes associate with the same AP at the same time, we assume that there is a direct
encounter between both mobile nodes. Although APs are not explicitly expressed, there
exists an underlying AP for every derived encounter from AP-based traces. This is because
APs act as intermediates to forward messages between associated nodes. Since there is no
geographical information in AP-based traces, the potential locations for relay deployment
cannot be determined. Our motivation is to use APs as candidates for relays. The locations
of APs are referred as logical locations. Although relaying is not a feature of APs, we
propose to explore the potential of adding this functionality in DTMNs. Regarding the
relay deployment problem, in AP-based traces we target at finding potential APs as relays to
connect isolated subnetworks. In trajectory-based traces, we are able to track the movement

of mobile nodes. With the help from trajectories, we aim to determine the optimal locations
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in a geographical space for relay deployment. We refer such locations in trajectory-based
traces as physical locations.

In the following discussions, deploying a relay at a logical location means treating an
AP as arelay in AP-based traces; and deploying a relay at a physical location means placing

a new relay in the network at a physical location in trajectory-based traces.

4.3.1 Mobile data with logical locations

An example of AP-based traces is presented in Table 4.1. In this example, we have three
mobile nodes and two access points with the associations of three intervals. For example,
mobile node B associated with access point M| during interval Iy. It then moved to a remote
location with no record, and finally moved to the coverage area of access point M) at time
I,. By assuming that two mobile nodes encounter each other if both associate with the same

AP at the same time, the derived encounters are presented in Table 4.2.

Table 4.1: AP associations

Time|Node|AP
I A M, Table 4.2: Derived encounters
50 Ié %l Time|Node|Node|AP
10 N M2 L | A B M
! 2 L | A| B M
L C M
L | A M
L | B M

Recalling our graph model for periodic encounters in Chapter 3, it can be used to model
derived encounters between mobile nodes. Figure 4.1 presents a graph that models the de-
rived encounters in Table 4.2. In the graph, node C is disconnected from other nodes. The
only difference between the graph in Figure 4.1 and the ones capturing periodic encoun-
ters is the absence of horizontal edges to connect the same node from the last phase to the
first one. This is because we do not model periodic encounter patterns in the relay deploy-
ment problem, and the extended graph model is adopted to capture opportunistic encounters
within mobile data. One note here is that the graph model in Chapter 3 can also be extended
using the methods discussed in this section to capture the relay deployment problem in the
network formed by mobile nodes with periodic behaviours.

When a relay is deployed at a logical location, i.e., adding the relaying functionality to
an AP, the AP becomes a real node in the network rather than an underlying infrastructure

supporting encounters between mobile nodes under our assumption. Once an AP is active
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Figure 4.1: The graph model
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Figure 4.2: Relay nodes deployment

as a relay, the associations between the AP and mobile nodes introduce new transmission
opportunities to the network.

To connect two isolated components in Figure 4.1, Figure 4.2 presents examples of
deploying relays at different logical locations. In those examples, a set of vertices with the
same shape is inserted into the graph to mimic each newly deployed relay during different
intervals. In addition, each encounter derived from an AP, which is now a relay, is split into
two encounters where each encounter corresponds to an association. To demonstrate the
changes in the graph, we select access point M) as a relay. In Figure 4.2 (a), a set of three
connected vertices is inserted to represent M at different intervals. In addition, because the
underlying AP is M for derived encounters between nodes A and B during intervals Iy and
I, we remove each vertical edge in the original graph and replace it by two vertical edges
where each edge represents the association between the relay and one of the mobile nodes.

Furthermore, because node C is associated with M; during interval [, another vertical edge
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is inserted to represent the encounter between C and M during interval ;. By treating M

as a relay, the network is now connected.

4.3.2 Mobile data with physical locations

In trajectory-based traces, trajectories are restricted in a geographical area. Given a relay at
a specific location with a radius, it is trivial to find mobile nodes whose trajectory overlaps
the coverage area of the relay. As a result, the search space in trajectory-based traces is
much larger than that of AP-based traces. Unlike derived encounters in AP-based traces,
encounters in trajectory-based traces take place when mobile nodes are physically close
enough. Therefore, adding relays into the network does not affect existing encounters.

We use the example presented in Figure 4.3 to demonstrate how to map trajectory-based
traces into our extended graph model. In this example, we have trajectories of three mobile
nodes where the tuples in the figure represent the node movement. Each tuple is used to
indicate the location of a mobile node during a particular interval: the first item in the tuple
represents the identity of a mobile node whereas the second item defines the interval. For
example, the dashed line in Figure 4.3 (a) represents the trajectory of node A. Tuple (A, Ip)
defines the location of node A during interval /y, tuple (A, I;) indicates the location of node
A during interval /;, and the location of node A during interval I is identified by tuple (A,
D). There is no relay in this example, and only one encounter, which is emphasised by the
circle in Figure 4.3 (a), can be observed when nodes A and B are physically close to each
other during interval ;. As a result, there is only one vertical edge in the corresponding

graph in Figure 4.3 (b) to indicate the encounter.
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Figure 4.3: Trajectories and the corresponding graph

When a relay is placed in the network, we add a set of connected vertices with the same
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shape to represent that relay. New vertical edges are also inserted into the graph between
relays and mobile nodes if and only if they encounter each other. Examples of deploying
relays at two different locations are presented in Figure 4.4. As we can see, once relays
have been placed at different physical locations, the network connectivity can be increased
significantly. When there is no relay, node C is disconnected from the rest of the network.
By placing relay R,, for example, as shown in Figure 4.4 (b) and (e), node C can transmit
messages to R, where node A can receive them later and further distribute them to node B.

As a result, placing relay R, connects two disconnected components.
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Figure 4.4: Graph models to capture different deployment approaches

Compared to the graph models for AP-based traces and trajectory-based traces, turning
an AP into a relay (deploying relays at logical locations) breaks related derived encounters
into two separated encounters whereas placing relays at physical locations does not affect
any existing encounters. Similar to our graph model in Chapter 3, the extended graph is

generic enough to represent both energy and delay costs simply by adjusting the weights

103



assigned to each edge.

4.4 Relay deployment problem

To connect partitioned subnetworks, our objective is to deploy the minimum number of
relays in the network while maintaining route diversity, i.e., disjoint paths in the network.
We propose to use the k-connectivity problem paradigm to model the relay deployment

problem.

4.4.1 k-connectivity problems

In the network, metrics such as throughput, reachability, reliable transportation, fault-tolerance
and load balancing can be modelled as or related to k-connectivity problems. There are three

variations of the k-connectivity problem:

1. k-vertex connectivity: A graph is said to be k-vertex connected if and only if there

does not exist a set of k-1 vertices whose removal disconnects the graph.

2. k-edge connectivity: A graph is said to be k-edge connected if and only if there does

not exist a set of k-1 edges whose removal disconnects the graph.

3. k-element connectivity: In this problem, vertices in a graph are partitioned into two
categories: terminals and non-terminals. The non-terminals are called elements. A
graph is said to be k-element connected if and only if there does not exist a set of k-1
elements whose removal disconnects the graph. In other words, there are k element-
disjoint paths connecting every pair of terminals; and these paths are allowed to share

terminals.

O Terminals |:| Elements
B E

C F

Figure 4.5: A sample graph

As an example, let us consider the sample graph in Figure 4.5. First of all, the sample

graph is 1-vertex connected but not 2-vertex connected because removing vertex D discon-
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nects the graph. Secondly, the graph is 2-edge connected because removing one edge does
not disconnect the graph. In the figure, vertices with a circle-shape are terminals whereas
the ones with a square-shape are elements. The sample graph is 2-element connected. Be-
cause vertex D is a terminal that can be shared by two element-disjoint paths, removing one
of the elements B, C, E or F does not disconnect the graph.

For a given &, finding an optimal subgraph for all three variants of k-connectivity is
NP-hard [40].

To the best of our knowledge, the best approximation ratios regarding general graphs are
presented in Table 4.3. All those approximation algorithms are based on a linear program-
ming relaxation of the problem, which can be solved in polynomial time by the ellipsoid
algorithm [88]. The studies listed in the table focused on general graphs. In some special
graph classes, there are better approximations. For example, the k-vertex and k-element

connectivity problem in planar graphs can be approximated by O(k) [23].

