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ABSTRACT

Building transparent and highly interprctable models of the construction performance is
generally of significant importance to construction managers. However, previous research
f“ocuscs more on the approximation accuracy of construction performance models. Few
studies have been donc on the transparency of models, i.e., offering some understandable
cause-effect relationships between the construction performance indicator and its influence
factors.

The general objective of this thesis is to build transparent construction performance
models using techniques of Computational Intelligence (CI). More specifically:

- First, a ncural network, named General Regression Neural Network (GRNN) is
selected as the basic modeling technique. Its new genetic algorithm based
learning algorithm is introduced. The GRNN not only presents a high
approximation rate, but also offers importance indices about the influence of
inputs on the output.

- Secondly, a fuzzy clustering algorithm is introduced to granulate the inputs into
their linguistic terms. The model built with the use of granulated data provides
clearer influence factors and the indicator of resulting construction performance.

All the proposed methods are tested on the data collected from construction sites. The

results demonstrate the feasibility and efficiency of the proposed models.
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Chapter 1
Introduction

Building a transparent model of construction performance [1] is generally of significant
importance to construction managers, Such a model assists them in understanding and
managing the construction performance under the pressure of quick construction pace, short
project life cycles, complex construction designs and ubiquitous human factors. In particular,
when problems occur, such as when the construction performance greatly diverges from the
planed one, a transparent construction performance model will help the manager to provide
possible explanations for thc observed problems and take remedial action. However,
previous research focuses more on the approximation accuracy of construction performance
models. Regardless of the regression analysis of the construction labor productivity [61-62],
the ncural networks modeling of construction productivity [47], or the fuzzy modeling of
construction design performance [54], the first consideration in those studies is to accurately
predict construction performance based on the values of influence factors. Little rescarch
work has been done on the transparency of models, i.e., offering some understanding of
cause-effect relationships between the construction performance indicator and its influence

factors.
1.1 Objectives & Thesis Organization

The gencral objective of this thesis is to build a transparent construction performance
model using techniques of Computational Intelligence (CI) [2). Because such a model is the
kernel of construction performance analysis, its transparency is represented by two desired

features, which constitute the specific objectives of this thesis:

- First, building a model that offers importance indices about the influence of

inputs on the output.
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- Secondly, cnsuring the model granulates the inputs and output into their
linguistic terms to provide more concrete influence factors and a more accurate

indicator of resulting construction performance.

In Chapter 2, we introduce a framework for construction performance diagnosis; then,
the two anticipated features for the transparent construction performance model in the
framework are claborated on. Chapter 3 investigates the models with first feature, The CI
technique, General Regression Neural Network (GRNN) is selected as the basic modeling
technique. The GRNN is strengthened to provide importance indices about the influence of
inputs on the output, and its new genetic learning algorithm is also proposed. Chapter 4
discusses the second feature of information granulation, and another CI technique called
fuzzy clustering is proposed as the basic granulation method to enhance the transparency of
construction performance models. The concept of representation error is introduced, and is
applicd to improve the performance of the fuzzy clustering algorithm. Finally, Chapter 5

concludes this thesis and suggests some future work.

The remainder of this chapter presents an introduction to kernel CI techniques and a
review of motivating previous research on CI applied in construction engineering and
management. Section 1.2 first introduces the three most broadly used CI techniques,
including neural networks [3], fuzzy sets [4], and genetic algorithms [5]. Then, the three
techniques’ combinations and their advantages and disadvantages are discussed. Section 1.3
provides a review of previous applications of CI techniques to construction engineering and
management. Further attention will be devoted to preceding modeling techniques for

construction performance and lessons learmned from them.

1.2 Computational Intelligence

As defined by the IEEE Socicty of Computational Intelligence, the scope of Computational
Intelligence is *the theory, design, application, and development of biologically and

linguistically motivated computational paradigms emphasizing necural networks,

(L8]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



connectionist systems, genctic algorithms, cvolutionary programming, fuzzy systems, and
hybrid intelligent systems in which these paradigms are contained” [6]. The three most
essential techniques defined in this scope — neural networks, genetic algorithms and fuzzy
sets & systems are introduced in the following subsections. The pros and cons of individual

techniques and their combinations are also presented.
1.2.1 Neural Networks

Ncural Networks or Artificial Neural Networks (ANN) [7-8] represent an artificial
simulation of biological nervous systems. Just like the object it simulates, ANN is also a
parallel processing structure that combines a number of interconnected simple processing
elements named Artificial Neurons. Figure 1.1 illustrates a typical Artificial Neuron. The

input-output mapping represented in this neuron is:
y=fU)1=Y wx,
i=1

in which w; are weights, x; are inputs, and the f'is activation function.

Figurc 1.1 - The structure of a typical artificial neuron

The typical architecture of the ANN is a sequence of layers with full connections
between the layers. Each layer constitutes a number of neurons. Figure 1.2 is an example of

the well-known ANN, named Fced-forward Neural Network [8].
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Figure 1.2 - The structure of a threc-layered Feed-forward Neural Network

Learning and Recall are the two main modes of ANN operation [7]. In the learning
mode, the ANN tunes weights of connections between neurons to capture the knowledge
embedded in historical data. In the recall mode, the ANN maps inputs to the desired output
based on the knowledge represented by the architecture and connections of ANN. To
cffectively adjust the connections (weights) in the learning mode of ANN, a lcarning

algorithm is a must.

To capture the knowledge embedded in historical data, usually, a performance index,
such as the difference between the outputs of historical data and those of ANN, is defined
and the learning problem is changed into a search task — exploring the paramecter space to
minimize the performance index with respect to the parameters (in ANN, the parameters arc

connection weights).

Many learning algorithms for ANN have been brought forward in past decades.
However, most of them - including the highly successful lcarning algorithm,
“back-propagation”[9], suffer from the limitation of traditional search/optimization methods,
i.e., the problem of falling into the local minima of the performance index. In the techniques
applied in the newly developed learning algorithms of ANN to alleviate the

above-mentioned problem, the one most widely used is the genetic algorithm, The next

4
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subsection provides a brief introduction to this algorithm.

1.2.2 Genetic Algorithms

The Genetic Algorithm (GA) is one of the main instances of Evolutionary optimization [2],
which include Genetic Algorithms [10-12], Evolutionary Programming [13-14],
Evolutionary Strategies [15-16], Genetic Programming [17-18] and Learning Classification
Systems [19-20]. Evolutionary Computation is a powerful scarch/optimization paradigm
inspired by the mechanics of Darwinian selection and biological evolution, There are similar
steps in all the Evolutionary Computation models. Figure 1.3 illustrates the fundamental

steps in a genetic algorithm.

¢
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Population
Initialization

-

i Evaluation

o=

Sclection

4

V ariation

/
N \/S’tfp crite ria~—_
wficd//
b

Y

Finish

Figure 1.3 - The schema of a typical Genetic Algorithm

First, in the Representation step, “a mapping from the state space of possible solutions
to a state space of encoded solutions within a particular data structure”{21] is defined. The
particular data structure varies from a vector of binary integers, or a vector of real variables

to a complex tree structure, or a symbolic expression. When the vector of binary integers is

5
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applicd as the particular data structure, the Genetic Algorithm is called Binary-Coded
Genetic Algorithm (BCGA) [10]. Similarly, if the vector of real variables is applicd, the
Genetic Algorithm is called Real-Coded Genetic Algorithm (RCGA) [22-23]. This thesis
will apply RCGA in the learning of a proposed neural network. Chapter 3 provides further

details,

The Genetic Algorithm holds a population of individuals for evolution. Each individual
encodes a possible solution, as described in the Representation step. In the Pepulation
Initialization step, the population of individuals in the space of encoded solutions is
randomly generated. The number of individuals in the population is referred to as population

size.

In the Evaluation step, a fitness value is assigned to each individual to represent the
quality of the solution encoded in the individual. The fitness function is defined to cstablish
the fitness values, and normally relies on the performance indices of correspondiné solutions.
For example, if the problem we try to solve by GA is to minimize the performance index, the

individual with lower performance index will be issued a higher fitness value by the fitness

function.

The Selection step is the one of the most important steps in the evolution. In this step,
individuals in the population are selected for the next step of the algorithm the Variation
step based on their fitness values. The Selection step is an imitation of sclection procedure

in biological cvolution: high quality individuals arc selected for the next generation, and low

quality ones arc washed out.

The Variation step is another important step in evolution procedure; it is a simulation
of biological mutation and mating. In this step, individuals selected by the last step, in a
probability, are modified by variation operations taking into account the new aspects of
solution space. The typical variation operations are crossover and mutation, After this step, a

new population of individuals or a new generation is produced.
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Finally, the algorithm will return to the Evaluation step unless the stop criteria are
satisfied. The typical stop criterion is achieving the maximum number of generations. When
the stop criteria of GA are satisficd, the best individual in the last gencration of population is
selected. The solution encoded in the selected individual is the best solution to the problem

searched by the GA.

Basically, the Genetic Algorithm provides a stochastic search method in the complex
state space of possible solutions. Although it is principally a blind scarch method, the
Selection step offers the possibility of leading the direction of the scarch to the ideal area of
the solution space, where the optimal solutions can be found with higher probability. In the
meantime, the Variation step suggests the possibility of jumping out of local minima. Due to
the above-mentioned propertics, the GA was recommended as a primary method in complex

scarch tasks such as the learning of ANN,
1.2.3 Fuzzy Sets & Systems

Normally, the elements discussed by a classic sct cither belong to the set or not; there is a
“clear” boundary between “belong”™ and “not belong”. A good cxample of this kind of classic
set is “All the students in the class aged over 20”. Obviously, every student in the class cither
belongs to the set or not. More formally, set A, defined in domain of X, is described by its

characteristic function A(x): X — {0,1}:

l,xed

w{o i

in which A(x) represents the belongingness of element x to the set 4.

Although the sect theory is currently the foundation of modern mathematics, it is
insufficient for the real problems involving imprecision, uncertainty, and ambiguity. For

example, when people are talking about the set, “All the old students in the class”, cach
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student in the class will no longer cither “belong” or “not belong” to the set. There is a
“fuzzy” boundary between “belong” and “not belong”. To mathematically tackle this type of
sct, Dr. Zadeh defined the concept of fuzzy set in 1965 [24]. For a fuzzy sct A, it is also fully
determined by the characteristic function. However, the characteristic function is not simply
a function taking the value of 0 or I; it is a function taking the value in the interval [0,1].
Formally, the fuzzy set A, is defined by the characteristic function, membership function
A(x): X — {0,1}, in which the A(x) still represents the belongingness of x to the set 4. For
instance, we can define the fuzzy set A="All the old students in the class” by the

membership function A(x): X — {0,1};

0, 0<x<18
A(x)=4(x-18)/10, 18 < x <28
I x>28

The main benefit offered by fuzzy set theory is that it provides rescarchers with an
outstanding tool to deal with the imprecision, uncertainty, and ambiguity in the real world,
especially the linguistic descriptions given by human beings [25-26]. Linguistic terms such
as “Warm Water”, “High Speed”, and “Low Tempecrature” can now be tackled by
well-defined fuzzy scts. Furthermore, rescarchers have utilized linguistic terms in expert
systems and built a new system modeling technique, Fuzzy System [27-28], in which the
system is fully defined by a group of fuzzy IF-THEN rules. For example, Figure 1.4 lists a
simple fuzzy rule set for a construction system, in which the worker’s skill level and the

supervisor’s supervision level completely determine the construction productivity.

