
There is no quality in this world that is not what it is merely by contrast.
Nothing exists in itself.

Herman Melville (1819-1891)
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A bstract

In this thesis, we present a new algorithm of contrast enhancement of oil sand images. Image 

contrast enhancement constitutes a crucial pre-processing step in the segmentation of such 

images, used for granulometry purposes. Oil sand images are difficult to segment due to their 

complex nature. The new contrast enhancement method aims at improving the quality of the 

images in order to  improve segmentation performance. The method uses a multi-scale image 

decomposition, obtained with a series of morphological top-hat transformations, where the 

scale of enhancement corresponds to expected object size. In addition, the new enhancement 

method is direct, where the level of enhancement is controlled based on a contrast measure. 

Also, the new m ethod is adaptive, where the enhancement is applied locally, based on local 

image properties. We present experimental results, where we quantitatively measure the 

improvement in the quality of oil sand image segmentation, after applying our contrast 

enhancement method.
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Chapter 1

Introduction

When we look at images, we often think about the quality of those images. W hat makes an 

image have a good quality? Why is th a t quality good? To answer those questions, we often 

need to focus on the purpose of such images. Are those images intended for appreciation 

of art, or perhaps for an examination by a professional, such as a radiologist? Maybe they 

are not intended for a human visual system at all, but instead are an input to a computer 

algorithm tha t performs further processing on these images. W hatever the purpose is, the 

definition of quality of such images goes along with th a t purpose.

One way to evaluate the quality of images is to look at the tasks th a t need to be performed 

on those images, whether intended for humans or for computers. By focusing on the tasks, 

we can ask ourselves what aspects of those images make the tasks easier. One such aspect is 

image contrast. It is the contrast th a t determines how easy it is to perceive the information 

in the images, and how easy it is to  distinguish various details in the image, locating objects 

of interest.

Some example tasks performed on images fall under the category of image segmentation. 

W hether performed by human vision or by computer algorithms, image segmentation deals 

with dividing an image into various regions or objects. Image contrast, being defined as a 

difference in intensity, has an influence on how easy it is to perform the tasks of distinguishing 

various objects or features in an image. Image contrast has a significant influence on the 

quality of the image.

1.1 T he P rob lem

Oil sand is a composition of sand, mineral rich clays, water and bitumen. The oil in oil 

sands is found in bitumen, which in its raw state is a black, thick, asphalt-like substance. In 

order to be transportable by pipelines and usable by refineries, bitumen undergoes a process 

of upgrading. The upgraded bitumen is called sweet crude oil, and it consists of a mixture 

of light and heavy gas oils referred to  as naphtha. Oil sand, in its composition, contains

1
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about four percent of water, which surrounds each grain of sand, and separates bitumen 

from the sand. This layer of water allows the extraction of oil by water-based methods [17].

The problem we discuss in this thesis is the enhancement of contrast in images of oil 

sands for the applications of image-based granulometry. Oil sand ore is crushed, breaking 

the ore into smaller pieces, which we refer to as fragments, objects, particles or rocks. Images 

containing oil sand fragments on a conveyor belt are segmented in order to  determine the 

distribution of the sizes of those fragments. Contrast enhancement is a crucial pre-processing 

step in the segmentation of such images.

Figure 1.1: An example image showing oil sand fragments. The individual objects have very 
complex texture, and their intensity varies significantly. In many cases the edge information 
is poor and not easily distinguishable.

The nature of oil sand images makes accurate segmentation a very difficult task. The 

appearance of oil sand is affected by the variance in oil sand composition. The objects in 

oil sand images have a very complex texture. Their intensity often varies from object to 

object as well as within the individual objects. In many cases bright patches of clay are 

mixed with dark bitumen. In addition the fragments in oil sand images have poorly defined 

edges, which is often caused by the softness of the material. Oil sands are usually moist and 

covered with fine particles. An example of an image of oil sand particles on a conveyor belt 

is shown in Figure 1.1.

Much literature th a t exists on measurement of rock fragmentation deals with the hard 

rock industry. Images of hard rocks, as opposed to oil sands, are much easier to segment. 

They have clearly defined edges, uniform texture, and the intensity of the individual objects 

does not vary An example of such an image is shown in Figure 1.2. Often applications in the 

fragmentation measurements of hard rock use edge-based techniques in the segmentation of 

those images. In the case of oil sands, edge-based techniques fail.

2
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Figure 1.2: An example image1 of hard rock fragments. The fragments in this image are 
clearly visible with strong edge definition, and relatively uniform texture and intensity.

1.2 C ontrast E n h ancem en t A pproaches

There are several contrast enhancement methods. Some methods are implemented in spatial 

domain, and some in frequency domain. Also, contrast enhancement approaches can be local 

or global, as well as direct or indirect. In addition some methods are based on a single scale 

processing, while others process multi-scale image representations.

Examples of classical methods include contrast stretching [10], histogram equalization 

[12] and unsharp masking [28], Some methods are derived from those classical approaches, 

such as contrast-limited adaptive histogram equalization (CLAHE) [25], adaptive neigh­

bourhood histogram equalization (ANHE) [22] and adaptive unsharp masking [28],

Direct contrast methods define and evaluate a contrast measure while enhancing the im­

ages. Examples of those methods are Gordon’s method [11], adaptive contrast enhancement 

(ACE) [2] and adaptive neighbourhood extended contrast enhancement (ANECE) [19].

Other contrast enhancement approaches include the use of frequency domain and multi­

scale decompositions. Examples of these methods include the Tang’s method [31], which 

operates in the discrete cosine transform (DCT) domain and wavelet-based approaches, such 

as Jin’s method [15], which applies LAHE to individual frequency bands. In addition there 

are also methods based on multi-scale decompositions. These include Toet’s method [32] 

that uses ratio of low-pass pyramid, and a method by Mukhopadhyay and Chanda [20], 

which uses morphological top-hat transformations. The contrast enhancement methods are 

discussed in further detail in Chapter 2.

1The image in Figure 1.2 has been obtained from the Split Engineering LLC website at
http://w w w .spliteng.com / and included in this thesis by special permission.

3
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1.3 T h esis  O b jectives and C ontribu tions

The work presented in this thesis focuses on contrast enhancement of images of oil sands, as 

an essential pre-processing step in the segmentation of such images. We test the hypothesis 

that multi-scale contrast enhancement, in which the scale of enhancement corresponds to 

the size of the object being enhanced, improves the accuracy of oil sand image segmentation.

This thesis makes a number of research contributions. We develop a new contrast- 

enhancement algorithm for improving the quality of oil sand images. We call this algorithm 

morphological multi-scale (MMS) contrast enhancement. The new algorithm is adaptive, 

multi-scale and direct. In addition, we demonstrate th a t the scale of enhancement is related 

to  the size of the object being enhanced. We also show th a t better segmentation results are 

achieved with the improvement of the contrast of input images.

1.4 M eth o d o lo g y  and R esu lts

The MMS algorithm th a t we develop for the enhancement of oil sand images is based on a 

morphological top-hat multi-scale decomposition. This decomposition is based on a series 

of top-hat transformations obtained using morphological operations of opening and closing. 

The scale in the top-hat decomposition is controlled by the size of the structuring element. 

This algorithm performs local enhancement on each scale of the decomposition. In addition 

this method is direct, in which the amount of contrast enhancement is controlled via a local 

contrast measure.

The MMS m ethod takes advantage of a priori knowledge of estim ated object sizes. This 

a priori knowledge provides an initial state, where as a result of the contrast enhancement, 

subsequent segmentation steps are able to refine this estimation. Expected size of each given 

object corresponds to the range of scales, on which the object is enhanced.

We evaluate the new contrast-enhancement algorithm quantitatively in terms of segmen­

tation accuracy th a t results when using this algorithm. The segmented images are compared 

against ten manually generated ground-truth images, and a segmentation score calculated 

based on how well the segmented images match the provided ground-truth. The experimen­

tal results tha t we obtain show tha t the new algorithm improves the accuracy of oil sand 

image segmentation. The improvement is observed in all ten cases, which makes the results 

statistically significant.

1.5 O verview

The rest of this thesis is presented in the chapters th a t follow. C hapter 2 talks about the 

background and related work in the field of image contrast enhancement. Chapter 3 dis­

cusses granulometry of hard rocks and oil sand images, pointing out numerous challenges
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with the segmentation of oil sand images. In Chapter 4 we discuss the details of the new 

contrast enhancement algorithm, and the concepts behind. In Chapter 5 we describe exper­

iments performed in order to evaluate the new algorithm, and present experimental results. 

Finally in Chapter 6 we provide the conclusions of this thesis, including a discussion on the 

contributions learned and suggestions for future work.

5
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Chapter 2

Background and R elated Work

The previous chapter introduces various concepts to be discussed in this thesis. This chapter 

presents background and related work in the area of contrast enhancement. We discuss a 

number of contrast-enhancement methods and the different angles to approach them, as well 

as present the properties of the individual methods. The background information presented 

in this chapter is further supplemented with a discussion of image-based granulometry and 

oil sand image segmentation, which is discussed in the next chapter.

2.1 In trod u ction

In this chapter we present background and related work in the area of digital image contrast 

enhancement. The goal of image contrast enhancement is to improve the quality of an image, 

so that the image becomes more suitable for a particular application. We find th a t there is 

a variety of different approaches to  contrast enhancement. We focus on the various concepts 

that each of these methods explores. Some of these concepts provide the motivation for 

the contrast enhancement method presented in this thesis. These concepts include multi­

scale processing, adaptive filtering and direct enhancement. We first present a general 

introduction to the area of digital image processing and digital image enhancement.

2.2 D ig ita l Im age P ro cessin g

Digital image processing is a field th a t refers to processing of digital images by means of a 

computer. A greyscale image can be defined as a two-dimensional function / (x ,  y), where 

(x, y ) are spatial coordinates and /  is the intensity at location (x, y ). If x, y  and /  are finite, 

discrete quantities, the image is known as digital image. A digital image is composed of a 

finite number of elements, which can be described by x, y and / .  Those elements are known 

as picture elements or more commonly as pixels [10].

One of the first applications of digital images was in the newspaper industry in the early 

1920s. Images were transm itted across the Atlantic via a telegraph wire, where they were
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printed at the telegraph receiving station. Digital image processing was not popular until 

the introduction of digital computers. The first computers powerful enough to  be capable 

of meaningful image processing were developed in the 1960s. It was the development of the 

computers, and the space program that made digital image processing popular during those 

years [10].

2.3 D ig ita l Im age E nhancem ent

One m ajor area of digital image processing is image enhancement. Image enhancement deals 

with improving the quality of images, where the goal is to emphasize wanted features and 

make them less obscured. Sometimes this is done at an expense of degrading the quality 

of other details. The area of digital image enhancement is very appealing, where many 

fundamental image enhancement techniques are built on very simple concepts. A popular 

example of image enhancement is the enhancement of contrast, since it makes images “look 

better” [10].

The “look better” part is very subjective. It depends how we define th a t an image looks 

better. W hat is the goal of the enhancement? And how we evaluate th a t the image is indeed 

enhanced, and indeed it “looks better” ? All that depends on the purpose of the image, and 

thus the purpose of the enhancement.

The goal of the enhancement can be simply to make the image more appealing to  the 

human eye for an overall pleasing effect, or it could be for making certain details more 

visible for various applications. One famous area of research dealing with image enhance­

ment is medical imaging. A lot of effort is done to help the radiologists see various details 

better in medical images so they can provide more accurate diagnosis. Another example of 

applications of image enhancement is in the area of image segmentation. The goal of the 

enhancement algorithm in this area is to make it easier to segment individual features of 

interest in the image.

Whether for human visual or computer image processing applications, image enhance­

ment acts as a pre-processing tool. For human vision, it makes it easier to  see individual 

details. For digital image processing, this pre-processing step makes the subsequent algo­

rithms perform better.

Whatever the application is, the goal of image enhancement is the manipulation of an 

image in order to improve its quality so th a t the resultant image is more suitable than  the 

original image for the particular application it is intended for. Image enhancement, as well as 

de-enhancement, are such preprocessing techniques. Some examples of image enhancement 

are removing noise, de-blurring, highlighting some specific features needed by a particular 

application, and of course contrast enhancement [19].
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2.4 C ontrast E n h ancem en t

W hat is contrast? In general contrast is defined as a difference in brightness. Often it is 

the difference between individual objects or features in the image, or between objects and 

their background. In general, contrast refers to the difference or relationship between the 

intensity of a given feature and its surroundings. Contrast is what makes objects in an 

image distinguishable from each other and from the background.

Low-contrast images are often undesirable, since they are more difficult to work with. 

There can be many causes for low-contrast images. Some examples include: poor illumina­

tion, lack of dynamic range in the imaging sensor, or even wrong setting of a lens aperture 

during image acquisition [10].

Contrast enhancement addresses the problem of improving the contrast in an image 

in order to  make various features more easily perceived. It is used in many applications. 

One of the most popular applications of contrast enhancement is in the area of medical 

imaging. Radiologists carefully examine medical images in order to diagnose and treat 

diseases. Often very subtle features are very crucial in such diagnosis. The goal of contrast 

enhancement in those applications is to make these subtle features stand out, and thus more 

easily perceivable by the radiologists.

2.5 C lassifica tion  o f C ontrast E n h an cem en t M eth o d s

Not all contrast enhancement methods can be easily classified into distinct categories, since 

often those methods use aspects from a number of categories. We can assign some attributes 

to contrast enhancement methods. Contrast enhancement methods can be in spatial domain 

and in frequency domain. Methods in the spatial domain can be further divided into global 

and local (adaptive) methods. Another way to classify contrast enhancement algorithms 

is into direct and indirect. Finally contrast enhancement methods can also be classified 

as single-scale and multi-scale. Contrast enhancement techniques can be combinations and 

variations of any of the above.

2.5.1 Global vs. Local M ethods

One way to classify spatial contrast enhancement methods is into global and local methods. 

Global methods process the entire image in the same fashion. On the other hand local (also 

called adaptive) methods use local image statistics in order to adaptively process a given 

area in the image. Often image characteristics differ from region to  region, so it is reasonable 

to use context-sensitive approaches when enhancing the contrast. In such approaches the 

processing adapts to the changing characteristics of the image in the different local regions 

[19].
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2.5.2 D irect vs. Indirect M ethods

Contrast enhancement methods are sometimes classified as direct and indirect. The indirect 

methods do not involve a contrast measure. They do not directly deal with contrast itself, so 

often the enhanced contrast is a by-product of the operation. The disadvantage of indirect 

methods is th a t the contrast (i.e. contrast measure) is not directly addressed. There is not 

much control over the way the contrast is enhanced, or the amount of the enhancement. 

The enhancement of contrast cannot be controlled directly.

Not being able to control the enhancement of contrast directly may lead to many unde­

sirable effects, such as over-enhancement or under-enhancement. Often these include over­

enhancement of noise, over-enhancement of high contrast features, or under-enhancement of 

low contrast features. For example in the histogram equalization, uniform images or regions 

are usually over-enhanced, amplifying the noise. Local histogram is discussed in more detail 

later in this chapter.

Direct methods, as opposed to indirect methods, involve a contrast measure, which is 

a quantitative measure of contrast in the given image. A contrast enhancement method is 

called direct when it defines a contrast measure and actually evaluates it during the image 

enhancement [19].