Undirected graph Directed graph
Edge weighted | Node weighted [Edge weighted! [Node weighted
Edge-connectivity | 2-approx [65] |O(klogn) [100]|  2-approx N/A
Element-connectivity| 2-approx [40] |O(klogn) [100]|  2-approx N/A
Vertex-Connectivity |O(k* logn) [24]| O(K*logn) [24]|  O(k’logn) N/A

Table 4.3: Approximation results

Although finding an optimal subgraph with k-connectivity is NP-hard, finding the max-
imum k-connectivity in a graph or checking whether a graph is k-connected can be solved
in polynomial time using max-flow algorithms based on Mengers theorem [93]. Max-flow
algorithms such as Ford-Fulkerson algorithm [43] and Edmonds-Karp algorithm [33] can
be used to find edge-disjoint paths in directed graph. By assigning each edge capacity 1,
a max-flow algorithm actually computes the maximum number of edge-disjoint paths for
a given source and destination. As a result, the maximum k of the input graph equals the
minimum max-flow over all node pairs. To address node weighted graphs and undirected
graphs, some reductions are required. The same technique can also be used to find the
maximum k-vertex connectivity and maximum k-element connectivity of the input graphs.
Once again, reductions are required.

The main objective of using k-connected graphs is to build fault-tolerant networks, also

called survivable networks [73]. In addition to fault-tolerant networks, k-connected graphs

'Lando ef al. showed that an edge-weighted directed graph can be reduced to an undirected graph [79].
Therefore, any edge-weighted connectivity problem in directed graph can be solved by the ones from undirected
graph in the complexity of reduced format.
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can also be used to address other network issues. For example, k vertex/edge-disjoint paths
provide multiple routes to deliver messages from a source to a destination. As a result, the
throughput can be increased by utilizing these independent routes. Another example is load
balancing. With multiple vertex-disjoint, i.e., node disjoint, paths, a naive approach would

be using round-robin scheduling to inject traffic into those independent paths.

The problem statement

In Section 4.3, we introduced an extended graph model modelling encounters in different
mobility environments. Using the graph model, routes can be selected for communications.
In our simulations, we used the extended graph model to find routes to deliver messages.
However, in the relay deployment problem, we concentrate on whether a relay can be used
to join isolated subnetworks or not. The horizontal edges in the extended graph model
mimicking time-flow are not important any more in our problem domain. Therefore, we
propose to simplify the graph to model the relay deployment problem.

Disconnected networks are composed of isolated subnetworks. In this study, we as-
sume mobile nodes within subnetworks do not fail. Thus, we can use a single vertex to
represent each isolated subnetwork. Because subnetworks are disconnected, their represen-
tative vertices are also disconnected. In other words, there is no path between any pair of
representative vertices. The problem now is to deploy the minimum number of relays to
connect those vertices such that the failure of relays does not disconnect the network. As
we discussed before, this problem can be modelled as a k-element connectivity problem
where vertices representing subnetworks are terminals, and vertices representing relays are

elements in the graph.

O T, Og » | A,

O 7 > ] A2

7,0 7, O< ] 7
(a) A disconnected network with three (b) A connected network with the pres-
isolated subnetworks ence of relays

Figure 4.6: A sample scenario to the k-element connectivity problem

An example of building an input graph to our problem is presented in Figure 4.6. As
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shown in Figure 4.6 (a), the network is composed of three isolated subnetworks represented
by three terminals. In order to connect those subnetworks, three candidate relays can be
deployed as shown in Figure 4.6 (b). By treating each subnetwork as a single vertex, i.e., a
terminal in the graph, we finally obtain an input graph to the relay deployment problem
as shown in Figure 4.6 (b). It is not hard to see that the graph is a bipartite graph where
terminals and relays are two disjoint sets, and no two vertices within the same set are con-
nected. In this example, the minimum deployment to build a 1-element connected subgraph
connecting all terminals is using relay R;. Similarly, the minimum deployment to build a
2-element connected subgraph connecting all terminals is using all three relays because the
failure of one relay will not disconnect the network.

In disconnected networks, by assuming mobile nodes within isolated subnetwork do not
fail, each isolated subnetwork is modelled as a single vertex called a terminal in the graph.
Given an input bipartite graph whose vertices are divided into two disjoint sets terminals 7
and relays R such that every edge connects a vertex in T to one in R, we define the relay

deployment problem as follows.

Definition 7. Given an input k and an input bipartite graph G = (T,R,E), the relay de-
ployment problem in our domain is to find the minimum k-element connected subgraph of
G. In other words, our objective is to find the minimum number of relays such that every

pair of terminals in the subgraph formed by these relays has k relay-disjoint paths.

It is clear that the relay deployment problem in our domain is just the minimum-cost

(minimum number of relays) k-element connectivity problem in a special graph class.

4.4.2 Mathematical optimization

With the input graph, we can set each relay as a variable. If a relay participates in the
optimal deployment, its value is 1; otherwise, its value is 0. Therefore, the relay deploy-
ment problem can be modelled by linear programming with the objective to minimize the
summation of the values of all relay variables.

The relay deployment problem is similar to the multi-commodity flow problem. In
the multi-commodity flow problem, we want to guarantee multiple commodities (flow de-
mands) between different sources and destinations in the graph. In the relay deployment
problem, if we assume each directed edge has a unit weight, each pair of terminals de-
mands & units of flow. Therefore, we can model the relay deployment problem based on the

multi-commodity flow problem by transforming undirected input graphs to directed graphs.
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Given a flow network G = (T,R,E) and a flow demand k > 1, let the set of vertices
V =TUR,TNR =0, and edge ¢,, € E if and only if vertices # and v are not from the same
set. In addition, let |T| =n,#; € T and ¢ ; €T, there are w commodities C; ; in the flow
network, which is defined by C; ; = (#;,¢j,k) where i < j, t; and t; are the source and sink of
the commodity C; ;. The flow of a commodity C; ; along an edge ¢, is defined as ﬁ% Let
r¢ € R, our objective is to minimize the number of r, used in the network such that the flow
demands of all commodities are satisfied. To enforce the flow demand of each commodity

C; j, we have the following formulation.

s 1 if participates in the optimal deployment
minimize Z ry Where r, = { P P P ploy

0 otherwise

Vre€R
subject to
iy iy k ifi<jandu=¢
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In the formulation, T represents terminals, and R represents relays.

e Constraint C; defines the amount of flow from a source to a destination. It enforces
every source terminal must have k units of outgoing flow whereas every destination

terminal must have k units of incoming flow.

e Constraint C; controls the amount of flow through vertices that is neither the source
nor the destination of a given commodity C; ;. If a vertex participates the flow, the
amount of its incoming flow must equal the amount of outgoing flow. Moreover, if
a vertex does not play a part in the flow, both the amount of incoming and outgoing

flow must be zero. In either case, the difference between both amounts must be zero.

e Constraint C3 defines the behaviour of a relay. In the constraint, the number of incom-
ing edges d,., is a constant based on the input graph. If a relay node r, participates in a
flow, its value must equal 1. Meanwhile, at least one of its incoming edges must carry
a flow. The constraint on the outgoing flow of a relay node is enforced by Constraint

.
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e Constraint C4 controls the amount of a flow on each edge.

4.4.3 Heuristic algorithms

To find an optimal k-element connected subgraph, approximation algorithms based on a
linear programming relaxation of the problem have been proposed. They can be solved in
polynomial time using the ellipsoid algorithm. However, the ellipsoid algorithm is relatively
computationally expensive. In this section, we introduce three heuristic algorithms, an
iterative algorithm, a greedy algorithm and a shortest-path based algorithm, to solve the

relay deployment problem.

Iterative Algorithm

As we described before, given an input k, a max-flow algorithm can be used to check
whether a graph is k-element connected in polynomial time. Taking advantage of this ap-
proach, we present Algorithm 3 that checks the k-element connectivity every time a relay
node is inserted into the graph. Initially, the subgraph only contains terminals. The algo-
rithm iteratively adds relays into the subgraph and checks its connectivity. There are two

phases in this algorithm.

1. The algorithm first sorts the relays according to the number of terminals they connect.
It then gradually expands the graph by iteratively inserting relays that connect to the

most terminals first into the subgraph in the decreasing order.

2. Once the subgraph is k-element connected, in the second phase, the algorithm prunes
the relays that have been selected in the reverse order. The objective is to remove

redundant relays in the subgraph.