IF Skill Level is High and Supervision is Good Then Productivity is High
IF Skill Level is High and Supervision is Bad Then Productivity is Average
IF Skill Level is Low and Supervision is Good Then Productivity is Average

IF Skill Level is Low and Supervision is Bad Then Productivity is Low
Figurc 1.4 - A simplc fuzzy rule set of a fuzzy system

Given the membership functions defining the fuzzy sets or linguistic terms, the group

8
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of IF-THEN rules in the fuzzy rule sct fully provide a knowledge-based representation of the
kinput-output mapping of the system. However, building acceptable membership functions
for linguistic terms is not a straightforward task. Chapter 4 will offer a modified fuzzy

clustering based algorithm for generating membership functions from historical data.
1.2.4 Hybrid Systems

As mentioned in previous subscctions, there are a number of specific characteristics
possesscd by Neural Networks, Genetic Algorithms, and Fuzzy Sets & Systems. To
maximize their advantages and minimize their disadvantages, hybrid systems that apply two
or more techniques in one system have been proposed in the last few decades and integrated
as an important part of CI techniques. Table 1.1 lists the pros and cons of the simple CI

techniques and their major hybrids.
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Techniques

Simple Descriptions

Advantages

Disadvantages

Neural Networks

(NN)

Linked and layered
ncurons that map inputs
to outputs

Learning capability
No nced to be
concerned about the
systems internal state

- Black-box

- Not casy to
determine the NN’s
structure

- May suffer from
over-fitting

Fuzzy Systems (FS)

Incorporate expert
knowledge in fuzzy
If-Then rules

Easy to express
expert knowledge
Fuzzy approximate
reasoning of FS is a
mature technique

- Less learning
capability

- Hard to cope with
complex systems
where cxpert
knowledge is
scarce,

Genetic Algorithms
GA)

A scarch algorithm
finding the best solution
in a search space

Not casy to be
trapped in local best
solution

Easily parallelized

- Somewhat slow

- Tricky to encode a
solution into a
individual in GA

- Some parameters in
GA are not easy to
determine

Genetic Neural
Networks (GNN)
[29-31]

Neural Networks
learned via GA

Provide greater
learning power

Avoid falling into
local minima inherent
in traditional learning
mecthods

- Similar to NN

Neuro-fuzzy
Systems(NFS)
[32-33]

Represent fuzzy
systems with NN

Iucorporate learning
capability into FS
Maintain the
advantages of fuzzy
systems

- Difficult to cope
with the complex
systems where
expert knowledge is
scarce.

Fuzzy Neural
Networks
(FNN)[34-35]

Neural Networks with
Specific Fuzzy Neuron

Provide NN some
transparency

- Simple FNN's
approximation
capability is limited

Genetic FNN or
Genetic NFS
[36-39]

Applying GA in FNN
and NFS’ learning
algorithms

Provide greater
learning power

Avoid falling into
local minima inherent
in traditional learning
methods

- Similar to FNN and
NFS

Fuzzy C-means
Cluster {40-41]

Clustering technique,
All data has
membership values to
all the clusters

Able to map clusters
to Fuzzy membership
function

- Determining the
number of clusters
and the fuzzfication
factor is not trivial

Table 1.1 - The pros and cons of the computational techniqucs and their hybrids
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1.3 Inspirational Previous Studies

In Civil Engincering, especially in Construction Engineering and Management, interest in
the application of biologically and linguistically motivated computing techniques has grown
very quickly in the last few decades. This is a predictable result of characteristics of the
typical tasks in Construction Engincering and Management, which are strongly interwoven
with human factors. The specific examples of these characteristics include the ability to
learn and generalize, the ability to scarch and optimize eftectively and the ability to cope
with uncertainty and ambiguity. Since CI techniques inherently have the capabilitics
mentioned above, they are extensively applied in the field of Construction Engincering and

Management.

Subsection 1.3.1 will first review some typical applications of CI techniques in
Construction Engineering and Management. Then, the following two subsections will
provide an overview of two inspirational techniques of construction performance modeling.

The lessons learned from the two techniques are discussed.

1.3.1 CI in Construction Engineering and Management

First, becausc of their capability to learn and generalize, CI techniques such as Neural
Networks, Neural-Fuzzy/Fuzzy-Neural Systems and their variations with evolutionary
learning, were broadly applicd in the analysis, modeling and prediction problems of
construction projects. For example, Sawhney and Mund [42] utilized the Adaptive
Probabilistic Neural Network to help managers select an appropriate crane for construction
operations. Emsley, ct al, [43] applicd several Neural Network models in the total
construction cost prediction problem. Hegazy and Ayed [44] tried back-propagation, simplex
optimization and Genetic Algorithm to develop an acceptable Neural Network, which was
used “to effectively manage construction cost data and develop a parametric cost-estimating

model for highway projects”. Adeli and Karim [45] developed a necural dynamic model for
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the problem of cfficiently scheduling construction projects. Cheng and Ko [46] made an
cffort to apply an object-oriented fuzzy ncural network to several construction problems
including the cost prediction of plant maintenance and the duration estimation of slurry
walls. The rescarch most related to the objective of this thesis is Sonmez and Rowings’s
research [47] on Ncural Network based modeling of a typical construction performance
indicator — construction labor productivity. Subsection 1.3.1 provides further details about
this research. Finally, Boussabaine’s review [48] on the applications of artificial neural

networks in construction management in 1996, although a little outdated, is still of interest.

Secondly, because fuzzy sets and systems and their variations are capable of embedding
expert knowledge, and dealing with uncertainty and ambiguity in human-factor intensive
procedures, they arc naturally applied in construction engineering and management. Ayyub
[49] has provided a systems framework for fuzzy sets in Civil Engineering, This work is also
a good reference review on fuzzy set applications in Civil Engineering. More particularly,
Tah and Carr [50] proposcd a fuzzy logic based risk assessment method for construction
projects. Lam, et al, {S1] applied fuzzy set theory in dealing with qualitative or linguistic
variables when solving multiple-objective decision-making problems in construction
financial management. Chao and Skibniewski [52] introduced a fuzzy logic based evaluation
method for sclection in alternative construction technologies. Robinson and Zhou's research
[53] on a fuzzy expert system for design performance prediction and evaluation is a
noteworthy fuzzy system based model of a specific construction performance — design

performance. It will be reviewed further, and the lessons learned from it will be discussed in

subsection 1.3.2.

Finally, the Genetic Algorithm as an optimization and search method is logically
combined with necural networks and fuzzy systems to synthesize more powerful ClI
techniques for dealing with construction problems. However, the advantages of global
searching and flexibility of problem representation also make GA itself a great choice for
some combinational optimization problems in construction, as in the following examples. To

efficiently manage space for construction facilities on high-rise buildings, Jang, et al, [54]
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cstablished GA modeling assumptions to properly allocate space for facilitics. Zheng, ct al,
[57] proposed a GA cnabled technique for the problem of optimization of multi-resource
leveling. Natsuaki, ct al, [56] recommended a GA based approach to determine the laying
sequences of construction components in bridge building; for this particular problen, an
improved GA variation operator is introduced. Further applications of GA in construction

engincering and management can be found in [58-60].

1.3.2 Neural Networks based Construction Labor Productivity

Modeling

In 1998, Rifat Somez and J. E. Rowings provided a methodology for construction labor
productivity modcling, which is a combination of the rcgression analysis and ncural
networks. First, the paper reviewed some past rescarch that analyzed the influence of one or
two factors on a specific construction performance index - labor productivity. Because of
the small number of influence factors, the relationship between the impacting factors and
productivity is somewhat transparent. For example, in a “factor model” developed by

[61-62], the impact of crew size on productivity is clearly depicted in a curve like the one in

Figure 1.5.
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Figure 1.5 - The impact of crew size on productivity

Unfortunately, as the number of factors considered in the model increases, the

transparency of thc model quickly decreases. To model the complex system with a large

13
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number of influence factors, Somez and Rowings introduced a methodology consisting of
fours stages. In the first stage, some basic statistics of the original data arc calculated; based
on these, the user sclects the factors that might affect labor productivity. In the second stage,
a regression model, or more specifically, a lincar model is built based on the factors
identified in the last stage. The regression model helps the user to determine the most
significant factors for labor productivity. In the third stage, a neural nctwork is trained, based
on the selected significant factors. Finally, in the fourth stage, the neural network is validated
to determine if additional factors should be added to the regression model, and in the long

run, to decide if the neural network should include more significant factors to consider.

It is clear that the kernel idea of Somez and Rowings® paper is building a parsimony
mode! for labor productivity because “productivity models including few significant factors
predict better than models based on many factors without considering significance”.
However, although there arc only a few most important factors are considered in the neural
network model, the neural network applied in the paper does not offer any transparency to
the user in order to analyze each factor’s impact on labor productivity. For instance, the
sequence of the factors’ importance on the labor productivity is not available in the proposed
model. Such a sequence is helpful when a problem occurs and the user must decide which
factors should be carcfully analyzed. This need inspired the application of a different neural
network, which offers importance indices of factors’ impact on construction performance
(Chapter 4). The importance indices provide the construction performance model with some

amount of transparency.

1.3.3 Fuzzy System based Design Performance Modeling

For design performance prediction and cvaluation, Robinson and Zhou introduced a
multilayered fuzzy system based methodology. The fuzzy sct theory is applied because of
the intrinsic subjectivity and uncertainty in factors influencing specific construction

performance — design performance.
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The structure of proposed the multilayered fuzzy system is illustrated in Figure 1.6, The
first two layers involve input factors and the last tow layers concentrate on output factors or
design performances. As depicted in Figure 1.6, cach input factor in the sccond layer is
determined by scveral sub-factors in the first layer; and the sub-factors in the output layers is
determined by the factors in the second layer. Finally, the sub-factors in the output layers
establish the output factors or design performance values in the fourth layer. To decide the
factors or sub-factors in the last three layers of the model, sub-models should be built
between the resulting factors and their influence factors. For example, there is a sub-model
between sub-factor 1.1, 1.2, and the Input Factor | in the input factors layers. Robinson and
Zhou suggested a method of generating fuzzy IF-THEN rules for those sub-models; in other
words, they have proposed an approach to build those sub-models as fuzzy systems. In order
to apply fuzzy IF-THEN rules, a linguistic description of cach factor or sub-factor is
required naturally. Fayek and Sun introduced a new approach to define membership

functions, which are used to describe the linguistic terms,

Input
Factor |

Input
Factor 2

Input-factor layers Output-factor layers

Figure 1.6 - The structure of the fuzzy model proposed by Fayek and Sun

The lesson learned from this model of design performance is twofold. On the onc hand,

the introduction of fuzzy sets or linguistic descriptions dramatically boosts our capability to
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cope with the subjectivity and uncertainty inherent in construction problems. Therefore, the
framework uscd in this thesis also applicd an information granulation step, which transforms
numeric inputs to the membership values of their linguistic description, On the other hand,
the fuzzy system applied in construction performance modeling still does not offer any
information on the importance indices of influence factors. In addition, as mentioned in the
conclusion of Robinson and Zhou’s paper, “the model does not achieve a high success rate
for numerical prediction”. This inspired this choice in this thesis of using a ncural network

continually as the basic modeling technique.
1.4 Conclusion

This chapter outlines the objective of this thesis — building transparent construction
performance models that assist managers to understand cause-effect rclationships between a
construction performance indicator and its influence factors. In order to achieve this
objective, the techniques of computational intelligence are selected as the main modeling

methods.

