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Abstract

Space heating is responsible for a significant portion of energy consumption in the

residential sector. As such, it has a great potential for energy savings. The heat

pump is a heating device that offers important energy conservation properties. It

allows modification of residential energy demand profile and subsequent reduction

of electricity consumption and costs. Living comfort of the residents is the other

side of the coin that also must be considered in the heat pump scheduling optimiza-

tion process. This thesis presents an intelligent approach to heat pump scheduling

problem based on metaheuristic optimization algorithms. In particular, we consider

mutation-based binary particle swarm optimization (M-BPSO) and genetic algorithm

(GA). Since standard BPSO suffers trapping in local minima, it has been augmented

with a mutation operator. However, mutation alone can not effectively address all

the shortcomings of standard BPSO. Therefore, other enhancements of the algorithm

have been implemented to improve its overall performance. Performance of all consid-

ered algorithms is evaluated using a series of simulation experiments and thoroughly

compared. The simulation results confirm that the proposed approach can optimize

the heat pump schedule without sacrificing the thermal comfort of residents, and that

the improved algorithm can obtain the optimal schedule with high efficiency.
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Chapter 1

Introduction

In order to slow down global warming phenomena governments in many countries have

set up decarbonisation goals to supersede fossil fuel with “green” energy sources. To

this end, electricity plays an important role and the energy demand characteristics

are expected to change in the near future. In particular, the electrification of the

transportation sector (through dispersion of hybrid and electric vehicles) and electri-

fication of the heating systems of buildings (using heat pumps and/or electric heaters)

will likely bring significant changes to the residential energy consumption profiles [1].

According to the prediction by National Grid, UK households may deploy 9 millions

electric heat pumps by 2030. This would shift a portion of heating energy consump-

tion from gas to electricity [2]. To achieve sustainable, efficient and reliable utilization

of the electric system assets, this changed reality will require new technologies and

applications.

End-users are also expected to play a new, more active role in the future energy

scenario. Many will turn into so-called prosumers, who both consume and produce

electricity. However, due to the uncertainty and volatile nature of renewable energy

sources, the mismatch of renewable supply and demand can be expected. This may

considerably alter the electricity production/consumption principle, from “generation

following demand” to “demand following generation” [3]. On this subject, in addi-

tion to installation of renewable energy sources [4], many consumers will also add
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more flexibility and facilitate efficient energy management through modifications on

the demand side of the energy balance equation. Such flexibility can be achieved,

for example, by postponing or scheduling running time of certain residential loads.

Demand side management (DSM) is modification of consumer energy demand to sup-

port flexibility of the energy system [5]. The level of flexibility is evaluated by the

amount of controllable power and the time for which the operation of the end-user

loads can be delayed [6]. In general, DSM programs can be classified in two main

categories [7]:

• price-based programs, where customers are motivated to adjust their demand

pattern in response to the day ahead or real-time price signals.

• incentive-based programs, where customers allow utilities to directly control or

schedule some of their loads and are rewarded through specific incentives in the

tariff scheme.

Among various appliances in the residential sector, electro-thermal devices installed

for space heating are suitable candidates for use in DSM schemes [8]. This is mainly

due to the thermal energy storage capabilities of the buildings, which leads to rel-

atively slow thermal dynamics and interruption possibilities of the electro-thermal

device with slight effect on comfort of the residents. Due to the electrification of

heating systems and residential energy efficiency targets, the design of DSM methods

for controlling such heating systems has recently attracted much researcher inter-

est [6]. This study presents an intelligent approach for the day-ahead scheduling of

heat pump using genetic algorithm (GA) and mutation based binary particle swarm

optimization (M-BPSO).

This document is organized as follows. Chapter 2 reviews heat pump schedul-

ing approaches proposed in the literature and briefly points out the advantages and

disadvantages of propounded solutions. Chapter 3 outlines the essential theoreti-

cal background regarding metaheuristic optimization and the heat pump technology.

2



Chapter 4 presents the model parameters, configuration of the exerted algorithms,

objective function and preserved constraints. Chapter 5 demonstrates the simulation

results in different scenarios together with discussion and analysis. Chapter 6 sums

up the achievements of this investigation and provides potential future directions.

3



Chapter 2

Related Work

The idea of using electro-thermal devices as DSM instruments has recently attracted

much researcher interests. The motivation behind the advent of DSM methods for

managing the heat pumps has been triggered by two main attributes. First, due to

energy efficiency enhancement, electric heat pumps are anticipated to be deployed

massively for space heating in the near future [9]. At the beginning of 2011, the

number of installed heat pumps supplying heat to Germans’ buildings was estimated

to be more than 350,000 [10]. As they spread on a large scale, the electricity demand

is expected to alter. J. Love et al. [11] indicated that 20% growth in households using

heat pumps leads to a 14% increment in peak grid demand. Such changes need to be

managed to maintain sustainable and reliable grid. Second, slow thermal variation

due to thermal storage capabilities of the buildings leads to the flexible running time of

heat pumps, which can be exploited towards smart controlling of such electro-thermal

devices. This flexibility can be utilized by price-based DSM methods for electricity

cost minimization and for mitigating issues that may arise in the distribution grid.

There are many studies reported in the literature, that pay particular attention

to various aspects of designing DSM methods for controlling heat pumps. The first

challenge for projecting such approaches is determining proper thermal models to

demonstrate the thermal dynamics of buildings and heating systems. A thermal

model of under floor heating system coupled with air source heat pump was developed
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in MATLAB/SIMULINK [12]. A general scheme for modeling the electro-thermal

domestic heating system and building based on an electrical analogue is represented in

[13, 14]. In some studies, heat pumps are coupled with thermal energy storage (TES)

systems to attain further flexibility in proposed DSM schemes. The performance of

heat pump coupled with TES system in the form of stratified hot water tank was

investigated by A. Arteconi et al. [15]. Simulations were performed in the TRNSYS

[16] environment and the results showed an extension in the heat pump’s off time, up

to 3 hours.

Various DSM methods can be designed based on different objective considerations,

such as minimizing the cost of electricity for the end-user or maximizing the con-

sumption of self-generated power in presence of renewable supply. A DSM method

for controlling the heat pump to adapt to wind energy generation on the household

level has been introduced by M. Diekerhof et al. [17]. In other work, M. Diekerhof

et al. [18] considered solar energy generation in their proposed approach for smart

scheduling of electro-thermal heating units, and introduced an algorithm to maximize

the renewable energy utilization while minimizing CO2 emissions.

As previously mentioned, many of the proposed DSM methods in the literature aim

to minimize the energy cost for final customer based on price-based model. While

such methods are usually considered as a service to the end-users, utilities can also

benefit from them and manage the grid by transmitting various price signals over

time and count on the feedback of price-responsive consumers. C. Molitor et al. [19]

investigated different operating modes of heat pumps: the heat-driven and electricity-

price-driven modes. In heat-driven operating mode, the heat pump runs whenever

the thermal demand is not satisfied, while the electricity-price-driven mode attempts

to shift the heat pump running time to low price intervals. Authors have also consid-

ered two different tariff schemes. Accordingly, a heat pump tariff offered by German

energy provider and a time-varying electricity tariff were considered as underlying

schemes. Simulation results indicated that optimum scheduling of heat pump based
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on electricity-price-driven mode led to significant electricity cost reduction. How-

ever, this was achieved at the cost of high fluctuation of indoor temperature and

comfort loss. M. Loesch et al. [20] proposed an evolutionary based algorithm for

scheduling the heat pumps and electricity cost minimization. The main idea behind

the introduced approach is overheating the hot water tank to enhance the degree of

freedom (DOF) in scheduling procedure. The authors performed simulations by con-

sidering the time-variable electricity price scheme and maximum power consumption

constraint. The presented algorithm exploits the flexibility in heat pump’s running

time towards minimizing the customer’s electricity cost. However, the link to the

thermal comfort delivered to occupants has not been taken into account. In another

investigation [21], a two-level control process is considered to realize the flexibility

offered by heat pumps using interconnected 300 liters and 500 liters storage tanks. In

the first level, heat pumps are scheduled with respect to the time-varying electricity

price signal targeting cost reduction. In the second level, the real-time controller ad-

justs the predefined operating state of heat pumps based on the network conditions

(voltage limit). The authors evaluated the performance of their proposed algorithm

with respect to cost reduction and load adaption boundaries. While some comfort

loss is inevitable due to heat pump’s operation shifting, no details about the occupant

comfort are provided in this work. L. Zhang et al. [22] introduced an algorithm to

adjust the electric heat pump’s operation time with respect to renewable generation

profile, aiming at maximizing the usage of renewable energy sources. The proposed

“generation match algorithm” is evaluated considering the comfort level of occupants.

Results indicated that the proposed method drastically affects the comfort of occu-

pants in both wind and solar photovoltaic (PV) generation scenarios. However, the

solar PV scenario has suffered a relatively higher level of discomfort in comparison

with the other scenario.

Several studies addressed the thermal discomfort of occupants caused by reallo-

cating the heat pump operation time. The main idea behind these approaches is
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enforcing the constraints on the thermal comfort delivered to occupants during the

heat pump scheduling process. F. D. Angelis et al. [23] proposed a method based on

mixed-integer linear programming paradigm for task and energy scheduling. In their

study, the optimization goal is minimizing the cost of electricity by optimal schedul-

ing of flexible household appliances, including heat pump. The authors consider the

occupant’s comfort in terms of indoor temperature boundaries. They also introduce

a constraint on the maximum amount of electricity that can be purchased from the

grid, to maximize the utilization of renewable energy sources. In addition, They con-

sider one hour time interval resolution in their simulation. Results show that the

proposed algorithm violates indoor temperature limit in several cases. Moreover, the

authors used a simplified thermal model of the heat pump, negatively affecting the

accuracy of simulations. In other studies [4, 24], authors presented an optimization

algorithm aiming at power peak shaving and fulfilling the customer’s thermal com-

fort preferences. Results indicated that the proposed algorithm maintains the indoor

temperature within predefined range while reducing the power peaks. It is worth

noting that, authors introduced an approximation in heat pump modeling which can

lead to inaccuracies in simulation results.

To the best of our knowledge, the thermal discomfort of occupants due to the heat

pump scheduling for electricity cost minimization has not been effectively addressed

by previous studies. This was the main motivation to develop the intelligent ap-

proach for heat pump scheduling described in this thesis. The presented scheduling

method only uses the thermal storage capacity of the building, without any additional

thermal energy storage systems. The proposed approach is evaluated under several

scenarios, while considering different restrictions on the indoor temperature variation

and using realistic electricity pricing. The results show that the proposed method can

take advantage of the heat pump flexibility towards to reduce electricity costs while

maintaining the thermal comfort of the occupants.
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Chapter 3

Background

3.1 Heat Pump

The notion behind the heat pump is the transmission of thermal energy from a heat

source to a heat sink in which heat flows from a low-temperature environment to a

high-temperature environment [25]. The thermal energy flow of the heat pump is in

the inversed direction of the spontaneous heat flow and requires energy expenditure.

The heat pump operates by extracting the accessible heat from the low temperature

source side and augmenting its temperature in a manner to be useful for space heat-

ing. While the concept of water pump which transfers the water from low pressure

(downhill) location to high pressure (uphill) location is clear for us and represents

a similar concept as heat pump, understanding the heat pump procedure seems to

be more challenging. One of the common approaches for facilitating the conceptual

difficulties associated with the heat pump is making reference to a familiar home ap-

pliance. Refrigerators also extract heat from the low-temperature environment (food

compartment) and transfer it to the high-temperature environment (kitchen). The

radiators on the back of the refrigerator, transmit the heat from the fridge’s interior

to the exterior environment using hundreds of watts of electricity that is required for

powering the compressor. Most heat pumps, including refrigerators, transfer heat by

circulating a refrigerant fluid through a compression-expansion cycle (Fig. 3.1).

The refrigerant cycle, illustrated in Fig. 3.1, includes four steps as follows [25]
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Figure 3.1: Refrigerant cycle

1. The refrigerant liquid is moving around the low temperature cabin of fridge (en-

vironment) through a network of pipes known as evaporator. The refrigerant is

chosen in a manner that will boil at a temperature below 0°C under the pressure

conditions of cycle. The boiling refrigerant then evaporates by absorbing the

required vaporization heat from the fridge’s interior.

2. The refrigerant, which is now a warmer vapour, will be pressurized and reaches

to higher temperature level by passing through a compressor.

3. In next step, refrigerant passes through another heat exchanger called con-

denser, which is the radiator grid on the fridge’s back side. By passing through

condenser, the vapour transfers its heat to the kitchen and will change to liquid

due to heat losses.

4. The cycle will be completed when compressed refrigerant passes the expansion
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valve and, as the result, its pressure and temperature drops significantly, back

to the initial value.

A heat pump, employed for space heating, operates through the same cycle; only

the value of pressures and vaporization/condensation temperatures may differ from

the fridge. As mentioned earlier, the refrigerator can be defined as a heat pump that

extracts heat from the foods placed in its compartment toward heating the kitchen.

In fact, it should now make sense that heat extraction can be done from any source

which is thermally coupled with evaporator. By using heat pump, we can extract

heat from low-grade heat reserves in our environment such as sewage, rivers or sea

[26]. Heat pumps are distinguished heat production alternatives since they obtain

most of the required energy for heat generation from surrounding environments and

hardly incorporate electricity. Consequently, the transferred heat is almost three to

four times greater than the consumed power which indicates a significantly higher Co-

efficient of Performance (COP) value in comparison with electrical resistance heaters.

