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Abstract

The probability of a species to be present on a certain site is a quantity of interest for

monitoring programs. Data for the occupancy of a species is recorded along with habitat

covariates that are suspected to relate with its status (presence/absence). The objective of

the analysis is to estimate the proportion of sites in which the species is present and the

effects of the habitat covariates on the status of the species. Nevertheless, it is possible to

have some errors in the observations. The most popular approach to estimate occupancy

while accounting for the detection error is that of multiple surveys, for which every site is

visited several times. The effectiveness of this approach relies on two main assumptions: 1)

during the time of the study the population is closed and 2) the replicate visits at every site

are independent from each other.

In my thesis I evaluated the multiple surveys approach under two perspectives: the

statistical properties and the sensibility of its assumptions. For the former, I found that the

estimates are unstable when the number of visited sites and the number of surveys are small.

To overcome these flaws in the estimation procedure, I developed an alternative estimation

method, based on penalized likelihood, that provides better estimates for small number

of sites and surveys. The analysis of the sensibility of the assumptions revealed that the

violation of the assumptions could lead to biased estimates. The single survey model does not

require the closed population assumption, but the popular belief for the non-identifiability of

the parameters sanctioned its use. I tested the reliability of the estimates for the probability

of occupancy and detection from information collected from a single survey and found that,

contrary to popular belief, the parameters are identifiable under certain conditions. Finally,

I developed a model (the cluster sampling model) to include the dependence between sites.

This model allows estimation of the site occupancy using information collected on a single

survey from sites that are correlated.
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Chapter 1

Introduction

The systems studied in Ecology can be described according to its level of complexity in

a hierarchical structure. At the first level is the population of a particular species, the

second level consists on a group of populations called a metapopulation, the last level is an

assemblage of different species called community. Different metrics and models have been

developed to study every level of this hierarchy. This thesis is focused on the study of one

particular metric, the site occupancy. The site occupancy is defined as the proportion of

patches in which the species is present at an specific time. This metric has been used at the

metapopulation level to describe its status, how it changes over time, and to identify key

habitat factors for its persistence. It has also been used in a community level to determine

the number of species and the interaction between them. The statistical models developed

to estimate this proportion are called site occupancy models.

In this thesis we illustrate how and why the site occupancy is an important metric in

Ecology. We also evaluate the current statistical models used to estimate it; in particular,

those models applied to sampling circumstances in which the presence/absence of the species

at the study field cannot be determined without error. Finally, we proposed some alternative

models that overcome its current flaws.

This document is organized as follows: chapter 2 contains a summary of the main the-

oretical models developed to study every level of the ecological hierarchy mentioned above,

along with some definitions that will be used in the rest of the document. The goal of this

summary is to provide a general understanding of how the site occupancy probability is

linked to the study of metapopulations and communities. Chapter 3 contains an overview
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of the current available statistical models to estimate the site occupancy probability of a

metapopulation in a fixed period of time, with a particular emphasis in the Zero Inflated

Binomial (ZIB) model, the most popular method to estimate the site occupancy probability

when the probability of detection is less than one. It also contains a brief description on

how the ZIB model has been extended to study the dynamics of a metapopulation and

the structure and dynamics of a community. Chapter 4 contains an exhaustive evaluation

of the ZIB model based on the statistical properties of its estimates, the feasibility of the

assumptions and the robustness of the estimates against the violation of the assumptions.

Some of the criticisms raised in chapter 4 lead to the development of the models presented

in the rest of the document.

Chapter 5 introduces an alternative estimation method that, based on penalized likeli-

hood, improves the estimates of the parameters of the ZIB. In chapter 6, the general belief

that multiple surveys are required to correctly estimate the site occupancy probability is

confronted with a model whose estimation is based on a single survey sampling scheme. In

chapter 7, an extension of the single survey model where the assumption of independence

between visited sites is relaxed is presented. This extended model incorporates into the esti-

mation the correlation between adjacent sites, a common feature of site occupancy studies.

The last two chapters show some of the projects I intend to pursue after the completion of

my doctoral studies, together with a summary of the conclusions from this work.
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Chapter 2

Ecological models for the study of

populations and communities

The elements of ecology systems can be organized according to their level of complexity,

usually in a hierarchical structure. At the first level in that hierarchy is a population of a

particular species, at the second level is a metapopulation, and the third and more complex

element is a community. Ecologists have been interested on studying every element in this

hierarchy, more specifically, the structure in a fixed period of time and how that structure

changes over time (dynamics of the system). Sections 2.1, 2.2, and 2.3 provide a definition

for every level in the hierarchy, a brief description of the statistics typically used to describe

its structure and some of the theoretical models that have been developed to study dynamics

within that hierarchy.

2.1 Population

A population is defined as a group of individuals of the same species occupying a particular

space at a particular time[55]. Spatial boundaries defining populations sometimes are easily

identified (e.g., individuals inhabiting small islands or isolated habitat patches), but more

frequently are difficult to determine. For that reason the spatial boundaries of a population

are often arbitrarily defined by the investigator[116]. The structure of a population at time

t is described in terms of the number of individuals Nt, also called abundance. Temporal

changes in abundance can be expressed by the following difference equation:

3



Nt+1 = Nt +Bt + It −Dt − Et, (2.1)

where Nt+1 is the abundance at time t+ 1; Bt is the number of individuals that were born

after the time t and before t+1; It is the number of new individuals recruited by immigration,

Dt is the number of individuals that died during that interval of time, and Et is the number

of individuals lost by emigration. The variables Bt, It, Dt and Et are associated with the

primary processes that drive changes in population size: natality, mortality, immigration

and emigration.

One of the main research interests in ecology is to estimate whether a population will

persist, more specifically, to determine the probability that a population will go extinct

within a given number of years. This is typically referred as population viability analysis.

A time series of the abundance of a populations may be required for this kind of analysis.

2.2 Metapopulation

The concept of a metapopulation was first introduced by Richard Levins in 1969 [63].

Levins defined a metapopulation as a set of local populations inhabiting similar patches1,

where typically migration from one local population to at least some other patches is possible

(Figure 2.1a). The assumptions of Levins’ model were the size of the local populations

occupying these patches is either 0 or K (carrying capacity2), the patches have equal area,

the spatial arrangement of the populations has no effect on the dynamics of the system, and

migration to occupied patches does not affect local population dynamics. The structure of a

metapopulation, according to Levins’ model, can be described as the proportion of occupied

patches, denoted by ψ. Changes in the proportion of occupied sites (ψ) in continuous

time are given by equation 2.2, where m and e are the colonization and extinction rates

respectively.
dψ

dt
= mψ (1− ψ)− eψ (2.2)

It can be shown that the equilibrium value of ψ for equation 2.2 is ψ∗ = 1−e/m, for which

ψ∗ is positive if m > e. This implies that for a metapopulation to persist, the colonization

rate must exceeds a certain threshold value for any given extinction rate. Empirical studies
1A patch can be defined as a continuous area of space with all necessary resources for the persistence of

a local population[41]
2Maximum number of individuals of a particular species that can be supported indefinitely in a specific

environment.
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(a) Classical (Levins) (b) Mainland - Island (c) Patchy population

(d) Non-equilibrium 
metapopulation (e) Intermediate case

Figure 2.1: Metapopulation structures. Filled circles: occupied habitat patches; empty cir-
cles, vacant habitat patches; dotted lines, boundaries of local populations; arrows, dispersal.
Adapted from Harrison and Taylor[43].

have shown that the extinction rate decreases in larger habitat patches [28, 81, 119], and

that colonization rate decreases with increasing isolation [109, 110, 91, 36, 24, 88, 7, 114].

Consequently, according to Levins’ model, a species may go extinct on systems with patches

with small area and/or from systems with a large degree of isolation.

Many of Levin’s assumptions are too simplistic to accurately model dynamics of bio-

logical populations. This has lead to the development of various models to incorporate

information about the spatial location and differences in area of metapopulation patches.

For instance, a metapopulation may have large variance among the size of the populations.

In this type of system, the persistence of the metapopulation tends to be determined by

the persistence of the largest single population (Figure 2.1b). Local extinctions affect the

small populations, but the system can persist as long as the largest patch, also known as

mainland, persists (for more information about this model see[67]). Another example is that

of systems in which the patches are so close together that local extinctions are unlikely to

occur (Figure 2.1c). Moreover, Levins’ model assumed that every local extinction creates an

empty habitat available for colonization. However, it may not be the case when the species is

declining leading to a non-equilibrium system where colonization events are unlikely (Figure

2.1d). For a critical assessment of the metapopulation approach in field studies see Harrison

and Taylor (1997)[43].

Jared Diamond in 1975 introduced the concept of Incidence Functions as a simple way
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Figure 2.2: Probability of extinction vs patch size.

to depict the relationship between the probability of occurrence of a species on a island and

the island’s area[18]. He obtained the incidence function for different species of birds in

islands around New Guinea. He found that the position and shape of the incidence function

differed from one species to another. This observation lead him to conclude that incidence

functions “can be interpreted in terms of the biology of a particular species[19].”

Ilkka Hanski in 1992 [37] proposed a simple model, based on the incidence functions de-

fined by Diamond, to make inferences about the pattern of occupancy of species on islands.

In this model the occupancy of a patch was described by a first order Markov Chain with

two states: occupied or empty. The probability of a patch going from occupied to empty

or extinction probability, was set to depend on the area A of the patch according to the

following function E (A) = e
Ax . The larger the area, the smaller the probability of extinc-

tion. The parameter x described the strength of the relationship between the area and the

probability of extinction; for x > 1 there is a threshold area that if exceeded, it is unlikely

the species will go to extinction, on the other hand if x < 1 there is no such threshold and

no matter how large the patch is, there will always be a substantial risk of extinction(Figure

2.2). On the other hand, the probability a patch goes from empty to occupied, colonization

probability, was defined as a constant and denoted by C. The equilibrium fraction of islands

that are occupied, or the incidence of the species was given by:

J (A) =
1

1 + e
CAx

(2.3)

Hanski in 1994 introduced a modified version of the Incidence Function model in which

some of the assumptions were relaxed, and more information about the structure of the
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metapopulation were considered. The colonization probability was modified to depend on

the distribution of the species (presence/absence on the patches), isolation of the patches

and the area. The model allowed the use of real data to estimate the parameters related to

colonization and extinction rates for a specific species in a specific set of habitat patches.

These estimates could then be used to simulate the dynamics of the system, and ultimately

to predict the value of patch occupancy at equilibrium. For some studies using this model

see [38, 42, 17, 79, 80, 40, 39]. The inferences made using Hanski’s model are based on

presence/absence data observed in the field, for which it is assumed that the status of the

site (occupied/empty) is determined without error. Hanski’s model established the idea that

the metapopulation models were not only a theoretical approximation to understand the

dynamics of a system, but could also be used to make inferences by using real data. Since

then, there has been a huge amount of contributions in theory, models and field studies

using this model.

Nowadays, there are several types of metapopulation models in the literature. Hanski’s

model constitutes what is now called site occupancy models. These models have the simplest

structure since they describe each population as present or absent. More complex models

describe each population in terms of their age structure[4]. These models incorporate spatial

dynamics by modeling dispersal and temporal correlation among populations. There are also

models that describe spatial structure within each individual population[56]. Some other

models define the habitat as a regular grid where each cell of the grid can be modeled as

a potential patch[92]. All these models have been developed with the goal of answering

specific management questions (e.g., [12, 86, 85]). How to choose the correct model depends

on the complexity of the problem, the assumptions, and the available data[3].

2.3 Community

A community is an assemblage of populations of living organisms in a prescribed area or

habitat[55]. A community may include all the different plants and animal species represented

in the space, or more commonly, may refer to a subset of species defined by taxonomy (e.g.,

the bird community), functional relationships (e.g., herbivore community), or other criteria

relevant to the question of interest[116]. As in a population, ecologists are interested in

studying two properties of communities: the structure in a specific time and the dynamics

of the system.
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Community structure

Community structure refers to static properties such as diversity and composition of the

community. Some of the metrics used to define species diversity are species richness and

species evenness. Species richness can be defined as the number of species in a community.

Species evenness is a measure of how balanced the community is in terms of the abundance

of every species in the community.

Studies related to community structure can be seen as a group of simultaneous population

studies; if the purpose is to estimate the species evenness, the parameter of interest will be

the abundance for every species. On the other hand, if the purpose is to determine the species

richness; only the information about the presence/absence of every species is needed[116].

For a comprehensive review of methods for measuring diversity see Magurran (2004)[76].

Community dynamics

There are two ways of modeling community dynamics: one is by modeling interspecific

interactions, the other is a more descriptive approach in which the focus is on modeling

changes in the number of different species in the community. The later constitutes a field

called Island Biogeography.

Interspecific interactions

The main interest for studies of interspecific interactions is to determine how the vital

rates of one species change because of the interaction with another species. There are

three major classes of interspecific interactions: competition, predation and mutualism[10].

Competition is a mutually detrimental interaction between individuals; organisms that share

requirements of the same essential resources must compete with each other to gain access

to those resources. Predation can be defined as any interaction between two species in

which one benefits and the other suffers, more specifically, a predator species is one that

has a negative effect on the immediate per capita population growth of the prey species[15].

Mutualism is an interaction in which both species benefit from the association. Parasitism

is an interaction in which an species lives in or on another species (its host) and benefits by

taking nutrients at the host’s expense.

These interspecific interactions have been thought to be among the more important

processes to determine the structure of communities[16] and for that reason they have been

the subject of many contributions with theoretical models and field studies. An example of
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Figure 2.3: Example of the species accumulation dynamics according to MacArthur and
Wilson[67] model. P=1000, A=200, D=300, c=0.1 and q=0.2.

models that have been developed to study interspecific interactions are the Lotka-Volterra

Predator- Prey model[95]. According to this model, in a time continuum the change in

the number of predators and prey can be described by the differential equations 2.4 and

2.5, where V is the number of prey, P is the number of predators, dP
dt and dV

dt represent

the change in predator and prey population over time respectively, and α, β, γ, and δ are

parameters representing the interaction between the two species.

dP

dt
= αV P − βP (2.4)

dV

dt
= γV − δV P (2.5)

Models like the Lotka-Volterra model have been useful in analyzing the consequences

of interspecific interactions from a theoretical point of view. These theories have been

supported with field studies (for some examples see [7, 49]. )

Island biogeography

Island biogeography is a field of research that studies and explains the factors that affect

species richness in communities. This field of research started when ecologists observed that

larger islands and islands closer to a mainland support a greater number of species than

smaller or more distant islands.

MacArthur and Wilson (1967) modeled species richness on an set of islands in which

there is a big island (called, mainland) surrounded by a group of small islands (Figure
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2.1b). The number of species on an island was considered to be the result of two processes:

immigration and extinction. In their model, species from the mainland randomly migrate

to an island. The rate at which new species arrive at the island was determined by three

factors: the distance to the island from the mainland, the number of species remaining in

the mainland that have not yet established themselves on the island, and the probability

that a given species will disperse from the mainland to the island. Immigration rate was

then defined as:

I =
c (P − S)

fD
, (2.6)

c is the colonization probability, P is the number of species in the mainland pool, S is the

species richness of the island, f is a scaling factor for distance, and D is the distance to the

island from the mainland. Therefore, the farther an island lies from the mainland, the lower

the rate of immigration will be. Since immigrants are drawn from a finite pool, as more

species establish themselves on the island, fewer species that have not already established

themselves on the island will remain in the pool. Similarly, the rate at which species on the

island go extinct E (equation 2.7) was considered to be inversely related to the area A of

the island, and directly proportional to the number of species present on the island.

E =
qS

Am
(2.7)

In the simplest version of the model, all species have equal probability q of reaching the

island and of going extinct once there. The dynamics of the system can then be described

by the discrete time model defined by:

St+1 = St + It − Et

St+1 = St +
c (P − St)

fD
− qSt

Am
(2.8)

Figure 2.3 shows an example of the dynamics of the system. It is observed that the

equilibrium species richness is determined by a balance between immigration and extinction.

This model is often used in conservation biology to predict the number of species that would

be expected to persist or go extinct in nature reserves.

2.4 Summary

There are two parameters of interest when making inferences about the structure of an
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ecological system in a fixed period of time: abundance N and the site occupancy probability

ψ. Both parameters provide essential information to ecologists; having a reliable estimate

of these two parameters can lead to make accurate inferences about the dynamics of the

system. Similarly, if the estimates of the parameters are inaccurate, the inferences about

the dynamic of the system are likely to be spurious.

Abundance is used to determine the status of a single population; series of estimates of

abundance over the time can be used to make predictions about the persistence of the species

and to determine which factors have an important impact on the probability of extinction

for that species. Site occupancy probability can be used to describe the general status of

all the populations contained within a metapopulation. It also provides information that is

used to make inferences about the persistence of the metapopulation. In many situations it

is preferred to estimate the probability of occupancy rather than to estimate the abundance

because the former is more expensive and requires more survey effort [101, 72].
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Chapter 3

Overview

Occurrence in a patch is a binary variable that describes the status of the species: present

or absent. It is indexed by its location and the time. In this document, the occurrence of

the species at the ith patch at time t is denoted by zit , where zit = 1 indicates that the

ith patch is occupied by the target species at time t, and zit = 0 indicates that the target

species is absent from the ith patch at time t.

From a statistical point of view, occurrence in a patch is a realization of a binary random

variable, here denoted by Zit, that follows a Bernoulli distribution with probability ψit. As

mentioned in the previous chapter, this probability and how it relates to biotic and abiotic

factors is of interest for ecological research and monitoring programs. This chapter contains

an overview of the current available methods to estimate the probability ψit. Section 3.1

contains a description of the models that are applied to the study of the structure of a

metapopulation in a fixed period of time, hereafter site occupancy models; sections 3.2 and

3.3 contain a brief description of how the site occupancy models have been extended to

study the dynamics of a metapopulation and the structure of a community.

3.1 Site occupancy models

Field studies are conducted to estimate the probability of occurrence and its relationship

with biotic and abiotic factors. Usually these studies are conducted by surveying a set of n

patches1. The presence/absence of the target species and the values for some habitat covari-
1A patch is defined as a continuous area of space with all necessary resources for the persistence of a

local population.
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ates are recorded for every patch. If the status of the species at every patch is determined

without error, an estimate of the probability of occupancy and the effects of the covariates

can be estimated using logistic regression[2].

However, it is possible that a species that is occupying a site can go undetected by the

observer during the time of the survey, in other words, it is possible to have false negatives

within the vector of observations. It has been shown that if the detection error is ignored,

it can lead to biased estimates of the probability of occupancy and of the effects of the

covariates[34, 78]. The risk of such biases has led to the development of methods to account

for imperfect detectability when estimating the site occupancy probability. Some of the

most important contributions to this area of research are discussed.

Correcting the bias using the Horvitz-Thompson estimator

Paul Geissler and Mark Fuller in 1986[30] published what is considered to be the first

approach to estimate the site occupancy probability when the probability of detection is

less than one. In their model, the effects of biotic factors are ignored or assumed to be

insignificant, thus, the probability of occupancy and detection were assumed to be constant.

It is also assumed that it is not possible to misidentify the species (i.e., no false positive

errors), and that the population is closed during the time of the surveys (i.e., the surveys

are close enough in time that no individuals die, are born, move into the patch or move out

of the patch between surveys).

The proposed method consisted of estimating the probability of detection by using repli-

cate visits to the same patches. Once the probability of detection is estimated, an estimate of

the probability of occupancy is obtained using the Horvitz-Thompson estimator[47], which

is an unbiased estimator of a population total that is used in cases where the sampling

probabilities are not the same for all individuals in the population. In the context of the

Geissler and Fuller method, the sampling probabilities for the patches were considered to

be the probability of detection at every patch. The sampling methodology and estimation

procedure are as follows.

n patches are selected for the study. Each patch is visited ki times. The observations

at every site are recorded in a vector y
i
= {yi1, ..., yiki}, where yij = 1 if the species was

detected at the ith patch during the jth survey, and 0 otherwise.

An estimate of the probability of detection, �δi, is then obtained by using the information
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collected at those patches that are occupied with certainty (i.e., patches where the species

was detected at least once). The estimated probability of detection is given by

�δi =
ki�

j=ti+1

yij
ki − ti

, (3.1)

where ti is the number of the survey in which the species was observed for the first time

at the ith patch. It is assumed that the probability of detecting the species in one survey

is the same for all the patches. Hence, the probability that the species is detected at least

once during the ki visits to the patch is estimated by:

�pi = 1−
�
1− �δ.

�ki

, (3.2)

where δ̂· is the average of the estimated detection probability obtained using equation 3.1.

The Horvitz-Thompson estimator for the occupancy is then:

�ψ =
1

n

n�

i=1

wi

�pi
, (3.3)

where wi = 1 if the species was detected at least once over all the visits, and 0 otherwise.

Modeling the detection using a truncated geometric distribution

In 1990, David Azuma, James Baldwin and Barry Noon introduced a new model to estimate

the site occupancy probability[5]. The model was developed to assess the distribution of

the Spotted Owl over the Washington, Oregon and California region. The assumptions for

this model are the same as to those of the Geissler and Fuller model: closed population,

constant probability of occupancy, constant probability of detection, independence between

surveys and no false positive errors. A patch was considered to be occupied if at least a pair

of owls were at the patch.

The sampling procedure consisted of selecting n patches. These patches were visited until

occupancy was established (i.e., detecting a pair of owls), or until s surveys were completed.

The information of the surveys was recorded into the vector v = {v1, ..., vn1} where vi is the

number of surveys that were conducted at the ith patch until the first detection, and n1 is

the number of patches in which the species was detected.

Their approach to obtain an unbiased estimate of the probability of occupancy started

by considering the probability of establishing that a site is occupied (i.e., detecting the
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species at least one time after conducting s surveys). This probability is known as the naive

probability of occupancy ψnaive, and is equal to ψ (1− (1− δ)s), where ψ is the probability

of occupancy and δ is the probability of detecting the species in one survey. An estimate of

the probability of occupancy was then given by:

ψ̂ =
ψ̂naive

1−
�
1− δ̂

�s (3.4)

The observed proportion of occupied sites ψ̂naive = n1/n is an unbiased estimator of

ψnaive. An estimate of δ can be obtained from the information collected from the repeated

surveys to the patches. Consider that the number of surveys required to detect the species

is a random variable V with a truncated geometric distribution. The vector v contains n1

realizations of this random variable. Using the method of moments, and knowing that the

expected value of V is given by E (V ) = 1
δ −

s(1−δ)s

1−(1−δ)s , an estimate of δ can then be obtained

from the following expression:

v =
1

δ̂
−

s
�
1− δ̂

�s

1−
�
1− δ̂

�s , (3.5)

where v = n−1
1

�n1

i=1 vi. The estimates of ψnaive and δ can then be used in equation 3.4 to

obtain an unbiased estimate of the probability of occupancy.

The zero inflated binomial model

In 2002, what is now the most recognized method used today by ecologists to account for

imperfect detection was published, hereafter MacKenzie’s model [73]. Similar to the previ-

ously discussed models, the estimation procedure for MacKezie’s model requires repeated

visits to the same site. The assumptions for this model are: closed population, independent

surveys and no false positive errors.

The sampling protocol is as follows: n patches are selected at random, each patch is

visited ki times, and the absence/presence of the species is recorded for each site at each

visit. The information from the surveys is then collected in the vectors y
i
= {yi1, ..., yiki}

for i = 1, ...n, where yij = 1 if the species is detected at the ith patch during the jth survey,

and 0 otherwise.

The model can be constructed hierarchically by defining a latent variable Zi to indicate
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the true status of the ith patch. Zi = 1 if the patch is occupied and 0 otherwise. This latent

variable has a Bernoulli distribution with probability ψ .

Zi ∼ Bernoulli (ψ) (3.6)

The random variable Yi counts the number of surveys in which the species was detected

at the ith patch, Yi =
�ki

j=1 Yij . The distribution of this random variable is conditioned

on the true status of the patch. If the patch is occupied, Yi follows a Binomial distribution

with parameters ki and δ , where δ is the probability to detect the species at the ith patch.

On the other hand, if the patch is empty, Yi follows a degenerate Binomial distribution

with probability 0. The marginal distribution of Yi is the following zero-inflated binomial

distribution [22] :

f (yi/ψ,δ) = ψ

�
ki
yi

�
δyi (1− δ)ki−yi + (1− ψ) I (yi = 0) , (3.7)

where I (•) is an indicator function that is equal to one if its argument is true and 0 otherwise.

The values of the probability of occupancy and the probability of detection are estimated

by maximizing the likelihood function:

L (ψ, δ; y1, ..., yn) =
n�

i=1

ψ

�
ki
yi

�
δyi (1− δ)ki−yi + (1− ψ) I (yi = 0) (3.8)

If patch specific covariates are available, they can be incorporated to the estimation of ψ

by using the Logistic link, for instance let us denote by xi = {xi1, ..., xip} a vector of habitat

covariates associated with the ith patch. The probability of occupancy can then be defined

as follows:

ψi =
exp (β0 + β1xi1 + ...+ βpxip)

1 + exp (β0 + β1xi1 + ...+ βpxip)
(3.9)

The parameters β0, β1,..., βp quantify the effect of the habitat covariates over the prob-

ability of occupancy. If information of covariates related to the probability of detection is

available, it can be incorporated into the estimation in the same manner.

For those patches for which its status were not established during the time of the study

(i.e., the species was not detected at any of the surveys), the estimated parameters can be

used to calculate what is the probability they were actually be occupied. This probability

can be estimated as follows:
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Pr (Zi=1/yi=0) =
ψ (1− δ)ki

�
ψ (1− δ)ki

�
+ (1− ψ)

, (3.10)

which is the probability that a patch is occupied conditioned on that the species was not

detected after ki surveys.

For a complete guide in how to allocate survey effort (number of patches vs. number

of surveys) see MacKenzie and Royle 2005. Table 3.1 presents the suggested number of

surveys according to an approximated value of the probabilities of occupancy and detection.

Notice that if a species is rare, it is suggested to survey less intensively than if the species is

common. A procedure to assess the goodness of fit for this model can be found in MacKenzie

and Bailey 2004[70].

Table 3.1: Optimum number of surveys to conduct at each site for a standard multiple survey
site occupancy study, ψ: probability of occupancy, δ: probability of detection. Reproduced
from MacKenzie and Royle 2005[74].

ψ

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 14 15 16 17 18 20 23 26 34

0.2 7 7 8 8 9 10 11 13 16

0.3 5 5 5 5 6 6 7 8 10

0.4 3 4 4 4 4 5 5 6 7

0.5 3 3 3 3 3 3 4 4 5

0.6 2 2 2 2 3 3 3 3 4

0.7 2 2 2 2 2 2 2 3 3

0.8 2 2 2 2 2 2 2 2 2

0.9 2 2 2 2 2 2 2 2 2

Incorporating heterogeneity on the probability of detection

In the models that have been discussed so far it is assumed that the probability of detection

is either constant or varies according to some survey specific covariates. The model of Royle

and Nichols (2003)[101] differs in that it assumes that the probability of detection depends

on the abundance in every patch. Although the probability of occupancy is not explicitly
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modeled, it can be derived from the model. The sampling protocol and the assumptions of

the model are the same as that of MacKenzie at al (2002).

The statistical model is as follows: assume that the abundance at every patch, denoted

by Ni, is a realization of a random variable N that follows a poisson distribution with

parameter λ. Hence, the probability for a patch to inhabit Nk individuals is as follows:

Pr (N = Nk) =
λNke−λ

Nk!
(3.11)

Moreover, assume that the probability of detecting the species at the ith patch depends on

the abundance according to the following function:

δi = 1− (1− r)Ni , (3.12)

where r is the probability for a particular individual to be detected, and δi is the probability

of establishing that the ith patch is occupied (i.e., detecting at least one individual). If

the abundance at every patch were known the likelihood (equation 3.13) could be easily

maximized to obtain the estimates of the parameters λ and r.

L (λ, r; y1, ..., yn, N1, ...., Nn) =
n�

i=1

�
ki
yi

�
δyi
i (1− δi)

ki−yi (3.13)

However, since that it is not the case, the variables Ni are treated as random variables;

the estimates of the parameters of interest are obtained by maximizing the likelihood of the

marginal distribution of the observations y1, ..., yn

L (λ, r; y1, ..., yn) =
n�

i=1




∞�

j=1

�
ki
yi

�
δyi
i (1− δi)

ki−yi Pr (N = j)



 (3.14)

The estimated probability of occupancy can then be calculated as follows:

ψ̂ = 1− Pr (N = 0) = 1− e−λ̂ (3.15)

Additional sources of heterogeneity in abundance can be added by allowing the Poisson

mean to vary randomly among patches (modeling N as a negative binomial) or system-

atically as a function of patch-specific covariates[20]. For other forms of incorporating

heterogeneity in the probability of detection see Royle 2006 [97].
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Incorporating false positive errors

An extension of MacKenzie’s’ model was published in 2006 in a paper by Andrew Royle and

William Link [100]. The extension consisted of eliminating from the model the assumption

of no false positive errors, while the assumptions of closed population and independent

surveys were kept. The sampling protocol is the same as that of MacKenzie et al 2002.

The model is hierarchically defined using a latent random variable Zi that describes the

true status of the patch. The probability distribution of the observations Yi is conditioned

on Zi. If the patch is occupied by the target species (i.e., Zi = 1), then Yi follows a Binomial

distribution with parameters δ1 and ki, where δ1 is the probability of detecting the target

species. On the other hand, if the patch is not occupied by the target species (i.e., Zi = 0),

Yij follows a Binomial distribution with parameters δ0 and ki, where δ0 is the probability of

misidentifying the target species. The likelihood for the data can then be written as follows:

L (ψ, δ1, δ0; y1, ..., yn) ∝
n�

i=1

�
ψ
�
δyi
1 (1− δ1)

ki−yi

�
+ (1− ψ) δyi

0 (1− δ0)
ki−yi

�
(3.16)

It is easy to show that this likelihood provides equal support for multiple set of param-

eters values. For example, the likelihood for {ψ = 0.8, δ1 = 0.7, δ0 = 0.4} is the same as

the likelihood for {ψ = 0.2, δ1 = 0.4, δ0 = 0.7}[100]. Royle and Link proposed to solve this

problem by imposing a restriction over the parameters. Specifically, they assumed that the

detection rate at occupied sites is larger than the false detection rate (i.e., δ1 > δ0 ).

Defining multiple occupancy states

In 2007 another extension of MacKenzie’s’ model was published. Nichols et al (2007) [84]

proposed a new model that allowed users to define multiple types for occupancy. The model

was illustrated using data from the California Spotted Owls. Two occupancy states were

defined: occupied with no production of young and occupied with successful reproduction.

The true status of a patch was modeled by a latent variable Zi, where Zi = 0 indicated

that the ith patch was unoccupied, Zi = 1 indicated that the ithpatch was occupied but

there was no production of young, and Zi = 2 indicated that the ith patch was occupied

and there was successful reproduction.

The sampling protocol consisted of surveying n patches, every patch was visited ki times.
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The observations at every patch were recorded in a vector yi = {yi1, ..., yiki} where yij = 0

if the species was not detected at the ith patch during the jth visit; yij = 1 if the species

was detected but there was not certainty about its reproduction state; and yij = 2 if the

species was detected and evidence of successful reproduction was found.

It was assumed that if max {yij , ..., yiki} = 2 there was certainty about the true state

of the ith patch (i.e., Zi = 2 ). On the other hand, if max {yij , ..., yiki} = 1 there were

two possibilities for true state of the ith patch: either Zi = 1 or Zi = 2 . The later

indicates that evidence of successful reproduction was missed by the observer. Similarly, if

max {yij , ..., yiki} = 0 the true state for the ith patch was uncertain, it could be any of the

three possibilities Zi = 0, Zi = 1, or Zi = 2. The model was parameterized according to

the following probabilities:

ψ1
i probability that the ith patch is occupied regardless of reproductive state

ψ2
i probability that young occurred, given that the ith patch is occupied

p1ij probability that occupancy is detected for the ith patch during the jth survey

given that Zi = 1

p2ij probability that occupancy is detected for the ith patch during the jth survey

given that Zi = 2

δij probability that evidence of successful reproduction is found, given that the

species was detected at the ith patch during the jth survey and that Zi = 2

The probability of the observations at every path can then be calculated using these

parameters. For instance, consider a site that is visited three times and the vector of

observations is yi = {1, 0, 2}, the probability of yi is :

Pr (yi = {1, 0, 2}) =
�
ψ1
i ψ

2
i

�
·
�
p2i1 (1− δi1)

�
·
�
1− p2i2

�
·
�
p2i3δi3

�
(3.17)

Given these observations, it is assumed that the site is occupied and the reproduction is

successful (this assumption is based on the observation of the third visit).The first part of

equation 3.17 corresponds to the probability that Zi = 2. The second part accounts for what

is observed in the first visit: the species is detected but evidence of reproduction is missed.

The third part is the probability that the species was missed by the observer. Finally,

the last part accounts for the probability of detecting the species and detecting evidence

of reproduction. The probability for the observations at any patch can be calculated in a
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similar manner. The likelihood for the data is proportional to the product of the probability

of the observations at every patch.

L
�
ψ1,ψ2, p1, p2, δ; y1, ..., yn

�
∝

n�

i=1

Pr (yi) (3.18)

The parameters can be estimated by maximizing the likelihood.

Multiple detection methods and multi-scale occupancy

Nichols et al 2008[83] developed an approach to estimate the probability of occupancy when

multiple detection devices are used. They also consider the use of two parameters for the

occupancy model. One parameter, denoted by ψ, accounts for the probability of a patch

to be occupied. The other parameter, denoted by θj , accounts for the probability that a

species is available for sampling during the jth survey (i.e., the species is within the range

of the detection devices), conditional on that the species is occupying the patch.

The model is parameterized as follows : ψ is the probability a patch is occupied, i.e., the

large-scale probability of occupancy. The product ψθj represents the probability of small-

scale occupancy, i.e., the probability that the species is present at a patch and is exposed

to the detection devices during the jth survey. Similarly, the product ψ (1− θj) is the

probability that the species is present at the large-scale but it is not available for sampling

during the jth survey. Furthermore, pmj is the probability for the species to be detected by

the mth detection device during the jth survey given that the species was available to be

sampled during the jth survey.

The purpose of this parameterization is to discriminates between the device-specific

probabilities of detection and the probability that the species is available for sampling. This

allows users to make a fair comparison about the devices used to detect the presence of the

species.

The sampling methodology is as follows: consider that n patches are surveyed by using l

different detection devices, every patch is surveyed k occasions. The sampling observations

at the ith patch are arranged in a vector as follows yi = {{yi11, ..., yi1l} , ..., {yik1, ..., yikl}},

where yijm = 1 if the species was detected by the mth detection device at the ith patch,

during the jth survey, and 0 otherwise.

As in the previously discussed model, the likelihood is proportional to the product of

probabilities corresponding to the observations obtained at every patch. The parameters
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are then estimated by maximizing the likelihood. An example on how to calculate the site-

specific probabilities is presented as follows. Consider y = {{0, 1} , {0, 0}}, these are the

observations obtained from surveying a patch in two occasions using two different detection

devices.

Pr (y) = ψ ·
�
θ1

�
1− p11

�
p21
�
·
�
θ2

�
1− p12

� �
1− p22

�
+ (1− θ2)

�

First notice that the species was detected one time by one of detection devices in the

first survey, hence it is assumed that the patch is occupied at the large scale. Moreover,

notice that the species was detected at the first survey, therefore, there is certainty that the

patch was occupied during the first survey. The first component of the expression above

accounts for the probability the patch is occupied. The second component accounts for

what is observed during the first survey, θ1 indicates the species was available for sampling,
�
1− p11

�
indicates that the species was not detected by the first device, and p21 indicates

that the species was detected by the second device. The last component accounts for what

it is observed during the second survey. Since the species was not detected by any of the

devices, there is uncertainty about the occupancy status at the small-scale during the second

visit. This uncertainty is taken into account by considering the two possibilities: either the

species was available but it was missed by the two detection devices θ2
�
1− p12

� �
1− p22

�
, or

the species was not available at all (1− θ2).

Non independent surveys

The most recent extension of MacKenzie’s’ model is that of Hines et al (2010)[45]. This

model was developed to incorporate spatial dependency between surveys. Similar to Nichols

et al (2008) occupancy was defined using two spatial scales. The model was inspired and

illustrated using data from a tiger survey that was conducted in Karnataka, India.

Consider that n transects are selected from the study area. Every transect is divided into

k segments. Every segment of every transect is surveyed to determine the presence/absence

of the target species. The observations are collected in a vector as follows yi = {yi1, ..., yik}

where yij = 1 if the species was detected at the jth segment of the ith transect, and 0

otherwise.

The probability of occupancy is modeled using two scales: on the large scale is the

probability for a transect to be occupied, this probability is denoted by ψ. On a smaller scale

is the probability for a segment of a transect to be occupied. On this scale, it is assumed that
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the occupancy for segments that were visited consecutively exhibit a Markovian dependence

as follows: θ denotes the probability that the segment t + 1 is occupied given that the

segment t was empty. Similarly, θ� is the probability for the segment t + 1 to be occupied

given that the segment t was occupied as well. The order of the segments is given by the

order in which the segments were surveyed. It is assume that there is a beginning for the

transect and a consecutive order for the segments. So, the segment on position 1 is followed

by segment in position 2, which is followed by the segment on position 3, etc. as depicted in

figure 3.1. The probability of detection is defined as the probability of detecting the species

given that the species is present on the transect and present on the segment.

1
65432

1

6
5

4
3

2

Figure 3.1: Sampling scheme considered for Hines et al (2010) model. Dotted lines defined
the transects, circles defined the segments at every transect and numbers defined the seg-
ments of every transect. The sampling is assumed to be conducted in the order given by
the numbers. Adapted from Hines et al (2010)[45].

The probability of the observations at every transect can be calculated using the param-

eters defined above, in a similar manner to the two previously discussed model (Nichols et

al 2007 and Nichols et al 2008).

3.2 Dynamic occupancy models

One of the most important assumptions for the previously discussed models is that of closed

population. In other words, the assumption that the probability of occupancy at an specific

patch remains constant during the time of the study. However, if the study is conducted

over a period of time in which changes to the population are likely to occur, it is sensible to

waive this assumption. One way to do that is by modeling local extinction and colonization
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events. MacKenzie et al (2003)[72] presents an extension of the zero inflated binomial model

in which the closed population assumption is partially relaxed. This model allows estimation

of not only the site occupancy probability, but also allows estimation of the colonization

and extinction probabilities when the species is detected imperfectly.

The sampling scheme assumes that n patches are surveyed during T primary sampling

periods, also called seasons. It is assumed that the population is closed during a season (i.e.,

no change in occupancy status), but it is open across seasons. Every patch is visited k times

during every season. The observations at the ith patch can be arranged into a vector as

follows yi = {{yi11, ..., yik1} , ..., {yi1T , ..., yikT }} where yijt = 1 if the species was detected

at the ith patch, during the jth surveyed during the season t.

The model is defined hierarchically by using the latent variable Zit that describes the

true status of the ith patch at the season t ; Zit = 1 indicates that the species is present

at the ith patch during season t, Zit = 0 indicates the opposite. ψit denotes the prob-

ability of occupancy at the ith patch during season t, hence Zit ∼ Bernoulli (ψit). The

number of detections at every patch during a specific season is denoted by yit, for which its

probability distribution is conditioned on the status of the patch. If the patch is occupied,

yit ∼ Binomial (δit, k) where δit is the probability to detect the species at the ith patch

during the season t. If the patch is unoccupied, yit is a degenerate Binomial distribution

with zero probability. The changes in occupancy from one season to another are modeled

by the parameters: εit and γit. εit is the the probability that an occupied patch at season

t become unoccupied at season t+1, i.e., extinction probability. γit is the probability that

an unoccupied patch at season t becomes occupied at season t+1 (i.e., colonization prob-

ability). Figure 3.2 displays the possible transitions from one season to another and their

corresponding probabilities.