A contrast measure can be defined globally (i.e. a single measure for the entire image) or 

locally, a separate local measure for each region or even pixel of the image. Local contrast 

measures are more adequate for images composed of textured regions [2]. The contrast 

measure yields a value indicating how much contrast there is in a local area (pixel) in the 

image.

There is no standard way to calculate a contrast measure, and it varies from a method 

to a method. Usually the contrast measure is highly correlated to  the intensity gradient, 

so it is no surprise th a t many contrast measures are either defined in terms of intensity 

gradient or are somewhat similar to gradient operators. In general a local contrast measure 

is a relationship between the intensity of a foreground feature, such as a pixel, and its 

contextual background, such a local area surrounding the foreground feature.

contextual 
background region

■ enhanced pixel

Figure 2.1: Many direct contrast enhancement methods use a local contrast measure that 
deals with computing the relationship between a foreground pixel and its local contextual 
background.
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One example of a contrast measure is the following [6]:

^ m i n  ) / ( i  m a x  + I r a i n )  •>m a x (2 .1)

where c denotes the measured contrast, and lmin and l m a x  are the minimum and maximum 

luminance values (respectively) in the area where the contrast is calculated. This area can 

either be the whole image, or just a part of the image. The values of this measure are in 

the range 0 <  c < 1.

A simple example of a direct contrast enhancement method using local statistics is a 

method first proposed by Wallis and later extended by Lee [19]. This method uses a contrast 

measure, which is the difference between the grey level G xy of a pixel at location (x. y). and 

the grey level mean E xy of local pixels surrounding the pixel a t (x. y). The enhanced grey 

level G'xy is obtained by multiplying the contrast measure by a factor k as follows:

In this contrast measure p  is the average pixel value in the inner foreground region (whose 

center is the pixel to be enhanced), and a is the average of all the pixels in the outer 

background region tha t surrounds the foreground region. The values of C  are in the range 

[0,1], The contrast C  is enhanced to produce C' using the square root function:

The square root function ensures th a t the [0,1] range for the contrast values is preserved.

2.6 D ifferent A pproaches o f E n h ancing  C ontrast

2.6.1 Contrast Stretching

The simplest form of contrast enhancement is known as contrast stretching [10]. The idea 

behind contrast stretching is to increase the dynamic range of the grey levels in the image 

being processed. A transformation function (also called mapping function) is a  function that

(2 .2)

Gordon and Rangayyan [11] define a contrast measure C  as follows:

C = \p — a\/(p  +  a). (2.3)

c' = Vc. (2.4)

It also enhances smaller values (lower contrast) more than it does higher values (higher 

contrast). The value of the enhanced pixel p' is computed as follows:

p' =  a ( l  +  C ') /{ \  — C') if p > a , (2.5)

p' = a ( l - C ,) / ( l  + C') if p < a. (2 .6 )
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maps an input grey-level intensity to an output grey-level intensity. Contrast stretching is 

a transform ation function T  of the form:

a =  T(r), (2.7)

where r is the input intensity of a pixel, and s is the output intensity of th a t pixel.

In this method the range of values close to some value m  is stretched over the intensity 

scale, resulting in an improved contrast of those values. This also results in compression of 

the values th a t are further away from to. This type of transformation is known as a point 

operation, since the output value s of any pixel in the image depends only on the input 

value r of tha t same pixel. An example of such a mapping function for contrast stretching 

is shown in Figure 2.2(a). A limiting case of such mapping produces a two-level (binary) 

image, which is known as thresholding. An example of this form of mapping is shown in 

Figure 2.2(b).

s = T(r)

■T(r)
CL

\m
Input Intensity

(a) Typical form of contrast stretching 
transformation.

s = Tr

Input Intensity

(b) A limiting case of contrast stretching, 
known as thresholding.

Figure 2.2: Examples of contrast stretching transformation functions (redrawn from [10]).

2.6.2 Full Frame H istogram  M odification

Hall [12], by equalizing the grey-level density of pixels, demonstrated th a t by modifying the 

histogram of an image, the perceptiveness of detail can often be increased very significantly. 

The basic assumption made in histogram modification is th a t the information contained in an 

image is related to the probability of occurrence of each grey level. The information content 

in the image is often easier to  perceive, when the probability of occurrence of each grey level 

is uniformly distributed. A uniform distribution of grey levels tends to make equal use of 

each quantization level, and to  enhance low detail information due to range compression. 

The histogram equalization technique attem pts to obtain this uniform distribution.

Frei [8] suggested the histogram hyperbolization method, which addresses the fact that 

the response of the human visual system to stimuli is approximately logarithmic. This 

method of histogram modification redistributes the information in the image hyperbolically.
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The full-frame, or global, histogram methods, as pointed out by [22], modify the global 

histogram of the complete image. These methods are simple to  implement, require no 

interaction from the user, and provide significant visual enhancement of the image. The 

main problem with these methods is that small, relatively uniform regions may be lost as 

their grey values are combined with the values of their background. This takes place because 

the corresponding pixel values, due to their low occurrence, are considered to  have low 

information content. An example of an image enhanced by full-frame histogram equalization 

is shown in Figure 2.3(c).

2.6.3 Local Area H istogram  M odification

The problem of full-frame histogram equalization failing to  enhance small local details was 

first addressed by Ketcham [16], who suggested local-area histogram equalization (LAHE), 

also known as adaptive histogram equalization (AHE). In this method the enhancement 

is performed based on a local histogram in a local two-dimensional sliding window. This 

method was also independently suggested by Pizer [26] for enhancement of medical im­

ages, and by Hummel [13]. An example of enhancement using this m ethod is shown in 

Figure 2.3(e).

There is a number of problems with the LAHE method. It fails, due to  the use of 

fixed size window, when the window is too small and does not contain multiple objects, or 

when the window is too large and objects of interest do not occupy a significant portion of 

the local histogram. Additionally, Rehm and Dallas [29] have shown th a t LAHE produces 

undesirable edge artifacts at sharp natural boundaries. This artifact is caused by a change 

of transformation as the sliding window passes over tha t boundary. To correct this they 

suggest to subtract a very smooth version of the image prior to applying the LAHE method, 

a process called background subtraction.

Contrast-limited adaptive histogram equalization (CLAHE) [25] is a variation of LAHE, 

where it adds a restriction on how much the contrast is enhanced. This addresses the 

problem of over-enhancing noise, since there is a limitation placed on the maximum amount 

of enhancement, thus enhancement of noise as well. This is done by limiting the slope of 

the mapping function, and in terms of the histogram equalization is equivalent to clipping 

the height of the histogram. When applying CLAHE the histogram is renormalized, where 

the clipped portions of the histogram are redistributed evenly through the entire histogram. 

Enforcing a maximum on counts in the histogram limits the amount of contrast enhancement 

and thus the enhancement of noise.

Gordon and Rangayyan [11] first suggest contrast enhancement using an adaptive neigh­

bourhood. This algorithm uses a contrast measure which is a ratio between a foreground 

region centered around a given pixel, and a background region surrounding the foreground

12
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G rey Value

(b) Histogram of (a)(a) An image of oil sand fragments.

95 127
G rey Value

(c) Global histogram equalization of (a). (d) Histogram of (c).

(e) Local histogram equalization of (d). (f) Histogram of (e).

Figure 2.3: An example image of crushed oil sand fragments on a conveyor belt and corre­
sponding enhanced images via global histogram equalization and local histogram equaliza­
tion. The histograms of the three images are also included. Notice how the histogram of 
the image enhanced by the global method is stretched, whereas the histogram of the image 
enhanced by the local method has more uniform distribution.

region (refer to Equation 2.3). The idea behind the adaptive neighbourhood is th a t the 

size of the neighbourhood is adjusted to be most optimal. This is done by maximizing the 

contrast measure (i.e. which neighbourhood size gives the highest contrast measure). The 

ratio between the size of the foreground region and the size of the background region is kept 

constant. Once the size of the adaptive neighbourhood is chosen, the same contrast measure
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is used to  enhance the contrast of the pixel in the center of the region. Figure 2.4 illustrates 

an example of the foreground and the background region.

3m

foreground region
m. (m x ra)

3m m x < - ------enhanced pixel

background region
(3m x3m )

Figure 2.4: Contextual region in Gordon’s method (redrawn from [2]).

Paranjape et al. [22] propose an adaptive-neighbourhood histogram equalization (ANHE) 

method. In this method, instead of using a fixed size window, such as in LAHE, an arbitrary 

shape and size is used for the region from which the histogram is computed. This region is 

obtained from an adaptive neighbourhood of each pixel being processed, an approach first 

suggested by Gordon and Rangayyan [11],

In ANHE, an 8-connected set of pixels is grown from the seed pixel, using pixel aggre­

gation, which produces the foreground component of the region from which the histogram 

is computed. A background component of a constant width is then grown from the outer 

perimeter of the foreground component, and together with the foreground component con­

stitutes the contextual region of the seed pixel.

seed pixel

foreground region

background region

Figure 2.5: An example of the contextual region in Adaptive Neighbourhood Contrast En­
hancement (ANHE). This region is composed from a foreground component, which includes 
the seed pixel, and a background component of specified width surrounding the foreground 
region (redrawn from [19]).

In contrast to LAHE, ANHE is a more adaptive method of contrast enhancement, since 

it uses a contextually based region, as opposed to a fixed rectangular window used in LAHE. 

The edge artifacts at sharp natural boundaries, which LAHE tends to  produce, are nonex­

istent, since all the seed pixels in a given region have the same grey-level transformation. 

ANHE, however, similarly to  LAHE, suffers from undesired enhancement of noise, especially 

in relatively uniform regions.

Adaptive contrast enhancement (ACE) [2] is a method th a t builds upon Gordon’s method
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[11], where contrast enhancement is performed over an adaptive neighbourhood. In this 

method a  contrast measure is defined by detecting contours in the image. The measure 

itself uses local edge detection. The contrast Cm at pixel (fc, I) is defined as:

where A ij is the edge value at pixel (i , j) .  The edge value is computed using an edge 

detection operator, such as the Laplacian:

where X  is the mean grey level of the eight neighbouring pixels around (i, j) .  The contrast 

is then enhanced using C'kl =  (Cki)a^b, where b = 2P, p is an integer, and a < b. Reverse 

mapping is given by:

This contrast enhancement method is less sensitive to digitization effects and noise. It 

is useful for extracting contours of objects, where edges are enhanced without significant 

enhancement of noise.

Mukherjee and C hatterji [19] propose Adaptive Neighbourhood Extended Contrast En­

hancement (ANECE). This method combines ANHE [22] and ACE [2]. It performs the 

same contrast enhancement as ACE, but in contextual regions th a t are obtained in ANHE. 

It uses the region-growing approach from ANHE, and the contrast enhancement based on 

a contrast measure from ACE [2]. The problem of noise over-enhancement is addressed 

by power variation, where the amount of enhancement is varied between two fixed limits 

depending on local image statistics. Examples of the basic method, and the power varia­

tion version are shown in Figure 2.6. The power variation approach results in a smoother 

histogram than the basic method.

2.6.4 Unsharp M asking

Unsharp masking is a contrast enhancement technique widely used in photography for over 

sixty years. It works by making an inverted blurred photographic mask of the original image

IXki -  Eki\ 
| Xki + Eki\

(2 .8 )

where Xki  is the value of the pixel, and Eki is the mean edge grey level a t th a t pixel location. 

Eki is computed in a local window W ki as follows:

E  A u - * o
(i ,j)ewki

(2.9)

A ij = \Xi j - X \ (2 .10)

if Xki < Eki,
(2 .11)
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(a) Basic ANECE. (b) Histogram of (a).

0 31 63 95 127 159 191 223 255
G rey Value

(c) ANECE with power variation. (d) Histogram of (c).

Figure 2.6: An example of the basic ANECE method and its power variation version, 
enhancing the image from Figure 2.3(a). The histograms of the two images are also included. 
Notice how the power variation version results in a smoother histogram, decreasing the effect 
of noise over-enhancement.

on a piece of photographic film. This piece of film is then contact printed in registration 

with the original image, effectively enhancing edges and small details.

The classic digital unsharp masking is based on adding a high-pass filtered, intensity 

scaled version of the input image to itself, thus emphasizing the high frequency components 

of the original image. A filter (also called mask, kernel, template or window) is a small 

(e.g. 3 x 3 )  two-dimensional array of coefficients whose values determine the nature of the 

operation performed such as blurring or sharpening [10]. The linear unsharp masking filter 

for the input image x ( n ,m )  and the enhanced image y ( n ,m )  is defined as [28]:

where z (n ,m)  is the output of a correction signal obtained via high-pass filtering, and A is

masking suffers from two main drawbacks: it is extremely sensitive to noise, and it enhances 

high-contrast areas much more than low contrast ones.

A method tha t addresses these problems is proposed by De Vries [4], In this method,

y(n,  to) =  x(n,  to) +  Az(n,  to) (2 .12)

the positive scaling factor tha t controls the amount of enhancement. The linear unsharp
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sharpening is controlled by an adaptive filter, measuring the input contrast. As a result, 

the low-contrast areas are enhanced more than  the high-contrast ones. This approach still 

suffers from noise over-enhancement when there is no mismatch between the target and the 

input dynamic ranges.

Polesel et al. [28] introduce an adaptive unsharp masking method. The objective of 

this method is to emphasize the medium-contrast details more than  large-contrast details. 

Additionally the filter does not perform sharpening operation in smooth areas, making the 

system more robust to the presence of noise in the input images than  traditional approaches. 

The adaptiveness of the unsharp masking is achieved using a Gauss-Newton adaptation 

strategy [34] to reduce the squared error between the desired local dynamics and the actual 

local dynamics.

2.6.5 Contrast Enhancem ent in Frequency D om ain

Tang et al. [31] propose a contrast enhancement method using a contrast measure in the 

Discrete Cosine Transform (DCT) domain. DCT is used in the JPE G  image compression 

format [24]. In this domain the image is divided up into 8 x 8  blocks, and 64 DCT coefficients 

are derived for each block, corresponding to different frequencies of the signal within that 

block. In this contrast enhancement algorithm, those coefficients are grouped into 15 fre­

quency bands. The frequency bands are arranged from lowest to highest frequencies. This 

algorithm uses a contrast measure cn defined for each spectral DCT band n, where smaller n  

corresponds to lower frequencies, greater n  corresponds to higher frequencies. This contrast 

measure is defined as as:

Cn =  — ( 2. 13)
2^t=0

where En and E,  are the averages of DCT coefficients in bands n  and t, respectively.

The contrast is then enhanced as follows:

E n =  XHnE n , n  > 1, (2.14)

where
Y ^ n -i p

= n >  1, (2.15)
2^t=o

with initial condition Eo = E q. The amount of enhancement is controlled by A, which is 

the enhancement control factor with a typical value of 1.95. This spectral form of contrast 

enhancement gives the algorithm a primitive multi-scale structure.

2.6.6 M ulti-Scale Enhancem ent

In multi-scale contrast enhancement an image is separated (or decomposed) into a number 

of components, where each component corresponds to a different scale. The actual decom­

position method varies, but the choice of it affects how the different features in the image
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(a) Enhanced image by non-linear RoLP (b) Histogram of (a).
pyramid recombination.

