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ABSTRACT - . p 7
In Chapter 1 homogeneous dynamo theory;ﬁs reviewed

b . vt s
Present observational knowledge of astrophysital magnetic CoLn

b4

x ) B
fields is summarized, and is shown to provide less support

for Schuster's hypothesié than the data presented by ‘ g

Warwick (1971)—. N

In Chapter 2 a review of "mean fleld electrodynamics”’
is presented, and the dispersion relation for "wave" mean
fields is discussed. A new terminology is suggested for ng

several types of stationary, homogeneous turbukence.
X

In Chapter 3 it is shOWn that, to-a first approximaé?
tion, stationary, homogeneous turﬁulence whose average, ‘
properties are invar%ant under space-time inversion (PT-

invariant turbulenceg cannot support dynam@Iaction in ag:infw

compressible fluid. This result is in direct contradiction
s

to the work of Lerche and Low (1971). However, "mirror-

symmetric” turbulence which is not PT-invariant cannot de-

finitely be ruled out as a sBurce of dynamo action.

The decay of "wave" mean fields in the presence of
PT-invariant turbulence is studied. It is shown that

spatially periqdic mean fields can exist only if the cOrrel-
atidn tensor of the turbulence satisfies certain conditions.
Conditions are aléo establiéhed éof‘validity of the Radler

(1968) expfession for Jturbulent magngg}c‘diffusivity", when

the mean field does not oscillate with time. When ‘the mean



. o

-

field is oscillatory, Radler's techniques are-not useful.

o

Numerical results are presented forvoséillatinq mean fields,

showing the relationship between meaA field frequency\hpd
wavelength and Lhe propertles of the- turbulence.. The
pOSblblllty of a "sporadic helicity” dynamo. is dLscussed.
In Chapter‘A a cechnique is presented for dealing
with nonstaLiGnar?, inheﬁogepeous;turbulence within the

framework of mean field:electrodynamics- The technique is

-

applied to the kinematic d&namo problem.

In Chapter 5 temporal. variations of~mégnetic fields

~

are discussed. The "q%(r)" kinematic dynamo i. a spherical .
shell is studied {n detail. It is shown that the dep&ndence

of a on x near the spherical boundary can control the

time behaviour ofﬂthe!external magnet ic field- Integral

properties of the dynamo equatlons for more qeneral

f—

velocity distributions are dlscussed and the possibility of

4 ”

"boundary~layer contrel" is Congidered in detail. It is
“found that in the geodynamg, temporal variations of -‘the

dipole moment on scales less, than 10%’ years may be

explainmed by bouddaryelayer'phenomena.

p An Chapter 6 the hydromagnetlc dynamo problem is -

studled and the likelihood of "boundary layer control"riﬂ
the geodynamo is assessad. - It ;s_shown that "dipole wobble™
a - - _

can be explained as an effect of the slow, systematic g
A\
decrease of the Earth's rate of rotatlon, if the klnemaxlc
Y L
v130031ty at the core—mantle 1nterface is approximately

e v o . LY
, . . i . i i ) V ) B
“ . . -



1-2 mz/sec . Non-periodic variations of the axial dipole

moment on the time scale of geomagnetic polarity transitions

can also be explained by this model. ~

e
The effects of inhomogeneous, locally isotropic,

turbulent forces in the Earth's core are considered. The

’ {
characteristic turbulent length scale and the ratio of the

diffusion time on this length scale .to the effective

turbulent time scale are important parameters. 1In most

cases, a rotation-dependent a-effect is dominant when the

mean magnetic field is small.
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1. A GENERAL REVIEW OF DYNAMO THEORY

1.1 Astroghxs{ggﬂ magnetic fields

1.}.1 Introduction, and summar X of observatidns

Althouyh large-scale magnetic fields have long been

an important feature of both planeﬁary physics and astro-
physics, it is only in recent years that significant pro-
gress has been made in understanding how these fields are

generated and maintained. 1In part, this improved under-

standing is due to a marXQd increase in' the amount of obser-

vational data avatlable on astrophysical.maqnetic fields.
“Thé fieiﬂs;ﬁf;iﬁféfest fali'into four broad categories.
- - A

i

a, fﬁeak“ ast uphyslcal mqlnetlc fields (Table 1)

This category includes interqalactic, interstellar,

and 1n€‘fpian€tary;magneLiu flglds, Of these, perhaps

" "4he most interesting from a theoretical p@lnt of view is

thé flelﬁfﬁf‘vfder “3-4-%x 10 61@ in thé rotating,

géré ous disk of the Galaxy,

b. Planetary magnetic fields (Ta¥les 2 and 3)

This Cateqcrj_Lanudgs!the¢§01oidal surface fields of
the Earth (~0.6 G aé}ﬁhgimagnetic poles) and Jupiter

L-‘I it ey
” A /,T

x
In this thesls, SI1 unlts«w1ll be used as a general rule.,

“JHowever, astrophy31cal magnetlc flelds,WLll ofﬁen be quobted

iF

in gauss (1.G = 10 4,tesla). See'Apgﬁndlx 1 for a summary

of the SI system of units.

24



55 . ' 2
. ’
l(lO—SO G at the magnetic poles). None of the other
planets have been observed to have magnetic fields, but
Satura, Uranus, and Neptune could "have undetected fields
of the order of a few qaﬁss (see section 1.1.3). Mars;a
Venus, and Mencury are thought to be "non~magnetic"
planets.

€. Solar magnetic fields (Table 4)

<

This category includes the general background solar
field (of the order of a few gauss), and the much "
stronger local fields (up to several thousgnd gauss)

observed in magnetically active regions.

d. Stellar magnetic fields (Table 5)

;Tﬁis @¢ategory includes the fields observed in some
bf;éht stars (of order floz G); the stronqerifields
(of order 10°-10% G) inferred from SpéCﬁrOSCOpié obser~ -
‘vation of the so—éalled “magnetic stars"; the still

stronger fields (of order 10/ G) abserved in magnetic

white dwérfs; and the extremely strong fields (of order

1017 G  or hiqh%r) inferred from observations of

pulsars. It e
P *

In this th%sis we s?all be’ concerned mainly with fields ofg

planetary type, although the techniques employed can be

L4

applied tO:Othér types of field as wq}l.r ' N

It should be noted that the numbers in parentheses in

Tables 1-8 refer to a special,section of footnotes, to be

/
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1.1.2 Dynamo theory and astrophysical magnetic fields

The connecting link between the various types of mag-
netic field mentioned in section 1.1.1 is the presence of a
conducting fluid medium - e.g. planetary fluid cores; con-
ducting planetary atmospheres, stellar atmospheres, and the
in%erstellar gas. Thils observation leads to the conjecture,
first -advanced by Larmor (1919), that the fields are hydro-
magnetic in origin. Evidence in support of this conjecture
is provided by the fact that some of the fields vary in a
complicated way with time. The Earth's magnetic fiéld, for
example, has existed in roughly its pfesent form fér at
least 2.5-2.7 x 109 years (McElhinny and Evans, 1968), but
archaeo~ and paléedmaqnetic observations indicate that the

field flﬁc*uates on a wide range of time scales, and

reverses 1its polarity at irregular intervals (Bullard, 1968;

Braginekit, 197&5, 1971; MéEZhinny, 1971) - These considera~
tions Fffectively rule out any possibility that the geomag—

netic field is due to permanent magnetism (BuZZafd; 1948,

1949; RikitaRe, 1966a,,p. 13ff.), and make it highly unlike-

ly that the field is due to intrimsic "rotational” magnetism
(see section 1.1.3). Attention is therefore focussédron
eleCtriC?Curgéntéiin:thg Earth's fluid core as the sourcde of
thg field. Thé most iikely source 6f‘the electromotive‘
forcé needed to maintain these;éurrents fof timéé long com-
pared with the ohmic decay time (10%-10% years) is the

motion of cofe material across the geomagnetic lines of

Vs
%
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force. The study of this process, in which the currents
generated reinforce the magnetic field which gives rise to
the driving e.m.f., i1s known as the "homogeneous dynamo

problem" .
' *
g are maintained

&

‘:rs), for example,

Not all astrophysical magnetic field

by "dynamo action". In pulsars (neutren s
"...most internal motions except for axially symmetric
differential rotation are damped out...within a few seconds
a?ter [the] neutron star is formed"™ (Kuderman, 1972).
Differential rotation. of this type will convert poloidal
lines of force into torqidaizlines ofiforcé, and build up
extremely lérge'internal toroidal fieihs, but the @otidh
cannot regenérate the poloidal field frohrﬁhe torogdal
(Elsasser, 18947, 1955). Dynamczéction wiil therefore not:
occur. :' i ) i
It is generally thought that ™...the initial magnetié
field of a pulsar is...a compressed fossil field COAS;rViﬂq
the flux already present in it$ parent ;t?r core befofé
collapse"” (Ruderman, 1972). In support of this hypgxhé;is
it is argued Lhat the producﬁ BR2 (where B 1is a typicélﬁ
poléidai magnetic flux density, and R ftheistellar radius)
is approximately‘the same for magneticcstars,.mégnefic white

dwarfs, and pulsars. The evidence inisupport of this claim

is summarized in the first column of Table 7. Values of

. over three orders of maénitude; however, the ranges for

10

A

BR2 for Ap stars,’magnetié white dwarfs, and'pulsars range



magnetic white dwarfs and pulsars are very nearly t?e same.
One difficulty with the argument is the scarcity of magnetic
white dwarfs. Only four of the more than fifty white dwaffs
which have been identified have observable magnetic fields.

Any fields present in the "normal” white dwarfs must be less

than 1-2 x lOS G (Angel and Landstreet, 1970; Preston, 1970;

Trimhble and Greenstein, 1972). As indicated.in Table 7,
fields of this size ére at least one order of magnitude too
small to become’pulsar fields uhéer "flux~-conserving
compression”. ‘ - R

© It is argued by some workers (e.g. Mestel, 1971) that
all large stellar fields are compreséed "%ossil fields".
ﬁowever, dynamo models havé been préposéd’for magnetic stgrs
(e.g. Krause, 1971). "Small® stellar fields like that of
Ethe Sun, on the’other hand, afe generally thought to be due
tojdynamo action because of their extreme cémplexityrand%
variability. %QWéVET, soméiaufhoré (e.g. Pidding?@n,:j97éc)
feel that dynamo action is an ‘insufficient explaﬁation even

Al

for solar magnetic fields. ’

A similar situation exists with redard to the
Galactié magnetic field. One school of thought (e.g.
Parker, 1969a, 1971a) claims that thé fieid in the galactic
disk 1s maintained by dynamo action assoc1ated w1th turbu—
lent motion, while. another le.g. Pzdézngton 1972a, b) |
'argues that the f1eld is more likely to be a compressed

i

‘ "primeval” field. ‘ ‘

11
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The remaining class of fields‘— planetary magnetic
fields -~ is almosf universaliy thought to be generated by
dynamo action (see, however, Lyttleton, 1870, and section

. o
1.1.3). In the remainder of this chapter we shall consider
the homogeneous dynamo theory as it applies to planetary
fields, with particular emphasis on the magnetic field of

¢

the Earth.

12
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1.1.3 gghgster's_bzgothesig

Before continuing with a survey of dynamo theory, we
must consider the possibility of intrinsic "rotational” mag-
netic fields. The conjeéture that astrophysical fields are
a necessary consequence of rotation has been ?dvanced
5@Véra1 times in the last 60 years (Schuster, 19?2; Wileon,
1923; Blackett, 1947, 1948%; Milné, 1960 ; Papabetr@u, 19560;
Luchak, 1951; Moroaz, 1967; Sufdiﬂ, 1971; éee the discussion
in Rikitake, 1966a, p. I'8). 1Interest has persisted despite
Blackett's experimental Qemonstration that the hypothesis
in its original form is false (Blackett, 1952). The basic
-claim is that ;

ij(l) = constant N
where J is thézaiqular momentum of the body and T(l) the
magnetic dipole moment. This relationship wili be referred
to as “SC%UStéfo hyﬁcghesis” (Warwick, 1971).

Using Séhgstéf's hypothegis, Bluckett (1947) was able

to predict surface magnetic fields of 30 G for jupitér and

3 x 106 G for white dwarfs ~ values which are not unreason-

able in the 1ight of recent observational evidence.

~ r

Warwick (1971) has exam;ned the relatlonshlp between angular
momentum and dipole moment 1n astrophyslcal bodies, and has
concluded that Schuster's hypothe51svls not inconsistent
with the obsefvational data. He sugges%s thA; the Moon is

the body most.likely to provide a critical test of the

hypothesis. " , !

le



Since only surface fields are directly observable, it
is nuecessary to write échuster's hypothesis in a modified
form. For a dipole magnetic field, the flux density at
radius R and magnetic co-~latitude 6 is

B(R,0) = (wiarr”) 231 4 3co0s?e}

1/2
where B 1is the magnetic permeability. The angular ﬁomen—
tum of a body is given by

J = I
where @ 1s the rotation frequency and 1 the moment of
inertia. 1If it is assumed that u = U, = constant, and that

all magnetic fields are evaluated at the same value of 6 '

Schuster's*hypothesis can be rewritten . -

IQ/BR3 = rconstagpt

where. R 1is identified as the radius of the body in
question. In this form, the hypothesis can be applied di~-
rectly to the data a%ai}q@le for piane£afy and stellar
bodies . e

Since Warwick's paﬁer was written, new data have be-~
come availablé, particularly for t;e Moon (Sharp, Russell,
and Coleman, 1973). Furthérﬁofe, Warwick uses a:value for -

the dipole moment of Mars which is considerably in excess of

4

17

the estimate-giveéen by Smith, et al. (1965; see Michaux, 1967,

p. 51), even though'both-values'are derived from the data

provided by Mariner' 4. ' (Warwick's value of the Mars/Earth
'dipole moment ratio is < 0.01 , -while that of Smith, et al.
is < 0.0003 .) The revised evidence, to be used as a test

o
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of Sthuster's‘hypothesis is presented in the fourth column

of Table 8. The observed values of the angular momentum/

dipolé moment ratio for planetary bodies span nearly three

orders of magnitude. It would therefore appear that

Schuster's hypothesis is incorrect. This CODClUSién is in

agreement with Blackett's experimental result (Blackett,
952) .

Values for the angular momentum/dipole moment ratio
for stellar bodies are given in the last two columns of
Table 7. 1In most cases (pu}sars being the exception}) a
crude estimate of angular momentum has been obtained by
making use of the relationship

1 = MR .

M is the mass of the body concerned, and

propor®ionality depends on the internal d Jsity7distributioﬁ.

Assgmigg that «the constant of propqrtionalityrin each case

;s thé same as that for the éun, we may write Schuster's

hypothes%s as )
(M/Mg] (2/9,1/ [B/B,] [R/Ry) 1 ;

whgr? the Eubscript ® refers to solar valués.. From the last

column of fable 7 it will be seen that when the stellar

(1) (1)
]/[JE/TE

planetary vaxues given in Table 8, the range spanned in-

values of tJ/T ] are added to the 1list of

creases to neirly 5 orders of magnitude. (N.B. The sub-

script "E" ref&rs to values for the Earth.)

,_\

\
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The possibility remains, however, that Schuster's
hypothesis is useful as an empirical relationship between
the magnetic fields of bodies in which the physical condi-

tions are not grossly different. Warwick (1971) has drawn

+

Y
attention to the close agreement between the values of

J/T(l) for the‘Earth gnd Jubiter. Scarf (1872) has used
Schuster's hypothesis to predict the maqﬁetic field of
Saturn from that qbserved for Jupiter, and concludes that
the fighdiﬁe obtains (a polar field of 2 G;, based on
Warwick's (1863) value of 10 G . for the field of Jupiter)
is not inconsistent with radio observations., A fupthef
estimate could be made to preaict the fields of Uranus and
Ne%tune (~2 G Vfor a 14 ¢ field on Jupiter, and ~7 G for
a 680 G field on Jupiiér; see Table 8). However, this
approach carries with it all the dangers of "geophysical
numerolbgy" (Jacobs, 1970a), and should be use@iwith extreme
caution. T

It is interestiné to note that;Schuster'§ h;;othesis
is not consistent with both the "flux—conserving compfession"
hypothesis for the evolution of magnetic stars, and the i
conservation of angular momentum. Assuming both Schuster's

hypothesis an@ the "flux-conservation" hypothesis to be

N A

valid, so that J/BR3 and BR2 are conserved, we find that

, R I
J/R must be conserved as well. A stellar contraction-would

therefore have to be accompanied by a loss of angular

momentum proportional to the change in radius. On the other



"hand, if we assume both Schuster's hypothesis and the con-

. . 3
servation of angular momentum to be valid, we see that BR

must be conserved in place of BR2 . It will be seen from

the first column of Table 7 and the values of
in Table 6 that the spread of values of [B/B®]

much less than that for values of [B/BQJIR/R@]

R/R® given

2
[R/RG] is
3

20
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1.2 The homogeneous dynamo problem

Theoretically, the homogeneous dynamo problem invol-

ves the solutiqn of a highly complicated system of coupled
' N ‘ i -

partial differential equations. The best treatment of the

derivation of these equations is that given by P.H
(1967a). The outline given here is based on his approach.
The equations fall into four major groups, which

will be considered separately.

a. The electrodynamic équatibns. These inciude
Maxwell's equations, the constitutive relations among
the various electric and magnetic fields, Ohm's Law,
and the transformation relating the fields observed in
one refetence frahe to those observed in another in

relative motion.

7

b. The hydrodynamic equations. These include the

equations of conservation of mass and conservation of
momentum, and the constitutive equation for the total

stress tensor.

c. The thermodynamic equations. These include the

postulate of lécal the:modynamlc equllxbrlum, the equa- -

tlon of heat conduction, and the constltutlve law for
the heat gpnduction Vector ‘When COmblned with (a) and
(b) above, these equations lead to a detailed descrlp—

- ¥

tion of energy flow within the system considered.

. ) ;‘

d. The'boundary‘andfin;giai conditions.
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Over the years, the homogeneous dynamo problem has
been atta?ked on three levels, co;respondihg to the first
three groués of equations listed above. On the first level
we have the kinematic‘gynamo problem, in which. the fluid
velocity is specified (independent ‘of themagnetic field),
and the electrodynamic eéuations are considered on their
own. On the second lev;{ we %gve the hy?romagnetic dynamo
problem, in which the driving forces are specified (indepen-
dent of the Qelocity and magnetic'fieldsi) and the electro~
dynamic and hydrodynamic equations are considered,togeéher.
Finally, we.QAVeAthe full hydromégnetic dynamo problem, in

s ,
which all %E&ee groups of equations are taken into cqnside—
ration. VIn this thesis, we shall be concerned mainly with

the first two levels of attack.
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1.3 The kinematic dynamo problem
v
1.3.1 The dynamo equations
B ) //

Let us first considef th Kinemati?/ﬂyﬁﬁho-prob;em.

The form of Maxwell's equaﬂipns appropriate Edrémeviﬂg-ﬂw_”

conductor is: ' . . % B
curl H = 2 + 6u + 3D/dt .(}.l)
curl E = ~‘3§/8t (1-23
div B = 0 ) (1.3)
divp = 6 (1.4)
where E 1is the eleeﬁric field, B the'maghetic‘fﬁux T //V

Fod

density, D the electric displacement, ' H thé maghétié
field, j the electric current density, .6 the charge’
density, and u the velocity of the medium. We shall

assume ‘that’ the constitutive equations for H and D are

isptropicf ) ' Lo f
, H = B/u (1.5)
D = e | | - .6

t . 7 ‘ f_,t.” - ‘ ‘ .
where 1u, is the magnetic ﬁg}meability*and € the permitti-
vity. 1In this thesis we shall use SI units (see Appendix 1)
| 7

Il

-7 - _
u. = 41 x 10 Hem 1 everywhere. €

and assume that u o

'will be assumed constant for each material considered,

Ohm's Law, which should be valid .in a frame moving

,hocally with the medium whenever tﬁe‘particle density is



R4

"sufficientf}%@;eat" (see the discussion in P.H. Koberts,

1967, p.i.9), i's
' = GoE' , (1.7)

where the conductivity o is assumed isotropic. Primes are
used to denote fields observéd in the frame méving with the
medium. |

The equations relating the fields observed in two

I

frames in relative motion are (Landau and Lifshitz, 19561, -

§3-10;, P.H. Roberts, 1967a, p- 10) /
’ ) z‘ .\g‘g-
E' = wW{E+uxB}+ (-%) oY ,, . (1.8)
;jj; ' ) T} = —‘ ;~§ 7
- B = x..{@— gc £ } + (lffu)&-;g:-g | (1.9) E
. . :

where ¢ 1is the speéed of liqht,rand

Ay

L ¥ = {1—§:}‘V’ N | | (1.10)

A

Substituting (1.5) and (1.6) into (1.1)\and re-

N
\i

arranging terms, we have

.y A /. <3E/.
J = u S at
In the moving system, this equation reduces t93
j'= eurt B' - €/5¢ R
: 3;, making use of-(l.7r~(l;9), R S 1 N
¥ B ! . T :
L A



‘i" .
O'I“(g+_\gx§) + a’(l*)’,)g—&;"'g

T T S

“€'%{\'u(§ +§§"§) + (l-—l’“.')-g‘—;g g}

Rearranging terms,

wi{lcudB - a(E+uxB)} +

4»{“71' x§—-t’“Vx(&—;ﬂ- +~LVK[('- u)ﬂ ]
—a(x—r“)ié_,_u } +

i e R, ([geuxd) - RFy] 7 0
+ (1-6) € %[%F- g] }

1.3.2 The quasi-steady approximation

o

In the quasi-etezdy @gﬁromimation (@ H. Hoberts,
1967a, pp. 6-11), only the terms in the firstj

et of braces
in (1.11) are retained. Justif-i_cation for tli sf‘s is
obtained by examining the scaling of the various %&%ms.. We
assume that all thg_fielé@‘yary significantly on a l&ﬁgth
scale L aqd ,a"time""s‘cale T . and réplace spéce and” time

derivatives with 1 and 2

I 5 respectively. Further, we

assume that
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‘ f
and that fﬁ

€ N € & (n.<c™)

B3

Then, from (1.2),
el ~ [B|- (L/T)
and the three sets of braces in (1.11) have the ratio

e R (L/em) P (1 4R s (/em) ()

Ti

= uOlLL

R SUL o (1.12)

is a magnetic Reynolds number for the system, and
n = 1/no (1.13)
is the ﬁdgnaiic diffusivity. If (L/CT)2 is small compared
" with unity -~ i.e. if the electromagnetic and velocity fields
change very little in the time it takes light to cross the
system ~ only the first set of terms in (1.11) need be re~
tained, giving the equation

) l - , i
¥ r nourl B = E 4+ ux B (1.14) 7

&

rsimilarly, the terms in éguation (1.1) have the
ratio '

5

{IBl/uehs {131} { @/en) ® Ul /L)« { (w/em) * (]| /uLl} -

“©

3

so that, ignéring ;ermé of order (L/c’I‘)2 ,
N . / = .

=‘%ﬁcﬂil B = o(E+ uxB) (1.15)

Equation (1.15) gives,the form of Ohm's Law in the labora~

tory frame'aﬁbropriate ;o‘the~quasi-stéady approximation.

»
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”

1.3.3 The magnetic induction eguation

Taking the curl of equation (1.14) and making use of

equation (1.2), we obtain the equation

ag/at + c.ml(rlcurl Q) = O \ (1,..,16)

i

If n is independent of position, (1.16) becomes

/3¢ — nv'B =0 (1.16")

(1.16') is generally referred to as the magnetic induetion

equation.,

Equations (1.3) and (1.16), toqéther with the koun-

dary and initial conditions and a specificatiom of the REIOE /

city field u , provide a description of the kinematic B
dynamo %réblém'in its simplest form. VMOKE generally, the
kinématic dynamo problem involves finding a bg}g of fields
(u, B) which satisfyf(lﬁB), (1.6), the b@ﬁnd;?y and in%tial

o

ertain additional conditions which ar

9]

conditions, and
described in section 1.4.1.

It should be né;ed (Krau;e, 1968a,b; 5.0. Roberts,
1970a,b) that éduatién (1.3)fcanrbe regarded as an initial -
condifién. ‘The divergence of (1.16) or (1.16') gives : 7

PR
K[‘ilv 21 = 0

«

) - ! . [
If div B = 0 initially, this equation has the unique solu~
tion div B = 0 for all time. » 7 o



1.4 Solutions to the kinematic dynamo problem

1.4.1 ggggiremer: on solutions

N\

A "Solution" to the kinematic dynamo problem consists
of a pair of fields (u, B) which satisfy the following

conditions:

a. uw is an allowable flow (Gibson and Koberts, 1967;

V.H. Koberts, 1967a, p. 66). In an allowahble flow, the
velocity gradients are everywhere finite, and the equa-
tion of continuity is satisfi%d everywﬁere without
sources or sinks of mass. It must be possible to define
non-singular distributions of body f@rce and density
which will generate the flow through the ordinary Navier-—
Stokes equation, but the flow is pot required to satisfy

* the hydromagnetic Navier-Stokes equation (see section

1.6.2).

|

\
b. B 1is a fiéldﬁsatisfyiﬁq the magnetic induction equa-

o ]

~tion (1.16), subject to the boundary and initial condi-
tiops.
5 : .
c. If Vv 1is the volume occupied by the conducting fluid
medium, the magnetic energy stored in V

2 . | —
B 4, ~

v 2pM

remains constant; grows with time, or oscillates about a
mean value which itself remains constant or grows with

-

time.

31



d. The total kinetic energy in the system -
[%1’u2 dr
v
is bounded (Childress, 1968). p is the density of

the conducting flpid.

In section 1.9.1, some of the mathematical implications of

these equations will be examined in detail.

\

1.4.2 Anti-dynamo theorems

Numerous anti~dynamo theorems have been proved, pla-
cing further explicit restrictions on the nature of u and
: , . : )  Sand 10
B . These theorems, which are summarized in Tablésl, indi-~
cate that magnetic fields with a "simple" structure cannot,
in general, be maintained by a dynamo process.

: 2 , :
"...appear to be essential for any satisfactory dynamo

theory". These features are summarized as follows by Weiss

(1871b) =

"...first, the velocity cannot be wholly irregular,
for 'order does not arise spontaneously out of chaos’;
secondly, two separate types of ordered motion should be
present; and, thirdly, there should be an adequate
dissipative methanism." '

These requirements should be kept in mind as we examine the

various types of dynamb mechanism which have Been pioposed.

s

\'/l

[
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1.4.3 Existence of solutions

It has been shown that solutions to the kinemasd ic

" v dynamo problem do exist. In the decade and a half since the

~ A

first existence proofs were published (Herzenberg, 1958;
Backuss 1956), a large number gﬁfsuCCessful dynamo models
have been developed. Broa@ly sEeakinq, these models fall
into five main classes, according to the method used in
solving the induction equation. These five classes are

summarized in sections 1.4.4-1.4.8.

1.4.4 "Exact” models

Exact analytical solutions of the kinematic dynamo

problem are not common. The most important example in this
|

class is the "helical" dynamo of Lorts (1968b), which

@péraéés in an unbounded conductor, The streamlines of Q

are concentric helices with constant cross-sectional area.
IS 5 i

1.4.5 Spherical harmonic expansion models

Expansign of u and B in spherical harmonics
materially simplifies éhe equations governing kinematicr
dynamo.action in a sphere. Unfortunately, because of the,
‘"interaction” term u xhg in the inductijon équation, B
must generallyubéirepresented by aﬁ infinite set of

harmonics even when 4 has a simple form, so that trunca-



tion difficulties arise. The problem was studied by a num-
ber of workers in the late 1940's and early 1950's for'she
case of a steady magnetic field, 29B/3t = O (Hlsasser,(
1946a,b, 1947; Takéuchi aqd Shimazu*, 1962a,b, 1963, 19564;
Bullard and Gellman, 1954). However, no convincing evidence
of dynamo action was obtained. Since that time, convergent

models have been developed by Gubbins (1977, 1973) and by

Roberts and Kumar (1972).

i

1.4i6 "Sporadic” models

[

in spor;dic models the effects of the ter
curl (g x B) and nvzg in the induction equatloc
are sepa;3¢ed by choosing a "sporadic” VeIOCff} field
(Bade, 1954; Parker,}lgsg). The dynamo alternates b?tWééﬂ

. periods of motion sufficidntly rapid and short-lived for

diffusi@n to be neglected, and periods in which t%é motion
is stopped to allow for the "simplification" of spatially
complex B-fields by diffusive decay of the higher harmenics.
Successful dynamo models have been developé&d by Backus

(1958) and Tverskoy (1966), using motions in a sphere.

(See also P.H. Roberts, 1971a.)

" , , .

Backus (1957) points out that Takeuchi and Shimazu have
set Epo many boundary conditions. It is therefore highly
unlikely that their numerical "evidence" for steady dynamo

action is meaningful.

S \ : o
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-7 Asymptotic models a

|
Asymptotic dynamo models are generally characterized

by the presence of two different "length" scales. These

models fall into three major groups.

w

a. Herzenberg-type dynamos . In models of this type,

Q varies on a small length scale £ while B Dbas a

component v;;?iﬂg on a large length scale L . The

" R
magnetic Reynolds kumberlbased on the smaller length
scale is allowed to approach infinity while the ratio
, , 37 )
2/L goes to zero and the product Rm(i/L) réhnains
finite. (Herzenberg, 1968; P.H. Roberts, 1967b, pp. 956~

104; GCibson, 1968a,b, 19639; Kropachev, 1964, 1865, 1966 ;

Gailitis, 1970; FP.H. Roberts, 19¢1la.)

b. Periodic dynaﬁésj In models of this type, u is
periodic with a short wavelength & , while B is

doubly periodic with both the wavelength £ and a much
larger waveleﬁgth /L\. The magnetic Reynolds nﬁmber
?m rbasea on the sﬁorter wayelength is alléwed to . ~ 7
apbroach zero with &/L , while the pfoﬁuct R;(L/i)
remains finite. (Childress, 1967a,b,c, 1968, 1969,
1970;70.0. A)berts, 1969, 1970a,b, 1972a).

G.0. Roberts (1970a,b) has shown that "nearly all”
periodic motions in an unbounded conductor will lead to

dyn§mo action. Furthermore, Childress (1967b, 1968,

1970) has shown that a_periodic motion giving dynamo
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action in an unbounded condﬁctor retains this property
when fitted into a finite spherical volume by means of
a "cut-off" function.

G.0. KHoberts (1973; see P.H, Hob?rts, 1971b) and
GCubbine (1972, 1973) have Carrieé out numeriEal studies
of "cellular” dynamos in a sphere for axisymmetric
velocity fields 4 . While the motions considered are
not "periodic” in the sense defined above, these models

are included here for the sake of illustration.

A

c. Nearly axisymmetric dynamos. - In models of this

-~

type, u and B are required to tend toward axial
symmetry as the magnpetic Reynolds mumber approaches
infinity. (Brabinskii, 1964a,b,c; Téugh: 1967; Tough
and Cibéon, 1969; Sbward,%197ia, Jé?éa; P.H. Roberté,
1967b, pp. 105;}?7* P.H. Roberts, " 1971a. )

The ymptotlc limit’ used ln ngarZy axtbymmatch
dynamos can be 1nterpreted in terms of two "length"
scale@zlf an "azimuthal lenqth scale™ 1L is defined
by means of the fatio .

[ 1 - !u| |10 - ¢ Bl
Lo e |z 8|

£ is the lemgth scale-of variation of u and B in
/ ,

meridian planes, le the unit vector in the azimuthal

direction, and u and B the magnitudes, of u ‘and B .

The magnetic Reynolds number 'Rm‘ based on % ‘is

-



i d ;

allowed to approach infinity while &/L goes to zero

Py
¥

and the product Rm(i/L)2 remains finite.

Soward (1972a) has pointed out that, for the case of

a steady dynamo with closed streamlines, a better inter-
, .

pretation of the asymptotic limit is obtained by requi-
Fan!

ring that the integral f '
. l ks
— 24X (u.curty)
u ~ Lot . ‘?

coy 4
approach zero as R;I when Rm goes to infinity. Here
W is a scaling amplitude for the velocity field, C(x)
the Contoﬁr of a streamline, and x the posityﬁlvect0f
vf points on the streamline. The integral is, in a
sense, an average of gicurl u for the flow, and may be
considered as é measure of the helicity - a quantity
which is very important in turbulent dynamo models (see

section 1.4.8). .

1.4.8 Mean field models,

In mean field Hyn;mo models, u and B are each

represented as the sum of a statistical average and a fluc-

tuating part. The average fields u and ﬁg are assumed to

Yary on a length scale L , while the fluctuating fields. u
and g' (with zero statistical average) are assumed to vary
on a length scale £ . ' In this sense the‘problem is

related to the two-scale approach considered in the last

‘section.

4 »
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The statistical average of Ohm's Law for a moving

medium (i.e. the aver@%ye of equation 1.15) is
- ]- = o(E + ;tlxg + \‘é'xg) ’ (1.17)

~

This equation contains a "hew?'electromotive force QT;—ET
" If this e.m.f. can be fepresented as a functional of the
mean fields u and B , the mean field kinematic dynamo
problem becomes ¢losed. Considerable attention has been
. focussed on the derivation of simple representations for

u'x g' - Parker (1955) drew attention to the possibility
P~

that .

"X B' = a-B (1.18)
.~ s ~

]

Gteenbeck ‘and Krause (1586) have christened this term the

e

a-effecs. Seve{al successful a~effg%£ aynamos have been
studied, b@tﬁ for the case E = 0 (Krawse and Steenbeck,
1367; Steenbeck ﬁﬁa Krause, 1966, 1967; Moffatt, 1970a;
Leorat, 1969) and for the case uy#o0 (P&rker, 1955,
1970a,b,c, 1971a-f; Krause and Stéenbéek) 1966 ; Steeﬁb;ck
@ﬂ%ﬁ&rayse, 1966; 1967, 1968a,b; Lerche and Parker, 1971,
1972). . Models in which u'x B" has a more complicated
dependence on u and B than?that given by (1.18) have
also been studied (Steenbeck, Krause, and,R&dier, 1966 ;
Radler, 1966, 1968a,b, 1969a,b, 1970{ Krause and Radler,

7/

1871; P.H. Roberts, 1971a).

It should be noted that, to a first apprgx;m%ﬁiODf,a;

fully i'soﬁrgpic turbulent motion dannot support dynamo

action (Gilliland dnd Aldridge, 1973; Krause and Roberts,

-

40
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19758; wee section 3.2 below). In order for dynamo action to

occur, the turbulence must have helicrty (Moffatt, 196%9) -

’—T:—__’__‘I‘”‘_r
u -curl u # 0
- or be anisotropic with a preferred direction (see, for

cxample, Krause and Radler, 1971; I'.H. koberts, 197]a).

'

o4



1.5 The hydromagnetic dynamo problem

Let us now turn from the kinematic dynamo probiem to
the more complicatéd hydromagnetié_dynamo problem.' The mag-
netic flux density B must still satisfy tﬁffie?uction
equation (1.16), subject to boundary and initialggg;azfionsk
but now the velocity field u must itself be derived from
a specified body force distribufion by solving the hydro- .

dynamic equatipns subject to appropriate boundary and -

initial conditions.

L

1.5.1 The equation 6f mass conservation
: . .

~The first of the-hydrodynamic equations to be consi-

dered is the equation of conservation of mass

.D—r; = 2—-’; - R —_ H i 3
Dt 3 t Y vFf Pdivy . (1.19)

In equation (1.19),

(1.20)

Y

D . 2 ,uv
- Dt = ot +'S£ SZJ -,

is the Lagrangiah time derivative (i'e. the "material”
dérivgtive following the flow), and p isrthé density of
the conducting fluid medium. For‘a truly incompressible
fluid, ‘the left hand side of (1,19) vanishes identically,
_gi?ing :

divy = 0 - S (1.21)

l
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It 9p/9t  is didentically z
present, (1.19) reduces to
i ~ 1
div u = —~F;55-Yf3
Im the full hydromagnetic d

evaluated from the thermody

1.5.2 Thc Navler Stokes eq

ero but denslty gradients are

(1.21")

ynamo problem, Dp/Dt’ must be

namic equations.

uation Of hydromagnetlcs

The second hydrodyna

s
R.h" e

mlc equat1on of interest is the

~ equatfon of copservation. Of“mGMLnfum

PR} - g e o

where pfj is thé total gt
" forée per unit volume, and

e tOr x . The constituti

]
ﬂ\

ol

UT
CL\
ct
o
>
§oll
rt
oy
m

THREEE: ij'
where p' is theikinégic pr
t?ﬁSOf, and m&jf Fhe elect
Newtonian fluid,

Il

I

1) .,
~where v is the kinematic
kinematic: bulk viscosity.

is d€fined by

g%rﬂnq = G)E; +v

J
rees tensor, F tﬂé aﬁplied é@dy
xiira component of the position
ve equation for pij can be

form (F,ﬁiiﬁﬁﬁéﬁfs;'1967f P. 17)

Hij + mij (1L.23)

] o]
essure, Vﬁij the viscous stress
romagnetic stress tensor. For a

i

-

f{§~%v}§-§i6q f’\?{a“‘ au, ' (1.24)

(shear) viscosity and lC the

The elﬁctfomagnétié stress tensor

(G x B)

43



However, with the scaling used in deriving

. . , 2
equation (1.16), [6E] is of order - (L/cT)

—~ ~

4
a .
3%, mg = (ixlg)‘
From (1.25) and (1.15) it follows that the

(electro)magnetic stress tensor is

1 1.2
migo = BBy T gBT 8,5

(see P.H. Koberts, 1967a, p. 11). Finally,

(1.24), and (1.26),

lj X Bl , 50 that, in the quasi-steady apgr

the induction
compared with
oximattion,

(1.25)

form of the

D

L

(1.26)

from (1.23),

+f’9{2’*‘ Q-‘} *%BftBj

-2 9 ox;

|
Substituting (1. 27) into (1. 22), we
Nﬁviéivutok 8 equation of &Hdrumajﬂeflc

two alternathé forms (P, ﬁ Rub?rfb 1967a,

f?%%%i - f>+.€%/~—f1§‘A§9)chV|L}

135430} + &

614{

t

+ &

3*1{ o0X; gQ%i

depending on the form in which the Lorentz
.
writ%én. 'For the 1ncomprees¢ble case when

(1 28) and (1. 29) reduce to

. , / o
I NS U LT I

ui 9%’)} + L{urtB)x B}

obtain the

This equation has

p. 17) %

A (1.28)

+ #-Eiii—« + F;

xj

force 3 x B 1is

~

(1.21) is- valid,

44



Du/ps = —i—g{w%} + VY +F';§~ig§"+ #E (1.30)
De/pt = —pypr+ VU +-é‘-‘(wz§),§ ++F (1.31)

assuming that v is a constant. Alternatively, 1f (1.21")

is the appropriate form of the mass cohservation equation,

45

and v 1s a constanl, the terms involving density gradients

in (1.28) and (1.29) can be rewpnitten as
2 20V 2
SxlP(5-39)div g} + ax,.{f’»’(%-;, «34)}
{*2[(%—59);&-2?] + v viu

+ o[ $(ugP)Yf + TP YU ‘;YL“YP]}A

1.5.3 The hydromagpetic equations in _a rotating framé:

- d=
3

In most cases of interest, we must deal with a

rotating conducting fluid. It is therefore useful to trans—
form the hydromagnetic dynamo equations to a rxotating frame

of reference. The velocity 4 in the non-rotating frame

can be expressed as the sum ofia uniform rotation with
angular wvelocity & , and a velocity a0 relative to the-

rotating frame. o . ‘ ' L

/ , . : L

The Légrangian ime derivative (1.20) transforms as

;] -
D - ) - 4+ QX ; ‘ :
Dt~§.~— (D rotg = 9- ‘ : (1.34)
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where

D = (2 U,V . 1.35
(Dt)rat g (at)rotg, * , ~ret s 9 ! )

and ¢ 1s any vector quantity. It follows that the

Fulerian time derivative 3/at transg§orms as.

%6 = (%), + vxl@xn)xG} ~(gaXQxr) (I.36)

Applying (1.36) to the induction equation (1.16"'),.
making use of (1.33) we find that the form of the eguation
is dinvariant.

(%) B * «wt{@x)xB} ~ qv'B

= curf { Uot X B + (Qxr) x l}}

4

so that
- i O
{(®),.. - 1?‘}9 = cuf {ura x B} - (1.37)

Strictly speaking this invariance holds only if the speed
of abs@lute motion lgl is muchrless than the speed of light.
(See Trocheris, 1949; Backus, 1958; Acheson and Hide, 1573 )
Backusg (1958) points out that the correspondlng result for

~the electric field is false. :(béé Backus, 1966 for the

1

effect on E of a superposed rigid rotation.)

" Applying (l.34i to (1.33), we have |

. T2 Y“Q"rlz}\
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[BF¢
Du/Dt = (D/Dt) Urgt . + 202X U gt +(aﬂ/at)m
- v {51Qxrl*} " (1.38)
= (/D) o it + 2 x Ut + (3/pe)_ % ¥ \
+ Qx(Qxr) - (1.38")
Also, it follows from (1.33) that
T4 = ¥ b | (1.39)
B , Ay - 2 (u) b 2 (s s
‘ + i = axj(‘»‘-"ﬂ)‘ + gii(gm) (1.40)
while for any scalar field a
~D‘I/Dt (Da/Df)mt (L.41)
o %%t (“/aﬁm - (Qxr)-va (1.42)
The equation of conservation of mass in thc rutatlnq tramé
ythus has the same form as (1.19) '
* (DF/s , P v
( /l)t)ﬁ,t = '—'8’ V- Upot (1.43)
while the Navier-~Stokes equation (1.28, 1.29) becomes o
f{(]l) Ueet + 2% Upgt +(3Q/at)r“x r} -
l{w% P(5-3V)T et —-—'-mev-:‘}
~FEPNIQeel” + o {Po(Z uml & [!m],)}
9B; :
Bigx, + Fi S (1.44)
y

:+;4



Or

f’{(g?)ﬂ,.%mt + 2% dea + (3p) 1 }&

= _53;‘ p- £(3- %9)g-gm} -~ PQx(Qxr)
4+

{
2P (& Leadi + £ (ural)}

+_;T1(w£§)i§}‘ + F; (1.44°")

In this thesis we shall restrict attention to the
hydromagnetic dynamo equations in the rotating frame, and

drop’tﬁe subscript "rot". The hydromagnetic dynamo problem

is then specified by the equations o
. 0

{ %t ~qv'} B - curf (ux B)

: Dt = ~Po-u

PYpt + 2Qxu = ~fy

Ae R B
7

Q - -T‘,—g{p*f(r—%ﬂ)!'!}Q"x)‘

4+ 'V{V'g + vv-u}ho- %{ yP-yg +Yu 'Yf}

~ o o~

~(De)xs + & (7xBIx B

-

+ -fp-f (1.47
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where V) has boe

BQ

4+ —

»

P

)]

n o oassumned constant , and

- P(3-3v)v-u — $P1Qxcl? (1.48)

4

'~

In the simple /.ll('um‘[v?',‘;t;;1‘[,;[(‘ casc, (1.45)-(1.48) reduce to

{D/Dt—'lvz}g = B-yvy (1.45a)
v-u = O (1.46a)

This system must be solved for u , B ,
- e

the b@undary'and i
given. '

If density
__distribution @bés

to

e -nvt)e

= —pYp ~Qx(Qxr) ~(Oe)xr
+VVie o+ '#F(‘Zx@)ﬂﬁ
]

joif
=
jof

p  subject to
nitial conditions when F and p are
gradients are present, but the density

not vary with time, (1.45)-(1.4#®) reduce

]

B-vu + ?—(g-gf)g (1.45b).

i

g (1.46b)

1§
q

~F
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PU/pt + 2Qx¢ = - P - (Fa)xr - 7p1Qxr 1 pf
+V9iy 4+ %{%(g-gl’)yf + VP yu +gg-gf}

B-vB + 4F (1.47b)

o + A
L7

= ~5v{pr GeiNLrP} - Qx(Qxr)

s +Vv'y + ;—:—l?f- (W-9vP)YFP + vP-vy +gg-gf’}
-(PR%)xr + »é;(z:g)#g
++F : (1.47°b)
P'z p+ 5 (Z+5v)u-xp — $FAIA=1? (LAB%’;)

o

This system may be solved for u , B, and p , subject to

5

4]

the boundary and initial conditions’, when F and p ar
given, or for uw , B , and p , subject to the same condi~

tions, when F and p are specified.



1.6 The fuall }x'ydr(')lrn::fin(‘?t;i5‘ ‘Jx;)grr}('y problem - ,f,_hf‘}ff“_"l"11“_.5‘,5‘_,15

eguat lons

In most cases of interest, the hydromagnetic <dynamo
problem is incomplete without consideration of the thermo-
dynami e cquations. Two scalar C:quathions are added to the
Sy stem (tgmnh)-(1.47), qiviné nine scalar equations in the

nine unkn%'us lu,B,p,9», T ], where T is the
- > N

temperature, The additional equations can be written in the

Lorm (. 0. Noberte, 1267a, pp. 15-16, 18-21)

- du; , ‘1 49
= v.(AYT) + ﬂ;j‘a-‘éj + Lt o+ € (1.49)

équilibr}um, and a Fourier Law is assumed to hold for the
heat. conduction Vﬁctor.r Here A . is the thermal éonauctia
vity; o the volume expéésign coefficient, cp the speci-
fic heat per unit mass at Coﬁstant ﬁressure, a the adia-
w . ,

batic speed of sound, and G.s the rate, per unit volume,
at which sources of hea£ provide energy within the fluid.
In general, A, &« , and a are all functions of dehsity,
préssure, and temperature. It shouldrbe noted that effects
due to variations of chemical composition have been neg- -

lected in equation (1.50). This equation is sometimes

, .
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replaced by an equation of state, of the form

o
p = p(T, p; chemical composition) (1.50")

(6ec, for example, #Hide, 19269b).

When velocities in the system are small compared with
s - 7
the speed of sound, (1.49) and (1.50) reduce to /[

$

DT/pt = v(AYT) + n&j%‘i‘j + #J’ + € (1.51)
- .
D?/Dt = af D'T'/Dt : - (1.52)

(P.H. Roberts, 1967a, p. 16). Further simplifications may
be made once the scaling of the various terms in the equa-
tions is known (see section 6.1). The full hydromagnetic

dynamo problem requires equations (1.45)-(1.48) and (1.51)-

(1.52) to be solved for [ u, B', p , p , T ]} subject to
i - .
. e o . ! = L .
the boundary and initial conditions, once the independent

, {
body forces and sources of heat are known.



F.7 The tull hydromagnetic dynamo problem - boungdary

conditions
The boundary conditions which must be satisficd by
solutions to the tull hydromagnetic dynamo problem have been
given in some detail by P.py. kWoberts (196 7, P D= 28).

These conditions fall into three major groups, which will be

discussed scrpaM/ in the next three sections.
1.7,1 Elécgﬁgﬁégnétig_b@uﬁdarz7qgg§i§i6ns

fy a total of four

i
o

poy

The fields E and B must sati

independent scalar conditions at any sbrface of disconti-

nuity of o ., € , or u . The¢se conditions can be written

[t

in a number of equivalent forms. .Caution must be éxercised,

however, if the magnetic diffusivity n = 0 in any region

o]
[
o
"*-1
Se
ooyl
Q
TJ-M
&
™
~
s/}
o
Iy,

1967a, pp. 24-26). 1In this thesis, we

"shall deal exclusively with the case n # 0 .

Perhaps the simplest form of the e ectromagnetic

boundary conditions when n # 0 is

g xBY = o ’ .Sy
o xE) = o - (1541

A

where, n is a unit vector nbrmalzto the boundary, and the
brackets <) denote the change in the bracketted quantity
as the boundary is crossed. An alternative form of the

boundary conditions is

53



n

&, -0 (1.55)
p - B> - 0 (1.56)
<pxBY = 0 (1.57)

where @ is the electromagnetic scalar potential. If A

)

is the electromagnetic vector potential, then

E = -~ Y0 -~ 3A/Dt (1.58)
o B = Y xA (1.58")

When the fields E and B vary with time, (1.53)

and (1.54) form a completc set of boundary conditions.

However, if the fields are timé—indepeﬁdént, (1.54) reduce

to the single scalar condition (1.55), and the condition

o
w

(1L.56) must be added to give the required number of -condi-

g
s
Q
-
4]
€5

everal other conditions can be derived from (1.53)~

N
(1.54) or from (1.55)~(1.57). For example,

<{n #,2) = : ' (1.59)

g xAa> = 0 (1.59")

(always begggng in mind that n# 0 ). In general, thé
magnetic flux density, the tangential electrié field, the
normal component of electric current density, the scalar
potential, 'and the tangential vector potential arg,gll
continuous aa@ross a boundary. "e
Ap‘aﬁditiOnallcondition“exists which defines the

surface ¢harge density X at the boundary between’ two
!
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media "1 and "2,

o Al
= € n - K
X en - ED,
1 .
where the bracket >2 denotes the amount by which the

boundary value of the bracketted quantity in medium .1
exceeds the boundary value of the quantity in medium 2 .

In most cases of interest, we shall assume that the

a
~

conducting medium is surrounded by a nonconductor which
extends' to infinity in all directions. The conditions that

there be no sources at infinity can then be written

IEI = O(r;B) as 1 > =
’ | = O(*ﬁz) as 1 + ® (1.60)
[¢] =7 ©(r 7)) as 1 + = p)

1.7.2 Mechanical boundary conditions

Six independent scalar "mechanical"' boundary condi-

& “tions must be satisfied. These conditions may be written

R :

K e e

" Gariyoo 0.6
<njpij> = 0 | . (1.63)

for a surface of discontinuity separating either two
yvimmiscible fluids or a fluidvand a solid. For the latter
- f

case, if the solid is stationary (l.6%) and (1.62) combine

v . . "
@
’ S
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(1.64)

o

interface.
a

to give the condition
‘ u. =
on the velocity of the fluild at the
It should be noted that the no slip condition (1.62)
ts an idealization. However, it is widely used because of
its simplicity. Strictly speaking, we may only require

that the normal componert of the fluid velocity vanish at
In this thesis we shall follow

a fluid-soligd interface.
standard practice and apply the more stringent condition
&

(1.64) . !
When tﬂe solid boundary ig;rotatinq, (1.64)‘is~oniy
satisfied in the rotating frame of r;fﬁrﬁﬁﬁﬁ - i.e.
4. o, = 0 o | (1.64")
in fac é%lléwianthe practice.
ion 1.5.3, we éhall drop the suﬁ%crip?

introduced in
when the jboundary considered is @ fluid~solid interface.
i

ot ior
"rot" and use (1.64') in the form (i&w4).
The ation .(1.63) provides no useful information
The stresées applied by the fluidrmerely produce elastic

-

\

strains in the solid.

1.7.3 Thermal boundary conditions
Two. independent scalar "thermal" boundary conditions

R

¢
: 2

arise. These conditions may be written

/



O ; (1-.66)

M

<T D

S - . -
where  371T/9n represents the npormal componont ol theoe

Lamperature gradient at the boundary. (1.65) and (1.667
i ‘\ . \

tmply that both the normal component of thoe heat conduction

. T LI i . .
vector andithe temperature T are coptinuous across the
\ T

. FJ : 3
bmm(l:#;y . : )
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1.8 The ] 1rome S GD TR é hlem - forces
The tull hydromagnetic dynamo proble Nty Jorces

r

The full hydromagnetic dynamo ;7;1"‘0})1 em, as it applics
‘ '
Lo planctary dynamos like that of the Earth, is defined by

cquations (1.45)-(1.48), (1.51), and (1.52) ) and by the
boundary conditions (1.53)=(1.54), (1.60), and (1.64)-(1.66).
The information required before a solution is possible (even

i principle) is a complete description of the initial
e .
«onditions, the heat sources, and the form of the body force
A}
density  F . Unfortunately, very little of this infoxmation
. o
allable, amd models must be constructed in any attempt

-
o]

to match the obscorved bphavlour of the system. In addttion,
the full problem is of such formidable difficulty that
‘ B {

simplification of the equations is virtually a necess ity .