Because checking whether a graph is k-element connected can be solved using a max-
flow algorithm i.e., Edmonds-Karp algorithm, the complexity of this algorithm is domi-
nated by the underlying max-flow algorithm and the number of relays being inserted. The
complexity of this algorithm can be improved in some scenarios. In lines 9 and 15 in Al-
gorithm 3, when a relay is inserted to or removed from the subgraph, a max-flow algorithm
is run to check whether the insertion or deletion of the relay changes the connectivity of
the subgraph. In these scenarios, we do not have to always apply the max-flow algorithm.
Because the k-element connectivity is less than the minimum degree of the graph, checking
the minimum degree of the subgraph first can sometimes eliminate the unnecessary running

of the underlying max-flow algorithm. In our experiments, we implemented this strategy to
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Algorithm 3 Iteratively add relays to build a k-element connected graph(G = (T, R, E), k)

1: if G is not k-element connected then

2:  return null

3: end if

4: //phase one

5: G« T /finitialize a graph only with terminals

6: sort R in the descending order based on the number of terminals each relay connects
7: for each relay r € R in the descending order do

88 G «GUr

9: if G’ is k-element connected then

10: break

11:  endif

12: end for

13: //phase two

14: for each relay r € G’ in the reverse order of insertion do
15:  if G’ is k-element connected if r is removed then

16: G+ G'\r
17:  else

18: break

19:  end if

20: end for

21: return G’

reduce the complexity of the iterative algorithm. Another observation is that this algorithm
can be generalized to solve the k-vertex and k-edge connectivity problem by iteratively

adding relays based on the number of vertices they connect in the network.

Greedy algorithm

The input graphs to our problem are bipartite graphs. It is easy to see that an input bipartite
graph can be viewed as an instance of set covering. The objective is then to find a minimum
subset of relays which cover all terminals. However, the relay deployment problem is not
equivalent to the set cover problem. Let us look at an example. The universe includes four
terminals where U = {T1,T»,T3,T4}. We let relay R connect to terminals {7},7>}, relay
R, connect to terminals {7»,73}, and relay R3 connect to terminals {73,74}. It is clear
that relays R; and R3 is the minimum set cover to cover all terminals. However, deploying
relays R; and R; does not connect the whole graph because subgraphs {7j,R;,7>} and
{T3,R,, T, } are still disconnected. To connect the whole graph, relay R, is also required.
To demonstrate the difference between the set covering problem and the relay deployment
problem, Figure 4.7 presents two deployment approaches for the discussed example.

To solve the relay deployment problem, we develop a greedy algorithm inspired by the
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Figure 4.7: The difference between the set covering problem and the relay deployment
problem

greedy algorithm for the set cover problem. The pseudo-code of the algorithm is presented
in Algorithm 4. The idea is simple, our greedy algorithm gradually builds a k-element
connected subgraph by always building a (k-1)-element connected graph first. To be spe-
cific, the algorithm constructs the k-element connected subgraph by greedily connecting
terminals with a degree of k-1 in the (k-1)-element connected subgraph.

In Algorithm 4, when i equals 1, set U contains all terminals because their degrees are
less than i. To cover all terminals in U, the greedy covering function is called at line 14.
The greedy covering function first chooses a relay containing the most uncovered terminals.
After selecting the first relay, the greedy covering function chooses the second relay that
covers the most uncovered terminals left in U. Meanwhile, the second relay must cover
at least one terminal that has already been covered. The process of selecting the second
relay repeats until all terminals are covered. By doing this, the greedy covering function
guarantees that terminals in U are connected. It is not hard to see that the greedy covering
builds a 1-element connected subgraph to connect all terminals in set U. As i increases, the
subgraph returned by our greedy algorithm always connects terminals whose degree is less
than i. The greedy covering function is applied to connect those terminals until i equals k.
When i is equal to k, the returned subgraph is k-element connected.

Let us look at the if-statement at lines 18 to 24 in Algorithm 4 where the greedy covering
function fails to return a feasible covering. Because greedy covering is used to find relays
covering terminals with a degree less than the current connectivity i where i < k, if no relay
can be used to connect those specific terminals, greedy covering fails to find a feasible
solution, and thus the iterative algorithm is called to finish searching for relays.

An example to illustrate the failure is presented in Figure 4.8. In this example, it is
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Algorithm 4 Greedy algorithm to find relays to build k-element connected graph(G =
(T,R,E),k)

1: if G is not k-element connected then

2 return null

3: end if

4: G +T /finitialize a graph only with terminals

5: U+ 0 /IU is used to contain terminals with a degree less than i
6: C<—0 /IC is used to contain a set of selected relays
70 i1 //counter

8: whilei <k do

9:  for each terminal t € T do

10: if degree(r)< i then

11: U+~ UuUt

12: end if

13:  end for

14:  C < calling greedyCovering(U,G’,G) function

15:  if C # 0 then

16: G+ G'UC

17: U+10

18:  else if C == 0 then

19: /o feasible solution is returned by the greedy covering function

20: C < use the iterative algorithm to find the rest of relays to build k-element
21: connected subgraph

22: G+ G'UC

23: return G/

24:  end if

25 i++

26: end while
27: return G’

28:

29: function greedyCovering (U,G',G)

30: C+U /finitialize a graph only with terminals

3 §S<«0 //terminals that have been covered

32: select arelay r € G and r ¢ G’ that covers the most uncovered terminals in U

33: S+ SUS, /1S, is the set of terminals covered by r

34: C+—CuUr

35: U«+U\S,

36: while U # 0 do

37: select a relay r € G, r ¢ G’ and r ¢ C such that it covers the most uncovered
terminals in U and S, NS #£ 0

38: S SUS,

39: C+CUr

40: U<« U\S,

41: end while

42: return C

43: end function
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(o) Terminals

[0 Relays

Result 1:

Result 2: ’ ’
No feasible solution

Figure 4.8: An example of failure of the set covering

trivial that the graph on the left side is 2-element connected. To find a 2-element connected
subgraph, the greedy algorithm first builds a 1-element connected subgraph. When i equals
1, both results 1 and 2 are valid 1-element connected subgraphs that can be returned by
greedy covering. When i is increased to 2, in result 1 the greedy algorithm will select
Rs to connect terminals 7> and 74 because their degree is less than 2 when i = 1. As a
result, the subgraph is 2-element connected. However, in result 2 no such a relay can be
found to connect terminals 73 and T4. Therefore, greedy covering fails to return a feasible
solution. Thus, the greedy algorithm calls the iterative algorithm to find relays on top of
the ones that have already been selected to build a 2-element connected subgraph. In this
example, all five relays will be selected. Because both the subgraphs returned in results 1
and 2 are valid when i equals 1, if the greedy algorithm returns result 2, it would be more
computationally expensive to find a feasible solution. In addition, the subgraph returned by
calling the iterative algorithm will contain more relays compared to the number of returned
relays in result 1.

We now prove the correctness of our greedy algorithm. In the cases where greedy
covering fails to deliver a solution, the iterative algorithm is called to find a result. It is
obvious that the iterative algorithm is correct. Therefore, the theorem focuses on the cases

where the greedy algorithm does return a k-element connected subgraph.

Theorem 4. Given an input k and an input bipartite graph G = (T, R, E), the greedy algo-

rithm returns a k-element connected subgraph if it returns a nonempty set.

Proof. The greedy algorithm gradually builds a subgraph towards k-element connectivity.
We let the set of relays being added at state i be R’ in this proof where 1 <i < k.

When i equals 1, it is clear that the greedy algorithm builds a 1-element connected
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subgraph using a set of relays R'.

When i equals 2, the greedy algorithm adds a set of relays, R, into the subgraph to
connect the terminals with a degree 1 in the 1-element connected subgraph. As a result,
the resulting subgraph is still connected if a relay r € R' is removed. This is because
the subgraph is connected by relays in R?. Similarly, if a relay r € R? is removed, the
subgraph is also connected because the subgraph is 1-element connected when i equals 1.
In the resulting subgraph, because there are two independent sets of relays connecting the
subgraph, removing one relay from two independent sets does not disconnect the subgraph.
Therefore, the subgraph generated is 2-element connected.

The same analyses apply as i increases. Therefore, we conclude that our greedy algo-

rithm returns a k-element connected subgraph. O

Shortest path Heuristic Algorithm

To deploy the minimum number of relays in a disconnected network, we can find the relay-
disjoint paths with the minimum total weight in the corresponding graph if a unit weight
is assigned to vertices whereas edges have a zero weight. To find relay-disjoint paths with
the minimum total weight, we develop a shortest-path based heuristic algorithm to find a

k-element connected subgraph.

Algorithm 5 A shortest-path based algorithm to build k-element connected graph(G =
(T,R,E),k)

1: if G is not k-element connected then
2 return null

3: end if

4 w(t)=1VreT

5:w(r)=1VreRr
6
7
8
9

: for every pair of terminals u,v whereu € T andv e T do
C < use a shortest path algorithm to find k relay-disjoint paths between u — v
for each relay r in C where r € R do
if w(r) == 1 then

10: w(r)=0
11: end if

12:  end for

13: end for

14: return the subgraph with all terminals and relays with a zero weight.