There are mainly two types of heat pumps:

• ground source heat pump (GSHP): a heat pump that uses ground or any medium

that is thermally coupled to the ground, such as groundwater, as a source of

thermal energy.

• air-sourced heat pump: a heat pump that extracts energy directly from the

surrounding air and there is no need to dig, drill or having large plot of land.

Although air-sourced heat pumps reduce the capital cost and are easy to install, they

are not as efficient as GSHP due to air temperature fluctuations (low heat source at

below zero temperature).

3.1.1 Heat pump efficiency

As previously noted, a heat pump transfers thermal energy from a low-temperature

heat source to a high temperature heat sink, consuming electricity. The heat ex-
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tracted from source side is upgraded to higher temperature and is employed for local

heating. Assuming that energy loss in heat pump (refrigerant) cycle is negligible

and all extracted and consumed energy is delivered to the end point, the total heat

provided is given by

QHP ≈ QE +WHP, (3.1)

where WHP is electrical energy used by heat pump. QHP and QE are heat provided

by heat pump and heat extracted from heat source, respectively. The ratio of heat

pump’s heating provided to the electrical energy consumption is described by the

coefficient of performance (COP) [20]

COPHP =
QHP

WHP

. (3.2)

The ideal heat pump process is represented by the reversed Carnot cycle [27]. The

theoretical maximum heat pump efficiency depends on the temperature of the heat

source (Tsource) and the heat sink (Tsink)

COPmax =
Tsink

Tsink − Tsource

. (3.3)

However, the maximum efficiency is not accessible in practice due to losses. Hence a

grade of quality (ηHP) is used to demonstrate the thermal efficiency of heat pump

ηHP =
COPHP

COPmax

. (3.4)

3.1.2 Thermal Model of Heat Pump

The heat pump scheduling approach proposed in this thesis aims to reduce the elec-

tricity bill while considering the thermal comfort of occupants in residential buildings.

To guarantee the comfort, the pump scheduler should maintain the indoor tempera-

ture in a specific range that projects occupants’ preferences. To maintain the indoor

temperature, the scheduler needs to predict and track the indoor temperature changes

over time with respect to the heat provided by the heat pump and the heat loss to
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the outdoor environment. The thermal model used in this study is derived from work

of J. L. Cremer et al. [4] and M. Pau et al. [6]. The indoor temperature changes

over the course of time are linked to heat provided by the heat pump and the heat

loss to the outdoor environment, which can be observed through the energy balance

equation

T t
IN = T t−1

IN +
∆t

µHSγAR

(Qt
HP −Qt

LS), (3.5)

where TIN is the indoor temperature, ∆t is the time step, µHS is the amount of house

indoor air mass, γAR is air specific heat capacity, and Qt
HP and Qt

LS are heat provided

by heat pump and lost from the house to the outdoor environment, respectively.

The indoor air mass, µHS , is a parameter that depends on the size and geometrical

characteristics of the house. In combination with the air heat capacity, γAR , it

represents the thermal energy storage capacity of the house. The heat losses to the

outdoor environment can be described as follows

Qt
LS = KHS(T

t−1
IN − T t−1

OUT), (3.6)

where KHS is the heat loss factor. The heat generated by the heat pump is defined

as

Qt
HP = γARϕHP(THP − T t−1

IN ), (3.7)

where THP is the temperature of the heat pump supply air (assumed as constant),

and ϕHP is the air mass flow rate of the heat pump.

3.2 Metaheuristic Optimization Techniques

Optimization is the process of determining the most suitable solution for a specific

problem. According to Kramer [28],“Optimization problems can be found in many

fields, from natural sciences to math and computer science, from engineering to so-

cial and daily life. Whenever the task is to minimize an error, to minimize energy,

weight, waste, effort or to maximize profit, outcome, success, and scores, we face
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optimization problems”. Since the problems become more complicated during last

decades, the necessity of new optimization techniques became evident [29]. In recent

years, metaheuristic algorithms have been introduced and employed for solving many

engineering optimization problems [30–32]. Such algorithms are attracting more and

more interests because they [33]:

• can be implemented easily due to their uncomplicated concepts,

• have derivation-free mechanism,

• can avoid local optima,

• can be applied to various types of problems and disciplines.

Most metaheuristic algorithms have stochastic mechanisms [34]. The main charac-

teristic of stochastic algorithms is randomness [35]. This means that these algorithms

investigate entire search space for finding global optima using random operators. The

randomized nature of metaheuristic techniques supports them to avoid local optima

stagnation. However, it might make them unreliable, as stochastic optimization tech-

niques may reach different results for a particular problem in each run due to their

randomized behavior [36]. On the other hand, deterministic algorithms [37–39] are re-

liable, producing similar solutions for given problem with the same initial conditions.

However, deterministic optimization approaches have highly potential for entrapping

in local optima [40].

According to the No Free Lunch (NFL) theorem [41], there is no metaheuristic

algorithm for solving all optimization problems. In other words, an optimizer may

show outstanding performance on a specific problem, but the same algorithm may

fail to solve a different set of problems.

In general, metaheuristics can be categorized into two main groups [42]: single-

based and population-based methods. In single-solution-based methods the search

13



process begins with one candidate solution that is improved over a number of itera-

tions. In contrast, population-based techniques start the optimization process using

a set of random solutions (a population), and this initial population is enhanced

over the course of iterations. Population-based metaheuristics generally show better

performance, since they benefit from the following advantages [42]:

• information-sharing about search space among candidate solutions

• local optima stagnation avoidance due to the support that each candidate re-

ceives from others

• great exploration capability

Considering the source of inspiration, metaheuristic algorithms can be classified as

nature-inspired and human-behavior-inspired. Nature-inspired techniques deal with

problems by imitating biological or physical phenomena. They can be divided into

following groups [33]:

• evolution-based methods are inspired by the rules of natural evolution. The

most popular evolution-inspired approach is the Genetic Algorithm (GA) [43]

which simulates the Darwinian evolution. Other well-known techniques of this

branch are Evolution Strategy (ES) [44], Genetic Programming (GP) [45] and

Biogeography-Based Optimizer (BBO) [46].

• physics-based methods mimic the physical laws in the world. The most pop-

ular algorithms are Simulated Annealing (SA) [47, 48], Gravitational Search

Algorithm (GSA) [49], Central Force Optimization (CFO) [50], Big-Bang Big-

Crunch (BBBC) [51], and Galaxy-based Search Algorithm (GbSA) [52].

• swarm-based: In 1993, the Swarm Intelligence (SI) notion was presented for the

first time [53]. According to Bonabeau et al. [54], SI is “The emergent collective

intelligence of groups of simple agents”. These techniques mimic the social
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behaviour of natural colonies/packs. Some of the most popular SI techniques

are Ant Colony Optimization (ACO) [55], Particle Swarm Optimization (PSO)

[56] and, Artificial Bee colony (ABC) [57].

As mentioned earlier, there is another class of metaheuristic algorithms inspired by

human behaviours, such as Tabu (Taboo) Search (TS) [58–60], Imperialist Com-

petitive Algorithm (ICA) [61], Social-Based Algorithm (SBA) [62], Colliding Bodies

Optimization (CBO) [63, 64], Firework Algorithm [65] and Group Counseling Opti-

mization (GCO) algorithm [66, 67].

Regardless of the differences between metaheuristics, the common characteristic

of these techniques is sorting out the optimization into exploration and exploitation

[68–72]. The exploration phase makes agents to examine the search space as widely as

possible. In this phase, random operators are required which enable the algorithm to

cover the entire search space. On the other hand, exploitation phase makes individuals

to search locally around the best acquired result found during exploration. The right

balance between exploration and exploitation is a challenging task. However, it can

play an important rule in increasing the chance of algorithm for converging to the

global optima.

3.2.1 GA

The evolution concept, first proposed by Charles Darvin, describes biological ad-

vancement of species [73]. Species continue to live, especially despite hardships, due

to their development and environmental adaption capability. Achievements of evolu-

tion in individuals survival are good reasons for adapting its fundamentals to solving

optimization problems.

Genetic algorithm (GA) is an evolutionary algorithm inspired by the concepts of

evolution in nature [43]. GA acts on a set of solutions (population) that represent

candidate solutions to the optimization problem. The optimization process starts

by randomly generating an initial population of solutions. In each iteration, genetic
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operators produce new solutions by considering the individuals in previous genera-

tion. Since well-performing individuals have relatively higher chance to participate in

producing the new population, it is likely that quality of individuals improves from

generation to generation. This gradual enhancement in the fitness value of agents

may lead to global optima convergence. There are two elementary genetic operators:

crossover and mutation.

3.2.1.1 Crossover

Crossover is an operator that allows the combination of the genes of two or more

individuals [74]. In GA, the crossover is performed by swapping parts of two chro-

mosomes (genotypes). A popular type of crossover is the n-point crossover, however,

the single-point and double-point crossover operators illustrated in Fig. 3.2a and Fig.

3.2b are used more commonly. In a single-point crossover, parent chromosomes are

split at a randomly chosen cut point and the parts are swapped to create two off-

spring. Similarly in double-point crossover the parent chromosomes are split at two

randomly determined points. Multi-point crossover is accomplished by swapping mul-

tiple segments of one parent chromosome with the corresponding segments of another

parent at random positions. [75].
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Figure 3.2: Crossover operators
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3.2.1.2 Mutation

The second main operator in GA is mutation. It is an important method that en-

hances the diversity of candidate solutions by small, random changes. This can be

implemented by randomly modifying the value of a gene in the parent chromosome.

In binary coded chromosomes, bit flip mutation illustrated in Fig. 3.3 is usually used.

It flips a zero bit to a one bit and vice versa with a defined probability, which plays

the role of the mutation rate. Multi-point mutation operator is more common than

single-point due to its higher diversity capability.
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Figure 3.3: Mutation operators

3.2.1.3 Genotype-Phenotype Mapping

The new offspring population created by crossover and mutation operators has to

be evaluated. The evaluation is performed considering the capability of each candi-

date solution to solve the optimization problem. In this regard, each coded chromo-

some (genotype) needs to be mapped to the actual solution (phenotype). “The pro-

cess of translating genotypes into their corresponding phenotypes is called genotype-

phenotype mapping” [76]. The genotype-phenotype mapping is usually not required
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in continuous optimization problems when the genotype is the solution itself.

3.2.1.4 Fitness

As mentioned earlier, the ability of all candidates in effectively dealing with a problem

has to be evaluated. During the assessment process, the phenotype of a solution is

assessed using a fitness (objective) function. The objective function evaluates the

candidate solutions by measuring their quality, and a fitness value is assigned to

each individual accordingly. Since the fitness function guides the search operations,

it should be appropriately designed during the optimization modeling process. The

function should be able to mitigate the negative effect of infeasible solutions generated

by the optimization algorithm. Hence, the application of penalty mechanism for

deteriorating the fitness of such impracticable solutions need to be considered [28].

The performance of GA and other metaheuristics is usually determined by counting

the number of times the fitness function has been called until the global optima is

found or the termination criterion is satisfied. Hence, minimizing the number of

fitness function calls is very important, especially if function calls require a long

running time.

3.2.1.5 Selection

To ensure the convergence toward the optimal solution, the best offspring should be

selected to participate in the new population and play the parents role for the next

generation. The selection process is based on the fitness values gained by each indi-

vidual during the evaluation phase. Most selection methods are based on randomness;

some well-known selection approaches are

• roulette wheel selection

• ranked selection

• tournament selection
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Roulette wheel, also known as fitness proportional selection, selects individuals ran-

domly with respect to their fitness values. Individuals’ selection probabilities are

calculated by normalizing their corresponding fitness value with the sum of all in-

dividuals’ fitness values in the population. In ranked selection, the individuals are

sorted and ranked based on their fitness values, while the worst individual ranks as

one. The selection probability of individuals are determined by normalizing their rank

with the population size. Tournament selection is another common method, where

k individuals are randomly chosen from the population to compete with each other.

The winner, i.e. the individual with the best fitness value, is selected and used as the

new parent.

3.2.1.6 Termination

Due to the time and expense of fitness function assessments, running the optimization

algorithm for an unlimited period is not feasible. Therefore, the processing time has

to be restricted. The termination criterion determines when the optimization process

terminates. Some common termination conditions are

• exceeding the maximum number of iterations,

• exceeding the maximum number of function evaluations (NFEs),

• achieving an acceptable solution,

• observing no significant progress after several iterations.

Please note that these criteria are not specific to GA and can be used in any

optimization method.

3.2.2 PSO

Particle Swarm Optimization (PSO) was first proposed by Eberhart and Kennedy

in 1995 [77, 78]. It is a type of swarm intelligence in which the social behaviour
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of flocking birds is simulated. When a swarm seeks for food, each individual moves

around the environment (search space) independently [76]. Agents move randomly

which increases their chance of finding food reservoirs. Since there is an information

flow among swarm’s individuals, when an individual finds food the other individuals

will be informed respectively.

PSO investigates the problem space by regulating the pathway of particles. The

swarm’s movement includes two elements [75]: stochastic and deterministic. Each

particle tends to move towards the global best position and its own best achievement

so far, while preserving random movement propensity. The best location history of

each particle (Pbest) is updated when the new solution dominates the current best

history. In the same manner, the global best position (Gbest) is updated when a

particle’s best history is better than the current global best.