MacKenzie et al (2003) presents a likelihood approach to estimate these parameters. For

a Bayesian approach see Royle and Kery (2007)[99].

3.3 Community models

Community models in general can be classified into two categories: models to estimate the

species richness and models to study interspecific interaction between species. Similarly,

site occupancy models have been extended to study these two aspects of a community. A

general description on how these extensions are modeled is presented as follows.
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Figure 3.2: Dynamic site occupancy model. Black squares represent occupied patches,
white squares represent empty patches.The arrows show the possible transitions and their
corresponding probabilities. Reproduced from Royle and Dorazio (2008)[98].

Species richness models

The models to estimate species richness in a community can be seen as a multi-species

occupancy model, for which the total number of species is the quantity of interest.

Dorazio and Royle (2005)[21] proposed a model to estimate species richness when the

species are imperfectly detected. In their model, it is assumed that the community is

closed during the time of the study (i.e., local extinctions or colonization by new species are

unlikely). The sampling protocol is similar to that of the standard site occupancy model for

a single species (zero inflated binomial); n patches are selected from the study area, every

patch is visited k times. The observer must record which species were detected at every

patch in every survey. The observations can be arranged in a matrix as follows:




y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
...

ys1 ys2 ysn
...

...
...

yS1 yS2 ySn





where yij is the total number of times that the ith species was detected at the jth site; s

is the number of species that were detected at least once, and S is a latent variable that

denotes the true species richness.

Similar to the single species occupancy model, the true status of the ith species at the

jth patch is denoted by Zij = 0 and modeled as a Bernoulli distribution with probability

ψi. The number of detections is modeled as follows: if Zij = 1, then Yij ∼ Binomial (δi, k);
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on the other hand if Zij = 0, then Yij = 0 with probability one.

If it is assumed that the number of detected species equals the species richness of the

community (i.e., s=S ), the goal of the analysis is to estimate the parameters ψi and δi

for i = 1, ..., S. The estimates for these parameters can be obtained by either doing a

separate analysis for every species or by doing a joint analysis of the data. In the first case,

the number of estimated parameters will increase as the number of observations increases,

which can ultimately lead to inconsistent estimators. In the second case, it is possible to

impose some restrictions on the parameters, and in doing so, to reduce its number. Dorazio

and Royle (2005) assumed that the parameters ψi and δi were realizations of a bivariate

normal distribution as follows:

�
logit (ψi)

logit (δi)

�
∼ Normal

��
β

α

�
,Σ

�
, (3.19)

where β and α are the logit-scale parameters for the mean probability of occupancy and

the mean probability of detection respectively, and Σ is a measure of the heterogeneity in

occurrence and detection probabilities among species.

However, it is unusual that all the species present in a community are detected during

the time of the study (s ≤ S), moreover, estimating the species richness is precisely the main

goal of this kind of study. One approach to estimate S is to estimate the parameters α, β

and Σ by maximizing the marginal likelihood of the observations. The estimated species

richness is then given by:

Ŝ =
s

1− Pr (y=0/α̂,β̂,Σ̂)
, (3.20)

where Pr (y=0/α̂,β̂,Σ̂) is the probability of not detecting one species at any of the k surveys

in any of the n patches. This is the approach used by Dorazio and Royle (2005). Another

approach is that of the data augmentation proposed by Dorazio et al (2006)[23]. This is

a Bayesian approach were information from unobserved species is included in the analysis,

the advantage of this approach is that the model can be easily implemented using software

such as WinBUGS[66].

Interspecific interaction models

The first extension of the site occupancy models to study interspecific interactions is that

of MacKenzie et al (2004)[71]. The purpose of this model was to estimate the probability of
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co-occurrence of two or more species, and doing so, to make inferences about the interspecific

interactions between them. The assumptions and the sampling protocol for this model are

the same as those for the single species model.

Assume for instance that there are 2 species of interest; n patches are surveyed at k

occasions to determine the presence/absence of every species at every site. The observations

at every patch during every survey are collected in a vector as follows: yij = {yij1, yij2},

where yijs = 1 if the sth species was detected at the ith patch during the jth survey, yijs = 0

otherwise.

The true status of the ith patch is described by the vector Zi = {Zi1, Zi2} , where Zij = 1

if the jth species is present at the ith patch, Zij = 0 if the jth species is absent from the ith

patch. The model is parameterized as follows:

ψ11
i = Pr (Zi = (1, 1)) Probability that the ith patch is occupied by the two species

ψ10
i = Pr (Zi = (1, 0)) Probability that the ith patch is occupied only by species 1

ψ01
i = Pr (Zi = (0, 1)) Probability that the ith patch is occupied only by species 2

ψ00
i = Pr (Zi = (0, 0)) Probability that both species are absent from the ith patch

δ10ij = Pr (yi=(1,0)/zi=(1,0)) Probability of detecting species 1 in the ith site during jth survey given

only species 1 is present

δ01ij = Pr (yi=(0,1)/zi=(0,1)) Probability of detecting species 2 in the ith site during jth survey given

only species 2 is present

r11ij = Pr (yi=(1,1)/zi=(1,1)) Probability of detecting both species at the ith site during jth survey

given that both species are present

r10ij = Pr (yi=(1,0)/zi=(1,1)) Probability of detecting species 1 at the ith site during jth survey given

that both species are present

r01ij = Pr (yi=(0,1)/zi=(1,1)) Probability of detecting species 2 at the ith site during jth survey given

that both species are present

The probability of the observations at every patch in every survey can be calculated by

using the parameters above. For instance, consider the following observations obtained from

visiting a patch on three occasions: yi1 = {1, 0} , yi2 = {0, 0} , yi3 = {1, 0}, its probability
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can be written as:

Pr (yi) =
��
ψ10
i − ψ11

i

� �
δ10i1

�
1− δ10i2

�
δ10i3

��
+
�
ψ11
i r10i1 r

00
i2 r

10
i2

�
(3.21)

The first component of the expression above is the probability of the observations condi-

tioned on that the species 1 is the only one present. The second component accounts for the

probability that both species are present, but the second species was missed by the observer.

The likelihood is then calculated by assuming that the detection histories collected at the

n locations are independent. This model can be modified to make inferences for larger

number of species with the caution that the number of parameters in the model increases

exponentially with the number of species (MacKenzie et all 2004).

Waddle et al (2010)[115] developed a new parameterization for estimating co-occurrence

of interacting species. In their model the occurrence of one species was assumed to depend

on the occurrence of another species, but the occurrence of the latter species was assumed to

be independent of the presence of the first species. The authors illustrated this assumption

by using the predator-prey interaction, for which the occurrence of the prey is affected

by the occurrence of the predator, but the occurrence of the predator is unaffected by the

presence/absence of the prey. In their model it is assumed that each patch is visited multiple

times and that the population is closed.

Denote by P the predator species and denoted by V the prey species (victim species).

The occurrence of the predator and prey species is modeled as follows:

ZP
i ∼ Bernoulli

�
ψP

�

ZV
i ∼ Bernoulli

�
ZP
i ψ

V/P +
�
1− ZP

i

�
ψ

V/P
�

where ZP
i and ZV

i denote the status of the predator and prey species at the ith patch respec-

tively, ψP is the probability of occurrence of the predator species, ψV/P is the probability of

occurrence of the prey species given that the predator is present, and ψV/P is the probability

of occurrence of the prey species given that the predator is absent. The number of detections

for the prey and predator species are modeled by a Binomial distribution with probability

δP and ZP
i δV/P +

�
1− ZP

i

�
δV/P respectively. The probability of the observations and the

likelihood can be obtained by using the parameters above and applying similar arguments
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to those of the previously discussed model.

3.4 Summary

The models previously discussed have two common characteristics: first, the assumption of

closed population, and second, the use of replicate surveys. It is important to recall that

the probability of occupancy is a parameter that depicts the status of a metapopulation

in a snapshot, consequently, the assumption that the population is closed, at least during

the time of the study, is essential for the inferences to be valid. Naturally, the closure

assumption is strongly affected by the length of the time of the study. The longer the time,

the more unlikely for the population to be closed. The second common characteristic is

that of replicate surveys. The idea of using repeated visits to the same site is to be able

to quantify the probability of detection, and doing that, to discriminate between a false

negative and a true absence. If the population is closed, the larger the number of repeated

visits to the same site, the better the estimate of the probability of detection will be.

The predicament is then whether a researcher should conduct a large number of re-

peated visits to obtain a good estimate of the probability of detection, even though the

closure assumption may be violated; or to conduct a few number of surveys to obtain an

imprecise estimate of the detection error while assuring that the population is closed. These

considerations will be further discussed in the next chapter.
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Chapter 4

Critical view of the multiple

survey approach

As mentioned in the previous chapter, the zero inflated binomial (ZIB) model is the most

popular approach to estimate site occupancy probability while accounting for detection error.

This model requires that every patch in the study is visited on multiple occasions. These

surveys need to be conducted in a sufficiently short period of time so that the population

is closed, but also, the time between one survey and the next should be long enough to

assume that every survey is independent from each other. One question that arises when

considering these requirements is the number of required surveys. MacKenzie and Royle

(2005)[74] proposed some guidelines for the design of a study. For instance, they suggested

that if the species is common but difficult to detect, then every site should be visited 34

times (Table 3.1). On the other hand, if the species is rare and difficult to detect, then

the number of suggested surveys is 16. Assuming there are no budget restrictions and the

observer can make as many surveys as needed, then the question is to determine the time

of the study so that the population can be assumed to be closed and the surveys can be

assumed to be independent. However, if the assumption of closed population is not met by

the data, what inferences can be made about the population? In practice, there are strong

restrictions in sampling budget, hence only a few number of surveys can be conducted.

Being this the case, is the information collected from a few surveys any good?

This chapter attempts to answer the previous questions by evaluating the zero inflated

binomial model. The statistical properties of the ZIB are discussed in section 4.1. Sections
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4.2 and 4.3 assess the robustness of the model to the violation of its assumptions.

4.1 Statistical properties

This section presents an assessment of the statistical properties of the ZIB model in circum-

stances where time, effort and cost limitations makes the number of visited sites small and

the minimum number of repeated surveys are conducted (k = 2 visits per location). This

assessment was carried out by using simulated data under two settings: one for which it was

assumed that probabilities of occupancy and detection were constant; and another in which

it was assumed that the probability of occupancy and detection depended on some habitat

and other exogenous covariates.

For the first setting, all the possible combinations of three different values for the

probability of occupancy and two values for the probability of detection were simulated

(ψ = {0.80, 0.50, 0.30}, δ = {0.30, 0.10}). On every combination the number of sites was set

to be 30. For the second setting, the probability of occupancy and detection were assumed

to depend on the covariates x1, x2, w1 and w2 according to the Logistic link defined as:

ψi =
exp (β0 + β1x1i + β2x2i)

1 + exp (β0 + β1x1i + β2x2i)

and

δij =
exp (θ0 + θ1w1i + θ2w2i)

1 + exp (θ0 + θ1w1i + θ2w2i)

where x1i ∼ Normal (2, 1), x2i ∼ Bernoulli (0.55), w1ij ∼ Normal (1, 1.5) and w2ij ∼

Bernoulli (0.65). The values of the parameters β = {β0,β1,β2} and θ = {θ0, θ1, θ2} were

selected so that the mean probability of occupancy was 0.34 and the mean probability of

detection was 0.15. The number of visited sites for this regression setting was 100. In both

settings, 100 data sets were generated for each combination of parameters . The parameters

for every data set were estimated using the Maximum Likelihood Estimator and Bayesian

approaches. The specifics and results from each approach are described below.

4.1.1 Maximum Likelihood Estimator

The Maximum Likelihood Estimates (MLE) of the parameters were obtained assuming two

different models: the ZIB model (equation 4.1) and the Naive model. The later model is
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based on the assumption that the probability of detection is one, i.e., ignoring detection

error. Equation 4.2 presents the likelihood for the Naive model for which the vector of

observations at every site are transformed into a binary variable denoted by y∗i , for which

y∗i = 1 if the species was detected at least once during the k surveys, and y∗i = 0 if the

species was not detected in any of the surveys.

L (ψ, δ; y1, ..., yn) =
n�

i=1

ψ

�
ki
yi

�
δyi (1− δ)ki−yi + (1− ψ) I (yi = 0) (4.1)

L (ψ, δ; y∗1 , ..., y
∗
n) =

n�

i=1

ψy∗
i (1− ψ)1−y∗

i (4.2)

The likelihood in both cases was maximized using a quasi-Newton method algorithm im-

plemented in R[113]. This algorithm not only provides the values of the parameters for which

the likelihood is maximized, but also provides an estimate of the Fisher information that

was subsequently used to estimate the standard error of the parameters. In addition, 100

bootstrap samples were generated to estimate the standard error and a confidence interval

for the parameters of interest on each data set (See Appendix A for detailed algorithm).

Table 4.1 presents a summary of the simulation results for the first setting. In general

the MLE of the ZIB tend to overestimate the probability of occupancy. In some cases, mean

estimated values are more than twice the true occupancy. However, when the probability

of occupancy is large (e.g. 0.80), the mean estimate of the ZIB is close to the true value

even if the probability of detection is small. Notice that when the probability of detection

is small (e.g. 0.10), no matter how large the probability of occupancy is, at least 50% of

the time the estimated probability of occupancy is 1. On the other hand, the Naive model

underestimates the true probability of occupancy in all cases: the larger the probability of

detection is, the smaller the bias of the Naive estimates will be. It is also found that even

though the estimates obtained by the Naive model are highly biased, they are more stable:

the median and mean of the Naive estimates are close to each other and its standard errors

are smaller than those of the ZIB.

Table 4.2 presents the true standard error for the parameters along with the mean

estimated standard error obtained from the bootstrap sampling and the inverse of the Fisher

Information Matrix (FIM). It is found that the estimated standard error obtained from the

FIM is approximately 80% smaller than the true value for both models (ZIB and Naive).

Moreover, when the detection is low, many of the FIM were singular, thus they could not be
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Table 4.1: Summary of the maximum likelihood estimates for the site occupancy (ψ) for
100 simulated data sets with 30 sites, two surveys and constant probability of occupancy
across the sites and the probability of detection is the same across the sites and surveys.

true values ZIB Naive
δ ψ mean median se mse mean median se mse

0.10 0.29 0.77 1.00 0.42 0.39 0.06 0.07 0.04 0.06
0.10 0.50 0.84 1.00 0.34 0.23 0.10 0.10 0.05 0.16
0.10 0.80 0.88 1.00 0.27 0.08 0.15 0.13 0.07 0.42
0.30 0.30 0.60 0.53 0.38 0.23 0.16 0.17 0.06 0.02
0.30 0.49 0.70 0.67 0.28 0.11 0.26 0.27 0.07 0.06
0.30 0.79 0.80 0.94 0.22 0.05 0.41 0.40 0.10 0.16

Table 4.2: Comparison of the true standard error and estimated standard error for ZIB and
Naive models. True standard error (se), mean estimated standard error using bootstrap�
�seB

�
, mean estimated standard error using fisher information

�
�seF

�
and proportion of

cases for which the estimated Fisher information could be used to estimate the standard
error .

ZIB Naive
δ ψ se �seB �seF % se �seB �seF %

0.10 0.29 0.416 0.289 0.071 55% 0.039 0.037 0.002 100%
0.10 0.50 0.337 0.245 0.049 85% 0.052 0.051 0.003 100%
0.10 0.80 0.272 0.169 0.038 96% 0.065 0.062 0.004 100%
0.30 0.30 0.376 0.222 0.040 97% 0.064 0.064 0.004 100%
0.30 0.49 0.278 0.352 0.086 100% 0.069 0.094 0.006 100%
0.30 0.79 0.219 0.313 0.070 100% 0.100 0.123 0.008 100%

used to estimate the standard error. This indicates that the standard errors and confidence

intervals based on the inverse of the FIM are inappropriate in small data sets. On the other

hand, although the bootstrap samples also provide biased estimates of the standard errors,

their bias is smaller than those obtained from FIM. For that reason, it is recommended to

use bootstrap samples to estimate the confidence intervals and the standard errors of the

parameters.

Table 4.3 presents the coverage of the bootstrap confidence intervals and some statistics

related to their length. It is observed that the coverage of the confidence intervals for both

the ZIB and the Naive models are below the nominal coverage of 90%. Notice that, for at

least 50% of the cases, when the probability of detection and the probability of occupancy

are both low, the confidence intervals for the ZIB cover the whole the range (0, 1). The

confidence intervals for the Naive model are shorter than the confidence intervals for the
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Table 4.3: Comparison of the coverage, mean and median length of the 90% confidence
intervals for the constant probability of occupancy and constant probability of detection
case.

ZIB Naive
δ ψ % mean

length
median
length

% mean
length

median
length

0.10 0.29 65% 0.65 1.00 0% 0.11 0.13
0.10 0.50 55% 0.55 0.95 0% 0.16 0.17
0.10 0.80 34% 0.32 0.00 0% 0.20 0.20
0.30 0.30 62% 0.55 0.79 33% 0.20 0.20
0.30 0.49 97% 0.90 0.93 3% 0.29 0.30
0.30 0.79 92% 0.82 0.87 0% 0.39 0.37

ZIB and they have a poor coverage; in 4 out of the 6 simulated cases, none of the confidence

intervals for the Naive model contained the true value of the parameter.

Table 4.4a presents the results of the simulation study under the covariates setting for

the ZIB model. It is found that the median of the MLE is relatively close to the true value

of the parameters, while the mean is highly biased. This indicates that the MLE for the

ZIB are unstable. The FIM was singular for 92% of the cases and the estimated standard

error obtained from the 8% left was extremely biased. Although the bootstrap sampling

also provides biased estimates of the standard errors, it does a better job than the FIM. The

bootstrap confidence intervals for the ZIB are very large, but coverage is relatively close to

the nominal coverage. The mean estimate of the probability of occupancy is close to the

true value (true:0.34, mean estimate: 0.37).

The Naive estimates for the regression setting are summarized in Table 4.4b. It is found

that the median of the estimates for Naive model is close to the true value in all parameters

but the intercept (β0). The difference between the mean and the median of the estimates

is not as large as the one observed for the ZIB model, which indicates that the estimates

of the Naive model are more stable than those of the ZIB. Similarly, the standard errors of

the Naive model are at least 12 times smaller than those for the ZIB model. Once more,

the standard error of the parameters is better estimated by the bootstrap samples. The

confidence intervals for the Naive model are at least 10 times shorter than those for the ZIB

model, but their coverage is smaller than the nominal coverage, specially for the intercept

(β0). The Naive estimated mean occupancy is approximately 76% below the true value

(true: 0.34, mean estimate: 0.08).
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Table 4.4: Summary of the results of the estimated parameters for the occupancy for 100
simulated data sets, with n=100, two surveys and two covariates for occupancy.

(a) ZIB

Confidence Intervals
true mean median se �seB �seF

(n=8)
% mean

length
median
length

β0 0.500 46.93 1.039 108.3 413.65 47063491 94% 232.7 199.2
β1 -1.00 -32.3 -1.46 64.89 391.06 48060 87% 164.6 122.3
β2 1.200 29.34 2.004 65.35 203.49 46927638 85% 214.0 163.6

(b) Naive

Confidence Intervals
true mean median se �seB �seF

(n=85)
% mean

length
median
length

β0 0.50 -3.57 -1.83 5.45 9.28 2074191 11% 11.75 17.90
β1 -1.00 -0.66 -0.68 0.39 24.62 0.19 78% 1.59 1.38
β2 1.20 2.50 0.92 5.34 10.62 2074191 79% 12.26 18.12

In conclusion, the MLE of the ZIB provides unstable estimates of the parameters for

small data sets. The standard error is better estimated by the bootstrap samples than by

the FIM. The MLE of the Naive model are biased but stable.

4.1.2 Bayesian approach

The parameters were estimated under the Bayesian approach using non-informative priors.

For the first case (constant probability of occupancy and detection) three sets of priors

were considered: Uniform priors for the probabilities of occupancy and detection, Normal

priors for the the log odds of the probability of occupancy and detection, and Uniform

priors for the odds of the probability of occupancy and detection. For the second case

(i.e. covariates setting), the same prior distribution was used for all the parameters (i.e.,

βi ∼ Normal (0, 100) for i=0,1 and 2; and θi ∼ Normal (0, 100) for i=0,1, and 2). The mean,

standard deviation and 90% credible interval of the posterior distribution were estimated

for every parameter using WinBUGS[66]. Figures 4.1, 4.2 and 4.3 present an example of

the prior and posterior distributions that are obtained when using different sets of priors

and various number of visited sites.

Figure 4.1 displays the prior probability distribution for the probability of occupancy

(ψ), the log-odds
�
log

�
ψ

1−ψ

��
, and the odds

�
ψ

1−ψ

�
for the first set of priors (ψ ∼

Uniform (0, 1)). Notice that when the ψ is uniformly distributed from 0 to 1, the cor-
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Figure 4.1: Uniform prior distribution for the probabilities. Probability distributions for
the probability of occupancy ψ, the log odds β = log

�
ψ

1−ψ

�
and the odds exp (β) = ψ

1−ψ .
True value of the parameter is represented by the vertical dotted line.

responding prior distribution for the log-odds is unimodal and symmetric while the prior

distribution of the odds is skewed to the right. It is observed that as the number of visited

sites increases, the center of the posterior probability distribution gets closer to the true

value of the parameter. However, even with 1000 visited sites, the densities of the posterior

distribution for the probability of occupancy and the log odds are not yet centered at the

true value.

Figure 4.2 presents the prior and posterior distributions for the second set of priors (log

-odds∼ Normal(0, 100)). In this case, the prior distribution of the probability of occupancy

resembles the shape of a Beta probability distribution with shape parameters smaller than

1. The probability distribution for the odds is once again skewed to the right. Notice that

when the number of visited sites is 30 or 100 the densities of the posterior distribution of

the parameters (i.e, probability of occupancy, log-odd and odds ) are concentrated around

values that are far from the true values. When the number of visited sites is 1000, only

the posterior distribution of the log-odds is centered around the true value while the largest

concentration of the densities for the other two parameters is still far from the true val-

ues. Finally, figure 4.3 displays the prior and posterior distributions for the third set of

priors (odds ∼ Uniform(0, 1000)). In this case, the prior probability distribution for the
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Figure 4.2: Normal prior distribution for the log-odds. Probability distributions for the
probability of occupancy ψ, the log odds β = log

�
ψ

1−ψ

�
and the odds exp (β) = ψ

1−ψ . True
value of the parameter is represented by the vertical dotted line.

probability of occupancy is skewed to the left and concentrated at 1, and the prior prob-

ability distribution for the log-odds is also skewed to the left but concentrated around 4.

The posterior distribution of the probability of occupancy preserves the same shape of the

prior distribution in all the cases (i.e., when the number of visited sites is 30, 100 or 1000).

This indicates that the information provided by the data does not have a big effect on the

estimation procedure. A similar behavior is observed in the other two parameters (log-

odds and odds): there are small differences between the posterior and the prior probability

distributions, especially when the number of visited sites is 30 or 100.

Table 4.5 presents the summary of the simulation results for the constant probability

case. It is found that the mean and median estimates obtained for the first set of priors are

always unbiased, except when the probability of occupancy is large and the probability of

detection is low (Table 4.5a). For the second set of priors, the estimates are highly biased

in all the cases and the standard deviation is larger than that obtained when using Uniform

priors for the probability (Table 4.5b). Lastly, for the third set of priors, a posterior mean

of 0.99 is obtained for all the data sets in all the cases. This again is an indication of the

poor effect of the data over the posterior distribution (Table 4.5c).
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Figure 4.3: Uniform priors for the odds. Probability distributions for the probability of
occupancy ψ, the log odds β = log

�
ψ

1−ψ

�
and the odds exp (β) = ψ

1−ψ . True value of the
parameter is represented by the vertical dotted line.

Table 4.6 presents a summary of the simulation results for the regression setting. It is

observed that the parameters are overestimated, especially the intercept (β0) for which the

mean estimate is 20 times larger than the true value. The coverage of the credible intervals

is smaller than the nominal coverage of 90%, and the estimated mean occupancy is larger

than the true mean occupancy (true: 0.34, mean estimate: 0.84).

In summary, it is found that the accuracy and precision of the estimates of the probability

of occupancy are strongly correlated to the prior distribution. For the constant probability

setting, it was found that the estimates obtained from a single data set drastically differ

depending on what prior is being used, even though all the priors are assumed to be non-

informative. For the regression setting, it is found that the estimates are biased and the

true probability of occupancy is largely overestimated.

4.1.3 Summary

The previous analysis showed that neither the Maximum Likelihood approach nor the

Bayesian estimates provide reliable estimates of the probability of occupancy when de-

tection or occupancy probability is small or when the number of sites and number of visits
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Table 4.5: Bayesian estimates. Summary for 100 simulated data sets with 30 sites, two
surveys, constant probability of occupancy and constant probability of detection. Mean,
median and s.d. are summary statistics of the means of the posterior distribution.

(a) Uniform priors for the probabilities.

Credible Intervals
δ ψ mean median s.d. % mean

length
median
length

0.10 0.30 0.32 0.30 0.09 100% 0.79 0.79
0.10 0.50 0.40 0.37 0.11 100% 0.79 0.79
0.10 0.80 0.49 0.48 0.11 91% 0.74 0.74
0.30 0.30 0.39 0.43 0.12 100% 0.67 0.67
0.30 0.50 0.56 0.58 0.12 100% 0.63 0.63
0.30 0.80 0.72 0.73 0.08 100% 0.51 0.51

(b) Normal priors for the log-odds of the probabilities.

Credible Intervals
δ ψ mean median s.d. % mean

length
median
length

0.10 0.30 0.66 0.69 0.20 100% 0.93 0.93
0.10 0.50 0.77 0.79 0.13 100% 0.84 0.84
0.10 0.80 0.82 0.85 0.14 100% 0.72 0.72
0.30 0.30 0.67 0.74 0.25 74% 0.78 0.78
0.30 0.50 0.83 0.88 0.11 79% 0.61 0.61
0.30 0.80 0.93 0.94 0.04 91% 0.36 0.36

(c) Uniform priors for the odds of the probabilities.

Credible Intervals
δ ψ mean median s.d. % mean

length
median
length

0.10 0.30 0.99 0.99 0.00 0% 0.02 0.02
0.10 0.50 0.99 0.99 0.00 0% 0.02 0.02
0.10 0.80 0.99 0.99 0.00 0% 0.02 0.02
0.30 0.30 0.99 0.99 0.00 0% 0.02 0.02
0.30 0.50 0.99 0.99 0.00 0% 0.02 0.02
0.30 0.80 0.99 0.99 0.00 0% 0.02 0.02

Table 4.6: Bayesian estimates under the regression setting. Summary for 100 simulated
data sets with 100 sites, two surveys and two covariates for the probability of occupancy.
The prior distribution for all the parameters is Normal(0,100).

Credible Intervals
true mean median s.d. % mean median

β0 0.50 5.69 5.96 4.16 78% 20.77 21.31
β1 -1.00 0.82 0.45 4.26 85% 18.27 21.02
β2 1.20 5.01 4.63 3.57 80% 21.89 23.09
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per site is small. The MLE of the ZIB have large biases, are numerically unstable and the

corresponding confidence intervals have smaller than nominal coverage, while the Bayesian

estimates in some cases are extremely biased and their credible intervals provide very poor

coverage. Chapter 5 presents an alternative method of estimation, based on penalized like-

lihood. This method is numerically stable, the estimators have smaller mean square error

than the MLE and associated confidence intervals have close to nominal coverage.

4.2 Closure assumption

The closure assumption is essential for site occupancy studies since it guarantees that the

status of the metapopulation at the time of the study is accurately described by the collected

data. There are many circumstances in which the assumption of a closed population is not

met by the data. Let’s consider, for instance, the case in which the target species randomly

moved in and out of a sampling unit. In that case, according to MacKenzie (2005)[68], the

estimate obtained from the ZIB model is an unbiased estimate of the proportion of used

sites rather than the proportion of occupied sites.

Another circumstance is that in which some of the locations within the study area un-

dergo extinction and colonization events during the time of the study. Rota et al. (2009)[96]

proposed a modeling procedure that allowed testing for violations of closure under this cir-

cumstances. The procedure consisted of using a Likelihood Ratio Test to evaluate the rela-

tive support between a closed model, in which it is assumed that the population is closed,

and an open model, in which the extinction and colonization probabilities are estimated by

using the model introduced by MacKenzie et al. (2003)[72] (section 3.2). The procedure

was applied by the authors to two avian point-count data sets collected in Montana and

New Hampshire (USA). The first data set contained the information collected at 165 sites

that were visited twice with on average two weeks between visits. These two visits served

as primary sampling periods for the open model. The secondary sampling periods were

defined by dividing each 10 minutes survey into four 2.5 minutes sampling intervals. The

second data set contained information for 184 sites that were visited three times (6-8 days

between surveys) using 10 minute surveys. Similar to the first data set, the days were used

as primary sampling periods, and the 10 minute surveys were divided into three equally

long intervals of time that served as secondary sampling periods. The hypothesis that colo-

nization and extinction events occurred during the time of the study was better supported
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for 71% and 100% of the species on each data set respectively. It was also found that for

those species for which the open model was better supported, the estimated probability of

occupancy obtained for the closed model was larger than that obtained for the open model.

This may indicate that when the assumption of closed population is not met by the data

the standard occupancy model tends to overestimate the probability of occupancy.

A simulation study conducted by Bayne et al.(2010)[6] corroborated this tendency. They

used a spatial simulation to generate data that would occur in a multiple visit survey if

birds move within sites between repeated visits. The data was then analyzed to estimate

the density of birds for different levels of bird density, territory size and number of surveys.

It was found that occupancy estimates of density overestimated the size of the population

for large (5 ha) and intermediate territories (3 ha). On the contrary, it underestimated the

population size when birds were abundant but had territories smaller that the point count

area of 3 ha. The bias was highest when birds had territories larger that the point count

area.

In summary, the study conducted by Rota et al. (2010) demonstrated that the assump-

tion of closed population is not tenable for a large proportion of species even for short

intervals of time between surveys. Bayne et al. (2010) showed that bias due to violations

of the closure assumptions can be substantial and that its strength and direction largely

depends upon the size of the target species’ territory, which is very difficult to determine

with certainty. In conclusion, both studies showed the need to develop models that, while

accounting for the detection error, allow estimation of site occupancy without relying on

the assumption of a closed population.

Chapter 6 presents an approach for estimating site occupancy probability in the presence

of detection error that requires only a single survey and does not require the assumption of

population closure. Therefore, this single survey approach facilitates analysis of data sets

for which the assumption of closure is not met.

4.3 Independent surveys

It is still unclear what are the consequences of the violation of the assumption that the re-

peated visits are independent from each other. However, it is suspected that this assumption

may be problematic particularly if the surveys are conducted over short periods of time[96].

Using sample data for three species of birds, Riddle et al. (2010)[93] found strong evidence
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against independence between repeated surveys (in their study the repeated surveys were

the result of dividing a 10-minutes surveys into 4 sampling intervals of 2.5 minutes), and

more importantly, that ignoring the dependency between subsequent surveys could lead to

bias in occupancy.

There are many scenarios in which independence between the observations from a site

cannot be assumed. Sites may be correlated as a result of mechanisms such as dispersal or

the influence of unobserved environmental variables [58, 117]. However, to date, the only

modeling approach in which the assumption of the independence is relaxed is that of Hines

et al. (2010) (section 3.1). For that reason, I decided to use the Hines model to illustrate

the biases that can be obtained when the dependence between surveys is ignored.

According to Hines model, observations for the site occupancy study are collected from

independent transects, where each transect is constituted by k segments. The probability of

occupancy at every segment is conditioned on whether the species is present or absent at the

corresponding transect, and on the presence/absence of the species at the precedent segment

(Figure4.4). Hines et al. (2010) conducted a simulation study to evaluate the performance

of their model. They considered the case of 200 transects, each transect consisted on 10

segments, and the probability of occupancy at the transect level was set to be 0.75. The

probability for a segment to be occupied was set to 0.10 if the precedent segment was empty

and 0.50 if it was occupied. The probability of detecting the species at every occupied

segment was set to 0.80. The estimates obtained for a 1000 data sets, generated under the

Markovian model, revealed that the estimated site occupancy obtained from the standard

model (assuming independence) was approximately 30% smaller than the true value, while

the estimates obtained from the true model (Markovian dependence) were unbiased although

unstable (for 15% of the data sets the optimization algorithm was unable to maximize the

likelihood).

Unfortunately, the simulation conducted by Hines et al.(2010) was restricted to a single

sample size and using relatively large values for the probability of occupancy and detection.

With the purpose of getting a more comprehensive evaluation of the model, I conducted

a simulation study using different number of transects (10, 100, 150 and 200), two values

for the number of segments on each transect (k=5 and k=10), three different levels of

probability of occupancy (0.30, 0.50, 0.75) and a lower level of the probability of detection

(0.30). The probabilities of occupancy at every segment were the same used by Hines et

al.(2010) (i.e., θ = 0.10 and θ� = 0.50). For every combination of parameters, 100 data

42



!'

!
1-!'

1-! 1-!

!'

1-!'
!

segment  
      1

segment  
      i-1

segment  
      i

segment  
      i+1

segment  
      k

Figure 4.4: Markovian dependency on the observations from an occupied transect. White
squares represent an empty segment, black squares represent an occupied segment. The
probability for the ith segment to be occupied depends on whether the previous segment
was occupied or not.

sets were generated. The parameters were estimated using the likelihood for the true model

(Markovian dependency) and the standard occupancy model (ZIB model). Figure 4.5 shows

the mean percentage bias for the probability of occupancy. The results obtained from these

simulations resemble the results obtained by Hines et al. (2010); for a large number of

transects, a large number of segments and a large probability of occupancy, the Markovian

estimates are unbiased while the estimates of the ZIB are in average 31% smaller than the

true value. It was also found that if the probability of occupancy is high (0.75) or medium

(0.50), the ZIB estimates are negatively biased.. In addition, the largest positive bias for the

ZIB model was obtained for a low probability of occupancy and a small number of segments.

For a large probability of occupancy, the estimates for the Markovian model are unbiased

in all the cases. If the probability of occupancy is medium or low, then the Markovian

estimates are biased for small number of segments.

In summary, the estimates obtained for the ZIB when the surveys were not independent

were biased. The strength and direction of the bias depends on the level of the probability of

occupancy and the sampling effort (number of transect/sites). However, as it was mentioned

before, the model from Hines et al. (2010) explores only one of the several circumstances

in which the independence assumption is not met. Another type of dependence is that of

cluster sampling in which neighboring sites are correlated. Chapter 7 introduces a model

that was developed to model the correlation between sites on that situation. This model

allows estimation of site occupancy at the site level using information collected in a single
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Figure 4.5: Mean percentage bias for the ZIB and the Markovian model. Diamonds show
bias for low probability of occupancy (0.30), filled squares show bias for medium probability
of occupancy (0.50) and circles shows bias for the low probability of occupancy (0.75).
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Chapter 5

Penalized Likelihood: a way to

improve MLE
1

The simulation study discussed in section 4.1 revealed that the estimates of the site occu-

pancy obtained from the ZIB model were unstable, in particular when the number of sites

and surveys is small. It was also found that although the Naive estimates are biased, their

likelihood is well behaved and provides stable estimates of the parameters. This chapter

presents an alternative method of estimation that combines the correctness of the MLE with

the stability of the Naive by means of Penalized likelihood. The estimation procedure is

described in section 5.1. Section 5.2 presents the results of the simulation study conducted

to evaluate the performance of the proposed method. The application of the method is then

illustrated in section 5.3 for two site occupancy studies: one for the Blue Ridge Two Lined

Salamander and the other for the Black-capped Chickadee.

5.1 Statistical model and estimation procedure

Consider a standard site occupancy study in which n sites are visited k times to determine

the presence/absence of the target species. The surveys are assumed to be independent

of each other and the sites are assumed to be independent of each other. ψi denotes the

probability of occupancy for the ith site and δij denotes the probability of detecting the

target species at the site during the jth survey, given that the species is present. The
1A version of this chapter has been published. Moreno M and Lele S R. Ecology 2010, 91: 341-346.
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observations at every site during every visit are denoted by yij for which yij = 1 indicates

that the species was detected at the ith site during the jth survey and yij = 0 indicates that

the species was not detected. The likelihood function for the ZIB model in the general case

is:

L (ψi, δij) =
n�

i=1



ψi




k�

j=1

(δij)
yij (1− δij)

1−yij



+ (1− ψi) I (yi. = 0)



 (5.1)

where yi. =
�k

j=1 yij and I (•) is an indicator function that is equal to 1 if its argu-

ment is true and 0 otherwise. If habitat or sampling covariates are available, these can

be incorporated into the likelihood by using the logistic link. For instance, assuming that

xi = {xi1, ..., xip} and wij = {wij1, ..., wijm} are the values of the covariates at the ith site

during the jth survey, the probability of occupancy and detection can then be written as

follows:

ψi =
exp (β0 + β1xi1 + ...+ βpxip)

1 + exp (β0 + β1xi1 + ...+ βpxip)
, (5.2)

δij =
exp (θ0 + θ1wij1 + ...+ θmwijm)

1 + exp (θ0 + θ1wij1 + ...+ θmwijm)
, (5.3)

if the probability of occupancy and probability of detection are constant, that is ψi = ψ and

δij = δ. The likelihood function is then reduced to:

L (ψ, δ) =
n�

i=1

�
ψ

��
k

yi.

�
δyi. (1− δ)k−yi.

�
+ (1− ψ) I (yi. = 0)

�
(5.4)

where ψ = exp(β0)
1+exp(β0)

and δ = exp(θ0)
1+exp(θ0)

. The MLE of the parameters β and θ is obtained by

maximizing the likelihood function (equation 5.1). The results in tables 5.1 and 5.2 illustrate

that the estimators based on maximizing this likelihood function can be quite unstable, with

large biases, large standard errors and incorrect coverage for the confidence intervals.

An alternative estimation method for the parameters related to the occupancy model
�
β
�

is to ignore the detection error, hence to obtain the Naive estimate. The likelihood

function in this case is simply
�n

i=1 (ψi)
y∗
i (1− ψi)

1−y∗
i where y∗i = max

j
(yij). It has been

shown that this estimator, for small number of visits can have large negative bias, but is

extremely stable with small standard errors (section 4.1). Nonetheless, if the number of

surveys and/or the probability of detection is large, the Naive estimator can be unbiased

(Figure 5.1).
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Figure 5.1: Percentage bias of Naive estimate for different values of the probability of
detection (0.1, 0.3, 0.5, 0.7, 0.9, 1). Notice that as the probability of detection and the
number of surveys increases the bias decreases.

In an attempt to combine the theoretical correctness of the MLE with the stability of

the Naive estimator we proposed a Penalized likelihood approach. In general, the penalized

likelihood is used in situations where the likelihood function is relatively flat or is too

bumpy. Such a likelihood function makes the task of numerical maximization unstable. By

imposing restrictions through the penalty function, the likelihood function is sharpened and

the optimization problem is stabilized. For example, in non-parametric density estimation,

imposing restrictions on the smoothness of the density estimate stabilizes the numerical

optimization problem [33]. A review of the literature suggests that there is no unique

specification of the penalty term in all instances nor is there a theoretical basis to choose

one. The penalty term is usually chosen based on heuristic arguments. The main restriction

on the penalty term is that as the sample size increases, it should converge to zero so that the

asymptotic properties of the MLE are maintained. Consequently, we proposed the following

penalized log-likelihood:

lp (ψ, δ) =

�
n�

i=1

ln

�
ψ

�
k

yi.

