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Abstract 

As a fast developing research field, bioinformatics and computational biology have brought about 

numerous amazing biological discoveries through computational approaches. The available large 

volume of genomic data provides a large amount of information, but also acquires computing tech­

niques to extract the useful information hidden inside. This thesis focuses on data dimensional­

ity reduction and information extraction via selecting the most informative features. The research 

projects concerned include gene expression microarray data analysis and computational genotyping 

of several contagious viral strains. In gene expression microarray data analysis, we regard genes 

as features and focus on identifying the most discriminative genes. We improve the existing clas­

sifiers and propose more efficient classification algorithms based on the biomarkers we selected. 

Our method has shown significant classification improvements on cancer microarray data. On viral 

strain genotyping, we adopt the complete composition vector representation for whole genomes and 

regard each nucleotide strings (and peptides) as genomic features. Afterwards, we apply the gene 

selection algorithms from the gene expression microarray data analysis to locate the most genotype 

specific strings and subsequently construct the genotypers. We also demonstrated success on vari­

ous samples of virus data (HIV-1, FMDV, HCV and AIV). Our feature selection based algorithms 

have shown highly efficient performance on information extraction from large volume data, which 

were never achieved before either computationally or via wet-lab approaches. These methods may 

contribute to more biological discoveries and assist with clinical diagnosis if used properly. 



Acknowledgements 

First and the foremost, I would like to thank my thesis supervisors, Dr. Guohui Lin and Dr. Moham­

mad R. Salavatipour, for their patient instruction and generous support. They open one black box 

after another for me and give me theoretical and practical ability in problem formation and solving. 

They are also the ones who kept my work on the right track. I have learned from them not only the 

ability of doing research, but an attitude for doing research. 

I would like to thank Dr. Randy Goebel, who has also provided a great deal of insights into this 

research. He contributed many good suggestions on the experiments. 

Next, I would like to thank my family for their support in all phases of my life. 

Also I would like to thank Dr. Lizhe Xu and all my colleagues, Xiang Wan, Gang Wu, Xiaomeng 

Wu, Jianjun Zhou, Yi Shi and Meng Song, for creative discussion. I really enjoyed the many chats 

with them that have enriched my view of algorithms. 

Finally, I felicitate the cherish the opportunity to study in the Department of Computing Sci­

ence. Here, I find myself studying in a distinguished environment encompassed by an academic 

atmosphere where originality is promoted and individual potential is tapped. 



Table of Contents 

1 Introduction 1 

1.1 Background 1 

2 Missing Value Estimation 8 

2.1 Introduction and Related Work 8 

2.2 Iterated Local Least Squares Imputation — ILLSimpute 10 

2.2.1 Distance Measure and Coherent Genes 10 

2.2.2 Local Least Squares Imputation 11 

2.2.3 Measure of Imputation 12 

2.2.4 Coherent Gene Determination in ILLSimpute 13 

2.2.5 Iterated LLSimpute — ILLSimpute 13 

2.3 Options in ILLSimpute 14 

2.3.1 Decisions on Candidate Coherent Genes 14 

2.3.2 Ways of Distance Ratio Learning 14 

2.3.3 All Versions of ILLSimpute Method 15 

2.4 Experimental Results and Discussion 16 

2.4.1 Datasets 16 

2.4.2 Comparison of Decisions on Candidate Coherent Genes 17 

2.4.3 Comparison of Ways of Distance Ratio Learning 17 

2.4.4 Comparison of Ways of Distance Ratio Learning and Actual Imputation . . 18 

2.4.5 Distance Ratio is Dataset Dependent 19 

2.4.6 Determination of the Number of Iterations 20 

2.4.7 Performance Comparison of ILLSimpute with Other Methods 20 

2.4.8 Comparison of Fixed and Variable Numbers of Coherent Genes 21 

2.4.9 Statistical Test on the Performance Differences 23 

2.5 Conclusions 23 

3 Gene Selection 26 

3.1 Introduction 26 

• 3.2 Single Ranking Methods 27 



3.2.1 F-Test Method 

3.2.2 Cho's Method 32 

3.3 The Datasets 33 

3.4 Performance Measurement 35 

3.5 Experimental Results of Single Ranking Methods 35 

3.6 Stability of the Single Ranking Methods 37 

3.7 Combined Clusters and Gene Selection Methods 38 

3.8 Experimental Results of Combined Methods 42 

3.8.1 Cross Validation Classification Accuracies 42 

3.8.2 Standard Deviations 42 

3.9 Discussion of Combined Methods 42 

3.9.1 Number of Clusters and Number of Genes Per Cluster 42 

3.9.2 Distance Measure in &-Means Clustering 43 

3.9.3 Statistical Test on the Performance Differences 43 

3.9.4 ^-fold Classification Accuracy Determination 43 

3.9.5 Covariance 44 

3.10 A Case Study: The CAR dataset 45 

4 Smoothing Blemished Gene Expression Microarray Data via Missing Value Imputation 53 

4.1 Introduction 53 

4.2 Methods 55 

4.3 Results 56 

4.3.1 Inaccurate Entry Discovery 56 

4.3.2 Sample Classification Accuracies 57 

4.4 Discussion 58 

4.4.1 The True Inaccurate Rate 58 

4.4.2 Difficult Samples Now Correctly Predicted 62 

4.4.3 NRMSE for Imputed Inaccurate Entries 64 

4.4.4 Experiments on Simulated Datasets 64 

4.5 Conclusions 67 

5 Nucleotide Composition String Selection in HIV-1 Subtyping Using Whole Genomes 68 

5.1 Introduction 68 

5.2 Methods 70 

5.2.1 Complete Composition Vector 70 

5.2.2 String Selection and Phylogenetic Relationships 72 

5.2.3 String Scoring Scheme: Relative Entropy 72 

5.2.4 Selected String Composition Vector 72 



5.2.5 Whole Genome Phylogenetic Relationships 73 

5.3 Computational Results 73 

5.3.1 Overview 73 

5.3.2 Results 74 

5.4 Discussion 77 

5.5 Recombinant Form Prediction 79 

5.6 Conclusions 82 

6 Identifying Many Foot-and-Mouth Disease Virus Signature Nucleotide Strings for Com­

putational Genotyping 83 

6.1 Introduction 83 

6.2 Methods 84 

6.2.1 Entropy-Based Nucleotide String Pre-Filtering 84 

6.2.2 Disc-based Feature Selection Method 85 

6.2.3 Genotype Signature String Extraction and an SVM-Classifier 86 

6.3 Computational Results 86 

6.3.1 Baseline Clustering Results 87 

6.3.2 RRE-LOOCV Genotyping Results 88 

6.3.3 Genotype Signature String Extraction and LOOCV Genotyping Results . . 89 

6.3.4 Independent Genotyping Results 90 

6.4 Discussion 91 

6.4.1 Always Mis-Typed Strains 91 

6.4.2 The Maximum String Length 92 

6.5 More Information on the Top Strings Selected by Disc-F-test 92 

6.5.1 The Number of Pre-Selected Strings 95 

6.6 Conclusions 95 

7 Conclusions 101 

Bibliography 104 



List of Figures 

1.1 Microarray experiment procedure [1]. 3 

2.1 18 versions of ILLSimpute method with the default one highlighted in bold 16 

2.2 The performance of ILLSimpute method on elu-dataset and cyc-b-dataset, both with 

10% missing rate, with respect to different distance ratios in [0.5,1.5] 19 

2.3 The performance of the ILLSimpute method on elu-dataset and cyc-b-dataset with 

10% missing rate, after different numbers, 1-10, of iterations 20 

2.4 Plots of the NRMSE values for ILLSimpute, LLSimpute, BPCA, KNNimpute, SKNN, 

and LinCmb on six microarray datasets with various missing rates, where the error 

bars show the standard deviations over 10 runs. LinCmb didn't finish in 4 days 

on several datasets. These plots show that ILLSimpute performed at least as well 

as, and most of the time better than, the other five methods. The performance of 

ILLSimpute becomes significantly better when the missing rate is large 22 

2.5 Plots of the NRMSE values for ILLSimpute, LLSimpute, INNimpute, and KNNim­

pute on six microarray datasets with various missing rates, where the error bars show 

the standard deviations over 10 runs. These plots show that both the use of variable 

numbers of coherent genes and the iterative imputation improve the imputation quality. 24 

3.1 An example dataset: the expression values of 4 genes in three classes 29 

3.2 The leave-one-out cross validation testing accuracies of the S VM-classifier and KNN-

classifier, respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, 

on the SRBCT dataset 36 

3.3 The leave-one-out cross validation testing accuracies of the S VM-classifier and KNN-

classifier, respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, 

on the CAR dataset 37 

3.4 The 5-Fold cross validation testing accuracies of the SVM-classifier and KNN-

classifier, respectively, on four gene selection methods, GS 1, GS2, Cho's, and F-test, 

on the SRBCT dataset 38 



3.5 The 5-Fold cross validation testing accuracies of the SVM-classifier and KNN-

classifier, respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, 

on the CAR dataset 39 

3.6 5-fold cross validation accuracies and LOO cross validation accuracies of all 9 meth­

ods, combined with KNN-classifier and SVM-classifier, on the CAR dataset 47 

3.7 5-fold cross validation accuracies and LOO cross validation accuracies of all 9 meth­

ods, combined with KNN-classifier and SVM-classifier, on the LUNG dataset. . . . 48 

3.8 Stardand deviation over 300 5-fold classification accuracies of the ACGS-based, 

DCGS-based and non-ACGS-DCGS based methods, combined with KNN-classifier 

and SVM-classifier, on the CAR and LUNG datasets, respectively 49 

3.9 Qualities of different value of T and k of the ACGS based and DCGS based methods, 

tested on the CAR dataset. For a value of T, its quality is the average classification 

accuracy over 9000 ones; For a value of k, its quality is the average classification 

accuracy over 3000 ones 50 

3.10 Quality of Euclidean distance and Pearson correlation coefficient of the ACGS based 

method and the DCGS based method, tested on the CAR dataset and the LUNG 

dataset, where T = 1 and k = 100 51 

3.11 Quality of different I values for £-fold classification accuracies of the ACGS and the 

DCGS gene selection methods, tested on the CAR dataset 52 

4.1 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 

GLIOMAS dataset assuming 1-4% inaccurate entries under all three distribution 

assumptions, where 1-80 genes were selected to construct the KNN-classifier. . . . 59 

4.2 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 

Ovarian dataset assuming 1—4% inaccurate entries under all three distribution as­

sumptions, where 1-80 genes were selected to construct the KNN-classifier. . . . . 60 

4.3 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 

CAR dataset assuming 1-4% inaccurate entries under all three distribution assump­

tions, where 1-80 genes were selected to construct the KNN-classifier. 61 

4.4 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 

GLIOMAS, Ovarian and CAR datasets, assuming whole dataset inaccurate rate 1-

30%. 40, 60, and 80 genes were selected to construct the KNN-classifier, respectively 62 

4.5 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 

GLIOMAS dataset assuming 1-5% inaccurate entries in the whole dataset, where 

1-80 genes were selected to construct the KNN-classifier 63 

4.6 NRMSEs of F-test-KNNimpute for whole dataset inaccurate rates the 1-30% on the 

GLIOMAS dataset, and the NRMSEs of KNNimpute on randomly simulated 1-30% 

missing data entries 65 



4.7 5-fold classification accuracies of F-test-KNNirnpute-KNN on the original, the per­

turbed with 10% whole dataset inaccurate rate, the smoothed based on the original, 

and the smoothed based on the perturbed, CAR, LUNG, and SRBCT datasets. . . . 66 

5.1 The relative entropy scores of the 5,000 top ranked strings, in decreasing order, in 

which the 500 top ones are colored blue 75 

5.2 The Neighbor-Joining phylogenetic tree on the 42 reference sequences using the 500 

top ranked strings, one CIV strain AF4 4 7 76 3 is used as an outgroup 76 

5.3 Subtype prediction confidence values (Dixon metric) in non-increasing order, using 

the top 500 strings. Only five out of the 825 predictions are considered not-so-

confident under Dixon metric 77 

5.4 The prediction confidence values using the top 5,000 strings plotted on top of the 

order by using the top 500 strings. Only one prediction using the top 5,000 strings 

remains not-so-confident 78 

5.5 ClustalW's MSA position coverage by the 500 top ranked strings, for the 42 refer­

ence sequences 80 

5.6 The frequencies of the predicted subtypes for the 16 of 825 randomly selected pure 

subtype strains and the 7 recombinants, using the 5,000 top ranked strings 81 

6.1 Two component LDA using the first two PCs from PCA on the 129 strains each 

represented as a 10,000-dimensional vector. 88 

6.2 The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-

Classifier using the top ranked strings by RRE 89 

6.3 The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-

classifier using the top ranked strings by the F-test method and the Disc-F-test method. 90 

6.4 Prediction confidence values for the Disc-F-test-Mean-classifier 91 

6.5 The average occurrence frequency of the top 20 strings, by the Disc-F-test method, 

in each of the seven genotypes at ClustalW's MSA locations, among all the 129 

whole genomes 94 

6.6 The average occurrence frequency of the top 20 strings, by the Disc-F-test method, 

in each of the seven genotypes, among all the 129 whole genomes 94 

6.7 The Neighbor-Joining tree on the 129 FMDV strains each represented as a 1, 320, 791-

dimensional vector. In this tree, again, Euroasiatic strains and SAT strains are well 

separated, but they internally seem to mix up 97 

6.8 The Neighbor-Joining tree on the 129 FMDV strains each represented as a 10,000-

dimensional vector. In this tree, again, Euroasiatic strains and SAT strains are well 

separated, but they internally seem to mix up 98 



6.9 The MSA tree on the 129 FMDV strains using their whole viral genomes. In this 

tree, only two SAT strains seem to be misplaced 99 

6.10 The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-

classifier using the strings selected by the F-test method and the Disc-F-test method, 

from the 20,000 strings 100 



List of Tables 

1.1 Gene expression microarray data as a matrix, where g^ is the expression value of 

the i-th gene in the j-th experiment 5 

2.1 Average NRMSE values associated with the three options N-type only, N-type and 

C-type, and N-type and F-type on candidate coherent genes, overall all six datasets 

with all 8 missing rates 18 

2.2 Average NRMSE values of whether or not to repeat the distance ratio learning 10 

times, overall all six datasets with all 8 missing rates 18 

2.3 Average NRMSE values of three ways of distance ratio learning and actual imputa­

tion, namely G-way, P-way, and P*-way, overall all six datasets with all 8 missing 

rates 19 

2.4 The p values and the lower bound L and the upper bound U of the 95% confidence 

intervals in the ANOVA tests of the performance difference between ILLSimpute 

and each of the other five methods, on elu dataset with 8 different missing rates. 

These values show that ILLSimpute, LLSimpute, and BPCA (and LinCmb on 1% 

and 5% missing rates) performed equally well when the missing rate is small, but 

significantly better when the missing rate is large. All these four methods signifi­

cantly outperformed the SKNN and KNNimpute methods 25 

2.5 The p values and the lower bound L and the upper bound U of the 95% confidence 

intervals in the ANOVA tests of the performance difference between ILLSimpute 

and each of the other five methods, on cyc.b dataset with 8 different missing rates. 

These values show that except when the missing rate is 1%, ILLSimpute performed 

significantly better then all the other five methods (except LinCmb didn't finish on 

some datasets) 25 

3.1 The percentages of genes that were re-selected by Cho and F-test on duplicated 

datasets, of the whole LEU and the SRBCT datasets, respectively 38 

3.2 The percentages of genes that were re-selected by Cho andF-teston reduced datasets, 

of the whole LEU and the SRBCT datasets, respectively 40 



3.3 The p values and the confidence intervals in ANOVA tests of performance among 

ACGS-based methods, DCGS-based methods and their corresponding non-ACGS-

DCGS based methods on CAR dataset by 5-Fold cross validation. Note that, we 

have 100 classification accuracies when the number of g for gene selection is 

fixed. In this table, we choose z = 20,40,60,80 44 

3.4 Co variance and standard deviation between the DCGS-base, ACGS-based and non-

ACGS-DCGS-based methods 45 

4.1 The detailed LOOCV sample prediction result on the original Ovarian dataset by F-

test-KNN-classifier and on the smoothed dataset assuming 4% whole dataset inaccu­

rate rate by F-test-KNNimpute-KNN while selecting 60 feature genes for classifier 

construction 63 

5.1 Percentages of different length strings in the top ranked strings 74 

6.1 The composition of the different genotype FMDV strains in our two datasets (columns 

2 and 10). The LOOCV prediction results on the first dataset are in columns 3-9; 

The independent testing results on the second dataset are in columns 11-17 87 

6.2 The percentages of different length strings in the top ranked 10,000 strings by their 

RREs 87 

6.3 Summary of the top 10 strings in the MS A 93 

6.4 The percentages of different length strings in the top ranked 20,000 strings by their 

relative entropies 95 



Chapter 1 

Introduction 

1.1 Background 

Biological and medical research has been one of the fastest developing research fields in the last 

two decades. With more and more biological data being used to provide molecular and genetic 

level understanding, almost all the research problems in biological and medical sciences are no 

longer easily solvable by phenotypical observations. Bioinformatics and computational biology is an 

emerging inter-discipline in which mathematical and computational techniques are applied to solve 

biological problems. It has since brought out numerous wonderful biological discoveries, which 

might not have been unraveled through traditional wet-lab based biological research methodologies. 

The revolution of biological technology has generated large volumes of genomic data, which acquire 

advanced computing techniques to extract the useful information hidden inside. Such knowledge 

discovery processes pose huge computational challenges in both computer memory consumption 

and CPU usage. 

The shift of research focus from the protein level to the genetic level has made significant contri­

butions to the acceleration of biological studies. Protein is an essential component of cells in a living 

organism. Not only in the structural elements of cells, but proteins also participate in metabolism, 

cell cycle, signaling, and odier important cellular functions. Protein is die product of another cell 

component, named nucleic acid. Nucleic acid is the genetic material in the cell which has two 

common forms: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The functional unit of 

nucleic acid is called the gene. Initiated by gene expression, genes encode proteins and the con­

trol of protein synthesis. In the eukaryote, messenger RNA (mRNA) is synthesized in the nucleus 

according to the DNA sequence, a process called the RNA transcription. After that, protein is syn­

thesized according to the mRNA in the cytoplasm, a process called protein translation. If the protein 

is the main executor of cellular functions, then the gene is definitely the commander and controller. 

As the determinant of protein, it is more sensible to study the cellular functions and the specific 

protein activity at a genetic level. The composition unit of the gene is the nucleotide. Under normal 

configuration, the DNA has a double helical structure, with two completely complementary strands 
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winding together. In DNA, each nucleotide is associated with one of the four bases A, T, C and 

G. A DNA strand can be expressed as a strand with the sequential codes of A, T, C and G. Among 

the four bases, A is complementary to T, and C is complementary to G, which means base A will 

combine closely with base T, and the same for bases C and G. 

Bioinformatic methods serve the purpose of solving biological and medical problems. One of 

the most challenging problems we face today is disease. From cancer and HIV, which has existed for 

a long time and are currently incurable, to the chicken flu and SARS, which appeared quickly but is 

extremely devastating, tremendous efforts have been spent on the genetic studies of their mechanism. 

The high-throughput genomic data not only provides us a good opportunity to detect and diagnose 

many diseases or aid in optimizing therapeutical options, but also brings many computational dif­

ficulties for the most avid explorer. Among the large number of potential features discriminating 

between disease and control samples compared, only a small number of them carry a biologically 

significant signal. Our research motivation is to identify informative features that are likely to pro­

vide useful piece of information related to disease as well as the relations among these features. 

Our research includes gene expression microarray data analysis and computational genotyping on 

several contagious viral strains, both of which have direct impacts on human and animal health care. 

Although there are many machine learning methods proposed for feature selection, most of 

them are not suitable for the specific biological datasets. In this dissertation, we have proposed 

several feature selection methods for both cancer microarray data and virus strain data. These feature 

selection methods have been shown successful through extensive testing on real datasets. 

The first type of data we target on is cancer gene expression microarray data. Unlike non-

malignant benign tumors that grow in a self-limited manner, and do not invade or metastasize, ma­

lignant tumor cells have diree major characteristics, aggressive (growing and dividing continually), 

invasive (invading and destroying neighboring tissues), and sometimes metastatic (spread to other 

parts of the body). Cancer affects people at all ages and there is evidence showing that the risk for 

the more common varieties tends to increase with age. As a major disease threatening human lives, 

cancer causes about 13% of all deaths. In the year of 2007, 7.6 million people died from cancer in 

the world [2]. 

Unlike virus-induced disease, most of cancer occurs on patients who have specific genetic char­

acteristics. Recently, a tremendous amount of cancer research has been focusing on understanding 

the genetic mechanism and process in turning a normal cell cancerous. A number of genes have 

been identified as cancer-related and play a role in the development of certain types of cancers. 

Cancer genes can also be inherited [3]. Some people carry genes which make them more likely to 

develop cancer. Because the existence of "cancer gene", it is very obvious that studying cancer from 

patients' genetic profiles is very important. Due to the large size of the human genome, studying 

whole genome is technically impossible. Gene expression, as an alternative, is widely adopted. An­

other important reason to study the gene expression is because it carries information from the DNA 
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to direct the protein synthesis. Messenger RNA represents the activity or functions of genes, rather 

than static genes. Genes vary from species to species, and from tissue to tissue in the same organ­

ism. Even in the same cell, the gene expression can be largely different due to different conditions, 

for example, different proteins will be synthesized under different conditions. The different gene 

expression thus provides precursory markers for cellular functions and activities. 

In the past, collecting large numbers of gene expression values at the same time was technically 

impossible. The advent of the microarray technology changed this situation. Gene expression mi-

croarray is a technology to monitor the levels of thousands of genes simultaneously. It is also called 

DNA microarray, gene chip, or DNA chip. Compared with the traditional biological experiments, 

which can only examine one or a few genes at a time, such as northern blotting, the microarray 

technology provides us with an opportunity to understand the living cells better at a genetic level. 

Using microarray technology, the efficiency is increased thousands of times, especially when die 

sample volume is limited. The microarray technology is also superior in terms of its broad and sys­

tematic view at cellular activity compared with narrowly observing single genetic elements through 

traditional methods. By taking advantage of this tool, biological problems can be understood faster 

and more comprehensively. 

DNA microarray is usually on a piece of glass slide, a silicon chip, or a nylon membrane. Dif­

ferent DNA segments are immobilized on the slide with specific positions. A few methods are being 

used to fabricate the microarray chip, depending on the type of the gene expression microarrays 

and the length of the probes (Figure 1.1). To name a few, fine-pointed pins onto glass slides, pho­

tolithography using pre-made masks, photolithography using dynamic micromirror devices, ink-jet 

printing, etc [4]. 

Figure 1.1: Microarray experiment procedure [1], 
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The DNA segments fixed on the slides are usually called probes. Different types of microarray 

are built with different types of probes. A cDNA microarray uses the cDNA fragments as probes, 

which are usually the complementary sequences of mRNA, made by polymerase chain reactions 

(PCR). The basic theory underlying the gene expression microarray experiment design is the DNA's 

complementary base pairing. On the microarray chip, only single DNA strands are immobilized. 

When the DNA chip is exposed to DNA samples (single strands) for hybridization, the complemen­

tary sample strand with a fluorescent label will hybridize to the probe and fix on that location. 

Oligonucleotide microarray immobilizes part of the DNA sequence on the chip, usually with 

20 — 80 mers. Shorter oligonucleotide microarray is more possible for unspecific hybridization. 

One microarray experiment can test on one sample, or two mixed samples, which are known as 

one-channel experiment and two-channel experiment, respectively. Gene expression levels can be 

obtained from one-channel microarray experiments. Two-channel experiments are more often used 

to compare the gene expression levels between two samples [5]. As many as 30,000 cDNAs can 

be included on the surface of a microscope slide. The microarray used in this study is the cDNA 

oligonucleotide microarray produced by the Affymetrix company. To eliminate the effect of un­

specific hybridization for short oligonucletotide probes, Affymetrix adopts a specific probe design, 

called the Perfect Match/Mismatch (PM/MM) probe strategy. Their microarray chip has a second 

probe (MM) that is identical to the perfect match (PM) one except for a mismatched base placed 

close to the PM probe [6]. The MM probe serves as the background hybridization noise that can be 

subtracted from the PM probe signal to get the perfect hybridization [6]. 

The sample DNA strand is also called the target. The samples are all labeled with fluorescent 

dyes with a certain wavelength. Some commonly used dyes include rhodamine and fluorescein or 

Cy3 and Cy5 [5]. The more targets there are in the samples, the more intense the fluorescence is. 

Thus the intensity of the fluorescence represents the level of gene expression in the target samples. 

To display the intensity of the fluorescence, usually a laser will emit certain length of light to excite 

the fluorescence, and the fluorescence will display a visible light, for example, red or green. A 

camera will capture the light and send the image for processing. The probes are usually positioned 

orderly in the array. After the fluorescence screening, the microarray results are present in a matrix 

with certain rows and columns. Each cell in the matrix represents the expression level of a. specific 

gene in a specific sample. In other words, let gtj record the expression level of the i-th gene in the 

j-th experiment. Then Gmxn = (gij)mxn is the expression matrix of m genes in n experiments 

(Table 1.1). 

Normally a microarray chip contains thousands of genes, making the microarray dataset large. 

Although microarray is expected to be of high information content, some technical pitfalls still exist 

as bottlenecks to obstruct more insights to be discovered. How to overcome these difficulties and 

extract useful information from the large amount of data remains the central focus for the bioinfor-

matics researchers. One frequent problem with microarray data analysis is the existence of missing 
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Samplei Sample? Samples • • • Samplen 

Genei gn gn gu ••• gin 
Gene? g2i 922 923 • • • 92n 
Gene3 331 932 933 • • • 93n 

Genem g m i gm2 g-m.3 -_^ 9mn 

Table 1.1: Gene expression microarray data as a matrix, where gij is the expression value of the i-th 
gene in the j-th experiment. 

values in a microarray dataset. A number of reasons could cause missing data, to name a few, in­

sufficient resolution, image corruption, or even dust and scratches on the slide [96]. However, most 

gene expression data analysis algorithms, such as gene selection, classification, and network design, 

require the expression matrix to be complete, i.e. without any missing values. It is absolutely neces­

sary to design efficient missing value estimation methods in order to ensure further dataset analysis. 

Many computational methods have been proposed to target this problem. In this thesis, we designed 

an efficient missing value estimation method, the Iterated Local Least Square (ILLSimpute) method, 

and demonstrate that ILLSimpute outperforms other existing missing value imputation methods. 