Ui

We shall discuss some possible simplifications in seccotions

#

One of the first major problems to hg considered is

the, specification of the body force density, Seav fij
A -

sibilities have been considered in the literaturc. We

ke
/"U
Ut
vJJ

shall discuss these possibilities in the remainder gf this

VSéCth)fl -

1.8.1 Buoyancy forces o . T 4

The body force density F iay well depeng laggely on

vaxlatxous of:Ehe denSlty of the fAuid’ medlum. In thc

BQUSSJnesq aporoximation (Chandrasék ar, 19€1, p..]Gf?.;
PO 7 " : ; |

-~

o
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do S frene, Thso; Speedlge ! and Veronds, 1uco; 1.H. Nolorts,
. . o

PO, g 199-200) the force density associated with these

variations is assuned to b ot the Apchfn loan torm

x
3 =0 ’ (1.67
En J . )
] i x
whaere o 1s the acocleration due to gravity, and 0 15
proportional to the cxcess density.
The case in which the density variat rons are of
4
thermal origin has been studicd by several workers
(Chandrasekiiar, 1961, Chaptera [V aped V; Taylor, 196, 1'
Malbws, 1965 Tough and Roberts, 1967; KMayeh and fl'{/([n‘r‘fn, i
To7d; Soward, 1971a, 10772a,by; Roberts and Soward, rarnz;
(%f/vﬁﬁﬁﬁ, P97y Buses, 1970b; (,0, Roberts, ’”7”b a |
. braginekii (1964d, " 1967a) has estimated the contri- 1
butions to density variations in the Earth's core from
, , . ) , L S *
théﬁmal and npon-thermal sources, and has concluded that ¢
is due mainly to grdvitational separation of 1
éiéméﬂts in- the fluid core, He has studicd thﬁ convection
of. a two~component fluid, using a generalized form of the .
R SR : . , :
rdynamo equatiens. A differgnt model of the samg type was

suqqes&ed by "Urey (1952), Jee ais@ Aﬁiyushkévi(jQ?f):

- \ B .

1.8.2 . Precessional torques’ -
; N
L) A )
. <3

If the rotatlng body of fluld is constralned to

precess ﬂnlformly wlth angular veloclty Q‘ 'about its ax1s »

V.



ot the Navieg-Stokes equation (1.47 or 1.47') . 1In the

frame rotating with angular velocity Q , this term has t he

e
form
o ‘
pFe = QxQxr - 3 v{l@a+ Q) x r]-[Q'xc]}
: +(Q'xr)-vu + Q'xu (1.68)
. ~ ~ o~ ~ ~
Malbkws (1265, 1a6#, 1971a,b) has considered the case 1in
whiioh FP is the dominant contribution to the bhody force
density. He uses' the approximation
LF = (Q@xQ)xr — 4 2{l(2Q+Qxr]-[Q'xr]}
PNP o~ r~ ~ 2 ~ o ~ ~ R ~ A~
: \
(1.68")
|
The hydrodynamics of viscous flow in a precessing

spheroidal cavity have been studied byl a number of authors

(Bohdi and Lyttleton, 18563; Stewartson and Hoberts, 19863;

Fobrrts and Stewartson, 1964), Busse (196#, .15871) has

extended the analysis to the case of a precessing -spheroidal

joi]

r. geometry is a more appropriate model of

o]

shell. The latt
e f . .
the Earth's fluid.core because of the presence of the solid

- (bee also the review by M,G. Kpchester, 1973.)

o

inner cor

1.8.3 Turbulent forces
- ’ - . . L ) e

”~

The mean field approath can be appliedifo theANayier—

Stokes equation (1.47, 1.47') as well as to the induction /ﬂ

equation (1.16)'(F.H, Robéerts, 1971a; M@ffatg,ij?Z).. Iis//

this approach the bqdy force density F is separated intT a

A i ' * : =



statistical average and a fluctuating part

R SRR O

The term u'x B'  in the "modified” Ohm' ‘Iaw (1.17) is then

-~

evaluated in terms of the mean fields g and B , and the
statistical properties of the fluctuating body force density
P\I

Moffatt «1972) has considered a model in which E'
is a homogeneous turbulent field without intrinsic helicity

- i.e.

E'-cuilfﬁi = 0

~

= = = ! 5 E f .l
‘However, in order to ensure that the fluctuating velocity

""1
84
-~
m\

field u' does have helicity, he assumes that "...ther
some selective mechanism present wﬁich leads to a net flux
of energy parallel to I [the angular velocity vector]".

Steenbeck, Krause, and Radler (1966) have considered

a quasi klnematlc dynamo model in which rotgtion in té’acts
‘ )

with dradients of density and;\tgrhulcnt intensity® to

. produce an aﬁefﬁect. HCWeVér,Vit has been pOLnted out that

-

%the turbulence p ctrum funbt¢un used by these authors is

Y

not physically realizable (Lere%e,‘jﬁ?&e)i
Theﬂgynamo model of Steenbéck, Krause, and ﬁédlér

(1966)715 not fully hy&romagnetic, sinc%‘they consider only

gradlents of the 1ntenslty of the turbulent veZoczty fleld‘

g". In' Chapter 6 we shall consider the effects due to
f ’ A Q ¥ -
gradlents of the 1nten51ty of the turbulent«jorbe denszty*

]

fleld F' .

Pz s s A
i
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Log.o4 More goncral st udi:::a Of the hydromagnet 1o Xnamo

problem

In addition to the work ment ioned above , there have
been several more general studies of the hydromagnetic

dynamo problem.  ofd fdress ( 1964, 1969) has pointed out that

!

any kKinematic dynamo can be usod as the basils of a self-
cconsistent hydromagnetic dynamo in any dynamical model
sinply by choosing the body force density In such a way that

the momentum balance cquation (1.47) is Sﬂtiﬁfiﬁdai,”OWGVQr,

; Ca . % )

In more’ realistic models where the body fo pﬂﬂslty is

spacifieéd from the start, the choice of a'dynamlcalegadél

will introduce i»n;)“r,ncn conditions which must be satis-

fied by F and B . i .
Yaylor (19635) has derived a particularly interes ing

S begg

T
b

conpistency condition which

o
=]
<
&
~)
.
ey
»<
ey
=z
3
5
2
N
Ny
L)
>
N
-

-udy of hydramagnetic dyr 14MO

Wl
rr

as the basis of a numerical

o
9]

ylor c¢opdition. arises from the
. A
maggne {.‘ﬁgéﬁ;ﬂf rophic app roximution to the Nav1ngf‘tDkéS equa~ * |

T Ts

j
7}
Iz
e
Q
-/
.
B
joi]
ul
o]
f
o
o]
(' |
-
40
Q-\‘

tion (]i4fa) for incompressible flow o .
’ 2p02 x Q@ = - Vg, + j X B+ F (1L.69) ,.

(=]

&~ s V-u =
-~ M~ i

where p is tﬁexdyhgﬁic pressurec . and ET"IS a m0d7j
. [ v B
body force<density incorporating the tcrms Qx(er) apd
i

:(BQ/Bt)xr - Equation (1. 69) has ‘been obtalned from (l 47"

a)"™

by neglecthg the 1nert1al term Du/Dt ‘and the Viseoqs térh

= A
. 3 . 'y .



This

X L -

24

in comparison with the coriolis term

2
approximation is valid when the hoosshy and Ekman nwumbers for

vy
\ :
the flow are small compared with unity - i.e.
Ro, = W/2QL << 1 C(1.71)
; (1.72)_

2
T v /20L <<
of velocity variation is much greater

(1.73)

-~ and the time scale
than the rotation period - i.e

/291 << '
Since équatioﬁ (1.69) is of lower order than equation
(1.47'a), viscous boundary layer theory must be applied to
7 j°) (6ec section 6.2).
. .~ The

is of order e L

satisfy the boundary conditions on

The boundary-~layer thickness §
incompressibility copdithien {1.70) implies that the solution
— \
T(1.74)

i

' El to (1.69) mustisatisfy
, n-ut oA B U P
on the bcundary! S of the conducting fluid, where U 1is
the averaée magnitude of g} on S ., and p is the unit
vector normal to S . If €<<l , it is reasonable to assume ’
that - ‘ R '
a , i : * H bl
R n-us A0 on S (L.75)
' : ’ : ’ oA " - ' f '
. - s, 5 s A .
- Applying Gauss' Theorem to a cylindrical volume Ve o
' T . .
coaxial with- @ .and bounded at the ends by secti®ns of . s°,. (
-we have, from (1.70) and (1.75),. that ) L
. "’l N /: ' s ‘ - ., e 7 "_ .



b,

Icﬂ-dg = y~g‘dm— - ‘ (n. gﬁ)ds
c~ porTions
of S
= O (1.76)

where ¢ is the oylindrical side wall of the vo lume V(‘

From (1.76) it follows immediately that

20 [ u'ds = o<y as = o agy
¢ : c :

Ve
Wl 1 ¢ (>¢> represents the azimuthal component Substitu—
t ineg (f_gg) into (1.77) and factoring out the d;nsity P
Fe : a
we have
(=B a5 = [ap-Eh,as o
LT T e ~ ¢
C
. e
t
(VP’“f)c, = O on C e K (1.79)
it follows from (1,78) that ;?
.o | (xBY,ds = O (1.80)
, C'i ,v)¢ { (1 )

Equation (1.80) is Taylor’s s?@'rmis.ts?ﬁéy éfjﬁditéiéﬁi

It depends on the assumption -that (1.70)-(1.73) and (1.79)

L

_a}e alr valid. For the geédynamo, (1.71) and (1.72) are

Certalnly true (see ocotﬁOn 6.1), and we may ceffalnLy

Y

chOOSe meaningful time scales for Wthh (l 73) is Satleled.

L S
LR . ,

The stratlficatlon parameter et : Jyﬂ_ -
T S T ‘(1. 81)

represents the change in dens;ty overvthe length
&Z“

»
-
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scald L. on the boundary-layer length scale &, (1.70)
s certainly valid, so that (1.75) is a reasonable i'zp‘pl"()xi*
mat ion.  Furthermore, the main f1ow gi is })rtwh)mixldrn ly
azimuthal, while the density gradient is predominantly
radial. Tt follows that

: fv-uldu ~f g‘-%fdm— s O (1.82)
Y~ 7 Ve

}

!

even though the stratification parameter  {(1.81) is not much
less than unjxy- The validity Bg_thﬁ Taylor condition

;n the geodynamo thus depends mainly on the® assump-
5

(1.79). The probability of significant azimutha} body
A

Lorges in the geodynamo is disclussed in Chapter &, (Fee

WM. Roberts, 1971a.)

Yet another inter stinq apﬁr@aéh to the hydromagnetic

dynamo prublém has bee nfsgﬁq sted by Busse (1573a). He
f L.

éttacks the problem by tleatlﬁg the Lorentsz foree terme -

et

i(irx B) as a perturbation term in. the momentum balance

equétion.drln order forgth{g approgch to be valid in the
C%Sé of the gecdyﬁﬁmoiri% is necessary for the toroidal
field in the fluig core to be mﬁch smaller than éhe;values"
of several huddred gausss (1 G = 10 (" T) commonly assumed
Busse (1973h) claims‘that tﬁe toroida fieid in the core
should be less- than an order of magnltude greater than the

pol&;dal field. : 1 T “ . ~



1.8.5 Driving forces in the geodynamo

e —

N

At the present time, there is no general agreement
on the type of. body force which is appropriate to the geo-

dynamo (see, for cxample, Jacolws, 19720; Malkus, 19700 ) .

-
5

Objections to thermal convection in the outer core have
been raised by Higgins and Kennedy (1971) and Kennedy and
Higgine (1873), who suggest that the temperature lies close

»d that in most

the melting point of the core material, =«
~r s y

¢

L«
r

of the outer core the mg}tinq~p®iﬂt gradient/ is much:less‘
steep than the adlabat cu radiéﬁfﬁ A témpérature distribu-
tion of the sort prop osed by Kennedy and Higgins (1873)
would imply‘thatrthe,éuter core is stably stratified, except
within 200-300 km. of the 6Ut€£ C@fa:iﬁnﬁf‘co%e b@Uﬁdérgl

Thermal convection would therefore be restricted to 5-4% of

Kennedy's

,estlmate of the mgjﬁlng c%rve ﬁ?r irom~ may be incorrect,

14

, since 1t is based’ solelx Qn cohélderatlon of the solid

»”

Iphase.;'Leppaluoto,(1972; see also Verhoogen,;lQ?Z),
. .- TS . ’

-

i

using.significant etructure theory of th& liquid phase, -
" L . . 3 % ' N ' '
has obtained a revised estimate of tlke melting curve of
’ L] .. ,

irQneundericore«condiqioh$7 aﬁa finds tﬂat both the

— w7

~ ) W . ‘ - - . N
* melting témperature 'and the melting-pdint gradient are
. oL & : ¢ ”



C. Coqposition;; The ‘arguments o

N

greater than those suggested by Higgine and Koennedn
(1971).  On the other hand, Kennedy and Higgins (127%)
arqgue that signiticant structure theory may give

anomalous results when applicd to medting phenomena.

ipyeh "(1972) has reviewed present knowledge of the

melting relations of iron at high pressures, and suggests

that™ "...1t appears to be unrealistic to claim that the

melting temperature of iron, at core pressures, 1s known

3 : ‘”U = ¢ " l]
Sto within 500°",
hﬁ é&l}fba}lllifidltﬂt Higgins Im] j(’ rne ]az i3

estimate of the adiabatic gradient in the outer core

may also be incorrect, since it too is hased solely on

and fitirch (19?2; have

£ ]
in the outer core may be nearl COiﬂéidént; A relation-
ship of this sort could ikad to al;tate of marginal

stability in the outer core (Jac 1971a,b, 1972a).

jiﬂs and Kennedy

(1971) are based on the propertles of pure ‘iron. The

presence of a lighter alloying component in the outer -

a

core, required by density consideratlons may lead to
N 4

[

substantlal modlflcatlons of ‘both the meltlnde01nt and

thé adlabatlc gradlents (Jacobs, 1971a,by, 1972a;

2
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Avoicraron , Fod by Ml D ol Muet by, 1R D e Lt
~ 1
Proaser, Joars, tewart, 1075). Keepvrroddy amdd 100 0 e

(1270 ) argue, however, that the meagre <-Vi<1t-n<"g avail-

)

aple 'on the behaviour of saturation curves at high

Dressulos sudgests that "o00if the adiabagic curve falls

on tHe wrong side of ttie mglting curve of dron, it will

be even more on the wrong side of a saturation curve™.

a. qujﬁaﬁtiVC_pﬁﬁgggigml If the lighter alloying
component in the outer core is mainly sulphur (Murthy
- 7 . : - L 40 B
and Hall, 1270), much of the - radionuclide K - present

in the Farth will be located in the ogtexr core. This
) Ie

S , 4 A s . . 1 ,

heat source would provide an estimated 10 2 watts/secC

more than enough to drive thermal convection (Mnrtﬁy

; 5 N e ,ﬁ’ P 7 5 45 F 5 ~
and Nall , 10877; Goettel, 19702; Jacobs, 1977hL; Jtacey,
18700, S
{ Tx R 7 N
e. "Slurry". Even if the temperatyre distribution in

the outer cofe does lie along a melting curve with a

shallow_ éradieﬂt,:itais possible that' the core fluid 1is

a slurr; of fine 1ron’part1cles squended in an.iron-
A ¢
rich lLﬂUld , nder certéln COﬂdlthnS, a suspenslon Of

¥
i

7

this- tyng can’ behave ‘as an adiabatic fluld (Bub R JQZE;

U

Est%ser; 1973 Maékus, 1972aka It is,likelym hOWever,

[

1

thdt the slurry particles would be unstable (Malkub,"

-

G?1972a Kcnnedy and Hzggzns J973). In addition, seismic

ev1dence on attenuatlon 1h the outer core*séems to cast

doubt oﬁ ‘the poselblllty of a slurry (Blrch 1972).

< . t
[N ¢ : B \

o
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. Internal wave motions, Fven /it the outer core is

ilon, t! geodynamo

stably stratitied against conveco
might still be driven by internal\wave[motions (Hu/ lard

and by dus, Tosd, 1803).

A further objection to thermally driven models of

the geodynamo  arises from consideration of, the constraints

imposed on heat’flux in the core by surface “heat-flux

4]

measurements.  There is sone questién as to whether the
3

BN

thermal enecrgy qullablt will Hﬁ“surf1<lent to mdlntaln the .

maﬂﬂttlL field against ohmic 1@55. icr& is also some

question (Malkus,; 1977b) as to whethef the .gravitational

¢
(]\

eparation m

Ui

y . %
and {/rey ’?‘UR) can supply enough enerqgy to drive the geo-

dynamo .
— :i\ -

Malkua (1968, 15771a,b, ]J? b)) and Stacey (1S

ku
\.\ &

7'3)
|
Llalm that there may be just bare ly enough energy avallable
from precession to drive the geodynamo. HoWwever there are
substantial objections to several of the arguments.used by
'Malggs in support of the precession~driven ééodynam@
(Jacobs, (Than}, (:iﬂ(‘z Frpazer, %972; g/acobzr,i 11?7fb; Rochestenr
éf’aé. 1973). N : :.‘
It is difficult to comment on the validity of.

turbulent'f rce models of the geodynamo without sb%é'know—
i&dgé‘of the\méqhanism by which thevturbuient‘force is |

aS$umed tO'a?isé. HoweVer,jit‘seemsvunlikély that -

hanisms proposed by Braginskii (1964d, 1967 u}“
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¥
turbulence In the core will bhe homogeneous. For o this 7+
-
> e - » -
peason, the model vroposed by Mojpoalt (1272 ) scems 1nappbro-
. g : . - e s
prbateo, Furthermore, Motfatt's requirement of a net energy
N .
flow parallel to the rotation axis appeakfsq unlikely to lx-v
met in the qgeodynamo. The inhomogeneous model proposced in
Cord o 6.4 of this thesis may provide a more uscful
abproach. . e
In conclusion, attentiodn should be drawn to several .
i \ - .
ot her forces which may well influence the behaviour of the 2
i Id

qecmadhétic field. It has beon suyqgested (e.g. Jac ba,

= 3 ! — —
7570} ) -that a correlation exists betwaen tha freauwrncy of ¥

field reversals and the time rate of change of the speed of

P , : poR
rotation of the Eart®hi Thisssuggestion imﬁlFéS that thé
yrm (Bg/ét)x r in the NaViér“StékéSf(quaé

, f

»

J

‘ “
ion (L.47) may

‘be important, Other forces which may be Gfriﬂtétést arc
those due to Gsciilatiohaiéf thé;ﬁéfthis inner core [
= !

(Won and Kue, {5732,’ana thoge—due to roughness of the FéféF =
7 Hide ,1967; e - e

mantle interfacd QHide and Horat, 1968; Hide, 1969a; Hide

i - - H . /

L 1473).

"

ard Malin, j970, 7971&,%3@; Jacobs, j??}h; Ibraht
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1.9 The mathematical~natyre of the dynamo problem
~-9.1 The kKincmatic dynamo problem ’
( - A v R
‘ N

Q&}hgmatically sp€aking, thé dynamo problem is
. - ! . .
extremely complicated. However, the .problem has several
: j
general features which should be noted. Let us first consi-

der the kinematic dynamo problem. Let represent all
space, V a simply~connected volume emnbedded in € , and S
the‘é”?ﬁce of ¥ . Assume that n = = in ¢~V and n # 0

£ -
in V', The kinematic dynamo problem is then specified by

t he equat lons ’ < .
(3/0t ~nv*] B = ¥ x (wxB)  in v . (1.83)

VxB = 0 in e~V ; . (1.84)

VB = 0, in e - (.S,

~and the -boundary and initial conditons

=1

u gt

\

z #+ R -

), r’B bounded, in & - (1.86)
P L
. <§') = 0 on S, 0 (1 87)
' B(r,0) = B_(x) . .88

5
T
*)
“
0
it

. . ) 3 ) . ) i - s
is an allowable flow (see section 1,4.1). It can
bce shown (Backus, 1958; Childress, 1968) that a solution to

the problem (1.83)-(1.88), together with appropriate initial
andrboundaryréonaitiOns on E , uniquely determines the

solutions to (1.2)~(1.6) and (1.15), provided that the total

~
¢

initial charge on "V 1is known. ‘f,f’
The problem can. be reduced to one on V alone by

. N
noting that E"can be represented by a scalar potential ¥

X G



%

COnditiOn;(§a<‘QWr discussion in section 1.5,53).
N . s . s - .

* | less than ® ,'such that the kinematic dynamo‘prObﬁgmr Y

“%
[]

B
~
10 t -V, whore
vy o - 0 in -V ‘ (1.89)
1 2#’ bounded in ¢~V ‘ R ' . (1.90) ~

It ther nortmal component of the gradient of ¥ disyspecified

/({)n 5, the extarnal ‘problem (1,.89) has a unique selution B

&
(Bl

for ¥ . B s thus uniquely determined in 2esVeg by dts

N

normal component on S 1 Becauge of the continuity condition-”

(1.87) on' S , the tield in Vv must satisty the boundary

condition

nxB = f (n"B) * nxV¥ on 3 A1L.9%) o e

The problem in V  is them a linear differential system in

B, elliptic in space and’ parabolic in'time, It should be
noted that equation‘(l.SS) can be Cﬁﬂsiééféd as an iﬂ}tiax’

»

* r

A qgmensionless velocity ' u/U can be termed a

kinematic dynamo (fhifdféss, 1968&) if'itisatisfiés the can-

ditions: o T C S L

* ‘a) The kinetic energy of the system remaind beldw .a o .

"

Y‘SpééifléarvalUEZ f -, RN v
Em‘fn [*'g"fuzdf\f < (eonst)-PU? , t210 (1.92) |
f *

;\b) There éxfstsia magnetic Reynolds number ’Rm = UL/n

- | -

Y

i has at leas% one solution (g, E) for whiéh phe mag- -

A hetic energy‘in € .approaches a p??itive’upper limit
) ’ . /

\as t'» = : : : , | A



- ""-“ ' r L% Vsu Y {r;
AR ‘ P { dnr} : 183
e t->a M = > O (19 )
. - S
’ . _ ,“ i
) , s
AR s conddition 1o somewhat more stringent fhat the

ccondition fuggested in Sgctiwn 1.4.1.) k \f

)

e L o . . A
If uw, B, and E are all independent of time, the?
. . . A, = :
kinematic dynamo broblem réduces to an elliptic system,

“limonf'in B . If thc equatlons are wrltten in nondlmen— *

P
i ,

sional form, the maqnegxc Reynolds numbcr‘appcars as an

eigenvalue, and‘the‘drmensloanSS ;piogitx ;B/Q 2swa Sta- .

,tiJnmmy‘Jynumo if and only 4f7£he.£imématjc dYﬁ&mo.prob;em‘

has'an‘eigeﬁVAIUg —ﬁ; #oo (ChiZdté&é, 1955)2' 7 YL
In‘thé generél kinematic:probiém} there Wlll be a

-

wpectrum of magnetlc«energy qrowth rates fox é qlVen velo~
, /
. Clty, 4 - The larbest pOsslble growth rate is- glven by the
dlfference between the maximum rate at whlch energy can be
Supplled by the interaction between the veloc1ty and mag~
netic flélds, and the mlnlmum rate at which enerqy can_be -
~ !

lost by oﬁmicrdissiéation; It Can,bé shown (P. . Foberts ;

l1a¢7h) that A

MM/yy =
| ”‘ﬁ=' (1.94)"
whéme , ’ v\‘ | f‘ &
eg a ——{a“‘ 5—‘2 AR - . (1.79?5;



is the rate of strain tensor. No enerqy is lost by radia-

tion in the qua51 steady approx1matlon d
(’ 1f A(g)  is the largeot real. elqenval.p of the sym~
metric'matrix eiﬁ ‘at the p01nt r, and A is the.iar— )

' gest value of 2A{(r) for pOints i V+S , then

v I v .
. L As B* dewr. < Af B"dm o
L v o T E
ﬁ'@AM' ﬂLm

a

Similarly, it may be shown (P.H. Koberts, 2967b) that

A

S 74

« [ i% 4w » 2zcm . v T '<'1-.‘-9%,>- :

\

where C is the smallest possible décay rate for norﬂal,

modes of the induction equatlon in a stationary volume v .

D1mens10na1 arguments show Khat . C Is,of the formj h “
c = (/P ex IR A (1_98),
where « = k(V) . (For a sphere.of rad{usz L, x= ﬁz )f

Substituting (1.96)- (1. 98) into (1. 94) we see that

/1 ' _ i
. ‘_"" If\q _‘

Mot & 20 - 0 SN S 1Y
* me) g omeo) 2T O T g doeyT
- _ A 10

iR
~

For dynamo action to occur it is necesS8ary thaﬁ“h;>’Cﬁ? '

e -’ x ) ’ \e
~ l.e. ' ‘ ' . e ! A ;‘ s . ‘
, . 2 , N B . o PN L : . K .‘ R t ,
ALY/n 2o« , ..o (r.101) :
. - , . ; T e . I
' w / ot
PN , .
,ﬂ‘o;}" 'y
. Aﬁ ‘QP'Q

oy

. ar
i noa,
"

-l

o



since A has the dimensions U/L . ‘; : 3,

is defined for .an ensemble of dlmen51onless“veloc1tles u/ ui

P
5,
L

T

3

N Fan

lAL?/n -fay be interpreted as a magnetlg Reynolds number,,"

%

It must be realized that t?e elllptlé equatlon (L. 83)
FB :

not all of which are dynamos . It 1s necessary to decide

which of these

Mmos, a problem yhich involves the generally nonlinear

correspondence

and the pnature of its coefficients. This problem is dis-~

-

¥
5N

cussed in some detail by Childress (1968, 1970). g

[T

%,
Childress. (1968) has p01nted out several symmetry -

R
k)

3

p?bpertles of the klnematlc dynamo problem: a

4

a)‘iIf -B(x,t) is tre solution to the’kinematic dynamo

»

problem satisfying the'Initial condit}on B(r 0) = B (x)

'tgen -B(x.t) 1is the solutlon—satlsfylng the ;nltial

: éOndition B(x,0) = -B,(x) . "
o ; # :

ib) If the voipmeu v igzipvariént under spatial invef—

siénivfg +;f£);*£héé the kinematic dynamo problem is

invariant under the transformation

{ B(z.t) , E(x,t) , u(z,t) c R L
S : g (1.102)
+ { B(-x,t) , E(-x,t) , =ul-r,t) , R ‘

o
L

St m . .
ala " . ~

c) . 1:"Yb,¢,z) is a3 system of cylindrical coordinates,

the kinematic dynamo problem admlﬁs a formal class of

solutions saﬁ1sfy1ng the parlty requ1rements-

P‘

between the existence of ah ‘elliptic equatlon

veloc1t1es will belong to the .class of dyna- e



[BQ,B¢,EZ,UZI ‘ odd in ? -
. : ‘ (1.103)
o - , Q2 ] EVen o in ’ 4
[Bz'fm'lcp’um ¢] even in’ z | \
The kinematic dynamo equation (1.83) is not se/f-
| Ve A ,
N
addoint . However, Namikawa and Matsushita (1970) have sti-

- died the equation in detail and have shown that it becomes
- self-adjoint for a curl-free velocity under a suitable

restriction. Lerche (1972c¢) has investigated the equations ,

°

from the Lagrangipgn point of view, and has derived a varfa-

tiona{/principl for computing the eigenvalues of the dynamo’

~

equations subject to the appropriate boundary conditions. "

He suggests that this method has decided advantages over

) , * - - »
other numerical techniques which have been used in investi-

Il

\ : . A
gations of the kinematic dynamo problem.

\\vi;i.2 The deromagnetic dynamo problem

e,

“ For the hydromagnetlc dynamo problem (1.45)~-(1. 48),

the difficulties encougtered 1n the klnematlc problem are

7

compounded. We must now solve for u, B, and p ,
assuming, that the body force*denSity F vand the fluid den~
o

sity p are given. The 1mp11c1t nonllnearlty 1ntroduced

by the necessity of -determining. whlch of the possiblé fields

P

EF and 'p lead to dynamo action is,severe uhless'all térms

involving Vo are ‘ignored. 1In addltlon, the equatlons Aare

i .
B epozcttZy nonllnear because of tHe terms 2-;2\<and'
. "%\ ) A ) $ ) * ‘ 7 “ L

(/l, .
o



2~ (V'x B) x B in the Navier-Stokes §uuation, and the term
Vox (5 X §5 in the induﬁtioﬁ quation.‘ So%e simplification
1s obtained if the inertial terms in the Navier Stokes"équai
t%on are néglected; however, the‘nonlincar Lorente forc
cannot usefully be neglected, since it provides the desired
béck—reaction of the magnefic field on the flow. The on%y
simplification possible here is to treat the Lorentz force
as a perturbation term (Busse, 1973a; aru‘necriog 1.8.4).
Childress (1968, 1969) has proved an anti-dynamo
theorem for the hydromagnetic dynaﬁb’%roﬂlem in the
magnatheustpupﬂ{c approximu([dn (1.69). The theorem may
be stated as follows: 1f w-and [ are axisymmetric

fields, and F.= 0 , tHen F-° must go to zero ac t - =
—~

~

even 1f anr a;effecflis present.
childress (1968) has also pointed out certain
symmetry propertiésiof the hydromagnetic dynamo problem.
1If (©,¢,z) is a sSystem of cylindrical coordinates, the
hydromagnetic dynamo.problem admits a formal class of

solutions satisfying the parity requirémenfs:

Ey

= = &

[FZ,Bm,B¢,LZ,uZ] odd in =z ’ G
. - ' (1.X04)
IF IB ’ IV r cr g i
[Fm, 622 Em E¢ u. u¢] even in ? 7
. . . : & -
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1.10 Summary of Chapter 1 ‘-

Thié chapter is concerned with dynamo theory and
its épplication to asFrophysical magnetic fields. Most of
the material presented is taken from the recent literature
on the subject. The principal original contributigns are
to Le found in section 1.1, where a detailed summary of
present observational knowledge of astrophysical magnetic
fields is presented, and an attempt is made to detqyéine
the validity of the "flux-conserving field compression”

hypothesis concerning magnetic st4r evolution, and

Schuster's hypothesie concerning magnetic fields in massive

rotating bodies. The data available neither confirm nor

disprove the "flux-conserving field compression" hypothesis.

-Schuster's hypothesié} however, gives erroneous predictions

for the dipole fields of the Moon and terrestrial planets

“other than _the Earth.
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2. MEAN FIELD ELECTRODYNAMICS ™

2.1 ;ntroductioﬁ

In this” thesis we shall be concerned mainly wﬁth the
"fhean fieid; approach td;the solution of the kinematic and
hydromagnetic dynamo problems. This approach has received
considerable, attention in recent years, and extensive
reviews of the subject have been written by ¥F.H. Koberts
(1971a), Krause and Hidler (1871), Parker (1870a,b,c,
;%71aﬁf) and Lerche and Parker (1971, 1¢72). The East
German school (Yteenbeck, ﬂKPause, kadler, et al.) ha\/e ,
introduced the term mean field electrodynamics (MFE) to

re’gr to the study of electromagnetic fields in conducting

fluids, when the fluids, are in turbulent motion.

i
‘

The standard notation of mean field electrodynamics
will be used. (See, for example, P.H. loberts, 1971a.)
The fields studied are assumed to have random, or

B i

"turbulent” components, so thqt—the concept of a statis[ical

ensemble average is appropriate. A given field F ivector
or‘sealar) can be decomposed anto an ansemble average (de-
ndteq by an'ovefbar) and a rapdom, gr fluctuating component
(denoted by a prime).

| F = F + F' - (2.1)

These compbnents have the following properties:

F' = 0 , F = F
F+G = F +GC, F6 = F G, FG' = 0
. 79



FG = F ¢ + F'¢7

N & . ) -7
In general, a field F will be both [‘x)sition and time-

dependent . We shall denote the position vector by X and

/

. . (
the time by t , and write

t

FoL= F(Z(.’t) ‘ -

80



2.2 Types of tarbulence —

3

2.2.1 General considerations

We shall be dealing with quantities which depend on
the joint probability distribution of the values of a field
[)_,1-:/))

at several poinﬁs in space and time. Batchelor (1

defines

Ug (2,800, Ux, 00 u T Y

1 B 2 m ) '
’\
L = G(m) ( __,5

X, 7L, , pt)
alaz...am 1'~1

n-1

as an m-order, n-point product mean value', where
(Ef"‘;’£n—l) .is‘a 3(n~1) dimensional vecto{ specifying
the confiquration formed by thaose n of the poi;tS
(él;"”fm)‘ which are distinct. We shall extend this - ,

definition, and refer to.

) (x 2’t2%"‘ua (5m2t;7
5
3 : ! (2.2)

alaz-"am(51't1‘51'~'-'En—lle'-'-')é—l)

Aas an m-order, n- p01nt q- ttm%{product mean value, where

(Tll...,Tq_l)' is a (q~l) dlmeﬁSlonal vector specifying the
- i
conflguratlon formea by those. 'q of thg.tlmes ('i""'tm)

' whlch are dlstlnct. o = ' . :\

-

The 1nvar1ance\propert1es of the scalar

T . o - .
qaantlty o v : L
v ! ' T4 ! . o .
. .

81
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Q( !tl’.,l;lf""r};n_l'},lllzr'--fjj ;TI’-’-’TCI"I) -
', g ’ (2.27)
j ~ (m) ‘ )
s (Ly) a1y @ (x,,t ;;,...,nr__;r,.-.,r_)
*‘S{ai (~mag Yag..ia 21 ~1’1 n-1 “1 ‘ g-1

N

where the ((li) are unit vectors and the Einstein summation

Q(m) .

convention' applies, determine the form of a
T m

\ . . 4
)

(Kobertson, 1940;(€atchelor, 1953, pp. 40-45). The

invariance properties of interest are those which’refer to

spatial and temporal translations, rotations, and reflec-

"tions of the configuration of points and times defining the

average, combined with the unit vectors (ii) . The various

y [

-types of turbulence can be characterized by their invariance

properti%es, and special terminology has been introduced to

describe the simplest types of invariance.

a. Stationary turbulence. 0 is invariant with’

LY
respect to arbitrary temporal #translations of the con~

figuration, of times }fl,..i,tm). Therefore both @

and"S(m) are independent of t. - : o
- . a,...a 1 :
1 m
. / |
- b. Hemogeneous turbulencé. ~Q is invariant with ;3,‘

-~

respect to arbitrary spat1a1 translations of the conflg-‘
uratlon of.p01nts (xl,...,x ) . Therefore both Q

and Q(m) are 1ndependent of xi .

aj...ay | S o

Once homogeneity ;s assumed\ further condltlons on
F *

the spatlai propertles of ‘the turbulence can be introduced.

o4



In each of the next six definitions, the term homoganeous

is omitted, althoucﬁﬁyt is to be understood.
J"a . N

. Lﬂ{fﬁﬁﬁJZﬁEfﬁiﬁﬂE§)~ Q is invariant with
respect to arbitrary spatial xcfle(:tionsn'ond rigid-body
T)hdtions ot the configuration (Ll,.‘l,r 1;l§’...,l )
When homogeneity is taken into account, we sée that
O is invoridnt under the extended group of roto-~

A
spatial reflections as part of the rotation group).

, Deflnltﬁons (a)-(c) agree w1th thOSe given bv
Batchelor (1953,’p. 18 an@ p - 41)1 Unfortunately, this
,gtérminology’i§ nog'universally aocepﬁed. For example,
rbecause it is often convenient to sepafato therconqepts of

reflection and rdtation invariance; some authors do not
A A X

include refleco;jjfgymmetry-in‘their definition of isotropy

(¢.q. P.H. Roﬁe te, 1971a). The’termi%soinopié, mi rror-

symmetric turbulenoe is then. 1ntroduCed to re fér to what

A

Batchelor calls isotropic turb&lence (e.g. Krawuse and ﬁ

~

Roberts, 1973). The term statistically steady twrbulence

sooe = L 4

83

translations in 3~dimensional space (this group includes

"

Ay

" frovides another example. In some cases (e.g. P.H. Roberts,
F : . .

-

!]971a7 this tefm is used in blace of -stationary turbulence,

6‘,‘\

while in others (e. g. Krau&?)?ﬂg Robents, 1973), it is used

4 ..

_in place of stationary, homogeneous tur?ulence. In this

- -

thésis we shall retain the classical definitions of

m‘}tqtiOFarity, homogeneity, \and isotropy. However, we shall
. ., . ) s ) \ H ! " N
i -

3 ' - R

S

S
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i

also ase terms‘taken)from elementary particle theory (Fondu

’

andd uﬁk%qrdf, 18970) and crystallography (Shubnikov, 19561)

kY

to describe other types of invariance.

[

d. "Poipvariant” (or "mirror-symmetric”) turbulence.

ol

- : I N - . “ M . ~
is invariant under spatial inversion, or "reflec-
tion in a point” (Shubnikov, 19241) of the configuration

(Ei;ij) »  We have used the notation

(Ei;l.]) v (Sl'qﬂﬁl’;nr‘l;}"l,ﬂl'-,;-I.I-n)

This operation consists of a 180° rotation about some

axis, followed by reflection in the plane normal to the

axis of rotation.v When hgmégeneity i? taken into
account, Q is invariant under the group of transla-
tions and spatial inversions,gbuﬁ{noﬂinGCéssarily
invariass under the roéa{:ion groyp or any of its sub-
groups (other than the‘idén£ity, of course). The tefm
S, o : N

o v 3 L R .
P-~invariance is taken from elementary particle theory
(Ponda and Chirardi, 1970, p. 69 and p. 595), with "p"

. ; ¥,
standing for parity.

e. "R-invariant" (or "E§éudoﬁisétfqpic") turbulence. -
. Q is invariant under rigid—body spatjal rotations,
" but ‘not necessarily invariant under spatial reflections.

'

When homogeneity is taken into account, Q is invariant

under the restri:ted group of rototranslations (which

excludes spatial inversion), but not necessarily

: NI e .
inpvdriant under the extended group. Again, the term

) &
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- . . - . <
Foitnvarianec 1s taken from elementary particle t heory,
though with less justification than the tern /- ool -

wrote, sSince we are not considering rotations in four-

Gimensional space-time. The “R" sta&ds for rotution.

A "Skew—i sotropic” tumbulence - (0 is invariant

s

under rigid-body rotations, but changes a1yn under

spatial inversion. . s

R
{ -
- ,
. .
A ”

9. TAxially~symmetric™ (¢r “ax;g.mmetric“’ turbulence. -
;mgﬂﬁ«*lv,lh_,r«“‘,wru_&”ﬁmwul___\__‘ cAI DUl enee .

Q is invariant undér-spatial rotations of (zi}lj)
I’ - ’

J about a given unit vector A+ and invariant under

spatial inversion. When homogeneity is taken into

account, O is invériant under the extended group of
rototranslations applied .to the augmented cdnfiguration

(A, xr.; 1) .
(ArXs ,,_3)

i o \
h.  "Axially R-invariant" turbulence. Q is invariant
5 - T g — - — .

under the restricted group of rétotrénslations appliec
to the augmentéd copfigufation defined igi(q), but not
necessarily invariant unfer the extended éroup of roto-
tranglatio&%." . 1 : , :

e |

©

f A

In.a. similar ﬂashion, further conditions on the tem~
poral properties 0of the turbulence can be introduced once

stationarity is assumed.



D

Q is iny%#%&ht under

the oyeration of time reversal applied to the times

i. "T-invariant" turbulence.

(tl,. “,tm) . Thus Q is invariant under the trans-
.
formation

(Tywas - ’Tq~1) (~r1«, ‘s ’"Tq—,l,)

L

Taking stationarxty:intojaccount, Q is invariant

under the gro%p of temporal transkations and inversions

applied to the configuration (ty) ,» where

N .

£, - =
(Tk) (Tllﬂrﬂlrrq_l)

Thé term T-invariance is taken from elementary particle
theory ' (Fonda and Ghirardi{, 1970, pp. 7(7’4]‘iji).
The types of invariance defined in (d)-(h) can of
course oééur in combination'with the  type aéfiﬂéé in:(i5.ﬁ
There axe also types of inﬁariancegwhicﬁ refer to spatial

, ) s A , . S
and temporal transformations applied simultaneously to the
o, T, .

: : , b b ,
configuration (gi;li;Tk) . We shall be parﬁicularly

~J

concerned with

S TN "PTJiﬁvariant" turbulence. . @ is invériant under
the combined operations of spatial inversion ana‘tiﬁe
i .
réQersal, Eu? nat necessarily under e%ther of them
separately. Aéain, the term PT-invarizance is taken

~
ik

ﬁrom eiementary.particle theory.

. )

o
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.

‘correlation temsor Rij we~ see that

87

The various types 15 turbulence defined above are

listed, with their properties, in Table 11 (see p. 90).

2,2.2 Two-point, two-time correlations

In this thesis we shall be concerned mainly with

two-point, two-time correlations. | From (2.2),

”

(2) . : T perasitl
(xl, iEsT) = u'<5l’t1§ u, (xy 4K, t1+T) X

P

We shall use the standard notation

(2 o = L \ '
Q (xl,tl,r T) = lJ(x 'ty ix,T) (2.3)
From the definition of the twgapéint, two-time .

.

- = 7T - (2 ﬁ ‘t;‘

i

In the‘case of homogeneous, stationary turbﬁienceiﬁthe

dependence of Rij on x; and t; drops out, and (2.4)
Pal ' L J
. becomes S ;
[ 7 . : [ /
"o = 7 - -_ . \—/" . \J g

We also have that

The operatlon of - spatlal inversion s represented by
s ' ’ :
the‘transformatlon i

{

™ ‘ -
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(E’}’l’lle) > (:_'E’—"]';ll 2IT)
Clearly,
AT 1 _ _ 142 _ ~

= Q( 11 ~21T)

~~

|
3

It follows immgdiately that the property of fP-invariance

implies that {

R, (£, 1) = Ry (£, [(P-invariance] (2.6)

Combining this property with {(2.4'), we have that

R..(c,1) = Jl( T) [P-invariance] (2.6')

In a similar fashion, we may - show that T-invartance

implies L -
Rij(E’T) = Rij(Z'ST) [Tx?nvariance] (2.7)
le(EpT) = Ry;(-z,1) (T-invariance] *  (2.7")
while PT-invariarice implies
Rij(E'T) = Rij(—E'_T) [PT—iﬁvarzance] ) (2.8)
) ) *:" o
= i —_ ; ]
Rij(E’T) Rji(E,r) [PT-invariance] (2.8"')
¢ v :

\

'It will be noted that while P~ and T- 1nvar1ance combine to
//,glvé PT 1nvar1ance, PT-invariance does not necessarlly 1mply

'elther‘P1anar1ance or T~invariance. It will also be noted



that PT-invariance implies symmetry of the tensor Rij
under interchange of its indices. This property will

’

considered in greater detail in Chapter §.

be
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2.3 The kinematic dynﬁho problem - Green's function
techniques \ |

2.3.1 The dynamo equations

We shall now apply the mean field approach to the’

kinematic dynamo problem. Writing- u _and g“ in Eiiquymf_

(2.1), substituting these expressions inté the ’induction )
equation (1.16'), and separating the average and fluctuating
parts of the equation, we obtain the coupled system of equa-

atigns
&,

{@mﬁ—qW}E'—cwf{ng} = cwrf{uwxBY (2.9

%t -nv*18 - cutfzxB) I
? : = curf{ g’x.é + g’x B - u'x g’} (2-10);
where r ' :

divE = div B = O (2.11)

2.3.2 The first-order solution to the fluctuating

induction equation .

A

As it stands, equq%ibn (2.10) cénnot be éorvéd di-

v

- rectly for "g' ' as a functional Y3 the mean fields i and

N

B . However, if the seccond order sterm in the fluctuating

fields

“

. : R
; .

Cl ‘E. ‘ul

xB' - w"xBT. - +(2.12)

is yneglec\ted to a. first ‘app'rolximatiori‘, (2.10) reduces to

* )
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'{a/at ~nv?} B, - cur!(@x Bl = curf {u'xBj} (2.13)

This equation can be solved by Green's function techniques,
) i

the right hand side\Eging regarded as a source term (Kadler,
1964, 1968a; Krause, 1968a,b; Krause and Ridler, 1971). The

sQlution is of the form

Bo(x,t) = |

v

dx’ G(x,t; x,t,) - Bo(x" . t,)

e

: t
- . +[ dt'[dx’ G(x,t;x,t') - curf {U'(x/ ) x B(x't"}
t, v = - I 3

* w48 ; . , (2.14)
+af ot Lds (§atixt) - F2 Bixt)
: (-4
- ‘aan'l%(%;t SZ'» l) ° ~;(}"t‘) }
where to‘~is the initial instant, Vv the region occu-

pied by the turbulence, and S the boundary surface of V .

9/9n' represents a normal derivative on § . G 1is a

Ureen's dyadic satisfying
{%t ~nv} Gt xit) - cwl [T x Glxk;x' 0]

- = I 8(x-x)8(t-t) (2:15)
& ol = ‘ - .
tor SxbiELY) I 8Cx-x) (2.16)
i GxtE ) = 0 F tet (2.17)

92
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) =
- ,/\

In (2.15) and (2.16) 1 1is the idemfactor, or "unity"
dyadic (see Morse and Feshbach, 1953, p. 577, while 6 (x-x")
and &§(t-t') are Dhirac delta functions. In deriving (2.14)

uwge has been made of the undary condition
_ ary <o

u'(x,t) = 09 xes - (2.18)
Boundary conditions must also be specified for Eé . For
simpticity, we shall assume that %ﬁ?
B (x.,t) = 0, x&s gg (2.19)
and 7
Clx.t;x',t') = 0, x€S or x'€S (2.20)

SO that the surfacée term in (2.14) vanishes identically.

M

4 i
Finally, as noted in the infroduction, the second part of

(2.11) is satisfied for all t 3 t if*

o

div B xit,) = 0 )
}“‘g‘i’l" - B %@{.Q I )

; ol G .
From (2 14) we can evaluate the source ten@ u'x Bé

. &
2.9¥ as a functlonal of B R E , the statﬁsﬁlﬁgg

" properties of u' , and the initial ‘conditions Qn pu B' .
’4

In tensor notation, ‘ NE_—

{ wx, )z g:,(x,t)}. - "D .
eq,,[ dz’ Gu(;t ~,t ) i, t) a,,(x't)

+ equeg...e,.n Id;, Ld.t Gn(;t ; t') ) | (2.22)

| % {Rsr‘?‘-'t 3 ”)ﬁi"”'
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3

where Rij is the two-point, two-time correlation tensor
for u' (see section‘2.2.2), K
R..(x,t;x' ! = C(x,t : ‘ (2.2
1J(~l x ,t ) ul X u] x .t (4 3)
.» . . RPN
Clearly, if - . : p
'\(ui x,t BQJ‘ x',t) = 0, Vxx'ev, tat (2.24)

then u'x gé ~depends only on B, U , and the statistical

properties of u' .

2.3.3 Higher-order terms

1

The full solution to (2.10) may now be developed by

iteration (Krause, 1968a,b). We write *

‘B = ! ' S S : .
B B, + Bl + B . (2.25)
v = [ ' _ ! L o
£n 2. x B at x B . (2.26)

Substituting (2.25) and (2.26) into (2.10), and using (2.14)

as the first term in the solution, we hég? B . -
N ‘ ' | _ . . o ,_% ‘ N

{%t -nv*}Ba - curl{@x B} = curt Cnu » M3 (2.7 _ i
u" x B" can ‘then be evaluated fro&z ‘ . I

S———
L3

‘g‘xg'- = g‘xg', - g’;g’\, 4-;'*’,;6.5; 4+ oee - (2.28)

L.

Writing the‘solution.to_(2.27)'out expliqitly;



""V x\\ . | 7 .
/

/
BiGa.t) = [ dx glxtixit)- Bixtd

ﬁf : , (2.29)
4 L“i" Lau' Gzt xt)- cunt Cp (2t
o f
so that
U ’ - " | ‘ ; / !
g.g R g"}i = C‘JB [vdzl tm(%.tp ;:to) uj(g,t) B'k(g “t,)
' (2.30)

< t | a (YL
'] dt’ (x,t;x't
+ GQhehﬁ%‘;iE‘L:‘ G@g x,t;x,t)

. _a?;:“ { Wj(x,b) C.:,,%(g',t')}

:Kiause (1968a,b) has shown that the iteration process is

_convergent for all times t - and for any choice of u
v .

r

when V is an infinite domain.

g
. A
1o
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2.4 The kinematic dynamo problem -~ Fourier transfprm

]

techniques o)
2.4.1 Notation : | Q -

Results similar to those derived in section 2.3 can
be obtained by using Fourier-Stieltjes transforms of the
flucthating fields u' and B' (Batchelor, 1953, pp. 28~ .
33; Moffatt, 1970a). )

The Fourier-Stieltjes representation of a random
vector function f'(x.,t) is of the form '

f'ix,t) = [ [d‘l:'(l_s,c.o)¢=:‘{'*"1‘5“'0_*l o (2.31)

This type of representation is appropriate when the intégral’

C Idz[dt lf‘(:],g,taﬁ - P

taken over the whole field is not bounded. If £'(x,t) is

a stationary, homogeneous random function - i.e. Wf the

I

two~point, two-time correlation tensor

—
v

(xtix' ot = FEO TG .32
. Qlj(gt;ﬁ ‘) £i(x,t) 3(5 ‘t) . (2.32)

satisfies the condition o

Qi (x,ts X4z, t41) = Q. (r,0) ' (2.33)

= then - - S | /
i C N ’ A



AF&(k,0) dF;(K’ o)
Cfa ~ifie.res ot} }
= {(2“)4 [dg Idt Qij(r)e

- S(k-') 3(w0-0') diedk’ deo do” |

Xij(R,0) SCR-t') §(o-) At dk* do do (2.34)
/ ,

The Fourier transform

Xi(ko) = Ly far Id‘r Qij () e—‘{”“ﬂ BECIILNE

L4 '
3

appearing in (2.34) is referred to as the spectrum tensor

0

of  £'(x,t)

2.4.2 The fluctuating induction equation

/

a
¥

The Fcﬁrier=5tie1tjes representations. of u' and

B' will be written | B A
| /
G€(x,t) = [ [ dZ(je.w) et zsen} o / (2,35)
e ! « A ' iy ’ l
. iRz 0T 4 i
Bx) = | [ dy(ew) elEzsot} (2.36)

following Moffatt (1970a). ‘The expansion (2.25) can now be
. N X < . . \ .

replaced by the expansion -

o _ L S k :
oy = dxof-dgl+dxz+... ‘ , . (2.37)
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where
[} ‘- t
Ba(x t) = [ ( dYn(k ©) SLERE (2.38)
‘ e W ~7 .
Substituting (2.36) and (2.38) into (2.11),
ik-dy = ikAQXd = 0 (2.39)
Before the Fourier transform of (2AlOf, (2.13), or
(2.27) can be obtained, we must define Fourier representa-
. /
tions of ‘E and B
. N
— D t
ulx,t) = [ | u (i, Q\ ‘{5’”’0 }deO (2.40)
K @ y :
o« A i p ‘,‘} . .
: , = . fK.xe £t
Bx,t) = “. B(x,Q) el x ,E} dK dQ} 8 (2.41) "
K Q

Substituting (2.35), (2:38), (2.40), and (2.41) into (2.13)

and taking the Fourier transform, we obtain '

f . (2.42)

-7

This equation must be soived for dY (k,w) as a functiohal

' of dz(k w) and the Fourler transforms of the mean fields,

r ;.

taklng into account the 1n1t£al condlﬁ&ons on .g' .
PN 'Jirdjﬁ
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r

2.4.3 Solution of the fluctuating induction equation for

uniform, time-independent mean fields

Equation (2.42) has no simple solution as it stands,

.

because of its complicated dependence on the mean fields.
However, if it can be assumed that the mean fields are

effectively uniform and time-independent on.the length and

time scalef of the fluctuating fields, we may write

A A
a(k,2) = 1(0,0) 6(K) §(Q) , (2.43)
A A ®

B(k,2) = B(0,0) 8(K) 6(%) _ (2.44)

Unéér this assumption, (2.42) reduces to
: 2 ) . 2y
{tw+r qR*FdY(Rw) ~ ikx{U,0) x dfg.(ls,m)}

=7 ikx[dEw) x Bo,0)} (2.45)

The solution of this equation is

~ i{E:B(0,0) dZh w) — k-dZ(k,)Bo,00}
A

{iws qt + i k-H0,0)}

~,

5 drf’(gib) =

+ dY (k) 8(w-ink?) S (2.46)
where the term inv9&ving EdXéik)i'hasibeeh added to take’
vthq initial conditions into account. We may then write

1Y o« RT
u X 14

an eXpression for u ‘Bo 5

K
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™

P

(k) x d, (k'w) A1 e (o-ant]

R
2 Filwts i
[T e
Uil .
7 L K
) o
¢ o A A .
i
’ Wy
{

ioro) dZ*(k,w) x AZ (k') |

- K. dZ(k' 0) d2*K ) x 3(0,0) }
e‘{(!!'_g) X 4 Go'-0)t ]}

(2.47)

+ [[[ dz ey axic LI E ¢+ Gl E-ont)
[

’
A

) - . ()
Assuming that g;, 18 a stationary, homogeneous

random function, and denoting the spectrum tensor of u'

‘by ¢ij(k,w) » we have from (2.34) that

#

dZ{(kw) d B (K0

= 8y(h.w) S(k-K)S(w w') dhdk’ do deo’ (2.48)

j

Thus

fenBi} = iey ” e .0) Bl 0.0) k...@,..ge)ﬁ‘ccw)}“w
e {w+1k=+ .9 ,o)}

L | + “I dZ*(k w)udY (") e‘{".‘."'“ "*(tnk ’\}

Kok’ (2.49)
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f

2.4.4 Solution of the fluctuating induction. equation for

nearly uniform, nearly time—indqpendeﬂt megn fields

g - o
An alternative method of deriving equatlon (2.49) is

"\
to substitute (2.35) and (2.38) directly into (2.13) without

using a Fourier representation of u and B . The equation

for dYO then becomes

{torne + LT + dv B dvah o) — dveo)- vE

"
-~/
-
o~
x
A
3

= (k.

zm(

YA Z(

- dZ(g,w)-vB (2.50)

clearly indicating that dxo is really of the form

(:> dxo = dzo(ﬁ,gizpt) (2.51)
with spatial and temporal variation on the length and time
..scales of the mean fields. It is also to be expected that
dZ will vary on these scales. Thus the fluctuating fields {
u' and g' will in general be nomstationary, inhomogeneous
random functions. In Chapfer'4 a method for treating;fields
of this nature in a more detailed fashion will .be described.
ﬁowever, for the preseht we shall assume that the length and
time scales of the fluctuating fielda are suffictently short.
compared to the Zength and tzme scales of the mean f1elds
.for z’ to be treated as a statzonary, homogeneous random

functzon, to a reaeonable approxzmatton This assumptlon
is the underlylng featuore o@sthe expansion technique

.
A .
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developed by Fadler (1968a) and others for evaluatiﬂé the
term m {see P.H. Roberts, 1971a; Krause and FRadler
1971; Moffatt, 1970a).