�
δyi. (1− δ)k−yi. + (1− ψ) I (yi. = 0)

��
(5.5)

−
�
λ (k, δ0, n) · f

�
ψ, ψ̂naive

��
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where λ
�
k, δ̂0, n

�
and f

�
ψ, ψ̂naive

�
are

λ
�
k, �δ0, n

�
=

����
m�

i=0

ˆvar
�
δ̂i
�
·
�
1−

�
1− �δ0

�k
�
·
�
1− ψ̂naive

�
(5.6)

f
�
ψ, �ψnaive

�
=

p�

i=0

| βi − β̃i | (5.7)

The first term in equation 5.5 corresponds to the likelihood of the ZIB and the second

term corresponds to the penalty function. The penalty function, in density estimation, pe-

nalizes or down-weights those values that are too far from the presumed properties of the

density. For occupancy studies, the Naive estimator provides a ballpark estimate of where

the true parameter might be. Thus, in our case, we penalize or down-weight those values

of the likelihood that are “too far” from the Naive estimator. The distance from the Naive

estimator is accounted by the term:
�p

i=0 | βi − β̂i,naive | . It is also obvious that if the

detection probability is low, we should not rely too much on the Naive estimator unless the

number of surveys is large. To reflect this, we use the initial estimate of the mean detec-

tion probability obtained using the MLE and weight this distance by:
�
1−

�
1− δ̂M

�k
�

.

Further, we know that if the occupancy is high, we should not penalize the MLE too much

because in this case the likelihood function is well behaved. Thus, we multiply by the term
�
1− ψ̂naive

�
, which gives us a rough idea of how large the average probability of occupancy

is. We should also take into account the fact that if the mean detection parameters are well

estimated, the likelihood function is well behaved and hence we should not penalize it too

much. To reflect this, we multiply by
�

�m
i=0 ˆvar

�
θ̂i
�

. This term also has an added bene-

fit; as k or n increase, it converges to zero and the penalized likelihood function approaches

the likelihood function (as it should).

One can also justify the penalty term from a Bayesian perspective. In this case, the

penalty function can be seen as an approach to incorporate prior information (e.g. the

density function is twice differentiable or has single mode) into the likelihood [32]. In

our case, the prior information will come from the Naive estimate. Let’s suppose we put

independent, double exponential priors (with common scale parameter) on the occupancy

parameters:

π (βi) =
λ (·)
2

exp
�
−λ (·) | βi − β̃i |

�
for i = 0, ..., p

Where β̃i and λ (·) are the location and the scale parameter respectively. Now, let’s
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Figure 5.2: Comparison of the likelihood of the ZIB and the Penalized likelihood for one set
of data with n=30 and k=2. Vertical black line indicates the true value of the probability
of occupancy, horizontal black line indicates the true value of the probability of detection.
Notice that the range of values for which the penalized likelihood is maximized is small and
contains the true value of the parameters, unlike the ZIB likelihood.

suppose we take the location parameters equal to the naïve estimates and the common scale

parameter equal to:

λ (k, δ0, n) =

����
m�

i=0

ˆvar
�
δ̂i
��

1−
�
1− δ̂0

�k
��

1− ψ̂naive

�

It is obvious that the mode of the posterior distribution will be obtained by maximizing

the log-posterior density:

lp = log




n�

i=1

ψi




k�

j=1

δ
yij

ij (1− δij)
1−yij



+ (1− ψi) I (yi· = 0)





−
�
λ (•)

�
p�

i=0

| βi − β̃i |
��

Notice that this is identical to the penalized likelihood function (equation5.5). It is

expected that the effect of the prior distribution is reduced as the number of data points

increases. Similarly, the effect of the penalty function is reduced as the number of data

points increases.

In summary, by using the penalized likelihood we shrink the MLE towards the Naive

estimator (as depicted in Figure 5.2). The shrinkage factor, λ (k, δ0, n), is determined by the
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Algorithm 5.1 Maximum Penalized likelihood Estimation Procedure

1. Obtain the MLE for the detection parameters: θ̂0, θ̂1, ..., θ̂m, their variances,
ˆvar

�
θ̂0
�
, ˆvar

�
θ̂1
�
, ..., ˆvar

�
θ̂m

�
, and the mean probability of detection δ̂0 =

1
nk

�n
i=1

�k
j=1 δ̂ij .

2. Obtain the Naive estimator of the occupancy parameters ˆ̃β0,
ˆ̃β1, ...,

ˆ̃βp and the mean

estimated occupancy �ψnaive =
1
n

�n
i=1 ψ̂i where ψ̂i =

exp
�
ˆ̃β0+

ˆ̃β1x1i+...+ˆ̃βpxpi

�

1+exp
�
ˆ̃β0+

ˆ̃β1x1i+...+ˆ̃βpxpi

�

3. Maximize the penalized likelihood function using Eq. 5.5 where λ
�
k, δ̂0, n

�
is 5.8 and

f
�
ψ, ψ̂naive

�
is 5.9.

λ
�
k, �δ0, n

�
=

����
m�

i=0

ˆvar
�
δ̂i
�
·
�
1−

�
1− �δ0

�k
�
·
�
1− ψ̂naive

�
(5.8)

f
�
ψ, �ψnaive

�
=

p�

i=0

| βi − β̃i | (5.9)

number of visits, the number of sites and the initial estimates of the average detection and

occupancy probabilities. As the number of sites or number of visits increase, the likelihood

function is well behaved and hence the penalty function is forced to converge to zero. If

the detection probability is large, the naïve estimator is a good estimator, hence we can

rely on it and the shrinkage factor can be large. On the other hand, when the occupancy

probability is large, the MLE usually is stable and the shrinkage factor small.

The algorithm to estimate the Maximum Penalized likelihood Estimator (MPLE) is

summarized in the Algorithm 5.1.

5.2 Simulation analysis

A simulation study was conducted to compare the performance of the Maximum likelihood

Estimator (MLE) and Maximum Penalized likelihood (MPLE) using the same cases consid-

ered in section 4.1. Some of the simulations results of section 4.1 are reproduced in here for

easy of illustration.

Figure 5.3 displays the mean and median bias obtained for different values of probability

of occupancy for the MLE, MPLE and Naive estimates. Notice that the bias obtained for

the MLE is larger than that obtained for the MPLE, in particular for moderate values of
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Figure 5.3: Median (left) and mean (right) percent bias for the MLE, MPLE and Naive
for 100 data sets with 30 sites and 2 surveys per site. The probability of detection is
fixed on 0.10. Notice that the MLE overestimates the probability of occupancy, while the
MPLE tends to underestimate it, but it is closer to the true value than the MLE and Naive
estimates.

the probability of occupancy ψ ≤ 0.70. On the contrary, when the probability of occupancy

is large ψ > 0.80, the MPLE tends to be more biased than the MLE. However it remains

still close to the true value.

Table 5.1 presents the summary of the simulation results for the first case (constant

probability of occupancy and detection). The mean and median of the MPLE are closer to

the true values than MLE in every case except when the probability of occupancy is large.

The standard errors of the MPLE are smaller than for the MLE in every case. The coverage

of the bootstrap confidence intervals, based on MPLE, is close to the nominal coverage.

The estimated standard error obtained from the bootstrap samples is more accurate for the

MPLE than for the MLE, although it is still biased.

Table 5.2 presents the results of the simulation study under the regression setting where

the probabilities depend on the covariates. In this case, there are two quantities of interest:

the regression coefficients, which measure covariate effects; and the average occupancy. For

the latter, the simulation results show that the MLE and the MPLE perform equally well,

with the MLE slightly overestimating average occupancy and the MPLE slightly underesti-

mating it. For the regression coefficients, the mean and the median of the MPLE are close

to each other, indicating numerical stability. They are also closer to the true values of the

parameters than the ML estimates. The standard errors for the MPLE are also substan-

tially smaller than those of MLE. Finally, the lengths of the confidence intervals obtained
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Table 5.1: Summary of simulation results for 100 simulated data sets with 30 sites, two sur-
veys and constant probability of occupancy across the sites and the probability of detection
is the same across the sites and surveys. Observe that MLE overestimates the occupancy
whereas MPLE is nearly unbiased with smaller standard errors.

(a) MPLE

Confidence Intervals
δ ψ mean median se ŝeB mse % mean

length
median
length

0.10 0.29 0.30 0.16 0.26 0.21 0.06 72% 0.50 0.61
0.10 0.50 0.46 0.46 0.26 0.20 0.07 86% 0.63 0.69
0.10 0.80 0.63 0.73 0.26 0.19 0.10 74% 0.56 0.60
0.30 0.30 0.45 0.41 0.27 0.19 0.10 75% 0.62 0.69
0.30 0.49 0.52 0.45 0.23 0.27 0.06 84% 0.63 0.70
0.30 0.79 0.71 0.73 0.20 0.27 0.04 87% 0.54 0.18

(b) MLE

Confidence Intervals

δ ψ mean median se �seB mse %
mean
length

median
length

0.10 0.29 0.77 1.00 0.42 0.289 0.39 65% 0.65 1.00
0.10 0.50 0.84 1.00 0.34 0.245 0.23 55% 0.55 0.95
0.10 0.80 0.88 1.00 0.27 0.169 0.08 34% 0.32 0.00
0.30 0.30 0.60 0.53 0.38 0.222 0.23 62% 0.55 0.79
0.30 0.49 0.70 0.67 0.28 0.352 0.11 97% 0.90 0.93
0.30 0.79 0.80 0.94 0.22 0.313 0.05 92% 0.82 0.87
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Table 5.2: Summary of the results of the estimated parameters for the occupancy for 100
simulated data sets, with n=100, two surveys and two covariates for occupancy. Observe that
MLE are unbiased and have large standard errors. Moreover, the MPLE based confidence
intervals for the parameters are ten times shorter without sacrifice in coverage.

(a) MPLE

Confidence Intervals
true mean median se �seB % mean

length
median
length

β0 0.500 -0.37 0.148 7.748 6.77 0.770 17.42 19.53
β1 -1.00 -1.56 -0.96 1.893 2.20 0.930 5.266 4.069
β2 1.200 3.187 1.417 5.552 5.19 0.910 15.86 18.54
ψ 0.340 0.314 0.277 0.172 0.201 0.900 0.453 0.445

(b) MLE

Confidence Intervals
true mean median se �seB % mean

length
median
length

β0 0.500 46.93 1.039 108.3 413.65 94% 232.7 199.2
β1 -1.00 -32.3 -1.46 64.89 391.06 87% 164.6 122.3
β2 1.200 29.34 2.004 65.35 203.49 85% 214.0 163.6
ψ 0.340 0.373 0.334 0.169 0.210 96% 0.474 0.476

by the MPLE are at least 10 times shorter than the ones obtained by the ML method. More

importantly, except for the intercept parameter, the actual coverage of the MPLE based

confidence intervals is closer to the nominal coverage than for MLE based confidence inter-

vals. This means that the effect of the covariates is better estimated by the MPLE than by

the MLE. In summary, the simulation results show that: for those cases where MLE fails,

the MPLE works extremely well; and at the same time when MLE does work well MPLE

works equally well.

5.3 Example data analysis

We illustrate the MPLE method using two occupancy studies: one for Blue Ridge Two Lined

Salamander and the other for Black-capped Chickadee.

The Blue-Ridge Two Lined Salamanders study was conducted in the Great Smoky Moun-

tains National Park (USA) during 2001. The data are available as part of the software

Presence[1]. The data consist of 39 sites visited once every two weeks for a total of five sur-

veys. There are no covariates available for the occupancy and detection probability models.

We used the simple model of constant probability of occupancy and constant probability
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Table 5.3: Summary of the estimated probability of occupancy and its standard error for
the Blue-Ridge two lined salamander data. MPLE have smaller standard errors and shorter
confidence intervals as compared to the MLE. Also note that different combinations of two
surveys leads to quite different point estimates making the closed population assumption
suspect.

MLE MPLE
surveys ψ̂ ŝe 90% CI ψ̂ ŝe 90% CI
1,2,3,4,5 0.59 0.15 0.43 1.00 0.59 0.15 0.43 0.94

1,2 0.31 0.35 0.12 1.00 0.24 0.27 0.10 0.88
1,3 0.54 0.24 0.32 1.00 0.48 0.22 0.28 0.95
1,4 0.31 0.19 0.16 0.78 0.29 0.14 0.12 0.57
1,5 0.64 0.28 0.26 1.00 0.48 0.25 0.23 0.95
2,3 0.92 0.23 0.32 1.00 0.65 0.23 0.30 0.97
2,4 0.78 0.25 0.31 1.00 0.57 0.24 0.28 0.95
2,5 1.00 0.00 1.00 1.00 0.92 0.07 0.79 0.96
3,4 0.46 0.16 0.27 0.82 0.44 0.15 0.25 0.71
3,5 0.72 0.23 0.37 1.00 0.62 0.22 0.35 0.98
4,5 0.31 0.15 0.18 0.56 0.30 0.11 0.18 0.49

of detection. The goal of the analysis was to compare the estimated occupancy obtained

by the MLE and MPLE and their confidence intervals and standard errors under various

scenarios.

We first present the analysis using MLE and MPLE using all five visits. The results

presented in table 4 show that the MLE and MPLE are quite similar, although standard

errors and confidence intervals based on MPLE are somewhat shorter than for MLE. This

is to be expected because, when the number of visits is large, the penalty function is small

and MPLE and MLE become similar. Next we considered the possibility of only two visits.

There are 10 such combinations possible. In table 5.3, we present the estimated occupancy

obtained by using the ML and MPL estimators for every possible pair of visits. Notice that

in all cases the standard errors of the MPL estimator are smaller than the ones obtained

by the ML estimator, except for the combination of the second and fifth surveys for which

the ML estimated occupancy is one for all bootstrap samples. The bootstrap confidence

intervals based on the MPLE are shorter than those based on the MLE estimators. MPLE,

thus provides a more precise representation of the occupancy than the MLE. It is also

interesting to note that the inferences from different pairs of surveys vary substantially from

each other with occupancy estimates ranging from 0.24 to 0.92. This suggests that perhaps

the validity assumption of a closed population during the time of the study is questionable.

The second example corresponds to an occupancy study that was conducted on lands
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Table 5.4: Estimated parameters, 90% confidence intervals and standard errors for the
occupancy and detection model of the Blackcapped Chickadee. The standard errors and
confidence intervals were estimated using 200 bootstrap samples. Notice that the confidence
intervals for the occupancy model parameters obtained by the MLE are about 60% shorter
than the confidence intervals obtained by the MLE.

MLE MPLE
estimate (90% CI) se estimate

(90% CI)
se

Intercept 8.78
(2.52, 9.68)

2.12 3.22
(1.65, 4.24)

0.789

Year 2 -9.88
(-10.7, -3.62)

2.15 -4.32
(-5.58, -2.66)

0.858

Year 3 -10.31
(-11.5, 4.27)

2.11 -4.74
(-5.99, -3.24)

1.397

Intercept -1.50
(-1.76, -1.22)

0.16 -1.47
(-1.72, -1.19)

0.164

ψ 0.47
(0.44, 0.52)

0.02 0.46
(0.41, 0.51)

0.028

δ 0.18
(0.14, 0.22)

0.02 0.18
(0.15, 0.23)

0.025

managed by Millar Western Forest Products in western Alberta (Canada) from 2000 to 2002

(E. Bayne, unpublished manuscript). For illustrative purposes, only the data for the Black-

capped Chickadee (BCHH) are used. The data were collected over a period of three years.

Each year, 40 sites were visited once every week starting on May 15 and ending on July

28. Two different observers, randomly assigned to the sites, were used. The purpose of the

analysis was to determine whether or not there was a trend for the occupancy of the BCCH

over the three years of the study. The covariates for the occupancy model correspond to the

year of the survey, the reference year (year 1) being year 2000. For the detection probability

model covariates such as the observer, the Julian date and the time of the survey were

evaluated. However, because they turned out to be non significant, a constant detection

model was then fitted.

Table 5.4 presents the MLE and MPLE of the parameters for this model. The standard

errors, as well as the 90% confidence intervals, were calculated using 200 bootstrap samples.

It was found that the standard errors for the occupancy model provided by the MLE were

substantially larger than the ones obtained by the MPLE, and that the MPLE’s confidence

intervals were shorter than the ones obtained by the MLE. On the other hand, the standard

errors and confidence intervals for the detection model were almost the same for both the

MLE and the MPLE. Using the MPLE estimates it can be concluded that there was a
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decreasing trend for the occupancy of the BCCH. During the first year the estimated mean

occupancy was about 0.9616, dropping for the second year to 0.2495 and decreasing further

for the last year to 0.1790. These data are part of a large ecological study of how forest

density affects occupancy. Nearly 50% of the trees were removed from the area between

year 1 and year 2. The drop in occupancy is the likely to be an outcome of such a change

in the forest density.

5.4 Summary

The penalized likelihood estimators have better statistical properties with smaller mean

squared error. They also have a bootstrap confidence interval coverage closer to the nominal

coverage than the ML estimator. Furthermore, the estimates for the occupancy model

obtained by the MPLE are somewhat conservative while the estimates obtained by the MLE

are optimistic (Figure 5.2). From the perspective of a monitoring program, it is prefered to

have a conservative estimate rather than an optimistic one, the latter can prevent managers

to take action to protect a species that can be at risk of extinction.

From a practical perspective, the use of penalized likelihood estimators can lead to a

substantial reduction in the required number of surveys and sites. This ultimately can lead

to a substantial reduction in the cost of implementing such surveys.
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Chapter 6

The single survey approach
1

A common requirement for current methods to estimate occupancy probability when detec-

tion probability is less than 1, is that sites must be sampled repeatedly. The premise behind

this requirement is that only with repeated visits the discrimination between a true absence

and a false negative will be possible. For example, Bolker (2008, page 333)[9] claims: "there

is no way to identify catchability—the probability that you will observe an individual—from

a single observational sample; you simply don’t have the information to estimate how many

animals or plants you failed to count[9].” This has also been claimed by Gu and Swihart

(2004)[34], MacKenzie et al. (2003)[72], Dorazio et al. (2006)[23] and Dorazio and Royle

(2005)[21]. The model introduced in this chapter disputes that claim by showing that multi-

ple surveys are not always essential for estimating site occupancy parameters in the presence

of detection error. In general, site occupancy and detection probability parameters can be

estimated using a single survey provided two conditions: the probability of occupancy and

probability of detection depend on covariates, and the set of covariates that affect occupancy

and the set of covariates that affect detection differ by at least one variable.

The statistical model is described in section 6.1. The results of a simulation study

conducted to evaluate the single survey approach are discussed in section 6.2. The use of

the model is illustrated using data from the Breeding Bird Survey in section 6.3.
1A version of this chapter has been accepted for publication in the Journal of Plant Ecology.
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6.1 Statistical model and estimation procedure

Consider a site occupancy study in which n sites are surveyed in the study area. Let’s

denote by Zi the binary variable that describes the true status of the ith site, Zi = 1

if the ith site is occupied and Zi = 0 if the ith site is unoccupied. These true states

are unobserved. Let Yi = 1 if the ith site is “observed to be occupied” and Yi = 0 if

the ith site is “observed to be unoccupied.” The probability of occupancy is denoted by

Pr (Zi = 1) = ψi and the probability of detection by Pr (Yi=1/Zi=1) = δi. It is assumed

that if the species is not present, it will not be misidentified and hence Pr (Yi=0/Zi=0) =

1. Simple probability calculations show that Pr (Yi = 0) = 1 − δiψi and Pr (Yi = 1) =

Pr (Yi=1/Zi=1)Pr (Zi = 1) = δiψi . These probabilities can depend on the habitat and

other covariates. Let x denote the set of covariates that affect occupancy, and w the set of

covariates that affect detection. Some covariates may affect only detection, some covariates

may affect only occupancy and some covariates may affect both detection and occupancy.

For example, type of forest cover may affect both occupancy and detection, whereas time

of the day or weather conditions may affect only detection. Thus, some of the covariates in

the sets x and w might be the same. With the notation, ψi = ψ
�
xi,β

�
and δi = δ (wi, θ),

the functions should be such that 0 ≤ ψ
�
xi,β

�
≤ 1 and 0 ≤ δ (wi, θ) ≤ 1. The necessary

conditions under which the parameters
�
β, θ

�
are identifiable using single survey data are:

1. There should exist at least one covariate that affects either the probability of detection

or probability of occupancy.

2. Suppose A and B denote the covariate sets for detection and occupancy respectively.

A and B should be such that the sets A-B and B-A are not empty.

The goal of the statistical analysis is to estimate
�
β, θ

�
given the observations y = (y1, ..., yn)

. The likelihood function for these data is:

L
�
β, θ; y

�
=

n�

i=1

�
ψ
�
xi,β

�
δ (wi, θ)

�yi
�
1−

�
ψ
�
xi,β

�
δ (wi, θ)

��1−yi (6.1)

Maximum likelihood estimators are obtained by maximizing this function with respect

to
�
β, θ

�
. If the sample size is large, one can use any numerical optimization technique to

obtain the MLE. However, this likelihood function, similar to that of the ZIB, is not well-

behaved for small samples. The results from the previous chapter showed how the MLE

can be improved by using a Penalized Likelihood approach. Similarly, for the single survey
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Algorithm 6.1 MPL estimation procedure for the single survey data

1. Obtain the MLE for
�
β, θ

�
by maximizing the likelihood function in equation 6.1. Let

us denote these by β̂M , θ̂M .

2. Obtain the naïve estimator of β by maximizing 6.2

L
�
β; y

�
=

n�

i=1

ψ (xi,β)
yi (1− ψ (xi,β))

1−yi (6.2)

This estimator, denoted by β̂naive , is based on the assumption that there is no de-
tection error. This is stable but biased with the magnitude of bias depending on how
large the detection error is.

3. Obtain the naïve estimator of θ by maximizing

L (θ;Y ) =
n�

i=1

δ (Zi, θ)
Yi (1− δ (Zi, θ))

1−Yi

This estimator, denoted by θ̂naive, is based on the assumption that all sites are occu-
pied. This estimator is stable but biased.

4. Maximize the penalized likelihood function with respect to
�
β, θ

�

log
�
PL

�
β, θ; y

��
= log

�
L
�
β, θ; y

��
− λ1 | β − β̂naive | −λ2 | θ − θ̂naive |

whereλ1 =
�
1− ψ̂naive

�
δ̂M

�
tr

�
var

�
θ̂M

��
and λ2 =

�
1− δ̂naive

�
ψ̂M

�
tr

�
var

�
β̂M

��
and

�
δ̂naive, ψ̂naive

�
and

�
δ̂M , ψ̂M

�
and de-

note the average occupancy and detection probabilities under the naïve method of
estimation and MLE respectively.

approach, a penalized likelihood can be used to stabilize the estimation procedure. The

penalized likelihood estimators for the single visit case are obtained using algorithm 6.1.

The justification for the penalty function showed in the algorithm 6.1 is along the same

lines as described in the previous chapter. Because tr
�
var

�
θ̂M

��
→ 0 and tr

�
var

�
β̂M

��
→

0 as the sample size increases, the penalized likelihood function approaches the likelihood

function if the number of sites is large. Penalization simply stabilizes the likelihood function

for small sample sizes. If the MLE of average detection probability is high, naïve estimates

of the occupancy are reasonable. In this case, the first component of the penalty function is

large, thus the occupancy parameters are shrunk towards their naïve estimates. Similarly, if

the MLE of the average occupancy is high, the naïve estimates of the detection parameters

will also be reasonable. In this case, the second component of the penalty function is large,

therefore the detection parameters will be shrink towards their naïve estimates.
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In Step 1 of the penalized likelihood estimation algorithm 6.1 we need to compute the

MLE and its variance. If the number of sites is smaller than 100, using a gradient-based

optimization technique to find the location of the maximum tends to be tricky as it is

prone to lead to nearly singular Hessian matrices [82]. Because of this we cannot use the

inverse of the Hessian matrix to approximate the variance of the MLE. Instead of using a

local gradient-based technique to find the MLE and its variance in Step 1, we use a global

stochastic search method-a variant of the well known simulated annealing method- called

data cloning [60, 62]. In data cloning, as in simulated annealing, the MLE is obtained as the

mean of the posterior distribution. This avoids the task of numerically differentiating a non-

smooth function. To obtain the variance of the MLE, one can either use bootstrap samples

[27] or it can also be approximated by the variance of the posterior distribution [60, 62]. This

eliminates the need to invert a nearly singular Hessian matrix to approximate the variance

of the MLE. The penalized likelihood function (Step 4 in algorithm 6.1) is maximized using

the standard numerical optimization technique. The confidence intervals for MPLE can be

based on the bootstrap technique and are shown to have good coverage (section 4.1). A

computer program written in R to estimate the parameters using information from a single

surveys is available in Solymos and Moreno (2010)[111].

6.2 Simulation study

The simulation study presented in this section has two goals. The first goal is to support

the claim of estimability of the parameters using a single survey; if the parameters are

consistently estimable, then, as we increase the sample size, the estimates should converge

to the true values. The second goal is to show that these estimators give reasonable inferences

in practical situations.

To achieve this goal, and for the purpose of considering a variety of scenarios commonly

found in this type of analysis, a total of 54 cases were simulated. These cases were defined

by considering different levels for factors such as the sample size, the type of link function,

the probability of occupancy and detection, and the configuration of the covariates (i.e.

whether or not there was a common covariate for both occupancy and detection).

In each case 100 data sets were generated using two covariates for occupancy and two co-

variates for detection. For the case with no common covariates the probability of occupancy
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was calculated using the Logistic link

ψi =
exp (β0 + β1x1i + β2x2i)

1 + exp (β0 + β1x1i + β2x2i)
(6.3)

where covariate values were generated using x1i ∼ Normal (0, 1) and x2i ∼ Bernoulli (0.55).

Similarly, the probability of detection was calculated using either the Logistic link

δi =
exp (θ0 + θ1w1i + θ2w2i)

1 + exp (θ0 + θ1w1i + θ2w2i)
(6.4)

or the Log-Log link

δi = exp (−exp (θ0 + θ1w1i + θ2w2i)) (6.5)

where covariate values were generated using and wi1 ∼ Normal (0, 1) and w2i ∼ Bernoulli (0.65).

For the common covariate cases, the covariate for the occupancy model was taken as the

common one for both. For instance, if the common covariate is a continuous one and the

link for both occupancy and detection is the Logistic link, the probability of occupancy for

the ith site is

ψi =
exp (β0 + β1x1i + β2x2i)

1 + exp (β0 + β1x1i + β2x2i)
(6.6)

and the probability of detection is

δi =
exp (θ0 + θ1x1i + θ2w2i)

1 + exp (θ0 + θ1x1i + θ2w2i)
(6.7)

The set of parameters was selected to obtain the desired level of occupancy and detection

required according to the case, and the estimates were obtained by using the Maximum Pe-

nalized Likelihood estimator described in the algorithm 6.1. Figures 6.1 and 6.2 present the

results from two representative cases obtained from the simulations. A complete summary

of the results obtained for the 54 cases is available in the appendix B .

Figure 6.1 shows the box plots of the estimated parameters when the mean probability of

occupancy is 0.27, the mean probability of detection 0.27, and the covariates for occupancy

and detection are separable. Clearly as the sample size increases, the distributions of the

parameters become more symmetric and their centers get closer to the true value. It is also

observed that as the sample size increases the spread of the distributions decreases. Figure

6.2 presents the results obtained for the case in which there is a discrete covariate that

is common to both occupancy and detection. Again, in this case, the mean probabilities
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of occupancy and detection are low (0.27 and 0.31 respectively). Similar to the separable

covariates case, as the sample size increases the centers of the density functions get closer

to the true value, and, the variance decreases as the sample size increases.

For most of the situations considered in our simulations (see appendix B), the mean

occupancy and mean detection probabilities can be estimated reasonably well at sample

sizes of 100 and 200 whereas a good estimation of regression coefficients occurs at sample

sizes of 300 or larger. See Figure 6.3 for an example. If the main goal of an analysis is the

estimation of mean occupancy rate, one does not have to worry as much about sample size

as when accurate estimation of the regression coefficient per se is the objective.

These results along with the results in the appendix show that the occupancy and de-

tection parameters are identifiable using single survey data. This holds even when the set

of covariates for occupancy and detection have some overlap.
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Figure 6.1: Simulations showing estimability of the parameters using a single survey when
the covariates that affect occupancy and detection are separable. The parameters β0,β1

and β2 correspond to the occupancy model; the parameters θ0, θ1 and θ2 correspond to the
detection model. As the sample size increases, the estimates converge to the true value.
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Figure 6.2: Simulations showing estimability of the parameters using a single survey when
there is a categorical common covariate that affect occupancy and detection. The parameters
β0,β1 and β2 correspond to the occupancy model; the parameters θ0, θ1 and θ2correspond
to the detection model. As the sample size increases, the estimates converge to the true
value.
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Figure 6.3: Simulations showing estimability of the mean occupancy and detection for both
cases using separable covariates and using a categorical common covariate that affects oc-
cupancy and detection.

6.3 Example data analysis

To illustrate the estimation of the parameters for an occupancy model using a single survey

we consider detected and not detected data for Ovenbirds (Seiurus aurocapilla). Data were

collected in 1999 using Breeding Bird Survey (BBS) Protocols [25] in the boreal plains

eco-region of Saskatchewan, Canada. The goal of the study was to determine whether the

occupancy of this species was influenced by the amount of forest around each survey point.

Data were collected along 36 BBS routes each consisting of 50 survey locations with survey

locations separated by 800 meters. To increase the independence of observations we used
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(a) Probability of occupancy (b) Probability of detection

(c) Receiver Operating Curve

Figure 6.4: Ovenbird data analysis results

every second survey point along each route (thus each point was 1.6 km apart) in our analysis

(n = 900 survey locations). Attributes of the forest type and amount of forest remaining

within a 400 m radius were estimated from the Saskatchewan Digital Land Cover Project

[75]. The habitat requirements of the Ovenbird are well understood [46] and it was expected

that the probability a location is occupied by the Ovenbird would be positively influenced by

the amount of deciduous forest remaining (i.e. the forest deciduous proportion). Longitude

was also included as the study covered an east-west gradient over 1000 km in length.

The factors expected to influence detection probability were: observer, time of day, time

of year, and amount of forest. Observers differ in their ability to hear birds in part because of

their individual skill but also because of fundamental differences in the distance over which

they hear birds. In general, male songbirds sing very regularly early in the breeding season

making it easy to detect individuals that are present. As the breeding season progresses,
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(a) Julian date (b) Time of the day

Figure 6.5: Estimates of the effects of the observers, Julian date and Time of the day over
the probability of occupancy for the Ovenbird data.

however, the males spend less time singing as they focus on other activities. This often

results in lower detectability later in the breeding season. Julian date was included as a

variable influencing detection error. Male songbirds also have a tendency to sing earlier

in the day, shortly after sunrise, and then later in the morning when they focus either on

guarding the mate or foraging. To account for this, time of the day was included as a factor

influencing detectability. Detectability can also be influenced by habitat attributes[103].

On the contrary, in areas with more forest, the chance of multiple males singing may be

higher, hence increasing detection probability relative to areas with less forest where only

one individual may be present. Several models were considered, the best model was selected

using the Akaike’s Information Criterion (AIC). Furthermore, the Receiver Operating Curve

(ROC) and the Area under the ROC (AUC) were calculated to heuristically compare the

fit of the full model, the detection and the occupancy altogether. Table 6.1 gives the

details on the various models that were considered and the corresponding AIC and AUC

values. The final model had an AUC of 0.82, indicating a fairly good predictive capacity

for the full model, detection and occupancy. This model also had a smaller AIC value

relative to other candidate models. Table 6.2 presents the estimated parameters, the 90%

confidence intervals, and the estimated standard errors for occupancy and detectability.

Figure 6.4 depicts graphically how the probability of occupancy and detection vary with

the covariates. The confidence intervals and the standard errors were estimated using 200

bootstrap samples. As expected, the proportion of deciduous forest has a positive effect

on the probability of occupancy. This relationship was best fit using a log-transformation

of forest deciduous proportion. Longitude was not statistically significant but it suggested
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Table 6.1: Models for the Ovenbird data sorted from smallest to largest Akaike’s Information
Criterion (AIC). We also provide the Schwarz Information Criterion (BIC) and the area
under the Receiver Operating Characteristic curve (AUC). Smaller the AIC, BIC, better
the model fit; larger the AUC, better is the fit.

model occupancy model
covariates

detection model
covariates

AUC AIC BIC

1 log(proportion
deciduous forest)

proportion of forest 0.823 825.5 844.6

2 log(proportion
deciduous forest)

proportion of
forest; julian date;
time of day

0.826 826.5 855.2

3 log(proportion of
deciduous
forest);log(non
deciduous forest)

proportion of forest 0.823 827.1 851.0

4 proportion of
deciduous forest;
longitude

proportion of
forest; julian date;
time of day;
observer

0.828 827.9 875.7

5 log(proportion of
deciduous forest);
longitude

proportion of
forest; julian date;
time of day

0.826 828.4 862.0

6 log(proportion of
deciduous forest);
longitude

proportion of
forest; julian date;
time of day;
observers

0.827 830.7 878.6

7 log(proportion of
agricultural area);
longitude

proportion of
forest; julian date;
time of day;
observers

0.818 841.2 889.1

8 proportion of
agricultural area;
longitude

proportion of
forest; julian date;
time of day;
observers

0.820 843.4 891.3

that Ovenbird occupancy rate increased as surveys were done further west.

The amount of forest cover was the strongest predictor of detection probability. Detection

probability was highest in areas with higher forest cover. This suggests that larger number of

birds in areas with more forest increase the probability of detecting the species. Conversely,

in areas with low forest cover, the smaller number of birds means that the chances of

detecting the species given they are present is lower. Although not strictly statistically

relevant according to AIC (and, hence not included in the final model), detection probability

did differ among observers and was affected by the time of the day and the Julian date in a
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Table 6.2: Estimated parameters, confidence intervals and standard errors for the occupancy
and detection model for the Ovenbird occupancy survey data.

model covariates
point estimate

(90% CI)

occupancy intercept
-0.255

(-0.843, 0.566)

occupancy
log(proportion of deciduous

forest)
1.546

(0.863, 3.561)

detection intercept
0.476

(0.047, 1.127)

detection proportion of forest area
0.951

(0.588, 1.763)

Average occupancy probability
0.496

(0.405, 0.643)

Average detection probability
0.489

(0.377, 0.608)

Naive estimate of
average occupancy

0.297
(0.278, 0.318)

sensible fashion (Figure 6.5). For instance, one observer in particular (SVW) was much more

likely to detect birds in areas with less forest than the others. Because previous experience

from other projects has demonstrated that this individual is able to hear birds over far

greater distances than other people, this result was not surprising. Detection probability was

negatively related to Julian date indicating decreased singing activity later in the season was

reducing observer ability to detect birds given they were present. Time of day had a positive

relationship with detection probability, and this was somewhat unexpected. However, time

of day had the least significant effect and surveys were done in a very narrow time window

(4:00 to 9:00 local time). The estimated mean probability of occupancy for all the sites,

based on the final model, was 0.496, with a mean probability of detection of 0.489. The

mean probability of occurrence without correcting for detection error, on the other hand,

was 0.297.

6.4 Summary

The simulation study demonstrated that the estimates of the site occupancy probability can

be obtained using information from a single survey, provided the site occupancy probability

and the detection probability significantly depend on habitat or other exogenous covariates,

and that the set of covariates that affect occupancy and the set of covariates that affect

detection differ by at least one covariate. From a survey of previous applications of site
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occupancy models, it seems that most practical situations do satisfy these conditions. In

fact, for 94 out of 100 cases the covariates that affect detection and the covariates that

affect occupancy were disjoint. A limitation of our methodology is that the case of con-

stant probability of occupancy and constant probability of detection cannot be estimated.

However, it appears that this restriction is not important in practice as in most papers we

have reviewed, the probability of occupancy and detection both were seldom constant. It

is not possible to provide general results about identifiability conditions under every pos-

sible model. However, the data cloning method [60, 62] can be used for both estimation

and detection of possible non-estimability. The parameters are estimable if and only if the

posterior variance converges to zero as the number of clones increases[62]. This test is built

into our software for the analysis of single survey site occupancy data [111].

When the crucial assumptions of population closure and independence of surveys are

satisfied and costs are not a major issue, then multiple survey methods will generally provide

statistically more efficient estimators than a single survey based approach. However, if the

closed population assumption is not met, there is uncertanty of the meaning of the estimates

obtained from the ZIB model. At this point, we want to emphasize that when using the single

survey approach the estimated probability of occupancy can be defined as the instantaneous

probability of occupancy. In conclusion, the development of the single survey approach

provides an additional tool to ecologists that allows for correction of detection error, does

not have the critical assumption of population closure, and has the logistical flexibility of

conventional single-survey designs.
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Chapter 7

Cluster sampling

With the purpose of keeping sampling effort and the use of resources to a minimum, it

has been suggested that the requirement of repeated surveys can be accomplished by using

strategies such as multiple observers surveying independently the same patch, or by sur-

veying multiple locations within a patch[69]. Although these strategies can be effective on

reducing sampling effort and the use of resources, they can also lead to violations of the as-

sumption of independence between surveys. Hines et al. (2010) introduced a first approach

to estimate site occupancy without the requirement of having independent surveys (section

4.3). They also showed that a violation of the requirement of independence of the surveys

results in bias of the estimates obtained from the ZIB.

In this chapter we proposed an alternative model that allows estimation of site occupancy

probability when the probability of detection is less than one and the information collected in

a single survey from sites exhibit some level of correlation (i.e. violation of the independence

requirement). For the model, we assumed a sampling scheme in which the surveyed sites

are clustered as depicted in Figure 7.1. The locations within a cluster are correlated but

the locations across clusters are independent from one another. Hereafter, a cluster will

be referred as a sample unit. Each sample unit will be assumed to consist of k sampling

locations. This chapter is organized in three sections: the statistical model is introduced in

section 7.1; the results of a simulation study are shown in section 7.2, and the application

of the model is illustrated in section 7.3.
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site 1

site 2

site 1site 3

site 4

site 5

Figure 7.1: Example of the sampling scheme for the cluster sampling model. The sampling
area consist on 5 sample units or clusters. Each sample unit is surveyed by sampling 4
locations within it. The samples units are assumed to be independent from each other. The
locations within every sample unit are correlated.

7.1 Statistical model and estimation procedure

In this section we introduce the statistical model for the cluster sampling methodology. The

model will be described in two parts. First, we will discuss the site occupancy probability

component of the model, and then we will extend the model to incorporate the detection

error in the observations.

Occupancy model

The site occupancy probability for a sampling scheme such as cluster sampling can be

modeled by using the auto-logistic model. The auto-logistic model has been widely used

to estimate the site occupancy probability for those cases in which the surveyed sites are

expected to be correlated and an assumption of no error in the detection can be made

[118, 48, 54, 102, 44].

Let’s assume that n independent sample units are selected to monitor the target species

and that the presence/absence of the species can be determined with no error (i.e., proba-

bility of detection is 1). In addition, let’s assume that within every sample unit, k locations

are surveyed once to determine the presence/absence of the species (figure 7.1). The true

status of the target species (present/absent) on the jth location at the ith sample unit is

therefore a binary variable denoted by zij , where zij = 1 indicates that the species is present

at the jthlocation of the ith sample unit, and zij = 0 indicates that the species is absent
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from the jth location at the ith sample unit.

Let’s assume the conditional probabilities Pr (zij/{Zim:m �=j}) for i = 1, . . . , n and j = 1, . . . , k

can be calculated. These conditional probabilities indicate that the presence/absence of the

target species at the jth location of the ith sample unit is conditioned by its presence/absence

in all the other locations within the ith sample unit. The stochastic process defined by these

conditional probabilities is called a Random Markov Field and it was first introduced by

Besag (1974)[8]. The conditional probability mass function can be written as follows:

f (zij/zim:m �=j) =
exp

�
zij ·Aij

�
zim : m �= j, xij

��

1 + exp
�
zij ·Aij

�
zim : m �= j, xij

�� (7.1)

where
�
xij : i = 1, ..., n; j = 1, ..., k

�
are the habitat covariates associated with the jth lo-

cation at the ith sample unit, and Aij (·) is called the natural parameter function. Besag

(1974) showed that for the binary case, Aij (·) should be of the following form:

Aij

�
zim : m �= j, xij

�
= xT

ijβ + γ
�

m �=j

zim (7.2)

where β is a vector of parameters that relates the habitat covariates with the probability of

occupancy of the target species, and γ is the statistical dependence parameter that accounts

for the dependence between locations within a sample unit. In this way, γ = 0 indicates

that the locations within the sample unit are independent. Notice that the conditional

probability mass function in equation 7.1 resembles that of the Logistic regression model

with an additional term that is a function of the binary response at the neighbor locations.