Another common problem in microarray data is the unbalance between the sizes of gene sets and 

the sample pool. The high cost of microarray experiments makes it impossible to run experiments on 

a large number of samples. The huge number of genes versus a tiny number of samples wakes up the 

curse of dimensionality. The unbalance of dataset makes the applications in microarray more diffi­

cult. Identification of discriminatory genes is one such application. In general, among the thousands 

to tens of thousands of genes which are monitored simultaneously in multiple experiments, only a 

fraction of them are biologically relevant and can be identified as contributors to tissue samples' 

properties. These interesting genes are usually differentially regulated under experimental condi­

tions, i.e, their expression levels are increased or attenuated, compared to the normal levels, and 

therefore these genes can be regarded as biomarkers. Identifying these biomarker genes, a process 

referred to as gene selection, is very important in many applications such as disease subtype dis­

covery and genetic profiling [102,16]. Other genes, such as house-keeping genes whose expression 

levels are largely unchanged under different conditions, are less important in providing information 

to downstream data analysis. Therefore, one of the major tasks for computational biologists is to find 

these feature discriminatory genes. On the other hand, one of the main purposes of gene selection 

is to build a good classifier to recognize the different sample classes. Clearly, high classification ac­

curacy hints at the good quality of these discriminatory genes. Most current gene selection methods 

are suitable for the binary classification, while not applicable to the more complicated condition, 

multi-class classification. With the methods to distinguish normal and diseased types getting more 

and more mature, the focus is switched to the identification of cancer subtypes. Accordingly, the 

multi-classification methods are more desirable. Therefore, in this dissertation, we will address the 

more complicated multi-class problem. Several gene selection methods have been proposed for the 
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purpose of multi-class classification. Note that, classification can not only be used for disease sub­

type prediction, but also for patients survival time prediction and patients drug response prediction, 

that is, it can be used on both diagnosis and prognosis. Microarray data can also provide information 

more closely related to clinical applications. For example, using genetic profiles, some models or 

classifiers can be devised to predict the cancer patients' survival time, the possibility of resistance to 

certain drugs, cancer subtype, etc. We can show that our gene selection methods work quite well on 

cancer disease subtypes prediction. We will expand the method to other subtypes prediction in the 

future work. 

Another type of data we are interested in is virus whole genome dataset. Genomics is the study of 

an organism's entire genome. Genomic research focuses on identifying the entire DNA sequence of 

organisms and genetic mapping. Before the end of the last century, identifying genomic sequences 

was almost impossible economically. However, with the emerging new molecular technologies, 

such as PCR, the whole genomic study has made tremendous progresses. A good example will be 

the famous human genome projects. Within 13 years, the genomic profile of human beings were 

identified successfully. 

The large genomic data provides us with an opportunity to study the viruses at the genetic level. 

Many human diseases are induced by viral infection. Some are contagious and even life-threatening. 

Viruses are notorious for their rapidly changing and unpredictable variations. The genetic diversity 

is challenging medical treatments both technically and time wise. Some viruses have many types 

and subtypes. Each type has its genetic and geographic characteristics, calling for different strategies 

against it. Meanwhile, new types keep emerging through mutation and recombination. Hence it is 

critical to subtype them accurately and identify their evolutionary relationships. It is worth knowing 

that some of the recombinations are so complicated, that the recombinants can not be simply thrown 

to traditional subtypes. This research subject is called phylogenesis, the study of evolutionary relat-

edness among various groups of organisms. Phylogenesis study has been applied to many viruses, 

such us AIV, HIV-1, HCV, and FMDV, etc. 

There exist several methods attempting to address phylogenetic questions from a whole genome 

perspective, based on efficient information representation of the whole genomes while bypassing the 

high computational complexity stage of multiple sequence alignments [64,38,45,71, 83,23,41, 89, 

87, 40, 86, 88]. All of these approaches are intended to extract the hidden evolutionary information 

from the whole genomes, but from different angles. For example, gene content based methods [83, 

82, 41, 42] mainly concentrate on a portion of homologous genes shared by multiple genomes, and 

then define an evolutionary distance between two genomes based on their gene sharing percentage. 

Alternatively, the compression based methods [64, 38, 23] generally regard the whole genomes as 

plain text, and define the similarity between two genomes as the relative compression ratio. The 

disadvantages of the above two approaches are that, first, the former requires prior knowledge on 

homologous genes and, second, the latter suffers from aggregate errors arising from compression. 
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In this thesis, we extend single nucleotide or single amino acid composition to study string com­

position for whole genomes where a string is a consecutive segment of nucleotides or amino acids. 

There are plenty of composition strings and not every composition string contributes equally to the 

evolutionary distance calculation. Finding those feature strings is important for virus subtyping 

and virus recombination prediction. These feature composition strings can be regarded as the most 

important features with respect to the whole genomic sequences. We adopted our string selection 

method on one human virus, human immunodeficiency virus type 1 (HIV-1), and one animal virus, 

Foot-and-Mouth disease virus (FMDV), to predict their subtypes or recombinant forms. AIDS and 

FMD are notorious for their perniciousness. Phylogenetic analyses are critical for preparing a strat­

egy to prevent and control those diseases. Our goal is to address the feature composition strings, so 

as to we can discover more hidden information through them. 

The rest of the diesis is organized as follows. We will target on microarray data analysis first 

and then move on to whole genome virus data analysis. In microarray data analysis, we will first 

present our Iterative Local Least Imputation method which is for microarray data preprocessing in 

Chapter 2. Two single ranking gene selection metfiods, GS1 and GS2, and two clustering based 

gene selection methods, DCGS-based and ACGS-based gene selection methods, are described in 

Chapter 3. In Chapter 4, we present the use of gene selection methods to discover the possible 

blemished entried thus to improve the microarray data quality. In the second part, we first introduce 

our nucleotide composition string selection in HIV-1 subtyping in Chapter 5. After that, we combine 

feature selection method in microarray analysis and our string selection method and perform the 

subtyping for FMDV in Chapter 6. 
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Chapter 2 

Missing Value Estimation 

2.1 Introduction and Related Work 

1 As mentioned in Chapter 1, although microarray technology provides us with a good opportunity 

to understand better the living cell at a genetic level, some technical pitfalls will prevent us from 

digging up more information from the microarray dataset. One common drawback that might af­

fect the mathematical analysis is the problem of missing values in the datasets obtained from DNA 

microarray experiments. A number of reasons could lead to missing values, including insufficient 

resolution, uneven distribution of fluids, and stochastic factors such as image corruption, dust and 

scratches on the slides and glass flaws. All these could create the artifacts on the microarray chips 

which result in a certain percentage of expression data corruption [92, 96]. Even with the high-

density oligonucleotide arrays such as Affymetrix GeneChip oligonucleotide (Affy) arrays, as high 

as 20% of expression spots on the arrays could be blemished which may cover hundreds of probes 

and affect the reading of a considerable percent of gene expression values [92]. Most microarray 

data analysis applications, such as gene clustering, biomarker identification, sample classification, 

and genetic and regulatory network prediction, which seek to address biological or medical issues, 

only accept complete expression values. Therefore, before the data analysis, the gene expression lev­

els have to be preprocessed in order to impute the missing values, as well as correct some portion of 

the blemished data. One possible solution to this problem is to repeat the experiments [14, 96]. This 

approach is apparently costly, inefficient, and sometimes infeasible. Therefore, proper mathematical 

strategies to recover the missing data are desired. An Iterated Local Least Squares Imputation (ILL-

Simpute) method is proposed by us for estimating missing values. The encouraging experimental 

results on six real microarray datasets show that the ILLSimpute method performs at least as well 

as, and most of the time much better than, five most recent imputation methods. 

In order to further prove our missing value estimation, we also adopt the accuracy of the sample 

classification through gene selection to measure the quality of the missing value estimation method. 

That is, missing values are estimated first, followed by gene selection and sample classification. 
1 The ILLSimpute method is published on Journal of Bioinformaties and Computational Biology [18]. 
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We show that the ILLSimpute method can effectively estimate the missing values such that the 

classification accuracy based on the imputed complete expression level matrices is as high as the 

classification accuracy based on the original complete expression level matrices. 

Several methods have been proposed for effectively imputing the missing values, without doing 

any extra microarray experiments, through taking advantage of modern mathematical and compu­

tational techniques. To name a few, Troyanskaya et al. proposed a weighted K-nearest neighbors 

(KNNimpute) method and a singular value decomposition (SVDimpute) method [96]. Briefly, in 

the KNNimpute method, for a target gene, k nearest neighboring genes are selected from the entire 

gene set except those that have missing values at the same positions as the target gene. Later, a 

weighted linear combination of these nearest neighbors is used to estimate the missing values in the 

target gene. In the SVDimpute method, a set of mutually orthogonal expression patterns are ob­

tained and linearly combined to approximate the expression of all genes, through the singular value 

decomposition of die expression matrix Gmxn- By selecting k most significant eigengenes, a miss­

ing value Qij is estimated by first regressing the i-th gene against these k eigengenes and dien using 

the coefficients of the regression to reconstruct g^ from a linear combination of the k eigengenes 

[96]. Troyanskaya et al. showed that KNNimpute works well on non-time series data and noisy time 

series data, while SVDimpute performs better on time series data with low noise level [96]. K.-Y. 

Kim et al. proposed a sequential variant of KNNimpute, or sequential K-nearest neighbor (SKNN) 

imputation [48]. Essentially, SKNN estimates the missing values sequentially from the gene having 

the least number of missing values, and then uses the imputed values for further imputation. At every 

iteration, the missing values in the target gene are imputed by the KNNimpute method, using only 

genes that have no missing value and genes whose missing values have already been imputed. Oba 

et al. proposed a novel missing value estimation method based on Bayesian Principal Component 

Analysis (BPCA), which estimates a probabilistic model and latent variables within the framework 

of Bayesian inference [67]. More recently, H. Kim et al. applied Local Least Squares (LLSimpute) 

to estimate missing values [47]. In LLSimpute, a target gene with missing values is again modeled 

as a linear combination of k nearest neighboring genes, but through local least square optimization. 

Besides the above mentioned methods KNNimpute, SKNN, BPCA, and LLSimpute, there are 

several other recent works: GMCimpute, which is based on Gaussian mixture clustering and model 

averaging [68] and is compared with KNNimpute; LSimpute, which is based on the least squares 

principle and utilizes correlations between both genes and arrays [13], and is compared with KN­

Nimpute too; CMVE, which is a collateral missing value estimation [76] and is compared with 

KNNimpute, BPCA, and LLSimpute; LinCmb, which is a convex combination of several imputa­

tion methods [44] and is compared with KNNimpute, SVDimpute, BPCA, and GMCimpute; and 

Linlmp, which fits a gene expression value into a linear model [74] and is compared with KNNim­

pute. 

Among all these imputation methods, there is a common point that when estimating the missing 
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values in a target gene, the expression values of a fixed number of nearest neighboring genes are 

used. Such a fixed number could be pre-trained or pre-learned using pseudo gene expression data, or 

could be picked manually. Except SKNN, the above methods adopt the scheme to put row averages, 

each of which is the average expression value of a gene across all experiments, into the missing value 

positions as the starting point for imputation. The imputed values then replace the row averages. 

Note that when estimating a missing entry in the target gene, no genes that also contain a missing 

value at the same entry can be counted as the nearest neighboring genes to the target gene [96,67,48, 

47]. Nonetheless, obviously, the imputed values must still depend on the row averages and reporting 

them as the final estimation might not be completely unbiased. 

In this chapter, we propose not to fix the number of nearest neighboring genes used for imputa­

tion purpose, but genes that are within a distance threshold (to be determined) to a target gene are all 

considered coherent. We also propose to iterate the imputation for a number of iterations or till the 

imputation result converges. We combine these two ideas with the LLSimpute method to have Iter­

ated LLSimpute, or ILLSimpute method. In ILLSimpute, the distance threshold is dataset dependent 

and is learned using the dataset itself with pseudo missing values. Once the distance threshold is 

determined, ILLSimpute employs LLSimpute at every iteration. At the first iteration, row averages 

for missing values are used as the starting point; subsequent iterations use the imputed values from 

the last iteration as the starting point. 

The rest of the chapter is organized as follows: In Section 2.2, we introduce in detail the ILL­

Simpute method, including how row average is calculated, the definition of distance between two 

genes, the measure of imputation results, and the LLSimpute method. We explore in Section 2.3 

several options in the ILLSimpute method, including the candidate coherent genes for a target gene, 

the ways to learn the distance threshold, and to impute all missing values in a target gene simultane­

ously or to impute individual missing values at a time. We report the experimental results in Section 

2.4 on the performance of each option in the ILLSimpute method, and the comparison of the default 

(with the best options) ILLSimpute to five other imputation methods, KNNimpute, SKNN, BPCA, 

LLSimpute, and LinCmb. Section 2.4.1 also contains the descriptions of the six microarray datasets 

used in the experiments, and our discussion on the results. We conclude the chapter in Section 2.5. 

2.2 Iterated Local Least Squares Imputation — ILLSimpute 

One microarray dataset can be represented as an expression matrix Gmxn = (gij)mxn on m genes 

and n experiments, where usually m ^> n. Entry gij denotes the expression value of the i-th gene 

in the j-th experiment. In this section, we present the ILLSimpute method with the default options. 

2.2.1 Distance Measure and Coherent Genes 

To estimate a missing value, or all the missing values in a target gene, the expression values of a 

number of nearest neighboring genes, or coherent genes, are used. The determination of these genes 
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relies on the definition of distance between the target gene and a candidate gene. There are several 

distance measures proposed in the literature, such as Pearson correlation, Euclidean distance, and 

covariance minimization [96]. We follow the suggestion in [96] to adopt Euclidean distance as it is a 

sufficiently accurate norm (Euclidean distance is also adopted in KNNimpute and SKNN [48], while 

LLSimpute adopts Pearson correlation [47] and CMVE adopts covariance minimization [76]). To 

calculate the distance, we first temporarily fill in the missing value positions in the candidate gene 

with the row average, which is the average expression value of the gene across all n experiments 

excluding the missing values. We then ignore in both genes those columns in which the target gene 

has missing values. This way, we obtain two vectors of expression levels for the target gene and 

the candidate gene, respectively. The Euclidean distance between these two vectors is taken as the 

distance between the two genes. Euclidean distance between two vectors P — (pi,p2, • • • ,pn) and 

Q = faii 12, • • • , qn) is defined as y/YHi=i(Pi ~ 1i)2- P° r example, if the target gene is (U, 1.5, U, 

2.0, -1.2, U, 2.8) and the candidate gene is (1.6, U, U, -0.4, 2.2, 3.8, U) where U denotes a missing 

value, then the row average for the candidate gene is | (1.6 — 0.4 + 2.2 + 3.8) = 1.8. It follows that 

the two vectors we obtain are (1.5, 2.0, -1.2, 2.8) and (1.8, -0.4, 2.2, 1.8). Therefore, the distance 

between these two genes is yl8Al = 4.29. 

For every gene, we can calculate its distance to the target gene. Sort the genes in their increasing 

distance order. The k nearest neighboring genes to the target gene are the first k genes in the list, 

which are considered coherent genes to the target gene in several imputation methods, including 

KNNimpute, SKNN, and LLSimpute. In our ILLSimpute method, for a target gene, the average dis­

tance is calculated and we will learn a distance ratio S. The genes with their distances not exceeding 

S times the average distance are considered as coherent genes to the target gene. 

2.2.2 Local Least Squares Imputation 

Once the coherent genes have been determined, the KNNimpute and SKNN methods use a weighted 

average (a linear combination) of these genes to estimate the missing values in the target gene 

[96, 48]. In each iteration of our ILLSimpute method, LLSimpute is applied to estimate or re-

estimate the missing values. In order to apply LLSimpute, a number of coherent genes must be 

selected for each target gene. Note that in the original LLSimpute method, these coherent genes are 

selected as k nearest neighboring genes with k fixed for all target genes. In our case, these coherent 

genes are selected according to their distances to the target genes. As a result, different target genes 

might have different numbers of coherent genes. The key step in LLSimpute is using local least 

squares to determine the coefficients to approximate the target gene as a linear combination of the 

coherent genes, to be detailed as follows. 

Without loss of generality, assume the target gene is gene 1 and it has missing values at the first 

n' positions. Suppose there are k coherent genes for gene 1 and they are genes s%, si,..., Sk- We 
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select the rows 1, s\, s%,..., sk from matrix Gmxn to compose the following sub-matrix: 

/ 9i \ ( 3i,i 

9si gixn' W 
Bkxn' A 

\ 9sk ) 

B 1,1 

91,n' Wl Wn-n' \ 

A\n—n' 

\ -Bfc,l • • • Bk,n' Ak,l • • • Ak,n-n' J 

where Bitj is the expression value of gene i at position j at which gene 1 has a missing value 

and Aitj is the expression value of gene i at position j at which gene 1 also has a known expression 

value of Wj. The fc-dimensionalcoefficient vector x* is the one that minimizes square \ATx — w\2 = 

(ATx - w)T(ATx - w), that is, 

x* = argmin \ATx — w\2. 

The target gene is approximated as 

g-i ~ x\gSl + x*2gS2 + ••• + x*kgSk, 

and the missing values in the target gene are estimated as 

9\j = x\gsuj + x*2gS2j + ... + x*kgSkj, j = 1,2,... ,n'. 

2.2.3 Measure of Imputation 

When all missing values have been estimated, the quality of the imputation can be measured in 

several ways. Troanskaya et al. [96], and [67, 48, 47], used the Root Mean Squared Error (RMSE) 

between the imputed matrix and the original matrix, divided by the standard deviation of the missing 

value entries in the complete dataset — the normalized RMSE, or NRMSE for short. Jornsten et al 

[44] proposed a little change to the NRMSE where the divisor is replaced by the square root of the 

mean of squared missing value entries in the complete dataset. Besides NRMSE, Kim et al. [48] 

also proposed to use the Pearson correlation coefficients to measure the quality of imputation. With 

some clustering information known ahead of time, Ouyang et al. [68] proposed to use the number 

of mis-clustered genes to measure the difference, in addition to NRMSE. In this work, we adopt 

NRMSE defined in [96, 67, 48, 47] to measure the imputation quality, to be detailed as follows. Let 

X = {xi, X2, • • •, xq} be the set of missing value positions and assume the true expression value at 

Xi is a* while the estimated value is a*. Define 

Q 

fi = ;£(«*-<o2 

« i = i 

to be the mean of all squares of errors. Define 
9 

i < 

97=1 V 

9 

y i= l 

* \ 2 (a*-a*) 

to be the mean and variance of all the true expression values, respectively. Then, the NRMSE is 

defined as 

NRMSE = M 
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Essentially, the NRMSE indicates how close the estimation values and the true values are. Therefore, 

the smaller the NRMSE value is, the better quality the imputation has. 

2.2.4 Coherent Gene Determination in ILLSimpute 

The LLSimpute method selects k nearest neighboring genes for a target gene as its coherent genes. 

The parameter k is calculated from the dataset prior to the actual imputation. The learning process 

goes as follows [47]: For every gene, it first fills the missing value positions using the row average. 

Secondly, it randomly erases a certain number of known expression levels to create the so-called 

pseudo missing values. For every value of k ranging from 1 to the total number of genes in die 

dataset, the process calls the LLSimpute method once to estimate these pseudo missing values and 

subsequently calculates the imputation quality, measured by NRMSE. Note that for each of the 

pseudo missing value, we know the true expression value. The parameter k is then set to the value 

that achieves the best imputation quality. 

In our method ILLSimpute, we do not fix a common number of coherent genes for target genes. 

Rather than that, die number of coherent genes varies for different target genes. We define the 

coherent genes for a target gene to be those that are witiiin a distance direshold to the target gene, 

where the threshold is set as 5 times the average distance to the target gene. Here 6 is called the 

distance ratio, which is chosen from a range [6i, 62] with an increment e. The impact of setting up 

a distance direshold radier than a fixed number of coherent genes is that some nearest neighboring 

genes are already far away from the target gene. The ratio S is learned using the same scheme 

as the learning parameter k in the LLSimpute method, namely, for every candidate value of 5, 

the LLSimpute method is called to estimate fhe similarly generated pseudo missing values and the 

corresponding NRMSE is calculated, and the value achieving the best NRMSE is chosen for 5 in the 

subsequent ILLSimpute method to actually impute the missing values. In the default setting of the 

ILLSimpute method, 61 = 0.5, 62 = 1-5, and e = 0.1. 

2.2.5 Iterated LLSimpute — ILLSimpute 

Using the learned distance ratio 8 (or equivalently, the distance threshold), in the first iteration 

of our ILLSimpute method, missing value positions are filled with their respective row averages, 

coherent genes for every target gene are selected, and then the LLSimpute method is executed to 

estimate the missing values. Afterwards, at each iteration, the ILLSimpute method uses the imputed 

results from the last iteration to re-select coherent genes for every target gene and executes the 

LLSimpute method to re-estimate the missing values. Therefore, the only difference between the 

first iteration and the latter iterations is the use of row averages for selecting coherent genes. The 

ILLSimpute method terminates after a pre-specified number of iterations or when the re-imputed 

values in the current iteration have no differences to the imputed values in the preceding iteration, 

i.e., the imputed values converge. In our implementation, we have decided to set the number of 
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iterations to 5 (Explained later). 

2.3 Options in ILLSimpute 

In the last section we have introduced the default options in the ILLSimpute method. The method 

can roughly be partitioned into four modules, which are 1) deciding on candidate coherent genes, 2) 

learning the distance ratio, 3) executing of LLSimpute method, and 4) iteration. We have examined a 

number of other options for each of the first three modules and in total 18 versions of the ILLSimpute 

method. The experimental results showed that the version with the default options performed the 

best. In the rest of this section, we introduce these other options in detail. 

2.3.1 Decisions on Candidate Coherent Genes 

In most of previous imputation methods, coherent genes are limited to those that are close to a target 

gene. There are biological facts showing that some genes could be complementarily expressed [77]. 

Impacted by these observations, we considered two other categories of potential coherent genes. 

For ease of exposition, the normally defined nearest neighboring genes are called N-type coherent 

genes. 

Given a target gene, for each other gene, every expression value is multiplied by —1 to produce 

its ("imaginary") complementary gene. If this complementary gene is within the distance threshold 

to the target gene, using the Euclidean distance measure, then it is also considered as a coherent 

gene. This type of ("imaginary") coherent genes are called C-type coherent genes. Note that it 

could happen that one gene appears as an N-type coherent gene and its complementary gene appears 

as a C-type coherent gene with respect to the same target gene. 

The third type of coherent genes is F-type, which are genes that are far away from the target gene, 

measured again by the Euclidean distance. The consideration is that these extremely far distance 

genes might be related to the target gene, similar to the complementary genes. For this purpose, 

there is another relatively large distance threshold to be set up and one gene that is at least that 

far away from the target gene is a F-type coherent gene to the target gene. Likewise, this second 

distance threshold needs to be learned, and is learned in the same way in our implementation. 

Since it is obviously inferior to consider only C-type coherent genes or only F-type coherent 

genes, we have set up three options in choosing coherent genes, one is N-type only, another is 

N-type and C-type, and the third is N-type and F-type. 

2.3.2 Ways of Distance Ratio Learning 

In the default option of the ILLSimpute method, the distance ratio S is chosen from range [0.5,1.5] 

with increment e = 0.1. It is set to the value such that the LLSimpute method achieves the best 

NRMSE on randomly generated pseudo missing values. Note that when the candidate coherent 

genes can be both N-type and F-type, then there is a second ratio 5' which is chosen from range 
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[1.5,2.5] with the same increment e. In the default option, coherent genes are close to individual 

target genes. 

We have also tried to select coherent genes with respect to individual missing values. That 

is, even for a common target gene, different missing values may have different sets of coherent 

genes. To do this, the same as before, we fill in pseudo missing value positions their respective row 

averages. For one pseudo missing value, only its column is excluded in distance calculation. Those 

genes within the distance threshold are considered as coherent genes for this target missing value. 

The third way of learning the distance ratio is almost the same as the second one, except that only 

those genes with known expression values at the missing value column are considered as candidate 

genes. The main intention of this way of learning is that row averages are estimations of the pseudo 

missing values, and it is probably not a good idea to use them to further estimate other pseudo 

missing values. 

For ease of exposition, we call the above ways of distance ratio learning G-way, P-way, and 

P*-way, to denote the facts that the coherent genes are related to genes, missing value positions, 

and missing value positions without using row averages for further estimation. Note that those 

pseudo missing values are randomly generated, and the learned distance ratio(s) might be dependent 

on those pseudo missing value positions. Therefore, we have tried to repeat the learning several 

times and taken the average of the resultant distance ratios to be the final ratio(s) in the later actual 

imputation. 

2.3.3 All Versions of ILLSimpute Method 

To summarize, we have three ways to select coherent genes, namely N-type only, N-type and C-type, 

and N-type and F-type; three ways of distance ratio learning, namely G-way, P-way, and P*-way, 

with or without taking an average over several times, and correspondingly diree ways of actual 

imputation, namely G-way, P-way, and P*-way. Every possible version of the ILLSimpute method 

corresponds to a path in Figure 2.1 from a box in the leftmost stage to a box in the rightmost stage. 

There are in total 18 versions and the default version is highlighted in bold. 

Note that when the distance ratio has been learned, ILLSimpute can be regarded as a multiple 

running of LLSimpute. The experiment-wise local least square has a complexity that is about the 

same as SVD, 0(n2m), where m is the number of genes and n is the number of samples. Therefore, 

the overall theoretical runtime complexity of ILLSimpute is 0(n2mm'k), where m' denotes the 

number of target genes (or the number of missing value entries in some versions of ILLSimpute) 

and k is the number of iterations. Note that the distance ratio learning takes the same amount of 

time when the number of pseudo missing values is equal to the number of true missing values. We 

will report in the Experimental Results section the real runtimes of ILLSimpute on six microarray 

datasets. 
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Coherent Genes Distance Ratio Learning Actual Imputation 

N+F-type 

N+C-type 

N-type 

Average 

No Average 

P*-way P*-way 

P-way P-way 

G-way G-way 

Figure 2.1: 18 versions of ILLS impute method with the default one highlighted in bold. 

2.4 Experimental Results and Discussion 

We have set up experiments to examine which option is the best among the available ones for each 

stage of the ILLSimpute method. In Sections 2.4.2 - 2.4.4, we will report the experimental results 

on determining the type(s) of coherent genes, choosing the way to learn distance ratio and later 

actual imputation, and whether or not repeated distance ratio learning is helpful. These results 

show that the ILLSimpute method with the default options performs the best, in terms of NRMSE. 

In the subsequent three subsections (Sections 2.4.5 - 2.4.7), we report the experimental results 

for ILLSimpute method with the default options, on the distance ratio, the number of iterations, 

and its performance comparison to five other most recently proposed imputation methods, namely, 

KNNimpute, SKNN, BPCA, LLSimpute, and LinCmb. There are in total six microarray datasets 

used in the experiments. Section 2.4.1 contains their detailed descriptions. Finally, in Section 2.4.8, 

we examine the contributions of local least squares over a weighted linear combination and the 

variable number of coherent genes over a fixed number, both separately and together. 

2.4.1 Datasets 

We have obtained six microarray datasets for our experiments. The first four datasets are from 

Spellman et al. [84], which were used for identification of cell-cycle regulated genes in yeast Sac-

charomyces cerevisiae. These datasets were obtained from the file "CDCDATA.txt" following link 

h t t p : / /genome-www. S t a n f o r d , e d u / c e l l c y c l e / d a t a / r a w d a t a / . There are three 

parts in the file: Alpha part, Cdc part, and Elu part. There are 6178 genes in the original file. The 

first dataset alpha-dataset and the second elu-dataset are the Alpha part and the Elu part in the file, 

respectively, obtained by removing genes with missing values in either part. Both datasets contain 

4304 genes in total, with alpha-dataset consisting of 18 experiments and elu-dataset 14 experiments, 

respectively. 
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Again in file "CDCDATA.txt", consider only those C-genes (i.e., YAC, YBC, . . . , YPC genes) 

in the last 14 columns/experiments. Removing genes with missing values gave us cyc-a-dataset that 

contains 2865 genes in 14 experiments. Alternatively, removing genes as long as they contain a 

missing value in any column in the original file gave a slightly smaller dataset cyc-b-dataset, which 

contains 2424 genes in 14 experiments. 