Initially, every vertex in the input graph has a unit weight, and edges have a zero weight.
For each pair of terminals, the idea is to run a shortest path algorithm to find k relay-disjoint

paths. The weight of relays that are selected by previous terminal pairs is set to zero in
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the graph. Changing their weights to zero is to mimic that the relays have been deployed
for previous terminal pairs; therefore, it is free to reuse those deployed relays for the rest
of terminal pairs to find their relay-disjoint paths since we want to minimize the number
of relays being deployed towards a k-element connected subgraph containing all terminal
pairs.

Our heuristic is presented in Algorithm 5. The complexity of this algorithm is bounded
by the running time of a shortest path algorithm and the total number of terminals in the

graph.

4.5 Experiments

In this section, we present experiments to evaluate the performance of the proposed heuristic
algorithms. First, we conduct a set of experiments using real mobility traces. Because the
instances derived from real mobility traces are relatively small, we also evaluate the three

heuristic algorithms against synthetic data containing large instances.

4.5.1 Experiments using networks derived from real mobility traces

In trajectory-based traces, there exist a large number of candidate positions where relays can
be set up. In order to reduce the search space, previous studies made different assumptions
such as dividing the entire area into a grid of cells where relays are placed at the center of
those cells [149]. However, making such assumptions may impact the results of the relay
deployment problem. In this section, we concentrate on AP-based traces. In this type of

mobility trace, we consider each AP as a candidate relay.

Table 4.4: Real-world traces

Traces # of nodes|# of APs|Total durationExamined duration|Examined nodes
Dartmouth [76] 13888 603 1178 days 14 days 2169

MIT Reality [32] 95 26956 2| 282 days 14 days 68

MIT corporate WLAN [9]| 1237 172 30 days 14 days 870

USC Summer 05 [57] 5580 61 111 days 14 days 4177

USC Spring 06 [57] 25481 137 95 days 14 days 5206

In the experiments, we focus on five real mobility traces listed in Table 4.4. By ex-
amining mobility traces over their entire durations, we found that the derived networks are
connected as a single component. In order to have disconnected networks, we reduce the

examined duration of each type of trace. In the real mobility traces, if the examined dura-

2This number includes both cellular towers and Bluetooth relays.
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tion is too short, the networks formed by mobile nodes within the period can be completely
disconnected. Deploying all candidate relays to the network still cannot connect them. As
a result, in a totally disconnected network, there is no feasible solution for the relay de-
ployment problem in our domain. Based on preliminary results, we found that a period of
consecutive 14 days is a reasonable duration where disconnected subnetworks can be con-
nected by relays. By randomly selecting a period of 14 days, the number of the examined
mobile nodes in each trace is listed in Table 4.4. In addition to reducing the duration of the
examined traces, we propose a constraint, d, on the degree of the vertices in a graph. In a
graph, some vertices may be loosely connected to the rest of the graph, i.e., with a degree
equal to one. If we set the constraint d = 2, the vertices with a unit degree will become dis-
connected from other vertices. As a result, the graph will become disconnected. Using the
degree constraint, we are able to derive disconnected networks from real mobility traces.
Because the results of all five traces are qualitatively similar to each other, we concentrate

on the Dartmouth College traces in this section.

(a) Dartmouth traces (b) Relays for Dartmouth traces
d=2|d=3|d=4 . # of returned relays
2l 14 | 20 | 30 Algorithm o S ra =4
m| 482 | 485 | 497 greedy 8 12 14
P124.7%|18.2%|15.8% iterative 8 12 15
k| 3 2 2 shortestPath| 28 | 41 66

Table 4.5: Relay deployment in Dartmouth college traces

Table 4.5 presents the results regarding the Dartmouth College traces. In Table 4.5 (a),
by varying the degree constraint d from 2 to 4, four characteristics have been measured in

the generated networks:

e 1 is the number of disconnected subnetworks, i.e., the number of terminals in the

graph.
e m is the number of candidate relays that connect to at least two terminals.

e p is the percentage of coverage. It measures the percentage of terminals in average

that each candidate relay connects.
e k measures the maximum element connectivity in the graph.

For example, when d equals 2, the generated network contains 14 terminals, 482 candi-

date relays where each relay in the network connects to 24.7% of the terminals in average,
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and the maximum element connectivity in the network is equal to 3.

As the degree constraint increases, both n and m increase. It is trivial that the number
of disconnected components increases because more nodes are partitioned as d increases.
In addition, the number of candidate relays increases because of more terminals in the
network. However, p decreases because the increasing number of terminals impacts the
average coverage. Lastly, the element connectivity decreases simply because candidate
relays may not cover all terminals as the number of terminals increases in order to be k-
element connected.

Let us look at the results returned by our heuristic algorithms in Table 4.5 (b). Because
the minimum element connectivity equals 2 among three different scenarios of the degree
constraint in the last row of Table 4.5 (a), Table 4.5 (b) presents the number of returned
relays in order to form 2-element connected networks. In the results, on one hand, the
greedy and iterative algorithms return the same number of relays to connect disconnected
subnetworks except when the degree constraint equals 4. One note here is that even though
the number of returned relays from both algorithms are identical, the actual candidates may
not be the same. On the other hand, the shortest-path based algorithm returns more relays
compared to the ones returned by the other two algorithms.

There are three observations from the results:

1. The number of returned relays increases for all three algorithms as the number of
terminals n increases. This is because as n increases, more relays need to be deployed

in order to connect all terminals.

2. The greedy algorithm returns the smallest number of relays whereas the iterative
algorithm returns identical or similar results. However, the shortest-path based algo-
rithm returns the highest number of relays to form 2-element connected subgraphs.
We believe this is caused by the differences in our heuristic algorithms. In the greedy
algorithm, the relays connecting the most uncovered terminals are always selected
first. The greedy covering guarantees to reduce the number of returned relays. In the
iterative algorithm, relays are selected in the descending order based on the number
of terminals that they connect. Furthermore, the pruning process in the iterative al-
gorithm eliminates the redundant relays to reduce the number of returned relays. The
greedy covering and greedy selection in the greedy and iterative algorithms help to
reduce the number of returned relays. However, in the shortest-path based algorithm,

terminal pairs may have completely different sets of shortest relay-disjoint paths. As
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a result, relays being selected may not be reused by other terminal pairs leading to a

large number of returned relays.

3. The difference between the numbers of relays returned by the shortest-path based
algorithm and the number returned by the greedy/iterative algorithm increases as the
degree constraint increases. For example, the difference between the number of relays
returned by the shortest-path based algorithm and the iterative algorithm equals to 20
(28-8) whend = 2,29 (41-12) when d = 3 and 51 (66-15) when d = 4. We believe the
cause is the increase of n and/or the decrease of p. Because in the shortest-path based
algorithm terminal pairs may have completely different sets of shortest relay-disjoint
paths, the increase in n introduces more relays to form relay-disjoint paths between
terminal pairs. In addition, as the coverage p decreases, relays in average connect to
fewer terminals. It also reduces the probability that the shortest-path based algorithm

finds the relays that can be reused by multiple terminal pairs.

Because the network instances being examined in the real mobility traces are relatively
small, we conduct experiments against synthetic data containing large network instances in

the next section.

4.5.2 Experiments using synthetic networks

Because the disconnected networks derived from real mobility traces are small, in this sec-
tion we use synthetic networks to understand the performance of different heuristic algo-
rithms. By constructing synthetic networks, we can control the characteristics of synthetic
networks such as the number of candidate relays and the percentage of coverage.

We use three control variables to create synthetic networks:
1. n controls the number of terminals in a network.
2. m defines the number of relays in a network.

3. p is used to control the percentage of terminals covered by relays in average. For
example, if p equals 5%, it means that each relay in the network randomly connects
to 5% of the terminals in average. Given a fixed p, we assume that the percentage
of coverage from candidate relays in the network follows a normal distribution. This

variable mainly controls the overall connectivity in a network.

Two metrics are examined in our experiments: (1) the number of returned relays and

(2) the running time. The number of returned relays indicates how good each heuristic
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algorithm is whereas the running time measures the efficiency of each algorithm.