For this reason this model is also known as the Auto-logistic regression.

It can be shown that under the parameterization given by equation 7.2 the odds for a

location to be occupied relative to odds of the independence model (γ = 0) increases for

any nonzero neighbors, and can never decrease. Caragea and Kaiser (2009) proposed the

following centered version of natural parameter function Aij (·) [13]

Aij

�
zim : m �= j, xij

�
= xT

ijβ + γ
�

m �=j

�
zim −

exp
�
xT
imβ

�

1 + exp
�
xT
imβ

�
�

(7.3)

Unlike the traditional model (Equation 7.2), this parameterization allows for an inter-

pretation of the parameters independent of the level of the statistical dependence. Using
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the centered version of the natural parameter function, γ > 0 indicates that the odds of the

location ij to be occupied (zij = 1) increase if the number of occupied neighbor locations

is greater than the number of occupied neighbor locations under the independence model.

Because we consider that this last parameterization provides a more natural interpretation

of the parameters, we decided to incorporate it on our model.

Having the conditional probabilities given by equation 7.3, the next step is to obtain the

joint probability distribution denoted by Pr (zi1, ..., zik). The Hammersley-Clifford theorem

[35] establishes the form the joint distribution must take for it to become the joint probability

measure of a Markov Random Field. The application of the Hammersley-Clifford theorem

is illustrated for k=2 as follows:

Pr (zi = (1, 1))

Pr (zi = (0, 0))
=

Pr (zi1=1/zi2=0)

Pr (zi1=0/zi2=0)
· Pr (zi1=1/zi2=1)

Pr (zi1=0/zi2=1)
(7.4)

=
ψi11

ψi00
(7.5)

= exp
�
xT
i1β + xT

i2β + γ (1− µi1 − µi2)
�

(7.6)

Pr (zi = (0, 1))

Pr (zi = (0, 0))
=

Pr (zi1=0/zi2=0)

Pr (zi1=0/zi2=0)
· Pr (zi1=1/zi2=0)

Pr (zi1=0/zi2=0)
(7.7)

=
ψi01

ψi00
(7.8)

= exp
�
xT
i2β + γ (−µi1)

�
(7.9)

Pr (zi = (1, 0))

Pr (zi = (0, 0))
=

Pr (zi1=1/zi2=0)

Pr (zi1=0/zi2=0)
· Pr (zi1=0/zi2=1)

Pr (zi1=0/zi2=1)
(7.10)

=
ψi10

ψi00
(7.11)

= exp
�
xT
i1β + γ (−µi2)

�
(7.12)

It follows that

Pr (zi = (0, 0)) = ψi00 =
1

1 +
Pr(zi=(1,1))
Pr(zi=(0,0))

+
Pr(zi=(0,1))
Pr(zi=(0,0))

+
Pr(zi=(1,0))
Pr(zi=(0,0))

(7.13)
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where µij =
exp(xT

ij ·β)
1+exp(xT

ij ·β)
for i = 1, ..., n and j = 1, 2. The joint distribution for a general

number of locations k can be determined in a similar manner.

Detection model

Nevertheless, the true status of the species is not directly observable since it is likely for the

species to be present but not detected during the survey. These observations are denoted

by the binary variable yij , where yij = 1 if the target species is detected at the jth location

of the ith sample unit (i.e., the species was present and detected during the survey), and

yij = 0 if the species is not detected. This last case indicates that either the species was

truly absent or that the species was present but failed to be detected during the survey.

Let δij be the probability of detecting the species at the jth location of the ith site

given that it is present. These probabilities can depend on covariates such as time of the

day, weather conditions and some habitat characteristics. Let us denote by wij the set of

covariates at the jth location of the ith sample unit that are associated to the probability of

detection. These covariates can be incorporated into the probability of detection by using

any link function such as the logit link, complemenary loglog link or probit link among

others. For instance, using the complementary loglog link, the probability of detection is:

δij = Pr (yij=1/zij=1) = 1− exp
�
−exp

�
wT

ijθ
��

for i = 1, ..., n; j = 1, ..., k (7.14)

where θ is a vector of parameters that quantify the relationship between the covariates and

the probability of detection.

The probability mass function for the observations is then found by combining the joint

probability distribution of the Markov Random field and the probability of detection. For

instance, if there are two locations within the ith sample unit (i.e., k=2) and the species was

not detected in the first location nor in the second location, then the observation vector for

the sample unit is then y
i
= (0, 0). The probability for this observation is:

Pr
�
y
i
= (0, 0)

�
= ψi00 + (ψi10 (1− δi1)) + (ψi01 (1− δi2)) + (ψi11 (1− (δi1δi2))) (7.15)

The first term corresponds to the probability that none of the two locations is occupied by

the species, the second term corresponds to the probability that the species is present only

in the first location but was not detected, the third term corresponds to the probability
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that the species is present only in the second location but was not detected, and the last

term corresponds to the probability that both locations are occupied but the species was

not detected in neither. The likelihood is then calculated as the product of the observation

probabilities collected at every sample unit.

Maximum likelihood estimators (MLE) are obtained by maximizing this function with

respect to the parameters
�
β, θ, γ

�
. If the number of sites is large, any optimization method

can be used to obtain the MLE. However, if the number of visited sites is small, the likelihood

function will tend to be flat, and it will be necessary the use of more sophisticated techniques

to maximize it. The models introduced in chapters 5 and 6 showed how by penalizing the

likelihood it is possible to obtain better estimates of the parameters in an occupancy model.

This is also true for the cluster sampling model. The algorithm 7.1 describes how to obtain

the Maximum Penalized Likelihood estimates (MPLE) for the cluster sampling model. It

is important to mention that the purpose of the penalization is to stabilize the likelihood

function when the number of visited sites is small. As the number of visited sites increases

the penalty converges to zero, and the MPLE are the same as the MLE.

Notice that for the model described above it is assumed that there are covariates related

to the probability of occupancy and the probability of detection. The reason for this is that

there are some conditions in which the parameters for the model are not identifiable, one case

arising when both the probability of occupancy and probability of detection are constant. In

general, the identifiability of the parameters for any model can be tested using Data Cloning

[60, 62]. In brief, Data Cloning is a method that using a large number of identical replicates

of the data (clones) and the Markov chain Monte Carlo (MCMC) algorithms estimates a

posterior distribution that is concentrated around the MLE. Lele et al (2011) demonstrated

that if the parameters of an specific model are non estimable (non-identifiable), then as the

number of clones increases the largest eigenvalue of the posterior variance matrix does not

converge to zero[62]. This procedure is illustrated in section 7.3.

7.2 Simulation analysis

A simulation study was carried out to evaluate the estimability of the parameters and the

statistical properties of the proposed estimation method. The number of surveyed locations

(k=3, 6), the number of sample units (n=50,100, 200, 300, 400 and 500) and the level of

dependence (γ = 0.5 and γ = 1) were the factors considered for the analysis.
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Algorithm 7.1 Maximum Penalized Likelihood estimates for the Cluster Sampling model

1. Obtain the MLE for
�
β, θ, γ

�
by maximizing the likelihood function. Let us denote

these by
�

ˆβ
M
, ˆθM , ˆγM

�
.

2. Obtain the naïve estimator of
�
β, γ

�
using the auto-logistic model. These estimators�

β̂
naive

, γ̂naive
�
are based on the assumption that there is no detection error.

3. Obtain the naïve estimator of θ by maximizing

L
�
θ; y

�
=

n�

i=1

k�

j=1

ϕ
�
wij , θ

�yij
�
1− ϕ

�
wij , θ

��1−yij

where ϕ (·) is the link function used for the probability of detection. This estimator�
θ̂naive

�
is based on the assumption that all sites are occupied.

4. Maximize the penalized likelihood function presented below with respect to
�
β, θ, γ

�

log
�
PL

�
β, θ, γ

��
= log

�
L
�
β, θ, γ

��
− λ1

�
s�

l=1

| βl−β̂l,naive | + | γ − γ̂naive |
�

−λ2

�
r�

l=1

| θl−θ̂l,naive |
�

where s and r are the number of parameters of the probability of occupancy and

detection respectively. Where λ1 =
�
1− ˆψnaive

�
δ̂M

�
tr

�
ˆvar

�
θ̂M

��
and λ2 =

�
1− ˆδnaive

�
ψ̂M

�
tr

�
ˆvar

�
β̂M

��
.
�
ψ̂naive, δ̂naive

�
and

�
ψ̂M , δ̂M

�
and denote the av-

erage probability of detection and occupancy under the naïve and MLE respectively.
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Three configurations of the covariates for the probability of occupancy and detection

model were considered. On the first configuration it was assumed that there are no com-

mon covariates for the detection and occupancy model (separable model). For the second

configuration it was assumed that a binary covariate was common for both the occupancy

and the detection models. The third configuration was similar to the second one differing

only in that the common covariate was continuous.

For the separable model it was assumed that the probability of occupancy of the target

species in every surveyed location depended on two covariates: a continuous covariate xij1 ∼

Normal (0, 1) and a binary covariate xij2 ∼ Bernoulli (0.55). The probability of detection

was calculated using the complementary loglog link function, and the assumption that it

depends on a continuous covariate wij1 ∼ Normal (0, 1) and a binary covariate wij2 ∼

Bernoulli (0.65). For the other two configurations (with common covariates) the probability

of occupancy remained unchanged. However, the probability of detection was modified to

include a covariate that was also included in the occupancy model. Consequently, for the

common continuous covariate case, the probability of detection was set to depend on xij1

and wij2. For the discrete common covariate case, the probability of detection was set to

depend on wij1 and xij2. The values of the parameters of the occupancy and detection (β

and θ respectively) models were selected to obtain a low probability of occupancy ψ ≈ 0.30

(under the independence model) and a low probability of detection δ ≈ 0.33 .

For every case in the simulation study, 200 data sets were generated using the following

procedure. First, the values of the covariates at every location were randomly generated.

Then, the presence/absence at every location was generated using a Gibbs sampling al-

gorithm [14]. Subsequently, the probability of detection for the occupied locations was

calculated. Finally, the detection/non detection of the species at the occupied locations was

randomly generated using a Bernoulli distribution with probability of success equal to the

probability of detection. The generated observations and the value of the covariates were

used to obtain the MLE and MPLE for every data set. The MLE and MPLE were obtained

using algorithms programmed in R [113] and WinBUGS[66]. A complete summary of the

results of the simulations is presented in the Appendix C.

Figures 7.2, 7.3 and 7.4 show the estimated mean probability of occupancy for different

sample sizes for the three considered cases (separate covariates, common discrete covariate

and a common continuous covariate respectively). It was found that when the number

of sample units is larger than 50 and the covariates are separable, the estimated mean

78



probability of occupancy is unbiased. In this case the estimates are more precise for a

large cluster (k=6) and a large value of γ (Figure 7.2). Similar results were obtained for

a common discrete covariate: the mean probability of occupancy is unbiased for sample

sizes larger than 50, the smallest standard errors are present when a strong dependency

between sites (γ = 1) exists and the cluster size is equal to 6 (figure 7.3). Figure 7.4 shows

that for common continuous covariates and small dependency between sites (γ = 0.50),

larger samples are required to obtain an unbiased estimate of the probability of occupancy.

Nevertheless, when the dependency is strong (γ = 1.00) the results are similar to those

obtained for the separable covariates and discrete common covariate cases.
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Figure 7.2: Estimated mean occupancy the separable covariates case. Dotted line indicates
the true mean occupancy.
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Figure 7.3: Estimated mean occupancy the discrete common covariate case. Dotted line
indicates the true mean occupancy.
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Figure 7.4: Estimated mean occupancy for the continuous common covariate case. Dotted
line indicates the true mean occupancy.

Figures 7.5, 7.6 and 7.7 display the median of the percentage bias. The results depicted

in these figures resemble those observed for the mean probability of occupancy. The bias of

the estimated parameters gets reduced as the sampling effort (number of clusters and size

of the cluster) increases. The best results are obtained when the dependency between sites

is large and the cluster size is 6. It is also noticeable that the most difficult case for the

estimation is when a continuous covariate is common, since it displays the largest bias for

small number of sites (n ≤ 100) .
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Figure 7.5: Median relative bias of the occupancy model parameters for the simulated cases
with separable covariates. Filled diamonds represent the median % bias of the intercept (β0),
empty squares represent median % bias of the parameter associated with the continuous
covariate(β1), empty triangles represent the median % bias of the parameter associated
with the binary covariate (β2), and finally, the filled circles represent the median % bias of
the dependence parameter (γ).
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Figure 7.6: Median relative bias of the occupancy model parameters for the simulated cases
with a common discrete covariate. Filled diamonds represent the median % bias of the
intercept (β0), empty squares represent median % bias of the parameter associated with
the continuous covariate(β1), empty triangles represent the median % bias of the parameter
associated with the binary covariate (β2), and finally, the filled circles represent the median
% bias of the dependence parameter (γ).
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Figure 7.7: Median relative bias of the occupancy model parameters for the simulated cases
with a common continuous covariate. Filled diamonds represent the median % bias of the
intercept (β0), empty squares represent median % bias of the parameter associated with
the continuous covariate(β1), empty triangles represent the median % bias of the parameter
associated with the binary covariate (β2), and finally, the filled circles represent the median
% bias of the dependence parameter (γ).

We also wanted to compare how the estimates would change when the spatial correla-

tion is ignored and the observations from every sample unit are assumed to be replicate

observations from a single sample unit. For this we used a standard Zero Inflated Binomial

model[73]. The table 7.1 shows the mean estimates and the standard errors for the param-

eters using both approaches: the cluster sampling model and the standard site occupancy

model. It is found that ignoring the correlation between the surveyed locations leads to bias

estimates of the parameters and large standard errors. It is also found that ignoring the

spatial correlations leads to overestimation of the mean probability of occupancy (Figure

7.8).

83



(a) low spatial dependence (γ = 0.5) (b) Large spatial dependence (γ = 1)

Figure 7.8: Mean estimated occupancy for 100 simulated data sets with 100 sites and
k=6. True: true distribution, CS: estimated values using the Cluster Sampling model, MS:
estimated values using the Zero Inflated Binomial. When using the ZIB the mean probability
of occupancy is overestimated.

Table 7.1: Summary statistics for 100 simulated data sets, k=6 and using Cluster Sampling
model and the Zero Inflated Binomial (ZIB)

(a) Low spatial dependence

Cluster Sampling ZIB
real mean se mean se

β0 -0.40 -0.32 1.15 3.62 10.98
β1 0.90 1.07 0.58 2.77 8.30
β2 -1.20 -1.32 0.97 -2.94 6.14
θ0 -0.50 -0.53 0.61 -1.50 0.22
θ1 1.00 1.08 0.32 0.73 0.16
θ2 -1.00 -0.97 0.49 -0.69 0.32
γ 0.50 0.42 0.46

(b) Large spatial dependence

Cluster Sampling ZIB
real mean se mean se

β0 -0.40 -0.45 0.78 1.51 2.39
β1 0.90 0.76 0.54 0.69 1.02
β2 -1.20 -1.13 0.85 -0.92 2.24
θ0 -0.50 -0.60 0.32 -0.98 0.21
θ1 1.00 1.01 0.17 0.85 0.13
θ2 -1.00 -0.93 0.30 -0.80 0.24
γ 1.00 1.11 0.33

In conclusion, it is found that the parameters for the cluster sampling model are iden-

tifiable. The simulations show that the estimates are unbiased when the number of visited

sites is larger than 50, especially if the size of the cluster is large (k=6).
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Figure 7.9: Illustration of the sampling methodology for the coontail species.

7.3 Example data analysis

The cluster sampling model was illustrated using the data from the submersed aquatic

vegetation species Ceratophyllum demersum L. (coontail). This species is thought to be

native in the U.S. and distributed in the Atlantic coastal plain, the Mississippi watershed

and the Great Lakes region [31, 112].

The observations used in this analysis were collected during 2009 by the Upper Missis-

sippi River’s Long Term Resource Monitoring Program [50]. To sample the vegetation, a

3 meters long rake was dragged for 1.5 meters over riverine substrate and then removed.

After removal, an observer noted if the species was present or not. Sampling was conducted

at sites located no closer than 50 meters apart. At each sampling site, the boat was stopped

and the rake method used at 6 locations within the sampling plot (see Figure 7.9). Further

sampling information can be found in Yin et al. (2000)[120].

The following are the covariates that were considered for the analysis:

• Julian date: Sampling was conducted over an approximately 5 week period.

• Observer id: Identifier for the person who inspected the sample to determine the

presence/absence of the species.

• Substrate: Ranges from 1 to 4: 1 indicates substrates that are predominately silt

and/or clay, 2 indicates substrates that are mostly silt but have some sand, 3 indicates

substrates that are mostly sand but have some silt or clay, and 4 indicates substrates that
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Table 7.2: AIC of the 10 best candidate models for the coontail species. The models are
ordered from the smallest AIC (best model) to the largest AIC, * indicates which covariates
were included in the model. Model 1 is the selected model since it has the largest support.

model
1 2 3 4 5 6 7 8 9 10

ψ (·)

intercept * * * * * * * * * *
julian * * * * * * * * *
julian2 * * * * * * *
depth * * * * * * * * * *
depth2 * * * * * * * * *
east * * * * * * * *
north * * * * *
substrate * * * * * * * * * *
distance * * * * * * * * *

δ (·)

intercept * * * * * * * * * *
observer * * * * * * * * * *
substrate * * * * * * * * * *
julian * * * * * * * * * *
julian2 * * * *
depth * * * * * * * * * *
depth2 * * * * * * * * * *
distance * * * * * * * *
north
east
AIC 996 998 1000 1002 1003 1003 1006 1006 1007 1009

are gravel, rock or sand. This covariate was considered ordinal, assigning the larger the

number to the coarser substrate.

• River mile: Distance from the Ohio river.

• Coordinates (north and east).

• Water Depth : Distance from the surface of the water to the settlement.

Different models were considered and the best model was selected using Akaike’s Infor-

mation Criterion(AIC)[11]. Table 7.2 shows the 10 best models and their corresponding

AIC. It was found, according to the best model (model 1 in table 7.2), that the probability

of occupancy is associated with the Julian date, the distance, the depth and the substrate.

In addition, the probability of detection was found to be associated with observer, Julian

date, distance, depth and substrate. The identifiability of the parameters for this model

was verified using data cloning (see figure7.10).

Table 7.3 presents the estimated parameters and their corresponding confidence intervals.

These confidence intervals were calculated using 200 bootstrap samples. It is found that all

the parameters are significantly different from zero, except for the quadratic term associated
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Figure 7.10: Maximum eigenvalue (λmax) of the variance covariance matrix for different
number of clones (1, 2, 3, 4, 5 and 10). . Solid line represents the obtained eigenvalues,
dotted line represent the expected eigenvalues if the parameters are identifiable. It is found
that λmax decreases as the number of clones increases indicating that the parameters are
identifiable.

with the Julian date for the probability of occupancy.

Figure 7.11 displays the relationship of the covariates with the probabilities of occupancy

and detection. It appears, according to the best model (model 1; table 7.2), that the

distance from the river has a weak positive relationship with the probability of occupancy

(figure 7.11d). This relationship is expected since sites at smaller distances are farther

downstream, therefore farther from the source. On the other hand, although it is expected

for the probability of occupancy to increase with the Julian date, the estimated parameters

tell a different story. According to figure 7.11c, the probability of occupancy is negatively

associated with the Julian date. This result can be explained by the fact that the last

visited sites (larger Julian dates) were more distant from the source, and so, although the

prevalence of the coontail species is expected to increase as the time goes by, it may not be

the case for sites located far from the source. The substrate was found to have a negative

relationship with the probability of occupancy (figure 7.11a). To interpret this result it

is important to recall that the larger the substrate value, the coarser the substrate. This

relationship can be a reflection of lack of flow, since the probability of portions of coontail

settling and staying in place will rise as flow decreases. The depth at the sample location

was found to have a significant quadratic relationship with the probability of occupancy, for

which the largest probability of occupancy was found at approximately 1.2 meters of depth.

The probability of occupancy is nearly zero for values of depth larger than 2.5 meters. The
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Table 7.3: Estimated parameters and confidence intervals on the logit scale for the coontail
species using model 1 of table 7.2.

90% CI
estimate LL UL

ψ (·)

intercept 1.128 0.879 1.378
julian -0.530 -0.794 -0.257
julian2 -0.006 -0.202 0.195
depth -0.242 -0.435 -0.054
depth2 -0.285 -0.422 -0.160
substrate -1.174 -1.312 -1.023
distance 0.259 0.081 0.432
γ 0.894 0.861 0.927

δ (·)

intercept -0.276 -0.501 -0.052
observer 0.955 0.782 1.129
substrate -1.042 -1.145 -0.941
julian -1.320 -1.517 -1.119
julian2 -0.281 -0.435 -0.122
depth -1.720 -1.858 -1.570
depth2 0.194 0.088 0.308
distance -0.272 -0.402 -0.133

corrected mean probability of occupancy at every location was estimated to be 0.562, while

the naive estimate was 0.336. The corrected mean probability of occupancy at the cluster

level was estimated to be 0.723 while the naive estimated was 0.561.

Figures 7.11e, 7.11f, 7.11g, and 7.11h display the relationship of the substrate, depth,

Julian date and the distance with the probability of detection for each observer. It was

found that the observer coded with the number 2 performed consistently better than the

observer coded with the number 1. It was also found that the relationship of the substrate,

depth and Julian date with the probability of detection resembles that of the same covariates

with the probability of occupancy. This leads us to conclude that most of the covariates

support the hypothesis that an increase in the prevalence of the coontail species can lead

to an increase in the chances for the species to be detected. However, it was also found

that the association of distance with the probability of detection is the opposite of that of

the distance with the probability of occupancy. Such a results are a likely an effect of the

sampling schedule, for which sites at small distances (680 meters) were sampled last, when

the coontail was bigger and more noticeable.
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Figure 7.11: Covariates effects over the probability of occupancy and detection for the
coontail species model.

7.4 Summary

In this chapter we introduced a model that allows estimation of the probability of occu-

pancy using information from a single survey collected at sites that are expected to exhibit

correlation. Our simulation study showed that for the cases under consideration the MLE

of the parameters are consistent and identifiable.

We also discussed how the identifiability of any model can be tested by using readily

available methods. We believe that checking the identifiability of the parameters of any

model should be a regular practice that must be conducted before making any inference

about the system under study.

The cluster sampling model provides another tool to correctly estimate the probability of

occupancy when the surveys are not independent. The advantage of this model over the one

introduced by Hines et al. (2010) is that our model provides estimates of the probability

of occupancy at the sample unit level and at the location level, while Hines’ model only

allows estimation of the probability of occupancy at the sample unit level. On the other

hand, the cluster sampling can be used to test the assumption of independece of surveys for

89



data collected under the multiple surveys sampling protocol. The test can be conducted by

comparing the support of every model using a Likelihood Ratio Test.

Our model is constrained by the size of the cluster: in order to find the MLE it is

necessary to obtain a closed form expression of the likelihood function, which results in an

exponential increase of the complexity with the size of the cluster. Using our program, the

largest sample unit size we were able to estimate parameters from was 10. Further research

is required to determine the feasibility of using approximations to the likelihood to correctly

estimate the parameters.
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Chapter 8

Future research

In this chapter we introduce a couple of extensions to the models discussed in previous

chapters, together with a brief description of how the MPLE can be incorporated to the

estimation of abundance using capture-recapture models. In section 8.1 we introduced

a model that using information from a single survey allows estimation of probability of

occupancy for species that co-occupied the same territories. This section also contains some

preliminary results from the simulation study conducted to evaluate this model performance

under different scenarios. In section 8.2 we introduced the concept of Resource Selection

Probability Function (RSPF) and a model that allows to estimate it while accounting for the

detection error. Finally, section 8.3 contains a brief introduction to the capture-recapture

models used to estimate abundance of a population and some ideas on how the MPLE can

be used to improve its estimates.

8.1 Multiple species single survey model

An important area of research in ecology is the study of communities ( see section 2.3), where

one of its goals is to understand interspecific interactions between species. In section 3.3

we discussed the two main contributions for modeling site occupancy probability for the co-

occurrence of multiple species (MacKenzie et al. (2004)[71] and Waddle et al. (2010)[115]).

Both models require multiple and independent surveys of the same site.

Now we introduce a model to estimate the co-occurrence of multiple species using infor-

mation from a single survey. The model we propose is to be applied to sampling schemes

where n sites are surveyed one time to determine the presence/absence of at least two tar-
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get species. The details of the statistical model are presented followed by a summary of

the results of the simulation study that was conducted with the purpose of assessing the

performance of the model.

8.1.1 Statistical model

The co-occurrence model

Let’s assume n sites are surveyed once to monitor S species in the study area. The true

state of the jth species on the ith site is a binary variable denoted by zij , where zij = 1

indicates the jth species is present at the ith site, and zij = 0 indicates the jth species is

absent from the ith site. Let’s also assume the conditional probabilities can be calculated:

Pr (zij/{zim:m �=j}) for i = 1, ...n and j = 1, ..., S (8.1)

These probabilities indicate that the presence/absence of the jth species on the ith site is

conditioned by the presence/absence of all other species on that same site. The stochastic

process defined by these conditional probabilities was introduced by Besag (1974)[8] and is

know as a Random Markov Field. The conditional probability mass function can be written

as follows:

f (zij/{zim:m �=j}) =
exp (zijAij (zim : m �= j, xi))

1 + exp (zijAij (zim : m �= j, xi))
(8.2)

where xi are the set of habitat covariates associated with the ith site and Aij is called the

natural parameter function. Besag (1974) showed that the natural parameter function for

the binary case must be of the form

Aij {zim : m �= j, xi} = xT
i βj

+
�

m �=j

γmjzim (8.3)

where β
j

for j = 1, . . . , S is a vector of parameters that relate the habitat covariates with

the probability of occupancy of the jth species, and γmj (for m = 1, . . . , S and j = 1, . . . , S)

are the statistical dependence parameters that account for the interaction between species,

for which γmj = γjm for all j = 1, . . . , S and m = 1, . . . , S.

For ease of explanation we present the model for two species. Nevertheless, the model

presented below can be easily modified to include a larger number of species. For the two

species case, the conditional probabilities can be written as
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Pr (zi1=zi1/zi2=zi2) =
exp

�
zi1

�
xT
i β1

+ γzi2
��

1 + exp
�
xT
i β1

+ γzi2
� (8.4)

Pr (zi2=zi2/zi1=zi1) =
exp

�
zi2

�
xT
i β2

+ γzi1
��

1 + exp
�
xT
i β2

+ γzi1
� (8.5)

from where γ can be written as a function of the odds for the species 1 to be present

γ = log

�
Pr (zi1=1/zi2=1)

Pr (zi1=0/zi2=1)

�
− log

�
Pr (zi1=1/zi2=0)

Pr (zi1=0/zi2=0)

�
(8.6)

It is clear then that γ > 0 indicates that the odds for the species 1 to be present at the

ith site are larger if the species 2 is present at the ith site. On the other hand, if γ < 0

then the odds for the species 1 to be present are larger if the species 2 is absent from the

ith site. Finally, γ = 0 indicates that the occupancy probabilities for the two species are

independent of each other.

Assuming that the presence/absence of the two species of interest on the ith site are dis-

tributed according to the joint distribution Pr (zi1, zi2), the Hammersley-Clifford theorem

(Hammersley and Clifford, 1971) establishes that the form that this joint distribution must

take for it to be the joint probability measure of a Markov random field. Applying the

Hammersley- Clifford theorem for the two species case the joint distribution is:

Pr (zi = (1, 1))

Pr (zi = (0, 0))
=

Pr (zi1=1/zi2=0)

Pr (zi1=0/zi2=0)
· Pr (zi2=1/zi1=1)

Pr (zi2=0/zi1=1)
=

ψi11

ψi00
= exp

�
xT
i β1

+ xT
i β2

+ γ
�

(8.7)

Pr (zi = (0, 1))

Pr (zi = (0, 0))
=

Pr (zi1=0/zi2=0)

Pr (zi1=0/zi2=0)
· Pr (zi2=1/zi1=0)

Pr (zi2=0/zi1=1)
=

ψi01

ψi00
= exp

�
xT
i β2

�
(8.8)

Pr (zi = (1, 0))

Pr (zi = (0, 0))
=

Pr (zi1=1/zi2=0)

Pr (zi1=0/zi2=0)
· Pr (zi2=0/zi1=1)

Pr (zi2=0/zi1=1)
=

ψi10

ψi00
= exp

�
xT
i β1

�
(8.9)

It follows that

Pr (zi = (0, 0)) = ψi00 =
1

1 + exp
�
xT
i β1

+ xT
i β2

+ γ
�
+ exp

�
xT
i β2

�
+ exp

�
xT
i β1

�

(8.10)

and marginal probability of occupancy of the species 1 and 2 at the ith site (ψi,s=1 and

ψi,s=2 respectively) can be easily calculated from the joint distribution as
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ψi,s=1 = ψi10 + ψi11 (8.11)

ψi,s=2 = ψi01 + ψi11 (8.12)

Detection error model

Nevertheless, it is likely for the species to be present but not detected during the survey,

hence the true state of the species is not directly observable. The observations collected

during the survey are denoted by the binary variable yij ,where yij equals 1 if the jth

species is detected at the ith site, and 0 if the jth species is not detected at the ith site.

Let δij = Pr (yij=1/zij=1) for i = 1, . . . , n and j = 1, . . . , S be the probability of detecting

the jth species at the ith site given that the jth species is present. These probabilities can

depend on covariates such as time of the day, weather conditions and the presence/absence

of other species. Let us denote by wi the set of covariates at the ith site that are thought

to be related to the probability of detection. These covariates can be incorporated into the

probability of detection by using any link function (e.g. the Logit link, Complement Log-log

link or the Probit link). For instance, using the Complement Log-log link, the probability

of detection for the species 1 can be written as follows:

δi1/(zi1,zi2) = Pr (yi1=1/zi1=1,zi2,wi) = 1− exp
�
−exp

�
wT

i θ1 + ηzi2
��

(8.13)

where η is the parameter that accounts for the dependence of the probability of detection

between species and θ1 is a vector of parameters that determine the effect of the covariates wi

over the probability of detection. The interpretation of the parameter η will then be: η > 0

indicates that the presence of the species 2 increases the chances of detecting the species

1, η < 0 indicates that the presence of the species 2 decreases the chances of detecting the

species 1, and η = 0 indicates that the probability of detecting the species 1 is independent

of the presence/absence of the species 2. Similarly, the probability of detecting the species

2 is:

δi2/(zi1,zi2) = Pr (yi2=1/zi2=1,zi1,wi) = 1− exp
�
−exp

�
wT

i θ2 + ηzi1
��

(8.14)

The probability mass function for the observations y
i
= (yi1, yi2) for i = 1, ..., S is as
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follows:

Pr
�
y
i
= (0, 0)

�
= ψi00 +

�
ψi10

�
1− δi1/(1,0)

��
+

�
ψi01

�
1− δi2/(0,1)

��
+ (8.15)

�
ψi11

�
1− δi1/(1,1) − δi2/(1,1) +

�
δi1/(1,1) · δi2/(1,1)

���
(8.16)

Pr
�
y
i
= (1, 0)

�
=

�
ψi10 · δi1/(1,0)

�
+
�
ψi11 ·

�
δi1/(1,1) −

�
δi1/(1,1) · δi2/(1,1)

���
(8.17)

Pr
�
y
i
= (0, 1)

�
=

�
ψi01 · δi2/(0,1)

�
+
�
ψi11 ·

�
δi2/(1,1) −

�
δi1/(1,1) · δi2/(1,1)

���
(8.18)

Pr
�
y
i
= (1, 1)

�
= ψi11 · δi1/(1,1) · δi2/(1,1) (8.19)

Assuming that the observations between sites are independent, the likelihood is then

calculated as the product of the probabilities of all the detection histories collected during

the survey

L
�
β
1
,β

2
, θ1, θ2, γ, η; y

�
=

n�

i=1

(νi00)
I(y

i
=(0,0)) · (νi01)I(yi

=(0,1)) (8.20)

· (νi10)I(yi
=(1,0)) · (νi11)I(yi

=(1,1)) (8.21)

where I (·) is the indicator function that is equal to one if its argument is true and zero

otherwise, and, νi00, νi10, νi01 and νi11 are equal to Pr
�
y
i
= (0, 0)

�
, Pr

�
y
i
= (0, 1)

�
,

Pr
�
y
i
= (1, 0)

�
and Pr

�
y
i
= (1, 1)

�
respectively. The MLE are obtained by maximizing

I (·) with respect to the parameters
�
β
1
,β

2
, θ1, θ2, γ, η

�
.

If the number of sites is large, any optimization method can be used to obtain the MLE.

Nevertheless if the number of sites is small, a penalty function similar to the one described

in previous chapters can be effective on improving the estimated parameters for this model.

The algorithm 8.1describes how to obtain the MPLE for the multiple species model.

8.1.2 Simulation study

The following simulation study was conducted to evaluate the performance of the co-

occurrence model. Two cases were considered and analyzed. For the first case it was

assumed that one species is detected independently of the presence/absence of the other

species and vice versa, and for the second case it was assumed that the probability of de-

tecting one of the species depended on the presence/absence of the other species and vice

versa.

95



Algorithm 8.1 Maximum Penalized Likelihood Estimates (MPLE) for the multiple species
single survey model

1. Obtain the MLE for
�
β
1
,β

2
, θ1, θ2, γ, η

�
by maximizing the likelihood function. Let

us denote these by
�
β̂
M

1
, β̂

M

2
, θ̂

M

1 , θ̂
M

2 , γ̂M , η̂M
�
.

2. Obtain the naïve estimator of β̂
j

for j=1, 2 by maximizing

L
�
β
j
; y

.j

�
=

n�

i=1




exp

�
xiβj

�

1 + exp
�
xiβj

�





yij 

 1

1 + exp
�
xiβj

�




1−yij

This estimator is based on the assumption that there is no detection error and there
is no interaction between species.

3. Obtain the naïve estimator of θ̂j
naive

by maximizing

L
�
θj ; y.j

�
=

n�

i=1

ϕ
�
wi, θj

�yij
�
1− ϕ

�
wi, θj

��1−yij

where ϕ (·) is the link function used for the probability of detection. This estimator
is based on the assumption that all sites are occupied and that the probability of
detection of every species is independent of each other.

4. Maximize the penalized likelihood function with respect to
�
β
1
,β

2
, θ1, θ2, γ, η

�

log
�
PL

�
β
1
,β

2
, θ1, θ2, η, γ

��
= log

�
L
�
β
1
,β

2
, θ1, θ2, η, γ

��

−
2�

j=1

λj ·
���β

j
− βnaive

j

���−
2�

j=1

κj ·
��θj − θnaivej

��

where

λj =
�
1− ψ̂naive

j

�
δ̂Mj

�
tr

�
var

�
θ̂Mj

��

and

γj =
�
1− δ̂naivej

�
ψ̂naive
j

�
tr

�
var

�
β̂
M

j

��

and
�
δ̂
naive

j , ψ̂
naive

j

�
and

�
δ̂
M

j , ψ̂
M

j

�
denote the average occupancy and detection probabil-

ities for the jth species under the naïve method of estimation and MLE respectively. It
is important to mention that the purpose of the penalization is to stabilize the likelihood
function when the number of visited sites is small. As the number of visited site increases
the penalty converges to zero, and the MPLE are the same as the MLE.
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Case 1: independent probabilities of detection

Assuming only two species are of interest, the probability of occupancy for each species was

set to depend both on a continuous covariate xi ∼ Normal (0, 1.5) and the presence/absence

of the other species:

Pr (zi1=zi1/zi2=zi2) =
exp (zi1 (α11 + α12xi + βzi2))

1 + exp (α11 + α12xi + βzi2)
(8.22)

Pr (zi2=zi2/zi1=zi1) =
exp (zi2 (α21 + α22xi + βzi1))

1 + exp (α21 + α22xi + βzi1)
(8.23)

In addition, the probability of detection for each species was assumed to depend on a

continuous covariate wi ∼ Normal (0, 1).

δi1 = Pr (yi1=1/zi1=1) = 1− exp (−exp (θ11 + θ12wi)) (8.24)

δi2 = Pr (yi2=1/zi2=1) = 1− exp (−exp (θ21 + θ22wi)) (8.25)

The values of the probability of occupancy and the number of visited sites were varied to

obtain a total of 12 simulation sets (i.e. four different levels of probability of occupancy

and three different sizes for number of visited sites). The levels for the probability of

occupancy were selected considering both the marginal probability of occupancy for every

species and the strength of the interaction between the two species. Every simulated level

of the probability can be denoted by a vector
�
ψs=1,ψs=2,ψboth

�
where ψs=1 is the mean

marginal probability of occupancy for the species 1, ψs=2 is the mean marginal probability of

occupancy for the species 2, and ψboth is the mean probability of occupancy for both species.

The four simulated levels were {0.40, 0.40, 0.10} , {0.39, 0.40, 0.22}, {0.63, 0.66, 0.43}, and

{0.78, 0.78, 0.58}. The number of visited sites were set at 150, 300 and 600. The mean

probability of detection was set to be 0.31 for the species 1, and 0.27 for the species 2.

The parameters were selected to obtain the mean probability of occupancy and detection

according to the level.

Figure 8.1 displays the median relative bias for the estimated probabilities. It is observed

that the largest biases were obtained for the case in which the probability of occupancy for

both species was lowest (figure 8.1a). However, for all the cases, as the number of sur-
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veyed sites increased the bias decreased. Similar results were obtained for the parameters

associated with the covariates. Figures 8.2 and 8.3 display the box plots of the estimated

parameters for the low probability of occupancy case, for which the estimates of the param-

eters seem to be consistent. A complete summary of the results is presented on Appendix

D.
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Figure 8.1: Median relative bias for the estimated probabilities. The “o” represent ψs=1, the
“�” represent ψs=2, the “+” represent ψ11 , “x” equises represent δ1 and the “♦” represent
δ2.
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Figure 8.2: Box plots of estimated parameters for the probability of occupancy model. Sum-
mary of the 100 estimated parameters obtained when simulating the case {0.40, 0.40, 0.10}
for two species. For these simulations was assumed that the probability of detection of every
species was independent of each other.

Figure 8.3: Box plots of estimated parameters for the probability of detection model. Sum-
mary of the 100 estimated parameters obtained when simulating the case {0.40, 0.40, 0.10}
for two species. For these simulations was assumed that the probability of detection of every
species was independent of each other.
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Case 2: dependent probabilities of detection

Similar to the first case, we assumed only two species were of interest. In this case, not

only the probability of occupancy for a species depended on the presence/absence of the

other species, but also the probability of detection of each species depended on the pres-

ence/absence of the other species.

δi1/zi2 = Pr (yi1=1/zi1=1) = 1− exp (−exp (θ11 + θ12wi + γ12zi2)) (8.26)

δi2/zi1 = Pr (yi2=1/zi2=1) = 1− exp (−exp (θ21 + θ22wi + γ21zi1)) (8.27)

Only one set of simulation were conducted. The parameters were selected in order to

obtain small probabilities of occupancy but moderate levels for the probability of detection.

The resulting probabilities were {ψs=1 = 0.282,ψs=2 = 0.280,ψboth = 0.108} and
�
δ1/z2=0 = 0.667, δ2/z1=0 = 0.660, δ1/z2=1 = 0.70, δ2/z2=1 = 0.62

�
.