The fifth dataset was constructed from a study of response to environmental changes in yeast 

[34] and can be retrieved through link h t t p : / /www-genome. S t a n f o r d . e d u / M e c l / d a t a / 

DNAcomple t eda t a se t / . The original file contains 6167 genes in 52 experiments. For our 

purpose, we first removed experiments/columns that have more than 2% missing values, and then 

removed genes still containing missing values, to obtain env-dataset that contains 5431 genes in 13 

experiments. 

The above five datasets are time series data with various time setting. The sixth dataset is non-

time series and is the cDNA microarray data relevant to human colorectal cancer (CRC) studied in 

Takemasa et al. [94], called ta.crc-dataset, which contains 758 genes in 50 samples/experiments. 

Note that the above dataset construction follows some previous studies, and exactly the same 

alpha-dataset, elu-dataset, and ta.crc-dataset have been used in the studies of BPCA [67] and LL-

Simpute [47] methods. From the six microarray datasets we have simulated different missing rates 

at 1%, 2%, 3%, 4%, 5%, 10%, 15%, and 20% and applied the missing value imputation method to 

estimate the missing entries. 

2.4.2 Comparison of Decisions on Candidate Coherent Genes 

Recall that we have tried three different options on candidate coherent genes to cover both similarly 

expressed genes and potentially complementarity expressed genes. They are N-type only, N-type 

and C-type, and N-type and F-type. Fixing every option, we have in total 6 versions of ILLSimpute 

method according to Figure 2.1. On every microarray dataset, each version of the ILLSimpute 

method was run to obtain its performance measured by NRMSE. The average NRMSE over all 6 

versions is taken to measure the quality of this option on the microarray dataset. Table 2.1 includes 

all these average NRMSE values for three options on six microarray datasets. From the table, we can 

see that the option "N-type only" has the highest quality (precision in thousandth). A possible reason 

is that, though there are complementarity expressed genes that could be used for function prediction 

and other purposes, their expression values might not be very helpful for missing value imputation. 

These results also demonstrate that similarly expressed genes, measured by the Euclidean distance, 

do have stronger tie to the target genes than others. 

2.4.3 Comparison of Ways of Distance Ratio Learning 

Recall that in distance ratio learning we have options to relate coherent genes to individual target 

genes, individual target missing value positions, or individual target missing value positions but 
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Option 

N-type only 
N+C-type 
N+F-type 

Dataset 
alpha 

0.425755 
0.429440 
0.431292 

elu 

0.359663 
0.360944 
0.360302 

cyc-a 

0.349580 
0.354819 
0.360616 

cyc-b 

0.358078 
0.361071 
0.359027 

env 

0.629848 
0.633763 
0.628306 

ta.crc 

0.428770 
0.442413 
0.440117 

Table 2.1: Average NRMSE values associated with the three options N-type only, N-type and C-
type, and N-type and F-type on candidate coherent genes, overall all six datasets with all 8 missing 
rates. 

excluding genes that have (pseudo) missing values at the same position; they are namely the G-way, 

the P-way, and the P*-way. We have another global option on whether or not the learning is repeated 

several times to take the average ratio as the final distance ratio for later actual imputation. We first 

set up experiments to test the global option. On whether or not the calculation is repeated several 

times, according to Figure 2.1 there are in total 9 versions of ILLSimpute method. In the repeat 

option, we have chosen to repeat the calculation 10 times. Again, the average NRMSE value is 

taken to measure the quality of this option. These average NRMSE values are collected in Table 

2.2. From these results, we see that repeating the learning several times does not make a significant 

difference to the performance of the ILLSimpute method. Therefore, we have decided to set the 

default option to do the learning only once. 

Option 

No Repeat 
Repeat 10 Times 

Dataset 
alpha 

0.428800 
0.428858 

elu 

0.360579 
0.359847 

cyc-a 

0.355083 
0.354177 

cyc-b 

0.359272 
0.359512 

env 

0.630708 
0.630569 

ta.crc 

0.437444 
0.436760 

Table 2.2: Average NRMSE values of whether or not to repeat the distance ratio learning 1.0 times, 
overall all six datasets with all 8 missing rates. 

2.4.4 Comparison of Ways of Distance Ratio Learning and Actual Imputa­
tion 

Since the way distance ratio is learned should be consistent with using it in later actual imputation, 

we set up experiments to test the quality of each of the three ways: G-way, P-way, and P*-way. 

Nonetheless, as we have seen that the global option of learning the distance ratio 10 times does not 

contribute to the performance, we have decided to test only 3 versions of the ILLSimpute method, 

with the default to learn the distance ratio only once. For each way of distance ratio learning and 

actual imputation, the average NRMSE value over all three versions of ILLSimpute is taken to 

measure the quality of the way, which are collected in Table 2.3. From these results, we can see that 

associating coherent genes with individual target genes is the best way (precision in the thousandths), 

which is taken as the default. 

The above three subsections contain experimental results that support the default options set in 
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Option 

G-way 
P-way 
P*-way 

Dataset 
alpha 

0.426085 
0.429356 
0.430961 

elu 

0.359643 
0.362107 
0.359987 

cyc-a 

0.353965 
0.356348 
0.354935 

cyc-b 

0.348193 
0.362582 
0.366771 

env 

0.630114 
0.630895 
0.631116 

ta.crc 

0.433780 
0.439972 
0.438579 

Table 2.3: Average NRMSE values of three ways of distance ratio learning and actual imputation, 
namely G-way, P-way, and P*-way, overall all six datasets with all 8 missing rates. 

the ILLSimpute method. In the rest of the section, the ILLSimpute method refers to the default 

version, unless state explicitly otherwise. 

2.4.5 Distance Ratio is Dataset Dependent 

In several of the previous imputation methods to select coherent genes, usually a fixed number of 

them are chosen for every target gene, where that fixed number could be learned or maybe simply 

manually picked. We implemented the idea to select different numbers of coherent genes for differ­

ent target genes, as long as the coherent genes are close enough to the target genes. The distance 

threshold for cutting off dissimilar genes is determined by the distance ratio 8, which is learned 

using the same dataset. We set up experiments to test if this ratio is dataset dependent or not, as it 

plays an important role in the actual imputation. Figure 2.2 plots the NRMSE values achieved by 

ILLSimpute method using different values for the distance ratio on elu-dataset and cyc-b-dataset, 

both with 10% missing rate (that is, the percentage of missing values). We have tested the distance 

ratio from 0.5 to 1.5 with an increment of 0.1. It can be seen from Figure 2.2 that the best value for 

the distance ratio is dataset dependent, as it is 0.6 and 0.9 for elu-dataset and cyc-b-dataset, respec­

tively, though different ratios do not cause big differences on elu-dataset. 

0.8 | 1 1 1 1 - 1 1 1 — i 1 1 
elu-dataset with 10% missing value — i — 

cyc-b-dataset with 10% missing value — *— 
0.75 -

0.7 k 

0.65 -

\ 
0.6 -

UJ 

Distance Ratio 

Figure 2.2: The performance of ILLSimpute method on elu-dataset and cyc-b-dataset, both with 
10% missing rate, with respect to different distance ratios in [0.5,1.5]. 
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2.4.6 Determination of the Number of Iterations 

The last factor in the ILLSimpute method is to check how many ieterations we will used in this 

methods. From the massive number of experiments we have done, only a fraction of them con­

verge within 10 iterations, where a convergence happens when the NRMSE difference is less than 

10 - 6 . For most of them, ILLSimpute took a large number (in hundreds) of iterations to converge. 

NRMSE value messure the difference between the estimation values and the values from microar-

ray experiments. Note that, those values from microarray experiments might not accurate, therefore, 

the convergence points did not always correspond to the best/smallest NRMSE values. Figure 2.3 

plots the NRMSE values achieved by the ILLSimpute method after different numbers of iterations, 

ranging from 1 to 10, on elu-dataset with 10% missing rate and 8 = 0.6 and cyc-b-dataset with 10% 

missing rate and S = 0.9. On both cases, the best NRMSE values were achieved in 5 iterations. 

Other experiments also supported choosing to stop in 5 iterations. 

elu-dataset with 1 0%% missing value(Ratio=0.61 
cyc-b-dataset with 10%% missing value(Ratioa0.9) 

V ^ _ 
' ' i 

...... 

-

-

Number of Iterations 

Figure 2.3: The performance of the ILLSimpute method on elu-dataset and cyc-b-dataset with 10% 
missing rate, after different numbers, 1-10, of iterations. 

2.4.7 Performance Comparison of ILLSimpute with Other Methods 

We have compared the performance of the ILLSimpute method on the six microarray datasets to 

five other most recently proposed missing value imputation methods. ILLSimpute method is set at 

the default options and terminates in 5 iterations. These five other methods we compared to are 

KNNimpute, SKNN, BPCA, LLSimpute, and LinCmb. For KNNimpute and SKNN that involve 

selecting k nearest neighboring genes, we have tested several different values for k and found that 

k = 10 performed the best. The reported results for KNNimpute and SKNN are obtained by setting 

k — 10. For ILLSimpute, we collected the variable numbers of coherent genes that were selected 

for individual target genes. Surprisingly, the numbers for different target genes within an iteration 

differ only slightly, but the numbers for common target genes across iterations differ significantly. 

Also, for different missing rates, the average numbers of coherent genes differ dramatically too. For 
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example, on cyc-b-dataset, the average number is 139 for 1% missing rate, 119 for 10% missing 

rate, and 197 for 15% missing rate. They differ dramatically too from the number of coherent genes 

in the LLSimpute method, which we think could be one of the reasons that ILLSimpute performed 

better than LLSimpute. 

Figure 2.4 plots the performances of all six methods, measured by NRMSE, on all six datasets, 

where the NRMSE is the average over 10 runs. All the plots support the same conclusion that the 

ILLSimpute method performed at least as well as, and most of the time better than, LLSimpute, and 

they were significantly better than KNNimpute and SKNN methods. (It is worth pointing out that 

KNNimpute and SKNN are the most stable methods among them, that is, they have the smallest 

standard deviations over 10 runs.) BPCA performed equally well to LLSimpute, but mostly inferior 

to our method ILLSimpute, and the difference became larger when the missing rate increased. For 

LinCmb, we would not be able to tune it such that all results could be collected within 4 days. 

Therefore, only those achieved results (using the default setting) are reported, from which we can 

see that LinCmb performed quite close to BPCA and LLSimpute, but still (much) inferior to our 

ILLSimpute on the first four datasets. On the fifth env-dataset, LinCmb performed the best among 

all six, though no result at 20% missing rate. LinCmb completely failed on the sixth ta.crc-dataset, 

without any result returned (inside LinCmb, GMCimpute did return some partial results). 

All these imputations were done in MATLAB 7.0 on a cluster of 2.33 GHz CPUs. KNNimpute 

ran the fastest, and it took only a few seconds each run on each dataset. SKNN, BPCA, LLSimpute, 

and ILLSimpute took about the same amount of time on each dataset, which is in seconds for some 

and is in minutes for the others. In general, their runtimes are all acceptable; LinCmb is a convex 

combination of several imputation methods including GMCimpute. It took already half an hour 

on several datasets with small missing rates, and the runtime seemed growing exponentially with 

missing rate, for example some finished run took about 20 hours. Several reported results (each 

with 10 runs) were achieved in three days, yet still a large portion could not be obtained in a 4-day 

period. Nonetheless, the readers should be aware that we used the default setting of LinCmb and 

better tuning of LinCmb might be able to finish those imputations earlier. 

2.4.8 Comparison of Fixed and Variable Numbers of Coherent Genes 

In KNNimpute, a fixed number of coherent genes are used for the purpose of missing value impu­

tation purpose, where the target gene is expressed as a weighted linear combination of its coherent 

genes. LLSimpute replaces the weighted linear combination by local least square optimization (and 

so increases the computational complexity by an order of magnitude) and it is shown to perform 

better in terms of imputation quality NRMSE. We have conducted experiments to validate that, in 

general, variable numbers of coherent genes for different target genes also outperform a fixed num­

ber of coherent genes for all target genes, through replacing the fixed number in KNNimpute by 

the variable numbers of coherent genes for different target genes determined in the distance ratio 
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Figure 2.4: Plots of the NRMSE values for ILLSimpute, LLSimpute, BPCA, KNNimpute, SKNN, 
and LinCmb on six microarray datasets with various missing rates, where the error bars show the 
standard deviations over 10 runs. LinCmb didn't finish in 4 days on several datasets. These plots 
show that ILLSimpute performed at least as well as, and most of the time better than, the other five 
methods. The performance of ILLSimpute becomes significantly better when the missing rate is 
large. 
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learning of ILLSimpute. The resultant method is called INNimpute. 

Figure 2.5 plots the performances of all these four imputation methods, measured by NRMSE, 

on all six datasets. All the plots support the conclusions that, in general, variable numbers of co­

herent genes is better than a fixed number and local least squares are better than a straightforward 

weighted linear combination. From the plots, we can see that the ILLSimpute method performed 

better than the LLSimpute and INNimpute methods on the first four datasets though ILLSimpute 

and LLSimpute performed equally well on the last two datasets. All these three methods performed 

significantly better than KNNimpute. Interestingly, these six plots together indicate that when the 

gain of ILLSimpute over LLSimpute is smaller (on the fifth and the sixth datasets, and some cases 

of the first three datasets), then the gain of INNimpute over KNNimpute becomes larger. Therefore, 

we conjecture that in addition to the fact that both variable numbers of coherent genes and local least 

squares improve the imputation quality, they also complement to each other to pick up the total gain. 

2.4.9 Statistical Test on the Performance Differences 

In Subsection 2.4.7, we saw that the collected NRMSE values support the conclusion that the ILL­

Simpute method performed at least as well as, and most of the time better than, LLSimpute and 

BPCA (and LinCmb on those datasets LinCmb did finish), and they were significantly better than 

the KNNimpute and SKNN methods. In this section, we report the statistical tests that were done to 

evaluate the significance of the performance difference. We adopted analysis of variance (ANOVA) 

for our purpose and used SPSS ( h t t p : / / s p s s . com) to analyze ANOVA. Besides many param­

eters, ANOVA gives a significance, or p value, of the hypothesis that the two methods under com­

parison have no difference, at a confidence level, which was set to 95% in our test. Low values 

of p, less than 0.05, indicate that the hypomesis is false, or the two methods do have difference. 

Extremely low values of p, less than 0.001, indicate that the difference is significant. ANOVA also 

gives a 95% confidence interval for the difference between the two NRMSE means associated with 

the two methods. In general, if the interval contains 0, men the hypothesis is true, or the two meth­

ods have no difference. Table 2.4 collects the p values and the 95% confidence intervals associated 

with elu dataset, for comparing ILLSimpute and each of LLSimpute, BPCA, LinCmb, SKNN, and 

KNNimpute. Table 2.5 collects the same parameters associated with cyc.b dataset. 

2.5 Conclusions 

In this chapter, we have introduced our proposed missing value estimation method, a generic iterated 

version of Local Least Squares Imputation (LLSimpute) method, denoted as ILLSimpute. Within 

the ILLSimpute method, there are several options on choosing coherent genes for target genes, and 

selecting the distance ratio learning and actual imputation. Extensive experiments validated that 

some options appearing to be better do not really contribute to the imputation quality. The ILL­

Simpute method with default options was compared to five other most recently proposed imputation 
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Figure 2.5: Plots of the NRMSE values for ILLSimpute, LLSimpute, INNimpute, and KNNimpute 
on six microarray datasets with various missing rates, where the error bars show the standard devi­
ations over 10 runs. These plots show that both the use of variable numbers of coherent genes and 
the iterative imputation improve the imputation quality. 
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Method 

LLSimpute 
BPCA 

LinCmb 
SKNN 

KNNimpute 

1% 

P 

0.999 
0.969 
0.058 
0.000 
0.000 

L 

-0.0538 
-0.0382 
-0.0012 

0.6911 
0.6917 

U 

0.0444 
0.0600 
0.0970 
0.7893 
0.7900 

5% 

P 
1.000 
0.907 
0.137 
0.000 
0.000 

L 
-0.0275 
-0.0213 
-0.0052 

0.5829 
0.5843 

U 
0.0327 
0.0389 
0.0549 
0.6431 
0.6444 

2% 

P 

1.000 
0.968 
0.058 
0.000 
0.000 

L 

-0.0330 
-0.0249 

0.0306 
0.6842 
0.6852 

U 

0.0311 
0.0392 
0.0947 
0.7483 
0.7493 

10% 

p 
0.000 
0.877 
0.001 
0.000 
0.000 

L 
0.0833 

-0.0216 
0.0154 
0.4814 
0.4847 

U 
0.1467 
0.0418 
0.0787 
0.5448 
0.5480 

3% 

P 

1.000 
0.725 
0.058 
0.000 
0.000 

L 

-0.0272 
-0.0164 

0.0202 
0.6412 

0.6425 

U 

0.0287 
0.0395 
0.0761 
0.6971 
0.6983 

15% 

P 
0.000 
0.667 
0.000 
0.000 
0.000 

L 
0.0767 

-0.0143 
0.0253 
0.4189 
0.4236 

U 
0.1284 
0.0374 
0.0770 
0.4706 
0.4753 

4% 

P 

1.000 
0.934 
0.000 
0.000 
0.000 

L 

-0.0250 
-0.0194 

0.0309 
0.6108 
0.6124 

U 

0.0281 
0.0337 
0.0840 
0.6639 
0.6655 

20% 

P 
0.000 
0.000 

0.000 
0.000 

L 
0.0933 
0.0101 

0.3997 
0.4061 

U 
0.1033 
0.0201 

0.4097 
0.4161 

Table 2.4: The p values and the lower bound L and the upper bound U of the 95% confidence 
intervals in the ANOVA tests of the performance difference between ILLSimpute and each of the 
other five methods, on elu dataset with 8 different missing rates. These values show that ILLSimpute, 
LLSimpute, and BPCA (and LinCmb on 1% and 5% missing rates) performed equally well when the 
missing rate is small, but significantly better when the missing rate is large. All these four methods 
significantly outperformed the SKNN and KNNimpute methods. 

Method 

LLSimpute 
BPCA 

LinCmb 
SKNN 

KNNimpute 

1% 

P 
0.165 
1.000 
0.477 
0.000 
0.000 

L 

-0.0284 
-0.1270 
-0.0611 

0.6755 
0.6756 

V 

0.2434 
0.1448 
0.2107 
0.9473 
0.9475 

5% 

V 
0.000 
0.000 

0.000 
0.000 

L 
0.0628 
0.2182 

0.4847 
0.4863 

U 
0.1679 
0.3232 

0.5897 
0.5913 

2% 

P 
0.043 
0.036 
0.002 
0.000 
0.000 

L 

0.0029 
0.0059 
0.0536 
0.6024 
0.6021 

U 

0.2260 
0.2291 
0.2768 
0.8255 
0.8253 

10% 

p 
0.000 
0.000 

0.000 
0.000 

L 
0.0881 
0.1479 

0.4215 
0.4223 

U 
0.1577 
0.2175 

0.4912 
0.4920 

3% 

P 
0.017 
0.000 
0.001 
0.000 
0.000 

L 

0.0182 
0.1780 
0.0615 
0.5680 
0.5682 

U 

0.2370 
0.3968 
0.2803 
0.7868 
0.7870 

15% 

P 
0.000 
0.000 

0.000 
0.000 

L 
0.0536 
0.0641 

0.3210 
0.3226 

U 
0.1221 
0.1326 

0.3895 
0.3911 

4% 

P 
0.003 
0.000 
0.001 
0.000 
0.000 

L 

0.0354 
0.2029 
0.0483 
0.5270 
0.5270 

U 

0.2157 
0.3832 
0.2286 
0.7073 
0.7074 

20% 

P 
0.000 
0.000 

0.000 
0.000 

L 
0.0235 
0.0140 

0.2669 
0.2692 

U 
0.0689 
0.0593 

0.3122 
0.3145 

Table 2.5: The p values and the lower bound L and the upper bound U of the 95% confidence inter­
vals in the ANOVA tests of the performance difference between ILLSimpute and each of the otiier 
five methods, on cyc.b dataset with 8 different missing rates. These values show that except when 
the missing rate is 1%, ILLSimpute performed significantly better then all the other five methods 
(except LinCmb didn't finish on some datasets). 

methods, KNNimpute, SKNN, BPCA, LLSimpute, and LinCmb, on six microarray datasets, and 

the results demonstrated that our method performed the best in almost all the cases, and most of the 

time much better than the others. To conclude, we would recommend to use ILLSimpute on time 

series dataset, especially ones with big missing rates. 

Among the six datasets, we have seen that all methods took the longest time on the sixth dataset 

and especially LinCmb failed. These evidences suggest that the sixth dataset could be the most 

difficult one, yet it is the only non-time series dataset. ILLSimpute performed the least well on this 

dataset, which might suggest that non-time series datasets have some unique property that ILLSim­

pute fails to capture, as well as some of the component methods in LinCmb. This gives another piece 

of evidence that the ILLSimpute method is good enough to impute the missing value. The quality 

of the matrix after imputation is good enough for the further microarray analysis. 
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Chapter 3 

Gene Selection 

3.1 Introduction 

1 We may regard missing value estimation as data pre-processing. After the pre-processing is fin­

ished, we will move on to identify the discriminatory genes. The large amount of microarray data 

has been employed in wide areas in biological and medical sciences, and interpreted through a bio­

logical perspective. One of the most common applications is to compare the gene expression levels 

in tissues under different conditions, such as wild-type versus mutant, or healthy versus diseased. 

Generally, the genes measured in microarray experiments belong to two categories. Some genes 

are usually differentially regulated under various experimental conditions. To be more specific, the 

expression levels of these genes increase or decrease under certain conditions compared with the 

normal level. These genes are called discriminatory genes. The expression levels of these genes 

carry important information related to disease subtype identifying, sample classification, and other 

purposes [37, 32, 102]. However, these genes only consist of a minority of the genes in microar­

ray. The majority of genes are those whose expression levels are almost constant under different 

conditions, such as house-keeping genes. They are less important in providing clue for further data 

analysis and interpretation. 

Abstracting useful information from the large volume of data remains one of the most challeng­

ing technical problems for the advancement of microarray research. The genes detected by a single 

microarray experiment usually number thousands to tens of thousands, whereas the number of sam­

ples examined is only tens to hundreds. As a result, overfitting is a common problem caused by the 

high dimensionality of microarray dataset. Both gene selection and dimensionality reduction have 

been used to reduce the risk of overfitting. 

Gene selection is the process of screening for discriminatory genes. A variety of approaches 

have been proposed for gene selection. For example, Golub et al. [37] developed a measure of 

correlation that emphasizes the "signal-to-noise" ratio in using the gene as a predictor, and selected 

a number of top ranked genes as discriminatory genes. This ratio captures the basic rule of gene 

'GSl and GS2 methods are published in BMC Bioinformatics [102]. ACGS based and DCGS based methods are pub­
lished in BMC Bioinformatics [16]. 
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selection: that a discriminatory gene must have close expression levels in samples within a class, 

but significantly different expression levels in samples across different classes. Other approaches 

that adopt the same principle, with modifications and enhancements, include [9, 24, 102] and many 

others. Alternatively, Xiong et al. [101] selected a subset of genes with a maximum classification 

accuracy through sequential (floating) forward selections (SFS, SFFS). Guyon et al. [39] suggested 

a gene selection method that uses support vector machines (S VMs) and recursive feature elimination 

(RFE). Li et al. [54] combined a Genetic Algorithm (GA) and k-Nearest Neighbor (KNN) methods 

to identify feature genes on two classes of dataset. Lee et al. [52], Zhou et al. [103] and Gawley et 

al. [35] used the Bayesian model to identify significant genes. All these three papers only shot on 

binary classification. Shevade et al. [78] proposed a gene selection method based on sparse logistic 

regression. Again, the algorithm is only suitable for the two classes of dataset. Diaz-Uriate et al. 

[27] proposed a gene selection method based on random forest, but the feature genes returned by the 

random forest method are limited. Most of the recently developed methods are only good for binary 

class data. An efficient and stable gene selection method for multi-class data is needed. 

It is of great interest that different gene selection methods report different subsets of genes and 

they all return high classification accuracies [39, 24, 102]. One explanation is that many genes have 

similar discrimination power. Including them all would make some portion of the selected gene 

subset redundant for classification purpose. However, most of the above methods only emphasize 

on the efficiency of single genes, but overlook the strength of the selected genes as a whole. 

Generally, gene selection can be partitioned into two categories, the single ranking gene selection 

method (univariate method) and the multivariate method [59]. Single gene ranking methods consider 

the contributions of individual genes to the classification independently. In contrast, multivariate 

approaches measure the relative contribution of a gene to the classification by considering the effect 

of other genes at the same time. In the following, we present two single ranking gene selection 

methods and two multivariate gene selection methods. 

3.2 Single Ranking Methods 

We propose two novel gene scoring functions si(-) and S2O to design two stable gene selection 

methods GS1 and GS2, respectively, to be detailed next. According to the classification scheme 

proposed in [97], our proposed gene selection methods are single gene scoring approaches. These 

two gene scoring functions non-trivially incorporate the means and the variations of the expression 

values of genes in the samples belonging to a common class, based on a very general assumption 

that discriminatory genes are those having different means across different classes, small intra-class 

variations and relatively large inter-class variations. 

Assume that in the training dataset there are in total YYI genes in the microarray chips, and assume 

that we have in total n chips/samples that have been grouped into L classes. Let a^ denote the 

expression value of gene i in sample j . The training dataset can thus be represented as a matrix 
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We will define two gene scoring functions using entry values in matrix Amxn- These two scoring 

functions might be considered to better use the means and the variations of the gene expression 

values. 

Let nfc denote the number of samples in class Ck, fork = 1,2,..., L (i.e., X)fc=i nk = n)-

Let aik = •£- S j e c a«i' w r n c n is m e average expression value of gene i in class Ck, for k = 

1,2,... ,L. The expression vector (aik, a^k, • • •, «mfc) is the centroid of class Cfc. Correspondingly, 

the centroid matrix is 

•A-mxL, = \aik)mxL' 

The mean of these centroids is A = (ai, 02 , . . . , ap), where a< = £ X)fc=i s»fe-

For sample j belonging to class Ck, the difference between the expression value of gene i and 

the class mean is xy = loy — ans\. The matrix 

Xn \Xij)r 

is the deviation matrix of the training dataset. Let Xik = £- Yljeck
 xn denote the average deviation 

for samples in class Ck with respect to the centroid. The centroid deviation matrix is 

X-mxL = (XikjmxL,. 

Intuitively, gene j has a strong discriminating power if the means aik, k = 1,2,. . . , L, differ signif­

icantly and Xik, k = 1,2,. . . , L, indicating the intra-class variations, are all small. 