The position of each particle i is updated at each time step t, considering its current

position xt
i, current velocity vti , personal best so far solution yti , and the best so far

solution of the entire swarm ŷ

vt+1
i = vti + c1r1(yi − xt

i) + c2r2(ŷ − xt
i), (3.8)

xt+1
i = xt

i + vt+1
i , (3.9)

where c1 and c2 are positive acceleration coefficients, and r1 and r2 are random num-

bers between 0 and 1. The second and third parts of (3.8) are “cognition” and “social”

factors, which represent the personal thinking of the agent and particles’ collaboration

respectively [79]. The effect of acceleration coefficients on algorithm’s performance

can be analyzed as follows [80]

• if c1 = 0, the particles can communicate with each other, while they do not

have cognitive abilities. Particles have the potential to fly to new regions in the

search area however, they might entrap to local optima.

• if c2 = 0, there is no information flow between particles and the swarm. Hence,

PSO randomly investigates the problem space.
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• if c1 = c2 = 0, the particles will preserve their initial velocity until they meet

termination criterion.

In the initialization phase of PSO, the positions of all particles are randomly ini-

tialized while their early velocity is zero. The initial population plays an important

role in reaching global optima. This is because the best history of each particle and

the best history of entire swarm attract agents to search locally around the first group

of candidates and they do not explore new areas in the search space [81]. The swarm’s

velocity helps to mitigate this problem, however, suitable boundaries need to be se-

lected to guarantee the swarm convergence. A new parameter called inertia weight,

w, was introduced by Shi and Eberhart to balance the exploration and exploitation

[82, 83]. By applying the inertia weight, the new velocity update equation is as follows

vt+1
i = wvti + c1r1(yi − xt

i) + c2r2(ŷ − xt
i). (3.10)

To ensure the algorithm convergence, its exploration needs to be decreased along with

increments of exploitation during the running time. Accordingly, the inertia weight is

either linearly declined or determined using fuzzy system [84]. Decrements of inertia

weight is suggested bounding from 0.9 to 0.4, which enhances the performance of PSO

in several applications [85].

In 1999 Clerc indicated that controlling the particles’ velocity and ensuring PSO

convergence requires the use of constriction coefficient derived from eigenvalue analy-

ses of swarm dynamics [86, 87]. Considering the constriction coefficient, the velocity

update equation changes to [85]

vt+1
i = χ[vti + ϕ1r1(yi − xt

i) + ϕ2r2(ŷ − xt
i)], (3.11)

where

χ =
2κ

| 2− ϕ−
√︁

ϕ2 − 4ϕ |
, (3.12)

ϕ = ϕ1 + ϕ2. (3.13)
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Here κ ∈ [0, 1] basically regulates the exploration and exploration. κ ≈ 0 correlates

with exploitation and fast convergence, while κ ≈ 1 conforms to exploration and slow

convergence. It has been proved that the convergence of PSO can be ensured if ϕ ⩾ 4

is preserved [75].

3.2.2.1 BPSO

In general, many optimization problems are discrete binary in nature. Common ex-

amples incorporate determining the sequential of discrete components in arranging

problems such as scheduling and routing tasks. A binary search space can be rep-

resented by a unit hypercube. Agents of binary algorithm can move between the

corners of the hypercube by flipping groups of bits. Hence, some basic concepts of

position updating process need to be modified in the binary version of PSO [88].

In continuous version of PSO, as demonstrated in previous section, the agents can

fly all around the search space and position updating process can be implemented

by adding updated velocity to current position of particle using (3.9). However, in

binary space, due to dealing with 0 and 1 states, the position updating can not be

implemented using aforementioned equation. Therefore, an approach is required to

employ real domain velocities for updating the agents’ position in binary space [89].

The idea for addressing this challenging problem is to use a transfer function to map

velocity values with probability values to update the particles’ position.

The binary version of PSO (BPSO) was proposed by Kennedy and Eberhart which

enabled PSO to handle the binary search spaces [88]. In this approach a sigmoid

function

S(vtik) =
1

1 + e−vtik
, (3.14)

as a logistic transformation was employed to accomplish the mapping real values of

velocities to probability values bounded to the interval [0,1]. The resulting position
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update is defined as follows [88]

IF (rnd < S(vt+1
ik )) THEN xt+1

ik = 1

ELSE xt+1
ik = 0

(3.15)

where rnd is a random number drawn from [0, 1] using uniform distribution, vtik is

velocity of particle i at iteration t in dimension k, and xt
ik represents the position of

the particle i at iteration t in dimension k.

3.2.2.2 M-BPSO

To make sure that the BPSO algorithm can escape from local optima while main-

taining fast convergence, a mutation operator has been added to the original BPSO.

Before representing the employed mutation-based BPSO, it is necessary to briefly

review the mutation concept and its application in metaheuristics. In biology, a mu-

tation is an irrecoverable alteration in the deoxyribonucleic acid (DNA) sequence of

a gene. They can change the amino acid sequence of the protein encoded by the

gene which may result in discernible changes in the observable characteristics of an

organism.

One of the main operators of GA is mutation, inspired by its biological concept.

Similar to biological mutation, the characteristics of each agent can be altered by

mutation operator. Generally, these changes are slight, however, they can improve

the diversity of population and enhance the exploration capability of the algorithm

[90]. Therefore, it can be expected that the performance of algorithm can be improved

using a mutation operator. Considering the potential power of mutation and the

fact that in some studies BPSO suffered from premature convergence and plunging

into local optima [90, 91], the original algorithm has been modified by introducing

mutation.
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Chapter 4

Model Formulation and Setup

This chapter presents the settings and parameters’ selection procedure for thermal

modeling and optimization algorithms with respect to considered scenarios. The

simulations are executed for two main scenarios, and several sub-scenarios. While the

main scenarios determine consideration or negligence of thermal comfort delivered to

occupants, sub-scenarios distinguish the time resolution of the simulations and static

vs. dynamic determination of the maximum allowed continuous off-time of heat pump.

These scenarios are classified as follows

• Optimization of HP schedule not considering occupant comfort

– Optimization of HP with 30 minutes time interval resolution (N/30)

– Optimization of HP with 15 minutes time interval resolution (N/15)

• Optimization of HP schedule considering occupant comfort with static off-time

– Optimization of HP with 30 minutes time interval resolution (C/S/30)

– Optimization of HP with 15 minutes time interval resolution (C/S/15)

• Optimization of HP schedule considering occupant comfort with dynamic off-

time

– Optimization of HP with 30 minutes time interval resolution (C/D/30)

– Optimization of HP with 15 minutes time interval resolution (C/D/15)
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It should be mentioned that the constraint regarding the maximum continuous off-

time of heat pump is applied for considering the thermal comfort of occupant. Hence,

in the case that thermal comfort is not considered, the sub-scenarios regarding the

static and dynamic off-time approaches are not applicable.

The considered time horizon for the heat pump scheduling is one day. The initial

time of the scheduling problem is midnight and the day is separated to 48 or 96 time

slots with respect to the considered scenario, resulting in a time step of ∆t=30 min

or ∆t=15 min, respectively.

4.1 Thermal Model of the Building

This section provides details about the parameters of the simulated model in particu-

lar building with respect to heat pump thermal model introduced in the background

chapter. The thermal dynamics of the building are simulated based on the intro-

duced model and provided parameters. The simulations are executed considering two

different scenarios: the 15 minutes and 30 minutes time interval resolution.

4.1.1 Parameters of the Thermal Model

It is assumed that the house is equipped with air source heat pump as space heater.

The parameters of considered heat pump, shown in Table 4.1, are derived from De

Angelis et al. [23]. According to the considered scenarios the minimal time period the

Table 4.1: Heat pump parameters

Air flow rate Power Supply air
temperature

1148 Kg/h 2080 W 30°C

heat pump must run could be 30 min or 15 min, corresponding to one time interval

in each introduced scenario.

The indoor air mass and the heat loss factor are calculated based on the geometric
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dimensions of the house after De Angelis et al. [23] and J. Cremer et al. [4]. The

house geometry and parameters are presented in Table 4.2. Based on the parameters,

the heat loss factor is calculated as follows [4]

KHS = νWA(2(L+W )H −NWIAWI) +NWIνWIAWI

= 191.16 kJ/h◦C
(4.1)

Using the air density at standard conditions (ρAR=1.2041 kg/m3) the indoor air

mass is calculated by following equation [4]

µHS = ρAR(LWH + 0.25LW 2 tan(β))

= 3946 kg
(4.2)

Table 4.2: House geometry and parameters

Parameters Value

House length (L) 20 m

House width (W ) 20 m

House height (H) 4 m

Roof pitch (β) 40°

Number of windows (NWI) 6

Area of each window (AWI) 1 m2

Thermal transmittance for
walls (νWA)

0.15 W/m2K

Thermal transmittance for
windows (νWI)

1 W/m2K

The reference indoor temperature is considered T ref
IN =21◦C. As starting point for

the simulation, the initial indoor temperature is assumed to be equal to reference tem-

perature, T init
IN =T ref

IN . It should be mentioned that two-degree of freedom is assigned

to scheduler which will set the minimum acceptable value for indoor temperature to

19°C.

To guarantee thermal comfort of the occupants, two different methodologies about

the maximum allowed continues off-time of heat pump are considered,
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• static off-time method

• dynamic off-time method

In the static off-time method, a constant value for maximum allowed continuous

off-time of heat pump is defined, and its violation is penalized. According to the

assumption about reference temperature (21°C) and the minimum acceptable tem-

perature (19°C), the maximum continuous off-time is calculated utilizing following

equation derived from M. Pau et al. [6]

∆tmax =
µHSγAR

KHS

∆Tdof

(T ref
IN − Tmin

OUT)
, (4.3)

where ∆Tdof is the degree of freedom for indoor temperature and Tmin
OUT presents the

minimum outdoor temperature during optimization progress. By considering the air

heat capacity γAR=1.005 (kj/kg◦C) and using the provided values for other parame-

ters, the maximum continuous off-time of heat pump is calculated as ∆tmax=1.56 h,

corresponding to 3 or 6 time slots when the scheduling time interval resolution is 30

min or 15 min, respectively. The maximum continuous off-time duration of the heat

pump in this method is fixed and not updated during the entire scheduling period. It

is expected that this method does not provide sufficient flexibility for the algorithm

to benefit from the maximum thermal storage capacity of the building.

In the dynamic off-time method, the maximum allowed continuous off-time of heat

pump is updated at each time interval after calculation of new indoor temperature

based on Eq. 3.5. Given the indoor and outdoor temperature, the maximum contin-

uous off-time of heat pump can be calculated as follows

∆tmax =
µHSγAR

KHS

(T t
IN − Tmin

IN )

(T t
IN − T t

OUT)
, (4.4)

where Tmin
IN is the minimum acceptable indoor temperature set to 19°C. While this

approach provides a good approximation of the maximum off-time of heat pump, it

may lead to some inaccuracy in the cases when the outdoor temperature changes fre-

quently. In addition, it puts heavy computation load on the optimization algorithm,
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slowing down the optimizer. To address the aforementioned issues while receiving

dynamic off-time advantages, the minimum indoor temperature constraint takes the

place of maximum continuous off-time limitation in performed simulations. The new

constraint allows the heat pump to be off while the indoor temperature is higher than

the minimum set point, which provides more flexibility for the algorithm to benefit

from the maximum thermal storage capacity of the building. The minimum allowed

indoor temperature is set by the occupant and its violation is penalized.

As electricity price signal profile, the winter time-of-use (TOU) price set by the

Ontario Energy Board (OEB), shown in Table 4.3 [92], is used.

Table 4.3: Time-of-use price of electricity

TOU periods TOU prices

19:00-7:00 0.101 $/kWh

11:00-17:00 0.144 $/kWh

07:00-11:00, 17:00-19:00 0.208 $/kWh

The outdoor temperature profile during the optimization period is illustrated in

Fig. 4.1.

4.1.2 Simulation of Thermal Dynamics of the Building

As previously mentioned, the thermal storage capacity of building is the main factor

for scheduling the heat pump. The first step is the prediction of daily heating energy

demand in the house with respect to the indoor reference temperature, heat losses to

the outdoor environment, and heat gains. Given the heating energy demand, required

heat pump running time can be calculated using the model presented in section 3.1.2.

This thesis is concerned with intelligent heat pump scheduling approach to mini-

mize the cost of electricity, while maintaining the occupant comfort in terms of indoor

temperature. The schedule of other appliances, and thus the contribution of internal

heat gain to the heating energy demand, is not taken into account. Hence, the only
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Figure 4.1: Outdoor temperature profile

heat source considered is the heat pump. M. Z. Degefa et al. [93] indicated that

internal heat gain varies between 5% and 7% from the daily heating energy demand

in typical single-family detached households on a cold winter day. Therefore, neglect-

ing the internal heat gain does not have a significant effect on the accuracy of the

implemented simulations.

Before starting the heat pump scheduling simulations, it is necessary to simulate

the thermal dynamics of the house so that the indoor temperature variations can be

tracked. The thermal dynamics of the building are simulated based on the introduced

model and parameters while considering two different scenarios, presented in the

following sections.