Unfortunately, the results of the simulation study were not satisfactory because for some

of the generated data sets the parameters were not identifiable. Figure 8.4 displays the

maximum eigenvalue of the variance-covariance matrix against the number of clones for

four simulated data sets using 150 sites. It was found that while for two data sets the

parameters were identifiable, for the other two data set they were not. Further research is

required to determine whether a different parameterization of the model could lead toward

better results.

8.2 RSPF with detection error

Biologists are often interested on identifying what resources are used by an animal and what

the availability of those resources is. This information is crucial to develop plans for wildlife

management and conservation. One of the tools commonly used to collect such information

is the Resource Selection Probability Function (RSPF), a function that allows estimation of

the probability for a specific resource to be used by an animal [77, page 27] (Manly et al:

2002:27).

Generally the sampling protocol used in these studies is the use-availability design (Sam-

pling Protocol A, design I [77, page 15]). In this design it is assumed that a random sample

of N locations is taken from the population of used sites, and that a random sample of M
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Figure 8.4: Maximum eigenvalue vs the number of clones for 4 simulated data sets for two
species and dependent probabilities of detection.

locations is taken from the available sites. The latter sample will contain besides the unused

sites other sites that might potentially have been already used. Every site is characterized

by environmental factors that can be denoted by xi = (xi1, ..., xip) . The goal of the RSPF

analysis is to study how the environmental factors (xi) affect the probability of use, denoted

by π
�
xi,β

�
.

Let Zi be a binary variable that equals 1 if the ith site is used and 0 if the ith site is not

used. The probability of use (i.e. the RSPF) can be defined as π
�
xi,β

�
= Pr (Zi=1/X=xi)

where 0 ≤ π
�
xi,β

�
≤ 1 for all possible values of xi and β.

Johnson et al. (2006)[51] showed that the use-availability study design is properly for-

mulated in terms of weighted distributions [89], and that when using the exponential RSPF

(π
�
xi,β

�
= exp (β0 + β1xi1 + ...+ βpxip) for β0 + β1xi1 + ... + βpxip ≤ 0 ) all the param-

eters but the intercept (β0) can be estimated using the standard logistic regression. Lele

and Keim (2006)[61] extended the ideas from Johnson et al. (2006) and demonstrated that

other parametric forms such as the logistic, probit and log-log link (Equations 5.1, 5.2 and

5.3 in Manly et al. 2002[77]) allow estimation of all the parameters, hence the estimation of

the absolute probabilities.
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One of the assumptions for the RSPF estimates to be valid under the use-availability

study design is that the used locations are correctly classified.

“If animals use an area and are unobserved or sign of their use is not observed,

then this assumption will be violated”[77, Page 14].

The violation of this assumption is usually referred as the detection error. This error can

be defined as the probability that a site that has been used by an animal is not classified as

used because, either the animal was not detected during the survey, or that no evidence of

its use was found. For instance, consider the case in which the used locations are determined

by using GPS collars. It has been shown that GPS collars can be biased because vegetation

or terrain interfere with the satellite signals necessary to acquire a location[29]. Under this

circumstance the sample of used sites can be biased. A statistical model that incorporates

the detection error into the RSPF estimation is discussed in the following section.

8.2.1 Statistical model and estimation procedure

Let’s assume that every location at the study area is characterized by environmental vari-

ables denoted by xi . These locations are surveyed to determine whether the site has been

or is still being used by the target species. As a result, there will be N locations that will

be classified as “used” and M locations for which evidence of use was not found . It is as-

sumed that the covariates vectors xi are a random sample from a multivariate distribution

fA (x), where fA (x) is the probability distribution of the available resources over the study

area. Furthermore, since it is assumed that the resources are used disproportionally to their

availability, the probability distribution of the resources used by the animal can be denoted

by fU (x), thus calculated as 8.28.

fU
�
X=xi/Zi=1;β

�
=

Pr
�
Zi=1/X=xi;β

�
fA (x)

Pr (Zi = 1)
(8.28)

where π
�
xi,β

�
is the resource selection probability function (RSPF) at a location charac-

terized with the vector of covariates xi, and Zi = 1 indicates that the ith location has been

used by the animal. The goal of the analysis is to estimate the parameters β, hence to

understand the effect of the covariates over the probability for that resource to be selected.
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Incorporating the detection error into the RSPF

Classifying a used location as such is seldom perfect. Moreover, the classification of a

location as “used” is the result of two processes: first, the location is selected by the animal;

and second, evidence of its use is observed during the survey. These two processes are

reflected on the following probability distribution:

fU
�
X=xi/Yi=1;β,θ

�
=

Pr (Yi=1/Zi=1,W=wi;θ)Pr
�
Zi=1/X=xi;β

�
fA (x,w)

Pr (Yi = 1)

=
δ (wi, θ)π

�
xi,β

�
fA (x,w)´

δ (wi, θ)π
�
xi,β

�
fA (x,w) dxdw

=
δ (wi, θ)π

�
xi,β

�
fA (x,w)

P
�
β, θ

� (8.29)

where Yi is a binary variable that equals 1 if a used site is correctly classified (i.e. evidence

that the site has been used by the target species was detected during the survey); δ (wi, θ)

is the probability of correctly classifying a used site, and wi are the set of covariates that

affect the probability of detection.

It is easy to show that when the probability of detection is constant and equal for all the

locations (i.e., δ (wi, θ) = δ for all i), the RSPF can be estimated using the same weighted

distribution presented in Johnson et al. (2006) and Lele and Keim (2006) (equation 8.30).

fU
�
X=xi/Yi=1;β,θ

�
=

δπ
�
xi,β

�
fA (x,w)´

δπ
�
xi,β

�
fA (x,w) dx

=
π
�
xi,β

�
fA (x,w)

P
�
β
� (8.30)

On the other hand, the probability of detection can vary according to covariates related

to the environment or the sampling methodology. If the covariates the RSPF depends on

are separable from the covariates the probability of detection depends on (i.e., there are no

common covariates), then the probability distribution for the used sites can be written as

8.31.

fU
�
X=xi/Yi=1;β,θ

�
=

δ (wi, θ)π
�
xi,β

�
fA (x, ) fA (w)´

δ (wi, θ)π
�
xi,β

�
fA (x, ) fA (w)

(8.31)

=
π
�
xi,β

�
fA (x, )

P
�
β
� · δ (wi, θ) f

A (w)

P (θ)
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It can be shown that the estimates of the parameters β obtained when maximizing the

likelihood for the latter probability distribution are the same as the ones obtained when

ignoring the detection error. However, there is one case when the detection error must be

accounted for, this is when the covariates related to the RSPF are related to the probability

of detection too. In this case, the parameters should be estimated by maximizing the

following likelihood:

L (β,θ/x1,...,xN ,w1,...,wN) =
N�

i=1

δ (wi, θ)π
�
xi,β

�
fA (xi, wi)

P
�
β, θ

� (8.32)

This likelihood can be maximized using the method of simulated maximum likelihood

(Robert et al. (1999)[94], Lele and Keim, (2006) [61]). This estimation method consists

on maximizing the log-likelihood using an estimate value of P
�
β, θ

�
. The log-likelihood can

be written as follows:

log (L (β,θ/x1,...,xN , , w1, ..., wN )) =
N�

i=1

log (δ (wi, θ)) + log
�
π
�
xi,β

��
(8.33)

− log
�
P
�
β, θ

��
+ log

�
fA (xi, wi)

�

where the last term log
�
fA (xi, wi)

�
does not depend on the parameters

�
β, θ

�
and can be

disregarded when maximizing the log-likelihood. However, P
�
β, θ

�
is not known analytically

and depends on the parameters of interest. A way around for this problem is to use an

estimate of P
�
β, θ

�
that can be obtained from a random sample of the available sites (8.34).

�P
�
β, θ

�
=

�M
j=1 π

�
xj ,β

�
δ
�
wj , θ

�

M
(8.34)

So the log-likelihood can be written as

l̂ (β,θ/x1,...,xN , , w1, ..., wN ) =
N�

i=1

log (δ (wi, θ)) + log
�
π
�
xi,β

��

− log
�

�P
�
β, θ

��
(8.35)

The simulated maximum likelihood estimators (SMLE) are obtained by maximizing equa-

tion 8.35 with respect to
�
β, θ

�
. This estimation method was implemented on a program

written in R [113]. Lele (2009) [59] proposed an alternative estimation method that consisted

of maximizing the partial likelihood function by using a data cloning algorithm [60]. This
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method provides estimators more stable than those obtained by maximizing the simulated

likelihood. More importantly, by using the partial likelihood and the data cloning algorithm

it is possible to determine the identifiability of the parameters[62]. The partial likelihood

function for the complete model can be denoted by PL
�
β, θ,α

�
. The maximum partial

likelihood estimators (MPaLE) are obtained by maximizing PL
�
β, θ,α

�
under the restric-

tion 0 ≤ α ≤ 1. The complete derivation of the partial likelihood function (equation8.36) is

presented on the Appendix E.

PL
�
β, θ,α

�
=

N�

i=1

rπ
�
xU
i ,β

�
δ
�
wU

i , θ
�

rπ
�
xU
i ,β

�
δ
�
wU

i , θ
�
+ (1− r)α

(8.36)

·
M�

j=1

(1− r)α

rπ
�
xA
j ,β

�
δ
�
wA

j , θ
�
+ (1− r)α

8.2.2 Simulation analysis

A simulation study was conducted with two purposes: first, to determine the effect of the

detection error over RSPF estimates; and second, to evaluate the statistical properties of

the estimates under the full model (i.e., considering the detection error). Three factors were

considered: the type of the common covariate, the link used for the detection model, and

the number of used sites. These three factors were combined for a total of 18 simulated

cases. For the first factor two cases were considered: the common covariate is continuous or

the common covariate is a binary variable. Three different link functions were considered

for the detection model: logistic, complement log-log and probit. Finally, three different

sample sizes were used for the simulations: 500, 1000 and 2000. The number of available

sites was set constant and equal to 1000.

The Logistic RSPF was considered and set to depend on two covariates: a continuous

covariate xi1 ∼ Normal (0, 1) and a binary covariate xi2 ∼ Bernoulli (0.55).

π (xi,β) =
exp (β0 + β1xi1 + β2xi2)

1 + exp (β0 + β1xi1 + β2xi2)
(8.37)

The probability of detection was set to depend on two covariates as well. For the simulated

cases in which a continuous covariate was common, the probability of detection was set to

depend on xi1 and wi2 ∼ Bernoulli (0.65). For the simulated cases with a common discrete

covariate the probability of detection was set to depend on wi1 ∼ Normal (0, 1) and xi2.

For every simulated case, 500 data sets were generated and the SMLE and the MPaLE were
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calculated.

A complete summary of the simulation results is presented in appendix F. The results

of the simulation corroborate the hypothesis: when no common covariates exist between

the probability of detection and the RSPF, the estimates of the RSPF obtained for the full

model are the same as those obtained for the naive model (i.e when the detection error is

ignored). On the other hand, for those cases where common covariates exist, the RSPF

estimates obtained from the naive model are biased. Figure 8.5 displays the box plot of the

MPaLE and naive estimates for the common continuous covariate case. Notice that naive

estimates of the parameter associated with the common covariate (β1) are underestimated,

while the MPaLE of the full model are unbiased. Similar results are obtained for the SMLE

although their variance is larger than that obtained for the MPaLE .
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Figure 8.5: Box plots of the Maximum Partial Likelihood estimates obtained for 500 data
sets using a continuous common covariate associated with the parameter β1.

107



500 1000 2000

-2
0

-1
0

0
10

20
30

40
50

!0

number of used sites

500 1000 2000

-2
0

-1
0

0
10

20
30

40
50

full model
naive

( 22 %) ( 0 %) ( 10 %) ( 0 %) ( 9 %) ( 0 %)

complement log-log logistic probit

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!

number of used sites

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

full model
naive

( 0 %) ( 0 %) ( 0 %) ( 0 %) ( 0 %) ( 0 %)

500 1000 2000

-2
0

-1
0

0
10

20
30

40
50

!0

number of used sites

500 1000 2000

-2
0

-1
0

0
10

20
30

40
50

full model
naive

( 8 %) ( 0 %) ( 9 %) ( 0 %) ( 8 %) ( 0 %)

500 1000 2000

-1
0

1
2

!1

number of used sites

500 1000 2000

-1
0

1
2

full model
naive

( 20 %) ( 1 %) ( 15 %) ( 2 %) ( 8 %) ( 1 %)

500 1000 2000

-2
0

-1
5

-1
0

-5
0

5
10

!2

number of used sites

500 1000 2000

-2
0

-1
5

-1
0

-5
0

5
10

full model
naive

( 4 %) ( 1 %) ( 3 %) ( 0 %) ( 2 %) ( 0 %)

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!

number of used sites

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

full model
naive

( 0 %) ( 0 %) ( 1 %) ( 0 %) ( 1 %) ( 16 %)

500 1000 2000

-1
0

1
2

!1

number of used sites

500 1000 2000

-1
0

1
2

full model
naive

( 28 %) ( 1 %) ( 13 %) ( 0 %) ( 13 %) ( 0 %)

500 1000 2000

-2
0

-1
5

-1
0

-5
0

5
10

!2

number of used sites

500 1000 2000

-2
0

-1
5

-1
0

-5
0

5
10

full model
naive

( 8 %) ( 0 %) ( 4 %) ( 0 %) ( 2 %) ( 0 %)

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!

number of used sites

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

full model
naive

( 1 %) ( 0 %) ( 1 %) ( 0 %) ( 1 %) ( 0 %)

500 1000 2000

-2
0

-1
0

0
10

20
30

40
50

!0

number of used sites

500 1000 2000

-2
0

-1
0

0
10

20
30

40
50

full model
naive

( 13 %) ( 1 %) ( 12 %) ( 1 %) ( 9 %) ( 4 %)

500 1000 2000

-1
0

1
2

!1

number of used sites

500 1000 2000

-1
0

1
2

full model
naive

( 9 %) ( 8 %) ( 2 %) ( 9 %) ( 2 %) ( 9 %)

500 1000 2000

-2
0

-1
5

-1
0

-5
0

5
10

!2

number of used sites

500 1000 2000

-2
0

-1
5

-1
0

-5
0

5
10

full model
naive

( 6 %) ( 2 %) ( 3 %) ( 1 %) ( 2 %) ( 1 %)

Figure 8.6: Box plots of the Simulated Maximum Likelihood estimates obtained for 500
data sets using a continuous common covariate associated with the parameter β1.

8.3 Capture - Recapture models

The multiple surveys approach for site occupancy studies was inspired by the closed popu-

lation mark-recapture model[73]. The mark-recapture model is used to estimate the abun-
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dance of a population. Similar to the multiple surveys model for site occupancy, the mark-

recapture model has been of great importance because it takes into account the fact that a

researcher may fail to detect some individuals present within a population during the time of

the survey. In general, the capture-recapture models to estimate abundance can be divided

into two categories: closed population and open population models. The former refers to

the models used to study a population that remains unchanged during the time of the study,

while the latter refers to the models used for populations that can exhibit changes due to

birth, death and migration processes[107].

The Lincoln-Petersen is considered to be the earliest contribution to the capture-recapture

estimates for the abundance of a closed population. Its estimation procedure assumes that

the study area is surveyed twice. The Lincoln-Petersen estimated population size is

N̂ =
MC

R
(8.38)

where M is the total number of animals caught and marked on the first visit, C is the total

number of animals captured on the second visit, and R is the number of recaptured animals

on the second visit. The line of reasoning for this estimate is that if all individuals have the

same probability of being captured on the second visit, the proportion of recaptured indi-

viduals
�
R
M

�
must be the same as the proportion of marked animals in the whole population

during the second visit
�
C
N

�
, thus, an estimate of the total population is given by equation

8.38. For applications of this method see [57, 64, 87].

On the other hand, the standard model for estimating abundance in open populations is

the Jolly-Seber model[52, 108], in which the population is modeled as shown in Figure 8.7.

This model allows to estimate both recruitment and survival while assuming homogeneity

in capture and survival probabilities among animals in the population. It is known that

violations of these assumptions can lead to biased estimates of the population abundance

and other parameters of interest such as the effects of covariates[90, 65, 53]. Several models

have been proposed to account for heterogeneity in the catchability of the animals[104, 26].

It has been found that for some of those models their likelihood is ill-behaved[105].

We hypothesize that the models developed in this thesis to improve estimation of the

site occupancy, in particular the MPLE, can also be used to improve the estimates of the

parameters of mark-recapture models for which the likelihood is ill-behaved. The general

idea will be to define a Naive estimate, for which some of the components of the full model
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Figure 8.7: Original process model for Jolly-Seber experiments. pi represents the probability
of capture at occasion i; φi represents the probability of an animal surviving between occa-
sions i and i+1; and Mi and Ui represent the number of marked animals and unmarked ani-
mals alive at occasion i. Reproduced from "Program MARK "A Gentle Introduction"[106].

are disregarded, and use that Naive estimate to stabilize the estimation of the parameters

for the full model. Consider for instance a full model in which the population is open and

the animals are classified on different strata (e.g., behavioral models). A Naive estimate can

be obtained by assuming that the population is closed and homogeneous. Like for the site

occupancy studies, the first step will be to determine the bias introduced on the estimated

parameters when using the Naive model and subsequently to determine the appropriate

penalty function for this case.

8.4 Summary

The two models introduced in this chapter are natural extensions of the work discussed

in previous chapters. The model to estimate site occupancy for species that co-occur in

the same area is an extension of the single survey model discussed in chapter 6. The

simulation study for the co-occurrence model demonstrated that there are limitations for the

current parameterization, namely, if both the probability of occupancy and the probability of

detection for one species depend on the presence/absence of the other species the results are

biased. Further research is required to determine whether other parameterization approaches

would improve the identifiability of the parameters.

In this chapter we also introduced the concept of the Resource Selection Probability

Function. We demonstrated that when the classification of a used site is affected by errors

in the detection there are cases in which it is necessary to incorporate a model for the

detection error into the RSPF estimation. The next step for the development of this project

is to apply our method to real data.

The development of an estimation method to use the penalized likelihood for capture-
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recapture models is currently at a very early stage. Further research is required to evaluate

the statistical properties of the MLE for the Naive model, and doing so, to determine the

appropriate penalty function for this case.
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Chapter 9

Conclusions

In this thesis, I present a general description of ecological systems and the metrics that

have been used to describe their status. This description allowed me to conclude that the

abundance and site occupancy probability are two very important metrics used to describe

the status of an ecological system in a fixed period of time. Afterwards, I presented an

overview of the current available methods to estimate the site occupancy probability and

a brief description of how these models have been extended to take into account detection

error. This overview led me to recognize that current models to estimate site occupancy

are based on two conflicting features: the assumption of closed population and the use of

replicate and independent surveys. From a statistical point of view, the larger the number

of replicated surveys, the better estimates of the probability of detection and consequently

the estimates of the probability of occupancy are. However, if the time required to conduct

these repeated surveys is long, it is unlikely for the population to remain closed, hence the

inferences that can be made about the ecological system of interest will become inaccurate.

The difficulties present to implement a site occupancy study revealed the need to develop

models that can be freed from those assumptions to provide reliable estimates for the site

occupancy probability.

The first step to improve the current methodology consisted of assessing its statistical

properties. It was found that there are practical circumstances in which neither the Maxi-

mum Likelihood approach nor the Bayesian estimates are able to provide reliable estimates

of the probability of occupancy nor of the probability of detection. As an alternative, an

estimation method based on Penalized Likelihood was developed. This method provides es-
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timates with better statistical properties than those obtained from the MLE or the Bayesian

approaches, especially for those cases in which due to logistic or budget restrictions only a

few number of sites can be visited and the number of replicated surveys has to be small. The

model was illustrated using data from two site occupancy studies: one for the Blue Ridge

Two Lined Salamander and the other for the Black-capped Chickadee. With the analysis for

the Blue Ridge Two Lined Salamander I was able to illustrate how a site occupancy study

with five surveys can lead to contrasting inferences when all the different pairs of surveys

are analyzed separately. This study lead to the conjecture that in such study the closed

population assumption might not hold. The data analysis for the Black-capper Chickadee

demonstrated the accuracy on the estimates that can be gained by using the Penalized

Likelihood approach.

The next step consisted of evaluating alternative models for which the requirement of

repeated and independent surveys were relaxed. We demonstrated that the estimates of the

site occupancy probability can be obtained using information from a single survey, provided

the site occupancy probability and the detection probability significantly depend on habitat

or other exogenous covariates, and that the sets of covariates that affect occupancy and

detection differ each by at least one covariate. The simulation study demonstrated that the

mean occupancy and mean detection probabilities can be estimated reasonably well with

sample sizes of 100 and 200 whereas a good estimation of regression coefficients occurs at

sample sizes of 300 or larger. It is worth mentioning that for the simulation study I decided

to use only low levels of probability of detection (δ < 0.30). It is expected that for larger

values of probability of detection, smaller sample sizes will be required.

The single survey model was further extended to incorporate the correlation between

adjacent sites. The extended model, named “cluster sampling model”, allows estimation

of site occupancy probability and probability of detection both at a site level and at a

cluster level. Once again, I decided for the simulation study for this model to focus on low

levels of probability of detection. It was found that, for the simulated cases, the estimated

parameters are consistent and identifiable. The best estimates were obtained for large cluster

sizes and strong correlations between sites. The limitations for this model are similar to

those of the single survey model, this is, it is required for the probability of occupancy and

the probability of detection to depend on habitat or other covariates, and that the set of

covariates that affect occupancy and detection differ by at least one covariate. We also

discussed how the identifiability of the parameters for this model can be tested using the
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data cloning algorithm [60, 62]. The application of the model and the identifiability test

was illustrated using data from a submersed aquatic vegetation species, the Ceratophyllum

demersum L. (coontail). The data analysis for the coontail species exemplifies a case in

which, despite the fact that the only covariate that separates the occupancy model from the

detection model is a binary variable associated with the observer, the parameters remain

identifiable.

I also proposed an extension of the single survey model to the study of a community. This

model, based on a Random Markov Field, would provide a tool to study the co-occurrence

of multiple species. Unfortunately, the results of the simulation study for the model were

not completely satisfactory. It was found that if both the probability of occupancy and

the probability of detection depend on the other species of interest, the parameters might

become unidentifiable.

Finally, I introduced the concept of the Resource Selection Probability Function, and the

effect of the detection error on its estimates. My simulation study demonstrated that the

incorrect classification of an used site may lead to biased estimates of the RSPF parameters.

In a more general context, the models developed in this thesis are important contributions

to the estimation process for general linear models with a binary response in which the binary

response is subject to error. From an ecological perspective, these models will allow users

to analyze data for which repeated surveys are not available or the assumption of a closed

population is not tenable. With the purpose of making these models available to ecologists,

I am preparing a package in R called “detect”. This package will contain all the models

developed in this thesis, together with the identifiability test.
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Appendix A

Algorithm to obtain the bootstrap

confidence intervals

Let

n number of sites

k number of visits per site

b number of bootstrap samples

y = {y1, ..., yn} the observations for the n sites where yi = {yi1, ..., yik}

1. Select a random sample of the sites. This sample must be taken with replacement, and

its size must be equal to n. The observations within a site are not to be resampled,

but to remain the same for each selected site.

y∗ = {y∗1 , ..., y∗n}

2. Using the bootstrap sample y∗, apply the MPL to obtain the estimates of the pa-

rameters of interest. For instance:β̂j =
�
β̂0j , ..., β̂gj

�
, θ̂j =

�
θ̂0j , ..., θ̂mj

�
and

ψ̂j =
�
ψ̂1j , ..., ψ̂nj

�

3. Repeat 1, 2 b times.

4. At the end, a total of b estimates will be available for each parameter of the model. For

instance, the estimates of the occupancy probability for the ith site can be arranged
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in a vector as follows:

ψ̂
site=i

=
�
ψ̂i1, ψ̂i2, ..., ψ̂ib

�

5. These estimates can be used to estimate the probability distribution for each parame-

ter. The 90% confidence intervals will be found by selecting the 5th and 95th percentile

of ψ̂
site=i

90% CI =
�
ψ̂i,0.05; ψ̂i,0.95

�
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Appendix B

Single survey simulation results

Logistic link for occupancy, Log-log link for detection, the covariates are sepa-

rable. Low probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 -0.40 4.65 -0.61 23.21 558.59 -1.38 -2.02 2.71 8.26

β1 0.60 9.28 0.65 29.11 914.26 0.66 0.56 1.31 1.69

β2 -1.40 -17.22 -1.87 36.59 1575.6 -3.23 -1.20 6.36 43.33

θ0 -0.50 -10.01 -1.45 21.43 545.32 -0.21 0.16 1.28 1.70

θ1 1.00 34.69 30.97 36.70 2467.9 1.26 1.01 1.06 1.17

θ2 1.60 34.94 18.87 39.43 2650.9 1.27 1.02 1.06 1.23

500

β0 -0.40 1.30 -0.52 11.23 127.79 -0.23 -0.50 1.41 1.99

β1 0.60 2.01 0.67 9.40 89.52 0.78 0.64 0.83 0.72

β2 -1.40 -2.81 -1.44 8.63 75.78 -1.49 -1.27 0.87 0.76

θ0 -0.50 -2.49 -0.67 7.91 65.84 -0.78 -0.49 1.26 1.64

θ1 1.00 2.90 1.18 6.90 50.71 1.33 1.07 0.87 0.86

θ2 1.60 4.45 1.88 10.67 120.81 1.99 1.70 1.30 1.82
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1000

β0 -0.40 -0.38 -0.45 0.58 0.34 -0.36 -0.41 0.59 0.35

β1 0.60 0.64 0.62 0.27 0.07 0.62 0.61 0.25 0.06

β2 -1.40 -1.45 -1.39 0.47 0.23 -1.40 -1.33 0.46 0.21

θ0 -0.50 -0.95 -0.58 3.03 9.30 -0.61 -0.50 0.91 0.83

θ1 1.00 1.42 1.10 2.53 6.51 1.15 1.04 0.67 0.46

θ2 1.60 2.21 1.78 3.83 14.87 1.78 1.67 0.97 0.97

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.27 0.31 0.29 0.28

δ 0.27 0.30 0.30 0.28

MPLE
ψ 0.27 0.22 0.29 0.28

δ 0.27 0.27 0.28 0.27
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Logistic link for occupancy, Log-log link for detection, the covariates are sepa-

rable. Medium probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 0.50 12.42 0.79 24.04 714.39 0.13 0.43 1.74 3.13

β1 0.80 14.66 1.42 30.58 1117.6 0.94 0.64 1.07 1.15

β2 -1.20 -7.79 -1.49 24.00 613.77 -0.99 -0.65 2.86 8.16

θ0 -0.50 -6.53 -0.70 17.30 332.76 -0.30 -0.02 0.97 0.97

θ1 1.00 15.53 1.52 29.15 1052.4 1.10 0.92 0.82 0.67

θ2 1.60 16.50 2.10 29.99 1112.2 1.34 1.10 0.82 0.74

500

β0 0.50 1.11 0.49 2.05 4.54 0.90 0.55 1.19 1.57

β1 0.80 1.14 0.89 1.08 1.28 1.02 0.89 0.63 0.44

β2 -1.20 -1.64 -1.28 1.48 2.38 -1.37 -1.20 0.82 0.69

θ0 -0.50 -0.65 -0.50 0.71 0.52 -0.46 -0.39 0.52 0.27

θ1 1.00 1.21 1.05 0.68 0.51 1.06 0.97 0.42 0.17

θ2 1.60 1.88 1.63 0.97 1.02 1.62 1.47 0.63 0.39

1000

β0 0.50 0.60 0.51 0.65 0.43 0.62 0.56 0.61 0.38

β1 0.80 0.89 0.84 0.30 0.10 0.89 0.84 0.29 0.09

β2 -1.20 -1.28 -1.21 0.43 0.19 -1.25 -1.18 0.40 0.16

θ0 -0.50 -0.59 -0.49 0.39 0.16 -0.51 -0.45 0.35 0.12

θ1 1.00 1.10 1.06 0.26 0.08 1.05 1.02 0.23 0.06

θ2 1.60 1.73 1.66 0.43 0.20 1.64 1.59 0.38 0.15

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.47 0.50 0.49 0.47

δ 0.26 0.29 0.27 0.28

MPLE
ψ 0.47 0.44 0.50 0.48

δ 0.26 0.25 0.26 0.27
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Logistic link for occupancy, Log-log link for detection, the covariates are sepa-

rable. High probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 1.20 16.45 2.39 26.45 925.04 1.36 1.34 1.17 1.37

β1 1.60 21.58 2.43 34.59 1584.0 1.42 1.42 1.00 1.01

β2 1.40 11.32 1.84 25.91 762.99 0.99 0.72 1.21 1.61

θ0 -0.50 -2.11 -0.63 7.22 54.20 -0.41 -0.28 0.59 0.36

θ1 1.00 3.68 1.14 12.93 172.66 1.04 0.95 0.47 0.22

θ2 1.60 4.44 1.89 13.15 179.23 1.51 1.39 0.57 0.33

500

β0 1.20 3.05 1.38 11.05 124.36 1.47 1.39 0.87 0.83

β1 1.60 3.05 1.91 8.05 66.32 1.80 1.81 0.67 0.48

β2 1.40 2.49 1.54 6.77 46.56 1.56 1.43 1.04 1.09

θ0 -0.50 -0.59 -0.52 0.36 0.14 -0.49 -0.46 0.29 0.08

θ1 1.00 1.11 1.04 0.37 0.15 1.03 0.99 0.25 0.06

θ2 1.60 1.75 1.66 0.49 0.26 1.60 1.54 0.36 0.13

1000

β0 1.20 1.30 1.24 0.67 0.45 1.27 1.24 0.57 0.33

β1 1.60 1.76 1.66 0.61 0.39 1.69 1.63 0.51 0.26

β2 1.40 1.51 1.43 0.70 0.50 1.44 1.38 0.63 0.40

θ0 -0.50 -0.54 -0.52 0.19 0.04 -0.51 -0.50 0.17 0.03

θ1 1.00 1.04 1.01 0.14 0.02 1.02 0.99 0.13 0.02

θ2 1.60 1.66 1.62 0.23 0.06 1.62 1.59 0.21 0.04

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.79 0.75 0.78 0.78

δ 0.27 0.30 0.28 0.28

MPLE
ψ 0.79 0.75 0.79 0.78

δ 0.27 0.26 0.27 0.27
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Logistic link for occupancy, Log-log link for detection, a discrete covariates is

common. Low probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 -0.40 13.74 -0.35 25.76 856.85 -0.68 -1.23 1.63 2.71

β1 0.60 13.02 0.90 31.76 1153.1 0.66 0.54 1.05 1.10

β2 -1.40 -14.39 -1.93 32.42 1209.7 -7.33 -2.60 7.89 96.73

θ0 -0.50 -10.14 -0.67 18.04 415.12 -0.06 0.46 1.03 1.25

θ1 1.00 25.58 2.80 33.74 1731.6 0.96 0.58 1.00 0.99

θ2 1.60 25.73 7.17 36.76 1920.0 1.71 1.17 1.19 1.40

500

β0 -0.40 1.99 -0.50 12.06 149.64 0.20 -0.34 1.57 2.78

β1 0.60 2.36 0.66 8.94 82.22 0.94 0.64 0.99 1.10

β2 -1.40 -2.62 -1.38 11.21 125.87 -1.99 -2.02 1.06 1.45

θ0 -0.50 -2.48 -0.53 7.37 57.64 -0.64 -0.32 1.05 1.11

θ1 1.00 3.10 1.09 8.22 71.25 1.23 0.98 0.88 0.82

θ2 1.60 4.29 1.91 9.90 104.27 1.51 1.29 0.78 0.61

1000

β0 -0.40 0.36 -0.44 6.45 41.73 -0.16 -0.40 0.92 0.89

β1 0.60 1.14 0.62 4.20 17.77 0.75 0.62 0.45 0.22

β2 -1.40 -1.51 -1.39 2.31 5.29 -1.51 -1.60 0.73 0.54

θ0 -0.50 -0.70 -0.61 0.70 0.53 -0.59 -0.55 0.62 0.39

θ1 1.00 1.21 1.05 0.61 0.41 1.13 1.01 0.52 0.29

θ2 1.60 1.90 1.77 0.77 0.67 1.68 1.53 0.63 0.40

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.27 0.43 0.35 0.32

δ 0.31 0.34 0.33 0.32

MPLE
ψ 0.27 0.23 0.34 0.31

δ 0.31 0.25 0.33 0.32
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Logistic link for occupancy, Log-log link for detection, a discrete covariates is

common. Medium probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 0.50 12.35 0.37 23.09 668.07 0.66 0.57 1.55 2.41

β1 0.80 11.71 1.13 23.05 644.96 0.99 0.76 0.90 0.84

β2 -1.20 -9.23 -1.45 27.29 801.67 -2.82 -2.24 3.94 17.97

θ0 -0.50 -10.91 -0.85 18.24 437.56 -0.58 -0.22 0.88 0.78

θ1 1.00 18.01 1.65 31.42 1266.9 1.25 0.97 0.85 0.77

θ2 1.60 18.32 2.57 30.00 1170.6 1.43 1.33 0.77 0.62

500

β0 0.50 2.46 0.49 12.03 147.22 1.03 0.62 1.28 1.91

β1 0.80 2.21 0.88 8.39 71.71 1.08 0.87 0.79 0.70

β2 -1.20 -1.37 -1.17 4.89 23.67 -1.34 -1.43 0.87 0.77

θ0 -0.50 -0.70 -0.52 0.75 0.59 -0.50 -0.39 0.58 0.33

θ1 1.00 1.23 1.09 0.60 0.41 1.09 1.01 0.45 0.21

θ2 1.60 1.93 1.70 0.81 0.76 1.63 1.45 0.55 0.30

1000

β0 0.50 0.57 0.43 0.59 0.35 0.65 0.52 0.58 0.35

β1 0.80 0.88 0.80 0.34 0.12 0.89 0.81 0.32 0.11

β2 -1.20 -1.12 -1.12 0.55 0.31 -1.25 -1.24 0.50 0.25

θ0 -0.50 -0.60 -0.60 0.38 0.15 -0.53 -0.49 0.35 0.12

θ1 1.00 1.11 1.08 0.29 0.09 1.06 1.03 0.26 0.07

θ2 1.60 1.75 1.70 0.41 0.19 1.63 1.58 0.36 0.13

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.47 0.52 0.52 0.48

δ 0.31 0.37 0.31 0.32

MPLE
ψ 0.47 0.43 0.52 0.49

δ 0.31 0.34 0.30 0.31
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Logistic link for occupancy, Log-log link for detection, a discrete covariates is

common. High probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 1.20 16.68 1.21 27.32 978.45 1.69 1.63 1.35 2.04

β1 1.60 15.61 1.77 29.83 1076.9 1.41 1.19 1.24 1.56

β2 1.40 3.05 0.88 23.92 569.22 -0.91 -0.98 2.28 10.49

θ0 -0.50 -3.96 -0.71 10.81 127.74 -0.27 -0.07 0.63 0.44

θ1 1.00 5.94 1.25 15.85 273.04 1.02 0.88 0.54 0.29

θ2 1.60 7.13 1.79 18.08 354.10 1.14 1.07 0.48 0.44

500

β0 1.20 1.38 1.15 0.93 0.89 1.49 1.24 0.82 0.74

β1 1.60 1.74 1.53 0.82 0.68 1.68 1.56 0.63 0.40

β2 1.40 1.85 1.28 2.51 6.47 1.04 0.92 1.04 1.20

θ0 -0.50 -0.57 -0.55 0.25 0.07 -0.44 -0.44 0.23 0.06

θ1 1.00 1.11 1.09 0.21 0.06 1.03 1.01 0.19 0.04

θ2 1.60 1.69 1.68 0.35 0.13 1.50 1.47 0.31 0.10

1000

β0 1.20 1.27 1.14 0.59 0.35 1.31 1.19 0.58 0.34

β1 1.60 1.66 1.51 0.50 0.26 1.64 1.52 0.47 0.22

β2 1.40 1.48 1.29 1.09 1.18 1.22 1.14 0.83 0.72

θ0 -0.50 -0.54 -0.54 0.19 0.04 -0.50 -0.51 0.18 0.03

θ1 1.00 1.06 1.04 0.14 0.02 1.04 1.02 0.13 0.02

θ2 1.60 1.66 1.62 0.25 0.06 1.59 1.55 0.23 0.05

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.79 0.72 0.77 0.78

δ 0.31 0.36 0.32 0.31

MPLE
ψ 0.79 0.65 0.77 0.77

δ 0.31 0.30 0.30 0.31
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Logistic link for occupancy, Log-log link for detection, a continuous covariates

is common. Low probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 -0.40 16.31 0.69 31.99 1292.2 -5.79 -2.27 43.17 1874.2

β1 0.60 6.04 1.12 29.79 908.24 -2.29 -0.53 18.48 346.57

β2 -1.40 -21.72 -5.70 36.08 1701.4 -5.47 -1.59 11.22 141.22

θ0 -0.50 -9.98 -0.72 22.46 589.31 0.10 0.57 1.12 1.61

θ1 1.00 30.86 18.89 37.78 2304.6 0.38 0.31 0.31 0.48

θ2 1.60 34.75 13.35 40.33 2709.3 1.24 0.84 1.01 1.15

500

β0 -0.40 0.03 -0.50 2.35 5.67 -0.26 -0.56 2.01 4.00

β1 0.60 0.81 0.57 1.00 1.03 0.36 0.26 1.08 1.21

β2 -1.40 -1.78 -1.54 1.30 1.83 -1.65 -1.46 0.90 0.87

θ0 -0.50 -5.94 -0.65 13.47 209.21 -1.29 -0.53 1.87 4.10

θ1 1.00 6.53 1.24 14.75 245.99 1.30 0.96 0.95 0.99

θ2 1.60 9.74 1.98 20.71 490.90 2.38 1.72 1.80 3.81

1000

β0 -0.40 -0.26 -0.34 0.99 0.99 -0.24 -0.35 1.12 1.28

β1 0.60 0.68 0.65 0.42 0.18 0.62 0.62 0.46 0.21

β2 -1.40 -1.49 -1.45 0.48 0.23 -1.45 -1.42 0.49 0.24

θ0 -0.50 -1.26 -0.62 4.25 18.48 -0.80 -0.56 1.20 1.52

θ1 1.00 1.70 1.13 3.63 13.51 1.25 1.04 0.71 0.56

θ2 1.60 2.60 1.74 5.67 32.81 1.96 1.61 1.23 1.64

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.27 0.42 0.31 0.30

δ 0.27 0.30 0.32 0.29

MPLE
ψ 0.27 0.22 0.30 0.30

δ 0.27 0.22 0.30 0.28
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Logistic link for occupancy, Log-log link for detection, a continuous covariates

is common. Medium probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 0.50 13.66 0.49 27.69 932.20 -0.96 -1.60 2.76 9.67