After an overview of major CI techniques and their advantages and disadvantages, the
application of CI techniques in Construction Enginecring and Management is reviewed.
Further effort is devoted to discussing the previous research on neural networks and fuzzy
systems based construction performance modeling. Two lessons are learned from this
research. This first lesson is that neural networks offering importance indices of input
variables should be introduced because such a model offers greater transparency to
managers. The second lesson is that transparency of models can be further enhanced through
information granulation that transforms numeric variables into memberships of their
linguistic descriptions. Chapters 3 and 4 of this thesis claborate on our contributions in

accordance with these two lessons.
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Chapter 2
The Framework of Model-based

Construction Performance Diagnosis

Managers of construction projects encounter a typical construction performance diagnosis
problem when the actual performance is considerably different from the anticipated one.
They are then required to spend considerable time on studying all the possible causes of the
discrepancy, in order to avoid them in the future. Obviously, in the process of diagnosis,
computer tools, which automatically identify the possible reasons for the performance
prablem, and quantify their impacts, could be of great assistance to the managers. This
chapter introduces an available framework of such a computer tool, which implements
model based construction performance analysis. A high-quality construction performance
model is required for the success of this framework. In Section 2.1 the overall picture of the
diagnosis framework is described. The specific requirements or desired featurcs of a

transparent construction performance model in the framework of diagnosis are explained in

Section 2.2
2.1 The Framework of Diagnosis

Dissanayake proposed this framework of construction performance model based diagnosis in

[63]. The four major modules and their relationships in the framework are illustrated in

Figure 2.1,

The first module is the cause-effect relationships identification module. In this module,
managers first select an activity on which they wish to conduct the diagnosis; then they
provide all the possible factors that may affect the construction performance considered in
this activity. In other words, this module builds the original cause-cffect model for a specific
activity. When the managers consider an identical performance problem in the same activity

of construction on another occasion, this module is able to list all the possible causes in the
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original cause-cffect model.

The sccond module in the diagnosis framework is a database program. This program
stores and manages all the historical data according to the causal relationships identified in
previous module. In addition, the expert knowledge about the membership functions of

linguistic terms depicting the possibic factors is also saved in this database.

Cause-effect

Database relationships
identification
l
Variance - - - - T |
betwen ! |
laned .
L | Information | | . Mode/ing:
| . Modeling
actual Granulation nmodule |
value of : |
r“%ozrl,.' (e gy fpp J
importance index of factor
v ! 7
Diagnosis
Performance factor i's impact on the performance problem
S, =Au, *o,

Figure 2.1 - The Framework of Diagnosis

The third module is the kernel of the framework — the modeling module; this module
includes two steps. In the first step, the historical data is granulated by changing the original
value to several membership values of its linguistic terms, For example, for the factor
“Temperature”, this step may change the value of temperature to values of 3 linguistic terms:
“Low Temperature”, “Normal Temperaturc”, and “High Temperature”. At this information
granulation step, the definition of membership functions is not a trivial, Although asking the
experts or managers to define the membership function is not impossible, the automatic
method is more viable. Chapter 4 will introducc a clustering based algorithm that generates

membership functions from historical data.
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The sccond step of the modeling module is to build a model between the inputs ~ the
linguistic terms of influence factors, and the output — the construction performance
considered in a specific activity. The model built in this step will not only provide a accurate
input-output mapping of construction performance, it will also offer indicators about the
importance of cach input on the output, namely the quantitative importance indices. In
Chapter 3, a General Regression Neural Network based model holding such characteristics
will be proposed. In Chapter 4, the proposed neural network will be assessed on granulated

data.

The final module in the framework of diagnosis is the diagnosis module. In this module,
the planned value of construction performance (output) is compared with the actual value, If
there is a considerable discrepancy between the two values, managers may wish to
determine the chief reasons for the discrepancy. So initially the diagnosis module computes
the variance between the planned values of influence factors and their actual values. Assume
the planned values are wu;, and the actual values are v; (i=1,2,...,n, n is the number of
influence factors), the variances du; =| u; -v;| . Then the variances are multiplied with the
importance indices of performance factors - g, which are gencrated from the modeling
module (o;is the importance of the ™ influence factor). The resulting values Si=Au;*o; arc
the indicators of the performance factors’ influence in the discovered performance problem -
namely the discrepancy between the actual and planned values of the performance indicator

considered in current construction project.
2.2 The Desired Features of a Transparent Model

In a specific activity in construction, given the considered performance indicator is p, and
there are n influence factors xy, xa2, ..., &, related to the performance, the framework
described in last section requires the model of the mapping between inputs xy, Xa, ..., X, and

output p to be accurate and transparent.

The accuracy of the construction performance model is a basic requirement. Whenever
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managers apply the model in the diagnostic procedure, the first requirement is the model
should accurately capture the nature of the system; otherwise it could not be reliably applicd
to the prediction, analysis, or control of the system. This is the rcason the researchers in
recent decades have recommended so many different techniques to model construction
performance. From the lincar regression model to the neural network model, one of the key

goals in construction performance modeling is to achieve better accuracy.

The desired features related to a transparency model are represented in the two steps of
the modeling module of the diagnosis framework. First, the transformation from an input
variable to its linguistic description in the information granulation step increases the
transparency of the performance model. For instance, compared with a model considering
only a variable such “Temperature™ as an influence factor of construction performance,
considering the linguistic terms of “Temperature”, such as “Low Temperature”, “Normal
Temperature”, and “High Temperature” as influence factors is more natural and useful to
managers. In particular, for a variable such as “Skill Level”, where quantitative values may
not be accurate, managers are inclined to utilize linguistic descriptions, such as “High Skill
Level” or “Low Skill Level”, Additionally, with linguistic terms as inputs to the model, we
can draw clearer conclusions, such as “High Temperature is very important to construction
performancce”, instead of “Temperature is very important to construction”™, In conclusion, the
transformation from a variable to its linguistic terms, as a typical information granulation
procedure, helps managers to morc ecasily deal with the imprecision, uncertainty and
ambiguity involved in construction. Therefore, the first desired feature of a transparent

construction performance model is the inclusion of information granulation.

The second step in the modeling module of the proposed framework represents another
desired featurc for the transparent model — defining importance index of cach input. This
means that the model of construction performance cannot be a naive black box that simply
maps the inputs to the outputs. The mode! shiould offer some transparency, or at least, should
give some hints on the measurement of cach input’s impact on the output. Therefore, the

models built in modeling module should provide more helpful conclusions, such as “High
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Skill Level holds the importance of 10 to construction performance and Normal Temperature
holds the importance of 2 to construction performance”. Such quantitatively-based
conclusions are extremely valuable when managers attempt to analyze a construction
performance problem. Therefore, the second desired feature of a transparency mode! for the
construction performance is that the model should offer sonie importance indices to indicate

the inputs’ influences on the output of the model.
2.3 Conclusion

This chapter introduced the framework of construction performance diagnosis proposed by
Dissanayake. As a model based diagnosis framework, two specific requirements or desired
features for the transparent construction performance model - information granulation and

importance index - are elaborated.

The following two chapters of the thesis are investigations on the two desired features
of the construction performance model applied in the diagnosis framework. Chapter 3
introduces the General Regression Neural Network learned by genctic algorithms as the
basic modeling techniques. Compared with traditional techniques, this model not only has a
more accurate prediction rate, it fulfills the requirement of providing the importance index of
each input variable. Chapter 4 proposes a new fuzzy C-means clustering based membership
function generation method. This method helps managers to automatically generate
membership functions of linguistic terms of potential impacting factors. With the
information granules formed by membership functions, the transparency of the construction

performance model is enhanced.
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Chapter 3
The Model with Importance Indices

As shown in Chapter 2, in addition to the necessity for accurate approximation capability,
there are two desired features for a useful model of construction performance applied in the
framework of construction performance diagnosis. The first desired feature is that the model
should offer some importance indices marking the influence of each input factor on the
output of model, i.e., construction performance. The second is the necessity for information
granulation in order to deal with the linguistic terms used by managers to describe their

knowledge about the influence factors, and resulting construction performance.

This chapter focuses on the models that offer the first feature. The nccessity for
information granulation and the proposed fuzzy information granulation method is discussed
in Chapter 4. In this chapter, Section 3.1 suggests two computational intelligent modeling
techniques, which provide importance indices of influence factors on the resulting
construction performance: a fuzzy neural network - OR/AND neuron, and a gencral neural
network - General Regression Neural Network (GRNN). The OR/AND neuron is learned
though a gradient-based algorithm, while the proposed GRNN updates separate smoothing

~ parameters for cach dimension through a real-coded genetic algorithm. Section 3.2 compares
the two proposed modeling techniques. Although both OR/AND neuron and GRNN provide
indices of importance, experiments on real data collected in construction sites show that
GRNN leads to higher accuracy in approximating of the mapping between inputs and output.
The genetic learning based GRNN is therefore sclected as our final modeling technique to

capture the mapping between influence factors and resulting construction performance.
3.1 OR/AND Neuron and GRNN

Among all the models that present importance indices of inputs’ influence on output, the

most widely applied ones are the lincar regression models, OR/AND necuron and kernel
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based models holding adaptive parameters for ecach dimension of inputs. Because of high
nonlinearity in real construction problems, linear analysis is not suitable for our task. This
section discusses two other competitive models - the OR/AND neuron and the kernel based

model, General Regression Neural Network (GRNN),

3.1.1 OR/AND Neuron

The OR/AND neuron [64] is a three layered fuzzy neural network (FNN) consisting of two
basic logic-based ncurons named AND neuron and OR ncuron. Both AND and OR neurons
are multivariable nonlinear transformations between unit hypercubes. As illustrated in Fig
3.1, the OR/AND neuron accepts *n” inputs, transforms respective inputs AND-wise (AND
neuron) and OR-wisec (OR neuron) in two separatc computing channels, and merges the

results through an OR neuron.

Figure 3.1 - The structure of OR/AND neuron
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‘The AND neuron, as illustrated in Fig 3.2, first individually combines the inputs X=[x,,
X2, ...y Xy ] and connections wi=[wy;, wy2, ..., wy,] through s-norms, and then aggregates

these results AND-wise by applying r-norms.

z; = AND(X;w,),

Figure 3.2 - The structure of AND neuron
The OR neuron is dual to the structure of AND neuron, namely
2= OR(X}w),

ie.,

‘ L
Z, = ;Sl(x,thl.),

wed

in which, the X=[x, x5, ..., x, } are inputs and w,=[w;;, w»;, ..., wa,] are connections, c.f.