For example, suppose we have a microarray expression matrix Ai^i2 as shown, in which 12 

samples have been known in 3 classes: 

*4xl2 = 

/ 0.65 
0.2 
0.2 

\ 0.7 

0.85 0.9 
1.0 1.2 
1.4 0.8 
1.0 1.3 

0.9 1.1 1.5 1.3 
0.7 1.4 1.8 0.9 
0.6 2.0 1.2 1.0 
0.5 0.7 1.6 1.2 

1.2 1.5 1.7 2.0 1.6 \ 
1.0 1.7 2.1 2.0 1.2 
0.8 1.6 2.3 1.9 1.4 
1.5 0.2 1.8 0.3 1.2 / 

Then the centroid matrix AtX3 is 

14x3 

and the mean of the centroids is 

/ 0.8 1.2 1.6 \ 
0.8 1.2 1.6 
0.8 1.2 1.6 

V 1.0 1.0 1.0 j 

A = (1.2,1.2,1.2,1.0). 
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The deviation matrix X^x yi is 

/ 0.15 0.05 0.1 

^ 4 x 1 2 = 
0.6 0.2 0.4 
0.6 0.6 0.0 

\ 0.3 0.0 0.3 

0.3 0.1 0.3 0.1 
0.5 0.2 0.6 0.3 
0.6 0.8 0.0 0.2 
0.5 0.3 0.6 0.2 

0.4 
0.6 
0.8 
0.5 

and die intra-class average deviations are 

/ 0.1 0.2 0.2 \ 

-^4x3 = 
0.4 0.4 0.4 
0.4 0.4 0.4 

^ 0.2 0.4 0.6 1 

0.1 
0.1 
0.0 
0.8 

0.1 
0.5 
0.7 
0.8 

0.4 
0.4 
0.3 
0.7 

0.0 \ 
0.4 
0.2 
0.2 / 

The Expression Value of Gene 1 in Three Classes The Expression Value of Gene 2 in Three Classes 

Mean — Average Variation -
Samples In Class 1 c • 
Samples In Class 2 E 
Samples In Class 3 = 

Class2 Class 3 

Classes and Samples 

(a) 

The Expression Value of Gene 3 in Three Classes 

Samples in Class 1 C 
Samples in Class 2 E 
Samples in Class 3 E 

Average Variation — 

Class 2 C l a s s 3 
Classes and Samples 

(b) 

The Expression Value of Gene 4 in Three Classes 

Samples in Class 1 
Samples in Class 2 
Samples in Class 3 

Average Variation -

Class 1 Class 2 Class 3 

Classes and Samples 

(c) 

M e a n Average Vari 
Samples in Class 1 
Samples in Class 2 
Samples in Class 3 

Ctass 1 Class 2 Class 3 
Classes and Samples 

(d) 

Figure 3.1: An example dataset: the expression values of 4 genes in three classes. 

Figures 3.1 illustrates the expression values of these four genes across all 12 samples, with the 

intra-class means and average deviations also shown. There are three key ideas in our design of 

gene scoring functions, which will be exemplified through these four genes. First of all, gene 1 has 

quite different mean expression values across three classes, compared to gene 4 that has the same 

means. Therefore, gene 1 is intuitively better than gene 4 in terms of discriminating power. Note that 

the goal of gene selection is to select genes that have significantly different means across different 

classes. For each gene i, the quantity a* is the mean of all the centroids on gene i and it represents 

all the samples, on is stable, that is, it would not change when the samples in one class are duplicated 

(since the number of classes, L, and all the means, a^, for k = 1,2,... ,L, do not change). We 

define the scatter of gene i to capture the inter-class variations, which takes in hi as a component: 

scatter(i) = 
\ 

jY^(aik ~ &tf + o 
fc=i 

mm 
2 w^fiv 

in which the square root is the standard (estimated) deviation of all the centroids on gene i. If a 

gene selection method is not affected by the number of samples in each class, we call this method 
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a stable method. It is clearly seen that scatter(i) is a stable function. More discriminatory genes 

are expected to have bigger scatter values. In the following, we prove an upper bound and a lower 

bound for scatter{i). 

Lemma 3.2.1 Given n arbitrary non-negative numbers a\, ai, • • •, an, the inequality ^(01 + «2 + 

... + an) < - I A (a\ + a2, + ... + a2) holds, and the equality holds if and only ifa\ = a2~--- = 

an. 

Lemma 3.2.1 can be proven by a mathematical induction. 

Lemma 3.2.2 Given n arbitrary non-negative numbers sorted in order a\ < ai < ... < an, define 

a = n S"=i a,i,a=\ mini^j^n-^ai+i - a*), and S = y i E"=i( a i ~ °)2- Then> 

a < S < (an — ai) — a. 

PROOF. Note that both S and a are non-negative. Therefore, if a = 0, then S > a holds trivially. In 

the other case, we have a\ < a2 < • • • < an. Assume without loss of generality that the minimum 

is achieved at i = k, that is, a = ^(ak+i ~~ flfc)- If ^ e [a*,, ak+i], from Lemma 3.2.1, we have 

/ l ^ 2 

((m. — n\ 4- lau i i — a) I > I — ((a — au) 4- (n.u , ^ — n^) - ((ak - a)2 + (afc+i - o)2) > ( - ( (a - ak) + (ak+i - a) j = a2. 

For i =fc k, k + 1, (a* — a)2 > a2. Therefore, nS12 = ^™=i(a* ~~ ®)2 ^ n ^ 2 . If a G [ap ,ap +i] 

but p ^ k, similarly we will have | ((op — a)2 4- (ap+\ — a)2) > (ap+i — ap)2 > a2 and for 

i ¥= P>P + 1» (ai — «)2 > ^2- This proves that a < S. 

Inequality S + a < an — ai holds again if a — 0, since (a, - a)2 < (an — ai ) 2 for every 

i. Therefore, we may assume that ai < a^ < . . . < an. A similar enlarging process gives S < 

max{an — a,a — a\}. Since 

an - a + a < an - - (a 2 + a\) + - (a 2 - oi) — an - a\ 

and 
1 . . 1 . 

a - ax + a < -(an + an_i) - ai 4- - (a„ - an_i) = a„ - a i , 

we conclude that S + a < an — a\. D 

According to Lemma 3.2.2, the following theorem on the bounds on scatter(j) holds. 

Theorem 3.2.3 For gene j , define max(i) = | andmin(i) = min^^t, \aj.w—a,. 

We /?ave min(i) < scatter{i) < max(i). 
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A differentially expressed gene is expected to have not only large inter-class variations, which 

can be represented by its scatter-va\ue, but also small intra-class variations. Secondly, we define a 

function based on the deviation matrix X„ and the centroid deviation matrix Xr ;xL-

KXLxp, i) = Xi = j ]T xik = j ^2(— Yl 
fc=l k=\ ]€Ck 

Xij ) , 

which is stable. Intuitively, the discriminatory genes are expected to have smaller /x-values. In the 

example dataset, genes 1 and 2 have the same mean expression values across all three classes, that 

is, they have the equal scatter values. Nonetheless, / i (X 4 x 3 ,1) = 0.167 and /z(X4X3,2) = 0.4, 

and thus gene 1 is better than gene 2 in this sense. 

In the same example, we have /i(X4X3,3) = /i(X4X3,4) = 0.4. However, for gene 3, the 

centroids of three intra-class average deviations are the same, that is, x^k = 0.4 for k = 1, 2,3; for 

gene 4, the scenario is totally different, x^k = 0.2,0.4,0.6 for k = 1,2,3. This raises a question 

of, based on fi(XmXL,i), what we can tell about the quality of gene i. The contradictory fact is 

that gene 3 has a smaller maximum intra-class average deviation and a larger minimum intra-class 

average deviation. To further differentiate the genes, thirdly, we define function di(i): 

di(i) = 
1 L 

xik-

From Lemma 3.2.1, d\(i) > /u(XmX£, i). d\{i) is also stable, and in the above example we have 

di (3) < di(4), which indicates that function di(j) could be more sensitive and conservative than 

function fi(XmXL,i) on the judgment ability. Another stable function can be defined based on 

v(XmxL,i) is 

d2{i) = 

\ fc=i \ fc jeofc / 

Intuitively, d2(i) includes more details in its calculation than d\{i) does. In the above example, 

gene 2 and gene 3 have the same mean expression values across all three classes: xn = xa — x^. 

Therefore, we have di(2) = <ii(3) but ck(2) < ck(3). Since intuitively gene 2 has a stronger 

separability than gene 3, d2(%) could be even more sensitive man d\ (i). 

The above two functions di(-) and d2(-) basically consider the means of intra-class variations. 

The following two functions Si (i) and S2 (i) are introduced to capture the variations of intra-class 

deviations, corresponding to di(-) and d2(-), respectively: 

lid) = 
\ 

1 

j^2(xik~KxmxL,i)) , and S2(i) = 
k=i \ 

J^T^Y^ (Xii-»(XrnxL,i))2. 
L *—' ni. 
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Theorem 3.2.4 5i(i) = \Jdi{i)2 - n(XmxL,i)2 and62{i) = yd2(i)
2 - Ai(Xmxz,,i)2. 

PROOF. The proof follows by simplifying the definition formulae for 5\ (i) and S2 (i). O 

Similar to functions d\ (i) and d2(i), for an ideal differentially expressed gene i, both 5\(i) and 

82(1) are expected to have small values. Moreover, similar to the relation between d\(i) and d2(i), 

62(1) is considered more sensitive than 61(1). We define function compactkii) = dk(i) + 6k(i), for 

k = 1,2, to evaluate the intra-class variations for gene i. And we define the gene scoring function 

Sk{i) = compactk(i)/scatter(i) to rank the genes according to their differentiability. Note that a 

smaller value of Sk(i) indicates a higher differentiability. 

We denote the gene selection method using compacti (i) = d\ (i) + Si (i) as GS1, and the other 

using compact2(i) — d2{i) + 62(1) as GS2. Both GS1 and GS2 are model-free and stable. In each 

of them, the scores for all genes are calculated and genes are sorted in non-decreasing order of their 

scores. Since the number of genes, m, is typically much larger than the number of samples, n, the 

overall running time to compute this order is 0(m log m). In practice, there are several ways to 

select the informative genes using this order. For example, one may select the top ranked x genes 

for further analysis, or the top ranked x% genes, or all the genes with score no larger than some 

constants, among others. 

3.2.1 F-Test Method 

The F-test method [32, 28] is also a single gene scoring approach. Besides the notations used in our 

methods, it uses a\ to denote the variance of expression value of gene j in the Ck class: 

2 l^jeck \aii ~~ aik) 
fc n f c - 1 

a n d <T2 = ^ f t ^ "fc~ h to denote the variance in the whole dataset. Gene 7 has a score defined 
n—L J 

to be: 

F,* = Efc=infc( f f l«fc- a j) /(1 ' -1) 

3.2.2 Cho's Method 

Using the same notations used as in the above, Cho's method [24] defines a weight factor Wj for 

sample j , which is ^- if sample j belongs to class k. Let W — E?=i wj- The weighted mean(i) 

for gene i is defined as 
n 

W" mean(i) = ^T,wxiJ-
j = i 
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The weighted standard deviation is defined as 

, , , . , /E?=i(zt j -mean{i))2 

std(i) = \ ' 
(n - 1/n) E"=i Wj 

Then the score of gene j is calculated as 

_,.. meanii) x stdii) 
v ' std(cii) 

where std(a~i) is the standard deviation of centroid expression values (an, a^, • • •, an). 

3.3 The Datasets 

The LEU dataset contains in total 72 samples in two classes, acute lymphoblastic leukemia (ALL) 

and acute myeloid leukemia (AML), which contain 47 and 25 samples, respectively. Every sample 

contains 7,129 gene expression values. We adopted the pretreatment method proposed in [32] to 

remove about half the genes and subsequently every sample contains only 3,571 gene expression 

values. This dataset was divided into a training dataset with 38 samples, among which 27 and 11 

belong to classes ALL and AML, respectively, and a testing dataset with 34 samples, by Golub et 

al. [37]. 

The SRBCT dataset contains in total 83 samples in four classes, the Ewing family of tumors 

(EWS), Burkitt lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma (RMS) [46]. Every 

sample in this dataset contains only 2,308 gene expression values. The whole dataset was divided 

into a training dataset with 63 samples, among which 23, 8, 12, and 12 samples belong to classes 

EWS, BL, NB and RMS, respectively, and a testing dataset with 20 samples with 6, 6, 3, and 5 in 

the four classes, respectively [46]. 

The GLIOMAS dataset [66] contains in total 50 samples in four classes, cancer glioblastomas 

(CG), non-cancer glioblastomas (NG), cancer oligodendrogliomas (CO) and non-cancer oligoden­

drogliomas (NO), which have 14,14,7 and 15 samples, respectively. Each sample has 12625 genes. 

We adopted a standard filtering method [66], that is, genes with minimal variations across the sam­

ples are removed. For this dataset, intensity thresholds were set at 20 and 16,000 units. Genes whose 

expression levels varied < 100 units between samples, or varied < 3 fold between any two samples, 

were excluded. After preprocessing, we obtained a dataset with 50 samples and 4433 genes. 

The LUNG dataset [11] contains in total 203 samples in five classes, adenocarcinomas, squa­

mous cell lung carcinomas, pulmonary carcinoids, small-cell lung carcinomas and normal lung, 

which have 139,21,20,6 and 17 samples, respectively. Each sample has 12600 genes. The genes 

with standard deviations smaller than 50 expression units were removed and we obtained a dataset 

with 203 samples and 3312 genes [11]. 

33 



The CAR dataset [90] contains in total 174 samples in eleven classes, prostate, bladder/ureter, 

breast, colorectal, gastroesophagus, kidney, liver, ovary, pancreas, lung adenocarcinomas, and lung 

squamous cell carcinoma, which have 26,8,26,23,12,11,7,27,6,14 and 14 samples, respectively. 

Each sample contains 12533 genes. In our experiment, we preprocessed the dataset as described in 

[90]. We included only those probe sets whose maximum hybridization intensity (AD) in at least 

one sample was 200, all AD values < 20, including negative AD values, were raised to 20, and 

whose data was log transformed. After preprocessing, we obtained a dataset with 174 samples and 

9182 genes. 

The MLL dataset [8] contains in total 72 samples in three classes, acute lymphoblastic leukemia 

(ALL), acute myeloid leukemia (AML), and mixed-lineage leukemia gene (MLL), which have 24, 28 

and 20 samples, respectively. In our experiment, intensity thresholds were set at 100 - 16000 units. 

Then the relative variation of expressions for each gene was determined by dividing the maximum 

expression for the gene among all samples (max) by the minimum expression (min), i.e. max/min. 

We filtered out the genes with max / min < 5 or (max — min) < 500, that is, for max/min fold 

variation, we excluded genes with less than 5-fold variation and, for (max — min) absolute variation, 

we excluded genes with less than 500 units absolute. After preprocessing, we obtained a dataset with 

72 samples and 8685 genes. 

The PROSTATE dataset [81] contains in total 102 samples in two classes tumor and normal, 

which have 52 and 50 samples, respectively. The original dataset contains 12600 genes. In our 

experiment, intensity thresholds were set at 100 - 16000 units, the same as in the MLL dataset. 

Then we filtered out the genes with max / min < 5 or (max — min) < 50. After preprocessing, we 

obtained a dataset with 102 samples and 5966 genes. 

The DLBCL dataset [80] contains in total 77 samples in two classes, diffuse large B-cell lym­

phomas (DLBCL) and follicular lymphoma (FL) which have 58 and 29 samples, respectively. The 

original dataset contains 7129 genes. We set intensity thresholds at 20 -16000 units, then we filtered 

out genes with max/min < 3 or (max — min) < 100. After preprocessing, we obtained a dataset 

with 77 samples and 6285 genes. 

Among the above 8 datasets, the first two LEU and SRBCT have been used frequently for testing 

gene selection methods and classifiers. For each of them, if we use the ratio of the largest class size 

divided by the smallest class size to represent the level of unbalance, then the fifth dataset CAR is 

the most unbalanced. In our experiments, we have run every gene selection method on each of the 8 

datasets to rank the genes, and for every x < 80, the classification accuracies of the classifier built 
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using the top ranked x genes have been collected. We chose to present the accuracies for datasets 

SRBCT and CAR in details (as plots). For other 6 datasets, we only present two values for x (as 

tables). 

3.4 Performance Measurement 

One of the main purposes of gene selection is to identify biomarkers that can effectively predict 

the classes for samples. To this goal, a number of samples with known class labels are provided, 

which form the training dataset. The classifier built on the selected genes is tested on unlabeled 

samples and its performance is measured by the classification accuracy, which is defined as the 

number of correctly identified samples divided by the total number of testing samples. The leave-

one-out (LOO) cross validation method is a process that uses one sample for testing and all the 

others for training. Then die process is repeated for every sample in the dataset. Another popular 

cross validation is £-fold, in which the whole dataset is partitioned into £ equal parts and, at one 

time, one part is used for testing and the other £ — 1 parts for training. In our experiments, we used 

both cross validation methods, but chose to report only 5-fold average classification accuracy over 

20 iterations of random partitions. 

We have adopted two ways to build a classifier using the selected genes. One is through Sup­

port Vector Machines (SVMs) [39] and the other is through if-Nearest-Neighbor (KNN) search 

[32]. Essentially, SVMs compute a decision plane to separate a set of objects having different class 

memberships. There are a number of kernels used in SVMs models for decision plane computing 

and we chose a linear kernel as described in [39]. A KNN classifier ascertains the class of a query 

sample by analyzing its K nearest neighbors in the training dataset [32]. We chose the Euclidean 

distance in our KNN classifier with K = 5 and predicted the class by majority vote [32], after test­

ing for several values in the range 4 to 10. The SVM and the KNN we used in MATLAB are from 

h t t p : / / t h e o v a l . sy s . u e a . a c . u k / ~ g c c / s v m / t o o l b o x / . For ease of presentation, the 

achieved classifiers are referred to as the SVM-classifier and the KNN-classifier, respectively. 

3.5 Experimental Results of Single Ranking Methods 

We have applied our gene selection methods GS1 and GS2 based on the gene scoring functions 

si(-) and S2(-)> respectively, to a total of 8 publicly available microarray datasets [85]: the leukemia 

(LEU) dataset [37], the small round blue cell tumors (SRBCT) dataset [46], the malignant gliomas 

(GLIOMAS) dataset [66], the human lung carcinomas (LUNG) dataset [11], the human carcino­

mas (CAR) dataset [90], the mixed-lineage leukemia (MLL) dataset [8], the prostate (PROSTATE) 

dataset [81], and the diffuse large B-cell lymphoma (DLBCL) dataset [80], the first two of which 

have been used for several similar testings of gene selection methods. On each dataset, one portion 

was used as training dataset for our methods to score the genes, and for each specified number x we 
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reported the classification accuracy of the classifier based on the top ranked x genes on the training 

dataset. The quality of these top ranked x genes is justified on two aspects: 1) the classification 

accuracy of the resultant classifier on the testing datasets, and 2) for the first two datasets LEU and 

SRBCT, the stability when the training datasets were partially changed. All the experiments were 

conducted in MATLAB ( h t t p : //www. mathworks . com/) environment on a Pentium IV PC 

with a 2.4GHz processor and a 512MB RAM. 

This section reports the classification accuracies for the two classifiers on the testing datasets. 

Figures 3.2 and 3.3 plot the LOO cross validation accuracies of the SVM-classifier and the KNN-

classifier based on four gene selection methods GS1, GS2, Cho's, and F-test, on the SRBCT and 

CAR datasets, respectively. 

Figures 3.4 and 3.5 plot the 5-Fold cross validation accuracies of the SVM-classifier and the 

KNN-classifier based on four gene selection methods GS1, GS2, Cho's, and F-test, on the SRBCT 

and CAR datasets, respectively. 
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Figure 3.2: The leave-one-out cross validation testing accuracies of the SVM-classifier and KNN-
classifier, respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, on the SRBCT 
dataset. 

Looking at all these testing accuracies, one general conclusion is that our gene selection methods 

perform at least comparably well to F-test and Cho's, on all 8 datasets using both the SVM-classifier 

and the KNN-classifier. Typically, our methods outperform significantly the other two methods on 

datasets SRBCT, GLIOMAS, LUNG, and CAR, which have unbalanced class sizes. Note that, we 

only show two datasets here. 
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Figure 3.3: The leave-one-out cross validation testing accuracies of the SVM-classifier and KNN-
classifier, respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, on the CAR 
dataset. 

3.6 Stability of the Single Ranking Methods 

Given a training dataset, to test the stability of a gene selection method we duplicated all the samples 

in one class to produce a duplicated dataset. Our gene selection methods GS1 and GS2 are shown 

to be theoretically stable and therefore are not subject to such a test. For each of Cho's and F-test, 

it was applied on the duplicated datasets to report the same numbers of genes as it was applied to 

the original training dataset, and then the percentages of the common genes were recorded. Note 

that the LEU dataset and the SRBCT dataset give 2 and 4 duplicated datasets, respectively. We have 

done the tests by using only the training datasets and the whole datasets. Table 3.1 collects these 

percentages. 

We have also performed a similar experiment to test the stability when a small portion of samples 

were removed from the training dataset. For each class in a training dataset, it was divided into three 

parts of equal size and every time one part was removed from the dataset to obtain a reduced dataset. 

Then again, the percentages of the common selected genes using the original dataset and the reduced 

datasets were recorded. We tried in total 1000 random divisions and the average of 3000 percentages 

was taken to be the stability for this class. Table 3.2 collects these stability results for GS1, GS2, 

Cho's, and F-test. From these results, we can see that GS 1, GS2, and F-test had very close stabilities 

on the reduced datasets, while Cho's had the least over all classes. 
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Figure 3.4: The 5-Fold cross validation testing accuracies of the SVM-classifier and KNN-classifier, 
respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, on the SRBCT dataset. 

Method 

Cho's 

F-test 

X 

30 
74 
100 

30 
74 
100 

Whole Dataset 
SRBCT 

EWS 

90.0% 
90.5% 
90.0% 

90.7% 
90.7% 
89.0% 

BL 

93.3% 
89.2% 
94.0% 

85.3% 
85.3% 
87.0% 

NB 

90.0% 
91.9% 
92.0% 

86.7% 
86.7% 
88.0% 

RMS 

86.7% 
91.9% 
91.0% 

89.3% 
83.3% 
86.0% 

LEU 
ALL 

96.7% 
93.2% 
92.0% 

83.3% 
86.7% 
92.0% 

AML 

83.0% 
86.5% 
90.0% 

83.3% 
89.3% 
87.0% 

Table 3.1: The percentages of genes that were re-selected by Cho and F-test on duplicated datasets, 
of the whole LEU and the SRBCT datasets, respectively. 

3.7 Combined Clusters and Gene Selection Methods 

We propose two cluster based gene selection methods, a direct cluster gene selection (DCGS) 

method and an additive cluster gene selection (ACGS) method. The cluster gene selection meth­

ods are based on the observation that some correlated genes have very similar expression profiles. 

The key idea for these two methods is to cluster genes first, and limit the number of genes 

from the same cluster to be selected. For the DCGS method, we combine gene selection with 

gene clustering. This method first clusters the genes according to their expression levels across 

all samples, and assumes genes sharing similar expression profile as similar genes. For the ACGS 

method, we define similar genes more strictly. The distance between two genes is measured by 

their discrimination powers. The detailed procedure of this method will be introduced later. Briefly, 

the ACGS method assigns each gene a discrimination power vector in which each value in this 
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Figure 3.5: The 5-Fold cross validation testing accuracies of the SVM-classifier and KNN-classifier, 
respectively, on four gene selection methods, GS1, GS2, Cho's, and F-test, on the CAR dataset. 

vector stands for the discrimination power between two classes. After that, it clusters genes on 

genes' discrimination power vectors. In this method, similar genes are defined as genes with similar 

profiles of discrimination power. After the genes are clustered by the DCGS and the ACGS methods, 

both methods limit the number of genes from the same cluster to be selected, so as to leave room for 

dissimilar genes to be selected, as well as some complementary genes that, individually, do not do 

well at separating the data. 

Many existing gene selection methods are based on a gene scoring function that assigns a score 

for each gene, which approximates the discriminatory strength of the gene. Such gene scoring 

functions can be the classification accuracy of individual genes [101], or capture the basic rule that 

discriminatory genes are those being close at expression levels in intra-class samples but being sig­

nificantly different in inter-class samples [9, 24, 102]. Here we adopt these three gene selection 

methods, the Cho gene selection [24], F-test gene selection [9, 32], and GS method 2, as our base 

methods. These methods generally return a number of top ranked genes, and their quality is mea­

sured by the classification accuracy of the classifier built on them. It is noticed that some correlated 

genes have very similar expression profiles. Consequently, they must have similar discrimination 

power in terms of classification, and once one is top ranked, the others are also likely to be top 

ranked. However, using them all in classification is redundant in that their discrimination power 

overlaps. Furthermore, when the top ranked genes are selected, they occupy the spaces for other 

useful genes to be considered, thus eventually preventing a more efficient classifier. 

Based on the above ideas, we propose to do gene clustering before gene selection. Assume 

the training dataset consists of m genes and n samples. We apply a fc-means clustering algorithm 

to group genes into k clusters by their expression profile or discrimination strength vector, cor­

responding to two methods (DCGS and ACGS, to be defined below), respectively. Essentially, 
2Refer to GS1 method in the previous section. 
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X 

30 

74 

100 

Method 

GS2 
GS1 

Cho's 
F-test 
GS2 
GS1 

Cho's 
F-test 
GS2 
GS1 

Cho's 
F-test 

Whole Dataset 
SRBCT 

EWS 

87.5% 
82.9% 
83.2% 
92.2% 
85.5% 
84.6% 
87.5% 
87.6% 
86.6% 
84.9% 
88.7% 
89.3% 

BL 

81.3% 
73.9% 
79.9% 
92.1% 
82.6% 
80.2% 
86.9% 
92.2% 
83.9% 
79.2% 
84.5% 
92.0% 

NB 

85.0% 
80.4% 
85.5% 
90.8% 
86.4% 
84.3% 
88.3% 
89.3% 
87.6% 
84.1% 
89.5% 
89.5% 

RMS 

83.8% 
81.8% 
83.4% 
93.3% 
83.9% 
85.2% 
85.0% 
88.0% 
86.3% 
82.9% 
86.0% 
89.2% 

LEU 
ALL 

87.4% 
85.5% 
75.0% 
84.4% 
84.5% 
83.0% 
75.8% 
83.6% 
83.7% 
83.6% 
77.4% 
83.0% 

AML 

84.9% 
80.4% 
79.0% 
80.1% 
80.8% 
80.9% 
77.0% 
80.7% 
80.8% 
80.9% 
75.8% 
83.9% 

Table 3.2: The percentages of genes that were re-selected by Cho and F-test on reduced datasets, of 
the whole LEU and the SRBCT datasets, respectively. 

A;-means is a centroid-based clustering algorithm that partitions the genes into k clusters based 

on their pairwise distance, to ensure that intra-cluster similarity is high and inter-cluster similar­

ity is low. Botii Euclidean distance ( h t t p : / / b o n s a i . ims . u - t o k y o . ac . jp /~mdehoon/ 

s o f t w a r e / c l u s t e r / s o f t w a r e .htm) and Pearson correlation coefficient ( h t t p : / / r a n a . 

l b l . g o v / E i s e n S o f t w a r e . htm) are adopted in &-means algorithm. At the same time, a gene 

scoring function is used to order the genes within the clusters. 

A direct cluster gene selection method (DCGS) and an additive cluster gene selection method 

(ACGS) are adopted in this chapter. For the DCGS methods, the distance between two genes is 

measured by Euclidean distance (Pearson correlation coefficient) of their expression values directly. 