β1 0.80 0.20 0.72 39.58 1551.0 -0.37 -0.45 0.64 1.77

β2 -1.20 -6.75 -1.74 28.35 826.72 -1.07 -0.93 3.22 10.30

θ0 -0.50 -14.04 -1.88 20.69 607.36 -0.46 -0.16 1.08 1.15

θ1 1.00 17.37 2.26 27.09 994.38 0.43 0.32 0.38 0.47

θ2 1.60 25.69 7.57 33.67 1702.9 1.42 1.12 0.91 0.85

500

β0 0.50 0.62 0.39 1.46 2.13 0.62 0.53 1.49 2.21

β1 0.80 0.92 0.84 0.75 0.57 0.80 0.74 0.76 0.57

β2 -1.20 -1.36 -1.26 0.67 0.47 -1.27 -1.15 0.62 0.38

θ0 -0.50 -2.92 -0.64 9.48 94.76 -0.91 -0.41 1.36 2.01

θ1 1.00 2.71 1.24 6.99 51.24 1.13 0.96 0.68 0.48

θ2 1.60 4.28 1.76 9.91 104.34 1.98 1.50 1.24 1.67

1000

β0 0.50 0.57 0.52 0.78 0.61 0.65 0.59 0.81 0.66

β1 0.80 0.86 0.86 0.36 0.13 0.85 0.87 0.36 0.13

β2 -1.20 -1.26 -1.18 0.42 0.18 -1.24 -1.17 0.43 0.18

θ0 -0.50 -0.69 -0.54 0.57 0.35 -0.56 -0.44 0.52 0.27

θ1 1.00 1.12 1.08 0.36 0.14 1.02 0.99 0.31 0.10

θ2 1.60 1.79 1.63 0.55 0.34 1.65 1.52 0.48 0.23

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.46 0.47 0.45 0.47

δ 0.27 0.33 0.31 0.29

MPLE
ψ 0.46 0.30 0.46 0.48

δ 0.27 0.29 0.29 0.27
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Logistic link for occupancy, Log-log link for detection, a continuous covariates

is common. High probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 1.20 12.38 0.97 22.69 634.84 0.01 0.10 1.62 4.01

β1 1.60 9.35 1.32 31.35 1033.0 0.00 -0.42 1.15 3.87

β2 1.40 14.27 1.76 29.53 1028.9 1.03 0.64 1.25 1.68

θ0 -0.50 -5.14 -0.82 10.90 139.08 -0.51 -0.20 0.80 0.64

θ1 1.00 5.75 1.39 11.33 149.77 0.59 0.52 0.34 0.29

θ2 1.60 8.74 2.07 16.94 335.16 1.39 1.23 0.63 0.44

500

β0 1.20 2.78 1.12 8.70 77.40 1.33 1.14 1.24 1.53

β1 1.60 1.31 1.62 7.77 59.81 1.55 1.61 0.97 0.93

β2 1.40 1.96 1.44 4.27 18.36 1.45 1.36 0.77 0.59

θ0 -0.50 -0.78 -0.57 0.93 0.93 -0.56 -0.46 0.50 0.25

θ1 1.00 1.15 1.06 0.44 0.22 0.99 0.96 0.31 0.10

θ2 1.60 1.90 1.69 0.97 1.03 1.64 1.54 0.51 0.26

1000

β0 1.20 1.17 1.10 0.76 0.57 1.21 1.15 0.72 0.51

β1 1.60 1.55 1.46 0.52 0.27 1.55 1.48 0.46 0.21

β2 1.40 1.41 1.37 0.54 0.29 1.40 1.38 0.53 0.27

θ0 -0.50 -0.60 -0.55 0.31 0.10 -0.54 -0.49 0.27 0.07

θ1 1.00 1.05 1.00 0.24 0.06 1.00 0.96 0.21 0.04

θ2 1.60 1.70 1.63 0.35 0.13 1.62 1.58 0.30 0.09

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.80 0.70 0.76 0.77

δ 0.26 0.33 0.29 0.28

MPLE
ψ 0.80 0.56 0.77 0.78

δ 0.26 0.27 0.27 0.27
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Logistic link for occupancy, Logistic link for detection, the covariates are sepa-

rable. Low probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 -0.40 4.73 -0.17 12.54 181.89 -0.70 -0.88 2.01 4.11

β1 0.60 7.66 0.91 20.40 461.99 0.72 0.55 1.19 1.42

β2 -1.40 -13.07 -3.31 19.12 498.22 -3.06 -1.14 5.87 36.88

θ0 -0.60 0.52 -1.22 11.97 143.18 -1.77 -2.06 3.31 12.23

θ1 1.00 11.21 1.27 18.70 450.26 1.23 0.85 1.26 1.62

θ2 -1.60 -9.27 -2.10 18.52 398.28 -3.01 -1.22 6.92 49.33

500

β0 -0.40 1.02 -0.40 6.61 45.26 0.13 -0.46 1.85 3.65

β1 0.60 1.66 0.69 6.08 37.77 0.87 0.63 0.99 1.05

β2 -1.40 -2.29 -1.60 4.07 17.19 -1.71 -1.42 1.18 1.47

θ0 -0.60 -0.21 -0.62 1.90 3.74 -0.50 -0.83 1.56 2.42

θ1 1.00 1.28 1.08 0.74 0.62 1.16 1.00 0.60 0.38

θ2 -1.60 -2.10 -1.73 1.64 2.91 -1.75 -1.47 1.09 1.19

1000

β0 -0.40 0.42 -0.26 5.96 35.84 -0.06 -0.20 1.25 1.66

β1 0.60 1.09 0.67 4.00 16.11 0.73 0.68 0.57 0.34

β2 -1.40 -1.91 -1.52 3.04 9.38 -1.60 -1.44 0.69 0.51

θ0 -0.60 -0.48 -0.70 1.09 1.20 -0.61 -0.81 1.00 0.99

θ1 1.00 1.09 0.98 0.36 0.14 1.05 0.95 0.33 0.11

θ2 -1.60 -1.81 -1.69 0.82 0.71 -1.67 -1.58 0.69 0.48

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.27 0.34 0.32 0.31

δ 0.22 0.25 0.25 0.23

MPLE
ψ 0.27 0.31 0.33 0.31

δ 0.22 0.22 0.24 0.22
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Logistic link for occupancy, Logistic link for detection, the covariates are sepa-

rable. Medium probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 0.50 6.89 0.18 12.96 207.05 -0.01 -0.09 1.73 3.22

β1 0.80 8.23 1.13 16.89 337.44 0.98 0.77 0.98 0.99

β2 -1.20 -3.42 -1.20 14.87 223.78 -0.91 -0.58 2.69 7.26

θ0 -0.60 4.43 -0.24 11.33 152.48 -0.44 -0.80 1.64 2.68

θ1 1.00 8.17 1.58 15.02 274.75 1.23 1.12 0.83 0.74

θ2 -1.60 -8.46 -2.15 15.99 300.18 -1.62 -1.33 2.07 4.24

500

β0 0.50 2.49 0.38 9.21 87.91 0.88 0.51 1.65 2.83

β1 0.80 2.22 0.84 6.78 47.53 1.08 0.85 0.86 0.82

β2 -1.20 -2.20 -1.16 4.47 20.77 -1.25 -1.04 0.87 0.76

θ0 -0.60 -0.15 -0.56 2.38 5.79 -0.57 -0.75 0.98 0.94

θ1 1.00 1.50 1.08 2.86 8.33 1.16 1.01 0.72 0.54

θ2 -1.60 -1.87 -1.71 1.23 1.57 -1.58 -1.47 0.66 0.43

1000

β0 0.50 0.86 0.67 1.32 1.85 0.84 0.69 1.10 1.32

β1 0.80 1.01 0.81 0.81 0.70 0.97 0.82 0.59 0.38

β2 -1.20 -1.33 -1.25 0.84 0.71 -1.29 -1.22 0.68 0.47

θ0 -0.60 -0.52 -0.66 0.60 0.37 -0.63 -0.74 0.57 0.32

θ1 1.00 1.09 1.05 0.29 0.09 1.04 1.02 0.26 0.07

θ2 -1.60 -1.74 -1.67 0.46 0.23 -1.62 -1.57 0.42 0.18

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.47 0.46 0.48 0.49

δ 0.22 0.31 0.25 0.23

MPLE
ψ 0.47 0.43 0.49 0.50

δ 0.22 0.29 0.23 0.22
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Logistic link for occupancy, Logistic link for detection, the covariates are sepa-

rable. High probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 1.20 8.11 0.67 14.82 265.13 0.68 0.92 1.48 2.45

β1 1.60 10.04 1.13 21.01 508.01 1.00 0.89 1.21 1.81

β2 1.40 9.43 1.75 21.41 518.52 0.97 0.81 1.51 2.43

θ0 -0.60 1.77 -0.21 7.60 62.84 -0.42 -0.63 1.04 1.10

θ1 1.00 3.79 1.26 10.76 122.35 1.20 1.07 0.65 0.46

θ2 -1.60 -3.86 -2.17 6.66 49.06 -1.67 -1.71 0.64 0.41

500

β0 1.20 5.22 1.38 11.70 151.64 1.58 1.35 1.31 1.84

β1 1.60 4.97 1.79 10.35 117.32 1.94 1.70 1.11 1.33

β2 1.40 3.68 1.53 7.40 59.37 1.59 1.47 1.24 1.55

θ0 -0.60 -0.51 -0.56 0.40 0.16 -0.63 -0.66 0.36 0.13

θ1 1.00 1.06 1.03 0.21 0.05 1.00 0.98 0.18 0.03

θ2 -1.60 -1.70 -1.65 0.36 0.14 -1.56 -1.53 0.31 0.10

1000

β0 1.20 1.85 1.26 2.81 8.23 1.38 1.18 0.92 0.88

β1 1.60 2.35 1.76 2.71 7.84 1.83 1.69 0.76 0.63

β2 1.40 2.47 1.51 4.81 24.09 1.70 1.40 1.30 1.77

θ0 -0.60 -0.57 -0.61 0.25 0.07 -0.62 -0.64 0.25 0.06

θ1 1.00 1.00 0.98 0.13 0.02 0.97 0.96 0.12 0.02

θ2 -1.60 -1.62 -1.59 0.24 0.06 -1.55 -1.53 0.23 0.06

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.79 0.66 0.77 0.78

δ 0.22 0.30 0.23 0.22

MPLE
ψ 0.79 0.65 0.78 0.78

δ 0.22 0.26 0.22 0.22
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Logistic link for occupancy, Logistic link for detection, a discrete covariate is

common. Low probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 -0.40 6.25 -0.41 13.27 218.52 -0.74 -1.40 1.75 3.15

β1 0.60 10.76 1.16 20.17 505.91 0.92 0.62 1.14 1.39

β2 -1.40 -9.44 -2.27 19.20 429.68 -6.16 -2.09 7.71 81.50

θ0 -0.60 3.45 -0.82 12.97 182.88 -0.85 -1.41 1.61 2.62

θ1 1.00 12.59 1.62 19.26 501.69 1.33 0.99 1.25 1.64

θ2 -1.60 -8.05 -2.36 18.83 392.59 -6.16 -2.24 7.72 79.72

500

β0 -0.40 2.80 -0.49 11.28 136.18 0.20 -0.46 1.92 4.00

β1 0.60 2.96 0.72 7.87 66.95 1.07 0.66 1.06 1.33

β2 -1.40 -2.92 -1.78 9.72 95.92 -1.84 -1.81 2.05 4.36

θ0 -0.60 1.66 -0.55 8.80 81.78 -0.21 -0.64 1.77 3.27

θ1 1.00 3.73 1.13 9.62 99.10 1.61 1.07 1.57 2.82

θ2 -1.60 -2.77 -1.80 9.39 88.73 -1.75 -1.72 2.15 4.61

1000

β0 -0.40 0.47 -0.46 6.07 37.23 0.04 -0.47 1.54 2.54

β1 0.60 1.15 0.70 2.67 7.38 0.92 0.66 0.69 0.57

β2 -1.40 -1.55 -1.50 4.52 20.29 -1.49 -1.58 1.09 1.18

θ0 -0.60 -0.28 -0.53 1.50 2.33 -0.40 -0.52 1.17 1.38

θ1 1.00 1.39 1.09 1.28 1.78 1.28 1.05 0.78 0.68

θ2 -1.60 -1.84 -1.76 2.09 4.36 -1.72 -1.94 1.11 1.22

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.27 0.38 0.36 0.36

δ 0.24 0.36 0.34 0.30

MPLE
ψ 0.27 0.25 0.36 0.35

δ 0.24 0.25 0.31 0.29
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Logistic link for occupancy, Logistic link for detection, a discrete covariate is

common. Medium probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 0.50 10.13 0.41 15.58 332.96 0.54 0.13 1.65 2.70

β1 0.80 8.82 1.00 17.86 380.12 0.86 0.53 1.13 1.26

β2 -1.20 -9.77 -2.80 16.87 355.09 -3.51 -1.89 5.34 33.57

θ0 -0.60 2.61 -0.60 8.64 84.17 -0.37 -0.89 1.44 2.10

θ1 1.00 7.29 1.52 14.02 234.22 1.50 1.18 1.07 1.38

θ2 -1.60 -5.55 -1.80 15.80 262.80 -3.53 -1.91 5.41 32.67

500

β0 0.50 2.95 0.63 10.49 114.85 0.99 0.85 1.51 2.50

β1 0.80 2.57 0.96 7.18 54.13 1.13 0.92 0.90 0.91

β2 -1.20 -1.80 -1.82 5.03 25.40 -1.36 -1.51 0.97 0.97

θ0 -0.60 -0.39 -0.68 0.83 0.72 -0.45 -0.70 0.84 0.71

θ1 1.00 1.32 1.13 0.66 0.53 1.23 1.08 0.59 0.40

θ2 -1.60 -1.22 -1.53 1.85 3.53 -1.50 -1.66 0.83 0.70

1000

β0 0.50 1.09 0.53 3.26 10.88 0.84 0.59 1.18 1.50

β1 0.80 1.10 0.85 1.18 1.48 0.98 0.85 0.56 0.35

β2 -1.20 -1.46 -1.48 2.46 6.05 -1.32 -1.36 0.92 0.85

θ0 -0.60 -0.52 -0.64 0.51 0.26 -0.58 -0.70 0.49 0.24

θ1 1.00 1.09 1.00 0.34 0.13 1.06 0.97 0.34 0.12

θ2 -1.60 -1.48 -1.52 0.88 0.78 -1.51 -1.62 0.55 0.31

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.47 0.47 0.49 0.49

δ 0.24 0.36 0.32 0.28

MPLE
ψ 0.47 0.41 0.50 0.50

δ 0.24 0.30 0.29 0.26
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Logistic link for occupancy, Logistic link for detection, a discrete covariate is

common. High probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 1.20 12.05 1.63 15.36 351.21 1.29 1.48 1.49 2.21

β1 1.60 15.90 1.77 22.21 692.78 1.45 1.24 1.27 1.62

β2 1.40 4.19 0.25 17.82 322.15 -0.47 -0.69 1.25 5.05

θ0 -0.60 3.21 -0.41 9.95 112.49 -0.57 -0.97 1.31 1.71

θ1 1.00 5.90 1.33 12.60 181.11 1.19 1.04 0.81 0.68

θ2 -1.60 -4.52 -1.79 10.77 123.36 -1.21 -1.26 0.60 0.51

500

β0 1.20 3.87 1.21 10.90 124.72 1.86 1.65 1.44 2.49

β1 1.60 3.92 1.75 8.50 76.86 2.02 1.78 1.21 1.62

β2 1.40 2.74 1.74 4.54 22.18 0.89 0.63 1.46 2.37

θ0 -0.60 -0.45 -0.56 0.44 0.22 -0.71 -0.76 0.40 0.17

θ1 1.00 1.07 1.03 0.26 0.07 0.99 0.95 0.24 0.06

θ2 -1.60 -1.69 -1.63 0.49 0.24 -1.26 -1.23 0.31 0.21

1000

β0 1.20 1.37 1.20 0.97 0.95 1.51 1.46 0.85 0.82

β1 1.60 1.83 1.67 0.78 0.66 1.80 1.74 0.67 0.49

β2 1.40 2.06 1.52 2.02 4.49 1.34 1.06 1.25 1.54

θ0 -0.60 -0.52 -0.59 0.29 0.09 -0.65 -0.67 0.26 0.07

θ1 1.00 1.03 1.00 0.16 0.03 0.99 0.97 0.15 0.02

θ2 -1.60 -1.69 -1.61 0.37 0.14 -1.47 -1.41 0.31 0.11

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.79 0.65 0.76 0.78

δ 0.24 0.35 0.27 0.25

MPLE
ψ 0.79 0.62 0.75 0.78

δ 0.24 0.28 0.25 0.24
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Logistic link for occupancy, Logistic link for detection, a continuous covariate is

common. Low probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 -0.40 -0.20 -1.30 15.47 237.06 -1.42 -1.75 2.93 9.53

β1 0.60 14.01 2.42 21.72 646.89 1.32 1.23 0.85 1.24

β2 -1.40 -8.96 -4.14 19.78 444.60 -2.58 -1.04 6.34 41.19

θ0 -0.60 5.90 -0.79 18.36 376.13 -1.98 -2.05 3.91 17.02

θ1 1.00 3.44 0.90 21.13 447.98 1.33 1.27 0.72 0.62

θ2 -1.60 -10.40 -2.68 16.79 356.33 -1.82 -1.49 5.72 32.39

500

β0 -0.40 1.33 0.49 3.55 15.44 0.53 0.38 2.40 6.54

β1 0.60 1.14 0.87 2.46 6.26 0.89 0.93 1.07 1.22

β2 -1.40 -3.12 -1.82 2.80 10.73 -2.07 -1.57 1.36 2.27

θ0 -0.60 0.30 -0.98 2.98 9.61 -0.35 -1.30 2.36 5.56

θ1 1.00 1.24 1.16 2.03 4.12 1.05 1.08 0.98 0.95

θ2 -1.60 -2.56 -1.70 2.45 6.87 -1.80 -1.48 1.12 1.29

1000

β0 -0.40 0.81 -0.12 3.22 11.76 0.48 -0.03 2.31 6.05

β1 0.60 0.71 0.80 1.01 1.02 0.65 0.72 0.77 0.60

β2 -1.40 -2.49 -1.63 2.01 5.20 -2.05 -1.55 1.24 1.93

θ0 -0.60 0.20 -0.69 2.64 7.55 -0.25 -0.86 2.03 4.19

θ1 1.00 0.89 1.05 0.80 0.65 0.93 1.07 0.72 0.52

θ2 -1.60 -2.31 -1.53 1.83 3.84 -1.89 -1.43 1.06 1.20

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.27 0.36 0.39 0.37

δ 0.22 0.35 0.28 0.28

MPLE
ψ 0.27 0.30 0.40 0.38

δ 0.22 0.24 0.27 0.27
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Logistic link for occupancy, Logistic link for detection, a continuous covariate is

common. Medium probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 0.50 3.93 -0.31 13.27 186.01 -0.23 -0.11 1.81 3.78

β1 0.80 15.89 2.64 20.54 645.61 1.26 1.21 0.52 0.47

β2 -1.20 -7.13 -2.17 18.98 391.82 -0.71 -0.73 1.14 1.52

θ0 -0.60 3.43 -0.28 10.67 128.96 -0.50 -1.18 1.66 2.73

θ1 1.00 3.92 0.86 13.04 176.84 1.27 1.29 0.49 0.31

θ2 -1.60 -5.22 -2.39 12.04 156.51 -1.44 -1.34 0.95 0.93

500

β0 0.50 2.75 0.65 5.15 31.29 1.09 0.87 2.20 5.13

β1 0.80 2.19 1.14 6.35 41.89 1.22 1.09 0.85 0.89

β2 -1.20 -2.71 -1.46 6.33 41.98 -1.37 -0.90 1.47 2.16

θ0 -0.60 0.46 -0.81 2.36 6.66 -0.26 -1.24 1.71 3.01

θ1 1.00 0.85 1.03 0.57 0.34 0.94 1.07 0.49 0.24

θ2 -1.60 -2.42 -1.80 1.66 3.41 -1.82 -1.56 0.84 0.76

1000

β0 0.50 3.23 0.99 8.11 72.61 1.34 1.20 2.16 5.31

β1 0.80 2.23 1.13 6.89 49.08 1.06 1.04 0.73 0.60

β2 -1.20 -3.31 -1.58 3.99 20.19 -1.80 -1.38 1.26 1.92

θ0 -0.60 0.12 -0.75 1.92 4.16 -0.31 -1.08 1.48 2.26

θ1 1.00 0.93 1.02 0.41 0.17 0.98 1.12 0.39 0.15

θ2 -1.60 -2.15 -1.68 1.33 2.06 -1.82 -1.56 0.78 0.65

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.47 0.42 0.50 0.50

δ 0.22 0.36 0.30 0.28

MPLE
ψ 0.47 0.43 0.53 0.53

δ 0.22 0.32 0.28 0.26
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Logistic link for occupancy, Logistic link for detection, a continuous covariate is

common. High probability of occupancy - low probability of detection

MLE MPLE

n par real mean median se mse mean median se mse

100

β0 1.20 5.07 0.13 12.72 175.23 0.16 0.61 2.48 7.17

β1 1.60 15.22 2.88 21.37 637.47 1.22 1.14 0.55 0.44

β2 1.40 4.92 1.23 17.94 330.99 0.85 0.29 2.24 5.25

θ0 -0.60 2.11 0.11 7.18 58.34 -0.19 -0.55 1.16 1.50

θ1 1.00 0.89 0.80 3.77 14.06 1.17 1.18 0.46 0.24

θ2 -1.60 -3.69 -2.09 5.65 35.93 -1.73 -1.68 0.71 0.51

500

β0 1.20 8.87 1.03 15.77 304.96 1.34 1.32 1.36 1.86

β1 1.60 11.07 2.14 17.55 394.70 1.77 1.62 1.03 1.09

β2 1.40 5.46 1.40 11.66 151.05 1.39 0.98 1.55 2.36

θ0 -0.60 -0.10 -0.46 0.99 1.22 -0.42 -0.66 0.75 0.59

θ1 1.00 0.95 0.96 0.36 0.13 1.07 1.11 0.31 0.10

θ2 -1.60 -1.93 -1.73 0.67 0.56 -1.76 -1.68 0.45 0.23

1000

β0 1.20 6.38 1.06 13.51 207.56 1.52 1.25 1.47 2.24

β1 1.60 6.57 2.00 13.10 194.68 1.79 1.56 1.34 1.82

β2 1.40 4.71 1.85 10.06 111.09 1.62 1.17 1.49 2.25

θ0 -0.60 -0.27 -0.57 0.86 0.84 -0.49 -0.65 0.58 0.35

θ1 1.00 0.96 0.97 0.25 0.06 1.04 1.07 0.24 0.06

θ2 -1.60 -1.80 -1.67 0.58 0.37 -1.68 -1.62 0.33 0.11

Mean probability of occupancy and detection

mean estimate

true n=100 n=500 n=100

MLE
ψ 0.78 0.59 0.72 0.74

δ 0.22 0.35 0.27 0.25

MPLE
ψ 0.78 0.61 0.75 0.76

δ 0.22 0.30 0.24 0.23
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Appendix C

Cluster sampling simulation

results

Summary of simulated cases for the cluster sampling model using separate co-

variates, clusters of size 3 and low dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 3.39 -0.72 20.34 426.14 -0.20 -0.64 1.97 3.91

β1 0.90 10.04 1.36 27.41 831.09 1.52 1.10 1.35 2.20

β2 -1.20 -11.95 -1.89 38.45 1586.37 -1.32 -1.09 1.82 3.30

θ0 -0.50 3.08 -0.62 18.89 367.82 -0.81 -0.96 1.18 1.48

θ1 1.00 12.75 1.19 47.75 2406.95 1.24 0.95 0.91 0.88

θ2 -1.00 -4.83 -1.23 20.12 417.31 -0.80 -0.80 0.79 0.65

γ 0.50 -0.80 0.31 25.43 644.90 -1.19 0.13 13.32 179.29
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n=100

β0 -0.40 1.62 -0.49 10.04 104.36 0.13 -0.50 2.03 4.40

β1 0.90 3.49 1.23 9.81 102.46 1.74 1.10 1.81 3.95

β2 -1.20 -3.19 -1.62 9.80 99.49 -1.70 -1.30 1.73 3.21

θ0 -0.50 0.29 -0.68 8.60 74.28 -0.65 -0.77 1.02 1.06

θ1 1.00 5.87 1.03 54.46 2974.99 1.10 0.98 0.68 0.47

θ2 -1.00 0.56 -1.09 25.61 655.03 -0.93 -0.92 0.69 0.48

γ 0.50 -0.95 0.33 10.06 102.89 0.62 0.32 2.75 7.54

n=200

β0 -0.40 -0.05 -0.30 1.25 1.68 -0.09 -0.32 1.19 1.52

β1 0.90 1.24 1.11 0.59 0.46 1.20 1.07 0.55 0.39

β2 -1.20 -1.63 -1.39 1.03 1.24 -1.53 -1.33 0.94 0.99

θ0 -0.50 -0.45 -0.57 1.01 1.02 -0.53 -0.64 0.84 0.71

θ1 1.00 1.12 1.03 0.52 0.29 1.08 1.01 0.44 0.20

θ2 -1.00 -1.15 -1.01 0.76 0.59 -1.05 -0.93 0.59 0.34

γ 0.50 0.36 0.39 1.65 2.72 0.37 0.32 1.49 2.24

n=300

β0 -0.40 -0.17 -0.39 0.85 0.77 -0.19 -0.40 0.84 0.74

β1 0.90 1.13 1.01 0.51 0.31 1.10 0.99 0.49 0.28

β2 -1.20 -1.53 -1.34 0.72 0.63 -1.47 -1.30 0.66 0.51

θ0 -0.50 -0.51 -0.59 0.61 0.37 -0.53 -0.60 0.61 0.37

θ1 1.00 1.05 1.03 0.28 0.08 1.04 1.02 0.27 0.08

θ2 -1.00 -1.07 -1.02 0.45 0.21 -1.03 -0.97 0.44 0.19

γ 0.50 0.41 0.50 1.40 1.95 0.38 0.39 1.28 1.63
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n=400

β0 -0.40 -0.31 -0.42 0.60 0.37 -0.31 -0.43 0.61 0.38

β1 0.90 1.01 0.95 0.27 0.09 1.00 0.94 0.27 0.08

β2 -1.20 -1.36 -1.28 0.52 0.29 -1.33 -1.26 0.51 0.28

θ0 -0.50 -0.47 -0.48 0.42 0.17 -0.49 -0.50 0.42 0.18

θ1 1.00 1.05 1.03 0.22 0.05 1.04 1.02 0.21 0.05

θ2 -1.00 -1.05 -1.01 0.30 0.09 -1.02 -0.98 0.30 0.09

γ 0.50 0.48 0.46 0.78 0.61 0.45 0.42 0.74 0.55

n=500

β0 -0.40 -0.23 -0.36 0.61 0.40 -0.22 -0.36 0.67 0.48

β1 0.90 1.07 0.98 0.37 0.17 1.07 0.98 0.44 0.22

β2 -1.20 -1.40 -1.31 0.52 0.31 -1.39 -1.29 0.55 0.33

θ0 -0.50 -0.54 -0.54 0.40 0.16 -0.56 -0.56 0.41 0.17

θ1 1.00 1.02 0.98 0.21 0.04 1.01 0.98 0.21 0.04

θ2 -1.00 -1.02 -0.99 0.29 0.08 -0.99 -0.97 0.29 0.08

γ 0.50 0.25 0.46 1.25 1.62 0.25 0.42 1.23 1.56

Summary of simulated cases for the cluster sampling model using a discrete

covariate that is common, clusters of size 3 and low dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 2.02 -0.57 15.62 248.68 -0.23 -0.61 1.42 2.04

β1 0.90 7.26 1.28 22.27 533.74 1.42 0.91 1.46 2.40

β2 -1.20 -3.38 -1.79 26.46 701.43 -1.44 -1.37 1.40 2.00

θ0 -0.50 3.40 -0.54 16.71 293.12 -0.54 -0.53 1.02 1.05

θ1 1.00 10.56 1.36 32.11 1117.32 1.35 1.06 0.90 0.93

θ2 -1.00 -2.53 -1.20 15.21 232.56 -1.27 -1.18 1.94 3.83

γ 0.50 -1.51 0.17 20.36 416.32 0.00 0.08 2.13 4.75
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n=100

β0 -0.40 3.66 -0.45 20.98 454.33 -0.11 -0.51 2.10 4.49

β1 0.90 4.77 1.36 17.73 327.63 1.63 1.21 1.41 2.50

β2 -1.20 -4.71 -1.30 28.63 828.14 -1.05 -1.24 1.48 2.19

θ0 -0.50 -0.12 -0.63 5.68 32.30 -0.58 -0.61 0.81 0.65

θ1 1.00 1.55 1.05 4.11 17.15 1.17 1.02 0.64 0.43

θ2 -1.00 -1.46 -1.32 3.97 15.88 -1.22 -1.24 0.67 0.50

γ 0.50 1.42 0.50 14.90 221.85 0.65 0.32 2.33 5.43

n=200

β0 -0.40 -0.22 -0.44 0.82 0.69 -0.23 -0.48 0.79 0.65

β1 0.90 1.23 1.05 0.66 0.55 1.17 0.99 0.60 0.43

β2 -1.20 -1.22 -1.49 1.89 3.55 -1.26 -1.35 1.05 1.10

θ0 -0.50 -0.49 -0.55 0.53 0.28 -0.50 -0.55 0.50 0.25

θ1 1.00 1.18 1.09 0.44 0.22 1.15 1.06 0.39 0.17

θ2 -1.00 -0.91 -1.03 1.20 1.45 -0.99 -1.11 0.82 0.67

γ 0.50 0.49 0.55 1.66 2.74 0.55 0.41 1.24 1.53

n=300

β0 -0.40 -0.34 -0.38 0.53 0.28 -0.32 -0.39 0.59 0.35

β1 0.90 1.16 1.04 0.50 0.32 1.13 0.99 0.49 0.29

β2 -1.20 -1.16 -1.33 1.32 1.73 -1.25 -1.30 0.81 0.66

θ0 -0.50 -0.46 -0.52 0.46 0.21 -0.47 -0.50 0.46 0.21

θ1 1.00 1.12 1.05 0.39 0.17 1.11 1.04 0.39 0.16

θ2 -1.00 -1.06 -1.03 0.77 0.59 -1.05 -1.07 0.60 0.36

γ 0.50 0.43 0.60 1.36 1.84 0.47 0.51 1.15 1.31

n=400

β0 -0.40 -0.34 -0.48 0.52 0.27 -0.34 -0.47 0.49 0.24

β1 0.90 1.10 1.01 0.40 0.20 1.07 0.99 0.38 0.17

β2 -1.20 -1.02 -1.06 1.01 1.04 -1.08 -1.09 0.78 0.62

θ0 -0.50 -0.49 -0.52 0.38 0.14 -0.49 -0.52 0.38 0.14

θ1 1.00 1.06 1.04 0.25 0.07 1.06 1.04 0.25 0.07

θ2 -1.00 -1.14 -1.19 0.73 0.54 -1.11 -1.19 0.59 0.36

γ 0.50 0.54 0.55 0.94 0.89 0.54 0.47 0.79 0.62
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n=500

β0 -0.40 -0.29 -0.38 0.49 0.25 -0.30 -0.38 0.47 0.23

β1 0.90 1.08 0.95 0.37 0.17 1.06 0.95 0.36 0.16

β2 -1.20 -1.19 -1.26 0.88 0.78 -1.18 -1.25 0.75 0.56

θ0 -0.50 -0.53 -0.53 0.32 0.10 -0.52 -0.53 0.32 0.10

θ1 1.00 1.03 1.03 0.21 0.05 1.03 1.03 0.21 0.05

θ2 -1.00 -1.01 -1.05 0.65 0.43 -1.02 -1.06 0.57 0.33

γ 0.50 0.51 0.54 1.01 1.01 0.48 0.50 0.95 0.89

Summary of simulated cases for the cluster sampling model using a continuous

covariate that is common, clusters of size 3 and low dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 5.72 -0.44 24.90 654.34 0.01 -0.38 2.07 4.43

β1 0.90 8.75 1.44 27.87 834.07 1.60 1.43 1.12 1.74

β2 -1.20 -11.79 -2.46 33.43 1223.85 -1.61 -1.42 1.52 2.47

θ0 -0.50 0.40 -0.77 14.16 200.28 -0.78 -0.96 1.33 1.84

θ1 1.00 7.44 1.37 26.83 757.52 1.28 1.26 0.55 0.38

θ2 -1.00 -2.95 -1.29 17.98 325.57 -0.81 -0.82 0.87 0.78

γ 0.50 -1.39 -0.12 35.55 1260.96 -0.03 -0.06 2.04 4.42

n=100

β0 -0.40 3.21 -0.24 14.71 228.30 0.18 -0.50 2.38 5.99

β1 0.90 1.70 1.16 7.41 55.32 1.26 1.27 1.13 1.41

β2 -1.20 -5.77 -1.97 14.91 241.95 -2.20 -1.57 1.77 4.12

θ0 -0.50 -0.55 -0.90 6.11 37.19 -0.59 -1.04 1.44 2.07

θ1 1.00 4.39 1.31 22.59 519.16 1.33 1.26 0.76 0.69

θ2 -1.00 -0.79 -1.12 7.15 50.90 -1.02 -0.89 0.82 0.66

γ 0.50 0.52 0.56 14.83 218.96 1.16 0.33 2.79 8.18
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n=200

β0 -0.40 1.50 -0.13 3.79 17.94 0.89 -0.10 2.51 7.91

β1 0.90 1.14 1.08 1.06 1.18 1.11 1.10 0.83 0.72

β2 -1.20 -3.03 -1.80 3.17 13.35 -2.24 -1.64 1.55 3.49

θ0 -0.50 -0.36 -0.91 1.47 2.18 -0.52 -1.00 1.38 1.89

θ1 1.00 1.16 1.14 0.51 0.29 1.07 1.14 0.47 0.22

θ2 -1.00 -1.38 -1.06 1.00 1.14 -1.16 -0.98 0.69 0.50

γ 0.50 0.35 0.69 2.80 7.82 0.48 0.54 1.99 3.92

n=300

β0 -0.40 1.01 -0.27 3.29 12.73 0.67 -0.34 2.60 7.88

β1 0.90 1.03 1.07 0.76 0.59 1.03 1.14 0.67 0.47

β2 -1.20 -2.80 -1.49 4.36 21.53 -2.13 -1.41 1.71 3.77

θ0 -0.50 -0.29 -0.67 1.32 1.79 -0.38 -0.66 1.28 1.64

θ1 1.00 1.10 1.11 0.42 0.19 1.05 1.09 0.41 0.17

θ2 -1.00 -1.34 -1.08 0.84 0.81 -1.20 -1.02 0.65 0.46

γ 0.50 0.67 0.58 4.18 17.41 0.43 0.47 1.81 3.25

n=400

β0 -0.40 0.51 -0.33 3.00 9.80 0.14 -0.48 2.09 4.65

β1 0.90 1.02 1.03 0.58 0.35 1.02 1.07 0.60 0.37

β2 -1.20 -2.14 -1.29 2.47 6.96 -1.77 -1.24 1.35 2.12

θ0 -0.50 -0.05 -0.61 1.48 2.38 -0.17 -0.60 1.35 1.93

θ1 1.00 1.01 1.07 0.44 0.20 0.99 1.06 0.45 0.20

θ2 -1.00 -1.45 -1.09 1.00 1.19 -1.28 -1.05 0.73 0.61

γ 0.50 0.71 0.55 1.82 3.35 0.58 0.44 1.20 1.45

n=500

β0 -0.40 0.54 -0.30 2.59 7.54 0.18 -0.42 2.17 5.03

β1 0.90 0.97 0.99 0.57 0.33 0.98 1.01 0.57 0.33

β2 -1.20 -2.11 -1.34 2.03 4.92 -1.85 -1.27 1.53 2.75

θ0 -0.50 -0.24 -0.66 1.36 1.92 -0.33 -0.64 1.22 1.52

θ1 1.00 1.05 1.06 0.41 0.17 1.02 1.09 0.41 0.17

θ2 -1.00 -1.32 -1.02 0.81 0.76 -1.18 -1.00 0.55 0.34

γ 0.50 0.56 0.56 1.63 2.66 0.71 0.47 1.52 2.35
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Summary of simulated cases for the cluster sampling model using separate co-

variates, clusters of size 6 and low dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 -4.66 -0.39 18.89 372.66 -0.06 -0.39 3.03 9.23

β1 0.90 5.68 1.60 13.30 198.60 1.96 1.39 1.95 4.89

β2 -1.20 -5.83 -2.07 16.09 278.65 -1.84 -1.70 1.78 3.56

θ0 -0.50 0.14 -0.89 8.53 72.77 -0.90 -1.03 1.23 1.67

θ1 1.00 2.35 0.96 11.54 134.02 1.06 0.88 0.81 0.65

θ2 -1.00 -1.64 -0.98 5.46 30.06 -0.92 -0.87 0.69 0.48

γ 0.50 3.62 0.70 13.81 199.34 0.67 0.52 1.80 3.23

n=100

β0 -0.40 -0.20 -0.39 1.05 1.14 -0.23 -0.43 1.05 1.12

β1 0.90 1.13 1.00 0.57 0.38 1.10 0.99 0.54 0.34

β2 -1.20 -1.50 -1.31 0.86 0.83 -1.42 -1.23 0.83 0.73

θ0 -0.50 -0.45 -0.53 0.71 0.50 -0.48 -0.56 0.71 0.50

θ1 1.00 1.13 1.09 0.44 0.21 1.11 1.07 0.41 0.18

θ2 -1.00 -1.10 -0.99 0.57 0.33 -1.03 -0.91 0.54 0.30

γ 0.50 0.31 0.47 0.94 0.91 0.34 0.43 0.81 0.68

n=200

β0 -0.40 -0.31 -0.42 0.56 0.32 -0.36 -0.45 0.54 0.29

β1 0.90 1.02 0.94 0.33 0.12 0.99 0.93 0.30 0.10

β2 -1.20 -1.33 -1.27 0.47 0.23 -1.28 -1.24 0.45 0.21

θ0 -0.50 -0.49 -0.47 0.40 0.16 -0.48 -0.47 0.40 0.16

θ1 1.00 1.05 1.04 0.24 0.06 1.06 1.04 0.24 0.06

θ2 -1.00 -1.05 -1.05 0.27 0.08 -1.03 -1.04 0.27 0.07

γ 0.50 0.46 0.48 0.37 0.14 0.46 0.47 0.33 0.11
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n=300

β0 -0.40 -0.35 -0.43 0.49 0.24 -0.35 -0.43 0.52 0.27

β1 0.90 0.98 0.93 0.28 0.08 0.98 0.93 0.28 0.08

β2 -1.20 -1.26 -1.21 0.39 0.15 -1.25 -1.20 0.39 0.15

θ0 -0.50 -0.50 -0.48 0.31 0.10 -0.50 -0.48 0.32 0.10

θ1 1.00 1.02 1.01 0.15 0.02 1.02 1.01 0.16 0.02

θ2 -1.00 -1.02 -1.00 0.22 0.05 -1.01 -0.99 0.22 0.05

γ 0.50 0.48 0.50 0.32 0.11 0.48 0.49 0.32 0.10

n=400

β0 -0.40 -0.30 -0.37 0.46 0.22 -0.31 -0.37 0.46 0.22

β1 0.90 0.98 0.95 0.21 0.05 0.98 0.95 0.21 0.05

β2 -1.20 -1.30 -1.27 0.32 0.11 -1.29 -1.26 0.32 0.11

θ0 -0.50 -0.52 -0.51 0.34 0.12 -0.52 -0.51 0.35 0.12

θ1 1.00 1.00 1.01 0.15 0.02 1.00 1.01 0.15 0.02

θ2 -1.00 -1.00 -0.98 0.23 0.05 -0.99 -0.98 0.23 0.05

γ 0.50 0.51 0.50 0.20 0.04 0.51 0.50 0.20 0.04

n=500

β0 -0.40 -0.38 -0.40 0.29 0.09 -0.39 -0.41 0.29 0.09

β1 0.90 0.94 0.91 0.17 0.03 0.94 0.91 0.17 0.03

β2 -1.20 -1.23 -1.21 0.23 0.05 -1.23 -1.20 0.23 0.05

θ0 -0.50 -0.50 -0.49 0.25 0.06 -0.51 -0.49 0.25 0.06

θ1 1.00 1.02 1.02 0.12 0.02 1.02 1.02 0.12 0.02

θ2 -1.00 -1.01 -1.01 0.18 0.03 -1.00 -1.00 0.18 0.03

γ 0.50 0.50 0.50 0.16 0.03 0.50 0.50 0.16 0.03
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Summary of simulated cases for the cluster sampling model using a discrete

covariate that is common, clusters of size 6 and low dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 -5.10 -0.69 18.44 360.39 -0.97 -0.76 2.70 7.59