In the following experiments, 100 random networks are generated for each combination
of these three variables. In those random networks, the maximum k-element connectivity
can be equal to 7. We first set k = 3 by default in each combination of the three variables,

and then vary k to examine heuristic algorithms in networks with different k£ connectivity.
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Figure 4.9: Varying n while m = 400, p =20% and k = 3

In Figure 4.9, we vary n while keeping the other three variables fixed. As the number
of terminals increases, the number of relays required to connect those terminals increases
as well. This explains the increases of the number of selected relays for all three heuristic
algorithms. Among the three heuristic algorithms, the greedy and iterative algorithms return
the smallest number of relays. This is because the greedy algorithm always selects the
relays covering the most uncovered terminals first whereas the iterative algorithm always
chooses the relays connecting to the most number of terminals first. The number of relays
returned by the greedy algorithm at different » is slightly less than the one returned by the
iterative algorithm; however, it may be difficult to recognize the difference in the figure.
The shortest-path based algorithm returns the highest numbers of relays. In the shortest-
path based algorithm, even though we set the weight of selected relays to be zero to reuse
them, there could be so many relays that can be used to form the shortest relay-disjoint
paths between terminal pairs that the ones can be reused by other terminal pairs may not
be selected at all. This explains why the shortest-path based algorithm returns the largest
number of relays.

Regarding the running time, all three algorithms use more time to find the results as the
number of terminals increases. The greedy algorithm takes the smallest amount of time be-

cause of adopting the greedy algorithm from the set cover problem. The iterative algorithm
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uses a significant amount of time to find a solution because it needs to check k-element
connectivity at every insertion of a relay. The running time of the iterative algorithm in-
creases as the number of terminals increases. This is because the iterative algorithm needs
to include more relays as the network size increases. The running time of the shortest-path
based algorithm increases because the number of times that the underlying shortest path

algorithm needs to be run increases as the number of terminals » increases in the network.
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Figure 4.10: Varying m while n =200, p =20% and k = 3

In Figure 4.10, we examine the three heuristic algorithms by varying m. Given a fixed p,
we assumed the percentage of coverage from candidate relays follows a normal distribution.
As the number of candidate relays increases in the network, even though p is fixed, the ab-
solute number of relays with a high percentage of coverage increases. Because the absolute
number of candidate relays with a high percentage of coverage increases, both the greedy
and iterative algorithms demand fewer relays to connect a fixed number of terminals. As a
result, there is a slight decrease in the results of both algorithms with respect to the number
of selected relays. Similar to our discussion for Figure 4.9, as the number of candidate
relays increases in the network, more relays can be used to form the shortest relay-disjoint
paths between different pairs of terminals so that the ones can be reused by other terminal
pairs may not be selected by the shortest-path based algorithm. This causes the increase in
the number of selected relays, and it also explains the reason that the shortest-path based
algorithm still returns the largest number of relays.

By selecting fewer relays, the running time of both the greedy and iterative algorithms
decreases because their greedy approaches only need to examine fewer relays. However,
the increase of the network size due to the increase of m leads to the increase in the running

time of the shortest-path based algorithm. This is because the underlying shortest path
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algorithm takes longer time to find solutions in large networks.
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Figure 4.11: Varying p while n = 200, m =400 and k =3

In Figure 4.11, we test the effect of varying the percentage of coverage p. As the average
coverage increases, candidate relays now connect to more terminals. As a result, fewer
relays are required to form a 3-element connected subgraph. This explains that all three
algorithm return fewer relays as p increases in Figure 4.11 (a). In the figure, the number of
relays returned by the shortest-path algorithm decreases very quickly. This is because the
number of feasible solutions to build an optimal/sub-optimal 3-element connected subgraph
increases leading to a high probability of selecting reusable relays by the shortest-path based
algorithm.

As p increases, the resulting networks become dense. As a result, the shortest-path
based algorithm takes longer time to find relay-disjoint paths. With respect to the greedy and
iterative algorithm, both their running time decrease as the percentage of coverage increases
because fewer relays are required to form 3-element connected subgraphs. Surprisingly,
the running time of the iterative algorithm is lower than that of the shortest-path based
algorithm once p is greater than 20%. As p increases, in Figure 4.11 (a), the iterative
algorithm returns fewer relays. For example, only approximately 10 relays in average are
returned by the iterative algorithm to form 3-element connected subgraphs when p equals
30%. As p increases, the number of times to checking the k-connectivity of subgraph
decreases because fewer relays are required; however, the shortest-path based algorithm
needs to find & relay-disjoint paths for every pair of terminals no matter what the value of p
is. When p is large enough and the network is dense enough, the iterative algorithm takes

less time than the shortest-path based algorithm.
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Figure 4.12: Varying k while n = 200, m = 400 and p =20%

When we set n = 200, m = 400 and p =20%, the maximum connectivity of the gen-
erated synthetic networks can be equal to 7. Figure 4.12 presents the results regarding
the performance of the three heuristic algorithms in networks with different connectivity.
As k increases, more relays are required in order to form a k-element connected network.
This explains the increase in the number of selected relays in Figure 4.12 (a) for all three
heuristic algorithms. However, because the shortest-path based algorithm may not select
the reusable relays, the number of returned relays is significantly higher than the numbers
returned by the other two algorithms in the networks with different connectivity.

In Figure 4.12 (b), the running time of all three algorithms increase as the value of k
increases because they need to use more relays to build k-connected networks. The running
time of the iterative algorithm is significantly higher than that of the other two algorithms
because checking whether a subgraph is k-element connected after each insertion of a relay
is very expensive. Because more relays are required when & increases, the number of times

that the iterative algorithm checks k-connectivity in the subgraph increases too.

In summary, our experimental results against synthetic networks have confirmed our
observations from using the real mobility trace. In addition, we found that the greedy
algorithm has the best performance in both synthetic and real data regarding both the run-
ning time and the number of selected relays. The greedy algorithm using greedy covering
gradually connects the terminals towards building a k-element connected subgraph where
greedy covering guarantees to return a small number of relays. Because of greedy cover-
ing that does not need to check the k-connectivity of the subgraph, the greedy algorithm is

very efficient and effective in terms of finding solutions for the relay deployment problem.
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The iterative algorithm has competitive results compared to the greedy algorithm. Greedily
selecting the next relays which connect the most terminals and pruning redundant relays
help to reduce the total number of returned relays. However, the iterative algorithm takes
the longest time to find solutions among the three algorithms because iteratively checking
k-connectivity at every insertion of a relay is time-consuming. With respect to the shortest-
path based algorithm, even though running a shortest path algorithm to find relay-disjoint
paths for terminal pairs is relatively fast, the shortest-path based algorithm fails to utilize the
reusable relays because the returned shortest-paths may not always choose those reusable

relays.

4.6 Simulations

In the previous section, we presented experiments to evaluate the performance of the three
heuristic algorithms. Because the greedy algorithm has offered the best performance, we
use the greedy algorithm to find relays in the following simulations. After finding a set of
relays to form a k-element connected network, we evaluate the performance of the deploy-
ment using simulations. We aim to evaluate the deployment in enhancing network perfor-
mance regarding (1) the delivery ratio, (2) the average delivery delay and (3) the overhead
ratio. In addition, we also examine how various deployment and routing approaches impact
the performance. In this section, we first introduce our simulation settings and evaluation

metrics, and then present our simulation results.

4.6.1 Simulation settings

There are two steps in our simulations: (1) computing feasible deployment and (2) evaluat-
ing deployment solutions using ONE simulator.

In our simulations, we adopt Edmonton Transit System (ETS) bus network scenar-
ios [4]. In general, both AP-based and trajectory-based real-world traces are publicly
available to use. Due to the limitation of ONE simulator, the AP-based traces cannot be
simulated. This is mainly affected by the missing trajectories of moving among access
points. In AP-based traces, only the associations between mobile nodes and access points
are recorded without any trajectory capturing its movement from one access point to an-
other. Even though we can generate synthetic movement, i.e., shortest path, to fill the
graph, this may affect the accuracy of AP-based traces and alter the underlying properties

of mobile traces.
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In trajectory-based traces, GPS positions are recorded to track node movement. It has
been shown that the trajectory data is significantly affected by the low accuracy of GPS
positioning because of missing trajectory segments and imprecise recording of positions
due to the facts such as atmospheric and ionospheric disturbances and limited satellite vis-
ibility [139]. We decide to use ETS bus network scenarios for our simulations because the
trajectories of buses are complete.

Each simulation is run for a period of 86400 seconds (1-day) in simulation time to
capture the complete movement during a weekday. In order to create disconnected environ-
ments, in our simulations we randomly selected 20 buses as mobile nodes that are simulated
to move in a 15 x 15 km? area within the City of Edmonton. Within this space, we have ap-
proximately 3000 bus stops. Instead of making any assumption about the potential locations
for deployment, we use bus stops as candidate locations for relay deployment. The greedy
algorithm is used to find potential locations to set up relays to build k-element connected
networks in various input settings.