4.1.2.1 Simulation results based on 30 minutes time interval resolution

According to the outdoor temperature profile, thermal model and parameters setting

provided earlier, the indoor temperature variations while the heat pump is kept off

during the whole optimization period (one day) is simulated and presented in Fig.
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4.2. When the heat pump is turned off, its heat flow, Qt
HP=0. Hence, the temperature

update equation (3.5) becomes

T t
IN = T t−1

IN − ∆t

µHSγAR

(Qt
LS). (4.5)

The simulation results show that the indoor temperature drops to 4.64°C at the

end of the day from its initial value of 21°C. These slow thermal dynamics are due

to the storage capability of the building, which leads to the possibilities to interrupt

the heat pump operation.
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Figure 4.2: Indoor temperature variation with 30 min time resolution while HP is
turned off

4.1.2.2 Simulation results based on 15 minutes time interval resolution

When the time interval resolution is increased to 15 minutes, the outdoor temperature

sampling resolution needs to be updated. Hence, every 15 minutes average of outdoor

temperature profile shown in Fig. 4.1 is considered as the outdoor temperature value

during each time interval. Accordingly, the indoor temperature variation while heat
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pump is kept off during the whole simulation period is updated and presented in Fig.

4.3. The simulation results show that the indoor temperature drops to 4.70°C at the

end of the day while its initial value is 21°C. In comparison with prior scenario in which

the time interval resolution was 30 minutes, the final indoor temperature increased

by about 0.04°C which is due to the increase of outdoor temperature resolution.
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Figure 4.3: Indoor temperature variation with 15 min time resolution while HP is
turned off

4.2 Objective Function and Constrains

The goal of the scheduler is to minimize the cost of electricity by appropriately en-

gaging the heat pump based on the time variable electricity price signal (time of use,

TOU). The corresponding objective function can be formulated as follows

f =

Nintvl∑︂
t=1

HP t
status · EPS(t) ·HPpower ·∆t, (4.6)

where HPstatus represents the on/off status of the heat pump during time period ∆t,

EPS is electricity price signal during that time period, HPpower is the heat pump
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power, and Nintvl is number of time intervals. As mentioned earlier, the optimization

period (a day) is divided to ∆t=30/15-minute periods and thus encompasses 48/96

intervals, respectively.

In this scheduling problem, there are several time slots with the same electricity

price. Therefore, permuting corresponding segments of the optimization time period

does not affect the obtained cost but may change the indoor temperature profile. To

facilitate optimization for the secondary objective (highest minimum temperature)

for given cost, the standard search procedures of the examined algorithms has been

augmented. This is accomplished through an additional temperature attribute eval-

uated for each candidate solution using (3.5). Since the primary objective is the cost

minimization, the temperature attribute is only considered for comparable candidate

solutions: the individual with the highest minimum temperature will outperform the

other candidates with the same cost.

To reduce the overall cost of electricity consumption, the scheduler shifts the heat

pump working times from periods of high electricity price to times with low prices.

However, this may affect the indoor temperature and thus the thermal comfort of the

occupants. To ensure that the indoor temperature is always within the acceptable

range, the continuous off-time of the heat pump should be limited. This can be en-

forced through a constraint that penalizes the scheduler when a maximum allowed

continuous off-time is exceeded. Another constraint is added to control the minimum

run-time of the heat pump to avoid unnecessary off-on/on-off cycling that would de-

crease the useful lifetime of the pump. In this thesis, the minimum run time of the

heat pump is considered equal to one time step; this way the minimum time con-

straint is always satisfied and its satisfaction does not have to enforced. As presented

in section 4.1.1, there are two different approaches to determine the maximum contin-

uous off-time: static and dynamic. In the static case, the penalty is determined from

the deviations of the actual continuous off-time and the maximum allowed continues

off-time (HPMCOT) as follows
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IF (

t+HPMCOT∑︂
t=1

HP t
status = 0) THEN OT t

dev = 1

ELSE OT t
dev = 0.

(4.7)

After multiplying by a penalty factor, Fpenalty, the entire term,

Fpenalty

Nintvl−HPMCOT∑︂
t=1

OT t
dev (4.8)

is added to the original cost function (4.6). According to (4.3), the HPMCOT=3∆t

for the 30 minutes time resolution and HPMCOT=6∆t for the 15 minutes resolution.

In the dynamic off-time scenario, since the constraint is applied with respect to the

minimum temperature set point determined by the occupant (considered to be 19°C),

the penalty term is determined from the deviations of the actual indoor temperature

and the minimum acceptable indoor temperature as follows

IF (T t
IN < Tmin

IN ) THEN TMP t
dev = Tmin

IN − T t
IN

ELSE TMP t
dev = 0,

(4.9)

after multiplying by a penalty factor Fpenalty, the entire term,

Fpenalty

Nintvl∑︂
t=1

TMP t
dev (4.10)

is added to standard objective function (4.6).

4.3 Optimization Algorithms Setup

As previously mentioned, this thesis presents an intelligent approach to heat pump

scheduling problem based on metaheuristic optimization algorithms. In particular,

the genetic algorithm and binary particle swarm optimization are employed in this

study. Background of the metaheuristic optimization techniques including the em-

ployed algorithms is provided in the third chapter of this document.
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As mentioned earlier, the original version of binary particle swarm optimization

suffers from local optima stagnation. This thesis aims to mitigate this issue, by

enhancing the basic version of BPSO in two steps. In the first step, the multi-point

mutation operator is added to the original BPSO with s-shaped transfer function.

Because the performance of M-BPSO-S is still not acceptable in terms of speed of

convergence, in the second step the s-shaped transfer function is replaced by v-shape

transfer function, resulting in M-BPSO-V algorithm.

More implementation details of each optimization algorithm with respect to the

heat pump scheduling problem are provided in the following sections.

4.3.1 GA

As stated in section 3.2, the GA optimization process starts by generating a group of

random individuals, called the initial population. All individuals are evaluated using

the fitness function, and a fitness value is assigned to each individual accordingly.

Individuals with better fitness values (lower electricity cost in our case) are selected to

participate in new population generation. New population is created using crossover

and mutation operators described in Chapter 3. This generation/evaluation cycle

continues until a termination criterion is satisfied. Exceeding the maximum number

of iterations is considered as termination condition in this project. Parameter settings

for implementing the GA in this investigation are listed in Table 4.4. The crossover

and mutation percentages determine the number of individuals in the population

affected by crossover and mutation operators, respectively. Since in our study the

chromosomes are coded in binary format, the mutation rate represents the number of

randomly selected genes whose value should be modified. P-SPX and P-DPX show

the probability of single point and double point approach as the crossover operator,

respectively. The parameters of the algorithm, such as iteration budget, population

size, crossover percentage, etc. have been selected considering the problem complexity.

Another factor considered in the selection of GA’s parameters is the NFE budget. In

34



this regard, to provide a fair comparison of the algorithm performance, the GA’s

parameters have been selected so that their NFE budgets are balanced.

Table 4.4: GA parameters’ setting

Parameters Values

30min
resolution

15min
resolution

Number of
dimensions

48 96

Population size 500 500

Maximum No. of
iterations

500 500

Fpenalty 100 100

Crossover
percentage

0.8 0.8

Mutation
percentage

0.4 0.4

Mutation rate 0.04 0.02

P-SPX 0.2 0.2

P-DPX 0.8 0.8

4.3.2 M-BPSO-S

In BPSO, the optimization process starts by randomly generating an initial popu-

lation of particles (candidate solutions). Each particle has four attributes including

position, velocity, fitness and personal best history, all updated every iteration. The

velocity of particles in each dimension is updated using (3.10). Given the updated

velocities the positions of particles are updated considering the sigmoid transfer func-

tion and the position updating rules stated (3.15). New position of each particle is

evaluated using fitness (objective) function. In the case that newly obtained fitness

value of a particle dominates its personal best record, the particle’s best-so-far so-

lution is updated and the best-so-far solution of the entire swarm is checked for a
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possible update. Otherwise, no updates regarding the particle’s best record and the

swarm’s best record are performed.

In the proposed mutation based BPSO, after updating the velocity and position of

all particles in each iteration using the original BPSO principles, a mutation operator

is applied to randomly selected parents and resulting offspring are evaluated. To

enhance optimization capability, three strategies regarding mutation application are

considered

• multi-point mutation,

• dynamic mutation rate,

• successful mutations acceptance.

The multi-point mutation described in Fig. 4.4 is used in this work since it main-

tains more diversity in comparison to a single point mutation. The percentage of the

population that is affected by mutation operator is kept constant, while the gene’s

mutation rate is linearly decreased during the optimization process. This results in

preserving the exploration decrements along with increments of exploitation during

the optimization process which significantly improves the performance of the algo-

rithm. If mutants outperform their parents, they take their parents’ place in the

swarm. Otherwise, the population does not change.

0 1 110

1 0 010

parent

mutant

Figure 4.4: Multi-point mutation in M-BPSO
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Since the parameter tuning can significantly improve the algorithm performance,

we use constriction coefficient method for determining the acceleration coefficients,

c1 and c2, as described in chapter 3. In addition, to ensure convergence, the inertia

weight and mutation rate are linearly decreased during the optimization process. This

results in gradual from exploration to exploitation. Based on these considerations,

the velocity equation is updated as follows

vt+1
i = (wdamp)

it−1wvti + c1r1(yi − xt
i) + c2r2(ŷ − xt

i), (4.11)

where w=χ as defined by (3.12) and (3.13), and

c1 = χϕ1, (4.12)

c2 = χϕ2. (4.13)

The damping factor, wdamp, of inertia weight is raised to the power of it, the current

iteration number. There is also the damping factor of mutation rate, MRdamp, applied

using the following rule

IF (it ⩽ 21) THEN MR = MRinit(MRdamp)
it−1

ELSE MR = MRit=20
(4.14)

where MRinit is the initial value of mutation rate. All parameters used for the im-

plementation of M-BPSO-S are summarized in Table 4.5. The parameter selection

has been made with respect to the problem complexity and to balance the NFE of

all three examined algorithms.

4.3.3 M-BPSO-V

The most important part of BPSO is the transfer function which maps a continuous

search space to a discrete binary space. In other words, the probability of altering

the particle’s position (flipping a zero bit to 1 or vice versa) in each dimension is
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Table 4.5: M-BPSO-S parameters’ setting

Parameters Values

30min
resolution

15min
resolution

Number of
dimensions

48 96

Population size 500 500

Maximum No. of
iterations

500 500

Fpenalty 100 100

ϕ1 2.05 2.05

ϕ2 2.05 2.05

ϕ 4.1 4.1

κ 1 1

χ 0.7298 0.7298

w 0.7298 0.7298

wdamp 0.9975 0.9975

c1 1.49 1.49

c2 1.49 1.49

Mutation
percentage

0.2 0.2

MRinit 0.083 0.041

MRdamp 0.965 0.965

determined by the transfer function [89]. According to E. Rashedi et al. [94], this

function should be selected considering the following criteria

• The transfer function’s range should be limited to [0,1] interval, because it

presents the probability that a particle needs to update its position.

• A transfer function should provide a high position updating probability in the

case that the absolute value of particle’s velocity is large. Since particles with
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large absolute value of velocity are far from the best solution, they need to

update their position with a high probability.

• A transfer function should also present a low position updating probability, in

the case that the absolute value of the particle’s velocity is small.

• The output value of a transfer function should increase along with velocity

increments. Particles having great velocity are going far away from the best

solution, so they should change their position vector in order to go back to their

prior positions.

• The output value of transfer function also should decrease along with velocity

decrements.

The transfer function with the aforementioned features is a good choice for mapping

the continuous search space to discrete space while maintaining the original searching

principles of the optimization algorithm, such as Gbest and Pbest concepts in PSO.

S. Mirjalili et al. [89] proposed a modified BPSO algorithm based on v-shaped

transfer function with different position updating rules. The authors introduced six

new transfer functions classified into two families, s-shaped and v-shaped. Evaluation

results indicated that v-shaped family of transfer functions with respect to their own

position updating method can enhance the performance of the original BPSO in both

local optima avoidance and convergence rate aspects. Therefore, this study uses the

v-shape transfer function to improve the algorithm performance. In this regard, new

transfer function and position updating rules are considered as follows [89]

T (vtik) =| vtik√︁
1 + (vtik)

2
|, (4.15)

IF (rnd < T (vt+1
ik )) THEN xt+1

ik = (xt
ik)

−1

ELSE xt+1
ik = xt

ik

(4.16)
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where, (xt
ik)

−1 is the complement of xt
ik. The advantage of this method is that v-

shaped transfer functions do not force particles to take 0 or 1 values. However, they

encourage particles to keep their current positions when their velocity values are low

or switch to their complements when their velocity values are high.

Otherwise, the M-BPSO-V keeps the same configuration as M-BPSO-S, while its

transfer function and position updating rules are superseded by (4.15) and (4.16),

respectively.
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Chapter 5

Simulation Results and Analysis

According to the model setup and related constraints for preserving the thermal com-

fort of the occupant, the heat pump schedule has been determined for the following

scenarios introduced in prior chapter:

• Optimization of HP schedule not considering occupant comfort

– Optimization of HP with 30 minutes time interval resolution (N/30)

– Optimization of HP with 15 minutes time interval resolution (N/15)

• Optimization of HP schedule considering occupant comfort with static off-time

– Optimization of HP with 30 minutes time interval resolution (C/S/30)

– Optimization of HP with 15 minutes time interval resolution (C/S/15)

• Optimization of HP schedule considering occupant comfort with dynamic off-

time

– Optimization of HP with 30 minutes time interval resolution (C/D/30)

– Optimization of HP with 15 minutes time interval resolution (C/D/15)

This chapter presents the scheduling results obtained using GA, M-BPSO-S and M-

BPSO-V with respect to these scenarios. All algorithms are tuned and use the same

configuration in terms of population size, iteration budget and number of function
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evaluations (NFEs), as detailed in chapter 4. All algorithms are executed using the

same computing resources. To allow a fair comparison. All scheduling simulations

were executed 50 times and the best results are reported and analyzed. In addition,

details on distribution of all 50 simulation results are also presented. So that their

variability can be examined as a proxy for consistency of the individual algorithms.

