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ABSTRACT 

Road Weather Information Systems (RWIS) are considered one of the most critical highway 

intelligent transportation system (ITS) infrastructures, combining several advanced technologies 

to collect, process, and disseminate road weather information. The collected information is used 

by road maintenance authorities to make operational decisions aimed at improving safety and 

mobility before, during, and after inclement weather events. Acknowledging their significant 

operational and environmental benefits, many North American transportation agencies have 

invested millions of dollars in deploying RWIS stations to strengthen the monitoring coverage of 

winter road surface conditions. However, considering their high deployment costs and the 

seemingly random nature of road weather fluctuations, little is known about the optimal 

distribution density required to provide adequate monitoring coverage under varying 

circumstances. What is also resurging is the development of comprehensive RWIS siting 

guidelines in an effort to maximize return on investment while keeping our roads safe and mobile.  

As an initial step, a series of geostatistical semivariogram models were constructed and compared 

using topographic position index (TPI) and weather severity index (WSI). A geostatistical 

approach in conjunction with large-scale optimizations were then conducted to determine the 

optimum number of RWIS stations across several topographic and weather zones using nationwide 

weather, geographical, and topographical datasets covering 20 different states in the US. The 

findings indicate that RWIS density strongly depends on the varying environmental characteristics 

of the region under investigation.  

In the subsequent step, a new methodological framework was developed to determine optimal 

RWIS locations by taking into account spatial characteristics of multiple critical RWIS variables; 
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namely, air temperature, road surface temperature, and dew point temperature. A multi-variable 

semivariogram model was developed by integrating the impact of multiple crucial weather 

parameters. This integrated model, combined with the traffic parameters, was employed to refine 

the location optimization algorithm; which was then solved using a popular metaheuristic 

algorithm; namely, spatial simulated annealing. The developed location allocation model was then 

illustrated using a case study for the region-wide RWIS network planning and statewide gap 

analysis.  

In addition to this, this study involved sensitivity analysis of optimal locations generated for 

various planning scenarios to further validate the conclusiveness of the findings and to furnish 

decision-makers with a range of solutions, providing flexibility in the decision-making process. 

The findings revealed that the weighting of weather and traffic parameters influences optimal 

location selection. The resulting solution sets from the sensitivity analysis offer adaptability in 

selecting parameter weights tailored to the requirements of decision-makers, encompassing 

considerations of both weather variables and safety implications associated with traffic.  

In addition to location determination, this study introduced a novel bi-level sequential optimization 

model for comprehensive RWIS network planning, which addresses the need to pinpoint both the 

location and type of RWIS stations; namely, Regular RWIS and Mini-RWIS. Regular RWIS 

stations capture regional weather trends while Mini-RWIS stations capture local trends. Therefore, 

considering the type is critical for achieving cost-effectiveness and maximizing coverage. By 

comparing the gap in monitoring coverage, substantial enhancement in RWIS network planning is 

achieved by offering a method to fine-tune both station placement and type. This decision is pivotal 

as the choice directly impacts the network’s financial sustainability and operational efficiency. 



iv 

 

Therefore, determining the optimal type of station in conjunction with its placement is essential 

for constructing an effective and economically viable RWIS network. 

At the last step, the impact of optimal RWIS network on traffic safety was assessed by introducing 

a new parameter, named network coverage index (NCI). NCI analyzes and quantifies the 

advantages of an optimized RWIS network through the enhancement of transportation safety. The 

findings reveal a strong dependency between the NCI and the RWIS network configuration. Based 

on the findings obtained in this study, road agencies and RWIS planners can now be assisted with 

conceptualizing the capabilities of an optimized RWIS network, which will help them increase 

monitoring coverage, and in the process, gain a quantitative understanding on its potential impact 

on traffic safety.  

The methodologies developed and analyzed in this thesis provide RWIS planner with the evidence-

based RWIS planning and management strategies, which in turn will benefit winter travellers with 

improved safety, mobility, and a more environmentally sustainable RWIS network. Moreover, 

RWIS network planning solutions derived from this research are conveniently implemented for 

real-world applications. 
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Chapter 1 

Introduction 

1.1 Background 

Intelligent Transportation Systems (ITS) are an integral part of modern transportation engineering. 

ITS significantly improve transportation mobility and safety, particularly in how it relates to the 

prevention of weather-related road crashes, which is a vital and challenging issue for countries 

with cold regions. Over 1.5 million road crashes, 800,000 injuries, and 7,000 fatalities occur 

annually in the U.S. due to adverse weather (Jin et al. 2014). In its Northern neighbor—Canada, 

about 3,000 deaths result from weather-related accidents every year, and one in 135 people 

experience driving-related injuries (Andrey et al. 2001). Preventing these tragedies is a complex 

task that requires the collaboration of many decision-makers. While there can be several different 

approaches to mitigate the effect inclement weather events have on our vast road networks, one 

approach is to provide better road conditions through more efficient maintenance operations. 

However, achieving this requires maintenance personnel to thoroughly understand the current state 

of road weather within their network, which can be facilitated through one of the most critical 

highway ITS infrastructure, namely Road Weather Information Systems (RWIS).  

RWIS consist of a group of road weather and surface conditions monitoring sensors installed on a 

roadside station. This combination of advanced sensors gathers, processes, and disseminates road 

weather and surface condition information used extensively by winter road maintenance 

authorities to make operative decisions before and during inclement weather events. It is also used 

by travelers via RWIS connected dynamic message signs to help them make more informed trip-

related decisions during inclement weather events (Pilli-Sihvola et al. 2012). These systems not 

only enhance decision-making for travelers but also offer key benefits such as improved traffic 

safety, mobility, and winter road maintenance. Despite these benefits, there are a few limitations 

associated with both RWIS and the data collected by these stations. A significant constraint is the 

installation cost, which could be as high as US $100K per station depending on the type and 

number of sensors equipped (White 2006, Manfredi et al. 2008). Furthermore, while RWIS data 

provides valuable point-based measurements, it often falls short in capturing the spatial variability 

of surrounding road surface conditions. Therefore, understanding the degree of spatial continuity 

and variance associated with the measured road weather data is imperative to understand the 
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effective spatial coverage range of each RWIS station. Moreover, RWIS stations can vary in their 

capabilities, ranging from comprehensive regular-RWIS with full sensor suites to more cost-

effective mini-RWIS with limited sensors. Therefore, the decision of which RWIS type to deploy 

at a given location requires careful consideration of both data needs and budget constraints. Given 

these financial and technological limitations, transportation authorities face the challenge of 

optimizing RWIS deployment to maximize their return on investment. This necessitates addressing 

the critical issues of optimal RWIS density (i.e., how many stations are necessary), optimal RWIS 

location (i.e., where should they be located), and the appropriate type of station for each location.  

To address these challenges, only a limited number of researchers around the world have 

conducted studies to quantify the spatial coverage of RWIS data and determine the optimal RWIS 

density and location based on available RWIS data. One of the earlier studies was conducted by 

Eriksson and Norrman (2001) in Sweden where RWIS site locations were recommended based on 

hazardous road condition. The research findings also revealed that optimal RWIS locations could 

be determined by using topographic parameter and land use information (Eriksson and Norrman 

2001). The Federal Highway Administration (FHWA) initiated extensive efforts to provide RWIS 

siting guidelines based on the knowledge and experience of field operators (Manfredi et al. 2008). 

A more recent study by Kwon and Fu (2017) examined how topographical features affect the 

deployment of RWIS stations. Their findings indicated that more RWIS stations are needed in 

mountainous areas than in flatland areas and that a region with a longer spatial autocorrelation 

range would require fewer stations than a region with a shorter range. Although these earlier 

studies provided some preliminary guidance on RWIS distribution, the dependency on regional 

topographic and weather variations, and were limited in scope to specific case studies, thus lacking 

generalizability. This can make implementation and planning by regions or agencies difficult if 

they have limited or no RWIS stations. Furthermore, since road weather variables are known to 

vary over space and time, spatiotemporal analyses must be performed to better understand the 

effective coverage of road weather variables.  

Besides installation guidelines, several studies were conducted in the past to identify optimal 

RWIS locations. One of the earlier studies by Kwon et al. (2013) used a GIS-based method to 

evaluate RWIS locations in Minnesota, US by quantifying the benefits of road safety and 

maintenance services. Another attempt was taken by Jin et al. (2014), where a formal location 
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optimization method was proposed that maximized spatial coverage of existing RWIS sensors 

using a safety concern index. A cost-benefit-based approach was used later by Zhao et al. (2016) 

to determine the optimal locations of RWIS by maximizing spatial coverage by considering the 

standard deviation of weather severity. In a more recent study, Kwon et al. (2016) implemented a 

geostatistical analysis technique to determine the RWIS locations by examining the underlying 

spatial structure of road surface temperatures.  

Spatial analysis within GIS platform was also incorporated in several different fields of study. 

Valjarević et al. (2021) examined the Morava city conurbation in Serbia, utilizing Kriging-based 

spatial analysis with a particular focus on the interaction between rural and urban areas, traffic 

connectivity, geographical positioning, and sustainability and profitability (Valjarević et al. 2021). 

Moreover, Timalsina and Subedi explored the growing significance of open spaces in urban 

development planning in Nepal. This paper examines the evolution of open space integration in 

recent urban planning practices in Nepal, highlighting the growing emphasis on sectoral 

integration with open space development, particularly within Periodic Planning, Integrated Urban 

Development Planning (IUDP), and Smart City Planning, aiming to create resilient and sustainable 

cities (Timalsina and Subedi 2022).  

Although the previously mentioned studies have made valuable contributions to the development 

of RWIS location models, they focused solely on investigating the spatial characteristics of a single 

variable, specifically road surface temperature (RST). While RST is undoubtedly an essential 

measurement, a methodological framework that incorporates multiple weather variables is critical 

for effective spatial analyses and subsequent location optimization.  Additionally, existing research 

has not yet provided a definitive answer regarding the appropriate installation choice between a 

Regular RWIS (R-RWIS) station or a Mini-RWIS (M-RWIS) station. Therefore, it is crucial to 

determine not just the optimal location but also the specific type of RWIS station for each site 

within a network.  

1.2 Characterization of Road Weather Variables 

The spatial variation of road weather parameters such as road surface temperature (RST), air 

temperature (AT) and dew point temperature (DPT) depends on meteorological, geographical, 

traffic, and road construction factors. Among them, geographical and road construction factors are 

constant, while meteorological factors and traffic conditions also tend to vary on a daily basis.  
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Geographical factors that can impact road weather variables consists of topography, longitude, 

latitude, altitude, sky-view factors (SVF), land use, etc. Among them, SVF is the most influential 

factor for RST variation. SVF is a dimensionless parameter with a value between zero and one. 

For a flatland and open area, the SVF is one, and if obstructions are present, then the SVF will 

vary between zero and one. Other variables, including topography, altitude, and land use, also 

significantly impact road weather variables. Topography is considered a major influencing factor 

as slight variations in topography cause large changes in AT and RST. On the other hand, 

meteorological factors include AT, DPT, precipitation, wind speed, cloud cover, etc. The most 

imperative parameter among these variables is AT, which significantly influences the RST. 

Another major factor is cloud cover, which varies with location and time, making it difficult to 

include in the numerical modeling of RST. Outside of AT and cloud cover, DPT is a crucial 

parameter that controls the formation of hoar-frost on the road surface and can be used for ice 

detection, but it does not significantly affect RST (Boselly et al. 1993, White et al. 2006). From 

the abovementioned discussion, it is clear that AT and DPT are analogous to RST in terms of 

forecasting road weather conditions. Therefore, it is essential and equally important to consider 

these critical variables and analyze their underlying spatial characteristics prior to RWIS network 

planning, which has not been done as existing research tends to focus solely on RST. 

Semivariogram analysis is an advanced geostatistical method that is used to evaluate spatial and 

temporal dependency of parameters that tend to fluctuate over space and time (i.e., road weather 

variables). This method works by combining spatial and time series analysis to preserve the 

interactive effect of temporal variation on the spatial domain and vice-versa, allowing for the 

visualization of the spatiotemporal variability in the variable of interest and the determination of 

autocorrelation range over space and time. For this reason, spatiotemporal analysis has been 

established as more accurate than spatial analysis alone (Graler et al. 2016). Several researchers 

used the above-mentioned technique to model air pollutants by measuring the space-time 

variability of certain particles’ concentrations (Graler et al. 2016, Li et al. 2017, Ahmed et al. 2018, 

and Network 2016). Hu et al. (2017) applied spatiotemporal regression kriging to predict 

precipitation using Moderate-resolution Imaging Spectroradiometer (MODIS) and Normalized 

Difference Vegetation Index (NDVI) data. In the field of transportation, spatiotemporal data has 

been used for the evaluation of spatiotemporal outlier and the identification of erroneous sites 

(Galarus and Angryk 2018) and traffic accident prediction using deep learning approach (Yuan et 



5 

 

al. 2018). One notable study related to the topic of interest is the investigation of spatiotemporal 

variability of road weather and surface conditions using RWIS data from Alberta, Canada (Wang 

et al. 2019). The output of this study provided both spatial and temporal features of road surface 

temperature but further investigation is warranted to generate a spatiotemporal model that is 

representative of multiple RWIS variables. Moreover, the dependency of the spatiotemporal 

feature of RWIS measurements on topographic and weather severity has yet to be scrutinized and 

spatiotemporal analysis has never been considered in prior efforts pertaining to optimal RWIS 

network planning. 

As discussed, the existing literature predominantly focuses on single-variable analyses, 

particularly of RST, and often neglects the spatiotemporal dynamics of road weather phenomena. 

This leaves a significant gap in our understanding of how to effectively incorporate the 

multifaceted nature of road weather including the interplay of multiple variables, their spatial and 

temporal variations into RWIS network planning.  

1.3 Problem Statement and Research Motivation 

Considering the numerous benefits of RWIS information and their limitations, i.e., high 

installation cost and maintenance cost and minimal spatial coverage, RWIS stations must be 

strategically placed to maximize network monitoring coverage. Although previous research has 

attempted to provide some guidelines for RWIS installations, significant gaps remain in knowledge 

and methodology for large-scale RWIS network planning and strategic implementation.  

Initially, RWIS installation guidelines were based on heuristic and qualitative approaches, which 

were time-consuming and subjective to the knowledge and experience of maintenance personnel. 

Over time, it was established that topographic conditions significantly influence regional RWIS 

density planning; however, the specifics of this dependency were never quantitatively measured. 

Additionally, there is a lack of deployment guidelines for regions with limited or no RWIS stations. 

Given that topography and weather severity are dominant factors for winter road maintenance 

operation (Mewes 2011), understanding the dependency of RWIS measurements on these factors 

is essential. The two measures of particular interest are the Topographic Position Index (TPI) and 

Winter Severity Index (WSI). TPI defines the relative topographical variation of an area of interest 

and its surrounding area while WSI is an aggregate indicator of weather severity encompassing 

factors such as yearly snowfall accumulation and duration, blowing snow duration, and freezing 
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rain duration (Weiss 2001; Jenness 2006; Mewes 2011). Both measures, being commonly 

available and influential in determining the number of RWIS stations required, could be used to 

develop new RWIS siting guidelines, especially for regions with limited or no RWIS data. 

In terms of RWIS location-allocation, previous optimization models focused solely on the spatial 

characteristics of a single RWIS variable, Road Surface Temperature (RST). While RST is 

important, RWIS provide many other road weather variables that also need to be considered. 

Hence, there is a resurgent need to develop a novel approach for RWIS network planning that 

incorporates the spatial characteristics of multiple weather variables. This thesis pioneers the 

creation of an innovative multi-variable semivariogram model tailored to crucial weather variables 

such as air temperature (AT), road surface temperature (RST), and dew point temperature (DPT). 

Additionally, the developed methodology considers areas susceptible to traffic accidents, 

enhancing safety and ensuring an equitable distribution across various maintenance zones. 

Furthermore, the developed network optimization methodology is applied to ascertain the optimal 

number of RWIS stations necessary for adequate monitoring coverage of any given area.  

This study also addresses a critical network planning question: ‘What type of RWIS stations 

(regular or mini) are required at each location?’ Given the higher installation costs of regular 

RWIS, decision-makers often opt for mini RWIS for cost-effective network densification. 

However, determining the appropriate locations for installing regular and mini RWIS can be 

challenging due to the difficulty in quantitatively assessing their inherent differences and formally 

integrating them into the location allocation framework. Our innovative bi-level sequential 

optimization model is designed to answer this question, thereby facilitating effective and efficient 

RWIS network planning. 

Moreover, no prior efforts have been made to examine and quantify the benefits of an optimally 

situated RWIS network which can be defined as an RWIS configuration with the optimal number 

of stations systematically placed at the optimal locations to provide maximized monitoring 

coverage. To address this gap, evaluating the performance of optimal RWIS locations on the 

transportation system is essential. This assessment will provide insights into the associated benefits 

and quantify the monetary advantages of an optimized RWIS network. Consequently, it will offer 

the first empirical evidence-based validation of RWIS benefits in the literature. 
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1.4 Objectives 

Building on the aforementioned challenges and gaps in the existing literature, the primary 

objective of this thesis is to develop a comprehensive and generalizable methodological framework 

for the strategic planning and management of RWIS networks. This framework will utilize large-

scale datasets from diverse North American regions, considering the spatiotemporal characteristics 

of road weather and surface conditions, to inform decision-making regarding optimal RWIS 

deployment, particularly in areas currently lacking such infrastructure.  

To achieve this primary objective, this research encompasses the following sub-objectives:  

1. Development of an RWIS Density Guideline: 

This study will develop comprehensive RWIS siting guidelines by evaluating the 

relationship between optimal RWIS density and readily available data, such as topographic 

position index (TPI) and weather severity index (WSI). In this research optimal RWIS 

density will be determined by investigating spatiotemporal autocorrelation of RWIS 

measurements, aiming to incorporate both spatial and temporal domain to better understand 

the effective coverage of road weather variables. Research findings will aid transportation 

agencies in planning RWIS deployment, particularly for region that do not have existing 

RWIS. 

 

2. Development of a Comprehensive RWIS Deployment Strategy:  

This research will advance RWIS station placement optimization by incorporating the 

spatial attributes of multiple critical weather variables: air temperature (AT), road surface 

temperature (RST) and dew point temperature (DPT). The resulting multi-criteria location 

optimization model will be used to: 

Implement the developed model for the planning of a regional RWIS network: An 

RWIS network planning tool will be developed to prioritize potential RWIS sites and 

conduct a statewide gap analysis to validate those sites and identify new optimal 

locations. 

Perform sensitivity analyses to offer flexibility to decision-makers: Sensitivity analyses 

will be conducted to explore how varying weather and traffic factors influence optimal 
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location selection, allowing decision-makers to tailor parameter weights to their 

specific needs. 

 

3. Formulation of a Bi-Level Sequential Optimization Model: 

This thesis will introduce a novel bi-level sequential optimization model to determine both 

the optimal location and type of RWIS stations (i.e., R-RWIS and M-RWIS). This approach 

aims to promote a cost-effective network planning strategy that balances comprehensive 

data collection with budgetary constraints. 

 

4. Evaluation of the performance of the optimized RWIS network: 

This thesis will assess the impact of optimized RWIS network on transportation systems. 

Using monitoring coverage as a performance indicator, the benefits of optimal location 

solutions will be quantified, potentially translating these into monetary benefits. 

The outcome of this thesis will serve as a guideline for long-term RWIS network planning and 

management strategies that involve different topographic and weather severity zones. This 

comprehensive deployment strategy will provide a large number of RWIS communities and 

jurisdictions with a valuable decision support tool for sustainable RWIS network planning and 

management by keeping our roadways safe and environmentally friendly. 

1.5 Organization of the Thesis 

The remainder of this thesis is organized as follows:  

 Chapter 2: Provides a literature review covering relevant topics, including an component 

of RWIS and the synthesis of current deployment practices. 

 Chapter 3: Discusses the proposed methodology employed to achieve the research 

objectives. 

 Chapter 4 and 5: Present the results on RWIS density optimization and RWIS location 

allocation, respectively. 

 Chapter 6: Details the impact assessment of optimal RWIS Network.  

 Chapter 7: Summarizes the key findings of this thesis and offers recommendations for 

future research. 
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Chapter 2  

Literature Review 

2.1 Introduction 

The prevention of weather-related road crashes continues to be a vital and challenging issue, 

particularly for countries in cold regions. As an important part of modern transportation 

engineering, ITS play an essential role in everyday life by improving transportation safety and 

mobility. A road weather information system (RWIS)—a critical piece of ITS infrastructure—is a 

combination of advanced technologies that collect, process, and distribute road weather and 

condition information. Road maintenance agencies use RWIS information to make operative 

decisions during the winter season to ensure traffic safety and mobility of the travelling public. 

For this reason, many North American transportation agencies have invested millions of dollars in 

deploying and/or expanding their RWIS network to improve road surface conditions monitoring 

coverage. However, because of the significant cost associated with RWIS station installation, 

jurisdictions limit the number of new installations due to budgetary constraints. Therefore, it is 

essential to develop an optimal RWIS network planning and siting guideline that maximizes the 

effectiveness of RWIS station deployments.  

2.2 Road Weather Information Systems 

For countries with regions where winter conditions can significantly affect the mobility and safety 

of their transportation networks, information regarding the road surface and weather conditions is 

collected, processed, and distributed by RWIS stations generally installed alongside roads and 

highways. The major elements of RWIS are ESS (Environmental Sensor Stations), RPU (Remote 

Processing Units), CPU (Central Processing Units), and communication hardware. ESS consists 

of atmospheric, pavement, and water-level monitoring sensors, whereas the atmospheric sensors 

are mounted on the tower, and pavement sensors are embedded in and beneath the pavement 

surface. Water level sensors are generally installed in flood-prone regions to monitor site-specific 

characteristics.  

From these sensors, the types of data collected by RWIS stations include air, surface, and sub-

surface temperatures; precipitation rate, type, and intensity; atmospheric pressure; wind speeds 

and direction; and road surface condition. Collected data are initially processed in RPU, which can 
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be made available to the road users via a dynamic message sign (DMS) to alert them of hazardous 

road conditions. RWIS information is then transmitted to the CPU server along with forecasts from 

other weather information providers (e.g., National Weather Service (NWS), vendors, and others) 

and disseminated to the user interface. The NWS provides weather, hydrologic, and climate 

information for the United States and their dataset includes air temperature, dew point temperature, 

wind speed and direction, visibility, sky conditions, relative humidity, pressure, and pressure 

tendency on an hourly basis.  

The uniqueness of RWIS in comparison to other conventional weather stations is that RWIS data 

provides road weather and condition information. This additional information provided by RWIS 

is essential for winter road maintenance personnel to forecast pavement slipperiness and the 

probability and timing of icing events (Agah and Pape 2002, Manfredi et al. 2008, Ye et al. 2009). 

RWIS setups generally come in two types: (a) stationary and (b) mobile RWIS. Stationary RWIS 

are installed along a roadway, collecting point-measured data of a fixed location, thereby providing 

high temporal but low spatial coverage. On the other hand, mobile RWIS are installed on patrol 

vehicles that collect data while traveling along the road network. The data from these mobile units 

provide high spatial coverage but low temporal coverage. The major components of a stationary 

RWIS station are presented in Figure 2-1. 

 

 

Figure 2- 1: Major Components of an RWIS Station 

There are two types of stationary RWIS stations: regular RWIS and mini-RWIS. Regular RWIS 

consists of full sensor configuration, providing comprehensive data for extensive regional road 
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condition monitoring. In contrast, mini-RWIS stations have a limited sensor configuration, 

offering basic, localized road condition monitoring and serving as gap-filling stations. The 

installation cost of mini-RWIS ranges from $10,000 to $45,000, which is significantly lower than 

that of regular RWIS. Data collected by mini-RWIS includes air temperature, road surface 

temperature, humidity, wind speed and direction, and hourly still camera images.  

Information disseminated by an RWIS station is collectively used by road operations personnel to 

make effective and timely winter road maintenance decisions and help travelers make more 

informed decisions about scheduling their trips. In addition, RWIS information is also used for 

initializing road weather and surface conditions forecasts to improve the quality of winter road 

maintenance services. With forecasted road weather information (e.g., subsurface and surface 

temperatures), proactive maintenance strategies such as anti-icing operations become possible, 

further improving the quality of road surface conditions (Sato et al. 2004). The accuracy of the 

forecasts depends on various factors, such as climate characteristics, geographical and 

topographical settings, etc. (Ahrens 2009). The key benefits of an RWIS are improved traffic 

safety, mobility, and winter road maintenance as described below. 

It has been established in previous literature that the performance of highway networks is greatly 

affected by adverse weather and road surface conditions. Inadequate and inefficient winter road 

maintenance (WRM) causes a significant increase in traffic collisions and winter traffic 

congestion. As a result, North American transportation authorities spend more than 3 billion 

annually on WRM like plowing and salting to ensure traffic safety and mobility (Ye et al. 2009, 

Strong et al. 2010). Since the use of salt causes environmental concern, it is crucial to minimize 

its usage, which also reduces the WRM cost.  