In our experiments, the packet-level simulations are conducted using the Opportunistic
Networking Environment (ONE) [72] simulator. It provides simulations in delay tolerant
environments supporting different mobility models and DTN routing protocols. However,
buses in our simulations follow a map-based scheduled movement in which buses travel
on the road between bus stops rather than the Euclidean shortest paths on the map. This
movement model is currently not available in ONE simulator. To solve the problem, we
implement the movement model.

To evaluate the performance of deployment, two routing protocols are used in our sim-
ulations: (1) epidemic routing and (2) scheduled routing. The epidemic protocol targets at
providing delivery by utilizing all possible opportunistic encounters. By flooding the mes-
sage, every node holding a copy of the original message transmits a replica to the ones with-
out a copy at every encounter. In addition to the epidemic protocol, we propose a protocol
called scheduled routing that takes advantage of our extended graph model in Section 4.3
to schedule routes between mobile nodes. Our scheduled routing implements the modified
Dijkstra’s algorithm from Chapter 3. Based on the bus schedules, we are able to obtain
encounters between buses and relays whose locations are determined by the greedy algo-
rithm. One note here is that encounters are directly derived from bus schedules; however,
the actual delays of arrival time of buses at bus stops in the simulation follow a power-law
distribution.

Due to the constraint on ONE simulator, each message being generated from a mobile

124



node during the simulation only has one destination. In our simulations we focus on unicast

routing and leave multicast routing for future work.

4.6.2 Evaluation metrics

Given a fixed number of mobile nodes, the complexity of the network is mainly controlled
by each node’s radio range. Increasing the radio range increases the coverage area of each
node, which leads to more encounter opportunities. Because we are deploying relays in
the network, the buffer size of relays and mobile nodes may also impact the performance
of routing protocols. In addition, the message generation rate and the number of relays in
the network also affect network performance. In general, higher message generation rates
increase the traffic load in the network; more relays in the network create more encounter
opportunities to forward messages. In this section, we present simulations using traces
derived from ETS bus network scenarios in which we evaluate the performance of different

deployment approaches and routing protocols with respect to five parameters:
1. the radio range, r.
2. the message generation rate, s.
3. the buffer size of all nodes including relays, b.
4. the buffer size of relays, b,.
5. the number of relays in the network, m.

Three metrics are examined in our simulations: (1) the delivery ratio, (2) the average
delay and (3) the overhead ratio. The delivery ratio is defined as the ratio of messages
received by the destinations to those generated by the sources. The average delay is the
average time from the generation of a message until it is delivered to the destination in
the simulation. The overhead ratio defines the ratio between the number of transmitted
messages (without the final deliveries) and the number of unique messages being delivered.

It is defined as follows.

Total number of transmissions — The number of messages being delivered

Overhead ratio =
The number of messages being delivered

The overhead ratio is used to measure the amount of overhead, e.g., duplicates in epidemic
routing, in the network. For instance, the overhead ratio of the direct delivery protocol is

zero because messages are forwarded only to the destination.

125



Regarding the delivery ratio, the higher the value is, the better the performance is. In
contrast with the delivery ratio, the lower the average delay and overhead ratio are, the better
the performance is. In addition, in order to have accurate results, we run the simulations
three times with different sets of mobile nodes. Each measurement is calculated by taking

the average of the results from three simulations.

4.6.3 Results

Each simulation is run for a period of 86400 seconds in simulation time. By default, the
size of messages is 1 kB, » = 300 meters, s = & (1 message every 60 seconds), b = SMB,
and b, = SMB. In addition, messages are transmitted from the buffer in a FIFO order (First
In, First Out). When the buffer overflows, a node will drop the first message in the buffers.
The transmission rate is set to be 1 Mbps by using the lowest transmission rate of IEEE
802.11b in outdoor space [115]. By default, the greedy algorithm is used to find relays to
build 2-element connected networks in the simulations. Two other deployment strategies,
grid deployment in which relays are placed to form a grid and random deployment in which

relays are deployed at random locations, are considered in the simulations as well.

The effect of varying the radio range

We first study how the radio range affects network performance. By varying the radio range
from 100 meters to 500 meters, Figure 4.13 presents the results of two routing protocols
under different deployment approaches. In our simulations, disconnected networks only
have 2 or 3 isolated subnetworks. As shown in Table 4.6, it only requires approximately 2
relays in average to build 2-element connected networks. Under ETS bus network scenarios,
due to a relatively large span of the area and a small number of relays in the network, both
grid and random deployment tends to place relays at locations where mobile nodes do not
visit. Both grid and random deployment do not introduce any transmission opportunity,
and thus do not affect network performance. As a result, the curves of grid and random
deployment overlap with the one without any relay. This is the reason that we can only
observe four curves in Figure 4.13. The same argument applies to the following results
unless stated otherwise.

As the radio range increases, the total number of encounters increases in the network.
As a result, each node has more opportunities to forward messages leading to the increase
of delivery ratios for both epidemic and scheduled routing in Figure 4.13 (a). With the

presence of relays to form 2-element connected networks, there are much more transmission

126



2-element connected
Simulation 1 2
Simulation 2 2
Simulation 3 3
Average 2.33

Table 4.6: The number of relays returned to form 2-element connected networks in
each round of simulation

opportunities compared to grid and random deployment. As a result, the delivery ratios of
both epidemic and scheduled routing are increased by at least 20% in the networks that are
2-element connected. Because epidemic routing generates a large number of duplicates in
the networks, given a fixed buffer space in each node, the performance of epidemic routing
is limited by the availability of buffer space. If the buffer overflows, messages that have
not been delivered yet may be dropped leading to lower delivery ratios. This explains that
scheduled routing in Figure 4.13 (a) always has better delivery ratios compared to epidemic

routing.
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Figure 4.13: Varying radio range

As the radio range increases, there are more forwarding opportunities in the network.
As a result, each message has a better chance to be delivered leading to the decrease of the
queueing delay for the messages in the network. As expected, in Figure 4.13 (b) the aver-
age delivery delay decreases as the radio range increases. With the presence of 2-element
connected networks, there are more forwarding opportunities that can be used by epidemic
and scheduled routing compared to other deployment approaches. As a result, epidemic
and scheduled routing have the lowest delay at different radio ranges in the networks that
are 2-element connected.

In epidemic routing every node holding a copy of the message transmits a replica to the
ones without a copy at every encounter. As the radio range increases where each node has

more transmission opportunities, the number of duplicates of the original message (redun-
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dant messages) increases in the network. As a result, as shown in Figure 4.13 (c), the over-
head ratio of epidemic routing increases no matter whether there are relays in the networks
or not. Epidemic routing in the networks without any relay or with grid/random deployment
has a slightly lower overhead ratio because it has less transmission opportunities compared
to the one in the 2-element connected networks. In the networks with different deployment
approaches, scheduled routing has a very low overhead ratio, which approximately equals
three. This is because in scheduled routing each message is only forwarded to a single
next-hop based on a pre-calculated route. As a result, the overhead is generated only when

an intermediate node forwards the message to the next-hop.

The effect of varying the message generation rate

We now focus on the effect of varying the message generation rate. In Figure 4.14, the
message generation rate is reduced from 1 message every 10 seconds to 1 message every
120 seconds. As the traffic load decreases, fewer messages are generated in the network.
This reduces the chances of buffer overflow leading to a result that more messages can be
transmitted during encounters. As shown in Figure 4.14 (a), the delivery ratio increases for
both protocols in different deployment approaches when the radio range increases. There
are significant increases in delivery ratios of both epidemic and scheduled routing with the
presence of 2-element connected networks compared to grid and random deployment. This
is because the network is connected and there are more transmission opportunities in 2-
element connected networks. As we described before, the performance of the epidemic
protocol is limited by the buffer space. When the message generation rate decreases, fewer
messages are buffered in the network where the chance that a message is dropped due to
the buffer overflow reduces. Since fewer messages are dropped in the network, the chance
that a message is delivered to the destination increases. As the traffic load in the network
decreases, the impact of the buffer size on epidemic routing is reduced as well. In scheduled
routing, a message delivery follows the pre-calculated route derived from bus schedules,
and it may fail because buses may run behind schedule. This explains that in Figure 4.14
(a) epidemic routing outperformed scheduled routing when the traffic load in the network
is low enough, i.e., 1 message every 120 seconds.

