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Abstract

In movement ecology, many methods currently exist for analyzing and estimat-

ing animal movement patterns and selection for habitat types. However, the

accuracy of the estimates for quantifying animal movement and selection are

difficult to determine, especially when data is missing. In the literature, there

are many techniques for simulating animal movement and determining animal

selection, yet they are rarely used in tandem and, instead, simpler methods

are favoured. In this study, we use continuous-time animal movement to es-

timate selection in the presence of missing data. We first determine a model

for continuous-time animal movement with influence of the environment on

the selection of location as a small time-step limit of a step-selection process.

Second, we propose an algorithm that uses the continuous-time model to fill

in missing locations, and determines estimates for the movement and selection

coefficients. The estimates are compared directly against existing methods for

determining the selection coefficients. For data sets with extensive loss of in-

formation, the proposed algorithm could provide more accurate estimates for

animal selection of environmental characteristics.
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Chapter 1

Introduction

Ecology is the study of processes affecting populations and individuals of

organisms over space and time [8]. Two key features in ecology are the abil-

ity of an organism to move and the driving forces behind that movement.

The study of movement ecology gives insight to the influences, mechanisms,

and spatiotemporal patterns of animal movement as well as how these factors

play into an animal’s life processes and species dynamics [7], [52]. Movement

ecology of individuals is prevalent in the study of animals, and composes ap-

proximately 8% of articles in ecology, evolution, behavioural science, and en-

vironmental science journals from 1997-2006, with an expectation to increase

further [31]. Animal movement data, by itself, can help identify links between

behaviour, landscape ecology and population dynamics [32], [35]. By quantify-

ing habitat use, we can more easily assess biological requirements, the impact

of environmental changes due to habitat loss and climate change, identify key

habitat areas, and control the spread of invasive species or diseases [3], [52],

[59].

The science of movement ecology has developed rapidly [31] and is expected

to continue this increasing trend due to technological advancements [18], [22].

The use of radio-collars to track animal locations has been in use since the

mid-late 1900s for study and has since revolutionized the ability of researchers

to study wildlife [32]. Since then, location trackers are used extensively in the

field. However they are still subject to variations in collection times, either due
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to interference (such as from water, landscape, etc.) or to prescribed settings

on the data collection. Marine animals are particularly difficult to track if they

do not surface long enough for a signal to be established or because surfacing

occurs infrequently [17]. These irregularities pose many issues for the analy-

sis of the data, because variable-time intervals between collections can limit

the inferences made. Telemetry also comes with inherent measurement error,

both spatially and temporally [32]. Recent technology for collaring animals

may have partially driven the shift from population level data collection to

those for individual pathways [52]. The shift to telemetry devices attached to

animals has heightened our ability to study animals in the wild with little to

no human interference [18], [35].

How the study of animal movement can be practised, modelled, and in-

terpreted is still an active area of research, and nowadays studies are often

designed to answer questions regarding management and conservation of both

the animals themselves and the surrounding environment [18]. The scale of

habitat selection associated with the study of movement data generally falls

under one of four categories: (1) first-order selection: the extent of the species

distribution, (2) second-order selection: the home range of an individual or

natural group of individuals, (3) third-order selection: sub-home range fea-

tures, or (4) fourth-order selection: micro-movement and behaviour [32], [34].

Each scale can be adapted to answer questions about how an animal uses its

environment. The movement itself can be important to an individual’s fitness,

and as a result effect the development of the species [52]. Movement studies

are used to determine space-use and distributions of populations, and in, some

cases, are adapted to learn more about reproductive events and processes [41].

They also identify the interplay between behaviour, landscape ecology, and

population dynamics, which is critical to our understanding of ecological sys-

tems [32], [35], [49].

An animal’s movement is known to be influenced by the environment [59],

other individuals, food supplies [9], [32], physical limitations [50], memory [4],
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[23], and “personality” [20]. Typically the environment is thought to influence

the animal by a selection for, or against, specific environmental characteristics

[5], [16]. Good quality habitat can slow movement and result in a more sinu-

ous pathways. Alternatively, poor quality habitat may result in faster, more

direct pathways [9], [10]. The physical ability for an animal to traverse a habi-

tat type can also increase or decrease its movement speed and affect pathway

conformation. While the specification of how different species use their ability

to remember the environment is unclear, memory modelling [23] is a popular

field in movement ecology and has been included in models to discern its effect

on movement choices [4]. While individual “personality” is difficult to define,

it may be that some individuals are better fit to certain environments due

to personal characteristics [20]. These are but a few examples of the drivers

behind animal movement, which can be identified using telemetry data.

Selection can be described empirically as “a behavioural process by which

animals choose the most suitable locations in order to maximize fitness” [27],

[53]. Translated into more statistical language, selection is the probability that

an animal chooses a specific habitat type(s) over others when it is available

and within range [40], and is mechanistically linked to animal movement [48].

If an animal uses a location more or less than suggested by stochastic move-

ment, this would suggest selection [34]. In order to determine what is selected

for, or alternatively against, researchers often make estimates from used and

available location data [14], [33]. This process of selection can only be deter-

mined indirectly from the data [44], and there are many theoretical efforts to

distinguish it from random movement [12], [55].

One of the best established methods for identifying an animal’s selection is

called resource selection. Resource selection analysis (RSA), and the related

resource selection functions [43], connect an animal’s movement patterns to

the environmental drivers that they encounter [7], [39] and is a fundamental

tool for discerning the effect of the environment on animal presence and move-

ment [63]. This type of analysis can be used to answer questions about species
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distributions and diversity, home ranges, to identify key habitat locations, and

to manage solutions [43], [44], [62]. RSAs are also accommodating to practi-

cally any type of resource data, including categorical or scalar variables [16].

While RSA infers selection and movement characteristics, another perspec-

tive comes from models for realistic continuous-time behaviour [51], [59]. The

spatiotemporal probability of animal occurrence is known as the utilization

distribution (UD) [36]. RSA returns a probability of a location being selected

by an animal, however a UD is here defined as the probability that an animal

moves from a specific starting location to another location. The key difference

between these concepts is that RSA relies on selection for spatial locations,

whereas UDs are directly expressed in terms of the movement parameters.

Continuous-time scale movement can be derived from the UD [65] as partial

or stochastic differential equations that describe animal’s pathway with spe-

cific movement and selection characteristics.

This thesis aim’s to add to the field of movement analysis by (1) finding

the equivalency between the utilization distribution and a stochastic differ-

ential equation of animal movement, (2) overviewing and comparing existing

selection algorithms, and (3) developing a new algorithm for the analysis of

telemetry data sets where some portions are missing that outputs estimates

for the selection and movement parameters. Goal 1 is completed in Chapter 2,

which focuses on the derivation of a continuous-time movement model with se-

lection and the mathematics required for goals 2 and 3. Chapter 3 covers goals

2 and 3 by outlining the algorithms for resource selection analysis, step selec-

tion analysis, and integrated selection analysis, followed by our proposed new

algorithm, missing point selection analysis. This proposed algorithm connects

the two chapters by simulating a stochastic differential equation (continuous

pathways) when steps are missing in the telemetry data. All four algorithms

are compared together on exactly the same data to establish the effectiveness

of each, as well investigate any draw backs. The presented novel algorithm

allows for accurate estimations of movement and selection parameters, espe-
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cially compared to the other algorithms when large amounts of data is missing

from the animal location data set.
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Chapter 2

A Model for Continuous
Movement Behaviour with
Selection

2.1 Introduction

While telemetry data is collected at discrete time intervals, it is reasonable

to assume that movement, instead, occurs in continuous time, with animals

constantly making movement decisions [32], however, it is unreasonable to

expect data to be collected at this time scale, due to both limitations from

technology and the amount of data that would be involved. Extrapolating

to continuous time models from discrete data is then of great interest, with

studies using these models to determine fine-scale space use [32]. We are in-

terested in continuous time modelling because the transition from the general

probability model for animal selection of a new location to continuous time

movement can allow for more types of analysis, and can provide a more real-

istic depiction of the movement process.

Suppose one has telemetry data, or any kind of tracking data, for ani-

mals along with the landscape data for the region in which they reside, and

one wishes to know the selection made by the individuals that were tracked.

Several pieces of data are required for this analysis, including telemetry data

from the animals and landscape information. In this thesis we focus on the

relationship between the probability of selection and simulated animal move-
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ment before directly analyzing the data. That is, the theory presented in this

chapter will provide the groundwork for the proposed algorithm for selection

analysis in chapter 3, specifically in section 3.10.

In order to maintain a level of consistency, all variables are described in Ta-

ble 2.1, and their definitions do not change throughout the thesis. We consider

both one spatial dimension and two spatial dimensions, so as to be thorough

for possible applications. We do not consider three dimensional movement,

such as fish movement in the ocean, or birds in the sky, because of the level

of complexity required for the analysis as well as the concomitant increase in

computation time. While the use of three dimensions is not the standard, it

could be a possible in the future with further research.

First, suppose that the locations of the animal are known and given in the

form of a vector of length n + 1, which describes the locations at times t0,

t1, . . . tn. Thus, X is the vector of length n + 1 with entries x(ti), which are

the animal’s individual locations. That is, x(ti) is the known location of the

animal at time ti. For simplicity we will ignore the measurement error and

assume that the reported locations are spatially accurate. In two dimensions,

our data is in the form

x(ti) =

(
x1(ti)
x2(ti)

)
(2.1)

where x1(ti) and x2(ti) are the 2-dimensional coordinates at time ti. Thus,

each element of the vector x(ti) ∈ R2.

We define the probability that an animal chooses to move from y to x, with

probability density function, also known as the utilization distribution [32],

f(x, y;µ, σ2, β) =
K(x− y;µ, σ2)w(F (x); β)∫
K(z − y;µ, σ2)w(F (z); β)dz

, (2.2)

where K(x−y;µ, σ2) is the distribution of dispersal displacements that would

be found in a spatially uniform environment, F (x) is the list of environ-

mental covariates, β is the vector of selection coefficients for the covariates,
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and w(F (x); β) is the weighting function for the landscape covariates. In

our model the weighting function shows habitat preference as a function of

the finishing point of the move [62]. In our case we focus on the case where

K(x − y;µ, σ2) is a Gaussian. This choice is based on the normal distribu-

tion having an exponential form which is helpful for some of the algorithms in

Chapter 3. The normal distribution also has the important property of being

robust to the effect of time intervals on the probability distribution [60]. In

other words, when the size of the time interval τi varies, a model for simple

Brownian motion means that the probability distribution remains a normal

distribution, albeit with a different variance This is shown in Appendix A.1,

where a precise definition of robustness is also given.

Figure 2.1: The structure of time steps (ti) and time intervals (τi) for telemetry
data. The τis need not be equal.

Time steps follow the structure shown in Figure 2.1, where ti is the time

step and τi is the interval between ti−1 and ti. Telemetry data rarely is collected

with identical time intervals between time steps, often due to data collection

issues that result in missing points and consequently irregular time intervals

[32]. In the case where have irregular time intervals, the mean and the variance

for the dispersal kernel can change between time steps, so the step selection

function can take the form

f(x, y;µ(τi), σ
2(τi), β) =

K(x− y;µ(τi), σ
2(τi))w(F (x); β)∫

K(z − y;µ(τi), σ2(τi))w(F (z); β)dz
. (2.3)

This probability density function differs from equation 2.2 because the shape

of the movement kernel depends on the amount of time the animal has to

move. That is, the standard deviation will be bigger for longer time intervals.
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We can rewrite K as

K(x− y;µ(τ), σ2(τ)) = k(x, y; τi, θ), (2.4)

where

θ =

(
µ(τ)
σ2(τ)

)
. (2.5)

For the weighting function w(F (x); β), we can use many different forms;

however, we will focus on the two following forms: first the exponential form

w(F (x); β) = exp

( η∑
j=1

βjFj(x)

)
, (2.6)

and second the logistic form

w(F (x); β) =
exp(β0 +

∑η
j=1 βjFj(x))

1 + exp(β0 +
∑η

j=1 βjFj(x)
. (2.7)

In animal habitat selection studies, equation 2.6 is the more commonly used

[3]. However, equation 2.7 provides the ability to determine probability of se-

lection, rather than relative probability of selection [39], [62]. This difference

is further elaborated on in section 3.4.1.

This chapter covers the derivation of a stochastic differential equation for

animal movement with environmental influences from the utilization distribu-

tion, or master equation. In order to accomplish this goal, the Fokker-Planck

equation, a partial differential equation, is established first from the master

equation, or the utilization distribution. Once the Fokker-Planck equation is

found, the stochastic differential equation can then be determined. We show

the mathematics behind this process for both one dimension and two dimen-

sions, as well as for both an exponential model and a logistic model for the

probability of selection. Finally, we cover the simulation of the stochastic dif-

ferential equation as a bridge between two known movement points with the

added effect of habitat selection.

2.2 Underlying Unbiased Animal Movement

When the environment is uniform, we expect the animals to move, so

that the direction and step length are not influenced by outside environments.
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This externally unbiased animal movement model underlies movement with

selection, and is thus key to the utilization distribution. As mentioned earlier,

we assume that the externally unbiased movement kernel adheres to a normal

distribution because the normal distribution has an useful exponential form

as well as being robust to the effects of time intervals (see Appendix A.1).

We generally assume a zero mean for the normal distribution, which means

that there is no intrinsic bias in the movement towards a given location. The

parameter that needs to be estimated for data for the unbiased movement is

the variance of the step length. For the case with simple Brownian motion,

this variance depends on the time interval available for animals to move. We

can write the variance as:

σ2
i = γτi, (2.8)

Where σi is the variance of the unbiased movement kernel for time interval

i, and τi is the time interval. In Chapter 3, we outline how data is used to

determine the fitted values for γ.

If we were to include bias into the movement kernel, the mean for the

biased movement kernel would be given by

µ
i

= mτi (2.9)

where µ
i

is the mean for time interval i, and m is the velocity of the bias.

However, we assume m = 0, so the movement kernel does not show an intrinsic

bias to any given direction.

2.3 Probability Density Functions for Move-

ment

The introduction to this chapter poses the general model for animal move-

ment for discrete time intervals τi, but what happens to movement patterns

when τi → 0? We can use partial differential equations and stochastic differ-

ential equations to develop the model in this case. We use the master equation

to begin, and then end with a stochastic differential equation model. We base
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our analysis of the master equation on Moorcroft and Barnett [48]. To move

to the continuous time framework, we consider the case where each τi has an

identical value, τ , which is a small and constant and will approaches zero.

2.3.1 Fokker-Planck Derivation from a Master Equa-
tion (One Spatial Dimension)

We start with the master equation, a discrete-time equation describing the

change in a probability density function for the location of an individual, and

identify its connection with the Fokker-Planck equation, which is a partial

differential equation describing the change in the probability density function

in continuous time. The Fokker-Planck provides a necessary “middle-ground”

for the the steps from a master equation for a probability density function

for the location of the individual in discrete time to a stochastic differential

equation for the movement path of the individual in continuous time. In one

dimension, the domain is chosen to be the real line, Ω = (−∞,∞).

Consider the case where an individual is released with location given by

probability density function u0(x) at time t = 0. For example, if the individual

is released at x = x0 at t = 0 then u0(x) = δ(x− x0) (point release). If we do

not know exactly when the animal was released, we use a probability density

function (pdf), u0(x). Note that

1 =

∫
Ω

u0(x)dxdy. (2.10)

We would like to know the pdf for the individual for t > 0, u(x, t). This is

given by

u(x, t+ τ) =

∫
Ω

f(x, y;µ(τ), σ2(τ), β)u(y, t)dy, (2.11)

where f is given by equation 2.3. This is a special case of the Chapman-

Kolmogorov equation [2].

We aim to derive a continuous time model by using an infinitesimal time

step and Taylor series expansion approach. These two methods are combined

11



by expanding the discrete-time equation 2.13 in a Taylor series and then ap-

proximating by removing higher order terms. In each time step τ , there is

a change in the animal’s spatial location. The step length and direction of

movement are dependent only on the starting and ending locations, x and y,

so we can write the displacement as a = x− y. This means the kernel (equa-

tion 2.2) can be rewritten as f(x, y;µ(τ), σ2(τ), β) = fa(a, y;µ(τ), σ2(τ), β)

because f(x, y;µ(τ), σ2(τ), β) depends only on x − y and y. Therefore, this

results in

u(x, t+ τ) =

∫
Ω

fa(a, x− a;µ(τ), σ2(τ), β)u(x− a, t)da. (2.12)

We use a Taylor expansion to isolate specific terms for future steps, yielding

u(x, t+ τ) =

∫
Ω

[
fa(a, x;µ(τ), σ2(τ), β)u(x, t) (2.13)

− a ∂
∂x

[fa(a, x;µ(τ), σ2(τ), β)u(x, t)] (2.14)

+
a2

2

∂2

∂x2
[fa(a, x;µ(τ), σ2(τ), β)u(x, t)] + ...

]
da (2.15)

We know that
∫

Ω
fa(a, x;µ(τ), σ2(τ), β)u(x, t)da = u(x, t). Using this fact and

dividing both sides by τ gives

u(x, t+ τ)− u(x, t)

τ
=− 1

τ

∂

∂x

∫
Ω

afa(a, x;µ(τ), σ2(τ), β)u(x, t)da (2.16)

+
1

2τ

∂2

∂x2

∫
Ω

a2fa(a, x;µ(τ), σ2(τ), β)u(x, t)da+ h.o.t.

(2.17)

Taking the limit as τ → 0 yields

∂u(x, t)

∂t
=− ∂

∂x

[
lim
τ→0

1

τ

∫
Ω

afa(a, x;µ(τ), σ2(τ), β)da

]
(2.18)

+
∂2

∂x2

[
lim
τ→0

1

2τ

∫
Ω

a2fa(a, x;µ(τ), σ2(τ), β)da

]
+ h.o.t. (2.19)

Defining

c(x) = lim
τ→0

1

τ

∫
Ω

afa(a, x;µ(τ), σ2(τ), β)da (2.20)

d(x) = lim
τ→0

1

2τ

∫
Ω

a2fa(a, x;µ(τ), σ2(τ), β)da, (2.21)

12



to be the first and second infinitesimal moments of fa yields the Fokker-Planck

equation
∂u(x, t)

∂t
= − ∂

∂x
[c(x)u(x, t)] +

∂2

∂x2
[d(x)u(x, t)]. (2.22)

Here we assume that the higher order terms approach zero as τ approaches

zero [11].

We have taken the master equation for the probability that an animal

moves to a location given a starting location to an partial differential equa-

tion, known as the Fokker-Planck equation, which describes the change in

probability of selection over environment Ω in continuous-time. The connec-

tion between these two equations was found by using infinitesimal time step

and a Taylor series expansion. After considering the two dimensional version

of this connection and associated formulas for c(x) and d(x), the next step is

to derive a stochastic differential equation from the Fokker-Planck equation

(Section 2.4).

2.3.2 Fokker-Planck Derivation from a Master Equa-
tion (Two Spatial Dimensions)

Similar to Section 2.3.1, the goal of this section is to derive the Fokker-

Planck equation from the master equation, but in this section we work in

two dimensions rather than one dimension. A two dimensional space model

is common in realistic animal movement studies, so it is important to pro-

vide the derivation in two dimensions. In two dimensions, the domain is

Ω = (−∞,∞)× (−∞,∞).

Let our space variable be x = (x1, x2). Then the master equation is

u(x, t+ τ) =

∫
Ω

f(x, y;µ(τ), σ2(τ), β)u(y, t)dy. (2.23)

Defining a = x − y, which is the vector representing the move from y to

x, we can redefine f(x, y;µ(τ), σ2(τ), β) as f(x, y;µ(τ), σ2(τ), β) = fa(a, x −

13



a;µ(τ), σ2(τ), β). The equation becomes

u(x, t+ τ) =

∫
Ω

fa(a, x− a;µ(τ), σ2(τ), β)u(x− a, t)da (2.24)

Expanding u(x, t + τ), u(x − a, t), and fa(a, x − a;µ(τ), σ2(τ), β) using the

two-dimensional Taylor series, we obtain

u(x, t+ τ) + τ
∂

∂t
u(x, t) =

∫
Ω

{u(x, t)fa(a, x;µ(τ), σ2(τ), β) (2.25)

− a1
∂

∂x1

[u(x, t)fa(a, x;µ(τ), σ2(τ), β)] (2.26)

− a2
∂

∂x2

[u(x, t)fa(a, x;µ(τ), σ2(τ), β)] (2.27)

+
a2

1

2

∂2

∂x2
1

[u(x, t)fa(a, x;µ(τ), σ2(τ), β)] (2.28)

+
a1a2

2

∂2

∂x1x2

[u(x, t)fa(a, x;µ(τ), σ2(τ), β)] (2.29)

+
a2a1

2

∂

∂x2x1

[u(x, t)fa(a, x;µ(τ), σ2(τ), β)] (2.30)

+
a2

2

2

∂2

∂x2
2

[u(x, t)fa(a, x;µ(τ), σ2(τ), β)] + h.o.t.}da,

(2.31)

where a = (a1, a2)T .