After that, the fc-means algorithm is applied. In the meanwhile, a gene scoring function is used to 

order the genes within the clusters. 

For gene clustering using the ACGS method, the distance measurement between two genes is 

more complicated. Firstly, we assign a vector called the discrimination power vector, to each gene. 

The value in the vector represents the discrimination power of that gene between a pair of classes. 

The discrimination power vector of gene j is denoted as vector (la^,- — Ofe, •,-!). LX(L-D where 

and 1 < k\ < k<i < L. Correspondingly, the discrimination power matrix for all the genes can be 

represented as 

where 1 < k\ < &2 < L. Note that, each column in matrix D can be identified as the discrimination 

power of the genes on a pair of classes. 

For example, suppose we have a microarray expression matrix A% as shown, in which 9 sam­

ples have been known in 3 classes, C\, C2, C3 in which, {Si, S2} £ Ci, {S3, S4, £5} 6 C2 and 

{£6, S7, Ss, S9} S Cs 
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i3x9 

/ 
Gi 
G2 

G3 

\ Gi 

S\ S2 
1.3 1.7 
3.2 3.0 
0.8 0.6 
0.7 0.9 

5*3 S4 S5 
3.0 3.1 2.9 
1.5 1.2 1.8 
2.1 2.2 2.3 
0.8 0.9 1.0 

5*6 57 S$ Sg \ 
1.6 1.7 1.6 1.5 
2.9 3.1 2.8 3.2 
0.9 0.7 0.5 0.7 
2.3 2.4 2.6 2.7 J 

The centroid matrix A3 is 

-43x3 = 

and die discrimination power vector is 

/ 
Gi 
G2 

G3 

\ G3 

C\ Ci C3 \ 
1.5 3.0 1.6 
3.1 1.5 3.0 
0.7 2.2 0.7 
0.8 0.9 2.5 / 

ui = < 1.5,0.1,1.4 >, 
v2= < 1.6,0.1,1.5 >, 
v3= < 1.5,0.0,1.5 >, 

vA= < 0.1,1.7,1.6 > . 

Therefore, die pairwise Euclidean distances are d(l, 2) = 0.141,d(l,3) = 0.141,d(l,4) = 

2.135,d(2,3) = 0.141, d(2,4) = 2.195,^(3,4) = 2.205. The first three genes have similar dis­

criminatory strength, while the G4 has different ones. 

After that, we apply the A;-means clustering algorithm [12] to group these m genes into k clusters 

based on their discrimination power vectors D LX(L-» . Note that for genes selected by the ACGS 

method, the genes in the same group should have similar discrimination power. At me same time, a 

gene scoring function is used to order the gene within clusters. 

After the clustering is finished by the DCGS or the ACGS method, we pick in total L genes such 

that at most T genes from each cluster are selected, that is, when there are already T genes from a 

cluster, other genes belonging to die same cluster are simply skipped. 

By doing this, we avoid enrolling genes with similar expression pattern or discrimination power 

into the gene subset even all of them rank high individually. Genes in the same cluster are usually 

similar genes. We assume these genes, either sharing the expression pattern or having the similar 

ability to discriminate certain genes, function identically or similarly in classification. Limiting the 

number of genes in each cluster facilitates their complementary genes that are more characteristic 

in other types of samples to be selected. Our methods attempt to maximize the subsets where genes 

are selected from, such that we can have genes to distinguish each pair of classes. 

Depending on the scoring function used, which can be Cho, F-test, or GS, we combine the 

scoring function name and clustering method name to generate gene selection method names. The 

resulting names are DCGS-Cho, DCGS-F-test, DCGS-GS, ACGS-Cho, ACGS-F-test and ACGS-

GS, respectively. Subsequently, these L selected genes are fed to a KNN-classifier [102] and 

an SVM-classifier with a linear kernel ( h t t p : / / t h e o v a l . s y s . u e a . a c . u k / ~ g c c / s v m / 
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t o o l b o x / ) , to construct the class predictor. For example, DCGS-GS-SVM refers to the SVM 

predictor built on genes selected by the DCGS--GS method. 

3.8 Experimental Results of Combined Methods 

3.8.1 Cross Validation Classification Accuracies 

We report the experimental results on choosing the value k = 100 in the fc-means clustering algo­

rithm. For another parameter T, which is the maximum number of genes from the same cluster, we 

choose T — 1. The reason we choose k = 100 and T = 1 is that it is the best setting that often 

achieves the highest classification accuracies in our experiments. Figure 3.6 and Figure 3.7 show 5-

fold cross validation classification accuracies over 20 partitions for the Cho, F-test, GS, DCGS-Cho, 

DCGS-F-test, DCGS-GS, ACGS-Cho, ACGS-F-test and ACGS-GS gene selection methods on the 

CAR and LUNG, respectively, where KNN-classifier and SVM-classifier are plotted separately. 

We also collected the classification accuracies by using sequential forward search (SFS) method 

[101] and sequential forward floating search (SFFS) method [101]. The performances of those two 

methods are slightly better than Cho, F-test, GS methods, but much worse than ACGS-based and 

DCGS-based methods [79]. 

The classification accuracies on all the three datasets show that the ACGS based methods and 

DCGS based methods are much better than their non-ACGS-DCGS counterparts. Moreover, ACGS 

based methods outperform the DCGS based methods a little bit on the CAR and the LUNG datasets. 

3.8.2 Standard Deviations 

Figure 3.8 shows the standard deviations over 100 5-fold classification accuracies of three types of 

gene selection methods, combined with KNN-classifier and SVM-classifier, on the CAR and LUNG 

datasets, respectively. ACGS-KNN is denoted as the average standard deviation of the ACGS-

Cho, ACGS-F-test and ACGS-GS methods combined with the KNN classifier. In the same way, 

we define the DCGS-SVM, DCGS-KNN, DCGS-SVM, non-ACGS-DCGS-KNN and non-ACGS-

DCGS-SVM where non-ACGS-DCGS is denoted as three base methods, the Cho, F-test and GS 

method. The results show that the standard deviations of accuracies of the ADGS-based and DCGS-

based methods do not have significant difference within a dataset, and both of them are better than 

non-ACGS-DCGS methods. 

3.9 Discussion of Combined Methods 

3.9.1 Number of Clusters and Number of Genes Per Cluster 

In the gene clustering method, the A;-means algorithm requires a manual input k that defines the 

number of the clusters as input. This value of k would affect the sizes of resultant clusters. Another 
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manual setting is T, which restricts the maximum number of genes from the same clusters. Both 

of them are important parameters in our ACGS-based and DCGS-based gene selection methods. 

Nevertheless, we suppose we do not have any previous knowledge about the datasets. Figure 3.9 

shows that the classification accuracy can reach high when T = 1. And it seems from our exper­

iments that the k number did not affect the accuracy significantly. The accuracies are almost the 

same on different k values. Based on the experiments, we decided to choose k = 100 and T = 1 as 

our default setting. We report the classification accuracy on the CAR dataset by choosing different 

combinations of k values, where k = 10,20,30,40,50,60,70,80,90,100,110,120,130,140,150, 

and T value, where T = 1,2,3,4,5. For each k, its quality is measured by the average 5-fold 

classification accuracy over 5 values of T, three gene selection methods and two classifiers, that is, 

we have in total 1 0 0 x 5 x 3 x 2 = 3000 classification accuracies. In the same way, for each T 

value, its quality is measured by the average 5-fold classification accuracies over 15 values of k, that 

is, a total o f l 0 0 x l 5 x 3 x 2 = 9000 classification accuracies. All these average classification 

accuracies are plotted in Figure 3.9. The same setting applies for the DCGS-based gene selection 

methods. Therefore, for both ACGS and DCGS based gene selection method, we adopted T — 1 

and k = 100 as our default setting. 

3.9.2 Distance Measure in fc-Means Clustering 

In gene expression microarray data analysis, Euclidean distance and Pearson correlation coefficient 

are two most commonly used similarity measurements between discrimination power vectors. Both 

are tested in fJhe /c-means clustering algorithm on the LUNG and CAR datasets. The results in Figure 

3.10 show that one similarity measure is not dominantly better than the other using either ACGS or 

DCGS gene selection methods. We choose Euclidean distance as our default setting. 

3.9.3 Statistical Test on the Performance Differences 

All the details ANOVA for all non-ACGS-DCGS gene selection combined with a classifier and 

their corresponding ACGS-based methods were collected. Table 3.3 shows the same parameters 

associated with the CAR dataset. The results show that ACGS-based methods and DCGS-based 

methods are significantly better than their corresponding non-ACGS-DCGS gene selection methods, 

and ACGS-based methods and DCGS-based methods did not show significant difference. 

3.9.4 Mold Classification Accuracy Determination 

In general, Mold cross validation and Leave-one-out cross validation are applied for the classifi­

cation accuracies comparison. Actually Leave-one-out (LOO) cross validation is a special case of 

Mold cross validation when £ equals to the number of samples. We test out the results on both LOO 

cross validation and Mold cross validation when £ = 3,5,8,10. The first three figures in Figure 
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ACGS vs. 
DCGS 

Cho-KNN 
Cho-SVM 

F-tesl-KNN 
F-test-SVM 
GS-KNN 
GS-SVM 

ACGS vs. 
Original 

Cho-KNN 
Cho-SVM 

F-test-KNN 
F-test-SVM 
GS-KNN 
GS-SVM 

DCGS vs. 
Original 

Cho-KNN 
Cho-SVM 

F-test-KNN 
F-test-SVM 

GS-KNN 
GS-SVM 

# Genes=20 
P i U 

0.204 
0.064 
0.678 
0.395 
0.110 
0.005 

0.0066 
0.0012 
-0.1840 
-0.1354 
-0.0044 
0.0100 

0.3815 
0.4951 
0.0368 
0.0439 
0.0530 
0.0638 

#Genes=20 
P L v 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.3806 
0.3584 
0.2824 
0.3089 
0.3464 
0.3766 

0.4253 
0.4091 
0.3377 
0.3663 
0.4038 
0.4304 

#Genes=20 

P i v 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.3648 
0.3343 
0.2732 
0.2937 
0.3221 
0.3397 

0.4095 
0.3850 
0.3285 
0.3511 
0.3795 
0.3935 

# Genes=40 
P L v 

0.003 
0.000 
0.026 
0.004 
0.649 
0.255 

0.0096 
0.0194 
0.0026 
0.0087 
-0.0169 
-0.0088 

0.0529 
0.0614 
0.0484 
0.0509 
0.0353 
0.0416 

# Genes=40 
P L u 

0.000 

o.ooo 
o.ooo 
0.000 
0.000 
0.000 

0.2978 
0.3486 
0.1203 
0.1372 
0.1048 
0.1006 

0.3411 
0.39O6 
0.1660 
0.1794 
0.1571 
0.1510 

#Genes=40 

P £ u 
0.000 
0.000 
0.000 

o.ooo 
0.000 
0.000 

0.2666 
0.3081 
0.0948 
0.1074 
0.0956 
0.0843 

0.3099 
0.3501 
0.1405 
0.1495 
0.1478 
0.1346 

# Genes=60 

P £ v 
0.007 
0.002 
0.001 
0.000 
0.185 
0.002 

0.0065 
0.0101 
0.0129 
0.0141 
-0.0057 
0.0105 

0.0457 
0.0525 
0.0527 
0.0525 
0.0363 
0.0522 

# Genes=60 
P £ v 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.1911 
0.2315 
0.0955 
0.0872 
0.0436 
0.0598 

0.2303 
0.2739 
0.1353 
0.1256 
0.0856 
0.1015 

#Genes=60 
P £ V 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.1650 
0.2001 
0.0627 
0.0539 
0.0282 
0.0285 

0.2042 
0.2425 
0.1025 
0.0923 
0.0702 
0.0702 

# Genes=80 
P £ V 

0.034 
0.197 
0.012 
0.002 
0.037 
0.014 

0.0014 
-0.0053 
0.0047 
0.0091 
0.0009 
0.0036 

0.0418 
0.0318 
0.0430 
0.0443 
0.0364 
0.0366 

#Genes=80 
P £ f 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.1262 
0.1402 
0.0542 
0.0610 
0.0020 
0.0267 

0.1666 
0.1773 
0.0925 
0.0963 
0.0374 
0.0597 

#Genes=80 
P £ V 

0.000 
0.000 
0.000 

o.ooo 
0.000 
0.004 

0.1046 
0.1270 
0.0303 
0.0344 
0.0228 
0.0066 

0.1450 
0.1640 
0.0687 
0.0696 
0,0540 
0.0396 

Table 3.3: The p values and the confidence intervals in ANOVA tests of performance among ACGS-
based methods, DCGS-based methods and their corresponding non-ACGS-DCGS based methods 
on CAR dataset by 5-Fold cross validation. Note that, we have 100 classification accuracies when 
the number of genes z for gene selection is fixed. In this table, we choose z = 20,40,60,80. 

3.11 show that when £ becomes larger, the classification accuracy becomes better. The reason for 

these results are, when the amount of training samples increased, more about the testing dataset can 

be captured. The last figure in Figure 3.11 is the average classification accuracy among the DCGS-

based, ACGS-based and non-ACGS-DCGS-based methods. Each plot is the average classification 

accuracy over three gene selection methods and two classifiers, that is, a total of 3 x 2 x 100 classi­

fication accuracies. The result show that, the ACGS-based method and the DCGS-based method are 

much better than the non-ACGS-DCGS method no matter which value of £ we choose. 

3.9.5 Covariance 

As we mentioned before, the ACGS-based method and the DCGS-based methods are designed to 

avoid the situation where too many similar genes are selected. Covariance is a measurement of the 

strength of the correlation between two or more sets of random variables, that is, the larger value 

between the two sets of variables indicate the stronger the strength of relationship. Table 3.4 shows 

the average absolute covariance value among all pairs of subset genes selected by different gene 

selection methods. Firstly, we ran me 5-fold cross validation 20 times, that is, there were in total 

2 0 x 5 subsets of genes being selected. After that, we calculated the frequency of a gene occurring 

in these 100 subsets. The top 80 genes with most frequent value were selected and the covariance 

between each pair of these 80 genes were obtained. The average absolute covariance values are 

listed in Table 3.4. The non-ACGS-DCGS-based methods provide the largest absolute covariance, 

that is, the genes selected by the non-ACGS-DCGS-based methods have the strongest relationship 

or vary together in the same direction or opposite direction from their means. The ACGS-based 

methods obtain the smallest covariance value, the expression value of these genes vary together in 

different directions. 
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Methods 

DCGS-based 
ACGS-based 

non-ACGS-DCGS-based 

Cho 
Covariancd 

0.4059 
0.4340 
0.5005 

Standard 
Deviation 

0.0817 
0.0777 
0.1202 

F-test 
Covariancd 

0.4421 
0.5060 
0.6562 

Standard 
Deviation 

0.0833 
0.0797 
0.1643 

GS 
Covariancd 

0.4351 
0.4380 
0.5436 

Standard 
Deviation 

0.0844 
0.0702 
0.1442 

Table 3.4: Covariance and standard deviation between the DCGS-base, ACGS-based and non-
ACGS-DCGS-based methods. 

3.10 A Case Study: The CAR dataset 

The DCGS based and ACGS based gene selection methods are generally superior to the correspond­

ing non-ACGS-DCGS ones. To investigate whether the DCGS and ACGS based methods have cho­

sen the biologically relevant genes as the discriminators, the top 80 genes were analyzed further 

for all nine methods ACGS-Cho, DCGS-Cho, Cho, ACGS-F-test, DCGS-F-test, F-test, ACGS-GS, 

DCGS-GS, and GS. Compared with the tumor-specific 216 genes published in the paper of the CAR 

dataset [90], the top 80 genes selected by the three non-ACGS-DCGS based methods share 39, 41 

and 43 genes, respectively. 

In contrast, the three corresponding DCGS methods selected only 17, 17, 20 genes, and three 

corresponding ACGS methods selected only 18,16,17, genes, respectively. 

The first impression is that this reduced percentage of discriminatory genes does not make sense, 

but further investigation showed that the ACGS methods and DCGS method identified many more 

cancer related genes, to be explained in the following. 

Overall, there are only 3 common genes selected by all the nine methods, which are KLK3, 

ELA3A, and GATA3. KLK3 and ELA3A are signature genes for prostate and pancreas tumors, 

respectively [90]. All these results clearly demonstrate that different gene selection algorithms can 

select different sets of genes for disease classification. The experiments also show that, in principle, 

there exist genes having equal discrimination power, as different sets of genes can reach compatible 

classification accuracies on the same dataset. 

It is particularly interesting to find out that the gene sets selected by all three DCGS based 

methods share less with the published tumor-specific genes, but they all achieved significantly better 

classification accuracies. The comparison of the top 80 genes between these three sets revealed a 

subset of 29 genes, which were picked rarely by the three non-ACGS-DCGS based methods (3, 9, 

10, by Cho, F-test and GS, respectively). An immediate question is whether this subset plays an 

important role for achieving the better classification accuracies for the DCGS based methods. To 

answer this question, the probe sets of these 29 genes were examined individually to investigate their 

biological functions related to the intrinsic molecular characteristics of cancer cells. These 29 probe 

subsets actually represent 28 genes, due to the redundancy of two probe subsets targeting PRCKI. 

The collected facts clearly show that the majority of this set of 28 genes are related to the human 

tumorigenesis. 
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For the ACGS based method, common genes selected by me ACGS based methods are 40, 

including 14 genes which are the common feature genes selection by die DCGS based methods. For 

the other 26 genes, we found 19 feature genes which are associated with cancer. That is, there are 

in total 31 feature genes over 40 which we found related with cancer. Again, among these 40 genes, 

only 8,13 and 14 genes were picked by the Cho, F-test and GS methods, respectively. 
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Figure 3.6: 5-fold cross validation accuracies and LOO cross validation accuracies of all 9 methods, 
combined with KNN-classifier and SVM-classifier, on the CAR dataset. 
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Figure 3.7: 5-fold cross validation accuracies and LOO cross validation accuracies of all 9 methods, 
combined with KNN-classifier and SVM-classifier, on the LUNG dataset. 
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Figure 3.9: Qualities of different value of T and k of the ACGS based and DCGS based methods, 
tested on the CAR dataset. For a value of T, its quality is the average classification accuracy over 
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method and the DCGS based method, tested on the CAR dataset and the LUNG dataset, where 
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Chapter 4 

Smoothing Blemished Gene 
Expression Microarray Data via 
Missing Value Imputation 

4.1 Introduction 

As we mentioned in the previous chapter, microarrays, typically high-density oligonucleotide arrays, 

such as Affymetrix GeneChip oligonucleotide arrays and Agilent Dual Mode whole genome gene 

expression arrays, can simultaneously assess expression levels of diousands of genes under a variety 

of conditions. Such a high-throughput technology provides a unique tool for systems biology, and 

has important applications in numerous biological and medical studies. One of the most common 

and important tasks in these applications is to compare the gene expression levels in tissues under 

different conditions, such as healthy versus diseased, for effective genetic profiling. Missing value 

is not the only problem preventing us from obtaining the complete accurate data. Even when there 

are no missing values in the matrix, many entries in the micarray might not be reliable because of 

noise. 

Noise in gene expression microarray data comes from many sources, some of which is caused by 

experimental setup, such as insufficient resolution, image corruption, or even dust and scratches on 

the slide [96]. Other noise could be caused by the chip design itself. For example, in general, probes 

can over- or underestimate gene activity [61]. A probe set in an Affymetrix oligomucleotide array 

normally consists of multiple pairs of oligonucleotide probes [43]. Using pre-specified mapping 

criteria, the expression value of the probe set can be obtained from the hybridization levels of these 

probe pairs. The large number of probe pairs guarantees a substantially low probability of missing 

all the hybridization levels, tiius ensuring reading of the expression value for a probe set. However, 

although with a certain set of criteria for assessing the overall quality of a chip, probes have not 

been designed to be specific to gene splice variants and little sensitivity is promised for detecting 

localized artifacts, such as "harshlight" in microarray image. As pointed out by Suarez-Farinas et 
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al. [92, 91], about 25% of chips they collected contain artifact blemishes. Unfortunately, so far there 

are no safeguards to signal potential physical blemishes. Another confounding factor for getting 

accurate expression data is cross-hybridization. Oligonucleotide probes often relate not only to gene 

products that exactly match the sequence, but also those with near matches. Furthermore, there are 

still certain microarray probes targeting almost the same regions of a given gene but giving wildly 

different intensity signals [61]. 

On the other hand, all the downstream computational data analyses require the gene expression 

dataset to be complete and accurate. Therefore, it is desirable to identify the inaccurate data entries 

(called stains), if any, and adjust them. Several ideas have focused on discovering inaccurate data 

entries. For example, due to ozone degradation, one channel in a two-channel microarray experiment 

would produce poor quality data. There are two possible solutions: one is to exclude one channel, 

and the other is to discard only the affected arrays. Lynch et al. [60] proposed to combine these 

two methods with a linear model to detect affected positions. The tests on several datasets showed 

that it outperformed either individual method. Due to variation in experimental conditions, it is 

difficult to combine the data from different arrays. Barenco et al. [10] proposed a simple recursive 

algorithm to correct the mismatches in oligonucleotide microarray data to increase the precision of 

the dataset, by using constant genes to rescale the datasets such that expression data are normalized 

and consistent. Tran et al. [95] presented a new approach to correctly identify accurate signals and 

used a simple correlation between mean and median to adjust those inaccurate signals. They also 

demonstrated that their method is better than thresholds or other traditional methods. Blemished data 

are usually outliers in the dataset, and those caused by different reasons will have different outlier 

patterns. Suarez-Farinas et al. [92, 91] proposed a simple method to find "harshlight" blemishes in 

chips due to physical or chemical problems. Using statistics on a number of the same arrays under 

the similar experimental conditions, the authors devised a pattern recognition algorithm to identify 

and eliminate a variety of defects. 

Here we assume complete microarray datasets and present a method to computationally discover 

the expression outliers as inaccurate data entries, then re-estimate them. We evaluate the quality of 

the resultant smoothed datasets through a downstream application — feature gene selection and the 

performance of the sample classifier built on the selected feature genes. The rationale supporting 

such an evaluation is that only an accurate prediction of sample conditions can eventually demon­

strate the value of the gene expression microarrays [61]. In further details, first, on the original 

dataset with labeled samples, we apply a single gene ranking method, F-test [9] (and Scatter [22]), 

to assign each gene a score. That score represents the discriminatory strength of the gene for distin­

guishing different sample classes. The data entries which mostly affect the gene scores are regarded 

as stains. The rationale is that, normally, one gene has similar expression tendencies under the same 
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conditions. When one entry is expressed in an exceptional way, it is likely to be blemished and 

should be treated as an inaccurate entry. After the stains are detected, a missing value imputation 

method, KNNimpute [96], can be applied to re-estimate them. We have included three real hu­

man cancer gene expression microarray datasets, each obtained using a common platform, in the 

experiments to demonstrate the success of our method. These three human datasets are the CAR 

dataset [90], Ovarian dataset [75], and GLIOMAS dataset [66]. We calculated the 5-fold cross vali­

dation classification accuracies for the KNN-classifier and the SVM-classifier, which are built on a 

number of genes selected from the smoothed datasets and the original datasets. The achieved classi­

fication accuracies before and after the data smoothing on all these datasets are statistically different, 

indicating that smoothing is able to at least partially adjust data blemishes. 

4.2 Methods 

The gene expression data generated from microarray experiments is presented as a matrix ApXn, in 

which there are p genes, n samples, and a,j denotes the expression level of the i-th gene in the j-th 

sample. 

In the 5-fold cross validation scheme, | of the samples are used as the training dataset, in which 

every sample is labeled by its class membership. To build a sample classifier for testing sample 

prediction, a gene selection method is used to identify a number of discriminatory genes. In this 

study, we adopted two existing gene selection methods: F-test [9] and Scatter [22]. Essentially, 

each gene selection method assigns a score to every gene, and a bigger score indicates a higher 

class discrimination strength. On the training dataset, for example, F-test assigns a score s, for 

gene i. For each entry a^, F-test method ignores the j-th sample to assign gene i another score s^. 

The value Sij — \si — s'^ measures the abnormality of data entry ay, and a higher value indicates 

a more problematic entry. F-test is used to assign an abnormality value to each data entry in the 

training dataset. Later on, the top few percents of them, ranked by the abnormality values, Sy, and 

under three separate inaccurate data entry distributions, are identified as inaccurate. We note that 

such a process of inaccurate entry identification relies on the detailed gene selection method, and 

different methods might identify different sets of inaccurate entries. Nevertheless, F-test and Scatter 

performed quite consistently in our experiments. Also the dataset should be large enough, that is, 

a sufficient number of genes and a sufficient number of samples in each class; for otherwise the 

identification result could be biased. 

The discovered inaccurate data entries are erased from the training dataset, i.e., treated as miss­

ing. A missing value imputation method is called to impute (or, re-estimate) their values. There are 

more than a dozen imputation methods proposed in the last decade. In this study, we employed the 

weighted if-Nearest Neighbor imputation (KNNimpute) method by Troyanskaya et al [96] (three 
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other methods, SKNNimpute [48], BPCAimpute [67], and ILLSimpute [18], were also used, whose 

performance were similar but slightly worse than KNNimpute, data not shown). KNNimpute is 

shown to be a simple yet competitive missing value imputation method. The imputed (or smoothed) 

training dataset is complete and is ready for the next step of feature gene selection. 

The two gene selection methods, F-test and Scatter, are re-used to select a number of feature 

genes on the smoothed datasets, for sample classifier construction. We included in this study two 

classifiers: the if-Nearest Neighbor (KNN) classifier [32] and a linear kernel Support Vector Ma­

chine (SVM) classifier [39] (a logic regression (LR) classifier [31] was also used, whose perfor­

mance was similar, data not shown). In brief, the KNN-classifier predicts the class membership of 

a testing sample by using the expression values of (only) the selected genes, identifies the K clos­

est samples in the training dataset and then uses the class memberships of these K similar samples 

through a majority vote. In our experiments, we set the default value of K to be 5, after testing 

K from 3 to 10. The SVM-classifier, which contains multiple SVMs, finds decision planes to best 

separate the labeled samples based on the expression values of the selected genes. It uses this set 

of decision planes to predict the class membership of a testing sample. One may refer to Guyon et 

al [39] for more details of how the decision planes are constructed based on the selected genes. 

4.3 Results 

We include three real human cancer gene expression microarray datasets in this study. Each dataset 

is represented as a matrix Apxn, where there arep genes, n samples/chips/arrays, and data entry OJJ 

denotes the expression level of the i-th gene in the j-th sample. 

4.3.1 Inaccurate Entry Discovery 

We tested three separate assumptions on the distribution of the inaccurate data entries inside the 

expression matrices. Using the original expression matrix, in which every sample has a known class 

membership, for each gene i, we calculated its score, denoted as s i ; using a gene score method. In 

this study, two scoring methods were employed: F-test [9] and Scatter [22]. After that, for each 

entry ay, we ignored the j-th sample from the original expression matrix and calculated the score 

for gene i again, which is denoted as s<. Let s^ = | s» — s[ \. Note that, if the training dataset is large 

enough and with high quality, the difference between Sj and s^ should not be large. Therefore, the 

larger the s»j, the more abnormal entry a,ij can be regarded, and the top a few percents (in this study, 

1-30%) of them, depending on the distribution assumption, are treated as inaccurate or blemished. 