β1 0.90 4.96 1.83 11.05 137.90 2.03 1.57 2.14 5.82

β2 -1.20 -4.55 -1.57 20.70 437.40 -1.60 -1.56 2.37 5.77

θ0 -0.50 -0.86 -0.93 0.66 0.57 -0.97 -1.06 0.72 0.73

θ1 1.00 1.02 0.91 0.49 0.24 0.97 0.83 0.46 0.21

θ2 -1.00 -1.23 -1.33 0.95 0.95 -1.26 -1.33 0.62 0.44

γ 0.50 4.43 1.17 13.09 185.91 1.41 1.16 1.87 4.31

n=100

β0 -0.40 0.02 -0.32 1.83 3.50 -0.11 -0.34 1.08 1.25

β1 0.90 1.43 1.06 1.72 3.22 1.29 1.01 1.02 1.19

β2 -1.20 -1.19 -1.28 2.14 4.55 -1.18 -1.19 1.06 1.11

θ0 -0.50 -0.54 -0.65 0.54 0.29 -0.54 -0.64 0.52 0.27

θ1 1.00 1.09 1.00 0.36 0.14 1.07 0.99 0.36 0.13

θ2 -1.00 -0.97 -1.11 1.03 1.06 -1.04 -1.12 0.65 0.42

γ 0.50 0.35 0.50 1.29 1.68 0.33 0.46 1.05 1.12

n=200

β0 -0.40 -0.35 -0.46 0.60 0.36 -0.36 -0.47 0.57 0.32

β1 0.90 1.06 0.97 0.37 0.16 1.05 0.96 0.35 0.14

β2 -1.20 -1.05 -1.09 0.89 0.81 -1.06 -1.07 0.74 0.56

θ0 -0.50 -0.52 -0.54 0.38 0.14 -0.52 -0.55 0.37 0.14

θ1 1.00 1.05 1.02 0.25 0.06 1.05 1.01 0.25 0.06

θ2 -1.00 -1.08 -1.13 0.68 0.47 -1.09 -1.12 0.58 0.34

γ 0.50 0.57 0.52 0.29 0.09 0.56 0.52 0.28 0.08
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n=300

β0 -0.40 -0.31 -0.37 0.62 0.39 -0.33 -0.38 0.58 0.34

β1 0.90 1.04 0.96 0.38 0.16 1.03 0.95 0.35 0.14

β2 -1.20 -1.24 -1.30 0.69 0.48 -1.23 -1.30 0.62 0.39

θ0 -0.50 -0.54 -0.52 0.30 0.09 -0.53 -0.52 0.30 0.09

θ1 1.00 1.03 1.01 0.19 0.04 1.04 1.02 0.19 0.04

θ2 -1.00 -0.98 -1.02 0.55 0.31 -0.99 -1.02 0.51 0.26

γ 0.50 0.49 0.53 0.56 0.31 0.51 0.52 0.47 0.22

n=400

β0 -0.40 -0.38 -0.43 0.33 0.11 -0.38 -0.42 0.33 0.11

β1 0.90 0.96 0.92 0.21 0.05 0.96 0.91 0.21 0.05

β2 -1.20 -1.16 -1.19 0.49 0.24 -1.17 -1.19 0.45 0.20

θ0 -0.50 -0.49 -0.50 0.25 0.06 -0.49 -0.49 0.25 0.06

θ1 1.00 1.03 1.02 0.16 0.02 1.03 1.02 0.16 0.02

θ2 -1.00 -1.05 -1.06 0.42 0.18 -1.05 -1.06 0.40 0.16

γ 0.50 0.52 0.51 0.18 0.03 0.52 0.51 0.18 0.03

n=500

β0 -0.40 -0.37 -0.41 0.26 0.07 -0.37 -0.41 0.26 0.07

β1 0.90 0.95 0.92 0.16 0.03 0.95 0.92 0.16 0.03

β2 -1.20 -1.20 -1.19 0.42 0.18 -1.20 -1.20 0.40 0.16

θ0 -0.50 -0.52 -0.53 0.19 0.04 -0.52 -0.53 0.19 0.04

θ1 1.00 1.01 1.01 0.13 0.02 1.01 1.01 0.13 0.02

θ2 -1.00 -1.03 -1.04 0.37 0.13 -1.03 -1.04 0.35 0.12

γ 0.50 0.53 0.51 0.15 0.02 0.52 0.51 0.15 0.02
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Summary of simulated cases for the cluster sampling model using a continuous

covariate that is common, clusters of size 6 and low dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 -1.53 -0.73 12.07 146.27 -0.78 -1.20 3.02 9.21

β1 0.90 3.82 1.36 10.71 122.56 1.77 1.48 1.55 3.13

β2 -1.20 -5.02 -2.50 9.44 103.33 -2.43 -2.11 2.21 6.34

θ0 -0.50 -0.80 -1.22 1.40 2.05 -1.07 -1.51 1.22 1.80

θ1 1.00 1.37 1.24 0.83 0.82 1.26 1.22 0.53 0.34

θ2 -1.00 -1.22 -0.96 1.09 1.23 -0.87 -0.80 0.69 0.49

γ 0.50 4.08 1.30 11.41 142.31 1.46 1.35 1.69 3.76

n=100

β0 -0.40 0.34 -0.47 3.33 11.58 0.26 -0.60 2.31 5.76

β1 0.90 1.22 1.17 0.90 0.91 1.13 1.18 0.70 0.55

β2 -1.20 -2.13 -1.43 2.16 5.51 -1.78 -1.31 1.39 2.27

θ0 -0.50 0.01 -0.62 2.55 6.71 -0.23 -0.66 1.44 2.12

θ1 1.00 1.55 1.05 7.01 49.13 1.02 1.07 0.80 0.64

θ2 -1.00 -1.30 -1.08 1.26 1.68 -1.14 -1.01 0.65 0.43

γ 0.50 0.58 0.62 1.35 1.82 0.52 0.57 0.83 0.69

n=200

β0 -0.40 0.32 -0.15 2.13 5.05 -0.09 -0.34 1.54 2.47

β1 0.90 1.01 1.04 0.59 0.36 1.01 1.04 0.53 0.29

β2 -1.20 -1.90 -1.43 1.67 3.27 -1.61 -1.35 1.06 1.30

θ0 -0.50 -0.40 -0.81 1.22 1.49 -0.45 -0.85 1.14 1.29

θ1 1.00 1.04 1.05 0.35 0.12 1.01 1.07 0.35 0.12

θ2 -1.00 -1.22 -0.97 0.75 0.61 -1.13 -0.94 0.58 0.35

γ 0.50 0.59 0.61 0.83 0.69 0.66 0.62 0.61 0.40
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n=300

β0 -0.40 -0.59 -0.37 3.74 13.97 -0.56 -0.44 2.33 5.45

β1 0.90 0.99 0.89 1.33 1.78 0.97 0.90 0.93 0.86

β2 -1.20 -3.67 -1.42 12.87 170.99 -1.73 -1.43 1.84 3.65

θ0 -0.50 -0.67 -0.87 1.06 1.15 -0.72 -0.91 1.26 1.64

θ1 1.00 1.07 1.16 0.29 0.09 1.08 1.16 0.28 0.08

θ2 -1.00 -1.10 -0.96 0.57 0.33 -1.07 -0.91 0.83 0.69

γ 0.50 1.86 0.66 5.44 31.32 1.09 0.70 1.35 2.17

n=400

β0 -0.40 -0.11 -0.41 1.40 2.03 -0.16 -0.43 1.37 1.94

β1 0.90 0.98 1.02 0.41 0.18 0.99 1.01 0.41 0.17

β2 -1.20 -1.51 -1.30 0.93 0.96 -1.47 -1.27 0.86 0.81

θ0 -0.50 -0.23 -0.52 1.13 1.34 -0.25 -0.52 1.06 1.18

θ1 1.00 0.97 1.02 0.30 0.09 0.96 1.02 0.31 0.10

θ2 -1.00 -1.25 -1.00 0.67 0.51 -1.20 -1.00 0.53 0.32

γ 0.50 0.57 0.53 0.39 0.16 0.57 0.52 0.40 0.16

n=500

β0 -0.40 -0.29 -0.33 0.93 0.87 -0.32 -0.35 0.97 0.94

β1 0.90 1.01 1.02 0.34 0.12 1.02 1.03 0.33 0.12

β2 -1.20 -1.36 -1.20 0.46 0.24 -1.35 -1.18 0.47 0.24

θ0 -0.50 -0.20 -0.60 1.08 1.25 -0.20 -0.58 1.02 1.11

θ1 1.00 0.94 0.96 0.29 0.09 0.93 0.97 0.30 0.09

θ2 -1.00 -1.23 -1.02 0.67 0.50 -1.20 -1.01 0.55 0.34

γ 0.50 0.54 0.51 0.20 0.04 0.53 0.50 0.21 0.04
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Summary of simulated cases for the cluster sampling model using separate co-

variates, clusters of size 3 and large dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 6.08 -0.71 39.67 1608.01 -0.15 -0.68 2.13 4.59

β1 0.90 6.99 1.24 24.22 620.42 1.35 0.96 1.60 2.76

β2 -1.20 -10.17 -1.76 35.21 1314.05 -1.39 -1.16 1.60 2.57

θ0 -0.50 1.86 -0.65 17.34 304.64 -0.81 -0.82 1.90 3.68

θ1 1.00 9.74 1.22 30.74 1016.49 1.30 1.02 0.96 1.01

θ2 -1.00 -3.28 -1.23 15.63 248.19 -0.70 -0.75 1.64 2.76

γ 1.00 2.97 0.75 29.81 888.07 -0.49 0.31 13.89 194.09

n=100

β0 -0.40 2.42 -0.32 13.48 188.78 0.13 -0.37 2.18 5.01

β1 0.90 4.35 1.15 16.83 293.81 1.59 1.05 1.66 3.21

β2 -1.20 -3.22 -1.68 10.00 103.60 -1.67 -1.32 1.60 2.78

θ0 -0.50 0.69 -0.66 11.15 125.12 -0.63 -0.84 1.03 1.08

θ1 1.00 5.36 1.09 34.31 1190.27 1.23 1.03 0.98 1.01

θ2 -1.00 -2.32 -1.01 10.79 117.49 -0.98 -0.86 0.72 0.52

γ 1.00 1.81 1.11 8.41 70.98 1.11 0.73 2.39 5.70

n=200

β0 -0.40 -0.21 -0.51 1.45 2.12 -0.26 -0.54 1.20 1.45

β1 0.90 1.20 0.97 0.94 0.98 1.15 0.93 0.76 0.64

β2 -1.20 -1.58 -1.36 1.23 1.66 -1.45 -1.27 0.98 1.01

θ0 -0.50 -0.35 -0.44 0.91 0.85 -0.42 -0.48 0.79 0.63

θ1 1.00 1.16 1.06 0.53 0.31 1.12 1.04 0.44 0.21

θ2 -1.00 -1.19 -1.09 0.80 0.67 -1.09 -1.02 0.65 0.43

γ 1.00 1.00 0.99 1.41 1.97 0.94 0.88 1.23 1.52

148



n=300

β0 -0.40 -0.15 -0.47 1.93 3.76 -0.29 -0.49 0.86 0.74

β1 0.90 1.18 0.97 1.24 1.60 1.08 0.96 0.51 0.29

β2 -1.20 -1.50 -1.22 1.31 1.80 -1.38 -1.19 0.67 0.47

θ0 -0.50 -0.47 -0.50 0.70 0.50 -0.50 -0.53 0.66 0.43

θ1 1.00 1.08 1.03 0.29 0.09 1.07 1.02 0.28 0.09

θ2 -1.00 -1.07 -1.00 0.51 0.26 -1.02 -0.96 0.44 0.19

γ 1.00 0.94 0.99 1.45 2.10 0.99 0.91 1.03 1.06

n=400

β0 -0.40 -0.33 -0.42 0.56 0.32 -0.33 -0.42 0.57 0.33

β1 0.90 1.01 0.97 0.28 0.09 1.00 0.97 0.28 0.09

β2 -1.20 -1.34 -1.27 0.45 0.22 -1.31 -1.24 0.45 0.21

θ0 -0.50 -0.47 -0.50 0.41 0.17 -0.49 -0.51 0.42 0.18

θ1 1.00 1.03 1.00 0.20 0.04 1.02 0.98 0.20 0.04

θ2 -1.00 -1.06 -1.02 0.30 0.10 -1.04 -0.99 0.30 0.09

γ 1.00 1.02 0.93 0.63 0.39 0.99 0.90 0.62 0.38

n=500

β0 -0.40 -0.30 -0.42 0.67 0.45 -0.32 -0.43 0.63 0.40

β1 0.90 1.01 0.95 0.31 0.11 0.99 0.94 0.29 0.09

β2 -1.20 -1.37 -1.24 0.55 0.33 -1.34 -1.22 0.54 0.31

θ0 -0.50 -0.49 -0.50 0.38 0.14 -0.49 -0.49 0.38 0.15

θ1 1.00 1.04 1.02 0.19 0.04 1.04 1.01 0.19 0.04

θ2 -1.00 -1.04 -1.02 0.27 0.07 -1.02 -1.01 0.27 0.07

γ 1.00 1.00 1.03 0.78 0.61 0.95 1.00 0.75 0.57
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Summary of simulated cases for the cluster sampling model using a discrete

covariate that is common, clusters of size 3 and large dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 3.29 -0.65 21.27 463.59 -0.25 -0.68 1.59 2.55

β1 0.90 7.20 1.25 22.57 546.22 1.28 0.94 1.17 1.51

β2 -1.20 -7.70 -1.47 32.40 1086.49 -1.61 -1.48 1.50 2.41

θ0 -0.50 7.11 -0.45 26.49 756.16 -0.34 -0.56 1.21 1.49

θ1 1.00 15.09 1.56 43.90 2116.07 1.50 1.22 1.08 1.40

θ2 -1.00 -7.37 -1.44 33.32 1144.95 -1.33 -1.17 2.06 4.34

γ 1.00 0.90 0.79 20.65 424.09 0.64 0.47 1.87 3.62

n=100

β0 -0.40 0.87 -0.35 6.12 38.86 0.02 -0.45 1.69 3.03

β1 0.90 2.80 1.25 7.74 63.26 1.55 1.12 1.27 2.03

β2 -1.20 -1.48 -1.68 7.65 58.26 -1.30 -1.37 1.46 2.14

θ0 -0.50 1.10 -0.62 13.70 189.44 -0.48 -0.62 0.87 0.76

θ1 1.00 3.77 1.14 19.20 374.31 1.26 1.07 0.84 0.78

θ2 -1.00 -2.21 -1.12 17.22 296.63 -1.15 -1.20 0.86 0.76

γ 1.00 0.89 1.11 5.37 28.74 0.86 0.72 1.97 3.89

n=200

β0 -0.40 -0.21 -0.44 1.48 2.21 -0.25 -0.50 1.24 1.56

β1 0.90 1.28 1.02 1.01 1.17 1.22 1.00 0.79 0.72

β2 -1.20 -1.35 -1.41 1.55 2.41 -1.32 -1.33 0.96 0.93

θ0 -0.50 -0.43 -0.50 0.60 0.37 -0.44 -0.51 0.56 0.32

θ1 1.00 1.23 1.13 0.52 0.32 1.19 1.11 0.47 0.26

θ2 -1.00 -0.99 -1.05 1.02 1.04 -1.03 -1.10 0.76 0.57

γ 1.00 1.22 1.19 1.40 2.01 1.18 1.08 1.06 1.15
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n=300

β0 -0.40 -0.30 -0.44 0.67 0.46 -0.28 -0.44 0.73 0.54

β1 0.90 1.15 0.98 0.58 0.40 1.15 0.96 0.60 0.42

β2 -1.20 -1.14 -1.18 1.10 1.21 -1.17 -1.17 0.86 0.74

θ0 -0.50 -0.48 -0.50 0.41 0.16 -0.49 -0.50 0.41 0.17

θ1 1.00 1.08 1.02 0.32 0.11 1.07 1.01 0.32 0.10

θ2 -1.00 -1.04 -1.18 0.90 0.81 -1.05 -1.17 0.71 0.51

γ 1.00 1.29 1.17 0.87 0.84 1.22 1.10 0.88 0.81

n=400

β0 -0.40 -0.29 -0.42 0.64 0.42 -0.31 -0.43 0.62 0.39

β1 0.90 1.08 1.00 0.38 0.18 1.06 0.99 0.38 0.17

β2 -1.20 -1.25 -1.31 0.96 0.92 -1.24 -1.28 0.80 0.64

θ0 -0.50 -0.52 -0.52 0.39 0.15 -0.51 -0.54 0.38 0.14

θ1 1.00 1.07 1.05 0.28 0.09 1.07 1.04 0.28 0.08

θ2 -1.00 -1.03 -1.10 0.67 0.45 -1.04 -1.12 0.55 0.30

γ 1.00 1.11 1.02 0.84 0.71 1.05 0.96 0.83 0.69

n=500

β0 -0.40 -0.25 -0.40 0.67 0.46 -0.29 -0.41 0.59 0.36

β1 0.90 1.07 0.96 0.37 0.17 1.04 0.95 0.36 0.15

β2 -1.20 -1.23 -1.24 0.81 0.65 -1.21 -1.23 0.64 0.41

θ0 -0.50 -0.52 -0.54 0.34 0.12 -0.51 -0.53 0.33 0.11

θ1 1.00 1.05 1.00 0.25 0.07 1.05 1.01 0.25 0.07

θ2 -1.00 -1.03 -1.09 0.57 0.32 -1.04 -1.10 0.50 0.25

γ 1.00 1.05 1.01 1.02 1.03 1.04 0.96 0.85 0.73
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Summary of simulated cases for the cluster sampling model using a continuous

covariate that is common, clusters of size 3 and large dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 6.41 -0.71 33.86 1186.98 -0.30 -1.05 2.45 5.98

β1 0.90 7.43 1.33 24.84 656.52 1.45 1.45 1.09 1.48

β2 -1.20 -7.34 -1.75 24.75 647.16 -1.29 -1.07 1.53 2.33

θ0 -0.50 -0.24 -0.71 17.12 291.49 -0.69 -0.82 1.36 1.88

θ1 1.00 10.50 1.45 30.29 1002.76 1.23 1.23 0.71 0.55

θ2 -1.00 -3.12 -1.27 26.07 680.30 -0.75 -0.79 0.95 0.96

γ 1.00 3.95 0.67 33.64 1134.19 0.76 0.36 2.10 4.45

n=100

β0 -0.40 0.61 -0.74 10.81 117.19 -0.33 -1.14 2.28 5.20

β1 0.90 2.41 1.07 12.81 165.59 1.04 1.14 1.04 1.09

β2 -1.20 -4.13 -1.62 15.14 236.59 -1.66 -1.34 1.50 2.43

θ0 -0.50 2.32 -0.75 18.40 344.66 -0.39 -0.79 1.44 2.08

θ1 1.00 4.22 1.27 20.17 415.05 1.26 1.23 0.78 0.67

θ2 -1.00 -1.41 -1.20 13.32 176.75 -0.97 -0.89 0.86 0.73

γ 1.00 3.20 1.58 14.56 215.83 1.71 1.01 2.63 7.40

n=200

β0 -0.40 0.67 -0.61 4.02 17.20 0.13 -0.71 2.37 5.86

β1 0.90 1.25 1.17 0.98 1.08 1.18 1.20 0.88 0.85

β2 -1.20 -2.39 -1.38 3.58 14.13 -1.80 -1.26 1.60 2.91

θ0 -0.50 0.22 -0.34 2.79 8.28 -0.14 -0.29 1.38 2.02

θ1 1.00 1.92 1.08 11.99 143.85 1.02 1.05 0.57 0.32

θ2 -1.00 -1.74 -1.17 2.27 5.68 -1.28 -1.08 0.76 0.66

γ 1.00 1.56 1.15 2.52 6.62 1.12 0.90 1.66 2.74
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n=300

β0 -0.40 0.29 -0.44 2.71 7.80 0.01 -0.53 2.01 4.21

β1 0.90 1.05 1.03 0.68 0.48 1.03 1.03 0.63 0.41

β2 -1.20 -2.03 -1.30 2.34 6.15 -1.66 -1.22 1.34 1.98

θ0 -0.50 -0.11 -0.63 1.47 2.29 -0.21 -0.61 1.26 1.65

θ1 1.00 1.11 1.06 0.64 0.42 1.05 1.06 0.45 0.20

θ2 -1.00 -1.40 -1.05 0.93 1.03 -1.25 -1.02 0.68 0.52

γ 1.00 1.32 1.12 1.07 1.24 1.19 1.03 0.91 0.85

n=400

β0 -0.40 0.26 -0.20 2.22 5.33 0.03 -0.25 1.69 3.03

β1 0.90 1.03 1.04 0.61 0.39 1.01 1.06 0.53 0.29

β2 -1.20 -1.95 -1.49 1.65 3.28 -1.73 -1.40 1.07 1.42

θ0 -0.50 -0.27 -0.74 1.21 1.51 -0.31 -0.72 1.09 1.22

θ1 1.00 1.02 1.05 0.35 0.12 0.98 1.05 0.37 0.13

θ2 -1.00 -1.29 -1.05 0.78 0.68 -1.17 -1.03 0.54 0.32

γ 1.00 1.34 1.23 1.15 1.43 1.27 1.12 1.09 1.26

n=500

β0 -0.40 -0.07 -0.48 1.70 2.98 -0.22 -0.59 1.54 2.38

β1 0.90 1.01 1.00 0.45 0.21 1.01 1.02 0.44 0.20

β2 -1.20 -1.60 -1.31 1.20 1.58 -1.51 -1.24 1.05 1.20

θ0 -0.50 -0.14 -0.53 1.24 1.66 -0.18 -0.46 1.14 1.39

θ1 1.00 0.98 1.00 0.35 0.12 0.96 0.99 0.36 0.13

θ2 -1.00 -1.32 -1.05 0.78 0.70 -1.23 -1.04 0.59 0.39

γ 1.00 1.32 1.13 0.94 0.98 1.31 1.05 1.05 1.19
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Summary of simulated cases for the cluster sampling model using separate co-

variates, clusters of size 6 and large dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 1.39 0.16 11.04 124.52 0.35 0.01 2.26 5.64

β1 0.90 1.60 1.02 3.86 15.28 1.14 0.96 1.03 1.11

β2 -1.20 -2.83 -1.52 9.56 93.66 -1.57 -1.24 1.73 3.12

θ0 -0.50 -0.50 -0.65 0.79 0.62 -0.64 -0.77 0.71 0.52

θ1 1.00 1.11 1.03 0.64 0.42 1.04 0.98 0.47 0.22

θ2 -1.00 -1.10 -1.04 0.57 0.33 -0.97 -0.93 0.50 0.25

γ 1.00 1.51 1.17 2.99 9.16 1.21 1.15 1.20 1.47

n=100

β0 -0.40 -0.25 -0.35 0.90 0.84 -0.32 -0.40 0.93 0.87

β1 0.90 1.00 0.98 0.35 0.13 1.00 0.97 0.38 0.15

β2 -1.20 -1.41 -1.29 0.88 0.81 -1.36 -1.25 0.84 0.73

θ0 -0.50 -0.49 -0.52 0.36 0.13 -0.53 -0.55 0.36 0.13

θ1 1.00 1.04 1.02 0.22 0.05 1.03 1.00 0.22 0.05

θ2 -1.00 -1.04 -1.02 0.29 0.09 -0.99 -0.98 0.29 0.08

γ 1.00 1.09 1.09 0.32 0.11 1.09 1.09 0.29 0.09

n=200

β0 -0.40 -0.30 -0.33 0.52 0.28 -0.28 -0.36 0.74 0.55

β1 0.90 0.95 0.95 0.23 0.05 0.95 0.95 0.23 0.05

β2 -1.20 -1.25 -1.22 0.36 0.13 -1.23 -1.21 0.37 0.13

θ0 -0.50 -0.51 -0.51 0.21 0.04 -0.53 -0.52 0.21 0.04

θ1 1.00 1.01 1.01 0.13 0.02 1.01 1.00 0.13 0.02

θ2 -1.00 -1.01 -1.00 0.19 0.04 -0.99 -0.98 0.19 0.04

γ 1.00 1.02 1.03 0.21 0.04 1.02 1.02 0.18 0.03
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n=300

β0 -0.40 -0.30 -0.38 0.54 0.30 -0.33 -0.39 0.52 0.27

β1 0.90 0.93 0.92 0.19 0.04 0.93 0.92 0.19 0.04

β2 -1.20 -1.16 -1.18 0.32 0.11 -1.15 -1.17 0.32 0.11

θ0 -0.50 -0.50 -0.52 0.17 0.03 -0.51 -0.53 0.17 0.03

θ1 1.00 1.03 1.02 0.12 0.01 1.03 1.01 0.12 0.01

θ2 -1.00 -1.01 -0.99 0.17 0.03 -1.00 -0.99 0.17 0.03

γ 1.00 1.00 1.01 0.11 0.01 1.00 1.01 0.11 0.01

n=400

β0 -0.40 -0.36 -0.40 0.33 0.11 -0.37 -0.41 0.33 0.11

β1 0.90 0.92 0.91 0.15 0.02 0.92 0.91 0.15 0.02

β2 -1.20 -1.21 -1.23 0.30 0.09 -1.21 -1.23 0.30 0.09

θ0 -0.50 -0.50 -0.52 0.14 0.02 -0.51 -0.52 0.14 0.02

θ1 1.00 1.01 1.00 0.09 0.01 1.01 1.00 0.09 0.01

θ2 -1.00 -1.01 -1.02 0.15 0.02 -1.01 -1.01 0.15 0.02

γ 1.00 1.01 1.01 0.08 0.01 1.01 1.01 0.08 0.01

n=500

β0 -0.40 -0.41 -0.42 0.28 0.08 -0.41 -0.42 0.28 0.08

β1 0.90 0.90 0.89 0.13 0.02 0.90 0.89 0.13 0.02

β2 -1.20 -1.22 -1.22 0.26 0.07 -1.22 -1.22 0.26 0.07

θ0 -0.50 -0.51 -0.52 0.13 0.02 -0.51 -0.53 0.13 0.02

θ1 1.00 1.01 1.00 0.09 0.01 1.01 1.00 0.09 0.01

θ2 -1.00 -0.99 -0.98 0.15 0.02 -0.99 -0.98 0.15 0.02

γ 1.00 1.01 1.01 0.07 0.01 1.01 1.01 0.07 0.01
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Summary of simulated cases for the cluster sampling model using a discrete

covariate that is common, clusters of size 6 and large dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 0.10 -0.22 4.93 24.45 -0.34 -0.49 1.34 1.79

β1 0.90 1.38 0.98 3.85 15.00 1.11 1.03 0.83 0.73

β2 -1.20 -1.01 -1.54 6.27 39.15 -1.40 -1.29 1.33 1.80

θ0 -0.50 -0.01 -0.52 6.75 45.55 -0.53 -0.56 0.58 0.34

θ1 1.00 1.79 1.06 8.87 78.95 1.11 1.02 0.55 0.31

θ2 -1.00 -1.50 -0.97 6.87 47.14 -1.03 -1.02 0.51 0.26

γ 1.00 1.43 1.19 2.27 5.29 1.24 1.19 0.63 0.46

n=100

β0 -0.40 -0.31 -0.33 0.93 0.87 -0.39 -0.43 0.90 0.81

β1 0.90 0.97 0.97 0.39 0.16 0.98 0.98 0.38 0.15

β2 -1.20 -1.23 -1.30 0.96 0.92 -1.20 -1.23 0.82 0.67

θ0 -0.50 -0.49 -0.54 0.35 0.12 -0.50 -0.54 0.32 0.10

θ1 1.00 1.05 1.01 0.27 0.07 1.04 0.99 0.25 0.06

θ2 -1.00 -0.99 -1.00 0.54 0.29 -1.00 -1.04 0.43 0.18

γ 1.00 1.06 1.08 0.26 0.07 1.05 1.08 0.22 0.05

n=200

β0 -0.40 -0.41 -0.44 0.50 0.25 -0.44 -0.45 0.47 0.22

β1 0.90 0.94 0.92 0.22 0.05 0.94 0.92 0.22 0.05

β2 -1.20 -1.28 -1.30 0.59 0.35 -1.27 -1.27 0.54 0.30

θ0 -0.50 -0.50 -0.52 0.20 0.04 -0.50 -0.52 0.19 0.04

θ1 1.00 1.01 0.99 0.14 0.02 1.01 0.99 0.14 0.02

θ2 -1.00 -1.01 -1.00 0.30 0.09 -1.01 -1.01 0.27 0.07

γ 1.00 1.04 1.05 0.13 0.02 1.04 1.06 0.13 0.02
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n=300

β0 -0.40 -0.28 -0.37 0.54 0.30 -0.30 -0.38 0.52 0.28

β1 0.90 0.92 0.92 0.18 0.03 0.92 0.92 0.18 0.03

β2 -1.20 -1.19 -1.21 0.44 0.19 -1.18 -1.20 0.41 0.17

θ0 -0.50 -0.51 -0.50 0.14 0.02 -0.51 -0.51 0.14 0.02

θ1 1.00 1.02 1.02 0.12 0.01 1.02 1.01 0.12 0.01

θ2 -1.00 -1.02 -1.04 0.24 0.06 -1.02 -1.05 0.23 0.05

γ 1.00 1.02 1.03 0.10 0.01 1.02 1.04 0.10 0.01

n=400

β0 -0.40 -0.41 -0.42 0.42 0.18 -0.42 -0.43 0.41 0.17

β1 0.90 0.91 0.91 0.15 0.02 0.92 0.91 0.15 0.02

β2 -1.20 -1.14 -1.19 0.41 0.17 -1.13 -1.17 0.40 0.16

θ0 -0.50 -0.50 -0.50 0.12 0.01 -0.50 -0.50 0.12 0.01

θ1 1.00 1.00 1.00 0.08 0.01 1.00 1.00 0.08 0.01

θ2 -1.00 -1.03 -1.02 0.21 0.05 -1.04 -1.02 0.21 0.04

γ 1.00 1.02 1.02 0.08 0.01 1.02 1.02 0.08 0.01

n=500

β0 -0.40 -0.39 -0.37 0.29 0.08 -0.39 -0.37 0.29 0.08

β1 0.90 0.92 0.91 0.14 0.02 0.92 0.91 0.14 0.02

β2 -1.20 -1.23 -1.22 0.31 0.10 -1.23 -1.22 0.31 0.09

θ0 -0.50 -0.51 -0.51 0.10 0.01 -0.51 -0.51 0.10 0.01

θ1 1.00 1.00 1.00 0.08 0.01 1.00 1.00 0.08 0.01

θ2 -1.00 -1.00 -1.02 0.18 0.03 -1.01 -1.02 0.18 0.03

γ 1.00 1.01 1.02 0.07 0.01 1.02 1.02 0.07 0.01
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Summary of simulated cases for the cluster sampling model using a continuous

covariate that is common, clusters of size 6 and large dependence.

MLE MPLE

true mean median se mse mean median se mse

n=50

β0 -0.40 0.10 -0.49 12.31 151.14 -0.43 -0.74 2.05 4.19

β1 0.90 1.62 1.16 6.15 38.10 1.26 1.16 1.21 1.59

β2 -1.20 -2.09 -1.33 7.04 50.07 -1.31 -1.13 1.76 3.10

θ0 -0.50 -0.45 -0.62 0.93 0.86 -0.63 -0.72 0.80 0.64

θ1 1.00 1.15 1.13 0.51 0.28 1.10 1.08 0.39 0.16

θ2 -1.00 -1.22 -1.07 0.71 0.56 -1.02 -0.95 0.51 0.26

γ 1.00 2.34 1.27 5.35 30.29 1.48 1.28 1.21 1.69

n=100

β0 -0.40 0.08 -0.17 1.63 2.89 -0.09 -0.25 1.26 1.67

β1 0.90 1.01 1.02 0.65 0.44 1.03 1.03 0.61 0.38

β2 -1.20 -1.43 -1.17 1.64 2.74 -1.27 -1.11 1.15 1.33

θ0 -0.50 -0.27 -0.54 0.96 0.98 -0.35 -0.59 0.84 0.73

θ1 1.00 1.02 1.02 0.34 0.12 1.00 1.02 0.32 0.10

θ2 -1.00 -1.22 -1.04 0.68 0.51 -1.11 -0.99 0.50 0.26

γ 1.00 1.19 1.10 0.68 0.49 1.13 1.11 0.43 0.20

n=200

β0 -0.40 -0.38 -0.43 0.59 0.35 -0.42 -0.45 0.57 0.32

β1 0.90 0.89 0.90 0.32 0.10 0.89 0.90 0.30 0.09

β2 -1.20 -1.33 -1.28 0.56 0.32 -1.32 -1.26 0.56 0.33

θ0 -0.50 -0.45 -0.53 0.50 0.25 -0.49 -0.55 0.40 0.16

θ1 1.00 1.02 1.02 0.21 0.04 1.02 1.02 0.19 0.04

θ2 -1.00 -1.07 -1.01 0.33 0.12 -1.04 -1.00 0.25 0.06

γ 1.00 1.04 1.05 0.18 0.03 1.05 1.05 0.18 0.03
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n=300

β0 -0.40 -0.26 -0.37 0.57 0.34 -0.27 -0.38 0.57 0.34

β1 0.90 0.88 0.93 0.30 0.09 0.89 0.93 0.29 0.08

β2 -1.20 -1.37 -1.34 0.41 0.20 -1.36 -1.34 0.41 0.19

θ0 -0.50 -0.53 -0.55 0.27 0.07 -0.53 -0.55 0.27 0.07

θ1 1.00 1.01 1.01 0.16 0.02 1.01 1.00 0.15 0.02

θ2 -1.00 -1.00 -1.01 0.17 0.03 -0.99 -1.01 0.17 0.03

γ 1.00 1.04 1.04 0.12 0.02 1.04 1.04 0.13 0.02

n=400

β0 -0.40 -0.21 -0.37 0.65 0.46 -0.22 -0.37 0.64 0.44

β1 0.90 0.88 0.89 0.25 0.06 0.89 0.89 0.25 0.06

β2 -1.20 -1.29 -1.26 0.43 0.20 -1.29 -1.25 0.44 0.20

θ0 -0.50 -0.51 -0.50 0.19 0.04 -0.51 -0.51 0.19 0.04

θ1 1.00 1.01 1.01 0.13 0.02 1.00 1.00 0.13 0.02

θ2 -1.00 -1.02 -1.01 0.15 0.02 -1.02 -1.01 0.15 0.02

γ 1.00 1.02 1.02 0.13 0.02 1.02 1.02 0.13 0.02

n=500

β0 -0.40 -0.41 -0.43 0.30 0.09 -0.42 -0.44 0.30 0.09

β1 0.90 0.90 0.91 0.18 0.03 0.91 0.91 0.18 0.03

β2 -1.20 -1.20 -1.20 0.30 0.09 -1.19 -1.19 0.30 0.09

θ0 -0.50 -0.48 -0.51 0.18 0.03 -0.49 -0.51 0.18 0.03

θ1 1.00 1.00 1.01 0.11 0.01 1.00 1.01 0.11 0.01

θ2 -1.00 -1.02 -1.01 0.13 0.02 -1.01 -1.01 0.13 0.02

γ 1.00 1.00 1.00 0.09 0.01 1.00 1.00 0.09 0.01
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Appendix D

Multiple Species simulation results

Summary of simulation results for the multi species model case 1: {0.40, 0.40, 0.10}
with 2 species and assuming that the probability of detecting one species is

independent of the presence/absence of the other.

MLE MPLE

true mean median se mse mean median se mse

n=150

β11 0.50 0.97 13.85 36.50 1496.82 0.04 -0.06 1.24 1.83

β12 -1.00 -1.64 -11.44 28.23 897.81 -0.91 -0.92 0.51 0.26

β21 0.50 0.70 10.57 31.89 1108.31 -0.22 -0.04 1.85 3.69

β22 -1.00 -1.49 -7.54 19.32 412.36 -0.97 -1.36 1.49 2.34

γ -2.50 -3.40 -17.15 44.72 2194.37 -1.91 -2.00 4.58 21.03

θ11 -1.50 -1.66 -1.13 5.51 30.20 -1.51 -1.55 0.69 0.47

θ12 -1.60 -1.70 -3.26 13.04 171.15 -1.68 -1.77 0.66 0.46

θ21 -1.50 -1.36 -0.62 13.59 183.66 -1.33 -1.33 1.25 1.57

θ22 -1.20 -1.41 -8.81 32.03 1073.57 -1.44 -2.08 2.60 7.49
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n=300

β11 0.50 0.71 3.00 12.31 156.27 0.47 0.68 1.20 1.46

β12 -1.00 -1.24 -2.29 5.55 32.15 -1.07 -1.16 0.51 0.29

β21 0.50 0.85 3.67 16.23 270.82 0.57 0.93 1.97 4.04

β22 -1.00 -1.34 -2.84 9.73 97.09 -1.15 -1.35 1.10 1.31

γ -2.50 -3.30 -5.71 11.62 143.93 -2.72 -2.94 2.44 6.08

θ11 -1.50 -1.47 -1.48 0.53 0.28 -1.44 -1.46 0.48 0.23

θ12 -1.60 -1.57 -1.71 0.78 0.62 -1.58 -1.68 0.64 0.41

θ21 -1.50 -1.67 -1.14 3.92 15.32 -1.58 -1.51 0.66 0.43

θ22 -1.20 -1.28 -2.53 11.00 121.62 -1.26 -1.43 0.72 0.57

n=600

β11 0.50 0.69 0.76 0.83 0.74 0.60 0.71 0.79 0.66

β12 -1.00 -1.09 -1.14 0.37 0.16 -1.09 -1.11 0.36 0.14

β21 0.50 0.62 0.75 1.04 1.13 0.59 0.72 1.00 1.05

β22 -1.00 -1.10 -1.18 0.42 0.20 -1.09 -1.16 0.39 0.18

γ -2.50 -2.81 -2.96 1.30 1.89 -2.74 -2.89 1.25 1.71

θ11 -1.50 -1.60 -1.56 0.27 0.07 -1.59 -1.55 0.26 0.07

θ12 -1.60 -1.68 -1.72 0.37 0.15 -1.68 -1.72 0.37 0.15

θ21 -1.50 -1.51 -1.48 0.38 0.14 -1.52 -1.48 0.38 0.14

θ22 -1.20 -1.21 -1.28 0.36 0.13 -1.20 -1.27 0.36 0.13
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Summary of simulation results for the multi species model case 2: {0.39, 0.40, 0.22}
with 2 species and assuming that the probability of detecting one species is

independent of the presence/absence of the other.