Neglecting spatial gradients of u and B , we

find that (2.50) reduces to the form (2.45), with

e D>

u(0,0) » G
(2.52)

1=

(OIO) -+ E

: 2
The result (2.49) then follows directly from the assumption

that u' 1is stationary and homogeneous.

2.4.5 Solution of the fluctuating induction equation for

fwave" mean fields

The assumption that E kﬁﬁﬂjfg are of-the form
implied by (2.40),‘(2.41), (2.43), and (2.44) is clearly a
grqgss over~51mpllficat10n. Among other things, it implies
that the energy stored in the mean fields is not flnlte,
and that these flelds over all space and time. -The
assﬁmption iSithUS strictly applicable only to the unrealis-
ticvcase of turiulent motion in an infinite fluid, with no
boundary conditions implied on u or B.

If we make the more reaWistic assumption that the

-

’. - - n 3 . ..

fields 4 and B go to zero as r in the limit as
. N " . . LS

r + « , .the pehaviour| of the mean field transforms near

=0 must be (Phillips, 1956)

i
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2 ; a .
F,) = {I - &/l Foo s

<

+ O() (2.53)

and (2.45) must be replaced by a much more complicated
Lol

equation.

On the other hand, if we consider the case of wave

mean fields of the type

o Vo .
u(K,2) = u(K, .a,) 6(;&-}31) 6 (2-9,) (2.54)
A A ,
B(K,2) = B(K_.2)) 6 (K-K,) 6 (2-2_) (2.55)
where
Q ) 7 n
EO‘E(EP'W = 0 , (2.56)

equation (2.42) becomes

i+ nit}dyo(k,©) : .

b I. Ex { @(EHQI) x d!g(!*f.’w—n,)}

= ikx {dzék—ts.,w—n,) « B0} (2.57)
/

Iy

Here again we meet with thecgyoblem of infinite energy in
the mean fields, bhut the spatial and tempfral gradients of

these fields are non-zero.
?
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2.5 Evaluation of 5' x B’

~

~ -

2.5.1 The Radler expansion technique

.a . - - AA) -,
In the Kadler cxpansion technique (Hadler, 1968u; see
Krause and kadler, 1971) E is expanded in the second inte-

gral on the right hand side of equation (2.22), according to

B (:51—3:,&*1') = B(z,t)

The expression for u'x By becomes N ‘
p—m————. "9-
, 3 )t
{gxg",}.‘ = 3 szx,ﬂwn 3"V By(x,1)
Xp Iy x OXn,---dxp, It®
(2.59) .
+ €ijn Ivd?‘l Gu(zc_,t; x't,) Wj(x,t) B;‘(g,t,)
where v
Atk = _ e Q) g
digncnc. R T
..t. s .
: -Idrrd'r Gug(x,t; x-r t-2) -
v °
'53,.7-{ Rj?(!-?55*!»**")'.‘.,5.,“"'.."‘9} (2.60)

e . ‘
The coefficients (2.60) are then evaluated under a number

of.ésgumptions concerning:
é. the nature of thelﬁreen's dyadic Gij K
b. théA sMetry propexties of the t\urbdlehce, .u~"" H
c. the nature of the‘mean fiow,l u . ’ i

|
|
i



Once ETEhEZ has been évaluated, higher approxima-
tions to §T;~§T can be obtained from (2.26)—(5.30). The
higher;order terms in (2.28) will involve higher~order
velocity correlations. For example, ETE—EI involves

three-point, three-time correlations, u'x gé involves -

four-point, four-time correlations, and so on.

Al

a

2.5.2 Choice of Green's function

The Green's dyadic most commonly used is that

appropriate to an infinite domain for the case g = 0 .

A

Gaj(S.t . x-r t-t) = 6;5 G(r,x) ’

~G@lrx) = (‘hrf('r)_ay2 e AT T o0 (2.61)

»

= O T< O

»

The choice of an infinite domain Green's function is
justified on the grounds that the turbulence extends over
a region large compared with the turbul e correlation
length.

Results obtdined uslng (2.61) can be extended to
fthe case g = constant, by EF forming to a frame in
“uniform relative -motion (Kﬁéuse and Radler, 1971). Gfeen's
functions approprlate to sevegfl other types of mean flow
v‘have also been studléd (Krause and Rgdler, 1971, pp. 36-37;

‘Radzep, 1984 1969a; quuse, 1968a,b).

‘0t
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2.5.3

Comparison of exXpansion and Fourier transform

technigues

s P
The zero-order term obtained from (22§9) may be
‘Compared with (2.49) when g = 0 andeij is given by
{2.61). we have, from (2.59), /7
"
¢ ‘ (O,o) P | '
{gxgoh = 9 B‘ + e.‘h[d.x Gy (1, t,z,fo)u(xt)B;‘(;,t,)
. et
~ , Y o - Y4nv
~ €yg €lemn Enn dg‘ [d‘t (41"11’) .
al °
space
~t{k.r + 0T
: H ik, Bip (ko) €10+ }dga(w
L L 7 '
o ' (2.62)
+ €y J dr {4nqet-1,) % ¢ Taqeet) <
Space

”“ 4% (5“3“%‘&"0) N 2-kx st~ wt]

kwhw

where we have made use of the definitions

Rij(z.tixsr tst) = ” B (k) e‘{"“‘"}d!sd,w (2.63)
‘ R ' '

and (2.35)-(2.38). (2.62) may be simplified by 'using the

'identities

Id; e 8L =Yy = (41r-z‘t')’/‘ ew™ (2.64a)
h@jﬁu& ‘ ' ‘ )

[far eliwsqels Ceornh? I [ 1 - gEortXe-ty

p
g

(2.64b)
e
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far [ "Ar Gmqrya & T = s ewom)
all space  ©

- Ciorapie*XE-t,) }

= (m+qk‘)"{i~e (2.64c)

From (2.62), (2.64), and (2.46),

‘'« B Lo L tka(! Q) "
{% x ,..0}‘ €ijn enmncﬂn II (‘w*qkz) dd - Bt

« ® S(K-K).-x — (A 24 i)t
+ ey [[f azf0x, WOV, (K) & 1
Rok

[
~

(2.65)

Equation (2.65) is clearly identical to (2.49), with

- A -
(0,0) replaced by E » and u(0,0) = 0 . This equivalence

AB>

shows how the uniform, tgme-independent field assumption
in the Fourjier transform solution corresponds to the neglect

~ A
of space and time derivatives in the Ridler expansion
technlque, when the infinite-domain Green's functlon (2.61)
is used. @

L

2.5.4 First order smoothing, and écaliné of terms in the

induction equation ' ’ ;7%

"

In most studies to date, it hds been assumed that
the neglect of: C' (see equation 2.12) in the fluctuating
induction equatlon (2 10) is a valld approx1mat10n. In

 other words, ;t has been assumed that

-

9xXB = wxB - (2.66)
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Lerehe (18971a) has named (2.66) the first order smoothing
approzimation. The validity of this approximation may be
invesﬁigated by considering the scaling of terms in the
fluctuating part of the induction equation.

Assume that the fluctuating fields u' and B'

vary on the scale of the turbulence correlation length,

A. and correlation time, T. » While the mean fields 'u
- . el
and B vary on the scales L and T . Further, assume

L

PR E , and B' are u ,

1Ic]

that the magnitudes of

M, @ , ana @' | Then.equation (2.10), which will

be Fewritten here for convenience,

3%t ~n7'E - cul [Ex B} - curtf uwxB |
© @ ® e

~— cwf fu'xg —¢'xf'} = O
- ) o

scales as

%{% + 1 4 Rm(ioﬁsx +__7.+ ()} o (2.67)
® @ @ ® 06

where Sy

Rm = WA/, N (2.68)

and S '

¢ = x:/,l‘n | | (2.69)
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When E = 0 , the term (:) in (2.67) drops out, and the

eguation reduces to

%—}{% + 1 ¢ R (44 2 X By + 1)} ~ 0 - (2.70)
- ® @ @ 6
‘ ' ” ?
It Ac << L , we have
@'.'1{ + 1 4 R'(§/1+i)}~ o
a3 % ; m | (2.70%)

ONNO @ ® N

First order smoothing corfesponds to the neglect bf
term @ in.(2.67)-(2.70').: There are two limiting ‘case;
to be considered (Kraﬁse and Radler, 1971). 1In the first
limiting case, q << 1 . The neglect of (5) then implies .

thdt

-

and the condition fpr consistency is

R' << 1 ’ (g << 1) (2.71")
S m ; ( i

In the second limifiqg case, q >> 1 . Tﬁe'negl ct of (:)
then implies that .
B/x ~ Rmfo { (@ o =
/® "‘/%5,‘ =1 (2.72)
- . \ . -~ :
and the condition for consistency is

. Rl<< g” (@ >> 1) - o (2.72Y)
k , S ’ ,v'i T



It sgould be noted that in deriyigé (2.72') we have
assumed that diffusion is negligible in the fluctuating
induction equation. However, a dynamo cannot operate

, A
‘without diffusion (Cowling, 1957, 1965). It follows that
if (2.72') is to b;/valid, diffusioh must be significant
in the mean field induction eq&étion. If this is not the
case, term (:) must be retained in (2.70'), and the
condition for (:) to be negligiblg is again RA << 1 .
Bearing this restfiction in mind, we may combine the

consistency conditions (2.71') and (2.72'), and write

)

R << (14 q) P - (2.72")

The consistency check carried out above can be

" extended to include the mean field induction equation (2.9).

This equation scales as

a-g/at -'rlv‘E - curl(g%?) *'curl(t‘&’x 9:) = O

®© & .@ @

%’-‘{ Q+ *ir‘R:nfg“(q/uo +8'/5)} ~ O (2.73)
© @ * Q@8 | |
where : . - '
,. Q= Lz/1f“ / N .'('2.74)‘

When u =10, (2.73) réduces'éa the condition

@’/’6 ~ %7—4(1+Q) BTN R (2.75)

110
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Combining (2.75) with (2.71)-(2.72"), we have

@< g~ R~ A (10Q) « 1 (2.76)

(f; >> 1) el/é ~ R';"/% ~ ("‘/%L)&(HQ)"’ « 1 (2.76")

These conditions are clearly compatible with the @®ssumption
"

that AC << L , provided that Q is not too larqge.
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¢

2.% solution of the mean field induction é%uation

2.6.1 General considerations

When the source term u'x B' has been evaluated, it
must be substituted into the mean field induction equation
(2.9), and (2.9) must then be solved for B . At this stage

any assumptions like (2.52) about "uniformity” and "time-

independence” of the meéan fields are dropped, and 8 and

-

B are allowed to vary in the expression for u'x B’

~

Ideally, the coefficients in an expansion like (2.59) should

be allowed to vary as well, to represent any inhomogeneity

of u' required by the boundary conditions or by the Navier-
Stokes equation. k%
«2.6.,2 7The mean field dispersion relation .

\
In certain cases, it is éossible to keep fhé solution
‘of the mean field equation consjistent with the assumptions
made iﬁrderivinq the expressioh for §T§i§r~2?’For example,
if E = @ and E has the wave-like formrimplggd by (2.41)
and (2‘55)’,it is possible to derive a dispersian:rélation
for the mean field. TH's problem hés been considered by
Lerche.(1971a,b)% Gillflénd and Aldridge (1973},vanderquse
and Roberts (1973).
Substituting (2.41) and (2.55) #hto (2.9), and
- . 3 | ,

making use of the first order smoothing approximation

(2.66), " w®
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( 2 K.x + Ot
(&Q+1K2)§(§,Q)e LR
= curf { wx - /2_77) "
. /\ A |
From (2.57), with B(ﬁl,gzi) = 0 , /

AYo(l.w) = ik} {d2le-K,0-0) x Bk}

-

+ dYJ(R) 8Cw-ink?) 7 (2.78)
50 that

o/ {K-x+Qt
{'é’(éz}l = tjleﬁmﬂ ~Py, (K Q)e{ st}

«mﬂ) - q(gﬂs)‘

RO
r~

=

+ le‘m ‘]l de(l_g,w) d (k’) e

;mkx@ﬂwﬁ

(2.79)
xok’
Substituting (2.79) into (2.77),
{(iﬂ+ nK?*) 67; + ép?eajgemnenﬁ Kg * .
2 i(xe02t)
'I (ReK),.. AZ( w)z d!dw}B‘e«(52+
Rio LO+D) # q(IeK)
o (2.80)
e’ s UW-K)-X — (AW 2~ i)t
= —ersicie [ (-my dZRE DAY () XD E-O

ok , »

The express:Lon on the rlght hand side of (2 80) is clearly
‘a decaylng function of tlme, while the expre551on on the
1ef§ hand side may grow with time (Im < 0) or decay with

time (Im @ > 0), If Im Q < 0 , after a sufficientiy longl

s e
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time the right hand side of (2.80) will become negligible
in comparison to the left'hand side, and the form of the

mean field B will be determined by the dispersion relation
. . Eand

{(i0+ql<’)6,% + €€, €lmn €npy K 28
: 2.8

. ( =
. ff s Bipr ) dadw} By(x.Q) = o
re, Heos D)+ qRer)? 7~

Making use o% (2.56) and the identities
e}mn enn = 6‘;76#1 - 8‘16,.-.]; ) (2.82a)
€ijg Ctmn €npy = ClipOmg — €yg dp (2.82b)
3

Grsi Gﬂj‘ Gl"ﬁ'\ G"‘P" -= er 83‘; 8,“.} - Sfp 85‘. am% - 81‘,83‘8"?

+ BrgdsjSmp (2.82c)

we find that (2.81) reduces to

.\ 2 ( K; ij?ti.a)(g*;é)r‘ 1 & (K Q'
[+ IL &cmmwzf!sfﬁ)rd!dw} P, i)

A

+ {Ks I] ﬁ[’rs(gnw) - 85.(k,0)) d!dﬂ} 'B (x n)
Ciaoe) + q(Re)?

R

= 0 - - (2.83)

Separating the real and imaginary parts of (2. 83), we

may write the equation in block matrix fOrm



o
NG
(/ /

a -b Re g .
~ ~ ~ = O .84)
b a dm 8
= = ~
where
2= ReI? - [ ImQ K"~ Z%I®)I (2.85)
b= $mI?® 4 {Re +4mI®}1L (2.86)
with
2 & 2
B s ReB(K,D) + i dm Bk, Q) | (2.87)
1o, = e s qtarior 40 (2.88)
'
2 N : P
I (g,&\e ff ek {8 - Bl N}y, (2.89)
\ ko D) + qllkee k)
x; dm 5_;_;_(_2,«1\ (2.89°)

= 24
”9.‘“ 1Go+£2) + qlke + K)?
@ :

i

(2.89-)Xfollows from (2.89) since Qij ‘must éaéisfy the

\

condition of Hermitian symmetry
\V‘ ’ = * * " .
\ ¢'j (k,w? = ¢ji(‘}5’w) (2~89")

as a consequence of (}.4{) and the equétion of the type -
(2:.34") thq relates, ¢ij to Rij |
(E;:éti n (2.é4) has a non-trivial solution only if

7
i
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det ) = 0 (2.90)

2 2

Because of the form of the block matrix, (2.90) may be

rewritten in the equivalent form

,g' S

= det [22 + 22] [ﬂl?‘)ﬂmy"- ‘m?z\mrz\])
[gmgﬂ\negu) —&lﬂ)g";(u] | (gg + 22]
= O (2.91)

2.6.3 An alternative derivation of the mean field

dispersion relation 5 : N

The results (2.84)*(2.9i) may be compared with the
results obtained using the Rddler approximation technique
in the first order smoothing approximation. The bssumpfion

£

that the iﬁltial conditions have had.time to "die oﬁt" is

equivalent to ignoring the seébnd term inﬂ(i{SQﬁ“ahd setting

the upper_limit‘of the time integrafion~in (2.60) equal to
infinity. Then, making use of (2.61) and.(2.63),

{
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aK*t?

_ )
{ux B} = g 9

“"‘r‘*"}c OXn ---0Xn atV B$(§'t) (2.92)

where

Vel
(x,?) _ (__ 1)K’ +

dign,.- nc

i gt ClgCemaCopy

A -

'l]‘§w‘§ﬁ§cﬂ5da>ld£ [:h;(4uqu”’éT%MT,
& w ail space  ©

- s t)
.2,{ VL —i(RLew }
a (T T €

(2.93)

The assumption; used in deriving (2.92), that term-by-term
integration is valid in (2.22) implies that the sefiés on
the right hand side of (2.92) may be Fourier transformed 7
term by térm to give a convergent Fouriler represéﬁtation
(sgé, for example, Whittaker and Watson, 1927, p: 78).
Thus, making use O0f (2.41),

%) v

{wxBe}, = f[ axan &2 B -

| 2

-

o, . , :

A

SO that,'taking the Fourier transform,

P A A

- LR ) : »
{u'2B.}, = Bk, .%3?;:....", 70K, Ky, (2.94)

The Fourier transform of the mean’ field induction equation

(2.9) is then



- P
{tﬂf qK"} B, = { €pg; Ks {ux f};}‘
- V) . s
T Censi K 8‘& xv 9?;: i T K, Ko (2.95)

n

i€esi Ky 8% { gw.o) - Su.o) o+ iacp.n o)

(a, ) Ce,0) nxn

3 ‘%"a"z K" K"‘ - 3 ign,

retaining only the first few terms on the right hand side.

Taking real and imaginary parts of (2.95'), and

noting that the gf;:) are purely real, *by defirlition,
we Obtain an equation equivalent to (2.84). 1In this
equation, I(l) and g(z) are expressed as power series

expansions of (2.88) .and (2.89) about (K,&) = (0,0) ,

integrated term by term.

2.6.4 Symmetry considerations

If the spectruT tensor of the turbulence is -

symmetrlc under 1nterchange of 1nd1ces

(i.e. ¢ij is purely real, because of equ(zi'ion 2.89") ,» then
£{2) vanishes 1dent1cally, and (2.85)-(2. 91) reduce to the
equatlons &

B YR LR } (2.95°)
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Im QO -K? - R I - o (2.97)

e Q + Im IV = O (2.98)

We shall consider these equations in detail in Chapter 3.

2

2.7 The mean field deromagnetic dynamo problem

N

The techniques of mean field electrodynamics which
have been outlined in tHis chapter can also be applied to
the hyfromagnetic dynamo problem (Moffatt, 1972). We

shall examine this application in Chapter 6.
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2.8 §9mmarx_9f Chapter 2

Thls chapter 1s Codcerned with mean jiold e’ ctro-
dynamics and its applicétion to the kinematic dynamo .
problem. Most of the material presented is taken from the
recent literature on the subject; however, several original
congributions appear.

In section 2.2 a new terminology, related to that
used in other disciplineé, is proposed for 3everél types of
stationary, homogeneous twrbulence with particular
invariance properties.

In section 2.6 a comparison is presented of the
results obtained using Fourier transform and Green's
functfaﬂ techniques in the mean field éleétrodynamic
“approach to the dynamo problem.

Finally, in section 2.6 the mean field dispersion
i

n

relation for wave mean fields is cask in a novel determi-

nantal form.



(;"“

3. THE KINEMATIC DYNAMO PROBLEM AND PT-INVARIANT

TURBULENCE

3.1 Helicity, and the maintenance of nearly uniform,

nearly time-independent mean fields |

As noted in section 1.4.1, a solution to t%@ kine-
matic dynamo problem consists of a pair of fields‘}g, B)
such that u is "allowable", B satisfies the induction
equation, and the mean magnetic energy stored in the
conducting fluid grows with time or remains constant. Ip
the MFE approach, it is the energy aséociated with the mean
fieid E which is required to grow (or remain constant),
and the question to be asked is: what restrictions fust
be placed on the fluctuating velocity field u' to énsﬁre
that dynamo action will occur? An important restriction of
this type has been proposed by Kfauéé:(]958a)é kadler

(1968a),4 and Moffatt (18970a), who point out that perhaps

occur when E = 0 is to'require that

E"éurI u' # 0 }3.1)

~

This quantity has been given the name helicity by Moffatt
(1969). 1Its effect is seen most clearly by maklng use of
the Fourler-Stleltjes representation (2.35) for u' to

obtain (Moffatt, 1970a)

wheurty' = ey, [[ w8, (ko) dido ,3.2)
Bo : o

’ | R 121



If the mean field E is virtually uniform and
t ime- independent on the length and time scales of the

turbulence, we have from (2.65) that

fuxBol, = (€jnegman eﬂnﬁ ” R"fgig%(!'u) dk dw (3.3)
vy tW+ g

where the effects of initial congitions have beed’/neglected.

Also, assuming that the fluid is incompressible,

ki¢ij(k,w) = 0 = kj¢ij(k,m) (3.4)
(Batchelor, 1963, p. 27). Substituting k3-4) into (3.3),
" ok T
Pl o
and making u@&ﬁof (2.82a),
fuxBol, = ey [[ XeBy BB 4y us (3.5)

i+ nk?

)

Clearly, if u'x B' is not to vanish, we must require
Y ~o B q

’\?-

o

ézjg@;l # O ‘ (3§6)

But, from (3A2):and the nature of the spectrum tensor,

(3.6) is equivalent to (3.1) - i.e. in ordér for ; turbu-
lent velocity field '2' to be able to maintain .a magnetic \
field' E; wh%ﬁh is ﬂ%arly uniform aﬁd time-independent on
the length and’time~écales of the turbulencé, w' - must
have helicity. (This derivation, of course, is only valid

‘ ¥

in the first:-order smoothing approximation.)

3

]
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3.2 PT-invariant turbulence and nonuniform, oscillatory

mean fields

{

3.2.1 The spectrum tensor for stationary, homogeneous,

-

isotropie turbulence

7 .

It has recently been,suggested by Lerche (1471a,b,d,
1972b,d) and Lerche and Low (1971) that helicity is not
required when B is nonuniform and time-dependent on the
length and time scales of the turbulence. These authors

)
consider the case of stationary, homogeneous, igotropic
turbulence, for which the spectrum tensor ¢ij has the

simple form (Batchelor, 1953, p. 49)

E(k,©) 1 : \
Q@j(g,hﬂ = Au kS hzsi.j - h'«kj} , (3.7)

{ ot . L
In (3.7), which is validxﬁgr incompressibbe flow,
) . ¢ '

, . ,
E(k,w) denotes the energy spectrum }chtion of the turbu-
lence. This function represents the density of contribu-~
tions to the kinetic energy of the fluid in (k,w) space,

and -

n

=Y o« N — .
\ I ,dwf,au: E(Rw) = £ ui(x,t)uilx,t) (378)
-0 [-] .

[ 4

" is- the total kinetic enéfgy per unit mass of the fluid.:

Consequently, E(k,m)' can never be negdtive.

SN It can be shown (Batchelor, 1953, pp. 39-40, 51) .
that E(k,w) has the form . .
P E(R0) = Co) ket + G(kS) R (3.9)

ﬂear k=0,

123
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/

3.2.2;,?T-i%¥griancé and helicity
é\‘\ “

Since éhclSpectrum tansor (3.7) is symmetric, it
cannot satisfy (3.6) ~ i.e. stationary, homogencoue,
isotropte turbulence has no helicity. This lack of helicity
is a general property of PT-invariant turbulence (sce
section 2.2). As was shown in equations (2.4'), (2;8), and
(2.€'), the cofrelation tensor for PT-invariant turbulence

satisfies ;
R..(c,7) = R..(-xr,~1) - (3.103/
\ .

(3.11)

e
la
~

i
2y

T

il
1
~

A

R..(xht) =2 R..(K,7) ’ (3.12)

It follows immediately from (3.12) and the definition of

the spectrum tensor ¢15 that :‘ \
i (kow) = jS(giw) N (3.13)

. AN
Since ®ij must also satisfy the_cSQdition\ofHermitian
o : : R _

R }

symmetry . ’ N \

l * N 3 '
0 5w = 0l (k) ) (3.13")

as a consequence of (3;10),gtke'spectrum'tenaor for PT-

EAY

invariant turbulence is purély real. The converse is also
P Ly : R ‘

i

"true: turbulence for which the spectrum tenson is puré;y

real is necessarily PT-invariant. - . O g it

. . . : ' : -8



3.2.3 An an}i;dynamo theorem for stationary, homogeneous,

isotropic turbulence in an incompressible fluid

PT-invariant turbulence of the type'(3.L;) cannot ©
maintain a nearly uniform B . However, it is still possi-

ble that the turbulence might maintain a field of the form

ol

(x,t) = 365,0) ez et] : (3.14)

'fog'é suitable choice of (K,2) . The necessary condition

for the maiﬁtenance of this field is that (K,Q) satiéfy

the dispersion relgtion (2.87)-(2.98) with Im Q2 € 0 .
RS S . ]

Rewriting the dispersionrrei;tion for the case of /

stationary, homogeneous, isotropic turbulence, making use

of (2.88), (3.4), and (3.10), we have

mQ LY 2 Re “‘I“‘(g,n) (3.15)

ReQl = — gm I“’(;g,(i) . i (3.1‘6)
. PN . ‘ 7 ‘w’n o &
‘where : : & : ‘(é

. LY U b ‘7" [
E(QIU) : {.“ SJP klhf} % ddw ‘(3'17) -‘

£ " R
I QS:Q) B Kj KP nl‘ 41!‘;4‘ {i(w,ﬂ)‘f rl(go , ﬁ
. . RW - » g

(SR
é

* ' ‘ +
Taking XK to define the z-axis in k-space, sﬁ&that !

5EK = kKcosf ,

®

Kikp [W'6jp = KR} 5 (WK - (kY = (RK)’sin®®  (3.18)° o+

°an§§(3.l7) bécomes AT | | A

125
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I(k, Q) |
pad “" n>0 40
- 4 30
2 K '[odfol Edk,w) dk] L+ Q) "i'l(k2¢.(?+ 2RK cos©)
- /
T E(e, W 'R '
3 4) [48) B ofn BL L 9 8] G
where
"'r ’
' sin306d0

J (1482 4+ 2Fc0s® —p) + iV

It is ¢lear from (3.15) that I Qg Oi i; and only
if Re I(l) < KnKz - But, from (3.19), Rezﬁ(l) can only
be negative if Re 6 < 0 fér at least some V;erS of its
arguments, since E(k,w) is eVeryWheré positive. . From-

. (3.20) we see that |

T (14¥*+2Fcos8-p) -

Sin3 ©d0o

> L, = 2%¢4
&@(Y;V)P) f | (‘*YA’*Z:X“’B_P)ﬂ*‘Vl
. ‘ 39 , "
R 7 > z'g i(‘ i) Pl $in h _ dB X i (3.21) 7
5 [ (u—f 24+ 2¢cos© -p) v oo

'Ttus, when p < 0, corréépbﬁaing to Im £ < 0" in (3.19),
738 6(g,v;p)_ is a nén*negative functio% of £ and' v . It
follows that Re T(l) can névér be negative\wheh Im < 0
We have therefore proved that stationary, homogeneo;s
isotropic turbuZence in an tncompressible qu1d cannot
support a growing magnetic field of the type (3.14),

'wifhin the fram;work of the first order smoothing approkima—

£ion. An alternative pr¢o?ﬂof'this statement has been .
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given by Krause and Kobertes (1973).

/’~ﬂ\\\
AN

3.2.4 Extension of the anti-dynamo theorem % PT-igvariant

turbulence in an incompressible fluid

We may extend the proof gi‘fn above tio show that in

’ .
an incompressible fluid, a growing maJQ?tic f N\eld of the

form (3.14) cannot be supported by any stationary, homo-
Jeneous turbulence which is PT-invariant. Turbulence of
this sort will have a spectrum tensor which satisfies

both (3,13)7and the condition of Hermitian symmetry

(o] .

@ij(k,ml = ®ji(£,w) ; (3.?2)

el
As noted above, the spectrum tensor must therefore- be .

real. From (3.15) we see again that Im 2 g 0

<~

purel

if and Only,if' Re I(l)r, defined by'(2,887, is less than

equal to ~nkK? . ‘But, from (2.88), (3.4)Wand the

]
M

. /
condition. that Qj,(k,w) is real,

' ) e~ 1}
Re I%(k,0) = KjKrH Bip(k.0) in ]

dedo (3,23
(or ReQY? + {(1)* - dm}? 7 (3.23)

| R f

ar . ]: » : ) s ; .
This integral can be negative when Im 2 g 0 only if -

K.K_ 0, ' " (3.24) -
KiKp 95,60 < 0 T R Y

' for some range of (k,w) . However, by Bochner's Theorem

(see Krause and Roberts, 1973; ihtchelor, 1953, .p. 25),
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the quadratic form

*

¢ X (k,w) (3.25)

X0,
1P Ip o~
must be non-negative for any choice of the complex vector

X it ¢jp Ks‘the spectrum tensor of a continuous, sta—:
tionary, homogeneous randoﬁ process. Thus (3.24) cannot be
satisfied for any chpice of (k,w) and the proof is

~

complete

3.2.5 Failure of the anti-dynamo theorem for PT-invariant

in _a compressible fluid *

The proof cannot be extended to the case of
stationary, homogeneous, PT-invariant turbulence in a

compressible fluid. To see this, we may note that, by

virtue of (3.13) and (3.22), the spectrum tensor is still
purely real in the compressible case. Thus (2.88) gives

. | 7 7
Ki(Kp+%p) @0 (1 ,0) § (e )2~ Im 2}
(+ ReQ2)? + falre)*~ mQ2}?

Re 1%k Q) = H drde  (3,26)

R A ) L)
?T?J (1) : , o
ands Re T can be negative for Im £ < 0 only if

[

K. (K- 4 . (k,w. N 3.2 - x;;
. j(Kp + kp) jp(~ w.) ”< 0 ( 7) ~

i

for some range of (k,w) . From (3.13),

K &. = k. K. ¢. 3.28
kiKp ®5p = kpKy 05, ( )

for PT~invariant turbulence. Therefore,

v



‘-
Kj(KpaRp) Bjp = 4 [ K4k XKpakp) + KiKp ~ RyRp} Bjp  (3.29)
By Bochner's Theorem (3.25), each of the three quadratic
forms on the right hand side of (3.29) is non-negative.
However, the minus sign attached to the last term is suffi-

cient to allow the right hand side to become negative.

Consider, for example, the case ¢jp = ®°6jp , where
o° > O‘. In this case, (3-29) becomes «
Kj(kp+Rp) Bjp ® Kj(Kprhkp) 2°8jp = Ex-{rcer} - (3.30)

It is clear from (3.30) that if k-K < 0 and Ix-x| > [kl

equation (3.27) will be satisfied. It follows that it may
be possible for stationary, homogeneous, fT-invariant turbu~
1enée in a compressible fluid to support a magnetic field of
the form (3.14), within the framework of the first order
smoothing approximation. However, Krause and Roberts (1973)
show that stationary, homogeneous, isotropic turbulence in

a compressible fluid cannot support dynamo action in the R

2 {1
case when "

Y

2 | ; (3.31
ql Ac/nrC >> 1 “ (3.31)

where  A_ and 71 are the correlation length and time of

the ‘turbulence.

129
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3

.2.6

Reconciliation of the anti~dynamo theorem with the

work of lerche and Low

LRl

The theorem proved in sections 3.0.3 and $...4 1s in
2 5
direct contradiction to the work of lLerche and Low (1971,
who suggest that stationary homogeneous, isotropic turbu-
lence in an incompressible fluid can lead to dynamo action
for a mean field E of the form (3.14), within the frame-
work of first order smoothing. The discrepancy between the
two results lies in the fact that the correlation tensor
used by Lerche and Low does not satisfy Bochner’'s Theorem.
In fact, their Corrélation tensor corresponds to a spectrum
tensor of the form (3.7) in which the energy spectrum
function E(k,w) has negative values for some choices of
(k,w) . Such a choice of E(k,w) 1is clearly unphysical.
Krause (]972a):and Krause and Eobérts (1973) give a \
moxe detailed discussion of the work of Lerche (1971a-f, \
- 1972a-d) and Lerche and Low (1971), in which attention 1is \

drawn to the discrepancy mentioned here and to several other

inconsistencies.

3.2.7 The possibility of dynémo action with "mirror-

symmetric" turbulence

-

It has frequently been stated in the literature that
"mirror-symmetric" furbulence cannot suppo}t dynamo action
(e.g. Moffatt, 1870a). This statement is usually supported

N
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A
’
>
\

by considering the case of isotropic turbuléhce (3.7).
However, as noted in Table 11, i{sotropy implies PT-
invariance, and, as proved in the last few sections, it is
the property of PT-invariance that leads to the impossibi-
lity of dynamo action (at leastlunder certain conditions).
The anti~dynamo theorem préved in sections 3.2.3 and 35.2.4
cannot be extended to the éase of P-invariance kor whirror
symmetry"), since there 1is no general requirement that the
spectrum tensor of P-invariant turbuience be symmetric under
interchange of indices. 1It is therefore possible that some
types of "mirror-symmetric" turbulence in an incompressible
fluid can produce dynamo action, evenﬁwithin tsﬁ framework
of first order smoothing. The only types of P-invariant
turbulence which might be able to do so are those whose
average properties are not invariant under time reversal -~
i.e. the turbulence must not be T-invariant. Furthermore,

as noted above, the turbulence must not be isotropic,



3.3 PT-invariant turbulence and decaying mean fields

3.3.1 The effect of ini};{q}A‘gpfyiit:iyllg

e, Cowilliland and Aldridge (1973) have discussed the

_case of PT-invariant turbulence in more detail, attention

being given to mean fields of the type (3.14) which decay

with ti%c (i.e. Im Q@ > 0 ). Uﬂaer these circumstances

it is no longer possible to neglect the effect of initial

conditions on B' , and the term oﬁ the right hand side of
o

(2.80) must be retlained. When the turbulence is PT-

invariant, so that (3.13) holds, (2.80) reduces to

{LQ ""le + I(')(OS,Q)}E'.(DS,Q) c&{§£+ﬂt}

S [ F¢ T INPT ACROEAMED
Rk et ()X — (iR i)t (3.32)

A

X
The term on the right hand side of (3.32) is not in
a useful form. An alterpative expression may be obtained
by startinéifrom the breen's function representation (2.22),
with E =_ 0 and Gij defiged by (2.61). Substituting
the Fourier represe?tations (2.63) and (3.14) for Rij and

B in this equation, and making use of (3.13) we obtain

132
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i

{104 qk®+ IOw M} B (x Q) eHlEx+0t]

/~
= B e il xe0e}
= “erslei.jg {K‘ Bﬂ < °

” (8+K)p Bjp(R,0) e._(am+n)+q(p;g)‘1<t—t.)d

kR dw
U2+ Q1) + nin+K)? -

- . -3,
Idr R Yot [4nqt-t,)]

allsrar.c
-]
- H —
3.3?2 Initial condition I ~ B' independent of B
/;f’ We may now consider the effect of various initial
conditions on the form of the dispersion relation. If
‘ .
\L'j(‘g,‘t) B‘,‘(?E‘,to) = QO (3.34) -

K

or, less resttictively, if

9‘ ~ ! -~

wjlx,t) B (x' t.) = f}g('x'—é it,te) (3.34").

- equation (3.33) reduces to
_K.II (=+K)p Bjp R, ) -

(+Q)+ qcmx)’ :
Rw ‘ ‘ o

i+ rle =
2
{1 [s(w+£\)+ nk+K) ](t-t.)} dkdw

(3.35)

or



e
' \
(f)«+r1Ké
| -, K
g A _n(ReK)T
= =K I e T dz j(‘,‘*'S)r Rjp(k;t) € die (3.35")
i ®
where Rij(h;w) is the spatial Fourier transform of the
correlation tensor Rij , defined by v
R 5 ik.r s
Rij(r,x) = | Kj(k;0) e an (3+36)

The "diSper;::;\;é%dtiOn" (3.35) or (3.35') is’

C]early [[mu~JepenJent, If Im @ > 0 , values of 5 such
that

nik + 5)2 < Im § . (3.37)
will provide contributions to.the integral on the righgfband;,,
side of (3.35') which do not tend tp, zero as (t*ta) goes

to infinity.

3.3.3 1Initial condition II -~ B' correlated with E

! / _ ,
. Lo, s, 4 . : 7o
A second possible initial condition is that the v )

‘'right hand side 6f (3-32) or (3.33) should vanish. This

condition is~satiéfied if 7 )
h . o/ : o
dZ (R, AV, () = T, (k@) 8x-I') dkoliy’deo (3.38)

or

¢

fourt (Wx B Cx.to) = ~Belx,2) Sl Mdrogny (5.3
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, N

K

or -
. A ’
wfx, ) B (xt) = -iBy(x,0) el 2ot}
) 1o+ 1)+ (!,5)2
re ! (3.38")

~ (R XY~ (Z - %) 4 G OAXNL-L,)
implying that the fluctuating fields u' and B' are
correlated even at time ¢t = to'; and that B' is always

proportional to [B] . Under these circumstances, the

dispersion relation (3.15)-(3.16) is valid for all § .

f
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3.4 pT-invariant turbulence and decaying mean fields -

o<

initial_condition Ir

)
3.4.1 The mean field dispersion relation |

. / R e, N . . - -
LLet us first examine the case when fnitial condition
[l (3.38) applies. The dispersion relation is, ?ewritin?

(3.15) and (3.16),

:‘mup(‘ + IO = O ' | (3.39)

where ,

K; &5 (R Q)R+K) )
I%K. Q) = “ 2 de 4 (3.40)
RwW

{0+ Q) + n(R+K)?

-~

When Im  » 0 , there is a pole on the‘ihtegration con—

tour in (3.40), at ,

W= ~Q 4 iR+ K — ' (3.41)

and the integral must be defined in terms of a Cauchy

principal value.

3.4.2 The mean field dispersion relation for isotropic:

turbulence in an incompressible fluid ° .
~

When the turbulence is isotropic and the fluid is
incompressible, the spectrum tensor is given by (3.7) and
the integral (3.40) may be written in the form (3.19). We

may then discuss the behaviour of the integral in terms of
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?\ the function 0(f,v;p) defined th (3.20). For all p < 1
Re Of\;s‘a non-negative fWhction of £ and v , going to
zero alomg the line € = 0 . 1In addition, Re 0 1is an even

@

function of v , tending monotonically to zero as |v]| - .

@

The behaviour of Re 0 with £ 1is indicated in Figure 1 ,
"where the function is plotted against & for v = 0 , for
several typical values of p . From this behaviour it is

clear that ‘the dispersion relation (3.39) has no solutions

for Im @ < nKz , Since Re I(l) is positive definite in

,ﬁ this region, while the real part of (3.39) requires that

.

Q2 —nK* = ®e I®(x,Q) | (3.15)

) Solutions will occur, however; when Im >'nK27, since now
the left hand side of (3.15) is positive, while the right
hand side can assume positive or negative values, according

| to the ‘hoice of o (K.9).

) : The real and imaginary parts of 0 are,

T (12¥% 2005 € ~p) sin’0

3 4
;&9(}.?;?) = 2% | (1+7+ 2Fcos6 py + 72 (3.42)
‘ w . " '
$m®(‘{,v;P)- = —2?}"[ sin?0 de (3.43)

o (14+¥24+ 2Fcos O -p)? + V2

-

These functions are plotted against ¢ andl v. for

typical values of p > 1 in Figure 2. . )

3



138

-

1 i’

0
(YO
LI
. 0
- ¢ -
=
(o}
-
e
0
[=
=
L
— PN
- )
- "
]
G o~
o))
o
(Y
fan ~
>
~
o -
Q
~
=}
o]
h fe

70+

50}

3T R
(d'0' 1@y

10}

~10

P

for various



o

Figure 2. 9(€,v;p)'as a function of £ and v

for two values of p .

8

7 'In the plots shown, p has been replaced
by (Imrﬂ)/ﬁd , where Q4 = nKZ . In the uppefiglﬁt,
Re © and Im 6 are plopted against £ and v for
p.= 10 , while in the lower plot, Re 0 is plotted
against £ and v for p = 1.025



m ®

CImQ)/0Qyg =10

Re @ (€, v, ImQ/1d)

)

(ImQ)/0g = 1.025

O
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From (3.19),,

I¢(k Q)
< o & : (3.44)

b 1 2 - ’ Q
= ¢ K [ofv Idf (Kp* E(KY, nK'7+ ReQ)) @(¥,v; 4’",‘1;;)

—

Since E(k,w) 1is purely real, Re I(l) iﬁ)determined by

Re O , while Im _I(l) is determined by @

3

3.4.3 The nature of the dispersioh relation - contrast

between oscillatory and non-oscillatory mean fields

/

Since Im O is an odd funétion of v , while
E(k,w) is by definition an evkn function of ¢ , it

/
follows from (3.44) that Im I(l) 0 whenever Re fIl = 0

i

(3.39),

In this case, the imaginary'pért of
" Re Q) = ~-Ym I,“]’(:j,('l) (%16)
is satisfied identically. When Re @ # 0 , however, (3.16)
is ‘no longer trivially satifified, and (3.15) and -(3.16) R
may be considered as an eidenvalue problem. If we define 7
\ i " g,
A . o | R . » ﬂ
A h(rw) = E(R,w)/kl; I h(o,0) = 1 (3.45)
and let
p o= 1+ 28, (3.46)
- \ - nK ) . )

E- 3

oo : » ’
(3.39) can be writtep in the form
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~ n P Ax? 4"‘P - A
-
where A is a complex-valued integral operator. The

parameter n/AKS may then be considered as an eigenVaiue
for the problem (3.47). * /
Solutions to the dispersion relation (3.39) are thus
of two types - those with Re £ = 0 , and those with
Re 2 # 0 . 1In the limit as Re 2 » 0 , solutions of the
second type mayrform a discrete subsét of the set of solu-
= tions of‘tﬁé first type. ) .
RS - . VL e

£



3.5 _Digression: the properties of stationary, homogeneous,

isotropic turbulence

"3.5.1 Ceneral_properties
\ L £5

Before continuing with a more detailed study of the
solutions of the mean field dispersion relation, let us
consider the significance of thé’function (3.45). For
fﬁnﬁr5p{c turbulence, the correlation tensor is of the form

Rij(ErT) = F(r,1) riFy * Glrr) Gij . (3.48)

(Batchelor, 19563, p. 45ff.), and we may define longitudinal
and transverse correlation functions f(r,1) and g(r,1)

such that

#

“31» flra) = Uepy (X, 1) u;pr(izrg’f;_twr) = r"F(rt) + Grn,t)  (3.49)
O

2

Uon GUrTY 21 Um(x ) WX+, taT) = GnT) (3.50)

u(p) and W) denote veloéity components parallel and
normal respectively to the vector separation £ (Batchelor,
1953, p. 46), and

¢

.

Upy = Wy = -la-u’;(;.:t).ui(%.ﬂ = 4wt (3.51),

The Fourier transforms of Rij , £ , and g are
!

. 2 F(r,w)
ﬁq(g,hﬂ:ﬁ Qu(ﬁ!,m) = - k. ok, + a-(R,(O) 6;“

SRS L JLURACERE ST



Ce— A N
%ua firw) = - V: F(rw) + a(k,w)
{ 13? o
= —— AN 3.53
n‘an{“ an} G (3-53)
%?g(k,w\ = a‘r(n,w) (3.54)

A

B |
3.5.2 1Isotropic turbulence in an incompressible fluid

For incompressible flow, the spectrum tensor ¢

i)
must satisfy (3.4, so that
k2 (tof I Lk RO P S
™ kan}"’ g nan}“ am tG = O
giving
A, . 2 , ]
T G(kw) '= ak“FCK“‘n (3.55)
" From (3.52) and’ (3.55),
| « Fom,b 2 p
2 = — . ——
-%ui (R0 é” (Rk.w)
sO that, for incompressible flow,
-~ r—— N B
—";-g% = —-é-u. £ L (3.56)
, R s S
e - -'3- =§ = a:‘ = —-Zue--(n#) (3.57)

- "%TET.EP_R k {-— u’a (lt?)-c-'_’?}é

144
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-
3.5.3 E(k,w)/k4 for isotropic Lurbulencc in an

incompressible fluid
From (3.7), the energy spectrum function E(k,w)
is given by

Eth,w) = 2mk" 9 (kW) (3.59)

Thus, by (3.58) and (3.59),

E(k,w) = —2—3—Tru 333—?0! @) (3.60)

The function (3.45) can therefore be represented as.

RoOzw |

. :
h(kw) = ERW)/\ 4 = 2031 2 B 3.61) *
A h(kw) = /et 3 e an {‘(k,w)m (3.61)
where
A = {E(k,ﬁﬂ/k»t} - ~&ra {k ax?(" w)} L (3.62)

e From the definition of the Fourier transform;

f(k,w) is given by

?(k W) = [d:r[dr firx) eiBrr vl

~  ail spoce

= -—— fd.te Idr r‘{'fr;t)ﬁ!‘_.h_". (3.63)

(QQ -0 o Rr

.Thus

E(R.w)/k( - _3‘_(%_"_)_5 — [ e~ 9% o .
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-

The oscillatory factor in the integrand of (3.64) may be

expanded in a Taylor series about kr = 0
L feoske ~ SinRe} o _tfq_ (hr)‘*___} -
vl =l Bl 10 (3.65)

Substituting (3.65) into (3.64), and taking the limit

k -0, w= 0, we have, from (3.62), that

A = {E(k,wyk-.L = ‘.I_(%;?? I:T [:‘f(r,ﬂd" (3.66)
EfeF-X*-) e d L4
i

3.5.4 Gaussian isotropic turbulence in an incompressible

fluid ~

€]

' The xpressions (3.64) and (3.66) may be used to
4

o)

»valuate E/k° , A , and A for any desired type of iso-
tropic turbulence. Consiger first the case when the

longitudinal correlation function is Caussian, so that

: A Sv?a .;Tzorl 7‘/
flrr) = e HA /) : (3.67)
A and T. are the'correlation iength and correlation timer
of the turbulence. a‘
Substituting (3.67) into (3.64) and (3.66), we
obtain
Yy 3 - AcR)? ¢ (T 0)? ' ;
,E(lg,w)/w = al;'ﬂu‘xf'rc e'i{( < < } (3.68)
— s :
= A WA T | (3.69)

A on
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!
(Yee Gradshteyn and kyzhik, 1965, cquations 3.952.4,
3f952.1, and 3.461.2 for the integral formulae used in
obtaining 3.68 and 3.69.) From (3.68), (3.69), (3.45),

and (3.63),

a — 4 k)z )1 z A
hik,w) = g HOR v (r®} %‘imt,w) (3.70)
,/ Agtc

3.5.5 Gaussian-exponential isotropic-turbulence in an

incompressible fluid

As a second example, consider the case in which the
longitudinal correlation function is Gaussian in space and
exponential in time.

A ; -
V_réu%,ﬁlfb%t

firr)= e (3.71)
Frém;(B.Gd),g(B,SG), andl(3.71);
- - A2 i
E(k, ' = —‘* 246 e - - 7 )
“ﬂ/’lf bwg U Ae Te 4+ (t.e? (3.72)
A = 1‘7(1; Wity ' (3.73)

(See Gradshteyn and Ryzhik, 1965, equations 3.952.4,
- - '
$.962.1, 3.461.2, and 3.310.) From (3.72),°(3.73), (3.45),

and (3.63),

Q

A . |7 2 -:1, - '
hik,0Y = —— SR —‘2—'-)——‘@-;—- ﬁcn,w) (3.74)

ja —a €
{+ ‘w’i Xz Tg
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The correlation functions (3.67) a;? (3.71) have

been used fairly widely in the litceraturg/ (See, for

caample, PoH. Koberts, 1971a; Krawse gnd Hadler, 1971.)
The results obtained in (3.68)-(3.70) and (3.72)~(3.74) ~
are summarized in Table 172, p. 149, along with similar

results for "exponential-Gaussian”" and "exponential”

isotropiaafurbulence,

»

i
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3.6 150trQL}L_turbulenLcﬁand dccqx} g mean flelds -

~

ipl(}al QQEQ&E&P“ 11

3.6.1 The nature of the eigenvalue for oscillating mean

fl(:‘l(i‘i

We may now use (3.69) and (3.73) to determine the
J " : " 5 . ! '
nature of the "eigenvalue n/AK in (3.47) for the cases
of "Gaussian” and "Gaussian-exponential"” turbulence.

Comparing the two equations, we see that

T T235 2
AKYq = C- &“_}.1&_‘2 K' o c. {“*‘}(mc) (ne/at)

]l

¢ {RWYq} xe)®

< = C- (RL)Z(XCK)j(QKiTC) (3.75)

where we have made use of the définiticﬁs (2.68) dnd (2. 69),

and the identification
W= J& : (3.76)

C 1s a constant determined by the form of f(r,t) .
iIt may be seen from Table 12 that (3.75) is a
general_expfession applying to any type of stationary,

homogeneous, isotropic turbulence. Values of C are

given in the table for "Gaussian", "Gaussian-exponential”,

n - o

"exponential-Gausgian", and "exponential" turbulence. .