In the first assumption, for each gene, the top a few percents among its n entries (i.e., one row 

in the expression matrix) are treated as inaccurate; In the second assumption, for each sample, the 

top a few percents among its p entries (i.e., one column in the expression matrix) are treated as 
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inaccurate; In the last assumption, the top a few percents among all the p x n entries (i.e., the whole 

expression matrix) are treated as inaccurate. For simplicity, we call them assumptions on genes, 

on samples, and on whole dataset, respectively. Under either assumption, the detected inaccurate 

data entries were erased from the expression matrix and one missing value imputation method, in 

this study, KNNimpute, was used to estimate their values. The resultant (called smoothed) expres­

sion matrix is complete, and is ready for gene selection to build sample classifiers. Note that when 

combining multiple microarray chips into one single dataset for data analysis, one has to take into 

consideration that the individual chips were exposed in possibly, maybe only slightly, different ex­

perimental conditions. Therefore, even after the proper data normalization to tune the multiple chips 

into a common setup, there could be cases where one gene behaves more abnormally than the other, 

or one chip behaves more abnormally than the other. The three assumptions on the distribution of 

inaccurate entries were proposed to examine all these possibilities. 

4.3.2 Sample Classification Accuracies 

On each gene expression microarray dataset, for each inaccurate rate (i.e., the percentage of inac­

curate entries), we need to collect 4 classification accuracies, namely, the classification accuracy on 

the original dataset, and the classification accuracies on the imputed dataset based on uniform distri­

bution assumptions on genes, on samples, and on the whole dataset, respectively. We use Original, 

Gene, Sample, and Whole to denote these 4 classification accuracies, respectively. Notice that we 

tested the inaccurate rate from 1% to 30%. 

We adopted the 5-fold cross validation scheme in this study. The samples in the given dataset 

are randomly partitioned into 5 equal subsets, 4 of which form the training dataset for inaccurate 

entry discovery and estimation, and subsequently gene selection to build sample classifiers. The 5th 

subset forms the testing dataset in which the sample class labels are blinded to the sample classifiers 

for prediction. Every subset is rotated to be the testing dataset, and the percentage of correctly 

predicted samples (true positives) is the classification accuracy associated with this partition. The 

process is repeated 20 times in our experiments, and the average classification accuracy is the final 

(5-fold cross validation, omitted in the sequel) classification accuracy. Note that we have used 

two gene scoring/selection methods, the KNNimpute method, and two classifiers. We concatenate 

their names to label the classification accuracies. For instance, "Gene- 1%-F-test-KNNimpute-KNN" 

denotes the classification accuracy mat is achieved by applying the F-test scoring method to discover 

1% inaccurate entries for every gene, using KNNimpute to re-fill their entries, again applying the F-

test scoring method to select feature genes to build a KNN-classifier, and running the KNN-classifier 

for sample class membership prediction. 

Figures 4.1 4.2, 4.3 plot the classification accuracies of the F-test-KNNimpute-KNN method 
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on the three human cancer microarray gene expression datasets: GLIOMAS, Ovarian, and CAR, 

respectively, each assumed \-\% inaccurate entries under all three distribution assumptions. The 

standard deviations of those 20 5-fold cross validation classification accuracies on each dataset were 

all very small compared to the average classification accuracies, almost always less than 0.05 and 

decreasing with the number of selected genes. On all these three datasets, the classification accura­

cies achieved on the smoothed datasets are almost always higher than those achieved on the original 

datasets, when the number of selected feature genes ranges from 1 to 80. More specifically, under the 

assumptions on whole dataset and on samples, the achieved classification accuracies intertwine a bit, 

but they are clearly higher than the classification accuracies achieved on the original datasets, par­

ticularly when the number of selected genes is large (for example, larger than 40). Under the other 

assumption on genes, the achieved classification accuracies on the smoothed datasets are mostly 

lower than those on die first two smoothed datasets, yet slightly higher than those achieved on the 

original datasets. It is worth pointing out that, the differences between the achieved classification 

accuracies on the original dataset and the smoothed one vary from dataset to dataset, which might be 

due to the quality of the original datasets. Overall, from tiiese results on the three datasets obtained 

by Affymetrix genechips, we may conclude that the inaccurate entry uniform distributions on the 

whole dataset and on samples might be better than the third assumption on genes. This conclusion 

might largely correlate with imperfect experimental conditions for collecting the gene expression 

data. 

4.4 Discussion 

4.4.1 The True Inaccurate Rate 

From the results presented in the last section, we see that assuming an equal percentage of inaccurate 

expression entries for the whole dataset or for samples is reasonable and gives good computational 

results. In this subsection, we demonstrate that using our smoothing method can actually estimate 

the most likely (or the true) inaccurate rate for each dataset. For this purpose, we experimented 

with the assumption that some percent of inaccurate expression entries are distributed randomly in 

the whole dataset. On all tiiree human cancer datasets, we tested inaccurate rates 1-30% and plot­

ted the classification accuracies in Figures 4.6, when 40, 60, and 80 feature genes were selected 

for KNN-classifier construction. Though not obviously seen from the plots, the GLIOMAS, Ovar­

ian, and CAR datasets seem to have 23%, 4%, and 2% inaccurate entries, respectively, where the 

smoothed datasets reach the highest classification accuracies (when 40 or 60 genes, 60 genes, and 

40 genes were selected, respectively). These inaccurate rates match well with the previously agreed 

understanding that the CAR dataset has the highest quality and the GLIOMAS dataset has the lowest 

quality. 
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Figure 4.1: 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 
GLIOMAS dataset assuming 1-4% inaccurate entries under all three distribution assumptions, 
where 1-80 genes were selected to construct the KNN-classifier. 
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Figure 4.2: 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the Ovar­
ian dataset assuming 1-4% inaccurate entries under all three distribution assumptions, where 1-80 
genes were selected to construct the KNN-classifier. 
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Figure 4.4: 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 
GLIOMAS, Ovarian and CAR datasets, assuming whole dataset inaccurate rate 1-30%. 40, 60, 
and 80 genes were selected to construct the KNN-classifier, respectively 

Furthermore, on the GLIOMAS dataset, when the inaccurate rate ranges from 1% to 5%, the 

classification accuracies of F-test-KNNimpute-KNN are plotted in Figure 4.5. For almost every 

number of selected feature genes (1-80) for building the KNN-classifier, the classification accuracy 

at 5% is the highest among all. This matches to the first local peak in Figure 4.4. 

4.4.2 Difficult Samples Now Correctly Predicted 

From Figure 4.4, we see that when assuming 4% whole dataset inaccurate rate in the Ovarian 

dataset, F-test-KNNimpute-KNN reached the highest classification accuracy (78.75%) when the 

KNN-classifier was built on 60 selected genes. In the leave-one-out cross validation (LOOCV) to 

select 60 genes, the achieved classification accuracy by F-test-KNN-classifier is also 78.75%. We 
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Figure 4.5: 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the 
GLIOMAS dataset assuming 1-5% inaccurate entries in the whole dataset, where 1-80 genes were 
selected to construct the KNN-classifier. 

collected the detailed confusion matrix on the smoothed datasets, and compared it with the LOOCV 

sample class prediction confusion matrix on the original dataset by F-test-KNN-classifier (78.85% 

versus 72.12%), in the following Table 4.1. Note that there are 9 mucinous samples and 2 clear cell 

samples, which were difficult for prediction, now correctly predicted. One also sees that there are 4 

serous samples now mis-classified. One possible cause is the gene selection method F-test/Scatter. 

Note that each gene has its own power to differentiate some specific pairs of classes. In our ex­

periments, only a limited number of feature genes were picked and combined with classifiers to do 

the classification. Consequently, when some feature genes that have more discriminative power to 

identify the mucinous and clear cell samples were selected to construct the sample classifier, the 

genes that have more discriminative power to identify the serous samples might be kicked out. In 

this case, the prediction on serous samples became worse. 

Class 

serous 
endometrioid 

mucinous 
clear cell 

Original 

51 
1 
18 

5 

3 

2 
4 
15 
1 4 

Smoothed @4% 

47 

9 
5 

2 

6 
5 

24 
6 

Table 4.1: The detailed LOOCV sample prediction result on the original Ovarian dataset by F-
test-KNN-classifier and on the smoothed dataset assuming 4% whole dataset inaccurate rate by 
F-test-KNNimpute-KNN while selecting 60 feature genes for classifier construction. 
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4.4.3 NRMSE for Imputed Inaccurate Entries 

In the literature, the performance of missing value imputation methods is usually measured by the 

normalized root mean squared errors (NRMSE) defined as 

'meanKo™""'"1 - < " ) 2 ] ) 
NRMSE ^ ^ ^ 

where a*jue are those data entries detected to be inaccurate and a™puted are the corresponding esti­

mated values by the missing value imputation method. A smaller NRMSE indicates that the imputed 

values are closer to the original given values (however, notice that in this study these given values 

are detected to be inaccurate). The KNNimpute method has been shown to achieve average NRM-

SEs of less than 1.0 [96]. In Figure 4.6, we plotted two series of NRMSEs by F-test-KNNimpute 

for whole dataset inaccurate rates of 1-30% on the GLIOMAS dataset. In one series (whole sep­

arate), the NRMSE at an inaccurate rate the 2% denotes the NRMSE when the inaccurate rate is 

2%, the NRMSE at 4% denotes the NRMSE on the next 2% inaccuate data entries, and the NRMSE 

at 6% denotes the NRMSE on the succeeding 2% inaccuate data entries, and so on. In the other 

series (whole average), the NRMSE at inaccurate rate p% denotes the NRMSE when the inaccurate 

rate is p%, for p = 2 ,4 ,6 , . . . . Clearly, both series of NRMSEs decrease when tlie inaccurate rate 

increases, which is another indication that the most inaccurate data entries were picked up first by 

our method. Furthermore, all the NRMSEs are greater than 1.0, which help confirm that the discov­

ered inaccurate data entries might indeed be noisy. Lastly, the NRMSE peaks around 4%, colliding 

with the classification accuracy peak at 4% in Figure 4.6, indicating again the positive effects of the 

smoothed data entries. 

Besides plotting the achieved NRMSEs by F-test-KNNimpute on the discovered inaccurate data 

entries, we have conducted an independent test on the randomly selected data entries, at the same 

percentages ranging from 1-30%. For each percentage, the random selection process was repeated 

10 times, and the NRMSEs at the 2% increment and the average NRMSE by KNNimpute are plotted 

in Figure 4.6 (labeled with 'Random Separate' and 'Random Average', respectively). Interestingly, 

all these NRMSEs are very close to 1.0, strongly indicating that the first 12% data entries picked up 

by our smoothing method are very likely inaccurate. 

4.4.4 Experiments on Simulated Datasets 

In these experiments, we demonstrate that our smoothing method can indeed discover the inaccurate 

data entries and smooth them to improve dataset quality. We further demonstrate this through a 

simulation study, where a good quality gene expression microarray dataset is artificially perturbed 

with random noise. We examine the performance of a classifier on the original dataset, the per­

turbed dataset, the smoothed dataset based on the original dataset, and the smoothed dataset based 
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Figure 4.6: NRMSEs of F-test-KNNimpute for whole dataset inaccurate rates the 1-30% on the 
GLIOMAS dataset, and the NRMSEs of KNNimpute on randomly simulated 1-30% missing data 
entries. 

on the perturbed dataset. We use three datasets: the CAR dataset, the LUNG dataset (U95A oligonu­

cleotide probe arrays), and the SRBCT dataset, in this simulation study. The 5-fold cross validation 

classification accuracies of an F-test-KNN-classifier on these three (original) datasets are all higher 

than 90%, and therefore considered as of good quality. 

On each of the three datasets, we randomly selected 10% data entries from the whole dataset and 

perturbed them by adding to them a 0-mean uniform distributed noise with the standard deviation 

equal to the absolute expression value. The subsequent smoothing method was used to identify the 

same percent of data entries from the whole dataset, and treated them as inaccurate. Figures 4.7 plots 

the 5-fold cross validation classification accuracies on the original dataset, the perturbed dataset, the 

smoothed dataset based on the original dataset, and the smoothed dataset based on the perturbed 

dataset. To summarize, though varying a little, the performance of F-test-KNNimpute-KNN on 

the two smoothed datasets is slightly better than on the original dataset, and the performance on 

the perturbed dataset is significantly worse. Note that these three original datasets are considered 

as of good quality, and therefore our smoothing memod may only contribute a little. However, 

when the noise is obvious, such as the perturbed datasets, our smoothing method works effectively 

in discovering the inaccurate data entries and curating them to improve the data quality, which is 

reflected by the competitive sample classification accuracies, to the ones obtained on the original 

datasets, achieved by the same classifier. 
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4.5 Conclusions 

Gene expression microarray datasets are in general noisy. We proposed a novel computational 

method to detect those inaccurate data entries based on their effects on feature gene selection and a 

subsequent sample classification. The discovered inaccurate data entries were then re-estimated us­

ing existing missing value imputation methods. The extensive experiments showed that the proposed 

smoothing method reduced the noise level in the original datasets, and that the smoothed datasets 

had significantly better quality in terms of feature gene selection and sample classification. Another 

discovery is that, in general we may not be able to assume that every gene has the same probability 

of being inaccurate, but using our smoothing method to adjust a fixed percent of entries from each 

sample or from the whole dataset can reduce the noise effect. 
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Chapter 5 

Nucleotide Composition String 
Selection in HIV-1 Subtyping Using 
Whole Genomes 

5.1 Introduction 

1 The increased volume of available genomic data has made possible phylogenetic analysis for large 

sets of organisms at the whole genome scale. However, given that most genomes contain millions 

to billions of nucleotides, traditional molecular phylogenetic analysis approaches based on multiple 

sequence alignments, such as maximum parsimony and maximum likelihood, become impractical 

due to their high computational complexity. Moreover, different genes have different evolutionary 

rates; it has been shown that phylogenetic analyses using different (sets of) genes may give incon­

sistent results. For instance, for the human immunodeficiency virus (HIV-1), the envelope gene is 

known to evolve much faster than other genes [53]; and for the Ecdysozoa clade of animals, the 

accepted reliability of 18S rRNA as a phylogenetic marker has been questioned [29]. Consequently, 

it is believed that sophisticated analyses on the whole genome sequences are required to provide a 

detailed and accurate picture of evolutionary relationships. However, the huge size of these whole 

genome sequences generally creates computational challenges including memory consumption and 

CPU usage. 

There exist several attempts to address phylogenetic questions from a whole genome perspec­

tive, based on efficient information representation of the whole genomes while bypassing the high 

computational complexity stage of multiple sequence alignments [64, 38, 45, 71, 83, 23, 41, 89, 

87, 40, 86, 88]. All of these approaches are intended to extract the hidden evolutionary informa­

tion from the whole genomes, but from different angles. For example, gene content based methods 

[83, 82,41, 42] mainly concentrate on a portion of homologous genes shared by multiple genomes, 

and then define an evolutionary distance between two genomes based on their gene sharing percent­

age. Alternatively, the compression based methods [64, 38, 23] generally regard the whole genomes 

1 This work has been published in Bioinformatics [99]. 
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as plain text, and define the similarity between two genomes as the relative compression ratio. The 

disadvantages of the above two approaches are that the former requires prior knowledge on homol­

ogous genes and the latter suffers from aggregate errors arising from compression. 

The third class of methods in the whole genome phylogenetic analysis attempt to extend single 

nucleotide or single amino acid composition to study string composition for whole genomes where a 

string is a consecutive segment of nucleotides or amino acids [45, 55, 89, 87,40, 86, 69, 88]. Recent 

proposals in this category include [45], which analyzed the systematic differences in dinucleotide 

frequencies within and between species, and obtained a biologically plausible phylogenetic tree for 

mitochondrial genomes, [55, 40, 69], in which analyzed asymmetries in length-fc word distribution, 

then extracted phylogenetic properties from genome-wide statistical observables for prokaryotes, 

and [89, 87, 86, 88], which used singular value decomposition (SVD) to analyze short peptide fre­

quencies (of length 3 to 5), then built species phylogenies. 

In the reported experimental results, all of the above mentioned methods in the third category 

managed only strings of length 7 or less for amino acid sequences and of length 12 or less for nu­

cleotide sequences into computation, because of memory demands. Theoretically, one may increase 

the maximum string length by having finer composition for the whole genomes in order to obtain 

more accurate pair-wise evolutionary distances. However, increasing string length requires too much 

memory to be practical, as well as increased CPU usage. For example, computing a length-7 peptide 

composition for a whole genome (which is regarded as the union of its encoding proteins) already 

requires gigabytes of storage, regardless of the size of the genome. Consequently, in practice, the 

maximum string lengths have been set to relatively small values such as 5 and 6. 

Nevertheless, it has also been observed that not every composition string contributes equally to 

the evolutionary distance calculation. In fact, some strings appear to have more discriminatory power 

than others. [89, 87, 86, 88] proposed to employ SVD on the peptide-to-genome frequency matrix, 

to extract a reduced number of string linear combinations, and then use their pseudo frequencies to 

represent the genomes. However, such a decomposition does not address the memory issue, i.e., the 

peptide-to-genome frequency matrix must still be computed, and that can only be done when the 

maximum string length is a small value. In addition, the string linear combinations created by SVD 

are difficult to explain biologically. 

Based on the above two major observations, we propose a string scoring method to extract ex­

plicit composition strings that heuristically identify the richest evolutionary information, and then to 

use only these selected strings in the evolutionary distance calculations. These selected composition 

strings can be regarded as the most important features with respect to the whole genomic sequences. 

In our method, the number of selected strings is a parameter that can be tuned depending on the 

available computing resources. In particular, the memory requirement in the selection process is 

proportional to the number of selected strings, and selecting thousands of strings can be processed 

on a normal desktop, while examining candidate strings of an arbitrarily large length. 
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We applied our method on a dataset of 867 pure subtype HIV-1 strains and 331 various recombi­

nants, to predict their subtypes or recombinant forms. Among the 867 pure subtype strains, 42 were 

used as references. By setting the number of selected strings at 500 and the maximum string length 

at 21, we achieved 100% leave-one-out subtyping accuracy on the reference dataset of 42 pure sub­

type strains. Using these 500 strings, we also achieved 100% subtyping accuracy on the independent 

testing dataset of the other 825 pure subtype strains. These 867 pure subtype strains were also used 

in blind comparison to three most recently proposed HIV-1 subtyping programs [65, 25, 70], which 

achieved 96.4%, 99.2%, and 99.5% accuracy, respectively. More detailed analysis revealed these 

500 top scoring strings to be signature strings associated with certain subtypes. Subsequently, we 

present a method to remove 2-50% of consecutive nucleotides from each of the 331 recombinant 

strains and then to predict the subtype information for the remaining sequence. The non-trivial per­

centage (for example, 3%) of predicted subtypes match well with the known recombinant forms, 

with some exceptions strongly suggesting the need for further human re-curation. All these results 

demonstrate that our proposal is promising in terms of both the biological significance of the selected 

nucleotide composition strings and the quality of the recovered phylogenetic relationships. 

The rest of the chapter is organized as follows: In the next section, we briefly introduce the 

Complete Composition Vector (CCV) representation for a whole genome. We will then present 

a selection scheme to extract the most informative nucleotide composition strings. Using these 

selected strings, we can obtain a much lower dimensional composition vector for each genome. 

We then define the evolutionary distance between two genomes based on their composition vectors. 

In Sections 5.3 and 5.4, we report and discuss the computational results on the HIV-1 subtyping, 

respectively. Section 5.5 presents the recombinant form prediction and the preliminary experimental 

results. We conclude the chapter in Section 5.6. 

5.2 Methods 

5.2.1 Complete Composition Vector 

We use whole genomic sequences to introduce the concept of CCV. For a genome represented as 

the union of its encoding protein sequences, its CCV can be analogously defined. First, a length-A; 

string is a sequence of k consecutive nucleotides. Given a whole genomic sequence G of length L, 

the number of appearances of a length-A; string a = a\a2 . . . a^ in G is f(a), where every a, is a 

nucleotide. Since there are L - k + 1 (overlapping) length-A; strings in G in total, the probability 

of appearance of string a in sequence G is p(a) = f(a)/(L — k + 1). Similarly, we can define the 

probability of appearance p(a) for string a in a whole genome containing multiple chromosomes, 

where the dividend becomes the number of appearances across all the chromosomes and the divisor 

becomes the total number of (overlapping) length-A; strings in all the chromosomes. 

Based on all the string appearance probabilities we can define the composition value n(a) for 
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string a. In this chapter, we adopt a second order Markov model similar to [40]. In such a model, 

we first calculate the expected appearance probability of string a = ai<X2 • • • afc as q{a\a2 • • • a*;) = 

(p(ai02 • • • afc_i)xp(a2a3 . . . ak))/p(a2a3 ... a t - i ) , and then define the composition value 7r(a) = 

(p(a) — q(a))/q(a). All the composition values are stored in a sequential order to form a vector 

14(G) = (7Ti, 7r2,..., 7rm) that represents the whole genome G, where k is the string length and m 

denotes the total number of strings under consideration. In [40] and [69], the (amino acid) string 

length k was fixed at a very small single value (less than or equal to 6). In one of our previous 

research [100, 99], we conducted a systematic study and concluded that using strings with multiple 

lengths, in a range [1, K\ for some K, is more effective. Particularly, the phylogenetic analysis and 

the resultant phylogeny in [100] showed improvements over using only one fixed length. In this 

chapter, we continue to use strings of length in the range [1, K\, and the vector definition by all 

these composition values of strings, i.e., the concatenation of 14, 14, • • •, VK, is referred to as the 

Complete Composition Vector (CCV) of the whole genome. Certainly, a larger value of K gives a 

vector containing finer evolutionary information. 

A CCV is thus an m-dimensional vector (for instance, m could be as large as 4 + 42 + 43 + . . . + 

415 = 1,431,721,300, when K = 15). Note that m could be a very large number, and it implies 

one major disadvantage of CCV for acquiring too much memory to be computationally efficient. In 

the preliminary experiments, we set the target to examine strings of length up to 100, and therefore 

the memory issue needs to be addressed. Firstly, observe that there are strings, especially when they 

are long, which do not occur at all in any whole genome in the dataset. We thus do not compute their 

composition values. Subsequently, the CCV for a whole genome has a much lower dimension, in 

which every entry is associated with a string that occurs in at least one genome. Secondly, notice that 

not all strings contribute to the phylogenetic analysis equally. Therefore, we propose to extract only 

a small number of strings, which contain the richest evolutionary information, and only use them in 

the phylogenetic analysis. The proposed string extraction scheme is based on the measurement of 

relative entropy, which has been constantly employed in the general feature selection in the statistical 

learning literature. The most important parameter in this framework is the number of extracted 

strings, which is likely dataset dependent and, on the HIV-1 subtyping, is set at 500 through extensive 

preliminary/training experiments. Such a setting is to maintain the overall quality of the recovered 

HIV-1 phylogenetic relationships. Under this string extraction scheme, we were able to examine 

much longer strings (in our experiments, up to 100) without causing any memory problems, and 

as a result we discovered that those composition strings with the richest evolutionary information 

in HIV-1 subtyping have length mostly in the range [5,9], Such a discovery partially confirms the 

idea that we can skip long strings in the whole genome phylogenetic analysis. The reported HIV-1 

subtyping results are on strings of length 1 to 21. It also confirms that using a single length is not 

sufficient [100], and thus the CCV representation is in general more effective than the representation 

proposed in [40] and [69]. 
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5.2.2 String Selection and Phylogenetic Relationships 

In this section, we first introduce a scoring scheme to estimate how important a nucleotide com­

position string is, and then, by selecting the top ranked 500 strings, we obtain a 500-dimensional 

composition vector for each whole genome. Two other scoring schemes that have also been tested 

and the empirical determination of the string number 500 are included in Discussion. On the HIV-1 

dataset of 42 reference strains, we note that 500 is much smaller than the total number of examined 

strings (of length 1 to 21), which is 2,260,957, and these 500-dimensional vectors can be computed 

without causing any memory problem. Note also that, disregarding the memory issue, the string 

selection is done in almost the same amount of time for computing the CCV representation, except 

a negligible amount of time for computing relative entropies. These vectors are then used to define 

a pair-wise evolutionary distance between every pair of whole genomes, and then the achieved dis­

tance matrix is used to construct a Neighbor-Joining [72] phylogeny, and in subtyping. The quality 

of the recovered phylogenetic relationships, represented in subtyping accuracy, demonstrates the 

success of our method and the quality of the selected composition strings. 

5.2.3 String Scoring Scheme: Relative Entropy 

Basically, the scoring scheme is set up to evaluate the information content associated with the com­

position strings, and to assign a higher score to a string if its information content is richer. Note that 

each string is evaluated independently. To begin, we concatenate all the given whole genomes in 

the dataset and regard the result as a super-genome. We men compute the composition value n(a, i) 

for string a in genome i, for each % — 1,2,.. . , n (here n is the number of whole genomes in the 

dataset), and the composition value 11(a) for string a in the super-genome. 

The absolute composition values \ir(a, i) | for string a in all the given genomes may be regarded 

as an unnormalized probability distribution of string a, where the index i is regarded as a variable. 

We use relative entropy (or Kullback-Leibler distance) to assign a score to string a to measure 

the distance between this distribution and the unnormalized background probability represented as 

11(a). Namely, 
n 

s(a) = ]P|7r(a,i)|ln 
i = l 

where ln( ) is the natural logarithm. Note that relative entropy is used to estimate the distance 

between two probability distributions. Therefore, s() defined in the above is close to 0 if the actual 

distribution is close to the background one. In other words, the larger the absolute relative entropy, 

the more informative string a is. 

5.2.4 Selected String Composition Vector 

We maintain a buffer of size 500 to store the nucleotide composition strings that have been examined, 

and have the highest scores using the above relative entropy based scoring scheme. We examine the 

ir(a,i) 
11(a) 
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strings in increasing length and, for each length, in lexicographical order. For each string under 

consideration, if there is a room in the buffer (i.e., among the first 500 strings), it is appended; 

otherwise, its score is compared with the minimum score of the strings stored in the buffer, and 

if larger, it replaces the string with the minimum score. By only saving these 500 highest scored 

strings, the potential memory issue is resolved and die maximum string length to be examined can 

be set to an arbitrarily large value. For example, we have examined strings of length 100 in our 

preliminary experiments on a normal desktop witii 1GB of memory. After all strings have been 

examined, the composition values of the 500 top scored strings stored in the buffer are used to 

assemble the 500-dimensional composition vectors to represent the whole genomes. Let V(i) = 

(i»i > "i2 > • • • i ""im) be the vector representing genome i, for i = 1,2,.. . , n, where m = 500 and 

7Tj3. denotes die composition value of the j-th highest scored string in genome i, for j = 1,2,..., m. 

5.2.5 Whole Genome Phylogenetic Relationships 

The pairwise euclidean distances are calculated first. The distance matrix Dnxn is used as input to 

the Neighbor-Joining algorithm to display the phylogenetic relationships among the whole genomes. 

These distances are also used for HIV-1 subtype prediction for each testing strain. Essentially, 

the distances between the testing strain and the carefully chosen 42 HIV-1 reference strains are 

calculated using the above steps of operations, and based on them the subtype or the recombinant 

form of me testing strain is inferred. 

5.3 Computational Results 

5.3.1 Overview 

To evaluate die effectiveness of our string selection meuiod, we have tested it on a dataset of HIV-1 

pure subtype and recombinant strains to predict meir subtypes or recombinant forms. 