5.1 Optimization of HP Schedule Not Considering

Occupant Comfort

In this scenario, the thermal comfort of occupants is not considered. Therefore, the

maximum allowed continuous off-time of heat pump is not relevant and thus not

considered as a constraint.

5.1.1 Optimization of HP with 30 minutes time interval res-
olution

In this scenario the time resolution is set to 30 minutes. Accordingly, the minimum

running time of the heat pump is 30 minutes.

To simulate the heat pump scheduling, in addition to all previously presented

parameters, the required heat pump running time during the optimization period

needs to be determined. Since the heat pump should compensate the heat losses to

the outdoor environment for keeping the indoor temperature close to the reference set

point, finding the heat loss amount is the main step toward the determination of heat

pump running time. The amount of heat loss while satisfying the indoor reference

temperature is estimated by substituting the T ref
IN in (3.6), resulting in the following

expression

Qt
LS = KHS(T

ref
IN − T t−1

OUT). (5.1)

Given the heat loss flow in each time interval, the total amount of heat loss during
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the optimization period is calculated as follows

Qtotal
LS =

∑︁48
t=1 Q

t
LS∆t

= 110.103MJ.
(5.2)

As previously mentioned, the heat pump should satisfy the heat demand to main-

tain the indoor temperature close to the reference temperature set point. The heat

generation flow of the pump during the optimization period can be calculated by

substituting the T ref
IN in (3.7) as follows

QHP = γARϕHP(THP − T ref
IN )

= 10.383MJ/h.
(5.3)

Given the heat flow of the pump together with heat demand during the optimization

period, the required heat pump running time (HPRRT) can be calculated as follows

HPRRT =
Qtotal

LS

QHP

= 10.60hrs,

(5.4)

corresponding to 22 time slots based on considered time interval resolution and min-

imum running time of the heat pump. To ensure that the required running time

of the heat pump (HPRRT) is satisfied during the scheduling progress, a new con-

straint regarding the required heat pump running time is considered and its violation

is penalized. The penalty is determined from the deviation of the running time of the

heat pump from its prescribed limit. The following term is added to original objective

function (4.6).

Fpenalty(| HPRRT −
Nintvl∑︂
t=1

HP t
status |) (5.5)

The result of the scheduling simulations using the three selected optimization al-

gorithms are provided in the following sections.

5.1.1.1 Results using GA

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the GA are illustrated in Fig. 5.1. As a reminder, the
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indoor temperature dynamics is simulated and updated using (3.5), (3.6) and (3.7).

Since in this case the algorithm only seeks to minimize the cost, the heat pump is

kept continuously off for a long time, especially during the time with relatively higher

electricity prices.
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Figure 5.1: Heat pump schedule and corresponding indoor temperature (N/30 GA)

Fig. 5.2 illustrates the variation of minimum indoor temperature and costs over the

course of 500 iterations. It is clear that the cost minimization leads to a significant

temperature drop which has a negative effect on the thermal comfort of the occu-

pants. The variation of minimum indoor temperature versus electricity cost during

the optimization progress is shown in Fig. 5.3.

As previously explained, the HP scheduling simulations were executed 50 times

and the best results achieved by each algorithm are reported. In this regard, the

performance of GA in terms of the best-obtained cost and minimum indoor tempera-

ture over 50 execution times are shown in Fig. 5.4a and Fig. 5.5a, respectively. The

graphs show that GA reached the global optima point in all runs which shows its

consistency in solving the problem. The same is confirmed by the histograms in Fig.
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Figure 5.2: Minimum indoor temperature and cost variation (N/30 GA)
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Figure 5.3: Search space trajectory of cost vs. minimum indoor temperature (N/30
GA)
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5.4b and Fig. 5.5b.
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Figure 5.4: The best achieved costs during each run (N/30 GA)

0 10 20 30 40 50
Run time of algorithm

12.4

12.6

12.8

13.0

13.2

13.4

13.6

Be
st

-a
ch

ei
ve

d 
M

in
im

um
 T

em
p 

Va
ria

tio
n(

°C
)

GA

(a) Minimum temperature

12.4 12.6 12.8 13.0 13.2 13.4
Min indoor Temperature(°C)

0

10

20

30

40

50
Ru

nn
in

g 
tim

e

GA

(b) Histogram of the minimum tempera-
ture

Figure 5.5: The best achieved min temp during each run (N/30 GA)
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5.1.1.2 Results using M-BPSO-S

The heat pump running schedule and indoor temperature corresponding to the best

result found by M-BPSO-S are shown in Fig. 5.6. The optimized schedule is nearly

the same as the schedule found using the GA, keeping the heat pump continuously

off for a long period to minimize the overall energy cost. However, M-BPSO-S did

not converge to the global optima point.

The variation of minimum indoor temperature and cost during the optimization

progress is illustrated in Fig. 5.7. While GA converged to global optimum cost and

corresponding indoor temperature, the M-BPSO-S algorithm has not converged to

the optimum point during the optimization progress in allotted number of iterations.

More information about minimum indoor temperature changes versus electricity cost

is provided in Fig. 5.8.
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Figure 5.6: Heat pump schedule and corresponding indoor temperature (N/30 M-
BPSO-S)

Results obtained by M-BPSO-S algorithm during the 50 runs are illustrated in Fig.

5.9 and Fig. 5.10. The graphs show that this algorithm suffers from inconsistency.
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Figure 5.7: Minimum indoor temperature and cost variation (N/30 M-BPSO-S)

15 16 17 18 19
Min_Indoor Temp(°C) per Iteration

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Co
st

s (
$)

 p
er

 It
er

at
io

n

M-BPSO-S

Figure 5.8: Search space trajectory of cost vs. minimum indoor temperature (N/30
M-BPSO-S)
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The histograms show that in most runs the algorithm converged costs around 2.4 $,

while the minimum temperature range varies more widely from 14 °C to 17.5 °C.
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Figure 5.9: The best achieved costs during each run (N/30 M-BPSO-S)
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Figure 5.10: The best achieved min temp during each run (N/30 M-BPSO-S)
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5.1.1.3 Results using M-BPSO-V

The heat pump running schedule and indoor temperature profile corresponding to the

best result achieved by M-BPSO-V are shown in Fig. 5.11. As the other algorithms,

M-BPSO-V attempts to minimize cost, therefore the heat pump is kept continuously

off for a long time, especially during the time with relatively higher electricity prices.

The variation of minimum indoor temperature and cost during the optimization

progress is illustrated in Fig. 5.12. The M-BPSO-V algorithm has converged to

the optimum cost and corresponding indoor temperature after 31 iterations. It is a

slightly slower than GA, but significantly better than M-BPSO-S. More information

about minimum indoor temperature changes versus electricity cost is provided in Fig.

5.13.
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Figure 5.11: Heat pump schedule and corresponding indoor temperature (N/30 M-
BPSO-V)

Fig. 5.14 and Fig. 5.15 show the costs and the minimum indoor temperature

values achieved by M-BPSO-V over the 50 runs. Both graphs and histograms show

high consistency of results provided by this algorithm.
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Figure 5.13: Search space trajectory of cost vs. minimum indoor temperature (N/30
M-BPSO-V)
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Figure 5.14: The best achieved costs during each run (N/30 M-BPSO-V)
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Figure 5.15: The best achieved min temp during each run (N/30 M-BPSO-V)
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5.1.2 Optimization of HP with 15 minutes time interval res-
olution

In this scenario the time interval resolution is set to 15 minutes. Accordingly, the

minimum running time of the heat pump is 15 minutes.

As previously explained, for simulating the heat pump scheduling, the required

running time of the heat pump during the optimization period should be determined

considering the heating energy demand. Since in this scenario the time interval reso-

lution has changed, all analyses regarding the heat loss flow and required heat pump

running time must be updated. Based on (5.1) and (5.2), the updated total amount

of heat loss during the optimization period is, Qtotal
LS = 109.987MJ . The heat flow of

heat pump is the same as before, QHP = 10.383MJ/h, because there are no changes

in heat pump parameters and reference temperature setting. Given the total amount

of heat loss and heat flow of the heat pump, the required heat pump running time is

HPRRT =
Qtotal

LS

QHP

= 10.59hrs,

(5.4)

corresponding to 43 time slots based on 15 minutes time interval resolution and the

the minimum running time constraint. While the amount of heat loss and the required

running time of the heat pump is nearly the same as the prior scenario, the required

number of running time-slots not doubled despite doubling the time resolution in

comparison to the previous scenario. It is expected that the higher time interval

resolution will lead to a more accurate mapping between running time and running

time-slots and result in more energy cost savings.

The results of heat pump scheduling simulation using GA, M-BPSO-S and M-

BPSO-V algorithms are presented in the following sections.
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5.1.2.1 Results using GA

The heat pump running schedule and indoor temperature profile corresponding to the

best result obtained using the GA are illustrated in Fig. 5.16. Since in this case, the

maximum allowed continuous off-time constrain was not applied, the heat pump was

kept continuously off for a long duration of time, mainly during the higher electricity

price intervals.
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Figure 5.16: Heat pump schedule and corresponding indoor temperature (N/15 GA)

Fig. 5.17 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. Based on the graph, the GA converged to the optimum

cost and corresponding indoor temperature in less than 100 iterations.

More details of minimum indoor temperature changes versus electricity cost are

provided in Fig. 5.18.

As mentioned before, due to the stochastic nature of metaheuristic algorithm, the

HP scheduling simulation using GA was executed 50 times and the best results are

presented. The performance of GA in terms of best obtained cost and minimum
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Figure 5.18: Search space trajectory of cost vs. minimum indoor temperature (N/15
GA)
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indoor temperature over the course of 50 runs are shown in Fig. 5.19 and Fig. 5.20.

The graphs and histograms show that the algorithm successfully converged to the

global optimum cost and minimum indoor temperature in all runs.
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Figure 5.19: The best achieved costs during each run (N/15 GA)
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Figure 5.20: The best achieved min temp during each run (N/15 GA)
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5.1.2.2 Results using M-BPSO-S

The heat pump running schedule and indoor temperature corresponding to the best

result found by M-BPSO-S are shown in Fig. 5.21. Since the algorithm looks to

minimize the cost, the heat pump is kept continuously off during several periods.

The algorithm did not converge to the optimum point.

The variation of minimum indoor temperature and costs over 500 iterations are

shown in Fig. 5.22. It is clear that after 100 iteration the algorithm got trapped in

local optima and was not able to escape during the remaining simulation time.

The variation of minimum indoor temperature versus electricity cost during the

optimization progress is shown in Fig. 5.23. The graph shows that cost reduction

leads to indoor temperature decrease which has negative effect on the thermal comfort

of occupants.
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Figure 5.21: Heat pump schedule and corresponding indoor temperature (N/15 M-
BPSO-S)

More details regarding the obtained results by M-BPSO-S algorithm provided in

Fig. 5.24 and Fig. 5.25. The graphs and histograms show that algorithm was not
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Figure 5.22: Minimum indoor temperature and cost variation (N/15 M-BPSO-S)
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Figure 5.23: Search space trajectory of cost vs. minimum indoor temperature (N/15
M-BPSO-S)
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consistent and got trapped in different local optima points during the optimization

progress. In more than 60% of runs, the algorithm converged to cost around 2.53 $,

which is far from the optimum point.
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Figure 5.24: The best achieved costs during each run (N/15 M-BPSO-S)
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Figure 5.25: The best achieved min temp during each run (N/15 M-BPSO-S)
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5.1.2.3 Results using M-BPSO-V

The heat pump running schedule and indoor temperature corresponding to the best

result found by M-BPSO-V are shown in Fig. 5.26. The optimized schedule is nearly

the same as the schedule found using the GA, keeping the heat pump continuously

off for a long period to minimize the overall energy cost.

The variation of minimum indoor temperature and cost during the optimization

progress is illustrated in Fig. 5.27. The M-BPSO-V algorithm has converged to the

optimum cost after about 100 iterations, slower than the GA. More information about

minimum indoor temperature changes versus electricity cost, is provided in Fig. 5.28.
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Figure 5.26: Heat pump schedule and corresponding indoor temperature (N/15 M-
BPSO-V)

As the other algorithms, the M-BPSO-V algorithm was executed for 50 times.

More information on the distribution of the results during this set of simulations is

provided in Fig. 5.29 and Fig. 5.30. The graphs and histograms illustrate that the

algorithm was fully consistent since it converged to the global optimum in all runs.
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Figure 5.27: Minimum indoor temperature and cost variation (N/15 M-BPSO-V)
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Figure 5.28: Search space trajectory of cost vs. minimum indoor temperature (N/15
M-BPSO-V)
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Figure 5.29: The best achieved costs during each run (N/15 M-BPSO-V)
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Figure 5.30: The best achieved min temp during each run (N/15 M-BPSO-V)
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5.2 Optimization of HP Schedule Considering Oc-

cupant Comfort with Static off-time

In this scenario, the thermal comfort of occupant is considered through the application

of the fixed maximum allowed continuous off-time of heat pump constraint.

5.2.1 Optimization of HP with 30 minutes time interval res-
olution (C/S/30)

In this scenario the time slot resolution as thus minimum running time of the heat

pump is set to 30 minutes.