RWIS has become an essential tool in the WRM decision-making process by providing agencies 

with localized road weather and surface condition information. The critical information provided 

by RWIS enables transportation agencies to execute proper maintenance activities regarding when 

and where to deploy snowplows and deposit road salts, i.e., restoring safety and mobility while 

using minimum resources. Improved winter maintenance operation (i.e., anti-icing, pre-wetting, 

and sanding) has been shown to improve road surface condition, resulting in lower rates of 

weather-related collisions (Fu et al. 2005, Usman et al. 2012). Furthermore, real-time road weather 

and condition information provided by RWIS is used to predict near-future road surface 
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conditions. Such information is used to predict the occurrence of a snowstorm and help 

maintenance agencies decide on the usage of anti-icing chemicals. These chemicals prevent the 

bonding of snow and ice with the pavement, which results in a less slippery road surface, thereby 

improving traffic safety and mobility. Due to proactive maintenance measures, comparatively 

fewer anti-icing chemicals are required, which reduces maintenance costs and environmental 

impact. Previous studies proved that, by taking advantage of their RWIS information, proactive 

use of anti-icing chemicals can significantly reduce maintenance cost (Epps and Ardila-Coulson 

1997, C-SHRP 2000). Additionally, RWIS provide travelers with better information to help them 

make more informed travel decisions and contribute to safer travel behavior and less weather-

related crashes and injuries (Boon and Cluett, 2002). 

Despite these benefits, there are a few limitations associated with both RWIS and the data collected 

by these stations. The biggest limitation is the installation cost, which could be as high as US 

$100,000 per station depending on the type and number of sensors. In addition, RWIS data 

provides point-based measures, which are often limited in capturing the spatial heterogeneity of 

the surrounding road surface conditions. For these reasons, it is important to measure the spatial 

and temporal continuity range of the measured data and its associated variance in order to 

understand the monitoring coverage range of the RWIS stations. 

2.3 Current Best Practices of RWIS Network Planning 

RWIS site selection is an important and challenging issue because of the numerous benefits 

associated with RWIS information. To address these challenges, a limited number of studies were 

conducted in the past that can assist road authorities in making an informed decision on RWIS 

station installation.  

An extensive effort was first initiated in 2005 by the US FHWA to provide a standard for RWIS 

network planning based on the analysis of published information and interviews with state’s 

Department of Transportation (DOT) RWIS managers. According to this study, several steps 

needed to be followed to determine the locations of RWIS stations. Firstly, regional 

representativeness needs to be examined alongside weather zone maps to determine which regions 

exhibit similar weather characteristics. Having similar weather characteristics minimizes the 

possibility of adverse local weather effects and influences from other non-weather factors (i.e., 

heat, moisture, and wind barriers). Next, the unique characteristics of each region were identified 
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by consulting with local maintenance personnel, who then provided a list of candidate siting 

locations. The selected RWIS locations should satisfy the road weather information requirements. 

Some example locations are: (a) regions with slippery conditions or a location where significant 

blowing, drifting, or heavy snow accumulation occurs; (b) low lying road segments where surface 

flooding occurs; (c) visibility distance where the local environmental conditions contribute to low 

visibility (e.g., a large local moisture source); and (d) areas with high wind speeds, such as those 

that occur in hurricanes and terrain-induced crosswinds along a confined valley or ridge top. 

Additional local siting considerations included power, communication, aesthetics, safety, and 

security. This study recommended 30 to 50 km (20 to 30 miles) spacing for RWIS station 

installation based on the knowledge and experience of field operators (Manfredi et al. 2008).  

Given that the recommended guidelines are based on expert, yet personal, opinion, several 

researchers attempted to implement a more objective way to quantify the spatial coverage of RWIS 

data and identify an optimal set of locations and densities for RWIS stations. Several studies were 

conducted to identify the location and number of RWIS stations required for specific regions. A 

comprehensive study was conducted by Zwahlen et al. (2003) that provided a state-wise RWIS 

network expansion plan for Ohio, US, by considering the distance between existing RWIS stations, 

declared snow days, and amount of annual snowfall recorded by the region under investigation. 

This study recommended installing fourteen additional RWIS stations by identifying the ‘unserved 

area’ with a focus on ensuring state-wise monitoring and prediction.  

A study was also conducted in Sweden to determine the hazardous conditions on a roadway by 

multiple regression analysis of RWIS data. In this study, road climate was described using 

slipperiness classification, where ten types of slipperiness were identified to classify road climate, 

and the RWIS site locations were recommended based on the slipperiness. The outcome of this 

study showed that the spatial patterns for different types of slipperiness are heavily related to local 

parameters. In addition, the results also indicated that optimal RWIS locations could be determined 

by using topographic and land use information (Eriksson and Norrman 2001). Although this study 

provides a strong reference for RWIS location optimization, the authors made a heuristic 

assumption that the benefits of RWIS are proportional to road weather conditions.  

Similarly, Alberta’s Ministry of Transportation conducted an RWIS expansion study to determine 

both station location and density. RWIS deficient regions (RDR) were identified and analyzed in 
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this study by considering various factors, including traffic loads, collision rates, climatic zones, 

availability of meteorological information, and discussions with regional road maintenance 

personnel and key stakeholders. After determining the candidate sites for RWIS installation, the 

provincial budget guidelines were used to verify how a given set of stations could be deployed. In 

this study, the station density was determined solely on the available budgets, which is heuristic 

and not applicable for regions where the governing body wants to determine the actual RWIS 

density required to ensure improved road safety during the winter season (Mackinnon and Lo 

2009). Thus, more reliable and logical RWIS planning guidelines are needed to determine the 

optimal RWIS density rather than making decisions based on available financial resources. 

In a GIS-based study conducted by Kwon and Fu (2013) in Ontario, Canada, a location ranking 

criterion was introduced to obtain the potential benefits of real-time road weather information, i.e., 

weather severity, traffic exposure and collision rate. A framework for RWIS network location 

evaluation was presented in this study, where the variability of surface temperature (VST), mean 

surface temperature (MST), and snow water equivalent (SWE) were considered alongside 

topographic location attributes. The study’s findings revealed the feasibility of developing a 

systematic process for locating RWIS stations using an integrated location criterion to capture 

multiple factors being considered in practice. Alternatively, based on weather-related crash data, 

Jin et al. (2014) proposed a spatial optimization method of RWIS location identification using the 

maximization algorithm of spatial coverage, which was converted into a safety concern index. The 

proposed methodology was illustrated using crash and GIS data from the Austin District in Texas. 

RWIS location model was formed using a discrete network representation of the roads. Each link 

in the network was divided into equal length segments before a formulation of the optimization 

problem for choosing the location (segment in the network) of new stations was proposed. The 

model only had one objective function: minimizing the sum of safety concern index defined for 

each segment as the product of the crash rate and a reduction factor. Their solution method was 

based on a greedy heuristic, but no optimality gap was offered.  

Zhao et al. (2015) proposed a method for RWIS location optimization using a mathematical 

programming approach. In this research, the potential RWIS locations were identified based on 

their distance to existing RWIS locations. The effects of regional weather conditions and traffic 

volume were captured using the concept of influencing area. They extended their effort by 
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developing a two-stage sequential model, which considers the variation of regional weather 

severity and cost-benefit factor (Zhao et al. 2016). Although the developed model partially 

accounted for spatial variability, the effect of spatial patterns associated with a particular region 

was not fully utilized. Moreover, the underlying temporal variation of the variable of interest was 

not accounted for during the determination of monitoring coverage.  

In another study conducted by Kwon et al. (2017), the RWIS network location optimization was 

done by employing an innovative geostatistical analysis technique, kriging. Optimization was 

formulated as NIP problem to maximize the monitoring capability while minimizing the spatially 

averaged kriging variance of hazardous road surface conditions. RWIS data used in this study were 

taken from the state of Minnesota, US. Using this data, the effectiveness of the current RWIS 

location setting was evaluated, along with recommendations for future network expansion. 

Although the method developed therein contributed to delineating RWIS locations, it only dealt 

with the spatial domain, and did not take into account the inherent temporal variations of road 

weather parameters, thereby making their location solutions less conclusive. 

A more recent study by Fetzer et al. (2018) proposed a methodology for multi-objective RWIS 

location optimization for the state of New York by considering vehicular accident data, vehicle 

miles traveled (VMT), area coverage, access to power and maintenance, and existing ESS. A multi-

objective optimization algorithm was formulated using three defined objectives: to maximize (a) 

the VMT within the station range, (b) geographic area covered by the station ranges, and (c) traffic 

safety or reduction of crash rate. This study used a modified e-constraint method to solve the 

optimization algorithm and generate a Pareto optimal solution that will allow the decision maker 

to choose a single most preferred solution based on their need. Although this study provides an 

advanced technique to optimize RWIS locations using multiple objective functions, the authors 

made a heuristic assumption for the effective radius, a critical parameter for optimization. 

Moreover, this study did not consider the spatial characteristics of the weather variables, and a 

minimum separation distance of 10 miles was used for new stations without providing any proper 

justification. Hence, it is important to study these critical parameters while quantifying the 

monitoring coverage of RWIS measurements. 

In contrast, there exist very limited studies conducted in the past dedicated to quantifying the 

optimal RWIS density. Since density is closely related to many external factors, few studies 
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attempted to understand the factors that influence road weather and surface conditions during 

inclement weather events. White et al. (2006), one of the studies that investigated this relationship, 

found that meteorological, geographical, road construction, and traffic parameters contribute to 

the spatial variation in the RST. Amongst these factors, topography was noted as the primary factor 

that influences RST variation over a region (Gustavsson 1990; Boselly et al. 1993; Manfredi et al. 

2005; Chapman and Thornes 2005; White et al. 2006).  

For this reason, Kwon and Fu (2017) further extended their previous work by proposing that the 

optimal RWIS spacing of a region may depend on the spatiotemporal variability of road weather 

conditions and their respective topographic settings. The authors conducted case studies using data 

from three US states (Iowa, Utah and Minnesota) and one Canadian province (Ontario). While 

their results indicated that the number of RWIS stations required would depend on the 

topographical characteristics, the analysis was based on a single road weather variable (i.e., RST) 

and provided no systematic method that can be applied to other regions with limited or no RWIS 

information.   

2.4 Summary  

The appropriate deployment of RWIS is a major concern, as it can greatly contribute to the 

improvement of traffic safety, mobility, and proper road maintenance during inclement weather 

events.  Former practices of RWIS network planning are solely based upon the knowledge and 

experiences of field operators. Additionally, very little research has been conducted to identify 

RWIS density and locations systematically. It is also clear from the stated literature that the 

determination of optimal RWIS location requires a full understanding of the spatial variation of 

road weather conditions. Although existing studies provide some RWIS planning guidelines, the 

most critical unresolved question is what the optimal density and location of an RWIS network 

should be to provide adequate monitoring coverage of a given region. Our research attempts to 

answer this question, along with identifying the type of RWIS stations needed at each optimal 

location by developing an innovative and transferrable methodological framework to optimize 

regional RWIS network, incorporating the use of multiple RWIS variables for improved 

spatiotemporal inference. In addition, this study will also evaluate the performance of an optimally 

located RWIS network into the transportation system. 
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Chapter 3 

Proposed Methodology 

3.1 Introduction 

Preventing weather-related crashes is a significant part of maintaining the safety and mobility of 

the traveling public during the winter months. Transportation authorities rely on real-time and 

near-future road weather and surface conditions (RSC) information to mitigate the detrimental 

effects of winter road conditions. Road weather information is disseminated by RWIS to make 

more timely and accurate winter road maintenance-related decisions. However, the high 

installation and maintenance costs of these systems have motivated governments to develop a 

framework for determining a region-specific optimal RWIS network based on readily available 

regional data. By doing so, the resultant guidelines would be able to provide RWIS network 

planning recommendations for regions with limited or no RWIS stations. As discussed before, 

topographic variation of a region significantly affects the road surface condition and is considered 

a crucial influencing factor of RWIS density. In contrast, weather severity is an essential parameter 

for winter road maintenance operations. Hence, the topographic and weather characteristics of the 

study area need to be analyzed to create several topographically unique regions within the study 

area with varying levels of winter severity.  

Therefore, in the first step of this study, one of the most comprehensive spatiotemporal sampling 

techniques based in Geostatistics is employed in conjunction with geographically distributed data. 

This technique maximizes the probability of capturing the spatial and temporal variations of the 

RWIS variables and minimizes the potential bias associated with input data. More specifically, 

spatiotemporal analysis is performed by constructing empirical variograms from RWIS 

measurements, which optimizes parameter estimations for unsampled locations and captures the 

possible autocorrelation associated with the RWIS variables. During this process, the effective 

spatial and temporal range of continuity is determined under different topographic and weather 

settings, and the dependency of weather data on the topographic variation and weather severity of 

the region is also evaluated. The optimal density of RWIS stations is then determined for different 

topographic and weather severity zones and a zone-based optimal RWIS density chart is 

developed.  



18 

 

In the next step, multi-variable RWIS location optimization is performed using three key RWIS 

weather parameters: namely, Air Temperature (AT), Road Surface Temperature (RST), and Dew 

Point Temperature (DPT). RST is an important RWIS measurement that represents real-time road 

weather information, while AT and DPT are considered the two most critical parameters in 

forecasting road weather conditions. Hence, it is essential to integrate the multiple RWIS variables 

into the geostatistical analysis and develop a multi-variable semivariogram model. A model-based 

approach via kriging is subsequently utilized in this stage to obtain unbiased estimates with the 

lowest variance (i.e., uncertainty) to determine the optimal RWIS locations. This step also involves 

generating a bi-level sequential optimization model to determine the type of RWIS stations needed 

for each optimal location.  

At the last step, the goodness of the optimal location solutions is determined to quantitatively 

assess the monetary benefit of location solutions on the transportation system. Research procedures 

for this study are summarized in Figure 3-1.  

 

Figure 3- 1: An Overview of the Proposed Methodology 
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3.2  Characterizations of Topography and Weather 

To evaluate the relationship among RWIS measurements, topographic variability, and weather 

characteristics of the regions under investigation, the study area is initially classified into 

topography and weather-based classes. Topographic analysis is performed using the topographic 

position index (TPI) parameter; while the Weather Severity Index (WSI) parameter is used for 

weather-based classifications using an ESRI shapefile generated for the United States by Meridian 

Environmental Technology (Mewes 2011). The following sections discuss TPI and WSI based 

zonal classification in detail.  

Topographic Position Index (TPI) 

The topography based zonal classification is conducted using TPI, which defines a relative 

topographical variation of an area of interest and its neighboring area. TPI values compare the 

elevation of every point in a DEM to the mean elevation of a specified region around that cell. 

Higher TPI values indicate hilly and mountainous areas, whereas lower TPI values represent 

flatlands (Weiss 2001, Jenness 2006). The TPI calculation algorithm was provided by Jenness 

Enterprises, which is the most promising and widely used algorithm for landform classification 

(Jenness 2006, Seif 2014a, Mokarram et al. 2015). The equation for TPI at a given location, 𝑖, is 

calculated as follows:  

𝑇𝑃𝐼𝑖 = 𝑀0 − ∑ 𝑀𝑛
𝑛⁄                                                           𝑛−1 (3-1) 

Where, 𝑀0 = the elevation of the model point, 𝑖; 𝑀𝑛= the elevation of neighboring points; 𝑛 = the 

total number of surrounding points employed in the evaluation. A neighborhood is defined as a 

circle or square surrounding the model point. In this study, TPI values for each point are calculated 

by considering a circle neighborhood of 50 km diameter around the point. TPI values are sensitive 

to the neighborhood size, and circle diameter is selected based on the application. For example, a 

finer diameter is appropriate for analyzing small landforms such as individual ridges or valley 

lines, whereas a larger neighborhood diameter is appropriate for major topographic landforms 

(Weiss 2001). 

Positive TPI values indicate that a point is higher than the average elevation of the neighborhood 

while negative TPI values represent locations that are lower than the average elevation, and TPI 

values close to zero indicate regions where the elevation is similar to the average elevation of the 
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surroundings (Seif 2014b). Relatively speaking, lower average TPI values indicate flatland, and 

higher ranges represent hilly and mountainous regions. An illustrated example of TPI values is 

presented below (Figure 3-2). 

 

Figure 3- 2:  Positive and Negative TPI Values for a Typical Land Surface. 

Several previous studies have classified regions using topographic parameters (TPI). Grain 

Mountain in Iran was classified into nine different topographic categories depending on TPI using 

Digital Elevation Model (DEM) with 90 m resolution. Recorded TPI values were -128 to 161 (Seif 

2014). Another study was conducted in the salt dome of Korsia of Darab plain, Iran, evaluating 

the landform classification algorithm of Jenness. The study area was 1083 square km, and a DEM 

with 30 m resolution was used for elevation. In terms of the results, land area was classified into 

ten different classes according to TPI values. This study confirmed the algorithm of Jenness as the 

most appropriate method of landform classification (Mokarram et al. 2015).   

In this thesis, an elevation map of the study area is generated in ArcGIS using DEM data. A TPI 

value is calculated for every 30 m grid point (at the resolution of the DEM) using the Topography 

Tool that follows Jenness’s algorithm. Later, the area will be classified into three zones based on 

TPI values. 

Winter Severity Index (WSI) 

Several previous studies developed standards to calculate WSI, which is generally used as a 

decision support tool to determine where road maintenance activities are needed. A common 

practice of winter severity investigation is to generate a daily-basis WSI number using specific 

weather parameters, subsequently summarizing the daily values into weekly, monthly, and 

seasonal WSI (Matthews et al. 2017a, 2017b). Winter severity is tracked in many different states 

using several meteorological parameters. However, most of the methods are developed from a 

winter maintenance perspective, are region-specific, and were not designed for country-wide use. 

Recognizing this limitation, a large-scale weather severity mapping method was developed by 
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Meridian Environmental Technology in 2012 to compare winter severity for all U.S. states. 

Parameters used were yearly average accumulation and duration of snowfall, average annual 

duration of freezing rain, and blowing snow. Parameters representing weather severity were 

selected through an iterative process based on previous experiences of Meridian and the solicitor’s 

interest. Data acquisition details for WSI measurement are listed below:  

 Snowfall accumulation data from National Weather Service's United States Climate 

Normals from 1971 to 2000 and snow precipitation data from Snow Data Assimilation 

System (SNODAS) for the winter seasons of 2004 to 2011. 

 Snowfall duration data from Meteorological Terminal Aviation Routine Weather 

Report (METAR) observation of weather stations from Federal Aviation 

Administration (FAA) and National Weather Service (NWS) for the winter seasons of 

2000 to 2010, and analysis of precipitation type from the North American Mesoscale 

Forecast System (NAM) through National Operational Model Archive & Distribution 

System (NOMADS) for the winter season of 2004 to 2011.  

 Average annual duration of freezing rain data from METAR observation from 2000 to 

2010 winter seasons and analysis of precipitation type from NAM model from 2004 to 

2011 winter seasons.  

 Hours of blowing or drifting snow were estimated from wind speed data using NAM 

model through NOMADS and one-km AVHRR based landcover data from the 

University of Maryland for the winter seasons of 2004 to 2011. 

 

The formula used for WSI calculation provides equal weights for all listed factors. Since the unit 

of snowfall accumulation was in inches, and the annual duration of snowfall, blowing snow, and 

freezing rain were calculated in hours, the typical ‘inches to hours = 10:1’ weighting ratio was 

applied. For extra caution, a double weighting factor was provided for the duration of freezing 

rain. There was no specific explanation of the index values other than a relative comparison of 

winter severity from a winter maintenance viewpoint (Mewes 2011). The resulting WSI formula 

is shown below: 
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Winter Severity = 0.50 × (annual average snowfall in inches) + 0.05 × (annual snowfall duration 

in hours) + 0.05 × (annual duration of blowing snow in hours) + 0.10 × (annual duration of freezing 

rain in hours) 

The ESRI shapefile generated for the United States by the project under Meridian Environmental 

Technology is used in this research to classify the study area according to WSI. 

3.3 Effective Coverage of RWIS Measurements 

In this stage, the effective coverage of RWIS variables for different TPI and WSI classes is 

generated using geostatistical semivariogram modeling. A semivariogram measures the 

dissimilarity between two measurements as a function of separation distance. A larger 

autocorrelation range indicates greater spatiotemporal continuity of RWIS measurements and vice 

versa. Spatial semivariogram analysis considers only the spatial domain of the variable of interest; 

it does not account for temporal variations. Since the weather variables (AT, RST and DPT are 

considered in this analysis) vary over space and time, it is necessary to investigate both the spatial 

and temporal variability of these variables. Hence, spatiotemporal semivariogram analysis is 

incorporated in this study to determine the effective coverage of RWIS measurements. It will also 

indicate how representative road surface weather variables are over space and time. The output of 

semivariogram analysis will be used as an input for RWIS density and location optimization. The 

details of such analyses are described below: 

3.3.1 Spatial Semivariogram Analysis 

A semivariogram is a plot of mean semivariance (y-axis) versus separation distance between point 

pairs (x-axis). Semivariance is a statistic that measures the similarity between two measurements 

as a function of separation distance (Olea 2012). Semivariance can be calculated by taking the 

average of the squared differences between measurements in a spatial domain separated by a 

specific lag distance. The most common formula for semivariance estimation is shown below: 

γ(ℎ) =
1

2𝑛(ℎ)
∑ [𝑧(𝑥𝑖 + ℎ) − 𝑧(𝑥𝑖)]

2                                                    
𝑛(ℎ)

𝑖=1
(3-2) 

 

Here, γ(ℎ)is the semivariance; 𝑧(𝑥𝑖 + ℎ) and 𝑧(𝑥𝑖) are two measurements taken at location 𝑥𝑖 and 

(𝑥𝑖 + ℎ) , which are separated by a lag distance ℎ . The following figure shows a typical 

semivariogram plot.  
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Figure 3- 3: A Typical Semivariogram with Parameters 

Three basic parameters are used to define a semivariogram model: range, nugget, and sill. The 

value at the origin (zero separation distance) should theoretically be zero. But due to measurement 

and sampling errors, the value of the semivariogram at the origin could differ significantly from 

zero, in other words, the nugget effect. The semivariance value at which the semivariogram levels 

off is known as the sill parameter. Generally, a partial sill is the difference between the actual sill 

value and the nugget effect and is often encountered during a semivariogram analysis. The distance 

at which the semivariogram reaches the sill value is known as the spatial range of autocorrelation. 

Autocorrelation is considered as zero beyond this spatial range. Three commonly used 

semivariogram model forms are considered in this analysis (Bohling 2005, Olea 2006, and Solana-

Gutiérrez and Merino-de-Miguel 2011). The models and their associated equations are as follows: 

 

Spherical model: 

 

 

Gaussian model:  

 

Exponential model:  

 

Here, ℎ = lag distance, 𝑎 = spatial range of continuity and 𝑐 = sill. 
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Best-fitted semivariogram models are selected based on cross-validation results (mean 

standardized error, correlation between the predictors and observed values, and root-mean-square-

error). 

3.3.2 Spatiotemporal Semivariogram Analysis 

Spatiotemporal analysis is generally conducted for variables that vary over space and time such as 

those road weather variables (e.g., RST, AT, DPT) considered in this study. 

Spatiotemporal semivariogram modelling is conducted by integrating both spatial and temporal 

effects of regionalized random variables (e.g., road weather). Generally, a set of variables in a 

spatiotemporal field can be defined as, 𝑧 = {𝑧(𝑠, 𝑡)|𝑠 𝜖 𝑆, 𝑡 𝜖 𝑇}, where 𝑆 = spatial domain and 𝑇 

= temporal domain. Thus, random field can be specified as 𝑍 is 𝑧𝑖 = 𝑍(𝑠, 𝑡), 𝑖 = 1,2,3, … . . 𝑛 × 𝑇. 

Here, 𝑛 = number of stations, and 𝑇  = number of time points. The random fields 𝑍(𝑠, 𝑡) can be 

modeled as 𝑍(𝑠, 𝑡) =  µ (𝑠, 𝑡) + 𝜀 (𝑠, 𝑡), where μ(𝑠, 𝑡)  = the deterministic part and ε(𝑠, 𝑡) = the 

stochastic part. The deterministic part refers to the spatiotemporal trend, while the stochastic part 

is the zero-mean second-order stationary spatiotemporal random field (Network 2016). 

Spatiotemporal semivariogram modelling is conducted using the stochastic part. Spatial and 

temporal variances are estimated as half of the mean squared difference between data pairs 

separated by a user defined spatial ( ℎ𝑠 ) and temporal lag ( ℎ𝑡 ). The general equation of 

semivariance is presented in Equation 3-3. 