Figure 2.7: An example of contrast enhancement using non-linear RoLP pyramid recombi­
nation, enhancing the image from Figure 2.3(a). Image histogram is also included. This 
histogram has a  bi-modal characteristic. In addition, bright features are overemphasized.

are decomposed. Multi-scale decomposition allows for enhancing of each scale separately, 

and thus to control the amount of enhancement (or de-enhancement) for each component 

of the scale.

In direct multi-scale methods, a contrast measure can be defined as a relationship of a 

foreground feature (e.g. a pixel or a small foreground region) to the contextual background 

region. This contrast measure in a multi-scale representation can be computed using a 

foreground feature from a finer scale and a background feature from a coarser scale. Fur­

thermore, the multi-scale representation allows for the contrast measure to  be computed for 

different scales, which allows direct enhancement of individual scales. Also, if a multi-scale 

representation preserves locality information, the contrast measure can be computed locally 

for individual pixel location, thus allowing an algorithm to be local or adaptive.

Peli and Lim [23] propose an adaptive contrast enhancement algorithm, which separates 

the image into high and low spatial frequency components, using a low-pass filter. It is an 

adaptive filter, which modifies contrast locally. The low-pass component determines how 

much the high-pass component is enhanced. The low-pass component is then modified by 

a non-linearity, which controls the dynamic range of the image. Both components are then 

recombined to  produce the enhanced image.

Toet [32] proposes an adaptive multi-scale contrast enhancement technique based on 

recombination of a non-linear ratio of low-pass (RoLP) pyramid. The information present 

at different levels of the pyramid corresponds to different scales of the original image. This 

allows for selective enhancement of details a t different spatial scales. Each level of the 

pyramid can be adaptively enhanced using its contextual information from the other levels.

Each level of the RoLP expansion is obtained by applying a low-pass 5 x 5  Gaussian filter 

to the image from the previous level, and then downsampling by a factor of 2. The RoLP is
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then computed as ratios of the consecutive levels of the expansion. This RoLP representation 

of the original image is complete, such tha t the exact image can be reconstructed from 

the pyramid. The contrast is enhanced during recombination, on all scale-levels, using 

special recombination rules. Different rules can be used to emphasize different aspects of 

the encoded information.

Another multi-scale approach to contrast enhancement is in using wavelets. In wavelet- 

based methods the image is decomposed into a number of discrete frequency bands. Each 

of these bands can be referred to as scales (thus yielding a multi-scale structure). The 

advantage of this decomposition is a spatial and frequency representation with multi-scale 

structure and locality information preserved. Locality allows local/adaptive processing and 

multi-scale allows scale-based processing. The multi-scale decomposition, if properly chosen, 

can allow for separation of desired features or objects from noise. In the multi-scale approach 

each scale can be processed separately allowing for different amount of enhancement or 

different parameters for each scale.

An example of enhancement using wavelets is a method proposed by Jin et al. [15]. 

In this method over-complete dyadic spline wavelets are used, where the image is decom­

posed into 2 frequency bands (2 levels) with high frequency and low frequency. A local 

histogram equalization (LAHE) is performed on each frequency band with a different size of 

the local histogram window. The advantage of this m ethod comes from combining the local 

enhancement capability of LAHE, and the selectivity of spatial-frequency components.

A multi-scale morphological approach to local contrast enhancement is proposed by 

Mukhopadhyay and Chanda [20]. In this method, the scale-space decomposition is obtained 

via a series of top-hat transformations, varying the size of the structuring element. A top- 

hat transformation, decomposes an image into a base image and a feature image by applying 

either morphological opening (white top-hat transformation) or morphological closing (black 

top-hat transformation). For example the white top-hat transformation is defined as:

g{r, c) = (go nB)(r,  c) +  [g(r, c) -  {g o nB)(r,  c)], (2.16)

base image feature image

where g is the original image, and (g o nB)  is the morphological opening of g with a disk 

structuring element B  a t scale n.

The image is enhanced as follows:

m  m

g(r ,c) = g(r,c) + 0 . 5 ^ 2  F°B {r,c) -  0.5 ^  F?B (r, c) (2.17)
i —n i —n

for scale range between n  and m. F°B (r, c) is the white feature image at scale i, and F[B (r, c) 

is the black feature image at scale i. The feature images are defined as follows:

-P)b(ac) =  g{r,c) -  (g oiB)( r ,c ) ,  (2.18)
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Fw (r ^c) =  ( 9  • iB ) ( r , c )  -  g{r,c). (2.19)

In this enhancement technique finer features are emphasized/enhanced more than the 

coarser features. Greater emphasis of finer features over coarser features makes this method 

more local and adaptive, since coarser features contribute to more global aspects of this 

image. In addition, emphasis of fine features results in a sharper image with enhanced edges. 

An example of enhancement using this method is shown in Figure 2.8. The multi-scale image 

representation mentioned here is used in our new contrast enhancement algorithm, MMS, 

and is further discussed in Chapter 4.

This algorithm cannot be applied directly to  the enhancement of oil sand images due 

to a number of limitations. It unconditionally emphasizes finer scales, which leads to over­

enhancement of noise and texture. This approach does not offer an ability to control/select 

the scale and amount of enhancement. Furthermore, it cannot take advantage of a priori 

size information.

95 127 159 191 223 255
G rey Value

(a) Multi-scale top-hat decomposition. (b) Histogram of (a).

Figure 2.8: An example of contrast enhancement using multi-scale top-hat decomposition, 
enhancing the image from Figure 2.3(a). The image, due to  emphasis of fine features, 
is sharper, with significant enhancement of texture and noise. Image histogram is also 
included. The peak at grey value 0 indicates considerable enhancement of black features.

2.7  Sum m ary

In this chapter we present an overview of background and related work in the area of 

contrast enhancement. Contrast enhancement is used in pre-processing images to  improve 

their quality for specific applications, which can be for the human vision, or for further 

machine processing.

Contrast enhancement algorithms can be implemented in the frequency domain or spatial 

domain. Spatial domain algorithms can be global or local (adaptive), where local image 

statistics are used. Also contrast enhancement algorithms can be direct, which define and 

evaluate a contrast measure, or indirect. In addition the algorithms can be performed in 

single-scale or multi-scale image representations.
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The classical contrast enhancement methods include contrast stretching, global and local 

(LAHE) histogram equalization/modification and linear unsharp masking. Methods based 

on LAHE include CLAHE, which limits the enhanced contrast, and ANHE, which uses 

adaptive regions of arbitrary shapes. Methods based on unsharp masking include the method 

by De Vries, which uses and adaptive filter to  reduce over-enhancement, and also an adaptive 

unsharp masking method, which emphasizes medium-contrast details.

Direct contrast enhancement methods define and evaluate a contrast measure during 

enhancement. Gordon’s method uses a contrast measure and variable-size local regions. 

The adaptive contrast enhancement (ACE) uses the same variable-size local regions, but 

defines a contrast measure based on local edge detection. The adaptive neighbourhood 

extended contrast enhancement (ANECE) method combines the contrast enhancement of 

ACE with the arbitrary-shaped local regions of ANHE.

Other approaches to  contrast enhancement include the use of the frequency domain and 

multi-scale decompositions. The Tang’s method enhances an image in the discrete cosine 

transform (DCT) domain, giving the algorithm a primitive multi-scale structure. Wavelet- 

based approaches enhance images in multi-scale representations, which also preserve spatial 

locality. Other multi-scale approaches include the two-scale method by Peli and Lim, non­

linear recombination of RoLP pyramid and the method based on multi-scale decomposition 

using top-hat transformation. Top-hat transformations use morphological operations, which 

focus on geometric shapes of the features in the image.

As presented in this chapter, there are many approaches to contrast enhancement from 

many different perspectives, and each having various properties. Some of those properties 

are used in forming our new contrast enhancement method, MMS, which is discussed in 

detail in the remaining part of this thesis.
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Chapter 3

Im age-Based Granulometry of 
Hard Rocks and Oil Sands

The previous chapter presents an overview of existing contrast enhancement techniques and 

their various properties. This chapter introduces the problem of oil sand segmentation. It 

presents some of the existing methods of hard rock and oil sand granulometry, talks about 

the properties of oil sand images, and points out some of the challenges th a t are faced with 

segmentation of those images. The next chapter presents our solution of image contrast 

enhancement in order to  improve oil sand ore image segmentation.

3.1 In tro d u ctio n

Analyzing oil sand images is very challenging. Oil sand ore comes in a variety of sizes, shapes, 

colours and textures. Its appearance is greatly affected by the variance in its composition. 

Crushed oil sand ore comes in a wide range of sizes, where larger objects are often mixed 

with very fine fragments. Oil sand material is often very soft, resulting in fragment edges 

not being clearly visible. Varying lighting and weather conditions also play a significant role. 

The goal of this research is to  improve the segmentation of oil sand images through proper 

contrast enhancement as a necessary first step. Adequate oil sand image segmentation 

is necessary in providing knowledge to field operators and allowing them  to evaluate and 

optimize oil sand handling equipments. We begin the discussion with a general mentioning 

of image-based granulometry of oil sand images.

3.2 Im age-B ased  G ranu lom etry

Granulometry is a field th a t deals mainly with determining the size distribution of particles 

[10]. The goal of image-based granulometry of oil sand images is to determine the sizes of 

oil sand particles in an image, and to compute statistical distributions of those sizes.

In contrast to  traditional size analysis techniques [7], such as mechanical sieving, cen-
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trifugation and sedimentation, it is highly desirable to apply computer vision to oil sand 

size analysis. Computer image analysis does not interfere with or disrupt the production, 

and allows analysis of a large number of samples, due to the relatively high speed of im­

age processing. Additionally, a vision-based approach is non-invasive, preserving the shape 

properties of analyzed oil sand objects.

Maerz et al. [18] argue why image-based methods of analysis have many advantages over 

traditional sieving (screening) methods. Image processing is quick, where many images can 

be taken and processed quickly. Image processing is also relatively inexpensive in terms of 

necessary equipment. In addition due to the speed of image processing, lots of samples can be 

taken and analyzed in a given period of time, reducing the amount of sampling error. Large 

quantities of material to  be analyzed make traditional screening techniques impractical; 

however image processing is not limited by the volume of the m aterial analyzed. Image 

processing is non-destructive, whereas in the traditional methods m aterials can break when 

screened physically, thus making measurements inaccurate. Image processing also does not 

interfere with the regular production.

Image-based granulometry of rock materials concentrates mainly on analyzing frag­

mented hard rocks. Hard rock images are characterized as having well-defined edges and 

relatively uniform texture. They can be segmented easily using edge-based techniques. An 

example of an image containing hard rocks is shown in Figure 1.2.

Figure 3.1: An image of oil sand ore on a conveyor belt.

In the case of oil sand images, however, edge-based methods fail due to  the rich texture 

of oil sand fragments, and lack of edge information. In addition, since oil sand mining is a 

24-hour, outdoor operation, varying lighting and weather conditions play a significant role 

in the appearance of oil sand. A size analysis system for oil sand based on segmentation
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must resolve a number of technical challenges that are known to be difficult to computer 

vision. An autom ated system is desired, where human interaction is not required. Thus 

such a system needs to be adaptive to the varying visual conditions. An example image 

of oil sand fragments on a conveyor belt is shown in Figure 1.1 and another example in 

Figure 3.1.

The typical steps in image-based granulometry are: sampling, digitization, segmentation, 

size measurement and calculation of size distribution. An image of a scene with material 

whose particle size distribution is to be measured, is first sampled with an image sensing 

equipment, typically a CCD camera. Next, the image is digitized, typically with a frame 

grabber, obtaining a pixel representation of the scene. The digital image is then processed, 

where individual particles are delineated via image segmentation. The fragment sizes of 

each segmented particle are measured, and then from these sizes a particle size distribution 

of the material in the image is calculated. These steps are illustrated in Figure 3.2.

Image processing techniques

5. Conversion to real size distribution

4. Measurement of fragment sizes

1. Photographic Sampling

2. Digitization of Photographs

3. Image Segmentation

Figure 3.2: Typical steps in image-based granulometry

3.3 G ran u lom etry  o f H ard R ocks

3.3.1 M easuring M ethods

There exists a number of traditional methods (also known as gravitation methods) for mea­

suring the size distribution of blast fragmentation. These include sieving (mechanical and 

manual), sedimentation and centrifugation. In sieving, coarse material such as crushed 

rocks, gravels and sands are graded using perforated plate sieves. Fine m aterial like gran­

ular soils are graded using woven wire mesh sieves. Centrifugation is a method involving 

centrifugal force in separating the different mixtures of materials. Sedimentation involves 

settling of particles in a viscous fluid, where heavier particles settle first, and the reducing 

density of the suspension is monitored with a floating hydrometer. [7]
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3.3.2 Im age-Based M easuring System s

Image-based methods of measuring blast fragmentation have progressed through many 

stages throughout the history. Initially the analysis was based on photography, where pho­

tographs of muckpiles were compared to scaled photographs of standardized muckpiles with 

known size distribution. A ttempts to analyze the size of rock fragmentation from pho­

tographs were made as early as the 60’s in determining fragment size distribution from 

photographs of freshly exposed muckpiles and muck surfaces in mine cars [14].

Another example of such an approach is the Compaphoto technique [3], proposed in 1986. 

This technique assumes th a t the material distribution follows a Rosin-Rammler curve, given 

by:

R  = 100 exp[0.693— ]” (3.1)
Xm

where R  is the percentage mass retained on screen of size x, x m is the mean size in the 

muckpile, and n  is the uniformity index. The Rosin-Rammler distribution is an idealized 

size distribution of material in muckpiles. It is not necessarily true for every case.

Early image-based methods of estimating size distribution of blasted material involve 

photographic analysis. One such example is a method developed by Anderson [1], which 

uses grid photography for analyzing the size of fragments from cratering tests with nuclear 

explosions. In this method a grid is laid out on the muckpile surface and then samples from 

the muckpile are taken. This method is tedious and involves spending a lot of time on site, 

thus usually interfering to some degree with the production.

3.3.3 Split®

One program developed to  analyze size distributions of rock fragments is Split® [9]. Split® 

is designed to  compute size distributions of greyscale images of hard rock fragments, such as 

the one shown in Figure 1.2. Split® uses algorithms for delineating particles and computing 

size distributions.

The Split® program can be broken into three parts: delineation of the rock fragments, 

determination of the size and shape of particles with computation of the size distribution, 

and integration of the two algorithms into two different programs.

The first part of Split®, which is delineation of the rock fragments, segments a greyscale 

image into individual particles and the remaining non-particle areas. The typical steps in­

volved are histogram equalization, edge detection, thresholding, followed by object splitting 

in shadow areas based on edge gradient, and finally a watershed segmentation.

In the second part of Split®, the size and shape of particles are determined, including 

computation of size distribution. This is done in a series of steps. F irst, an actual screen 

size for each particle is determined. Then this size is corrected for possible overlap and 

fragment shape using probabilistic methods. Next, the algorithm calculates the overall size
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distribution considering all particles in the image. This is followed by approximating the 

amount of fines not visible due to image resolution, as a percentage of the area of boundary 

or non-particle area pixels. Finally the algorithm combines the results for a set of images, 

even if they are captured at different scales.

The th ird  component of Split® is the integration of the two algorithms into two separate 

applications. The first application is an autom ated system with continuous analysis of 

material in images of a moving conveyor belt. The purpose of this application is to provide 

data to operators or to expert systems, such as in a mill or crusher control room.