HIV is among the most genetically variable organisms known. HIV-1 is classified into three 

major phylogenetic groups, M (major), N (new) and O (others). Group M, which is responsible 

for die HIV pandemic, is further divided into nine subtypes, some of which have been even further 

subdivided into sub-subtypes. Besides GenBank, there are several other viral databases holding 

HIV virus sequences, such as the one provided by the Los Alamos National Laboratory (http://hiv-

web.lanl.gov/content/index). In 2005, a set of 42 reference whole genomic sequences was published 

[53], which included 35 sequences in group M, 3 in group N, and 4 in group O. In addition, we 

have downloaded a total of 825 other pure subtype and 331 recombinant HIV-1 whole genomes for 

independent testing (several hundred other incomplete strains were excluded from our experiments). 

Accurate determination of the genetic subtype for an HIV-1 strain is of crucial importance for 

epidemiological monitoring as well as for the design of molecular detection systems and potential 

vaccines [70]. This work addresses mainly the pure subtype HIV-1 subtyping. A discussion on using 
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length: 
top 500: 

top 5,000: 

4 
-

0.138 

5 
2.2 

1.308 

6 
10.0 

7.108 

7 
58.2 
22.85 

8 
22.8 

37.122 

9 

6.6 
24.006 

10 
0.2 

7.462 

Table 5.1: Percentages of different length strings in the top ranked strings. 

this subtyping system to determine the recombinant form for a recombinant strain is included in Sec­

tion 5.4. Current subtyping and recombinant form determination methods mostly rely on multiple 

sequence alignments [65, 25, 62], except die one by [70] based on BLAST search [7]. To the best of 

our knowledge, multiple sequence alignments have limited quality and are constrained by the size 

of the dataset (for example, the EMBL-EBI ClustalW server at "http://www.ebi.ac.uk/clustalw/" ac­

cepts datasets containing no more than 500 sequences). On the set of 42 HIV-1 reference strains, 

we selected the 500 top scored strings by relative entropy, and the leave-one-out subtyping accuracy 

using only the 500 selected strings was 100%. Using these 500 strings, independent subtyping of 

the 825 testing strains achieved also 100% accuracy. The combined dataset of 867 pure subtype 

strains were also sent to three other HIV-1 subtyping programs [70, 65, 25] for comparison pur­

pose. Overall, our method successfully avoids the computationally intensive alignment phase, and 

achieves high subtyping accuracy. Another advantage of our method is that it does not require any 

pre-knowledge about the genomic sequences (such as that one portion of the genome is more impor­

tant than the other portion during the subtyping), while those important regions will be automatically 

detected according to their coverage by the selected strings, which also allow biological explanation. 

5.3.2 Results 

We applied our string selection method on the set of 42 HIV-1 reference sequences, which can be 

viewed as the training stage, to select the 500 most informative strings for subtyping purpose. The 

discerning power of these strings is evaluated through the leave-one-out cross validation on the 42 

reference sequences and an independent testing on the dataset containing 825 pure subtype HIV-1 

viral sequences. The 42 HIV-1 reference sequences consist of 6 subtype A (4 Al and 2 A2), 4 

subtype B, 4 subtype C, 3 subtype D, 8 subtype F (4 Fl and 4 F2), 3 subtype G, 3 subtype H, 2 

subtype J, 2 subtype K, 3 type N, and 4 type O. The average length of these strains is being 9,005bp, 

with the maximum length being 9,829bp and the minimum length 8,349bp. These HIV-1 reference 

sequences were carefully selected by considering several criteria [53]. 

We set a maximum string length K in our method, and the method examined the strings in 

increasing length and, for each length, in lexicographical order. When K = 21, the 500 top ranked 

(out of 2,260,957) strings have their length distributed in between 5 and 10. The second row of 

Table 5.1 shows the percentages of different length strings among these 500 top ranked strings, 

where one can see that length-7 and length-8 strings are dominant (81.0%). We have also collected 

the relative entropies of the top 5,000 strings (whose percentages are in the third row of Table 5.1) 
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Figure 5.1: The relative entropy scores of the 5,000 top ranked strings, in decreasing order, in which 
the 500 top ones are colored blue. 

and plotted them in Figure 5.1 in non-increasing order. The top 500 strings are colored blue (the 

other 4,500 in red) in Figure 5.1. From the plot, it is clear that the strings that did not make it into the 

list of 500 have relatively small relative entropies, and thus can largely be ignored. By representing 

each strain as a 500-dimensional vector, the subsequently computed evolutionary distance matrix for 

this set of 42 HIV-1 reference strains was used as input to the Neighbor-Joining method to generate 

a phylogenetic tree (Figure 5.2), using one CIV strain AF447763 as an outgroup. In this tree, all 

subtypes are clearly grouped together as distinct branches, and the closeness relationships among 

the subtypes are also well demonstrated, for example, subtypes B and D are closer to each other 

than to the others and subtype F (A) indeed contains two distinguishable sub-subtypes Fl and F2 

(A 1 and A2, respectively). 

On these 42 HIV-1 reference sequences, we adopted the leave-one-out cross validation (LOOCV) 

scheme to predict the subtype information for each sequence whose subtype was blinded. In more 

details, the testing sequence was removed from the dataset, and the above string selection procedure 

was applied to the rest of the 41 sequences to identify the 500 top ranked strings by their relative 

entropies. Note that these 500 strings could slightly differ from the 500 top ranked strings by using 

all 42 sequences. Next, using the selected 500 strings, the distances between the testing sequence 

and all the 41 reference sequences were calculated, and the subtype of the closest reference sequence 

was taken as the predicted subtype of the testing sequence. We repeated this training-testing on each 

of the 42 sequences and obtained a 100% subtyping accuracy. 

Using these 42 reference sequences as a training dataset to select 500 strings, we independently 

predicted the subtype for each of the 825 pure subtype HIV-1 sequences. Among the 825 sequences, 

there are 55 Al, 9 A (not known to be Al or A2), 264 B, 415 C, 51 D, 2 Fl, 10 G, 2 N, and 17 

O. For each of the testing sequences, whose subtype was blinded, the distances between it and all 
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Figure 5.2: The Neighbor-Joining phylogenetic tree on the 42 reference sequences using the 500 top 
ranked strings, one CIV strain AF4477 63 is used as an outgroup. 

the 42 reference sequences were calculated using (only) the 500 selected strings. The subtype of the 

closest reference sequence was then taken as the predicted subtype of the testing sequence. We also 

achieved 100% subtyping accuracy (for each of the 9 A sequences, both Al and A2 were counted 

as correct prediction) on this independent testing dataset. Moreover, for each testing sequence, we 

have observed that the second closest reference sequence from the 42 reference sequences has the 

same subtype as the closest one. This certainly indicates prediction of high confidence. For each 

testing sequence, we have also calculated its average distances to all the 13 subtypes. The closest 

subtype by average distance is exactly the same as the subtype of the closest sequence. Let di 

and d,2 denote the shortest and the second shortest average distances, respectively, and d\% denote 

the longest average distance. Numerically, we assigned (efo - d\)/(dis - d\) (Dixon metric) as 

the quantified confidence associated with the subtype prediction. For all the 825 testing sequences, 

their subtype prediction confidences are plotted in Figure 5.3, in non-increasing order, where only 

5 of them are less than 0.1 (0.099233, 0.098523, 0.094155, 0.073713, and 0.052269), which is the 

normal lower-bound for high confidence [90]. A closer look at these five sequences tells that 1) four 

of them are of subtype D, and their average distances to subtypes D and B are very close to each 

other; 2) the other one (AY173955) is of subtype B, whose average distance to subtype D is very 

close to its average distance to subtype B. 

To compare with existing HIV-1 subtyping programs [70, 65, 25], we have uploaded all the 
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Figure 5.3: Subtype prediction confidence values (Dixon metric) in non-increasing order, using the 
top 500 strings. Only five out of the 825 predictions are considered not-so-confident under Dixon 
metric. 

867 pure subtype sequences to them to predict their subtypes. The genotyping tool by [70] slides 

a window along the query sequence and BLASTs each window segment against reference se­

quences. Similarity scores to reference sequences are returned for each BLAST, and we applied 

the naive pure subtype assignment using the subtype of the reference sequence with the high­

est average similarity score. Its overall prediction accuracy was 99.5% (4 were predicted incor­

rectly, precision 99.5%), but when we forced it to predict pure subtypes only, its accuracy reached 

100%. The subtyping system, BioAfrica, by [25] (http://www.bioafrica.net/subtypetool/html/) con­

sists of a multiple sequence alignment by ClustalW, maximum likelihood phylogenetic analysis 

by PAUP followed by bootscanning, and subtype determination by Treepuzzle. Its prediction ac­

curacy was 99.2% (7 were unassigned, no false positive). The STAR subtyping system by [65] 

(http://www.vgb.ucl.ac.uk/starn.shtml) evaluates the query sequence against subtype profiles and 

returns discrimination scores, which are then transformed into a Z-score distribution for determina­

tion of HIV-1 subtypes. Its prediction accuracy was 96.4% (31 were unassigned, no false positive). 

There is a recent independent assessment [36] of three automated genotyping tools including the 

above BioAfrica and STAR, which (was brought to our attention during the revision) shows many 

inconsistent genotyping results and suggests that those unassigned strains/sequences show some ev­

idence of recombination. The 867 strains have been annotated as pure subtypes, and our method did 

perform well, though it might seem aggressive on the not-so-confident prediction. 

5.4 Discussion 

We mentioned that the maximum string length K to be examined did not affect the subtyping per­

formance in our experiments, as long as it is larger than a certain value C. On the set of 42 HIV-1 
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Figure 5.4: The prediction confidence values using the top 5,000 strings plotted on top of the or­
der by using the top 500 strings. Only one prediction using the top 5,000 strings remains not-so-
confident. 

pure subtype strains, C is 10 when we set the number of strings to be selected to 5,000 or less. 

Nevertheless, C is clearly associated with the number of selected strings, and a larger number of 

selected strings would imply a larger value of C. We also believe that C is dataset dependent. That 

is, for other whole genomic sequences, C could have different values, even when the number of 

selected strings is the same. We will be investigating this idea on the Avian Influenza Virus (AIV) 

and Foot and Mouth Disease Virus (FMDV). 

To address whether 500 top ranked strings by relative entropy are appropriate for HIV-1 subtyp-

ing, we examined a range of selected strings from 50 to 5,000, at the increment of 50, and checked 

the corresponding subtyping accuracy. We have observed the first 100% subtyping accuracy at 450, 

and for every other number tested afterwards, the subtyping accuracy remained at 100% (that is, 

never decreased). We therefore decided to set 500 as the default. Nevertheless, we have found that, 

by using 5,000 strings, most of the subtyping confidences increased. In particular, four not-so-

confident predictions using only 500 strings became confident when using 5,000 strings, and only 

one (DQ0 5 4367) remained not-so-confident (the Dixon metric decreased, strangely, from 0.098523 

to 0.080143). On top of the non-increasing order of prediction confidences using 500 strings (blue), 

the prediction confidences using 5,000 strings (red) are plotted and shown in Figure 5.4, where one 

can see that the relative confidences remain largely unchanged and, for most of the testing sequences, 

the associated prediction confidences using 5,000 strings increase. 

Next, we examined how well the selected 500 strings cover the positions in the HIV-1 whole 

genomes. For each of these 500 selected strings, if it occurs in one of the 867 pure subtype se­

quences, then the positions where the string occurs receive a probability of k/(L — fc + 1) each, 

where k is the string length and L is the sequence length. The probability that one position re-
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ceives is regarded as the coverage probability of the position, which indicates the relative sig­

nificance of the position for subtyping purposes. For each position in the multiple alignment of 

the 42 reference sequences by ClustalW (which was constructed through the EMBL-EBI server at 

"http://www.ebi.ac.uk/clustalw/", in 113 minutes), we computed its coverage probability and plot­

ted them in Figure 5.5. One can see from this plot that the most frequently covered positions by 

these 500 selected strings match very well with the most important positions in the ClustalW's mul­

tiple alignment (shown as red +, others as blue circles). This is another indication that our method 

is able to capture the critical sequential evolutionary information indicated by multiple sequence 

alignments. 

In addition to the above string composition values computed within the second order Markov 

model, we have also examined the first order Markov model in which the composition value directly 

uses the string occurrence frequency. Also, in addition to the relative entropy scoring schemes, we 

have tested two other scoring functions: the standard deviation of the composition values and the 

mean-weighted variant. It turned out that the relative entropy scoring scheme performed signifi­

cantly better than the other two (data not shown); and the first order Markov model appeared much 

inferior to the second order Markov model (data not shown). Note that our string selection was 

done by examining all the strings within the length range, but assuming no correlations amongst 

them. One immediate future task is to consider possible correlations, and if identified, to borrow 

ideas from general feature selection methods and classification methods to exploit the feature cor­

relations. Finally, but not of least interest, we will be working with other groups to further investi­

gate the biological content of these 500 selected strings for post-subtyping studies. Interestingly, a 

BLAST search seemingly shows that the top ranked string GAAAAAGAG, by relative entropy, seems 

a signature of subtypes B, F, and K (GAAAAAGAG appears in 41.8%, 80%, 100% of subtypes B, F, 

K strains in our dataset, respectively). 

5.5 Recombinant Form Prediction 

There are many proposed methods and programs which address RNA recombination detection, es­

pecially in RNA viruses such as HIV-1 and hepatitis C virus (HCV) [63, 70, 62]. Most of these 

methods and programs start with multiple sequence alignments [63, 62]. For an HIV-1 viral strain 

known to be a pure subtype, its subtyping is considered relatively easy. This has been demonstrated 

by our method, as well as the three subtyping programs we have tested. However, HIV-1 is notori­

ous for its various forms of recombinations, which constantly challenge the drug development [70]. 

Thus, upon the arrival of each new strain, the subtyping task is to determine whether it is a pure 

subtype strain, and, if it is not, to determine its recombinant form. 

We randomly selected 16 out of the 825 pure subtype sequences, and for each of them, we 

partitioned it into 50 equal parts, each containing around 180 nucleotides. At each testing, a number 

of consecutive £ parts, where 1 < £ < 25, were removed from the whole strain and the remainder 
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Figure 5.5: CiustaiW's MSA position coverage by the 500 top ranked strings, for the 42 reference 
sequences. 

were concatenated into a new sequence. Using the 5,000 top ranked strings selected using the 

42 HIV-1 pure subtype reference sequences, the new sequence was again represented as a 5,000-

dimensional composition vector. The distances between this vector and the 42 reference sequences 

were then calculated, and the subtypes of the two closest reference sequences were reported. For 

each strain, a total of 950 testings were executed and 1,900 predicted subtypes were reported. For 

each of the distinct 13 subtypes, its occurrence frequency in these 1,900 predicted subtypes was 

calculated, and every strain was represented as a 13-dimensional vector. These frequencies are 

color-coded and plotted in Figure 5.6 (the left 16 columns), where one can easily see that those non-

13 strains are confidently evaluated to be pure subtype strains, though a few of them (two Al, two B, 

and two D) have been mixed with some small percentage of information from other subtypes. 

We then used the above approach, extended from our pure subtyping method, to determine 

the HIV-1 circulating recombinant forms (CRFs). That is, each of the 331 HIV-1 recombinant 

strains (196 CRF01AE, 52 CRF02AG, 3 CRF03AB, 3 CRF04CPX, 3 CRF05DF, 8 CRF06CPX, 7 

CRF07BC, 4 CRF08BC, 5 CRF09CPX, 3 CRF10CD, 10 CRF11CPX, 10 CRF12BF, 6 CRF13CPX, 

7 CRF14BG, 5 CRF1501B (AE/B), 2 CRF16A2D, 4 CRF18CPX, and 3 CRF19CPX) was parti­

tioned into 50 equal parts, and there were 950 associated testings, for each of which the subtypes 

of the two closest reference sequences were reported. Then, similarly, for each of the distinct 13 

subtypes, its occurrence frequency in these 1, 900 predicted subtypes was calculated and every re­

combinant strain was represented as a 13-dimensional vector (for 7 randomly picked recombinant 

strains, their associated vectors are plotted in Figure 5.6 as the right 7 columns). The non-trivial 

portions of the predicted subtypes can be assigned as the recombinant form. For instance, for 

strain AF179368, 37.6% predicted subtypes are Al, 0.2% are Fl, 2.6% are F2, and 59.6% are 

G. Therefore, we may predict that this strain is an A1G recombinant. The known recombinant form, 
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Figure 5.6: The frequencies of the predicted subtypes for the 16 of 825 randomly selected pure 
subtype strains and the 7 recombinants, using the 5,000 top ranked strings. 

recorded in the LANL HIV-1 Sequence Database, is CRF11CPX and it is a mosaic of A/G/E/J. In 

other words, our computational prediction somehow missed the subtype J information. For each 

recombinant strain, we calculated the prediction accuracy as the percentage of correctly assigned 

subtypes among the 1,900 ones. The average prediction accuracy on those 91 recombinant strains 

(CRF02AG, CRF03AB, CRF05DF, CRF07BC, CRF08BC, CRF10CD, CRF12BF, CRF14BG, and 

CRF16A2D) which have the deterministic recombinant forms is 87.3%. Among die above 7 se­

lected recombinant strains, our method perfectly predicted onAF063224 and L39106, which are 

AG recombinants (Figure 5.6, the 20th and 21st columns). 

It is claimed that the NCBI genotyping tool is "especially useful for the analysis of recombinant 

sequences" [70]. To consider this claim, we first conducted a comparative study by submitting 

all 331 recombinant strains to the server, but only allowed it to predict pure subtypes. For each 

sliding window, we reported the top two subtypes according to the BLAST similarity score, and 

similarly calculated the prediction accuracy. For the 91 strains having deterministic recombinant 

forms, the average prediction accuracy was 73.4%. Secondly, we replaced the 48 reference pure 

subtype strains in the tool by our 42 reference strains (in fact, our 42 are included in the 48) to test the 

BLAST methodology using the same set of reference strains. For the 91 strains having deterministic 

recombinant forms, the average prediction accuracy decreased a little to 66.2%. In another study, we 

allowed the server to report the closest recombinant form since it has reference recombinant strains. 

Among the collected 331 recombinant strains, 65 of them are used as references in the tool (the tool 

has in total 68 reference recombinant strains, in which 3 of them are absent from the LANL HIV-

1 Sequence Database). For the other 266 recombinant strains, the server made only two mistakes 
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where two CRF12BF strains, AY771588 and AY771589, were predicted to pure subtype B. The 

prediction results remained exactly the same even when the 48 reference pure subtype strains were 

replaced by our 42 reference strains. In the last study to test our pure subtyping method, we used 

our 42 reference pure subtype strains and the 68 reference recombinant strains in the NCBI tool, 

and the 5,000 selected nucleotide strings to map every strain into a 5,000-dimensional space and 

subsequently calculated all the pairwise distances. Each of the 266 testing recombinant strains was 

assigned the closest pure subtype or recombinant form. We were able to assign only 242 strains 

correctly, while all the other 24 strains were incorrectly assigned as CRF02AG. This indicates that 

the 5,000 nucleotide strings are not good enough for recombinant form prediction, since they were 

selected for the purpose of pure subtyping. Nevertheless, it is interesting to see that both AY771588 

and AY771589 were predicted to CRF02AG but not pure subtype B, suggesting that the 5,000 

selected nucleotide strings might capture some information missed by BLAST. 

5.6 Conclusions 

We proposed a method to select the most informative strings and use only their composition values to 

represent the whole genomes. Such a proposal appears novel in the context of HTV-1 subtyping and 

recombinant form determination. It reduces the genomic data dimensionality, and possibly reduces 

sequential evolutionary noise, and thus makes feasible the whole genome phylogenetic analysis on 

a large set of sequences. Such a method also enables us to identify informative explicit strings with 

respect to a large set of sequences and therefore supports biological explanation. Using our method 

to select 500 strings, for a total 867 pure subtype HIV-1 viral strains, we were able to predict their 

subtype perfectly, i.e., 100% accuracy. 
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Chapter 6 

Identifying Many Foot-and-Mouth 
Disease Virus Signature Nucleotide 
Strings for Computational 
Genotyping 

6.1 Introduction 

1 Foot-and-mouth disease (FMD) is one of the most contagious animal diseases, with a large eco­

nomic impact. Frequent sporadic outbreaks have been reported in many countries. The most re­

cent outbreak in the United Kingdom costs tens of billions of dollars ( h t t p : / / www. o r a u . gov / 

p i a d c / r e s e a r c h . htm). This disease causes extensive epidemics in domestic and wild cloven-

hooved animals, such as cattle, sheep, goats, and pigs. In addition, it can result in persistent in­

fections in hundreds of other animal species, and so the disease is in the importation banning and 

detection list of most countries. Thus, once this disease is identified, the infected animal popula­

tions are always required to be destroyed. The vaccination is the most efficient method to prevent 

this disease, so preparation and selection of an efficient vaccine will be the most important for FMD 

prevention and control. 

FMD is caused by a single strand RNA virus, so-called FMD virus, which is a member of 

the family Picornaviridae, genus Aphthovirus. The genome of FMDV is about 8.4 kb in size, and 

encodes 12 proteins — leader proteinase Lpro, four structural proteins 1A (VP4), IB (VP2), 1C 

(VP3), and ID (VP1), and seven non-structural proteins 2A, 2B, 2C, 3A, 3B, 3C, and 3D. Like other 

RNA viruses, mutation and recombination always facilitate the emergence of new FMD strains. So 

far, seven immunologically distinct subtypes have been identified: Euroasiatic genotypes A, O, C, 

and Asial and South African Territories subtypes SAT1, SAT2, and SAT3. The capsid protein VP1 

is exposed to the surface of the viron and contains genotype-specific amino acid sequence variations 

(the dissimilarity in nucleic acid among the genotypes can be up to 40%). 

'This work has been published in BMC Bioinformatics [58]. 
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Traditional laboratory experiments for subtyping were based on polymerase chain reaction (PCR) 

and nucleic acid hybridization. More recent methods, such as antigen capture RT/PCR (Ag-RT/PCR) 

[93], employ type-specific antibodies (against immuno-reactive recombinant proteins) for virus cap­

turing followed by RNA amplification. These methods generally target only the VP1 gene, or VP1 

and other capsid-coding genes. They are very useful for selecting the correct vaccines in case of 

FMD outbreak, but they may not be able to identify the presence of new variants or recombinants of 

multiple genotype viruses, which are very common cases for FMD. That identification is essential 

for determining the source of outbreak, understanding the evolution of the virus, and advancing the 

FMDV epidemiological study. Recently, advances in genomic sequencing technologies allow us to 

obtain rapidly the complete genomes of FMDV, and this enhances the development and application 

of computational strategies in genotype and genotype analyses of FMDV [30, 50, 93, 21]. Compu­

tational genotyping or genotyping analysis is generally based on a multiple sequence alignment of 

the viral genomic sequences or their protein products [50]. For example, the most recent FMDV 

phylogenetic and recombination analysis used split decomposition [30] to examine the complete 

strains of 103 isolates [21]. However, this strategy is limited by data size (particularly, the number 

of sequences), that is, the larger the dataset, the lower the accuracy that can be achieved. 

In this study, we propose to identify a set of signature nucleotide strings which can be readily 

used to efficiently detect an emerging FMDV strain. Our method utilizes linear-kernel support vector 

machines as classifiers to extract the signature nucleotide strings using the complete composition 

vector (CCV) representation of the known FMDV strains [100]. In addition to genotype analysis, 

these signature strings may shed light on viral evolution, especially within the unique regions in the 

viral proteins; this information may be used for recombination vaccine construction. 

We applied our method on a dataset of 129 FMDV whole genomes to predict the genotype for 

each of them; we achieved 98.45% leave-one-out cross validation (LOOCV) accuracy, only 2 were 

incorrectly assigned, due to virus recombination (see Discussion). An independent test on the other 

37 strains achieved 100% accuracy using the selected nucleotide strings from the LOOCV study. 

More detailed analyses of the 20 top scoring strings revealed that these nucleotide strings are signa­

ture strings associated with genotypes. These results demonstrate that our proposal is promising in 

genotyping and further understanding evolutionary footprints of FMDVs. 

6.2 Methods 

6.2.1 Entropy-Based Nucleotide String Pre-Filtering 

Using the CCV representation, each FMDV strain is mapped to an m-dimensional vector, where 

TO could be as large as 4 -I- 42 + 43 -I- . . . 4- 415 = 1,431,721,300 when setting the maximum 

string length to 15. Our computation on the dataset of 129 FMDV strains revealed that the number 

of present strings is 1,320,791, about one thousandth of the largest possible number. Such a high-
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dimensional vector representation not only causes computational memory problem as demonstrated 

in our previous work [100], but also, and more severely, invokes the curse of dimensionality when 

genotyping is concerned. Disregarding the strain genotype information, among these nucleotide 

strings, many have very close (and small) composition values across all 129 strains, and thus they 

do not likely contain genotype-specific information. We design an entropy-based filter to retain only 

a number of nucleotide strings, which contain rich information content, for subsequent study. 

Again, we use relative entropy to assign each strings a score and then keep only the top 10,000 

ranked strings (by their RREs). Two interesting facts about the FMDV dataset are that all these top 

ranked 10,000 strings have length less than or equal to 11, and that 97.11% of them have lengths 6, 

7, or 8. Such facts on one hand confirm partially the decision that we can skip longer strings in the 

analysis, on the other hand, support the observation that using a single string length, as is done in 

[40, 69], is not sufficient [100]. 

6.2.2 Disc-based Feature Selection Method 

We combined the ACGS and DCGS feature selections into our method. Assume in the given multi-

class whole dataset there are n strains on p strings, and these n strains belong to m subtypes. In 

the following, we define a novel vector representation for strains, which can differentiate their class 

recognition strength. 

Let gij denote the CCV value of the i-fh string in the j-th strain. That is, in the CCV matrix, 

each row represents a string, Gi = gn, gt2, • • • , gin, and each column represents a strains. For the 

i-th string, its mean CCV value in the fc-th subtype is denoted as htk for k = 1,2, • • • , m. The value 

I hik — hu | captures the difference between the mean CCV values of the i-th string in the k-th subtype 

and in the 1-th subtype. Obviously, if this value is small, then the i-th string would not be effective 

in discriminating strains from these two subtypes, but it could be effective otherwise. Therefore, we 

define the subtype discrimination strength vector for the i-th string as 

Hi — \hn—hi2\, \hn—hi3\,..., \hn—him\, |/lj2 —fti3|, •••, \hi2~ him\, \fli3 — hi4\, ..., | / l » , m - l — him\ 

Let d\ (i\, 1%) and d<i (h, i-i) denote the Euclidean distances between the ii-th and the i2-th string 

based on their G-vectors and H-vectors (CCV values), respectively. Note that there are n entries in 

the G-vectors and m(m — l ) /2 entries in the H-vectors, respectively. We define 

A - dl . 2d2 

n m(m — 1) 

to be the distance between the ix-th. and the i2-th string. We can calculate the Euclidean distance by 

the above equation between every pair of strings, and then call the fe-means algorithm to cluster the 

strings. 
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6.2.3 Genotype Signature String Extraction and an SVM-CIassifier 

With only 10,000 nucleotide strings kept for analysis, the memory issue is resolved. For instance, 

the Euclidean distance between every pair of strains, using their 10,000-dimensional vector rep­

resentation, can be calculated. Such use of composition values treats all these 10,000 nucleotide 

strings equally. A better way would be using these strings as features to classify the FMDV strains 

into different subtypes. However, the large gap between 10,000 features and 129 FMDV strains 

could result in non-unique classifiers which would be significantly biased on these 129 strains. Our 

next step is to further select a smaller number of strings out of the 10,000 to build an effective 

genotype predictor for novel strains. To do this, each strain is represented as a 10,001-dimensional 

vector, in which the last entry records the genotype label. We then apply one of the most effective 

feature extraction methods, the Disc-F-test method [17]. Under the leave-one-out cross validation 

(LOOCV) scheme, Disc-F-test method first applies the F-test method [32] to re-order the 10,000 

strings, using their composition values in 128 of the 129 strains (called training dataset; the other 

strain is held out for testing purpose, whose genotype label is blinded to the constructed predictor). 