As previously explained, for simulating the heat pump scheduling, the required

running time of the heat pump during the optimization period must be determined

considering the heating energy demand. Since the thermal dynamics of the building

in this scenario is the same as for N/30 scenario, the analyses regarding the heat

loss flow and required heat pump running time are not updated and the same values

are used. The difference between this scenario and N/30 scenario is the considera-

tion of occupant comfort based on static off-time approach. Hence, the maximum

allowed continuous off-time of heat pump with respect to the reference temperature

set point and the minimum acceptable temperature is set as 3 time slots. Details

of the calculation of maximum continuous off-time of heat pump are presented in

chapter 4.

5.2.1.1 Results using GA

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the GA are illustrated in Fig. 5.31. Since in this case,

the maximum allowed continuous off-time constrain was applied, the heat pump was

not kept continuously off for a long period of time.

Fig. 5.32 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. As seen in the graph, the GA quickly converged to the
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Figure 5.31: Heat pump schedule and corresponding indoor temperature (C/S/30
GA)

optimum cost and then it significantly improved the minimum indoor temperature

over few iterations.

More details of minimum indoor temperature changes versus electricity cost are

provided in Fig. 5.33. It shows that, after converging to the cost optimum, the GA

significantly improved minimum indoor temperature during the remaining iterations.

As mentioned before, the HP scheduling simulation using GA was executed 50 times

and the best results are reported. The performance of GA in terms of best obtained

cost and minimum indoor temperature over the 50 running times are illustrated in

Fig. 5.34 and Fig. 5.35, respectively. The histograms show that in more than 25

runs, the GA was not able to escape the local optima.
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Figure 5.32: Minimum indoor temperature and cost variation (C/S/30 GA)
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Figure 5.33: Search space trajectory of cost vs. minimum indoor temperature
(C/S/30 GA)
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Figure 5.34: The best achieved costs during each run (C/S/30 GA)
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Figure 5.35: The best achieved min temp during each run (C/S/30 GA)
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5.2.1.2 Results using M-BPSO-S

Fig. 5.36 shows the heat pump running schedule and indoor temperature correspond-

ing to the best result obtained using M-BPSO-S. The occupant thermal comfort is

considered by enforcing the maximum continuous off state of the heat pump.

Fig. 5.37 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. More details of minimum indoor temperature changes

versus electricity cost are provided in Fig. 5.38. The graph shows that the algorithm

converged to the optimum cost after about 450 iterations but it could not enhance

the temperature to reach to optimum value during the remain simulation time.
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Figure 5.36: Heat pump schedule and corresponding indoor temperature (C/S/30
M-BPSO-S)

Since the scheduling simulation using M-BPSO-S was executed 50 times and the

best records are presented, more information regarding the obtained results during

whole execution period are presented in Fig. 5.39 and 5.40. The histograms show

that in about 15 runs the algorithm reached to optimum costs but never converged

to corresponding optimum temperature.
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Figure 5.37: Minimum indoor temperature and cost variation (C/S/30 M-BPSO-S)
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Figure 5.38: Search space trajectory of cost vs. minimum indoor temperature
(C/S/30 M-BPSO-S)
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Figure 5.39: The best achieved costs during each run (C/S/30 M-BPSO-S)
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Figure 5.40: C/S/30 M-BPSO-S-The best achieved min temp during each run
(C/S/30 M-BPSO-S)
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5.2.1.3 Results using M-BPSO-V

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the M-BPSO-V are illustrated in Fig. 5.41. Since in

this case, the maximum allowed continuous off-time constrain was applied, the heat

pump was not kept off for a long duration of time.

Fig. 5.42 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. While the cost optimization leads to temperature de-

crease, the algorithm successfully increases the minimum indoor temperature. More

details of minimum indoor temperature changes versus electricity cost are provided

in Fig. 5.43. It shows that, after converging to the cost optimum, the M-BPSO-V

significantly improved minimum indoor temperature during the remaining iterations.
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Figure 5.41: Heat pump schedule and corresponding indoor temperature (C/S/30
M-BPSO-V)

As mentioned before, the HP scheduling simulation using M-BPSO-V was executed

50 times and the best results are reported. The performance of M-BPSO-V in terms

of best obtained cost and minimum indoor temperature over the 50 runs are shown

70



0 100 200 300 400 500
18.75
19.00
19.25
19.50
19.75
20.00

M
in

_In
do

or
 T

em
pe

ra
tu

re
(°

C) M-BPSO-V

0 100 200 300 400 500
Iterations

2.80

2.85

2.90

Co
st

s (
$)

Figure 5.42: Minimum indoor temperature and cost variation (C/S/30 M-BPSO-V)
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Figure 5.43: Search space trajectory of cost vs. minimum indoor temperature
(C/S/30 M-BPSO-V)
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in Fig. 5.44 and Fig. 5.45, respectively. The histograms show that M-BPSO-V

performed very well since it converged to global optimum in all runs.
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Figure 5.44: The best achieved costs during each run (C/S/30 M-BPSO-V)
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Figure 5.45: The best achieved min temp during each run (C/S/30 M-BPSO-V)
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5.2.2 Optimization of HP with 15 minutes time interval res-
olution (C/S/15)

In this scenario, the time interval resolution and thus the minimum running time of

the heat pump is set to 15 minutes.

As mentioned earlier, for simulating the heat pump scheduling, the required run-

ning time of the heat pump during the optimization period must be determined

considering the heating energy demand. Since the thermal dynamics of the building

in this scenario is the same as for N/15 scenario, the analyses regarding the heat

loss flow and required heat pump running time are not updated and the same values

are used. The difference between this scenario and N/15 scenario is the considera-

tion of occupant comfort based on static off-time approach. Hence, the maximum

allowed continuous off-time of heat pump with respect to the reference temperature

set point and the minimum acceptable temperature is set as 6 time slots. Details

of the calculation of maximum continuous off-time of heat pump are presented in

chapter 4.

5.2.2.1 Results using GA

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the GA are illustrated in Fig. 5.46. Since in this case,

the maximum allowed continuous off-time constrain was applied, the heat pump was

not kept off for a long period of time.

Fig. 5.47 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. As seen in the graph, the GA reduced the cost and tried

to improve the minimum temperature during the remain simulation time. While, GA

slightly improved the minimum indoor temperature for obtained cost, it was not able

to find global optima in terms of cost and corresponding minimum temperature. More

details of minimum indoor temperature changes versus electricity cost are provided

in Fig. 5.48.
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Figure 5.46: Heat pump schedule and corresponding indoor temperature (C/S/15
GA)
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Figure 5.47: GA-Minimum indoor temperature and cost variation (C/S/15 GA)
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Figure 5.48: Search space trajectory of cost vs. minimum indoor temperature
(C/S/15 GA)

As mentioned earlier, the HP scheduling simulation using GA was executed 50

times and the best results reported. The performance of GA in terms of best obtained

cost and minimum indoor temperature over the 50 running times are illustrated in

5.49 and Fig. 5.50, respectively. The histograms show that in all runs, GA was not

able to reach global optima and converged to a close sub-optimal point.
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Figure 5.49: The best achieved costs during each run (C/S/15 GA)
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5.2.2.2 Results using M-BPSO-S

Fig. 5.51 shows the heat pump running schedule and indoor temperature correspond-

ing to the best result obtained using M-BPSO-S. The occupant thermal comfort is

considered by enforcing the maximum continuous off state of the heat pump.

Fig. 5.52 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. The graph shows that algorithm was not able to converge

to optimum cost and corresponding minimum indoor temperature. More details of

minimum indoor temperature changes versus electricity cost are provided in Fig. 5.53.
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Figure 5.51: Heat pump schedule and corresponding indoor temperature (C/S/15
M-BPSO-S)

Since the scheduling simulation using M-BPSO-S was executed 50 times and the

best records reported, more information regarding the obtained results during the

whole execution period are presented in Fig. 5.54 and Fig. 5.55. The Graphs show

that algorithm was not consistent and got trapped in local optima during each run.
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Figure 5.52: Minimum indoor temperature and cost variation (C/S/15 M-BPSO-S)
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Figure 5.53: Search space trajectory of cost vs. minimum indoor temperature
(C/S/15 M-BPSO-S)
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Figure 5.54: The best achieved costs during each run (C/S/15 M-BPSO-S)
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Figure 5.55: The best achieved min temp during each run (C/S/15 M-BPSO-S)
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5.2.2.3 Results using M-BPSO-V

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the M-BPSO-V are illustrated in Fig. 5.56. Since in

this scenario, the maximum allowed continuous off-time constrain was applied, the

heat pump was not kept off for a long duration of time.

Fig. 5.57 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. Based on the graph, the M-BPSO-V converged to the

optimum cost and corresponding temperature after about 250 iterations.

More details of minimum indoor temperature changes versus electricity cost are

provided in Fig. 5.58. The graph shows that the algorithm attempts to improve

minimum indoor temperature while minimizing the operation cost.
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Figure 5.56: Heat pump schedule and corresponding indoor temperature (C/S/15
M-BPSO-V)

As mentioned before, the HP scheduling simulation using M-BPSO-V was executed

50 times and the best results reported. The performance of M-BPSO-V in terms of

best obtained cost and minimum indoor temperature over the 50 running times are
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Figure 5.57: Minimum indoor temperature and cost variation (C/S/15 M-BPSO-V)
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Figure 5.58: Search space trajectory of cost vs. minimum indoor temperature
(C/S/15 M-BPSO-V)
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shown in Fig. 5.59 and Fig. 5.60, respectively. The histograms show that in about

10% of runs, the M-BPSO-V converged to global optima and most of the times it

converged to a close sub-optimal point. The M-BPSO-V had superior performance

in comparison with the other two algorithms, since they were not able to find global

optima in all runs.
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Figure 5.59: The best achieved costs during each running time (C/S/15 M-BPSO-V)
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Figure 5.60: The best achieved min temp during each running time (C/S/15 M-
BPSO-V)

82



5.3 Optimization of HP Schedule Considering Oc-

cupant Comfort with Dynamic off-time

While in the prior scenarios the maximum allowed continuous off-time of heat pump

was defined as a fixed value considering the indoor reference temperature and the

minimum acceptable temperature, this scenario use a dynamic approach for deter-

mining the continuous off-time of heat pump based on the actual indoor temperature

and minimum acceptable temperature. This provides the algorithm more flexibility

for scheduling the heat pump running time. In this regard, the allowed continuous

off-time penalty is determined from the deviations of the actual indoor temperature

and the minimum acceptable indoor temperature, as detailed in chapter 4.

5.3.1 Optimization of HP with 30 minutes time interval res-
olution (C/D/30)

Since the thermal dynamics of the building in this scenario is same as N/30 scenario,

the analyses regarding the heat loss flow and required heat pump running time are

not updated and the same values are used. In addition, the time interval resolution

and thus the minimum running time of the heat pump is set to 30 minutes.

5.3.1.1 Results using GA

The heat pump running schedule and indoor temperature profile corresponding to the

best result obtained using the GA are illustrated in Fig. 5.61. Since in this case, the

allowed continuous off-time constrain was determined dynamically, the heat pump

was not kept off for a long duration of time.

Fig. 5.62 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. Based on the graph, the GA quickly converged to the

optimum cost and then significantly improved the minimum indoor temperature over

few iterations.

More details of minimum indoor temperature changes versus electricity cost are

83



0 200 400 600 800 1000 1200 1400

20

22

24

In
do

or
 T

em
pe

ra
tu

re
(°

C)

GA

0 200 400 600 800 1000 1200 1400
Time(Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

HP
_S

ta
tu

s

Figure 5.61: Heat pump schedule and corresponding indoor temperature (C/D/30
GA)

provided in Fig. 5.63. It shows that, after converging to the cost optimum, the GA

significantly improved minimum indoor temperature during the remaining iterations.

As mentioned before, the HP scheduling simulation using GA was executed 50 times

and the best results are reported. The performance of GA in terms of best obtained

cost and minimum indoor temperature over the 50 running times are illustrated in

Fig. 5.64 and Fig. 5.65, respectively. The histograms show that only in about 10%

of runs, the GA converged to global optima and most of the times it converged to a

close sub-optimal point.
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Figure 5.62: Minimum indoor temperature and cost variation (C/D/30 GA)
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Figure 5.63: Search space trajectory of cost vs. minimum indoor temperature
(C/D/30 GA)
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Figure 5.64: The best achieved costs during each run (C/D/30 GA)
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Figure 5.65: The best achieved min temp during each run (C/D/30 GA)
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5.3.1.2 Results using M-BPSO-S

Fig. 5.66 shows the heat pump running schedule and indoor temperature correspond-

ing to the best result obtained using M-BPSO-S. The occupant thermal comfort is

considered by enforcing the continuous off state of the heat pump, determined dy-

namically.

Fig. 5.67 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. The algorithm could not achieve to global optima in

terms of both the electricity cost and minimum indoor temperature. More details

of minimum indoor temperature changes versus electricity cost are provided in Fig.

5.68.
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Figure 5.66: Heat pump schedule and corresponding indoor temperature (C/D/30
M-BPSO-S)

Since the scheduling simulation using M-BPSO-S was executed 50 times and the

best records are presented, more information regarding the obtained results during

whole execution period are presented in Fig. 5.69 and 5.70. The histograms show

that the algorithm got trapped in various local optima points during the execution
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Figure 5.67: Minimum indoor temperature and cost variation (C/D/30 M-BPSO-S)

19.2 19.3 19.4 19.5 19.6
Min_Indoor Temp(°C) per Iteration

2.60

2.65

2.70

2.75

2.80

Co
st

s (
$)

 p
er

 It
er

at
io

n

M-BPSO-S

Figure 5.68: Search space trajectory of cost vs. minimum indoor temperature
(C/D/30 M-BPSO-S)
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Figure 5.69: The best achieved costs during each run (C/D/30 M-BPSO-S)
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Figure 5.70: The best achieved min temp during each run (C/D/30 M-BPSO-S)
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5.3.1.3 Results using M-BPSO-V

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the M-BPSO-V are illustrated in Fig. 5.71. Since in

this case, the allowed continuous off-time constrain determined dynamically, the heat

pump was not kept off for a long duration of time.