Dividing by τ , using the fact that
∫
fa(a, x;µ(τ), σ2(τ), β)u(x, t)da = u(x, t)

to rearrange and taking the limit as τ → 0 gives the Fokker-Planck equation

∂u

∂t
=−∇ ·

[
c(x)u

]
+
∂2[dx1x1(x)u]

∂x2
1

+
∂2[dx1x2(x)u]

∂x1x2

(2.32)

+
∂2[dx2x1(x)u]

∂x2x1

+
∂2[dx2x2(x)u]

∂x2
2

, (2.33)

where

c(x) = lim
τ→0

1

τ

∫
Ω

afa(a, x;µ(τ), σ2(τ), β)da (2.34)

dx1x1(x) = lim
τ→0

1

2τ

∫
Ω

a2
1fa(a, x;µ(τ), σ2(τ), β)da (2.35)

dx1x2(x) = lim
τ→0

1

2τ

∫
Ω

a1a2fa(a, x;µ(τ), σ2(τ), β)da (2.36)

dx2x1(x) = dx1x2(x) (2.37)

dx2x2(x) = lim
τ→0

1

2τ

∫
Ω

a2
2fa(a, x;µ(τ), σ2(τ), β)da. (2.38)
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When the movement kernel K in equation 2.3 is isotropic (independent

of direction), as is the case for normal kernel, it is possible to show that the

cross diffusion terms become zero, and the remaining diffusion terms become

dx1x1(x) = dx2x2(x) = d(x), the details of which are shown in Appendices A.2

and A.3. In this, the Fokker-Planck equation can alternatively be expressed

as
∂

∂t
u(x, t) +∇ · (c(x)u(x, t)) = ∇2(d(x)u(x, t)). (2.39)

This section showed the derivation of the Fokker-Planck equation from

the master equation in two dimensions. Specifically, these steps identify the

connection between the probability that an animal moves to a location, given

a starting location, and the change in probability of an animal moving to a

location over an environment Ω. We can then use the Fokker-Planck equation

to derive a stochastic differential equation describing animal movement.

2.3.3 Derivation of Space Use Coefficients (One Spatial
Dimension)

We require the space-use coefficients for the movements models to include

the resource dependence in the movement. Following the work shown in Moor-

croft and Barnett Appendix A [48], we derive the space-use coefficients for our

model.

The utilization distribution is defined as

f(x, y;µ(τi), σ
2(τi), β) =

K(x− y;µ(τi), σ
2(τi))w(F (x); β)∫

K(z − y;µ(τi), σ2(τi))w(F (x); β)dz
, (2.40)

which includes movement and selection parameters. As before, letting a =

x− y, which is the vector of displacement between steps, we can change from

(x, y) coordinates to (a, y) coordinates by defining

fa(a, y;µ(τ), σ2(τ), β) = f(x, y;µ(τ), σ2(τ), β). (2.41)
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We now abbreviate notation for convenience and rewrite fa(a, y;µ(τ), σ2(τ), β) =

fa(a, y; τ), w(F , β) = w(F ), and K(a;µ(τ), σ2(τ)) = K(a; τ). This equa-

tion 2.41 becomes

fa(a, y; τ) =
K(a; τ)w(F (y + a))∫
K(a; τ)w(F (y + a′))da′

. (2.42)

We note that we require fa(a, x; τ) for the calculation of the advection (equa-

tion 2.22) and diffusion (equation 2.23) coefficients and so rewrite equation 2.42

as

fa(a, x; τ) =
K(a; τ)w(F (x+ a))∫
K(a; τ)w(F (x+ a′))da′

. (2.43)

The pth moment of the distribution of displacement distances is

Mp(τ) =

∫
apK(a; τ)da. (2.44)

The variance is M2 − M2
1 , and so the variance equals the second moment

if the mean M1 = 0. M1 = 0 when K is symmetric, which is one of our

assumptions because µ = 0. Also, since K is a probability density function,

M0(τ) = 1. Under the above assumptions, Taylor expanding w(F (x + a′))

yields the following expression for the denominator of equation 2.43,∫
K(a′)w(F (x+ a′))da′ = w(F (x)) +

wxx(F (x))

2!
M2(τ) + ... (2.45)

where wxx(F (x)) = d2w(F (x))
dx2

. In the limit τ → 0, we only require the first

two terms of equation 2.47. Using this expression for the denominator and

inserting equation 2.47 into equation 2.34 yields

c(x) = lim
τ→0

1

τ

wx(F (x))M2(τ) + ...

w(F (x)) + wxx(F (x))M2(τ)
2!

+ ...
(2.46)

= lim
τ→0

wx(F (x))M2(τ)

w(F (x))τ
(2.47)

=
wx(F (x))

w(F (x))
lim
τ→0

M2(τ)

τ
(2.48)
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where wx = dw
dx

, etc. Similarly

d(x) = lim
τ→0

1

2τ

w(F (x))M2(τ) + wxx(F (x))M4(τ)/2! + ...

w(F (x)) + wxx(F (x))M2(τ)/2 + ...
(2.49)

= lim
τ→0

M2(τ)

2τ
(2.50)

= d (constant). (2.51)

Here we make the standard assumption that the limit given in equations 2.50

and 2.52 exists and that higher order moments of the dispersal kernel go to

zero faster than τ [11].

These new forms for c(x) and d(x) are used in a stochastic differential

equation, derived below. Since the variance equals the second moment, we

can substitute σ2 = γτ in for M2(τ). Thus we retain the same movement

parameters as the utilization distribution (equation 2.3). The selection pa-

rameters are included in c(x) through wx(F (x))/w(F (x)).

2.3.4 Derivation of Space Use Coefficients (Two Spatial
Dimensions)

Similar to Section 2.3.3, we require the space-use coefficients in terms of

the movement and selection parameters, but in two dimensions. The technique

between these two sections is similar, but the detailed difference is important

for final implementation.

The two dimensional utilization distribution is defined as

f(x, y;µ(τi), σ
2(τi), β) =

K(x− y;µ(τi), σ
2(τi))w(F (x); β)∫

K(z − y;µ(τi), σ2(τi))w(F (x); β)dz
, (2.52)

which includes movement and selection parameters. Letting a = x− y be the

vector of distance travelled between steps, we can again change (x, y) to (a, y)

by defining

fa(a, y;µ(τ(, σ2(τ), β) = f(x, y;µ(τ), σ2(τ), β). (2.53)
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Using the abbreviated notation introduced in the previous section, we rewrite

equation 2.52 as

fa(a, x;µ(τ), σ2(τ), β) =
K(a; τ)w(F (x+ a), β)∫
K(a; τ)w(F (x+ a′), β)da′

. (2.54)

The pth radial moment of the distribution of displacement kernel K is

Mp(τ) =

∫
|a|pK(a; τ)da. (2.55)

Again, the variance is M2−M2
1 , and so the variance equals the second moment

if the mean M1 = 0. M1 = 0 when K is symmetric, and because K is a

probability density function M0(τ) = 1. Under the above assumptions, Taylor

expanding w(F (x + a′)) yields the following expression for the denominator

of equation 2.54,∫
K(a′)w(F (x+ a′))da′ = w(F (x)) +

∇2w(F (x))

2!
M2(τ) + ... (2.56)

In the limit τ → 0, only the first two terms of equation 2.56 remains.

Using this expression for the denominator and inserting equation 2.58 into

equation 2.34 yields

c(x) = lim
τ→0

1

τ

∇w(F (x))M2(τ)
2

+ ...

w(F (x)) +∇2w(F (x))M2(τ)
2!

+ ...
(2.57)

= lim
τ→0

∇w(F (x))M2(τ)

2w(F (x))τ
(2.58)

=
∇w(F (x))

w(F (x))
lim
τ→0

M2(τ)

2τ
. (2.59)

Similarly,

d(x) = lim
τ→0

1

2τ

w(F (x))M2(τ)
2

+ ...

w(F (x)) +∇2w(F (x))M2(τ)
2!

+ ...
(2.60)

= lim
τ→0

M2(τ)

4τ
(2.61)

= d (constant) (2.62)

where M2(τ) is the second moment of dispersal kernel. Here we again make

the standard assumption that the limit given in equation 2.61 exists and that
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higher order moments of the dispersal kernel go to zero faster than τ .

In this section we have defined the space-use coefficients for two dimen-

sions. These space-use coefficients are described with the movement and se-

lection parameters given in the utilization distribution, which will account for

the connection between the utilization distribution and the related stochastic

differential equation (SDE) model (see Section 2.4.2). In the following sub-

sections we determine the exact form of the space-use coefficient given the

weighting function and number of dimensions.

2.3.5 Exponential Weighting, One Dimension

In this section, we determine the (1/w(x))(∂w/∂x) required for the space-

use coefficient in Section 2.3.3. As described in Section 2.1, we first assume

an exponential model for the probability of selection for environmental loca-

tion (weighting model) in 1D given by equation 2.6. For the one-dimensional

advection coefficient of equation 2.50, we require (1/w(x))(∂w/∂x). The ex-

ponential weighting model given in equation 2.6 is

w(F (x); β) = exp

( η∑
j=1

βjFj(x)

)
. (2.63)

Differentiating equation 2.63 yields

dw

dx
= exp(β1F1(x) + β2F2(x) + ...+ βηFη(x))

(
β1
dF1(x)

dx
+ β2

dF2(x)

dx

+ ...+ βη
dFη(x)

dx

)
.

(2.64)

Therefore

dw

dx

1

w
= β1

dF1(x)

dx
+ β2

dF2(x)

dx
+ ...+ βη

dFη(x)

dx
, (2.65)

or equivalently

dw

dx

1

w
=

η∑
i=1

βi
dFi(x)

dx
, (2.66)
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and so

c(x) = 2d

η∑
i=1

βj
dFj(x)

dx
. (2.67)

The (1/w(x))(∂w/∂x) term found in this section will later be used in the

SDE model to influence the movement of the animal to include selection.

The exponential model leads to a relatively simplistic form of the weighting

derivative, as compared to the logistic weighting (Section 2.3.7).

2.3.6 Exponential Weighting, Two Dimensions

For the advection coefficient in two dimensions, we need ∇w(x) (equation

2.61). The exponential model in two dimensions is,

w(F (x); β) = exp

( η∑
j=1

βjFj(x)

)
. (2.68)

Using equation 2.68, we start by taking the gradient of w,

∇w =

(
exp

( η∑
j=1

βjFj(x)

)( η∑
j=1

βj
∂Fj(x)

∂x1

)
,

exp

( η∑
j=1

βjFj(x)

)( η∑
j=1

βj
∂Fj(x)

∂x2

))ᵀ

.

(2.69)

Thus we get

∇w
w

=

( η∑
j=1

βj
∂Fj(x)

∂x1

,

η∑
j=1

βj
∂Fj(x)

∂x2

)ᵀ

(2.70)

= ∇
η∑
j=1

βjFj(x), (2.71)

and so

c(x) = 4d∇
η∑
j=1

βjFj(x) (2.72)

The gradient term ∇w(x) derived in this section will function as the influ-

ence of the environment on the animal’s movement by included their selection

for or against specific environmental covariates. The ∇w(x) found is similar
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to 1D in its ease of calculation and relative simplicity when compared to Sec-

tion 2.3.8. This ∇w(x) is to be used in the case of an exponential model in a

two dimensional space.

2.3.7 Logistic Weighting, One Dimension

The logistic weighting function (equation 2.7) for the probability of selec-

tion of a location is given by

w(F (x); β) =

exp

(
β0 +

∑η
j=1 βjFj(x)

)
1 + exp

(
β0 +

∑η
j=1 βjFj(x)

) . (2.73)

We require (1/w(x))(∂w/∂x) of the logistic weighting in order to calculate the

one-dimensional advection coefficient.

Differentiating equation 2.73 with respect to x yields

dw

dx
=

exp(β0 +
∑η

j=1 βjFj(x))
∑
βj

dFj(x)

dx

(1 + exp(β0 +
∑η

j=1 βjFj(x)))2
, (2.74)

and therefore
dw

dx

1

w
=

∑η
j=1 βj

dFj(x)

dx

1 + exp(β0 +
∑η

j=1 βjFj(x))
. (2.75)

Thus,

c(x) = 2d

∑η
j=1 βj

dFj(x)

dx

1 + exp(β0 +
∑η

j=1 βjFj(x))
(2.76)

The (1/w(x))(∂w/∂x) which is the weighting that will be used in the SDE

below if a logistic model is chosen for an animal in a 1D environment. This

term brings selection for (or against) environmental characteristics to the sde.

2.3.8 Logistic Weighting, Two Dimensions

The logistic weighting for the probability of selection of a location by an

animal is given by

w(F (x); β) =

exp

(
β0 +

∑η
j=1 βjFj(x)

)
1 + exp

(
β0 +

∑η
j=1 βjFj(x)

) . (2.77)
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We need ∇w(x) for the sde of animal movement with selection. The ∇w(x)

term will function as the integration of selection for or against environmental

characteristics by the animal.

Using equation 2.77, we start by taking the gradient of w,

∇w =

(exp

(
β0 +

∑η
j=1 βjFj(x)

)(∑η
j=1 βj

∂Fj(x)

∂x1

)
(

1 + exp

(
β0 +

∑η
j=1 βjFj(x)

))2 ,

exp

(
β0 +

∑η
j=1 βjFj(x)

)(∑η
j=1 βj

∂Fj(x)

∂x2

)
(

1 + exp

(
β0 +

∑η
j=1 βjFj(x)

))2

)ᵀ

.

(2.78)

Thus we get

∇w
w

=

( ∑η
j=1 βj

∂Fj(x)

∂x1

1 + exp

(
β0 +

∑η
j=1 βjFj(x)

) , ∑η
j=1 βj

∂Fj(x)

∂x2

1 + exp

(
β0 +

∑η
j=1 βjFj(x)

))ᵀ

,

(2.79)

and so

c(x) = 4d

( ∑η
j=1 βj

∂Fj(x)

∂x1

1 + exp

(
β0 +

∑η
j=1 βjFj(x)

) , ∑η
j=1 βj

∂Fj(x)

∂x2

1 + exp

(
β0 +

∑η
j=1 βjFj(x)

))ᵀ

.

(2.80)

We find here the equation for ∇w(x) given a logistic model for the proba-

bility of selection of a location by an animal. This ∇w(x) will also be used in

the SDE under the assumption of a logistic model applied to a two dimensional

environment and introduces selection in the SDE.

2.4 Deriving the Stochastic Differential Equa-

tion from the Partial Differential Equation

In the previous section, we determined the probability density function for

the selection of a location given a starting location for an animal. Using the
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master equation, we then derived the Fokker-Planck equation. Once the pdf

has been determined, we can simulate movement of individuals following the

fitted distribution.

In this section, we derive the stochastic differential equation from the par-

tial differential equation. The stochastic differential equation allows for the

simulation of animal movement pathways over continuous time. These sim-

ulations are accomplished by using stochastic differential equations to model

the possible paths of a single individual. The stochasticity is incorporated in

the animal’s movement via a biased random walk process.

2.4.1 Stochastic Differential Equation, One Dimension

Once the connection between the utilization distribution and step selection

equations is found, we now require the stochastic differential equation related

to the step selection equation. We began with a probability density function

for the probability that an animal move to a location given movement and

selection parameters, u(x, t). By way of contrast, the SDE provides a model

for a track for an individual, which is X(t). That is, we establish the connec-

tion between the utilization distribution and continuous time movement will

be complete.

The Fokker-Planck equation, found in Section 2.3.1, was found to be in our

case as
∂u(x, t)

∂t
= − ∂

∂x
[c(x)u(x, t)] +

∂2

∂x2
[du(x, t)]. (2.81)

This is also referred to as the forward Kolmogorov equation [2]. The for-

ward Kolmogorov equation is related to an Ito stochastic differential equation

(definition given by Allen [2]). Specifically, page 343 of this text shows the

corresponding Ito SDE for the forward Kolmogorov equation. Translating our

forward Kolmogorov equation to an SDE, we find the SDE is

dX(t) = c(X(t))dt+
√

2ddW (τ), (2.82)
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where X(t), t ≥ 0 is a stochastic diffusion process, and W (t), t ∈ [0,∞) is a

Wiener process (standard Brownian motion).

However for simulations of the SDE, we require the explicit definitions of

the drift and diffusion terms. From Section 2.3.3, the drift was found to be

c(X(t)) =
wx(F (x))

w(F (x))
lim
τ→0

M2(τ)

τ
. (2.83)

From Section 2.3.3, when the available distribution is symmetric, the sec-

ond moment (M2(τ)) is equal to the variance of the available distribution. Our

assumption that the second moment of the dispersal kernel K, M2(τ) scales

linearly with τ as τ approaches zero means that

c(X(t)) =
wx(F (x))γ

w(F (x))
. (2.84)

where γ is defined to be the rate at which the one-dimensional variance of

the process grow with time so that the variance of the dispersal kernel is

σ2(τ) = M2(τ) = γτ as τ → 0.

Similarly, d(x) defined in Section 2.3.3, equation 2.52 and 2.63, to be

d = lim
τ→0

M2(τ)

2τ
. (2.85)

Again since the second moment is equal to the variance of the available

distribution, we can define β(X(t)) in equation 2.86 as

√
2d =

√
2
M2(τ)

2τ
(2.86)

=

√
2
γτ

2τ
(2.87)

=
√
γ. (2.88)
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In this thesis, we consider the case where K is a Gaussian with zero mean

and variance σ2(τ) = γτ (one dimension) or σ2(τ) = 2γτ (two dimensions),

because both the x and y components of the variance grow with time at rate γ

in two dimensions. In summary, SDE defined in this section follows the same

movement and selection parameters as defined in the utilization distribution

for one dimension. Animal movement in continuous time can then be simulated

using that resulting SDE.

2.4.2 Stochastic Differential Equation, Two Dimensions

In most animal space-use studies, the biological questions of interest are

in two dimensions rather than one. Therefore is it of interest to derive the

stochastic differential equation from the utilization in two dimensions as well.

The connection between utilization distribution and the step-selection func-

tion can be extended to find the SDE.

The Fokker-Planck equation in two dimensions, also known as the forward

Kolmogorov equation, derived in Section 2.3.2 was found to be

∂

∂t
u(x, t) +∇ · (c(x)u(x, t)) = ∇2(du(x, t)). (2.89)

Using the connection between the forward Kolmogorov equation and the Ito

stochastic differential equation (SDE) as defined by Allen [2] on page 417,

yields the SDE

dX(t) = c(X(t))dt+
√

2ddW (τ). (2.90)

In equation 2.59, the drift term was found to be

c(X(t)) =
∇w(F (x))

w(F (x))
lim
τ→0

M2(τ)

2τ
. (2.91)

Yielding

c(X(t)) =
∇w(F (X(t)))γ

w(F (X(t)))
, (2.92)
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where M2(τ) = 2γτ now scales the variance of the two-dimensional dispersal

kernel as τ → 0. Using equation 2.61 yields

√
2d =

√
γ. (2.93)

We now have an two dimensional SDE with coefficients that depend on

the movement and selection parameters. Note that the drift term c involves

dispersal plus selection whereas the random motion term Ω involves only dis-

persal. This SDE can be used to simulate animal movement with influence

of the environment. The desired utilization distribution thus influences the

resulting SDE.

2.5 Numerical Solution of the SDE

In order to implement the SDE model found in Section 2.4.2, we require

numerical methods that can find solutions to the equations in a given space.

There are several methods for solving these types of equations, such as Euler,

Milstein, and Itô-Taylor. However we use the Runge-Kutta method, specifi-

cally second order Runge-Kutta [30], because higher-order Runge-Kutta meth-

ods provide more accurate estimates. Runge-Kutta works by estimating the

next step in the SDE given an initial value by finding the slope at a given point

and looking forward a small amount in time. The slope is found through a

Taylor expansion and uses one higher order term than first order Runge-Kutta

(three terms of the Taylor series). This provides an estimate of the derivative

of the equations without actually finding it.