Figure 3.3.
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W.
Figure 3.3 - The structure of OR neuron

As depicted in Figure 3.1, the OR/AND ncuron combines the output of an AND neuron
and the output of an OR neuron via an OR neuron with the connections v={v,, v,] in the final

output layer. Therefore, the mapping described by OR/AND neuron is,

y = 0OR/AND(X;w,v), in which w=[w;, w»]
Rewriting the previous expression in coordinate-wise manner, we obtain:

y=(ztv)s(z,tv,)

In extreme cases, if vi=1 and v,=0, the OR/AND neuron is the same as the pure AND

neuron. And if vj=0 and v,=1, the OR/AND neuron functions as a pure OR neuron.

The s-norms and ¢-norms applied in the AND and OR neurons are triangular norms
representing the logic operations on fuzzy sets. For example, if the above r and s-norms are

realized as product and probabilistic-sum operators governed by expressions,

atb=ab ; a be[0,1];

ash=1-(-a)l-b)=a+b-ab;a,be[0,1],
the input-output mapping represented by OR/AND necuron will be;

Y=ZV 2V, = Z) V2V,
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in which,
Ll "
4= H(xi + W —X,W”) y 23 = l- H(I '“.\'IWZI) .
=l i=l

If the above ¢ and s norms are realized as min and max operators,
atb = min(a,b); a, be[0,1]

asb =max(a,b); a, be[0,1],

the input-output mapping of OR/AND neuron will be:

y =max(min(z,,v,), min(z,,v,)),

where

n n
z, = ni1=iln(max(x,,w,,.)), z, = nljflx(min(x,,wz,.)).

An important property of OR/AND neuron is the role of connections. As concluded in
[2], “Because of the boundary conditions of triangular norms, the higher values for
connections in OR necuron emphasize that the corresponding inputs exert a stronger
influence on the neuron’s output.” On the other hand, the higher values of connections in
AND neuron emphasize that the corresponding inputs cxert a lesser influence on the
neuron’s output. In particular, if the weight of AND neuron w; is close to 1, the influence of
xis almost negligible, and if the weight wa; of OR neuron is close to 0, the influence of x; is
almost negligible as well. This property in some extent provides OR/AND the capability
stated as being required in the beginning of this chapter, that is, the conncctions in the
AND/OR neuron are importance indices representing the influence of inputs on the output. A

detailed example of such importance indices is put forward in the numeric experiment

below,
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Despite the well defined semantic of OR/AND ncuron, a scrious problem arises from
the neuron’s structure. That is, the OR/AND only realizes an in mapping between the unit
hypercubes. Or, in other words, the output of OR/AND neuron cannot cover all the values in
the interval of [0, 1]. Specifically, the values of y =(z,tv))s(z,tv,) are included only in the

interval of [0, v;sv,]. This is the natural result of boundary conditions of 7 and s-norms:

Zity, Sty =y, z,ty, <ty, = v,

therefore,

y=(ztv)s(z,tv,) <ysv, .

To alleviate the abovementioned limitation and enhance the computational capability of
OR/AND neuron, a nonlinear sigmoid element is added to the output layer of OR/AND

neuron [64]. The augmented OR/AND neuron is represented in Figure 3.4.

Figure 3.4 - The augmented OR/AND neuron with a nonlinear processing element
The sigmoid element placed in the output layer is a monotonic transformation
¥:[0,1]—[0,1],

1
1 +exp(=(y —m)o) ’

0=\¥(y)=
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in which the m and o arc two tunable parameters. By adjusting these two parameters, the

OR/AND ncuron’s output in the interval of [0, v;sv,] can be extended to interval [0, 1].

3.1.1.1 Learning/Optimization with Gradicnt Descending

Assume there are N datasets available to OR/AND ncuron’s learning: [x,(»),...,x,{r),0,],
r=1, ..., N, in which o, is target and 6, is OR/AND ncuron’s output with respect to inputs
[x (r),....x,(r)] . The learning algorithm of the proposed augmented OR/AND ncuron adjusts
its connections w, v through gradient descending [65] to minimize the performance index Q,

which is the difference between the expected targets and the neuron’s real outputs,

§

0=Y"(0,-6)

More specifically, the learning algorithm updates OR/AND neuron’s conncctions

wWi=[Wi, Wiz, oo Wil, Wa=[wag, woa, oo, wy,] and v=[v;, vo] through gradient descending as:

Wi =W~ —la'ag, Wy =ny, = —]a—ag—
2 oy, Y2 0w,
y=y- —a.a_Q’ Vo =y, — _l_a_a_Q’
o T T 2 Oy
m=n- —]aZ—Q, o=o— _la_gg,
" 2 6o

where « [0, 1] is the learning rate. The initial weights values can be set by experts or

managers, or be randomly generated.

3.1.1.2 Numerical Experiment

The example is a multi-objective decision-making problem provided by [64]. It determines a
global preference of several methods to make the same product. Five different methods are

evaluated with respect to four criteria, namely, reliability, portability, price, and reusability.
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The final datascts we obtain are listed in Table 3.1:

Inputs Output

1000 024 03 057 0.70
053 1.00 009 013 0.50
030 020 1.00 034 1.00
0.5 046 055 019 020

0.13 055 0.17 100 036

Table 3.1 - Datasets obtained in a decision-making problem

The datasets are sclected as the training data for an augmented OR/AND neuron.
Because of the small number of the training data or the simplicity of the approximation
problem, choosing a small learning rate o = 0.01 and a small number of iteration as 300 is
enough to get a acceptable approximation rate. The resulting values of performance index Q
in the successive epochs are visualized in Figure 3.5. The connections in the OR/AND
neuron, say v, wj, w; and the parameters of the sigmoid function (m,o ) are randomly

initialized.

performance index
o o o o o o
[} o
8 ® 8 8 2 8

o
o
~

°
2

L=

0 50 100 150 200 250 300
leaming epoch

Figure 3.5 - The value of performance index Q in successive learning epochs

The m-o space in Figure 3.6 depicts the changing of parameters of the sigmoid
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element in the output layer of the augmented OR/AND neuron. The resulting 7=0.81 and
o =8.62.

1.2
L1
1

0.9

0.8
g Initial Final configuration
2 0.7 configuration

0.6

0.5

0.4

0.3

0.2

2 0 2 4 6 8 10

m
Figure 3.6 - m- o space during the learning of OR/AND neuron
Finally, the resulting connections of the OR neuron in the output layer are
v=[0 1],
and the resulting connections of AND and OR neuron in the hidden layer are:
w;=[0.88 0.36 0.31 0.10] (In AND neuron)
w>=[0.79 0.57 1 0.47] (In OR ncuron)

Figure 3.7 demonstrates that the resulting OR/AND neuron approximates the training

data very well.
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Figure 3.7 - Targets vs. OR/AND neuron’s outputs

Because of v=[0 1] and the OR ncuron’s property, the OR neuron in the hidden layer
has much more evident impact on the output. In fact, because the v,=1, the OR/AND neuron
becomes a pure OR neural. Then, based on the hidden OR neuron’s connections w;=[0.79
0.57 1 0.47], different criteria or inputs show distinct impact on the output. More specifically,
the third criterion and the first criterion demonstrate more impact on the output of the hidden
OR neuron and in the long run, exert more influence on the OR/AND neuron’s output. It is
worth mentioning that the conclusion on the importance of the third and first criterion here
tallies with the one inferred in [64], although the connections that finally result arc clearly

different.

3.1.2 GRNN

General Regression Neural Network (GRNN) comes from the statistical regression model

named kernel regression, It was first introduced as a new topology of neural network in [66].
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3.1.2.1 Statistical Foundation of GRNN

Consider the nonlincar regression model in which y is the dependent scalar variable or

ny

output on the independent vector or inputs X=[x', x*....x™]. We can formulate the relation

between inputs and output as
y=AX)+e,
where e is the noise with zero mean value given any realization of X,

Assume the joint continuous probability density function of the random vector variable
[X, y]is fxy(X, y); the conditional probability density function of y on the variable X is then

given by

BYIX) = £, (X, YV [ fy, (X, y) )

In statistical learning theory, it is proved that f{X) is equal to the. conditiorial mean of

output y given the inputs X, that is,

SX)=EyX) = [ye(yX)dy @

Combining the Equation (1) and (2), the input and output mapping, or the regression

model, can be formulated as

[yE, (X,
fX)= Z——— 3)

+w

[fy(X.y)

Till now, the joint density function fxy(X, y) is assumed be to be known. However, we
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have only a sample of observations of X and y at most of times. With the availablc

observations as training samples, the fx,(X, y) can be estimated through Parzen’s method

[67].

Given N observations of independent random variable X are X), X;, . Xy, Parzen’s

density estimate of the probability density function of X is

ZK(D(X X)

\11

(X)) =

in which the function X is the kernel function, and 4 is the smoothing factor. D(X - X;)
indicates the distance between X and X;. The constant Cy is the normalizing constant to

ensure that the density function integrates to unity.

Similarly, the joint density function fxy(X, y) can be estimated by the Parzen estimator

as

2 D(X-X D(y-v.
fy(X, y)=—— 3 K (h U (yh ¥:)

, 4
nCC, = ) )

in which Cx and C, are the normalizing constants to ensure that the density function
integrates to unity, and [X| yi] (i=1,2, ..., ») arc the n observations of random variable [X y].

Replacing (4) into (3), the mapping between the inputs and output can be estimated as

D(X X))K(D(y Y.))

2X) = - nCC e h
D(X X) - Dly-y))
'[mnC G, ;K( K h )

D(x X)) D(y y)
nC\IZ] ( f yK (2200

D(X X)
nC\ ;K(

D(y Yi)
h

& ke

C}‘
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ZK(D(X Xy

Applying the most widely used Gaussian function below as the kernel function X in

Equation (5),

D(X-Xi)) - xp(—D(x-xi)

h h )

K(
the final estimator of AX) is:

icxp( D(Y. X))

SX)= ”'z'cx( D(x X, ©

In conclusion, the estimate of output y = {X) based on input X can be explained as the

weighted average of all the observations of y, i.c., y1, ¥, ..., Yo

3.1.2.2 Architecture of GRNN

We can reformulate the mapping represented in Equation (6) into a neural network shown in
Figure 3.8. The proposed neural network topology is referred to as General Regression

Neural Network (GRNN).

There arc four layers in the architecture of GRNN. The first layer is the inputs layer
holding m neurons (it is the same as the number of inputs for the system). The input layer
simply forwards the inputs to the radial basis layer or kernel layer. The kernel layer
possesses the same number of neurons as the number of training examples. The ith neuron in
the kernel layer calculates the kernel functionexp(-D(X-X;)/ /), based on the training
example X; and the inputs from the input layer X=[x', x°, ..., x"]. The third layer of GRNN
is summation layer that contains only two neurons. The first summation ncuron connects all
the neurons in the kernel layer with the i connection weighting y;. Therefore, it outputs the
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value of Zcxp(-—D(X- X,)/h)y, . The seccond summation ncuron connects all the neurons
i=]
in the kernel layer with all connections weighting 1. Therefore, the second neuron outputs
the valuc of Zexp(—D(X -X,)/ ). Finally, the output layer keeps one ncuron that divides
i=]

the first summation neuron’s output by the second summation neuron’s output. In other

words, the output layer computes the output through Equation (6).