Whenever the message generation rate changes, we have completely different sets of
messages being generated. It is difficult to have a trend/pattern regarding the average de-
livery delay. As shown in Figure 4.14 (b), we have zigzag curves for both protocols in

the networks with different deployment approaches. In general, the protocols in 2-element
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Figure 4.14: Varying the message generation rate

connected networks always have the lowest delay. This is because the queuing time of the
messages decreases in the 2-element connected networks when there are more transmission
opportunities in the network. When the traffic load is high, i.e., 1 message every 30 sec-
onds, in the network, scheduled routing has a lower delivery delay compared to epidemic
routing because in epidemic routing messages are often dropped due to the buffer overflow.
Once the message generation rate reduces, the impact of the availability of buffer space on
epidemic routing reduces leading to lower delivery delays, which is shown in Figure 4.14
(b). This is because epidemic routing generates the shortest delay if it is not restricted by
the network resources such as the buffer size.

In Figure 4.14 (c), the overhead ratio of epidemic routing decreases as the message gen-
eration rate decreases. This is because less traffic in the network generates fewer replicated
messages in the circulation. The overhead ratio of scheduled routing still maintains at a low

value because of using a single-copy forwarding approach.

The effect of varying the buffer size

In our simulations, the size of a message is 1 KB. By varying the buffer size from 1 MB to 9
MB, each node including relays can hold up to approximately 9200 messages. Because the
messages in a node may be dropped due to the buffer overflow, increasing the buffer size in-
creases the lifetime of the messages in the network where each message has a better chance
to be delivered. As expected, in Figure 4.15 (a) the delivery ratio of epidemic routing in-
creases as the buffer size increases. In addition, as the storage space increases, epidemic
routing has great improvement in the delivery ratios in 2-element connected networks com-
pared to ones in the networks without any relay. For example, the delivery ratio is increased
by 20% when the buff size equals 9 MB whereas the improvement is only about 10% when
the buffer size is 3 MB. This is because as the buffer size increases, more messages destined

to different subnetworks can be delivered through the deployed relays whereas the increase
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in the delivery ratios in grid and random deployment is caused by the increase of deliver-
ies within the same subnetwork. Because single-copy forwarding only has one copy of the
message being circulated in the network, scheduled routing only has a very small number of
messages in the network. Because the size of the messages being stored does not exceed the
buffer size, the availability of buffer size does not have any impact in scheduled routing in
our simulations. This explains that the delivery ratios of scheduled routing in the networks

with different deployment approaches do not change.
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Figure 4.15: Varying buffer size

In contrast to the improvement in the delivery ratio, in Figure 4.15 (b) the average
delay of epidemic routing increases as the buffer size increases. With a large buffer size,
in epidemic routing messages with long delays do not get dropped and tend to stay in the
network for a longer time. As a result, the delay for delivered messages increases. Because
the number of messages in the network is relatively low, the availability of more buffer
space does not affect scheduled routing. As a result, the average delay does not change.

As shown in Figure 4.15 (c), the overhead ratio of epidemic routing decreases. This
is because fewer messages are dropped because of larger buffer sizes. The overhead ratios
of scheduled routing in the networks with different deployment approaches do not change
because the availability of buffer space has no impact when the number of messages in the

network is low.

The effect of varying the relay buffer size

We have shown the impact of varying the buffer space on epidemic and scheduled routing
in Figure 4.15. In those simulations, we increased the buffer size of both mobile nodes and
relays. In this section, we only vary the buffer size of relays. Because relays are critical to
deliver messages destined to different subnetworks that are used to be disconnected, we aim
to evaluate the performance of the network by only varying the relay buffer size. By setting

the buffer size of mobile nodes to be 5 MB, the buffer size of relays varies from 1 time and
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up to 20 times of that of mobile nodes. Because of examining relays, the performance of
epidemic and scheduled routing in disconnected networks without any relay is not presented

in the following figures.
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Figure 4.16: Varying relay buffer size

By increasing the buffer size of relays from 5 MB to 25 MB, the delivery ratio of
epidemic routing in 2-element connected networks is increased by approximately 5% in
Figure 4.16 (a). After that, the availability of more buffer space does not affect the delivery
ratio any more, i.e., the delivery ratio of epidemic routing in 2-element connected networks
does not change even with larger buffer sizes. As the relay buffer size increases, relays are
able to hold more messages without the buffer overflow. As a result, more messages can be
delivered in the network. When the buffer size of relays is significantly large enough, given
the same encounter scenarios, the messages received by the relays do not change any more.
Therefore, the delivery ratio of epidemic routing in 2-element connected networks stays
the same after the relay buffer size reaches 25 MB. Since grid and random deployment do
not introduce any transmission opportunity, the delivery ratios of epidemic routing in both
deployment approaches do not change. In scheduled routing, because of a relatively small
number of messages in the circulation in the network, relays can always hold messages des-
tined to other subnetworks without the buffer overflow. Increasing the buffer size of relays
does not affect the delivery ratio of scheduled routing in different deployment approaches.

Increasing the buffer size of relays makes relays hold more messages. Therefore, those
messages have better chances to be delivered. As a result, the delivery delay of epidemic
routing decreases when the relay buffer size is increased to 25 MB. After that, the delivery
delay does not change in Figure 4.16 (b) because there is no change in the total number
of deliveries. Similarly, in other tested scenarios, there is no change in the delivery delay
because there is no change in the deliveries.

As the buffer size increases, relays hold more messages and transmit more replicas to

the network. As a result, the overhead ratio of epidemic routing with the presence of 2-
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element connected networks increases when the relay buffer size is increased to 25 MB.
After that, the delivery ratio does not change any more even in larger buffer sizes. This

result is presented in Figure 4.16 (c). Similarly, the overhead ratio of other tested scenarios

stays the same.

The effect of varying the number of relays in the network

In the previous simulations, we evaluated network performance in the 2-element connected
networks. In this section, we increase the k-element connectivity to understand the perfor-

mance implication of various routing and deployment approaches.

2-element connected|3-element connected|4-element connected
Simulation 1 2 4 5
Simulation 2 2 3 4
Simulation 3 3 4 6
Average 2.33 3.66 5

Table 4.7: Number of relays selected to form k-element connected networks in each
round of simulation

When we increase the k-element connectivity in the network, the number of relays
required to form a k-element connected network increases as well. In our simulations,
the average number of relays to form 2, 3 and 4-element connected graphs are presented in
Table 4.7. As we described before, in our simulations disconnected networks only have 2 or
3 isolated subnetworks. Only a small number of relays are required to form a corresponding
k-element connected network. In Figure 4.17, we rounded each average number of relays to
1 significant digit, i.e., its nearest integer, and use them as tic marks along x-axis to indicate
different connectivity. The actual number of relays in grid and random deployment equals

the number of relays in corresponding k-element connected networks.
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Figure 4.17: Varying connectivity

As the number of relays increases in the network, each mobile node has more trans-
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mission opportunities. In the networks that are k-element connected, the delivery ratios of
both epidemic and scheduled routing increase as k increases. As shown in Figure 4.17 (a),
the increases in the delivery ratio of both protocols may not be significant, e.g., the delivery
ratio is increased by 5% for scheduled routing when k is increased from 2 to 4. This may
be caused by the small number of relays being deployed in the network, e.g., 5 relays in
average being deployed to the network when k equals 4. We believe that the connectivity
(new transmission opportunities) introduced by deploying a few relays is insufficient for
significantly increasing the delivery ratio.

As expected, in Figure 4.17 (b) the delivery delay decreases in both epidemic and
scheduled routing because there are more forwarding opportunities in the networks. In
Figure 4.17 (c) the overhead ratio of epidemic routing in the k-element connected networks
increases as k increases. This is because more relays introduce more transmission oppor-
tunities to the network, and the number of replicated messages increases in the network

leading to the increase in the overhead ratio.

In summary, to connect isolated subnetworks, deploying relays to build k-element con-
nected networks has great impact on network performance with respect to the delivery ratio,
the delivery delay and the overhead ratio in our simulations. Even with the presence of a
very small number of relays in the network, we had approximately 50% improvement in
the delivery ratio in general, i.e., from 0.4 to 0.6 in 2-element connected networks. In
addition, the experimental results showed that scheduled routing consumed much lower
network resources such as the buffer space and the total number of transmissions compared
to epidemic routing. Although we did not concentrate on periodic encounter patterns in this
chapter, it is not difficult to see that our studies in this chapter can be easily generalized
to the relay deployment problem under the network environments with periodic movement

patterns.