There are two main ways we use the SDE to find solutions: (1) an initial

value problem, which is to determine an X(t) that satisfies equation 2.99 plus

X(0) = X0, and (2) a bridge problem, which is to determine an X(t) that sat-

isfies equation 2.99 plus X(0) = X0 and X(τ) = Xτ . The initial value problem
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gives simulated pathways with the given movement and selection parameters

on a specified landscape. The only limiting factor in this case is the start-

ing location, meaning that the final location is not pre-determined. On the

other hand, the bridge solutions do have specific starting and ending points,

but instead serve to understand what could have happened in between those

points given specific movement and selection parameters. Equation 2.99 has

an infinite number of solutions, and both ways (1) and (2) find those solutions.

Using the form of the SDE given in section 2.4.2, we simulate pathways

using software in R. We use the Sim.DiffProc package by Arsalane Chouaib

Guidoum and Kamal Boukhetala [30]. The “bridgesde2d” function takes a

given SDE model and initialization parameters and outputs bridge pathways.

The number of pathways can be adjusted, as well as the number of simulated

points/time per bridge. We use the solver method ‘rk2’ which is the second

order Runga-Kutta method. This function returns a discrete list of locations,

x and y, which can then either be sampled from or used as a whole vector.

Should any errors occur, such as a valid bridge simulation is not complete, it

returns an error exception. Thus for repeated simulations, an error catcher

must be used. An example pathway is given in Figure 2.2.

We apply the SDE model to a landscape with a single covariate called

F (x). F (x) is a two-dimensional Gaussian centered at (0, 0) and a variance

of σe. Given two known points, bridges can be simulated between those points

as influenced by the environment (see Figure 2.2).

2.6 Discussion and Conclusion

The goal of this section was to establish the connection between the uti-

lization distribution,

f(x, y;µ(τi), σ
2(τi), β) =

K(x− y;µ(τi), σ
2(τi))w(F (x); β)∫

K(z − y;µ(τi), σ2(τi))w(F (z); β)dz
. (2.94)
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Figure 2.2: Simulation of a bridge between two known points with selection.
The circular contour lines show the levels of the environmental covariate that is
being selected for, with a normal distribution that is centered at (0,0) and a σe
of 1 (identical to the distribution described in Section 3.2). The SDE bridge
begins at (1,1) and ends at (1,-1) and follows the selection and movement
parameters described in Table 3.1.

and a stochastic differential equation for animal movement

dX(t) = c(X(t))dt+
√

2ddW (τ). (2.95)

This was accomplished by first deriving the Fokker-Planck equation from the

utilization distribution, then the SDE from the Fokker-Planck equation.

The derivations were shown for both one and two dimensions. Thus the

resulting methods could be applied to a multitude of animal studies. The mod-

els could be extended to three dimensions and is an area in need of further

development. We also included two forms of the selection weighting function;

exponential and logistic. Exponential is the most common form of selection

weighting functions. However we require the logistic weighting function for

Chapter 3. An example of simulation was also shown, as the SDE can be used
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to find bridges between two known points.

This chapter showed the mathematics behind the connection between the

utilization distribution and the SDE, which is extended in Chapter 3 by the

application to data. The utilization distribution can be fit using resource

selection analysis to find fitted movement and selection parameters, which

means the SDE can be simulated with the estimated parameters. Thus, as we

will demonstrate in the next chapter, it is possible to simulate animal pathways

estimated from animal movement data.
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Variable Description Size

X(t) Stochastic process describing the location
of the animal over 0 ≤ t ≤ T

X1(t) x1 components of X(t)
X2(t) x2 components of X(t)

XU Entire set of used location pathway for one animal, n+ 1
((XU

1 (0), XU
2 (0)), (XU

1 (t1), XU
2 (t1)), ..., (XU

1 (tn), XU
2 (tn))ᵀ

J Total number of available steps 1
λ Number of available steps created per used step 1 ≤ λ ≤ J

XA Entire available set of locations for one animal pathway, n+ 1
[(XA

11(ti), X
A
21(ti)), (X

A
12(ti), X

A
22(ti)), ..., (X

A
1J(ti), X

A
2J(ti))]

ᵀ

x 2 dimensional location, also ending location 2
y 2 dimensional location, also starting location 2

ti Time at step i 1
τi Time interval between steps i− 1 and i 1
x(ti) Possible x-coordinate at time ti in 1D 1
x1(ti) Possible x1-coordinate at time ti in 2 dimensional 1
x2(ti) Possible x2-coordinate at time ti in 2 dimensional 1
T Time of last time step 1
t Vector of time steps n+ 1
τ Vector of time intervals n
β Vector of covariate coefficients k

F (x) Covariate value for location x 1
w(F (x), β) Weighting function

K(x− y;µ, σ2) Unbiased movement kernel

ψ Movement kernel based on step length
and turn angle, for iSSA

ai Distance between two points at time i, |xi − yi| 2

Ω Landscape p× q

Table 2.1: All variables and their definitions. These remain consistent through-
out the thesis.
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Chapter 3

Connecting to Data: Informing
Dispersal and Selection

3.1 Introduction

Resource selection models are used to determine the probability that an

animal selects (or avoids) a specific location given it’s environmental character-

istics [40]. The statistical methods used for fitting these models have existed

for a significant amount of time, but the novelty of the subject lies in the

application and interpretation to animal ecology [32]. This type of analysis

compares the characteristics of the environment in the locations the animal

was found (used) to the environmental characteristics of locations where it

could have moved (available). The product of the selection function and the

availability function, when normalized, is proportional to the density function

for space use [32].

Resource selection analysis (RSA), sometimes referred to via resource selec-

tion function (RSF) [43], is the most general method for determining selection.

To analyze the RSA, most commonly a logistic regression is used for presence-

only data, with randomly chosen available points to complete the data set [46].

An RSA can be associated with an exponential model as the probability of

selection and be fit with a logistic regression to obtain unbiased estimates of

the selection parameters [33], but it can also take other forms (e.g. probit,

logit) [38]. RSAs typically estimate a relative probability of selection [62],
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which can go greater than 1.0, and thus resource selection probability analysis

(RSPA) was developed to return a true probability of selection. RSAs predict

specifically selection parameters only, and to incorporate movement step se-

lection analysis (SSA) was introduced [24], [26], [63] and included step lengths

and turning angles [55]. The next development in this area was to include

the fitting of the movement parameters in the same model as the selection pa-

rameters using conditional regression, which is called integrated step selection

analysis (iSSA) [8].

Even though RSAs are applied regularly to animal telemetry data, the issue

of defining what is truly available to animals remains an open issue [8], [40],

[44]. What is available to an animal can vary significantly between species, or

in some cases amongst individuals. Available locations do not necessarily cor-

relate with unused locations because an animal will not go to a location that

it physically cannot access. Therefore not all unused location cannot be con-

sidered as available [16]. How available points are defined significantly affect

the analysis outcome [34], by both the size and spatial extent of the available

set [13], [15]. There is no definitive standard for defining the available set [53],

and often it is chosen arbitrarily [3]. SSAs consider the movement limitations

of the animals and use a distribution of step lengths and movement charac-

teristics [6], [22]. However, even with the movement limitations, this assumes

that the movement itself is not affected by the environment [7], which can

lead to biased estimates for selection[24]. Integrated step selection analysis

(iSSA) addresses this issue by using a conditional regression which then refits

the movement parameters as affected by the environment [8].

Over the course of the use of resource selection models in science, the im-

plementation of these models has been something of an enigma [32]. Not only

are there multiple algorithms for fitting selection probability models, but there

are also multiple ways to fit the models themselves [1], [64]. For example, the

most common method for analyzing a RSA involves the fitting of a logistic

model to binary data for used and available locations, but a Poisson regres-
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sion may also be used to fit to count data on each cell which yields equivalent

results [32]. Due to this lack of clarity, we outline multiple methods simul-

taneously so to retain a level of consistency for direct comparison. We use a

logistic regression in all examples as it is the most widely used method.

The resource selection model being fitted in all described algorithms, also

known as the utilization distribution [32], [36], is generally defined as

f(x, y;µ, σ2, β) =
K(x− y;µ, σ2)w(F (x); β)∫
K(z − y;µ, σ2)w(F (z); β)dz

, (3.1)

which was introduced in equation 2.2 and is described in detail in Section 2.1.

The two major parts that need to be fitted are the available distribution

[40] (K(x − y;µ, σ2)) and the environmental covariate selection weighting

(w(F (x); β)). These two components are typically determined separately;

however they can be also estimated simultaneously (Sections 3.8 and 3.10).

Both processes will be covered in detail below.

Missing data points within animal pathways sets are common and are often

caused by the environment and technological failures [32]. These missing point

pose a problem for analysis, as methods often required fixed time intervals.

When points are missing, the time intervals are no longer consistent across the

data set. RSA can be applied to data sets with missing points, however SSA

and iSSA require fixed time intervals. Continuous methods, such as discrete-

time and continuous-time movement models, similar to the one described in

Chapter 1. But in regards to resource selection analysis, the proposed algo-

rithm follows the same structure as RSA, SSA, and iSSA, yet is adaptable to

cases with missing information.

In this chapter we first outline the necessary tools for resource selection

models, followed by three existing algorithms to fit resource selection mod-

els and one novel algorithm. The necessary tools include the simulation of

pathways, with pre-specified selection and movement parameters, and the

maximum likelihood estimators used to determine initial estimates for the
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movement parameters. The existing methods are resource selection analysis,

step selection analysis, and integrated step selection analysis. The proposed

algorithm is called missing point selection analysis. For all examples, we use

simulated data that is repeated consistently for comparisons. The implementa-

tion of all algorithms is done in R, with detailed R code given in Appendix A.5

for each algorithm. Descriptions of the code are given in the following sections

using equations and flow charts for generalization.

3.2 Simulated Pathways

For each example used in the analysis, we simulate pathways with known

and consistent movement and selection parameters in order to see if the esti-

mates match the actual parameters. Example pathways can be seen in Fig-

ures 3.1 and 3.2. The simulated pathways are influenced by the environment,

with the simulated animal selecting for higher values of a single environmental

covariate for our example. For illustrative purposes, only a single environmen-

tal covariate is used. However this is not a restriction of the method, which can

be applied to models with multiple explanatory variables. The environmental

covariate is modelled as a bivariate normal distribution, centered at the origin

that is not affected by any bias (covariance is zero), and is therefore symmet-

ric. The standard deviation of the environmental covariate value distribution

is also preset and deterministic. A contour diagram of the environmental co-

variate can be seen in Figure 3.1.

The simulated pathways were first initialized with several parameters, in-

cluding the mean of the environmental covariate, standard deviation of the

environmental covariate, animal movement parameters (β), and the animal’s

starting location, as described in Table 3.1. These are all constants set be-

fore simulating the pathway and are appointed by the user. The covariate is

defined as

F (x) =
1

2πσ2
e

exp

[
− 1

2

(
(x1(ti)− µ1

e)
2

σ2
e

+
(x2(ti)− µ2

e)
2

σ2
e

)]
(3.2)
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with variance σe, and mean (µ1
e, µ

2
e). This shape a symmetric, bivariate normal

distribution. The random number seed is set to the same fixed value before

each simulation to get the same realization of the stochastic process.

The generation of the pathway was completed using the package Sim.Diffproc

[30] in R, which can be used to simulate a two-dimensional SDE. The SDE

used is given in the form

dX(t) = c(X(t), t)dt+
√

2ddW (t) (3.3)

where c(X(t)) is the advection/drift term,
√

2d is the diffusion term, and W (t)

is a Weiner process. This equation was derived in Section 2.4.2 in Chapter 2

(equation 2.90). Selection by the animal is introduced through βcov, which is

the selection for (or against) a specific habitat type, and the intercept value

β0. These two parameters determine the shape and magnitude of selection in

the probability of selection model. The probability of selection model for our

examples takes the shape of a logistic function, and is defined as

w(F (x); β) =
exp(β0 + βcovF (x))

1 + exp(β0 + βcovF (x))
. (3.4)

From Section 2.4.2, advection term is

c(X(t), t) = γβcov
∇w(F (x); β)

w(F (x); β)
. (3.5)

Therefore the advection term is defined as the following given the environmen-

tal covariate in equation 3.2, with x = (x1, x2),

c(X(t), t) = γβcov

1
2πσ2

e
exp

[
− 1

2

(
(x1(ti)−µ1e)2

σ2
e

+ (x2(ti)−µ2e)2
σ2
e

)](
−x1(ti)
σ2
e

)
1 + exp

(
β0 + βcov

1
2πσ2

e
exp

[
− 1

2

(
(x1(t)−µ1e)2

σ2
e

+ (x2(t)−µ2e)2
σ2
e

)]) .
(3.6)

As discussed in Section 2.4, the diffusion term yields

√
2d =

√
γ. (3.7)

The SDE includes the given selection of the animal to the environmental co-

variate, which can be seen in Figures 3.1 and 3.2, as it centers around the
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Parameter Symbol Value

Diffusion
√

2d 1
Selection Intercept β0 -10
Selection Coefficient βcov 50
Starting location, x axis x1(t0) 1
Starting location, y axis x2(t0) 1
Environmental Covariate mean, x axis µ1

e 0
Environmental Covariate mean, y axis µ2

e 0
Environmental Covariate variance σe 1

Table 3.1: The parameters for the SDE simulation for the generation of simu-
lated animal pathways. These values are determined before simulation of the
SDE by the user. These values result in a pathway with selection towards
higher values of the environmental covariate, which peak at (0,0).

origin (vertex of the environmental covariate).

The pathways described in this section provide the data to be analyzed by

the four algorithms in this Chapter. By simulating multiple pathways with

the same selection and movement parameters we avoid any effects that the

unique pathways have on the analysis and allow for the extrapolation of the

parameters. By simulating pathways with known parameters we can assess

estimation accuracy with ease, without confounding variables.

3.3 Available-Distribution Fitting

The available-distribution from the utilization-distribution describes the

animal’s movement when unaffected by the characteristics of the environment.

Another way to interpret the available-distribution is the probability density

function of a random walk given a starting location. In order to apply most

of the selection algorithms described below, we must first have an estimate for

the animal’s movement without the influence of the environment on selection.

We assume that the animals do not have an intrinsic directional bias and that

the movement is isotropic, so the probability density function has zero mean

and is symmetric and normal with variance σ2(τ) = 2γτ .
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Figure 3.1: Contour lines for the environmental covariate used in all examples.
The environmental covariate follows a two-dimensional normal distribution
with no directional bias, and is centered at the origin and therefore the peak
is at the origin. The environmental covariate has a variance of σe = 1 and a
µ
e

of (0,0). An example pathway is shown for 20 time steps with selection and
movement parameters matching those shown in Table 3.1.
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Figure 3.2: A simulated pathway with 212 steps with parameters described in
Table 3.1. The animal begins at (1,1) and has selection towards the origin,
where the environmental covariate value is at its maximum. Note the tendency
to move towards the origin due to positive selection for high environmental
covariate values. The points have a transparency, so the darker the points, the
more overlap in those locations. The τs for this simulation are all 0.1.
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In order to apply these methods to pathways in one dimension, set x2 in

all equations to be zero. If the data has a fixed-time interval τ , set τj = τ .

In order to fit a normal distribution to the animal movement observed in

telemetry data, we require an estimate for the distribution’s γ value. Here we

determine how to fit a bivariate normal distribution by finding the maximum

likelihood estimator for γ, based on the location and time step data from an-

imal pathways. We assume that the movement is isotropic, that is σ1 = σ2,

where σ2
1 is the variance in the x1 direction and σ2

2 is the variance in the x2

direction. We assume that ρ = 0 for this bivariate normal, so the distribution

is symmetric. An estimate for ρ could used to introduced as a directional bias

(e.g. migrational behaviours) and would be of interest to future studies.

For the bivariate normal, we define the standard deviations as

σ2 =
√
γτ = σ1, (3.8)

which means the variance will be the same in both spatial directions and

therefore symmetric. The overall variance is given by M2(τ) = σ2 = σ2
1 +

σ2
2 = 2γτ (see also equation A.13 with σ2

1 = m2,0(τ) and σ2
2 = m0,2(τ)). The

availability distribution is defined as the bivariate normal distribution, which

is:

K(x− y;µ, γτ) =
1

2πγτ
e−

1
2

(
(x1−y1)

2

γτ
+

(x2−y2)
2

γτ

)
(3.9)

Given a series of independent steps from (x1(ti−1), x2(ti−1)) to (x1(ti), x2(ti))

with time steps τi = ti − ti−1, 1 ≤ i ≤ n. The likelihood of the data given in

the model is defined as

L =
n∏
j=1

1

2πγτj
e
− 1

2

(
(x1(tj)−x1(tj−1))

2

γτj
+

(x2(tj)−x2(tj−1))
2

γτj

)

=
1

(2πγτj)n
e
− 1

2

∑n
j=1

(x1(tj)−x1(tj−1))
2

γτj
+

(x2(tj)−x2(tj−1))
2

γτj .

(3.10)
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Taking the log transform yields

l =− n ln(2πγ) + ln(
n∑
j=1

1

τj
)

− 1

2γ

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
,

(3.11)

where l = log(L).

We assume that µ = 0 and taking the derivative of the log likelihood in

terms of γ, which gives us

∂l

∂γ
= −nγ−1 − 1

2
γ−2

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
(3.12)

Now solving for γ to get the MLE γ̂2,

0 = −nγ−1 +
1

2
γ−2

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
(3.13)

(3.14)

Solving for γ yields

γ̂ =
1

2n

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
. (3.15)

In order to show that this is indeed a maximum, we use the second derivative

test, which yields

∂2l

∂γ2
= nγ−2 − γ−3

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
(3.16)

= −γ−1(−nγ−1 +
1

2
γ−2

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

+
1

2
γ−2

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
. (3.17)
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Evaluating at γ̂ yields

∂2l

∂γ2
|γ=γ̂ = −γ̂−1(−nγ̂−1 +

1

2
γ̂−2

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj
)

− 1

2
γ̂−3

n∑
j=1

(x1(tj)− x1(tj−1))2 + (x2(tj)− x2(tj−1))2

τj

< 0

(3.18)

Note that the first term on the right hand side of this equation equals zero

due to equation 3.13. Because 3.18 is always less than 0, we have a maximum.

Using a maximum likelihood estimator, we can determine a γ̂ value, which

gives the largest possible value for l. In this section, the γ̂ is a constant value.

3.4 Resource Selection Analysis Overview

The method of resource selection analysis (RSA) [43], first introduced by

Manly [42], attempts to determine if selection for habitat types is exhibited by

animals through the use of spatio-temporal data [3]. Selection is identified by

comparing the ratio of locations known to be used by the animal to locations

that were available to the animal [40]. That is, the use and availability are

treated as non-negative functions that affect the density of use by individuals

[32]. RSAs are routinely used by ecologists to estimate habitat selection using

telemetry data [13], [38], [62], with the relative ease of implementation being

a key attraction to the method [53].

The probability of selection is found through a generalised linear model,

meaning the selection is translated as an intercept value β0 and βj coefficients

associated with each tested environmental parameter. The vector of β val-

ues can be found in multiple ways [32]. The first method and most common

method, is to apply a logistic regression to the binary presence/absence values.

The second most common method is to count the number of times the animal

is in each cell and then fit a Poisson model. Both of these methods produce
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comparable β values [32]. Other methods of analysis do exist, but are much

less common in ecology, so we focus on the first, and simplest, method.

The main idea of using a logistic regression to fit the probability of selec-

tion is to treat the observed (used) locations and the not selected (available)

locations as binary data (b), with 1 representing the used locations and 0

representing the available locations [32]. This binary data is then set as the

responding variable. The explanatory variables are the environmental charac-

teristics, that can be either categorical or scalar, for the corresponding used

and available locations. RSA assumes that the observed locations of the an-

imal are independent and identically distributed random variables. By using

the logistic regression, the model is b ∼ Bern(p) where logit(p) = β0 + xiβ for

i = 1, ..., n+1 total binary observations. The code required to fit such a model

only requires a single line in R, which is part of the attraction for the use of

this type of analysis [32], which resulted in more common use compared fitting

the model directly using maximum likelihood estimators. The comparison of

used points to available points has been shown to give comparable estimates

for the likelihood function [38].

3.4.1 Relative Probability of Selection versus Probabil-
ity of Selection

After a logistic regression has been applied for the resource selection anal-

ysis, the researcher can apply the results to obtain either a relative probability

(not restricted to being less than 1.0) or a true probability for the probability

that an animal chooses a specific location [39]. The most common method is

the relative probability of selection of a location by an animal, which is given

by

Prelative = w(F (x); β) = exp
n∑
i=1

βiF (Xi), (3.19)

where Prelative is the relative probability of selection, n is the number of en-

vironmental covariates, βi is the fitted coefficient, and F (Xi) is the environ-
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mental covariate value at location Xi. The exponential model has no upper

bound, therefore the values of selection must be compared to each other to be

meaningful and for the relative level of selection to be determined. Typically

the p-values in this case are important to conclusions from the model, that is

the exponential model is better at determining which environmental covariates

are significant rather than the exact effect of the environmental covariate.