Output Layer

Summation
Layer

Kernel Layer

Input Layer

Figure 3.8 - The architecture of GRNN

3.1.2.3 One Pass Learning of GRNN

It is noticeable that therc are no adjustable connections in the proposed architecture of
GRNN. Given # training datasets, a GRNN holding » hidden ncurons in the kernel layer is

learned in one pass. The only tunable parameter of GRNN is the smoothing factor # in the

kernel function.

As concluded in [66], the smaller the smoothing factor A, the better the estimated
function fX) fits the training data. In extreme cascs, as the smoothing factor goes to 0, the

estimated function will fully fit the training data. Take the difference between the output of
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training data and the GRNN'’s output, based on the corresponding inputs in training data as
the performance index,

0= 2" (v~ SX)), ([Xiyi] (i=1.2, ..., n) arc the » training data )
The previous conclusion means that the performance index @ will converge to 0 as the
smoothing factor goes to 0. However, although the small smoothing factor lcads to a small Q
or a good approximation of training data, the generalization capability of GRNN may be
deteriorated, i.c., the over-fitting problem may cmerge. Thercfore, to balance the

approximation rate and generalization capability, the value of smoething factor 4 should be

carefully selected.

If we take the GRNNs with different smoothing factors as different models for the same
system, the selection of best smoothing factor is changed to a model selection problem. This
problem can be solved by traditional model selection methods [68], such as hold-out testing.
In particular, the simplest hold-out testing method is dividing the original training data into
two datasets: training data and validation data. The GRNN is trained in one pass based on
the training data, and thc optimal smoothing factor sclected is the onc that makes the
resulting GRNN possess the best performance index O on the validation data. [66] has
proposed a more general hold-out testing: a leave-one-out cross validation method to
estimate the best smoothing factor. In this method, if the smoothing factor is # and the n
training datasets arc [X; y;] (i=1,2, ..., #n), the performance index Q(h) based on

leave-one-out cross validation is defined as

't

Q)= Z:.:,(Yi'fi(xi)):v (7

In Equation (7), f; is the mapping represented by the GRNN built through smoothing factor /
and the training datasets, leaving the i dataset out, The best smoothing factor / is then

selected as the one that minimizes the performance index Q(h).
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3.1.2.4 Numeric Experiment

To demonstrate the approximation capability of GRNN, the previously discussed one-pass

learning and leave-onc-out cross validation is applied to the benchmark problem of M-G

time series prediction [32].

The M-G time series is a chaotic time series generated by the Mackey-Glass (MG)
time-delay differential cquation as below,

_02x(1-1)

—I:T;Ezr:;s-OJX(O

X(1)

Assuming x(0) = 1.2, r=17 and x(s) = 0 as 1<0, we obtain the time series values at
integer points through the fourth-order Runge-Kutta method. The resulting time series is

plotted in Figure 3.9:

1.4

1.2

value

0.8 | -
0.4

0.2 " L : . - . : L
0 200 400 600 800 1000 1200
i time

Figure 3.9 - M-G time serics

In the M-G time scries prediction problem, we hope to derive x(++6) from x(#-18),
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x(t-12), x(1-6) and x(), i.c., we assume
x(++6)=fx(1-18), x(1-12), x(1-6), x(1)) (8)

Taking inputs X=[x(s-18), x(1-12), x(s-6), x(1)] and output y=x(r+6), we generatc 100 datasets
based on 7=118 to 218 as the training datascts. The following 100 datasets based on =219 to

318 are gencrated as the testing data.

Using the Euclidian distance as the distance function D in Equation (6), we apply the
GRNN on the training datasets and select the best smoothing factor /1 in the range of [0.01,
0.1] through the hold-one-out cross validation. Figure 3.10 demonstrates the best smoothing

factor in range [0.01, 0.1] is 0.03:

0.08% « ; {
0.072 ‘ ‘ ;
0.06 -

0.053:

Qm)

0.04.
0.03.

0.02: ‘

001 002 003 004 005 006 007 008 009 0.1 011
h

Figure 3.10 - Performance index versus the smoothing factor 4
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Figure 3.12 - The approximation error and testing error between real outputs and GRNN'’s
outputs

Based on this smoothing factor, the difference between the resulting GRNN’s outputs
and the training data outputs is illustrated in Figure 3.11 (a). The error between the predict

value and the real value is plotted in Figure 3,12 (a). From Figure 3.11 (a) and Figure 3.12
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(a), it is casy to scc that the proposed GRNN approximates the mapping /'between the inputs
and output in equation (8) very well. Figure 3.11 (b) and Figure 3.12 (b) demonstrate that the

proposed GRNN model’s capability of prediction on testing data is also acceptable,

3.1.3 GRNN with Adaptive Kernel Shape and Its GA based

Learning

Although GRNN provides a powerful tool to approximate multivariable functions or
mappings, the one and only adjustable parameter limits its capability. More specifically,
“GRNN cannot ignore irrelevant inputs without major modifications to the basic algorith.
So GRNN is not likely to be the top choice if you have more than 5 or 6 nonredundant
inputs.”[69] Another more important problem is that it does not present any index to

describe the different inputs’ impacts on output.

To solve these limitations of GRNN, Specht and Romsdahl [70] introduced the adaptive
GRNN. This is GRNN with the adaptive shape of a kernel. Recall the applied kernel

function till now:

K(ﬂ‘;'x_i)) - CXp(__D’QZ-ﬁ)

The shape of the kernel function is fully controlled by the smoothing factor 4. The larger the
smoothing factor, the smoother the shape of kernel function will be, If additional parameters
arc implanted in this function, the shape of the kernel function will be more elastic and the
GRNN will possess a more flexible approximation capability. In particular, for a system with

m inputs, m local smoothing factors are included in the distance computation function D,

ie.,

m

DX =X)=20,(x, =%, ®
=1
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In Equation (9), X=[xy,...x,], Xi=[xi1,....xi] and o, (=l,..., m) arc referred to as local
smoothing factors. To avoid confusion, the smoothing factor /1 is now called a global

smoothing factor.

The introduction of local smoothing factors gives GRNN the capability to consider the
different impacts of various inputs and solves the problem of “cannot ignore irrclevant
inputs” [69], providing GRNN stronger approximation capability. In fact, such local
smoothing factors are widely used in most of kernel based regression methods [71-72], of
which GRNN is typical. In Equation (9), because different dimension of input is multiplicd
by o, (j=l,..., m) separately, thec smaller sigma value emphasizes the lesser impact or
importance of the corresponding input variable on the distance valuc D (the smaller value of
o;(x; —x, )’ ), and furthermore, the lesser importance to the kernel function’s value and the
final output of GRNN. The adaptive GRNN’s local smoothing factors, therefore, can be
taken as the importance indices of inputs. The smaller value of the Jocal smoothing factor
indicates a smaller influence of the corresponding input on the output. In extreme cascs, if
the local smoothing factor is close to 0, the corresponding input is negligible. In other words,
the corresponding input can be removed from the input feature set, just as concluded in [70]
“Adaptation of kernel shapes provides... a feature sclection capability and improved

accuracy”.

Additional tunable parameters, such as local smoothing factors changed only the
computation of kernel function in the second layer of GRNN; they do not change the
architecture and connections of GRNN. The GRNN continually holds the one-pass learning
procedure. However, the determination of both global and local smoothing factors is a more
difficult problem. Specht [70] has suggested a simple adapting procedure that perturbs cach
smoothing factor a small amount and accepts the perturbation that most improves the
performance index. The perturbation is continued until some specific criteria are satisficd.
This method is a random scarch approach. Masters [73] has proposed a gradient-based
method, in which the partial derivatives of performance index are derived and the best

smoothing factors are searched via gradient descending.
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This subscction proposes a new approach, which applies the real-coded genctic

algorithm (RCGA) to find optimal global and local smoothing factors of adaptive GRNN,

First, to solve the problem using a genetic algorithm, the searching target is defined. As
previously discussed, the GRNN's performance based on leave-onc-out cross validation can
be selected as the target to be minimized. However, the genctic algorithm holds a population
of individuals and will evolve a number of generations; in cach generation cach individual
must calculate the performance index based on leave-onc-out cross validation — e.g.,
Equation (7) — once, which will be a huge computing burden for the algorithm. In addition,
when the number of training datasets is large, the calculation of Equation (7) itself is already
a processor time-consuming job. Therefore, the proposed approach discards the
leave-one-out cross validation to select the best smoothing factors in the genctic algorithm;
simple hold-out testing is applied. That is, the original training data is divided into two
datasets: the training data and the validation data. The GRNN is then trained in one pass,
based on the training data. Finally, the genetic algorithm is applied to find the smoothing
factors minimizing the performance index Q on the validation data. More specifically, if
there are »; training data [T ytj} (i=1,2, ..., n;) and »; validation data  [X; y;] (i=1,2, ..., ),
the GRNN will be built based on training data [T; yt;] and the GA will be applied to find

smoothing factors that minimize Q, expressed as
Q= >0y -SX)), (10)
(In Equation (10), fis the mapping function gencrated by GRNN based on #, training data).

Details of the real-coded genetic algorithm for the adaptive GRNN is organized

according to the key steps of GA discussed in Chapter |

Representation

Assume there are m inputs in the system, so that there arc m local smoothing factors

and onc smoothing factor to be optimized. In the real coded genetic algorithm, cach
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individual is represented by a vector of real numbers. In this problem, the real vector with
length of m+1 is applicd. The first entry in the vector is global smoothing factor /, and the

next m entrics arc local smoothing factors o, (/=1,..., m), as shown in Figure 3.13:

/ 1 GI O-Z s am

Figure 3.13 - The real-coded genetic individual
Initialization

For a given size of population, say p, we randomly generate p individuals, which are
real vectors with the length of m+1, and cach entry in the vector is between the upper bound

and lower bound of smoothing factors.

Evaluation

Because the target is to minimize the performance index O defined in equation (10) and
the GA always gives the individuals with higher fitness values greater chances to survive to

the next generation, 1/(1+Q) is sclected as the fitness function to evaluate cach individual.

Selection

The proposed algorithm uses a roulette-wheel selection procedure and always keeps the
best individual to the next generation. This means that at generation g, for a population of n
individuals with fitness values /7, f5,..., fu, the individuals’ probabilitics of being chosen for
the next generation are py, pa, ..., p,, Where p, =f,./2:=|fj (=1, 2, ..., n). We first
compute ¢, = Zi,:lpj (i=1, 2, ..., n), then perform the following step » times: generate a
random number x, which is uniformly distributed in the unit interval and if ¢, <x<g,,

(=1,2, ..., n; gq,=0),sclect the i individual at generation g into the next generation g+1.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Variation

Two variation operators applied in this algorithm are crossover and mutation.