𝛾(ℎ𝑠, ℎ𝑡) =
1

2𝑛(ℎ𝑠,ℎ𝑡)
∑ [𝑧(𝑠𝑘, 𝑡𝑘) − 𝑧(𝑠𝑘 + ℎ𝑠, 𝑡𝑘 + ℎ𝑡)]

2𝑛(ℎ𝑠,ℎ𝑡)
𝑘=1 ,                         (3-3) 

Here, 𝛾(ℎ𝑠, ℎ𝑡)  = estimated semivariance value, 𝑛(ℎ𝑠, ℎ𝑡) = total number of pairs in analysis 

domain, 𝑧(𝑠𝑘, 𝑡𝑘) = measurement at spatial location 𝑠𝑘 and temporal location 𝑡𝑘 (Gething et al. 

2007; Shekhar and Zhou 2008). A three-dimensional spatiotemporal semivariogram is presented 

in Figure 3-4.  

After constructing the empirical variogram, a mathematical model is used to smooth the graph by 

resolving the irregular pattern. There are several covariance models used for spatiotemporal 

semivariogram modelling (Shekhar et al. 2008, Pebesma and Graeler 2012, Pebesma and Gräler 

2018, and Pebesma et al. 2019). The most popular and widely used covariance models are: (a) 

separable covariance model, (b) product-sum covariance model, (c) metric covariance model, (d) 
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sum-metric covariance model, and (e) simple sum-metric covariance model, and their details are 

as follows.  

 

Figure 3- 4: A Typical Spatiotemporal Semivariogram 

Separable Covariance Model 

The separable covariance model assumes that the spatiotemporal covariance function can be 

represented as the product of a spatial and temporal term. The covariance function can be written 

as 𝐶𝑠𝑒𝑝(ℎ, 𝑢) = 𝐶𝑠(ℎ)𝐶𝑡(𝑢) . Thus, the equation of variogram is 𝛾𝑠𝑒𝑝(ℎ, 𝑢) = 𝑠𝑖𝑙𝑙. (𝛾𝑠(ℎ) +

𝛾𝑡(𝑢) − 𝛾𝑠(ℎ)𝛾𝑡(𝑢). Spatial & temporal sill is ignored in this model and kept constant at 1. A joint 

sill (= 1) is used, which combines both spatial and temporal effects. 

Product-sum Covariance Model 

This model introduces a new parameter 𝑘 as a weighting factor of the product (𝑘 > 0). The equation 

for the covariance function is 𝐶𝑝𝑠(ℎ, 𝑢) = 𝑘. 𝐶𝑠(ℎ)𝐶𝑡(𝑢) + 𝐶𝑠(ℎ) + 𝐶𝑡(𝑢), and its equation for the 

variogram can be written as: 𝛾𝑝𝑠(ℎ, 𝑢) = (𝑘. 𝑠𝑖𝑙𝑙𝑡 + 1)𝛾𝑠(ℎ) + (𝑘. 𝑠𝑖𝑙𝑙𝑠 + 1)𝛾𝑡(𝑢) −

𝑘𝛾𝑠(ℎ)𝛾𝑡(𝑢). The expression of the joint sill is 𝑠𝑖𝑙𝑙𝑠𝑡 = 𝑘. 𝑠𝑖𝑙𝑙𝑠. 𝑠𝑖𝑙𝑙𝑡 + 𝑠𝑖𝑙𝑙𝑠 + 𝑠𝑖𝑙𝑙𝑡 . Here, the 

spatial and temporal nugget is ignored and kept constant at 0; joint nugget is used to account for 

both spatial and temporal effects. 

Metric Covariance Model 

For this model, identical spatial and temporal covariance functions are assumed, except for its 

spatiotemporal anisotropy. Spatial, temporal, and spatiotemporal distances are treated equally in a 
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joint covariance model by matching space and time by spatiotemporal anisotropy parameter, 𝑘 

(stAni). The equation for the covariance function is 𝐶𝑚(ℎ, 𝑢) = 𝐶𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2) . The 

equation for the metric variogram can be written as: 𝛾𝑚(ℎ, 𝑢) = 𝛾𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). Temporal 

distances are internally re-scaled to an equivalent spatial distance to determine the equivalent 

factor in terms of the dependence of 1m separation in a second or a minute. The expression of 

spatiotemporal anisotropy is 𝑘(𝑆𝑡𝐴𝑛𝑖) =
Spatial unit

Temporal unit
=

m

Sec/min
. 

Sum-metric Covariance Model 

This model is a combination of spatial, temporal, and metric models. The equation for a covariance 

function is 𝐶𝑠𝑚(ℎ, 𝑢) = 𝐶𝑠(ℎ) + 𝐶𝑡(𝑢) + 𝐶𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). The equation for a sum-metric 

variogram can be written as 𝛾𝑠𝑚(ℎ, 𝑢) = 𝛾𝑠(ℎ) + 𝛾𝑡(𝑢) + 𝛾𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2) . Spatial, 

temporal, and joint nugget are estimated separately in this model. 

Simple Sum-metric Covariance Model 

This simplified version of the Sum-metric model restricts the spatial, temporal, and joint 

variograms to nugget free models. A single spatiotemporal nugget is introduced in this model. The 

equation for a variogram is 𝛾𝑠𝑠𝑚(ℎ, 𝑢) = 𝑛𝑢𝑔. 1ℎ>0,𝑢>0 + 𝛾𝑠(ℎ) + 𝛾𝑡(𝑢) +

𝛾𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). Here spatial, temporal, and joint nuggets are set to 0; Only joint nugget are 

fitted.  

Several previous studies attested the superior performance of the sum-metric model in fitting the 

spatiotemporal variogram using environmental parameters (i.e., smallest mean squared errors). 

Therefore, the sum-metric model is selected and used in this analysis (Ahmed et al. 2018, and Hu 

et al. 2017). A spatiotemporal anisotropy parameter (stAni) is used to create the joint 

semivariogram by combining the spatial and temporal semivariance. The number of space units 

equivalent to one time unit is defined as stAni. RMSE (root-mean-square-error) is used in this 

study to measure the goodness-of-fit of the resultant model. RWIS density and location 

optimization involve using the joint semivariogram parameters, which will be discussed in sections 

3.4 and 3.5, respectively.  
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3.4 Density Optimization via Particle Swarm Optimization 

Density optimization in this study is conducted in order to compare the number of RWIS stations 

needed per unit area in different TPI and WSI-based classes. Semivariogram parameters generated 

from different classes are used in the optimization process to represent the spatial characteristics 

of the zones. A randomly selected square region (an area of 10,000 square km) within the study 

area is used as the experimental boundary, wherein the solution is limited for density optimization 

of all classes. RWIS density curves for different TPI and WSI zones are generated based on a 

predefined number of RWIS stations. The marginal increment of benefit associated with each 

additional RWIS station is calculated to determine the optimal RWIS density.  

The core of the density optimization done here is conducted using the Particle Swarm Optimization 

(PSO) technique. PSO is an evolutionary computation technique and population-based global 

optimization method developed by Kennedy and Eberhart in 1995 (Shi 2001). PSO is widely used 

and popular in solving heuristic problems because it can be easily implemented and is 

computationally inexpensive. In this optimization process, a number of n-dimensional candidate 

points (particle) are placed in the search space of a function, and each particle evaluates the 

objective function at its current location. A particle can be considered a potential solution presented 

by velocity and position (Wang 2012). The movement of each particle is determined based on its 

best fit location with one or more swarm, and the algorithm searches for optima by updating the 

generations (Kennedy and Eberhart 1995; Poli et al. 2007). The 𝑖th particle in the search space can 

be represented as 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛). Each particle in the swarm flies to the previous best 

position and global best position, named ‘pbest’ and ‘gbest’, respectively. The best previous 

position of the 𝑖th particle can be presented as 𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛). The index of the best particle 

in the swarm is represented by the subscript 𝑔. The velocity of particle movement is represented 

by vi = (vi1, vi2,…, vin). The particle is attracted by pbest and gbest during the search process 

according to Equations 3-4 and 3-5. 

𝑣𝑖𝑑 = 𝜔𝑣𝑖𝑑 + 𝑐1𝜁(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝜂(𝑝𝑔𝑑 − 𝑥𝑖𝑑),                                     (3-4) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑,                                                               (3-5) 

Where, 𝑑 = dimension, representing the total number of candidate RWIS sites, where 1 ≤ 𝑑 ≤ 𝑛; 

𝑐1 and 𝑐2 are positive constant; 𝜁 and 𝜂 are random adjustment factors with a range of 0 to 1, and 
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𝜔 is the inertia weight. The performance of each particle is measured using a predefined fitness 

function. However, as the original PSO is not suitable in this case, a Binary Particle Swarm 

Optimization (BPSO) is considered in this study to solve integer-programming problems 

(Kennedy and Eberhart 1997). The primary difference between these methods lies in how 

particles’ position is updated. The sigmoid function is utilized in BPSO where every dimension in 

the position becomes a number between 0 and 1. The position of the particle is updated using 

Equation 3-6. 

𝑥𝑖𝑑 =
1

1+𝑒−𝑣𝑖𝑑
,                                                                 (3-6) 

In the modified BPSO, a threshold probability, r is set to control whether the xid becomes 1 or not, 

where 1 represents the selection of the element. During optimization, the total number of RWIS 

stations (m) is set as a constant and the algorithm is set to select the best-fit ‘m’ number of locations 

in the search space. The original BPSO shows premature convergence because of a quick loss of 

diversity. To treat this problem, more randomness is added into the internal mechanism of the 

modified BPSO to expand the search space, allowing the particle to escape from any possible local 

minima. Another addition is that if more than one location has the same probability for an RWIS 

station, a mechanism is set in the modified BPSO to select one of them as the solution randomly. 

Lastly, in addition to the maximum velocity set to control the speed of convergence, the inertia 

weight (ω), and self-learning factor (𝑐1) are set to decrease from 0.9 to 0.4 and 2 to 0, respectively, 

in the search process. On the other hand, the society-learning factor (𝑐2) is set to increase from 0 

to 2. The parameters are chosen to ensure that the particles can fly slowly while eliminating their 

ability for self-learning and enhancing social-learning. The steps associated with the modified 

BPSO algorithm are listed below (Poli et al. 2007, Wang 2012, Gu et al. 2019). 

Step 1. ‘m’ particles are initialized with dimensions of velocity. 

Step 2. Velocities are converted to positions (probabilities) using the Sigmoid function (Equation 

3-6). 

Step 3. Two top probabilities are selected in each particle’s position, and they are set to the selected 

candidate points for locating RWIS stations. Kriging variance is then calculated for all the 

unknown points as the fitness value.  
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Step 4. Memorize the current individual best positions and the global best positions. 

Step 5. Update ω, 𝑐1 and 𝑐2 using Equation 3-7, 3-8 and 3-9. 

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 −
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
,                                        (3-7) 

𝑐1𝑛𝑒𝑤 = 𝑐1𝑜𝑙𝑑 −
𝑐1𝑚𝑎𝑥−𝑐1𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
,                                       (3-8) 

𝑐2𝑛𝑒𝑤 = 𝑐2𝑜𝑙𝑑 −
𝑐2𝑚𝑎𝑥−𝑐2𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
,                                       (3-9) 

Step 6. Update each particle’s velocity using Equation 3-10. 

𝑣𝑖𝑑 = 𝜔𝑣𝑖𝑑 + 𝑐1 ∗ 𝜁𝑖𝑑 ∗ 𝛥𝑥𝑝𝑖𝑑 + 𝑐2 ∗ 𝜂𝑖𝑑 ∗ 𝛥𝑥𝑔𝑖𝑑,                      (3-10) 

If the 𝑣𝑖𝑑 > 𝑣𝑚𝑎𝑥, then 𝑣𝑖𝑑 = 𝑣𝑚𝑎𝑥. 

Step 7. Update particles’ positions using Equation 3-6. 

Step 8. Update the individual best position and global best position by comparing fitness values. 

If the updated fitness value is smaller than before, accept the new solution. If not, repeat the process 

from Step 2. 

3.5 Location Allocation via Spatial Simulated Annealing 

In the third step, an innovative optimization framework is developed to optimize the spatial design 

of a regional RWIS network by incorporating RWIS information for spatiotemporal inference. The 

problem is formulated on the premise that data from individual RWIS in a region should be 

collectively used to maximize their overall monitoring quality that is represented by kriging 

variance.  

In this study, a more refined location optimization model is proposed by integrating joint 

semivariogram parameters generated for different weather variables to represent their distinctive 

spatiotemporal characteristics. The objective function is formulated to minimize the sum of mean 

ordinary kriging (OK) estimation variance (in other words, maximizing spatiotemporal coverage) 

across the road network. The equations of the objective function and its related computation 

process are shown below. 
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𝐺 =

[
 
 
 
 
𝛾(𝑥1, 𝑥1) 𝛾(𝑥2, 𝑥1)…  𝛾(𝑥𝑘, 𝑥1) 1

𝛾(𝑥1, 𝑥2) 𝛾(𝑥2, 𝑥2)…  𝛾(𝑥𝑘, 𝑥2) 1
⋮

𝛾(𝑥1, 𝑥𝑘) 𝛾(𝑥2, 𝑥𝑘)…  𝛾(𝑥𝑘, 𝑥𝑘) 1
1                1              …          1       0]

 
 
 
 

                                                             (3-11) 

Where, 𝑥𝑖 (𝑖 = 1, 2, …, 𝑘) is the sampling site of a sample subset of size 𝑘, and in this case, 𝑘 is 

equal to the number of RWIS stations. 𝛾(𝑥𝑖 , 𝑥𝑗) is the semivariance between sampling site 𝑖 and 

𝑗.  

g = [𝛾(𝑥0, 𝑥1) 𝛾(𝑥0, 𝑥2)…  𝛾(𝑥0, 𝑥𝑘) 1]′                                                               (3-12)                                                                                                           

Where, 𝑥0 is the estimation location and 𝑥𝑖 (𝑖 = 1, 2, …, 𝑘) is the sampling site of a sample subset 

of size 𝑘. Then, the minimum mean square error for the estimation location 𝑥0 is: 

𝜎𝑂𝐾𝐼
2 (𝑥0) = 𝑔′𝐺−1𝑔                                                                    (3-13) 

Based on the above three equations, the objective function of this work can be formulated as: 

𝑓(𝑤) =
∑ 𝜎𝑂𝐾𝐼

2 (𝑥0)𝑛−𝑘
𝑖=1

𝑛
                                                                    (3-14)                                                                                                                       

Subject to: 

𝑛 = Total number of candidate RWIS station locations in the study area                                

The RWIS location modelling being tackled here requires mathematical and computational 

methods to find optimal solutions for an objective function, which is usually performed under 

some form of constraint. For a larger-sized optimization problem, a heuristic algorithm is an 

effective method for finding solutions (Revelle et al. 2008). The optimization method implemented 

in this study is Spatial Simulated Annealing (SSA), which is the spatial counterpart to simulated 

annealing (SA) (Kirkpatrick et al. 1983). SSA is a popular heuristic algorithm used to solve spatial 

optimization problems and has gained recognition for generating more reliable location solutions 

(van Groenigen and Stein 1998, van Groenigen et al. 1999, Heuvelink et al. 2006, Brus and 

Heuvelink 2007). SSA works by slightly perturbing previous sampling designs using random 

search techniques. As the optimization process continues, it is necessary to avoid local minima, 

and thus SSA not only accepts improving solutions, but also worsening solutions based on a certain 

probability. The probability of accepting worsening solutions is typically set initially at 0.2, and 
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this probability decreases exponentially to zero as the number of iterations increases. The 

workflow of SSA for a certain number of RWIS stations is displayed in Figure 3-5. 

 

Figure 3- 5: Workflow of Spatial Simulated Annealing 

The optimization process is iterative, where stations are added incrementally, and locations are 

selected based on heuristic attempts to minimize the objective function. When adding new stations, 

the placement area is limited to a square region within the study area. This will be done to reduce 

computational complexity and algorithm run-time. The number of RWIS stations to be located in 

this square region is arbitrarily limited to 10, which is equal to the existing number of RWIS 

stations in the square region. Regarding the optimization process, two top criteria will be 

implemented. If the number of iterations exceeds 100000, the optimization process will stop. And 

if no improvements are made in the objective function after 200 iterations, the algorithm is set to 

automatically stop (Graler et al. 2016). 
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In addition to considering various weather variables, the modified network optimization model 

also incorporates the distribution of traffic demand by taking into account collision and AADT 

data. The accident rate is calculated using Equation 3-15 as follows (Golembiewski and Chandler 

2011). 

Crash rate, CR = (number of accident * 1000000) / (AADT * 365)                   (3-15)                    

In this context, the term "number of accidents" represents the total count of accidents observed 

during the study period. In this study, collisions occurring during the winter months (November to 

March) were considered. In addition, several factors were considered to identify the collisions 

caused by adverse weather conditions. Detailed description is provided in section 5.4.2. AADT, 

on the other hand, represents the average daily traffic volume for a specific road or road section. 

It serves as a measure of the number of vehicles passing through that area on a daily basis. 

Consequently, the resulting value of CR obtained from Equation 3-15 provides an estimate of the 

frequency of accidents. It indicates the number of accidents that occur per million entering 

vehicles. 

3.6 Bi-Level Sequential Optimization Model 

To determine not only the location, but also the type of RWIS stations (R-RWIS and M-RWIS), a 

bi-level sequential optimization model is developed. This model generates the optimal locations 

along with the type of RWIS stations needed for those locations. Initially, single-variable 

semivariogram model and multi-variable semivariogram models are employed to construct RWIS 

density curves through the implementation of SSA. Specifically, the single-variable 

semivariogram model delineates local weather characteristics and is employed in depicting M-

RWIS, whereas the multi-variable semivariogram model captures regional road weather 

characteristics and is applied in illustrating R-RWIS. The density curves are then compared to 

determine the gap in monitoring coverage associated with two types of RWIS stations.  

Figure 3-6 is a representation of density curve comparison for R-RWIS and M-RWIS. Here, the 

x-axis represents the number of RWIS stations, and the y-axis represents the criterion value. The 

criterion value is the objective function value generated from density optimization algorithm. The 

red dotted line shows the density curve for R-RWIS and blue dotted line shows the density curve 

for M-RWIS. Generally, with an increase in station number, criterion value decreases, meaning an 
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increase of monitoring coverage. An R-RWIS network is supposed to provide greater monitoring 

coverage than a network with M-RWIS, which is represented by the gap between density curves. 

This phenomenon suggests that even with an infinite number of M-RWIS integrated into the 

network, achieving monitoring coverage equal to that of the R-RWIS network remains 

unachievable. Furthermore, this gap also indicates that there is a certain number of R-RWIS in a 

network that can be replaced by an equivalent number of M-RWIS. This number of R-RWIS can 

be defined as ‘Replaceable R-RWIS’ as shown in the figure below. The residual segment of R-

RWIS is deemed non-replaceable, signifying that the network must maintain this minimum 

number of R-RWIS for optimal performance.  

 

Figure 3- 6: Concept of determining replaceable and non-replaceable R-RWIS  

Following the identification of both the replaceable and non-replaceable quantities of R-RWIS, 

the subsequent phase involves generating comparable combinations. These combinations, defined 

as configurations of R-RWIS and M-RWIS that offer uniform monitoring coverage across the 

network, are derived through the process outlined in Figure 3-7. With the known density of R-

RWIS, a segment is designated as non-replaceable, while another portion is replaceable by an 
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equivalent number of M-RWIS. Building upon this premise, the focus shifts to the replaceable 

segment, where any number within this range can be substituted. To generate these combinations, 

two distinct algorithms operate iteratively—one for determining the number of R-RWIS and 

another for establishing the equivalent number of M-RWIS through criterion checks to ensure 

similarity in monitoring coverage. The output of this procedure yields a collection of comparable 

RWIS combinations. In the final step, a cost function is applied to identify the most cost-effective 

combination. 

 

Figure 3- 7: Concept of generating comparable combinations of R-RWIS and M-RWIS  

After generating optimal RWIS network, its impact on transportation system can be evaluated 

using impact assessment as discussed in the following section. 

3.7 Assessment of RWIS Network Coverage and Safety Evaluation 

Quantifying the safety effectiveness of RWIS presents significant challenges due to the inherent 

complexities and the multifaceted nature of how RWIS information is utilized by winter road 

maintenance personnel. Specifically, the intricate interplay between the collected data and its 

application in real-time decision-making processes complicates this task. The limited evaluation 

efforts in this area highlight a critical gap in understanding the benefits of RWIS. To bridge this 

gap, the Network Coverage Index (NCI) is introduced as a surrogate measure to evaluate the 

monitoring capabilities of RWIS configurations. NCI facilitates the safety evaluation of the RWIS 
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network by quantifying its spatial coverage and thereby linking it to potential safety outcomes. 

The subsequent sections provide a detailed explanation of this approach. 

3.7.1 Determination of Network Coverage Index (NCI) 

As described, the NCI is used in this thesis to rate the monitoring capabilities of a defined RWIS 

configuration for a specific region. It is a surrogate measure that ranges between 0 and 1, where 0 

represents no monitoring coverage, and 1 represents complete network coverage.  

Determining NCI requires the use of kriging, which is a widely used geostatistical technique that 

provides the best linear unbiased estimate (BLUE) for variables that vary over space (Yeh et al. 

2006). The weighted average of the observed data was used in kriging to predict values at 

unsampled locations, where the weights were determined based on the separation distance between 

the sampled points and unsampled locations. Kriging provides estimates at unknown locations 

along with estimation errors by quantifying the spatial variability over the area of interest 

(Goovaerts 1997). Ordinary Kriging (OK) is a form of kriging that assumes the mean to be 

unknown but constant over each local neighborhood (Goovaerts 1997, Ahmed et al. 2008). OK 

estimation variance for an estimation location, 𝑥0 can be defined by the following equation: 

𝜎𝑂𝐾
2 (𝑥0) = 𝑔′𝐺−1𝑔                                                                     (3-16) 

Where, 𝐺 is the semivariance matrix between the observations and 𝑔 is the semivariance matrix 

between observations and unsampled points. The equations of 𝐺 and g are given below: 

𝐺 =

[
 
 
 
 
𝛾(𝑥1, 𝑥1) 𝛾(𝑥2, 𝑥1)…  𝛾(𝑥𝑘, 𝑥1) 1

𝛾(𝑥1, 𝑥2) 𝛾(𝑥2, 𝑥2)…  𝛾(𝑥𝑘, 𝑥2) 1
⋮

𝛾(𝑥1, 𝑥𝑘) 𝛾(𝑥2, 𝑥𝑘)…  𝛾(𝑥𝑘, 𝑥𝑘) 1
1                1              …          1       0]

 
 
 
 

    and     𝑔 = [𝛾(𝑥0, 𝑥1) 𝛾(𝑥0, 𝑥2)…  𝛾(𝑥0, 𝑥𝑘) 1]′       

Here, 𝑥𝑖 (𝑖 = 1, 2, …, 𝑘) is the sampling site of a sample subset of size 𝑘, where 𝑘 = number of 

RWIS stations. 𝛾(𝑥𝑖, 𝑥𝑗) is the semivariance between sampling site 𝑖 and 𝑗.  

Semivariance values are calculated by constructing empirical semivariograms from RWIS 

measurements. A semivariance is a statistic that measures the similarity between two 

measurements as a function of separation distance (Olea 2012). Semivariance can be calculated by 

taking the average squared differences between two measurements in a spatial domain separated 
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by a specific lag distance. The general equation of semivariance estimation is presented in 

Equation 3-17. 

γ(ℎ) =
1

2𝑛(ℎ)
∑ [𝑧(𝑥𝑖 + ℎ) − 𝑧(𝑥𝑖)]

2                                        
𝑛(ℎ)

𝑖=1
(3-17) 

Here, γ(ℎ) is the estimated semivariance; 𝑧(𝑥𝑖 + ℎ) and 𝑧(𝑥𝑖) are two measurements taken at 

location 𝑥𝑖 and (𝑥𝑖 + ℎ) separated by a lag distance ℎ. 

Since RWIS measurements (i.e., road weather variables) vary over both space and time, 

spatiotemporal semivariogram models are employed in this study. Spatiotemporal modeling 

optimizes parameter estimations for unsampled locations and captures the possible spatial and 

temporal autocorrelation associated with the RWIS variables. A set of variables, 𝑧  in a 

spatiotemporal field can be defined as a combination of spatial domain (𝑆) and temporal domain 

(𝑇): 𝑧 = {𝑧(𝑠, 𝑡)|𝑠 𝜖 𝑆, 𝑡 𝜖 𝑇}. The general equation of a random field 𝑍 can be defined as: 𝑧𝑖 =

𝑍(𝑠, 𝑡), 𝑖 = 1,2,3, … . . 𝑛 × 𝑇. Here, 𝑛 = number of sampled locations and 𝑇 = number of points 

in time. The most common formula for spatiotemporal semivariance estimation is shown in 

Equation 3-18.  