It is also important to note that β0 value is meaningless in this case, mean-

ing it is non-identifiable. Using the Prelative in the utilization distribution,

f(x, y;µ, σ2, β) =
K(x− y;µ, σ2)w(F (x); β)∫
K(z − y;µ, σ2)w(F (z); β)dz

(3.20)

=
K(x− y;µ, σ2) exp(β0 +

∑n
i=1 βiF (x))∫

K(z − y;µ, σ2) exp (β0 +
∑n

i=1 βiF (z))dz
(3.21)

=
K(x− y;µ, σ2) exp(β0)(

∑n
i=1 βiF (x))∫

K(z − y;µ, σ2) exp (β0) exp (
∑n

i=1 βiF (z))dz
(3.22)

=
K(x− y;µ, σ2) exp(

∑n
i=1 βiF (x))∫

K(z − y;µ, σ2) exp (
∑n

i=1 βiF (z))dz
(3.23)

we can see that β0 cannot be calculated because it cancels from terms in the

numerator and denominator, and thus have no effect on the probability of se-

lection.

By way of contrast, the logistic model gives a true probability; that is the

integral over the landscape will equal to 1. The model is given by

P = w(F (x); β) =
exp (β0 +

∑n
i=1 βiF (Xi))

1 + exp (β0 +
∑n

i=1 βiF (Xi))
, (3.24)

where P is the probability of selection. This model does give and estimate for

β0, meaning we have a “base” level estimate in addition to the effect of each

of the environmental covariates. The advantage of using the logistic model

over the exponential model is clear through the true probability instead of the

relative probability, though the advantage of having a β0 should not be over-

looked. It is not much more difficult to implement the logistic model compared

to the exponential. The exponential model is the most common because of
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tradition and perceived ease of implementation, despite it’s shortcomings [32].

We will use the logistic model for the remainder of this Chapter for consis-

tent comparison across all four algorithms, as a β0 estimate is required for the

proposed algorithm in Section 3.10.

3.5 Resource Selection Analysis Methods

We apply the RSA algorithm directly to simulated animal pathway data in

this section. First we outline the specific steps used in this example, which are

shown in Figure 3.3. A total of three steps, Sections 3.5.1 to 3.5.3, are applied

to simulated animals pathways generated using the methods and parameters

given in Section 3.2. Results from the applied RSA are given in Section 3.5.4.

3.5.1 Step 1: Determine Used Points

This step is to assign the numerical values for presence, that is the used

points. Under a new column, named ‘presence/absence’, a ‘1’ is assigned for

each data point collected. RSA requires that the length of time between lo-

cation measurements to be sufficiently long enough to be considered indepen-

dent identical random variables indicating where the animal is found in space.

Should that assumption be violated for the individual being analyzed, a subset

of that data should then be taken such that the assumption is reasonable. For

each ‘used’ point, we also require the environmental covariates for that loca-

tion. A separate column with the environmental covariates that corresponds

with the ‘presence/absence’ column and contains the values (categorical or

scalar) of those environmental characteristics is then determined.

3.5.2 Step 2: Generate Available Points

As previously mentioned, there are several options to simulate the available

points for RSA. There is very little consensus on the method to use, mostly be-

cause availability can highly vary between species and even individuals. Two

methods are to use the estimated home range or to determine a range around

each point that is determine, somewhat arbitrarily, an acceptable distance [3].
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Figure 3.3: The steps for RSA used in this section for analysis of the path-
ways described in Section 3.2. There are two set of inputted data, telemetry
data of the animal locations, and environment data of the values of relevant
environmental covariates in corresponding spatial locations to the telemetry
data.
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We consider three different methods for generating available points: (I) min-

imum convex hull (Figure 3.4), (II) circles centered around each individual

point (Figure 3.5) with a radius of the maximum step length, and (III) a circle

centered at the origin with a radius of 1.4 (Figure 3.6). The radius is cho-

sen as two standard deviations for the known movement parameter (γ = 1)

for five time steps (τ = .5). Two standard deviations, 2
√
γτ = 1.4, were

chosen as to encompass approximately 95% of the possible locations that the

animal would move under the null hypothesis that there is no habitat selection.

For the first method, we use a home range estimate of a minimum convex

hull. The available points are chosen uniformly from the convex hull. The

second method draws available points uniformly from a circle with a radius of

the maximum step length. The final method find a circle of radius 2σ, where

σ2 = γτ and γ = 1, is to uniformly draw available points, centered at the

radius which is the same location of the peak of the covariate. σ is found

using the MLE outlined in Section 3.3.

Any available simulated points are assigned a ‘0’ under the ‘presence/ab-

sence’ column created in step 1. The corresponding covariate values is then

found for the new available locations.

3.5.3 Step 3: Fit Logistic Model by Regression

The next step is to fit the effect of the environmental covariates to the

presence/absence of the animal via. logistic regression using the column ‘pres-

ence/absence’ as the responding variable and the environmental covariates

as the explanatory variable. This type of regression may also include mixed

effects, random effects, offsets, etc. when appropriate. The model fits the

log-odds, l, given by

log
P

1− P
= β0 +

η∑
i=1

βiF (Xi) (3.25)

where p is the probability that the presence/absence equals 1, β0 for the inter-

cept, and βi is the environmental covariate i coefficient, and F (Xi) is the envi-
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Figure 3.4: The convex hull around the used points of an an example animal
pathway. All used points are within the boundary, which is treated as a pseudo
home-range. In our examples, any available points are selected from within
the convex hull.
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Figure 3.5: The available points generated for RSA II. In this case, circles with
a radius of the maximum step length are drawn around each used point and
the available points are selected from within that circle.
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Figure 3.6: The available points generated for RSA III. In this case, a circle
centered at the origin of radius 4.47 is used to select the available points. The
available points are randomly selected uniformly from the circle.
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ronmental covariate value at location Xi. Equation 3.26 comes from equation

3.25. This method uses a linearization of the model called the logit transform,

and then fits the now linear data and is the standard approach for generalized

linear models.

In our examples, we use η = 1. Once the β coefficients, here just β0 and

β1 = βcov, have been estimated, we can input them back into the probability

of selection model, for example

w(F (x); β) =
exp β0 +

∑n
i=1 βiF (Xi)

1 + exp β0 +
∑n

i=1 βiF (Xi)
(3.26)

to determine the probability that an animal uses a specific location (Xi). This

model, in conjunction with the newly fitted β values, can also be applied

to an entire landscape to show probability of selection over the entire map.

The resulting map of probabilities of selection are then open to interpretation

depending the the study purpose and species.

3.5.4 Example Results

We ran multiple simulations of the pathways given in Section 3.2 and an-

alyzed them using the RSA methods outlined above and in Figure 3.3. For

defining the available points, we use all three methods, a convex polygon on

the used pathways points, circles around each point, and a circle centered at

the origin. The results were run on different pathways, however all were ini-

tialized under the same conditions and had the same selection parameters.

Pathways are originally 210 points, but in order to assume independence,

every other point in the pathway was removed, changing the time interval from

0.1 to 0.5, thus the pathways are 205 steps. 10 available points are generated

for each used point. The pathways are simulated and analyzed 300 times, and

results are shown as sampling distributions in Figure 3.7.

RSA I, II, and III all provide fairly similar estimates for the selection

parameters. All three under-estimated the β0 and over-estimated the βcov. In
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Method Parameters Variance Bias MSE

RSA I
β0 1.1248 -4.7647 23.824
βcov 52.783 25.956 726.3

RSA II
β0 1.2373 -4.4247 20.812
βcov 61.132 39.003 1582.1

RSA III
β0 1.0435 -4.8828 24.882
βcov 49.643 45.547 2124

Table 3.2: A comparison of the mean squared error (MSE), bias, and variance
of the parameter estimates for RSA I, II, and III on the exact same data. The
total path length was 210 steps with 10 available points per used. The true
value for γ is 1, β0 is -10, and βcov is 50.

Table 3.2, the lowest MSE for β0 is RSA II and the lowest MSE for βcov is

RSA I. This makes it more difficult to determine which method is the most

accurate. All three methods have fairly similar variance and bias as well.

3.6 Step Selection Analysis Overview

The term ‘step selection analysis’, first coined by Fortin et al [26], was

introduced as an alternative to RSA. For RSA, it is assumed that the ani-

mal locations are independent and identically distributed random variables,

which requires either the data to be sub-sampled or sufficiently long time in-

tervals, which is intrinsically difficult to determine what is appropriate for

each species/individual. SSA, however, assumes that the steps taken can be

described by a Markov process, possibly depending also on the previous step

taken. Therefore it does not assume that the locations are independent [54].

This difference means that there is a change in the way the available points are

generated, and the available points are now limited by a estimated movement

distribution describing the animal’s possible next location. That is, the avail-

able points are now influenced by physically reasonable location as determined

by the data points themselves. SSA is quite popular and well used [62], but

development in the theory and the definition of the formal differences between

SSA and RSA took quite some time [54].
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(a) RSA I, β0 Estimate (b) RSA I, βcov Estimate

(c) RSA II, β0 Estimate (d) RSA II, βcov Estimate

(e) RSA III, β0 Estimate (f) RSA III, βcov Estimate

Figure 3.7: The sampling distributions of the parameter estimates for RSA I (min-
imum convex hull), RSA II (circle for each point), and RSA III (circle centered at
origin). Each RSA method was applied to 300 unique pathways of length 210 points
and a time step of 0.1. All pathways were simulated under the same movement and
selection parameters (β0 = −10 and βcov = 50), shown by the dashed vertical lines.
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SSA defines the availability distribution using empirical step lengths as-

sociated with the telemetry data [32]. The available points used are selected

randomly using the fitted availability distribution centered at each step in the

animal pathway. We proceed as we did with RSA by comparing the used points

to the available points. Currently, there are two methods to fit the probabil-

ity of selection model for an SSA, which are effectively equivalent [38]. Both

methods require the used and available points to be determined first, but the

inference step differs. We cover both of these methods, and highlight the

difference between the two in the section below.

3.6.1 First Method: Define Likelihood and Maximize

With this method we write a direct expression for the likelihood associated

with observing X given the model and parameters (m, γ, β). We then maxi-

mize the likelihood. This method assumes that each step is independent. The

probability of observing the data given the model and parameters is thus

L = Πn−1
i=0 f(XU

i+1, X
U
i ; γ, τ, β). (3.27)

where f is given by equation 2.2.

3.6.2 Second Method: Monte-Carlo Approximation

This method uses logistic regression to fit the β values to the data plus

the simulated points, rather than fitting the likelihood function directly to the

data. The full process that we implement is shown in Figure 3.9. The first

step is to estimate the dispersal parameters µ (or µ) and σ2 for the available

distribution (Section 3.3). This is achieved by fitting the available distribution

function K(a;µ, σ2) to the observed displacements are: a1i = x1i − y
1i

and

a2i = x2i − y
2i

. This fit can be achieved using the method of maximum

likelihood. However, as discussed in the next section, the displacements ai are

influenced by the weighting function w according to the utilization distribution

fa(a, y;µ, σ2, β) ∝ K(a;µ, σ2)w(F (a+ y); β). (3.28)

53



Figure 3.8: The original animal pathway is shown on the left with the black
points being the used locations. The middle image is the probability density
function for the probability that an animal moves to a location. The x’s
represent the generated available points, with three available points per used
point. On the far right multiple PDFs and available points are shown.

Once K is fitted, this function is used to generate “available” data points

for each XU
i . These points indicate how the animal would have moved in the

absence of habitat preference (Figure 3.8). Several absence points are gener-

ated for each presence point. It is assumed that the available distribution is

fitted for the dispersal parameters of the data and movement is not affected

by the habitat preference w(F (x); β).

The logistic regression requires two possible dependent variable values, of-

ten 0 or 1. In the case of step selection analysis, 0 represents a point that is

available and 1 represents a point that was selected.

The logistic function itself is defined be equation 3.25. The regression

finds the β values that then maximize the probability of the known pres-

ences/absences. The β values are found using optimization methods, such as
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Nelder-Mead, on the likelihood function which is given by

L(β|XU) = Πn
i=1(1 + exp[−

η∑
j=1

βjFj(X
U
i )])−1. (3.29)

Note that the available distribution is determined before the likelihood model

in both cases. In either cause, the fitted K(x−y;µ, σ2) function will be used to

determine the probability density function from which we generate the avail-

able steps.

3.6.3 Marginalization of the Spatial Influence (y)

During SSA, the available distribution and the weighting function are fitted

separately. Thus our utilization distribution

f(x, y;µ, σ2, β) =
K(x− y;µ, σ2)w(F (x); β)∫
K(z − y;µ, σ2)w(F (z); β)dz

(3.30)

is fitted in separate parts and ignores the interaction between selection and

movement. We show here the effect of this separation and the implications for

the estimation of the utilization distribution.

Given a distribution of starting locations described by probability density

function g(y), the expected step length distribution becomes∫
Ω

fa(a, y;µ, σ2, β)g(y)dy ∝ K(a;µ, σ2)

∫
Ω

w(F (a+ y; β))g(y)dy (3.31)

(see equation 3.28) and thus does not, in general, equal K(a;µ, σ2). However

standard SSA assumes that K provides a sufficiently close approximation,

which, as we will show, is not always the case. The need for such an approxi-

mation is side-stepped in Section 3.8 where integrated step selection analysis

(iSSA) is introduced.

3.7 Step Selection Analysis Methods

In this section we apply SSA to simulated animal pathways that follow the

structure described in Section 3.2 to estimate the movement and selection

55



Figure 3.9: The steps followed in the SSA that is implemented for the examples
in this section. There are four steps, that end in estimates for β0, βcov, and
γ. There are two sets of inputted data, telemetry data of the animal’s known
locations, and the environmental characteristics of the desired environmental
covariates associated with those locations.

parameters. SSA is comprised of four steps, described in Sections 3.7.1 to

3.7.4, with results from our example given in Section 3.7.5. All SSA steps are

shown in Figure 3.9.

3.7.1 Step 1: Determine Movement Kernel

The movement kernel K is fit using the animal movement steps and maxi-

mum likelihood. The exact method is given in Section 3.3 with equations 3.10

through 3.15. This equation fits a two-dimensional normal distribution and

finds γ. Slower animals have a smaller γ, while faster animals have a larger

γ. While the available distribution follows a normal distribution in this ex-

ample, this shape is not the only option, for example gamma and exponential

56



distributions are also options [8]. The distribution is the one most appropri-

ate for the specific individuals/species analyzed because it has the property

of robustness (Appendix A.1). The movement kernel is typically the same for

every used point and requires a fixed-time interval in order to choose available

points consistently and logically. This step gives the distribution of points

available to the animal at each time step.

3.7.2 Step 2: Determine Used Points

Similar to RSA, the used points come from the animal pathway, and are

assigned a value of ‘1’ in a new column here called ‘presence/absence’, how-

ever here are assumed dependent. The environmental covariate values of the

associated locations are also assigned in this step.

3.7.3 Step 3: Generate Available Points

Using the fitted available distribution (Step 1), the available points are

generated randomly from the fitted distribution using the γ estimate from step

1. The number of points generated is determined by the user (see Section 3.12).

Each available point is assigned a ‘0’ under the ‘presence/absence’ column with

the corresponding environmental covariate values in other columns.

3.7.4 Step 4: Fit Logistic Model for Selection by Re-
gression

For the logistic regression, the response variable is the ‘presence/absence’

column and the explanatory variables are the desired environmental covariates.

Again a logistic model is used to determine the probability of selection because

the logistic model gives a true probability of selection. The details here are

identical to Section 3.5.3 as the major difference between RSA and SSA lies

in the determination of the available locations.

3.7.5 Example Results

The code for the steps described above was applied to simulated pathways

that follow the conditions described in Section 3.2. 300 pathways were simu-
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lated for each pathway length (n). Each pathway analyzed is initialized with

the same parameter values. The pathways are 210 steps long and 10 available

points are generated for each used point. The β0 and βcov estimates around

determined during step 4 (Section 3.7.4) using a logistic regression, however

the γ estimates are found using MLEs when the available distribution was

fitted in step 1 (Section 3.7.1).

The sampling distributions of the parameter estimates are shown in Fig-

ure 3.10. The true value is shown by a vertical dashed line. SSA over-estimated

β0 and under-estimated βcov, but both of the distributions have a small overlap

with the true value. The γ estimate, however, is not close to the true value,

consistently underestimating the value seemingly on average by 25%. This

bias in the γ estimate is likely due to the exclusion of the influence of the

environment on the movement parameter.

3.8 Integrated Step Selection Analysis Overview

Integrated step selection analysis (iSSA) was introduced to address limi-

tations of SSA, specifically issues with the fitting of the movement kernel [8].

The iSSA method has many similar aspects to SSA; however it also fits the

step length during the regression. This estimation is accomplished by first as-

suming a movement model, generating available points, then fitting a logistic

model using a conditional regression, which also refits the movement parame-

ters.

Similar to SSA, iSSA assumes the steps are dependent, that is the loca-

tion of the previous location affects the subsequent location. To avoid the

marginalization discussed in Section 3.6.3 found in SSA, the available distri-

bution and selection term are estimated simultaneously. The utilization term

of the available distribution and selection term can be expressed as

f(x, y;µ, σ2, β) ∝ K(x− y;µ, σ2)w(F (x); β). (3.32)
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(a) SSA β0 Estimate (b) SSA βcov Estimate

(c) SSA γ Estimate

Figure 3.10: The sampling distributions of the parameter estimates for SSA. SSA
was applied to 300 unique pathways of length 210 points and a time step of 0.1. All
pathways were simulated under the same movement and selection parameters (β0 =
−10 and βcov = 50), shown by the dashed vertical lines. The βcov estimate overlaps
with the actual value, which means it is a relatively accurate estimate. However,
the estimate for β0 was consistently above the true value and γ was consistently
below the true value.
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This utilization distribution is expressed as

f(x, y; 0, σ2, β) ∝ exp[b1l
2 + β0 + β1F (x) + ...+ βnF (x)] (3.33)

where l = |x − y| = |a| is the step length, and b1 is the movement coefficient

arising from the normal dispersal kernel equation 3.9 so b1 = 1/σ2.

A more general form of the iSSA which includes the possibility of gamma

and log-normal distributed distributed movement kernels [8] takes the form

f(x, y;µ, σ2, β) ∝ exp[b1l
b2 + b3 ln l+ b4l+β0 +β1F (x) + ...+βnF (x)] (3.34)

iSSA uses a conditional logistic regression rather than a logistic regression

to account for the effect of the environment on movement [8]. The conditional

logistic regression model takes the form

log
P

1− P
= α1 + α2z2 + ....αszs + β1x1 + ...+ βnxn (3.35)

where α are conditions for the data set, z is a binary indicator for each strata,

and s is the number of conditions [61]. The conditional logistic regression esti-

mates both the βs and the αs. Thus, the odds ratio for each covariate can be

found that are adjusted for the conditions. The intercept in conditional logistic

regression is unidentifiable, and cannot be estimated through the regression.

3.8.1 Estimating β0

Conditional logistic regressions do not provide and estimate for an inter-

cept because the intercept is unidentifiable. We require an intercept for the

weighting function portion of the utilization distribution because a β0 is re-

quired for the logistic weighting. As a way to still retain an intercept estimate,

we use two regression, first a conditional logistic regression with the explana-

tory variables step lengths and the environmental covariate values, and second

a logistic regression with an offset that matches the fitted β values from the
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first regression.

If our weighting is

w(F (x), β) =
exp[β0 + β1F (x) + ...+ βnF (x)]

1 + exp[β0 + β1F (x) + ...+ βnF (x)]
(3.36)

then let

c1 =
exp(β0 +

∑n
i=1 βiF (x))

1 + exp(β0 +
∑n

i=1 βiF (x))
. (3.37)

Simplifying,

c1(1 + exp(β0 +
n∑
i=1

βiF (x))) = exp(β0 +
n∑
i=1

βiF (x)) (3.38)

Thus,

c1 = exp(β0 +
n∑
i=1

βiF (x))(1− c1), (3.39)

and so

exp(β0 +
n∑
i=1

βiF (x)) =
c1

1− c1

= c2. (3.40)

Therefore c2 is the form we input in the conditional regression, and from this

calculate c1 = c2
(1+c2)

. Note that we square the step lengths before input into

the conditional regression in equation (3.38).