MLE MPLE

true mean median se mse mean median se mse

n=150

β11 -0.50 -0.36 2.48 21.00 445.52 -1.37 -1.46 1.03 1.96

β12 -1.50 -2.17 -8.78 22.21 541.60 -1.19 -1.30 0.68 0.50

β21 -0.50 -0.32 -0.62 68.15 4597.76 -1.37 -1.35 1.59 3.22

β22 -1.20 -1.31 -15.11 39.56 1743.07 -0.93 -1.13 1.12 1.25

γ -0.50 -1.17 -0.93 56.07 3112.25 1.57 1.63 2.44 10.43

θ11 -1.50 -1.61 -0.77 9.23 84.95 -1.56 -1.61 0.61 0.39

θ12 -1.60 -1.69 -2.99 9.58 92.70 -1.61 -1.88 0.82 0.74

θ21 -1.50 -1.70 -0.90 7.70 59.11 -1.59 -1.56 0.90 0.81

θ22 -1.20 -1.34 -3.39 16.91 287.78 -1.29 -1.74 1.47 2.43

n=300

β11 -0.50 -0.40 -0.21 2.70 7.29 -0.67 -0.80 0.87 0.83

β12 -1.50 -1.72 -2.31 2.94 9.22 -1.50 -1.61 0.76 0.58

β21 -0.50 -0.43 -0.16 2.49 6.26 -0.68 -0.75 0.93 0.93

β22 -1.20 -1.32 -1.79 2.56 6.81 -1.18 -1.23 0.51 0.25

γ -0.50 -0.54 -0.84 4.49 20.08 -0.15 0.10 1.65 3.07

θ11 -1.50 -1.54 -1.59 0.44 0.20 -1.50 -1.53 0.40 0.16

θ12 -1.60 -1.52 -1.73 0.85 0.74 -1.54 -1.70 0.64 0.41

θ21 -1.50 -1.51 -1.50 0.55 0.30 -1.49 -1.47 0.56 0.31

θ22 -1.20 -1.28 -1.41 0.65 0.46 -1.26 -1.41 0.63 0.44

n=600

β11 -0.50 -0.47 -0.45 0.63 0.39 -0.48 -0.49 0.62 0.38

β12 -1.50 -1.60 -1.71 0.51 0.30 -1.58 -1.68 0.48 0.26

β21 -0.50 -0.44 -0.40 0.69 0.48 -0.46 -0.43 0.67 0.44

β22 -1.20 -1.32 -1.37 0.50 0.28 -1.30 -1.35 0.48 0.25

γ -0.50 -0.57 -0.63 1.03 1.07 -0.53 -0.56 1.02 1.03

θ11 -1.50 -1.53 -1.54 0.28 0.08 -1.52 -1.54 0.29 0.08

θ12 -1.60 -1.62 -1.68 0.33 0.11 -1.63 -1.68 0.32 0.11

θ21 -1.50 -1.48 -1.49 0.34 0.12 -1.48 -1.48 0.35 0.12

θ22 -1.20 -1.23 -1.27 0.24 0.06 -1.24 -1.27 0.24 0.06
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Summary of simulation results for the multi species model case 3: {0.63, 0.66, 0.43}
with 2 species and assuming that the probability of detecting one species is

independent of the presence/absence of the other.

MLE MPLE

true mean median se mse mean median se mse

n=150

β11 1.80 2.14 12.22 37.14 1473.93 0.52 0.35 1.40 4.03

β12 1.00 1.23 5.86 16.84 304.40 0.64 0.59 0.45 0.37

β21 1.90 2.83 14.66 36.84 1506.36 0.86 0.87 2.76 8.63

β22 1.50 1.91 8.09 20.38 454.69 1.37 1.75 1.66 2.78

γ -1.50 -1.94 -6.48 27.71 784.98 -0.19 0.75 3.01 14.03

θ11 -1.50 -1.60 -1.59 0.50 0.26 -1.52 -1.49 0.49 0.24

θ12 -1.60 -1.68 -1.87 0.78 0.68 -1.73 -1.89 0.71 0.58

θ21 -1.50 -1.43 -1.45 0.49 0.24 -1.46 -1.48 0.48 0.23

θ22 -1.20 -1.28 -1.33 0.44 0.21 -1.25 -1.30 0.45 0.21

n=300

β11 1.80 1.81 5.79 23.35 555.71 1.51 1.53 1.11 1.30

β12 1.00 1.05 2.40 8.24 69.21 0.95 0.94 0.40 0.16

β21 1.90 2.15 6.07 23.33 556.01 1.86 2.11 3.28 10.68

β22 1.50 1.86 3.20 8.20 69.44 1.67 1.93 2.09 4.49

γ -1.50 -1.71 -4.80 18.62 353.95 -1.28 -1.26 1.56 2.48

θ11 -1.50 -1.41 -1.49 0.28 0.08 -1.40 -1.46 0.28 0.08

θ12 -1.60 -1.65 -1.72 0.39 0.16 -1.67 -1.74 0.38 0.16

θ21 -1.50 -1.50 -1.43 0.49 0.24 -1.49 -1.44 0.45 0.20

θ22 -1.20 -1.22 -1.37 0.93 0.88 -1.23 -1.36 0.84 0.72

n=600

β11 1.80 1.98 2.39 1.35 2.14 1.90 2.19 1.13 1.42

β12 1.00 1.13 1.25 0.47 0.28 1.10 1.18 0.41 0.20

β21 1.90 2.19 2.53 1.50 2.61 2.14 2.34 1.30 1.87

β22 1.50 1.72 1.80 0.60 0.45 1.67 1.73 0.56 0.36

γ -1.50 -2.02 -2.10 1.30 2.03 -1.89 -1.93 1.13 1.45

θ11 -1.50 -1.50 -1.51 0.19 0.04 -1.49 -1.51 0.19 0.03

θ12 -1.60 -1.58 -1.62 0.22 0.05 -1.58 -1.63 0.22 0.05

θ21 -1.50 -1.55 -1.52 0.23 0.05 -1.55 -1.52 0.23 0.05

θ22 -1.20 -1.26 -1.28 0.23 0.06 -1.26 -1.28 0.22 0.06
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Summary of simulation results for the multi species model case 4: {0.78, 0.78, 0.58}
with 2 species and assuming that the probability of detecting one species is

independent of the presence/absence of the other.

MLE MPLE

true mean median se mse mean median se mse

n=150

β11 1.00 2.55 7.26 34.94 1248.13 -1.34 -0.84 1.16 4.74

β12 1.20 1.71 8.16 20.06 446.90 1.11 1.12 0.68 0.46

β21 1.00 1.42 7.93 50.43 2566.27 -0.48 0.09 2.11 5.23

β22 -1.20 -1.50 -8.50 23.47 598.69 -1.42 -1.54 1.23 1.62

γ 1.00 1.77 11.28 52.53 2836.99 3.43 3.61 2.70 14.04

θ11 -1.50 -1.52 -1.56 0.32 0.11 -1.48 -1.47 0.34 0.12

θ12 -1.60 -1.67 -1.72 0.48 0.24 -1.70 -1.73 0.44 0.21

θ21 -1.50 -1.44 -1.42 0.49 0.25 -1.50 -1.47 0.46 0.21

θ22 -1.20 -1.33 -1.49 0.91 0.91 -1.28 -1.41 0.83 0.72

n=300

β11 1.00 2.59 6.05 20.41 438.02 -0.25 -0.09 1.57 3.62

β12 1.20 1.32 3.36 10.63 116.50 1.24 1.34 0.63 0.42

β21 1.00 1.66 7.35 26.27 723.73 0.77 1.66 4.52 20.65

β22 -1.20 -1.43 -4.23 13.53 190.32 -1.70 -2.20 2.45 6.97

γ 1.00 0.78 0.38 6.43 41.29 2.68 2.44 2.34 7.50

θ11 -1.50 -1.52 -1.54 0.23 0.06 -1.48 -1.50 0.23 0.05

θ12 -1.60 -1.66 -1.67 0.28 0.09 -1.69 -1.71 0.28 0.09

θ21 -1.50 -1.52 -1.52 0.23 0.05 -1.53 -1.53 0.23 0.05

θ22 -1.20 -1.28 -1.30 0.30 0.10 -1.26 -1.29 0.30 0.09

n=600

β11 1.00 1.44 2.72 3.54 15.36 0.78 0.79 1.44 2.10

β12 1.20 1.23 1.33 0.49 0.25 1.22 1.29 0.40 0.16

β21 1.00 1.37 4.50 16.18 271.53 1.23 1.68 3.42 12.05

β22 -1.20 -1.16 -2.25 8.48 72.21 -1.24 -1.67 1.85 3.60

γ 1.00 0.55 -0.50 3.77 16.30 1.12 1.32 1.79 3.28

θ11 -1.50 -1.50 -1.50 0.15 0.02 -1.50 -1.49 0.15 0.02

θ12 -1.60 -1.65 -1.66 0.19 0.04 -1.66 -1.67 0.19 0.04

θ21 -1.50 -1.53 -1.49 0.18 0.03 -1.53 -1.50 0.18 0.03

θ22 -1.20 -1.23 -1.25 0.18 0.03 -1.22 -1.24 0.18 0.04
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Appendix E

Derivation of the partial likelihood

Let XU
i and WU

i for i = 1, ..., N denote the data sets corresponding to the used points and

XA
j and WA

j for j = 1, ...,m denote a random sample from the available distribution. Let

r = N
N+M the likelihood function can be written as:

L (β,θ/XU ,WU ,XA,WA) =
N�

i=1

fU
�
XU

i ,W
U
i

� M�

J=1

fA
�
XA

i ,W
A
i

�

where

fU
�
XU

i ,W
U
i

�
=

π
�
XU

i ,β
�
δ
�
WU

i , θ
�
fA

�
XU

i ,W
U
i

�
´ ´

π
�
XU

i ,β
�
δ
�
WU

i , θ
�
fA

�
XU

i ,W
U
i

�
dxdz

=
π
�
XU

i ,β
�
δ
�
WU

i , θ
�
fA

�
XU

i ,W
U
i

�

P
�
β, θ

�

hence,

L (β,θ/XU ,WU ,XA,WA) =
N�

i=1

π
�
XU

i ,β
�
δ
�
WU

i , θ
�
fA

�
XU

i ,W
U
i

�

P
�
β, θ

�
M�

J=1

fA
�
XA

i ,W
A
i

�

165



L (β,θ/XU ,WU ,XA,WA) =
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So the full likelihood can be expressed as a product of the following two terms:
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The results in Gilbert et al (1999) show that maximizing PL
�
β, θ,α

�
with respect to

�
β, θ,α

�
under the restriction 0 < α ≤ 1, leads to the same estimators asymptotically as

those obtained by maximizing the full likelihood.
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Appendix F

RSPF simulation results

Summary of simulation results for the RSPF using 500 data sets using the logit

link for the detection probability and separate covariates.

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.16 0.14 0.14 0.08 0.01 — — — —

β0 -0.30 -0.55 -0.35 1.04 1.13 -2.35 -0.33 7.16 55.32

β1 0.70 0.71 0.69 0.18 0.03 0.72 0.71 0.20 0.04

β2 -1.20 -1.23 -1.23 0.31 0.10 -1.23 -1.20 0.35 0.13

θ0 -0.60 -0.61 -0.58 0.65 0.42 -1.68 -0.66 7.71 60.48

θ1 -1.00 -1.11 -1.04 0.42 0.19 -1.04 -1.02 0.34 0.12

θ2 1.00 1.03 0.98 0.37 0.13 1.04 0.99 0.41 0.17

naive

α 0.16 0.29 0.31 0.14 0.04 — — — —

β0 -0.30 -0.88 -0.31 2.52 6.69 -2.01 -0.28 6.53 45.41

β1 0.70 0.73 0.72 0.19 0.04 0.72 0.72 0.19 0.04

β2 -1.20 -1.24 -1.20 0.34 0.12 -1.23 -1.20 0.33 0.11
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1000

full

α 0.16 0.15 0.15 0.07 0.00 — — — —

β0 -0.30 -0.38 -0.28 0.89 0.78 -3.40 -0.33 32.93 1091.69

β1 0.70 0.75 0.74 0.18 0.03 0.71 0.71 0.17 0.03

β2 -1.20 -1.26 -1.23 0.30 0.09 -1.22 -1.17 0.31 0.09

θ0 -0.60 -0.67 -0.68 0.53 0.28 -1.48 -0.67 7.00 49.61

θ1 -1.00 -1.05 -1.02 0.26 0.07 -1.02 -1.01 0.28 0.08

θ2 1.00 1.04 1.05 0.25 0.07 1.02 1.00 0.34 0.11

naive

α 0.16 0.29 0.30 0.12 0.03 — — — —

β0 -0.30 -0.64 -0.32 1.75 3.17 -1.79 -0.35 6.03 38.50

β1 0.70 0.72 0.70 0.16 0.03 0.71 0.70 0.17 0.03

β2 -1.20 -1.22 -1.18 0.29 0.09 -1.21 -1.18 0.29 0.09

2000

full

α 0.16 0.19 0.20 0.09 0.01 — — — —

β0 -0.30 -0.34 0.10 3.03 9.18 -1.85 -0.37 6.14 40.03

β1 0.70 0.78 0.78 0.18 0.04 0.71 0.71 0.15 0.02

β2 -1.20 -1.35 -1.32 0.41 0.19 -1.20 -1.19 0.27 0.07

θ0 -0.60 -0.52 -0.46 0.66 0.44 -0.98 -0.63 2.64 7.10

θ1 -1.00 -1.09 -1.07 0.27 0.08 -0.99 -0.98 0.25 0.06

θ2 1.00 1.08 1.07 0.35 0.13 0.99 0.98 0.31 0.09

naive

α 0.16 0.29 0.30 0.11 0.03 — — — —

β0 -0.30 -0.67 -0.29 2.02 4.21 -1.57 -0.35 5.49 31.73

β1 0.70 0.72 0.71 0.15 0.02 0.71 0.71 0.15 0.02

β2 -1.20 -1.22 -1.21 0.27 0.07 -1.20 -1.19 0.27 0.07
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Summary of simulation results for the RSPF using 500 data sets using the logit

link for the detection probability and a discrete common covariate associated

with the parameters β2 and θ2 .

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.14 0.13 0.12 0.09 0.01 — — — —

β0 -0.30 -0.50 -0.45 1.06 1.14 -2.89 -0.34 13.13 178.82

β1 0.70 0.72 0.69 0.23 0.05 0.74 0.70 0.23 0.05

β2 -1.20 -1.25 -1.15 0.62 0.39 -4.91 -1.26 34.17 1178.95

θ0 -0.60 -0.59 -0.58 1.20 1.43 -5.38 -0.67 35.09 1251.50

θ1 -1.00 -1.13 -1.09 0.55 0.32 -1.03 -1.02 0.34 0.12

θ2 1.00 1.07 1.08 0.70 0.50 4.70 1.14 34.26 1184.90

naive

α 0.14 0.34 0.36 0.17 0.07 — — — —

β0 -0.30 -0.86 -0.32 2.67 7.43 -2.65 -0.34 7.96 68.72

β1 0.70 0.81 0.79 0.25 0.08 0.80 0.78 0.25 0.07

β2 -1.20 -0.71 -0.62 0.68 0.70 -0.72 -0.59 1.61 2.81

1000

full

α 0.14 0.13 0.12 0.08 0.01 — — — —

β0 -0.30 -0.39 -0.21 0.88 0.78 -1.79 -0.42 6.39 42.95

β1 0.70 0.75 0.73 0.16 0.03 0.73 0.70 0.19 0.04

β2 -1.20 -1.28 -1.28 0.47 0.23 -2.84 -1.23 6.28 42.09

θ0 -0.60 -0.71 -0.62 0.67 0.45 -2.85 -0.60 8.85 83.30

θ1 -1.00 -1.00 -0.98 0.21 0.04 -1.03 -1.03 0.29 0.09

θ2 1.00 1.04 1.02 0.56 0.31 2.64 1.11 6.26 41.81

naive

α 0.14 0.35 0.37 0.15 0.07 — — — —

β0 -0.30 -0.80 -0.27 2.87 8.45 -1.97 -0.31 6.39 43.48

β1 0.70 0.81 0.80 0.20 0.05 0.80 0.79 0.21 0.05

β2 -1.20 -0.67 -0.63 0.26 0.35 -0.65 -0.62 0.26 0.37
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2000

full

α 0.14 0.19 0.19 0.10 0.01 — — — —

β0 -0.30 -0.11 0.10 1.45 2.15 -3.11 -0.38 13.46 188.65

β1 0.70 0.82 0.80 0.22 0.06 0.70 0.69 0.17 0.03

β2 -1.20 -1.32 -1.21 1.00 1.00 -2.40 -1.28 7.83 62.60

θ0 -0.60 -0.47 -0.29 1.26 1.60 -2.49 -0.65 8.08 68.80

θ1 -1.00 -1.12 -1.10 0.26 0.08 -1.02 -1.01 0.25 0.06

θ2 1.00 1.05 0.96 1.08 1.16 2.23 1.09 7.78 61.93

naive

α 0.14 0.34 0.36 0.14 0.06 — — — —

β0 -0.30 -0.75 -0.31 2.15 4.82 -2.86 -0.31 7.87 68.41

β1 0.70 0.79 0.77 0.19 0.04 0.78 0.77 0.19 0.04

β2 -1.20 -0.66 -0.65 0.25 0.35 -0.62 -0.62 0.24 0.39

Summary of simulation results for the RSPF using 500 data sets using the logit

link for the detection probability and a continuous common covariate associated

with the parameters β1 and θ1 .

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.13 0.13 0.08 0.12 0.01 — — — —

β0 -0.30 -0.67 -0.81 1.66 2.86 -9.75 -1.26 44.14 2033.76

β1 0.70 0.60 0.68 0.54 0.30 -1.38 0.54 13.54 187.34

β2 -1.20 -1.32 -1.14 0.65 0.43 -1.47 -1.10 2.60 6.84

θ0 -0.60 -0.73 -0.66 0.93 0.88 -6.67 -1.03 35.51 1295.65

θ1 -1.00 -0.94 -1.08 0.75 0.56 1.19 -0.86 13.59 189.20

θ2 1.00 1.84 0.97 4.64 21.99 1.11 0.81 2.40 5.78

naive

α 0.13 0.49 0.61 0.26 0.20 — — — —

β0 -0.30 3.28 2.17 8.49 84.73 9.73 3.45 20.94 538.32

β1 0.70 0.17 0.17 0.25 0.34 0.17 0.17 0.22 0.34

β2 -1.20 -5.58 -2.63 6.11 56.44 -14.72 -3.61 14.64 396.73
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1000

full

α 0.13 0.13 0.10 0.11 0.01 — — — —

β0 -0.30 -0.71 -0.56 1.30 1.84 -7.07 -1.38 24.89 664.11

β1 0.70 0.59 0.67 0.47 0.23 -0.44 0.55 6.97 49.82

β2 -1.20 -1.22 -1.11 0.39 0.15 -1.22 -1.06 0.54 0.29

θ0 -0.60 -0.67 -0.52 0.87 0.76 -4.98 -1.15 30.01 917.88

θ1 -1.00 -0.94 -1.09 0.66 0.43 0.24 -0.94 7.02 50.79

θ2 1.00 1.25 1.06 1.19 1.46 1.16 0.80 2.59 6.74

naive

α 0.13 0.53 0.65 0.26 0.22 — — — —

β0 -0.30 5.05 5.01 7.96 91.90 11.22 26.40 22.22 625.28

β1 0.70 0.16 0.16 0.20 0.33 0.14 0.15 0.18 0.34

β2 -1.20 -6.98 -5.19 5.47 63.23 -16.83 -26.60 14.78 462.33

2000

full

α 0.13 0.26 0.28 0.12 0.03 — — — —

β0 -0.30 0.21 0.65 4.54 20.83 -4.69 -1.11 9.89 116.83

β1 0.70 0.49 0.61 0.49 0.28 -0.15 0.58 1.50 2.96

β2 -1.20 -1.64 -1.55 0.93 1.05 -1.28 -1.06 1.52 2.33

θ0 -0.60 -0.06 0.02 0.94 1.19 -2.86 -1.00 6.32 44.93

θ1 -1.00 -0.81 -1.03 0.80 0.67 -0.03 -0.93 1.66 3.70

θ2 1.00 1.59 1.37 1.38 2.26 0.96 0.82 0.46 0.21

naive

α 0.13 0.55 0.66 0.23 0.23 — — — —

β0 -0.30 5.51 6.42 7.25 86.12 12.15 26.30 21.23 604.61

β1 0.70 0.18 0.19 0.19 0.30 0.16 0.17 0.17 0.33

β2 -1.20 -7.00 -6.72 5.27 61.42 -16.89 -26.45 14.71 462.34
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Summary of simulation results for the RSPF using 500 data sets using the

complement log log link for the detection probability and separate covariates.

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.19 0.17 0.17 0.09 0.01 — — — —

β0 -0.30 -0.53 -0.41 1.09 1.22 -2.85 -0.23 8.62 80.56

β1 0.70 0.71 0.70 0.19 0.04 0.73 0.73 0.19 0.04

β2 -1.20 -1.24 -1.15 0.36 0.13 -1.23 -1.21 0.35 0.12

θ0 -0.60 -0.63 -0.63 0.33 0.11 -0.70 -0.66 0.82 0.68

θ1 -1.00 -1.00 -1.01 0.25 0.06 -1.02 -0.99 0.27 0.07

θ2 1.00 0.99 1.00 0.28 0.08 1.02 0.99 0.30 0.09

naive

α 0.19 0.30 0.32 0.14 0.03 — — — —

β0 -0.30 -0.97 -0.25 2.78 8.16 -2.38 -0.22 7.25 56.85

β1 0.70 0.73 0.73 0.18 0.03 0.73 0.73 0.18 0.03

β2 -1.20 -1.24 -1.21 0.34 0.11 -1.23 -1.20 0.34 0.11

1000

full

α 0.19 0.18 0.19 0.08 0.01 — — — —

β0 -0.30 -0.43 -0.24 0.98 0.97 -1.76 -0.26 5.87 36.53

β1 0.70 0.73 0.71 0.16 0.03 0.73 0.72 0.17 0.03

β2 -1.20 -1.25 -1.24 0.31 0.10 -1.25 -1.23 0.31 0.10

θ0 -0.60 -0.61 -0.64 0.27 0.07 -0.74 -0.61 1.48 2.21

θ1 -1.00 -1.05 -1.02 0.18 0.04 -1.02 -1.02 0.20 0.04

θ2 1.00 1.04 1.03 0.29 0.08 1.02 0.99 0.29 0.08

naive

α 0.19 0.31 0.32 0.12 0.03 — — — —

β0 -0.30 -0.50 -0.22 1.83 3.39 -1.52 -0.26 5.61 32.91

β1 0.70 0.74 0.73 0.17 0.03 0.73 0.72 0.17 0.03

β2 -1.20 -1.27 -1.24 0.30 0.09 -1.25 -1.24 0.30 0.09
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2000

full

α 0.19 0.23 0.23 0.09 0.01 — — — —

β0 -0.30 0.01 0.12 1.09 1.28 -1.84 -0.34 6.27 41.54

β1 0.70 0.80 0.79 0.19 0.05 0.71 0.71 0.16 0.02

β2 -1.20 -1.38 -1.34 0.41 0.20 -1.21 -1.20 0.28 0.08

θ0 -0.60 -0.58 -0.59 0.29 0.09 -0.67 -0.63 0.69 0.48

θ1 -1.00 -1.04 -1.01 0.20 0.04 -1.01 -1.00 0.18 0.03

θ2 1.00 1.04 1.02 0.27 0.08 1.01 0.99 0.22 0.05

naive

α 0.19 0.30 0.31 0.11 0.02 — — — —

β0 -0.30 -0.50 -0.31 1.34 1.82 -1.43 -0.31 5.09 27.14

β1 0.70 0.72 0.70 0.15 0.02 0.71 0.70 0.15 0.02

β2 -1.20 -1.22 -1.21 0.25 0.06 -1.21 -1.20 0.27 0.07

Summary of simulation results for the RSPF using 500 data sets using the

complement log log link for the detection probability and a discrete common

covariate associated with the parameters β2 and θ2 .

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.17 0.16 0.15 0.09 0.01 — — — —

β0 -0.30 -0.51 -0.40 1.15 1.35 -3.36 -0.42 9.59 101.20

β1 0.70 0.74 0.70 0.22 0.05 0.72 0.69 0.21 0.04

β2 -1.20 -1.26 -1.17 0.52 0.27 -1.84 -1.24 3.49 12.54

θ0 -0.60 -0.57 -0.57 0.50 0.25 -1.48 -0.63 3.79 15.09

θ1 -1.00 -1.10 -1.06 0.26 0.08 -1.05 -1.05 0.24 0.06

θ2 1.00 1.07 1.05 0.48 0.24 1.66 1.10 3.54 12.93

naive

α 0.17 0.33 0.35 0.18 0.06 — — — —

β0 -0.30 -1.33 -0.39 3.28 11.81 -3.32 -0.41 8.50 81.25

β1 0.70 0.79 0.76 0.25 0.07 0.79 0.77 0.24 0.07

β2 -1.20 -0.66 -0.60 0.34 0.40 -0.64 -0.58 0.33 0.42
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1000

full

α 0.17 0.16 0.17 0.08 0.01 0.00 0.00 0.00 0.00

β0 -0.30 -0.40 -0.20 0.91 0.83 -2.11 -0.26 8.51 75.53

β1 0.70 0.73 0.74 0.15 0.02 0.73 0.71 0.18 0.03

β2 -1.20 -1.30 -1.22 0.51 0.27 -1.67 -1.25 2.69 7.45

θ0 -0.60 -0.66 -0.58 0.52 0.27 -1.20 -0.59 3.19 10.51

θ1 -1.00 -1.03 -1.01 0.18 0.03 -1.03 -1.02 0.22 0.05

θ2 1.00 1.07 1.08 0.47 0.22 1.46 1.07 2.64 7.19

naive

α 0.17 0.36 0.37 0.14 0.06 — — — —

β0 -0.30 -0.72 -0.26 2.34 5.65 -1.94 -0.27 6.53 45.19

β1 0.70 0.81 0.79 0.20 0.05 0.80 0.79 0.21 0.05

β2 -1.20 -0.66 -0.63 0.27 0.37 -0.63 -0.60 0.28 0.40

2000

full

α 0.17 0.21 0.21 0.11 0.01 — — — —

β0 -0.30 -0.19 0.06 2.00 4.01 -2.36 -0.35 13.97 198.88

β1 0.70 0.80 0.78 0.20 0.05 0.70 0.69 0.16 0.02

β2 -1.20 -1.42 -1.24 1.68 2.87 -1.83 -1.25 3.54 12.93

θ0 -0.60 -0.63 -0.47 1.69 2.84 -1.39 -0.66 3.78 14.91

θ1 -1.00 -1.04 -1.03 0.18 0.04 -1.01 -1.00 0.18 0.03

θ2 1.00 1.07 0.95 1.61 2.60 1.65 1.08 3.55 13.01

naive

α 0.17 0.34 0.36 0.14 0.05 — — — —

β0 -0.30 -0.77 -0.31 2.19 5.00 -1.70 -0.34 5.80 35.50

β1 0.70 0.78 0.77 0.18 0.04 0.77 0.77 0.18 0.04

β2 -1.20 -0.66 -0.62 0.24 0.35 -0.62 -0.60 0.23 0.39
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Summary of simulation results for the RSPF using 500 data sets using the

complement log log link for the detection probability and a continuous common

covariate associated with the parameters β1 and θ1 .

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.16 0.16 0.12 0.14 0.02 — — — —

β0 -0.30 -0.55 -0.58 1.50 2.30 -5.09 -0.71 20.70 450.50

β1 0.70 0.61 0.69 0.59 0.35 0.44 0.69 1.37 1.94

β2 -1.20 -1.29 -1.18 0.44 0.20 -1.39 -1.11 1.97 3.90

θ0 -0.60 -0.80 -0.59 0.81 0.68 -1.83 -0.76 3.44 13.29

θ1 -1.00 -0.89 -1.04 0.68 0.48 -0.70 -1.05 1.46 2.21

θ2 1.00 1.08 0.98 0.40 0.16 1.05 0.96 1.05 1.11

naive

α 0.16 0.43 0.50 0.28 0.15 — — — —

β0 -0.30 1.54 0.88 8.06 68.17 7.74 2.60 21.87 541.99

β1 0.70 0.09 0.03 0.25 0.43 0.10 0.10 0.23 0.41

β2 -1.20 -4.57 -1.78 4.99 36.24 -13.88 -3.00 14.68 375.81

1000

full

α 0.16 0.13 0.11 0.10 0.01 — — — —

β0 -0.30 -0.75 -0.61 1.24 1.72 -3.64 -0.79 9.37 98.81

β1 0.70 0.72 0.71 0.41 0.17 0.38 0.68 1.17 1.48

β2 -1.20 -1.21 -1.13 0.32 0.10 -1.29 -1.12 1.77 3.13

θ0 -0.60 -0.81 -0.61 0.72 0.56 -1.60 -0.72 2.85 9.11

θ1 -1.00 -1.04 -1.10 0.47 0.22 -0.63 -1.04 1.28 1.77

θ2 1.00 1.02 0.99 0.31 0.09 1.06 0.99 1.05 1.10

naive

α 0.16 0.50 0.64 0.27 0.18 — — — —

β0 -0.30 4.13 2.99 8.19 86.48 8.77 3.15 22.50 587.59

β1 0.70 0.13 0.13 0.21 0.37 0.10 0.11 0.19 0.39

β2 -1.20 -6.39 -3.34 5.42 56.20 -15.12 -3.60 14.78 411.79
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2000

full

α 0.16 0.24 0.27 0.13 0.02 — — — —

β0 -0.30 -0.72 0.49 12.26 150.17 -3.09 -0.52 13.17 180.82

β1 0.70 0.56 0.66 0.56 0.33 0.47 0.71 0.98 1.02

β2 -1.20 -1.50 -1.43 0.76 0.67 -1.27 -1.17 0.92 0.86

θ0 -0.60 -0.58 -0.43 1.77 3.14 -1.47 -0.70 2.55 7.25

θ1 -1.00 -0.74 -0.96 0.79 0.69 -0.74 -1.04 1.06 1.20

θ2 1.00 1.17 1.09 1.62 2.65 1.02 0.97 0.73 0.54

naive

α 0.16 0.51 0.66 0.27 0.19 — — — —

β0 -0.30 4.83 7.56 8.25 94.33 9.22 4.42 23.34 634.55

β1 0.70 0.13 0.14 0.20 0.36 0.10 0.11 0.17 0.39

β2 -1.20 -6.99 -7.67 5.46 63.29 -16.08 -4.81 15.01 446.26

Summary of simulation results for the RSPF using 500 data sets using the probit

link for the detection probability and separate covariates.

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.16 0.14 0.13 0.07 0.01 — — — —

β0 -0.30 -0.61 -0.53 0.97 1.04 -2.78 -0.29 10.41 114.23

β1 0.70 0.71 0.68 0.17 0.03 0.72 0.71 0.19 0.04

β2 -1.20 -1.20 -1.17 0.31 0.09 -1.24 -1.23 0.36 0.13

θ0 -0.60 -0.59 -0.61 0.22 0.05 -0.62 -0.62 0.23 0.05

θ1 -1.00 -1.04 -1.00 0.21 0.05 -1.03 -1.01 0.23 0.05

θ2 1.00 1.04 1.00 0.27 0.07 1.02 1.02 0.26 0.07

naive

α 0.16 0.30 0.31 0.14 0.04 — — — —

β0 -0.30 -0.80 -0.24 2.51 6.56 -2.03 -0.26 6.64 46.96

β1 0.70 0.73 0.71 0.19 0.04 0.72 0.71 0.19 0.03

β2 -1.20 -1.26 -1.22 0.35 0.13 -1.24 -1.21 0.34 0.12
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1000

full

α 0.16 0.16 0.17 0.07 0.01 — — — —

β0 -0.30 -0.31 -0.07 1.02 1.02 -2.20 -0.30 7.14 54.57

β1 0.70 0.74 0.70 0.21 0.04 0.72 0.71 0.18 0.03

β2 -1.20 -1.30 -1.27 0.33 0.12 -1.24 -1.23 0.33 0.11

θ0 -0.60 -0.61 -0.58 0.17 0.03 -0.62 -0.62 0.20 0.04

θ1 -1.00 -1.03 -1.00 0.18 0.03 -1.01 -1.00 0.18 0.03

θ2 1.00 1.04 1.02 0.22 0.05 1.02 1.01 0.21 0.05

naive

α 0.16 0.30 0.32 0.12 0.04 — — — —

β0 -0.30 -0.58 -0.25 1.78 3.24 -1.87 -0.26 6.26 41.56

β1 0.70 0.73 0.72 0.17 0.03 0.72 0.71 0.17 0.03

β2 -1.20 -1.26 -1.21 0.30 0.09 -1.24 -1.21 0.30 0.09

2000

full

α 0.16 0.20 0.19 0.09 0.01 — — — —

β0 -0.30 0.06 0.05 1.11 1.35 -2.19 -0.38 6.32 43.44

β1 0.70 0.80 0.78 0.19 0.04 0.70 0.69 0.16 0.02

β2 -1.20 -1.39 -1.31 0.41 0.21 -1.20 -1.18 0.29 0.08

θ0 -0.60 -0.57 -0.58 0.18 0.03 -0.62 -0.62 0.18 0.03

θ1 -1.00 -1.05 -1.04 0.18 0.04 -1.01 -1.00 0.17 0.03

θ2 1.00 1.06 1.04 0.21 0.05 1.01 1.00 0.19 0.04

naive

α 0.16 0.29 0.30 0.12 0.03 — — — —

β0 -0.30 -0.61 -0.35 1.63 2.74 -1.91 -0.37 6.20 40.90

β1 0.70 0.71 0.69 0.14 0.02 0.69 0.68 0.15 0.02

β2 -1.20 -1.22 -1.20 0.26 0.07 -1.20 -1.19 0.26 0.07
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Summary of simulation results for the RSPF using 500 data sets using the probit

link for the detection probability and a discrete common covariate associated

with the parameters β2 and θ2 .

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.13 0.13 0.13 0.07 0.00 — — — —

β0 -0.30 -0.29 -0.19 0.95 0.89 -4.00 -0.44 28.48 823.21

β1 0.70 0.75 0.73 0.20 0.04 0.71 0.69 0.21 0.04

β2 -1.20 -1.30 -1.24 0.52 0.28 -1.38 -1.18 2.48 6.17

θ0 -0.60 -0.62 -0.60 0.33 0.11 -0.68 -0.61 0.82 0.68

θ1 -1.00 -1.02 -1.03 0.20 0.04 -1.01 -1.01 0.24 0.06

θ2 1.00 1.01 0.98 0.32 0.10 1.02 1.02 0.37 0.13

naive

α 0.13 0.31 0.33 0.19 0.07 — — — —

β0 -0.30 -1.79 -0.62 3.66 15.55 -4.66 -0.64 9.63 111.59

β1 0.70 0.78 0.74 0.27 0.08 0.77 0.73 0.26 0.07

β2 -1.20 -0.38 -0.32 0.34 0.79 -0.34 -0.30 0.29 0.82

1000

full

α 0.13 0.13 0.14 0.07 0.01 — — — —

β0 -0.30 -0.49 -0.38 0.98 0.98 -3.06 -0.32 8.41 78.11

β1 0.70 0.72 0.71 0.17 0.03 0.70 0.69 0.18 0.03

β2 -1.20 -1.22 -1.16 0.35 0.12 -1.30 -1.26 0.47 0.23

θ0 -0.60 -0.55 -0.54 0.25 0.06 -0.65 -0.60 0.32 0.10

θ1 -1.00 -1.05 -1.05 0.17 0.03 -1.01 -1.01 0.20 0.04

θ2 1.00 1.01 0.99 0.27 0.07 1.07 1.07 0.29 0.09

naive

α 0.13 0.32 0.35 0.17 0.06 — — — —

β0 -0.30 -1.40 -0.51 2.93 9.78 -4.22 -0.57 9.08 97.63

β1 0.70 0.76 0.75 0.22 0.05 0.75 0.73 0.22 0.05

β2 -1.20 -0.39 -0.35 0.24 0.71 -0.35 -0.31 0.24 0.78
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2000

full

α 0.13 0.19 0.18 0.08 0.01 — — — —

β0 -0.30 -0.28 0.25 9.35 87.22 -2.67 -0.39 9.64 98.46

β1 0.70 0.84 0.83 0.22 0.07 0.71 0.70 0.16 0.03

β2 -1.20 -1.33 -1.29 0.41 0.18 -1.26 -1.21 0.43 0.19

θ0 -0.60 -0.51 -0.50 0.26 0.08 -0.64 -0.63 0.29 0.09

θ1 -1.00 -1.07 -1.05 0.17 0.03 -1.01 -1.00 0.17 0.03

θ2 1.00 1.00 0.99 0.25 0.06 1.04 1.04 0.24 0.06

naive

α 0.13 0.32 0.34 0.16 0.06 — — — —

β0 -0.30 -1.16 -0.57 2.39 6.46 -3.45 -0.63 8.20 76.98

β1 0.70 0.76 0.74 0.20 0.05 0.75 0.74 0.20 0.04

β2 -1.20 -0.38 -0.34 0.21 0.73 -0.32 -0.30 0.21 0.81

Summary of simulation results for the RSPF using 500 data sets using the probit

link for the detection probability and a continuous common covariate associated

with the parameters β1 and θ1 .

Partial Likelihood Full Likelihood

used model par true mean median se mse mean median se mse

500

full

α 0.12 0.13 0.11 0.12 0.01 — — — —

β0 -0.30 -0.45 -0.41 1.60 2.55 -3.71 -0.20 10.00 111.40

β1 0.70 0.75 0.77 0.26 0.07 0.95 0.78 1.63 2.71

β2 -1.20 -1.38 -1.21 0.63 0.42 -1.63 -1.23 2.51 6.47

θ0 -0.60 -0.61 -0.59 0.41 0.17 -0.94 -0.62 2.45 6.13

θ1 -1.00 -1.07 -1.02 0.27 0.08 -1.02 -1.01 0.24 0.06

θ2 1.00 1.09 1.04 0.40 0.17 1.02 1.00 0.40 0.16

naive

α 0.12 0.27 0.29 0.23 0.08 — — — —

β0 -0.30 -2.71 -0.29 4.89 29.70 -5.41 -0.15 11.52 158.48

β1 0.70 -0.47 -0.33 0.47 1.58 -0.41 -0.33 0.39 1.39

β2 -1.20 -1.24 -1.18 0.40 0.16 -1.64 -1.26 3.30 11.05
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1000

full

α 0.12 0.14 0.10 0.11 0.01 — — — —

β0 -0.30 -0.19 -0.22 1.32 1.74 -2.70 -0.30 8.28 74.14

β1 0.70 0.81 0.79 0.25 0.07 0.82 0.77 0.46 0.23

β2 -1.20 -1.39 -1.25 0.43 0.22 -1.38 -1.22 1.21 1.48

θ0 -0.60 -0.69 -0.63 0.41 0.17 -0.75 -0.61 0.98 0.97

θ1 -1.00 -1.01 -1.00 0.19 0.03 -1.03 -1.02 0.21 0.04

θ2 1.00 1.02 0.99 0.31 0.09 1.02 1.01 0.33 0.11

naive

α 0.12 0.29 0.29 0.22 0.08 — — — —

β0 -0.30 -2.16 -0.28 4.65 25.06 -4.18 -0.22 9.38 102.78

β1 0.70 -0.48 -0.37 0.44 1.58 -0.38 -0.33 0.26 1.23

β2 -1.20 -1.25 -1.22 0.35 0.12 -1.28 -1.26 0.33 0.12

2000

full

α 0.12 0.25 0.23 0.16 0.04 — — — —

β0 -0.30 2.26 0.72 25.19 639.90 -1.99 -0.31 6.49 44.96

β1 0.70 0.61 0.68 0.56 0.33 0.77 0.75 0.27 0.08

β2 -1.20 -3.56 -1.53 24.90 624.40 -1.36 -1.21 1.34 1.83

θ0 -0.60 -0.43 -0.42 0.50 0.28 -0.70 -0.61 0.60 0.37

θ1 -1.00 -1.03 -1.05 0.36 0.13 -1.03 -1.02 0.18 0.03

θ2 1.00 2.69 1.21 12.41 156.54 1.03 1.03 0.31 0.09

naive

α 0.12 0.31 0.32 0.23 0.09 — — — —

β0 -0.30 -1.94 -0.14 4.50 22.94 -4.20 -0.21 9.41 103.57

β1 0.70 -0.54 -0.39 0.51 1.79 -0.36 -0.33 0.18 1.16

β2 -1.20 -1.27 -1.25 0.66 0.43 -1.27 -1.27 0.30 0.10
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