𝛾(ℎ𝑠, ℎ𝑡) =
1

2𝑛(ℎ𝑠,ℎ𝑡)
∑ [𝑧(𝑠𝑘, 𝑡𝑘) − 𝑧(𝑠𝑘 + ℎ𝑠, 𝑡𝑘 + ℎ𝑡)]

2𝑛(ℎ𝑠,ℎ𝑡)
𝑘=1                     (3-18) 

Here, 𝛾(ℎ𝑠, ℎ𝑡) is the estimated semivariance, 𝑛(ℎ𝑠, ℎ𝑡) is the total number of pairs in the random 

field, 𝑧(𝑠𝑘, 𝑡𝑘)  is the observation at location sk and temporal point 𝑡𝑘 , 𝑧(𝑠𝑘 + ℎ𝑠 , 𝑡𝑘 + ℎ𝑡)  is 

another observation at location (𝑠𝑘 + ℎ𝑠) and temporal point (𝑡𝑘 + ℎ𝑡). The observations pairs are 

separated by a user-defined spatial lag (ℎ𝑠) and temporal lag (ℎ𝑡) (Biswas and Kwon 2020, Gething 

et al. 2007, Shekhar et al. 2008, Network 2016) [18, 27-29]. Spatial and temporal semivariograms 

can be combined using spatiotemporal anisotropy to estimate the joint semivariogram that can 

preserve both spatial and temporal effect. The joint semivariogram models developed in our 

previous effort are adopted in this study for conducting kriging interpolation (Biswas and Kwon 

2022).  

Based on the formulation shown in Equation 3-16, we can drive NCI using estimation error 

(kriging variance) under the assumption that a higher estimation error represents an increased need 

for an RWIS station. Since the optimization is aimed at finding locations that minimize total 

estimation error, this would mean the optimal RWIS network provides the best monitoring 
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coverage because it has the lowest estimation error. Therefore, the kriging variance is inversely 

proportional to NCI, and the estimation error can be translated into NCI using the following 

equation.  

𝑁𝐶𝐼 =
𝐾

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
                                                           (3-19) 

Here, 𝐾 is a proportional factor and is sensitive to the regional attributes and can be established by 

determining the kriging variance at optimal conditions.  

3.7.2 Safety Evaluation of RWIS Network 

The collision reduction factor or the percent reduction in collisions is estimated in our previous 

efforts using the state-of-the-art before-and-after Empirical Bayes (E.B.) method (Sharma 2022). 

E.B. accounts for the Regression-to-the-Mean (RTM) artifact by incorporating two separate pieces 

of information; (i) the collision history of the treatment sites and (ii) their predicted collision 

frequencies obtained from the Safety Performance Function (SPF). The ratio of the observed and 

expected number of collisions in the post-implementation period is the collision reduction factor 

of the countermeasure. The overall process was divided into three steps. First, the expected 

collision frequency in the before period was estimated using the following equations. 

𝑁𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 = 𝑤 × 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵 + (1 − 𝑤) × 𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐵                               (3-20) 

𝑤 =
1

(1+𝑘×𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵)
                                                             (3-21) 

Where, 𝑁𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 is the expected collision frequency in the before-period, 𝑤 is the weighted 

adjustment factor between 0 to 1, 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵 is the predicted collision frequency is the before-

period,  𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐵 is the observed collision frequency in the before-period, and 𝑘 is the negative 

binomial overdispersion parameter estimated from SPF.  

A weighted sum of two separate pieces of information is used in this step. The predicted collisions 

for each site in the before-period are calculated using the calibrated SPF equation. In contrast, the 

observed collision frequencies come directly from the collected dataset. The calibrated SPFs are 

developed for several RWIS stations in Iowa. The calibrated SPF equation is shown below: 

µ = e(−10.4861  )L(0.8246). V(0.2291)                                                 (3-22) 
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Here, the SPF was developed for total collisions regardless of the severity type due to limited 

dataset. Site specific parameters used for calibration includes - road length, traffic volume 

(AADT), number of lanes, pavement type, etc. However, only road length and traffic volume has 

been found statistically significant coefficients and provided meaningful SPF.  

Using this equation, the collision frequency in the before-period (µ) can be predicted using road 

length (L) and traffic volume (V). Additionally, there are various confounding factors, such as 

improvements in the roadway, general traffic safety trends, and changes in weather conditions that 

cannot be captured by the SPFs. Therefore, Yearly Calibration Factors (YCFs) are also 

incorporated into the safety evaluation process. 

In the second step, the expected collision frequencies in the after period, 𝑁𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴 is calculated. 

The calibrated SPF equations were used to estimate an adjustment factor, 𝐴𝑑𝑗, that captures the 

traffic volume variations during the before and after periods.  

𝑁𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴 = 𝑁𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 × 𝐴𝑑𝑗                                                  (3-23) 

The last step involves estimating the effectiveness of the countermeasure. The safety effectiveness 

or percent collision reduction due to countermeasure implementation is estimated using the 

following equation. Note that an odds ratio is used to account for potential bias. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 100 × (1 − 𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜)                          (3-24) 

After quantitatively measuring the impact of RWIS stations on traffic safety, the benefit associated 

with an RWIS configuration can be evaluated by assessing NCI. By utilizing the safety evaluation 

output, the collision reduction for each RWIS station can be calculated. The values of NCI for a 

set of RWIS network configurations are then plotted against the number of collision reduction for 

corresponding RWIS setup. Here, collision reduction is used as a performance indicator of safety 

benefits. A higher number of collision reduction is expected to be associated with an RWIS 

network of lower kriging variance, thus higher NCI value.  
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Chapter 4 

Development of Nation-wide Optimal RWIS Density Guidelines1,2 

4.1 Introduction 

Due to the numerous benefits associated with RWIS information, transportation agencies have 

invested millions of dollars in deploying RWIS stations to improve the monitoring coverage of 

winter road surface conditions. However, the design of these networks often varies by region. It is 

not entirely clear how many stations are necessary to provide adequate monitoring coverage under 

different conditions. Hence, this chapter focuses on answering the following research question —

how many RWIS stations are required for a region with varying environments to provide sufficient 

coverage by considering spatiotemporal characteristics of road weather variables? In particular, 

we are interested in investigating how optimized RWIS station densities relate to topographic and 

weather characteristics. In the initial stage, the study area comprising 20 different states in the US 

is classified into topographic position index (TPI) and weather severity index (WSI) based zonal 

classes. A series of geostatistical semivariogram models is then constructed and compared for each 

TPI and WSI-zones to measure relative topographic variation and weather severity. Subsequently, 

a heuristic optimization is applied to map the optimum number of RWIS stations across several 

topographic and weather zones. 

4.2 Characterizations of Topography and Weather 

As mentioned previously, topography and weather severity-based classifications were conducted 

to evaluate the relationship between RWIS station density, topographic variability, and weather 

characteristics for the regions under investigation. TPI was calculated using the DEM data based 

on Jenness’s algorithm (Jenness 2006). Based on TPI values, the study area was classified into 

three different landform groups (flatland, hilly, and mountainous).  

 

———————————— 

1
Biswas S., M. Wu, S. J. Melles, and T. J. Kwon (2019). Use of Topography, Weather Zones, and Semivariogram Parameters to Optimize Road 

Weather Information System Station Density across Large Spatial Scales. Transportation Research Record: Journal of the Transportation Research 
Board, vol. 2673, no. 12, pp. 301-311. https://doi.org/10.1177/ 0361198119846467 

 
2 Biswas, S., and T. J. Kwon (2020). Developing Statewide Optimal RWIS Density Guidelines Using Space-Time Semivariogram Models. Journal 

of Sensors, vol. 2020, Article ID 1208692. https://doi.org/10.1155/2020/1208692 

  

https://doi.org/10.1177/%200361198119846467
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On the other hand, the WSI parameter was used for weather-based classifications using an ArcGIS 

shapefile generated for the United States by Meridian Environmental Technology, Inc. (Mewes 

2011). Lower WSI values indicate a less severe weather zone, whereas more severe weather zones 

are associated with higher WSI values. According to the WSI values, the study area was 

categorized into four WSI-based classes: less, moderate, high, and extremely high severe weather 

zones. Details of data description and zonal classification are presented below. 

4.2.1. Topographic and Weather Severity Data  

The study area was selected based on data availability and completeness of the proposed study 

which will cover varying topography and weather conditions that can be challenging for driving. 

Twenty united states were selected for topographic and weather severity analysis named as: 

California (CA), Colorado (CO), Delaware (DE), Iowa (IA), Illinois (IL), Kansas (KS), Michigan 

(MI), Minnesota (MN), North Dakota (ND), New York (NY), Ohio (OH), Pennsylvania (PA), 

Utah (UT), Virginia (VA), Wisconsin (WI), Indiana (IN), Kentucky (KY), Nebraska (NE), Nevada 

(NV) and Wyoming (WY). Selected states provide a broad enough region, as well as a range of 

topographic and weather conditions, in which to explore our approach. 

Topography Data 

Digital Elevation Model (DEM) for twenty US DOTs with a 30 m resolution (28 GB) was 

downloaded from the United States Geological Society (USGS, https://earthexplorer.usgs.gov/) 

for topographic characteristic analysis in ArcGIS 10.4.1. The resulting TPI map file has a size of 

49 GB.  

Weather Severity Data 

The ESRI shapefile containing the weather severity index used in this study was generated by 

Meridian Environmental Technology. 

4.2.2. Landform Classification based on TPI and WSI 

TPI Based Classification  

Topographic features of the twenty US states were studied, quantitatively described, and classified 

using topographic position index (TPI). The TPI map of our study area is shown in Figure 4-1, 

and the range of values was between – 565 and 5293. As our primary interest in using TPI-based 

analysis was landform classification over a large extent, the absolute value of TPI was used. A 
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large portion of our study area had TPI values below 75; more specifically, IA, MN, OH, KY, and 

a large portion of NE and KS. We designated these areas as TPI class 1 (i.e., the light coral colored 

zone in Figure 4-1). In addition, TPI values between 75 and 1500 can be seen at the edges of KY, 

OH and MN, and another large part of the study area had a TPI range between 1900 and 2100 with 

a minor area of 1500 to 1900. These zones were categorized as TPI 2 (gray colored zone in Figure 

4-1) covers a small part or KS and a sizable portion of NE, CO and WY. Large variations in TPI 

can be seen in the remaining study area, including a large part of CO and WY, where the range in 

TPI varied from 1900 to 5293 with a minor area under 1900. These remaining areas were classified 

as TPI class 3.  

 

Figure 4- 1: TPI Map of the Study Area 

WSI Based Classification 

The study area was also classified into four WSI classes (Figure 4-2), where WSI ranged from 7.6 

to 301.7 Class – WSI 1 (blue coloured zone) includes zones with WSI values less than 25. This 

area nearly covers all of KY and KS states. The second class – WSI 2 (green colored zone) 

represents regions with WSI between 25 and 50. OH, IA, NE, southern half of MN, and a small 

portion of CO are captured by this class. A relatively large region was between 50 to 100 WSI, for 

which we labeled as class WSI 3. WSI 3 regions cover the northern part of MN, a small portion of 

OH and CO, and part of WY. The remaining area has a considerable variation in WSI values, from 

100 to 301.7. These areas were considered mountainous and were classified into WSI class 4, 

which is quite similar to TPI class 3.  
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Figure 4- 2: WSI Map of the Study Area 

TPI – WSI Combined Map 

Figure 4-3 shows the TPI-WSI zones together. The colors represent the several classes of TPI and 

the contours represent the WSI classes. In general, the severity of weather increases from south to 

north, except in the mountainous regions of CO and WY. A large part of the study area was under 

class – TPI 1, which was divided into three WSI classes. Similarly, class – WSI 2 included both 

TPI 1 and TPI 2 classes.  

 

Figure 4- 3: TPI - WSI Map of Eight States 

This study examined, quantitatively described, and compared the topographic and weather features 

of the area under investigation. The parameters used for comparing the topographic and weather 

characteristics of the study area were TPI and WSI, respectively. Overall, twenty US states were 

classified into three TPI classes and four WSI classes.  
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4.3 Research Procedure 

Spatiotemporal semivariogram modelling was used in this study to evaluate the spatiotemporal 

variability of RWIS measurements for TPI and WSI-based classes. RWIS data for the winter 

season was downloaded, processed, and a space-time matrix was formulated as the input for the 

spatiotemporal analysis. The dataset was classified based on previously developed TPI and WSI 

classes, and a separate analysis was conducted for each month and zone, which were aggregated 

to generate a seasonal spatiotemporal autocorrelation range for the TPI and WSI classes. Optimal 

RWIS densities were then determined by examining the spatiotemporal semivariogram analysis 

results. Density per unit area was calculated and compared for different topographic and weather-

based zones. The research methodology of this study can be summarized into the following steps: 

a. Develop spatiotemporal semivariogram models to examine spatial and temporal 

autocorrelation of RWIS data. 

b. Evaluate the effective spatial and temporal continuity range under different topographic 

and weather settings. 

c. Examine the hypothesis that the spatiotemporal variability of road weather data is 

dependent on the topographic variation and weather severity of the region. 

d. Determine the optimal density of RWIS stations using modified particle swarm 

optimization (PSO) for different topographic and weather classes. 

e. Compare the optimal RWIS density per unit area for different classes. 

Figure 4-4 presents an overview of the proposed methodology for RWIS density determination. 

 

Figure 4- 4: An Overview of the Proposed Methodology 
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4.4 Study Area and Data Description 

4.4.1 Study Area and RWIS Network 

The study area for RWIS density optimization was selected based on RWIS data availability and 

distribution of RWIS stations to cover varying topography and weather conditions. Only eight 

states had sufficient data, including Colorado (CO), Iowa (IA), Kansas (KS), Minnesota (MN), 

Ohio (OH), Kentucky (KY), Nebraska (NE) and Wyoming (WY). These eight states provide a 

broad enough region, as well as a range of topographic and weather conditions needed for our 

approach. The total available RWIS station count for the states are CO (147), IA (86), KS (56), 

KY (38), MN (98), NE (70), OH (182) and WY (81), and the study period selected for this project 

included one winter season (October 2016 to March 2017) to best capture challenging winter 

driving conditions. The distribution of RWIS stations for the study area is presented in Figure 4-

5. 

 

Figure 4- 5: Distribution of RWIS Station for Eight United States 

 

4.4.2 Data Description 

The RWIS data sets used were downloaded from two different sources. First, RWIS data for IA, 

CO and KS were downloaded using the wget script from the WxDE website (Weather Data 

Environment: https://wxde.fhwa.dot.gov/) using Linux (Shacklette 2007). More than 3300 GZ 

files were captured and extracted. Twelve algorithms were then used to check the stationary RWIS 

data generated from WxDE website for quality issues. Among them, IQR (Interquartile Range) 

spatial and Barnes spatial quality check (both tests verify that observations from similar sensors 

are close to each other) results were recommended to filter the RST data in this analysis. Upon 

completion of data quality check, RWIS data for MN, OH, KY, NE and WY were downloaded 

https://wxde.fhwa.dot.gov/
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from IOWA State University (http://mesonet.agron.iastate.edu/RWIS/). Measurements from a 

typical RWIS station included, but are not limited to, air and surface temperature, dew point 

temperature, visibility, wind speed, and road surface conditions collected every 15 to 20-minutes. 

In total, 1026 stations were included in the analysis, and 4368 hours of data were used. 

4.4.3 Data Processing   

RWIS data were processed to remove the missing and erroneous data using five steps: (a) Data 

completeness test to identify missing data; (b) Reasonable range test to find erroneous data; (c) 

Cross-checking RST data with air-temperature data; (d) RST data pattern analysis; and (e) De-

trending RST data with respect to time using GAM.  

To quickly summarize those five steps, data completeness was checked by identifying the total 

missing data for each sensor. If the total amount of missing data was over fifteen percent, the 

associated sensor ID was marked, and the data from that sensor was not used for analysis. 

Reasonable range was tested based on historical data ranges for the associated region and month. 

Filtered RST data were then cross-checked with air-temperature data ranges for any possible 

outliers. An RST data pattern analysis was performed by plotting the day of the month versus the 

average daily temperature for all selected sensors for each state and month. All selected sensors 

were expected to show a similar pattern throughout the month. If any unusual pattern was noticed, 

the RST data for the associated sensors were further investigated. In total, 48 sets of data (six 

months for eight states) were analyzed using the above-described process. Finally, RST data was 

de-trended with respect to time using a GAM to incorporate shorter scale variation in the temporal 

domain, where GAM worked as a generalized linear model with linear predictors. The GAM 

function was formulated as: 𝑚 = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑖(𝑥𝑖) . Here, 𝑚  = variable of 

interest, 𝛽0 = intercept, 𝑓𝑖(𝑥𝑖) = smooth function of predictor 𝑥𝑖 . The smooth function can be 

expressed as: 𝑓𝑖(𝑥𝑖) = ∑ 𝑠(𝑥𝑛)𝑚
𝑛=1  (Wang et al. 2019, Hastie and Tibshirani 1990). 

As a precursory step to better understand the data, the descriptive statistics (means and standard 

deviations) were generated and revealed relatively less variation in average monthly temperatures 

in the mid-winter months than in the shoulder months. Overall minimum and maximum 

temperatures for the study area were: -30.3˚C to 51.5˚C (-22.5˚F to 124.7˚F). Table 4-1 presents 

the maximum, minimum, average, and standard deviations of RST for the study area. Because 

erroneous data were detected in Kentucky (November 2016), it was excluded from the analysis. 

http://mesonet.agron.iastate.edu/RWIS/


46 

 

Figure 4-6 shows the seasonal maximum, minimum, average, and standard deviation of RST for 

the study area.  

Table 4-1. Descriptive Statistics of RST for the Study Area (Winter Months of 2016-17) 

States CO IA KS MN OH KY NE WY 

Oct-16 Min  -6.7 -1.1 0.8 -2.6 -1.5 -7.2 -6.2 -9.4 

Average 15.5 16.9 20.8 12.6 18.3 20.0 16.7 11.9 

Max 37.8 41.5 46.2 41.0 47.0 39.5 44.7 45.1 

StDev 9.0 6.9 8.2 7.0 6.9 6.9 7.7 8.1 

Nov-16 Min  -29.8 -8.6 -7.6 -9.9 -24.0 - -12.5 -15.9 

Average 7.6 9.5 12.5 6.0 10.1 - 8.7 5.0 

Max 46.9 38.3 39.5 30.2 35.5 - 34.4 30.6 

StDev 9.2 7.1 7.8 6.2 6.3 - 8.0 8.0 

Dec-16 Min  -22.6 -29.5 -24.9 -29.9 -19.6 -10.4 -28.1 -29.5 

Average -1.5 -2.7 0.8 -6.6 1.7 4.5 -3.3 -5.4 

Max 26.6 18.8 22.9 11.7 51.5 21.1 17.8 17.6 

StDev 7.4 6.4 7.3 6.8 5.7 4.8 6.2 6.3 

Jan-17 Min  -26.9 -24.0 -20.9 -30.3 -19.1 -17.2 -26.9 -29.1 

Average -0.6 -2.1 2.7 -6.8 2.9 6.4 -2.5 -5.5 

Max 37.8 19.6 28.5 14.2 25.5 21.8 19.9 21.0 

StDev 7.7 6.0 7.4 7.9 6.3 5.1 6.3 6.9 

Feb-17 Min  -17.7 -15.9 -10.8 -26.0 -22.7 -9.6 -19.4 -23.4 

Average 6.0 5.6 9.8 -1.5 7.1 9.3 4.4 0.9 

Max 37.7 32.4 38.6 27.2 34.5 30.4 36.1 30.7 

StDev 8.9 8.2 9.0 8.1 7.3 5.9 8.0 7.7 

Mar-

17 

Min  -17.2 -16.4 -7.3 -22.0 -10.8 -8.4 -11.5 -17.5 

Average 11.0 7.0 13.9 2.5 9.0 12.1 9.4 7.2 

Max 38.3 36.1 48.7 36.3 36.0 31.7 43.7 39.5 

StDev 10.2 7.6 9.5 8.7 7.1 6.5 8.3 9.3 
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Figure 4- 6: Seasonal Road Surface Temperature Details for Eight States 

Spatiotemporal semivariogram modelling was performed using the R statistical package - version 

3.2.5 (Pebesma 2004, Graler et al. 2016, R Core Team 2018), and RWIS density optimization was 

coded in Python. To improve the computational efficiency, all optimizations undertaken in this 

study were run on the supercomputer "beluga" from the "University of Alberta", managed by 

Calcul Québec and Compute Canada (https://www.computecanada.ca/). It contains 32 CPUs, each 

of which runs on 2.4 GHz with 1 GB of allocated memory. 

4.5 Spatiotemporal Semivariogram Modelling Results 

To maintain a level of granularity to the data, the RWIS data for the study area were processed on 

a monthly basis from October 2016 to March 2017. Road surface temperature (RST) data were 

aggregated using twenty-minute intervals for time domain analysis. Space-time matrix was then 

formulated for each of the TPI and WSI zones. Spatiotemporal autocorrelation of RST for each 

study zone was then analyzed using spatiotemporal variogram modelling methods using the gstat 

package in R (Pebesma 2004, R Core Team 2018). Spatial and temporal continuity ranges for the 

analysis months are presented in Appendix-A. According to Appendix-A, higher spatial and 

temporal variations occurred when topographic and weather variations increase. Seasonal 

spatiotemporal analysis results for TPI and WSI zones are presented in Figure 4-7. 
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(a) 

 

(b) 

Figure 4- 7: Spatial Semivariogram Ranges for (a) TPI Class and (b) WSI Classes 

According to Figure 4-7, relatively higher spatial and temporal ranges were obtained for TPI class 

1 (flatland area), followed by class 2 and 3 representing hilly and mountainous areas, respectively. 

Similar results were obtained for weather-based classes, where regions with less topographic 

variation and less severe weather have a higher spatial and temporal range (depicted in Figure 4-

8). The range of autocorrelation decreased with increases in topographic variation and weather 

severity. In general, there was a trend of higher autocorrelation range during mid-winter months 

compared to shoulder months.  
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(a) 

 

(b) 

Figure 4- 8: Temporal Semivariogram Ranges for (a) TPI Class and (b) WSI Classes 

The effect of weather severity in the TPI 1 zone—the flatland area—is presented in Figure 4-9. In 

our study area, the flatland region consisted of three weather severity regions and there was a trend 

for higher autocorrelation range in areas with less weather severity than areas with more severe 

weather severity regions, especially for the temporal range. The effect of weather for the spatial 

range was negligible as the total difference is only 1.6 km. From this, we can conclude that 

topography can serve as a more intuitive measure for RWIS network planning than weather 

severity. Similar comparisons for other TPI zones were not made as TPI 2 zone consists of WSI 2 

and 3 zones, and TPI 3 zone is identical to WSI 4 zone (see Figure 4-1 and 4-2). 
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Figure 4- 9: Spatial and Temporal Range for Flatland Area (TPI 1) with Different Weather 

Severity 

4.6 Development of Optimal RWIS Density Guidelines 

The spatiotemporal semivariogram analysis results were used as inputs for RWIS density 

optimization in order to develop RWIS siting guidelines. The RWIS density per unit area for 

different topographic and weather severity regions was determined from the density optimization 

outputs. The density optimization results were then used to generate an RWIS density chart for 

TPI-WSI zones. 

The density optimization was conducted using all three semivariogram parameters (range, nugget, 

and sill). The main focus was the semivariogram range's dependency on the region's topographic-

weather characteristics. Spatial parameters of a spatiotemporal semivariogram were used as input 

for density optimization for topographic and weather severity zones (3 TPI classes and 4 WSI 

classes). A hypothetical network of 100 km × 100 km was used for density optimization. A 5 km 

× 5 km prediction grid was then generated in ArcGIS (ESRI 2015) to create the candidate sites for 

RWIS station placement. The objective function was formulated to minimize the mean ordinary 

kriging estimation variance and was solved via PSO as described earlier. The algorithm optimized 

the density of RWIS stations in an iterative process where stations were added one by one into the 

study area, and the locations were selected based on heuristic attempts to minimize the objective 

function. The total number of RWIS stations allowed was arbitrarily limited to 100 in this study to 

ensure the full display of the estimation error variation trend as density changes. The maximum 

number of iterations was set to 5,000, after which the search process for new RWIS station 

0

5

10

15

WSI 1 WSI 2 WSI 3

C
o

n
ti

n
u

it
y
 R

an
g
e 

(k
m

) 

WSI Classes

Spatial

Range (km)

Temporal

Range (hrs)



51 

 

locations is set to stop. Prediction errors were normalized to make a valid and fair comparison 

among zonal classes.  

According to the density optimization results shown in Figure 4-10, topographic and weather 

severity classes with larger spatial ranges required fewer RWIS stations, except for weather zone 

3, which shows a similar trend to weather zone 1. Such findings are in agreement with analyses 

using TPI classes: WSI 3 zone consists mainly of northern parts of MN, classified as flatland area 

(TPI 1) and are found to have a lower density of RWIS based on topographic analyses. From this, 

it can be stated that topographic measures (TPI) provide a more intuitive and direct relationship 

than WSI in terms of their impacts on RWIS density. 