Fig. 5.72 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. While the cost optimization leads to temperature de-

crease, the algorithm successfully increases the minimum indoor temperature. More

details of minimum indoor temperature changes versus electricity cost are provided

in Fig. 5.73. It shows that, after converging to the cost optimum, the M-BPSO-V

significantly improved minimum indoor temperature during the remaining iterations.
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Figure 5.71: Heat pump schedule and corresponding indoor temperature (C/D/30
M-BPSO-V)

As mentioned before, the HP scheduling simulation using M-BPSO-V was executed

50 times and the best results reported. The performance of M-BPSO-V in terms of

best obtained cost and minimum indoor temperature over the 50 running times are
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Figure 5.72: Minimum indoor temperature and cost variation (C/D/30 M-BPSO-V)
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Figure 5.73: Search space trajectory of cost vs. minimum indoor temperature
(C/D/30 M-BPSO-V)
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shown in Fig. 5.74 and Fig. 5.74, respectively. The graph shows that M-BPSO-V con-

verged to global optimum more than 25 times which proves its superior performance

in comparison with the other algorithms considered in this thesis.
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Figure 5.74: The best achieved costs during each run (C/D/30 M-BPSO-V)
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Figure 5.75: The best achieved min temp during each run (C/D/30 M-BPSO-V)
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5.3.2 Optimization of HP with 15 minutes time interval res-
olution (C/D/15)

In this scenario, the time interval resolution and thus the minimum running time of

the heat pump is set to 15 minutes.

Since the thermal dynamics of the building in this scenario is same as N/15 scenario,

the analyses regarding the heat loss flow and required heat pump running time are

not updated and the same values are used.

5.3.2.1 Results using GA

The heat pump running schedule and indoor temperature profile corresponding to the

best result obtained using the GA are illustrated in Fig. 5.76. Since in this case, the

allowed continuous off-time constrain was determined dynamically, the heat pump

was not kept off for a long duration of time.

Fig. 5.77 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. Based on the graph, the GA quickly converged to the

optimum cost and then significantly improved the minimum indoor temperature over

few iterations. More details of minimum indoor temperature changes versus electricity

cost are provided in Fig. 5.78. It shows that, after converging to the cost optimum,

the GA significantly improved minimum indoor temperature during the remaining

iterations.

As mentioned before, the HP scheduling simulation using GA was executed 50 times

and the best results are reported. The performance of GA in terms of best obtained

cost and minimum indoor temperature over the 50 running times are illustrated in Fig.

5.79 and Fig. 5.80, respectively. The histograms show that the algorithm converged to

optimum cost in 12 runs, while in about 5 runs it reached to corresponding optimum

temperature.
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Figure 5.76: Heat pump schedule and corresponding indoor temperature (C/D/15
GA)
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Figure 5.77: Minimum indoor temperature and cost variation (C/D/15 GA)

94



19.0 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8
Min_Indoor Temp(°C)per Iteration

2.50

2.55

2.60

2.65

2.70

2.75
Co

st
s(

$)
pe

r I
te

ra
tio

n

GA

Figure 5.78: Search space trajectory of cost vs. minimum indoor temperature
(C/D/15 GA)

0 10 20 30 40 50
Run time of algorithm

2.480

2.485

2.490

2.495

2.500

Be
st

-a
ch

ei
ve

d 
Co

st
s V

ar
ia

tio
n(

$)

GA

(a) Costs

2.485 2.490 2.495 2.500
Costs($)

0

5

10

15

20

25

30

35

Ru
nn

in
g 

tim
e

GA

(b) Histogram of the costs

Figure 5.79: C/D/15 GA-The best achieved costs during each run (C/D/15 GA)
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Figure 5.80: C/D/15 GA-The best achieved min temp during each run (C/D/15 GA)
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5.3.2.2 Results using M-BPSO-S

Fig. 5.81 shows the heat pump running schedule and indoor temperature correspond-

ing to the best result obtained using M-BPSO-S. The occupant thermal comfort is

considered by enforcing the continuous off state of the heat pump, determined dy-

namically.

Fig. 5.82 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. The graph shows that algorithm did not converge to opti-

mum cost and corresponding minimum indoor temperature. More details of minimum

indoor temperature changes versus electricity cost are provided in Fig. 5.83.
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Figure 5.81: Heat pump schedule and corresponding indoor temperature (C/D/15
M-BPSO-S)

Since the scheduling simulation using M-BPSO-S was executed for 50 times and the

best records are presented, more information regarding the obtained results during

whole execution period are presented in Fig. 5.84 and Fig. 5.85. The histograms show

that the algorithm got trapped in various local optima points during the execution

period.
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Figure 5.82: Minimum indoor temperature and cost variation (C/D/15 M-BPSO-S)
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Figure 5.83: Search space trajectory of cost vs. minimum indoor temperature
(C/D/15 M-BPSO-S)
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Figure 5.84: The best achieved costs during each run (C/D/15 M-BPSO-S)
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Figure 5.85: The best achieved min temp during each run (C/D/15 M-BPSO-S)
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5.3.2.3 Results using M-BPSO-V

The heat pump running schedule and indoor temperature profile corresponding to

the best result obtained using the M-BPSO-V are illustrated in Fig. 5.86. Since in

this scenario, the allowed continuous off-time constrain was determined dynamically,

the heat pump was not kept off for a long duration of time.

Fig. 5.87 illustrates the variation of minimum indoor temperature and costs over

the course of 500 iterations. Based on the graph, the M-BPSO-V converged to the

optimum cost in about 200 iterations and then significantly improved the minimum

indoor temperature over few iterations.

More details of minimum indoor temperature changes versus electricity cost are

provided in Fig. 5.88. It shows that, after converging to the cost optimum, the M-

BPSO-V significantly improved minimum indoor temperature during the remaining

simulation time.
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Figure 5.86: Heat pump schedule and corresponding indoor temperature (C/D/15
M-BPSO-V)

As mentioned before, the HP scheduling simulation using M-BPSO-V was executed
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Figure 5.87: Minimum indoor temperature and cost variation (C/D/15 M-BPSO-V)
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Figure 5.88: Search space trajectory of cost vs. minimum indoor temperature
(C/D/15 M-BPSO-V)
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50 times and the best results are reported. The performance of M-BPSO-V in terms

of best obtained cost and minimum indoor temperature over the 50 running times are

illustrated in Fig. 5.89 and Fig. 5.90, respectively. Graph shows that in more than

15 runs the algorithm converged to optimum cost, while in only 9 runs reached to

corresponding optimum temperature. As seen, in most runs the algorithm converged

to a close sub-optimal point.
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Figure 5.89: The best achieved costs during each running time (C/D/15 M-BPSO-V)
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5.4 Analysis

Analysis regarding the results obtained by the three algorithms in the six scenarios

are provided in this section. In these simulation experiments, the performance of

algorithms are evaluated. In addition, the influence of time resolution and the static

vs. dynamic approach regarding the determination of maximum allowed continuous

off-time of heat pump on the scheduling problem are investigated.

5.4.1 Algorithm Performance

5.4.1.1 N/30 Scenario

The results obtained by the algorithms in the N/30 scenario in which the thermal

comfort of occupants was not considered are summarized in Table 5.1. The table

indicates that minimization of electricity cost can lead to significant drop of indoor

temperature, negatively effecting the thermal comfort of the occupants. The results

show that GA and M-BPSO-V reached to global optima (cost of 2.3098$ and minimum

indoor temperature of 12.93°C), but M-BPSO-S did not converge to the global optima

point. Considering the NFEs and iteration number for first visit of global optima, the

GA reaches the optima in smaller number of steps than M-BPSO-V. In particular,

the GA converged to the global optima in 23 iterations or after 14300 NFEs (11.50s),

while M-BPSO-V took 31 iterations or 19100 NFEs (7.40s). Since all algorithms were

executed using the same computing resources, the wall time can be considered as a

fair comparison parameter. The table proves that M-BPSO-V is faster than GA since

its wall time records (total time and first visit of the optimum point) are significantly

shorter than GA.
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Table 5.1: Summary of simulation results in the N/30 scenario

Results GA MBPSO-S MBPSO-V

Cost($) 2.3098 2.3544 2.3098

Minimum
Temperature (°C)

12.93 14.48 12.93

Temperature
Avg. (°C)

19.83 20.00 19.90

Total NFEs (-) 300500 300500 300500

Total iterations
(-)

500 500 500

Total Wall time
(s)

335.37 117.60 124.61

NFE for first
visit of the global
optima

14300 - 19100

Iteration No. for
first visit of the
global optima

23 - 31

Wall time for
first visit of
global the optima
(s)

11.50 - 7.40
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5.4.1.2 N/15 Scenario

The results obtained by each algorithm in the N/15 scenario (thermal comfort of

occupants was not considered) are presented in Table 5.2. Similarly to the the N/30

scenario, the electricity cost reduction leads to significant temperature decrease with

a negative effect on the thermal comfort of occupants. The table shows that GA

and M-BPSO-V converged to global optima (cost of 2.2572$ and minimum indoor

temperature of 12.98 °C), but M-BPSO-S could not reach this point during the whole

optimization progress. The GA converged to optimum point after 80 iterations or

48500 NFEs (62.21s) while M-BPSO-V achieved this point in 103 iterations or 62300

NFEs (40.61s). Considering the NFEs and number of iteration for first visit of global

optima, GA reaches the optima in smaller number of steps than M-BPSO-V. However,

the total wall time and the wall time for first visiting of global optima indicate that

M-BPSO-V is the fastest algorithm. Since the algorithms are executed using the same

computing resources, the wall time would be a fair comparison parameter.
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Table 5.2: Summary of simulation results in the N/15 scenario

Results GA MBPSO-S MBPSO-V

Cost($) 2.2572 2.4469 2.2572

Minimum
Temperature (°C)

12.98 16.44 12.98

Temperature
Avg. (°C)

19.78 20.71 19.76

Total NFEs (-) 300500 300500 300500

Total iterations
(-)

500 500 500

Total Wall time
(s)

492.73 189.82 208.28

NFE for first
visit of the global
optima

48500 - 62300

Iteration No. for
first visit of the
global optima

80 - 103

Wall time for
first visit of the
global optima (s)

62.21 - 40.61
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5.4.1.3 C/S/30 Scenario

To address the negative effect of cost optimization on thermal comfort of occupants,

both electricity cost and indoor temperature variations must be considered in the heat

pump scheduling problem. Hence, in this scenario, the second objective is enforced

through the fixed maximum continuous off-state of the heat pump. The summary

of simulation results obtained by GA, M-BPSO-S and M-BPSO-V in the C/S/30

scenario are provided in Table 5.3. The results indicate that GA and M-BPSO-V

achieved to global optima point (2.7775$, 19.44°C). However, the M-BPSO-S algo-

rithm converged to optimum cost, but it could not achieve the optima on the sec-

ond objective during the optimization period. The table shows that GA converged

to global optimum in 21 iterations or 13100 NFEs (11.47s). In comparison, the M-

BPSO-V algorithm reached to this point within 93 iterations or 56300 NFEs (22.05s).

At first glance, the performance of GA is faster than the M-BPSO-V algorithm. How-

ever, GA does not provide consistent results, as shown in Fig. 5.34 and Fig. 5.35. The

graphs show that during 50 runs, GA got several times trapped in local optima points,

while M-BPSO-V successfully converged to global optima in every execution shown

in Fig. 5.44 and Fig. 5.45. In addition, the total wall time shows that M-BPSO-V

algorithm is generally faster than GA.
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Table 5.3: Summary of simulation results in the C/S/30 scenario

Results GA MBPSO-S MBPSO-V

Cost($) 2.7775 2.7775 2.7775

Minimum
Temperature (°C)

19.44 19.16 19.44

Temperature
Avg. (°C)

21.32 21.08 21.36

Total NFEs (-) 300500 300500 300500

Total iterations
(-)

500 500 500

Total Wall time
(s)

333.82 113.97 122.01

NFE for first
visiting of global
optima

13100 - 56300

Iteration No. for
first visiting of
global optima

21 - 93

Wall time for
first visiting of
global optima (s)

11.47 - 22.05
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5.4.1.4 C/D/30 Scenario

The simulation results achieved by all algorithms in the C/D/30 scenario are sum-

marized in Table 5.4. The results show that GA and M-BPSO-V algorithm reached

the global optimal point (2.5332$, 19.10°C). However, M-BPSO-S only converged to

values close to the optima. The table shows that the performance of GA in terms

of fast convergence to global optima is better than M-BPSO-V algorithm. Since the

table shows the best results achieved by each algorithm after 50 executions, more

detailed analysis is required to compare the performance of the optimization algo-

rithms. As mentioned earlier, the details regarding the performance of GA in each

execution are illustrated in Fig. 5.64 and Fig. 5.65. They show that GA converged to

global optimum cost and temperature in 6 times. In comparison, the analysis of the

M-BPSO-V results (Fig. 5.74 and Fig. 5.75) indicate that M-BPSO-V converged to

optimum cost and temperature more than 25 times. Therefore, it can be concluded

that M-BPSO-V algorithm is more consistent than GA.
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Table 5.4: Summary of simulation results in the C/D/30 scenario

Results GA MBPSO-S MBPSO-V

Cost($) 2.5332 2.5779 2.5332

Minimum
Temperature (°C)

19.10 19.33 19.10

Temperature
Avg. (°C)

21.27 21.23 21.26

Total NFEs (-) 300500 300500 300500

Total iterations
(-)

500 500 500

Total Wall time
(s)

322.84 99.63 100.58

NFE for first
visit of the global
optima

16100 - 63500

Iteration No. for
first visit of the
global optima

26 - 105

Wall time for
first visit of the
global optima (s)

11.93 - 20.51
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5.4.1.5 C/S/15 Scenario

The simulation results obtained by all algorithms in the C/S/15 scenario are illus-

trated in Table 5.5. The results show that only M-BPSO-V algorithm reached the

global optima point (2.4911$, 16.50°C). Although, GA and M-BPSO-S did not con-

verge to the optima, their results are close to optimum value. The performance of GA

is better than M-BPSO-S since its results are relatively closer to the global optima.