3.9 Integrated Step Selection Analysis Meth-

ods

The five steps of iSSA used are described in Sections 3.9.1 to 3.9.5 and

are visually depicted in Figure 3.11. The results from iSSA are given in Sec-

tion 3.9.6.

All the examples in this section do not include an additional turning angle

in the model for simplicity and consistency amongst our examples. The steps

used for these example analyses are outlined in Figure 3.11 in a flow chart.
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Figure 3.11: The steps followed in the iSSA that is implemented for the exam-
ples in this section. There are five steps, that end in estimates for β0, βcov, and
γ. There are two sets of inputted data, telemetry data of the animal’s known
locations, and the environmental characteristics of the desired environmental
covariates associated with those locations.

62



3.9.1 Step 1: Determine Estimated Movement Kernel

The iSSA method requires an initial estimate of the movement parameters.

These are needed for the movement kernel which is used to give “available”

points. Therefore, the first fit of the movement parameters, using MLEs, uses

the same method as SSA. However with iSSA this movement parameter is

only an initial estimate which is used to locate “available” points, and is then

subsequently refit to include the effect of selection. The iSSA method requires

that step length must be able to be written as an exponential function (see

equation 3.39).

Once the shape is decided upon, MLEs can be used to fit the distribution to

the data. We focus on the half-normal distribution for our example. The fitting

for the MLEs is the same as Section 3.7.1, except we need the step lengths for

the conditional regression. A ‘strata’ column, which is an identification number

connecting corresponding used and available points, is also required. The

strata number will eventually associate the used points to the corresponding

available points. The strata column for the used points will just go from 1 to

the number of points, so each point has its own identification number. That

is, each used point has a strata identification number that corresponds to the

same strata number for the available points generated for that used point. The

strata values are required in the conditional regression to match the conditions

between the corresponding used and available points.

3.9.2 Step 2: Determine Used Points

As with SSA, a new data set named ‘presence/absence’ is created which

will contain a 1 corresponding to each used point and a 0 for each available

point once generated. The used points will also have the corresponding en-

vironmental covariate values. iSSA requires fixed time intervals [8], thus any

points that violate this assumption must be removed.
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3.9.3 Step 3: Generate Available Points

Available points are simulated from the fitted distribution in step 1, using

the fitted step length and possibly turning angle. Once simulated, the available

points are given a value of ‘0’ under the ‘presence/absence’ column. For iSSA,

a strata value is required that corresponds to the used point that was the

center of the available point, that is they will have the same strata number.

3.9.4 Step 4: Fit Logistic Model for Selection by Con-
ditional Regression

The conditional logistic regression is run with the ‘presence/absence’ col-

umn as the responding variable, the environmental covariate columns and the

movement parameters as the explanatory variables, and the ‘Strata’ column

as the strata. Due to the use of a conditional logistic regression, no β0 value is

returned. Since the movement parameters and selection parameters are fit at

the same time, the fitted term from the utilization distribution here defined as

f(x, y;µ, σ2, β) ∝ K(x− y;µ, σ2)w(F (x); β) (3.41)

where K(x − y;µ, σ2) is the available distribution and w(F (x); β) is the se-

lection term. The general model for f(x, y;µ, σ2, β) is

f(x, y;µ, σ2, β) ∝ exp[b1l
b2 +b3 ln l+b4l+β0 +β1F (X)+ ...+βnF (X)] (3.42)

where f(x, y;µ, σ2, β) is the utilization distribution, l is the step length, and

b1 through b4 are the movement coefficients. The significance and values of the

movement coefficients determine the shape of the movement distribution. The

possible movement distributions can be adjusted by choosing which movement

coefficients to include. In this case, half normal distribution is assumed, thus

b3 = b4 = 0 and b2 = 2. The model for the half-normal distribution is

f(x, y; 0, σ2, β) ∝ exp[b1l
2 + β1F (X) + ...+ βnF (X)]. (3.43)

where b1 = 1/σ2.

64



3.9.5 Step 5: Re-evaluate Movement Kernel

In order to determine the new estimate for γ, the relationship between

the original γ estimate, called γ̂, and selection needs to be identified. The

utilization function, given by

f(x, y; 0, σ2, β) =

exp

[
− l2

2γ̂
+ b1l

2

]
exp[β0 + β1F1(x) + ...+ βnFn(x)]

∫
exp

[
− l21

2γ̂
+ b1l21

]
exp[β0 + β1F (z) + ...+ βnFn(z)]dz

(3.44)

where b1 is the coefficient for the step length l = |x − y|, γ̂ is the initial γ

estimate, and the denominator step length of l1 = |z − y|. The model that is

fitted for the conditional logistic regression is

f(x, y; 0, σ2, β) =

exp

(
− l2

2γτ

)
exp(β0 + β1F1(x) + ...+ βnFn(x))

∫
Ω

exp

(
− l21

2γτ

)
exp(β0 + β1F1(z) + ...+ βnFn(z))dz

.

(3.45)

Comparing the two, cancel the β expressions to get

exp

(
− l2

2γτ

)
= exp

(
− l2

2γ̂τ
+ b1l

2

)
(3.46)

which simplifies to
1

2γτ
=

1

2γ̂τ
− b1. (3.47)

bγ is the fitted value of gamma from the original movement kernel fitting, that

is it’s the original estimate for gamma. Letting

bl =
1

2γτ
=

1

2γ̂τ
− b1 (3.48)

then the
¯
l value fitted from the conditional regression for the step length

describes the change in the new γ estimate from the original γ estimate. So

finally, the new gamma estimate is

γ =
1

2blτ
. (3.49)
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3.9.6 Example Results

The code for the steps described above was applied to simulated pathways

that follow the conditions described in Section 3.2. 300 unique pathways were

simulated with time step 0.1 and with 210 steps. 10 available points are gen-

erated for each used point. In iSSA, the γ values are determined twice, once

to generate available points and second to get final estimates of the movement

parameters using a conditional regression. However, the selection parameters,

β0 and βcov, are determined once in the conditional regression. Thus, the

movement parameter estimates account for the effect of the selection bias.

The sampling distributions for the parameter estimates are shown in Fig-

ure 3.12. The true values for the parameters are shown by a vertical dashed

line. iSSA under-estimated the β0 value and over-estimated the βcov, which

is the direct opposite of SSA. However the γ estimate overlaps with the true

value and seemingly has little bias. Thus iSSA gives a more accurate esti-

mate for γ as compared to SSA, but also affects the estimates for the selection

parameters.

3.10 Missing Point Step Selection Analysis

Overview

Missing point step selection analysis (MPSA) is our proposed algorithm for

dealing with iSSA problems with missing data. The main idea is to simulate

points in cases where a point may be missing on the animals pathway. The

missing point(s) may be due to collection errors or changes in data collection

times. These missing points can be problematic for SSA and iSSA because

when a missing point occurs we also must remove the points after the missing

time from analysis and then restart the analysis when sampling of the path-

way resumes. With our proposed algorithm, no data would be removed, and

instead it would be generated in these missing spaces by simulating movement.

The simulated steps are generated using an SDE bridge with selection. The

selection is determine by a preliminary run of iSSA to find the β values and a
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(a) iSSA β0 Estimate (b) iSSA βcov Estimate

(c) iSSA γ Estimate

Figure 3.12: The sampling distributions of the parameter estimates for iSSA. iSSA
was applied to 300 unique pathways of length 210 points and a time step of 0.1.
All pathways were simulated under the same movement and selection parameters
(β0 = −10 and βcov = 50), shown by the dashed vertical lines. The γ and β0 estimate
distributions overlap with the true value, and give fairly accurate estimation. βcov,
however, is being over estimated.
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new γ estimate.

We propose this algorithm as a way to handle data with missing points.

SSA and iSSA require fixed time intervals, so the proposed algorithm adapts

to variable time intervals but also follows the same structure as that used in

SSA and iSSA. The key difference between MPSA and existing methods is the

generation of pseudo-used points, which are points estimated to be used by the

animal when it is not possible to collect data. Using the SDE bridges described

in Chapter 1, we simulated pathways between known points to find a possible

location the animal may have visited during the missing points. The SDE

includes selection, thus the pathways are biased based on the environmental

characteristics available.

3.11 Missing Point Selection Analysis Meth-

ods

MPSA is described in Section 3.2. Steps 1 to 5 are described in Sec-

tions 3.11.1 to 3.11.5 and are shown in Figure 3.13. Results for MPSA are

given in Section 3.11.6.

3.11.1 Step 1: Run iSSA, Ignoring Missing Points

iSSA is run on the pathway, ignoring the points after any missing step

due to the time step being larger than the fixed time interval. That is, any

points that have a time-step longer than the collected time are not included as

pathway steps in only this part of MPSA. iSSA requires a fixed time interval

[8] and so they must be removed from the analysis. These points after the

missing point are returned to the pathway after this step. The initial iSSA is

to get estimates for the β values and γ value. The available points generated

from the iSSA are discarded, but the full original pathway is reused. SSA can

also be used in this step instead of iSSA, however a new γ estimate will not

be found. Note, a logistic weighting is used for selection in this example.
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Figure 3.13: The steps followed by MPSA that is implemented for the examples
in this section. There are five steps, that end with estimates for β0, βcov, and
γ. There are two sets of inputted data, telemetry data of the animal’s known
locations, and the environmental characteristics of the desired environmental
covariates associated with those locations.
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3.11.2 Step 2: Simulate Pseudo-Used Points

For each time step that is missing a point, a SDE bridge is simulated

and sample the bridge pathway at the missing time step. The SDE solver

used is from the ‘Sim.Diffproc’. The pseudo used points is labelled as a ‘1’

under the ‘presence/absence’ column, allow with all pathway used points. The

environmental covariate values are then found for both the used and pseudo-

used points.

3.11.3 Step 3: Generate Available Points

Similar to the previous methods, available points are simulated for every

used and pseudo-used point. The only variation now is the fitted γ from

the iSSA in step 1 is now used to determine the movement kernel that the

available point are chosen from. Each available point is assigned a ‘0’ in the

‘presence/absence’ column, and the strata values and environmental covariates

values are also assigned for each point.

3.11.4 Step 4: Fit Logistic Model by Conditional Re-
gression

If iSSA was used to initialize the β values, a conditional regression is also

used in this step. However if an SSA was used, a logistic regression is uti-

lized. The ‘presence/absence’ column is the responding variable, and the envi-

ronmental covariate and movement parameters are the explanatory variables.

The new γ estimate is also determined from the βl.

3.11.5 Step 5: Return to Step 2 or End Loop

Steps 2 through 5 can be repeated until the β values converge, or alterna-

tively the algorithm can be stopped after the first round. For this example,

steps 2 through 5 are repeated until the change in the βcov is sufficiently small,

here less than 3. 3 was chosen as the threshold somewhat arbitrarily, as it

was small, 16.7% of the true value, yet big enough to not drastically increase

computation time. The results appeared to be fairly robust to this choice,

70



however the sensitivity will likely vary per study.

3.11.6 Missing Point SSA Results

The code for the steps described above was applied to simulated pathways

that follow the conditions described in Section 3.2. The pathways simulated

have a total of 210 steps each, with the missing points removed randomly with

a uniform distribution. All simulations also have 10 available points per used

point and the simulations end when the βcov change is less than 3. There are

two simulation structures: (i) missing 10% to 80% of the points and (ii) only

70% missing. For structure (i), 10 pathways are repeated for each missing

percent (10% to 80%) with results shown in Figures 3.14 to 3.16. Structure

(ii) repeats 300 pathways with 70% missing with results in Figures 3.17 to 3.19.

Structure (i) results are shown as box and whisker plots of the estimates

for each selection and movement parameter. The true value is shown by a hor-

izontal dashed line. As the number of missing points increase, the variation

increases for SSA and iSSA. However the changes in MPSA is minimal, indi-

cating that MPSA is more resilient to missing data. Accuracy of the estimates

depends on the parameter, overall though iSSA consistently overlaps with the

true value most.

Structure (i) results are presented as sampling distributions for each esti-

mated parameter. The true value is shown by a vertical dashed line. Similar to

structure (i), iSSA has the most accurate results in terms of the most overlap

with the true value. SSA consistently does not estimate γ well, while iSSA

and MPSA appear to provide similar γ estimates that are relatively accurate.

Given large amount of missing data, MPSA can provide suitable estimates as

compared to iSSA and SSA.
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(a) Step Selection Analysis
(b) Integrated Step Selection
Analysis

(c) Missing Point Step Selection
Analysis

Figure 3.14: The β0 estimates for all four algorithms. All algorithms were applied
to 10 unique pathways for each percent of missing data points. The pathways were
210 points and had a time step of 0.1. All pathways were simulated under the same
movement and selection parameters (γ = 1, β0 = −10 and βcov = 50), shown by the
dashed horizontal lines.
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(a) Step Selection Analysis
(b) Integrated Step Selection
Analysis

(c) Missing Point Selection Anal-
ysis

Figure 3.15: The βcov estimates for all four algorithms. All algorithms were applied
to 10 unique pathways for each percent of missing data points. The pathways were
210 points and had a time step of 0.1. All pathways were simulated under the same
movement and selection parameters (γ = 1, β0 = −10 and βcov = 50), shown by the
dashed horizontal lines.
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(a) Step Selection Analysis (b) Integrated Step Selection Analysis

(c) Missing Point Selection Analysis

Figure 3.16: The γ estimates for all four algorithms. All algorithms were applied
to 10 unique pathways for each percent of missing data points. The pathways were
210 points and had a time step of 0.1. All pathways were simulated under the same
movement and selection parameters (γ = 1, β0 = −10 and βcov = 50), shown by the
dashed horizontal lines.
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(a) Step Selection Analysis
(b) Integrated Step Selection
Analysis

(c) Missing Point Step Selection Analy-
sis

Figure 3.17: The sampling distributions of the β0 estimates for all four algorithms.
All algorithms were applied to 300 unique pathways with 70% missing. The path-
ways were 210 points and had a time step of 0.1. All pathways were simulated under
the same movement and selection parameters (γ = 1, β0 = −10 and βcov = 50),
shown by the dashed vertical lines.
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(a) Step Selection Analysis (b) Integrated Step Selection Analysis

(c) Missing Point Selection Analysis

Figure 3.18: The sampling distributions of the βcov estimates for all four algorithms.
All algorithms were applied to 300 unique pathways with 70% missing. The path-
ways were 210 points and had a time step of 0.1. All pathways were simulated under
the same movement and selection parameters (γ = 1, β0 = −10 and βcov = 50),
shown by the dashed vertical lines.
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(a) Step Selection Analysis (b) Integrated Step Selection Analysis

(c) Missing Point Selection Analysis

Figure 3.19: The sampling distributions of the γ estimates for all four algorithms.
All algorithms were applied to 300 unique pathways with 70% missing. The path-
ways were 210 points and had a time step of 0.1. All pathways were simulated under
the same movement and selection parameters (γ = 1, β0 = −10 and βcov = 50),
shown by the dashed vertical lines.
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Method Parameters Variance Bias MSE

SSA
β0 2.0094 2.4222 7.8698
βcov 91.946 -13.565 275.66
γ 0.0011043 -0.49702 0.24813

iSSA
β0 3.2547 -1.7028 6.1435
βcov 143.05 14.188 343.87
γ 0.079231 0.13211 0.096419

MPSA
β0 1.0868 -2.9928 10.04
βcov 47.813 23.977 622.56
γ 0.01522 -0.11265 0.11756

Table 3.3: A comparison of the mean squared error (MSE), mean, median,
and variance of the parameter estimates for RSA, SSA, iSSA, MPSA on the
exact same data. The total path length was 210 steps and 70% of the data
was randomly removed. RSA does not provide an estimate for γ, however all
provide estimates of β0 and βcov. The true value for γ is 1, β0 is -10, and βcov
is 50.

3.12 Effect of the Number of Generated Avail-

able Points

Similar to the definition of available locations, there is very little guidance

to determining the number of available points that are generated [53]. Sensi-

tivity analysis may be used as a guide to determine the sample size [43], and

other studies have suggested to use of at least 10 000 total locations [1], [38],

[39]. We compared the effect on all four algorithms of two different sample

sizes; five available points per used point and ten available points per used

point. All pathways tested were of a length of 210 points and were not missing

any steps (fixed-time interval). Therefore, for five available points per used

point, there was a total of 5120 available points, and for forty available points

were used point there was a total of 10240 available points. Pathways were

simulated under the settings described in Section 3.2. A total of 300 pathways

were simulated and all four algorithms were applied to the same pathways.

Table 3.4 shows the results of all four algorithms. We measure accuracy
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using mean squared error, which is defined as

MSE(β̂) = VAR(β̂) + BIAS2(β̂, β) (3.50)

where β̂ is the coefficient being measured (either β̂0 or β̂cov) and β is the

true value. Our results show that most results have a lower MSE with more

available points. The only exceptions are β0 for iSSA and MPSA which both

have lower MSE with less available points.

Mean Squared Error
Algorithm Parameter 5 Available Points 10 Available Points

SSA β0 12.081 7.8698
βcov 287.52 275.66
γ 0.2502 0.24813

iSSA β0 4.7999 6.1435
βcov 370.64 343.87
γ 0.15088 0.096419

MPSA β0 6.564 10.04
βcov 641.13 622.56
γ 1.4356 0.11756

Table 3.4: The mean squared error for the movement and selection parameters
estimated by all four algorithms when five available points are generated per
one used point versus ten available points are generated per one used point. In
most cases, the MSE is reduced when more available points are used, meaning
more accurate results. 70% of the data was missing for all simulations.

3.13 Pathway Length

The pathway examples for the above sections all have a length of 210, so

we now use a pathway of length 27 to determine the effectiveness of each al-

gorithm with that length. Almost all other parameters were kept consistent,

with β0 = −10, βcov = 50, γ = 1, τ = 0.1, and 10 available points per used

point. For Table A.1, 50% of the points were missing versus the 70% of the

previous sections, because of convergence issues with too few points.

Figures A.1 through A.3 show that as the percentage of missing points in-

creases, the variance of the estimates for both SSA and iSSA increases rapidly,
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yet MPSA’s variance stays smaller. This result is also shown in Table A.1

when comparing the variance for β0 and βcov. Thus, MPSA outperforms iSSA

when the pathways are relatively short or missing a large amount of data.

3.14 Discussion and Conclusion

Using the model found in Chapter 1, we designed a novel algorithm that

simulates data when there are missing points in telemetry data. The simulated

data comes from pathways that include selection bias for the environment and

creates bridges between two known points. The missing points are then de-

termined and selected from along those pathways. The data is then fit to a

logistic model using a logistic regression for the selection and movement pa-

rameters. The process is repeated until the change in estimates is sufficiently

small.

In order to determine the relative effectiveness of the new algorithm, we

compared it directly to existing methods and highlight the advantages and

disadvantages of each. These result are summarized in Table 3.5. MPSA is

more complicated than existing methods, and thus should be used only when

the data set is missing large amounts of information. The method used should

be carefully considered based on each individual study, specifically does the

ecological limitations make sense for that type of analysis.

The method used to generate available points can significantly affect the

results. For example, the difference between RSA I, RSA II, and RSA III

demonstrate the difference in the respective sampling distributions. The num-

ber of available points can also affect the results, using the current standard

of at least 10 000 points gave more accurate results in the presented example.

Here we only consider a single covariate, however most studies can have sev-

eral different environmental covariates. It is unclear how this would affect the

estimates, and needs more investigation to determine its impact.
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Our example is restricted to only two selection parameters and one move-

ment parameter, being step length. Multiple environmental covariates may

be used, as well as mixed effect models that incorporate random effect. It is

also possible to include turning angles into the movement parameters, which

is typically matched with a von Mises distribution [8], [54].

The assumptions and limitations of each algorithm are compared in Ta-

ble 3.5. Depending on reasonable assumptions for the data collected, the most

appropriate algorithms can be determined. SSA, iSSA, and MPSA have sim-

ilar assumptions, but vary among the limitations. The major limitation for

MPSA is that it has not been proven to converge.

Using MSE as a measure for accuracy, we compared SSA, iSSA and MPSA

in Table 3.3. For β0, iSSA was the most accurate, for βcov SSA was the most

accurate, and for γ iSSA was the most accurate. However, MPSA has the

lowest variance for both β0 and γ.

81



Algorithm Assumptions Limitations

RSA - Steps are independent.
- Requires large time intervals
or data to be a subset.

- Available sampling

SSA
- Steps described by Markov
process.

- Marginalizes y.

- Available distribution shape.
- Requires fixed-time
intervals, otherwise multiple
points are discarded.

- Movement parameters are
not affected by selection.

iSSA
- Steps described by Markov
process.