 

(a) 

 

(b) 

Figure 4- 10: Normalized Prediction Error as a Function of RWIS Density for (a) TPI 

Classes and (b) WSI Classes 

The number of RWIS stations needed for a 0.1-unit increment of benefit (number of stations 

needed to reach normalized fitness value of 0.1) was calculated from Figure 4-10 and presented 

in Figure 4-11. According to Figure 4-11, the initial 0.1-unit of incremental benefit requires the 

highest number of RWIS stations, with each subsequent incremental benefit requiring fewer and 
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fewer additional stations. This trend was expected because the marginal benefit gained from 

additional RWIS stations should decrease as station numbers increase. A similar trend is observed 

for both TPI and WSI classes.  

 

(a) 

 

(b) 

Figure 4- 11: Number of RWIS Stations for Benefit Increment of 0.1-Unit for (a) TPI 

Classes and (b) WSI Classes 

For determining the optimal RWIS density, marginal benefits (number of additional RWIS stations 

needed for 0.1-unit incremental benefit) were calculated from Figure 4-10 and presented in Figure 

4-12. According to Figure 4-12, the number of added RWIS stations for an initial marginal 

incremental benefit of 0.1-unit was the highest. The number of additional stations decreased for 

further increments of marginal benefits for both TPI and WSI classes.  

 

(a) 
 

(b) 

Figure 4- 12: Added Number of RWIS Stations for Marginal Benefit Increment of 0.1-Unit 

for (a) TPI Classes and (b) WSI Classes 
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Looking at Figure 4-11 and Figure 4-12, it can be noted that the marginal benefit decreases 

significantly after the 0.3-unit increment benefit mark. This was determined as the median of the 

range and number of associated RWIS stations for 0.3-unit increment of benefit increase was 

defined as the optimal RWIS density. We then set 0.2-unit and 0.4-unit as the upper and lower 

bound, respectively. Using this definition, Figure 4-11 was converted into Figure 4-13. According 

to this figure, RWIS density was the lowest for TPI class 1 and increases with topographic 

variation. Similarly, less weather severe regions required the fewest number of stations, and the 

most severe regions required the greatest number of stations; the only exception was WSI 3 for the 

above-noted reasons.   

 

(a) 

 

(b) 

Figure 4- 13: RWIS Density Comparison for (a) TPI Classes and (b) WSI Classes 

The density optimization results were used to generate an RWIS density chart for TPI-WSI zones 

and is presented in Table 4-2. RWIS density for each TPI-WSI region was calculated by 

combining the topographic and weather effect with equal weightage. According to the result, three 

to seven RWIS stations are required for a unit area of 10,000 km2, attesting that the RWIS 

necessary to provide enough coverage over space and time is about three times more than that over 

space only. Winter road maintenance agencies can readily use such findings for planning a region-

wide RWIS network, especially for regions with limited or no available RWIS stations. 
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Table 4-2. RWIS Density for TPI-WSI Zones for Unit Area (1/10000 sq km)  

RWIS Density 

for Unit Area 

TPI Classes 

TPI 1 TPI 2 TPI 3 

LB Avg UB LB Avg UB LB Avg UB 

WSI 

Classes 

WSI 1 1.93 3.25 7.00 2.18 4.00 8.75 2.68 5.00 10.50 

WSI 2 2.30 4.25 9.50 2.55 5.00 11.25 3.05 6.00 13.00 

WSI 3 1.98 3.50 7.50 2.23 4.25 9.25 2.73 5.25 11.00 

WSI 4 2.75 5.25 11.50 3.00 6.00 13.25 3.50 7.00 15.00 

 

4.7 Statewide RWIS Density Determination 

The optimal RWIS density was determined for each of the 14 states using Table 4-2. The 

optimal RWIS density map is presented in Figure 4-14.  

 

 

Figure 4- 14: Optimal RWIS Density Map 

Nine different TPI-WSI combined zones were identified in the study area. The flatland area (TPI-

1 zone) includes four different weather severity zones named T1W1, T1W2, T1W3, and T1W4 

(lighter colored blue area in Figure 4-14). Weather severity increases in magnitude going from the 

south to the northern parts of the study area. The optimal RWIS density in these regions varies 

from 3.25 to 5.25 stations per unit area (1/10000 km2). The TPI-2 zone, which are hilly areas, 

combines two different weather severity zones in the study area and were named T2W2 and T2W2. 
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These areas include a smaller part of Colorado, Kansas, and Utah. Four to five RWIS stations are 

needed per unit area in these zones. Mountainous areas (TPI-3 zone) include three different 

weather severity zones named T3W2, T3W3, and T3W4. Very small areas of California, Colorado, 

and Utah are under theT3W2 and T3W3 zones. Most of the mountainous areas are under extremely 

high severe weather regions.  

The area under each TPI-WSI zone was calculated to determine the optimal RWIS density for each 

state. Table 4-3 presents the suggested RWIS density for the 14 states.  

Table 4-3. Suggested RWIS Density for the 14 States 

States CA CO DE IA IL KS MI MN ND OH PA UT VA WI 

RWIS 

density 
198 156 2 61 54 73 61 86 75 45 46 127 37 58 

 

The findings from the density analyses show that the number of RWIS stations needed for adequate 

monitoring coverage of mountainous regions with highly varied climates (i.e., California, 

Colorado, and Utah) is relatively higher than flat regions with less varied weather. This makes 

intuitive sense since highly varied regions in terms of weather and topography would typically 

require more frequent monitoring of road weather and surface conditions during inclement weather 

events to provide timely and cost-efficient winter road maintenance operations. For example, the 

suggested RWIS density for Delaware is the lowest as it has the smallest area with relatively less-

varying weather and topographic conditions. The values provided are for reference only, and 

further investigation may be warranted to determine optimal densities based on different weighting 

schemes (i.e., traffic versus weather) and budgetary constraints. 

4.8 Summary 

Winter road maintenance is one of the most critical activities for transportation maintenance 

agencies, especially for cold region countries. The significant and critical information needed to 

make winter road maintenance decisions requires road condition and weather data, which is often 

collected, processed, and transmitted by road weather information systems (RWIS). Therefore, for 

an efficient maintenance program, the monitoring coverage and benefit of RWIS must be 

maximized through strategic RWIS planning. In this study, we investigated the representativeness 
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of RWIS measurements in two analysis domains – space and time. Spatial and temporal continuity 

of the variable of interest (RST) were investigated using geostatistical spatiotemporal 

semivariogram analysis and compared with previously established topographic and weather 

regions. Lastly, the optimal RWIS density for three TPI and four WSI zones were estimated from 

the density optimization output.  

The key findings of this chapter of the thesis are listed below: 

 The spatiotemporal autocorrelation range of RWIS measurements strongly depends on TPI 

and WSI values.  

 The zone with the highest topographic variation (TPI class 3 - mountainous regions) had a 

shorter spatiotemporal range, whereas zones with lower TPI values (TPI class 1 - flatland 

regions) had higher ranges. 

 The weather severity was determined as another factor influencing the spatiotemporal 

continuity range of RWIS data. Areas with less severe weather tended to have a higher 

spatial range (e.g., WSI class 1), whereas areas with more severe weather had a lower range 

in spatial autocorrelation. 

 The desired RWIS density showed a strong dependency on topographical and weather 

characteristics of the region. Higher RWIS density is required for regions with high 

topographic variation and high incidence of severe weather, whereas lower RWIS density 

is needed for less topographically varied regions with less incidence of severe weather to 

achieve similar levels of monitoring coverage. 

 The findings presented in this chapter provide an important basis for strategically locating 

regional RWIS stations that are most optimal for collecting measurements over space and 

time. 
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Chapter 5 

Development of Sustainable RWIS Network Planning 

Strategies3,4 

5.1 Introduction 

This chapter focuses on developing a sustainable RWIS network planning approach: a multi-

variable location-allocation model that attempts to answer the second and third research questions: 

where to strategically prioritize RWIS stations to maximize the short-term monitoring capabilities 

within budgetary constraints, and how to identify long-term deployment solutions; and what type 

of RWIS is required for each location. Here, a methodological framework is developed to 

determine optimal RWIS locations by integrating the effect of critical weather variables: air 

temperature (AT), road surface temperature (RST), and dew point temperature (DPT). Initially, 

separate semivariograms are utilized to generate optimal RWIS locations, followed by spatial 

similarity analysis to determine the similarity among generated solutions. Later, the single 

semivariogram models are combined to generate the multi-variable semivariogram model. The 

developed semivariogram model is then used to find the optimal RWIS locations for a given 

network. Additionally, this study fills the gap in determining the optimal installation choice 

between Regular RWIS stations and Mini-RWIS stations by developing a bi-level sequential 

optimization model. Findings from this chapter of the thesis provide valuable insights in enhancing 

the precision and comprehensiveness of RWIS network planning methodologies.  

5.2 Research Procedure 

The first phase of this study is data collection, where information about the study area, stationary 

RWIS data, and traffic data are gathered. In the second step, the collected data is processed by 

removing missing and erroneous data as per our predefined guidelines (Biswas and Kwon 2020). 

Next, the processed data is merged into a GIS-based platform for further analysis.  

 

———————————— 

3 Biswas, S., and Kwon, T. J. (2022). Development of a novel road weather information system location allocation model considering multiple road 

weather variables over space and time. Transportation research record, 2676(8), 619-632. 

 
4
Biswas, S., and Kwon, T. J. (2023). Strategic Planning for Equitable RWIS Implementation: A Comprehensive Study Incorporating a Multi-

variable Semivariogram Model. Journal of Geographical Research, 6(4), 54-72 
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Moving on to the next stage, a highly effective spatial sampling technique within geostatistical 

analysis is utilized to determine the spatial autocorrelation of the critical RWIS variables. This 

technique is designed to enhance the likelihood of capturing spatial variations while minimizing 

potential biases in the input data. Specifically, semivariogram analysis is conducted here to 

generate semivariogram clouds for the selected RWIS variables, namely, Air Temperature (AT), 

Road Surface Temperature (RST) and Dew Point Temperature (DPT). 

At the next stage, a model-based approach via kriging is utilized to obtain unbiased estimates with 

the lowest variance (i.e., uncertainty) to determine the optimal RWIS locations. This step is 

concluded by generating three sets of optimal RWIS locations and performing a similarity analysis. 

The main purpose of this step is to determine the necessity of incorporating multiple weather 

variables into a location allocation model.  

In the following step, separate semivariograms were combined to generate a multi-variable 

semivariogram model. This multi-variable semivariogram model is then applied in different 

aspects of this study to generate optimal locations, obtain RWIS density, and determine types of 

RWIS stations. Location analysis is performed by refining our previously developed location 

optimization framework with dual criteria optimization, combining the effect of both weather 

factors and traffic criteria. At the next step, the multi-variable semivariogram model is also utilized 

to generate optimal density. Lastly, a bi-level sequential optimization model is developed to 

determine not only the location of RWIS, but also the type of RWIS required for each location. 

The overall research procedures for this section are summarized in Figure 5.1. 

This entire procedure presented in Figure 5.1 is illustrated considering four distinct steps as 

summarized below: 

Step – 1: Evaluating the importance of multi-variable semivariogram. 

Case Study – Iowa, USA 

The initial step aimed to underscore the significance of integrating various weather variables into 

the location allocation model. This concept is exemplified through a case study conducted in the 

state of Iowa, USA. Here, geostatistical semivariogram analysis was conducted to generate single-

variable semivariograms for AT, RST and DPT. Later, the single-variable semivariograms are 
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utilized to generate optimal location solutions. The optimal solutions generated were subsequently 

compared to assess spatial similarity among location solutions. 

 

Figure 5- 1: An Overview of the Research Procedure 
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Step – 2: Development of multi-variable semivariogram. 

Case Study – Maine, USA 

This step focused on creating a multi-variable semivariogram model, with the aim of establishing 

a dual criteria location allocation model and a bi-level sequential optimization model. The entire 

study concept was exemplified through a case study conducted in the state of Maine, USA. 

Initially, single-variable semivariogram clouds were generated for AT, RST, and DPT. These were 

then combined to create a multi-variable semivariogram.  

Step – 3: RWIS Network Optimization. 

Case Study – Maine, USA 

In the subsequent step, the developed semivariogram was employed to enhance the RWIS location 

allocation model, incorporating the impact of weather variables and traffic factors. The refined 

model was then utilized for RWIS location and density optimization using a case study for the 

state of Maine.  

Step – 4: Designing a bi-level sequential optimization model. 

Case Study – Maine, USA 

At the last step, the type of RWIS was determined through the development and application of a 

bi-level sequential optimization model. This step attempts to answer the third research question – 

what type of RWIS is needed for each optimal location.   

The subsequent sections will delve into each step individually. 

5.3 Evaluating the Importance of Multi-Variable Semivariogram 

5.3.1 Study Area and RWIS Network 

To determine the importance of multiple weather variables in the location optimization model, the 

study concept is illustrated using a case study in the state of Iowa, USA. Iowa is generally a flatland 

area consisting of rolling plain lands and flat prairies. The altitude of this state is 146 m to 509 m. 

The total number of RWIS station count for Iowa is 88. The study period selected for this analysis 

includes a shoulder season month (October 2016) and a mid-winter month (January 2017) to best 

capture challenging winter driving conditions. The distribution of RWIS stations for the study area 
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is presented in Figure 5.2. A randomly generated 10000 square kilometer region within the study 

area is used as the experimental boundary for location optimization, presented as the red box 

below, in which there are ten RWIS stations. 

 

 

Figure 5- 2: Distribution of RWIS Stations for Iowa 

5.3.2 Data Description and Quality Diagnostics 

RWIS data for Iowa was downloaded from IOWA State University website 

(http://mesonet.agron.iastate.edu/RWIS/) as an Excel file. In total, 1488 hours of data was used in 

this study. The data was processed to remove ‘noise’ via four steps: (a) Data completeness test to 

identify missing data; (b) Reasonable range test to find erroneous data; (c) Comparison with 

neighboring observations; and (d) Detrending processed data with respect to time using GAM. 

Data processing steps are discussed in detail in section 4.6. Preliminary statistical analysis was 

then performed using descriptive statistics of the processed data and correlation analysis among 

weather parameters. Descriptive statistics of AT, RST and DPT are presented in Table 5-1. Upon 

closer inspection of Table 5-1, it was revealed that there was relatively less variation in monthly 

temperatures in the mid-winter month than in the shoulder month for AT and RST, whereas DPT 

showed the opposite trend. AT varied from -6˚C to 33˚C over the month of October 2016, while 

the RST and DPT varied from -1˚C to 41˚C, and from -8˚C to 24˚C, respectively. For the month 

http://mesonet.agron.iastate.edu/RWIS/
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of January 2017, the temperature varied from -27˚C to 20˚C. Figure 5.3 shows the maximum, 

minimum, average, and standard deviation of weather data for the study area. 

 

Table 5-1. Descriptive Statistics of AT, RST and DPT for The Study Area 

  October 2016 January 2017 

AT RST DPT AT RST DPT 

Min -6.33 -1.10 -7.83 -24.70 -24.00 -26.90 

Average 13.64 16.90 9.07 -3.40 -2.10 -6.14 

Max 33.10 41.50 23.60 15.00 19.60 11.20 

StDev 6.77 6.90 6.91 6.30 6.00 7.42 

 

 

Figure 5- 3: Plot of Variation Found in AT, RST and DPT Over the Shoulder and Winter 

Months 

This was followed by a correlation analysis conducted among the weather variables to find how 

strongly the two variables were correlated using values between -1 and +1. A correlation 

coefficient of positive 1 indicates an ideal positive correlation, whereas a negative 1 indicates an 

ideal negative correlation. Finally, a correlation coefficient near zero indicates no correlation at all 

(Asuero et al. 2006). For each month, ten RWIS stations were selected randomly, and the 

correlation coefficient values were generated between each pair of weather variables. These 10 
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values were then averaged to determine the resultant correlation coefficient. Table 5-2 below 

shows the results from this analysis for October 2016 and January 2017.  

According to Table 5-2, the weather variables were more correlated during the mid-winter month 

than the shoulder month. The correlation between AT and RST was higher than any other variable 

pairs, having a correlation value of over 0.9 in both study months. In comparison, the lowest level 

of correlation was observed between RST and DPT, thereby further attesting to the need to 

consider their distinctive road weather characteristics later in the location optimization phase. 

Figure 5-4 presents a plot comparing the correlation coefficient among AT, RST and DPT of Iowa, 

which clearly shows that both the similarity and dissimilarity between the three variables changes 

with month of analysis. 

Table 5-2. Correlation Coefficient for AT, RST and DPT for Study Periods 

Month of 

Analysis 
Weather Parameter AT RST DPT 

 

October 2016 

AT 1   

RST 0.9134 1  

DPT 0.7335 0.5117 1 

 

January 2017 

AT 1   

RST 0.9559 1  

DPT 0.9522 0.8884 1 

 

 

Figure 5- 4: Correlation Coefficients Comparison of Multiple Weather Variables 
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5.3.3 Spatiotemporal Coverage of Multiple Weather Variables 

As evidenced in the previous section where correlation coefficients varied from one variable to 

another, and over different months, spatiotemporal semivariogram modeling was conducted to 

gain a deeper understanding of their spatial and temporal variability. For this purpose, RWIS data 

for the two select months were further processed and aggregated using a one-hour interval for the 

time domain. A space-time matrix was then formulated as an input for the spatiotemporal analysis. 

A separate analysis was conducted for each month and each weather parameter, i.e., AT, RST, and 

DPT. According to previous studies, 30 or more sampling points are needed to construct a reliable 

semivariogram model (Olea 2006), which we exceeded by employing 88 stations from a robust 

RWIS network. Semivariogram modeling was performed using the R statistical package - version 

3.2.5 (Pebesma 2004, R Core Team 2018). Figure 5-5 presents the plot of effective spatial, 

temporal, and joint coverage of RWIS measurements. 

According to Figure 5-5, higher spatial ranges were obtained for the mid-winter month than the 

shoulder month. The spatial range is close to 20 kilometers for all weather variables in January 

2017, and a 10-to-15-kilometer spatial range was obtained for October 2016. The temporal range 

was found to be 8.5 to 12 hours for the shoulder month, and 14 to 21.5 hours for the mid-winter 

month. Such findings make intuitive sense since road weather and surface conditions tend to 

change more abruptly during shoulder months than during mid-winter months when weather 

variability is relatively low.  

To consider these unique characteristics and implement them in the optimization phase, spatial 

and temporal semivariograms were combined using spatiotemporal anisotropy to estimate the joint 

semivariogram as depicted in Figure 5-5 (c). The spatiotemporal range for January 2017 was 

found to be 17 kilometers for all three weather variables, and 7.5 to 10 kilometers was found for 

October 2016. It can be seen that the seasonal trend is well captured by the joint semivariogram 

parameters, where a longer range was generated for the mid-winter month compared to the 

shoulder month. Additionally, the spatiotemporal range was identical for the month of January, 

which indicates a high correlation among the three weather variables. In contrast, different degrees 

of correlations were observed for the month of October, possibly due to the presence of weather 

patterns fluctuations. Based on the recorded results, the parameters of the joint semivariogram are 

used for RWIS location optimization.  
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Figure 5- 5: Plot of Effective Spatiotemporal Coverage of RWIS Measurements – (a) 

Spatial, (b) Temporal and (c) Joint Range 

5.3.4 Effect of Road Weather Variables on Optimal RWIS Locations 

Optimal RWIS locations were determined by relying on semivariogram analysis results that were 

obtained in the previous section. To quantitively appreciate each road weather variable's effect on 

the resulting RWIS locations, the optimization was performed separately for each set of weather 

variables and month of data using the R statistical package - version 3.2.5 (Pebesma 2004, R Core 

Team 2018). To reduce the computational complexity associated with the location optimization 

process and shorten the algorithm runtime, a randomly selected square region (100-kilometer × 

100-kilometer) within the study area was used as the experimental boundary for location 

optimization. A 5 × 5 km prediction grid was generated along the square area in ArcGIS to create 

the candidate sites for RWIS station placement. The computer used to run the optimization was 

equipped with 3.60 GHz CPU and 16 GB memory. The average algorithm running time for 

generating each solution set was approximately 5 to 8 hours. An initial seed value was used for the 
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optimization process in order to generate comparable results. The RWIS network optimization 

output under different weather variables is presented in Figure 5-6 (a) and Figure 5-7 (b) for 

October 2016 and January 2017, respectively. A 10-kilometer buffer was created around the 

stations arbitrarily to help better recognize the distribution of stations within the rectangle study 

area. It is evident that the RWIS location solution is substantially different depending on the 

variable of interest and over the month of analysis.  

 

 

(i) Solution set 1: AT 

 

(ii) Solution set 2: RST 

 

(iii) Solution set 3: DPT 

(a) 

 

 

(i) Solution set 1: AT 

 

(ii) Solution set 2: RST 

 

(iii) Solution set 3: DPT 

(b) 

 

Figure 5- 6: Spatial Distribution of Optimized RWIS Locations with respect to Three 

Variables (a) October 2016 and (b) January 2017 
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5.3.5 Spatial Similarity Analysis 

It is evident from the location allocation output (Figure 5-6) that the optimized location solutions 

are visually different from one another. To quantitatively evaluate the closeness of the optimal 

RWIS station distributions, a spatial similarity index was developed. For this, a sensitivity analysis 

was performed to objectively measure the similarity of optimal locations using ArcGIS (ESRI 

2015). Initially, buffer polygons were created around the stations up to a maximum of 20 

kilometers in linear units. 10 sets of buffer polygon were created for each solution set, which totals 

up to 60 sets of buffer polygon. The intersecting areas were then determined for each pair of 

solution sets, each linear unit combination and each month of analysis. The percentage of 

intersecting area with respect to the study area represents the spatial similarity index, the higher 

the percentage of intersected area, the more similar the solution sets. Figure 5-7 presents the results 

from this analysis.  

According to Figure 5-7, the percentage of intersecting area with respect to different buffer sizes 

follows an exponential function. It is clear from the figure that buffer size does not affect the results 

significantly. In most cases, location solutions generated using the mid-winter month (January 

2017) dataset have been found closer than that of the shoulder month (October 2016) dataset. The 

reason behind this outcome is that the daily fluctuation in weather data is greater during the 

shoulder months than mid-winter months—higher spatiotemporal autocorrelation of weather data 

were found in January than October. For a specific buffer size, the percentage of intersecting area 

between AT and RST solution sets was found to be the highest, followed by in decreasing order, 

AT and DPT solution sets, RST and DPT solution sets, and AT, RST and DPT solution sets. This 

phenomenon is quite similar to the correlation analysis results between the weather variables, 

where the correlation between AT and RST was the highest, followed by AT and DPT, and RST 

and DPT. This analysis indicates that spatial similarity of location solutions can be examined by 

creating buffer polygons regardless of the size implemented. 
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(i) Solution set 1 & 2: AT and RST 

 

(ii) Solution set 1 & 3: AT and DPT 

 

(iii) Solution set 2 & 3: RST and DPT 

 

(iv) Solution set 1, 2 & 3: AT, RST and DPT 

 

 

 

Figure 5- 7: Similarity among Optimal RWIS Station Placements 

 

5.3.6 Location Allocation for the Entire Iowa State 

In the previous section, it was confirmed using the hypothetical square region that the generated 

locations were dependent on weather variables. Based on this finding, the proposed location 

optimization method was expanded to cover the entire Iowa state. To achieve a comparable result 

as the existing RWIS locations, a constrained optimization was performed with respect to the road 

network using the shoulder month dataset. Although the existing number of RWIS stations is 88, 
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the total number of all new stations has been set to 61 for location optimization purposes. The 

number 61 was chosen based on optimal RWIS density guideline (Chapter 4, Table 4-3), where 

the number of RWIS stations per unit area was generated given the topographic variation and 

weather severity of regions. In terms of computational efficiency, the average running time for 

each set of optimization algorithm was approximately 78 hours. Figure 5-8 represents the plot of 

the objective function value as a function of the number of iterations; Figure 5-9 shows existing 

and optimized RWIS locations with multiple weather variables. From Figure 5-9, it is evident that 

the optimal locations are different and largely dependent on the underlying spatiotemporal 

autocorrelation structure considered during the optimization process. The spatial similarity 

analysis was also conducted to objectively assess the difference between the three solution sets 

generated. The results show that spatial correlation between RST and DPT was lower than AT and 

RST, which is consistent with our hypothetical test results. These findings, undoubtedly, provide 

a steppingstone for the development of a multi-objective RWIS location allocation model by 

considering the varying degrees of representativeness of multiple weather variables. 