The quantity ACK .in (3.75) can be interpreted as

a ratio of length scales. The wavelength of the mean field

150
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is
L = 2n/K (3.77)

sO that

[

- . .78
ACK 2m (AC/L) (3.78)
Similarly, the quantity ﬂKzTC can be interpreted as a
/
ratio of time scales. 1In the absence of turbulence, the
. f o 2
mean field B will decay as exp[-nK't] , so that the mean

field decay time is

T, = 1/1K* ; (3.79)

Therefc

o

re,

3
~
-

I

T/ Ty , (3.80)

- o o
A

I
and the eigenvalue n/AKS can be expres

' S5.-1 0 '3‘:: 2 ' 3. .
(n/AK™) = (2m)7-Co (R T (A L/L) T (T /T Y)

ﬁgar

3.6.2 Non+oscillatory mean fields — the dispersion relation

and the effective magnetic diffusivity

We may now examine the solutions of. (3.39) more
/ [ :

closely. Consider first the case in which Re © = 0 . Then

by (3.15), (3.44), (3.45), and (3.75) the mean field

dispersion relation has the form

151
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K (3.83)

-3

2
= Cu(xcx) fawld‘f h(KZ, qK?7) Re Of £, 7; 4-:,,,(1}

2 - . .
- The parameter Im 2/nkK may be interpreted in terms of an
effeftiue magnetiec diffusivity, Naff - When no turbulence

is present, the solution of (3.83) is

~

Q = aK* (3.84)

and the mean field decays as éxp[-nKzt]'. When there is

turbulence present, the mean field decays more rapidly, with

the exponential factor ndw being exp[-ImQ-t] . We may
therefore define C '
$mQ s neer k2 . (3.85)

by analogy with (3.84), so that

4“?’! | §n Yni? = "Neti/n | (3.86)

Eéuation (3.83) may be rewritten in the form
ot ‘c 2 _ 4& A C L a -
. Rm) = A e, -1 dv | d¥ h(KE, nK*V) -
:—;{y( N C-(heX) (% }{_l: I:E 1 ), )
Sl * - Re®(Y.7, 'l‘f%)} ' (3.87)

|

specifying the magnetic. Reynolds number of the turbulence,

( , . 2
Rm , as a function of vneff/n . g9, ACK , and nK T, -

In principle, (3.87) can be inverted to give ”eff/n ‘as a

funct1on of R' ' , A K , and nKZT .

l“"'c oc
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3.6.3 1nsensitivi§x}of the effggﬁiva diffusivity to

1n1t1a1 condltlons when ALK is small
I S Y Y

In ' order to establish la correspondence between
(3.83) and the results obtained using the Radler expansion
- technique, we must investigate the limiting behaviour of n
(3.83) as ACK N Q . Making a change Qf variable in the
integral, . @

E?ﬁ%i;ii:qe“yhf—-i}
(3.88)

. A -©
= O [ a2 [ BT, %) Re @ B, Yaw'n, s 1/} AE
: - o 4
From (3.42) and Figures 1 and 2 we can see that the dominant
contribution to the integral 1Q (3. 88) will come from’%hé
values of .Re O (£,v;p) at laré% E , since Re %}* w as

£ » ® . From (3.42) we have % '

K."t;;?} = Re @f Vs .k, ¥rd Pl

-

nfe 46

2§f r . 3 20¢K)§§osé ¢zA<K)’(|—;>)

(1§ SN zocx)fuse + (K- P +vgl* |
{3.89)

Expanding the,integrand in (3.89) as a power series in X K

and integrating term by term,



Rl

/

.\Re@{f/,\cn( TSNS S *

. "
30K { ¥ (vg)]

=

(AcKk)?
< -41 L et a3t (p- 8,14
: { " f’[rﬂw‘})‘][ LA )+ oy )]

+ ... } | A © (3. 90)

A

Substitu€ﬁnq (3.90) into (3.88) and dropping terms of order

the effective diffusivity:is independent of the properties

' to! the result 6bf&iﬂé' by Krause and Riddler

i

iconditians on BJ»Whéh (ACK)‘ is smalli

N
2
(ACS) /

{655/, - 1} = 3_9_;5:-2‘_ [:v r,

( /e s /n) 4¥ ‘

2
f**—(%p /

A
L
.
©
p—

!

+ G{(:\,CK)’}

b

’ ' - . +1s - :
Equation (3.91) shows that when (A K)% is small

of the mean field, and depends Onlyxbﬂ the pfopeftigs of

‘the turbulence, Thé{’qﬂéti@ﬂ can be shown to be identical

=% P

4

7,05, 7.049a, 7e4ab), using inlt.lal conditiof I (8.34)

rather tﬁan 1ﬁ1tlal conditidn IT (3.38). iThé éffécti&e

d;ffu51v1ty is thereforeralso independent of the 1n1tzal

~-

) S \

~ -

f]§7j, gquations
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3.6.4 (Umpull;nn ot x(»ult% for small A K “with the d
re pult 5 ()f Krapae grui hru//¢1
ﬁ Applying (3.91) to turbulence of the Gaussian type
(3.67)~(3.70), we obtain * \
I WP and ot [3 —‘(f‘*?')
fre -1} = L [ E_ eV ar o o0
ALY § e vy
- t
= (Rm) F [ (%t)/z dtI r - *I)E df ()(Ac K )
l}
. a0 a
= 2 A% "('%t) 2 __éﬁ_..__ a1 - "
= 3(R...) Le (2te0) % + OQIKY)  (3.92)
o«
making use of a pumber of standard integral formulae
(Gradshteyn and Ryzhik, 1964, equations 3,466.1, 8,7L0.6,
and 3.461.72).
Similarly, for turbulence of the Gaussian-exponential
type (3.71)~(3.74),
S g : 2
e/, ~ 1 =(Rw)Fr rrrrr Q}' +C‘}(A< K*)
(et -1} {r‘uvg)‘} 0 -v%)
L TR . ay -
= _-(R.'.,)’JZ[’ — € 2 d¥ + OOk’
~ct )
= -ch..)‘(?[de ,;;iidt[ oF 4 "dr .. oo:x)
, 2
' i\ ’ﬂ\-’ ¥ ;
Wl dt "\‘ : .
=4 (R...) I e"%‘ —-—-——-ut N + OO2KY) (3.98) .

(Gradshteyn and ﬁyzhik;47935,'equations 8.264.2 and %.461-2)

~

o~
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The final expressions in (3.92) and (3.93) have been
written in a form closely similar to that used by Krause

wrd padler (1971, pp. 67-70) to facilitate comparison. fn

Filgure 5, 9[(n fl/n /R' has been plotted as a function
of -« for ACK = 0 , making use of (3.92) and (3.93). The
uppaer curve corresponds to (3.92) and the lower curve to
(3.93). -~
It should be notked that equation 7. 34, p. 69 of
Krawse and hiadler (1971) is5 in error. For GCaussian turbu-
//
lence, the expression should read o /
A 9+l A
) s/ R4 -J(/;
PO = e (‘6 2) zl =g dx (3.94)
- 3 27~ xl . (x+32) ;
while for Caussian~éxp©nentiai turbulence ,
o ax ,9| VAN —x
{5(”‘) Ae T ( /2 )% == (3.95)
3.2 Aty . (e 2 )32 |
Pt
Théﬁﬁﬁ(kv) _are CGEfflC ients in an expansion of the
dispersion relation (3,33) for initial condition I.
, \ *
R ", L . @b . = A B
a2 73 a WA ) L\ aa ‘
LK = ~ KL 26D T M )i . (3.96)
Vazewt B R0 )
Thus, to a first approximation when Ré Q = 0 ,
15 . , . - B
y oo . -
= COO) ' S .
qeu/,l -1 ,—- [5 - : (3.96")
'1 |
. .

and thls equatlon may be compared: with (3.92) and (3. 93)

> s



Figure 3. 9{[ﬂeff/ﬁ]"1}/{Rﬁ}2

as a function of
when ACXL = 0

q

-

\ :
Upper curve: Gaussian turbulence
(see equation §,92)

\
Lower curve :

&

ussian—exponential turbulence

equatton 3.9353)
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3.6.5  The ufi(:cts of in‘i‘}‘iiqlﬂ conditions and mean flt*l(l ‘*[

rxununltcnnnxty wrqu ACK is not small

When ()\Cl’()2 is not small, the properties of t,h-(i
nean field E and ghe initial conditions on Q' havéi
significant effeats on the solutions of the dispoersion
relation (3.83).  These effects are illustrated by the
curves In Figures 4 and 5. ) .

ln Figure 4 the magnetic Réynnlds number R& is
shown as. a function of [(ﬂéff/ﬁ)*ll for Caussianitnfbu:
léncef_fér séVénal valuesrof g1 anpd ACK . It'is lntéres=
tinn to note that the dispersion relatidn (3.%3riha%3po
SOIUtiOQS:WhEHH'[(ﬂsz/ﬂ)”l] is greater than a critl;al
value which depends mainly én Aég .- The reason for this
behaviour is immediately aviaént from equations (3 83)‘and
(3.42), and from Figures 1 and 2. Re O(E,vinie/m)  is
negative for £ < ?Tﬁ;;;7§7jf . Ihun if léKf iSilafﬁé

énéugﬂ for ﬁ(Kg, nsz) to be ffié*f vely zero at Values of

£ > {?déf£7h)11 , the right hand side of (3.83) will be'
A L S Yoy *
negative, makKing a solution impossible.
. ’ ’ \

In Figure 5 the function R;F/{(Qd%ﬁﬂ"i} isxélotted‘

against, A /L A K/2n féi various (g when' n‘ff/n:é lil’i,

.

, The upper curves cdrrespond to.the initial, Ondltionﬁ(3.381 'ﬂﬁ@ v
. : . ' ‘ ‘ o .

(initial condition II), and the turbulence considefed *

B 'y 1

Gaussian. Gaussian- exponentlal turbulence will have qu..
ftatlvely the same behaV10ur, but the values of the 1ntér—

cepts at AeK = 0 wlll have a dlfferent aependenqe on g .

s - T )
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fhis difference is clearly illustrated in Figure 3.

:

The lower curves in Figwre & cor respond to the

initial condition (3,34)" (initial condition 1), which

will be considered in the noxt section. .



Figure 4. R' as a funetion of
ﬁ_i-9=Ai m
several values of rAC/L

condition IL.)

The plot shows values for
lence, determiped from equation
" given by .equation éﬁfﬂ),

~

and g
Gausslan
(3.87) wi

for

(Initial



162

y, . i b
C-lanl) , |
00 ‘ o S o] 2-01 ~
. 1 B T - 1 .-l,O—
l X - . -
N,
|
I,
|
U 00l
. )

&



L

“igure 5. R
Figure 5 IR,

}2/{[ﬂeff/n]~l} as a functio?v,

for severa} values of q when n_ g
- e

®
Id

The plot sﬁ@wscy31Ués fér Ga

ussian turbulence,

S e
determined. from equation (3.87) with h(k,w)

given b equation (3.70).

Solid curves: dnitial condition I

Dashed curves: initial condition IT
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. an ingompressib

3.7 PT-invariant turbulence and decaying me

initial condition [ N

)

3.7.1 The mean ficld dispersion relation

Let us now consider the solution of the dispersion
relation (3.35), corresponding to the initial condition
(3.34) (initial condition I) on B' . As noted above,

o d

- - N . — »
this solution does not differ significantly from thev

asolution (3.91) corresponding to initial condition 11,
when (ACK)Z‘ is small. From (3.35) we see that_the'chciCe
of initial condition has removed ﬁhezpéle’(3;41) which

relation is best written in the form (3.35")

4

- t—t’o Fa ‘i 2 '
i +mK” = ~Kf e d*‘I(B*K)rRJr(E;‘r)e“Z PO Tar (3,350
" ) o ® ) ‘ ;

14

It may be ﬂétédrthat the spatial Fourier transforis of. the

quantities , £ , and g Vbéar the same relationship

R, .
1]
to one another as do the, full Fourier transforms (3.51)-

(3.53). ,

: L & , vy
.3.7.2, The mean‘'field dispersion relation for isotropic

tuybulence in an incompressible fluid

T ooe

For homo

‘\ gﬁ?eous, stationary,_isotropic!tunbu}ence in
le

5

fluid, (3.35') reduces to |

\ . A

\ \ s . .

occurs on the integration contour in (3.40). The dispersion

~ = R : -

165
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B

J )
&
Rt &l _
. I 3 3g(kl‘t) 'l dhe ISV\SGC ZQKKTCOAOde
© k . -
t-to
—— = 1 - .
= jTa_uaKzI e t1iRenx?ivc -0 ‘
, A .
; (3.97) -~
inh kKT :
- [k_.gygz Rt {ws,,z.,m - ﬂ'_l_}dn
S QKTY 2qRKT
¢ ) ‘ 9
For turbulence with a daQSSiar spatial Cﬁrfélatisg, liké
(3.67) and (3.71), ‘ pow
%;i‘: : /
“A WeVL)y’ | %
ety = D5 T2 y(r .
(k;T) iR © ¥(t) N |
~ . P (3.98)
R 2GR _ TN ~OcRYYa +(z) : o
so that (3.97) becohes B ” v %
_; B ) -t ./ :L()E, 7 1’ I

. l.n,q."l(l = ~."—“Eé£ Kzl- éi{ }¢+2 T
L d V ° &
p

l
s ! <
. S
\
5 - 5 L

after some reduétion'

5 ’\ <

A s1m11ar dlspers1on relatloﬂ/;as

, develOped by Lerche (]‘)71a b) and Lorohe and LO& (1971),

in the limit as (t- t, ) > oo L o .

e

5 i °
e S ) N i ¢ .
" " * ! . ! b .
: HERE . v
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3.7.3
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3ooTime depe pdence ut{) t l;o mean field d 11 rsion r&lqt lon
f0 o tor different types. ‘o1 turbulence ’
Taking the derivative of the right hand side of, \
(3.99) with respect to .timc- ;o We s¢e that
3 A
_ " (AK)? ' '
Y e - 1Q+-—l——__}(t-t )
o= addaikte U Alezqaty) ol ___¥(t-ty)
, 5
3 , {A§ + Zq(t—to)} /2
N (t-t,) -
—_— ~Fu WASK? € SOt yieot,) - (3.100)
(tt) o0 < {2qt-1)}> <
Clearly, (3. 100) will diverga as  (t-t_ ) » = upless .
. dmﬂcua) ‘
T+ B
Far turbulence with a Gaussian time correlation, (3.67),
) ; : .
(thu ?jnﬂiti@ﬁ‘(jﬂﬁﬂl} is atisfiéd for all values of Im 2 ;
Yo i )
h@an(r for furbuleﬂcr withyan" exponrntla] time LOIr(lﬂthﬂ,
» - fﬁ} o
(3 71), condition (3.101) “is nly satlsflﬁ’ it
B . H £
- , i . " .
CTedmQ 1 (3.,102)

1§ neveu%§at15f1ed when

Iin

-For turbulence with a power—law time correlatlon, (3.101)

constant > 0 , and the

dlSperslon relatlon (3.99) has no meaning.
The time dependence ofiggg;dispersion relation .
(3.99) can.be regarded asxah indication of the way in which

~
the turbulence works to "build" a fluctuating field B'

B' jof
. SN
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the form requirced by the iﬁduction equation, ‘at the expense
of the méan field B . If the memory of the turfulence is
"too long" - as in the case of a power-law correlation - the
et fi-y? of the initial, inappropriate field g' (x,to).\ will
persist, and make it impossible for the turbulence to!
maintain even a decaying mean field oi the type (3.1@).
However, if the memory of the turbulence is "short" - 'as
with a Gaussian timezcorgelation - the effects of the
initial, inapﬁropriate B'~-field will die away rapidly

enough for thé dispersion relation 53.99} to stabilize. For
Gaussian turbulence (3.67), this stapilization will take
place fairly quickly -~ typiéally after a few correlation
times. We shall therefore restrict attentioq in what
follows to the case of GausSian turbulence.

3.7.4 Thg meaﬂ;fieldfﬁispétsidﬁ relation for Gaussian

Vs isotropic turbulence - non-oscillatory mean fields
P 7 e - _T
For Gaussian turbulence (3.67), the tiﬁe:c@frélatiéﬁ K

x =

function is = - ( e

. LV :
Q ¥y = & T2 w1 (31029

~

o / . . . : o N
Taﬂd;thé dispersion relation (3.99) becomes

t-t. ) 2 . .
° {e+2m}™
’ (3.103)

o ; - ’ E‘)}, )
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Equégjnn (3.103) ¢an be written in g numbe of altepnat ive
torms by making appropriate chiandes of
useful of

variable. “The m():"st‘
these forms are: . , \/ ,
| (ﬂ/,l,(ﬂ + 4 / _ ‘ '
‘ (t-ty) \
[ - x '-( K
= AR ¥ 3 012
3 4
& ©

l(2+ |+2x}x ax

(14 2x)>2
(R')Z(S%:J

3.103")
3 $, 1%~ O e + ]

dﬁ .
o

(s R"/%)QV2
(3.103")
‘whm? Re = 0 ,‘ these equations reduce to:

/ '\« m C e ald 7 VA © L2 o ' : '
'!‘(Rv:»’)lj‘ Lo e*i% =+ (k) {5",“67(.—"*2:}1 — dz 5, ,
3 / A R S+ 2x)R
e BN I ' (3.104)
:")ZI ‘t 9( ,’i S&S_{
% e
, °

€ L‘ K2~ . .*2‘1/‘}1

~
A

(t+ 21/% )5/2

(3,104")
1t will be noted thats(B.lOB)*(B_fbd );arevintejral
éqhaﬁi@ﬁ%ifor Q(trf’)

.f Whén; A
longer depend on

K = 0 thé inteqrandslgo
Q(t t ) fand in the 1;m1t (t~t ) e
(3.104) reduces to the form (; 92) speCined by the Hadlér
:expanslon (3 96) When A K # 0 , On the other hand
Im)ﬂ[nKz‘J l

satlsfies;the;inequallty
(R&)’J’, £ %Tl‘l -4 % (R'ﬂ?:fz (3.105)°
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where

, J.(%)ACK;T)

. '

= __[/%t‘ —‘11 +(A<K){|+2'x 4> (3.106)

3 (14 21)’72 g
°
Jg(% AcK T) & (3.107)

L (e gt ol B L ]x

= 3[ € < '1 *Ax 6*21)52
°

(3.106) and (3.107) have been obtained by setting

) 2 . o - 2 2. .
Im Q/nK” = 1 and Im Q/nK = {Im Q/nK™) t=t +7 _
i r

respectively on the right hagyd side of equation (3.16&).

It follows from (3.104)iand (3.105) that

: Q - A ’
{3m e 3 < (R s{gm o~ (3.108)

g K3 T) T K T)
{ ey, ~1 Nesty, ~ 1
1 }) £ (RO £ L ‘:L\ }) (3.108")

The two 51des of the inequality (3.108' ) are plotted in

Figyre 6 for particular values of ACK and S . In

(3.108') we have used the defiwmition

L o :
i = FroLo 9 /nx? (3.109)



Figure 6. Rm as a function of [”éff/”]”1
for A /L = 0.3 and g = 10
[ .

- The plot shows values for Gaussian

s/ tuxbulence.
’ X N

Il

- 2
Lowermost curve: {R'}
- m

) (6ee left Nsand side of 3.108")
Middl e curyo: {Rm} = {[neff/nlﬁl}/J1
T (see right hand side of 3.108')

A 4

bppermqst curve: R& determined from equa-
-~ tion (3.87) with h(k,w) given by

equation (3.7Q). .-

The two lower curves Corrkppond to’initial
condition I, while the uppermost curve

corresponds to "initial condition ITI.
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3.8 - Isotropic turbulence and decayiny, non-ogcillatory

mean fields » comparison of initial conditions I and II

3.8.1

/

Relationship between mean field decay rate and

"turbulent magnetic Reynolds number - cffect of mean

’

m

field initial conditions

From Figure 6 it can be seern that the true value of

R' is closely approximated by both sides of the inequality

(3.108'), up to fairly largye values of the ratio nfff/n
&

(This ratio may be taken as a measure of« the mean field

decay rate, by virtue of [3.79) and [3.86].) Mﬁreover, the

solutions for the two initial conditions, I and 71, do not

differ greatly when (neff/”)Fl‘ is smald, even for the

coméaratively*large value of ACK consitdered [AC/L = 0.3).

The most striking difference between the lowest

curve in Figure 6, which corresponds to the left hand side

of (3.108'), and the other two curves, which é@rréspond E@

the right hand side of (3.108') and to (3.87), is the

occurrence of a magimum in the plot

f R' agai
Rm gal

nst

o
o

(ﬂeff/n)=1 . This behaviour is due to the nonlirfear

: , . O, : (AK)* ness
depe%den¢e of I, (q,A Kiw) Negge/N - When f3eD2 i C '

is small, J is independent of ﬁeff/n . HoWevgg, when

$ "

Y

2

2

2 .
fﬁﬂg-ﬂﬁx is large, J has a roughly exponential depen-

¢ n

{

dencr on ”eff/” , causing, a rapid decrease in the value of

R' given by the left hand side of (3.108').

4

It 'may be seen from (3.105) that points on the curve
‘ o ;
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beyond the maximum are of no interest. [f we assume for

*
’

- 2 . .o , - . ,
the moment that Im Q(T) /nK- is defined as a function of

T = t~to by the right hand side of (3.105), and A he

problem is regarded as one of switching on a ly Meveloped
L4

turbulent velocity field at time T = 0 and observing the

subsequent behaviour of a mean field E present in the
fluid at the initial instant, we see that the decay rate of

N

the mean field at large T  depends on the initial dccgﬁ/f

rate, .
(mQ), =2 dm QM| __ /=0 (3.110)

Expanding (3.107) as a power "series in T about T = 0 ,
; (R AT Q) 2 ~
gm()(“r)/ 2 1= )z{e (TgeeX y"'( T+ (3.111)
M 3%TE =0
we see that only two initial decay rates are possible:

(dm2), = qX* ) o (3,112a)

i

(4mQ), = o | (3.112b) /
! |

ThéififgtrofrthéSé values c%rresponﬂs to a mean field
decaying at the normal diffusive fate‘in a stationary con-
ducth. %he second, on the other hand,; is ébmpletely unphy~
sical, Detailed numerical study shows that points to the
right of the maximum on the lowermost curve in Figure 6
correspond to the unpﬁysical condition, so that these points

may be disregarded. (See Appendix 3, section A.3.1 for

details of numerical techniques. )
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c .
Since the mean field initial conditions (3.112)
apply to equation i3.104) as wel] as to the right hand side

of (3.105%), it is to be expegted that a true plot of R&
P )

. (
against (”éff/”)*l will also exhibit a maximum of the type

shown in Figure 6. Further justification for this statement
can be obtained by examining the derivatives of (3.104) and

7

(3.105) with respect to (RI;])Z . From (3.105) we have

9 4y a1
am:}){g /'t“}‘
{qﬂ\ﬂ/’lsz‘li « )
R ' (3.11%3)

N e )
*~ A 1x x B
{1 ,_(Rm) AK) [ ‘i‘x Ar)? {f‘m.,«- unx} (:zx)"‘}

while from (3.104),

a?%“){smaﬂ"‘z} - o ‘/

fg"' £t - 1}
(R o 3
{ 1- —(R...)’(ACK)‘ [ <] stam{$m WNx }
’?‘S{Q"‘ Qm/qK'} “N'03.114)

i—‘}"‘ +(A‘n‘{4...% —-ﬁ}x {x }-1

(142%)

The right hand s:Lde of (3 113) can be made to go to 1nf1n1ty

by ch0051ng (RI;l)2 suff1c1ently large. Slmllarly, in



\

- : . -
(3.115)4fhe ratio «of derivatives in the‘intégrand runs from
0 to I as x spans thé range of integration, so that the
integral lel be tinite for,all -(RI;‘)Z and of‘ the same
dJeneral character as the integral in (3-ll}ff The right
hand side of (3.114) can t;.h(;refore also be made to go to
infinity by choosing (R%)2 suf ficiently large. . As might
be expected from the indquality (3.105), the maximum for
(3.104) will occur at ; larger value of RE than the
maximum of the curve plotted in Figure 6.

When the pnphysic;1 solutions of (31164) and (3.105)
are neglected - i.e. when éoints to ‘the right of the
‘maximum’in the plot of R~ against (neff/n)—l are
ignored -~ we ﬁave cut-off values of both ”eff/” and Rm',
beyond which no useful solutions occur. This behaviour may
be contrasted with that &f éhe Qppérmost curve in Figure 6,
which corresponds to 7nitial condition II. rIn this curve

there is a cut-off only in\ neff/n -

3.8.2 Range of validity of solutions obtained u51ng the

-

Hadler expansion technique

It is interesting to ngte that the relationship

e 2 : . . . .
between (Rm) and (néff/n)—l in Figure 6 remains linear

[

nearlf all the way out to the cut-off point. Thiﬁ.indicétes
that the approximate solution (3.92), derived with the aid

Qf,the Riddler expansion technique, is useful over a wide

176
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- ' :
range of parameter%. From (3.104') we see that t%% first

term in the expansion méy be expected to provide a}gogd‘
approximation as long as the increasing exponehtial factor

in the integrand is negligibly dlffercnt from unlty over

the raer in which the Gaussian factor e X /2 has a
significant ampligude. Imposing the condition that the
increasin; exponential differ from unity yy less than (7%,

and assuming that the Gaussian factor is effectively zero -
when x = 2 , we obtain a conaition for validity- of the

4 ’ »
first term in the Radler expansion:

(qx’rc){gm _C|+4/%)‘} {gmﬂ -Gty }(oozs (3.115)

%

When this condition is not satisfied, higher—owdef’terms

in the expansion must be retained.

»

Taking limiting values of g in (3.115), we obtain

the conditions | ' i / 7
(x u)2 3 e en
+0) £ jvn'"(z = % ImQ £ 0025 (3.115")

(1-”») Q‘L. .._.\ -1 = T {dmQ-nK’} < 0.025 (3. 157)
%

for the‘figét:téfh of the Rédle& expansion to be a valid

approximation.;‘Figure 5 indicates that (3.115") is
i - ,
appllcable,even for values of g as low as .0.01.

The condltlon (3. 115) clearly ﬁpplles only to the

case of turbulence with a Gau351an time correlatlon. If the
A

‘time correlatlon ‘falls off more slowly, the first term of

%

the Radler equn?ﬁon will be valld over a much narrower -

]
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" range o&\parame{ers.

N

3.8.3 ngwméag*fie£gwgecay rate at_}gwgq_gimes .

The curves of Figure § illustrate a second major

-

dif ference between solutions corresponding to initial

condition L and those corresponding ta initial condition [1l..
N :
a& is apparent that for large values of ACK , tnitial

condition I leads to a more rapid decay rate of the mean

i

fib{J at large times than does initial vnnd{tion Il. This
behaviour is illustrated schematically in Figure 7. Curve
"a" corresponds to a mean field decaying in the absence of
turbulences Curve "hR" corresponds to the case in which: g'

and B' are switched on together at time ¢t = ts in a
1 ¥ ’

correlated manner.” Curve "c" corresponds to the case in

which u' is switched on a£ the iriitial instant and B* .
is allewed to” develop. ?

‘It is clear fpom the slope discontinuity in Figgre 7
that “the iﬁitiél condition for curve "b" (i.e.‘initi;Z
condition II) is somewhatzpnphysical. However, thé

behaviour of curve "¢" (initial condition I) is also opén

A - 5

to question. The reason for the différence between the-

slopes of the two curves at large times can be seen from a

.

comparison of equations (3.35) and (3.39), rewritten in the

form



Figure 7. Decay of mean field amplitude with time.

2

. (a) No turbulence L ‘ e
(b) Isot}opic turbulence, with ,glx E"Eit # 0
(c) ISOtroﬁic turbulence, with g'x ~!|':t =0

Cuxve (c¢) corresponds to initial condition [, and
curve (b) corresponds to inftial condition II.

.
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>

5y
iQ# K + IO =

> i+ )}t

= - [ dk Idt K(ka)P P (R T) e 7Y’}
% Y (e
. }-116&)

AK€ §m . !

)+ r(K2 L IO = 0 ) (3.116b)

The right hand side of (3.116a) represents the limiting

) oo

value of the timeﬂiwé@ndent term in- (3.35) as ‘(tmt_

JP

for small va]ues;of ﬁ will be crué;a)(té the eVaguat;on

Cledrly, the form of thc spfbtrum tensor (k77)

of the right hand side of (3. 1163) Unfbrtunatcly, it is

at just these values of k that our assumptions about thc

nature of: the turbulence are most likely t@ be in error.

Fer example, the assumption of isotropy qt infinite

edl . finite fluid.

separations will Rever be satisfied in a
This difficulty does not arise in th‘évaf'
) e
integral I ;- which is dominated by contributions from
values of |k| near 2n/A .. -

For Gaussian turbulence in an incompressible fluid,

(3.116a) reduces to '
iQ +qK? + Im = - ]
5 =4 ’A T, K2 [dk R -(AeK)’/zs ee-f't"{ﬂmﬂ—q(kfxi"}
" ¢
q('ws"ﬂ 4-»(1
(

whep Re & = 0 . If T Im @ << 1 , the second exponential
factor can be set egqual to unity over the entire range of

i o
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5

integration, and _the edquation becomes
iﬁf rlK.2 + T ~

. 2 .

~ ~ L WALt K? ” e AKV2 000 Kk do

C’tcgmﬂ«i) . ) R,O
q(R*+ K*+2kKco3 ) $ $mQ
' {(Ad-0/q a
< % 2Af,tc Kz [ ket e——()\ek.) /2 dk
o 5
‘ i 3/, 2 ‘ZTk'"ﬁl — gty ’

< %—(R.i.) g (qK") I tie¥ “d/t (3.117)

o

In order for the two initial conditions T and II to lead to

the same result for this type of turbulence, we must

therefore have. ' 3 .
' - ztg MQ

T » %Cﬁ;)if"(qr(“)[ et gt (3.118a)
]
and o TJ,,\/Q «1 - (3:118p)
T A L

o Tﬁé inequaiity (3.118a) is'satiaiied automatically
when q 1is small, but it is not neééssarily satisfied whpn:
q 1is large. It is apparent from (3.117) that the right
hand siae, Qnich represents the difference between the two
dispe:éfpn relations, is determined by the behavipqr of the

spectrum tensor at small values of |k| whenever

i
'

¢ « 2(@4:»,(1)“ (3.f19)

This condition is very likely to be satisfied - pérticularly
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~

when (3.118b) is true and thg first term in the Radler
expansion is a valid approximation.

‘On general grounds, we expect there to be less
energy in the turbulenve at small values of ' k than is
implied by the use of the spectrum tensor (3.7), which is
iéotropic at k = 0 . The right bhand side of (3.116a) is
theréfore likely to be smaller than the value obtained
using (3.7) ~ for example, the right hand side of (3.117)
1s probably ah overestimate. 1t therefore appears tgét the

slope of curve "c" (Figure /) at.large times may well be

-~

inaccurate when it differs markedly from the slope of

curve "b".

#

3.8.4 Stabilization of the mean field decay rate, and

loss of energy from the mean field

"

The initial, time-dependent portion of curve "c

L4

Erd

in Figure 7 is undoubtedly more realistic- than the abrupt
slope discontinuity shown in curve "b". It is only /;
sensible tordiscuss‘the stabilized dispersion rélation ifr
the energy lost from the mean field duriggflhe time~-
depgndént part of the decay is small, If Tl is definedgl
to be the time after ‘which the mean field dgday rate ha$ ,

reached its stabilized value, and T. 'is the time it .takes

2

O

the mean field‘ﬁmplitude to decay to 1/e of its value at

- A

time t = t, » we méf write *
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€M) _ TMean field energy density at t = to+ T
Eo mean field eneryy density at t = tg
_ e~2.4m()('r).-r (3.120)
il
e - &M e~24m QCT)(T-T,) Ctan Gz
¢ eo Eo
. 2 | |
&R .= e ' (3.122)
€, ( .

When T, 2 T we have, from (3.120)-(3.122),

et - Emy, = ey} g Hm (0T (T, -T0)
- {eay et )
- el
Therefore ﬁ

EMYe, = e C (3,123)

It follows from (3.123) that if T, =T, , only 13.5% of
the original mean field energy is left by the time the

dispersion relation stabilizgS. Wé* must therefore require

f

P

j:7t Tl << T2 if we wish to study the decay of the mean

eld solely in terms of the stabilized dispersion. For

N

example, if. T, € 0.05 T, , no more than 10% of the

\

initial energy will be lost during the time—dependeﬂt

portion of the decay. —

\



We may study the restriction imposed by the
condition Tl < Tz for the case of Gaussian turbulence in

an incompressible fluid by examining the behaviour of

solutions of (3.104). Results obtained in this way should
LS
be qualitatively wvalid despite the reservations mentioned

above concerning the behaviour of solutions &f this ‘
£

equation at large times. 1In order to simplify the disg-
cussion, we shall replace (3.104) with 'the right hand side

of the inequality (3.105), since, as-pbted above, the
b s )
results obtained using these two equations are not suébstan-

tially different over most of tbe‘allowéd'ranqe of
- 2 ¢ '
Im Q/nK” .

185"

B

3.8.5 Conditions on the turbulence for stable decay to be

established before significant energy is lost from the

mean field .

We shall first derive a necessary condition on

1 to be less tharti‘T2 - F;om either

(3.104) or (3.105) we see that 'I‘l

requirement that the integrand on the right hand side'be

(ACK)Z/q' for T

is determined by  the

effectively zero - i.e.

_..%%1,‘3 +,Qc'ﬂa {qu%,——-g—ﬁ} x - %lnfuzz)

< =N , VY x>x . (3.124)

Jwhere x = T(qrc roXy =_Tl/q1c , and N 1§ a positive
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number for which e N is fairly small (say N = 2). The
Y

requirement Tl < T2 i1s satisfied if x

(3.120) and (3.122),

X, - where, by

1 2

2= g = {§TImQF = fAKY Im D} (3.125)
]

In' the limit g » « , (3.124) is satisfied for all

x> X /2N/q , so that the condition Xy <X, implies
that
' 2
OsK) 4 —ﬂi < 2. < 1
% K {an
But - Im Q@/nK” 2 1 . Hence a necessary condition for
T, < T, is S K
A K)z . . A 1 . ;o J\:‘, =

Similarly, when q + 0 (3.124) can only be satisfied -
if x is sufficiently large for the first two terms on the
‘left hand side to give a negative  contribution ~ i.e.

~

x, > 2 QAK) g Q. : (3.127)
% qK ) .
From (3.125), (3.127), and the condition that Im Q/nK> 21
+(3.126) again gives a necessary condltlon for Tl'< T2

(3.126) may therefore be taken as g necessary condition on
(A _K) /q for all values of g .
Numerical StUGy of (3.104), Or, to a reasonable £

approx1matlon, of the right hand 31de of (3. 105), leads to

" more precise conditions on the form of the turbulence for

7

A



&

L]

T, < T, - F[HJ/w # shows a plot of

{Rm/%} \, = {ﬁ‘—?t‘/’“}n:n

. L]
obtained from (3.105) as a function of A /L for several
values of q At points to the right of each curve,
and the mean field decay rate is effectively time- |

T1>T2

dependent throughout the decay.

we have determined T, by assuming the time dependence of

‘ to be effectively linear during the time-dependent

In plotting these curves

g 2 (1)
portion of the decay. From (3.104) or (3.105), we see that
2

0 - Rom
'l T= 3%1’&
Thus,~making use of the initial cohdition (3.112a) on E ’
A% -
Im L2 (i'n_fl)o + Re) 1+ 4
K - 34T

e " !

= 1+ (R")Z(T/'rc) o ©(3.128)

Using (3.128) 'we may write, approximately,

(R.../) 7‘3{5'“(0/'1"‘)“‘} 4_(3.129):
© ¢ (T/r) ‘ o

is then determln%d by equating {R"‘(T%/g.}
{R"‘/%} obta{.lned

The value of T,
defined by (3. 129), with the value of

. ; ° .
from the right hand side Q‘ (3.105) in the limit T + « ,

where T = (t-t ) .
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4 g2 %2 ._'1_
(T,/t - I -4 +%Tc{5m0(‘r) }x_é_—iT (3.130)
5 (1+2x)%2
> /,,
From (3.125) the value (’)f) '1‘2 is given by
V(T’*/tc) = {TcimO(Tz)}"‘ = b (3.131)
Ak Im QCT2)/ K2
The condition ’Pls ’1‘2 then implies that
;" . _
(") <& (T%) =
2 (3.132)
2 T _._M)__ X
a gf et A~ grEn ) e
%o ) % (1e2x)¥2
i (9Y

Equation (3.132) may be solved numerically or qzaphlcally
for (T /T )
Fsuations (3.129), (3.131), and (3.132) lead to the

identification

Qe = G (T (3.4133)
"y f 2 3 / 2z — L/ . 7
{Rm/g Y e = o = T%)) ] (3.134)

% (T'/'l:‘)l
From (3.134) it is clear that [Rﬁ/q]T* is real enly~if

- K)2 . ~1 '

_ ﬁ_’?__ < (%) (3.135)
Thus, in a plot of [RA/QIT* against A K for a fixed
value of q , there will be a critical value of ACK beyond‘
which @o solutions exist. “This behaviour is illustrated in

Figure 8. As q approaches zero, it is ciﬁér from (3.126)

that ACK must also go to zero. It follows that when (g
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is small, it is only appropriate to discuss the decay of

. i
the mean field in terms of the stubilized decay rate if
ALK \N§ also small. 1In the limit as ¢ » = , the solution

of (3.132) gives

T, T = 2 3.136

Jre s ( /‘c).‘.m 20 (3.136)
50 that, from (3.133) and (3.134), 8
&

i

R Smﬂcr.)/q.(a = '2%/(A¢K)l

. %/{Zﬂ‘(lc/;_)z} P NEREY)

. : 2 A ‘
o (*/4)7e = Yaouwr - 3/{4”;:/;)}‘7 (5.138)

Solutions of (3.132) are shown in Figure 9, where
* ) . ] ) )
AT /) 1€ plotted as a fuinctdon of ¢ for several values

of }C/L . It is clear from (3.132) that the largest

. :
values of T /Téx occur in the limit q + = , so that, from

L
(3.136), stabil#zation of the dispersion relatiqp?must tak
B % L
. ﬁ‘e"ﬁ % . br »

place in less than two correlation times if Thf is,to be

Kan ﬁTz . At low values of g , stabilizﬁ%i&éﬁgggt

£ , PR
take place more rapidly, as indicated in Figure 9= 4 -
a ' T

It should be noted that in all plots, A /L is
restricted to values less than unity. A situation in which

the wavelength of the mean field was. shorter than the

correlation length of the‘turbulence.(i.é. Ac/D > 1 ) would

clearly have little physical significance.

The program used to calculate T*/ c and [Rﬁ/qJT*

S

is listed in Appendix 3, section A.3.2.



Figure 8. Decay regimes for initial condition I.

,
The plot ﬁhows [Rm/q)T1=T2 4as a function
of AC/L for several values of g . For each g ,
decay is efféctive}y time-dependent at all times
for points to the right of the curve.
Values plotted are determined from

equation (3.134). 1 .
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x* ) N .
Figure 9. T /1. as a function of q for
several values of AC/L .

rs

Values plotted represent numerical
solutions of eguation (3.132).

'
|
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~and imaginary parts. S !

?

'

3.9 [Isotropic turbulence and decaying mean fields

oscillate with' thfe - initial condition [

3.9.1 Ipappropriateness of the Hadlex expansion technique

We shall now turn our attention to the case in

which the decaiing mean field oscillates with time - i.e.
Re 2 # 0.. 1t is not immediaﬁely'onious that either
(BQBS) or {3.39) has solutions of this type. The Radler

expansion (3.96), which corresponds .to (3.35) is of no

<

use in studying the probléT; as may be seen by taking the

first few terms of bhe;éxpa sion 4nd se paratlng the real,

-~
t

£

: gh(l—*qKz

1]

”‘?Kzfpcw)b__iﬁao).(i;_ {i“"’jmﬂ +.”}"‘ @ii39a)

ReQ) '

]

Re Q {FK‘}{ {3‘“‘2/3“"0(‘ +7 dm Q2 +.}(3.139p)

If Re 2= 0., (3,139b) is identically satisfied, apnd -

(3.139a) is a méaﬂiﬁqful équatién of the form

G(e) = Ne)- o {i + O(e) +J-’ (3.140a)
whére € is assumed to be small. However, whéd Re 2 # O
(3 139b) is of the form n ) b
. . ;.,1‘ '

1 = O()- u. fi + OCe)+ ..} (3.140b)

and is clearly incompgtible with (3.140a)7under the assump-

!

tion that € is émall. We must theregpre study the

roblem in terms of the unexpamdedﬁé%?@tlons, taking note -

gy




of their e¢igenvalwe nature, discussed above in section

3.9.2 General statement of the problem

Consider first equation (3.35), associated with

inéf{al condition [ on B' . For the reasons set out

above in section 3.7.3, we shall restrict ourselves to the

case of Gaussian turbulence (3.67), for which (3.35)

reduces to (3.103). Separating the real and Wimaginary

parts of (3-103),

SM{O(T)/QKz} -4 = (R:u)z Jg (%,ch 3 T/Tc)
Re{QTYpk2} = —(RLY J; (g, 2eK; /)

where

Tr(§ MK Tr) = o "
e R L T
» R ;
! 2’ ) d-x .
! . :°5{Q"0 ﬂ‘%‘x} i+ 2x)%2

{ r I
J1(§.0:K;Th) =

]

/gt | R ; ———
_%_[ e__i%’x‘-f ch)’ig"‘%(‘ - (l+‘2x3}x .
[+

M

. | 2 - dx
. i {(M‘K) e %,x}m; :

(3.141a)

(3.141b)

(3.142b)

195

(3.142a)
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Ie

i

Once again, it rgnq}gtzi be stressed that (3.142a,b) are
o 2k / ; v .

anugrflfg@ﬁ?%D§$§%u ?zg% f%rst :ppﬁoxlmatlon, they may be
repla(:ed:f" : H@. , ) \1}\ p
Sm{ﬂ(ﬂﬁ{uj it R )? .T,R(%,,\cx{T/-Q) (3.143a)
Re{ ATt} = (R Top (MK ) (3.143b)
where
\ .
Jar (g, Ak T/ = .
i 171-‘ 1 2 (T') ’
= VerdvreanlIn G - Sy
o : , 5
dox (3.144a)
-~ l (T g
: cos {(AK)* Re %(_,lx} (ean%
Jazx (%,Xcl(;'r/tc) =
'T‘I%‘tc « n22 . z QT f )
d 7 'h ~(3.144Db)-
csin JAAK)Y Re 2(7) , § &% '
in { (AcK)* Re T skl Rrvrws

and solutions may be sought in the limit as T + « . As

. . ) b o~

discussed above in section 3.8.4, the paramadters of the
turbulence must be. chosen in such a way-tﬁat T, << T2 if
‘the solutions of (3.143a,b) are to have any .physical
significance.
Dr. K.D. Aldridge and the present author have deve-

-

~ Vd » "7,
loped a rumerical program which evaluates the integrals
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s Fule,technique, and calculates

JZR and JZI by a Simpson'
the dispersion function ! - ’ ra
2 ’ )
Da { - Re{‘l/pl(} . J}g(hﬂd(,w) (3.145)

I 1§ -1 Far (§uAcK; @) |
D must vanish for a solution of (3.143a,b) with Re O # 0
to exist. When this condition is satisfied, the eigenvalue
for the problem may be calculated from

RWY = - Re §Y/q*} (3.146)
IZI(%’ACK;‘I’) ’ N




3.9.3 Restrictions on the turbulence for meaningful

solutions

- - — \

In order for the problem to have meaningful
solutions, the parameters of the turbulence must satisfy

a number of conditions, which are summarized here for

convenience .
e < 1t , | TS < 1 (3.147a,b)
tgqxi = (,\CK)Q/% ;:< 1 ) | A (3.148)
{R,.’./%}; < { R,C./%}T‘ (g, i) | 7(3.149a) |
Il < DLl (%.y"""-/%) (3.149p)

Rew < 414+ %ﬂi‘——gj S (3.150)

In ¢3.147), 'L and iT arexthe wavelength and period of
the mean field B . (3.148) and (3.149) are the conditions
derived in section 3.8.5 for T, T, ,:aﬂd the functions
referred to in (3.149) are plotted‘in Figure 8. (3.150)

is the condiﬁion derived in section 2.5.4 for the first
order smoothing approximation to be consistent.

First order smoothing also implies that

mQfnk* > 1 ) (3.151)
i ) | |

when the turbulence is PT-invariant, as proved in section

5, N : [
+3.2. This condition may be combined with (3.147)-(3.150)

198
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to derive further:restrictions on the parameters of the

mean field.

From (3.147b) and (3.148) we have

2w Vo/T < ReYni? < 21 /) o (3.152)
or, writing Td = 1/nK2 ,
T, « {T74 (3.152")
Similarly, from (3.151) we have
Tafr, < ‘U{ucx)‘ | (3.153)

! :
‘The effective range of the arguments of the sine and . cosine-

terms in (3.144a,b) is limited by

OK)* Re{ﬂ/qx’}x & Ok Refqi?] x,
< 2o Tye,
< ZW{TVQ}(%,MK)
< 4 : : (3_154)
where (T*/TC) is th?;function plotted in Figu%e 9.

+

<



3.9.4 Numerical search procedure

A numerical search has failed to revgal Ay long-
period oscillatory solutions of (3.143a,b) which satisfy
(3.147) and (3.148). Asymptotic evaluation of the
integrals JZR and J ‘indicates that oscillatory

21

solutions do exist when ()\CK)2 >> 1 , but the proyram

used was unable to check the existence of solutions in this

range because of the extremely large values attained by the

expongntial factors in the integrands in (3.143).
The procedure used in the numerical search was

briefly as follows.

J

a) Trial values of Im Q/nK2 and Re Q/nKz were
chosen.

b) A value of g was assumed.

Ld

¢) The integrals J2R and -sz , and the dispersion

function D were calculated for a range of values of

A\ K 'satisfying (3.147a), (3.148), and (3.152).

d) The calculated values of D were checked for changes

-

of sign or trends toward zero.

e) Further values of ACK were chosen in accordance
with the results of step (d), until the conditions
(3.147a), (3.148), and (3.152) could no longer be

w

satisfied.‘ S

200
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f) The process was repeated for new values of ¢ , and

for new trial values of 1Im Q/nK2 and Re Sl/nK2

\

As the trial values of Re Q/nK2 chosen were kept

fairly small (in general, much less than unity), the entire

range ~of Re Q/nK2 permitted by (3.152) was not explored

at large values of q . It is therefore possible that

acceptabie oscillatory solutions to (3.143) do exist when
both g and Renﬂ/n}(2 are large. The assumption of small
Re Q/nK2 , which implies that the period sought is long
compared with the mean'field decay time, was made in order
to restrict consideration to small departures from the case
Re @ = 0 .

See Appendix 3; section A.3.5 for details of the
numerical techniques used in evaluating the integrals

J and J

2R 21
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3.9.5 The impossibility of slowly-decaying, long-period,

oscil}atory mean fields

It may be demonstrated directly that (3.143) has no

oscillatory solutions when

/

K 3
N Oer)” g, (2 l «< 1 /
% K?
The equations (3.143) may be rewritten in the form
. RV IR a avy? '
r‘ = (Rm) Ie~%4’ +1P5 +F—g~— d -
ARm) 3 ri ; (3.155)
3 L ' (14 249/8)%2
where
r = -{h—i%a} = {4m~&,~1}~1&%l (3.156)

¥ = (ACK)‘/i (3.157)
The integrand in (3.155) may be expanded as a Taylor series .-
in yI' about I = 0 , and integrated term by term to give

= gﬂé)f‘w i S " , 3
r 33 ”Z_:o 1 a..(t ) : (3.158)

where

an =

w -.L 2 2‘6’;2
f y" e 24+ 3+ —‘fi———-,- . (3.159)
, (14 29/8)% '

The series - in (3.158) coﬁvérges absolutely for all values

of yI' by 'd'dlembert’s ratio test (Whittaker, and Watson,

L1927, p. 28). o
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Equation (3.158) will clearly have no complex
solutions for I' as long as |yI'| is small enough for the
quadratic term on the right hand side to be ignored. This

condition may be written

[y << 2al/a2 (3.161)
When q is large, (3.161) may be rgplaced by
(q =+ =) Iyr| << 2V/2/a ~ (3.161")

and when q 1is small, (3.161) becomes approximately
(q - 0y Iyr| << 2/(37/9) , (3.161")

It would appear, therefore, that complex solutions will be

found most readily when ¢ is large. In this limit, °

3

@ a s
fim o = [ an e-Ji'j du = (2n)! ks
G- An 63 3 2"nt T2

Eg

< hd | iy E
B g, - [TieiTay = 2at
°

When the quadratic term in (3.158) is retained, the

solution is

- ' 3% T
r= L CH { r('R.‘..)' i tl[rm;,,)z““o] ~ 2a.,a, } (3.162)

‘ \

' will be complex if

2 : ' '
™ .
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or, taking the limit of large g ,

‘ 2 N
(%-aoo) {Qﬁl&:i > Ts—ﬁ—r (3.163")

(3.163"') may be compared with the condition (3.138), which

is to be less than T

must be satisfied if ’I‘1 2

< R':\ 2 ~
(§>=) {-——-‘—*‘O’;’) } < % (3.138")

Clearly, the two conditions are incompatible, indicating
thdt no acceptable oscillatory solttions to (3.143) are to
be found when [YI'| 4is small enough for the cubic term in

(3.158) to be neglected - i.e. when
[yr| << 3d2/§3
In.the limit of large g , this condition becomes
;*w) Cyr| << 3/m/2/2 = 2
From (3.156) and (3-15),
Iarl = ¥Ir| = S:\';L)z{(4m%z—l)z+ (&%l)}'lz

Thus |y[| << 2 only if

K 4 - .
._%_lxe% = T ReQd « 2 |
/

and

-

Q.;E}f{gm%-{} = T f{dmQ-x'} « 2



But, by (3.148),

-

e
Zt follows that |xI'| << 2 only if the period of the mean

field

T = 2m/Re

and the effective decay time

Tgff = 1/Im Q

satisfy the conditions

, eff
T /T << 1/ , 1./ Tq << 2 .

We may therefore state that (3.143) has no accgeptable
osc1llatory solutlons for which both the period and the

effective decay time of the mean fleld are -long. gompared

%

with the- correlation time of the turbulence.
By (3.147b), TC/T?< 1l . 1In the limit as q +» «

we must .also require that ﬁ;ff satisfy

eff :a .
T3 = T, > Ty 2Tc

¢

eff

- i.e. "wvwhen g 1is large, T /T is typically less than

: 4
% « It follows therefore, that the only range in which
acceptable solﬁﬁions‘tb'(3;143) may possibly occur is that
in which !

(@+= /m g ot T o< 1 L ]

205
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-

This condition confirms the numerical resulfethat the only

o

range in which solutions may possibly lie is that for which

both q and Re Q/nK2 are relatively "large™.

»



3.10 Isotropic turbulence and decaying mean fields which

oscillate with time - initial condition II.

3.10.1 General statement of the problem, and restrictions

on the turbulence for meaningful soclutions

We shall now consider equation (3.39), associaged

with initial condition Il on B' . For Gaussian turbulence,

¢3.67), equation (3.39) reduces to

- UH.‘K;} a2 Ik, =

L A KY (R-:-)‘{ - {(&Kf) +(nK e ) (94 Re —-,)‘}
——2:-;1'— "-—-‘-1 dv [d‘f e 1«

— -]

- @(f,‘b’;!mﬁ,) (3.164)

Sepdrating the real and imaginary parts of (3.164),

{S',n(%' ~‘1} = _,':- R‘ IO‘(K Q) = | 0
= _Q;K)S (Re)? F"I‘ﬂ o A IOKE + (K3 (74 Re K‘) }
”
- Re @(?.?,5"‘“,) (3.165a)
} - 4 4 I,Q) = o "
'1"‘ K2 C .«

=~<_)3K_)_‘ RaY (Sy : -*{ﬂcxf)+(1x't‘) (e re .V}
. 24% ‘
' o

-0

where Re © and Im 6 -are defined in (3.42) and (3.43).

- m @(},9; 4-.%,) (3.;655)'
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é
" In order for the problem to have meaningful

solutions, the parameters of the turbulence and the mean
field must satisfy a number of conditions, as was the case
for solutions corresponding to {rnitial Huﬂd&ﬁ[nn I (see
section 5,9.5). The conditions (3.147), (3.150) (3.151),
and the right, hand side of (3 .152) apply to Sﬂlutlons of
(3.165), as J;Z;’did to solutions of (3.143). However,
because of thé\gséumptjon that u' ana Ex afe correlated
initially, solutions to (3.165) need not necessarily
satisfy the conditions (3.148) and T3.149).