- Requires perfect fixed time
intervals, otherwise multiple
points are discarded.

- Available distribution shape.

MPSA
- Steps described by Markov
process.

- Not proven to converge.

- Available distribution shape.
- Only works for missing
points, not variable time
intervals.

Table 3.5: An overview of the assumptions and limitations of each of the four
implemented algorithms. Each algorithm has pros and cons, which should
be considered before use to determine which is the most appropriate for the
potential studies.
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Chapter 4

Conclusion

4.1 Discussion

In this study, we first establish the connection between the probability

density function for the next step of an animal, given a starting location and

movement/selection parameters, also known as the utilization distribution,

and a stochastic differential equation describing continuous-time movement.

The stochastic differential equation was then applied to missing point selec-

tion analysis. However it is not limited only to this inferential method, and

could be useful for other studies. For instance, numerical simulations of the

animal’s movement over continuous time could be applied by itself to studies

interested in animal distribution or reactions in new/changed environments. It

would be practical to know the effect of the environment on animal pathways

rather than only selection.

Chapter 2 focused on establishing the connection between the utilization

distribution and a stochastic differential equation model with environmental

selection. This goal was accomplished by first determining the master equa-

tion, then the forward Fokker-Plank equation, and finally the SDE. The SDE

can be used to simulate pathways of animal movement with the same move-

ment and selection parameters as an established utilization distribution. One

of the key applications for Chapter 3 was the simulation of bridges using the

SDE between two known points.
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In Chapter 3 we covered two key topics, the direct comparison of different

selection algorithms on the same data with known movement and selection

parameters, and the introduction of the novel algorithm called missing point

selection analysis. We found that accounting for the effect of selection on

movement and the amount of missing steps can both significantly affect the

accuracy of the estimates. MPSA reduced the error for all parameter estimates

as compared to iSSA, however did not have the lowest MSE due to some bias.

Missing points in data are common and create issues for analysis assump-

tions, often resulting in the discarding of data [32]. These missing points may

be caused to specific environmental characteristics (e.g. forest with a thick

canopy) which can result in biased estimates during selection studies [3]. If

the missing data is correlated to the value of the covariate, it is possible that

that simulating bridges in these missing points could help adjust for this bias.

MPSA is a solution to the selection bias and should be considered especially

in cases when large amount of data are missing and habitat interference is

suspected. For the examples given, the initial estimate of the parameters

comes from running iSSA in step 1 of MPSA. However, this step could be re-

placed with informed estimates of the selection parameter determined by the

researcher.

Given the advantages, disadvantages, assumptions, and limitations of the

methods, the key question becomes: “What algorithm should I use for my

data?” The resource selection models are affected by the issues highlighted

above; therefore choosing an appropriate algorithm can be tedious [53]. If

movement parameters are considered to be imperative to the model, SSA,

iSSA, or MPSA are clear choices. If not, then the collected locations must

be considered independent, that is no correlation between known locations,

for RSA to be applicable. RSA and SSA are relatively simple algorithms with

fewer steps involved than iSSA and MPSA, which is an attractive feature. Due

to our results showing that MPSA gives similar parameter estimates when lit-

tle data is missing, it is more practical to use SSA or iSSA in this case. Should
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missing points be a major concern for the data set, MPSA is a compelling

choice. The weighting model used, either exponential or logistic, will result in

a relative use of probability or a true probability respectively [33], [37], [39].

The true probability found using a logistic weighting allows for easier interpre-

tation of the results and fits the data better [39], which is strong argument for

its use over an exponential model. The combination of algorithm and weight-

ing model chosen should be well justified and answer the hypotheses posed in

each unique study.

4.2 Future Directions

The models outlined in this thesis can be applied to a multitude of data

sets and conditions, however there is still room for advancement, such as the

inclusion of the effect of memory and “personality” on selection and move-

ment. Certain “personality” characteristics and traits may be more beneficial

for individuals, for example a nervous disposition versus a bold disposition

[20]. “Personalities” are increasingly no longer being associated with exclu-

sively humans, which opens opportunities for their study in the context of

movement ecology. Related to “personality” is memory, which is unique to

individuals and based on previous experiences [23]. How an individual learns

and remembers it’s environment are increasingly being considered in move-

ment studies [4], [21], [45], [47].

In all of the examples provided, we defined the environmental characteris-

tics determining an animal’s movement step as the values that were assigned

to the endpoint of the step [25], [29], [58]. However the environmental char-

acteristics could follow other definitions as well, such as the average of the

continuous variables along the step [25], the proportion of habitats along the

step [25], extreme values of continuous variable along the step [25], selected

intervals along the step [19], or buffer zones of the covariate around the steps

or endpoints [19], [56], [62]. Typically, these assume that the step between
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two known points follow a straight line because of ease of implementation.

The SDE bridges with selection described in Chapter 2 provides an alterna-

tive method for selecting covariate values used by the animal, for example by

averaging the covariate values over the bridge. All of the described methods

for determining covariate values impact the selection estimates and should be

carefully considered as another way to introduce bias into the estimates.

Existing continuous-time methods could also be merged with our results

for account for specific components not addressed here. One existing model is

an Ornstein–Uhlenbeck (OU) model that accounts for the effect of long dis-

tance attraction and the effect of memory of the landscape, such as the model

introduced by Wang et al. [63]. Alternatively, this same model uses an RSA

to determine selection coefficients and MPSA could be used in the place of

the RSA. Another key aspect of the study that introduced the OU model is

the application to discrete or patch landscapes, and provides an approach to

modeling movement on a patch landscape which could be used to make MPSA

more versatile, as it currently requires derivatives of the environmental covari-

ates. Smoothing methods such as kriging could also be used on the discrete

or patch landscapes during MPSA to also create a continuous landscape. Ex-

isting studies could then be merged with those described here to create even

more powerful and versatile movement and selection models.

The models presented in this thesis also assume that habitat selection is

constant for the individual and is not influenced by any outside factors other

than the environmental characteristics. Environmental characteristics that are

temporally dynamic are not considered in our examples, and are rarely consid-

ered at all [7]. Constant habitat characteristic are uncommon, and temporal

changes are likely to have dramatic effect on animal distributions and selection

[3]. Currently no analytical methods exist for analyzing temporally dynamic

environments and is an open issue that has no existing analytical solution [32].

The effect of the temporal and spatial landscape single scale on the data
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collected was not addressed in our examples. However animal movement and

selection is often scale dependent [28], [57]. The scale on which data is collected

needs to be carefully considered as movement patterns may be discernible at

only certain temporal and spatial scales [7], and should be guided by current

literature on the species being studied. Sensitivity analysis in regards to scale

could also help determine the impact on a specific study and may lead to an

appropriate decision.

Population level selection is rarely considered, instead with the focus being

on individuals that represent a subset of the population [7]. Interactions within

a population may affect the movement choices through both herding and avoid-

ance behaviours. Correlated movements may also be time-dependent, for ex-

ample during breeding season. It is unclear how well individuals can be used

to extrapolate behaviours to the population, and requires future work.

Finally, turning angles were not used in this study, and could be used to

determine a bias for specific directions by the animal. Because turning angles

may be influenced by missing steps, they were not considered here, however

they can still hold key information for movement characteristics. Temporal

and spatial scale, population level selection, and turning angles are of impor-

tant consideration for future studies using the methods outlined and should

not be overlooked.

4.3 Conclusion

Movement ecology studies are increasingly prolific amongst ecology stud-

ies [31], and therefore the number of analysis techniques have also increased.

The relatively quick uptake of selection studies has resulted in confusion and

mystery surrounding the techniques and their application due to a large vari-

ation in methods and their descriptions [32]. By carefully choosing the mod-

els, inferences on environmental impacts on animal movement can be formed.
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Understanding environmental impacts, especially in rapidly changing environ-

mental conditions, is paramount for species conservation and management.

By increasing our understanding and tool set, scientists are better prepared

to answer such big-picture questions about the future of the world’s high-risk

species. Our additions to this field can be taken and used to approach new

and old ecological problems alike to determine their optimal solutions.
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Appendix A

Background Material

A.1 Robustness

Here we refer to robustness as the quality of a movement model not to be

affected by the time intervals over which data are collected. In other words,

a dispersal kernel fit to data collected at time intervals of length τ would

still have the same functional form if fit to data collected as some other time

interval, say 2τ , but, of course, with different parameters. Formally, robustness

was defined by [60] as:

Definition Let n ∈ N be finite and pt−τ,t(x|y, θ) be the transition density for

the probability of moving from location y to x between times t − τ and t.

A movement model of the above type is robust of degree n if there exists an

injective function gn : Θ→ Θ such that

pt−nτ,t(x|y, θ) = pt−τ,t(x|y, gn(θ)) for all t ∈ T and x, y ∈ R2 (A.1)

In our case, we assume that animals have an underlying movement distribution

(without selection) of a Gaussian, as described by

G(xi|σ2, µ) =
1√

2πσ2
e−

1
2

(xi−µ)
2

σ2 . (A.2)

Suppose we sample at irregular intervals for x0, ..., xn at intervals t0, ..., tn.

However, ∆t1, t0 6= ∆t1, t2. Let σ = σ(τi).

Distribution at time t1: G(x;σ2(τ1), µ)

Distribution at time t2: G(x;σ2(τ2), µ)
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Given that an individual starts at x1 at t1, the distribution to find x2 should

be G(x2 − x1, σ(t2 − t1), µ).

t0 → t1 → t2 has the same distribution as t0 → t2. That is, observation

doesn’t affect distribution. To do t0 → t2, use a convolution. K(x), K2(x) on

real time.

K1 ∗K2 =

∫
K2(x− y)K1(y)dy

=

∫
K2(x2 − x1)K1(x1)dx1

(A.3)

Now taking Gaussians:

G1 ∗G2

G1 = G(x1;σ2
1, µ1)

G2 = G(x2;σ2
2, µ2)

(A.4)

then

G1 ∗G2 = G(x;σ2
1 + σ2

2;µ1 + µ2) (A.5)

In our case, µ = 0. We require the following Markovian property:

G(x2, σ
2(τ2), 0) =

∫
G(x2 − x1, σ

2(τ2 − τ1), 0)G(x1, σ
2(τ1), 0)dx1 (A.6)

then we know we can use

= G(x2, σ
2(τ1) + σ2(τ2 − τ1), 0) (A.7)

We need σ2(τ2) = σ2(τ1) + σ2(τ2 − τ1). However

γ2τ 2
2 = γ2τ 2

1 + γ2(τ2 − τ1)2

γ2τ 2
2 = γ2τ 2

1 + γ2τ 2
2 − 2γ2τ1τ2 + γ2τ 2

1

0 = 2γ2τ 2
1 − 2γ2τ1τ2

(A.8)

2dτ2 = 2dτ1 + 2d(τ2 − τ1) (A.9)

σ(τ) =
√
γτ would have property of robustness.
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A.2 Moments of K(a; τ )

Let p and q be rational numbers and Ω = (−∞,∞) × (−∞,∞). Define

the moments of K(a; τ) to be

mp,q(τ) =

∫
Ω

ap1a
q
2K(a; τ)da (A.10)

and the radial symmetric moments of K(a; τ) to be

Mp(τ) =

∫
Ω

|a|pk(a; τ)da. (A.11)

The second radially symmetric moment of K is

M2(τ) =

∫
Ω

(a2
1 + a2

2)K(a; τ)da (A.12)

= m2,0(τ) +m0,2(τ). (A.13)

The diffusion scaling assumption posits that

lim
τ→0

M2(τ)

4τ
= d 6= 0 (A.14)

and

lim
τ→0

mp,q(τ)

4τ
= 0 (A.15)

for p+ q > 2. Thus higher order moments become negligible as τ → 0 [11].

We make the further assumption that K(a; τ) is a radically symmetric

function. That is:

K(a; τ) = K̂(|a|; τ). (A.16)

This means that K(a; τ) is an even function of a1 (for any fixed a2) and K(a; τ)

is an even function of a2 (for any fixed a1). Hence, mp,q(τ) = 0 for p odd and

mp,q(τ) = 0 for q odd.

97



A.3 Calculation of Advection and Diffusion Co-

efficients in 2 Dimensions

We now calculate the 2-dimensional advection and diffusion coefficients as

given by equations 2.36-2.40 where

fa(a, x;µ(τ), σ2(τ), β) =
K(a; τ)w(F (x+ a), β)∫
K(a; τ)w(F (x+ a′), β)da′

(A.17)

as given in equation 2.56. We use a Taylor expansion of w with respect to a

when computing the coefficients.

Note that

∂

∂xi
w(F (x)) = w′(F (x))

∂F

∂xi
i = 1, 2 (A.18)

and

∂2

∂xi∂xj
w(F (x)) = w′′(F (x))

∂F

∂xi

∂F

∂xj
+ w′(F (x))

∂2F

∂xi∂xj
i, j = 1, 2

(A.19)

In what follows, it is assumed that w and its derivatives are calculated at

F (x), e.g. w = w(F (x)), ∂w
∂xi

= ∂
∂xi
w(F (x)) and so forth.

To prepare, we calculate the moments of K(a; τ)w(F (x+ a)). The zeroth

moment is given by∫
Ω

K(a; τ)w(F (x+ a))da =

∫
Ω

K(a; τ)

[
w + a1

∂w

∂x1

+ a2
∂w

∂x2

+
a2

1

2

∂2w

∂x2
1

+ a1a2
∂2w

∂x1∂x2

+
a2

2

2

∂2w

∂x2
2

+ h.o.t.

]
(A.20)
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= w

∫
Ω

K(a; τ))da+
∂2w

∂x2
1

∫
Ω

a2
1

2
K(a; τ)da+

∂2w

∂x2
2

∫
Ω

a2
2

2
K(a; τ)da+ h.o.t.

(A.21)

= w +
∂2w

∂x2
1

m2,0(τ)

2
+
∂2w

∂x2
2

m0,2(τ)

2
+ h.o.t. (A.22)

= w +

(
∂2w

∂x2
1

+
∂2w

∂x2
2

)
M2(τ)

4
+ h.o.t. (A.23)

= w +∇M2(τ)

4
+ h.o.t.. (A.24)

Moment with respect to ai:∫
Ω

a1K(a; τ)w(F (x+ a))da =

∫
Ω

a1K(a; τ)

[
w + a1

∂w

∂x1

+ a2
∂w

∂x2

+
a2

1

2

∂2w

∂x2
1

+ a1a2
∂2w

∂x1∂x2

+
a2

2

2

a2
2

2

∂2w

∂x2
2

+ h.o.t.

]
(A.25)

=
∂w

∂x1

∫
Ω

a2
1K(a; τ)da+ h.o.t. (A.26)

=
∂w

∂x1

m2,0(τ) + h.o.t. (A.27)

=
∂w

∂x1

M2(τ)

2
+ h.o.t. (A.28)

Similarly ∫
Ω

a2K(a; τ)w(F (x+ a))da =
∂w

∂x2

M2(τ)

2
+ h.o.t. (A.29)

Moment with respect to a2
i∫

Ω

a2
1K(a; τ)w(F (x+ a))da =w

∫
Ω

a2
1K(a; τ)da+ h.o.t. (A.30)

=w
M2(τ)

2
+ h.o.t. (A.31)

Similarly ∫
Ω

a2
2K(a; τ)w(F (x+ a))da = w

M2(τ)

2
+ h.o.t. (A.32)

We also require∫
Ω

a1a2K(a; τ)w(F (x+ a))da = w

∫
Ω

a1a2K(a; τ)da+ h.o.t. (A.33)

= h.o.t. (A.34)
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We use these results to eliminate the coefficients 2.36-2.40. So

c = lim
τ→0

1

τ

∫
Ω
aK(a; τ)w(F (x+ a))da∫

Ω
K(a′; τ)w(F (x+ a′))da′

(A.35)

= lim
τ→0

1

τ

∇wM2(τ)
2

+ h.o.t.

w +∇2wM2(τ)
4

+ h.o.t.
(A.36)

=
1

w
∇w lim

τ→0

M2(τ)

2τ
(A.37)

=
2d

w
∇w (A.38)

and

dx1x1 = lim
τ→0

1

2τ

∫
Ω
a2

1K(a; τ)w(F (x+ a))da∫
Ω
K(a′; τ)w(F (x+ a′))da′

(A.39)

= lim
τ→0

1

2τ

wM2(τ)
2

+ h.o.t.

w +∇2 · wM2(τ)
4

+ h.o.t.
(A.40)

= lim
τ→0

M2(τ)

4τ
+ h.o.t. (A.41)

= d. (A.42)

Similarly,

dx2x2 = d (A.43)

dx1x2 = lim
τ→0

1

2τ

∫
Ω
a1a2K(a; τ)w(F (x+ a))da∫
Ω
K(a′; τ)w(F (x+ a′))da′

(A.44)

= lim
τ→0

h.o.t.

w +∇2 · wM2(τ)
4

+ h.o.t.
(A.45)

= 0 (A.46)

Also note that, by symmetry,

m2,0(τ) = m0,2(τ) =
M2(τ)

2
. (A.47)

Since we consider isotropic diffusion,

M2(τ) = m2,0(τ) +m0,2(τ) (A.48)

= 2dτ + 2dτ (A.49)

= 4dτ (A.50)

where d is the diffusion coefficient.

100



Method Parameters Variance Bias MSE

SSA
β0 6.0276 2.0317 10.135
βcov 268.92 -10.646 381.36
γ 0.0082043 -0.35818 0.13647

iSSA
β0 9.9107 -2.2948 15.144
βcov 428.9 18.528 770.75
γ 18.855 0.67987 19.255

MPSA
β0 4.3294 -2.4403 10.27
βcov 198.27 20.884 633.77
γ 13.258 0.3727 13.352

Table A.1: A comparison of the mean squared error (MSE), mean, median,
and variance of the parameter estimates for RSA, SSA, iSSA, MPSA on the
exact same data. The total path length was 27 steps and 50% of the data
was randomly removed. RSA does not provide an estimate for γ, however all
provide estimates of β0 and βcov. The true value for γ is 1, β0 is -10, and βcov
is 50.

A.4 Pathway Length Results

The results for shorter pathways with 27 steps and 50% missing. The

remaining parameters are consistent with the other simulations, which are

βcov = 50, β0 = 0, γ = 1, 10 available points per used, and a threshold of 3.