 

Figure 5- 8: Plot of Objective Function with respect to Number of Iterations 
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Figure 5- 9: Existing and Optimized RWIS Locations of Iowa Generated with Three 

Variables for October 2016 

This subsection of this chapter investigated and confirmed the difference in solutions generated 

from AT, RST, and DPT. Their closeness was further quantified and objectively validated using 

spatial similarity index. The main goal of this single-variable location optimization was to prove 

the hypothesis that, location solutions generated by individual weather variables may not lead to 

the same results; therefore, revealing the need for developing multi-criteria location allocation 

optimization. These findings direct the resurgent need to consider the effects of multiple weather 

variables collectively in the optimization framework by developing a multi-variable 

semivariogram model.  

5.4 Development of Multi-Variable Semivariogram 

5.4.1 Study Area and RWIS Network 

To develop the multi-variable semivariogram, the study concept is illustrated using a case study in 

the state of Maine, USA. Located in the northeastern region of the United States, Maine is 

positioned as the easternmost state, sharing its border with Canada. Maine exhibits diverse 

geographical features, encompassing distinctive regions such as uplands, coastal lowlands, 

mountains, and piedmont areas. Severe winter conditions, including heavy snowfall and freezing 

temperatures, result in the formation of slippery road surfaces and reduced visibility, consequently 

rendering winter driving a demanding and challenging task (Kahl et al. 1991, Greenleaf 1829).  
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There are 10 RWIS stations in Maine, with the majority of them strategically positioned along the 

interstate highway. Due to the limited number of existing stations, RWIS data from a neighboring 

state, NH (New Hampshire), is also utilized in this analysis. Additionally, ASOS (Automated 

Surface Observing System) data from both states are also included after conducting data 

representativeness tests. In the process of assessing the representativeness of NH data for the state 

of ME, an analysis was conducted on the variation patterns of selected weather variables in both 

states. According to the assessment, it can be inferred that NH's RWIS and ASOS data are reliable 

for representing Maine's weather. 

The study period selected for this analysis includes three consecutive winter seasons between 2019 

and 2022. Within these three years, RWIS and ASOS data collected over a span of five winter 

months (November to March) are utilized in this analysis. The distribution of RWIS and ASOS 

stations for the study area is presented in Figure 5-10.   

 

 

 

Figure 5- 10: Distribution of RWIS and ASOS Stations for Maine and NH 
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5.4.2 Data Description 

This study utilized a comprehensive dataset obtained from the Maine DOT with supplemented 

data from the adjacent state NH to compensate for Maine’s lack of RWIS data. The dataset includes 

state boundary information, road network data, stationary RWIS data, and traffic data. 

Furthermore, the study incorporated information regarding candidate RWIS sites, which serve as 

potential locations for future installations of RWIS stations. 

RWIS and ASOS Data 

Stationary RWIS data for Maine was collected from Maine DOT (https://www.maine.gov/mdot/). 

RWIS data for NH and ASOS data for Maine and NH were downloaded from Iowa State 

University (http://mesonet.agron.iastate.edu/RWIS/) and WxDE website (Weather Data 

Environment: https://wxde.fhwa.dot.gov/). State-wide RWIS data in the form of Excel files were 

downloaded, containing measurements from multiple parameters including air and surface 

temperature, visibility, wind speed, and road surface conditions. Likewise, ASOS data 

encompasses similar weather variables, excluding RST. These measurements are collected at 

intervals of approximately 15 to 20 minutes. In total, 25 RWIS stations from NH, 10 RWIS stations 

from Maine, 33 ASOS stations in NH, and 18 ASOS stations in Maine were included in the 

analysis. A total of 10,800 hours of data was incorporated in the analysis.  

The weather data underwent a predefined processing procedure to eliminate missing and erroneous 

data. These steps included data completeness test, reasonable range test, cross-checking RST data 

with AT and DPT data, and pattern analysis of weather data (Biswas and Kwon 2020). Using this 

procedure, a total of 60 sets of data were analyzed.  

Traffic Data 

To calculate the accident/crash rate, AADT and collision data were collected for the same 5-year 

period as RWIS and ASOS data. Then, for the purpose of evaluating collisions during the winter 

season, only collisions occurring between November and March were considered. Furthermore, to 

identify collisions caused by adverse weather conditions, several factors were taken into account. 

These factors included: (i) the contributing factor of the accident, such as road surface conditions 

like wet, icy, snowy, slushy, etc., (ii) the surface condition during the accident, encompassing 
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ice/frost, snow, slush, mud, dirt, and gravel, and (iii) the type of roadway, focusing on non-

intersection collisions. By considering these factors, the study aimed to determine the collision 

rate (CR) associated with adverse weather conditions.  

To create the CR distribution map, the study employed Equation 3-15 to calculate CR values for 

square polygons of different sizes generated from Maine's road network data. Subsequently, the 

CR values are normalized on a scale from 0 to 1. Smaller polygon sizes resulted in a significant 

number of polygons with zero CR values, leading to a random CR distribution map that made 

hotspot identification challenging. After an extensive search process to select the optimal polygon 

size, the CR map generated with 20 km by 20 km polygons was selected as the most suitable, 

providing a comprehensive representation of CR and better visualization of high-crash areas. The 

CR distribution map for Maine with 20 by 20 km square polygons is depicted in Figure 5-11. 

 

Figure 5- 11: Crash Rate (CR) Distribution Map for the State of Maine 
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5.4.3 Data Processing  

RWIS and ASOS data were processed to remove the missing and erroneous data using four steps: 

(a) Data completeness test to identify missing data, (b) Reasonable range test to find erroneous 

data, (c) Cross-checking RST, AT and DPT data to identify outliers, and (d) weather data pattern 

analysis. 

Data completeness was checked by identifying the total missing data for each sensor. If the total 

missing data is more than 15%, the associated sensor ID was marked and the data from that sensor 

was not used for analysis. Reasonable range was tested based on historical data ranges for the 

associated region and month. Filtered weather data were then cross-checked with each other to 

identify data ranges for any possible outliers. A set of data pattern analysis was performed by 

plotting the day of the month versus the average daily temperature for all selected sensors, and 

each month of analysis. All selected stations were expected to show a similar pattern throughout 

the month. If any unusual pattern was noticed, the weather data for that associated station was 

further investigated for the time period of the unusual pattern. In total, 60 sets of data (three winter 

seasons for seven sets of stations) were analyzed using the above-described process.  

The descriptive statistics of the processed data are summarized in Table 5-3, providing insights 

into the minimum, average, maximum, and standard deviation values for the data collected from 

weather stations. Upon closer examination of Table 5-3, it can be observed that the AT exhibits a 

range of -34.0ºC to 26.3ºC throughout the study period, with an average value ranging from -1.2ºC 

to -2.3ºC. The RST varies between -25.9ºC and 32.1ºC, with an average value of 0.12ºC. 

Furthermore, the DPT ranges from -41.9ºC to 21.8ºC, with average values of -6.0ºC to -6.48ºC. It 

is noteworthy that the standard deviation is slightly higher for DPT compared to AT and RST. 

These statistics provide a comprehensive overview of the temperature variations across the study 

period and highlight the relative variability among the different variables. 
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Table 5-3. Descriptive Statistics of Weather Station Data for Maine and NH  

Station Maine ASOS NH RWIS NH ASOS 

Weather 

Variable 
AT DPT AT RST DPT AT DPT 

Minimum 

Temperature 
-30.61 -41.89 -29.50 -25.90 -33.00 -34.00 -40.00 

Average 

Temperature 
-2.32 -6.46 -1.18 0.12 -6.48 -1.22 -5.97 

Maximum 

Temperature 
24.39 19.00 26.30 32.10 21.80 25.00 21.00 

Standard 

Deviation 
7.04 7.77 6.82 6.87 7.58 7.10 7.72 

 

5.4.4 Multi-variable Semivariogram Model 

To assess the spatial structure of key road weather and surface condition variables, semivariogram 

modeling was integrated into this study. The gstat package in R (R. C. Team. 2018, Pebesma 2004) 

was utilized for this purpose. Initially, semivariogram clouds were generated for each weather 

variable, enabling an examination of the spatial autocorrelation among the recorded sample points. 

Each point within the cloud represents the variance between a pair of measurements (Johnston et 

al. 2001, ESRI. ArcGIS, Version 10.4.1). Subsequently, the semivariogram clouds for the weather 

variables were combined to form a unified semivariogram cloud. By binning the cloud points 

together, an empirical semivariogram model was constructed that incorporated the spatial 

autocorrelation of all essential weather variables. Figure 5-12 represents the multi-variable 

semivariogram model developed in this research. Here, the spatial range of autocorrelation was 

determined to be 145 kilometers, with a sill value of 3.55 and a nugget value of 0.01.  
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Figure 5- 12: Multi-Variable Semivariogram Model with Model Parameters 

The use of a multi-variable semivariogram model was expected to yield a more accurate location 

solution by capturing the variability of multiple weather variables. To evaluate the validity of this 

hypothesis, single-variable semivariogram models were also employed in the location-allocation 

algorithm to compare against multi-variable-based solutions. This study utilized R statistical 

packages to generate separate semivariogram models for AT, RST, and DPT. These models were 

subsequently employed to determine location solutions for the state of Maine. 

Recall that the location optimization process leverages the SSA (Spatial Simulated Annealing) 

algorithm. The primary objective was to maximize spatial coverage by minimizing estimation 

variance, represented by a value referred to as 'criterion'. The optimization process involves 

selecting locations that minimize the 'criterion' value. The resultant solution with the lowest 

'criterion' value indicates maximized monitoring coverage. To demonstrate the superiority of the 

multi-variable model compared to single-variable models, optimization outputs from both 

approaches were compared.  

Figure 5-13 illustrates the location solutions for eight stations (selected based on planning 

approaches) and optimization schedules for the three single and multi-variable cases. The 

optimization schedule displayed the 'criterion' value progression, indicating that the multi-variable 

model has a notably lower 'criterion' value compared to the single-variable models. This suggests 
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that the multi-variable model offers enhanced monitoring coverage. The parameters of the multi-

variable semivariogram model were then used as inputs in the location optimization process. 

 

Figure 5- 13: Comparison of Single-Variable and Multi-Variable Model for Network 

Optimization 

5.5 RWIS Network Expansion 

Using the multi-variable semivariogram model developed in the previous step, the study proceeds 

to assess the effects of spatial demarcation on RWIS planning by constructing various design 

scenarios. In previous studies, we developed an innovative RWIS location modeling framework 

where the problem was formulated as an integer programming problem. The objective was to 

minimize spatial inference error, in other words, maximize spatial coverage across the road 

network. These spatial inference errors capture the necessity of installing RWIS stations to 

enhance monitoring capabilities, ultimately improving the effectiveness of winter road 

maintenance operations (Biswas and Kwon 2020). In this step, we refined the previously 

developed location optimization model by incorporating the influence of multiple critical weather 

variables as well as the distribution of traffic demand. 
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This study focused on two specific tasks for expanding the RWIS network. A detailed description 

of the specific tasks is given below. 

Task – 1: Selection of Priority Locations  

A total of 18 potential RWIS locations in Maine have been identified by Maine’s regional officers. 

Our first task was to select 8 priority locations from this pool of predetermined sites. The intent of 

this analysis was to prioritize RWIS locations based on the constraint that a limited number of 

RWIS installations can be installed per year. Figure 5-14 illustrates the predetermined and existing 

RWIS stations. The state is divided into five maintenance zones by gray lines. According to Figure 

5-14, there are two potential locations identified in zone-1 and zone-2, three locations in zone-3, 

four locations in zone-4, and seven locations in zone-5. 

 

Figure 5- 14: Distribution of Current and Predetermined Locations 

Both weather and traffic factors were considered to identify priority locations. The aim was to 

serve a wide range of road users while also effectively capturing weather variability. The weather 

criteria were incorporated by utilizing multi-variable semivariogram parameters, while the traffic 

parameters were considered by incorporating CR. In the optimization algorithm, equal weightage 

was assigned to both weather and traffic factors. This approach aimed to maximize the overall 
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benefit by considering both weather conditions and traffic demands. This resulted in the generation 

of priority locations, represented by green circles in Figure 5-15.  

 
Figure 5- 15: Visualization of Priority Locations 

Figure 5-15 presents the eight priority locations for RWIS installation with a maintenance zone 

map, an estimation error (EE) map, and a CR distribution map. The priority locations are evenly 

distributed throughout the network. The EE map shows varying shades of red, indicating 

estimation error values computed using ordinary kriging. The kriging interpolation technique 

utilizes semivariogram parameters to estimate values at unsampled locations, while also providing 

an assessment of the uncertainty in the estimation, also known as estimation error. The presence 

of an RWIS station at a particular location result in a lower EE value. As the distance from the 

station increases, the estimation for unknown locations becomes associated with higher error. This 

indicates a greater requirement to install a new RWIS station in those areas to bridge the spatial 

gap and reduce estimation uncertainty. In the optimization process, additional RWIS stations are 

strategically positioned to minimize EE values and improve network effectiveness. The CR 

distribution map displays lower CR values in light-colored squares and higher CR values in dark-

red squares. The new station locations strike a balance between weather variability and accident-

prone areas, with strategic placement near high-traffic and hotspot locations. Location information 

of the first 8 priority locations is presented in Appendix B. 
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Task – 2: Clean-Slate Optimization 

At this step, the candidate locations from Task 1 were expanded to encompass all non-interstate 

corridors in Maine. This extended study corridor includes interstate, freeway, expressway, major 

collector, principal arterial, and minor arterial roads. The purpose of this analysis was to 

objectively assess how to best utilize available resources by addressing gaps in the statewide data 

collection and road weather forecasting network. A constrained optimization process was 

conducted to determine the optimal locations for RWIS placement, referred to as clean-slate 

optimization. Three consequent scenarios were considered during the clean-slate optimization 

process. 

i. Generate the first 8 optimal locations  

Here, 8 optimal locations were generated through clean-slate optimization to compare with 

8 priority locations that were identified in task – 1.  

ii. Generate the second 10 optimal locations  

To match the 18 predetermined candidate sites, 18 optimal locations were generated, 

consisting of 10 new sites and 8 initial locations. The aim of this step was to create a direct 

alignment between the optimal locations and the predetermined candidate sites, ensuring a 

clear correspondence between the two sets.  

iii. Generate the third 6 optimal locations  

The RWIS network expansion plan of Maine DOT aims to install 8 new stations annually 

for three consecutive years. By the end of this expansion plan, a total of 24 stations will be 

installed. In this step, an additional 6 optimal stations were generated to reach a total of 24 

additional sites (8 + 10 + 6). The outcomes of this step will provide the RWIS planners 

with a complete set of optimal locations for extending their network.  

During the process of determining optimal locations for the three mentioned scenarios, a series of 

sensitivity analyses were carried out to assess the impact of various weight distributions in kriging-

based RWIS location optimization. This step yielded multiple location solutions depending on the 

weight assigned to weather (W) and traffic (T) factors. These location solutions offer flexibility to 
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network planners and decision-makers, allowing them to choose installation sites based on their 

specific requirements. For each scenario, a total of 7 sets of weight distributions were considered 

as follows:  

Set-1: 0%W, 100%T;  

Set-2: 20%W, 80%T;  

Set-3: 40%W, 60%T;  

Set-4: 50%W, 50%T;  

Set-5: 60%W, 40%T;  

Set-6: 80%W, 20%T;  

Set-7: 100%W, 0%T.  

To generate each set of solutions for each scenario, an average of three to five trials were conducted 

to find a conclusive outcome. In total, clean-slate optimizations were performed over one hundred 

times. To enhance computational efficiency, a portion of the optimizations in this study were 

executed using the advanced research computing system called the ‘Digital Research Alliance of 

Canada’ (https://alliancecan.ca/en) from the University of Alberta. This system utilized GPUs 

from the supercomputers "Cedar" and "Graham," each equipped with 12 to 32GB HBM2 memory. 

The subsequent sections present comprehensive explanations of various clean-slate optimization 

scenarios and their outcomes.  

Scenario – i: Generate first 8 optimal locations 

In order to determine the first eight optimal locations, multiple solutions were generated for seven 

sets of weight distributions, as mentioned earlier. The distribution of the first eight optimal 

locations for all seven sensitivity analysis scenarios are provided in Appendix – C. For the sake of 

brevity, we will focus on discussing the three most significant cases: (a) traffic only, (b) equal 

weightage for weather and traffic, and (c) weather only, as presented in Figure 5-16. For set-1, 

selection of locations was based on the ranking of CR values. Figure 5-16 (a) illustrates the 

distribution map of CR, highlighting eight square polygons with higher CR values. It is evident 

that most of these locations are in close proximity to the interstate and downtown area. Figure 5-

16 (c) displays the optimal locations along with the EE map (set-7). In this case, the objective was 

to fill the spatial gap in order to effectively capture weather phenomena. The resultant solution 

exhibits a uniform distribution of locations, effectively capturing the weather patterns. Lastly, for 



82 

 

set-4, optimal locations were determined by considering dual criteria, as depicted in Figure 5-16 

(b). Here, the selected locations aimed to strike a balance between capturing weather variability 

and addressing accident-prone areas. Consequently, we observe some stations located in proximity 

to hotspot areas, while the overall distribution also captures weather variability by placing stations 

in areas with higher EE (or areas with high uncertainty). 

 

Figure 5- 16: Distribution of First 8 Optimal Locations for (a) Traffic Only Criterion, (b) 

Dual Criteria, and (c) Weather Only Criterion 

A comprehensive sensitivity analysis was conducted to assess the sensitivity associated with the 

optimal locations generated for the seven sets of weight distributions. This analysis aimed to 

capture how the optimal locations are influenced by different weightage assigned to the weather 

and traffic factors. To conduct the sensitivity analysis, the EE and CR values for all seven sets of 

solutions were extracted from the EE map and CR map, respectively, using ArcGIS. Figure 5-17 

displays the results of the sensitivity analysis. 

The analysis reveals that higher percentages of the weather factor prioritize locations with higher 

EE values, while higher percentages of the traffic factor prioritize accident-prone locations with 

higher CR values. These findings validate the effectiveness of the optimization process and offer 

insights into the influence of factor weightage on location selection. 
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Figure 5- 17: Sensitivity Analysis Result for First 8 Locations: Normalized EE and CR 

values for 7 Sets of Optimal Location 

Scenario – ii: Generate the second 10 optimal locations 

In the case of determining the second set of ten optimal locations, the initial eight optimal locations 

for the dual criteria were treated as existing stations, along with the current RWIS stations. Similar 

to scenario-i, solutions were generated for seven sets of weight distributions, and the three most 

significant cases are presented in Figure 5-18. The distribution of second ten optimal locations for 

all seven sensitivity analysis scenarios are provided in Appendix – D.   

 

Figure 5- 18: Distribution of Second 10 Optimal Locations for (a) Traffic Only Criterion, 

(b) Dual Criteria, and (c) Weather Only Criterion 
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Figure 5-18 (a) highlights the top ten square polygons with higher CR values, while the weather-

only criterion strategically places RWIS stations in locations with higher EE values to accurately 

capture weather phenomena. In the case of the dual scenario, the location solution achieves a 

balance between capturing weather variability and addressing hotspot areas. 

Figure 5-19 presents the sensitivity analysis results for Scenario-ii, showing a near identical 

pattern to the previous case, demonstrating the clear influence of factor weightage on optimal 

location selection.  

 

Figure 5- 19: Sensitivity Analysis Result for Second 10 Locations: Normalized EE and CR 

Values for 7 Sets of Optimal Location 

Scenario – iii: Generate the third 6 optimal locations 

To determine the third set of optimal locations, the first eight and second ten optimal locations for 

the dual criteria were considered as existing stations, along with the current RWIS stations. 

Following the methodology employed in previous scenarios, solutions were generated for seven 

sets of weight distributions. The distribution of third six optimal locations for all seven sensitivity 

analysis scenarios are provided in Appendix – E.  The findings of the three most significant cases 

are presented in Figure 5-20.  
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Figure 5- 20: Distribution of Third 6 Optimal Locations for (a) Traffic Only Criterion, (b) 

Dual Criteria, and (c) Weather Only Criterion 

Here, in Figure 5-20 (a), the top six square polygons with higher CR values are emphasized, and 

the weather-only criterion strategically positions RWIS stations in locations with higher EE values 

to increase interpolation accuracy. Figure 5-21 displays the sensitivity analysis results for 

Scenario-iii, which is the same as the two previous cases. This further confirms the location weight 

dependency. 

 

Figure 5- 21: Sensitivity Analysis Result for Third 6 Locations: Normalized EE and CR 

values for 7 Sets of Optimal Location 
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Overall, the sensitivity analysis provides valuable insights into the impact of varying weightage 

on the selection of optimal locations. These findings underscore the importance of carefully 

considering and adjusting the weightage assigned to different factors when determining optimal 

RWIS locations. 

Performance Analysis of RWIS Network 

After identifying the optimal locations through clean-slate optimization, the study embarked on a 

comparative analysis with the 8 priority and 18 predetermined locations within Maine’s five 

maintenance zones. Within this framework, the density of RWIS stations was determined based 

on the length of roads in each zone and the number of existing and new RWIS stations. The 

analysis was also aimed not just at validating the predetermined locations but also delved into an 

equity assessment to ensure that the RWIS stations are distributed fairly across the five distinct 

zones.  

The results, presented in Table 5-4, indicate that the RWIS densities for both the priority and 

optimal locations remain consistent across eight stations. This consistency provides evidence 

supporting the validity of the selected priority locations. When comparing the 18 predetermined 

and 18 optimal locations, similar numbers of stations are observed in most regions, with minor 

differences between Zone 1 and 5. The evaluation of standard deviation values unveils that the 

predetermined case is characterized by a slightly higher variability (1.29), contrasting with the 

more streamlined standard deviation found in the optimal case (0.979). From an equity perspective, 

this numerical difference underscores a more refined alignment of the RWIS stations within the 

optimal solution, reflecting a concerted effort to evenly balance the distribution across different 

zones.  Consequently, the optimal case not only illustrates the efficacy of the selected locations 

but also emphasizes a more harmonized and equitable distribution of RWIS stations across the 

maintenance zones.  
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Table 5-4. RWIS Density Comparison between Priority and Predetermined Locations with 

Optimal Locations  

Maintenance Zone 1 2 3 4 5 

Road Length (1000 km) 2.25 1.73 1.62 2.05 1.63 

8 Priority 

Locations 

Priority and Existing RWIS 4 3 2 6 3 

Density per 1000 km of Road 1.78 1.74 1.23 2.93 1.84 

First 8 Optimal 

Locations 

Optimal and Existing RWIS 4 3 2 6 3 

Density per 1000 km of Road 1.78 1.74 1.23 2.93 1.84 

18 Predetermined 

Locations 

Predetermined and Existing 

RWIS 
4 4 4 8 8 

Density per 1000 km of Road 1.78 2.32 2.47 3.90 4.91 

First 8 + Second 10 

Optimal Locations 

Optimal and Existing RWIS 5 4 4 8 7 

Density per 1000 km of Road 2.23 2.32 2.47 3.90 4.29 

 

The impact of incorporating additional RWIS stations into Maine's network was also evaluated by 

analyzing the 'objective function' values associated with each set of solutions during the 

optimization process. The findings, depicted in Figure 5-22, quantify the percentage improvement 

in monitoring coverage. The infusion of the first 8 and second 10 stations show substantial 

improvement, while the improvement for the third set of 6 stations is relatively lower, indicating 

that the network is nearing saturation. The monitoring improvement for optimal locations 

surpasses that of the proposed locations. This is because the entire road network of Maine was 

utilized as a study corridor for the optimal case, leading to more favorable outcomes. While the 

improvement for 8 priority locations is slightly lower than the optimal case, the second set of 10 

locations demonstrates similar improvements. These findings confirm the effectiveness and 

validity of the predetermined locations proposed by Maine DOT in optimizing the RWIS network. 
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Figure 5- 22: Enhanced Network Monitoring: The Impact of Additional RWIS Stations 

5.6 Bi-Level Sequential Optimization Model 

Following the density and location optimization of RWIS stations, this study introduces a novel 

bi-level sequential optimization model to determine both locations and types of RWIS stations (R-

RWIS and M-RWIS) to enhance the efficiency and effectiveness of the RWIS network 

deployment. The procedure for development of bi-level sequential optimization is below.  

Definition of variables 

 Monitoring Stations (R-RWIS and M-RWIS): A combination of k (1, 2, . . . , R) number 

of R-RWIS and k’ (1, 2, . . . ,M) number of M-RWIS with location attribute X = [x1, . . . , 

xk] and X’ = [x’1, . . . , x’k’] respectively. 
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 Candidate sites: N, with location attribute i ϵ 1, 2, . . . , N;  which is the total number of 

grid cells along the road network. 

 

 Weather factor: Variable of interest for R-RWIS is z(i|X), which is the estimation of z(i) 

given observations at X. Similarly, variable of interest for M-RWIS is z’(i|X’), which is 

the estimation of z(i) given observations at X’. 

 

 Traffic factor: Decision variables, 𝑦𝑘,𝑖 and 𝑦𝑘′,𝑖 [1 if an RWIS station is assigned to cell i, 

0 otherwise]. 𝜇𝑖
−1 is the inverse of accident / crash rate. 