1. Crossover opcrator:

This algorithm simply applics the. one-point crossover. That is, given two parent
individuals, such as x=x;x;... XpXpeq... xz and y=p;y;...vip%+1...y1L, We generate two offspring
X=X0X0. XgVges. vy and V= vivo L viXeeg... X where k is a randomly selected position,

Figure 3.14 depicts this operator:

Tl ]

Before
l » ‘ ya l l Y, ]J’k./' l v, | Crossover
I X ] X, l I X, l)’k./l I », l After

Crossover

Londo [ o fo [ I

Figure 3.14 - The one-point crossover
2. Mutation operator:

The mutation operator is realized by the Gaussian mutator, which picks a new value
based on a Gaussian distribution around the current value. This means that for the entry/gene
' to be mutated in a individual/chromosome (a vector of real numbers), the mutation gene x”
=x+N(0,1), where N(0,1) is value gencrated from a Gausssian distribution with zero mean
and standard deviation 1. Of course, if x is out of the gene’s boundary, it will be truncated

to interval [lower bound, upper bound].

Stop criteria

The maximum number of gencrations is set as the stop criteria.
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3.2 OR/AND Neuron vs. GRNN on Construction Data

With the introduction of local smoothing factors into GRNN, GRNN has not only achicved
improved accuracy but also gained importance indices for cach input’s impact on output.
Then between OR/AND neuron and GRNN, both of which satisfied the requirements
mentioned at the beginning of this chapter, which one should be sclected as the modeling
technique to build a construction performance model? This scction compares the
performances of the two techniques on real data collected in a construction site. The results
demonstrate that the adaptive GRNN achieves greater accuracy and is the best choice as the

basic modeling technique.
3.2.1 Description of Data

The data studied in this thesis were collected from a pipe module fabrication yard in an
industrial construction project in Edmonton, Alberta, during the period of April 2003 to May
2004 [79]. The “labor productivity in hydro testing (HT productivity)” is taken as the
construction performance indicator considered in the construction activity. Table 3.1
tabulates the 7 factors impacting “HT productivity”. AH the influence factors are determined
by a group of experts who manage the construction project [74] and they are assumed te be
independent. The short descriptions of all the influence factors are also listed in the same

table.

The datasets, including values of both the influence factors and the construction
performance indicator, namely “HT productivity”, were extracted from the constructor’s
Information Management System, for a period of 169 working days. Therefore, we get a
historical data containing 169 datasets in which cach dataset includes 7 inputs (impacting

factors) and 1 output (the performance indicator).

Before OR/AND neuron and GRNN are applied on the historical data to approximate

the mapping between inputs and output, data preprocessing is required for the following
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reasons: First, OR/AND ncuron is a nonlincar transformation between unit hypercubes,
therefore, the inputs and output should be normalized into the unit interval [0, 1]. Secondly,
since the GRNN is a typical ncural network, it is reccommended to first normalize inputs and
output before the feeding of the data [73]. Therefore, normalizing functions listed in Table
3.3 are applied to the collected datasets, and the OR/AND and GRNN are then compared by

their performance on the normalized data.

Factor/ Variable Description
I WKL Work Load No. of pipe madules in progress
2 EQA Equipment availability No. of cranes available
3 MAV Manpower availability No. of pipefitters available
4 TEM Mean Temperature The mean temperature of the air in degrees Celsius.
L The sum of the total rainfall and the water equivalent of the
5 PRE Total precipitation
‘ total snowfall
Pipc fabrication rework
6 RWK Rework

(work force hours spent on repairs)

Quality Assurance/
7 QAC No. of hours spent on QA/QC work.
Quality Control input

Table 3.2 - Factors that affect labor productivity in Hydro-testing [74]

Variable Normalizing function (NF)* Parameters of NF *
WKL Sigmoid 0.5
EQA Sigmoid -0.5
MAV Sigmoid -0.5
TEM 1-Gaussian 0, 5)
PRE Sigmoid 0.5
RWK Sigmoid 0.5
QAC 1-Gaussian (0, 10)
HT Sigmoid -0.5

Table 3.3 - Normalizing functions for the variables

* There are two type of normalizing factions. The Sigmoid function is y=1/1+¢™) and the

~(.\‘—c)3 120°

only paramecter in it is . The |-Gaussian function is y=1-¢ , where (¢, g) are the

two parameters.
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The performance index considered in this comparison is the mean square error (MSE):

Q=Zl(y9(yi —j,i)Z /]69 ’

in which, y; is the output of the /" datasets and ¥, is the predicted output of the OR/AND

ncuron or the¢ GRNN.

It should be noted that the most helpful technique for normalizing the data is most
likely to be fuzzy information granulation based on fuzzy sets/ linguistic terms. The
application of linguistic terms will not only normalize the datasets, but also enhance the

model’s transparency. More details will be discussed in Chapter 4.
3.2.2 Comparison Results

At first, for the augmented OR/AND neuron, with sigmoid function attached in the output
layer, is tested on the collected 169 datasets. The initial and resulting weights of connections
in AND and OR neurons are listed in Table 3.4. The initial connection weights of the OR
neuron in the output layer are v=[1 1] and the resulting ones are v=[1 0.51]. The initial and

resulting parameter pair in the sigmoid function are [ =0.5 o =1]and [m =0.51 ¢=0.91].

Variable Initial weights Initial weights Resulting weights Resulting
(OR neuron) {AND neuron) (OR ncuron) weights
(AND ncuron)
WKL 0.9381 0.0618 1.0000 1.0000
EQA 0.5384 0.4615 0.9376 1.0000
MAV 0.8363 0.1636 1.0000 0.1760
TEM 0.8377 0.1622 0.0000 0.0000
PRE 0.8286 0.1713 0.5641 0.9872
RWK 0.0000 1.0000 1.0000 0.9739
QAC 0.1838 0.8161 0.0000 1.0000

Table 3.4 - Initial and resulting connection weights of OR/AND neuron

The performance index according to the successive iterations of learning is shown in
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Figure 3.15, The final performance index 0=7.86*10".

The OR/AND neuron’s outputs vs. rcal targets or outputs in the historical data arc
plotted in Figurc 3.16. It can be figured out that the OR/AND ncuron cannot approximate
the mapping between the inputs and output very well, despite the sigmoid function being
appended in the output layer. Because the OR/AND neuron model cannot approximate the
input-output mapping very well, the importance indices derived from this modecl is no longer

reliable any more.

As a comparison, the adaptive GRNN learned through the genctic algorithm is also
applied on the 169 datasets. The 169 datasets are divided into two datasets in which the
training data has 135 data patterns and the validation data has 34 data patterns. It is
imperative to mention that the setting of parameters of a genetic algorithm is not trivial and
may take some trial and error in order to achieve acceptable results for a number of
problems. However, the experiments prove that this problem is not sensitive to the parameter
setting of the genetic algorithm. Therefore, the chosen parameters are these simplest ones in
Figure 3.17. After 100 gencrations of evolution, the resulting local smoothing factors are
[26.538 45.6343 18.0074 42.6319 72.439 0.222879 4.06774], and the global smoothing
factor is 0.85. Here the global smoothing factor is a small value that means the surface of
input-output mapping is steep [66].
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Figure 3,15 - Performance index in successive learning epochs
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Figure 3.16 - OR/AND neuron’s outputs vs, rcal targets

Probability of Crossover: 0.9
Probability of Mutation: 0.01
Size of Population: 50
Maximum generation: 100

Figure 3.17 — The sctting of parameters of GA
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Figure 3.18 - Best and Average fitness of individuals in successive generations
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Figure 3,19 - GRNN's output vs. real targets

Figure 3.18 shows the best and average fitness of individuals in successive generations
of evolution. The resulting GRNN’s cutputs, compared with the real output.of the system

(the targets), are demonstrated in Figure 3.19. The final performance index is 0=5.75%10",

Based on local smoothing factors: [26.53 45.63 18.00 42.63 72.43 0.22 4.06], it is ecasy
to conclude that the 5" factor — “Total precipitation” has a critical impact on the construction
performance -“HT productivity” because its local smoothing factor holds a distinct higher
value than others, On the contrary, the 6 factor — “Rework” has little impact on the
construction performance duc to the small value of its local smoothing factor. These
conclusions are helpful insights for managers who are inspecting the performance problems

related to “HT productivity”.

After studying the GRNN’s performance on the real construction data (9=5.75%10"),
and the OR/AND neuron’s performance on the same data (0=7.86*%10), the apparent
conclusion is that the GRNN can approximate real construction data more accurately than
the OR/AND ncuron. Although both OR/AND necuron and GRNN provide the importance
indices of inputs on the output, the model demonstrating greater accuracy should be

regarded as more reliable. Therefore, the decision is to select the adaptive GRNN learned via
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the genctic algorithm as the technique to build construction performance model. Chapter 4
will apply the proposed GRNN on the construction data granulated through the membership
functions (representing the linguistic terms), which arc automatically generated from a

strengthened fuzzy c-means algorithm,
3.3 Conclusion

This chapter discussed two Computational Intelligence based modecls. Thc OR/AND ncuron
is a fuzzy neural network model and the adaptive GRNN is a general neural network model.
Although both models offer the importance indices of inputs on the output, adaptive GRNN
learned through a real-coded genetic algorithm achieves much greater approximation
accuracy when applied on real data collected from a construction site. In conclusion,
according to the collected construction data, the adaptive GRNN s selected as the basic

technique for the task of construction performance modeling.
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Chapter 4
Enhancing Transparency of the Model
via Information Granulation

In Chapter 3, the GRNN is sclected as the basic technique for construction performance
modeling. However, the influence factors and resulting construction performance in the
proposcd model are still described as numeric variables. For example, we still consider the
influence factors such as “Mecan Temperature” and “Crew Size” and their importance to the
resulting construction performance indicator, for example, “Labor Productivity”, All these

factors and indicators are numeric variables.

Linguistic descriptions are in fact, found almost everywhere in real construction
situations. Typical linguistic terms used in construction projects arc “High Crew Skill Level”,
“Poor Tool Condition”, and so on. Furthermore, we can transform a numeric input into
several memberships of its linguistic terms. For example, if we generate three linguistic
terms to portray the variable “Crew Size”, i.c., “Small Crew Size”, “Normal Crew Size” and
“Large Crew Size”, the numeric value of “Crew Size” is then transformed into 3
memberships of the linguistic terms of “Small Crew Size”, “Normal Crew Size” and “Large
Crew Size”. This transformation procedure results in more concrete influence factors and
construction performance indicators, and greatly enhances the transparency of the
construction performance model. For instance, it is more concrete and transparent to
consider the influence of “High Mean Temperature” and “Small Crew size” on “Low

Productivity” but the influence of “Mean Temperature” and “Crew Size” on “Labor

Productivity”.

The above transformation is a process of information granulation in which the
information granules take the form of semantically meaningful fuzzy sets, namely linguistic
terms, distributed fully over each variable’s universe of discourse. However, building decent

membership functions for the linguistic terms is not an casy task. Although determining
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membership functions based on expert knowledge is possible, it nceds more time and
experts’ understanding of the concept of membership functions. The more desirable method
is generating membership functions automatically from historical data — in particular,

building membership functions through clustering of historical data.