The second application is a user-friendly off-line program. This program is used to 

analyze previously captured images, where a user can select different parameters. The 

primary use of this application is to  test various algorithms.

The applications of the Split® system include monitoring of the size distribution of 

particles on a conveyor belt, such as the feed entering a mill, or the product coming out of 

a primary crusher.

3.3.4 W ipFrag®

Another edge-based granulometry system used in hard rock industry is W ipFrag® [18]. 

WipFrag® is an image-based system for analyzing fragment sizes of blasted or crushed 

rock. It also has applications in granulometry of other materials, such as such as glass 

beads or zinc concentrates.

WipFrag® analyzes an image and delineates the individual objects or fragments. In this 

delineation process, W ipFrag® involves the identification of object edges. This is done in a 

two-stage process. In the first stage, W ipFrag® uses a number of common image processing 

techniques, such as thresholding and gradient operators. This works the best on clean 

images with lightly textured rock surfaces. In the second stage, W ipFrag® uses a number 

of reconstruction techniques to further delineate fragments tha t are only partially outlined 

after the first stage. These techniques include knowledge based and arbitrary reconstruction. 

In addition, W ipFrag® utilizes the zoom-merge technique [30], which allows to combine 

results of several images at various scales.

3.4  G ranu lom etry  o f  O il Sands

Granulometry of Oil Sands has a direct application in oil sand mining. Measurement of 

oil sand ore size is essential in evaluating and optimizing equipment th a t handles oil sand 

feed. Since the nature of oil sand images is significantly different than  the nature of images 

of blasted fragments, generally the approaches used in blast fragmentation do not directly 

apply to oil sand size measurement.
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camera

oil-sand fragments

9conveyor belt

Figure 3.3: The setup for image-based oil sand granulometry.

There are several challenges in analyzing oil sand images. The ore material comes in a

and fine particles. Since the images are being captured in an outdoor environment, 24 hours 

a day, varying lighting and weather conditions play a significant role in the appearance of 

the objects. The above factors constitute the main challenges of segmenting oil sand objects.

Another challenge with segmenting images of oil sands is the fact th a t the objects are 

very close to each other. In many cases they touch one another. W ith poor edge information, 

this makes the delineation of particles difficult.

A number of visual properties of the oil sand m aterial in the images can be observed. 

The apparent brightness of the individual objects varies from object to  object, where the 

majority of larger oil sand chunks tends to appear brighter than  the surrounding fines or 

dirt material, which is the main property that is exploited in the segmentation algorithm [5] 

used by Ore Size Analyst (OSA), a system designed to measure the size distribution of oil 

sand particles on a conveyor belt. In addition, the texture of the observed material varies. 

Portions of the image representing a collection of small objects appear to  have a random 

texture, whereas single large objects appear to have slightly more uniform texture.

3.5 C urrent S egm en ta tion  M eth o d  o f  O il Sand Im ages

In this section we discuss the current approach to oil sand image segmentation, and outline 

a number of problems with which this method is challenged.

3.5.1 M orphological Segm entation

In the past, as [5] points out, edge-based methods have been used in the field of granulometry 

of fragmented rocks, where edges are clearly visible and textures of individual rock fragments 

are relatively uniform. In the case of oil sand images, edge-based methods fail due to the 

complexity of texture and intensity of the analyzed objects. Dornaika and Zhang [5] propose 

a region-based method, involving mathematical morphology as the means of segmenting 

object shapes, for use in the segmentation of oil sand images. Morphological segmentation

variety of sizes, shapes, colours and textures. Most of the time objects are mixed with dirt
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exploits the spatial properties of the analyzed data  and segments the image, delineating 

individual objects.

3.5.2 Ore Size Analyst

Currently the segmentation of oil sand images is performed using a system developed at the 

Centre for Intelligent Mining Systems (CIMS), University of Alberta, called the Ore Size 

Analyst (OSA). OS A is based on original work presented in [5]. The current version of OS A 

performs a number of image processing steps. First, the region of interest is detected, using 

an Otsu threshold [21]. This is done in order to separate the background conveyor belt from 

the foreground oil sand fragments.

The next step is image enhancement. This is the pre-processing stage, th a t enhances the 

quality of the image so tha t it can be better processed by the subsequent steps. In this step 

the image contrast is enhanced with a local area histogram equalization (LAHE). In this 

thesis we develop a new algorithm to replace this step, and obtain improved segmentation 

results.

After enhancement, the image is thresholded by applying a local thresholding technique. 

The resultant binary image is then segmented, using morphological opening, in order to 

delineate individual fragments. The segmented image is ran through a number of post­

processing steps. One of those steps inlcudes elimination of holes, either a t fragment edges 

or internal to the fragments. Additional optional post-processing steps include further 

watershed segmentation and elimination of small objects.

There are several problems with the morphological segmentation method, as pointed 

out in [35]. Frequently the areas of segmented objects are underestimated, especially if the 

objects are dark and small. Such objects very often end up not being properly segmented. 

Additional problems include false detection of multiple smaller objects within a larger one, 

and classification of multiple objects clustered together as a single one. These additional 

problems are not uncommon.

3.5.3 Contrast Enhancem ent in OSA

OSA currently uses local area histogram equalization (LAHE) as the contrast enhancement 

in the image pre-processing step. There are several problems with this method. Although 

it is an adaptive method, the window size is fixed for the entire image. Regardless of small 

or large objects in the image, the same window size is used. The m ethod is also indirect 

(i.e. does not use a contrast measure), so there is no direct control over the amount of the 

enhanced contrast. Another problem with histogram equalization is over-enhancement of 

relatively low-contrast areas, and over-enhancement of noise. Histogram equalization also 

enhances internal object texture, which is detrim ental to proper segmentation.
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Inadequate contrast enhancement contributes to a number of common problems with the 

segmentation of oil sand images. Those problems include fusion of multiple fragments, and 

splitting of an individual fragment into smaller pieces. These problems reduce the accuracy 

and robustness of the oil sand granulometry application. In this thesis we propose a new 

contrast enhancement algorithm tha t addresses some of those problems.

3.6 Sum m ary

Image-based granulometry deals with determining size distributions of particles in an image. 

It has many advantages over traditional (gravitational) techniques of determining particle 

sizes. Image-based granulometry for analyzing size distributions of rock material mainly 

concentrates on the hard rock industry, where usually the hard rocks are fragmented by 

blasting. The properties of such images make it relatively easy to analyze them.

Image-based methods for analyzing rock fragmentation have progressed throughout its 

history. In the early days there were methods based on photographic sampling; however 

with the popularity of computers, a number of digital image-based granulometry methods 

have been developed. Typical processing steps in digital image-based granulometry algo­

rithms are: sampling, digitization, segmentation, size measurement and size distribution 

calculation.

Two examples of digital image-based granulometry programs for hard rock industry are 

Split® and W ipFrag®. Split® performs image analysis in three stages: delineation of 

rock fragments, computation of size distribution, and integration into either an automated 

system, or a manual analysis tool. W ipFrag® is an edge-based analysis tool for analysis 

of fragmentation, and performs the analysis in two stages. In the first stage delineation of 

objects is performed using common image processing algorithms, and in the second stage 

reconstruction techniques are used to further delineate objects tha t the first stage did not 

complete.

The nature of oil sand images differs significantly from the nature of images of hard 

rocks, and thus methods used in hard rock industry do not directly apply to  granulometry 

of oil sands. Images of oil sands present a lot of challenges in granulometry analysis, which 

are due to factors such as rich texture of oil sand fragments and poorly defined edges. In 

addition, oil sand processing is a 24-hour outdoor operation, which is subject to varying 

lighting and weather conditions.

The current segmentation of oil sand is performed via the Ore Size Analyst (OSA), 

whose segmentation is based on mathematical morphology. This method takes advantage of 

properties of oil sand images such as the difference in brightness between larger objects and 

fine particles or dirt. OSA performs the following steps: region of interest detection, image 

contrast enhancement, thresholding, morphological segmentation, and removal of holes.
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OSA uses LAHE as its contrast enhancement method. LAHE is known to suffer from 

a number of problems, including noise over-enhancement, inability to  enhanced contrast 

directly and the use of fixed-size local window, which contribute to the common problems 

with oil sand segmentation by OSA. In this thesis we design a new contrast enhancement 

algorithm, which addresses some of those limitations.

30

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 4

M orphological M ulti-Scale 
Contrast Enhancement

The previous chapter discusses image-based granulometry, focusing on problems with the 

segmentation of oil sand images and the contrast enhancement associated with this segmen­

tation approach. In this chapter we present a new method for contrast enhancement of oil 

sand images, tha t addresses some of the problems of the existing OSA method. We outline 

individual steps performed in this algorithm, and talk about various concepts behind them. 

In the next chapter we describe the experiments performed to  evaluate this method, and 

provide the results of those experiments.

4.1 In tro d u ctio n

In this chapter we present the Morphological Multi-Scale (MMS) m ethod of contrast en­

hancement. This m ethod is based on a morphological multi-scale image decomposition 

obtained via a series of top-hat transformations. This decomposition allows the choice of 

scale of enhancement for individual objects, depending on the expected size of each object. 

The expected object sizes are derived from a priori knowledge, which contains an initial esti­

mation of object segmentation. In addition, the MMS method is direct, where the contrast is 

measured and controlled during the enhancement. Also, the new m ethod is adaptive, where 

the enhancement at each pixel location depends on local image statistics at tha t location. 

We begin the discussion of this new contrast enhancement method by first presenting some 

of the basic assumptions we make.

4.2 B asic  A ssu m p tio n s

Our proposed contrast enhancement method MMS is based on several basic assumptions. 

First of all, objects of different sizes in an image are best enhanced on their corresponding 

scales. To develop an algorithm capable of this, our proposed m ethod is multi-scale in which
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the scale of enhancement is selected based on expected object size. Secondly, only a certain 

degree of enhancement is required, and both over enhancement and under enhancement 

are undesirable. To achieve this, we employ a contrast enhancement m ethod th a t is direct, 

in which the amount of enhancement is controlled based on a contrast measure. Finally, 

since objects in different local areas are of different sizes, each local area requires a different 

degree of enhancement. Our method is spatially adaptive in which different local regions 

are enhanced differently.

The new contrast enhancement method achieves the enhancement on a current scale. 

In the scale decomposition usually features corresponding to object contours and features 

corresponding into internal object textures are separated into different scales. Thus it is 

advantageous to enhance the objects themselves, without so much enhancing the object 

texture (rich texture is detrimental to  the segmentation).

The MMS algorithm uses top-hat transformations for its multi-scale image representation. 

Top-hat transformations are tools used to extract either bright or dark features smaller than 

a given size from an uneven background [20]. Top-hat transformations are defined based on 

mathematical morphology.

M athematical morphology is a powerful tool in image processing for extracting image 

components th a t represent or describe shape. Morphological operations are based on set 

theory, treating images as sets of pixels, and performing set operations on the pixels. The 

two fundamental operations in mathematical morphology are erosion and dilation, and other 

morphological operations are based on these [10].

In binary images morphological operations of erosion and dilation are defined in terms 

of logic operations, and in greyscale images in terms of min and max functions. Greyscale 

erosion (g Q B)(r,  c) and dilation (g © B)(r,  c) are defined as follows [20]:

where g denotes the original image and B  the structuring element. Also, (r, c) denotes pixel 

coordinates within image g, and (k, I) denotes pixel coordinates within structuring element 

B.  Morphological opening (g o B)(r ,c ) and morphological closing (g •  B)  are defined in 

terms of erosion and dilation as follows:

4.3  T op -H at T ransform ation

(g © B)(r,  c) =  min [g(r + k ,c  +  I) \ (k,l) £ B } ,  

(g © B)(r,  c) =  max {g(r — k ,c  — I) | (fc, I) £ B } ,

(4.1)

(4.2)

(g o B )( r , c) =  ({g 0  B)  © B)(r,  c), (4.3)

(g •B){ r ,c )  = ((g ® B ) Q B ) ( r , c ). (4.4)
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structuring element i— i structuring element
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(a) Input signal. (b) Morphological erosion of (a).

i— i structuring element

(c) Morphological dilation of (b).

i structuring element

(d) Extracted white features. 

Figure 4.1: An illustration of the greyscale white top-hat transformation.

•— i structuring elementstructuring element

x
(b) Morphological dilation of (a).(a) Input signal.

i— i structuring element

(c) Morphological erosion of (b).

i structuring element

.IX. -ZZL

(d) Extracted black features.

Figure 4.2: An illustration of the greyscale black top-hat transform ation (also known as 
bottom-hat transform ation).

A top-hat transformation (as mentioned in Chapter 2) decomposes a given image into 

a base image and a features image, effectively extracting features th a t are smaller than a 

given structuring element. Here, “a feature smaller than  the structuring element” refers to a 

region in which all pixel intensities are greater than those outside the region, and where size 

as measured by the number of pixels is smaller than  th a t of the structuring element. A white
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(a) Base image: white features removed. (b) W hite features image 
(image enhanced for viewing purposes).

(c) Base image: black features removed. (d) Black features image
(image enhanced for viewing purposes).

Figure 4.3: An example of a white and a black top-hat transformation on the image from 
Figure 3.1.

top-hat transformation which extracts bright features is defined in term s of morphological 

opening as follows [20]:

9 (r, c) = (go n B ) (r , c) +  [g(r, c ) - ( g o n B )  (r, c)], (4.5)
' ---------------v -------------- '  ' ----------------------------V----------------------------'

base image white feature image

where g is the original image, and n B  is a flat disk structuring element B  a t scale n. The

opening operation removes bright features smaller than the structuring element. This is

illustrated in Figure 4.1.

While white features are obtained using morphological opening, black features are ob­

tained using morphological closing. This transformation is referred to  either as black top-hat 

transformation or a bottom -hat transformation. It is defined as follows:

g(r, c) = ( g » n B )  (r, c) -  [(g •  nB)  (r, c) -  g(r, c)], (4.6)
v v-  ̂ s   /

base image black feature image

Similarly as the opening operation, the closing operation removes dark features smaller than 

the structuring element. This is illustrated in Figure 4.2. An example of a white and a black 

top-hat transformation is shown in Figure 4.3.

34

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.4  T op-H at M u lti-S ca le  D eco m p o sitio n

The decomposition part of the algorithm uses top-hat transformations in order to decompose 

the input image into multiple scales. The scale is controlled by varying the size of the 

structuring element. The structuring element is a flat disk. The circular shape of the 

structuring element is chosen since it is invariant to the orientation of objects in the image 

(isotropic).

k
A

0)

(a) Decomposition component containing 
white features.

(b) Decomposition component containing 
black features.

Figure 4.4: The top-hat multi-scale decomposition has two independent components, each 
consisting of decomposed images at different scales. The input image can be exactly recon­
structed from any of the two components.

The decomposition is done in two separate (parallel) components: the white features and 

the black features. Each of these two decomposed components can be fully reconstructed 

back into the input image (exactly).

In the scale-space decomposition, the individual scales are traversed from lowest (finest) 

to highest (coarsest). Fine scales correspond to small features; coarse scales correspond to 

large features. The scale value is represented by the radius of the structuring element disk. 

The traversing of the scales begins with scale 1, and advances (by 1) to  the highest scale 

(we use 100).