A.5 R Code for Algorithms

A.5.1 Numerical Solution of the SDE Code

The numerical solution, described in Section 2.5, can be applied to the

simulation of bridges between two known points. This results in a pathway

that uses the selection given by the user to traverse between the starting and

ending locations. The code to creat a single bridge is given below.

library(Sim.DiffProc)

set.seed(237) #set.seed(237)

cmu1 <- 0 # Covariate x1 mean

cmu2 <- 0 # Covariate x2 mean

csig <- 1 # covariate standard deviation

beta0 <- -10 # Selection intercept coefficient

beta1 <- 50 # Selection coefficient

D4 <- 1 # 4*Diffusion

xstart <- -1 # x1 starting location
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(a) Step Selection Analysis
(b) Integrated Step Selection
Analysis

(c) Missing Point Step Selection
Analysis

Figure A.1: The β0 estimates for all four algorithms. All algorithms were applied
to 10 unique pathways for each percent of missing data points. The pathways were
27 points and had a time step of 0.1. All pathways were simulated under the same
movement and selection parameters (γ = 1, β0 = −10 and βcov = 50), shown by the
dashed horizontal lines.
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(a) Step Selection Analysis
(b) Integrated Step Selection
Analysis

(c) Missing Point Selection Anal-
ysis

Figure A.2: The βcov estimates for all four algorithms. All algorithms were applied
to 10 unique pathways for each percent of missing data points. The pathways were
27 points and had a time step of 0.1. All pathways were simulated under the same
movement and selection parameters (γ = 1, β0 = −10 and βcov = 50), shown by the
dashed horizontal lines.
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(a) Step Selection Analysis (b) Integrated Step Selection Analysis

(c) Missing Point Selection Analysis

Figure A.3: The γ estimates for all four algorithms. All algorithms were applied
to 10 unique pathways for each percent of missing data points. The pathways were
27 points and had a time step of 0.1. All pathways were simulated under the same
movement and selection parameters (γ = 1, β0 = −10 and βcov = 50), shown by the
dashed horizontal lines.
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ystart <- 1 # x2 starting location

xend <- 1

yend <- 1

fx <- expression ((D4*beta1*normal.2D(x=x,y=y,sig=csig)*

(-x/(csig^2)))/(1+exp(beta0 +

beta1*normal.2D(x=x,y=y,sig=csig))),

(D4*beta1*normal.2D(x=x,y=y,sig=csig)*(-y/csig^2))

/(1+exp(beta0 + beta1*normal.2D(x=x,y=y,sig=csig ))))

gx <- expression(sqrt(D4),sqrt(D4)) # SDE Diffusion

res <- bridgesde2d(drift=fx ,diffusion=gx ,Dt=0.005,M=500)

res

summary(res)

A.5.2 Pathway Simulation: Code

The pathways simulated for all examples, and described in Section 3.2,

uses the R code described in this section. The R code for the initialization is

as follows:

set.seed(237)

cmu1 <- 0 #covariate x1 mean

cmu2 <- 0 #covariate x2 mean

csig <- 1 #covariate standard deviation

beta0 <- -10 #animal movement beta_0

beta1 <- 50 #animal movement beta_1 for covariate

D4 <- 1 #4*Diffusion

scale <- 2^0 #number of points per step

Npoints <- 2^16 #number of steps

Time <- 1000 #end time

xstart <- 1 #starting x1

ystart <- 1 #starting x2

availc <- 10 #number of available per used

The code for the SDE simulation is shown below:

fx <- expression ((D4*beta1*normal.2D(x=x,y=y,sig=csig)*

(-x/(csig^2)))/(1+exp(beta0 + beta1*normal.2D(x=x,y=y,

sig=csig ))),(D4*beta1*normal.2D(x=x,y=y,sig=csig)*(-y/csig^2))/

(1+exp(beta0 + beta1*normal.2D(x=x,y=y,sig=csig ))))

gx <- expression(sqrt(D4),sqrt(D4)) # SDE Diffusion

mod2d <- snssde2d(drift=fx ,diffusion=gx ,x0=c(xstart ,ystart),

M=1,T=Time ,N=Npoints*scale)
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track1 <- xstart

track2 <- ystart

for (i in 2:( Npoints+1)){

track1[i] <- mod2d$X[scale *(i-1)+1]

track2[i] <- mod2d$Y[scale *(i-1)+1]

}

rtime <- rep(Time/Npoints ,( length(track1)-1))

totTime <- 0

repsTime <- length(rtime )+1

for (i in 2:repsTime ){

totTime[i] <- totTime[i-1]+ rtime[i-1]

}

p1 = qplot(track1,track2,xlim=c(min(track1),max(track1)),

ylim=c(min(track2),max(track2))) + geom_path()

print(p1)

A.5.3 Resource Selection Analysis: Step 2 Code

Step 2 of RSA (Section 3.5.2) finds the convex hull of the known animal

pathway and samples available points from within that hull. The code is:

### RSA I ###### STEP 2 ##########################

rsamat <- cbind(track1rsa ,track2rsa)

# Creating a Matrix for convex hull

ch <- convex_hull(rsamat) # Convex Hull

ch1 <- cbind(ch$rescoords[,1],ch$rescoords[,2])

# Two dimensional matix of vertices

rsaav <- runif_in_polygon(Npoints*availc , ch1,

center="centroid")# Samples available points from convex hull

rsaavx1 <- rsaav[,1] # X1 locations of availables

rsaavx2 <- rsaav[,2] # X2 location of availables

rsatotx1 <- c(track1rsa ,rsaavx1)

# X1 locations of available and used

rsatotx2 <- c(track2rsa ,rsaavx2)

# X2 locations of available and used

rsaCOV <- 0 # Reset value

for(i in 1:length(rsatotx1)){

# For loop to find covariate values

rsaCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))

*(( rsatotx1[i]-cmu1)^2+( rsatotx2[i]-cmu2)^2))

#finding covariate values

}

RSAAVAILABLE <- rep(0,length(rsaavx1))

# Setting available as 0

RSAUSED <- rep(1,length(track1rsa)) # Setting available as 1

RSAPRES <- c(RSAUSED ,RSAAVAILABLE) # Presence/absence column

RSAdata <- data.frame(RSAPRES ,rsaCOV) # RSA data frame
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### RSA II ###### STEP 2 ##########################

radiusrsa <- max(distance)

rsaiix1 <- 0

rsaiix2 <- 0

rsacount <- 1

for(l in 1:length(track1rsa)){

xorigin <- track1rsa[l]

yorigin <- track2rsa[l]

trsa <- 2*pi*rand(availc ,1);

rrsa <- radiusrsa*sqrt(rand(availc ,1));

xrsa <- xorigin + rrsa*cos(trsa);

yrsa <- yorigin + rrsa*sin(trsa);

for(u in 1:availc ){

rsaiix1[rsacount] <- xrsa[u]

rsaiix2[rsacount] <- yrsa[u]

rsacount <- rsacount + 1

}

}

rsaiitotx1 <- c(track1rsa ,rsaiix1)

# X1 locations of available and used

rsaiitotx2 <- c(track2rsa ,rsaiix2)

# X2 locations of available and used

rsaiiCOV <- 0 # Reset value

for(i in 1:length(rsaiitotx1)){

# For loop to find covariate values

rsaiiCOV[i] <- (1/(2*pi*csig^2))*exp((-1/(2*csig^2))

*(( rsaiitotx1[i]-cmu1)^2+( rsaiitotx2[i]-cmu2)^2))

#finding covariate values

}

RSAIIAVAILABLE <- rep(0,length(rsaiix1))

# Setting available as 0

RSAIIUSED <- rep(1,length(track1rsa))

# Setting available as 1

RSAIIPRES <- c(RSAIIUSED ,RSAIIAVAILABLE)

# Presence/absence column

RSAIIdata <- data.frame(RSAIIPRES ,rsaiiCOV)

# RSA data frame

### RSA III ###### STEP 2 ##########################

radiusiiirsa <- 1.4

rsaiiix1 <- 0

rsaiiix2 <- 0

rsacount <- 1

for(l in 1:length(track1rsa)){

xorigin <- 0

yorigin <- 0

trsa <- 2*pi*rand(availc ,1);
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rrsa <- radiusiiirsa*sqrt(rand(availc ,1));

xrsa <- xorigin + rrsa*cos(trsa);

yrsa <- yorigin + rrsa*sin(trsa);

for(u in 1:availc ){

rsaiiix1[rsacount] <- xrsa[u]

rsaiiix2[rsacount] <- yrsa[u]

rsacount <- rsacount + 1

}

}

rsaiiitotx1 <- c(track1rsa ,rsaiiix1)

# X1 locations of available and used

rsaiiitotx2 <- c(track2rsa ,rsaiiix2)

# X2 locations of available and used

rsaiiiCOV <- 0 # Reset value

for(i in 1:length(rsaiiitotx1)){

# For loop to find covariate values

rsaiiiCOV[i] <- (1/(2*pi*csig^2))*exp((-1/(2*csig^2))

*(( rsaiiitotx1[i]-cmu1)^2+( rsaiiitotx2[i]-cmu2)^2))

#finding covariate values

}

RSAIIIAVAILABLE <- rep(0,length(rsaiiix1))

# Setting available as 0

RSAIIIUSED <- rep(1,length(track1rsa))

# Setting available as 1

RSAIIIPRES <- c(RSAIIIUSED ,RSAIIIAVAILABLE)

# Presence/absence column

RSAIIIdata <- data.frame(RSAIIIPRES ,rsaiiiCOV)

# RSA data frame

A.5.4 Resource Selection Analysis: Step 3 Code

Step 3 of RSA (Section 3.5.3) fits a logistic model using a logistic regression

to the presence/absence data. The one line of code is:

## RSA I ###### STEP 3 #########################

modelrsa <- glm(RSAPRES~rsaCOV ,family=binomial(link=logit),

data = RSAdata) # RSA log regression

data$rsaB0[count] <- modelrsa$coefficients[1] # RSA Intercept

data$rsaB1[count] <- modelrsa$coefficients[2]

# RSA Coefficient for covariate

### RSA II ###### STEP 3 #########################

modelrsaii <- glm(RSAIIPRES~rsaiiCOV ,family=

binomial(link=logit),data = RSAIIdata)

# RSA log regression

data$rsaiiB0[count] <- modelrsaii$coefficients[1]

# RSA Intercept

data$rsaiiB1[count] <- modelrsaii$coefficients[2]
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# RSA Coefficient for covariate

### RSA III ###### STEP 3 #########################

modelrsaiii <- glm(RSAIIIPRES~rsaiiiCOV ,family=binomial(link=

logit), data = RSAIIIdata) # RSA log regression

data$rsaiiiB0[count] <- modelrsaiii$coefficients[1]

# RSA Intercept

data$rsaiiiB1[count] <- modelrsaiii$coefficients[2]

# RSA Coefficient for covariate

###############################################

A.5.5 Step Selection Analysis: Step 1 Code

Step 1 of SSA (Section 3.7.1) uses MLEs to determine the σ or γ value of

the unbiased movement kernel. The code for finding the σ value is as follows:

fit.var2D <- function(x1,x2,tau){

n <- length(x1) #needs to match length(x2)

#the average is the location of the starting spot

gam <- 0

for (i in 2:n){

gam <- gam + ((x1[i]-x1[i-1])^2 + (x2[i]-x2[i-1])^2)

/tau[i-1]

}

gam <- (1/(2*(n-1)))* gam

gam

}

A.5.6 Step Selection Analysis: Step 3 Code

Step 3 of SSA (Section 3.7.3) generates the available points for the anal-

ysis using the movement kernel fitted from step 1. The function to simulate

available points is:

det.avail2D <- function(x1,x2,gam ,tau ,c=5){

#c is the number of available points per used points

n <- length(x1)

av1 <- 0

av2 <- 0

r<-1

for (i in 1:(n-1)){

for(j in 1:c){

std <- sqrt(gam*tau)

#std <- gam*tau

av1[r] <- rnorm(1,mean = x1[i], sd = std)

av2[r] <- rnorm(1,mean = x2[i], sd = std)
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r <- r + 1

}

}

av <- data.frame(av1,av2)

av

}

A.5.7 Step Selection Analysis: Step 4 Code

Step 4 of SSA (Section 3.7.4) fits a logistic model to the presence/absence

data using a logistic regression. The code for our examples only includes one

explanatory variable. The line for fitting the model is:

glm(presence~covariate1,family=binomial(link=logit))

A.5.8 Integrated Step Selection Analysis: Step 1 Code

Step 1 of iSSA (Section 3.9.1) fits the unbiased movement kernel using

MLEs. This fitting returns a γ value. The R code is:

## MLE #########

gam <- fit.var2D(track1,track2,rtime)

## FIND STEP LENGTHS ##########

distance <- 0

for (i in 1:( length(track1)-1)){

distance[i] <- sqrt((track1[i] - track1[i+1])^2

+ (track2[i]- track2[i+1])^2)

}

## STRATA ##################

stratau <- c(1:( length(track1)-1))

A.5.9 Integrated Step Selection Analysis: Step 2 Code

Step 2 of iSSA (Section 3.9.2) finds the covariate values for the used points

in the animal pathway in our examples. The code is:

usedX1 <- c(track1)

usedX2 <- c(track2)

USED <- rep(1,length(usedX1))

uCOV <- 0

for (i in 1:length(USED )){

uCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))*
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(( usedX1[i]-cmu1)^2+( usedX2[i]-cmu2)^2))

}

USED <- USED[2:length(USED)]

uCOV <- uCOV[2:length(uCOV)]

A.5.10 Integrated Step Selection Analysis: Step 3 Code

Step 3 of iSSA (Section 3.9.3) generates the available points using the γ

fitted in Step 1. It also finds the covariate values for the locations of the

available points. The code is:

## STEP 3 ###################

availc <- 10

avail <- det.avail2D(x1=track1,x2=track2,gam=gam ,tau=rtime ,

c=availc)

ax1 <- avail[,1]

ax2 <- avail[,2]

distance_avail <- 0

countavail <- 1

for (i in 1:( length(track1)-1)){

for(j in 1:availc ){

distance_avail[countavail] <- sqrt((track1[i]

- ax1[countavail ])^2+ (track2[i] - ax2[countavail ])^2)

countavail <- countavail + 1

}

}

strataa <- rep(1:( length(track1)-1), each=availc)

totx1 <- c(track1,avail[,1])

totx2 <- c(track2,avail[,2])

availX1 <- ax1

availX2 <- ax2

timesa <- rep(rtime ,each=availc)

## Finding the covariate values ########

AVAILABLE <- rep(0,length(availX1))

aCOV <- 0

for (i in 1:length(AVAILABLE )){

aCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))

*(( availX1[i]-cmu1)^2+( availX2[i]-cmu2)^2))

}

## Connecting the columns ###########

presence <- c(USED ,AVAILABLE)

covariate1 <- c(uCOV ,aCOV)

steplength <- c(distance ,distance_avail)

strata <- c(stratau ,strataa)
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times <- c(rtime , timesa)

A.5.11 Integrated Step Selection Analysis: Step 4 Code

Step 4 of iSSA (Section 3.9.4) applies a conditional regression to fit a logis-

tic model with the responding variable of presence/absence and explanatory

variables of the covariate values and step length squared. The code is:

clogit(presence ~ covariate1 + steplength2 +

strata(strata ))

Finding β0:

#To find B_1

model1a <- clogit(presence ~ covariate1/(1-covariate1)

+ steplength + strata(strata ))

#To find b_0

modelia <- glm(presence ~ 1 + offset(model1a$coefficients[1]*

covariate1), family = binomial(link = logit ))

A.5.12 Missing Point Selection Analysis: Step 2 Code

Step 2 of MPSA (Section 3.11.2) simulates the SDE with the new fitted

β0 and βcov values from step 1. SDE bridges are simulated in every instance

where a point is missing. The code is:

b0 <- intercept

beta <- beta_c

ubpx1 <- 0

ubpx2 <- 0

count <- 1

for (i in 1:length(rtime )){

if (rtime[i]>0.1){

points <- rtime[i]/0.1

mod <- SDE2D(y1=track1[i],rp=100,y2=track2[i],

x1=track1[i+1],x2=track2[i+1],cmu1=cmu1,cmu2=cmu2,csig=csig ,

beta0=b0,beta1=beta ,D4=gam , t0 = totTime[i],

t1 = totTime[i+1])

np <- ncol(mod$X)

l <- nrow(mod$X)

for (i in 1:(points -1)){

spot <- round(l * (i/points ))

randp <- sample(1:np,1,TRUE)

ubpx1[count] <- mod$X[spot ,randp]

ubpx2[count] <- mod$Y[spot ,randp]
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count <- count + 1

}

}

}

A.5.13 Missing Point Selection Analysis: Step 3 Code

Step 3 of MPSA (Section 3.11.3 generates available points using the new

γ value fitted in step 1. The code is:

avail <- det.avail2D(x1=usedX1,x2=usedX2,gam=gam ,

tau=rtime ,c=3)

ax1 <- avail[,1]

ax2 <- avail[,2]

availX1 <- ax1

availX2 <- ax2

AVAILABLE <- rep(0,length(availX1))

aCOV <- 0

for (i in 1:length(AVAILABLE )){

aCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))

*(( availX1[i]-cmu1)^2+( availX2[i]-cmu2)^2))

}

presence <- c(USED ,AVAILABLE)

covariate1 <- c(uCOV ,aCOV)

A.5.14 Missing Point Selection Analysis: Step 4 Code

Step 4 of MPSA (Section 3.11.4 fits a logistic model using a conditional

regression. The responding variable is the presence/absence and the explana-

tory variables are the environmental covariates and the step length squared.

The code is:

model1a <- clogit(presence ~ covariate1/(1-covariate1) +

steplength2 + strata(strata ))

# Conditional logistic regression

modelia <- glm(presence ~ 1 +

offset(model1a$coefficients[1]* covariate1),

family = binomial(link = logit))

# Regression for intercept values

bl <- 1/(2*gamorg*timeinterval)-

model1a$coefficients[2]

# Gamma calculation intermediate step

gamma <- abs(1/(2*bl*timeinterval )) # New gamma value
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A.5.15 All Algorithm Functions

The file for the functions required for all of the algorithms is called ’MPSA-

Functions.R’. While not all functions are necessary for every algorithm, this

files consolidates all the necessary functions for running all of the algorithms

at the same time. The code is as follows:

############################################################

############### FUNCTIONS FOR ALL ALGORITHMS ###############

############################################################

#--------------------------------------------------

## PACKAGE DOWNLOADS

#--------------------------------------------------

#Plotting package

library(ggplot2)

#SDE Packages

library(Sim.DiffProc)

library(knitr)

library(MASS)

knitr::opts_chunk$set(comment="",prompt=TRUE ,

fig.show=’hold’, warning=FALSE , message=FALSE)

options(prompt="R> ",scipen=16,digits=5,warning=FALSE ,

message=FALSE , width = 70)

library(survival)

library(geometry)

library(uniformly)

#Bivariate normal random calculation

rbvn <-function (n, mu1, s1, mu2, s2, rho)

{

X1 <- rnorm(n, mu1, s1)

X2 <- rnorm(n, mu2 + (s2/s1) * rho *

(X1 - mu1), sqrt((1 - rho^2)*s2^2))

cbind(X1, X2)

}

#############--------------------------------------

## ALGORITHM FUNCTIONS

#############--------------------------------------

#--------------------------------------------------

## TWO DIMENSIONAL NORMAL

#--------------------------------------------------

normal.2D <- function(x,y,sig){ #assumes mu is zero

(1/(2*pi*sig^2))*exp((-1/2)*(((x^2)/sig^2)+((y^2)

/sig^2)))

}
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#--------------------------------------------------

## DETERMINE MOVEMENT KERNEL

#--------------------------------------------------

#First step , 1D

#Fitting sigma^2 based on the x coordinates in 1D

fit.var.1D <- function(x1, tau){

n <- length(x1)

#the average is the location of the starting spot

gam <- 0

for(j in 2:n){

gam <- gam + ((x1[j]-x1[j-1])^2)/tau[j-1]

}

(gam <- (1/n)*gam)

}

#First step , 2D

#Fitting sigma^2 based on the x1 and x2 coordinates in 2D

fit.var2D <- function(x1,x2,tau){

n <- length(x1) #needs to match length(x2)

#the average is the location of the starting spot

gam <- 0

for (i in 2:n){

gam <- gam + ((x1[i]-x1[i-1])^2 + (x2[i]-x2[i-1])^2)

/tau[i-1]

}

gam <- (1/(2*(n-1)))* gam

gam

}

#--------------------------------------------------

## DETERMINE AVAILABLE POINTS

#--------------------------------------------------

#Second step , 1D

#Determine available locations

det.avail1D <- function(x1,gam ,tau ,c=5){

#c is the number of available points per used points

av <- 0

r <- 1

n <- length(x1)

for (i in 2:n){

for(j in 1:c){

std <- gam*tau[i-1]

av[r] <- rnorm(1,mean = x1[i], sd = std)

r <- r + 1

}

}

av

}
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#Second step , 2D

#Determine available locations

det.avail2D <- function(x1,x2,gam ,tau ,c=5){

#c is the number of available points per used points

n <- length(x1)

av1 <- 0

av2 <- 0

r<-1

for (i in 1:(n-1)){

for(j in 1:c){

std <- sqrt(gam*tau)

#std <- gam*tau

av1[r] <- rnorm(1,mean = x1[i], sd = std)

av2[r] <- rnorm(1,mean = x2[i], sd = std)

r <- r + 1

}

}

av <- data.frame(av1,av2)

av

}

#--------------------------------------------------

## RUN SDE PATHS FOR USED POINTS

#--------------------------------------------------

#1D SDE pathway , y= start , x=end , rp = repetitions

SDE1D <- function(y1,x1,rp=100,cmu1 = 0, cmu2 = 0,

beta1 = -100,D4 = 1){

fx <- expression(D4*beta1*(-x/(csig^2)))

gx <- expression(D4)

leng <- 0

while (leng < 1){

modx <- tryCatch(bridgesde1d(drift=f,diffusion=g

,x0=y1,y=x1,M=rp,method="milstein"),

error=function(e) return(0))

leng <- tryCatch(ncol(modx$X),error=function(e) return(0))

if (is.null(leng )){

leng <- 0

}

}

modx

}

#2D SDE pathway

SDE2D <- function(y1,y2,x1,x2,rp=100,cmu1 =0, cmu2 = 0,

csig = 7,beta0 = 0, beta1 = 100, D4 = 1,t0,t1){

fx <- expression(D4*beta1*(1/(2*pi*csig^2))* exp((-1/2)
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*(((x^2)/csig^2)+((y^2)/csig^2)))*(-x/(csig^2))/(1

+exp(beta0 + beta1*(1/(2*pi*csig^2))*exp((-1/2)*(((x^2)

/csig^2)+((y^2)/csig^2))))) ,D4*beta1*(1/(2*pi*csig^2))