Pre. K. Do Aldridge and the prespgnt author have
developed a numerical program which evaluates théltwoS
dimensional integrals in (3.165) by means of an n-podint

Gausstian scheme, and calculates the dispersion function

&

Re@nx?)  Rex®
{m V) -1} G

D ;:;(3.1%}6)

As ‘for the dispersion function defined in "(3.145), D must
vanish for .a solution of (3.165) with Re Q #{Qfﬁ&o exist.,
When this condition is satisfied, the eigenvalues Qor the

,problem may be calculated from

_ : i o
K (R ' | -
24% 4 . | 7 (3.167)
“'Re(ﬂ/ql(z) | !
Y ‘; e i{o‘xr)% (K3t V(v "‘%’}4.-.9« ;o Q)
- Q0 [

i oY ,
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3.10.2 Numerica}”Egarcﬁ.grocedure

/

Because of the less strindgent conditions on the
parameters of the Lurbulencé for initial condition 11,
numerical solutions to (3!165) can be obtained relatively
easily. The numerical search procedure used i§’66£1ined

]
below,

a)” Trial values of Im Q/nKZ and Re fz/nK2 were
chosen.
~ T . _ 2 o . _

k) - A value of (XCK) /9 was assumed.

€) The integrals in (3_165) and the dispersion function

D were calculated for a range gf values of A K

-

satisfying the condition (237M7a).
d) The calculated values of D were examined for
. Changes of sign, and further values of ACK were used

if necessary to locdte a sign change.
A T
€) . An iterative interpolation technique was used to

determine the values of AK and R correspondifig, |
to the solution point. : .

f) The process was repeated for new valués of (KCK)?/q

and- for new trial/values of 1Im Q/nK2 Fahd Re Q[nK2 -

Solutions were obtained for both large and small values of

J?the,parameﬁer It , defined in (3.156) .

T
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The numerical integration was carried out with a
fair deqree of precision. Typical examples of the functions

integrated are shown in Figures [0~ 14. The surfaces
plotted correspond to Im Sz/nK2 = 1.025 and Re Q/nKz =
0.001 for several different values of (ACK)Z/q marked
by dots on the appropriate solution curve in Figure 16.
The functions involving Re 0 (F{gures 10a, 1la, 1Za, 13a,
and 14a)'were integrated in three sections:
| :
a) € < /{Im Q/nkZ)~1 , “for which Re O < 0

4
* L

b)  /(Im Q/nKZ)~1 < £ < ¢ , where & was chosen in

such a way that the integration spanned the first peak
: 3

in the integrand, but stopped short of the second peak
(i1f one existed)

x
a & » £ , spanning the second peak.

e

On the other hand, the functions involving Im © (Figures

10b, 11k, 12b, 13p, and 14b) were integrated in a straiqht-

o
ple]

1

férwardrﬁaﬁner, since, these functions have only ;a sipgl
péakﬁ In each intéqratioa, limitingiVEIUéS of TE and v ,
if not already specified by "section" boundaries, were
chosen bf requiring the absolute’ value of thé integrand, to |
fall below a specified fraCFion of the value at or near the
peak. |

' The integratibﬁ scheme has been tested for conver—

gence with respect to both the choice of the specified

fraction defining the integrafion limits, and the number
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of Gaussian points used. Typical results of the second
test are shown in Figure 16, In view of these results,
most of the integrations were carried out with an 8x8 grid
for each of the three integrations involving Re © , and

a 12x12 or 16x16 grid for the single integration involving
Im O . A further check on the accuracy of the integration
was provided by preliminary calculations in which the §
and v integrations were carried out using a I10-point
Laguerre and a 10~point Hermite polynomial technique,

respectively (see¢, for example, Abramowitz and Stegun,

o

1964, 826.4,45 and §25.4.46). The results of the Hermite-~

Laguerre integration were in good agreement with those

obtained later using the Gaussian scheme (see, for example,

Abramowitz and Stegun, 1964, 82!

LA, 30).

betails of the program used for. the

integration scheme are given in Appendix 4.



Eiggges 10-14. Integrands of (3.165a) and (3.165b)

for scveral values of AC/L and 1C/T

1

2o

In each figure, plot (a) shows
.5!1’

Re O{F,v; Im Y2} e"%{(&"f)‘*"t"z"‘)z("'“‘ﬂ/m(”'}
3 » ™ 'l

<
while plot (b) shows

-+ {OKE ¢+ (a2 VP + R, 2)?
Jm@{f,V‘;ng/qK’}'e 2{ 1 CW’IK }

* ‘
These quantities are plotted as functions of
£ and v for fixed values of Im Q/an ,

Re Q/nKz ; ATK , and ﬂKZTC - In the figures,

A/L = AK/2m
/T = ;nKZTC/z,r
Qd = nKZ
Rigure 10: A /= 1.6 x /T = 3.5 x 1074
AL = 0.45 /T = 3.5 x 1073
Figure 12: A /L = 0.11 1 /T = 3.5 x 16 2

figure 13: A /L = 0.07 1 /T = 0.1
Flguré 14: AC/L

i
(=]

053 1 /T = 1.0

These values are taken from the fourth curve in

Figure 16. 1In each case, o o
r

Im /24 = 1.025 |Re @/Q,| = 0.001

al 3



Figure 10a.

>.

Integrand of (3.165q)

o

(ImQ)/Qyq 1.025
(Re 1)/Qg ~00O

[ 4
1
£ (0.045) : }
v (0.0.90) :
Figure 10b Integrand - of (3165b)
mQ)/Qq 1,025
@ (Re 2)/1g —000I
A/L 1.6
/T 35107
Rm 10 :
¢ (0210 T v
v~ (0, 1.45) ,

213



Figure 1la. Integrand of (3.165q)

, (imQ0)/Qg 1025
(Re (1)/01g ~ 000!

A/L 045
/T 35107
Ret |
€ (0.183)

v (0.0.14)

" Figure 11b, Integrand of (3165b)

im0)/Qg 1025
(Re 1)/0g —0.00r

>‘c/L 045
/T 35107
R 1
£ (0,210) &
- v (0018 '

214
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Figure 12a. Integrand of (3165q)

(ImQ)/Qq 1.025
(Re )/0g ~000I

x/L Ol
/T 3510

045
'3 (0.602)

v (0, 0.014)

—

Figure 12b. Irtegrand of (3.165b)

(mQ)/Qq 1025
(Re Q)/g —000!

'/
2L Ol | \ ."#.'f’,’;l'/
/T 351027 B g (
Rm' 045 , '
€ (0210 C » Y
v (0,008) S

21



Flgure 13a.

ne/L
w/T
Rm'
£

1 4

Integrand of (3.165q)

045
(0.8.58)
(0. 00056

(imQ)/0g 1025
(Re Q)/Q1y —00OI

——

Figure 13b.

.

* Imegrand of (3.165b)

T/ T
Rm'
3

1 4

A/L 007

\“\\““‘“l\

|
iyt
R

(O

045
(0,2.10)
(0.0.0060)

(ImQ2) /0y 16025:
(Re ﬂ)/ﬂd ~0001

; B r

216
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Figure 14a. lr;feqond of (3.165aq)

i e —

(ImQ)/Qg 1.025
(Re 01)/0g -000!

/L 0053
/T 1.O

Rm' 046
§ - (O1L70)

¥ (0.0.0015) "o
Figure 14b. integrand of (3165b) 7
(imQ)/Qg 1.025
(Re N)/Ny ~0.00!
A

A/L 0053 ' £

/T 10 r |

Rm' 046 e T,

'3 (0.2.10) T .

¥ . (0.00015) o "




5

Figure

from the limiting value as a function of t

Y BES
s it -
15. Typical convergence oI the n-point

Gaussian scheme used to evaluate the

integrals in (3.165).
o

Théﬁplét shows percentage difference

~
-

e

number of integration points used. The upper

scalé shows number of points; the lower scale
e

ows grid size.
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3.10.3 Behavigégrof solutions as functions of Ac/L,

&y
7

/T, and Ry’
Typical results of the calculations are shown in

Figures 16~189. The solutions to (3.165) may be thought of

as a pair of functions

Im 9/nK° = Im 92/nK? (/L. ©_/T, R!]

Re Q/r]K2 Re Q/nK2 [AC/L, TC/T, R&l

The equations

2 constant = C1\ N /o

[l

Im Q/nK

2

"

Re /nK constant QeCZ

\ K \
then define a curve represéQiing the intexsection of two
/

surfaces in the space L,VTC/T, RA]'. %igures 16-18
H ES )

show projections of this curve onto tﬁgrthrée coordinate
Uplanes A /L. t /T , [t /T, R], an§§ (Ae/Le Ry for 'a

fixed value of Cz‘ and several dlfferent\values of Cl
A\

corresponding to roughly equal logarlthmlc'Bpaclng of the
values of {(Im Q/nK )-1 . On most of the plots, A /L and
1./T are restrlcted to values é@ps than unity, in accor-

dance with the condltions (3. l47a ,b).

r e
4

The projection onto the [2A /L T /T} plané, shown.

- in Figwsre 16, 1ndicates that the value of A /L ‘corres-

LY

pondlng to aﬁ 0501llatory solution of {3 .165) is more or

 less independent of TC/T when T /T is small (1 e. when

5

'i)x

220
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[(XCK)Z/q];Re(Q/nKZ) is large, 2 1.9 ). nAas Im(Q/nKZ) A .
increases, solutions are found at progressively lower Vélueé
of AC/L - On the other hand, Figure }7, which shows the
projection onto the [TC/T, Ré] plane,\indicates that as
Im(Q/nKz) increases, so must Ré - In addition, for each -,
value of Re(Q/nKZ) , R& reaches a minimum at TC/T 2 0.3
when {Im Q/nKz)vl = Re(Q/nK?) . The value of R$ atlthis
minimum decreases with Re(ﬂ/nKz) , as may be seen from
Figure 19.
Figure j? also. indicates that at a given value of
Re(ﬂ/nKz) , no sOlutions to k3.165) exist when |
R < (RY) [t /T; Re(ﬂ/nKZ)] ‘
| ' , (3.168)
or T /T < (1/T)_IR!; Re(2/nk%)]
@
where the functions (Rr'ﬂ)C and (TC/T)C ‘are defined bi |
the Zowér‘envelopé of the plotted:curveS'whéhg ;C/T < 0.3 ,%

- and by the minimum-in R' when’ T/T 2 0.3 Py As might be

e

expected from the way in whichQJAc/L and %

géTfia:e inter-
related, (3.168) is equivalent to the statemen&at :h‘eré

5y

exist no solutions to (3.165) at a'giyven value of

* ‘ “\.\‘M

Re (2/nK°)  when

' t . I 2
Ry < (R A _/L; Re(ﬂ/nls )]

(3.169)

or AL < (/L) IRL; Re(@/nk?)]

——,

/

e

where” (R')  and (Aé/n)c, ate defined by the dottea\x‘“\\;\<\\<;N



Dy . ) 4
Cul-a o curve an Filgure 4.

Flgure 14, which shov;s the projection of the
solution curves onto the [A /L, Rr;l] plane, gives a clear
, o, )
iHustration of the existence of a minimum in ' for a
- m
: ; . 2 s
glven value of  Re(2/nK”) . For the value chosen in the

lot [Re(s’z/r]}(z) = 0.001] the minimum in Rr;] .occurs- at

'A(‘/L = 0.25 .7 The same rdsult is obtained at different

values of  Re(/nK”) , over a fairly wide range, as may be

seen from Figure 19.

7

As RG(S'Z/nKZ) is varied, the cut-off curve in

Figure 18 retalns its geperal shape, &nd the minimum stays

at the same value of AC/L . ?In addition, the curves of
constant Im(ﬁ/pKz) do pnot alter breétly. The cut-off
meraly moves down in RA with decreasing Re(ﬁ/nKz) ’
allowing the iurves Sf constant Im(ﬁ/nkz) t@’é#t?nd

further toward the left of the diagram.

Figure 19 is a plot of curves of éOﬁStaﬁt'—R% and
curves' of Cbnstantilé/L as functions of (Im ﬁ/ﬁKz)ﬁi

Re (’é/nx?) at a fixed value of ,(Acrc)?/q . The only curve

of constant AC/L shown is the oneﬁWhich paéses through

the points corresponding to the minimum Rﬁ for each va

of Re(ﬂ/nKz) .. Other curves of cqonstant AC/L run

lue

roughiy parallel\to the onersﬁowﬁ,‘with XC/L ih¢rea§ingr,

" foward lower values of {Im Q/nK?)~l .
‘ , ) s

Figure 20.is a plot of curves of. constant _Re(Q/nxz)

and curves of constant A _/L . as functions of (Im Q/nK2
- ' Han B i
] -

)~1

o

T



and R; at the same {ixed value of
n

Figure 190 (O K) 2/ = 300 .

AF/I, are shown - those for AC/I‘ =

At

2
(AK) “/4

0

Only two

curves of constant

and

Because of condition (3.147a), all acceptable

“will lie between these two curves

“ship between Ré and
1

It is interesting to compare Figure

Clearly, when AC/L = 0 and
2
(Im Q/nK") -1
plots -~ at least for Rm
Figure 70,

dJives only a single pair of values

[

cach value of AC/L~, in contrast to the

values shown in Figure 4, Figure

solutions of the elqchaluc problem for oscillatory mean .
f =
fields form a discrete subset of the solutions for non-
Gscillatéxy mean fields in the limit Re @ + 0 , as
) : ; oy
suggested in section 3.4.3,
. Figupe pO cléarlf'iliustratés the existence of a

minimum in  R'  As  Im(2/nK?%)

held constant.

) 2
Re (§/nK™)

V LR’m

However, at larger values of

0,

as in

AC/L

1

soluti

AL

’

infinite

mihiﬁum incréases mbhotonicaliy with Ré(Q/ﬂKZ)

FLJupe 17 it may also be seen that the minimum value of R"

1ncrea5es monotonlcally as

" -

TC/T < 0.3,

W S SV VR

of the envelope curve in Figure 17 shows that,

It is aﬁparent that the value of

(ACK) /q decreases.

v

ns

20 with Figure
. the relation-
i

is the same on both

greater than the minimum shown on

Figure

; (tm 2/nk%) ~1]

range

¢!

The slope

ﬁqr

R
m

20 thus shows how the

is varied and Ré(ﬂ/ﬂKz)

at the

From

(3.170)

223
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4

Figure 16. Solutions of (3.165) - projection

onto the [AF/L, TC/T] plane.

Each curve shown Js the projection
onto the [AC/L, TC/T] plane of a curve in
[AP/L, TC/T, R&] space defined by the inter-

& - L4

section of the two surfaces

Im Q/nK2 = constant = C1
o 2
Re 2/mK” = constant = C2

Curves are plotted for several different -
values of Cl at a fixed value of C2 .
In the diagram, ﬁd = nszA

The dots on the fo&rth curve %
(¢ = 1.025) . indicate the values of ) /L
and ,TC/T: used in plotting“the surfaces

1]

shown in Figures, K 10-14.
i B
- Projections onto the two remaining

coordinate planes are shown in Figures 17
and' 18. '
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Figure 17, Solutions of (3.165) - projection
onto the [TC/T, F%;l] plane.

Each curve shown is the projection
onto the [TC/T, RA] plane of a curve in
[AT/L, TC/T, R&] space defined by the inter—

section of the two surfaces

Im Q/nKz = constant = C,
\ . 27:77?7777.: )
Re §/nK~ = constant —_C2

Curves are plotted for several different
values of C at a fixed value of C,. .

2
In the diagram, 4 nKZ .

i

P@jections onto the two remaining
coordinate planes are shown in Figures 16

and 18.
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~ projection

of (3.165)

solutions
onto the [A /L, Rr;xl plane.
<

Figure 18.

FEach curve shown is the projection

onto the [AF/L, RAJ plane of a curve in
[AC/L, TF/T' RA] space defined by the inter-

section of the two surfaces

Im ﬂ/ﬂKZ = constant = Cl
Re 2/nK” = cofistant = <,
Curves are pibttéd for several different
Cl at a fixed value of Crzix
, 0 - 2 2 "1
(j ! nK ’iz :
iﬁq
1

values of

TS the diagram,
Projections onto the two remain

coordinate ;planes are sHown in Figurees 16

annd 17
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Figure 19. Solutions of (3.165) - projection
onto the [Re Q/nKz, (Im ﬂ/nKz)All plane.

Each of the gplid curves is the projec-

tion onto the [Re Q/nKZ, (Im Q/nK2)~l] plane of

the intersection of two surfaces

égﬁ3 R% = constant = Ci
:f“j 7 2 ) e

. T nK = constant = C
C 2

Curves are plotted for several different va-
lues of Ci at a fixed value of Cé - In the
diagram, Qd nKZ . )
. (2

The dotted curve is the projection onto

hl

the same plane of the intersection of the two

surfaces

[f
9]

R

ZC/L constant =

2 - f
TCnK constant 2

I}
0

i

Ci is chosen in such a way that the curve
passes through the points corresponding €0 the
\MiniTum value ozé RA at-eaéhrvalue'of

Re Q/nK2 . Curv é

runrroughly parallel to the dotted curve, with

s for other values of C

Cé increasing toward lower values of

(Im @/nK%)-1 .
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Figure 20. Solutions of (3.165) ~ projection

onto the [R%,»le Q/nxz)‘l] plane .

Bach of the solid curves is the projec-
tion onto the [RA, (Im Q/nK2)~l] plane of the

lntersection of two surfaces

f

Re Q/nK2 = constant = C

el
rCnK constant = C2

Curves are plotted for several different

values of C:2 at.the value of C! used in

. 2
Flgure 19 [i.e. Cé = 30}. 1In the diagram,
(ﬂ/néff) has 'been written in place of Im Q/nK2

(see,section 3.6.2, equation 5,86).
The dotted curves are the projections
Cﬁt@rthé same plane of the intersection of the

surfaces

AC/L = constant = C!

1l
@]

constant

~

=

=
!

, for ¢! = 30 and C. = 0, 1 .
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3.10.4 The existence of acceptable slohly“decaying, long-

EerioqLﬁggggllatorx mean fields

Althougyh initial condition Il does not lead to a

restriction like (3.148) on (ACK)z/q , i1t is of interest

to see whether such a condition can be satisfied. From

Figures 16 and 17 we see that

Rn = Blllm((z/nKZ), Re(ﬂ/nKz)]/TCnxz (3.171)

A

when (ACK)Z/q = nTCKZ << 1 . Therefore

2in R',: ' R (’t}ﬂK‘)-
(AXYfg >0 { /‘b} (Md‘ *0{ OeK)? }

= %}[{m Q/QKI; 'RtQ/'[KZ] (3.

MK 8, lIm(2/nk), Re(a/nk?)) (.172)

173)

This limit will give the smallest possible value of R%/q

for given values of 1Im(2/nK?) and Re(2/nk?) .

Figure 21 shows how B&/q and AC/L ‘depend on

Im(Q/nKZ) and Re(Q/nKz) when nchz is small. - Ror
: T

nTCKzrg 5 x 10~4 , gna Re(Q/nK2)i5.lOO ’
AS/L = 0:35{(Im 2/nk?)-1}71/2 | G
R/q = 0,78{(Im §/nk2)—1}‘?/2_“; 3.
so that

(ACK)(RA/q) = Zn(AC/L)(RQ/q)h = 1.7 | (3.

174a)

174b)

lid

175)

234



235

In general, there is very little dependente on Re(U/nKz)
It may be seen from Figure 21 that the condition
(3.148) can in fact be satisfied by solutions to (3.165)
which also satisfy (3.147) and kB.lSO). In othex words,
there exist solutions to (3.165) for which
a) the wavelength is long compared with the correlation

length of the turbulence [Ag/L <171 -

b) the decay time is long compared with the correlation’

time of the turbulence [TC/Td << 1 -~ i.e. ﬂTCKZ << 1]

c) the first order smobthing"approximation is valid
'[R% < q , for q large] N
d) the period is long compared with the correlation :
time of the turbulence ITC/T << 1 - this condition
holds since the solutions depend very little on

Re (2/1K%) ]

The range in which solutions éf,thisf%?pé can occur is

very limited, as may be seen from figure 21. Clearly, for

the conditions (a)—-(d) all to‘be satisfied, we must have ~——

1.13 gIm(ﬂ/nKz) 2.6 . o | ~

It is never possible to satisfy (3.148) ané (3.150) }
simultaneously when q is sméll. In this liﬁit, (32&5QL\\\\\\\
requires that R& << 1, while;(3.l48) requires that i _—
q/(XCK)2 >> 1 . Bu;, for avgiveh yé;ue of Re(Q/nKz) ’

(3.170) implies that

-~



ZR&/q’)

(A/LY and

Ot

0,01t—— —_— = —
1072 N " : 10
, . o
K ,,
" Figure:21. Salzziuns of (3.165) - (A /L) and (Rﬁ/q)
as funotions of (Im Q/nK )-1 in the limit
of small - TCﬁKz- . .
f The s0lid: curves show the behav1our of (A /L)
- and (R’ /q) when Re Q/nK2 < lO At larger Values of
Re’ Q/nK2 ; (A /L) and {Rﬁ/q) dqpénd on' both Re Q/nK?

' and Im’Q/nK2 , as 1nd1cated by the dashed curves
" [Re Q/nK‘JQ‘lOA}Vf*”



R:'n 2. (T/T'c.) .
(R )i Re Qs ¥

(3.176)
(Ack)?
may b

SNl

It trom Figure 17 that the constgant of .
proportionality on the right hand side of (3.176) is
appriOximately

12 .4 Hence,

in the limit as g -+ 0  but
S 2 .
‘{/(/\PK) remains large, 0
[¢f - O q/(?\;K)Z large] RI% > S12.4 = 3.5
L -
in contradiction

(3.177)
to (3.150) .



o | 238
341 The kinematic dynamo problem .

~ .
3-11.1 The two-dimensional integral technique and

turbul®nce without” PT-invariance
For the case of decaying mé%n fields, it has been
found that the two-dimensional inte qratlon scheme used in
treating initial condition 11 is generally easier to handle
than the one-dimensional scheme uscd in dealing with
inttial mmn@ftian /. Although thé principal difficulty
.GQTOUDtPTGd with tpé one-dimensional integration will not
“arisc in the éas& of growing mean fields, it may well 5é
. K v
that §hé two-dimensional technique is befter suited to a
general study of dynamo action in turbulent fluids.
The ixregular behaviour éxhibitéd by the function

Re 0O, when Ehé mean field is rapi dly decaying [Im(ﬂ/nK ) o1]

dedaying fIm(ﬁ/nK?) < 1], as ﬁay be seen from Figura 1.

It remains to be shown that the évalﬁation of the integral

I£§):definé& in (2i8§)zcanibe éarriéd out easily by the two~

dimensional intéqfatién tééhniiué When héliciﬁy is presént.
The simplest possible cg%é of turbulence which is

not PT~invaridnt is described by the spectrum tensor

A N . , ’ '
p. 43; Moffatt, 1970a) ° Lb

{kZS‘J- k.h‘} + ie‘jL F(RQ)k {3.178)

Bukt

From (3.178) |land (2.89"'),
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K
I = ¢ m'(ﬂ” Fraet . dkdw  (3.179)
A 4R o) 4 R K) T

~

Taking K to define the z-~axis in K-space, as was done in

(3.18),
I‘(z) _— “J ’9 [ dw[ dk F(klw) 2&4 ~
x4
r sin® 0 40
[ i(wfﬂ)+'l(k‘4K’+Qchose)

3 \

i s (2 “ F(KE nK*V+Red)

\;"\ (3.180)

It follows, therefore, that the integrals to be evaluated
Fi

are of precisely the same form as those already treated in

. _ O
the case of fTPlﬁvarldﬂt turbulence, R

3.11.2 The mean ficld dispersion relation

If we defi

I*= —é-Ks[dvﬁf F(Kf:(';)‘ + Re(2) O(Fv; dmik.)  (3.181)

then, from (3.180),

o
Ic?j) = *Lelle‘ Icz‘}cs,ﬂ) - : 7 (3.182)

and
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[Re IP 4m I} = {Im I®Re 1P}
x = Y] 3 = iy

IR
= T €igm€mnj K Kn Re I §n 1@

{K*8;;~ KiK;} Re L™ o T (3.183) ;3')

]

Substituting (3.183) into (2.91), we see that the

@ dispersion relation for the mean field is

det (aa + bb) = © (3.184)
where
aij = ~ 4rﬁ{5;,j‘x Ke I + & [ﬂ—irlK1~'iI“)]} , (3.185a)
bij= RefeipkeI® +85(Q-iqk?-i1}] (3. 185)
When (3.185) is substltuted into (3.184) and the determinant
is eiganded the d ispersion relatié i1s found to have three

roots, specified by
3

i+ qKk? + I“§= o, o (s.186a)

1ﬂ+qK’ + IV = TYK I 7J- (3.186b,c) Yy

: ?
=

As pointed out by Moffatt (1970a), these roots porgesponQ”
to normal decay (3.186a), enhanced decay (3.186g); and;

neta}ded;decay (ér’growth) (3.186c). (3.1866), the eqﬁa; .
tion which leads to grow1ng wave solutions, and hence to |

dynamo action, corresponds to the lower sign ln (3.186b,c) .

;,
7
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()
501103 The possibility of a "sporadic th'kﬁl’ig_‘i»tyﬁ" dynamo

Consideration of the growing wave solutions of
(3.186c) leads to a situation in which decaying wave
solutions corresponding to initial condition Il may be
important . A nonstatiionary kinematic dynamo of the
aporadi e type discussed in section 1.4.6 can be constructed
by alﬁlowinu the helicity of the turbulepce to vary with
time.  The helicity iﬁrinitially “turned on" for a period
long enough to allow the effects of initial conditions to
Airs away.” The arowing wave ﬁﬁ1ﬂtiﬁ;ﬁ to (3.186C) can then
be followed as  F(k,w) , and hence I A , is allowed to

- (2 , s
(%) goes to zero, equation

vary slowly with time. When
(3.186¢) reduces to equation (3,39), corresponding to

initinl condition I17. The mean field will then decay Ain

]
jol]

the manner descoribed above in section 3,10, until sudh time
= ® R
as the Pelicity is "turnad on" again.



3. 120 Summary of Chapter 3

This chapter is concerned with the effeqgts of
PI=invariant turbulence on large scale magnetic fields.
Much of the work described was carried out jointly by the
present author and e, K. D, Aldridge (GOlliland and
Aldri dge, 1975).

In section 5.2 it is provéd that stationary, homo-
geneous turbulence whose average froperties are invariant
under space-time inversion (PT-{nvariant turbulence) cannot
support dynamo action in an incompressible fluid, in the
first order smoothing approximation (see pection 2.5.4 for

a definition of first order smoothing). This result is a

generalization of a theorem due to Krawuse and hoherts

<
Cu

(1973). 1t directly contradicts the work of Lerche and [ow
(1971). : : 7 .

Sections 5.3-3,10 present a detailed study of the
decay of wave mean fields in the presence of PT-invariant
turbulence. Two initial conditions are studied:

I: the initial turbulent component of the magnetic

field is ot correlated with the turbuleft velocity

- i.e. uj(ﬁ’t)Bk(ﬁ"to) = 0 for all choices of
(5,5',t) " (A less restrictive coﬁditioﬁ which leads

to the same result is described in section 3.3.2.)

AR}

II: ‘the initial turbulent component of the magnetic

field is correlated with the turbulent velocit‘in

é :
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such a way that curl | u'x B' J(z’tu) a E(ﬁ’to) for

all choices-of x . (See vectTon S.5.5.)

~

In the first order smoothing approximation, spatially
periodic mean magnetic fields can exist in an infinite tur~
bulent medium only if the two-point, two-time correlation
t&nsgr of the turbulence falls off at least exponentially
with time displacement 1 . If the Correlation tensor has
an exponential dependence on 1t , spatially periodic mean
ficlds can,exist only if the correlation time of the turbu-

lence, v, is shorter than the cffective decay time of the
o=

e eff _ w21 : o o priFas T s

mean field, Td = [néffK ] . n_ . 1s the turbulent

o]
>,
o]

magnetic diffusivity, and K the wave number of the mean

magnetic field. ° (See scection 35.7.5.)

y
"

In sections 3,6-3,10, {sﬁtrapia Gaussian turbulence
is Studié(jéS an example of turbulence in which the correla-
tion tensor falls off more rapidly'WiEh T than
exp[—lr]/TC] . Several restrictions on tge parameters of
the mean field and the turbulence arise.

' )
a) When initial condition I applies, spatially periodic

mean fields can exist only if T is shorter than

eff _ X - :
BTd , where B8 = B(TC/Td, AC/L)ﬂ. ,Td is the natural
decay time ofithe mean field in the absence of turbu-

< £
lence, kc tHe correlation length oﬁfthe turbulence,

«

and L’-the wavelength of the mean field.

Furthermore, spatially periodic mean fields can

"
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exist only if the magnetic Heynolds number of the
RA , is le€ss than a ecritical value,
shown that both

turbul enee ’
Tt can be

R’ N VA L
( n3<tr1t [1?/ d’ Ar/ ]
N ] S E N Ak -
g and (Rm)Crit depend only weakly on AC/L .
[Fee section 3.8.1 for the work desceribed here. ]
b) When fnitial econdition Il applies, spatially -
7@ o S g _ s 4 : . ,‘C‘ff
period®® mean flelds can exist only if To ~ B qd ,
where #R' = 8' (A /L) There is no restriction on
. < s
T;l - -{:;ijt’? section 3.6.56.)
Naff 7 normally

The e fferctive magnetic diffusiofty,
lence [1 A
L [t Aor

depends on the parameters of the turbu
and the

R the f{latiOnShip between the turbulence

[
m
i

1,
an field [Tﬁ/Ta, A/L), and the initial conditions
L R .

mear
(I, I1}. However, both the dependence on Ehé
, on

o

dependenc

3

nd th

foll

an field

15

‘properties of the m
initial conditions are weak, and disappear entirely

in certain circumstances.

a) Naff is'iﬂdépéndéhtaof initial conditions
- ‘q\

[section 3.8. 3]
, eff
i, <<
. TC Td

and ii. the diffusion time on the length scale of the

FUrbulence, (Aé/n) << the effective diffusion time
on the:length scale of the mean field, (Lz/neff) .

e) When initial condition I applies, Naff is

-



L4

independent of the properties ot the mean field if

lorction 2. 4. ]

-1 2 .
T < 0.025 ottt r A7 /n < 0,01 1 )
- Ad C e
L C o neff . .eft 2, :
T 0.025 quld ]/['l(1 Id 1, [AC/n 0.01 rC]
#
t) When znzrznﬂ.wﬁdﬁifiwn /I applies, Noff changes
x
wit? time, stabilizing at a limiting value [ﬁ@ff]
*
after a time Tl'. [ﬂéff] can be used to describe
the decay of the mean field provided that T1 << Tgff

[ner sertion 3. 8. 1 for a more procise statement of this !

copndition] .

The condition on Tl can be translated into.a

condition on the parameters of the turbulence and the
; ' | 7
mean field [see section 3.8,5 « ahd Figure 8]. 1In
I
general ,’ TI must be less than! two correlation times
,ﬁ; P o . ;
[much less, 1f Ac/n <<:Tc] for [ﬁeff] to be a
meaningful parameter.
g) When initial condition II applies, Naff is

izg?péﬁdent of the propertiéS,Qﬁ;She mean field if

AC'<< 0.16 L [see section 3.6.3].

Restriction‘% (d)~(g) Qn be interpreted as restric-
tions on thé usefulness of the kidler expansl%? (3 96) as a

&
representatlon of u'x B' . The Riddler expansion is

®
e
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obtained using initial condition I, and only the first term
of the expansion is independent of the properties of the
Chmean field.

It should be poted that the Kadler expuansion is not
useful when the mean field oscillates with time [section
4.9.1]. For this reason, the validity of Krawsc u;J
‘H&J[Ur'ﬁ expression for the "turbulent conductivity"
appropriate to an oscillatory, decaying mean field (Krause
and fidler, 1971, pp. 70-71) is open to question.

Sections 3.9 and 5.10 present a study of the beha-

ur of decaying mean ‘fields, periodic in space and

i

<

PR - 5 I3 _ 5 . . - 3
sclllatory in time, in the presence of Caussian turbulence.

It is shown [sections 3.9,4 and 5,9,5) that if initial

condition I applies, no mean fields of this type with

{(Téfrjf‘ )+ (Y¢/7) }% « 1

[

can exist unless (TC/T) is identically zero. T 1is the
oscillation period of the mean field.
On the other hand, if initial condition II applies,

spatially periodic, oscillatory mean fields for which

T, << T cdan -exist. (Initial condition'II does not lead to

c
thé requirement that fc << Tsff .) The behaviour of{thege

fields is described in section 3.10.3. If the condition

i

To << Ty is imposed on solutions obtained using initial

condition Ir, it is found that turbulence for which



Ai/n < 1. Cannot support sﬁatially periodic, oscillatory
mean fields of the required type [section 3.10.47.

In section 3.11 the effect of relaxing the condition
of Plr-dinvariance on the turbuience is investigated. .. It is

{

tound that the mean“fiéld dispersion relation for this
problem, while somewhat more complicated than the one
studied earlier in the chapter, still involves only
integrals of the type studied in section 3.10. It /is
suggested that the numerical techniques used in sect{ion
5.10 may well provide the most convenient method for
investigating dynamo action qcﬂerated’by non~Pl-~invariant
turbulence. Tﬁé possibility of a dynamo with sporadic

helicity is also discussed l[section 3.11.3].

j4i]
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4. THE DYNAMO PROBLEM AND INHOMOGENEOUS, NONSTATIONARY
TURBULENCE

o

4.1 Introduction

As pointed out in the last chapter, the assumption

~

Oof stationary, homogeneous turbulence is a gross over-

simplification in a real, finite fluid. One of the

principal difficulties lies in the fact that no boundary
conditions can be applied to turbulence of this sort.

In a dynamo 1like the gé@dyﬁﬁma, where boundary conditions
are important, it will’élearly be necessary to consider

inhomogeneous turbulence. Furthermore, if the time

behaviour eof the mean magnetic field is to be described
with any deg ‘ee of accuracy, the turbulence(will have to
be nuﬂﬂfafzunaly, particularly in the kydromagnetio dynamo
problem.

' The principal effect of introducing nonstétiOﬁary,

‘
inhomogeneous turbulence into mean field electrodynamics
is to make u'x B' 'depend époicitZy on, position and time,
as well as on the mean fields u and B . When B is a

EE O Y

qﬁiy}ng function of time, equation (2.22) glves

{u xBo} = €Lju€pm.€nrk o (4.1)

t . .
' ’ P YN by i e - ot 41V R ‘
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after a time sufficiently long for the effects of initial

conditions on B' to have died out. Clearly, the effects
of nonstationarity and inhomogeneity of the turbulence
are represented by the dependence of the correlation

ij(i,t;g',t‘) on each of its arguments separately

tensor

We may therefore introduce nonstationarity and
inhomogeneity into the kinematic dyﬂamo problem fairly
Jp

[in the first order smoothing approximation), and for

simply by choosing suitable forms for the terfpor R
N

hiqher~ordér correlation ténsors [when equations (2.25)-

(2.30) are taken into account}. é&



a

4.2  Inhomoyeneous, nonstatignary turbulence ® 4 surve
of existing techniques o

4.2.1 Locally homogeneous, quasi-stationary random

functions - the Kolmogorov structure tensor approach
< :

One of the most commonly used approaches to the

. ) Ay .
study of inhomogencous, nonstationary turbulence is that

i
Ay

introduced by« Kolmogorov (1841a,b). In this approach, a
\
ranfiorn field E. (x,t) is said to be locally homogeneous

and qﬂdéf%ﬁfﬁﬁféﬁﬂﬁy in a region G if the distribution
functions of the difference
Wi (xtr, the) = L) ! (4.2)
R ’ 7’ 4

are inyﬁgiént for all choicas of (x,t) in G . In other

rred as a

3

words,, éhé difference (4f2) can be conside

s%ationary; homogeneous random function’ in G (See, for

ﬂTJITIﬁ?x’) Tatarcki, 7717(“?]'; p: 1971; Ya,;l;:%, 19670, p. 95; -
: ; 1971, p, 149,) ( ! .
é The priﬁéiﬁél qpantity éf:iﬁtéf%gt i s aﬁpr@ééh
,is tHe r%{,ruéfz{r%? T’z?flsr?r*;i 7 ’ ,
D (o) = fuiler,t+t) —uix, 0 ] lij'lix+!‘,'t7r{‘ {“3 x, N

" A (4.3)
i ?' . ! oA
which is related. to the correlation tenspr by the equation
Dij(r,t) = ”,Ral(;g%x‘,ft*f;z*r.ht) + Ri(x .t x,t)
/- T R¢j§3,f;§+x,tz+ﬂ - Rjix,t; ?‘.*x‘it?f’r)

i : i -
‘° L - . : /f- Y

.

£

Voo e (4.3

v
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As may be seen from equation (4.3'), the structure
tensor approach does not provide a direct method for
cvaluating the correlation tensor Rjj - The approach is

therefore not immediately useful in mean field electro-
|
dynamics.

4.2.2 The: Silverman approach to lééallx stationarx and

homogengous turbulence with smoothly varyi ng mean

[‘:
Chdl act ar istics

4 e e
Probably the simplest approximation to the
5 v —
correlation tensor of a nonstationary, inhomogeneous

a

random process is that suggested by S57lverman (1967 ; bsee
aleo Tatarski, 19617, pp. 63-65). 1In this approach, the

average properties of the turbulent field are assumed to

is said to be locally stattonary and hom \jf?i’f"ff?yﬁ if its
. ", 7t

correlation tensor can be written as

Rij(x,ts 2, ¢) = UE WGt
 pgmes t¢‘}"': ey
o~ ;{ ) )“;2 ’}:. '—‘J;,g i\ };t"t) (4'4) ®
. A ‘n‘—k] ‘6 :

e

It is clear from (4.4) that the -Silverman approhch JV

will not permit boundary conditions on .u to be applied
. ‘ ~ +

exactly ; bécépse of the way in which the "amplitude” f is

. 1
¥ )
R

5%



defined., Because of this restriction, the $Silverman

-

iippr'()d(?{l has only limited application in mean field electro-

dynamics.

4. 2.1 : Tﬁfi fl(l([]bl‘ au)roacn to l()mal l‘y tht 1onag and

homogene ous turbulence wi th SOt hly M mean

Lhal ac tcl 1St iP

’
The principal difficulty encountered in the ST loer-

man approach can be overcome by means of a Taylor series

/
approach due to Krause and Hidler (1971) ‘(Ulf@ Kidlelr (1877 ;
sce aleso P.H. /1’{?f;i’rr‘f,ﬁ, 19771a).  In this appréach iﬁt is
a*ssuméd/t;f)at the correlation tensor has the form

Rij (x,t; X+r,tet) =

S wWRx,t) mg?(r’,r) + T % "2(35,1) rﬂfj') (r.x) + |

+ rlg %z(—x t) m(m)(r- K {vu’ (x t)} f(')(r' ,T)

~

alg W], FPr) 7 (4.5)
where: ’ . ) :
u"“(%%g,f#ﬂ = Wi x,t) + rvuwix t) + ri o’ i(x t)
! o ; ;
o N (4. 6)

Géneral symmetry cénsiderations are then used. to determine

(O) (11)
J, lj‘,ade..Thls

\:t,i}i‘/\,s very useful when deallng with the klnematlc

the form of the’ tensors

(12) .t



- the correlation tensor of

§

dynamo problem, but it is not. well suited to the study of
the more general hydromagnetic dynamo problem.

Wadler (1972) has derived a general expression for

“a turbulent velocity field in

]
N

which all deviations f[rom homogencity and isotropy can be
= t
described in terms of the gradient of the turbulence

intensity.
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é&lrst Orgler smoothlng approxima‘tion, (2.10) re%uces'to

4.3 1nhomqlcn(ous, nonstatlonary turbulen<c _and _the dynamo

problem - a successi Y& _approximation techni 1gue

4.3.1 Outline of _the _BucCessive a“m()xqt;i&r}‘)te(iflni(nm

Another method for dealing with inhomoqeneous, nomn-
stationary turbulence can be suggestod wgiCh will be
applicable to the hydromagnetic dynamo problem. This
met hod involves frnating the large scale variations of
both the mcan figlds an< the t;rbuléncg by means of a
BuCCess] ve approximation technique. As an 1llubtrat16',
we shall abply the technique here to the klncm tic dynamo
pfobiém_ Later, in Chapter 6, we shall use the technique

. ‘ .
in an 1UVU:t1qntiOﬂ of the hydr@maqnétié dynamo problem,
We shall assume that the flugtuatinq fields wu' and

B'  can be represented by ‘Fourier-Stieltjes integrals of N

, [ ] . Tk . T
ui(x,t) = ” Uzg(ﬁs,t;'s w) dZ;(r.w) e rmeeo } (4.7a) )
ko : .
SB:G‘.“ = ” Pq(?i,f;k @) dY;(k,w)e "Ski*wr} (4.7b) :
¥ 5“’ =
where the téﬁsors U..(x,t*k w) and (th;k ) Qary

with' position and time on scalés 1axge compared with the

&
correlation. length and time of the turbulence.
y 2 e
.The" representatlons (4 7a b) may now be.. substltuted

3

L
;nto the fluctuatlng induction equatlon (2. 10)£ In the- “
” ¢ )



Y

(2.1 %). A successive-approximat ion solut ion to (2.13) may

he siought in the form

d:é(z}_,w) dZ:(O)(}_(_,w) + <lg(l)(5,<u) t oL (4.8a)
(1}’_(1\;,(.)) - (IX(O) (,}S'“)) + ‘*‘X”.(ﬁ,m) 4+ .. (4.8b)

with the zero-order approximation being obtained by

neglecting the large-scale variations. of all quantitics 1n

-

(n.13). B’ must of course satisfy the divergence con-

dition (Q,jT)A For simplicity, the flow will be assumed:
incompressible, so that u satisfies (1.21). .

i s
L . \ qgg
approximation, the.

At each stage in the successiy

0

large écalé*VariatiGﬁs/Gf all fjelds {and their derivatives)
4

must be iqn@réd to ensure that dZ and dY , defined by

@]

(4.8), remain functions of k and alone, Under this

assumption, we may make use of equation (2.48)
dZ (R, 0) dZ;(k,w) = Py (K ) 5(3;5)5&9‘@*)&;@%@' (4.9)
to obtain the expansion , ; ’ )
o _ , (od) RO (os), , (10) s
P () = o7 () + Pif (le,0) + ¢G5k, 0) +...  (4.10)
- H ) " )
where . ; A i’ B S » v . . o '45

dZ{™ *(k,w) d 2"k’ ")

L3

o= ib‘{}"‘('sxw) Sle-1e') $Go-00') die dlit’ e doo®
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«+4.3.2 Solution ot the fluctuating induction equation

Writing out the first few terms of the successive

approximation solution imtdetail, we have, from (1.21) and

f):,,f’:ki; ~
(2.11), /
ey 1z
. , »
ik.U-dZM = cdz” ) , n>»t (4.12b)
ik.p-4Y? = O . (4.13a)
o e ()
ik.p AT = - veg. A" , n>t (4.13b)
The SimpléSE way of satis%yiﬁq thesa equations is to assume
v-U = O Ny - (4.14)
v-p 20O * (4.15)
(
so that
. c’l_t.g% dZ O , Voan o L (4.16)
.;;g.g-cAY"“ =0 . v¥n - o (4.17)

(4.14)-(4.17) are useful in the kinematic dynémo problem.
: /

However, in the hydromagretic dynamo problem, the full

| SO

;@qqatiéns (4.;2)¢(4.13) must bé’retained (see sectiip

6.4.4).

~-

“The solution to (2.13) may now be writien
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@QdY“” = i(x B) — U-dZ® (4.18a)
= 0~ iornk?s i(R.T) = 7
) .
P*dY‘n = | {‘(E E) Q_dg(l) + B ,Y g dg(ﬂ)
= - L ank? & i (k.U) - ” -
__(U dz(d\)‘V—B« - (P dY“ﬂ)'Za
~ ~ ~ = ~ ~
— i @ _ o)
U-yR-AYE — 2 (g.dY)
{4.18b)

e

ng

» . .
s {“!!ff?)g-&?.-""‘f@z' - Az

E‘de\ = — . —
= - s ke Wk W)

_(Q_dg(h-d‘)‘gg + (p'dim‘.))‘gg

(n22)
~ "~ E ~ at E: ~ . ;
+ 2iq Q-g&idf‘“ + rlv‘g—oll"":“‘} (&,13@)
{

hese expressions may now be used to obtain further
expressions for ~' g' .

w0
¢
&4
U
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4.73.73 \.ul(uldtlon of x_i in the lest order

SMOOL hing

approximation

The value of  u'x B'  appropriate to the tirst order
-~ ~)
, smoothing approximation may now be obtained in the form of

a series. Making use of (4.11),

N ‘% ;o ll (RER). x4+ (L)t
wx B ""*”” Us. dZ*(k, ) x - dY (o) 1T }
Row -

‘
ag“ U dZOM (e ) x &»aLI‘“’(g,w) +
!60 o " #x
s g f] { v dz o) xR A T o)+ f
Xw _ .
8 + gizdgcl) “(kﬁ"‘)) X E’d!(b)(’kwo)} +
e 4.19)
50 that 8 ’f‘
7 T ! k} " . i
) { g % g' B%' [I (‘w*rlhz* ‘h ”) ‘Jl qu .

[uplem b vome]s

a ¢1'W)
+ Unp-—‘.“. . } 4+
xn (i +qR? + ik g)

~

il S d 7 .
(m*qk’a-;kg U"m "P{ iu‘P nra.%‘.

A 0

- Uy ﬂ - 2» k l ] i(ke E) UEP ~ o
“ ' [u M 1 (lwrqr?s ik g) + 4 ,
v ] | " " (4 19k)



4.3.4 ,U}Efﬂgg}*jﬁﬂ§flL boundaxy (cnniltlonb On. the turbul«nt

velocity - the possibility of a scalar veloclity

amplitude

The final step in the solution is to assume that
Uij , E , and E arca,all gunctions of, (x,1) in (4.19") .
It will then bhe péssiblé to satisfy any desired boundary
conditions on u' by ,adjusting the form of Uij . It is

of course clear that for the kinematic dwpamo problem,

tHe expansions (4.8a)wand (4.10) are unnepessary. In

addition, the complex tensor Uij  may }96 replaced with a
?

real scalar velocity amplidtude function U(x,t) . Equation

— . o = (g Pin(K,0)
o)’ barle . ucx 4y ¢ ~— A e axd
{u ng}t Ri€ U(:gg;t){ LUB%II (osmwre ik @) - «
* R

+ UJB‘ba“'l ” Ry fin dk dw ; {

Oxn ] (Lo enk?s iR u) o S
R - £ .
LB 2Y ” Pz ddw Pjn dided "
" 9Xn (tw+qk’* ik, u) = H (to*qk‘sy ;k 11)
. R

gw
) Redie . .
"‘(“"a-x at)(us?mu@qmﬁamu 2y dpde

' w ‘“!Rh@ﬂ ’ 4
Uﬁ%(u.. axn t) ” (u.u qh’+;k w)3 :u’gdu

-
ST ALY Lo P o
B

R k.ﬂbu X
Y —R ——— UBI dk da
( b‘xn( )” (u.oa»qh‘o ik u)" -

(D 51 ” . .

3“,- ) e kn nr ‘Jl — N :' 7
UB “ dk - } . 14..
+ 2“1 ‘i dXn (tw+vllt’+ ck w)3’ dd + ! 2

~
IR R ., .-

4
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.
However, the more complicated oxpressions in (4.19') will

-

be required later on, when we consilder the hydromagnetic

dynamo problem (soo secfion 6.4).

A.3.5 ' x B‘ f()r pure ly tuxk)ulcnt flow

When tha mean velocity u  and its gradient can be

neglected, (4.20)  reduces to

\{u'x 8‘0};“&[6“92 U{AUE%“-—:L?;”‘—— de [ ’
-7 (iwsqk?)
)
=y ad ' 0'1 l l\‘ ¢jh‘
+ B,— —dE _ dk 4 -
N ' Bf‘ Ixn ] (i:.o+-1k‘) J”_:dw ax" (u.)#rlh‘)
1%1 o ) (-

; 9 y ,V Y kﬁ ¢JR . }
Qq aiﬁ(’ ‘)!L(tw+qk‘) R o (4.24)

If the turbulence is locglly FPT~invariant ~ i.e. if
u'  can be represented in the form (4.7a), where dz
satisfies (4a9), and V¢ij is the‘spéctrum;tensor of a PT-

invariant process -~ then’ ¢ij is re€al, and ' ' :

¢lj(k)w) = ¢ji(k,w)

by (3.22). 1In this case, all but one of the«;erms in
. oy
(4 Zl) drop out, .and the equatlon reduces/to T
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g ~T 0 2xn (uo+qk’)
RO

, 2

. _ ‘E kZ .

. = *UZCLJ‘R 95 [] 1 Pin dkdw (4.22)

Xy (w2 rlzl!*)
L ,

Fquation (4.22) may be rewritten in the form,
- — —_ )

; ux B, = ﬁq(g-g)x B (4.22")

“. |

here the tensor Aij is defined as
L 2 ®° ¢
Ay = U ‘-—_—__J_‘ dkdw o (4.22")
; (w? +rl‘k“) . f
Tade ‘ .

TaSince i¢ij 1s symmetric under interchange of indices, by

: , % i . R
the assumption -of PI-invariance, Aij must also be \

' %ymmetric,under interchange of lndioési ~ Furthermore, §inoé\
the diagonal elements of b4 ij must be separately non- .

»- negative if Fﬁ*hﬂerfn Th eorem is to be satisfied (Batshelor,
1863, p. 27), Aij must also have ﬂ@ﬁ“ﬂéﬂatiVé aiagonal :
elements. '

For the partlcular ‘case in Wthh $5 ij is the

. spectrum tensor of a homogeneous, statlonary, 1sotropzc .

s 3 I d = . = R
process, we have, frdm (3 7) )
_ER,W) o .

y = h& k} 4.23) . .
4)’ Pl { 4 } RREAUPY
. where ., e(k,w) is a non- negathe functlon- BEquations
” FeS ) N '
_(4.'@ ) and (4. 22") then become \
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\

A i (47 24)

{5
x
! R
o\
i
}
3
>
g
x
%o e]]
]

A = N&; (4.24")

]

<0 - - 2 Y/
A %UZ { fd)’[df ¥ E(!/)c,/‘t‘) (4.247)

n*aiz ) f(%)?)'

— Q

where A o and ‘T, Aare to be interpreted as the correlation
s . R ’J .
length and time, ? is the parameter defined in (2.69), and

L "

(. and v are dimensionless. Substituting (4.24) ‘into the

modi fied Ohm's Law, {1.17), we obtain

o
-
\

,’, :7_ : V C ; H /
Y\ .

7Y - .,
where I is the twurbulent conductivity, defined by

op = ofL e a)t | . (4.26)

Since A :iﬁfﬁﬁﬁ;ﬁéqatiVéi the only effect of iiif?zé
si

isotropic turbulence of the Lypé:ééi'idﬁréd here is to .

cause a ‘decrease in the effective (turbulent) conductivity.
This result is in agreement with the conclusion of Sweet

: / , :
(1950) that isotropic turbulence must increase, the rate of

diffusive decay of a nearly u@éf@rm magnetic field.

(See section 3.1.)"

The results of the last paragraph make it Clear

..
.

. ,

, that if\a\scalar velocity amplitude U isg assumed, the 3\

" introdiction of inhomogeneity and. nonstationarity in the \\\w/{

turbulence does nothing to remove the need for asymmetry

i



4.3.7 Intrgduétion of helicity. through largéﬁﬁ
variafions of the turbBulent velocity '/, - -

in the /o¢al spectrum tensor, ¢ii , if dypnamo action is t&>

e obtained.