The features are subsequently removed for each scale. The base image is then processed 

by the next (subsequent scale), where more features are removed, making each feature image 

a scale slice containing objects greater than  or equal to the previous scale and less than the 

current scale. For example a scale slice obtained at scale x, contains features of the range 

of [x — l,a:). So features of exactly scale x  (and larger) are obtained at the next scale (i.e. 

scale x  +  1).

The decomposition is partial, that is, if scale range of 1 to  100 is used, objects at scale 

greater than or equal to  100 are left in the base image. So a scale range from 1 to 100 

produces 100 scale slices plus the base image. As a convention, the black feature images are 

inversed, where higher values represent more black features.
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(a) Base image at scale 10. (b) Base image at scale 25.

(c) Base image at scale 50. (d) Base image at scale 100.

Figure 4.5: An example of base images at different scales of the white-feature top-hat 
multi-scale decomposition of the image in Figure 3.1. All images are enhanced for viewing 
purposes.

4.5 P ro p er tie s  o f  th e  M u lti-S ca le  D eco m p o sitio n

The top-hat multi-scale decomposition has several interesting properties. Those properties 

are illustrated with examples using very primitive objects (i.e. flat disks). Considering a 

number of sample images, artificially generated (as seen in Figure 4.7), containing primitive 

white objects on black background, we show normalized energy distributions over the first 

30 scales of the decomposition.

The most im portant property of the top-hat multi-scale decomposition (with respect 

to contrast enhancement of objects of various sizes) is the sensitivity of the multi-scale 

decomposition to  object sizes. This is illustrated in Figure 4.7. In this example only disks 

of a given size are used, where all objects are of the same size. We obtain normalized energy 

distribution from the multi-scale decomposition across the first 30 scales. As seen in the 

example, the peak in the scale distribution corresponds to  the radius of the object.
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(a) Features slice at scales 5 <  k < 6. (b) Features slice at scales 10 < k < 11.

(c) Features slice at scales 20 < k < 21. (d) Features slice a t scales 40 < k <  41.

Figure 4.6: An example of scale slice images at different scales of the white-feature top-hat 
multi-scale decomposition of the image in Figure 3.1. All images are enhanced for viewing 
purposes.
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(a) Disk radius r  =  6.

(c) Disk radius r  = 12.

q .  0 .6

0.2

25 30
Scale

(b) Energy distribution of (a).

(d) Energy distribution of (c).

q _ 0 .6

0.2

20 25 30
Scale

Q.0.1

0.2

30
Scale

(e) Disk radius r  =  24. (f) Energy distribution of (e).

Figure 4.7: Artificial samples with disks of different sizes, and corresponding normalized 
energy distributions. Notice how the peak in the energy response corresponds with the disk 
radius.
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(a) W ith Gaussian blur.

(c) W ith noise.

(e) W ith Gaussian blur and noise.
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(b) Energy distribution of (a).
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(d) Energy distribution of (c).

0.35

0.3
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(f) energy distribution of (e)

Figure 4.8: Image from Figure 4.7(c), using disks with radius r  =  12, with various distortions 
and corresponding normalized energy distributions. The Gaussian blur is obtained via 
convolution with a Gaussian kernel with a = 3. The noise is generated by adding a random 
value in the range [—a, a) to each pixel, where a = 10.
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While being sensitive to object sizes, the multi-scale top-hat decomposition is insensitive 

to object orientation, number of objects of the same size and shape, object placement and 

image intensity. The decomposition is insensitive to object orientation, since the shape 

of the structuring element is a disk. The number of objects of the same size and shape 

does not affect the normalized energy distribution as well, although it has an effect on the 

absolute energy distribution. Regardless of the number of such objects, the information 

corresponding to these objects is distributed in the same way among the individual scale 

slices. Similarly as the number of objects of the same size and shape, object placement does 

not affect the distribution of information among the scales. The multi-scale decomposition 

is also insensitive to image intensity; i.e. regardless of the intensity of the image, the 

distribution of information in the different scales remains the same.

The multi-scale decomposition is partially sensitive to  blur, noise and contrast. When 

objects are blurred, their boundaries become more fuzzy. This increases the spread of 

information across the different scales. The more blur, the greater the spread, and the 

energy distribution covers a wider range of scales. Noise in an image corresponds to high- 

frequency information. Adding noise adds more information to the finest scales.

The decomposition is also partially sensitive to contrast. Higher contrast images tend to 

have sharper edges. While the peak of the energy distribution still remains around the scale 

corresponding to the object size, the sharpness of the edge affects the distribution around 

the peak.

The above properties discussed are for white features only. If the roles are reversed (i.e. 

dark objects on bright background) then the same properties hold for the decomposition of 

black features.

4.6 M o tiv a tio n

When we look for a particular object, knowing the object’s approximate size and location 

makes it easier to find it. If somebody tells us tha t in a particular location there is an object 

of a certain size (i.e. its location and scale), subject to the accuracy of th a t information, 

the probability of th a t location containing objects of the given size rises. Therefore if we 

know what to  expect, we can change the way we look for that object, and make our strategy 

biased toward those expectations. That way we can detect th a t object better.

4.7  A  P riori K n ow led ge

The MMS contrast enhancement algorithm uses a priori knowledge in order to  determine 

the best scale of enhancement for each pixel. A priori data  is a binary image with delineated 

regions, where one set of pixels represents the foreground (i.e. objects) and the other set the
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background. A priori information comes from a previously segmented image, either by OSA 

or a previous iteration of MMS (as long as the first iteration is not MMS). The previously 

segmented image acts as an initial state, where the algorithm attem pts to  enhance the input 

image, so tha t in tu rn  the segmentation result can be improved.

Given a priori knowledge (i.e. an image with previously segmented regions) MMS pro­

duces a scale map , which is a matrix of the same dimensions as the input image, that 

contains scale information. Each value in the matrix indicates the scale of enhancement of 

the corresponding image pixel. Each segmented region is first labelled with its size, namely 

the area represented by the number of pixels belonging to th a t region. Then each pixel area, 

denoted by a is converted to  the radius r of equivalent circle as follows:

The scale map is then further processed. First, it is blurred using a convolution with 

a Gaussian kernel. This is done, since the given a priori da ta  is only an approximation 

of the actual region contours. The Gaussian blurring incorporates the uncertainty into 

the scale map. The most uncertainty is near the edges of objects, and tha t is what the 

Gaussian blurring models. A typical value for the size of the Gaussian kernel, determined 

experimentally, is ap = 2 pixels.

We perform additional adjustments on the Gaussian blurred scale map, shown in Equa­

tion (4.8). Since most objects in the oil sand images are not perfect circles, features corre­

sponding to the object’s external contours are usually found on scales a little smaller than 

the scale corresponding to radius of equivalent circle. In order to  compensate for that, 

we subtract a constant scale reduction value, I, from the scale map. A typical value of I, 

determined experimentally, is 3.

The final adjustm ent is to impose a minimum value for each pixel of the scale map. 

This is done in order to  minimize enhancement in the finest scales, which would normally 

emphasize noise. The typical minimum value, m, is 2, which is determined experimentally. 

This adjustment has a prominent effect on the background pixels, since the pixels belonging 

to foreground objects have values which are typically above the minimum.

The adjusted scale map, S M  is obtained as follows:

where S M q is the Gaussian blurred scale map, I is the scale reduction parameter, and to 

is the minimum scale map value. Empirically obtained parameters, such as / and to, are 

summarized in Table 4.1. A pseudo code description of obtaining the scale map is shown in 

Figure4.11(b).

(4.7)

S M  =  max ((S M q — I), m) (4.8)
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4.8  C ontrast M easure

The MMS algorithm is direct, which means it uses a contrast measure in order to enhance the 

image. The contrast measure is used to control the contrast itself during the enhancement.

Direct contrast enhancement methods define a contrast measure, and in turn  they en­

hance th a t measure. The contrast measure is a relationship between a foreground pixel and 

its surrounding (local) background.

Each input pixel value is transformed into a contrast value, then the contrast value is 

modified (i.e. enhanced), then the modified contrast value is transformed back into a pixel 

value, now of the enhanced image.

In MMS, the contrast measure Ck in a given scale k  is defined as follows:

C fc =  i  _i_ T  ’1 +  2^i=k+1 -b
where Ik and A are images at scale slices k  and i, respectively. N  denotes the total number 

of scales in the decomposition. The corresponding inverse transform is given as:

4  =  < i ( l +  £  I 'V  (4.10)
V i = k + 1 /

where I'k and / '  are enhanced images at scale slices k and i, respectively. The enhanced 

contrast measure at scale k is indicated by c'k.

This definition of contrast measure is based on ideas from [31] (see Equation (2.13)), 

where in a spectral representation of an image, the higher frequency corresponds the fore­

ground and the lower frequency to the contextual background. As discussed in Chapter 2, 

typically local contrast measures involve a relationship between foreground features and 

local contextual background features. In [31] this is achieved by treating higher frequency 

DCT coefficients as foreground features and lower frequency as background features. The 

contrast measure is the ratio between these two.

In our contrast measure we treat a given pixel in a given scale slice as foreground, and 

the same pixel location at coarser scales as the contextual background of the foreground 

pixel. We use the same idea of the ratio between the foreground and the background (i.e. 

between finer scales and coarser scales). Our multi-scale representation allows this contrast 

measure to be calculated for any given pixel location. In [31] this locality is limited to 

individual 8 x 8  blocks.

In oil sand images, if the scale is matched with the object size, the foreground pixels 

would belong to  features associated with the object being considered, and the background 

to contextual surroundings of tha t object. Note also, tha t the information corresponding to 

internal object texture would not be present at this scale. Since texture features are smaller 

than object features, the texture information would be separated into finer scales by the 

multi-scale decomposition.
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The contrast measure tells us how well the foreground pixels stand out from the back­

ground pixels. The goal of the contrast enhancement is to increase tha t ratio, effectively 

making the object stand out more from its surroundings.

In MMS, the contrast measure is computed for each pixel, for every scale slice image 

(i.e. for each scale). In each scale, the foreground pixel values come from the corresponding 

scale slice image itself, and the background values come from the summation of all scale 

slices (already enhanced by now) th a t are coarser than the current scale. The summation 

is at the same pixel coordinates as the foreground pixel. The value of the contrast measure 

is obtained from the ratio between the foreground pixel value and the background of this 

pixel.

4.9  C ontrol V alue

The algorithm uses a control value th a t determines how much to enhance the contrast at a 

given scale. The control value is calculated from the scale map (discussed in Section 4.7). 

The scale map (at each pixel coordinate) contains the number of the most appropriate scale 

to enhance the given pixel at.

Not all scales are enhanced equally, but also not only one scale is enhanced (i.e. a peak), 

because then th a t causes artifacts. The amount of enhancement (as controlled by the control 

value) falls off gradually, as we go away from the most appropriate scale. The natural choice 

to model th a t fall off is to use a Gaussian function, where the highest peak is at the most 

appropriate scale. This function is simple enough, and mimics a natural distribution. The 

Gaussian function, G(x) is defined as:

G{X) =  6XP ( ~ ( 2 )  ’ (411) 

where fi is the mean and a  is the standard deviation of the distribution.

The control value is different for enhancing the white features and the black features. In 

the enhancement of the white features, we want to focus on enhancing the objects themselves, 

in the enhancement of black features we want to focus on enhancing the boundaries between 

objects, but we don’t  want to emphasize the black features when we are inside the objects, in 

order to lower the effect of texture (a lowered effect of texture leads to  better segmentation). 

The range of values for the control value is [0,1], where 0 corresponds to no enhancement 

and 1 corresponds to maximum enhancement.

In the case of the white features, we enhance mostly on the given scale, representing an 

object size present in that location. The control value then falls off as we get further away 

from the most appropriate scale. Also, the coarser the scale, the wider the scale range, and 

the finer the scale, the narrower the scale range. This is modelled based on the Gaussian
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Figure 4.9: The control value function is based on the Gaussian function.
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Figure 4.10: The control value function depends on the expected scale of objects.

distribution. The control value, Wk, for enhancing white features at scale k  is given by:

-(s -  k)2Wk =  mm exp (4.12)
2 (As + B )2/

where s is the object scale obtained from the scale map, and A  and B  are parameters 

controlling the scale range. The typical values of A  and B  are determined empirically, and 

they are A  = 0.06 and B  = 3.0.

In the case of the black features, the control value is computed in a similar way as the 

white features. The control value is reduced the further away from the region scale; however 

in addition, the value is greatly reduced as we move toward the coarser region scales, and 

greatly amplified for finer region scales. The range of scales is kept constant (unlike with 

the white features), but the amplification factor changes (which is constant in the case of 

white features). The control value for the black features, just like for the white features, is 

modelled with a Gaussian distribution. This control value, bk, for enhancing black features 

at scale k is given by:

bt =  7T T exp ' <413)

where s is the object scale obtained from the scale map, and C  is a param eter controlling 

the scale range. The typical value of C  is determined empirically to  be 3.0. Empirically 

obtained parameters are summarized in Table 4.1.
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4.10 Im age E nh ancem en t

INPUT: o r ig in a l  image
OUTPUT: two s e t s  {w hite , b lack} of decomposed s c a le  s l i c e s  

lo ad  o r ig in a l  image
w hite base image a t  s c a le  0 = in p u t image
b lack  base image a t  s c a le  0 = in p u t image
fo r  s c a le  k = (1 . .  n = 100) {

c r e a te  w hite base image a t  s c a le  k u s in g  Eq. (4 .5 ) 
s u b tra c t  w hite  base images a t  s c a le s  k-1 and k 

to  produce w hite s l i c e  a t  s c a le  k

c r e a te  b lack  base image a t  s c a le  k u sin g  Eq. (4 .6 ) 
s u b tra c t  b lack  base images a t  s c a le s  k-1 and k 

to  produce b lack  s l i c e  a t  s c a le  k
>

(a) Top-Hat decomposition.

INPUT: a segmented image (a p r io r i )
OUTPUT: s c a le  map

lo ad  a segmented image (a  p r io r i )
la b e l  each re g io n  w ith  i t s  s iz e  u sin g  Eq. (4 .7 )
apply  G aussian b lu r  w ith  sigma = 2
a d ju s t  s c a le  map u s in g  Eq. (4 .8 )

b) Scale map generation.

INPUT: two s e t s  of decomposed s c a le  s l i c e s ,  s c a le  map
OUTPUT: MMS c o n tra s t  enhanced image

fo r  each s e t  of {w hite , b lack} s c a le  s l i c e s  { 
f o r  each p ix e l  p o s i t io n  ( i ,  j )  {

lookup s c a le  s a t  ( i ,  j )  in  s c a le  map 
f o r  each s c a le  k = (n = 100 . .  1) {

o b ta in  c o n tra s t  measure u s in g  Eq. (4 .9 ) 
c a lc u la te  c o n tro l  value  u s in g  Eq. (4 .1 2 ) and (4 .13) 
enhance th e  c o n tra s t  u s in g  Eq. (4 .14) and (4 .15 ) 
o b ta in  th e  enhanced p ix e l  value  u s in g  Eq. (4 .10)

}
}

}
combine enhanced components {w hite , b lack}  u s in g  Eq. (4 .16) 
save th e  image as th e  MMS c o n tra s t  enhanced image

(c) Image enhancement.