*exp((-1/2)*(((x^2)/csig^2)+((y^2)/csig^2)))*( -y

/csig^2)/(1+exp(beta0 + beta1*(1/(2*pi*csig^2))

*exp((-1/2)*(((x^2)/csig^2)+((y^2)/csig^2))))))

gx <- expression(sqrt(D4),sqrt(D4)) # SDE Diffusion

leng <- 0

count <- 0

while (leng < 1){

mod2 <- tryCatch(bridgesde2d(drift=fx ,diffusion=gx ,

x0=c(y1,y2),y=c(x1,x2),M=rp,type="str",method="rk1",

t0=t0, T=t1),

error=function(e)

return(0) )

leng <- tryCatch(ncol(mod2$X),error=function(e) return(0))

if (is.null(leng )){

leng <- 0

}

count <- count+1

print(count)

}

mod2

}

# 1D Selects random points along random pathways

#mod=model ,n=points per pathway ,

#p=number of pathways to select from

selectUsed1D.sde <- function(mod ,n=1,p=1){

l <- nrow(mod$X)

np <- ncol(mod$X)

pts <- 0

for (i in 1:p){

randp <- sample(1:np,1,TRUE)

randx <- runif(n,0,l-0.0000000000000000000001)

pts <- c(pts ,mod$X[randx ,randp])

}

points <- pts[2:length(pts)]

}

# 2D Selects random points along random pathways

#mod=model ,n=points per pathway ,

#p=number of pathways to select from

selectUsed2D.sde <- function(mod ,n=1,p=1){

l <- nrow(mod$X)

np <- ncol(mod$X)

ptsx1 <- 0

ptsx2 <- 0
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for (i in 1:p){

randp <- sample(1:np ,1,TRUE)

randx <- runif(n,0,l-0.0000000000000000000001)

ptsx1 <- c(ptsx1,mod$X[randx ,randp])

ptsx2 <- c(ptsx2,mod$Y[randx ,randp])

}

pointsx1 <- ptsx1[2:length(ptsx1)]

pointsx2 <- ptsx2[2:length(ptsx2)]

points <- data.frame(ptsx1,ptsx2)

points

}

A.5.16 All Algorithms Examples

The file containing the code for the testing of all algorithms on the same

data is called ’MPSALoop.R’. This code repeats the analyses on the same data

for a user specified number of loops. The code is as follows:

#----------------------------------------

# SOURCE FILE WITH FUNCTIONS

#----------------------------------------

source("MPSAFunctions.R")

# Functions required for missing point algorithm

set.seed(237) #set.seed(237)

start <- 7 # starting k value for repeats

end <- 7 # ending k value for repeats

rmax <- 300 # Number of times each sim settings repeated

rmin <- length(c(start:end)) # Number of repeats

delta <- 10

# The minimum required difference between betas to end sim

timeintervalvec <- rep(NA,rmin*rmax)

# Vector for time intervals

gammavec <- rep(NA,rmin*rmax)

# Vector for inputted gamma

gammaestvec <- rep(NA,rmin*rmax)

# Vector for gamma from kernel fit

mp1gammaestvec <- rep(NA ,rmin*rmax)

# Vector for missing point gamma fit (final)

sssteplength <- rep(NA ,rmin*rmax)

# Vector for step lengths

issaB1 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_covariate

issaB0 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_0

issaBL <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_steplength
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mpsa1B1 <- rep(NA ,rmin*rmax)

# Vector for missing point beta_covariate

mpsa1B0 <- rep(NA ,rmin*rmax)

# Vector for missing point beta_0

mpsa1BL <- rep(NA ,rmin*rmax)

# Vector for missing point beta_steplength

ssaB1 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_covariate

ssaB0 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_0

rsaB1 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_covariate

rsaB0 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_0

rsaiiB1 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_covariate

rsaiiB0 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_0

rsaiiiB1 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_covariate

rsaiiiB0 <- rep(NA ,rmin*rmax)

# Vector for iSSA beta_0

whilec <- rep(NA ,rmin*rmax)

# Vector for number of rounds in missing point

x <- rep(NA ,rmax) # Vector for percent missing

count <- 1 # Counter for simulation number

data <- data.frame(timeintervalvec ,gammavec ,

gammaestvec ,mp1gammaestvec ,sssteplength ,issaB0,issaB1,

issaBL ,mpsa1B0,mpsa1B1,mpsa1BL ,ssaB0,ssaB1,

rsaB0,rsaB1,rsaiiB0,rsaiiB1,rsaiiiB0,rsaiiiB1,

x,whilec) # Data frame for final collection

for ( s in 1:rmax){ # Repeat for each percent

for( k in start:end ){

# Repeating for multiple simulations of each setting

#----------------------------------------

# PATHWAY INITIALIZATION

#----------------------------------------

cmu1 <- 0 # Covariate x1 mean

cmu2 <- 0 # Covariate x2 mean

csig <- 1 # covariate standard deviation

beta0 <- -10 # Selection intercept coefficent

beta1 <- 50 # Selection coefficent

D4 <- 1 # 4*Diffusion

scale <- 2^8 # Number of points per reported points

Npoints <- 2^10 # Total number of steps

Time <- Npoints*0.1 # End Time
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timeinterval <- Time/Npoints

# The regular time interval

data$timeintervalvec[count] <- timeinterval

# Saving the time interval

xstart <- 1 # x1 starting location

ystart <- 1 # x2 starting location

availc <- 10 # Available points per used point

nummiss <- round (((k*10)/100)* Npoints)

# Number of missing points

#nummiss <- round(0.8*Npoints)

countw <- 0 # Counter for while loop reset

difference <- 999

# value for the difference between beta estimates

errortest <- 0

errortest2 <- 0

#-------------------------------------

# PATHWAY SIMULATION

#-------------------------------------

fx <- expression ((D4*beta1*normal.2D(x=x,y=y,sig=csig)

*(-x/(csig^2)))/(1+exp(beta0 + beta1*normal.2D(x=x,y=y,

sig=csig ))),(D4*beta1*normal.2D(x=x,y=y,sig=csig)*(-y

/csig^2))/(1+exp(beta0 + beta1*normal.2D(x=x,y=y,

sig=csig ))))

#SDE Drift

gx <- expression(sqrt(D4),sqrt(D4)) # SDE Diffusion

mod2d <- snssde2d(drift=fx ,diffusion=gx ,x0=c(xstart ,

ystart),M=1,T=Time ,N=Npoints*scale ,method="rk2")

#SDE Pathway simulation

track1 <- xstart # First x1 point on pathway

track2 <- ystart # First x2 point on pathway

for (i in 2:( Npoints+1)){

# Determines the rest of the pathway removing the scale

track1[i] <- mod2d$X[scale *(i-1)+1] # x1 location

track2[i] <- mod2d$Y[scale *(i-1)+1] # x2 location

}

rtime <- rep(Time/Npoints ,( length(track1)-1))

# Vector of time intervals

toDelete <- seq(1,length(track1),1)

toDelete1 <- seq(5,length(track1),5)

toDelete <- toDelete[-toDelete1]

track1rsa <- track1[-toDelete]

track2rsa <- track2[-toDelete]

#-------------------------------------

# DETERMINE MISSING POINTS

#-------------------------------------

120



missing <- sample(2:( length(track1)-1), nummiss ,

replace=F)

# The points that are removed and missing

missing <- sort(missing)

# sorts the missing points for the next loop

track1 <- track1[-missing] # Removes missing x1 points

track2 <- track2[-missing] # Removes missing x2 points

counter <- 0 #counter keeps track time intervals removed

for( i in 1:length(missing )){

# Loop to calculate new time intervals

rtime[missing[i]-1-counter] <- rtime[missing[i]-1

-counter] + rtime[missing[i]-counter]

# add missing time to next time

rtime <- rtime[-(missing[i]-counter )]

# Remove missing points

counter <- counter + 1 # Increase index counter

}

totTime <- 0 # Reset Total time vector

repsTime <- length(rtime )+1

# variable for number of repeats

for (i in 2:repsTime ){

# Ignores first time interval ,

#repeats for each new time interval

totTime[i] <- totTime[i-1]+ rtime[i-1]

# Cumulative sum of time intervals

}

rtimeorg <- rtime

#saves the original time intervals

#-------------------------------------

# STEP 1: DETERMINE MOVEMENT KERNEL

#-------------------------------------

gam <- fit.var2D(track1,track2,rtime)

# Fit the movement kernel to find gamma

gamorg <- gam # saves the original fit

data$gammavec[count] <- gam # save fit for plotting

#-------------------------------------

# STEP 2: DETERMINE USED POINTS

#-------------------------------------

usedX1 <- c(track1) # set used points , x1

usedX2 <- c(track2) # set used points , x2

USED <- rep(1,length(usedX1)) # used points are set 1

uCOV <- 0 # Reset used covariate values

for (i in 1:length(USED )){

# For each used location , find the covariate

uCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))
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*(( usedX1[i]-cmu1)^2+( usedX2[i]-cmu2)^2))

#determines covariate values of used points

}

USED <- USED[2:length(USED)]

#removes starting location from analysis

uCOV <- uCOV[2:length(uCOV)]

#removes starting location from analysis

## FIND STEP LENGTHS ##########

distance <- 0 # Resets distance vector

for (i in 1:( length(track1)-1)){

# For each viable step , find step length

distance[i] <- sqrt((track1[i] - track1[i+1])^2

+ (track2[i] - track2[i+1])^2)

#determines step lengths for used steps

}

## STRATA ##################

stratau <- c(1:( length(track1)-1))

# Strata values for each used point

#-------------------------------------

# STEP 3: SIMULATE AVAILABLE POINTS

#-------------------------------------

avail <- det.avail2D(x1=track1,x2=track2,gam=gam ,

tau=timeinterval ,c=availc)

# Simulate available points for each used point

ax1 <- avail[,1] # set x1 available location

ax2 <- avail[,2] # set x2 available location

distance_avail <- 0 # Reset distance vector

countavail <- 1 # Counter for index

for (i in 1:( length(track1)-1)){

# Find the step length for each available point

for(j in 1:availc ){

# Find the amount of available points required

distance_avail[countavail] <- sqrt((track1[i]

- ax1[countavail ])^2 + (track2[i]

- ax2[countavail ])^2)

# step lengths for available points

countavail <- countavail + 1 # Increase index counter

}

}

strataa <- rep(1:( length(track1)-1), each=availc)

# Strata values for the available points

availX1 <- ax1 # x1 available points

availX2 <- ax2 # x2 available points
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timesa <- rep(rtime ,each=availc)

# time intervals for available points

AVAILABLE <- rep(0,length(availX1))

# each available point gets a 0

aCOV <- 0

for (i in 1:length(AVAILABLE )){

# Find the covariate values for each available location

aCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))

*(( availX1[i]-cmu1)^2+( availX2[i]-cmu2)^2))

# calculate covariate values for each available point

}

presence <- c(USED ,AVAILABLE)

# The presence/absence binary value

covariate1 <- c(uCOV ,aCOV) # Covariate values

steplength <- c(distance ,distance_avail) # Step lengths

strata <- c(stratau ,strataa) # Strata values

times <- c(rtime , timesa) # Time intervals

steplength2 <- steplength^2 # Step length squared

#-------------------------------------

# REMOVE POINTS WITH TIMEINTERVAL > STANDARD ,

# iSSA CAN ’T HANDLE THE EXTRA TIME

#-------------------------------------

presence <- presence[times == timeinterval]

# save only points with time interval equal to set time

# interval , presence/absence

covariate1 <- covariate1[times == timeinterval]

# save only points with time interval equal to set time

# interval , covariate values

steplength <- steplength[times == timeinterval]

# save only points with time interval equal to set time

# interval , steplengths

strata <- strata[times== timeinterval]

# save only points with time interval equal to set time

# interval , strata values

steplength2 <- steplength2[times == timeinterval]

# save only points with time interval equal to set time

# interval , step lengths squared

times <- times[times== timeinterval]

# save only points with time interval equal to set time

# interval , time intervals

#-------------------------------------

# STEP 4: RUN CONDITIONAL LOGISTIC REGRESSION

#-------------------------------------

model1a <- clogit(presence ~ covariate1/(1-covariate1)
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+ steplength2 + strata(strata ))

# model for covariate

data$issaB1[count] <- model1a$coefficients[1]

# Save beta for covariate

modelia <- glm(presence ~ 1

+ offset(model1a$coefficients[1]

*covariate1), family = binomial(link = logit ))

# Model for intercept

data$issaB0[count] <- modelia$coefficients[1]

# Save beta for intercept

#### SSA COMPARISON #########################

model <- glm(presence~covariate1,

family=binomial(link=logit))

# SSA log regression

data$ssaB0[count] <- model$coefficients[1]

# SSA Intercept

data$ssaB1[count] <- model$coefficients[2]

# SSA Coefficeint for covariate

###########################################

#-------------------------------------

# STEP 5: RE -EVALUATE MOVEMENT KERNEL

#-------------------------------------

bl <- 1/(2*gamorg*timeinterval)-model1a$coefficients[2]

# calculate the "beta" for step length

gamma <- abs(1/(2*bl*timeinterval ))

# new estimated gamma value

data$gammaestvec[count] <- gamma

# save estimated gamma value

ss <- sum(steplength2)/ length(steplength2)/2

# step length squared

data$sssteplength[count] <- ss

# save step length squared

while(difference > delta | errortest != 0

| errortest2 != 0 ){

# while difference between the betas is greater than delta ,

#repeat missing point step

countw <- countw + 1

# Increase missing point round counter

#-------------------------------------

# STEP 6: DETERMINE BRIDGE POINTS

#-------------------------------------

b0 <- modelia$coefficients[1]
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# Set the new beta values for the intercept

beta <- model1a$coefficients[1]

# Set the new beta values for the covariate

gam <- gamma # Set the new gamma value

ubpx1 <- 0 # Reset bridge point vector for x1

ubpx2 <- 0 # Reset bridge point vector for x2

countc <- 2

# Counter for used and pseudo -used vector index

countu <- 2 # Counter for used vector index

usedtempx1 <- track1[1] # Sets first used point , x1

usedtempx2 <- track2[1] # Sets first used point , x2

for (i in 1:length(rtimeorg )){

# For each time interval ,

#find the used or pseduo -used point

if (rtime[i]>( timeinterval )){

# If a point is missing , find a pseudo -used point

points <- rtimeorg[i]/( timeinterval)

# Number of pseudo -used points required

mod <- SDE2D(y1=track1[i],rp=50,y2=track2[i],

x1=track1[i+1],x2=track2[i+1],cmu1=cmu1,

cmu2=cmu2,csig=csig ,beta0=b0,beta1=beta ,

D4=gam , t0 = totTime[i], t1 = totTime[i+1])

# Bridge simulation

np <- ncol(mod$X) # Number of successful bridges

l <- nrow(mod$X)

# Number of location steps within the bridges

for (i in 1:(points -1)){

# For each required missing point

spot <- round(l * (i/points ))

# Find the times where the points are needed

randp <- sample(1:np,1,TRUE)

# Randomly choose a succesful bridge to sample from

usedtempx1[countc] <- mod$X[spot ,randp]

# Save pseudo -used x1

usedtempx2[countc] <- mod$Y[spot ,randp]

# Save pseudo -used x2

countc <- countc + 1

# Increase used/pseudo -used counter

}

usedtempx1[countc] <- track1[countu] # Save used x1

usedtempx2[countc] <- track2[countu] # Save used x2

countc <- countc +1

# Increase used/pseduo -used counter

countu <- countu +1 # Increase used counter

}else{

# If there are no missing points , get original pathway

usedtempx1[countc] <- track1[countu] # Save used x1
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usedtempx2[countc] <- track2[countu] # Save used x2

countc <- countc + 1 # Increase used/pseudo -used x1

countu <- countu + 1 # Increase used counter

}

}

#-------------------------------------

# STEP 7: DETERMINE USED POINTS

#-------------------------------------

usedX1 <- usedtempx1

# Set used points to the ordered used/pseudo -used , x1

usedX2 <- usedtempx2

# Set used points to the ordered used/pseudo -used , x2

rtime <- rep(( timeinterval ),(length(usedX1)-1))

# Set time intervals to be all the same and regular

USED <- rep(1,length(usedX1))

# Set 1 for each used for presence/absence column

uCOV <- 0 # Reset used covariate values

for (i in 1:length(USED )){

# For each used point , find the covariate values

uCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))

*(( usedX1[i]-cmu1)^2+( usedX2[i]-cmu2)^2))

# Calculate the covariate values

}

USED <- USED[2:length(USED)]

# Remove first point

uCOV <- uCOV[2:length(uCOV)]

# Remove first point

## FIND STEP LENGTHS ##########

distance <- 0 # Reset distance vector

for (i in 1:( length(usedX1)-1)){

# For each used/pseudo -used point ,

#find the step length

distance[i] <- sqrt((track1[i] - track1[i+1])^2

+ (track2[i]- track2[i+1])^2)

# Calculation of step length

}

## STRATA ##################

stratau <- c(1:( length(usedX1)-1))

# Assign strata values

#-------------------------------------

# STEP 8: DETERMINE AVAILABLE POINTS

#-------------------------------------
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avail <- det.avail2D(x1=usedX1,x2=usedX2,gam=gam ,

tau=rtime ,c=availc)

# Determine available points for each used/pseudo -used

ax1 <- avail[,1] # Available x1 locations

ax2 <- avail[,2] # Available x2 locations

distance_avail <- 0 # Reset distance vector

countavail <- 1 # Counter for relevant step lengths

for (i in 1:( length(usedX1)-1)){

# For each viable point , find the step length

for(j in 1:availc ){

# Repeat for the number of available points made

distance_avail[countavail] <- sqrt((usedX1[i]

- ax1[countavail ])^2 + (usedX2[i]

- ax2[countavail ])^2)

# Calculation for step length

countavail <- countavail + 1

# Increase counter for available points index

}

}

strataa <- rep(1:( length(usedX1)-1), each=availc)

# Strata values for each available point

totx1 <- c(usedX1,avail[,1])

# All used and available , x1

totx2 <- c(usedX2,avail[,2])

# All used and available , x2

availX1 <- ax1 # Available points , x1

availX2 <- ax2 # Available points , x2

timesa <- rep(rtime ,each=availc)

# Intervals for the available points

AVAILABLE <- rep(0,length(availX1))

# 0 for each available point in the presence/absence

aCOV <- 0 # Reset available covariate vector

for (i in 1:length(AVAILABLE )){

# For each available point , the covariate values

aCOV[i] <- (1/(2*pi*csig^2))* exp((-1/(2*csig^2))

*(( availX1[i]-cmu1)^2+( availX2[i]

-cmu2)^2))

# Calculation of covariate values

}

presence <- c(USED ,AVAILABLE)

# The presence/absence binary value

covariate1 <- c(uCOV ,aCOV) # Covariate vector

steplength <- c(distance ,distance_avail)

# Step length vector
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strata <- c(stratau ,strataa) # Strata vector

times <- c(rtime , timesa) # Time interval vector

steplength2 <- steplength^2

# Step lengths squared vector

#-------------------------------------

# STEP 9: RUN MODELS

#-------------------------------------

model1aold <- model1a

modeliaold <- modelia

model1a <- tryCatch(clogit(presence ~ covariate1

/(1-covariate1) + steplength2 + strata(strata)),

error=function(w) return(model1a))

# Conditional logistic regression

modelia <- tryCatch(glm(presence ~ 1

+ offset(model1a$coefficients[1]* covariate1),

family = binomial(link = logit)), error=function(w)

return(model1a))

# Regression for intercept values

if(model1aold$coefficients[1]==

model1a$coefficients[1] & model1aold$coefficients[2]==

model1a$coefficients[2]){

errortest <- 1

}

if(modeliaold$coefficients[1]==

modelia$coefficients[1]){

errortest2 <- 1

}

bl <- 1/(2*gamorg*timeinterval)-model1a$coefficients[2]

# Gamma calculation intermediate step

gamma <- abs(1/(2*bl*timeinterval )) # New gamma value

difference <- abs(beta - model1a$coefficients[1])

# Difference between previous beta_covariate

#value and new beta_covariate value

}

data$mpsa1B1[count] <- model1a$coefficients[1]

# Save the beta_covariate value

data$mpsa1B0[count] <- modelia$coefficients[1]

# Save the beta_0 value

data$mp1gammaestvec[count] <- gamma

# Save the gamma estimate

data$whilec[count] <- countw

# Save the number of rounds completed

data$x[count] <- nummiss

# Save the number of missing points
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count <- count + 1

# Increase counter for the number of sims index

print("Good")

# Print "good" for each succesful run as a check

print(count)

# Print the simulation number as a check

}

}
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