This Chapter proposes a membership function clicitation method based on a fuzzy
clustering algorithm. This method takes the clustering problem as an encoding problem.
Derived from the principle of minimum information loss in decoding, it suggests a
performance index known as representation error to constrain the encoding procedure, i.c.,
the fuzzy clustering algorithm. A detailed dcsc.ription of the proposed method is given in
Section 4.1. The new method is tested the real construction data in Section 4.2. The resulting
fuzzy sets arc comparcd with cxpert defined fuzzy sets in the same section. Finally, the
generated membership functions are utilized in the information granulation of collected data,
and the granulated data is fed to the adaptive GRNN learned through the genetic algorithm,
The improved performance and the enhanced transparency of GRNN on the granulated data

are demonstrated in Section 4.3.

4.1 FCM based Membership Function Construction

4.1.1 One-Dimensional FCM with Decoding Consideration

Given a number of historical cxamples of a numeric variable [x;, x2, ..., xy] and the
anticipated number of clusters - ¢, the Fuzzy C-mcans (FCM) [75] algorithm partitions these

examples into ¢ clusters by minimizing the objective function Q:

In this objective function, Q represents the sum of the distance of individual data to the
cluster centers [0y, 03, ..., o] (The cluster centers are also called prototypes). Here 4
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represents the membership of data x; belonging to cluster & The parameter m stands for the

fuzzification factor that is a real number greater than 1.

The FCM iteratively updates the prototypes [o1, 02, ..., 0] and memberships u;;

through the equations below [75] :

N
mo .
Zul.k <X

i=l

O, =—x———

- N
m
D

=l

This iteration will stop when
max(lu,’l';+l —uy l) <e,
b :

where e is a termination criterion, and ire are the iteration steps. This procedure helps to find
values of prototypes and memberships that achieve a saddle point or local minimum of

objective function Q.

It is worth mentioning that, although the fuzzification factor m has a great impacting on
the resulting clusters and memberships [76], its valuc is usually selected as 2 for simplicity.
If the FCM clustering is regarded as an encoding procedure, the corresponding decoding can
be introduced. In order to minimize the information loss from encoding to decoding, an

applicable fuzzification factor can be sclected.

With the FCM algorithm, the original data x; can be regarded as being encoded into ¢
memberships [u;, u;a, .., u;c]belonging to the ¢ prototypes [0y, 0, ..., o.). Therefore, to

reconstruct the data x; from thc memberships, the weighted average of prototypes is
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computed as the decoded value of x.

c
m
Zul.k e
LA 1|

Y = —————

% - .
"
Z Upk
k=1

In the previous equation, u;, actually represents the belongingness of x; to clusters & with

consideration of the fuzzification factor .

In order to minimize the information losses from encoding to decoding, the
representation error V, or the difference between all the original data and the decoded data,

should be minimized [76]
N
V=) (x-%)
i=}

Therefore, the best fuzzification factor m is selected as the one that leads to the smallest

representation error.

4.1.2 One-Dimensional FCM based Membership Function

Elicitation

For a system with » input variables [x), x5, ..., x,] and onc output variable y, there arc N
historical data [X;, ;] (=1, 2, ..., N), where X; is the n dimensional input vector [xy, X, ...,
xi,) and y; is the output. The first step to generate membership functions from historical data
is to apply FCM to each dimension of the historical datasets. That is, for input variable x;,
apply one-dimensional FCM to the historical data (x;;,x;5 ..., X;v) to generate ¢ clusters, The

resulting prototypes are marked as [04,02, ..., 0;¢).

For simplicity, having the prototypes [0.0i3,..., 0;.], the simplest fuzzy partition of

input variable x;’s universe of discourse is defining triangular membership functions for
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fuzzy sets/granules centered at prototypes. In addition, if we use triangular membership
functions, the group of fuzzy scts defined over the universe of discourse is a frame of
cognition of the input variable x; because it retains the typical properties of a frame of
cognition, such as distinguishability and complementarity [78]. The resulting ¢ membership

functions for variable x; are labeled as Fj;, Fj, ..., Fi, in which, Fj; is a function, such as:

1, if x<oy;
y=13(0,-3)(0,-0,), if 0, <X<0,;
0,if xzo0,;

Fy(7=2,3..., c-1) is a triangle membership function, such as;

0, if x<0;, orx20,,,,
Y=9(x%-0,0)) 0 - 0,,)s if 04y <X <0y

(Oijuy =) Oy yty = 0)), i 0, <X <0y

And F. is a function like:

I, if x2o,
y=<(x- Gi(c.l))/(aic -Oi(c-l))’ if Oje-ny <X <03
0, if x<o.,,
As an illustration, if the datasets are grouped into 3 clusters, as depicted in Figure 4.1
(a), the generated 3 membership functions are as shown in Figure 4.1 (b).

Membership Menbarship Menbership
Prototype | Prootype2  Prototype 3 fimction 1 fimction 2 fimction 3

I | N
(a) Data clustered in 3 groups {(b) The 3 generated membership functions

Figure 4.1 - An example of clustering based membership function generation
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4.2 Membership Functions Generated from Construction

Data

This section discusscs the application of the proposed membership function clicitation
method to real construction data. The collected construction data is the same as that used in
last chapter: there are seven input variables or influence factors, and one output variable —

construction performance. The number of samples used is 169. More detailed descriptions of

each variable can be found in Section 3.3,

To describe Variable | — Work Load — the used number of linguistic terms is from 2 to 4.
(For example, if 3 linguistic terms is applied, they could be denoted as “Low Work Load”,

“Average Work Load” and “High Work Load”.) Consequently, the number of clusters in

FCM is set from 2 to 4.

Computing the representation crror ¥ and FCM’s objective function Q based on

different values of fuzzification factor s gives the results shown in Figure 4.2,

v vert

I

= -t
} |
203t
2000
mi
o ; > 18]
50
{ - 1000 -
|ml +
w‘t et
T

Figure 4.2 - Representation error ¥ and FCM’s objective function Q based on different
values of fuzzification factor m for Variable 1- Work Load

From plots in Figure 4.2, the optimized fuzzification factor m is found to be 2.1 in the 2

clusters case; similarly, 7=2 in the 3 clusters casc and m=2.1 in the 4 clusters case.
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Based on the optimized fuzzification factors, the FCM is performed and the
membership functions are plotted in Figure 4.3. The memberships of each dataset belonging
to cvery cluster are plotted in the same figure. Two Hamming distances between the
membership values for each dataset in each membership function, and the memberships for

each dataset in each cluster, are calculated and denoted at the top of Figure 4.3, in which,

c 169

Sum Distance= Z Z,“.—,; - Fi(x )l

j=1 izl

c_ 169

Avg Distancc=lz Zlu,'/. - Fi(x, )I
c

=l =t

In the two equations, x;, X,, ..., X4 are the 169 historical datasets and ¢ is the number of
clusters. F; (=1, 2, ..., ¢) are generated membership functions; u;; is the degree of
membership of data x; in /" cluster. The Avg Sum Distance is regarded as the average
approximation error of the defined membership functions to the memberships generated by

the FCM algorithm.
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(b) Three membership functions case  (c) Four membership functions case

Figure 4,3 - FCM generated membership functions for Variable 1 - Work Load
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For Variable 2 — Equipment Availability — the best fuzzification factors can be deduced
from Figurc 4.4 (thosc that achicve the minima of representation error ), The final FCM

gencrated membership functions are illustrated in Figure 4.5.

vz

| [~ aniwsend )|
|+ aswecal
[ _cudwscad
0| 50 . . e
20| 20,
013 > 10
100 A - . 100! *
%0 %) .
TR e .. t CRR .
AX] 12 [E} 1 13 war 1’ " H 2 A1 () 14 te w7 ) " H Rl

m

Figure 4.4 - Representation error ¥ and FCM’s objective function Q based on different
values of fuzzification factor m for Variable 2 - Equipment Availability

ver2 06t 2. Avg Distences’ 26, Gum Dislorcee 12 51

(a) Two membership functions case

Viloptd Avg DUMEe 11 B SunOntancesdt as wo'} oor-4. Avg Diniereesd 13, Sum Diencar 1234
2 ¥

-
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(b) Three membership functions case (c) Four membership functions case

Figure 4.5 - FCM generated membership functions for Variable 2 - Equipment Availability
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For Variable 3 — Manpower Availability — the best fuzzification factors can be deduced
from Figure 4.6 (those that achieve the minima of representation error V). The final FCM

generated membership functions are illustrated in Figure 4.7.
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Figure 4.6 - Representation error ¥ and FCM’s objective function Q based on different
values of fuzzification factor /m for Variable 3 - Manpower Availability
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(b) Three membership functions case  (c) Four membership functions case

Figure 4.7 - FCM generated membership functions for Variable 3 - Manpower Availability
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For Variable 4 — Mecan Temperature — the best fuzzification factors can be deduced from
Figure 4.8 (those that achieve the minima of representation error V). The final FCM

generated membership functions are illustrated in Figure 4.9,
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Figure 4.8 - Representation error ¥ and FCM’s objective function Q based on different
values of fuzzification factor m for Variable 4 - Mean Temperature

ko0t 2, Avg Drtances10 4 Bum Dstanceai0 s

L S S S S

(a) Two membership functions case

vardopt:3. Avg Disncesd 31, Bum Dratarces?d 34
A K40 N

L3} 1
ot : 1‘
Lo % 0 ° 1 % ‘,___‘L
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Figure 4.9 - FCM generated membership functions for Variable 4 - Mean Temperature
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For Variable 5 — Total Precipitation — the best fuzzification factors can be seen from
Figure 4.10 (thosc that achieve thc minima of representation crror V). The final FCM

generated membership functions are illustrated in Figure 4.11.
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Figure 4.10 - Representation error V and FCM’s objective function Q based on different
values of fuzzification factor m for Variable 5 - Total Precipitation
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(b) Three membership functions case (c) Four membership functions case

Figure 4.11 - FCM generated membership functions for Variable 5 - Total Precipitation
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For Variable 6 —~ Rework — the best fuzzification factors can be determined from Figure
4.12 (those that achieve the minima of representation error ¥). The final FCM gencrated

membership functions are illustrated in Figure 4.13.
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Figure 4.12 - Representation error V and FCM’s objective function Q based on different
values of fuzzification factor m for Variable 6 - Rework
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Figure 4.13 - FCM generated membership functions for Variable 6 - Rework

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For variable 7 — Quality Control Input — the best fuzzification factors can be deduced
from Figure 4.14 (thosc that achieve the minima of representation crror ¥). The final FCM

generated membership functions arc illustrated in Figurc 4.15.
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F igure 4.14 - Representation error ¥ and FCM’s objective function Q based on different
values of fuzzification factor m for Variable 7 - Quality Control Input
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(b) Three membership functions case (c) Four membership functions case
’ Figure 4.15 - Membership functions generated based on FCM for Variable 7 - Quality
Control Input
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Finally for Variable 8, or the output variable — HT Labor productivity — the best

fuzzification factors can be determined from Figure 4.16 (those that achieve the minima of

representation error V). The final FCM generated membership functions are illustrated in

Figure 4.17.