A string receives a high score if its composition values are close to each other in strains of the same 

genotype, but distinct to each other in strains of different genotypes. At the same time, the Disc-

F-test method uses a fc-mean algorithm to cluster the 10,000 strings into 150 clusters, using again 

their composition values in all the 128 training strains, and additionally the differences between the 

mean composition values in different genotypes. The method then walks through the string order 

determined by the F-test method to pick up one string per cluster for the first 140 clusters. Note 

that setting up 10 more clusters in the A;-mean clustering algorithm is to put away some strings that 

are not directly useful for genotype classification. These 140 selected strings, together with their 

composition values in all the 128 strains, are fed into a linear kernel SVM to build a classifier. Later 

on, for the testing strain, the composition values for only these 140 strings are calculated and such a 

140-dimensional vector is sent to the SVM-classifier for genotype prediction. 

6.3 Computational Results 

The first FMDV dataset we collected contains in total 129 whole viral genomes, among which there 

are 47 genotype A, 48 genotype O, 8 genotype C, 9 genotype Asial, 9 genotype SAT1, 4 genotype 

SAT2, and 4 genotype SAT3 strains (Table 6.1, second column). The average length of these whole 

genomic sequences is 8,151bp, with the maximum length being 8,280bp (with S fragment) and the 

minimum length being 6,996bp (without S fragment). These FMDV sequences were downloaded 

from GenBank at NCBI. The second dataset contains 37 strains, used for independent testing. Their 

genotype composition is recorded in the 10th column of Table 6.1. 
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Table 6.1: The composition of the different genotype FMDV strains in our two datasets (columns 
2 and 10). The LOOCV prediction results on the first dataset are in columns 3-9; The independent 
testing results on the second dataset are in columns 11-17. 

A 
0 
C 

Asial 
SAT1 
SAT2 
SAT3 

129 

47 
48 

8 
9 
9 
4 
4 

A 
47 

47 

0 
49 

48 

1 

C 
8 

8 

Asial 

9 

9 

SATl 

11 

9 

1 

SAT2 

3 

3 

SAT3 

2 

2 

37 

5 
7 

16 
5 
1 
2 
1 

A 
5 

5 

0 
7 

7 

C 
16 

16 

A.i.1 

5 

5 

SATl 

1 

1 

SAT2 

2 

2 

SAT3 

1 

1 

6.3.1 Baseline Clustering Results 

Setting the maximum string length to 15, there are in total 1,320, 791 strings occurring in the first 

dataset of 129 FMDV strains. By computing the composition values for each of these strings and 

using the top 10,000 ranked ones by RRE, every strain can be represented as a 10,000-dimensional 

vector. Applying standard principle component analysis (PCA) on this 10,000 x 129 matrix to ob­

tain the first two principle components (PCs), the linear discrimination analysis (LDA) shows that 

all the Euroasiatic genotype strains are well separated from those SAT strains, except a SATl strain 

AY593844 and a SAT2 strain AY59384 9 which appear close to Euroasiatic strains (Figure 6.1). 

Within Euroasiatic genotype strains, some of them, for example, some genotype O strains, show 

large distances from the other strains, while some others seem to mix together. Within SAT geno­

types, the strains all mix together and are seemingly inseparable. Increasing the number of PCs (up 

to 9) can obtain some finer resolution results but the general conclusions remain the same (data not 

shown). These 10,000 top ranked strings have their length in between 4 and 11 and the detailed 

percentages are collected in Table 6.2, where length-6,7, 8 strings show dominant (97.11%). 

Table 6.2: The percentages of different length strings in the top ranked 10,000 strings by their RREs. 

String Length 

Percentage (%) 
1 ^ 

0.01 

5 

0.59 

6 

12.27 

7 

57.43 

8 

27.41 

9 

2.11 

10 

0.12 

11 

0.06 

Note that it is impossible to perform PCA on all 1,320,791 strings. Nevertheless, we used the 

1, 320, 791-dimensional representation vectors to calculate the pairwise distances for all the 129 

strains, and subsequently submitted them to the Neighbor-Joining method in Phylip 3.70 [33] to 

construct a phylogeny, shown in Figure 6.7. Clearly seen, though common genotype strains are 

largely clustered into separate clades, there are at least 7 misplacements in this tree. Applying the 

same procedure but using only the top ranked 10,000 strings, the Neighbor-Joining tree shows at 

least 9 misplacements (Figure 6.8). Alternatively, we constructed a multiple sequence alignment for 

87 



A 
ASIAI 

0 
0 

- SAT1 
SAT2 
SAT3 

• 

• 

-
pa&Ui 

0 

St: 

i 
% 

LDA Combining with the First Two PCs 

£n n 

-a o ^ j 

, 
-80 -60 

Figure 6.1: Two component LDA using the first two PCs from PCA on the 129 strains each repre­
sented as a 10,000-dimensional vector. 

the 129 strains, via ClusalW (which took 18.7 hours on a desktop with a 2.1GHz CPU and 2.0GB 

memory to complete), and the associated phylogeny shows a better result. Figure 6.9 shows the 

MSA tree in which at least the two strains, SAT1 strain AY593844 and SAT2 strain AY59384 9, 

are misplaced. 

6.3.2 RRE-LOOCV Genotyping Results 

In the leave-one-out cross validation (LOOCV) scheme, at each iteration one strain is held out as 

testing sample while all the others, labeled by their genotypes, form a training dataset. Using all 

1,320,791 strings and the top ranked 10,000 strings on the training dataset, respectively, we have 

calculated the euclidean distance from the testing strain to each of the 128 training strains, the 

average distance from the testing strain to each of the 7 genotypes, and finally assigned the testing 

strain with the closest genotype. We call this genotyping method the Mean-classifier, which has been 

adopted in many previous classification studies [90]. The LOOCV accuracy of this Mean-classifier 

is 123/129 = 95.35% and 108/129 = 84.72%, respectively. Using all 1,320, 791 strings and the top 

ranked 10,000 strings, respectively, linear-kernel SVM classifiers were built and used to predict 

the genotype of the testing strain. The LOOCV accuracies of these two SVM-classifiers are both 

120/129 = 93.02%. 

Using only the top ranked k strings, for A: = 1,2,3, . . . , 140, by RRE, we have also collected 

the LOOCV accuracies of the Mean-classifier and the SVM-classifier. These results are plotted in 

Figure 6.2. The highest accuracy by the Mean-classifier and the SVM-classifier were 111/129 = 

86.05% and 118/129 = 91.47%, respectively. Figure 6.2 also shows the general tendency that the 

Mean-classifier performed slightly worse than the SVM-classifier. 
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Figure 6.2: The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-
Classifier using the top ranked strings by RRE. 

6.3.3 Genotype Signature String Extraction and LOOCV Genotyping Re­
sults 

RRE is expected to capture most of the information content carried by a string, disregarding the 

strain genotype information. Consequently, it might not differentiate well genotype signature strings 

from non-signature strings. The biomarker identification method, the Disc-F-test method, was em­

ployed to extract the most genotype-discriminative strings out of the 10,000 (again, under LOOCV, 

selected on 128 training strains). Within this method, F-test is run to re-sort the 10,000 strings, in­

corporating the strain genotype information. Using the top ranked k strings by the F-test method, for 

k = 1 ,2 ,3, . . . , 140, the LOOCV accuracy of the SVM-classifier is plotted in Figure 6.3 (labeled 

with F-test-SVM-classifier). Typically, when k = 140, the LOOCV accuracy reaches 123/129 = 

95.35% (the highest by F-test-SVM-classifier). The LOOCV accuracy of the Mean-classifier using 

these k strings is also plotted in Figure 6.3 (labeled with F-test-Mean-classifier). Typically, when 

k = 140, the LOOCV accuracy reaches 124/129 = 96.12% (which is the highest for the F-test based 

classifiers). 

The top ranked strings by the F-test method might have redundant genotype discriminatory 

power [17] and it is not beneficial to include all of them in building classifiers. The Disc-F-test 

method uses the fc-means algorithm to cluster the 10,000 strings into 150 clusters, using their com­

position values across the 128 training strains and the differences between the mean composition 

values in different genotypes (to define the euclidean distance), and then walks through the string 

order by the F-test method to pick up one string per cluster to build the SVM-classifier and the 

Mean-classifier. Using the first k strings by the Disc-F-test method, for A; = 1,2,3, . . . , 140, the 
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Figure 6.3: The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-
classifier using the top ranked strings by the F-test method and the Disc-F-test method. 

LOOCV accuracies of the SVM-classifier and the Mean-classifier are plotted in Figure 6.3 too (la­

beled with Disc-F-test-SVM-classifier and Disc-F-test-Mean-classifier, respectively). The highest 

LOOCV accuracy reached by the Mean-classifier is 123/129 = 95.35%, when using 71-75 and 

77 selected strings; The highest LOOCV accuracy reached by the SVM-classifier is 127/129 = 

98.45% (Table 6.1 columns 3-9, where SAT2 strain AY5 9 3 8 4 9 was predicted as O and SAT3 strain 

AY593850 was predicted as SAT1), when using around 120 selected strings. Figure 6.3 shows a 

clear pattern mat the Disc-F-test-SVM-classifier performed the best among the four. 

For all the 129 testing sequences, their prediction confidence values of the Disc-F-test-Mean-

classifier and F-test-Mean-classifier are plotted in Figure 6.4 , partitioned into different genotypes 

and in non-increasing order, where for the Disc-F-test-Mean-classifier only 8 of 129 predictions 

have confidence less than 0.1, which is the normal threshold for high confidence [90]. These 8 

strains include 1 A, 2 C, 1 0 , 1 SAT1, 2 SAT2, and 1 SAT3 strains. 

6.3.4 Independent Genotyping Results 

Using the first dataset of 129 FMDV strains as our training dataset, we applied the above procedure 

to firstly rank all the occurring strings by RRE, then re-rank the top 10, 000 of them by F-test using 

the strain genotype information (assuming they are all correct, see Discussion), and lastly select 140 

strings using the Disc-F-test method. Notice that these 140 strings could slightly differ from each of 

the sets of 140 strings in the above LOOCV study. Using the linear-kernel SVM classifier built on 

fhem, every strain in the second dataset was submitted to have its genotype predicted. We achieved 

a 100% prediction accuracy in this independent test. 
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Figure 6.4: Prediction confidence values for the Disc-F-test-Mean-classifier 

6.4 Discussion 

6.4.1 Always Mis-Typed Strains 

For each of the 129 viral genomes in the first dataset, we submitted it to BLAST and assigned 

its genotype using either the closest hit or a majority vote from 5NN. SAT1 strain AY5938 4 4 

was incorrectly typed when using the closest hit, and four SAT2 strains AF540910, AY593847, 

AY593848, and AY593849 were mistyped using the second rule. We note that the genome 

database we used in BLAST contains more FMDV strains than we have, yet BLAST made some 

unexpected mistakes. 

The linear-kernel SVM classifiers we constructed using 140 strings selected by RRE and Disc-

F-test achieved 127/129 = 98.45% LOOCV genotyping accuracy and made mistakes on SAT2 strain 

AY 5 9 3 8 4 9 and SAT3 strain AY 5 9 3 8 5 0. One possible reason for that is the limited number of SAT 

isolates available, compared to Euroasiatic subtypes, which form an unbalanced training dataset. 

On the other hand, similar to many other RNA viruses, FMDVs have been reported with active re­

combination, which may be located in not only the structural protein coding regions but also the 

non-structural protein coding regions [21]. Phylogenetic analyses have shown incongruent topolo­

gies between the genes, for example, Lpro, 3Cpro, and ID [49, 73, 51, 98, 21]. Significantly, the 

above two mistyped genotypes were reported with potential recombination [21]. Strain AY 5 9 3849 

(SAT2/3 Kenya 11/60) and AY5 9 3 8 5 0 (SAT3/2 SA57/59) were reported with conflicting phyloge­

netic topologies over the overall genomic sequences and different regions (e.g. Lpro/2A to 3D) [21]. 

We also examined these two mistyped strains by analyzing the different fragments on their genomes 

using our classifiers. The region-by-region analyses revealed that their PI region, especially the VP1 
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gene which is used currently for the FMDV genotyping, is closely related to their Genbank recorded 

genotype. However, the other different regions in their genomes are closer to the genotypes predicted 

by our classifiers than to their recorded genotypes. In fact, the top 10 strings we used for genotyping 

are all outside of the VP1 region (Table 6.3), which further supports our prediction methods. For 

example strain AY593850: its VP2, VP3 and VP1 genes showed high similarities in sequence with 

isolates of SAT3. While in P2, P3 and 3' UTR regions, it shares more sequences with those of SAT 1 

and SAT2, rather than SAT3. For strain AY593849, a BLAST search with its full sequence, the 

top 5 isolates which have statistically significant sequence matches are one SAT2, one SAT1, and 

three Asial. Therefore we believe that the mistyped results resulted from potential recombination 

between FMDVs. Future study will be to identify the potential recombination cases using signature 

string information. 

6.4.2 The Maximum String Length 

In our experiments, we set the maximum string length to 15. The rationale on setting this value 

is that increasing it does not improve the genotyping accuracy, since essentially strings of length 

greater than 11 do not make it into the list of top ranked 10,000 strings by RRE. Nevertheless, 

long genotype-specific amino acid motifs have been discovered, for example, YSTXEDHXXGPN is 

genotype A specific [21]. We have therefore increased the maximum string length to 262 and applied 

all the above the same methods to perform the genotyping. Once again, we found no improvement, 

and only 2 length-16 strings were able to make into the 10,000 strings yet still not selected by the 

F-test or Disc-F-test methods (data not shown). 

6.5 More Information on the Top Strings Selected by Disc-F-test 

We also examined how well the top 20 strings selected by the Disc-F-test method cover the posi­

tions in the whole genomes. For this purpose, we constructed in the multiple alignment of these 129 

strains by ClustalW (which took 18.7 hours on a desktop with a 2.1GHz CPU and 2.0GB memory 

to complete), and for each of the 20 selected strings, we found all of its occurrences and highlighted 

them in the multiple sequence alignment. The top ranked string CCGCCTG appears twice in most of 

the Euroasiatic strains (80/112, MSA locations 794 and 4,349), twice in all SAT3 strains (MSA lo­

cations 4,349 and 7,097), but only once in SAT1 and SAT2 strains (12/13, MSA location 4,349), and 

therefore its abundance might be regarded as a signature for distinguishing the Euroasiatic strains 

and the SAT strains; In addition, string CCGCCTG appears in 107/112 Euroasiatic strains at MSA 

location 794, but in none of the SAT strains; it appears in all SAT3 strains at MSA location 7,097, 

which could be SAT3 specific — both indications of its distinguishing role; The second ranked 

string TAAGGTA appears in only one Euroasiatic strain, but in 15 of the 17 SAT strains (MSA lo-

2The experiment failed on the maximum length 27 due to insufficient memory. All these experiments were done on a 
Heisler cluster node with a 2.2Ghz CPU and 5.0GB memory. 
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cation 1,020), and therefore it can be regarded as a signature string for the SAT strains; The third 

ranked string AGTCCAT appears in none of the Euroasiatic strains, but in 16 of the 17 SAT strains 

(MSA location 8,008), and therefore it can also be regarded as a signature string for the SAT strains; 

The fourth ranked string TTCATCAA appears in most of the non-A strains (71 out of 82), but only 

in one of the 47 genotype A strains (MSA locations 1,647 and 2,520), indicating its unlikeliness in 

genotype A strains; The fifth ranked string ACCGACGG appears in four genotype O strains (MSA 

location 92) and 15 of the 17 SAT strains (MSA location 5,278); The sixth ranked string CCAGTGAA 

appears in MSA location 6,177, in only 1 genotype A strain, but in all the 17 SAT strains; The sev­

enth ranked string GCGACAAC appears mostly in MSA location 1,942, and in more than 50% of 

SAT strains; At MSA location 2,536, the eighth ranked string ACCAACAT appears in 29 genotype A 

strains (62%), in all the 9 Asial strains (100%), in half of the C strains, and once in a SAT1 strain, 

but not the others; The ninth ranked string GTTTCT appears in several locations in the MSA, but 

its major occurrences are at location 1,046, where it appears in 15 out of the 17 SAT strains (but no 

Euroasiatic strains), and at location 4,561, where it appears in 88%, 89%, 87%, and 92% genotype 

A, Asial, C, and O strains, respectively (but only 1 SAT1 and 1 SAT2 strains); Similarly, the major 

occurrences of the tenth ranked string CACATGG is at MSA location 8,046, where it appears in 89%, 

89%, 100%, and 100% of genotype A, Asial, C, and O strains respectively, while in only 1 SAT2 

strain. 

Table 6.3: Summary of the top 10 strings in the MSA. 

Rank String 

1 CCGCCTG 

2 TAAGGTA 
3 AGTCCAT 
4 TTCATCAA 
5 ACCGACGG 
6 CCAGTGAA 
7 GCGACAAC 
8 ACCAACAT 
9 GTTTCT 

10 CACATGG 

MSA Location genotype Gene / Region 

794 A, Asial, C, O between polyC and LP™ 
7,097 SAT3 3D: RNA polymerase 
1,020 SAT 1 -3 between polyC and Lpro 

8,008 SAT 1-3 3D: RNA polymerase 
1,647, 2,520 Asial, C, O Lp r o and VP2 (IB) 

5,278 SAT1-3 2C 
6,177 SAT1-3 3B 
1,942 SAT 1-3 VP4 (1A) 
2,536 A, Asial, C 3' end of VP2 (IB) 
1,046 SAT1-3 between polyC and LP™ 
4,561 A, Asial, C, O 2B 
8,046 A, Asial, C, O 3D: RNA polymerase 

In summary, among these top 20 strings, ACCGACGG, AGTCCAT, CCAGTGAA, CGCTCCAA, 

TAAGGTA seem to be SAT specific, ACGCGA, CACATGG, CACGGTC seem to be Euroasiatic specific, 

and the occurrences at different locations of GTGTTTGA and GTTTCT seem to distinguish Euroasi­

atic strains from SAT strains; Moreover, string ACCAACAT recognizes non-0 Euroasiatic strains, 

string AGCTGACC is only abundant in genotype A strains (91%), string TCACGGT seems to recog­

nize genotype A and SAT strains, and string TTCATCAA recognizes non-A strains. By retaining only 
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Figure 6.5: The average occurrence frequency of the top 20 strings, by the Disc-F-test method, in 
each of the seven genotypes at ClustalW's MSA locations, among all the 129 whole genomes. 

Figure 6.6: The average occurrence frequency of the top 20 strings, by the Disc-F-test method, in 
each of the seven genotypes, among all the 129 whole genomes. 
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those columns where at least one of the 20 strings occurs in the multiple sequence alignment, we 

calculated at each of them the average occurrence frequency of the strings with respect to the seven 

genotypes, which is shown in Figure 6.5. We have also calculated, for each of the top 20 strings, its 

average occurrence frequency with respect to the seven genotypes, and plotted them in Figure 6.6. 

These two plots clearly show that some of these top 20 strings do distinguish genotypes and some of 

their occurring locations do map to previously known genotype-specific genome regions such as the 

genotype-specific region in IB and C-terminal of ID [21]. As shown in Table 6.3, the 5' terminus 

of the genomic long fragment has three from these top 10 strings. This region may be important 

in cap-independent translation initiation of the viral polyprotein as well as genome replication [26]. 

The other three important strings are from 3D: RNA polymerase. Therefore these two regions are 

important in genomic replication and polyprotein translation. These may suggest the important roles 

of these genomic regions during viral adaptation to different environmental factors. 

6.5.1 The Number of Pre-Selected Strings 

We have also experimented with die top 20,000 ranked strings by their relative entropies. These 

20,000 top ranked strings have their length in between 4 and 15 and the detailed percentages are 

collected in Table 6.4, where clearly seen that length-6, 7, 8 strings are still dominant (93.445%). 

There are some longer strings included compared to the top 10,000 strings, but there are only 0.02% 

or 4 such strings. 

Table 6.4: The percentages of different length strings in the top ranked 20,000 strings by their 
relative entropies. 

String Length || 4 5 6 7 Si 9 1 0 1 1 1 2 1 3 1 5 

Percentage || 0.02 0.86 11.875 47.475 34.105 5.225 0.345 0.075 0.01 0.005 0.005 

Surprisingly, applying the same string selection methods coupled with the SVM- and Mean-

classifiers (built on up to 140 strings) did not improve the serotyping accuracy, but decreased a little. 

The highest accuracy observed is 125/129 = 96.90%, by Disc-F-test-SVM-classifier, when selecting 

100 strings (Figure 6.10). 

The set of the top 20 strings shares 10 strings with the set of the top 20 strings selected using 

the same procedure on the preselected 10,000 strings, whose ranks are 1-5 and 7-11. This fact also 

shows that these 10 strings carry rich serotype specific information. 

6.6 Conclusions 

We proposed a method to select the most informative and genotype-specific composition nucleotide 

strings for FMDV whole genome genotyping. Such a proposal appears novel in the context of 

FMDV genotyping, with at least three advantages: 1) It does not involve the highly complex stage 
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of multiple sequence alignments, and thus supports high throughput genotyping. This simplifies the 

genotyping process through sequencing information and thus shortens the disease control process 

— once the genotype is defined, the decision on the type of vaccine can be made. Therefore, it helps 

to determine the source of FMDV in case of an outbreak. The potential ability to recognize a re­

combinant, in addition to genotype FMDV, makes our method very valuable, especially for the war 

against bio-terrorism. 2) It considers the whole genomic sequence for genotyping, and filters poten­

tial random mutation at the same time. Therefore, it provides an additional and/or complementary 

genotyping tool to the current available methods. 3) It adopts feature selection methods to identify 

composition strings that are the most genotype-specific, and thus allows biological explanation on 

the genotyping results. The identified signature strings may also facilitate the preparation of recom­

bination vaccine. It is interesting, but not completely unexpected, to see that using only around 120 

strings selected by the Disc-F-test method, the genotyping accuracy on the set of 129 FMDV whole 

genomes by the SVM-classifier can reach as high as 98.45% (this is never achieved previously). 

Moreover, detailed examination of the top strings by the Disc-F-test method reveals that they are 

biologically meaningful, in that each of them either serves as a signature string for distinguish­

ing some genotypes from the others, and/or maps well to previously discovered genotype-specific 

RNA/peptide motifs. 
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Figure 6.7: The Neighbor-Joining tree on the 129 FMDV strains each represented as a 1,320, 791-
dimensional vector. In this tree, again, Euroasiatic strains and SAT strains are well separated, but 
they internally seem to mix up. 
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Figure 6.8: The Neighbor-Joining tree on the 129 FMDV strains each represented as a 10,000-
dimensional vector. In this tree, again, Euroasiatic strains and SAT strains are well separated, but 
they internally seem to mix up. 
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Figure 6.9: The MSA tree on the 129 FMDV strains using their whole viral genomes. In this tree, 
only two SAT strains seem to be misplaced. 
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Figure 6.10: The LOOCV genotype prediction accuracies of the SVM-classifier and the Mean-
classifier using the strings selected by the F-test method and the Disc-F-test method, from the 20,000 
strings. 
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Chapter 7 

Conclusions 

The ultimate goals of bioinformatic studies are to extract information through the large volume of 

data. Bioinformatic data varys in their presentation and specifications. At current stage, it is difficult 

to propose a universal instrument for different types of data. In this thesis, we investigated the 

characteristics of two types of data, gene expression microarray data and viral whole genome data, 

and proposed several effective algorithms for them. Our methods are based on the concept of feature 

selection. For gene expression microarray data, we selected feature genes and built classifiers. We 

also proposed missing value estimation methods to tackle the common problem of missing data in 

microarray. The application of our methods on cancer datasets showed desirable performance. For 

viral whole genome data, we selected feature nucleotide or amino acid and built efficient serotypers. 

The algorithms showed success on different types of viral data. From all the experimental results, 

we believe mat our methods are efficient and suitable tools for gene expression microarray and viral 

whole genome data mining. Because of the specificity of different types of data, we are uncertain 

whether our methods can be applied to other bioinformatic data. However, we think that the feature 

selection principle is essential to solve the problem of data complexity inherent in bioinformatics, 

and should be applicable to other kinds of data. 
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Appendix 

During my PH. D study, I have also been involved in several theoretic problems. 

Capacitated Multicast Tree Routing Problem 

The Capacitated Multicast Tree Routing Problem is considered, in which only a limited number 

of destination nodes are allowed to receive data in one routing tree and multiple routing trees are 

needed to send data from the source node to all destination nodes. The goal is to minimize the total 

cost of these routing trees. The problem is NP hard. The first approximation algorithm proposed 

by us has ratio 2 + p, where p denotes the best approximation ratio for the Steiner Minimum Tree 

problem, and it is about 1.55 at the writing of the thesis '. The ratio was further improved to | + | p 

which is still the current best ratio for this problem 2. 

Path Covering on Trees with its Applications in Machine Trans­
lation 

Given a tree and a set of paths in the tree, the problem of finding a minimum number of paths from 

the given path set to cover all the vertices in the tree is investigated in the paper. To distinguish from 

the classical path cover problem, such an optimization problem is referred to as vertex covering 

by paths. The problem and its edge variant, edge covering by paths, find applications in machine 

translation. We have shown that the problem of finding a minimum number of given paths in a tree 

to cover all the vertices (all the edges) in the tree is hard. Such a combinatorial optimization problem 

arises from an application in machine translation. We have developed an exact recursive algorithm 

for solving the general problem, which runs in an exponential time in the worst case but becomes a 

polynomial time algorithm when every vertex in the tree is included in a bounded number of given 

paths. This special case maps to the machine translation application. To summarize, we answered 

an open question posed in [56] on the computational complexity of the VcpT problem. We have also 

presented a 2-approximation algorithm for the VcpT problem 3. 

'This work has been published in Proceedings of the 11th International Computing and Combinatorics Conference [19]. 
2This work has been published in the 2nd Annual International Conference on Combinatorial Optimization and Applica­

tions [15]. 
3This work has been published in Information Processing Letters [57]. 
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Remark 

• The contents of the Chapter 2 are based on the paper published in Journal of Bioinformatics 

and Computational Biology [18]. 

• The contents of Chapter 3 are based on the two papers published in BMC Bioinformatics 

[16, 102]. 

• The contents of Chapter 4 are based on the papers published in EMBC [20]. 

• The contents of Chapter 5 are based on the paper published in Bioinformatics [99]. 

• The contents of Chapter 6 are based on the paper published in BMC Bioinformatics [58]. 
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