 

Objective function for allocating k number of R-RWIS 

CR = Min 𝜑(𝑋) = [
1

𝑁
. ∑ (√𝜎2 [𝑧(𝑖|𝑋)]) . ⍵ +

1

𝑅
. ∑ (𝜇𝑖

−1. ∑ 𝑦𝑘,𝑖𝑘 )𝑖 . (1 − ⍵) 𝑖 ]; ∀i, ∀k             (5-1) 

Subject to:  

0 ≤ ω ≤1 

yk,i ϵ {0, 1}; ∀i , ∀k   

Here, CR is the criterion value (objective function value) for R-RWIS. 

Objective function for allocating k’ number of M-RWIS 

CM = 𝑀𝑖𝑛 𝜑(𝑋′) = [
1

𝑁
. ∑ (√𝜎2 [𝑧(𝑖|𝑋′)]) . ⍵ +

1

𝑀
. ∑ (𝜇𝑖

−1. ∑ 𝑦𝑘′,𝑖𝑘′ )𝑖 .  (1 − ⍵)𝑖 ]; ∀i, ∀k’     (5-2) 

Subject to:  

0 ≤ ω ≤1 

yk’,i ϵ {0, 1}; ∀i , ∀k’   

Here, CM is the criterion value (objective function value) for M-RWIS. 

Replaceable and non-replaceable R-RWIS 

Non-replaceable number of R-RWIS was determined by comparing the criterion value of R-RWIS 

(CR) and M-RWIS (CM) as presented in Figure 5-23. CM is expected to be higher than that of CR 
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for a certain number of RWIS, as it is evident that R-RWIS provides better monitoring coverage 

than M-RWIS. As the number of RWIS increases, the marginal benefit decreases. At a point, it 

becomes close to zero. At this step, the criterion values, CM, is determined where the marginal 

benefit is close to zero. This value is then compared to CR to determine the number of R-RWIS 

that are replaceable (kRepl) with M-RWIS and the number of non-replaceable R-RWIS (kNRepl) 

following this equation:  

kOptimal = kRepl + kNRepl                                                          (5-3) 

Here, kOptimal is the optimal density of R-RWIS which was determined in section 4.4 (RWIS 

Density Determination for Maine). By comparing the criterion values, non-replaceable R-RWIS 

number has been found as 12, while using Equation 13, the replaceable R-RWIS number has been 

found as 18. This indicates that the network should have 12 R-RWIS in the network and any 

number from the other 18 R-RWIS can be replaceable with equivalent number of M-RWIS.  

 

Figure 5- 23: Comparison of criterion for R-RWIS and M-RWIS 

Comparable Combinations of R-RWIS and M-RWIS 

At the next step, the combinations of R-RWIS and M-RWIS are determined, so that each 

combination will provide equal monitoring coverage. Here, k number of R-RWIS and k’ number 
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of M-RWIS is determined by using two loops as depicted in Figure 5-24. For k number of R-

RWIS, value of k should be within a range of kNRepl to kOptimal as presented in Equation 5-4. While 

determining the k’ number of M-RWIS, k’eqv should be determined in such a way that the criterion 

for each replaceable number of R-RWIS is equivalent to the criterion of M-RWIS as shown in 

Equation 5-5. In that way, equal monitoring coverage can be obtained.  

For k: k = [kNRepl, . . . , kOptimal]                                                   (5-4) 

For k’ : CR (k = k1, k2,. . . , kRepl ) = CM  (k’ = k’eqv)                                   (5-5) 

By following the same procedure, we can obtain several combinations of R-RWIS and M-RWIS 

that are able to provide equal monitoring coverage of the network.  

 

Figure 5- 24: Flow chart for bi-level sequential optimization 

For example, the non-replaceable number of R-RWIS has been determined as 12 for the state 

of Maine, and the density of R-RWIS has been found to be 30. Thus, the following combinations 

can be generated that provide equal monitoring coverage. 

Combination 1 – 30 R-RWIS 
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Combination 2 – 25 R-RWIS + 5 R-RWIS (equivalent number of M-RWIS) 

Combination 3 – 20 R-RWIS + 10 R-RWIS (equivalent number of M-RWIS) 

… … …  

Combination N – 12 R-RWIS + 18 R-RWIS (equivalent number of M-RWIS) 

Equivalent number of M-RWIS is generated in an iterative process by checking the criterion 

value of R-RWIS and M-RWIS. For example, to replace 5 R-RWIS from a network, 10 M-RWIS 

is needed to ensure equal coverage. Thus, ‘25 R-RWIS + 10 M-RWIS’ can be considered as a 

comparable combination of ’30 R-RWIS’. Similarly, 30 M-RWIS is required to replace 15 R-

RWIS, thus another combination would be ’15 R-RWIS + 30 M-RWIS’. A number of comparable 

combinations are provided in Appendix – F. 

Cost-Effective Combination 

After generating a set of comparable combinations, the cost-effective combination is determined 

by applying cost function for all the combinations. The objective function for determining cost-

effective combination is as below: 

Min (CT) = k×(Ik+Cm× 
1−(1+𝑟)−𝑛

𝑟
)+ k’×(Ik’+Cm’× 

1−(1+𝑟)−𝑛′

𝑟
)                          (5-6) 

Where, CT = total monetary cost 

Ik and Ik’ are installation costs of each R-RWIS and M-RWIS.  

Cm and Cm’ are yearly maintenance cost/ station for R-RWIS and M-RWIS.  

r is discount rate, which is assumed as 8% for this study. 

n and n’ are lifespan of R-RWIS and M-RWIS. 

Several combinations are generated and examined to identify the most cost-effective option, as 

summarized in Figure 5-25.  
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Figure 5- 25: Cost comparison for comparable combinations 

According to Figure 5-25, the first combination is for only R-RWIS, while from the second 

combination an incremental number of R-RWIS is replaced by M-RWIS.  By comparing the cost 

of the combinations, it can be noticed that cost can be minimized by replacing a certain number of 

R-RWIS. For the state of Maine, a combination with 15 R-RWIS and 30 M-RWIS can be 

determined as the cost-effective combination. The distribution of stations is presented in Figure 

5-26.  

 

Figure 5- 26: Cost-effective combination (15 Regular RWIS and 30 Mini-RWIS) 
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The innovative bi-level sequential optimization algorithm developed in this study stands as the 

inaugural contribution in the literature capable of determining not just the station locations but also 

the specific type of RWIS required at each location. This additional step marks a substantial 

advancement in RWIS network planning by enhancing the overall effectiveness of RWIS 

deployment with a combination of Regular and Mini-RWIS.  

The location solutions developed in this research were integrated into a prototype web-based 

RWIS location visualization platform for demonstrating the proposed models and the resulting 

solutions, as detailed in the following section. 

5.7 Web-Based Visualization Tool 

A prototype web-based application has been developed to enable the visualization of the location 

solutions derived from this research. This application, named LoRWIS 

(https://sites.google.com/view/lorwis/states/Maine), exhibits the location solutions alongside the 

distribution of existing RWIS throughout the Maine network. It offers options to display solutions 

for various scenarios, encompassing various combinations of weather and traffic factors, offering 

a comprehensive yet user-friendly presentation of the location planning data.  

The web platform, as depicted in Figure 5-27, features an interactive map that enables users to 

visualize and interact with multiple layers of generated data. By clicking on any point on the map, 

users can view specific details like location coordinates and switch between bird’s eye and street 

views. The platform also offers various heatmaps for crash rates and estimation error maps from 

different optimization scenarios.  

The platform also facilitates easy navigation through different RWIS locations and optimization 

outcomes. It showcases prioritized sites for new installations and allows users to examine different 

scenarios, balancing weather and traffic data. Likewise, the tool simplifies the evaluation of 

potential Regular and Mini-RWIS sites, offering a straightforward yet robust tool to compare 

alternatives and pinpoint the most favorable solution. 

https://sites.google.com/view/lorwis/states/Maine
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Figure 5- 27: Features of the web-based application; LoRWIS 

(https://sites.google.com/view/lorwis/states/Maine) 

5.8 Summary 

This section demonstrates the importance of incorporating the effect of multiple weather variables 

in optimizing the placement of RWIS. By refining the location-allocation algorithms and utilizing 

a multi-variable semivariogram model, we have developed a novel optimization framework for 

determining optimal solutions for RWIS network expansion, a valuable contribution to the field. 

The refined location allocation framework was applied in regional RWIS network planning for the 

state of Maine, where we carried out a comprehensive state-wide gap analysis to determine the 

most suitable locations. To further assess the selection of optimal locations, a sensitivity analysis 

was conducted to examine the effects of assigning different weightings to weather variability and 

traffic factors. Lastly, a novel bi-level sequential optimization was developed in this study to 

determine not only the location but also the type of RWIS stations that are needed in each location. 

The key contribution of this research is listed below: 

 This research has made significant strides in the optimization of RWIS station placement 

by introducing an innovative multi-variable semivariogram model that considers essential 

road weather variables. The comparative study between single and multi-variable 

semivariogram models demonstrates that employing the multi-variable approach leads to 

more precise location solutions by effectively capturing the variability of multiple weather 
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variables, resulting in significantly improved monitoring coverage compared to single-

variable models. 

 

 Through the application of this refined framework to Maine's existing RWIS network, we 

modelled prioritized strategic locations for installing RWIS stations, ensuring equitable 

and balanced distribution across various zones, and statewide coverage. The location 

solutions generated are currently being adopted by Maine DOT for future implementations, 

demonstrating the practicality and robustness of our approach. 

 

 A total of 24 locations were generated using the optimization model for the annual 

installation of RWIS stations, aligning with the requirements of Maine DOT. These 

generated locations serve as evidence of the validity and effectiveness of the proposed 

locations. Additionally, the sensitivity analysis allowed us to assess the impact of different 

weightings for weather and traffic factors on the selection of optimal station locations. This 

information empowers decision-makers to tailor the model according to specific 

monitoring requirements. 

 

 An empirical optimal density model was developed tailored for the state of Maine. The 

developed model presents the ideal number of RWIS stations required to ensure 

comprehensive monitoring coverage. Furthermore, the methodology for attaining 

optimality with a specific number of existing stations is elucidated, accompanied by the 

recommendation of additional station numbers for ensuring optimality. 

 

 This research introduced an innovative bi-level sequential optimization model aimed at 

determining both the location and type of RWIS stations, including Regular and Mini-

RWIS. This approach enhances the overall effectiveness of RWIS network deployment. A 

combination of Regular and Mini-RWIS is presented utilizing the developed model, 

ensuring equivalent monitoring coverage of the network. Ultimately, the cost-effective 

solution was identified.  
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 The solutions developed in this project were integrated into LoRWIS 

(https://sites.google.com/view/lorwis/states/Maine), a prototype web-based RWIS location 

visualization platform for demonstrating the proposed models and the resulting solutions. 

 

  

https://sites.google.com/view/lorwis/states/Maine
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Chapter 6 

Quantitative Assessment of Optimal RWIS Network5 

6.1 Introduction 

Optimal RWIS network can be defined as an RWIS configuration where the total number of 

stations (RWIS density) are determined based on a well-established guideline and the locations are 

allocated systematically assuming that it will provide the maximum monitoring coverage of the 

network. This chapter examines and quantifies the benefits of an optimized RWIS network by 

introducing a performance indicator, named network coverage index (NCI). NCI, introduced in 

this study, has the capability to assess the performance of the RWIS network and quantitatively 

evaluate its influence on traffic safety. 

While developing the optimal RWIS location solution, it was implicitly assumed that each solution 

set is associated with a unique spatial configuration tied to an objective function value or sum of 

kriging variance that represents RWIS’ monitoring capability. The solution set associated with the 

lowest objective function value (lowest kriging variance) would be considered the solution with 

the highest network coverage and thus assumed to be most beneficial (Biswas and Kwon 2022). 

Based on this presumption that network coverage is a vital parameter for determining the goodness 

of an RWIS configuration, there is a resurgent need to extend this effort by investigating if it could 

also be used to explain its impact on traffic safety – a worthwhile attempt that has never been made 

in existing literature pertaining to quantifying the safety benefits of RWIS location solutions. 

Therefore, the primary objectives of this chapter are: (a) to investigate the relationship between a 

newly created measure called network coverage index (NCI) and network configuration of RWIS, 

and (b) quantitatively assess the impact of NCI on the transportation system based on collision 

reduction potential. The findings of this chapter will provide a clearer understanding of the benefit 

of an optimal RWIS solution and its impact on the transportation system. 

 

———————————— 

5 Biswas, S., Sharma, D., & Kwon, T. J. (2022). Safety Impact Assessment of Optimal RWIS Networks—An Empirical Examination. Sustainability, 

15(1), 327. 
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6.2 Research Procedure 

The methodological framework is built upon our previous efforts in RWIS location-allocation, 

where the kriging variance is used as a performance indicator for monitoring coverage. The first 

phase of this study was the database development by aggregating and integrating various data sets 

into GIS. Two datasets were developed, one to determine the NCI (a more detailed description is 

to follow) and another to evaluate safety. 

After extracting the RWIS station data, a quality check was performed using the following 

methods: data completeness test, reasonable range test, and a neighborhood value comparison. 

Following this, detrending was performed with respect to time using Generalized additive model 

(GAM) (Wang et al. 2019, Hastie et al. 1990), followed by geostatistical analysis. Spatiotemporal 

analysis was performed by constructing empirical semivariograms from the processed data, which 

optimizes parameter estimations for unsampled locations and captures the possible autocorrelation 

associated with the RWIS variables. Joint semivariogram models were then developed by 

combining spatial and temporal semivariograms to evaluate the spatiotemporal variability of 

RWIS measurements (Biswas and Kwon 2022).  

Based on parameters obtained from the joint semivariogram, kriging interpolation was used to 

estimate values at unsampled locations and their estimation error or kriging variance. Kriging 

variance was then utilized to determine the NCI for respective RWIS networks. The procedure was 

repeated for each set of RWIS configurations to investigate its impact on the NCI. 

In terms of safety evaluation, 12 years (2008 to 2019) of inclement winter weather collision data 

were extracted, among which collisions due to poor road surface conditions were isolated for safety 

evaluation. Additionally, only major network roads, i.e., Interstate, State, and U.S. highways were 

considered due to maintenance departments prioritizing major roads for treatment. RWIS stations 

included in the safety evaluation were selected based on three review criteria: (a) data review to 

ensure that sufficient before and after period collision data were available, (b) geometry review to 

ensure that no major design nor construction activities occurred near the RWIS stations, and (c) 

operation review to ensure that minimal operation gaps were present in the data. The processed 

data were employed to calibrate the safety performance functions (SPFs) and yearly calibration 

functions (YCFs). Next, Empirical Bayes (E.B.) analysis was applied to determine the collision 

reduction associated with each of the selected RWIS stations (Sharma 2022).  
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Upon processing the data, the impact of NCI on collision reduction was assessed in order to 

evaluate the goodness of the RWIS location solutions. Research procedures for this study are 

summarized in Figure 6-1.  

 

Figure 6- 1: Methodological flowchart 

The network coverage index (NCI) was used to rate the monitoring capabilities of a defined RWIS 

configuration for a specific region. It is a surrogate measure that ranges between 0 and 1, where 0 

represents no monitoring coverage, and 1 represents complete network coverage.  

6.3 Study Area and Data Description 

Study Area 

Iowa—the selected study area—is a flatland region consisting of rolling plains and flat prairies. 

This state was categorized as a moderate-severe weather region (Biswas et al. 2019) where the 

adverse winter negatively impacts the transportation system. In regions like this, RWIS 

information plays a critical role, where the information it provides increases the responsiveness of 

winter road maintenance activity. The RWIS network of this state consists of 86 stations. Figure 

6-2 represents the distribution of RWIS stations along with the major road networks in Iowa.  
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Figure 6- 2: RWIS network and major roads in the state of Iowa 

Data Description and Integration 

The RWIS data used in this study was downloaded from Iowa State University’s website 

(http://mesonet.agron.iastate.edu/RWIS/). Variables that were recorded include air and surface 

temperature, dew point temperature, visibility, wind speed, road surface conditions, etc., collected 

at 15 to 20-minute intervals. Winter season data (October 2016 to March 2017) was processed 

based on the quality check procedures discussed in the methodology section. Among these various 

RWIS measurements, road surface temperature (RST) was considered to be the most critical as it 

has a significant influence on the formation of ice and road surface friction, both of which are 

crucial factors for winter road maintenance (WRM) operations (Hatamzad 2022). Post-processing 

for the semivariogram analysis was done using the R statistical package – version 3.2.5 (Pebesma 

2004, R Core Team 2018). Here, spatial and temporal semivariograms were constructed by 

considering space and time attributes separately. The output variograms (spatial and temporal) 

were then combined into a joint semivariogram using spatiotemporal anisotropy parameters 

(StAni), allowing us to preserve both spatial and temporal features. StAni represents the number 

of space units equivalent to one time unit. In this study, joint semivariograms for a mid-winter 

http://mesonet.agron.iastate.edu/RWIS/
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month were utilized for kriging variance determination. The continuity ranges of autocorrelation 

are presented in Figure 6-3. The spatial range of the variable of interest (RST) was found to be 

around 20 km for the month of January, while the temporal range was approximately 21.5 hours. 

The resultant joint semivariogram range was found to be 17 km in this case, which is lower than 

the spatial range. This finding makes intuitive sense since both spatial and temporal attributes are 

preserved in the joint semivariogram. The readers are referred to our previous work for a detailed 

investigation on joint semivariogram analysis for multiple weather variables (Biswas and Kwon 

2022). 

 

Figure 6- 3: Spatial, temporal, and joint semivariogram parameters of RST for January 

2017 

The parameters of the joint semivariogram were used in this study to evaluate the impact of RWIS 

configurations on NCI. The state of Iowa was used as the experimental boundary for determining 

the kriging variance. In addition, the major road network of this state was used as a constraint as 

to where the kriging estimation will be conducted; meaning that the observed RWIS measurements 

were used to estimate the unsampled location that lies on the major road network of Iowa. State 

boundary and major road network shapefiles were integrated within ArcGIS (ESRI 2015) to create 

a 5 km × 5 km grid surface of unsampled locations for what the kriging estimations were generated 

for. Afterwards, the variance was translated into NCI for the impact assessment of the RWIS 

network. The following section discusses the findings of the analysis.  
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6.4 Results and Discussion 

This study focuses on quantifying the benefit of optimal RWIS network by evaluating the collision 

reduction potential of various RWIS configurations. In our previous study, the methodological 

framework for determining the optimal RWIS network was based on the concept that every 

location solution or RWIS configuration is associated with an objective function value (kriging 

variance). The optimal location solution has the lowest objective function value, and it is assumed 

to provide the maximum network monitoring coverage. In this study, the RWIS network coverage 

index (NCI) was determined for a set of RWIS configurations to establish a link between NCI and 

safety benefits. Kriging estimation error was used here to determine the NCI, while percent 

collision reduction was used as a performance indicator to quantify its benefit. The findings of this 

study are described below: 

6.4.1 Dependency of NCI on RWIS Configuration   

The relationship between kriging variance and NCI can be derived from the concept that NCI is 

inversely related to kriging variance. Hence, a proportional factor should be introduced to construct 

the relationship as defined previously in Section 3.7. 

It was assumed that an optimal RWIS density provides full network coverage of Iowa with an NCI 

value of 1. According to one of our previous studies, the optimal number of RWIS stations for 

Iowa is 61 (Biswas and Kwon 2020). Hence, at best, ‘K’ in Equation 3-19 is equal to the kriging 

variance associated with this optimal number, and the maximum number of RWIS stations is 

capped at 61 because kriging variance cannot, or at least theoretically, go below optimal. Kriging 

variance is calculated using the joint semivariogram model developed in our previous study 

through a series of geostatistical analyses, where both spatial and temporal aspects were preserved 

(Biswas and Kwon 2022). Here the estimation variance was determined for an increasing number 

of RWIS stations. As the number of RWIS stations increases, the monitoring capability is expected 

to improve. This phenomenon is represented in Figure 6-4 by the decrease in kriging variance as 

the number of stations increases.  
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Figure 6- 4: Plot of kriging variance for different number of RWIS stations 

From Figure 6-4, the value of kriging variance associated with the optimal scenario is 10.36 – the 

number at which the greatest rate of change on kriging variance happens to occur. At this point, 

full monitoring coverage can be achieved with an NCI value of 1. Thus, the proportional factor, K 

= 10.36 is used to update the equation as follows.  

𝑁𝐶𝐼 =
10.36

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
                                                          (6-1) 

NCI values for different RWIS configurations can be achieved using Equation 6-1, which changes 

Figure 6-4 to Figure 6-5. According to Figure 6-5, the monitoring coverage increases as the 

number of RWIS stations increases. In contrast, the marginal benefit gained with each additional 

RWIS decreases. The combination of these two effects results in the graph being concave shaped. 

 

Figure 6- 5: Plot of NCI for different number of RWIS stations 
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NCI and kriging variance for different RWIS configurations is presented in Figure 6-6. 

 

Figure 6- 6: NCI and kriging variance for different scenario 
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Figure 6-6 demonstrates how monitoring coverage changes with an increase in the number of 

stations. An example of this is the difference between scenarios one and six. Only 30% (NCI=0.3) 

of optimal coverage could be provided as a result of having only five stations.  In contrast, due to 

the increase in the number of stations in scenario six, the coverage level increased to 70%. 

Furthermore, the scenario with 5 RWIS stations generated an estimation error of 34.29, while a 

much smaller value (14.35) is obtained from the 30 stations scenario. It is clear from the above 

discussion that the NCI strongly depends on the density of the RWIS network. Thus, NCI is used 

in the subsequent section as a performance indicator to determine traffic safety benefits. 

6.4.2 Impact Assessment of Iowa’s RWIS Network 

Our recent study examined the safety benefits of RWIS stations in Iowa using before-and-after 

Empirical Bayes (E.B.) method (Sharma 2022). This method requires collision data before and 

after the implementation of the countermeasure. The study period was isolated to 2008 – 2019 and 

according to the operation information of the RWIS stations of Iowa, 30 stations were implemented 

within the study period. The selected 30 stations were filtered using a review criterion including 

data review, geometry review and operation review as discussed previously. This study considered 

2 years of only winter months, (i.e., November to March) of before implementation and after 

implementation periods in the analysis. Thus, stations with inadequate data sizes or shorter 

operational periods, were removed from the analysis. Secondly, geometric changes near RWIS 

stations during the before and after period were reviewed to identify major construction activities 

within the study period. Stations near major geometric changes were removed from analysis as 

variations in road geometry can lead to unexpected changes in collision behavior. Lastly, 

operational issues associated with stations were identified by assessing the frequency of data 

collection. Stations having issues with data collection were removed from the analysis as they have 

a negligible effect on WRM, as the data provided was insufficient. At the end of the review, 11 

out of 30 stations were eliminated from analysis. Of the remaining stations, 7 stations along with 

associated service area and treatment sites were selected and are presented in Figure 6-7. 
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Figure 6- 7: Map of Iowa showing various elements used in the safety evaluation study 

The effect of a countermeasure (RWIS station) can be assessed by observing the change in 

collision frequency for a number of sites that are under the influence of that RWIS station. Here, 

a 30 km radius around an RWIS station was assumed as the influence region and accessible roads 

within this distance from the facility were considered its service area. For several cases where 

multiple stations were implemented close to each other, the service area under one station will 

overlap the service area of another station. Such stations were also removed from the analysis to 

avoid selecting sites that could be under the influence of another station. At this stage, 12 RWIS 

stations were eliminated from the analysis because the influence regions for these stations were 

partially or completely overlapped with another station. Hence, 7 stations were selected for the 

safety evaluation that has a significant influence region with a reasonable number of sites. 

According to the analysis result, the collision reduction potential for an RWIS station varies from 

31.53% to 88.23%, with an average reduction of 65% in winter weather collisions (Sharma 2022). 

The number of collision reductions varies from 4.73 to 27.61, with an average collision reduction 

value of 15. Since the total number of sites in each station ranges from 4 to 22, we can divide the 

number of collisions reduced by the number of sites to quantify the safety benefit of an individual 

station—an average value of 1.06. Table 6-1 depicts the collision reduction potential for different 

stations. 
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Table 6- 1. Average Collision Reduction Calculation Based on Safety Evaluation  

Station ID 
Collision 

Reduction (%) 

Number of 

Collision 

Reduction 

Total 

Sites 

Collision 

Reduction Per 

Site 

RCCI4 59.49 5.4 7 0.7714 

RCLI4 83.11 8.81 12 0.7342 

RETI4 31.53 21.22 22 0.9645 

RSOI4 83.8 4.73 4 1.1825 

RAGI4 88.23 14.03 12 1.1692 

RAII4 46.87 27.61 19 1.4532 

RMYI4 63.35 22.93 20 1.1465 

Average =  65.20 14.96  - 1.0602 

 

By utilizing the average traffic safety benefit associated with RWIS stations, the collision 

reduction potential for each of the RWIS configuration is determined and plotted against the 

associated kriging variance as presented in Figure 6-8. While determining the anticipated collision 

reduction for different RWIS networks, it is assumed that each additional station will contribute 

the same amount to collision reduction.  