Y
it

o>,

4.3.6 Comparison of resuylts with those ofﬁéhapter 3 &

The expression (4.26) for.the turbulent conductivity
can be compared with the expression obtained for the
- # L]

effective di ffustvity, Nafg 7 i (3.91). Writinq

1D i'4_’\ ) ‘
C ACTC,k hik,w) (4,27)

il

€({k,w)

v

in agreement with (3.45) and (®75), and rearranging terms:¢

in (4.24"), we obtain \
(e -1 = 2 A [Py KN
-1 = 3¢5 19 ) ¥ A W) dY a2y

¥

A

Equation (4. 28) is identical t5 (3.91), Eparc f rom the fact

that. U +4ds now a IUnctlon of positiQn and time. This

aqreement prov1d¢b a useful check on the validity o# the -/

sucCessive approximation technique. used in deriv1nd (4. 265

.

/o
! “ ‘

The correlation tensor used in'the,app%oach leadiyg

to equation (4.19) is of the form . — o K ]

.

263
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R“(},f,}_‘kxlt%’l’) h i

““ Ug(xt; *wﬁ im (XA, tet R w0') A2 e ) d 7, (K ) -

Rk

.

I‘ U;;(E,t;‘:,w) ,,,(x+r f‘r s R ) %(k w) € ‘{k r+m’t}d£dw

.{(k k) X+ Wt + k' '+ w’t}

(4.29)

“Q
If the 'assumption concerning a scalar veloetity amplitude,

used in deriving (4A26), is made, (4.29) reduces to

- Rt xar tyr) = 'U(E_t)U(z_y[,trr)?m‘*'(r,t{ (4.30)

- where
.

Mie 2 ] egroetreatigg,,

.~ When (4.30) is used, the spectrum temsor is of the
N . . ,

. : - 2 7 .
’ 7~ i L= 5 Y : a -
%5 kra) U ¢>ij(}§_,m) o (4.32)

where the large-scale var®tions of U have been ignored

in writing the arguments of ¢ij ~ Since the symmetry
prOperties of Qij in (4.32) are just those of ¢ ij ! it

is not to be expected, in this approx1mation, that large-
8cale variations in U will materially affect the symmetry
reguirements on Qij )for dynamo ;étion to occur. “

When (4 29) is used, on the other hand, the gpectrum

‘tensor is of the form A P : ‘\R\

o

g . al T
i

264



e 4

(A(33) the symmetry properties of o, .

rcoefficients

!/ 265

&
2k, w) = Ui (R, 0) U} (R, 0) Py, (R w) (4.33)
when the large-scale variations of Uij are ignored. In ,

aepend an both
i3 aevend op

L
those of ¢lm and those of U
. H *

. . so that ¢, . a
11Ujm ! b iy e

have an asymmetric component even when ¢ij does not.
. |
Helicity may therefore arise from either small-scale or

large-~scale variations of u' . (See section 6.4.6 for
~

further discussion of this point. )

4.3.8 Comparison of the successive approximation technique
T ¥

with Radler's agéroach .

We may now identify the pringipal difference between

- y

the successive approximation technique suggested in this

thesis an? the approach of- Radler (1972) and Krause and

W

Radler (1971), described in section 4.2,3.

Krause and Hadler obtain helicity which is related

to the large~scale vardations of u' by assuming: Rij to
‘have the specific form (4.5). They then @hoose the . ;.
m{9 R {12)
i7j 17 13
. ]
correlation tensors of stationary, homogeneous, isotropic

gnd m to represent
|

‘processes, with the form (3.48), so that all 'the helicity

o

1

i
AN

\

effects arise from the largé—scale variations. ~In thg%

]

successive approximation technique used here, ‘we introduce
\ ;

Xthg effects of large-scale variations through the tensor

A



266

gf?”jm without making any a priori{ -assumptions about the
form of Rij . JThe successive approximation technique N .

allows u'x g'

~

to be derived from the hydromagnetic
dynamo equations in a much more general form than is .
possible with the method of Krause and kidler. This topic

will be studied in more detail in section 6;4A
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4.4,3Summarx of ‘Chapter 4

This chapter is concerned with nonstaiiOnary,
inhomogeneous turbulcnen and its Lreat@ent within the
framework of mean tield electrodynamics.

Acsuccessive apprOXimaFion technique is propoéed,
and is applied to the kinematic dynamo problem # Some of
Liie results obtained are compared with exbressions derived
in (‘ha;; ter 3.

The possibility of introducing helicity £hrough
large-scale variations of the turbulent velocity. distri~

bution is discusse@ and the successive approxlmatlon

o

technique is compared with the approach suggested by

o Radler 41972)-
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" TEMPORAL BEHAVIOUR OF ASTROPHYSICAL MAGNETIC FIELD&

SN

5.1 Introduction B

<

5.1.1 Temporal variations of .astrophysical magnetic fields

As was noted in sectign 1.1.2, many astrophysical

magnetic fields vary in a complicated way with time.
These variations are summarized for a number of fields in
Tables 13, 14, and 156 . . Y

It w;ll be seen that several of the teg§0ral

N vahﬁatlons llsted in ﬂable 14 and 15 can be explalned in -
e

term% of stellar or planetary rotatlon.' If the magnetlc
field of a rotatlng body is not symm&tric about the axis

of rOtation, the fiel@ must vary periodically when

L

-

viewed,from the. Earth. The 31mp1est posslble case of this

type is .that in whitch the‘magnetlc field is predominaﬁtly

~dipolax, and the maqnetlc dipole axis is 1nc11ned~to the

»

axis of rotation. This obléqxefrotator model is clearly .

appllcable to planetary flelds like thOSe of the Earth and

i -

i Jupiter. Tt has also been applled wlth con51derable
/ﬂsuccess to stellar magnetlc fields. (gee, for examp;e,
Westél, 1967, 19715i1972;'Prest0n, 196?a,b, Z971&,b;

Landstreet, 197&5'Mg$tel and\Takhgr;l1972);

The'oblique idtator mode 1 doesﬂnog,.however, provide

a unique explanation/for the peiiodic variations of, stellar

[

magnetic fields. ,An‘altéfhative‘mbdel has been proposed'by

—~ ... 26B K L



Krause {197], 19720 ,¢), in which the stellar field is
assumed to be nondipolar, and sfﬁmetric under reflection in
the equatorial plane. This,eqﬁator—symmetrié rotator model
takes into aCCoun£ fhe fact'that in some dynamobmodels
including an a-effect (Stix, 1971; Roberts and Stizx, 1972;

Krawse, 197"¢; Moffatt, 1973) non-axisymmetric mean fields

. ,
are . more easily excited than axisymmetric mean fields.

4

5
26900
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FOOTNOTES TO TABLE 13 ¢ <

% ’

[1] Braginskii (1964d, 1970a,b, 1971, 1972); Currie
(1968) ; Acheson & Hide (1973). ‘ ‘

(2] Braginskii (1964L, 1967bL, 1970bL, 1971, 1972); Hide
© (1966a) ; Rikitake (1966b) ; Malkus (1967b, 1971a);
‘Stewartson (1967, 1971); Gans (1971); Hide & Stewartson
(1972) ; Soward (19724); Roberts & Soward (1972) ;
Acheson & Hide (1973), , P
. ) y
[3] For early references sce Jacobs (1963, pp. 70-76),
Rikitake (1966a, p. 83 and p- 109). See also
Pudovkin & Valuyeva (1967, 1972); Yukutake (1968a,b,
1972); James (1968, 1970, 1971); Honkura & Rikitake
(1972); Roberts & Soward (1972); Moffatt (1973) .

(4]  McDonald & Gunst (1968); Verosub & Cox (1971); Cox
(1972); Jin (1973).

)

(5]  Verosub & Cox (1971)..

[6#] Kawai & Hirooka (1967); Kovacheva (1969); MArton
(1970); gox (1972). Fee also Jacobs (1971c); Pudovkin
& Valuydva (1972).

j; i

L 4

(81 /Dunn, et al. (1971). J
Ként,ret al. (1973).

Harrison. & Somayajulu (1966); Bullard (1968) ; Creer

& Ispir (1970); Cox (1972). /

1

[(11] Bullard (1968); Helirtzler, et al. (1968); Helsley

v & Steiner (1969); McElhinny (1971); Vogt, et al.
(1972); Helsley (1972a); Blakely & Cox (1972b);
Stewart & Irving (1973); Reid (1973).

[12] cCrdin, et al. (1969); Crain & Crain (1970); Ulrych
(1972). : .
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L

FOOTNofgs TO TABLE 14 o

'[{1] Parker (1970b); Mehltretter (1971); Harvey (1971);
Weiss (1971a, 1972) .

P
- {
{2] Parker (}970b); Howard, (1971a,b); Weiss (19Mla,
1972) .
. “
(3] ‘*Howard (197la,b); Weiss (197la, 1972).
[4] Dupree & Henze (1972).

(5] Severny, .et al. (1970); Wilcox & Gonzales (1971);
Svalgaard (1973). \

(6] Parker (1970h); Stenflo (1972).

(7] Stenflo -(1972),

i8] severny (1971, 1972); Stenflo (1972).

(9] de Jager (1959); see also’Gilliland (1967, p- 159).
[10] sStenflo (1972). a
{11] Kopecky (1970).

[12] Patterson (1973). °
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; .
FOOTNOTES TO TABLE 15 . v

’

(1] wWarwick (1967)3 Hide (1971a); §chatten & Ness (1971).

(2] Ledoux & Renson (1966); Preston (f§&7a,b, 1971b) . S

[3] Mestel (1967, 1971, 1972); Mestel & Takhar (1972);
. Moffatt (1973). .

(4] Preston (I967b, 4971b); Landstreet (1970).
[5] Krause (197L).

(6] Severny (1971).

t7] Landstreet & Angel (1971).

18] Ruderman (1972).

i9] Ruderman (1972).
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5i1L2 Polarity reveisals ‘ k - '
As may be seer from Tableg 15-15, the magnetic
fields of the‘Eafth, £ie Sun, an& some magnétié stars alf‘
exhibit polarity re;ersals. In the case of -magnetic stars,
these révgrsals are readily explained in terTs ofx‘lther
the oblique rotator model or the equakoT*symmetric rotator
mod;[. Ibwever, these models cannot be applied to the
magnetic fields of the Earth and the: Sun. )
Réversals ofrthe solar and -ggomagnetic fields

differ considerably in character.’ The ‘background solar

field appears to reverse in a quasi-periodic fashion

A

related to the 22¥year magnetic solar eyecle. The change-
Over from one polarity to the other is not always smooth —
for example, the field is'sometimé§_quadrupolar rather than

. R s TR . R -~
o~ dipolar during a reversal. [Recent observations (Stenflo,
XY

sy

19f2) suggest, that irreqgularities of this nature are more .

common and of longer duration than would be expected on the - ’%
) % ) s ~, . ]

siMple "periodic reversal" moéél.lg The geodynamo, on thé

~

Other hand, reverses in a highly irregular fashjion - so - |,

.'A¥xreqular that geomagnetic 1eversa%§fare?6ften modelled as
ek . , gy

gl

a nanstationaryw}andom‘prbcess’(Cox, 1968, 1969, 1970, 197f;

¢

I3

Surdin, 1968; Nagata, ZQéQigCrain and Crain, 1870; Crain,

19715 Waidu, '1971; Kono, 1972; Blakely and Coz, 1972a;

‘Phillips, et al., 1972). B



|

The frequency of geomagnetic reversals is plotted

as a function of tifme in Figurd 22.7 The smooth, dashed
A}

curve has been obtained from the work of MeELhinny (1971),
who plots the percentage of polarity measurements that are

"mixed" (i.e. both "normal" and "reversed” polarities in

the same rock unit) as a function of time. As shown in

v Figure 27, the most recent portions of "McElhinny's curve

v

tcan be fitted quite well to detaileéd reversal frequency

measurements if the curve is considered as a logarithmic

"plot of frequency vs., time. fhc Ccurve is clearly a very
- 4

-

crude approximation, but it serves to illustrate the non-
stationary character &6f ‘the reversal process.

The detailed results of Heirtzler, et al. (1968),

and of flelsley ﬁﬂdﬁSEéiﬁé; (1969), plotted on the right in’

Figure 22, 1nd1catc that changes in the reversal frequency

are 1ikel ly to'be dqudntznuUus on the time scale . shown ,

i

K?‘*Thcre appear to be. sudden jumps in the frequency of rever-~

-

, ]
als at 50 m.y.b. p (m«?l10ﬂ years bejore present), and at

<~

72 m.y.b. p-

Other results, not piotted in-Figure 22, indicate

-

that the nonstatlonary character of the reversal process
has persisted OVEI:94Ch longer times than those indicated.

p § e | .
Reid (1972) and Stewart and Irving (1973) have found that

-

. . * . . " :
reversal rates in the Precambrian varied in much the same

way-.as those plotted for %hé Phanerpzoic (i.e. the;entiré

%
&

277



278

[&nwﬂul shown [ﬂ Figure 22). Keid (1972) reperts a wvaria- -:$
tion of the reversal rate from 0.4/m.y. to l.1/m.y. over a N
60 m.y. linterval at roughly 1800 m.y.b.p. 'Jtemart and

lrving (1973) report reversal frequencies less than 0.1/m.y.

at 990 m.y.b.p., and ygreater than 1/m.y. at 790 m.y.b.p.

Since Figure 22 was plotted, two papers have been
d1scovered which indicate that the peak shown in the
Jurdsslcrand Tr)asslc is somewhat too low. Vogt, Einwich,

)

and Johnson® (19/”) report 41 re@ersals between 150 and 135

‘ . 3

Y

m.y.b.p., glv1ng an average reversal rate of 2.7/m.y..in
the late Jurassic. H<Zslby (]97%&) reports that at least
23 roverbals occurred durlng the Triagsic, giving an average
reVersal rate » 0.7/m.y. between 225 and 190 m.y.b.p.
F Detailed Stuﬂy of more recent palaeomagnetlc data

lndlLates that the time between réversals varies widely -~

from ~v3 x 10 years .to as lonq as 3 'x 107 years (Bullard,

1968 ; Héirtzier; et al., 1968; Blakely and Com, 1972b;

Moffatt, 18973). During the 1ast few million years, rever-
sals have occurred at 1ntervals of roughly 2-3 x 105 years.
The behaviour of the geomaqneﬁic field during a

polarity reversal has \received considerable attention in

- recent years. hDunn et aZ (1971), in a study of a

reversal at 15 m. y b.p., find that the field 1nten51ty

decreased by a factor of 10 before any change in field

~direction occurred, and d1d not return to normal until after

.the directional change was completed. The directional
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E}Qure‘ZZ. Reversal rate of the geomagnetic

field as a fdnction of time.

(1) Curve derived f;om the work of Mcklhinny
l (1971). McElhinny's plot of percentage of
“mixedﬁ polarity measurements vs. time is

interpreted, to a crude approximation, as a

A .-
logarithmic plot of reversal rate vs. time.

(2) Kiaman Magﬁetic Interval -~ approximately

one reversal in 50 m.y.

N

(3) Results of Helsley and Steiner (1969).

(4) Results of Heirtzgler, et al. (1968),
obtained from sea-floor anomaly patterns.
. “(Plot shows a 10 m.y. average taken every

1 m.y.)

As pointed out on p. 278, the work
of Vogt, Einwich, and Johnson (1972) and of
Helsley (1972a) indicates that the peak shown
in the Jurassic and Triassic 'is perhaps an '
order of magnitude too low.
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change 1is estimated to hav%/taken 1-4 x yé3 years, while
the intensity change is estimated to haVe‘taken lO4 years.
Similarly, Watson and Largon (1972) suggest that "major
dipole instabilities" (e.g. reduction of the dipole inten-
sity by 80%) occur prior to reversals. On the other hand,
Kent, et al. (1973), in a detailed study of two reversals,

find tpat'the change in field direction took the siﬂ% time

as the change in field intensity in each case 00 y for

© one reversal, and 3500 y for the other).
Recent work suggeé£s that "...the field during a
[polarity] transition is‘nof a geocentric dipole tightly
: coupléd to the mantle" (HiZihouse, et al., 1872). Large
variations in magnetic inclina&ion'and declination, as well

as a decrease in field intensity, occur during a reversal

(Kent, et al., 1975).° . ! .

5.1.3 The.oscillation spectruym of the geomagnetic field

As may be seen from Table 13, the geomagnetic field
varies with time on many scales besides that of polarity

»

reversals. It is frequeﬁtly hglpgul to considerlan
//ﬁécillation spectrum of g;omagnetic:variétions (Cox ané

\GT Doeli, 1964;_Jacobs, 1920b;rBraginskii, 1970b, 1971, 1972).
| .Bnaginskié((1970p,,197f, 1972) divides this "spectfum" into

three major categories: . .

. . i )
' I ’ )
» -
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a. the fundamental ffequency, characteristic of dipole
field strength oscillations, with period ~9 x 103 years

(see footnote [7), Table 13);

b./ medium frequency oscillatioms, with periods in the
range 100-5000 years (typicallx %103)years, with peaks
in the spectrum close to the period of westwarJ drift

§

P

of the nondipole field); /

c. high frequency oscillations, with periods < 100 years

(see footnote [1], Table 13). :
The theoretical treatmentzof'thgée:oscillat@on; is

highly complicéted. Braginskii (1270b, 1975, 1972) suggests

- k

that the existence of a fundamental frequenqy is a conse-ga‘a

quence of the two-stage nature of the dynamb process, in

which a weak poloidal field léads to the generation of a

strong toroidal field; and the toroidal field is résponsible ’

for the regeneration of the poloidal field. Me di um

fr?quency oscillations are assog}ated with,the so—-called

"MAC-waves" (i.e. Magnetjc—Archimedean-CorioZis waveg) in

‘the Earth's fluid core (sece the refer%hces in footnote [2],

Table 13). Finally, high frequency oscillations are linked '

to torsional magnétohydrodynamic oscillationg and turbulent

pulsations in the core (see the references in footnote [1],

Table 13).
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5.2 Reversals and the mean field kinematic dynamo problem

5.2.1 Dynamo models for solar and geomagnetic reversals
A

In the last few years, a number of reesonablyx
successful dynamo models have been developed to account for
the teﬁporal variation of the soler magnetic field (¢dilman,
1968, 1969a,b; Leighton, 1569; Steenbeck and Krause, 1969a;
Farker, 1970b; Deinzer and Stix, 1971; Stiz, 1971; Koberts
cand Stix, 1972; 522;, 1972; Lerche and Parker, 1972).
However, the problem of the long-term temporal variation
ef the geomagnetic field has proved much less tractable.
Some progress has been made by Parker,}JQGQb)‘and by Lewvy
(1972a,b,c), who have carried out krnematic investigerions o
of geomagnetic reversals. .The model suggested by Levy .
(1972a,b,c):is of particular interest because of its relam”f
tive mathematicel simplicity,,:However, like most kinematic
models, it suffers from the disadvantage that its velocity

dlstrlbutlon may well be a very poor representatlon of the

dlstrlbutlon actually present in the Earth' s fluid core.

5.2.2 The mean field induction equation

Let us first consider the mean fzeZd kinematic

dynamo probZem as it applies to the Earth. It is“.convenient .

to separate the magnetlc field 1nto 1ts torozdal and

polozdal parts



Eg = curl Tpr + curfeurf Sr | (5.1)

where 1 is the position vector, and T(r,t) and S{r,t)

L]

are scalar fields (see the footnote to Table 9, p. 33, and

oo <
P.H. KRoberts, 1967a, pp. 60-82). X . R
Using spherical polar COO%di;::éSK'JIJO,¢] , and .

)
assuming that T and S are functions only of [r,6,t] ,

we may rewrite (5.1) in the form

CBo - cglesy
B = -1, - w21,
B!

o + owrf [Al} (5.2)

e

11

n

where Lg is the unit vector in the azimuthal direction.

We shall also assume that the mean field induction equation

has the form

I

(B-1}8 - ettsaean) oo

where an a-effect term ag has been substituted for the

fluctuating e.m.f. g'x g' (see the discussion in section
L}

1.4.8). | . .
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5.2.3 The az dynamo

\

If, in (5.3), we make the further assumptions that

=g

and a are functions only of [r,0,t] , and that

g = u10 + C“"l{d10} (5.4)

- equations (5,2), (5.3), and (5.4) can be combined to give

{% - na A = (5.5a)

- aB * s L (ra) Z5(Asin0) + 2 (asinB) g;.(rA\} (

(5.5b)
. ~L2 1y g—;(rA)} i {x 2 (Asine) ]
r g - =2 2 e - uh)
FHi B -HR -2 .8
where . :
K;’”E*fda-g;ad~;,—;7,;=3} = {v*- ,,:h,e} (3.6)
If ﬁ =0 , equagions (S.Sa,b) reduce to )
le }A aB (5.7a)

. ;Y .
{% qA.}B e e - aplefAsine} (5.7b)

N
T

~
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giving the equations of the so-called 02 dynamo (Krause
and \S\iu:nbeck, 1967; P.H. Roberts, 197la; Soward, 1972a;
Roberts and Stix, 1972).

Equation (5.7a) represents the generatioqﬂof
poloidal field (represented by A ) from toroidal field
(represented by B ), while equation (5.7b) represents
the generation of toroidal field from poloidal. Thé%ﬁame

"a2 dynamo" derives from the fact that in thestwo-staye
process described by equations (5.7a,b) ;he operation of

!

each stage depends on the fact that a # 0 .

5.2.4 The .aw' dynamo
, =

Y

If, in equaﬁion (5.4) a = 0 , ard 1f thé terms

involving a -in equation (5.5b).can be ignored in compari-

"
son with thé{ierms involving u , equations ;Sﬁka»p) reduce

R 'g"‘lf'-s : ¥ s
to . . e "
; e a"?ﬁ SN Qr
goy - ’ | . o ,,%%3.
#l3% -nalA = «B e (5.8a)
- | . . .& -/‘j."
2 - = Cot® 2 L@ quay e
{at 'lAC} B v a'_(uA) +3 ae(uA) o .(5.8b)
| Lf2u A _ u
MR ¥ 1] ‘a% ac}

giving the equations of the sb—Called aw’ dynamo

(Steenbeck and Krause, 1966; Soward, 1972a)a The dynamo

equations (5}8a,b), andzgéneralizations‘offtgem, have been
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‘Yﬁ studied by many authors, including Parker (1955, 1970a,c,
1971c), Braginskii (1964a,b,c), Krause and Steenbeck (1965),
14'ﬁteenbeck and Krause (1967, 1969a,b), Krause and Hadler

o~ A
(1971), and koberts and Stix (18972). !

u 1is often assumed to have the form of a "modified"

~

rigid body rotation
u = wr sind

where w = w(r,0) .. Under this assumption, equations

'(S.Ba,b):geduce to
2-na}A = aB (5.8a")
{%-—QA.} B = 1¢-{gcox g(ArsinB)} (5.8b")
If, in addition, ww is independent of "¢ , the equations

" reduce further to

%t_ - '[Al} A = aB & (5.8a")
{% -vrlA.} B = w’é% (Asin ©) ) o (5.8b")‘
where w' = m'(r) = dw/dr .

#

The reason for the name "aw' dynama"'is clear from
equa{:ior'x:é (5. 8a") and (5 8b"). In the two—stage process
‘described by the equations, the flrst stage (ge" ration éf
p0101da1 fleld from ‘toroidal), -operates only 1f v.a 9‘ 0 e B

: ‘while the second stage (generatlon Df *toro:.dal fxeld from
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poloidAl) operates only if w' # 0

/I}; ii ‘ )

c s

5
Ps

5.2.5: The Levy model for geomagnetic reversals
i ‘

!

1]

The model studied by Levy (2872a,b,c) is of the oaw

R type/ Wlth } o

f
o
o

u ‘—'{wr.ﬁne} H(r-r) | - (5.9)

Qhere H(x). 1is the Heaqviside unit function, equal to unity
for x > 0 ond zero for x < 0 . Levy (1972a,b), like
‘Parker. (1969b), represents a as a pair of axisymmetric
jﬁ—funption‘rings,:symmetrically placed above and below the
dquatorial plane. 'This model can be taken to represent

b - / - - ,
two rlngs*@f cells of cyclonic convection.

,M

Levy (1972b) studles fleld reversals by using a

ki

sporadic model in which "bursts"™ of shear (i.e. é-functions
in time) of the form (5.9) alternate with bursts of
oyclonlc convectlon at varlous latitudes. Two kinematic

reversal schemes are dlscussed. ‘In the first, it is shown

D

that " ..a strong burst of cyclonic convection at high lati-

! - ,
tudes will reverse the dipole field", while in the second

o
it 18 shown that "...if the qeomagnetlc dynamo has a region

of revgrse torotdal flux in the core, then a strong burst of
, ( "r’r‘ ) 4
~gcyclonic convectlon in that reg/gﬁ w111 also reverse the
dlpolq?fleld" (Levy, 19720)., A

.Levy (19?30) examlnes the second klnematlc reversal
‘ ' ¢



scheme in more detail. He considers a model in which a
represents two or three p&é%s of rinés of eyclonic convec-
tion, and shows that stétionary solutions of the dy&%mo
equations exist in which extensive regions of reverse

toroidal flux occur. It is estimated that in these solu-

i

tions, a fluctuation of 20-30% in the distribution of

-

cells of cyclonic convection asn lead to a p&larity

-

reversal.

289
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5.3 The az(r) dynamo in' a spherical shell

5.3.1 The mean field induction eguation and boundary

conditions

' 2
In order to test the possibility of an o dynamo
» . ' i
-~ model for geomagnetic reversals, let us consider equations

(5.6a,b) in the case when @ depends only on r . Under

‘@

this assumption, the equations reduce to
T (5.10a).. .

(&

{%qu‘jT = ~av'S - %‘-g;(rs) | - (5.10b)

where T .and S are the scalar fields defined in (5.1)

and (5.2), and a' = a'(r) = da/dr . Equations (S.lOa,bf
* .

will be assumed valid in the spherical shell r & r & e

rx
bounded by a nonconducting medium in r > r_ . In r <r

o
—_ '\’
the mean velocity u may be nonzero, and equations (5.8a,b)
may hold in- this region-in place of equétions (5.10a,b).

The .boundary condltlons to be satisfied by the mean

magnetic field are o “ﬁg' : QX;
$S> = KT> = <3S/ar-> = O ) ‘r'-.-'r‘,’ _ (5.11) -
<S> = <T> = <as/3r) = <3T/ar> =0, rart
y ) . . , (5.12)
\ - . : : C v
‘S‘ﬁb Q ‘as r-- oo
o : ' Co . . (5.13)
T = 0O »>- ") ro , " . c ; o » . .
S nonﬁmauﬂu‘ o.s r'-b o ! ‘
. .14
T*’O as r-o f3.14)
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’ o
The velocity field willbe assumed to satisfy the boundary
conditions
X = O, r2r, : (5.15a)
/ .
<q> = <(xl> = <Q> = (6@/6,.) P o , = =
o o (5.15b)
i
>.3.2 Separable solutions - the radial equations
.
I the redion 'r "s r & r"‘ the equations (5. 10a b)
have separable solutions of the form ?
V - a ! "-—’Q‘vt» A ’
S = Z'S"(r) P,(cos0) e 7. : (5ﬁ16’) ’
Y ) .
(5.16b)

'r‘; fi T;(}ﬁ‘é;(to&g)ifvht

L Y]

where the é&%iﬂl funetions Sn(r) and :Tnff) satisfy the
equations 7 - W

{ '1[ — "(""l]}(rsn) ﬂ (rT,.) (5.17a)

E
3

{ n - 'l[dr= - n%"‘:")‘]} ,"‘T’f) =  (5.17b)
= -a ::‘ , ﬂm_ll](rs ) - o T("S")

are Legendre polyngmlals in cosé6 .

and the’ Pn (cose)
the coﬂﬁltlons (5.13) lead

In the region r > ry
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to solutions of the form

N
Salry = C,r : (5.18a)
"N
Ty = 0 (5.18b)
AL

5.3.3 The radial equations in nondimensional form

In order to reduce the equations (5.17a,b)  to a

nondimensional form, we shall define
- . k
z = 1<(7) " (5.19)
= (V‘Sn)/rogn(ro) : (5.20a)
: co %
Y= T/ s.n) (5.20b)
¥ = G"r:/'l : (5.21)
R = V;a(r")/rl: } (5.22)
We shall also use the notation’
(5.23)

N = ‘n(n+1) ,
{ i‘ f - %.
Substituting (5.19)~(5.23) into equations (5.17a,b),

[

we obtain the nondimensional equations
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= -RY (5.24a)
","’QH i
Ay
= ' " (5.24Db)
—_ N 1}X + _d..R. ;q
G-z = z .
x
These equations are valid in the interval 0 g z & =z ,
where 7 \
2* =2 1~ (%) (5.25)
b
5.3.4 ?ower_series solutions of the radial equati@ns
Since the problem is kinematic, the function R(z)
may be specified in any way which gives an allowable flow.
We shall assume that R(z) has a power series representa-
* %
tion in z g z .
: « .
R(z) = 2 Rmz™ _ (5.26)
. m=0O .
The solutions to (5.24a,b) may also be éxpressed as powet
A - * ) '
series in z g z .
X = 2 Xmz™ " (5.27a)
m=0
. - )
YEY = 2, Y. z™ o - (5.27b)
‘ m=o ‘ ) , .

Substituting (5.26) and (5.27) jinto (5.24), and
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equating coéfficients of powers of 2z , Wwe find_ that

?, .

(R+2XR+1) X, o — Ni(k—lﬂ)xx - WX = (5.28a) -
¢ = —'Egélek-ﬂ , :
(Re2Xk+1) Y, , —-NZ (k-£+ 1)\(‘ - ¥Yy = (5.28b)

\

= 1{:0 (L+2X R+ 1) Rn_ﬂ Xx+2 -~ N i (k-‘.# 1) é &4)( I

. g,o(k..jun(tﬂ)ﬂg.;uxbﬂ

The mean field and velocity boundary conditions at

z =0 give
Xe= 1 |  X,=n (5.29)
Yo = O (5.30)
Ro= o0 (5.31)

\

Thus, from (5.28a,b),

Xz = 5 (N+¥) = L (5.32)
X3 = T{Nmen + v} (5.33)
Xy= =1 NG@B+2n) + %-(Nw)" -RY, L (5.34)

Xs= 2={ N(4+ :m + NGtwY(1 +ﬂ+2 ney 4 -mem
-R Yz ’..7 2Y.} , (5.35) ,
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and
y R "
Y = ¥R, (5. 36)
Y3 = -&-{(N#‘)Y. + (F‘+2T)R, + 2nR2} (5-37)
Yy = L{ 2y, + [%(r—N) -~ 2N +%N(n+2) +3¥]R, +

+(2N+3¥)R,; + 3nR3} 7' L (5.38)

Y = -21—0{ (4N + 3N - %R:g +[EnN + N +N]R, +
~ +[FaN e 28]R, + 3NR; + 4NR, +
+¥[INY, + 2 NR, + (2+4n)R, + 4R,] +

+ .‘z[i_y,# R.]} (5.39)

The parameters Yl and vy remain to be determined.

5.3.5 Application of the boundary conditions - the °
kinematic approach ‘

From (5l12), there are four boundary conditions on

»

, . 7
the mean magnetic field to be satisfied at z = z. -~ namely,

<xY = KY> = <dX/gz> = <d¥/q2> -~ o (5.40)

In the nprhal approach to the solution of the problem, these
conditions are satisfied by adjusting ¥, » Y ., and the

two arbitrary co?stants available in the solution of the
induction equation in ,z*/s z £ 1 after the conditions

\
(5.14) have been satisfied. '




There is, however, an alternative approach which may
be used. Since the velocity field in the kinematic dynamo
problem is arbitrary, apart from the requirements that it be

allowable and that it satisfy the conrditions (5.15), we may

<
*
choose to fulfil the boundary conditions at 2 = z by
adjusting the coefficients Hr . In this approach we
4
May assign any desired value to Yl -~ For example, we may

Plausibly require that
Y = 0 (5.41)

thus ensuring that the toroidal magnetic field will be small
in the immediate vicinity of the boundary of the conducting
medium.

Tt would also be possible in this approach to assign
any desired value to therdimensionléSS‘decay constant vy .
However, as we are iﬂterésted in studying thertemporal
behaviour of the magnetic field in terms of the other para-
lmeters of the problem, we may choose insﬁead to assign a

particular value to one of the coefficients Yn (n > 1) .

A
In order to allow Yy to be complex, we shall assume that

' ade o
Y, = ¢ Lg}constant ‘ (5.42)

Y \



297

5.3.6 The oscillating dipole field - "boundary layer

control"” of frequency

~

For the case of a dipole eiternal field, n =1
Substituting this value into equation (5.39), and ¢ombining

(5.39), (5.41), and (5.42) we 'obtain

- 4 1.
€ =, 3.{11»‘61 +—‘1‘-{31} + , (5.43)

S
4

1[%’-[1 +—;-'Ex - -“‘_-p:c]:z + 80%.
.,2

i SRR T | R

where . ; )
x = 2RafR, = RUOIRI(0) = -v, *(rYyi(r) (5.44)
Ba 3Ry = R™O)Rp) = -r, aL"(f‘.)/d"(,-. ) - {5.45)

»

lf a 4R, /R, = R"(o)/ R"(0) = -r a“'(r'.)/dwcr.) (5.46)

If the coefficients' R R2 ; and RB; are chosen

in such a way that .
/::*l' -;7—6-1 + ;‘;(5-& = O L o ,(5.747)
then |
X = P-:"/* 1 | (5.‘48)
px - 7'{.4 +i’_—x} | - : (5;§9)



298

2 _ Q_{ ﬂ.(“fﬁﬂ‘ /8

80 €
R | v } & )

W

2la-w + L= T¥a6)x] - 80 & (5.49°)

S

r ae

The imaginary part of Yy provides a measure of the
oscillation frequency of the external magnetic dipole field.
1f y dis purely imaginary,gthis frequency can be interpre-
ted as the fréquency of polarity reversals. From the
definipion of v , (5.21), we see that the number of

polarity reversals per million years is
no.of reversals/my. z 3 (V/r2){-¥* -{3x10" sec/my.}  (5.50)

if v is purely imaginary.

For the Earth, n = 3 mz/sec and ro = 3 x 106 m .

Substituting these values into (5.50), we obtain

no. of reversafls fmiy. = -.;rg e (5.51)

a

In Figure 23 the number of reversals per million years
given by (5.51) is plotted as a function of x [i.e. of

- " t 3 -
£ a (ro)/a (ro) ] for the case in which

4

E = 0 = ¢ . : (5.52)

The value of Bx [i.e. -ria"‘\(ro)/a' (r,)) 1 given by ,

(5.48"')‘ is also plotted as a function of X .

\



Figure 23. Parameters for the az(r) dynamo

in a spherical shell as functions of

—r a"(r)/a’ (ry) .

Upper curve: No. of reversals per million
years, given by equation (5.51), as a
function of x = —r a (ro)/a (ro) .
(In this plot, n and c, have been
assigned values appropriate to the

Earth's fluid core.)

o 7 = 2w, N, e
Lower curve: B8 = r,a (ro)/a (ro) as a

function of x = ﬁrog"(ro)/a (ro) .
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The curves plotted in Figure 23 correspond to a
kinematic dynamo model in which the temporal behaviour of
the external magnetic dipole field is controlled by
turbulent motions near the boundary of the conducting fluid.
A stationary state, corresponding to vy = 0 in'(5.49), is,
changed to an oscillatory one by small fluctuations in the

. dependence of a on r near r = r -. Of course, it must
not be forgottep that ar has been assumed time-independent
in the solution of the induction equation described above.
Howeyer, we may think in terms of a sporadic model in which
the dependencé of a on r near «r = T, changes
discontinuously at irregular intervals. It is interesting

- to note that values of the reversal freguency on the

' steepest part of the curve in Figure 23 correspond closely

to the values observed for the geomagnetic field (see

Figure 52).

A

5.3.7 Consistency requirements

In order for the kineﬁatic dynamo model described
above to be consistent, the intensity of the turbulence in
r*s r r mﬁstlbe sufficiently great: to allow the
boundary conditions at r = r to be satisfied by adjustiﬁédww

the values of the coefficients R_ . From (5.29)-(5.39) ' 0

and (5.41)-(5.49), we see that when vy ='0 the values of
. C *® ’ ‘
X and Y at z =z are given/?y

A
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X(2%) = 1+ 2%+ (@2 & (2%)® + (z8) + f1- LR o
(5.53)

YGE) 2 SRV ¢ a0 s P s [£ B L )
(5.54)

If we assume that the boundary conditions on cohtinuity of

X and Y at =z = z* have been satisfied by adjusting the
parameters of.the solution to the 1nduct10n equation in

the region z € z § 1 , it follows from (5.53) and (5.54)
that the conditions on continuity of X' and Y' at

* N
zZ = Z can only be satisfied by adjusting R1 and Rg if

2R ~ O(1) (5.55)
/s (zvy |

and R (z ~ ) , ~ (5.56)
LY

- Steenbecﬁ, Krause,wand Radler (1966) hgve estimatea

the value of a when a gradient of turbulent intensity is
present in a system rotating with angular velocity Q .

’ ,
o}y - “:‘T‘ Q- u , (5.57)

We shall use this estimate as a rough guide, espite the
objections raised by Lerche (1972e) to the tu bulence
-spectrum tensor used é} Steenbeck, Krause and Radler. In
(5. 57) u' is the turbulent inten31ty, A, the correlation

length of the turﬁulence, and TC' the correlation tlmei

For the case of the Earth we may erte, very

_approx1mately, : ‘ g ‘ Lar



Qu' , L %a

o (5.58)
(-]

"Q'VCA ~

ignoring the departure from spherical symmetry introduced

*

by the presence of a preferred axis; Also, from (5.26) and
(5.22),
r&)r,
R(z*) = -‘-"-g-'-ll& ~ R,z (5.59)

Combining (5.57)-(5.59) and applying theé condition (5.55),

we obtain !

ul F 3 ’ ‘
R,-{z*}* ~ {—;ff-} Te(Y ~ (9([1) 7(5.60)
or ' - ]
| wATE ~ /% | (5.61)

For the Earth, n = 3 mz/sec and Q = 7 x 10f5:rad/

sec ., Substituting these values into (5.61), we have
, | ¥
L)
WA~ 4% 10" m¥sec : (5.62)

Taking ' 10'-4 m/gec as a reasénable estimate of the
wl . *
velocity near the surface of theibore (Eleasser, 1950;
[} . )
* Busse, 1971; Roberts and Soward, 1972), we find that the

[ "o

condition (5.62) reduces to

At ~ 4% 10° m-sech | - (5.63)
)‘ ' 5
In.ordér to determine whether or not (5.63) can be

satisfied‘in the Earth's {lyid core, we é&ét’estimate

303



the wvalues of A and Te appropriate to turbulence near

C

the core-mantle interface. We must also decide whether or

-4 X .
not 10 m/sec is a reasonable estimate for turbulent
velocities in this region. In this connection, it may be

noted that Steenbeck and Krause (1966) use the va%&gs

B
\3\ ' o~ 10722107 ysec

A o 102 ~10° m

T ~ 3 hours ~ 104 secC

for—a .general distribution of turbulence in the Earth's

core. These values give

2 2 -1/2

10° m“sec < u'\ Tl/z < 104 m2§§C—l[2

a range which includes the value 4 x 102,g25e0~1/2

required by (5.62). On the other hand, if 10_4 m/sec

is accepted as a reasonable value for u' near the core-

mantle interface, (5.63) implies that 'Tc: and XC' are
related in the manner outlined in Tablé 18.

Turbulence near the outer boundary of the Earth's
fluid core might well be associated with "bumps” on the
Hide, 1967 ;

core-mantle interf%ce Qﬁide and Horai, 1968; Hide, 18968a;

.ﬂide'and Malin, 197Q,,19?1a,b,c), estimated to have

horizontal dimensions "blo5 m and Verticgl dimensions 'blo3 m

(Hide,‘1969a; see Acheson and Hide, 1973). It may be seen

2

from Table 16 that Qa;ggsﬁof“kc in‘the range 1 3410* m .,

"}fcor:géponding to the estimated vertical dimensions of the

304
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3

core-mantle "bumps", imply values of T, in the range

1-100 years. This is the range of time scales suggested by
. ' "

Braginski< (1964d, 1970a,b, 1971) and Currie (1968) for

turbulent processes near the core-mantle boundary.

TABLE 16

Relationship between 1. and Ao dmplied by (5.63)

ﬁ "
Te AC
_ (seconds) {metres)
1 hour 3 x 103 7 x 104
1.day 9 x-10° 1 x 10°
1 month | 3 x 10° 2 x 100
B ' ’;/,” ) - \
? 1 year 3 x 10 7 x 10
I ; . -8B A 2
10 years 3 x 10 2 x 10
_ 9 ol
100 vyears 3 10 \ 7 k. VB
100 years | 3 x X AN
’ ! 10 T
1000 years 3 x 10 2 x 107




5.3.8 Objections to the dz(r) model for geomagnetic

reversals

The kinematig az(q) dynamo model in a spherical
shell, described in the’ last few sectipns, is not intended
as a serious explanation of how polarity reversals occur in
the geodynamo. Several important objections téathé model

’

can be raised.

a. The character of reversals in the model is considera-
bly different from the irregular nature of geomagnetic
reversals. The "geomagnetic reversal frequency"” \
plotted in Figure 22 is really an average quantity.)
%he durations of geomagnetic polarity intervals fiué~
'tuéleiwidely ébout the mean. Furthermore, the
transition time for a geomagnetic reversal is generally

much shorter than the time bétweenxreversals (see

ot 4
b. The effects of rdt&t{@ﬂ?have been ignored. It is
expected that in the Earth's core a will depend on
6 as well as on r . As indicated in (5.57), o~
will be' proportional to. cos 6 if the gradient of
turbulent intensity is radial and the axis of rotation

is taken as the z-axis.

»

'c. It is perhaps unrealistic to assume that the external
dipole field of the geodynamo is due principally to

turbulent motions near theé core-mantle interface. |

3

. \
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d. No attempt has been made to include hydromagnetic

€

effects in the model.

It must be emphasized that objectiéh (d) applies to
any kinematic model for geomagnetie reversais. If no
stringent restrictions are placed on the form of the >
velocity field,ﬂreversals can be made to'occur inﬂmany
different ways - Levy'’s model provides one example, the
present model another. WUnless the hydromagnetic dynamo
equations are considered, no firm conclusions can be drawn
about the validity of any given model.

We may note, however, that the idea of boundary-laler
control of the temporal behaviour of the geomagnetic field
is worthy of closef investigation. This subject will be
considered in greater detail ih 'the remainder of this

chapter.
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5.4 Integral pProperties of the kinematic dynamo equations

’

5.4.1 Introduction

»

One of the most useful approaches to the study of
reversals and other temporal variations of the geomagnetic
field has been the homorolar disk dynamo analogy proposed
by Bullard (1955). TIn this model, the problems of boundary
conditions and flujid motions are set aside on the assumption
that the feature of the hydromagnetic dynamo most relevant
to the temporal behaviour of the magnetic field is the
’nonligearity'Of the interaction between the driving forces
and the magnetic field.

Although a single disk dynamo of the type studied by

Bullard (1855) doés not exhibit reversa;'fﬁégg see Malkus,
1872¢&), the magﬁetic field of a system 5E$two or more
couplgd disk dynamoe reverses and oscillates in an irregular
gmannér}remarkably similar to the observed behaviour of the
geomagnetic dipole field (Rikitake, 1958; Lowes, 1960;
Lebovita, 1960; Allan, 1962; Mathews andfGardner, 1963;
Somervilié, 1967 ; Suffolk, 1970; Cook and Roberts, 1970;
Cook, 1975{ ﬁullard‘and Gubbins, 1971, 1973; Malkus, 1972c).
The princiﬁ%l advantage of studying a éysfem of this type
is its mathéwatiéal simpliéity. The dynémo equations are.
repiaced by é‘finite system of coupled ordinary differen-
tial equations, with'time'as fhe independent ;ariéble. It

- would clearly be veryuuseful if the hydromagnetic
v o T
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dynamo equations could be reduced to a system of this type.

Lorenz (1960, 1962) has proposed methods of reducing
a system of coupled partial differential equations to a set
of equations of the disk dynamo type, but his approach is
not‘%eadily applicable to the hydromagnetic dynamo problem.
It would appear to be more useful to examine the integral
properties of the dynamo equations, pafticulaqu as the
quantities of inFerest, such as the magnetic dipole moment
of a cugipnt distribution, are themselves integral quan-
tities. Some progress in this direction has been made by
Runcorn (1955) and Backue (1958). -

In the remainder of this chapter, we shall consider
the integral properties of the kinematic dynamo’equatibnq.
éonsideration of hydromagnetic effects will be deferred

until Chapter 6.

5-4.2 Multipole representation of the external fields

The electric and magnetic fields in a non-conducting .
medium surrounding a'conductor can be represented in terms
of the ‘electric and magnetic multipole moments of the charge

and current:distribufions in the conducting medium. If the -

7
~
- . '

gauge - ‘ ’ ' o y ‘ '

4 4 ) . L

divA = O o . (5.64)

~

\
is used in the quasi-steady approzimation, where A 1is the

' A
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vector potential defiped in (1.58), these multipole expan-

sions can be written in the form

Ve ' s
E= - 2

may

L Q. om(zH) +

(5.65)

_A ST T g a
4w z;'vﬁ. T v X Y7

2 O (=) T em
B = -.AL.EZ.Lﬁ%_fr v (Yﬁ%)

5.66)
4N ey (

where

QL™ = [e:" dor (5.67)

and

. T = —P—I(rxj)r"'"ow (5.68)

W are the electric and magnét{c\2m~péle momente, and f(m)
denotes dT(m)/dt In (5.67) and (5.68), the integration

is tdken over the volume of the charge.ana current distri-

- bution. In (5.65)~(5.68) we have used the notation .
F™.om = Faa,. .. am 3%a, 3%n, Ixan, | (5.69)
o [
V !:m - 14.1“1.. p & 1 1 1

. QAgn L Iy A R AL Y ‘ (5.70)

[N

\

wherg the . Xy are Cartesian components of the position

i
vector r » the 1

L

are unit vectors, and the summatioﬁ

i )

convention is implied inveach case. '(See'Appendix 2 for the
_ ~ o

i
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derivation of these equations.) 1t should be noted that
6 and j in equations (5.67) and (5.68) are the charge

and current denstities defined in section 1.3.1.

5.4.3 Magnetic and electric multipole moments -

representation in terms of the internal magnetic and

velocity fields

From equations (1.4) and (1.6) we have

6 = € y-E \ (5.71)
;o that, by (1.15)

o= evfFi-wxp} o

‘ ' 3

Since 2-! = O ‘ . (5.73)
in the quasi—steédy approximation, (5.72) ;educes to

® = —¢ v-{uxB} . i L (5.74)
and (5.675 becomes )

Q™ = -€f v (uxB) r™ du - (5.75)

Equation (5.75) can be further simplifieé by making- use of
‘the no-glip conditibﬁ [n x 3] =0 on the boundary of V

(see section 1.7.2) 'to obtain -
- ‘ i
Py T L



Q™ = -¢f {v-[WxBIr™] ~ wxB)- v(r™)} do
\ 4

1}

A

-e[(guu)-gr"‘dg + GI(‘Q‘Q)'g(g")M
3 v )

= €| (uxB)y(r™) do (5.76)

~ N

v

'

Equation (5.76) expresses the electric multipole moment

(m)

I d
tensor Q in terms of the fields u and B rather

than their derivagives.

.

(
In Appendix 2 a»similaﬁ\representation is derived

for the magnetic multipole tensor, expressing T(m) in

terms of B rather than in terms of 9§ . When the conduc-
ting volume V is spherical, the expressions for the first

%
few magnetic multipole moments become

[dipole moment]

T = _3_.I B dv _ (5.77)

v
[quadrupole moment]

]

[octupole moment]

-'rm:LI.m - (r. 7 5.78)
3 ) [4Br +rB - B} de (5.78)

312



. 2 .
In general, the expression for the 2 n~pole moment involves

a summation over the 221—pole moments, and the expression

+ - . .
for the 22n 1—pole moment involves a summation over the

21+ ;
2°t l-pole moments, where 4 =1,2,...,p-1 1in each case.

For example, the expression for the sedecimupole moment
tensor (Winch, 1967a) T(4) will contain terms involving
T(Z)

the,quadrupoleﬁﬁoment tensor , and the expression for

the duotrigintupole moment tensor (Winch, 1967b) T(S) will
contain terms involving the dipole and octupole moment

tensors T(l) and T(B)

5.4.4 Temporal behaviour of the external magpetic dipole

moment

313

The problem of the temporal variation of the external

1

magnetic field of a Currént'distﬁébutiOﬂ may now be studied
with the aid of equations (5.76)~(5.79). Taking the time
derivative of equation (5.77), and making use of the
magnetic induction equation (1.16') and the boundary condi-
tion u = 0 on S (see section 1.7.2), we obtain
T o 2 '{ag/at} dar
..3_[ 2 u ~
a % v{qv B+ gx(uxB)}d

a ..3_[ vBdv 4+ 3 nx(uij)dS‘
: %M"Vn - %“”L“. -



T ?:Liv‘sow .-._ézz_[n,j ds (5.80)
~ ~ 2 ~ o~ -
2)M v S
| ,
From (5.80) we see that the rate of change of the
magnetic dipole moment depends only on the dlsslpaj‘bn term
nvzg in the induction equation, and thus has no dlrect link
with either the velocity field u or the external potential

field B . Differentiating again with respect to time, we

obtain

T® a ﬂ[v‘ nv'B + vx(ux By} dw
to + B[ (108 + yecur )

= 21 + 31| nx v*(uxB) &S (5.81)
Qf‘lv ~ QK]; : f

The second time derivative of the maghétic dipole moment is
thus digectly linked to both the dissipative and the re-

generative terms in the induction equation.

5.4.5 "Boundary-layer cohtrol" of the-external dipole

moment

b

Expanding the regenerative term in (5.81), we

obtain
s 32 !
T a -27"L Lv‘B; do  + (5.82)

3 . ‘ . 2 oy ng .
* -2-,!': ;‘Jme‘"‘”, LnJ{B.v U + 2‘.3_:1- oxXr }ds
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The three integrals on the right hand side of equation

(5.82) can be estimated as follows:

2 . Y 3
I(n = _2_/'1: Ivv4§ d@', ~ %A%"B' %o (5.83)
@ _ 3 Bv? 2 (S) '
I s .&ngygdsl ~ %}-mr;~8.~%‘-;(5~83)
R I T O PR

where B 1s the average magnitude of the magnetic flux
density in V , Bo the average magnitude of the- flux
density o%ﬂgﬁ » and L a length scale defined in such a
X

way as to make BO/L2 the average value of IVZB[ in v |
r, 4is the radius of the spherical volume VvV , & the
thickness of the boundary layer on S (assuming that one
exists), and u the average change in Velo&it¥ across th;

boundary layer.

Comparing terms in (5.83)~(5.83"), we have
’ ( »

) , ' 2
It 4, _%_':_9,_2_?_‘_), {‘7 : (5.84)

S 2% (5.84")
% g/l

For the Earth, we may take

. (S) 2 '
BO/Bo 1 s 10 (5.85)

r, v 3x10%m (5.86)

n o+ 3 m’/sec - . (5.87)




Substituting these values into (5.84), we obtain
I
I('yI(a) f, {3)( 108 m’/su} 62/“‘,L4 (5.88)
From éﬁuations (5.84') and (5.88) we see that if
& « 1 Y (5.89)

and S« {3%x107 sec/m?} . (5.90)

the dominaﬂt term in' (5.81) will be the one involving
2

V°u . Under these conditions we may write, approximately,
.o Jén .
) . - . 2
T‘v ® 2 €ijm Ewgle S"‘ B., Viug i (5.91)
H

When eguation (5.91)’is valid, the femp@ral behéviouf of
the geomagnetic dipole moment is "controlled” by the
velocity distribution in the boundary la;er., \

In deriving eguation (5.91? we have ignored the
possibility of turbulence near the core-mantle béundary.
If turbulence is present an appropriate "mean field"
equation is obtained from equation (S.él) by writing B in

place of B and {E x B + u'ng'} in pléce of uwxB

on the‘right hand side. N%%uming-for simplicity that

~ -

2”x B' = aB , giving an a—effect, we find that equation

(5.91) must be replaced by

-

70 o B[ (0B v E - DB (5.92)
m s - ‘ ’ ’ ‘

+ Gijx (Via) n;By } dS
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_Appendix’é. In particular,

. 2 ¢
it we makgéihe additional assumption that the term
involving Vza ‘makes a contribution of the same order of
magnitude as that involving V 2 .