Table 5.5: Summary of simulation results in the C/S/15 scenario

Results GA MBPSO-S MBPSO-V

Cost($) 2.5135 2.6138 2.4911

Minimum
Temperature (°C)

17.34 18.12 16.50

Temperature
Avg. (°C)

20.80 20.72 20.60

Total NFEs (-) 300500 300500 300500

Total iterations
(-)

500 500 500

Total Wall time
(s)

534.14 235.81 240.99

NFE for first
visit of the global
optima

- - 148700

Iteration No. for
first visit of the
global optima

- - 247

Wall time for
first visit of the
global optima (s)

- - 116.89
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5.4.1.6 C/D/15 Scenario

To mitigate the negative effect of cost minimization on occupants comfort in terms

of indoor temperature, the second objective (indoor temperature) is enforced to op-

timization problem through maximum allowed continuous off-time constraint of heat

pump based on dynamic approach. The simulation results achieved by all algorithms

in the C/D/15 scenario are illustrated in Table 5.6. The results show that GA and

M-BPSO-V algorithm reached the global optima point (2.4807$, 19.10°C). Although,

M-BPSO-S did not converge to optima, its best result is close to optimum value.

The table shows that the performance of GA in terms of fast convergence to global

optima is better than for M-BPSO-V algorithm. The table shows the best results

achieved by each algorithm after 50 execution times. As mentioned earlier, details

about the performance of GA algorithm in each execution are shown in Fig. 5.79 and

Fig. 5.80. They show that while GA converged to optimum cost 12 times, it only

achieved to optimum corresponding minimum indoor temperature 5 times. Thus, the

global optima convergence rate of GA is 10% for this problem. In comparison, the

analysis of the M-BPSO-V results shown in Fig. 5.89 and Fig. 5.90 indicate that

M-BPSO-V converged to optimum cost in 18 times while in 9 cases it also reached

corresponding optimal minimum indoor temperature. As a result, the global optima

convergence rate of M-BPSO-V is 18%, or about twice that of GA. The results also

confirm that in the cases where the algorithms do not reach the global optima point,

their results are still close to the optimum values.
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Table 5.6: Summary of simulation results in the C/D/15 scenario

Results GA MBPSO-S MBPSO-V

Cost($) 2.4807 2.6143 2.4807

Minimum
Temperature (°C)

19.10 19.40 19.10

Temperature
Avg. (°C)

21.05 21.08 21.06

Total NFEs (-) 300500 300500 300500

Total iterations
(-)

500 500 500

Total Wall time
(s)

487.23 194.78 203.00

NFE for first
visit of the global
optima

43100 - 149300

Iteration No. for
first visit of the
global optima

71 - 248

Wall time for
first visit of the
global optima (s)

55.41 - 99.16
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According to the presented analysis and evaluations, the performance of M-BPSO-

V was superior to the other two algorithms in terms of consistency, ability to converge

to global optima in all scenarios, fast convergence and short execution time.

5.4.2 Time resolution and off-time methods

To analyse the influence of time resolution and different off-time determination ap-

proaches (static and dynamic) in heat pump scheduling optimization, the results of

the best performed algorithm (M-BPSO-V) in different scenarios are compared. Ta-

ble 5.7 shows the results of M-BPSO-V algorithm in all six scenarios. According to

the table, increasing the time resolution led to more cost reduction which is due to

the more accurate mapping between required running time of the heat pump and its

required running time-slots. In particular, the required running time-slots of heat

pump in the scenarios with 30 minutes time interval resolution is equal to 22, while

this number in scenarios with 15 minutes time interval resolution is 43. Hence, the

reduction of the duration of heat pump operation can bring more savings.

While higher time resolution leads to higher cost savings, it could have negative

effect on the thermal comfort delivered to occupants. According to the table and

results regarding the C/S/30 and C/S/15 scenarios in which the thermal comfort

is enforced through static off-time of heat pump, the use of higher time resolution

leads to about 3°C drop of minimum indoor temperature. Hence, the algorithm could

not satisfy the thermal comfort in C/S/15 scenario. While the maximum allowed

continuous off-time in C/S/30 and C/S/15 scenarios is equal, the total running time

duration of heat pump in C/S/15 scenario is shorter than C/S/30 due to more efficient

mapping between operating time and time-slots. Therefore, the thermal discomfort

in C/S/15 is caused by two reasons: shorter running time of heat pump and the

static off-time approach which do not provide sufficient flexibility for the algorithm

to benefit from the thermal storage capacity of the building.

The results in C/S/30 and C/D/30 indicate that the use of dynamic off-time ap-
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proach can lead to more cost reduction while maintaining the thermal comfort of

occupants. The dynamic approach provides more flexibility for the algorithm to take

advantage of thermal storage capacity of the building. As a result, the algorithm can

efficiently use the time intervals with higher electricity price while maintaining the

thermal comfort delivered to occupants. The results achieved in C/D/15 scenario

indicate that the dynamic approach successfully addressed the thermal discomfort

caused by higher time resolution while benefiting from its cost reduction capability.

It should be mentioned that higher time resolution leads to longer wall time, it-

erations or NFEs for the first visit of the global optima. This is due to the increase

of the number of dimensions which makes the optimization problem more complex.

In particular, while the number of dimensions in the scenarios with 15 minutes time

interval resolution is two times greater than the scenarios with 30 minutes resolution,

their complexity is greater in power of two.
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Table 5.7: Summary of M-BPSO-V results in the 6 considered scenarios

Results N/30 N/15 C/S/30 C/D/30 C/S/15 C/D/15

Cost($) 2.3098 2.2572 2.7775 2.5332 2.4911 2.4807

Minimum
Tempera-
ture
(°C)

12.93 12.98 19.44 19.10 16.50 19.10

Temperature
Avg.
(°C)

19.90 19.76 21.36 21.26 20.60 21.06

Total
NFEs (-)

300500 300500 300500 300500 300500 300500

Total
iterations
(-)

500 500 500 500 500 500

Total
Wall
time (s)

124.61 208.28 122.01 100.58 240.99 203

NFE for
first visit
of the
global
optima

19100 62300 56300 63500 148700 149300

Iteration
No. for
first visit
of the
global
optima

31 103 93 105 247 248

Wall
time for
first visit
of the
global
optima
(s)

7.40 40.61 22.05 20.51 116.89 99.16
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Chapter 6

Conclusions and Future Work

This thesis presents an intelligent approach for scheduling the heat pump in a residen-

tial building using three metaheuristic optimization algorithms: the GA, M-BPSO-S

and M-BPSO-V. The M-BPSO-S and M-BPSO-V algorithms represent an original

contribution of this thesis to improve the performance of the original BPSO algo-

rithm. The performance of all algorithms is evaluated through a number of sim-

ulation experiments. Accordingly, the scheduling simulations are executed for two

main scenarios, and several sub-scenarios. While the main scenarios determine con-

sideration or negligence of the thermal comfort delivered to occupants, sub-scenarios

distinguish the simulation time resolution and methodology (static or dynamic) used

for characterizing the allowed continuous off-time of the heat pump. These scenarios

are classified as follows

• Optimization of HP schedule not considering occupant comfort

– Optimization of HP with 30 minutes time interval resolution (N/30)

– Optimization of HP with 15 minutes time interval resolution (N/15)

• Optimization of HP schedule considering occupant comfort with static off-time

– Optimization of HP with 30 minutes time interval resolution (C/S/30)

– Optimization of HP with 15 minutes time interval resolution (C/S/15)

117



• Optimization of HP schedule considering occupant comfort with dynamic off-

time

– Optimization of HP with 30 minutes time interval resolution (C/D/30)

– Optimization of HP with 15 minutes time interval resolution (C/D/15)

The obtained simulation results confirmed that the proposed approach can suc-

cessfully optimize the heat pump operation scheduling. According to the provided

analysis, the proposed M-BPSO-V algorithm had the best performance in terms of

the consistency, global optimality and the speed of convergence. The M-BPSO-S re-

sults indicate that adding the mutation operator to original BPSO could not, on its

own, address all shortcomings of the standard BPSO. Therefore, another modification

of the search procedure was implemented resulting in M-BPSO-V algorithm. In this

algorithm, the sigmoid transfer function is superseded with a V-shaped function. The

transfer function is the main part of BPSO that maps the continuous search space to

discrete binary space. The results show that new transfer function and its position

updating rules significantly improve the performance of the BPSO algorithm.

The best GA run reached the global optimum in a smaller number of NFEs and

iterations than M-BPSO-V. However, it did not perform consistently well across all

runs. In addition, the wall time to reach the optimum for M-BPSO-V was shorter

than that of GA in most runs, and the total wall time of M-BPSO-V algorithm runs

was significantly shorter in all scenarios. For some scenarios, such as C/S/15, the

GA did not find the global optima at all, while M-BPSO-V did. This was despite

the fact that the diversity of GA population was increased through the use of a

combination of a single point and double point crossover operators. This confirms

that, among the optimization approaches examined in this thesis, the M-BPSO-V

algorithm introduced in this thesis offers the best performance for solving the heat

pump scheduling problem. For ease of comparison, additional plots regarding the

performance of the algorithms examined in this thesis are provided in the appendix.
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To demonstrate the quality of the optimization results, consider the following quan-

titative analysis of the process. The optimal results obtained by GA and M-BPSO-V

in N/30 and C/D/15 scenarios show that, by spending extra 17 cents, the mini-

mum indoor temperature can be increased by 6.17°C and reach the value of 19.10 °C.

Further analysis of the results obtained by the algorithm proposed in this thesis, M-

BPSO-V, confirms that increasing the time resolution can lead higher cost reduction,

but at the cost of reduced thermal comfort. The analysis of the static vs. dynamic

off-time determination indicates that dynamic approach can bring more cost reduc-

tion while maintaining the thermal comfort of occupants. Employing a higher time

resolution with the dynamic off-time approach leads to the highest cost reduction

while maintaining the thermal comfort.

Future research on the intelligent heat pump scheduling problem may take a num-

ber of different avenues. First, the approaches examined in this thesis can be further

enhanced to improve their overall performance in solving this specific problem. An-

other possibility is to examine the working schedule of other appliances and to take

into account the internal heat gain. More advanced options include consideration of

the occupancy status of the house or prediction of the activities of the occupants.
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Appendix A: Complementary Plots
for Simulation Results

A.1 N/30 Scenario
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Figure A.1: Minimum indoor temperature and cost variation (N/30)
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Figure A.2: Search space trajectory (N/30)
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Figure A.3: The best achieved costs during each run (N/30)
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Figure A.4: The best achieved min temp during each run (N/30)
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A.2 N/15 Scenario
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Figure A.5: Minimum indoor temperature and cost variation (N/15)

13 14 15 16 17 18 19
Min_Indoor Temp(°C) per Iteration

2.3

2.4

2.5

2.6

2.7

2.8

Co
st

s(
$)

 p
er

 It
er

at
io

n

N/15 Scenario
GA
M-BPSO-S
M-BPSO-V

Figure A.6: Search space trajectory (N/15)
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Figure A.7: The best achieved costs during each run (N/15)
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Figure A.8: The best achieved min temp during each run (N/15)
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A.3 C/S/30 Scenario
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Figure A.9: Minimum indoor temperature and cost variation (C/S/30)
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Figure A.10: Search space trajectory (C/S/30)
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Figure A.11: The best achieved costs during each run (C/S/30)
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Figure A.12: The best achieved min temp during each run (C/S/30)
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A.4 C/S/15 Scenario
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Figure A.13: Minimum indoor temperature and cost variation (C/S/15)
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Figure A.14: Search space trajectory (C/S/15)
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Figure A.15: The best achieved costs during each run (C/S/15)
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Figure A.16: The best achieved min temp during each run (C/S/15)
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A.5 C/D/30 Scenario
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Figure A.17: Minimum indoor temperature and cost variation (C/D/30)
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Figure A.18: Search space trajectory (C/D/30)
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Figure A.19: The best achieved costs during each run (C/D/30)
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Figure A.20: The best achieved min temp during each run (C/D/30)
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A.6 C/D/15 Scenario
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Figure A.21: Minimum indoor temperature and cost variation (C/D/15)
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Figure A.22: Search space trajectory (C/D/15)
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Figure A.23: The best achieved costs during each run (C/D/15)
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Figure A.24: The best achieved min temp during each run (C/D/15)
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