 

Figure 6- 8: Plot of collision reduction potential with kriging variance 
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According to Figure 6-8, error variance, which is an indicator of monitoring capability, has a 

strong effect on traffic safety. The primary intention of this plot is to acknowledge that enhanced 

monitoring coverage has the potential to improve traffic safety. The dependency of collision 

reduction potential on kriging variance can be expressed with a power function as presented in 

Equation 6-2 with an R-square value of 0.99. The output of this finding presents strong evidence 

that optimal RWIS locations, which is associated with minimized kriging variance, can provide 

superior transportation system (traffic safety) benefits. 

Collision Reduction Potential = 
7777.6

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒2.059                                    (6-2) 

In the last step, the dependency of safety effectiveness of RWIS network on NCI was determined 

by plotting it against the associated collision reduction potential (Figure 6-9). The findings 

revealed that NCI is highly correlated with collision reduction. An RWIS configuration with a 

higher NCI value was proven to be more effective for transportation safety than an RWIS network 

with a lower NCI value. For example, an RWIS network with 80% network monitoring coverage 

provides 40 collision reduction per site per analysis period (2 years).  

 

Figure 6- 9: Plot of collision reduction potential with NCI 

The dependency of collision reduction potential on NCI can be expressed as a polynomial function 

in Equation 6-3 with an R-square value of 0.99.  
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Collision Reduction Potential = 71.36 * 𝑁𝐶𝐼2 – 7.95 * NCI + 0.73                   (6-3) 

It is evident from the above findings that an RWIS location solution with lower estimation error 

(higher NCI) will provide a significantly safer transportation network than another solution with 

higher estimation error (lower NCI). This result in turn justifies the previously developed location 

allocation strategy (Biswas and Kwon 2022), where optimal RWIS location was selected based on 

lowest estimation error. It is apparent that the optimal location solution is more beneficial in terms 

of safety effectiveness. 

6.5 Summary 

RWIS play an essential role in improving transportation safety, mobility, and winter road 

maintenance operations. Acknowledging their significant operational and environmental benefits, 

many North American transportation agencies have invested millions of dollars in deploying 

RWIS stations to strengthen the monitoring coverage of winter road surface conditions. To 

maximize the benefits of such systems, RWIS stations should be located systematically at a 

specific number of selected locations, which is referred to as the optimal RWIS network. Our 

previous research provided a solid foundation for planning an optimal RWIS network. However, 

the goodness of the RWIS locations has never been examined, particularly the effect RWIS 

location solutions have on transportation safety. The key findings of this study are: 

 The Network coverage index (NCI), a measure of monitoring capability, is intensely tied 

to the RWIS network configuration. A direct relationship between NCI and kriging 

variance has also been established in this study. 

 

 The collision reduction potential of an RWIS network has been found to be proportional to 

and highly correlated with NCI. An RWIS configuration having higher NCI has a higher 

potential to reduce traffic collision, thus maximizing safety effectiveness. 

 

 The findings documented in this study concluded that optimal RWIS locations, which are 

associated with the lowest kriging variance (highest NCI), maximizes the overall benefits 

on transportation systems. 
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Chapter 7 

Conclusions and Future Research 

7.1 Introduction 

Road Weather Information Systems (RWIS) play an essential role in transportation maintenance 

operations by keeping roadways clear of ice and snow for improved safety and mobility of the 

traveling public. To maximize the benefits of such systems, transportation agencies strive to 

answer the key questions: how many RWIS stations do we need? Where should we place the RWIS 

stations? What type of stations are needed for each location? This thesis attempted to answer these 

critical RWIS network planning questions by proposing an advanced geostatistical approach 

alongside optimization methods considering critical weather variables. The first step in our 

proposed process involved classifying the study area based on topographic and weather severity 

characteristics. Together, this makes up the environmental characteristics of the region and was 

captured in our study area that included regions of flatland or varied terrain and with different 

severities of winter weather.  

To answer the first research question, the spatial and temporal continuity of RWIS measurements 

was investigated using geostatistical spatiotemporal semivariogram analysis and compared to 

different topographic and weather regions. Optimal RWIS density for each topographic and 

weather severity zones were then determined based on the developed semivariogram parameters 

using a popular mathematical programming approach – PSO algorithm.  

Regarding the second research question, an advanced location optimization model was developed 

by combining the effects of three key RWIS variables – AT, RST, and DPT. The location 

allocation problem was solved using a popular mathematical programming approach, the SSA 

algorithm, as this algorithm has proven to be effective in solving various facility location 

optimization problems. An initial attempt was carried out, determining the importance of 

incorporating multiple weather variables into location allocation models.  

At the next step, a multi-variable semivariogram was developed in order to refine the location 

allocation model and to develop a bi-level sequential optimization model, answering the second 

and third research questions respectively. Lastly, the benefit associated with the optimal RWIS 

network was quantified by developing a network monitoring factor, NCI.  
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This chapter outlines the potential contribution of this research followed by a number of 

recommendations for future research.  

7.2 Major Contributions 

This study represents a sophisticated approach to RWIS network planning and deployment 

strategies by developing a methodological framework for optimizing the density and location of 

RWIS networks for any given regions based on its topographic and weather characteristics. The 

findings reveal a strong correlation between optimal RWIS density and these regional 

characteristics demonstrating that RWIS data from one region can inform deployment 

requirements for similar regions. In addition, a multi-variable geostatistical model is developed to 

enhance both the RWIS location allocation and bi-level sequential optimization models. This 

provides RWIS planners with a more robust decision-support tool for both short-term and long-

term RWIS network planning. Lastly, this thesis evaluates the impact of an optimized RWIS 

network on transportation systems, highlighting its significance in enhancing overall 

transportation safety and efficiency.  

The followings are the major contributions of this thesis: 

 Correlation Analysis between RWIS and Regional variables: This thesis developed an 

innovative methodological framework to quantify the spatiotemporal coverage of RWIS 

measurements, significantly enhancing the understanding of the spatiotemporal variability 

of key road weather variables. The major contribution is the identification of higher spatial 

and temporal autocorrelation continuity ranges during mid-winter months and in flatland 

areas with less varied weather, which informs the strategic placement of RWIS stations to 

achieve efficient monitoring coverage (less varied topography require comparatively fewer 

RWIS stations to achieve a certain level of monitoring coverage compared to hilly or 

mountainous regions) 

 

 Development of Region-wide RWIS Density Guidelines: A series of RWIS density 

curves were generated alongside an optimal RWIS chart, providing transportation 

authorities with a decision support tool for planning an RWIS network without the need 

for road weather and surface conditions data. The desired RWIS density shows a strong 

dependency on topography and weather characteristics of the region under investigation. 
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The density guidelines and map would provide decision-makers with a reference to help 

plan an optimal RWIS network within any climate and/or geographical region of interest. 

 

 Formulation of a Multi-Variable Semivariogram-Based RWIS Location Allocation 

Framework: This research developed an innovative multi-variable semivariogram model, 

which is seamlessly integrated into an advanced RWIS location allocation framework. By 

capturing the variability of multiple critical weather variables, this combined model 

significantly enhanced the precision of location solutions. This advancement represents a 

substantial leap forward in existing literature, offering a comprehensive tool for 

transportation agencies to determine optimal RWIS locations. Furthermore, the model aids 

in prioritizing sites within budgetary constraints and supports optional long-term planning, 

thereby resulting in significantly improved monitoring coverage compared to single-

variable models. 

 

 Investigation of Safety Effectiveness of Optimal RWIS networks: Given the challenges 

in quantifying the benefits of RWIS information due to a limited understanding of how 

RWIS data is utilized, this thesis developed a unique methodological framework. By 

employing advanced geostatistical analytics and location-allocation models, this 

framework directly assesses the safety impact of optimal RWIS location solutions. This 

contribution addresses the existing gap by providing a robust method to evaluate the 

effectiveness of RWIS networks, thereby enhancing the understanding of their role in 

improving traffic safety. 

 

 Development of a Bi-Level Sequential Optimization Model: This thesis introduced a 

pioneering bi-level sequential optimization model for RWIS station planning, effectively 

determining both the location and type of stations. By providing empirical evidence that 

single-variable models are suitable for Mini-RWIS and multi-variable models are 

appropriate for Regular-RWIS, the framework elegantly determines the optimal 

combination of station type and location. By balancing monitoring coverage with 

budgetary constraints, this approach not only enhances the overall efficiency and 

effectiveness of RWIS network deployment but also maximizes resources by delivering a 
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quantitative framework to determine the most appropriate type and location for each 

station. 

 

 Development of a Web-Based Visualization Tool: A prototype web-based application 

has been developed to enable the visualization of location solutions derived from this 

research. This interactive user-friendly online application, named LoRWIS  

(https://sites.google.com/view/lorwis/states/Maine), displays the proposed location 

solutions and the distribution of existing RWIS stations throughout the study network. By 

effectively actualizing the research outcomes, LoRWIS offers dynamic representations of 

various location solutions. It is noteworthy that the Maine DOT is leveraging LoRWIS for 

their RWIS deployment planning, and the locations generated from this thesis are set to be 

implemented over the next two years, further validating the practicality and effectiveness 

of the proposed methods and solutions. 

 

7.3 Future Research 

The following is a list of recommendations on the possible extensions of this research.  

 The geographic study area included in this research consisted largely of flatlands, with few 

hilly and mountainous regions due to data availability issues. Hence, more case studies 

consisting of wider geographic regions should be conducted for a better understanding of 

the relationship between spatial range of autocorrelation in RST and the topographic and 

weather features to develop a more robust quantitative relation between these parameters. 

In addition, the study period for TPI and WSI-based zonal classification was limited to one 

winter season including six months from October 2016 to March 2017. Thus, larger 

temporal ranges could be considered to improve the level of confidence in the outcomes. 

 

 The optimal density guideline developed in this study incorporates the effect of topography 

and weather severity in determining the optimal number of RWIS needed for a region.  As 

a future research path, sensitivity analysis could be conducted to investigate how the 

resulting optimal densities would change with respect to some of the factors considered in 

https://sites.google.com/view/lorwis/states/Maine
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the analysis, especially the coefficients used to generate WSI (or even a winter severity 

index model) and TPI classification schemes. 

 

 In this study, ordinary kriging is utilized to develop the concept of network optimization 

model. Hence, universal kriging or kriging with external drift could be applied considering 

meteorological parameters (wind speed and direction, precipitation, humidity, cloud cover, 

vegetation cover, etc.) to better capture the dependency of RST data (or other key 

parameters, including road surface condition index) on local meteorological parameters. 

 

 The multi-variable semivariogram model, developed in this research accounted the effect 

of the most critical RWIS variables – AT, RST and DPT. Hence, this model can be refined 

by exploring additional road weather variables and investigating their interactions. 

Moreover, investigating the impact of different weighting schemes for individual weather 

variables within the model may provide insights into optimizing the trade-off between 

variables. 

 

 The study area incorporated to enhance the location allocation model is Maine, which is a 

flatland area. Hence, including a larger and more diverse sample size in this research could 

enhance the methodology's robustness and reliability. For instance, application of the 

proposed methodological framework in various geographical settings and climate 

conditions would increase the adaptability of the model. Additionally, this study 

incorporated data spanning three winter seasons. Therefore, employing extended periods 

of weather data will enhance the model's adaptability. 

 

 The impact of optimal RWIS network into the transportation system has been assessed 

using a case study for Iowa, which is a flatland area with moderate weather conditions. 

Hence, the benefit of optimal RWIS network should also be determined for other regions 

including hilly and mountainous regions for a comprehensive and conclusive output. 

 

 In addition to the traffic safety benefit, transportation mobility and winter road maintenance 

(WRM) benefits also need to be evaluated. One potential approach to determine mobility 
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benefit could be based on AADT (Annual Average Daily Traffic) for a predefined coverage 

area before and after the installation of RWIS station. Similarly, the WRM benefit may 

also be determined based on the maintenance cost for the before and after-period of RWIS 

deployment.  
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Appendix A  

SPATIAL AND TEMPORAL CONTINUITY RANGE  

 

Topographic zones Weather severity zones 

  
Analysis Period: October 2016 

  
Analysis Period: November 2016 

  

Analysis Period: December 2016 
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Topographic zones Weather severity zones 

  
Analysis Period: January 2017 

  
Analysis Period: February 2017 

  
Analysis Period: March 2017 
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Appendix B  

FIRST 8 LOCATION SOLUTION  

(8 out of 18 Predetermined Locations) 

ID Name Long Lat 

1 RWIS Proposal -67.649623 44.966088 

2 RWIS Proposal -67.982601 46.141023 

3 RWIS Proposal -70.609883 44.921429 

4 RWIS Proposal -70.744961 43.468646 

5 Mini-RWIS Proposal -67.869165 46.709123 

6 RWIS Location Proposal -70.959525 44.020557 

7 RWIS Proposal -69.422884 44.10053 

8 RWIS Proposal -68.60773 45.353481 
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Appendix C  

SENSITIVITY ANALYSIS RESULTS – I 

(First 8 Optimal Locations) 
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Here,  

W = Weather Parameter 

T = Traffic Parameter 
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Table B.1. Sensitivity analysis location solutions (First 8 locations) 

Station 

# 

W = 00, T = 100 W = 20, T = 80 W = 40, T = 60 W = 50, T = 50 

Long. Lat.  Long. Lat.  Long. Lat.  Long. Lat.  

1 -70.31 43.56 -70.26 43.73 -70.31 43.56 -70.85 43.50 

2 -70.13 44.07 -70.33 44.81 -70.49 43.78 -70.47 44.14 

3 -70.16 44.61 -69.40 44.62 -70.13 44.07 -69.15 44.48 

4 -69.70 44.51 -69.13 44.58 -70.38 44.68 -70.32 44.88 

5 -70.33 44.81 -69.32 44.80 -70.33 44.81 -69.29 44.86 

6 -69.13 44.58 -69.25 44.95 -69.13 44.58 -67.45 45.00 

7 -69.32 44.80 -68.46 45.51 -69.32 44.80 -68.37 45.54 

8 -68.62 45.18 -68.10 46.87 -68.26 46.01 -67.94 46.56 

Station 

# 

W = 60, T = 40 W = 80, T = 20 W = 100, T = 00     

Long. Lat.  Long. Lat.  Long. Lat.      

1 -70.95 43.55 -70.91 43.53 -70.92 44.10     

2 -70.80 44.39 -70.80 44.37 -68.87 44.14     

3 -69.11 44.53 -68.68 44.22 -70.63 44.94     

4 -70.41 44.85 -70.40 44.84 -67.22 44.90     

5 -69.21 44.82 -70.73 45.37 -70.26 45.63     

6 -67.46 45.00 -67.32 45.11 -67.76 45.52     

7 -68.27 45.97 -68.27 45.97 -68.52 46.06     

8 -68.00 46.85 -67.92 46.68 -67.86 46.60     
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Appendix D  

SENSITIVITY ANALYSIS RESULTS – II 

(Second 10 Optimal Locations) 
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Here,  

W = Weather Parameter 

T = Traffic Parameter 
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Table C.1. Sensitivity analysis location solutions (Second 10 locations) 

Station 

# 

W = 00, T = 100 W = 20, T = 80 W = 40, T = 60 W = 50, T = 50 

Long. Lat.  Long. Lat.  Long. Lat.  Long. Lat.  

1 -70.31 43.56 -70.39 43.42 -70.31 43.56 -70.29 43.56 

2 -70.13 44.07 -70.53 43.61 -70.13 44.07 -70.72 44.41 

3 -70.16 44.61 -70.31 43.56 -70.79 44.36 -68.94 44.28 

4 -69.70 44.51 -70.13 44.07 -70.07 44.24 -70.59 45.28 

5 -69.78 44.89 -70.79 44.36 -70.16 44.61 -69.25 45.02 

6 -69.48 45.01 -70.16 44.61 -70.59 45.28 -68.63 45.21 

7 -69.25 44.95 -69.70 44.51 -67.34 44.70 -68.33 46.01 

8 -68.62 45.18 -68.62 45.18 -68.91 45.21 -67.86 46.03 

9 -68.26 46.01 -68.10 46.87 -68.62 45.18 -68.11 46.81 

10 -68.10 46.87 -68.01 47.03 -68.10 46.87 -67.94 46.91 

Station 

# 

W = 60, T = 40 W = 80, T = 20 W = 100, T = 00     

Long. Lat.  Long. Lat.  Long. Lat.      

1 -70.43 43.50 -70.38 43.45 -70.60 43.19     

2 -70.21 43.56 -70.78 44.29 -71.00 44.39     

3 -70.84 44.41 -69.34 43.99 -68.81 44.05     

4 -68.68 44.24 -68.25 44.29 -68.03 44.41     

5 -70.12 44.65 -70.59 45.28 -70.59 45.28     

6 -70.73 45.37 -67.19 44.68 -67.07 44.78     

7 -67.39 44.64 -70.29 45.69 -70.29 45.69     

8 -68.26 46.04 -67.84 45.91 -67.84 45.91     

9 -68.02 46.93 -68.26 46.04 -68.55 46.10     

10 -68.32 47.29 -68.15 47.30 -68.13 47.29     
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Appendix E  

SENSITIVITY ANALYSIS RESULTS – III 

(Third 6 Optimal Locations) 
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Here,  

W = Weather Parameter 

T = Traffic Parameter 

 

 

 

Table D.1. Sensitivity analysis location solutions (Third 6 locations) 
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Station 

# 

W = 00, T = 100 W = 20, T = 80 W = 40, T = 60 W = 50, T = 50 

Long. Lat.  Long. Lat.  Long. Lat.  Long. Lat.  

1 -70.13 44.07 -70.37 43.97 -70.95 43.64 -70.95 43.64 

2 -70.16 44.61 -70.13 44.07 -70.26 44.06 -70.25 44.09 

3 -69.70 44.51 -69.90 44.02 -70.04 44.64 -70.10 44.64 

4 -69.40 44.62 -70.07 44.24 -67.39 44.64 -67.34 44.70 

5 -69.78 44.89 -70.16 44.61 -67.87 46.80 -70.31 45.75 

6 -69.48 45.01 -67.34 44.70 -68.32 47.29 -68.13 47.29 

Station 

# 

W = 60, T = 40 W = 80, T = 20 W = 100, T = 00     

Long. Lat.  Long. Lat.  Long. Lat.      

1 -70.95 43.64 -69.47 43.92 -70.93 44.58     

2 -70.13 44.68 -71.01 44.95 -67.93 44.51     

3 -68.20 44.34 -68.24 44.38 -67.04 44.83     

4 -67.25 44.67 -67.34 44.70 -70.29 45.70     

5 -70.29 45.69 -70.29 45.70 -68.83 45.72     

6 -68.32 47.29 -68.53 47.28 -68.59 47.28     
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Appendix F  

R-RWIS & M-RWIS COMBINATIONS 

 

 
Combination 1 – 30 R-RWIS 

 
Combination 2 – 25 R-RWIS & 10 M-RWIS 
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Combination 3 – 20 R-RWIS & 20 M-RWIS 

 
Combination 4 – 15 R-RWIS & 30 M-RWIS 
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Table E.1. Optimized locations for combination 1 – 30 Regular RWIS (R) 

Station # Long. Lat. Station # Long. Lat. 

R-1 -70.29 43.66 R-16 -70.85 43.54 

R-2 -70.25 44.08 R-17 -70.75 44.94 

R-3 -70.78 44.28 R-18 -69.65 44.54 

R-4 -69.48 44.07 R-19 -68.69 44.95 

R-5 -69.99 44.78 R-20 -68.54 47.20 

R-6 -69.28 44.69 R-21 -68.37 46.55 

R-7 -68.71 44.62 R-22 -68.16 45.52 

R-8 -67.95 44.69 R-23 -67.33 45.03 

R-9 -68.68 45.25 R-24 -70.00 44.43 

R-10 -67.64 45.46 R-25 -69.72 43.80 

R-11 -67.87 46.47 R-26 -67.18 44.68 

R-12 -68.01 46.88 R-27 -69.03 45.24 

R-13 -69.44 44.81 R-28 -69.49 44.98 

R-14 -70.14 45.62 R-29 -68.29 44.38 

R-15 -68.12 46.14 R-30 -70.45 44.63 
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Table E.2. Optimized locations for combination 2 – 25 Regular RWIS (R) and 10 Mini- RWIS 

(M) 

Station # Long. Lat. Station # Long. Lat. 

R-1 -70.29 43.66 R-21 -68.37 46.55 

R-2 -70.25 44.08 R-22 -68.16 45.52 

R-3 -70.78 44.28 R-23 -67.33 45.03 

R-4 -69.48 44.07 R-24 -70.00 44.43 

R-5 -69.99 44.78 R-25 -69.72 43.80 

R-6 -69.28 44.69 M-1 -67.18 44.68 

R-7 -68.71 44.62 M-2 -69.03 45.24 

R-8 -67.95 44.69 M-3 -69.49 44.98 

R-9 -68.68 45.25 M-4 -68.29 44.38 

R-10 -67.64 45.46 M-5 -70.45 44.63 

R-11 -67.87 46.47 M-6 -68.44 45.78 

R-12 -68.01 46.88 M-7 -69.09 44.98 

R-13 -69.44 44.81 M-8 -70.42 44.27 

R-14 -70.14 45.62 M-9 -69.82 44.05 

R-15 -68.12 46.14 M-10 -70.74 43.18 

R-16 -70.85 43.54       

R-17 -70.75 44.94       

R-18 -69.65 44.54       

R-19 -68.69 44.95       

R-20 -68.54 47.20       
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Table E.3. Optimized locations for combination 3 – 20 Regular RWIS (R) and 20 Mini-RWIS 

(M) 

Station # Long. Lat. Station # Long. Lat. 

R-1 -70.29 43.66 M-1 -67.18 44.68 

R-2 -70.25 44.08 M-2 -69.03 45.24 

R-3 -70.78 44.28 M-3 -69.49 44.98 

R-4 -69.48 44.07 M-4 -68.29 44.38 

R-5 -69.99 44.78 M-5 -70.45 44.63 

R-6 -69.28 44.69 M-6 -68.44 45.78 

R-7 -68.71 44.62 M-7 -69.09 44.98 

R-8 -67.95 44.69 M-8 -70.42 44.27 

R-9 -68.68 45.25 M-9 -69.82 44.05 

R-10 -67.64 45.46 M-10 -70.74 43.18 

R-11 -67.87 46.47 M-11 -68.37 46.55 

R-12 -68.01 46.88 M-12 -68.16 45.52 

R-13 -69.44 44.81 M-13 -67.33 45.03 

R-14 -70.14 45.62 M-14 -70.00 44.43 

R-15 -68.12 46.14 M-15 -69.72 43.80 

R-16 -70.85 43.54 M-16 -70.95 44.10 

R-17 -70.75 44.94 M-17 -68.40 44.60 

R-18 -69.65 44.54 M-18 -68.67 44.33 

R-19 -68.69 44.95 M-19 -69.37 44.26 

R-20 -68.54 47.20 M-20 -70.31 44.89 
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Table E.4. Optimized locations for combination 4 – 15 Regular RWIS (R) and 30 Mini-RWIS 

(M) 

Station # Long. Lat. Station # Long. Lat. 

R-1 -70.29 43.66 M-11 -68.37 46.55 

R-2 -70.25 44.08 M-12 -68.16 45.52 

R-3 -70.78 44.28 M-13 -67.33 45.03 

R-4 -69.48 44.07 M-14 -70.00 44.43 

R-5 -69.99 44.78 M-15 -69.72 43.80 

R-6 -69.28 44.69 M-16 -70.95 44.10 

R-7 -68.71 44.62 M-17 -68.40 44.60 

R-8 -67.95 44.69 M-18 -68.67 44.33 

R-9 -68.68 45.25 M-19 -69.37 44.26 

R-10 -67.64 45.46 M-20 -70.31 44.89 

R-11 -67.87 46.47 M-21 -70.85 43.54 

R-12 -68.01 46.88 M-22 -70.75 44.94 

R-13 -69.44 44.81 M-23 -69.65 44.54 

R-14 -70.14 45.62 M-24 -68.69 44.95 

R-15 -68.12 46.14 M-25 -68.54 47.20 

M-1 -67.18 44.68 M-26 -67.97 46.02 

M-2 -69.03 45.24 M-27 -67.12 45.09 

M-3 -69.49 44.98 M-28 -67.40 44.71 

M-4 -68.29 44.38 M-29 -69.46 44.60 

M-5 -70.45 44.63 M-30 -70.60 43.63 

M-6 -68.44 45.78       

M-7 -69.09 44.98       

M-8 -70.42 44.27       

M-9 -69.82 44.05       

M-10 -70.74 43.18       

 

 