Figure 4.16 - Representation error ¥ and FCM’s objective function Q based on different
values of fuzzification factor m for output variable - HT Labor productivity
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(b) Three membership functions case  (c) Four membership functions case
Figure 4.17 - FCM generated membership functions for output variable - HT Labor
productivity
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Based on the average approximation errors (the Avg Distance) noted on the figures
about generated membership functions, the general conclusion is that the average
approximation error will decrease with the increase of the number of membership functions.
Or in other words, the defined triangular membership functions will approximate the
memberships generated by FCM algorithm better if the number of membership functions or
clusters is larger. But the larger number of membership functions means larger number of
linguistic terms for cach variable, or the larger number of granulated influence factors, to
build a parsimony model with decent number of influence factors, this research will ask the
experts to define the number linguistic terms or membership functions used to describe the
input and output variables. Next section will discuss the FCM gencrated membership

functions’ capability to capture the expert knowledge about the linguistic terms

4.3 FCM Generated Membership Functions vs. Expert

Defined Membership Functions

A group of experts has been interviewed to identify linguistic measures of each influence
factor considered in the historical data, and the membership functions for each influence
factor are directly developed based on their professional experience. That means there is no
experimental method applied in the developing procedure. The experts just defined the
shapes and the setting of all the membership functions directly from their experience. The

resulting membership functions are listed in Figure 4.18 (a).

As a comparison, Figure 4.18 (b) exhibits the membership functions generated through
FCM algorithm with dccoding consideration. It can be scen that the FCM generated
membership functions are very similar to the ones developed by the experts, The comparison
suggests that the proposed method is an cffective approach for automatically generating

membership functions from historical datasets,
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(a) Expert defined membership functions  (b) FCM generated membership functions

Figure 4.18 - FCM generated MFs vs Expert defined MFs
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(a) Expert defined membership functions  (b) FCM generated membership functions

Figure 4.18 - FCM gencrated MFs vs Expert defined MFs (continued)

It is noticeable that, compared with expert defined membership functions, the most
visible different membership functions arc the ones for Variable 2 - Equipment
Availability. After studying Figurc 4.19, which plots all 169 data examples of Variable 2,
it can be seen that many cxamples take the same value. This mecans that only limited
values are uscful to the clustering algorithm, or in other words, the historical datascts may
not contain cnough information about the variable. Therefore, the difference between the
cxperts’ results and the FCM’s results is reasonable. Although different from the experts’

results, the FCM’s results still tally with human being’s intuition on the available data
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plotted in Figure 4.19: there are two visible clusters: the data taking the value of 0 and the

data taking other valucs.

10+

* Equipment availability
(=]

0 20 40 60 80 100 120 140 160 180

Index of data example

Figure 4.19 - Plot of all 169 data examples of Variable 2 — Equipment Availability

44 A More Transparent GRNN Model Based on

Granulated Data

Working on the same 169 collected datascts from the real construction site, this section uses
the membership functions generated by FCM to define the linguistic terms applied in

information granulation. We test the adaptive GRNN on the granulated data.

As shown in Table 4.1, the 7 influence factors are granulated into several linguistic
terms. Experts define the number of the linguistic terms based on their experience. The new
system will hold 16 inputs instead of 7. For example, the “Work Load” factor is granulated

into 2 factors, “Low Work Load” and “High Work Load”.
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Impacting factors Linguistic terms

Work Load Low, High

Equipment Availability Low, High
Manpower Availability Low, Medium, High
Mecan Temperature Low, Medium, High

Total Precipitation Low, High

Rework Low, High

Quality Assurance/ Quality Control Input Low, High

Table 4.1 - Linguistic terms of influence factors

To justify the information granulation’s capability to improve the performance of the
'‘GRNN model, the output or the performance indicator considered in the system is still
“labor productivity in hydro testing (HT productivity)”. The output or the construction
performance indicator is normalized through the Sigmoid function y=1/1+¢™) as was donc

in Chapter 3.

The parameters of the genetic algorithm applied to learn the GRNN are set to be the
same as the ones used in Chapter 3. The genctic learning of GRNN achieves the final
performance index or the mean square crror (MSE) Q= 4.60%10”. Compared with the
performance achicved in Chapter 3 — 0=5.75%10", implementing information granulation to
influence factors greatly improves the performance of the GRNN model. Figure 4.20
shows the best and average fitness of individuals in successive generations of evolution. The
resulting GRNN’s outputs, compared with the real outputs of the system (the targets), arc

demonstrated in Figure 4.21.
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Figure 4.20 - Best and Average fitness of individuals in successive generations
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Figure 4.21 - GRNN'’s output vs, real targets

To obtain more useful insights from the historical construction data, we also granulate

the output — “labor productivity in hydro testing (HT)” into three linguistic terms, namely
" “Low labor productivity”, “Medium labor productivity”, and “High labor productivity”.
Then the adaptive GRNN is applicd to capture the relationships between the 16 linguistic
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influence factors and the more concrete linguistic construction performance indicator —

“Low labor productivity”.

Taking the same setting of the genetic algorithm as the last experiment, the resulting
local smoothing factors of GRNN for the 16 linguistic influence factors are [10.89 9.67
23.50 59.44 92.39 22.62 85.74 28.12 0.83 99.64 50.18 19.08 4.05 0.71 65.79 97.44). The
final global smoothing factor is 0.99. It is a small value means the kernel function will be a
steep one. Therefore the surface of input-output mapping, which is generated by the
combination of these kernel functions, is an elastic surface. The best and average fitness of
individuals in successive generations of evolution are shown in Figure 4.22. The outputs of
the resulting GRNN, compared with the real outputs in historical data (the targets), are

demonstrated in Figure 4.23. The GRNN finally achieves a mean square error Q= 3.35%107,

0.88 -
0.87,
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0.85.

Fitness

0.84:
0.83-

0.82-

Average
: Best :
0.8 : . . . . - . B U
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Figure 4.22 - Best and Average fitness of individuals in successive generations
(with granulated output)
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Figure 4.23 - GRNN’s output vs. real targets (with granulated output)

. Importance index . Importance index
Impacting factors Impacting factors
(Smoothing factor) (Smoothing factor)
Low 10.89 Low 28.12
Work Load Mean
High 9.67 Medium 0.83
temperature
Equipment Low 23.50 High 99.64
availability High 59.44 Total Low 50.18
Low 92,39 precipitation High 19.08
Manpower
. Medium 22.62 Low 4.05
availability Rework
High 85.74 High 07l
Quality control Low 65.79
input High 97.44

Table 4.2 - Linguistic influence factors and their importance indices

Table 4.2 lists all the local smoothing factors according to separate linguistic influence
factors. Because the local smoothing factors or the importance indices for “High Rework”
and “Medium mean temperature” arc close to 0, these two factors have almost no influence
on the output —““Low labor productivity”. On the contrary, the importance indices for “High
mean temperature”, “High quality control input” and “Low manpower availability” arc

much larger than the ones for other influence factors. Therefore, we can conclude that when
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the problem of “Low labor productivity” occurs in the studied construction site, factors such
as “High mean temperaturc”, “High quality control input”, and “Low manpower
availability” should be looked at more closely. These transparent insights on construction
performance obviously have value to managers who have observed problems in construction
performance, and wish to identify and quantify the possible rcasons. It is worth mentioning
that those insights on construction performance are just for the specific construction site, and
they are the results inferred from collected data. Those insights just give project managers

some suggestions instead of final decisions.

To test the GRNN model’s performance especially the generalization capability on the
granulated data, the 169 collected data are randomly split into 120 training data and 49
testing data. Taking the same sctting of genetic algorithm as last experiment, the achicved
performance index (MSE) for the training data is 0=4.87*10. The performance index for
testing data is 0=7.12%10, The outputs of the resulting GRNN, compared with the real
outputs in data, are demonstrated in Figure 4,24, The interesting finding is that the GRNN
model’s approximation rate or performance index on training data is even worse than its
approximation rate on the whole 169 datasets. The reason is that the GRNN learned by the
genetic algorithm has already considered the capability of gencralization though the hold-out
validation. The small number of training data may do not hold enough information about the
mapping between the inputs and the output, and to get decent generalization capability, the

GA learned GRNN may choose the lower approximation rate.
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Figure 4.24 - GRNN’s output vs. real targets (with training and testing data)
4.5 Conclusion

An information granulation procedure is introduced to transform the numeric value of an
influence factor to the memberships of its linguistic terms. A strengthened fuzzy c-means
(FCM) algorithm is proposed to determine the membership functions of linguistic terms.
Comparison between FCM generated membership functions and the expert defined
membership functions shows the effectiveness of the proposed method. Finally, the adaptive
GRNN is applied on the data granulated by the membership functions defined by FCM. The
resulting model demonstrates both better accuracy and better transparency. It proves that the
implanting of information granulation in the construction performance model enhances its

transparency.
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Chapter S
Conclusion and Future Work

[n construction, when the actual performance diverges greatly from the anticipated
performance, managers nced to carefully study the possible causes of the discrepancy, in
order to prevent it from occurring in the future. Computer tools, which automatically
identifies the possible the causes of performance problem, and quantifies the impacts of
different causes, would be of considerable help to managers. In the framework of such a
diagnostic tool, a transparent construction performance model is required. This model should
not only offer important indices of inputs of the model, but should also ecmbed the
information granulation process. The objective of this thesis, therefore, is to build a
transparent construction performance model that useful in the construction performance
diagnosis framework, utilizing the techniques of computational intelligence — including

neural networks, fuzzy sets and systems, and genetic algorithms and their hybrids.
Three key contributions are made by this thesis:

1. The adaptive general regression ncural network (GRNN), which not only possesses a
strong approximation capability but also provides an importance index for cach input
variable, is proposed as the basic modeling technique. A new genetic algorithm based

learning algorithm for the adaptive GRNN is also presented

2. A fuzzy c-mecans (FCM) clustering based membership function generation method,
which applies representation error for its fuzzification factor selection, is proposed as
the data information granulation technique to enhance the transparency of the
construction performance model. The adaptive GRNN is applied on the granulated data
or the linguistic data, and shows improved approximation accuracy. The resulting
importance indices offered by GRNN are also more understandable since the

importance indiccs arc related to the importance of linguistic terms, such as “Low Crew

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Size”, instecad of to the variables, such as of simple numeric variable such as “Crew

Size”,

3. The proposed modeling techniques are assesscd on real data collected from the
construction ficld, and the results demonstrate the feasibility and superiority of

proposed techniques.
With respect to future work, two directions are indicated.

First, because construction problems are highly non-linear and dynamic, one possible
direction is to collect more real construction data and to build more accurate construction

performance models — for example, we can build different models for different construction

scasons.

A second possible future work is to apply the proposed modeling techniques, including
the genetic learned adaptive GRNN and the FCM based information granulation, to other
real problems that require not only an accurate approximation model, but also would benefit

from the importance indices marking the quantitative impacts of inputs on the output.
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