Figure 4.11: Pseudo code of the MMS algorithm.
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The MMS algorithm reconstructs the entire decomposition in order to  produce the output 

(enhanced) image. If nothing were to change, then each of the two components of the 

decomposition (i.e. white and black) would be reconstructed into an image identical to  the 

input image. The reconstruction is simply a summation of all the images (i.e. scale slices) 

in a decomposition component.

Image enhancement is performed at every scale during the reconstruction of a component 

output image. The scales are traversed from the coarsest to the finest (inside a loop with 

a decreasing index) in order to enhance/reconstruct coarser scales first, before processing 

finer scales. This ensures the availability of the (reconstructed) background information 

(i.e. scales >  k) when enhancing any given scale k.

In the case of white features, the contrast measure ck at a given scale k is enhanced as 

follows:

c'k = m in[(l + uik)ck + D w k,E ) ,  (4.14)

where c'k is the enhanced contrast measure. The amount of enhancement is controlled with 

the control value (for white features) wk. D  and E  are parameters th a t determine how the 

contrast of white features is enhanced. D  determines the sensitivity of the enhancement, 

and E  is the maximum value of the enhanced contrast. The typical values of D  and E  are 

determined empirically to  be D = 0.0005 and E  = 0.0005.

In the case of the black features the contrast measure ck a t a given scale k  is enhanced 

as follows:

c'k =  (1 + F b k)ck , (4.15)

where c'k is the enhanced contrast measure. The amount of enhancement is controlled with 

the control value (for black features) bk . The sensitivity of this enhancement is controlled 

by parameter F. The typical value of this param eter is determined empirically to be 6.0. 

Empirically obtained parameters are summarized in Table 4.1.

Once the enhanced contrast measure is available, we then convert it back into a corre­

sponding enhanced pixel value, as per Equation 4.10.

We perform this entire procedure for each pixel of the decomposition, for each scale, 

effectively traversing the entire scale-space decomposition in all 3 dimensions. We do this 

for both decomposition components (the black and the white decomposition).

After the reconstruction we end up with two enhanced component images. The first 

enhanced component image, I'w, comes from the white feature decomposition, and has its 

white features enhanced. The second enhanced component image, I'b, comes from the black 

decomposition, and has its black features enhanced. The final enhanced image, is com­

posed from those two component images as follows:

I 1 =  wwI'w -I- wbI'b (4-16)
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Both component images are treated with equal contribution, thus ww = Wb — 0.5. The 

pseudo code of this algorithm is shown in Figure 4.11.

4.11 P aram eters and T heir T uning

The MMS algorithm uses a number of parameters. The values of most of those parame­

ters have been chosen experimentally via a trial and error approach, and are tailored for 

the particular application of oil sand image contrast enhancement. Table 4.1 lists all the 

parameters used in this algorithm.

Parameter Description Typical value

^scales Number of scales in the decomposition. 100
(Jp Scale map Gaussian blurring amount. 2
i Scale reduction. 3
m Minimum scale map value. 2
A Scale range for white features (scale dependent). 0.06
B Scale range for white features (scale independent). 3.0
C Scale range for black features. 3.0
D Object features enhancement level. 0.0005
E Object maximum contrast. 0.0005
F Background features enhancement level. 6.0
Ww Contribution of white features enhancement. 0.5
Wb Contribution of black features enhancement. 0.5

Table 4.1: Empirically obtained parameters tha t are used in MMS.

4.12 Fast C o m p u ta tio n  o f  th e  T op-H at T ransform ation

In the top-hat multi-scale decomposition the morphological operations use up considerable 

amount of computing power, especially when dealing with large structuring elements, which 

we use in the decomposition of coarse scales. In our implementation, we use the Talbot-Van 

Droogenbroeck method [33] of fast computation of morphological operations. This method 

implements the basic greyscale morphological operations of erosion and dilation, where an 

arbitrary shape of the structuring element can be used.

Since erosion is the operation of minimum (and dilation is the operation of maximum) un­

der the structuring element, we track the corresponding minimum or maximum value as we 

slide the structuring element across the image. As shown in Figure 4.12, if we slide/translate 

our structuring element for example to the right by 1 pixel, only a very small portion of the 

structuring element is modified. The pixels th a t are modified are marked with and “+ ” 

symbols. The rest of the values under the structuring element remain unchanged.

In order to track the minimum value (for erosion) or the maximum value (for dilation) 

the Talbot-Van Droogenbroeck method uses a histogram of the values under the structuring
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(a) Structuring element. (b) Shifting to the right.

Figure 4.12: An example illustrating the implementation of shifting of a structuring element. 
During shifting only edge pixels marked with “+ ” and need to be considered, and all 
other pixels are ignored. Pixels marked with “+ ” are added to  a local histogram, and pixels 
marked with are subtracted.

element, as illustrated in Figure 4.13(a)(b). The minimum grey value is the index of the 

first non-zero element in the histogram, and the maximum value is the index of the last 

non-zero element. We compute the initial histogram under the structuring element (i.e. for 

the top left corner of the image). Then all we do is we just slide the structuring element 

throughout the whole image. Each time we translate the structuring element (by 1 pixel) we 

only subtract the old values from the histogram, and add the new values to  the histogram. 

As illustrated in the example in Figure 4.12(b), on each translation we subtract the pixel 

values marked with and add the pixel values marked with “+ ” .

As an extension to  the Talbot-Van Droogenbroeck method, we define a new operation 

of simultaneous erosion and dilation on the same input image. This is illustrated in Figure 

4.13(c). In a single operation we keep track of both the minimum and the maximum value, 

effectively performing erosion and dilation at the same time.

When we perform the top-hat transform decomposition, we decompose both  the white 

features and the black features, therefore we use both opening and closing on the same 

input image. The first operation of opening is erosion, and the first operation of closing is 

dilation. Those first basic operations are both performed on the same input image. In our 

implementation we combine the erosion of the opening and the dilation of the closing into 

the new single erosion/dilation operation. This creates a new opening/closing operation, 

which is implemented using three basic operations, as opposed to four (see Figure 4.14). 

The new opening/closing takes 75% of the execution time plus a small overhead of the 

erosion/dilation keeping track of both minimum and maximum values as opposed to only 

one of them. We find the execution time of our implementation of the opening/closing 

operation to be 75.85% of the time required to run opening and closing separately.
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min. value
i----------

max. value

(a) Morphological erosion
(tracking the minimum value).

(b) Morphological dilation
(tracking the maximum value).

-------
max. valuemln. value

(c) Morphological erosion and dilation in the same operation 
(tracking both the minimum and the maximum values).

Figure 4.13: An example of a histogram under the structuring element, illustrating the 
implementation of morphological erosion and dilation in a single operation. In this operation 
both the minimum and the maximum values are tracked simultaneously.

The Morphological Multi-Scale contrast enhancement (MMS) is built on a morphological 

scale-space decomposition. The scale-space allows for enhancement of individual objects at 

scales corresponding to their sizes. The multi-scale decomposition is obtained via numer­

ous top-hat transformations, which produce individual scale slices. The decomposition has 

two components, corresponding to white features and black features. Each of those two 

components of the decomposition can be independently reconstructed back into the original 

image.

The white features decomposition component is obtained via white top-hat transforms, 

which is based on morphological opening. Similarly the black features component is obtained 

via black top-hat transformation, based on the closing operation.

The multi-scale top-hat decomposition has a number of interesting properties. Most 

importantly, the decomposition is sensitive to object size, which allows the choice of scale of 

enhancement for each object, depending on its size. Also, the decomposition is insensitive 

to object orientation, object count, object placement and intensity, and is partially sensitive

4.13 Sum m ary
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Figure 4.14: An example illustrating the implementation of morphological opening and 
closing in a single operation. The erosion in the opening and the dilation in the closing 
both take the same image as input, thus they can be combined into a single erosion/dilation 
operation.

to blur, noise and contrast.

The MMS algorithm uses a priori knowledge as the initial information about the objects 

in the image. This information is in the form of a segmented binary image. This image is 

then converted into a scale map, where each pixel is assigned the scale value corresponding 

to the object it belongs to, thus effectively selecting the scale of enhancement.

This algorithm is direct. It uses a contrast measure to perform the enhancement. The 

measure is computed from the input decomposition, enhanced, and then converted back 

into pixel values of the enhanced multi-scale decomposition.

The amount of enhancement at each scale is specified by a control value, which is com­

puted from the scale map and the enhancement scale. It assures th a t the scales correspond­

ing to the object scales at each pixel location are enhanced the most, and the neighbouring 

scales are also enhanced, but to a lesser extent. The amount of enhancement in the neigh­

bouring scales depends on how much the object scales and the enhancement scales differ, 

and is modelled with a Gaussian distribution.

During the enhancement the entire scale-space decomposition is processed at every scale. 

Both white and black feature components are enhanced, and combined together to produce 

the output image. The enhancement parameters are chosen on a trial and error basis, and 

are tuned to the particular application of oil sand image contrast enhancement.

The top-hat transformations are implemented using an optimized m ethod of computing 

erosion and dilation, which involves a local histogram in a sliding window of the shape
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of the structuring element. Our additional optimization takes advantage of the fact that 

when erosion and dilation are both computed from the same input image, they can be 

combined into a single operation. This reduces the total time of obtaining the multi-scale 

decomposition by almost a quarter.
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Chapter 5

Experim ents and R esults

The previous chapter talks about the new MMS method of enhancing contrast of oil sand 

images. In this chapter we describe the experiments performed to  evaluate this method. We 

talk about ground-truth images, scoring metric and experimental setup. We also present 

the results of the experiments. The next chapter presents the conclusion of this theses, 

including the lessons learned and suggestions for future work.

5.1 In trod u ction

Since the goal of the contrast enhancement is the improvement of the segmentation per­

formance, the MMS algorithm is evaluated in terms of the segmentation performance. Ex­

periments are set up to compare the segmentation while using the new MMS algorithm for 

contrast enhancement to the segmentation while using the current contrast enhancement 

method of OS A (which is local histogram equalization). We also present experimental re­

sults, which illustrate the improvement of oil sand image segmentation when using MMS to 

enhance image contrast. We show even further improvement, when the MMS algorithm is 

performed in more than one iterations. The improvement is measured quantitatively with 

a scoring metric. The scoring metric evaluates, on a per-object basis, how close a seg­

mented image is to a provided manually generated ground-truth image. We first talk about 

the ground-truth images, which are essential in evaluating the new contrast enhancement 

algorithm.

5.2 G round-T ruth  Im ages

In order to evaluate the segmentation performance of the system, 10 manually-segmented 

images are used. These images have been carefully segmented by hand, and are used as 

ground-truth images for the comparisons. Each of the ground-truth images is binary, having 

only labels of 0 (black) and 1 (white). Pixels with label 0 are background pixels, and pixels 

with label 1 are foreground pixels (i.e. belonging to the segmented regions). All segmented
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(a) The input image. (b) Corresponding manual ground-truth
segmentation.

Figure 5.1: An example of an oil sand input image and its corresponding manual ground- 
tru th  segmentation.

regions (composed of foreground pixels) are delineated, i. e. have at least 1 pixel (composed of 

background pixels) separation between them. Figure 5.1 shows an example of an input image 

and a corresponding segmented ground-truth image. W hat is measured in the experiments 

is how close the segmentation results get to this ground truth.

5.3 E valuation  u sing  Scoring M etric

While most contrast enhancement techniques are evaluated qualitatively, we attem pt to 

evaluate our technique quantitatively. Typically the evaluation is tied to  the purpose, goal 

or application of the method in question. Our contrast enhancement m ethod is designed 

for oil sand segmentation applications, and therefore is evaluated in terms of segmentation 

performance.

The segmentation performance in the experiments is evaluated in terms of the scoring 

metric [27]. The scoring metric compares two binary (segmented) images, and gives a single 

score value tha t says how well the two images match. One of the most basic ways to compare 

how well two binary images match is a intersection over union ratio:

™  = S  I5-1*

where A  and B  are the two binary images being compared. The intersection of A  and B  

(i.e. ACiB) is a set of only those foreground pixels found in both of these two images. The 

union of A  and B  (i.e. A u B )  is a set of foreground pixels found in any (or both) of the two 

images. |A fl B\ denotes the number of pixels in the intersection of A  and B , and |A U B\ 

denotes the number of pixels in the union of A  and B . The intersection over union ratio 

yields a value in the range [0 , 1].

Intersection over union is a pixel-based method. When applied to  entire images it does 

not evaluate the match in terms of objects or regions, which is what segmentation produces.
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The scoring metric we use performs object-based comparison of two segmented images, 

considering individual segmented regions. Instead of applying intersection over union to 

entire images, this score metric applies intersection over union to individual object pairs, 

where each object in the pair comes from the other image being compared. The score metric 

S ( A ,  B )  between two binary images A  and B  is defined as follows [27]:

denoted by \ A i \ .  The definition of image B  is analogous to  image A .

The segmentation score between two images A  and B  is is calculated by traversing 

each segmented region, A i ,  of image A .  and computing the intersection over union ratio 

between Ai and each region, B j ,  in image B  th a t overlaps A , by at least 1 pixel (i.e. 

\Ai n  B j \  ^  0). The to tal score for the region Ai is calculated by a weighted sum of all 

the scores for overlapping regions. The weights are determined by the area (represented 

in number of pixels) of the overlapping regions. This region score is calculated for every 

segmented region Ai, and the final score is a weighted sum of all those region scores. These 

weights are determined by the area of the corresponding regions in image A .

The scoring metric has a number of properties. It produces a single value in the range 

0 < S ( A , B )  < 1, tha t indicates the quality of the segmentation, or namely the similarity 

between two segmented images A  and B .  Score metric value of 1 indicates perfect match, 

that is:

Additional properties of the score metric include the fact th a t in the metric error con­

tribution of an object is proportional to its size. Also, the scoring metric is symmetric, that 

is:

(5.2)

^  A i A B i \  5 ( \ A i ^ B i \ ) \ B i \  \ A < \
m  n

S p a r t i a l ( A ,  B ) (5.3)

S ( A ,  B )  = min (S p a r t i a i ( A ,  B )  j B p a r t i a l ( B ,  A ) ) (5.4)

where m  is the number of fragments in A  and n  is the number of fragments in B . An input 

binary image A  having m  fragments is defined as:

A  —  { A \ ,  A i , . . . ,  A m } (5.5)

where A i  is the i th fragment in A .  The number of foreground pixels in fragment A; is

<S(A, B )  = 1 if and only if A =  B . (5.6)

Value of 0 indicates no m atch at all, tha t is:

S ( A ,  B )  =  0  if and only if A n  B  = 0 and A U B  ^  0. (5.7)

S ( A , B )  =  S ( B ,  A). (5.8)
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The metric is also scale invariant, that is:

S (A ,B )  = S (n A ,n B ),  (5.9)

where n A  represents an image A  scaled by a factor n  > 0.

The score value is always higher for a better match and lower for a worse match, which 

holds for the following conditions: over-segmentation, under-segmentation, misalignment, 

over-size, under-size, spurious objects and missing objects. These conditions are listed in 

Table 5.1.

Condition Description
over-segmentation
under-segmentation
misalignment
over-size
under-size
spurious objects
missing objects

a single object incorrectly split into two or more smaller fragments 
several objects incorrectly merged into one larger fragment 
segmented pieces in incorrect locations 
segmented pieces too large 
segmented pieces too small
incorrect introduction of non-existing fragments 
valid fragments not included in the segmentation

Table 5.1: Segmentation conditions handled by the score metric.