]

5.4.6 6&simplification of notation ///
1)

For simplicity in writing complicated expressions,

we shall make use of the notation

TG o™ = T"“\anaa (5.94)
N (5.95)

ii
We shall also make use :;\sevefgl theorems proved in

K

n-7{%, .k} = ‘—L'lia\ «mv} . (5-96)

-

See section A.2.3 for further detailsa ' 1‘

5.4.7 The "boundaryflayerﬁtgntrol" approximation

As it stands, eqﬁatlon (5. 92) is not: psrtlcularly

useful, 51nce it involves both T(l) and _Ey. However,

R

51nce § is cpntlnuous across the boundary S \(eee sectton

1 7.1), we may replace B in (5. §2) with the multlpobe

N
\

-
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ot
expansion (5.66). Making this s@bstitution and applying

equation (5.96), we obtain

¢ 3 < —I-' "l) ‘

. [‘{-(—"l’—‘—)'(v’ﬁg) da; 82t ~ (n-v*Q1)3q,---Bapmdi
A | ,

~x
+ e (Vi) nj &, 90, 9 + } ds

Writing out the first few terms of (5.97) in detail, we

have

:ﬁi(n 2 g_‘g‘ {Ta"") Is [ % (V’E;) Na, + é’ (Q-V‘QXG;Q,—- 3"‘"“0)’

~ 33 €ija, nj(vi«)]ds +
+ LR (2 I [ l (v “lx 3'1;."" a,aé) +

+ %‘4 (Q - v L‘ Xn&éq.ai + "a.é{az + ﬂ;,éa“' 7
o * »
- =5 nna na,)

— — (v a)&,gn‘ (n.,&._% ';a.bhaa + ﬂa;énﬂ.
” % u"“-"‘a)] a3

| ﬁ ' (5.98)

If Ig(z)/rol << IzKl)l . equqtion (5.98) reé%besv

to

©

. 3 , ; ‘ '
_ e‘Jan‘v¢}dS+

LE
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A further redﬁction is obtaiped if the usual bdundary layer

{

L4
approximation for fluid motions in a sphere is made. 1In

this approximation, tangential éerivatives of g’ are
neqlécted in comparison with radial derivétives, and only
the highest—ordef radial derivatives are retained, to first
order. | In addition, §ne Componenf of velocity normal to

’

the boundary is neglected in comparison with the tangential

components. Thus, -
2= * -}
Viw 3y oS U + 1e Sents (5.100)
a ' ' ,
Vi = ) o ' (5.101)

g 3
and eqﬁatiqn (5.99) becomes

"éc): ~ 3 *u 'u e 20} ]
CRo s 25({2(10 2% 41, 20T oo

- 3

: 2 TOLdS 4 -
o T e UXL v

i

Equation (5.102) will be referred to as:the boundary-

Llayer control apbréiimafﬁqni The validity Ofiﬁhiq approxi-
mation depends on a number of gﬁsumptioné, which will be

- summarized here for convenience.

‘a) 3. « 1, S . (5.89)

°8

o 'b) . 32/u°{1_‘4 &« {3xoo’q'rsx/,-vn3} - '(75.90)

<

c) |L1<“’/r.°| « | Iml

'Thﬁq?stétion;used in (5.89) -and (5.90) is defined above
.\’»e . . ) o .

s

¥ e . \

\



in connection with (5.83). (5.90) is the form of the

assumption I(l) << 1(2) appropriate to the Earth's fluid

Cofe, whoge I(]) and 1(2) are the integrals defined in

(5.83) and (5.83"). It may be noted that (5.89) fs more or

less equivalent to. the assumptions leading to the )pboundary-

\
layer approximation, (5.100) dﬂ'd (5.101).

Within the framework of the kinematic dynamo problem,

the boundary~layer control approximation, (5.102), gives a

second~order ordinary differential equation for T(l) , with

~

time as the independent variable, When the hydromagnetic
dynamo problem is considered, the coefficients.of this
equation dependfén‘-T(l), and the complexity of the equation

is increased. This problem will be considered in section

6.5.,
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5.5 The boundary-layer control approximation and the
geodxnamo

5.5.1 Time-scale restrictions on boundary-layer control
in the geodynamo T
A rough estimate of the characteristic time scale of
dipole moment variations governed by the boundary-layer
control approximation may be obtained by scaling the terms
in equation (5.102). When this is done, we find that the

time scale 1 is given by

T~ J'aaz/qu, : (5.103)

For the case of the geodynamo, oo 3 x 10% m ' ~

n~n 3 mz/sec , and (5.103) becomes

T ~ 4 3i 62 ,m~m‘,7" o
10 J /u, f(‘““"“m%rm,s)}, (5.3203 )i?

i
From (5.103') we see that in ordeér to get dipole
H . ) i . B %"
moment variations in the ggodynamo with a time scale of
4 K = , ’
10, years, we must have

2 , 2K+ 9
8/, ~ 10 m- sec ’ . (5.104)

{

Combining (5.104) with the assumption (5.90), we obtain a
consistency condition for the boundary-layer control
approximation in the geodynamo: : .

L > 3x 10**%2 4 = : o (5.105)
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In the geodynamo, L , defined as the length scale
needed to make BO/L2 the "average value" (defined in an
integral sense - see sectﬂiz 5.4.46) of IVzBI in the fluid
core, is unlikely to be much larger than T, o the core

radius. Taking roov 3 x 10° m as an upper bound on L in

(5.105), we see that the limitation on «k |is

K < 4 \ - (5.106)

The boundary-layer control approximation can therefore only
‘be used to explain variations of the Earth's dipole moment

) S A4
which have a time scale shorter than 10 years. ¢

5.5.2 Temporal variations of the Earth's magnetic dipole

mément

As may be seen from Table 13, the geomagnetic dipole
' . f“ : . : ) A
moment varies on several time scales in the range 1 < 10y,

For example, o o
a) the dipole axis precesses, or "wobbles", around the
axis .of rotation in an irregular fashion, with a time
Escale of about 103 years (see footnote [61, Table 13);
b) energy is transferred from the dipole field to
higher-order multipole fields with a time scale of

about 2 x 103 years (see footnote [4]), Table 13);

c) the rate at which energy is transferred from the

dipole field,to higher-order multipole fields varies

-

&



. 2 ,
on a time scale of about 107 years (se¢e¢ footnote [6],

Table 13); 2

P
d) the direction and“intensity of the dipole moment

change on a time scale of 103—104 years during a
polarity reversal (see footnotes [8], [9]1, and [10],

A

Table 13).

The "fundameﬂfal frequency” of dipole field strength -
oscillations corresponds to a period ~10? ?ears. Since
this period is so close to the maximum value of T
allowed by (5-106),.it seems unlikely that this variation
can be explained in ‘terms of -the boundary-layer éontrol
approxima£ion.

Of the variations listed above, only (a) and (&)
can be discussed in terms of the boundary-layer control

approximation, equation (5.102). 1In order to discuss

e

variations (b) and: (c), we wéulaepavé to return to equation

(5.97)?i%miretain higher-order mdltipcié terms. 1In °

this thesis, we shall restrict consideration to equation

(5.102) . o

y
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()‘
5.5.3° Detailed Ranslon of the approximate dipole moment

cguatlon

Eguation (5.102) can be written in the form

D Gimig)  Gigmigri)) Gumig-ig) | |70
b 3 " R . . » A . [Q
TS() = :Flrnc-T (aaig- b)) (Grig) el o). Tj)
T, Giyrig) (ig-i,0) (( +1,) 0
(5.107)
where
r d*de : '
|, = J, ar: Cos 03in0O cos?$ dS (5.108)
- 3'; v
\ L, = ‘s%—;‘l o8 03in© sin’$ d5 (5.109)
. [ 2% .. . n . , .
i, = ‘s.a_r.z! 3in® sing cos $ d3 (5.110)
» (U ' oo
i, = © cos05in® cos P sin $ dS (5.111)
lg dr2 '
[ Ue g iz ac o
ls = | _a'.'-'f’ sin 8 sin® ¢ dS (5.112)
L. 2
i, = —i—-é—% cos® d S ~(5.113)
L= :z—" Sin’ GCosqsds (5.114)
" 1 9 " ’
(8 - I—z--é—- lﬂBSIﬂ*ds ”" (5.115)
i a? uo 2 . |
= I 52 s esm ¢ ds (5.11¢)
' e
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2
lo = ILza“ sin®cos ¢ dS (5.117)

m
S,
(V)
£
("9

]
Cam————
% NI‘V,, V% W
I3 HEL SE 1

05?0 cos § dS (5.118)

ta ws O sin $ dS ) (5.119)

iy = cos20 sind dS (5.120)

]
—

cos O cos ¢ dS (5.121)

Equation (5.107) may now be studied under various assump-

tions about the symmetry of the velocity field.

e

5.5.4 "Digole wobble"

N - - 4 e ” ,,i V =t
If u, = 0. and u and o are axially symmetric

6 ¢
(i.e. independent of ¢ ), equation (5.107) reduces to

T 31 . s o) -
= E -{4m.t}‘(‘5”“)‘_rs (5.122)

Combining these two equations, and assuming that the time
derivatives of Exp and o are small enough to be neglec-

ted, we obtain

2 3 2 . . : (] - | ' .
";:‘) = - {#:{} (‘S“G)?T,Z) ;iv(Sil.’l23)

N
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Solutions to equations (5.122) and (5.123) are of

the form

X = ae®"t cos Kkt . (5.124)
T = aet™ sin Kt (5.125)

where .
K = Jé—i-'{,;;(ara‘; (5.126)

T

These solutions indicate that the dipole moment vector

i
~

precessés, or "wobbles", about the axis of symmetry, which
may be taken as the axis of rotation in the case of the

geodynamo. In (5.126)

. Uy .2
s =2 e |- ar“ sin*0 d0 (5.127)
o .
(¥ 5a
o = e g"; sin® cosH d0 : . (5,128)
o r . '

Nonzero contributions to (5.127) and (5.128) arise from

velocity components which satisfy
Uy & PyCcos B) (5.129a)

A& & P, (cos ©) (5.129b)

12

where the P are Legendre polynomials.

b
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\
5.5.5 Axial dipole momeng variations
If u, = 0 and u and aa are axially symmetric

¢ 0
(1.e. independent of ¢ ), equation (5.107) reduces to

— 3 - L] - a -
T < {4—“!%35{ LT o i Ty v (5.130)
abd 3 ] N
LR P T R P g (5.130")
€ 3 . Q) - 20"
T = {__-'L_hr.’}{ LTS (5.130")
where
2 ¢
L, = w2 l 2 “;‘ cos O 3in* O 40 (5.131)
s Or
. 2 )
t, = )t g:: cos B sin © 46 (5.132)
3 ,

(.

Combining (5.130) and (5.130'), and neglecting tjpe

derivatives of 36‘ and « , we obtain

et 4 A e 3n 12 . i" " ) o
T ——{%—;}t.""{‘*ﬁ s 2T = 0o (5,133

Equations (5.130), (5.130"), and (5.133) may now bel ()

solved for Tgl) ; T;l) , an% Tél) .
T = Re {aie 4 a, ™} g | (5.134)
Ty = dmiae“t s, et} (5.135)
TH = b et 4 bt o (5.136)

where ‘the a; are complex constants, the bi are real

-
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constants, and

~ 1 r“
K, = ‘f‘,&*a"‘t £5.138)

The solution given in (5.136) for Tél) requires £1 > 0 ,
so that K, is real. If <, <0, (5.136) must be replaced

with
"= Re{bet] (5.136")

where b 1is complex.

From equations (5.134)-(5.136') we see that an
axisymmetric meridional flow near the boundary of the
Earth's fluid core can produce large changes in the geomag-

netic dipole moment on the time scale

B T u',,f‘.é’/,luo - , (5.139)

As 1in s$&$ion 5.5,&} the presence of an axisymmetric
a-effect can lead to "dipole wobble", but an a-effect of

this type has no effect on the axial dipole moment. 'As
(1)

may be seen from (5.136'), the axial dipole moment ‘Tz

can be made to "reverse”, or even oscillate, if i1 is
negative. In contrast to the oscillatdry reversals dis-

cussed in section 5.3, reversals in the boundary-layer

econtrol model are governed by the properties of the mean
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flow, 'E , rather than by the properties of the turbulenge

which gives rise to the a-effect.
) . . .
As pointed out in (5.129b), i6 is nonzero only if

a satisfies
’

oo & B, (cos 9) ¢ (5.140a)
Similarly, i] is nonzero only if
’ ) ?
U « B, (cos 0) (5.140b)

where the Pn are Legendre polynomials.

».5.6 Limitations om the boundary-layer control-

approximation in the geodynamo

7

The principal limitation on the boundary~layer con-

trol approximation in the geodynamo is the time-scal
restriction discussed in seetianJSiS.Ji However, other
limitations must also be c@hgideréd, "

The dipole moment solutions obﬁained‘in sectiohe
5.6.4 and 5.5.5 depend on the assumption that the velocity

distribution is independent of time. If this is not the
]

‘case, the behaviour of thewdipole moment with time, within

the framework of the boundary-layer control approximation,
will be considerably more complicated. This aspect of the

dipole moment variation is outside the scope of the

-

1

kinematic dynamo problem. In order to determine the time

\sd
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dependence of the velocity field, we must consider the
hydromagnetic dynamb‘problem. (See Chapter 6.)
P - As noted in section 5.5.72, equation (5.102) does not

H permit diséussion of the transfer of energy from the dipole
field to higher-order nultipoles. This problem can only be
Studied if the higher-order terms in (5.97) are retained,
and expressions for the time derivatives of the higher-
order multipole moments are obtained from equations (5.77)-

e (5.79). Unfortunately, simplifications of the type "

‘ encountgred in the derivation of equation (5.102) are not
L common . Tﬂe quadrupole and octupole moment tensors 2(2)
and ;(3) ‘depend on the integral moments of, the dissipative
term in the induction equation, on the electric multipole

moments, on the higher-order magnetic multipole moments,

Aé =
Wl and so'on. The integrals
ek
'i“'. i "
e [wxB)grmav
‘.{.. .,4 v

A which must be evaluated if the higher-order moments are to

i be studied, do not have a useful representation in terms of

the external potential fieldé. These integrals can only be
| ) o
treated sensibly within the context of the hydromagnetic

-

o dynamo problem.
AP LT ' The most serious disadvantage of the boundary-layer

;ﬂ’ control approximation is the fact that dissipative@effecfé’

PJ are neglected. Although no attempt will be made here to
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overcome this drawback, it ﬁaygbe possible to improve the
approximation by including an estimate of the dissipative .
term in equation (5.82). Unfortunately, it is difficult
to see how the time dependence of the term could be
included in such an estimate.

Despite these limitations, we shall continue to use
the boundary-layer cogt}ol approximation in the next
chapter. It is particularly encouraying that the dipole’
wobble appears to be well represented within the framewokk

of the approximation. We shall consider this variation

in more detail in section 6. 3. 4.
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5.6 Summary of Chapter 5

This chapter is concerned with temporal variations of
astrophysical magnetic fields, with particular reference to
the geomagnetic field. A summary of observational knowledge
of the temporal behaviour of astrophysical fields is
presented in section 5.1.

The az(r) kinematic dynamo in a sphericalysheZZ
1s studied in detail in section 5.3. It is shown that
regardleSs of the fluid motions in the deep interior of the
sphere, it is pOSSlble to choose a turbulent velocxty
distribution near the outer boundary which makes the
externalrmagnetic dipole field vary with time in a periodic
manﬂerar The frequency of the dipole field oscillation is,

a sensitive function of tpe dependence of a on r at the
boundary.  Application of this model to the Earth is dis-
cussed, and several serious shortcomings are pointed out.

The idea of bo;ndary-layer bontﬂ@lvof the external
magnetic field of a spherical volurie of béﬁduct;ng'ﬁluidlis.
discusSed for mo%e generai dietributions of velocity in
eection 65.4. A set of expresslons is presented which relate
the multlpole moments of a spherical distribution of
currents to the integral moments of the interndl magnetic
field in a novel m@nne};. These express1ons are used to
derive a dlfferentlal equation for the external magnetic

: dlpole moment as a function of time.



~ | \xj.

! b

333

NIn section b.5 it is shown thaL boundary~Layer
control fﬁ the geodynamo is only possible for field varia-
tions with a time scale less than 1()4 years. It is a}so
shown that dipﬁla wobble and large variations of the axial
dipolé moment can be acgountéd for by certain distributions
of Velbcity near thé outer boundary of the Earth's fluid

core.




6. MEAN FIELD ELECTRODYNAMICS AND THE HYDROMAGNETIC

DYNAMO PROBLEM

6.1 The hxdrbmagn@tic dynamo problem -

6.1.1 The dynamo equations

. . . - ) .
As was pointed out in section 1.5, fhe hydromagnetic
dynamo problem- is concerned with the simultaneous solution

of the electrodynamic and the hydrodynamic equations -

I3

usually in a rotating system. These equations are

i
summarized in section 1,5.3. Rewriting them here for
A

Id

convenience, we have

{%t ~qv*iB = CW@iBKQ} : (6.1)
v-{fu}= O | : - (6.2)
%fot + u-Yu + 2Qxu «

=~p P - o5 1Quxri*yf - Mg xp 4

/ n
+v{v + yy-u} + F{vf-vu + vu.yr} +
+—P'FB-Y§ + |+ F (6.3)

= -5 v{p- PE-30vu] - QxQxr) - Mpexr +
i

~ ~

+vivias yyal s L{vPgu + vu-vp} 4

A L S ‘ . L
. +m{gx§}x§ + .‘!,_f a . (6.3")

N

o : 334
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SN

o a2 - \
P = P+ .-2;‘__ —f’(§-3~?)z-g, ir,%-flgxrl (6.3")"
The magnetic flux density B 1s subject to the condition

2.9 = O (6.4)

2

At the boundary of the conducting fluid, which, in the case

of the geodynamo 1is the core-mantle interface,

u =0 ’ ‘ (6.5)
<8> = O (6.6)
<nxE> = 0O . : (6.7)

In the conducting part of the solid mantle, the induction

equation, (6.1), is replaced by the equation
X ,
P (6:8)

o

28/¢ =
[where 9 is the mantle conductivity], subject to the
condition: (6.4) and the boundary conditions'(s.S) and (6.7).
In the external nonconducting region, equation (6.8)

reduces further to

(6.9)7

(6.10)
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6.1.2 The neglect of inertial terms

¢ In most studies of hydremagnetic planetary dynamos,
the Navier-Stokes equation (6.3) is simplified by neglecting
the first two terms on the left hand side (Hide, 1956,
1966a; Taylér, 1963; Braginskifi, 1964d, 1967b, 1970a,b,
1971; Malkus, 1963, 1967a,b; FP.H. Koberts, 1967b, 1971a;
Hide and Stewartson, 1972; Moffatt, 1970b, 1972; Acheson
and Hide, 1973). Comparing tﬁeserterms to the Coriolis

force texm, 29 x 4, we see that

194/t ~ 1

(6.11)
1252 x ul 2QT

-zl | a . (6.11")
12QQx @ 2Q2 L '

, . ) O _ o
where I and T are the length and time scgles of the
variation of u .
For the case of the Earth, we may follow Hide (1956)

and assume that

T~ 10?years ~ 3Ix 107 sec. ' . (6.12)
L~ 3xi10°m. , (6.12")
/ ,
u~ 16 mfsec. (6:12")
-5 f N .
A~ Tx19" rad/sec. (6.12 )

»
A

[N.B. (6.12") may be an overestimate for u - see, for

4

example, Roberte and Soward, 1972.] Substituting these

4



values into (6.11) and (6.11'), we have

| w s
_— ~ 2 10 6.13
20T 2001 X ( )

indicating that neglect of the inertial terms du/3t and
u-Vu in (6.3) and (6.3') is a reasonable approximation in
i -

the geodynamo.

6.1.3 The yiscousiboundaty 1ayerﬁgg§t0ximation

The ratio of the magnitudes of the visgous force tern

v(Vzg 4+ VV-u) and ‘the Coriolis force term 22 x y in

(6.3) can be scaled as follows:

vig 4+ vy-u’ ? .
:glg( ys+vy-w)l v = & (6.14)
L 12Qxu) 26
where € is an Ekman number. For the case of the Earth,
,taking 2~ 7 x 107> sec™’ and L & or_n 3 x 10° m , we see

that if v << 10° m’sec } , then & << 1 . Under thése

‘conditions, the flow in the main body of the core can be

d

assumed inviscid-
" As pointed out by Hide (1971b) and Gans (1972a), the
kKinematic viscosity v in the Earth's fluié}cq;é is one of.
the most obscurerpdfameters of the Earth. Estimaté;.in the,
literature iange from 10_7‘mzséc-l to lO+7 m?sec”} (%e?
Hide, IQ?]b; Gans, 1972b)¢ However, in recent yéars argu-

‘ments have been advanced which reduce the uncertainty in the

337
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K
probable value of v
Ganes (197272a) has calculated the value of v at the
boundary between the inner core and the outer core,
assuming that this boundary is a melting transition, aqd
using the Andrade hypothesis. His calculations indicate
that in this region

2.8 x 1077 mPsec™ < v < 1.5 x 10°° m’sec” 4

with a suggested typical value of 6 x 10—-7 mZSécHl . Gans

points out that if the temperature gradient in the outer
core is very shallow, as suggested by Higgins and Kennedy
(1971), the range of v will be approximately the same
throughout the outer core. If, on the other hand, a steeper
. temperature gradient is relevant, the value of Vv in the
body of the- outer core:will be Zower than that at the inner
core~outer core boundary. Cans! arguments are therefore

. , 7
summarized by the statement that

v < 6 x 1077 m?sec™? (6.15)

A

in the outer core.

" Hide ﬂ‘Q?]b) has considered the value
core-mantle boundary. He argues that if "bumpé" on the
core-mantle interface strongly fnfluence the flow in the
core, as suggested by Hide and Malin (1570, 1971a,b,ec),

their height must‘exceed“the viscous boundary layer thick-

ness By a certain factor. -Using the estimate for the height



of these "bumps" provided by Hide and Horai (1968), he finds
that the effective kinematic viscosity (eddy plus méleculap)

at the core-mantle interface must satisfy

\ < 102 mzsecﬂl (6.15")
eff ~

-

"It may be poted that seismic evidence indicates that

compressional waves traverse ]he core without suffering

, 1970). This result has

. appreciable attenuation (Rochéster
N \ -
led to the estimate that v ~ 10?_mzsec¥l in the outer
core. Gans (1972b) has put forward the interesting specu-
lation that a highly viscous region 5-10 km thick at the
core—mantle interface, with v n 107 mzsécﬁl , would allow
the seismic result to be reproduced without upsetting the

requirement that v be very small in the body of the core.

we accept Gans' estimate (6.15) for the kinematic

h

It
viscosity in the body of the Earth's fluid core, we see

from (6.14’) that

€ < s5x 107" (6.16)

~

Viscous forces will thus be negligible in the main- body of
the core, and the flow can be considered Zinviscid. However,
since neglect of the viscous térms implies '‘a lowering of

the order of the Navier—-Stokes equation (6.3), we can,ghiy
satisfy the boundaryvcondition (6.5) byrassuminé éhe |
ekistence of a viscous boﬁn&ary layer at thevsurface of the

core.
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In the viscous boundary layer approximation, wWe may

»

write

u = ut s ub (6.17)
B = B+ B® (6.18)

for the velocity and magnetic fields in the core. Here

(2}, gl) are the fields in .the mainfbody of the core,

satisfying the inviscid equations, and (Eb, gb) are fields
which adjust u and B to satisfy the boundary conditions

at the core—mantle interface.

6.1.4 The,approximate dynamo equations

- If density gradients and temporal variations of the

angular velocity £ are neglected in (6.3), the equations
i :

for the fields (a7, El) become

{%¢ -nv?1B* = curt {u'x B} (6.19)
( ;

v-ut = o O . (6.20)

20%xu* = ~L VP 4 L B.vB* 4+ 4F 6.21
= -4 + A (vxBY)xB' + L : .

. (‘77 )
s plEer-wd T ean

where EB denotes the Lorentz fprce %(Z X E)x B, and

340
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il

= p- 5 fPI1Qxrl? S (6.22)

—r o b, .
The boundary layer fields (gb, B7) must satisfy

the equations

b b b, b .
OB/t = B + B.2%/pn - un2B70n (6.23)
®o.u® = O (6.24)
2 xuﬁz L2 «B*}xB + vYy 25)
S e f/‘ on ,\.nva ~/on (6. )

where we have made the usual boundary layer approximations.,

V’Bb e ?1§b/3n2 7 . (6.26)
vng x 2? .l'/an‘ (6.26")

. ) b
IxfuxB-uxB'} x B,3¢%, - u.?B/sn r(6.26")

In equations (6.23)-(6.26"), n 1is a coordinate normal to
the boundary and directed into the fluid. The components

and iven b
n u, are gi Y

B, = B-i, ' (6.27)
@ w, = u-1, - (6.27")
We have also made the .assumption that 21 , 'El , EF , and

pi do not vary significantly across the boundafy layer.

In equations (6.21) and (6.25) we have neglected

the inertial terms, as discussed in section 6.1.2. The

&



viscous force terms, discussed in ecection 6.1.3, have been
neglected in equation (6.21). However, these terms are
retajned in equation (6.25), as is necessary 1n a boundary
layer approximation. Equations (6.19)-(6.21") are
frequently referred to as the equations of the magneto-

geostrophic approximation (see section 1.9.1).
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6.2 Solution of the approximate Navier-Stokes eguation in

a sghere

6.2.1 Preliminary manipulation

Taking the vector cross product of 2 with equation
(6.21"), and introducing a cylindrical system of coordinates
[B,¢,2z] with the z~axis directed along the axis of

rotation, we obtain

A \ ‘ i
Pgt—"-‘*z—-d{(fa"‘f)lli “zP.xlz} + fu.‘,l, (6.28)
where
1, = Q/'Q' (6.29)

Taking the divergence of (6.28), and applying the equation
, , i

of mass conservation, (6.2), we have

Z{ru) = - v {E D] S e
The Z“ComPOnént Gfrequatioﬂ (6.21") is
: /
EZ P = (R+F)-o, (6.31)

Integrating equations (6.30) and (6.31) with respect to 2z ,

weIPbtAin

- * i :
fug = (fu‘,‘)b; - 5-‘5_ I v {(fn"‘f) "12} dz (6.32)
o T s

z

P = (p), + I (fa'."*'f)'l; dz (6.33)
' 2, -

b
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In equations (6.32) and (6.33), the quantities
i

(Puy), = fu;{0,¢,2b(’w,4>)} (6.34)
(P = i@ ¢, 2(w, )} (6.34")
are boundary values of pu; and Py - (pu;)b must bg
determined by boundary layer analysis. 1In all these
/
equations, 2y represents the value of 2z on the boundary .
for a particular pair of values (o,¢) . i

4

6.2.2 Boundary layer analysis

The boundar&—layer equations (6.23)~(6.25) will

have a consistent solution if

1B, | /B S (1) (6.35)

1B51/B® = o) = o ®
I8%1/83 = (9(52/1_’)%'; ece)y (6.35")
and o, | | |
Audpl/ue = '9(1) (67.36)
Kubdpl/ue = OMGA) = O(e%) (6.36")
‘lg;l/u.l e o(1) - - (6.36")0
'(u'-" Vuw, = 0071.) = G(e™) | ;6.36"")
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e

e,
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where 6 1is the thickness of the boundary layer and L is
the length scale of variation of thé "main flow"” fields
(gi, gi). ;n these equations, Béé) is the average
magnitude of the magnetic flux density on the boundary
surface, S , and uo is the average magnitude of the
tangential component of gi on S The parentheses ( )y
denote the*boundary value of a "main flow" quantity such
- - -

as ﬁli or El , while the subscripts "n"i and "t denote
the normal aAd tangential components of vectors near the
boundary. The tangential components of u and B are
defined as follows:

Ue 32 U — uni, (6.37)

B:= B~ 8,1, (6.37")

If (6.35)-(6.36 ) are valid, and the boundary of the.

conducting

volume ig epherical, we may take components of
. |

the equations (6.23)-(6.25) in spherical polar cdordinates

[r,0,¢] to

' {ZP.Q cos 8} u

obtain (to zero order in §6/L )

¢ .
= "(B ) + PV%,,u; (6.38)
. 3 S
= 7"-(83.),;8: + Wg;;t’&'; (6.39)
33:1 B'b = -uo(B, ),, 5 Y (6.40)
ana Bq, = —N(Bi.),,g;‘-u'; (6.41)



346

Equations (6.40) and (6.41)'may be integrated,

subject to the condition

{u,B*} - o as n-—- o | (6.42)

. Carrying -out the integration, we have . a
52'; B:-:. ~pma (BL), up ; (6.43) .
2 8% = —wa(BL)puy ,@ (6.44)

A}

Substituting (6.43) and (6.44) into equations (6.38) and
(6.39), and combining the equatﬁ&ns, we obtain
a?* b .- ,._ 202 T e ? N b
,5“—1(u.+t:u=) = "5—- ;Fﬁ—(B:.)b*—LCOSB}(u¢+tU.) (6.45)
: Equation (6.45) has the §olution

S

(ug+iud) = ~f(u;+ i“;)i,eq'?ﬂ (6.46)

~

satisfying the no-slip condition at the core-mantle inter-
' B

5

face, where®
v S -

= {22 ( 2 _(giy —icoso] |
v= l v {zfﬂ'(.B;) icos8} , Rev> 9.,: (6.47)

Writing
T2 Kevw + i I v .

we obtain the expressions



‘ ey
up = {(u )y cOs(nflmr) +(u,,),,s.n(n4mt)} " (6.48)
ut = -{uy) (ndm ¥) — (Uy)y sin(n 9 )}e‘"“‘ :
e = u’.b(‘os NImy) — eb ¥ninimy (6.48")
BY = %(Bi)bi(u‘e)b cosndmy) + . - o (6-49)
+ (u‘,)b sin (n9dm U)} e” d
g M gt { -
Be = &‘(Bn)b{(“‘p)b cos(n Imy) + (6.4‘9 )

—~(u:)bqu(n45‘r)}eT"

Rey

for;the:tanqential components of the boundary-layer fields

n

b b

(g » B7) - The normal components of these fields are still

7

to, da determlned

5\ From the lnccmpféssibility condi 1un (6. 24),

2 . b b .

a.—a—r—‘ u“ = RY(‘E-%‘ ) \

iﬂtéqratlng this uquatlon with *tbpcct tu n

‘- use of the Condltlop (6 Azy, we obtain

IS

) un(o) l (v :) dn
. vyt T ¢
From equation.(G:SI) and the condition that.

gvahishv?n the boundary, it‘féllowsrthat "
- ’ » a \
(widp = - [z utldan 2 -y [uf dn
[ VO" ‘o ! b o /

r -

r

g1
1

~

- (6,50)

and making

(6.51)

Substituting (6.46) into equation (6.52), we have

, - N
L . .
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Wi+ o[ty cuin [Foman]

o

+ g 4m[(u +«u9),,[ "‘dn]}

*

\
- Y-L - Lcui)pRer + (uf), Ima] (6.53)
+ 1* F:Tz [(M‘e)bﬂet - (u;)qu I] }

o
Therefore, from equations (6.53) and (6.28) the boundary

value of pu; is given by
(Puy), {(vp.)b (f;-o-f)b}ai, tan O + (6.54)

+ £e- { 1o ltl‘ [(“¢)b Rew + (ud)y, Im t] +
, ﬁ’: 1¢ #ﬁ[(u“)B ﬂtr - (u“).,jm!] }

6.2.3 The full solution of thé;appr6X165§é Navier-Stokes

equation

4

We are now in a positibn to obtain a Complete
solution to the MGJnatOgZOBtiophlt equation (6 21"), correct

\

—x\
to Fuﬁt order in the boundary layer parameters ) ) .

Substituting (6 32) and (6 54) 1nto equatlon (6. 28),

obtain

e

- : K

T
.~ where ,



I3

. 2 R , .
{fé:\zf Fa-tedzfx 1, + . (6.56)
! %y,

+ A (F3)y- 14 tan® + 1,-[ vx [’f;' dz]} +
L

i

o
1]

~

+ 1, 2Q) g-{le *lij‘, [(u;)bﬂet + (u‘e)b $mv]
+ Ip i L), Rev = i dma] }

g
1

lE- wp,  ~yfEhdict s
\ ”li{(f)»‘b*ﬂﬂe ~ 7(pp- 1y tan® +

+ 1. Lyx I‘f_dz] }

z,

By,

It should be noted that cquqtlon (6.55) 1is a

i i L '
recursive detlnltlon of u ,;slnCe u appé rs on both

Sldes of the equat1on- However, the terms involving 21 on
thé r;qht,;hand side.axre pf order '[6/L] . .The boundary

A

layer thlckness, § , is given by

ERs n{; J’T{(aB‘i’X m?{e}-c‘& s

For. the Earth's fluid core; we. may take

’

o ~- 3 x 10° mho/m o, (6.59)
. (see, for example, Gardiner and Stacey, 1971), i
Yo a0 kgm0 | " (6.60)

'ﬁfor example, Jacobs, 1971d), ‘and

gy
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i ~4 .
B), ~ 56 = 5x10 71 (6.61)

(see Table 2). Substituting these values into k6.58), along
with the value 2 ~ % X 10~5 secﬁl , Wwe obtain a range of
Qalues for the boundary layer thickness as 6 varies from

0 to n/2 .

[4

') £ d(m) £ 310{V (6.62)

It should. be poted that the upper limit on & , obtained by
setting © = 71/2 in eguation (6.58), is only valid if

i

(Bn) does not become small at this value of 6 . If, on

b

the other ﬁand, the external magnetic field iSﬁaﬁ axial
.dipoléi (Ei)b * cos 0 ,iand § » » as @+ w/2 , in the
firstrorder boundary layer approximation .

’ If the CGans (1972&) estimate of the kinematic '’

viscosity in the Earth's fluid core is used (see equatton

5a15), (6.62) becomes
t'4 Cm.‘s 8 £ !28 Cm, 7 f (6.62') =1

If, on the other hand the H{de (1971b) estimate of the P
effectlve klnematlc v150051ty near the core- mantle 1nterface

is used (see, eqyatton 6.15"'), £6.62) ‘gives

: ' — } s . : ' ’ ) .

°c 830 m. £ § < 3700 m. o (6.62")
'In both cases,” § << LiiEQFH Lo T, v 3 x 106 m , as
expected. :

) \"f,,»'m;i“--b,r-ii;?i“
ok



6.3 Temporal k)ehqvioq_x of the ext ernal magnet ic d iml ©
moment

©.3.1  The boundary-dayer control approk ”’U mation

We are npow in a position to examine the bowndary -
Layer control equation (5.102) within the framework ot the
hydromagnetic dynamo problem. To first order in [6/L) ,
equations (6.45)-(6.47) give
' 2 2
2 ~ 2 b b
R T A Y
) \ n=o
h . o 2 .
~ 4 {..?-g)..(u‘) s © ~ T (BL)L (ub) }
© ' n A
~ v ¢'b . PY 27 (6.63)

A (B ) 0

L (B (i, } |

Similarly, from (6.55) we have, to first order,

‘ 4
. A y
(u/‘) kzm{[FB P‘VP']‘d $ p)
' [!.:l;"L F - VPI] 1,1‘«::9} [ :
,T . ~ 75 A - B - ; : ) £ Z
(! ~ ~—L—~2Pﬂ { gx' 12 - 11;2‘&&@“9} > (6}64) .
wheré , } P
{ ' - A ’ . ‘v ’. ' !
v ~ . : A [ .
‘ ’ §
Comblnlng equations (6 63) and (6.64

? we obtain -, ‘

£

in terms of the Poundary
distributions of forcas and magnetlc fields}:

. "
. ° ¥
0- . M
1Y . . . N " ] “ N
o forg o , ) . o

an é{press1on for _(V YU



(Vzg)b = o~ ZQ cos 6 1, x(u )y ~——~(B)(‘)b

~ —WcQseilrx(gxll) ~1,.x1, 3 tan6}
- ) i .V

B f:ﬂ (B) { 3"1 -1, 3,TM9}

o —""‘{1 F,cos8 + 1 3 } o
pv L 08 T le3e ) (6. 66)
—_ '0—’ c 32 N

Zf"ﬂv )b{ ~® ¢c0s© 3&9 }ﬁr}
. ® ’
From the multipolé expansion (5.66) of B on the

g )

. boundary of the ccvnductlnq volume, and condition (6735) ;

By = B, 4 100 4 ot 1o))

Substituting (6.66) and (6.67) into'thé,b.@uniffir‘yazfiyér

control gquation (5.102), with a = 0 , we obtain

-

£

:ffﬂ ~ __31_31 (vig)b 1".1-{5) ds
s N N

L)

»

;, PaQ‘V(Wt‘os)’ {1—0)} ', [ {13 c°59 .!0\30}](15 |

(6.67)

= -.—3_'1__ T ™ [{1,.1 3,3(:059 + 41 3,}d3 £
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-

6-3.2 The boundary force distribution in the geodynamo
In the qeodynawo,
2 - . L
,:}, = { Fg —~VpP + sz’g(ﬂ'*m )~ngr + fB +Ed&"}b (6.69)

where g is the acceleration due to gravity. Assuming

hydrostatic balan~c in (6.69), to first order, we obtain

3 = {f?ﬂ"miw - PQxr + Fy F“w}b (6.70)

where f represents the fraction of the ntrlfuqal force

‘which does not. contribute to the hydrostatic balance.

Taking components of (6.70) in cylindrical é@@%dinatés,

we have:

;

3(? = {}'Pﬂ‘ *\(Fe)fw 7+ (Fdﬂ_")w}b C(6.71)

Y
B2
]

3 - { P-ém +(FB)¢ + (Fofkc")# } FV (6,72)
. , ( V . ~
We ‘may pow estimate the various térms in (6a71) and

(6.72). The Lorentz force at the core-~ mantle 1nterfaCE,

(Fg)y xs given by : i o
(el = 0pBa—isByl, e

L ’ . ) . o . . N .
{Eedi= {80 - jwB.}, (6.73")
" " - . B A . . )
Assuminglthat.thehexternal medium is a nonconducyor, we_have

~ ;
May
SR

4

-

- (nej)y. = 0 e (6.74)
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or, for a spherical boundary,

Ciw)y, sin 8 "_/:7{#3%83"33?84};5‘“9 (6.74")
re

— . - -4
= ~(je)ycos® = ﬂ-é,-%sa a,g,—,(ae,)}bme
Substituting (6.74" ) into (6.73'), we obtain

N (J ) ; |
{(EB)¢},, ~ l { } ~ (6.75)
where, from (6.74"'),

>

v Gady ~ ';T{‘c‘;"a%(me’)}b (6.76)

Furthermore,

s T
) = L2 8 _ 2 | o
(Jodg M {az Bw - 35 Ba . w0 8R77)
© As may be Sééﬁ from Table 2, the toroidal magnetic
fieid at the core antle interfa is ex xpected té’bé much
Smaller than the poloidal fleld Within the framework of: :
the boundary layer controz approximation, we may take B
(B, ~ (B, ~. 8P ~ 5 T (6.8
@ip et 14 - o x |0 . . (6.78)
S (Bg)p ~ © (6.78")
» ;
‘We may also take - '; L . :
3 ° . o-'p ’ " \ -
a’Bp) 38 ) ~ BS 2 x 10 o T’m L e.79)
292 Jy 36! /L / . .
i - B Q‘ . . .\




”

i aBQ} Bo -9
(o&osal ~{22) < & saotmm e
where H() 3 ,IOAZ T is the magnitude of the field deep in
the core. (6.79") may well be an overestimate, as it seems

unlikely that the toroidal field increases linearly from its
value at the core-mantle intoerface to its value deép in the

care. Substituting (6.78)-(6.79") into (6.73) and (6.75%),

we have .
{Fpwl, ~ IBOVUL  ~ 7x10°% nt/o  (6.80)
4
{(Ep)’ }b < BoBiS)/,‘L ~ | x 107° nt/m? (6.81)

- Ll S
The remaining terms in (6.70) may be evaluated using

the estimates

. . 3
g 104 kg/m

L v 3 x.10" m (6.82)
- L ) ,
“ S
k 2N =5 i
Q -7 {2&”1' rad/sec
,aﬂq
S C 91 L L
.~ 2 x 10 4 rad/sec2 ' - (6.83)
. u ‘ ! ) 7 -A-’.' . ’ !
Tsee Allen, 1963, p.:108; Jacobs, 1970b). The estimate :

- - é 3
(6.83) for Q corresponds to the ow increase rin the

length of the day. Substiéuting thesg values into (6.71) .

i

.and (6.72), we obtain o ’ T
. PR’ ~ £POQ*L  ~ 150 at/m? . (6.84)
wzlfc V - ; : “t": ' ~
A ~POL ~ exi10! nt/md (6.85)
R C s
N RO . ~

(Wit ' L



N . .
The B E) 2 F s 1ons - -
I'he forces denoted by ~other 0 equations (6.69)
(6.72) can only be estimated in specific models. We shall
include the precessional force term def ined in (1.68) as an

example.  From (1.68"), .
R x pl(@’xg)xf ——;— [[(2ﬂ+ﬂ’)xr] [ﬂxr]]} (6.86)

Assuming that the gradient term in (6.86), and a fraction

(1 - %] of the term ;)[(Q’w Q)x 5] are included in the

hydrostatic baldfhce in (6.69), we.obtain
. 1 ) X * e . '
Eox. z-i—f;{(g’xg)xr} (6.87)

o

This terg will have components in both the 1& and the

1¢ directions. The magnitude of theSé1COhtribUti@ﬂ$ can
be estimated ‘as ) :
" ; fﬁr : =
i . . . o
1(Etter)y | ~ ‘E‘ PAUQ sinx) ry, i(6.88)
b l,‘. & .
. .

¥here [Q' siny] is thé magnitude of the *quatérial

componébt of 2. MaZkus'(1971a) gives the valUEs

- i, A ."”” o (
Coa ? 7“1#&‘910 % rad/sec T (6.89)
‘ ‘.;&A . _ ) ’
X 2358 ~ (6.89")

-

B

Uslng thes€ values in (6.88),"in conjunctips with the values

(6.82) , we obtain | o fow
B | | : | . . ;é 2 ' h ‘_L, ,\,
KEber)y | ~ 'é‘: 8x 107° nt/m? a . (6.90)

L
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6.3.3 Radial fg}yv;

We may now consider the effects of
ol the boundary force distribution in the

temporal | behaviour of the magnetic dipole

the ©-component
.
geodynamo on the

moment. .  Tynoring

the azimut hal combonent ot F o We have from (6.,.68) tliat

~

e ( = 3 . .
T s “'wn}pg‘f() . [ Irfe 3o cos @
S

B8 w13 3
+ . T® .Ii
P Qv (4me?)? {1 ,} ";:

From equations (6.71) and .(6.88),
X q

~ ~

Yo x KO, 4 {(Fa)w), A

-

= Xear@), + {(Epd),

ds ~ (6.91)

n[ "

1, e . d"'S‘ .
\

+ P;{P,zal‘kgmh:}}.,

L i),

The last term on the right hand side of (6.92) will not 7/

]

contribute to ‘the first integral 'in (6.91), since o

f

Wiz lrle cos 0dS g
S . .

= no [ (acosg s 4y 5in ) detp 5inBcos® s
- 3 i i . ’ * .

A

A v
_o . N

i
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a8 may be seen from detailed evaluation of the integrals,

4 .L“dring in mind that
® 2o
Isf(e.¢)ds = r‘o"l [su\edel f(e}¢)¢¢ \ (6.94)
. o A

After the ¢-integration has been carried out in (6.93), the

only terms remaining are proportional to

‘ { Ixi21x + 1&,1;1,} s5in?0 cas®>9 .
4 4 ,

r

~and _ {1‘1112 - 13!.51!} s‘f"4a cos O
When the 6—inte§ration 1s carried out, both these terms
vanish. Equation (6.92) may therefore be rewritten

L 2

< ) ¥ ’ h , o
| Io = YHP'®)y + {(Foal, : (6.95) ‘\
. From the estimates (6.80) and (6.84), the L@ﬂeﬁf%

force term in (6.95) will be negligible provided that

i

When (6.96) is’'valid, equation (6;91) becomes

“ 4?w; f? S §~,~ o T .?
Al ~ ~r 31:; -
| Pzﬂv(ﬁ'n”a) } s " ’
i | .

'or, .expanding the first term,

&



.- 2 -
TOx L B0 w10y, 2700

s (6.97")

6[‘ )13 3

AP

Taking components of (6.97'), we héve

”
.o 2
TO o _ Ly 8282 o { 1+ op T‘“’} 6.98
x 5§ 5 T« q?ﬂwfr‘?),l,, | ( )
v 4 a ' T o
o . v 9} T : Cu : Tw ‘} i '
R y 5§ﬂ—v » {i + qfﬂ(&rrr,’)’!" ) (6.98°)
. . . )
PN 2 Qa (037 . - 7— "
T e YL SRR (6.98")
0 |
. :

The nonlinear terms in (6.98) and (6.§8') haVé!beén

ébtaineaiFy evaluating the second integral.in (6.97) and
¢
(6.97). It can be shown that the precessional force term

in (6;92) does not contribBute to this integral, so that™
(6.95) is once aqa}n valid*;zﬂﬁ for the linearﬁter%é,rtpe
Lorehtz force contribution has been ignored, subjeé£ to the
&ssumption (6.96). h '

The'charactéristic time associated with variations

governed by (6,98") is
. : d e..

f sy '
T ~ 22X . 6.9
2?““2 '(‘ 9) B

qu‘the geodynamo,
(N ,

i

- i

. . T ~ 5/3'§. X 10° sec. (6.99")
\ VT 7 : : \
uslng the Hide‘(1971b) value ((6.15') for the kinematic

J . : ’ o



viscosity at the core-mantle interface, the values (6.82),

and the estimate

PR

n o ?;mzse(‘:-l L (6.&00)«

for the magnetic diffusivity in the core.

It follows from equation (6.99') that radfial forces

can only account for dipoke moment variations orf a time

scale of 103'years n 3 ox 1009 seconds if

£on 2 x 1071 (6.101)
i L:f ’
However, this requirement ig in direct centradiction to
_ ) N s
assumption (6.96). Thus there is no pessibilityfof

accounting for temporal variations of the geomagnetlc

: &1 J
dipole moment on scales ’\'103 years in terms of radial

|

iy

) |
Y'Jtluﬂ (6.95). .} , . ) . , ¥

(w

" The Lorentz force terms lﬂ#equatlun (6 95) can Only

be evaluated if the spat1al behéV1our of the ‘internal /
. /
-, magnetic field neaf‘the boundapy is knéwn. Inclusion /of

these terms must therefére'deétroy the "cloggl

+ the boundary layer control approxlmation,

- .

dependence of ‘the external potentlal fleld to the/behav1our
of the 1nternal magﬂetlc fleld, as well as to the body force‘
dens1ty at the core-mantle interface. I; ﬁnllwﬂs that zf

azzmuthal forces at the core mantZe znterface are negZected

temporal varzattons of the geomagnettc dzpdle moMent on

=

) ' L A -

forces alone unless the Lorehtz .force terms’are ¢ncluded‘in

H

s ture of
"Yi' .

-nk he’ tlme

: PR ’ ' |
' 8cales ~10 years‘cannog be acéounted for insthe "closed"
. . ' o W IR ’ , “
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boundary-layper control approximat fon.

6.3.4 Aziqg&@ilﬂforbeé, dipole wobble, and reversals

. We shall. now consider the effects of the ¢~component
of the'boundary-farce distribution in the geodynamo on the
temﬁbral bchau@?g!hof the magnetic dipole moment. Ignoring

the o~compongnt of :} “in equation (6.68), we have

Foo~ _ A1 T“‘°[1r1¢ 3’; ds  +
. s

P k417r¢3 Fv ~ .
' N . £6.102)
— oM {T"’}a.[ 12 4 £ S ds : < :
- P v(4nr3)’ L~ L~ ~9 cos © . :

g

P

From equations (6.72) and (6.88),

F = APQw)+ (B} + £1Pte- [ouxrd},

= (PATY, 5 (el - {Pa=z(q-1)},

»

~(PQ®), + {C,é‘a)¢}b + |  (6.103)
";“; { fn'zf—n; sin$ +Q2y cos ¢)}b

In the“chosedV’boundary-Zayer'approxiégp%on, we
must neglect‘thgkLoreﬁtz forqe term, {(EB;;}g, in equation'
(6.103). " As may.be seen from (6.81), (6.85), and (6.90) .. it
is not clear t ‘t neglect of {(EB)¢}b is a éoo& aéproxi_
mation. Hgyéver, if the_t?fo%dal magnetic f%gld satisfies

' .
RO

1Y .
N a3
A . . . e L.
b v : sy
¢ S . [



the Pondition

orotdnl = -
{%a i « {I_‘_@_ﬁ '~ 0" T/m (6.104)
R (B-n) :
or if
{CEB)¢}D oC sz*t (FOS e) S;ﬂ2n¢ C0521¢ g (6. 1 Or))

so that {(EI5>¢}b makes no contribution to the 1ntggrals ir
ecqquation (6. 10’), ‘then the aleu@hdl Lorentz force term: may
be neglected in (6.103), and the "elosed" bowundary layer
approximation is ‘val'i(i.

Substituting (6.103) into (6.102) and assuming that

at least one of the. conditions (6.104)~(6.105) is valid in

the geodynamo, we Obtaiﬂ
i \
-:r;a) ~ ~ ngl T;t) + ﬂ ﬂ —r(-)
25 v
, 6,441(.) 2 ()
+ ¢ ITOPETO )6
5PV ~ 0 % ¢ (6-106)
3u i [O) / a)l w2 - —\a)r
+ - T, 3T, T RIS +
05 Py (4urr2)? z {ﬂ}!( x gy + ) _
o N Yo ¥4 ‘l‘""r"‘}
, fj
.o @ N - QQ’ V I
Ty = 1? =T 4 A o
R ! 25.9 s
& . GAL(-I _ | Tw ) -
g + l ' T 4 g []
- SPOV@ARR)Y - | (61067
‘ 3[" (T, a)ﬁ «)2 T®? .. . §
+ 3T+ 2T ) ¢ 20 F
108, Py (em; 3)“ {Q’/" 3

r f | - 2Q TS }



- =

4uQ |
G). ~ - ﬂ " (l) 2 ¥ 2
T‘U’ 5FQV(4“T°3)Q T3 {2( T +Ts”vz) + Tg) } +

6m 2 <
+ ITor* 1 Q. T - QT 6.10€"

f

on carrying out the integratians.

When the nonlincar terms are neglected in (6.106)

and (6.106') ,' the equations can be written “in the form
N
W) Q ISP To % U
T% = ﬂ\TTC: +—%——-——T ‘Q sinX (6.107)
b
where
S
. ) ,

In equation/(6 107) we have assumed that the equatorial

component o% the Earth S preces§lon can be represented by

m

QL+ Q) = (Q'sinx) et (6.109)

i

where Q' %hd x are the quéntities d¥fined in (6.89) “and
(6.89").

The féberal solution of equation (6.108) is

s - e
' ® G-DJAl ¢ Y L e TS
T‘e% = Ae L + Aje 2 +
11
N0 Q'sinX {Q’z +i nlﬂl/‘,} @ it (6 | 0)
[n'* + 'z"ﬂ'/,, }o;,, .

where xAl ahd A2 are.complex"codﬁtahts, \Thusva‘typical



solution will be ot the form

,,

‘ }sz = fA: Cos‘)"f - A;»S'm l‘t} e"‘f + _ ‘ (611)
‘ “'IQQ'SMX . : 2~ . h
. - Té"{ﬂ”cas()’t + 28 s/n Q't
, 2L {0 s 4wt
T,m = {A: sinyt + Alcos r't} e_*t + He.111")
‘smX
P, L0 T sin 't ~ 20 cos 't }
29( {0'4*4?'4}
"whére Ai and, Aé are real constants, and .