4.7 Future work

In our problem domain, the input bipartite graph represents the aggregated connectivity
between terminals and relays. However, in aggregated graphs we lose underlying encounter
information such as how frequent the encounter is between a relay and a terminal and when
those encounters take place. Moreover, even though two candidate relays connect to the

same set of terminals in the graph, they may introduce different transmission opportunities
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to the network. As a result, one may be preferred over the other. To demonstrate the
difference, we present an example in Figure 4.18. In the example, there are two subnetworks
and two relays in the network where either of relays can be used to join both subnetworks.
In the aggregated graph in Figure 4.18 (a), relays R; and R, are considered equivalent
because they both connect to the same set of terminals. However, in the extended graphs
representing the deployment of each one of the relays, it is trivial that relay R, imposes more
encounters opportunities compared to relay R;. If R; is deployed, messages generated after

interval Iy will never be delivered, but they can be delivered if R; is deployed.

0 1 2 0 1 2
T1 T1
T, R,
T2 TZ
T
2 Rz R, R,
(a) A sample graph (b) Deploying relay R; (c) Deploying relay R,

Figure 4.18: The difference in network connectivity between two deployment ap-
proaches

If we can use the underlying encounter information for selecting the relays to form
k-element connected networks, we may further improve network performance regarding
the delivery ratio and the delivery delay. One possible solution to utilize the underlying
encounter information is to assign a weight to each relay. In our example, relay R, should
have a higher weight because it introduces more encounter opportunities. It would be a very
interesting future direction to design a weight function to capture the differences between
candidate relays in the network. By assigning weights to relays, the relay deployment
problem becomes a multi-objective optimization problem where we want to minimize the
number of relays to form k-element connected networks while maximizing the total weight
of the selected relays.

In our discussion, we have introduced three variations of the k-connectivity problem:
(1) the k-element connectivity problem, (2) the k-vertex connectivity problem and (3) the
k-edge connectivity problem. In this chapter, we only focused on the relay deployment
problem that is modelled as the k-element connectivity problem in a special graph class. In
DTMNs, mobile nodes failures and encounter failures are the norm rather than the excep-

tion. How to properly model those failures in the scope of the k-connectivity problem in
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general graphs requires further investigations.

In our simulations, the examined protocols, especially scheduled routing, did not take
advantage of relay-disjoint paths in the network. In scheduled routing, routes are pre-
calculated based on the derived encounters. If a relay on the scheduled routes fails, mes-
sages travelling through that relay will never be delivered even though there exist other
paths. Therefore, dedicated routing protocols are required in order to utilize k-element
connectivity. Because of the existence of disjoint paths in the network, dedicated proto-
cols should aim at utilizing different metrics such as throughput, fault-tolerance and load

balancing. We will design routing protocols in k-connectivity environments in future study.

4.8 Summary

In DTMNs, mobile movements may lead to a situation called network partition where an
end-to-end path may never exist because the network is divided into several isolated sub-
networks. To connect isolated subnetworks, we proposed to deploy stationary relays to
form k-element connected networks where there are & relay-disjoint paths between isolated
subnetworks. The whole network is still connected if k-1 relays fail. In this chapter, we
extended our graph model to capture the relay deployment problem in both AP-based and
trajectory-based traces. To solve the relay deployment problem, we proposed three heuristic
algorithms: a greedy algorithm, an iterative algorithm and a shortest-path based algorithm.
The experimental results showed that the greedy algorithm returns the smallest number
of relays to form k-element connected networks. Using the relays returned by the greedy
algorithm, we conducted a set of simulations to evaluate the performance of the k-element
connected network. Our simulation results showed significant improvement in network per-
formance regarding the delivery ratio and delivery delay by forming k-element connected

networks.
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Chapter 5

Conclusion and future directions

5.1 Conclusion

New applications have created increasing demands for services in mobile networks. Cur-
rently, the majority of routing techniques have an underlying assumption that mobile nodes
are within a single connected network. However, in some application domains the physi-
cal topology may change often and mobile nodes (or entire sub-networks) may not always
be connected due to various forms of node movement as well as energy management or
interferences. In our studies, we focused on mobile networks where a lack of continuous
network connectivity is caused by node mobility, which are also called Delay Tolerant Mo-
bile Networks (DTMNs). To provide effective and efficient communications, we proposed
exploiting periodic encounter behaviours within node mobility for routing in DTMNs. In
this thesis, we concentrated on the three problems: (1) detecting and extracting periodic en-
counter patterns within mobile data, (2) modelling and utilizing periodic encounter patterns
and (3) connecting isolated sub-networks that are strongly internally connected, e.g., by

periodic encounters. In summary, we have made the following contributions.

1. We proposed a methodology for extracting the specific encounter patterns (both pe-
riod and phase) for pairs of nodes that meet each other periodically. We also investi-
gated the persistence of detected periodic behaviours and the small-world structure of
networks formed by periodic encounters to understand their characteristics. The ex-
perimental results showed that the proposed method can detect and extract encounter
patterns in real mobility traces with up to 100% accuracy. In addition, our studies
showed that the majority of networks formed by the mobile nodes with periodic en-
counter behaviours have a small-world structure where messages between any pair of

nodes can be delivered through a very small number of hops in the network.
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2. To take advantage of periodic encounter behaviours, we introduced a graph model
which integrates all encounter patterns. We showed how routing problems can be
modelled as optimization problems. The only change in the graphs used to solve
different problems is in the assignment of weights for the edges. To solve the routing
problems, we proposed exact and approximation algorithms targeting at finding the
routes for unicast and multicast routing. Using both real and synthetic datasets, the
experimental results showed that our proposed approaches always find better routes

with regard to delivery delay and energy cost compared to other state-of-art protocols.

3. To connect disconnected sub-networks, we proposed deploying stationary relays to
the network to create new transmission opportunities. We showed that the relay node
deployment problem can be modelled as the k-element connectivity problem with the
objective to minimize the number of relays in the network such that the network is k-
element connected, i.e., k relay-disjoint paths. By deploying a very small number of
relays to the disconnected network, our experimental results showed that the resulting
k-element connected network had approximately 50% improvement in the delivery

ratio in general.

Our three contributions are steps towards efficient and effective routing in DTMNs.
Detecting and extracting periodic encounter patterns can identify mobile nodes that can
be reliably used. The proposed graph model adopts the semantics of periodic patterns
where routers can be scheduled for message delivery with respect to different metrics in
the network. Relay deployment is used to join isolated sub-networks which are internally
strongly connected, e.g., by periodic encounters. With the combination of the solutions
from the three problems, in the environment of DTMNs with the presence of disconnected
sub-networks, message delivery can benefit greatly from the underlying periodicity within

mobile data.

5.2 Future directions

There are still many interesting questions left open and worthy pursuing in the future. The
following directions are some of the many we consider interesting in further the contribu-

tions presented in this thesis.

137



5.2.1 A real-time routing protocol

In this thesis the method in Chapter 2 for detecting and extracting periodic encounter pat-
terns is currently performed in a centralized manner. In applications where there are thou-
sands of mobile nodes, this may be not practical. To distribute the process of detection and
extraction, one possible solution would be that a copy of the method can be implemented
in each mobile node to discover its own patterns. In our studies, we showed that periodic
encounter patterns do not last forever but change over a period of time. Pre-calculated
routes will be seriously affected if the underlying periodicity changes. Our study regrading
the persistence of detected periodic behaviours helps understand how long patterns reliably
project themselves. As a result, after a certain period of time, the detection and extraction
method can be re-executed to find new patterns in response to changes. Our future plan
would be to design a routing protocol that utilizes periodicity for routing and dynamically

adopts the changes in periodic behaviours.

5.2.2 A graph model capturing the probabilities of periodic encounters

In order to simplify our model, in Chapter 3 we assumed that every periodic encounter
appears at its phase during every consecutive period in time. However, node movements are
often disturbed by unexpected events. As a result, a periodic encounter may not be available
to use at some phases of periods in time. To capture the stability of periodic encounters,
probabilities can be used to describe how stable each periodic encounter is. We would like to
design a graph model that is able to incorporate the probability of each periodic encounter.
Using this type of graph model, the objective is to find the routes with the highest delivery
probabilities as well as to minimize other metrics in the network. If there are disjoint paths,
e.g., relay-disjoint paths in this thesis, multiple copies of the message can independently

travel through each route to increase the reliability of delivery.

5.2.3 Coordination among relays

In Chapter 4 the relay deployment problem discussed focused on building an unconnected
infrastructure to help message delivery where there is no interaction between relays. By
connecting relays in the network with underlying infrastructure, it is worthwhile to study
coordination among relays to further improve network performance. For instance, redi-
recting messages between relays may lead to improvement. In addition, how to optimally

deploy connected relays is another interesting direction for future research.
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