5.4 E x p er im en ta l S etup

The experiments are designed to compare the segmentation performance using the original 

OSA vs. using the new contrast enhancement. The segmentation performance is measured 

in terms of the score metric.

The initial run comes from the original OSA algorithm. The segmented output serves 

as a priori knowledge to the new contrast enhancement algorithm. This is the first iteration 

of the new contrast enhancement algorithm. The output of this segmentation’s run is used 

as a priori input to  the next iteration, and so on. This experiment is carried out for several 

iterations. The whole procedure is repeated for all 10 images.
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OSA CE OSA Seg~| i | |  S, Metric

DecompJ

Metric

(a) Experimental setup for the first iteration of MMS.

^OSASegJ ^JVIetriJ^J uJ& Score,

(b) Experimental setup for subsequent iterations of MMS.

Figure 5.2: Experimental setup for testing of the MMS algorithm. Abbreviations used in 
this figure are explained in Table 5.2.

Abbreviation Description
Decomp
GT
In
Metric
MMS
MS
OSA CE 
OSA Seg 
Po 
P i- i  
So
Si, Si 
Scoreo
Scorei, Scorej

multi-scale top-hat decomposition 
ground-truth image 
input image
segmentation score metric
the MMS contrast enhancement algorithm
multi-scale decomposed slices
OSA’s contrast enhancement
OSA’s segmentation
a priori data from the initial OSA’s iteration
a priori data from the i — 1 iteration of MMS
segmented image from the initial OSA’s iteration
segmented image from 1st and i th iteration of MMS, respectively
segmentation score from the initial OSA’s iteration
segmentation score from 1st and i th iteration of MMS, respectively

Table 5.2: Explanations of abbreviations used in Figure 5.2.
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5.5 R esu lts

(a) Enhanced image by local histogram (b) Segmentation of (a) - score: 0.5594. 
equalization.

(c) First iteration of enhancement by MMS. (d) Segmentation of (c) - score: 0.6443.

(e) Sixth iteration of enhancement by MMS. (f) Segmentation of (e) - score: 0.6707.

Figure 5.3: Example results for Image A, from Figure 5.1(a). This examples includes the 
initial iteration of OSA, and the first and sixth iteration of MMS. Corresponding segmented 
images are also shown. A complete set of result images for all 10 input images is included 
in Appendix A.
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(a) Enhanced image by local histogram 
equalization.

95 127 159
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(b) Histogram of (a).

(c) First iteration of enhancement by MMS.

(e) Sixth iteration of enhancement by MMS.
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(d) Histogram of (c).
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(f) Histogram of (e).

Figure 5.4: Example results for Image A, from Figure 5.1(a). This examples includes the 
initial iteration of OSA, and the first and sixth iteration of MMS. Corresponding image 
histograms are also shown. The histograms from the MMS m ethod have a bi-modal char­
acteristic, showing the separation between the bright and the dark features. Subsequent 
iterations of MMS result in a smoother histogram. MMS enhances some pixels to  the max­
imum grey value, which can be seen by the peaks at grey value 255 in the corresponding 
histograms.
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Image OSA i = 1 i = 2 i = 3 i = A i = 5 i = 6 GT
Image A 329 219 235 229 227 229 227 213
Image B 281 187 193 195 197 189 201 171
Image C 347 233 233 239 233 235 237 237
Image D 307 225 237 237 237 229 235 213
Image E 347 275 279 277 285 273 277 303
Image F 317 211 207 203 195 201 191 171
Image G 315 215 219 215 213 211 205 207
Image H 337 199 223 217 219 213 207 213
Image I 363 273 255 269 261 275 261 273
Image J 375 289 309 307 297 297 299 309
Mean 331.8 232.6 239.0 238.8 236.4 235.2 234.0 231.0
Variance 781.5 1204.3 1178.7 1262.6 1206.3 1254.6 1263.3 2424.0
95% conf. 17.3 21.5 21.3 22.0 21.5 22.0 22.0 30.5

Table 5.3: Numbers of segmented fragments for the first 6 iterations (1 <  * <  6) of MMS. 
The numbers of fragments of the initial OSA iteration, as well as using the ground-truth as 
a priori data are also included.

Image OSA i = 1 i = 2 i = 3 i = 4 i = 5 i =  6 GT
Image A 0.5594 0.6443 0.6461 0.6590 0.6648 0.6667 0.6707 0.7854
Image B 0.6413 0.6487 0.6502 0.6636 0.6531 0.6580 0.6497 0.7961
Image C 0.5873 0.6476 0.6577 0.6667 0.6563 0.6563 0.6468 0.7687
Image D 0.4952 0.5341 0.5369 0.5505 0.5559 0.5605 0.5631 0.7284
Image E 0.5909 0.6347 0.6528 0.6331 0.6565 0.6486 0.6509 0.7449
Image F 0.5877 0.6259 0.6512 0.6553 0.6497 0.6347 0.6365 0.8243
Image G 0.5159 0.5586 0.5662 0.5734 0.5743 0.5777 0.5795 0.7978
Image H 0.5810 0.6467 0.6372 0.6478 0.6459 0.6562 0.6592 0.7612
Image I 0.5430 0.6109 0.6291 0.6272 0.6394 0.6362 0.6406 0.7590
Image J 0.5543 0.6223 0.6249 0.6261 0.6265 0.6289 0.6377 0.7641
Mean 0.5656 0.6174 0.6252 0.6303 0.6322 0.6324 0.6335 0.7730
Variance 0.0017 0.0016 0.0017 0.0015 0.0014 0.0013 0.0012 0.0008
95% conf. 0.0259 0.0247 0.0253 0.0243 0.0230 0.0221 0.0214 0.0175

Table 5.4: Results of the experiment for the first 6 iterations (1 <  i <  6) of MMS. The 
results of the initial OSA iteration, as well as using the ground-truth as a priori data are 
also included.

The results from running the experiments are obtained. An example set of results, for 

Image A (from Figure 5.1(a)), is shown in Figure 5.3. Figure 5.3(a) shows the output of 

contrast enhancement of the initial iteration of OSA, which is local histogram equalization. 

The corresponding segmentation is shown in Figure 5.3(b). The segmentation score for that 

particular image is 0.5594.

Figures 5.3(c)-(f) show example results, for the same image, for the first and sixth 

iterations of MMS. The segmentation score for this image after the first iteration is 0.6443, 

and after the the sixth is 0.6707. The sixth iteration of MMS produces the maximum 

segmentation score for this image. The complete set of resultant images for all 10 input 

images is included in Appendix A.
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Image i — 1 i =  2 i =  3 i = 4 i = 5 i = 6 GT
Image A 0.0849 0.0867 0.0996 0.1054 0.1073 0.1113 0.2260
Image B 0.0074 0.0089 0.0223 0.0118 0.0167 0.0084 0.1548
Image C 0.0603 0.0704 0.0794 0.0690 0.0690 0.0595 0.1814
Image D 0.0389 0.0417 0.0553 0.0607 0.0653 0.0679 0.2332
Image E 0.0438 0.0619 0.0422 0.0656 0.0577 0.0600 0.1540
Image F 0.0382 0.0635 0.0676 0.0620 0.0470 0.0488 0.2366
Image G 0.0427 0.0503 0.0575 0.0584 0.0618 0.0636 0.2819
Image H 0.0657 0.0562 0.0668 0.0649 0.0752 0.0782 0.1802
Image I 0.0679 0.0861 0.0842 0.0964 0.0932 0.0976 0.2160
Image J 0.0680 0.0706 0.0718 0.0722 0.0746 0.0834 0.2098
Mean 0.0518 0.0596 0.0647 0.0666 0.0668 0.0679 0.2074
Variance 0.0005 0.0005 0.0005 0.0006 0.0006 0.0008 0.0016
95% conf. 0.0136 0.0141 0.0136 0.0154 0.0153 0.0175 0.0249

Table 5.5: Absolute improvement, derived from Table 5.4.

Image i = 1 i = 2 i = 3 i = 4 i = 5 i =  6 GT
Image A 0.1518 0.1550 0.1780 0.1884 0.1918 0.1990 0.4040
Image B 0.0115 0.0139 0.0348 0.0184 0.0260 0.0131 0.2414
Image C 0.1027 0.1199 0.1352 0.1175 0.1175 0.1013 0.3089
Image D 0.0786 0.0842 0.1117 0.1226 0.1319 0.1371 0.4709
Image E 0.0741 0.1048 0.0714 0.1110 0.0976 0.1015 0.2606
Image F 0.0650 0.1080 0.1150 0.1055 0.0800 0.0830 0.4026
Image G 0.0828 0.0975 0.1115 0.1132 0.1198 0.1233 0.5464
Image H 0.1131 0.0967 0.1150 0.1117 0.1294 0.1346 0.3102
Image I 0.1250 0.1586 0.1551 0.1775 0.1716 0.1797 0.3978
Image J 0.1227 0.1274 0.1295 0.1303 0.1346 0.1505 0.3785
Mean 0.0927 0.1066 0.1157 0.1196 0.1200 0.1223 0.3721
Variance 0.0015 0.0017 0.0016 0.0021 0.0021 0.0027 0.0089
95% conf. 0.0244 0.0252 0.0249 0.0284 0.0286 0.0325 0.0585

Table 5.6: Relative improvement, derived from Table 5.4.

Image i = 1 i = 2 i =  3 i = 4 i = 5 i = 6
Image A 0.3757 0.3836 0.4407 0.4664 0.4748 0.4925
Image B 0.0478 0.0575 0.1441 0.0762 0.1079 0.0543
Image C 0.3324 0.3881 0.4377 0.3804 0.3804 0.3280
Image D 0.1668 0.1788 0.2371 0.2603 0.2800 0.2912
Image E 0.2844 0.4019 0.2740 0.4260 0.3747 0.3896
Image F 0.1615 0.2684 0.2857 0.2620 0.1986 0.2063
Image G 0.1515 0.1784 0.2040 0.2072 0.2192 0.2256
Image H 0.3646 0.3119 0.3707 0.3602 0.4173 0.4340
Image I 0.3144 0.3986 0.3898 0.4463 0.4315 0.4519
Image J 0.3241 0.3365 0.3422 0.3441 0.3556 0.3975
Mean 0.2523 0.2904 0.3126 0.3229 0.3240 0.3271
Variance 0.0124 0.0139 0.0100 0.0148 0.0139 0.0182
95% conf. 0.0691 0.0730 0.0621 0.0755 0.0731 0.0836

Table 5.7: Potential captured, derived from Table 5.4.
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Table 5.3 contains the number of fragments for the segmented images of the initial OSA 

iteration, first 6 iterations of MMS and the ground- tru th  images corresponding to eac of 

the ten sample images. On average, there are 331.8 fragments in the initial segmentation 

by OSA, with variance of 781.5. The number of fragments is less for the first 6 iterations 

of MMS, ranging from 232.6 to 239.0 with variance ranging from 1178.7 to 1263.3. The 

ground-truth images have on average 231.0 fragments with variance of 2424.0.

The experimental results, in terms of segmentation scores, for all 10 images are shown 

in Table 5.4. The average score for the initial iteration of OSA is 0.5656 with variance of

0.0017. Using the output of the initial segmentation as a priori data  to  the MMS algorithm, 

the average score for the first iteration of the algorithm is 0.6174 with variance of 0.0016. 

This produces an absolute average improvement of 0.0518, which is a relative improvement 

of 0.0927.

The maximum average score (for the 10 images in question) is produced by the sixth 

iteration of MMS, and it is 0.6335. This is an absolute improvement of 0.0679, or a relative 

improvement of 0.1223. Table 5.4 lists the results for the first 6 iterations of MMS. In 

addition Tables 5.5 and 5.6, which are derived from Table 5.4, list the absolute and the 

relative improvement, respectively, of each iteration of MMS. The absolute and relative 

improvements are calculated with respect to the score obtained via the initial iteration of 

the OSA algorithm.

The tables mentioned above contain an additional score column for using ground-truth 

images (denoted as “G T”) as a priori data. In this case, MMS uses the manually generated 

ground-truth segmentation image directly as a priori data input. This column denotes the 

maximum potential of this algorithm when “perfect” a priori data  is given.

Based on the experimental results, we calculate the potential captured for each image, 

which is a measure of the algorithm’s performance with respect to the given a priori data. 

In this measure, we assume tha t the minimum potential of 0 is given by the score of the 

initial iteration of OSA, and the maximum potential of 1 is given by the score when the 

ground tru th  image is supplied as a priori data. The potential captured pc for a given score 

S x  is calculated as follows:
S x  ~  S o s aPc =  5--, (5-10)

^ G T  -  & O S A

where So sa  denotes score from the initial iteration of OSA, and S g t  denotes the score 

given the corresponding ground-truth image as a priori input. This potential captured is 

shown in Table 5.7, where average potential captured after the first iteration is 0.2523, and 

after the sixth iteration is 0.3271.

The experiments have been performed on each of the images for the first 50 iterations 

of MMS. A plot of the average score for all 10 images is presented in Figure 5.5(a). In 

this plot, the initial iteration of OSA is denoted by 0, and the subsequent iterations (1-50)
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denote the iterations of MMS. The first iteration of MMS produces the most improvement 

compared to the initial iteration of OSA. The maximum average score occurs at iteration 

6 . From there the average score decays, but it does establish a relatively stable level.
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(a) Average segmentation score for the first 50 iterations of MMS.
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(b) Average consecutive matching score for the first 50 iterations of MMS.

Figure 5.5: Results for the first 50 iterations of average score for Images A-J. The most 
improvement is produced by the first iteration of OSA. The maximum average segmentation 
score of 0.6335 is observed in iteration 6 of MMS. In the subsequent iterations, the average 
segmentation score is lower, but remains relatively uniform. Individual plots for each of the 
10 test images are included in Appendix A.

Figure 5.5(b) shows the average consecutive matching score for the 10 test images for 

the first 50 iterations. The consecutive matching score is calculated using the score metric 

described in Section 5.3; however instead of comparing a given segmentation image against 

the ground-truth, the segmentation for a given iteration of MMS is compared against the 

segmentation from the previous iteration. The consecutive matching score tells us how close 

the results are for consecutive iterations. This information can be used in the multi-iteration
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process in order to decide when to stop. A complete set of plots of the segmentation scores 

and the consecutive matching scores for the first 50 iterations, for each individual of the 10 

test images, is included in Appendix A.

5.6 D iscu ssio n

It is worth pointing out th a t for each of the 10 images, MMS algorithm performs better than 

the current OSA for every single instance. We observe the most improvement in iteration

1. We also observe tha t the segmentation score is even better in few subsequent iterations 

of MMS. The fact th a t the results are better in every case, makes the results statistically 

significant.

The histograms corresponding to the first and sixth iteration of MMS, shown in Fig­

ure 5.4(d) and (f), have a bi-modal characteristic. This characteristic shows the separation 

of bright and dark features. Subsequent iterations of MMS result in a slightly smoother 

histogram. Some pixels are over-enhanced by MMS, and their grey values are clipped to  the 

maximum of 255. This is indicated by the peaks in the two histograms corresponding to 

MMS. These over-enhanced pixels often correspond to very bright features in the enhanced 

objects, and are classified as belonging to oil sand fragments by the subsequent segmentation 

algorithm.

Image B is handled the best out of the 10 test images by OSA (with segmentation score 

of 0.6413), and therefore hardly receives any further improvement by MMS. According to 

Table 5.3, the ground-truth for tha t image contains the least number of fragments out 

of the 10 test images, 171, along with Image F. This explains why the results for multiple 

iterations of MMS fluctuate for Image B and Image F. The score for the initial OSA iteration 

for Image F, 0.5877, is not as high as for Image B, 0.6413. In addition OSA reports more 

fragments for Image F, 317, than for Image B, 281. This is evidence th a t Image F is more 

difficult to handle by OSA than Image B.

A problem with the multi-iteration approach is not knowing when to  stop. One approach 

to resolve that is to take the consecutive matching score into account. One could monitor 

the amount of change between consecutive iterations. Once th a t change becomes small 

enough, that can be a good place to stop.

5.7 Sum m ary

This chapter presents the experiments and results in order to  see how much better the 

MMS algorithm is in comparison to the existing method used in the OSA. The goal of 

the contrast enhancement algorithm is to enhance an input image so th a t it results in 

improved segmentation, therefore the new algorithm is evaluated in term s of segmentation
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performance.

In order to evaluate the performance of MMS, we use a set of 10 manually generated 

ground-truth images. Each of the ground-truth images is binary, with all the objects in the 

image delineated from one another. The ground-truth images allow quantitative evaluation 

of segmentation performance.

The quantitative evaluation of segmentation is computed using a scoring metric, where a 

score in the range between 0 and 1 is obtained. This score indicates how closely two binary 

segmented images are matched. The segmented images in our experiments are compared to 

the manually produced ground-truth images via the score metric.

The experiment is set up so tha t the initial iteration is performed with the existing OSA 

algorithm, which produces a priori image required by the first iteration of MMS. Subsequent 

iterations of the contrast enhancement algorithm are performed, where the segmentation 

result for a particular iteration is used as a priori data for the next iteration.

The results of the experiment show an average improvement of 0.0518 in the first iteration 

of MMS in comparison with OSA, which makes th a t an average relative improvement of 

0.0927. An improvement using MMS is observed for each of the ten images, which implies 

tha t the results are statistically significant. Image B is enhanced the best by the initial 

iteration of OSA, and only a minimal improvement is done by MMS. Images B and F have 

the least number of fragments, according to the ground tru th , and the scores for these two 

images in multiple iterations fluctuate the most.

While the most improvement occurs in the first iteration, a few subsequent iterations 

produce further improvement. The maximum average segmentation score, within the first 

50 iterations, is achieved in the sixth iteration, where the improvement of MMS over OSA 

is 0.0679, which makes it relative improvement of 0.1223. The average potential captured is 

0.2523 for the first iteration, and 0.3271 for the sixth iteration. This potential is measured 

in comparison to the ground tru th  provided. Consecutive matching score can be used in a 

multi-iteration approach in order to decide after which iteration to  stop.
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Chapter 6

Conclusions

The previous chapter describes the experiments performed to evaluate the MMS algorithm, 

talks about the evaluation criteria and presents the results of this experiment. In this 

chapter we provide the conclusion of this thesis. We discuss the lessons learned, and state the 

objectives that have been achieved. We also provide suggestions for possible improvements 

in the future.

6.1 Sum m ary

The new contrast enhancement method, MMS, addresses various issues and tries to  solve 

some of the problems present in the existing OSA segmentation method. The multi-scale 

aspect of this method addresses scale properties of the various objects in the image, where 

different sizes are dealt with. Another advantage of the scale-space decomposition is the 

separation of features corresponding to entire object contours, versus internal object texture. 

Since the texture is detrimental in the segmentation process, it is advantageous to enhance 

the objects more, without enhancing the texture.

The direct aspect of the enhancement, allows the actual amount of contrast to be con­

trolled. This prevents undesirable artifacts from over-enhancing. The adaptive aspect of 

this algorithm allows for a separate treatm ent of individual local regions, thus optimizing 

the enhancement for each local region.

As seen in the experiments, the new contrast enhancement m ethod results in improved 

segmentation performance of oil sand images. This is demonstrated by the relative average 

improvement in segmentation by 0.0927 in the first iteration, and by 0.1223 in the sixth 

iteration. Based on the presented evidence, we conclude tha t the new contrast enhancement 

algorithm improves the performance of the oil sand image segmentation.

The objectives of this thesis are met, where we make a number of research contributions. 

We develop a new contrast enhancement algorithm for the enhancement of oil sand images. 

This enhancement algorithm is multi-scale, direct and adaptive. We also show the rela-
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tionship between object size and scale of enhancement. Finally, with the empirical results 

of the experiments, we demonstrate that adequate contrast enhancement improves image 

segmentation.

6.2 L im ita tion s

There is a number of limitations of this study, both with the MMS algorithm itself, as 

well as with the way the experiments have been conducted. MMS suffers from a number 

of limitations. The algorithm is sensitive to provided a priori knowledge. If the initial 

iteration of OSA makes a significant mistake in segmentation, MMS might not be able to 

fully recover from it. MMS has a handful of parameters, which require tuning. In addition, 

the algorithm itself is computationally expansive, where majority of the time is spent in the 

top-hat multi-scale decomposition.

There is also a number of limitations with the experiments th a t were conducted. Only 

ten sample images with corresponding ground tru th  are used. Having limited number of 

sample images does not allow for the robustness of the algorithm to be sufficiently tested. 

In addition the ground tru th  is biased toward coarser objects, since it does not contain very 

small objects. This bias has an influence on the results of the experiments.

The ground tru th  itself is subjective, since it is produced manually. A different person 

could come up with a different ground tru th . The inconsistency is influenced by numerous 

factors, such as inability to see edges clearly, fatigue and even the characteristics of the 

display device used in producing the ground truth.

6.3 F uture W ork

While the MMS algorithm improves the segmentation of oil sand images, there is a number 

of improvements suggested for future work. The multi-scale decomposition part of this 

algorithm takes considerable amount of time. In our implementation we decompose the 

image using equal scale intervals for the entire scale-space.

Due to the fact th a t the distribution of information in coarser scales has a larger spread 

over the scales than  in finer scales, larger increments can be done in coarser scales and finer 

in the finest scales. Considering tha t most of the time is spent in morphological operations 

using large structuring element, this optimization should introduce a significant reduction 

in computational time.

Another suggestion for improvement is in the tuning of the param eters. The parameters 

for this enhancement method are currently tuned on a trial and error basis. A better fine 

tuning method for optimizing the parameters might be desired, which is more accurate, 

quicker and autom ated. This method could be based on concepts from machine learning.
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For even more optimal enhancement, a separate set of param eter each individual iteration 

of MMS might be desired.

Another suggestion of improvement is in the multi-iteration approach of this method. 

For an optimal and autom ated functionality, one idea is to  make the algorithm decide when 

to stop, tha t is after which iteration. One suggestion for finding stopping criteria for the 

multiple iterations is to monitor the changes in segmentation score between consecutive 

iterations, for example using the consecutive matching score, and stop when these changes 

satisfy given criteria.
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A ppendix A

Individual Experiment R esults

A .l  R esu lt Im ages and P lo ts

This appendix presents individual results for each of the ten images used in the experiments. 

Figures A.1-A.10 show the resultant images and their corresponding segmentations. These 

images are obtained for the initial OSA run, the first iteration of MMS and the iteration 

of MMS with the maximum segmentation score. The input images and the corresponding 

ground tru th  images are also included.

Figures A.11-A.20 show fragment size distributions in terms of cumulative percentage 

passing plots. These percentage passing plots are calculated by area. These plots are 

obtained for the initial run of OSA, the first iteration of MSS, and the iteration of MSS with 

highest segmentation score. In all these plots the cumulative percentage of corresponding 

ground-truth images is included as well.

Figures A.21-A.30 show plots of the segmentation scores and the consecutive matching 

scores, using the first 50 iterations of the MMS algorithm. Segmentation scores are com­

puted by comparing the output segmented image from a given iteration of the algorithm to 

the corresponding ground-truth image. Consecutive matching scores are computed by com­

paring the output segmented image from a given iteration to the output segmented image 

from the previous iteration. Iteration 0 refers to the output of OSA, which provides the 

initial a priori data. The subsequent iterations are of the MMS algorithm.
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(a) Input image A. (b) Manual ground tru th  for (a).

* mm* ^  .. i-..
(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.5594.

e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6443.

Enhanced by iteration 6 of MMS. (h) Segmentation of (g) - score: 0.6707.

Figure A .l: Enhancement and segmentation results for Image A.
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(a) Input image B. (b) Manual ground tru th  for (a).

t v

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.6413.

m i  k n h a l i c c d  1>\ i 11 * I > 11 i 1111 I i i l ' M M ' ' . (f) Segmentation of (e) - score: 0.6487.

(g) Enhanced by iteration 25 of MMS. (h) Segmentation of (g) - score: 0.6737.

Figure A.2: Enhancement and segmentation results for Image B.

72

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(a) Input image C. (b) Manual ground tru th  for (a).

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.5873.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6476.

(g) Enhanced by iteration 3 of MMS. (h) Segmentation of (g) - score: 0.6667.

Figure A.3: Enhancement and segmentation results for Image C.
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(b) Manual ground tru th  for (a)

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.4952.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.5341.

I

(g) Enhanced by iteration 17 of MMS. (h) Segmentation of (g) - score: 0.5651.

Figure A.4: Enhancement and segmentation results for Image D.
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(a) Input image E.

(c) Local histogram equalization.

(b) Manual ground tru th  for (a).

(d) Segmentation of (c) - score: 0.5909.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6347.

(g) Enhanced by iteration 4 of MMS. (h) Segmentation of (g) - score: 0.6565.

Figure A.5: Enhancement and segmentation results for Image E.
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(a) Input image F. (b) Manual ground tru th  for (a).

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.5877.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6259.

(g) Enhanced by iteration 3 of MMS. (h) Segmentation of (g) - score: 0.6553.

Figure A.6 : Enhancement and segmentation results for Image F.
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(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0 .5586.

Enhanced by iteration 12 of MMS. (h) Segmentation of (g) - score: 0.5851.

Figure A.7: Enhancement and segmentation results for Image G.
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(a) Input image H. (b) Manual ground tru th  for (a).

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.5810.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6467.

(g) Enhanced by iteration 11 of MMS. (h) Segmentation of (g) - score: 0.6690.

Figure A.8 : Enhancement and segmentation results for Image H.
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(a) Input image I. (b) Manual ground tru th  for (a).

4 '

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.5430.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6109.

(g) Enhanced by iteration 6 of MMS. (h) Segmentation of (g) - score: 0.6406.

Figure A.9: Enhancement and segmentation results for Image I.

79

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(a) Input image J. (b) Manual ground tru th  for (a).

(c) Local histogram equalization. (d) Segmentation of (c) - score: 0.5543.

(e) Enhanced by iteration 1 of MMS. (f) Segmentation of (e) - score: 0.6223.

(g) Enhanced by iteration 30 of MMS. (h) Segmentation of (g) - score: 0.6442.

Figure A .10: Enhancement and segmentation results for Image J.
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(a) Cumulative percentage passing for the initial iteration of OSA (329 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (219 fragments).
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(c) Cumulative percentage passing for iteration 6 of MSS (227 fragments).

Figure A .11: Cumulative percentage passing for Image A (213 fragments in ground truth).
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(a) Cumulative percentage passing for the initial iteration of OSA (281 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (187 fragments).
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(c) Cumulative percentage passing for iteration 25 of MSS (187 fragments).

Figure A .12: Cumulative percentage passing for Image B (171 fragments in ground truth).
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(a) Cumulative percentage passing for the initial iteration of OSA (347 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (233 fragments).
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(c) Cumulative percentage passing for iteration 3 of MSS (239 fragments).

Figure A. 13: Cumulative percentage passing for Image C (237 fragments in ground tru th).
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(a) Cumulative percentage passing for the initial iteration of OSA (307 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (225 fragments).
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(c) Cumulative percentage passing for iteration 17 of MSS (237 fragments).

Figure A.14: Cumulative percentage passing for Image D (213 fragments in ground tru th).
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(a) Cumulative percentage passing for the initial iteration of OSA (347 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (275 fragments).
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(c) Cumulative percentage passing for iteration 4 of MSS (285 fragments).

Figure A. 15: Cumulative percentage passing for Image E (303 fragments in ground truth).
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(a) Cumulative percentage passing for the initial iteration of OSA (317 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (211 fragments).
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(c) Cumulative percentage passing for iteration 3 of MSS (203 fragments).

Figure A .16: Cumulative percentage passing for Image F (171 fragments in ground tru th).
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(a) Cumulative percentage passing for the initial iteration of OSA (315 fragments). 
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(b) Cumulative percentage passing for the first iteration of MSS (215 fragments).
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(c) Cumulative percentage passing for iteration 12 of MSS (205 fragments).

Figure A.17: Cumulative percentage passing for Image G (207 fragments in ground tru th).
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(a) Cumulative percentage passing for the initial iteration of OSA (337 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (199 fragments).
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(c) Cumulative percentage passing for iteration 11 of MSS (211 fragments).

Figure A.18: Cumulative percentage passing for Image H (213 fragments in ground tru th).
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(a) Cumulative percentage passing for the initial iteration of OSA (363 fragments).

Sieve Size vs. Cumulative Percentage Passing
100

90

CL

80

 G round Truth
M SS (iter. 1)70

CL

60

50

100 120 140 160 180 2000 20 40 60 80
Sieve Size [mm]

(b) Cumulative percentage passing for the first iteration of MSS (273 fragments).
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(c) Cumulative percentage passing for iteration 6 of MSS (261 fragments).

Figure A.19: Cumulative percentage passing for Image I (273 fragments in ground tru th).
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(a) Cumulative percentage passing for the initial iteration of OSA (375 fragments).
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(b) Cumulative percentage passing for the first iteration of MSS (289 fragments).
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(c) Cumulative percentage passing for iteration 30 of MSS (289 fragments).

Figure A.20: Cumulative percentage passing for Image J (309 fragments in ground truth).
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Image A: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image A: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.21: Results of the first 50 iterations of MMS on Image A.
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Image B: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image B: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.22: Results of the first 50 iterations of MMS on Image B.
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Image C: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image C: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.23: Results of the first 50 iterations of MMS on Image C.
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Image D: Iteration vs. Segmentation Score
0.57

0.56

0.55

"co 0-53

1,0 -52o>

0.51

0.50

0.49

Iteration
(a) Segmentation score for the first 50 iterations of MMS.

Image D: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.24: Results of the first 50 iterations of MMS on Image D.
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Image E: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image E: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.25: Results of the first 50 iterations of MMS on Image E.
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Image F: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image F: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A .26: Results of the first 50 iterations of MMS on Image F.
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Image G: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image G: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.27: Results of the first 50 iterations of MMS on Image G.
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Image H: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image H: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.28: Results of the first 50 iterations of MMS on Image H.
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Image I: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image I: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.29: Results of the first 50 iterations of MMS on Image I.
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Image J: Iteration vs. Segmentation Score
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(a) Segmentation score for the first 50 iterations of MMS.

Image J: Iteration vs. Consecutive Matching Score
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(b) Consecutive matching score for the first 50 iterations of MMS.

Figure A.30: Results of the first 50 iterations of MMS on Image J.
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