“’g‘ ",rufu/z'v» (6.112)

In deribing (6.111) and‘ (6.111") from (6.110)., we

bt
have retdlned only those terms whxch represent precession
-Of the equatorial dipole moment w:th angular frecquency Q" '
and eastward drtft w1th angulazu&reQmency v! ,,(Lt should be
noted that in (6-110) we h@ve assumed that R < 0, as*is
‘the case. 1n the geodynamo ) From thaflOﬂ (6.112), fhé
 Pe‘10d)Of eastward drift is given by B
‘ T;d- - .‘217/"“ ‘=vf 2n 2‘}/&1‘{1* o (6.113;)
Substltutlng the estlmates (6 83) anﬁ (6 lOO) inta- (6. 113)'
T we. obtaln the perxod o -
. 33,4. ~ (3 8 x 103) J v (mam ) years  (6.113")
: '_fOr the geodynamo. ' : R
A X s ' L / -
2 b . A S
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Although the geomagnetic dipole ‘axis has a’éparemtly

1

e 3 - ; . _ . - . . :2, . ] <
drifted in a vestwgrd direction since 1700 A.D. (ol  ana S
. . g o4 &

Hirooka, Toer); prior to 1600 A.D. the drift wasﬁfa;‘marently o
k X NN

castward (Kogwual and Hirvooka, 1ge7; Marton, 1970).° Several ‘
est.imates have been made of (the period of this eastward )
. o
e

drift.  For example, Kawai and Hiroob.a (1967) obtain t.he

per iod 'I‘o-d. v 1500 years, while Mdadrton (1970) ob%a\ins
Te.d. § 1800 years. Fudovkin and Valuyeva (7967,' ]9?,‘,’),
using an eccentric dipole model with an elliptical drift
traject;ér:y, optain the period T ~ 1200 vears (it Kwould be

inappr¥griate to refer to this model as one of "eastward
. 0

s ‘ [}

s drift™). Substitufing these estimates into (6.113'), we

obtain estimates of the kinematic viscosity at the core-
13 .
mantle interface.
- )

<

T = 1200 years -+

T _=/1500 years v 4 1.6 m’/sec  © (6.114")

T = 1800 years > e 203 mP/sec C(6.114")

o1, 0 m2/s§c . (6.11?)

W <

These values are consiétent with the eséimaté of Hﬁﬁé
(1971b) that the kinematic Viscosity at the core-mantle
interface is §le% mz/sec . From (6.62) we 'see that the
gstimates of v given in (6.114)~(6.ll4") imply that the
boundary layer thickness at thé core-mantle interface lies
in the range fbo m< 6 < 600 m , giving good égreeméh; with

»Hide'é estimate ‘6 < 1 km . » “y ,

-~
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In obtaining equatiohsa(6.lll) ane (6.111") from
equation (6.110), we have ignored the terms which lead to
westward dBft with the angular frequency y' . . However,
these terms may well he‘impd}teht for explaining the
obseryed behaviour of the geomagnetic dipole. Thesdata
presented by Kawai and Hirooka (1967) appear to indicate
that the amplitude of the equatorialvdipole increases
during beriods of westward drift. Tt may be seen from
equation (6.110) that westward driftuwith angular frequency °
Y' 1s associated with growing solutions, whereas eastward

drift is associated with decaying solutions. A combination
.

A

of the two types of solution might well’account for the
]

behaviour desqryéed by Kawai and Hirooka.

*

Westward dari ft, also arises fram the second group of
terms in (6.111) and (6. lll ) - These terms are associated

with the pP88¢bS?Dﬂ of the Earth's axls of rotation at the

! t

angular freqﬁency a2, coprespogdlhg to a period

Tor -~ 25;800 years’ . i , f:i (6.115)
- A,

LA
=~

(Malkus, 1971a). In’order to ensure ﬁhat these termgxde

.

not domlnate the terms descrlbed in the last paragraph we
must requlre that
""-r-c;\ B

Qf)chﬁfx et S |
< ; ~ fanfu.5°} ~ 0.2 (6.116)
29!:,{()“'4-4:‘4\ . |T<"|. 7 | ‘

or 4 making use of the values (6.82), (6. 83), (6.89), (6.89")

+

and ° (6. lOO), and the value of v. given in (6.114),
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Lo 3 41078 . (6.116")
b

Thus nearly all the precessional borque on the core ii?id
at  the core-~mantle interface must be balanced. - It is h
interesting to note that if the value of ¢ used by

Malkus (1971a) for the flow in the main body of the core

(¢ = 4) is used in place of Cb in (6.116), the inequality
can only be satisfied if v »>> 7 x 106 m2/sec

The effect of the nonlinear termsﬂ}n (6.106) and

(6.106") can:be assessed fairly simply {?’the dipole moment
is p;edqminantly axial. Under these Circumstances, the ”
magnitude of 2(1) is approximately independent of T(l)
and T;l);- 1f (6f116‘) is valid, only the first ponlinear
term in each eqpation need be considered. The effect of
.these terms will Be to intrgduce a long~périod modulation
in the solution given ip (6;110)i The periéd of this

modulation can be éstimated as

.
Ty ™ 4{"11-{-1(00/ }’ﬁ{'of ,g}
o 3B
~ B8x10%sec. ~ 3 x 10% years (6.117)

. ) - Lo N
There will also be growth and/or decay on this time scale.

If the dipole‘moment'is'predéminantly éxial

." -

o equatlon (6. 106"), which descrlbes ‘the bghav1our of T(l) ’

L may béy;ewrltten approxlmately as



.

»
f

-

-

=

’l’: »

-.l 3
T = pTH - (6.118)
where
P 40 120
5"09(4’"7‘0‘)1 {(6.118")
Carrying out the first integration, we obtain
w12 _ stml® _ a4 YL
i) - {7 = ge{lTel-001l) - eouy

ipdicating that the axial dipole moment varies on time

scales of the order

1 r-’ 1 5PV (4ur’)?
1Ty /2 v \l R ylel

~ 1 ’tof‘ﬂ}v o )
I8, Il | :

~ 1-3 x IO" SQCOnas ~ 4 x 003 jeﬂf‘-S— 7(6;120)

L4

As ﬁéy be seen from Table 13, the time scale given in
(6.1?02 is similar to that characterizing the behaviburrof
the axiai dipole momentfdurigg a reversal.

If, én the other hand;ﬁﬁhe axial dipole moment is
small compared-with the equatorial diéo%e momgnt, equation

(6.106") is approximately linear in Tél) . The solution to

the equation will be of the form

1

1 -
TQ(.) ~ a: e /t.’ + a; e t/"a ; (6.121)

where P o
/ [EPCvum o S

.o e (2EYE et v 1217

o /./" 282 10 1Byl T’I‘y‘ear (6‘121 )

e
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gt

where IBnl represents the typical magnitude of the
» -

predominantly equatorial dipole field at the core-mantle

#
N

vjnterfaca. If ,|Bn| lies i? the range
* 1x1074T < Bl & Sx00* T - (6.122)
then ' 4
| \ixlo‘ y- % T, 2 2xi0’y. (6.123)

I

and the time scale of variatigg_of the axial dipole moment

will be of the same order of magnitude as that estimated in
.

. (6.120).

P Summarizing the results of this section, we may -
_state that the azimuthal force term ~p(é x £) has a
considerable influence on the temporal behavioﬁ? of the .
geomagnetic dipole mdment. The 1inea£ terms in the
equations for the equatorial components of the dibolé
moment account for the ‘dipole wébbzg reported by Kawai and
Hirooka (]1967) if the iinematic viscosity at the core-mantle
interface is of the ordér v o lrmz/sec .. When this value
of v is assumed; the nonlinear terms in the é&ﬁatibns‘
for the equaporial geomagnetic dipole give rise“tpr
modulations on the time scale 3 x iOS years - which is of

. roughly the saﬁe order as the observed interval between
polarity reversals during the last 50 m.y. ’Fiﬁally, when

the value Qf v impliéd by the dipole wobble is‘useh, the -

5 ad



, €quation®for the axial dipole moment indicates that the

axial dipole can vary on time scales similar to those which

Characterize polarity transitions. It appears, therefore,
\

that a detailed examinAtion of.éimultaneous'solhtions to

f
equations (6.106)~(6.106J), with the precessional forece
terms omitted, may well lead to a better understanding of
dipole moment variations. However, before any éreat
importance can be attached to variations predicted by these
’equations on)time scales’ >> 104 years , it will be
necesséry to include estimates of dissipative‘terms, as was
pointed out in section 5.5.3. ’ |
We shall not carfy our investigation of the boundary

layer cogptrol approzimation any further in this thesis.
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6.4 Effects of an inhomogeneous turbulent force

—distribution outside the boundagyrlayer in the geodyndmo

6-4.1 The fluctuating dynamo equatijions

{a/at -qu} E' = curlig'x_g +TxB' +

»

In the mean field‘electrodynamic‘appfoach, the
dynamo equations (6.1)-(6.4) become

WxB - wWxp'}
‘ (6.124)
T
v.B = O (6.125)
ht-vorly + {Tru+uwvliu gy - dyy} '
+2Qxu ’ (6.126)
= %:{f'—gr'} + ?;{(yxg')xg +(xB)xB' 4
| +(ZxB V2 — (Vv8') x B }
V-4 = “{YP/&}'E' , (6.127)
falat—qv‘}g ‘= c«rl{ExE + Wax g’} ~ (6.128) /
i .
v-B o

| (6.129) '
BN -

2,.!*'} +QQ;E = e
s : \‘(6\-1‘30)
vxB)x8 + (vxB')xB’ } “
@ :

371
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s . .. - ’ .
In the hydromaagretic jirst order smoothin: approgl -«
. . ro, - "
mation, the fluctuating dynamo equations (6.224)-(6.127)

become . | { ' '((> .

{%t ~v'l8 = Byu' -G8 -u.vB » B9d  (6.132)
| _ - - )
1901 -vvriu + 20x¢ = -Gvy -u.vE + (6133

+piF-op + o [<ZxB8Hx B + (gx?)xg‘]}

-B’= o ) / (6.134)

RY

g = —{efp} ‘ | C (6.139)

It should be noted that in these équations the‘densityiis‘

not assumed tb have a fluctuating component.
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6.4.2 The first-order solution of the fluctuating-dynamo

.

equations o . %y ‘

~

-
-

. . V . )
Making use of the formalism developed in Chapter 14,
and the fouritr-Stieltjes transforms (4.7a,b), we may

rewrite equations (6.132)-(6.135) - in the form - wﬁi
Gieo e QR EAAT ™+ YV} - 2iqm 78 T AT kY™ J o -

-qv*g YD ay®s. )

o
-

e

= i(RBYU-{dZ® 4 a2 ] + B.yyu-[dZ®+ 42" ]+
— ;(5_1})&.{4!@)+dra‘+,,;} - E'VE:.{'&I@*:"‘I“)““} +
- {9_“[dga)+4ga\*,,_]}.!§ + {g.[&r@,ﬁd‘!m’._i]‘} . vd

(6.136)

Cio + V) Q- 1AZD s azs .} + 29:0 {¢z‘°’+dz‘"+ 1+

A
'—’A‘u?k VU {d§‘°’+42‘“¢- 3~ VV‘U idz‘% dz‘“+ }

;&-{ 3df - Py - gPapl + - Co
.+ ""’ {[‘kﬂe (th de* )4_ vxF (dYﬁ d):‘“&-'-)] x ‘§ + ‘ :
f. | +(gxBYx B (A ay®i. )} + & |

h

- (. &) u“f{dz“udz«u.- } - (@ vw fdZ®% dZ .. )+

- {y-Laz™ d?"’+ ]}

-

e . o (6.137)



./' ! V; g
ik-U- 4T a2V } + v-u. {dZ‘“4d?“’+ 3 =

= -.{vfk/p} u {dz“’udzm | (6.138)

ig.g.{df‘% dYy®,...} = ‘Y‘P,."{“Imtdf“‘"”} (6.139)
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Wh(r< y

@(x,t) = (6.140)
"

B'(x t)-= (6.140")
x

Flex 4y = (6.140")

e = | Pdpieoy et (o 1h0%
R

Tn:d ealing with these equations, we shall assume that the
mean flOW 2 is small enough in magnitude for the terms
'E’VZE: and u V B! toﬂbertreated as second-order quanti-

Lo d

ties. _
V' ‘ .The first-order eq\uations afre | : . :
(lwqu‘)P .dy®@ - a'(k.ﬁ) u.dg"” : % (6.141)
(um- Vk’) v d?“) 4» 23" ?“‘ | ”T( ' O (6.142)
= pldag- wPapY s L fikng-dy@]xB

kU.dZ@ = 0 = ik-f-dY™ ' .(6.143)
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Solvinae for Q-dY<O) and U-dZ(O)

X y-az ~under the assumption '? '
R-df (k, ) = 0 (6.144)
we obtain
L(k-B)
-dy® . _Y“xk) . . dz@
2- oY ki y-4z® _ (6.145)
U.d 2@ —FB{ok“df - 2(543)5,(451 (6.146)
where ' | . CS Z. :
-
. — 4 | v ,
T = vk*+i0 + - (% ~) ' . (6.147)~
| F,«i'zk’u,w} )
D = ag'k® + 4(x.Q)? & (6.148)

In

*these equationy’ we have adopted a notatlon closely

similar to that used by Moffatt (1972)



.+ Re “ {[Qﬂ dFDO] 5 [/2 . dY™@] & [y dg"‘-”'-]"‘ [g,d‘rm]}
Rco S . R

"6.4.3 Helicity and u'x BT

(
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/
\‘ I/

/for a locally 1sotr0?aﬁ"
/ "
force distribution / -

"

In a stddy of turbulent dynamo action, the principal

quantities of interest ar tﬁ;_turbulent intensity, the

helicity, and the fluctuating e.m.f. These quantities are

given by the expregsions

A (EXTURCIrE)
ko |

Ij (gc_dgco)’) . ('(2 . dz“’))

(6.149)
' \
W curg o’ “ (Y*-d2*)-fikxy.dz + yxy-dz}
- ) :
- [ fyaz=* T Tiexgaz@y & »
. L
) (6.150)

+ “{[U’ Z('”] [thU d?‘»] +

+. Lu*dzeon] [ipxy. d?"’+ Ixy. dz“”]}

u’'x B’ ‘= Re “ (v dz‘)x @-4Y)

- *

j] [U' dZ“’"] [ﬁ dY"’] +

7% (6.151)




2

The first-order terms 12 the integrands in equations
, .

(6.149)-(6.151) can be rewritten, making use of equations

(6.145) and (6.146).

( g.. 43«»0) . (g\t‘z(:)) = : (6.152)

= |35 {1o*e* d6*aF + 40000 Gexdg™)-Gendf) +

")
- 20k [0 af®- (kxdf) + o df -(Rxdf*)] ]

{urdzo* ] {ikxy-aza} = o (€35)

i z i v
=1 l:‘?ﬁl {101k df?-(kxdf) + 40e-Q)Uexdf®)-[Rex (kxtf)] +

~ 2K°0. QY[ o d€ *- (ex{kxdf]) + o (xdf)- (xdfN)] }
r .
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{gv.dzh”} x'i{E.JICO)}'ﬁzn ) . - (6.154) ’

'(k-g) 12 _
= u:):qk‘ ,-P%' {lcl‘h‘df‘idf + 4(5_(3)2(!‘41-0)‘(!“!)‘_

- 2K (k. Q) [0® dF*u (Kxdf) + axdf*)xdf] ]

L

tion iSvlocaZZy igotropic, so that

/L % /
' Y(R,w0) Y.
o. . — : 2 e s . - A
*F. d"‘ = ‘—_4“‘&4 k 6("‘ 'k,h.,} A (6»155)
N . ' .

. . Iz 1 -
Under this assumption, df and af satisfy the

equatiorns:

We shall assume that the turbulent force distribu—///
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(
f
df*. df a V¥/2pp? (6.156a)
(Rxdf®). (Rxdf) = ¥an - (6.156b)
af’. (kxdfy = o = (kxdf?). af (6.156c)
df*x(kxdf) = '3;{';1 = ~(Rxdf*) xdf (6.156d)
df‘x Aif = o = (gxdf") x (R xdf) (6.156€)

.

Substituting (6.156a-e) into equations (6.152)-(6.154) , we

obtain

(u’ dzev). (u dz‘”) = ,PD' {m’k’vme n)} (6.157)

{ge-dz@*}-finxy-az=} - |2 = EQ e (6159

{yr-dzoe} < {g- ay>} |
, 2y (® E)
21!' (qk‘uw) ~

(6.159)

I

{4(u mi.w} ‘

As may be seen from equations (6.147) and (6.148),

|o]? and ID|?  are even functions of w , while Im ¢

is an odd function of Fw . Thus, when the expresslons
(6. 157)—(6 159) are integrated over the range - to 4w
in @, (6.157) will beé the only“tefﬁ't% give a nonzero
resuff}_if w(kyw) is an even function of w . ‘Bothjiﬁe

™

;”.helfcityr given by (6. 150{ and the quctuattﬁg e.m.f.,

glven bQ (6. 151}, are therefore zero to flrst order when

w(k,w) is even 1n LW o. ;}

¥



Moffatt (1972) has considered equations (6.157)-

(6.159) in some detail, and has obtained nonzero helicity

¢

and fluctuating e.m.f. by assuming that

v(dw) - 0  when  w(k-@) < O . (6.160)

r

He has then examined the asymptotic behav&our of the kinegic

and magnetic energy of the system in the limit of large g

times. 1In this thesis, however, we,shall retain the assump-

£

tion that F' is locally isotropic - i;el'
b ' . .
‘ ‘ ¢
b(k,w) = v(k,~w) : © (6.161);

L . -
ffects of inhomogeneity and of nonzero

A _
mean flow. :

and examine the e
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6.4.4 The second- —order fluctuatlng eguatlons and their
solutions A - A

From équations (6.136)-(6.139), and the assumption

that terms involving u contribute only, ta second order,

. ‘ \
the second-order fluctuating dynamo equa%ions are

(iws QB dYP = 2iqk-vB- AY + i(xB) Y-dZV  (6.162)

+8-vY- A2 - e DIR- Y - (y.42*)-v B
(0+vRIY-dZD 4 2QxY-dZD = (6.163)

= 2i7R-FY-AE@ — 4 yPdp —ack.‘g)g-dg

~

+-‘£F{£ xB-dY+ yxg dYSIx B + cvie)xp dy }

iB‘Q‘—dIm’ __g_ﬁ.AI(O) : (6.164)
AR U.AED =~ 9.0 dF? ~{¥p). v.dz®  (6.165)
Solving these equations for g'dz(l) and g-dg(l) , we
obﬁain | ' h
| A . i = @) @)
e dI = .&)+Qh’{‘( Q)U d.? + 2&!‘5 VP dY + (5 166)
)
+ § 7y- 4;(@ - “‘.!-E)E"Im*‘2"‘3""’)"7§ l
u. dz?9 = —-{ 2k-QVdH, + a(RxdHo) + - (6.167)

4+ ioR [v Y- af-u(zr/f) Y. dz"‘]} o
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where

dH, 3 - 2ivEx(R-7)U-dZ® . FRxZPAp +  (6.168)
)
=

~

+ ile-d) R x U-dZ 4+ 2iQ{y

i {___EL_}R,‘{th(k V) 4*«» +‘§_Z&!q‘2a)+
ﬂu Lo +nR2 B o
SR AY =ty az) Y B | -

-é— k x {(gx[?;’d):‘"); B+ (gx?)x&»di"‘”}

AZV 4 (2/p)- 94T} +

b, The occurrence of nonzero second-— order contrlbutlons
to’ the helicity and the fluctuatlng e.m.f. is guaranteed by
the nature of the second-order terms in (6. 150) and (6.151).

From equatlons (6.145) and (6. la6),

[ng‘ﬂ] = [even in ] +-‘l[$ainca] (6.169)

[B-dy*] Lodd in &) + i [even in 0] (6.169")
Similarly, from equation, (6.168),

[die] = Loddin] + ileven inw] + [5kxyPdp]

s0 that
(U-43®] = Lodd in ] + ileven in @] + [a,dp] (64179).
| o ¥ o
[B-d¥®] = [even inwa] + L.Lm in 0] + [azdp) (6.170")

If we'assumeAthaﬁ the fluctuaﬁing'pressdre and force . X
dlStrlbutlonS are uncorrelated - i.e. if .-

‘—T— ——— . '.V‘ '

afidp = o = dp¥af; Vi (6171

b




382

— then it follows from (6.169)-(6.170') that

T Y-AZO)* [B-dY ] = [odd in w] + i [even in W]

(U-dZO]* [B-aY?]) = (evenin 0] + i [odd in ]
‘ (6.172)
(Y-4ZD)[R -4Y] = [even in @]+ i Lodd in 1]

LY-dZOT[B-dY ] = foddin 0] + i [evenin 0]

etc.

Fronmi (6.172), (6.150), and (6.151) we see that only ﬁ?én" "
: {

- order contributions (i.e. second-~order, fourth-order, etc.)

to the helicity and the fluctuating e.m.f. can be nonzero.
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h
J

6.4.5 Secgnd—order contributions to g'x g' in the

geodyn%mo

It is clear from equations (6.166)~(6.168) that there

are a large number of terms which contribute to g'x‘g'

in
the second-order approximation. We shall scale these terms

in order to determine which of them are important in thef

&®
geodynamo.
With the scaling %?
(k] ~ Y2 , Cw)~Ye , [v]l~ YL (6.173)
and the definitions |
Va = I~3/\H’,.;' W : (6.174)
Ra = Val/q. § (6.175)
Rm = 'UL/p . (6.176) |
== ¢ |2/ - K{Q
¢ = ?"/q'r o #. (8-477)
equati (6.147) féduces to f%v‘ ;zfﬁﬁu;
L <y %ﬂ‘
M~ 2 {[ By 2]+ i3[ 2 ]} e
L 2"[ (1+q2) * n (lﬂ;‘) +1 2 ?6»'}&78),
Similarly, equatlon (6. 168) scales as e
o @ ® @_

o | ._3:___ , : ‘e s (6.179)
| .+ Llﬂg)‘] * ["/n]“}*' [nggde] o

ﬁ“:
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where |
© = -¢ (ijf;kz) Roxleg)f}-ay® (6.180a) -
@ = Wkdlkx Y- ;13“’ | (6(;”“1}*801;?
@ = 2:.0f{vu-429 & (vrp). v. dgco)} (6.180c)
@ = -?f;{féf-é}g ;[g-gg-dz‘” (Y:dz=).v8 ]
+ak (6.1804)
i +kn((vxp dY*)x 8 ""!KB)XF AY“’)]}
® = ";,-:: {—:;‘f—q%} R x { 2in (g-g)g-d):“"} CE i80e)/;
: %)
© = ‘2‘,‘73"” (k-v) Y.dZC . (6.‘;180f)

In the fluid core of the Earth, we may _take

n v 3 m%/sec ' | ~ (6.181a)
' -7 7 2
vV v 6 x 1077 m?/sec / w65181b)
L ~ 3x10%m (6.181c)
a4 v 1 x 1074 nm/sec - (6.1814)
. _ //
2 v 7 x 10—5 rad/sec ‘ " (6.181e)
R v 102 , - (e.181f)
v n -l m/sec‘:- . T (6 1819)

maklng use of the estlmates (6 15), (6 82) , ang (6 100),

‘ tﬁaking the value of u sugqested by Roberta and Soward

@ . :
‘ b : . ) . . o . o
- . . .
R ! el . . | .
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(1972), and tqklng the estimate for the Alfvén speed, V, ,

giveén by Ac%fon and Hide (1973). From (6.175), (6.181a),

and (6ﬂ181g) ‘we see that
Ry "4 w/30 > 1 i 2> 30m o (6.182)

% 4
Also, from (6.18la,b) we see that

an ‘ o

1 YV o< 1 (6.183)
Jir n - : .
in the main body of the core if the Ggns (1972a) estimate
of v is. valid.

In considering equation (6.179), we may distinguish

three pOSsible sets of conditions.

(A) 2\<3OJ14L m.__and g« 70 -

OR 25/ 2km. and i) 70
—T -

el
%'*

(6.184)

&
)
¥

Under these condltldns, the various terms in
equation (6 179) stand in the relationship:
‘[@J > O] > (®1
@1 > @1 - . o (6‘.1"84")
(@1 > [®) |

'\ . \‘v_”j . . ‘
. The léédz?g'term in (6. 179) is thus @ ., ana

,dgi“[;g;;aa(g.gsgx -am +%ngP&p (6.184")

|

uc: o

| n\"“'g - :
is théuappropriate;approxlmation fonﬁ/éH ;”

J N Y i
A . ,‘{,‘ . . '

ot

s
TR
.
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() 42> k{oﬁ m. and jf;)?" (6.185)
Under these conditions, : ‘lr'
(@] > (@]
(®]1 > @1 ; 6.185%)
@] > (@] ')
] > (®] ‘
so that -

dtﬁ?)x i (Q-B)

TP Goenin) XXEDR LY. (61857

+~ i; kj(glpqip
{

(L:) £ > 2000 m. and &> (6.186)

Under these conditions

(@ > (@) > (O]

@1 > @] | L (6.186")
@ > @] | I

so Lhat 'f

CdHE & ‘gaqﬁv-gﬁdg“’,‘i— (2fp)- Y- dz=} (6.186")

+.j; g‘xng,P Jp l' o -

[
i

In all three cases, {A), (B), énd (c), term has been

ignored. 'Thié a@bfoximationiis cgftéiﬁiy/Q lid in the
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geodynamo, since [@] < [@]‘ even when the estimate
obtained 1in section 6.3.4 for the effective kinematic
viscosity near the core-mantle interface is used.

We may also note that in equation (6.166)
L2ink-yp-dY] ~ _;_m LirWIP-dy™ )

Since Rm >> 1 in the geodynamo, we may ignore the term on
the left 'hand side. Equation (6.166) thus reduces to

. s —=
e, dy® = “BQ) . dg(‘) + (®-2Xk-B) U.4dZ9
~ (wmlﬁz ‘ (Losqie?)? &  ~

»

(6.187)

+ —1— {(B-PIV-dZ - (y-dz*).vB }
(wquz) ~ = =

-

Scaling the tgrms in (6.187), we obtain

-[E,"‘Im] ~ quL%‘){[g'dEm] * [(:?%) ][U dZ"’]}

(6.187"),

Examination of (6.187') leads to the conclusion that the

terms in braces on the rlght hand side of (6. 187) can be

neglected prov1ded that ‘ gg%
¢ < Rm(Lp) o (6.188)

Equationv(6.187) may then be rewritten'

| .‘g-dY“’b.e _L‘EL 42"“ + DR - {6.189).

(ua+qh’)

(w*qkﬁ)‘ 5~ ' I! o Hb' :
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. ¢
We may now evaluate the second-order terms in the
in the geodynamo far each

4
b3, .
4 ’ ——
; @ 1ntegrdl ﬁxpr‘eSSh)n for u'x B'
of the three cases (A), (B), and (C). From equations
(6.155) and (6. 146),
- 1" ¥ (n. k (6.190)
2 | % B Imak

fus-dza*fxfu. 42“)}

r%'{cvflkﬂﬁ(g.g)‘} (6.191)

tg‘-*z“,“}-{g'dz“"} = |5

The sécond order’ terms in the integrahd of equation (6.151)

Lo

<
are thereforef given by ",

ﬁg{ [U' dza)tl [g dY“”] -l-[U' dz‘v)'] [g dY‘"]}

[ - dZm‘S)x( U dz“”) + (u* dz“")x(u dz‘“)]

:d 'Rz{ ‘(! E)

| \ (iDdenk?)
+ SEXSB) [rE [y dz) |
(ko+ner?)* "z~ =

2(x.B) —
= . dzeme], ) ]
' ('l k* 4 0?) gm{ [g T ]‘[g - !
b2 v zk.F
ilk w (kg Xk B) IfDl ¥ (,,_Mq- k (6.192)

Q0
24 a\R
L (et 0%)
. £ : B

< . . .\ ) . :
> In derlvang (6.192), we have made use of™ equatlons (6.145),
(6. 189), and (6.190). LR “
: When case (A) is cons:Ldered, so that dH is given
by equation (6.184"), ,«

'3
s




& £

m { (g+-¢2(')')“) X (Q'dgw)) } =

L

[2(5-9)@9” + o¥(Rx dyé‘")] x [U-dZ“’)] +

ﬁ

- _q_:’[v Yt d @ o (2/p)- u*. dz“”]RK[U “7“”] }

'll;‘ { —~2i(k-2Xk-U) (Rx Ut dZ=*) x(U- dze) o

= io% (B [Rx (kx G*

(6.193)
z“"’)i (Y-dze) +

L@ (T AZ T aP - 9% az Yy a2 |

)

R

= im-;; { 2i(R-QXx-T) K | p,‘ 2 [0k + 46.Q)] +

= 20 dma (X R-Q) K [ZFLe +

@ (T Unaze® s Lyp. gr dZ@0 YRy g ) |

)

Pp’, {2‘Re]>(lz X & Q)i-[m’kuwa]g +

4 2ReD K QXK T el R K s

(4
From (6.193),

(6 178), and (6.184), the terns on the right
hand, side of equation (6.194) scale as

L



LY

L
4 e

ﬁ!tbOSe under the "average" bar -

B
&

whenever N

g < R ~ 100 (6.195)

(6.195) will be valid under the first set of conditions
Characterizing case (BA) (see equation 6.184).
Substituting equation (6.194) into (6.192), we see

that in case (A)

Vi

tf L < 3C)J _ij T0

e { ( g-_dgcc)v) X (E . d'\!w)) + (g‘lq dz@)o) X (g_ drm) } ~

Bl conan® gy

.{_-RZD[ ur’s*n:;-::cg-s)‘f(4:-;):#] + %(i6_196)
71.‘4.' 2<2km,i>loo .

T eaxened Qg » -

+ G%;%.D% Re i.%f:.’ ,g. a«m Fup- g a@')n(u 4;«*)}

< (6.197)
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Similarly, when case (B) is considered, so that

d‘}lo is given by equation (6.185"), '3, )

gm{ (g.‘dEO)V)(B) X (g,‘dz@))} = ’ ‘ (6.198)

S~ (RxY*-dzo?)x(y-dz=) +

- 4m{ 2i  (R-QXk-UXr-B)?
f/lb. (QRZ—&W)z =

. - — 2
+ 4T (R-gXk-B) (R (% x U'-d?“’“')]x[t}-d?“’] +
frD%  (qrr-in)? 7 == =

. 2
— 2 (g g™ dFOT 17PN dEO ) <g.¢g«>)}

Scaling the terms on the right hand side of (6.198), we

obtain

u"miz{ 208" . Ra . (+g) Ra }
23pr I n( 1+¢) (H%‘) (+q*) Rm

The second term is dominant under the conditions specified

in (6.185).. Substituting (6.198) into (6.192), we obtain

if £> BOJH»j*_m. »i<7°,

‘Re{ (Y. 45‘“') 2 (3 - dY®) + (U 4z x (B - dY) } =

.(I,g QYk-gXk-B) :nfz 1:0' Yo & -
(nkt+0?) (6. 199)

lblz f/u(q’hﬁw‘)

Tt o?) (B-B)
k ('l k ) f (nah‘a w?)

lbl’ (Reo jmh-imfﬂeh)} |

391



392

Finally, when case (C) 1is considered, so that

jgo— is given by equation (6.186"),

jm{ (g‘. dg(l)‘)(ﬁ) x (gdg(‘»)} = (6.200)

= e f - 2EQ) 20 (9. UL dZ®™ + Lup- U dZ9*)Qx(Y-dZ=) +
)‘ ~ = ~ P~ = ‘?‘ ~ ~
T2 (Rx Q)% (Y- dz™Xy Ud 2“‘"+%vf U*-dze°) +

- 2t
»*
- ;L_).(v U*. dZ* + L 9P g d?“"‘)kx(u az) |
p* =
' i 4 side of (6.200), we

Scaling the terms on the right han

obtain . ///

wi? { 1 4+ ol un‘}

LLIDI Fe ¥ o |
| u Q) qR3 , _a'R3 } |
1+ :
~ 2L1Dl { Q’_()% + 2401%; i§ Va> 2/.‘
Lo 2)R \ )
o~ + (Y 4+ ('rﬂ)'zj W Va<%y

2L1pl

Under the conditions specified in (6.186), (6.182), and

(6.181), the first term on the right hand side of (6.200)

is dominant when V, > L/t . When V, < 2/t , on the other
hand, the first term on the right hand side of (6.200) will

dominate only. 1f 1 > 1 day . Substituting (6.200) into,

(6. 192),,and assuming that the flrst term in (6.200) is

domlnant,‘we qbtaln




393

if £>2kem » §2> 70 (and T>lday , if Va<4/7)

-ﬂe i(gs_dga)t) x (g.dvlr(b)) + (gy_dzcc)) x (/2' dIm) } =

49k*
(Q’k" +w032)

~

) -

wo!

(- QX k. , (6-201)

o{ 2Rﬂ[‘L‘(V-(ﬁdZ(B)O+%Zf.gc‘dgw).)g‘(g’dzcc))J -
) i = X
3 LY (g @ . ]
* 'PD' aw (k-2) $ma

n’lk4’w2 ~

In equations (6.196), (6.197), (6.199), and (6.201),

we have, from (6.147) and (6.148),

P
o = w{l (& B) (6.202)
fu(n*itew?)

Reo = qe*f ¥ 4, __(x.BP 202

i 1 {"L P,u(q‘k‘uw’)} ’ \6-202")
| , A
Jmp =  2k® 9Ymo Rea (6.203)

KeD = R*{(Rea) -(§ma)*} + 4m.Q)> (6.203")

@
We may now write exp’licitf(ﬁxpressions for the
fluctuating e.m.f. u'x BT in the various cases considered

above.. 'Substituting equations (6.196), (6.197), (6.199)

and (6.201) into equation (6.151), we obtain

(.33

" .
; ) \
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v
(M) 1<BOJ ‘L » g <o
WxB = || dkdw _Ank* =y B
B s [t |2 e woaaxe Bk

,4/
. {—k:-a QmD dma Rea - —‘—-— ReD Lﬂ’k:*(*ﬂt)‘&’-& «Bﬂ)“] +
Ipi DI A &

2:09:-10'
r————— (6.204
(ke ?) )

ERESPY

, A
» e " 3

. (A2) 1L« 2hm . i) oo

uw'xB = Idkm ' Dl ¥ Ao (R-QXR-GXR-B)Imak +
®o 4

21’1’ Q24+ w?)? -

+ ([ 208y E

6.205
/fu (n*et 4 0%) ( )

a2 " . -
. ﬂe{.;.; (ggt dg(o)t,._ _‘0?!’9 gt,dzcou)!x(g,;a?ﬂ)}

(B) € > 30 “’j , 1k 70

W x E’ x “ dw% 2 _.‘!l'!'_.(g-gxg-[uj

2w (q’h“«rw’ )?

Xk-B) dmak -

.{w - - kzm rzqwh‘(ﬂecﬂeb+ﬂm¢§MP)*

J

+ (q"k"- N Reo 1mD Jmc’ R‘D)] }

s (6.296)
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() £>2krm | §> 7o (and T>1 day, if Va < &)

ey 'lr.%r. R-U)Y—2____ o k } (6.207)



6.4.6 The effects of locally isotropic turbulence in the
geodynamo

The expressions (6.204)-(6.207), along with equations
(6.202)~-(6.203'), allow us to comment on the possible
effects of a turbulent force distribution in the Earth's
fluid core. The first'question which must be ansﬁered is:
what value of q 1e appropriate to the evaluation of the
‘expressions for uw'x B' ? 1In his study of the first-order
terms, Moffatt (1972) has suggested that the largest
contributions to the integration over w will come from
the’"natural" frequencies of the undamped system - ji.e. from

the frequencies at which

"

1im

2 oyl 2
w,n - 0 | = lDOI = 0 (6.208)

|D
A
From equations- (6.202) and (6.203) it may be seen that these

Mnatural” frequencies are given by the roots of

) 2
D, = 4Rr-Q) - k’{w _L&_@}? = O (6.209)
o7 fue .

Solving equation'(6.209), we obtain the expression

'+ (Q'B) i.J(Q’k)z‘._-(g‘E_;a

0" P— —_— . -
n: ) 'Y 0“ ‘ (6.210)
for the "natural“frequencies W .
. To a very crude,approximation, it follows from

equation (6.210) that

\

C L el ~ 0% v:/gaj:, | . (e.21D)
: ~ ‘ L e - .
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The value of g implied by the "natural"” Freqguencies is

therefore

‘%n = 2’l“"ﬂﬂl/'.l ~ J(le/'l)z + RAQ‘ | (6.212)

1irements

Cheéking equation (6.212) againstrthe rey
specified in each of (6.204)-(6.207), we see that the
"natural” frequencies w, ~are likelx to be consistent with
cases (Al) and (C), but not with cases (A2) or (B).

Assuming that the crude approximation (6.211) is valid in,
some gense as an "average" over the rahqe of integration in '
d

kK , may restrict consideration to equations (6.204) and

(6.20%) when the "natural” frequencieé‘are'dominant.

1% must, however, be pointed out that the "natural"
frequenciés wili!not necessarily give the largest contribu-
tions to the integration over w 1in equations (6.204)-
(6.207) . If;thé spectrum function ¢(k,w) of the force
distribution vanishes in the neighgéurhood of the ;natural"
frequencies; or if'the spectrum function i? sharply peaked
at g "driving" frequency W, o éontributiOns from the

natural“ frequencies may well be negllglble. We may

distinguish two possible sets of conditions:

- ¢

a. w(k,w) is a "broad band” specffum function,‘with at
least one of the "natural" frequen01es W included

in the band 1n Wthh Y is nonzero.

b. ¢(k(w) is sharply peaked at one or more "drivihg"

frequencies.

a 4



When (a) is valid, contributions from the “naturél"‘
frequencies will dominate%\he integrals in (6.204) and‘
(6.207), and the approximate method of integration suggested
by Moffatt (1972) will be applicable. Because of Fhe
condition (6.212), it will not be neéessary to consider
€quations (6.205) and (6.206). It should be noted that in
the remaining two equations it will pe necessary to include
cohtrlbutlons from all four "nAtural” frequencies. Moffatt
(1972) obtains contributions from only two of these

A

frequencies because of his assumption that Y(k,w)
.
satisfies the condition (6.160).

. On the other hand, when. (b) is valid contributions
from the "driving” frequencies will dominate the integrals
in (6.204)-(6.207), and it will be appropriate to replace
v(k,0w) with a sum of terms of the form y(k)6 (w-w ) . As
‘there are no restrictions on q in this case, it will be
necessary to consider all four sets of conditions (6.204) -
(6.207). .

‘Because of the labour involved, we shall not carry
the evaluation of u'x B' any further in this thesis.
However, the principal features of the various-.contributions
are already ‘apparent from the equations in their present

form. we shall first polnt out several genéral properties,

shared by all four eqqatlons, (6.204) - (6. 207)

ro

ol .
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(1) In each case; integration with respect to w over
the range -« to +« can give a nonzero result,
since all the terms in the inte€drands are ecven

functions of w

{2} In each case, the integral vanishes if n = 0 .

Thus dissipation is essential to the production of

nonzero g'x gi (see section 1.4.2). This

property is shared by the expressions obtained by

~—

Moffatt (1972).

(3] In each case, the expression for u'x B" gives an

“ a-effect at low values of the mean field, E .

It should be noted that the integrands in equations’
(6.204)~ (6. 207) are nedrly all rotation-dependent. The only
exception is the second term in equatlon (6. 205).'mWhen the

n

necessary (averaglng in this term is carrled out, we obtain’

I
(V- yY®-az@s + FIP-YTAED*) R x (Y. dz®) = (6. 123)

f

o n“[*x (_3_) ]h* 43 kz(kn) [hxv(i)]-a-

ol 7% s

+ 22 23 . n)[z.. gm 7(3) - (.a_) wv] -(kk-*1)]

"making use of equatlons (6. 146), (6.155), and. (6.156).
‘Thus, from equat1on (6 205), the contrlbutlon to u'x B'

: e Lo N
'Wthh does not vanlsh w1th Q is ’ ‘
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= 7 - (6.214)

2n k4 = 5w
e TS e (3 e
R W

o

subject to the cond;tions 2 <2 km , g > 100 . This term
may be regarded as an example of the introduction of a
fluétuating e.m.f. (and,éf helicity) through large-scale
var;ation of the turbulent force integsity (see the dig-
cussion in section 4.3.7). o
| The various terms in the‘integrands in eguations

(6.204)-(6.207) ﬁéarly all dépend on the presence of a
‘mean flow E - The only exceptions are the'second term in
equation (6,205), discussed in the last paraéraph, and the
first term in equation (6.207). It may be shown (sece Table
17 below) that the second term in (6. 205) is domlnant when
B is large, while the first term in (6. 207) is not. ‘Slnce
B may be considered large in the geodynamo, the importance
of me an flow ih turbulent .dynamo actioq in the Earth
appears to dependfcriﬁically on the véfﬁes of & and =«
appropriate to tu;bulence in Fhe Ecne.

f The integrands in (6.204)-(6.207) show a variety of
dependences 0n"§‘. These dependences are summarized in
‘; fabie 17, dverleaf.kat can b; seen from tpe table that most
6f ﬁhé'termsllead'to aISimple a-effiet ag low values of ‘5 .

However, the seébnd’aﬂd third terms in.equation (6.206). have
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a B3 dependence at low values of B. At high values of
B all terms are small, but the second term in efjuation
(6.205), discussed in the last two paragraphs, falls off

more slowly with increasing B than do the other terms.

*
A
\& . TABLE 17
pDependence of integrands on B in
expressions for u'x BT
Equation Ter& Dependence on B
— Low B | HighB
. - L5
(6.204) 1 B B
2 B .3 77
3 B B >
Hh
(6.205) 1 B B
: 2 q B B’
: ' = = —5
(6.206) 1 B B
: 2 B> B ° o
- _ -5 A
3 B B 72
: ' — - -7
- (6.207) 1 ‘ , B B
3 , _ _
2 B B °

vyt

(It should be noted-that in the vlastl few paragraphs, and in

“Tc’}bZeJ?_',j‘ B=|Bl )

a e : . . s

N



‘zero as B .

~in€eﬁsity; At large values of B , g'x BY

#9
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¢

We may”now summarize the effects to be expected from

a locally isotroplc turbulent force distribution in the

‘Earth's fluid core. The dominant effect of, turbulent

forges outside the boundary layer is determined in large

\

part by the characterigtic length scale 2 of the

)

“turbulence, a~d by the ratio of the diffusion time on this .
- . ce

length scale to the ¢ffective tims scale of the turbulence.
Tﬂié time ratio is denoted by q - |

If both ;i and g are reldtively Jsmall" (see
equation 6,204), an a-effect appears a&t low values of B A

(ﬁhé magnitude of the mean flux density). This effect

depends for its existence on:the presence of both rotation

and a méﬂﬁ‘onw. At large values of B ., B'X‘g' goes to
: 5 7 -

&

If poth £  and q are relatively "large" (see * :
- . \
equation 6. 207), a rotat10n~dependent a~effect agaln C

appears at low vaIUes of B . Only part of thls effect

depeﬁds on the presence of a mean flow, the remainder

depends on the presence of gradients of the turﬂﬁléhaforce

he remainder,
-7

ain goes tq

A

zeXo. However,.thé part of he effect \

ean flow- .

!ep -dent dlsappearB more gradually than:

to zero as B Arather tha;vzé B|

% If % is "Bmall"'while q is "1 rge" (see equation

6.205), an a~effect agaln appears at low values of B,

4.

§ : ; - E .
. . hl .
R - B : & . N : ' .
» I —- « -
4 - - '
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One part of this effect depends for its existence on the
Presence of both rotation and a meen flow. A second part
depends 'on the presence of botﬁ roéation and large-scale
varjations of the turbulent force intensity. The remainder
of the effect depends only on,the presence of large-scale
variations of the turbulent force intensity. At large
. (]
values of B , all .three parts oﬁ thg effect disappmear. .
Howévér, the second and third parts fallhpff more'slowly

L Vs .
with increasing B than does the first ( B 3 compared

with E?HS ). In general, B'x E' is unlikely to have the
- behaviour described in this paragraph if the spectrum of the
turbulent force distribution has a fairly uniform amplitude

Over- a broad band of frequencies w

If 2 1is relatively "large! and q is relatively

s

"small" (eee equation 6.206), an a—effect appears only at

very small values of B . 'At somewhat laxger values of B ,

e i P i o -
2'x B! wvaries as zB3 - -Both the a-effect and the B3

S

effect depend for their ex{éféﬁce om the presence of

: rotation and meah flow. All terms contributing to g

L
B
go to zero as B "2 at large values of B . In geperal, -

.

“ ETXRET is unlikely to have the behaviour described in thisi

Paragraph if the spectrum of.the turbulent force distribu-

.

’

tion is "broad-band" in" w .



6.5 Summary of'Chagter 6

c

This Chépter is concerned with the hydromagnetic
dynamo problem as it applies to the Earth's fluid core.
The magnetogeostrophic approximationris considered, and a
general expression for the fluid velocit& in the core is
obtained, giﬁ}ng the velocity as a fungtion of the distri-~ ’
bution of body forces, the magnetic field, and the boundary
conditions.

The equation obtained in Chapter &5 for boundary-
layer control of the external magnetic field is investigated
in terms of the distributionlof body forces at the core-
mantle interface. It is shown that radial forces at the
core-mantle interface camnot account for the observeq
temporal variations of the geomagnetic dipole moment.
Aztmuthal forces, on the other handc can account for these
variations. The azimuthal force term ~p(é x r) is shown

to explain the dipole wabbiékrépcrted by Kawai and Hirooka

(1967) if the kinematic viscosity at the core-mantle inter-

i

. 2 . )
face. is of the order v n 1-2 m /sec . This term also leads
to non-periodic variations in the axial dipole'moment on
time scales similar’to those which characterize geomagnétic

- -

polarity transitions.

The effects of a turbulent distribution of. body

forces in the Earth's core are also: considered. Turbulent

forces outside the boundary layer produce a .variety of

effects. 1If the turbulent force distribution is locally

i
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icotropiec, the dominant effects are determined’in large
3

part by the characteristic length scale of the turbulence
and the ratio of the diffusion time on this length scale

to the effective time scale of the turbulence. In most

cases a rotation-dependent a—-effect is dominant when the
/

mean magnetcic flux density, B , is small. This effect
may also depend on the presence of a mean flow, or the
presénce of Zarge~scale variation of the turbulent force
intensity. At large values of B , the fluctuating e.m.f.
u'x B" gocs to zero. The various types of behaviour |

which may occur are summarized at the end of section 6.4.6.



~

7. FINAL SUMMARY

The prinoipal aims of this thesis have been to
summarize present-day knowledge oflastfophysical magnetic
fields,wﬁnd to discuss the possibility of their maintenance
by dynamo action, with particular reference to the effects
of turbulent distributions of force and of. velocity.

Chapter 1 is devoted to an overall review of the
dynamo problem, from’ both the observational .and the
theoretical g%ints of view. Schuster’'s hypothesis concer-—
ning the magnetic fields of massive rotating bodies is also
discussed. It is pointed out that this hypothesis has no
£xperimental justification, and that it leads to incorrect
predictions in certain cases. Extreme cgution must  there-
fore be employed when the hypothesis is used to predict the
surface magnetic fields of bodies for which no observational
data are available. 7

In'Chap~er 2 a review of mean fiéZ& electrodynamice

is presented, /and the mean field dispersion relation for.

“wave" mean fAelds is Ffast in a novel determlnantal form.

a new terminplogy is proposed for several types of

{

homogeneous, stationary turbulence with particular

.-
invariance p qpefties.’ It is hoped that this termlnology '

will reduce the confusion which has sprung up in receﬁt

Years in connection w1th the terms zsotropzc and mtrrcr—

»symmetric. &

i

%\1 o " -  4“66
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Chap ter 3 is devoted to the effects of Pl-fnvariant
turbulence (i.e. stationary, homogeneous turbulence who{;
average properties are invariant under space-time inversion)
on magnetic fields which vary on scales larger than the
turbulence correlation length and time. It is proved tha't
the claim of Lerche and Low (1971) . that isotropic turbulence
in an incompressible fluid can support dynamo action is un-
founded. 1Indeed, no PT~invariant turbulence can support
dynamo action in an incompressible fluid, in the first order
smoothing approximation. 1

The decay of "wave" mean fields in the presence df
PT-invariant turbulence is also studied in Chapter 3. It
is found that a number of conditions must be satisfied by
the turbulence and the meaﬁ field if spaéially perioéic
mean fields are to exist The case of isotropic CGaussian
turﬁWZéﬂce is considered iq detail, and several restrictions
on the parameters of the turbulence and the mean field are
-derived.  These restrictions can be interpreted as
‘restrictions on the usefulness of the Rridler expansion .
(R&dlér, 1968; Krause and Radler, 1971) as a representation
ofr the fluctuatigg’e.m.f. ‘§T§*ET . It is also shown that
the R&dler expansion i; not useful when the mean field
oscillates with time. Several restriqf?bns on the éxistence
of spatially periodic, oscillatory, decaying mean fields are
derived, andfthé behaviour of fields satisfying these

restrictions is studied numerically. It is suggested that

Y
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the numerical technigques used here may well provide the
most conyehient method for investigating dynamo action
generated by non-PT-invariant turbulence. %he possibility
of a dynamo with spbradic ﬁélicity is also discussed.

Chapter 4 is concerned with nonstationary,
iphomogeneous turbuience and its treatment within the
framework of mean fiél%ielectrodynamics. A successive
approximation techniqué:is developed, and is applied to,
the kinematic dynamo problem in this chapter. Later, in
Chapter 6, the technique is used in an investigaéﬁon of the
hydromagnetic dynamo problem. The possibility of intro;
ducing helicity through large-scale variations agf the
turbulent velocity distribution is also discussed:in
Chapter 4. In Chapter 6, an example is grovided is\which
“helicity is produced byrmeans of large-scale variations® in
the turbulent body force distribution.

= i

Iﬁ Chapter' § the problem of téme variations of *#
astrophysical m;gnetic fields is studied, and the suggestion
is ﬁade that variations of this sort may well be subject to
 boundary-layer control in ghe geddynaﬁo;, This possibility
first arises in cénnection'witﬁ the “az(r)" dyﬁamo in a
'spherical shell, which is studied in detail. A more
general study 1s then carried out, maklng use of a novel
representation of the magpetic multlpole moments of a

sphérical current distributjon in terms of the integral

moments of the internal magnetié flux density. It is shown
. .
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* that for the geodynamo, boundary~layer control isvonly
likely for field variations on time scales less than fO
Years. JDipole wobble and larée—scale variations of the
axial magnetic dipole moment are shown to arise from
Ccertain dietributions of velocity near the outer boundary
°f the EBarth's fluid core.

In Chabter 6 the idea of boundary~2ayer control of
the external magnetic field of a spherical currént distri-
bution is studled in connection with the hydromagnetic
dynamo prob[em. It is shé&n thdt radial forces at the
core~mantle interface in the geodynamo cannot account for
the observed ‘temporal variagions of the geomagnetic
dipole moment. ' However, it is shown that the EIOW,

systematic decrease of the Earth's speed of rotation can

explain the observed Wwobble of the geomagnetic dipole axis
if the?c?:g;sity at the core-mantle interface is of the
order v A 1-2 @ /sec - Non-periodic varlations in the
axial.dipole moment on time scales similar to those which
,Characterize geomagnetic polarity transttzons can also
arise from the slow decrease of the Earth [ speed of
rotatlon.

The effects of a turbulent dlstrlbutlon of body
forces in the Earth's fluld core are also cbnsidered in
Chapter 6. Turbulent forces deep in the core cee produCe
a variety of effects. ‘The domlnang effeCts are determlned

A

-in large part, by the characterlstic length scale of the
/ ! .




tﬁrbulence and the ratio of the diffusion time on this
length scale to the effective time scale of the turbulence.
In most cases, a rotation-dependent a-effect is dominant

at low values of the mean magnetic flux density, the effect
being controlled either by the mean flow in the core or by
gradients bf the turbulent force intensity. However, under
certain conditions other effects can be dominant. The
relevance of these conditions tg the Earth's core is
discussed. At large values of the mean magnetic flux

Al , ]
density, the fluctuating e.m.f. u'x BT goes'to zero.

A detailed description of the types of behaviour which may

occur is given at the end of section 6.4.6.

41V
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APPENDTX 1

UNITS AND CONVERSIQN- FACTORS

<

A.l.1 SI units

In this thesis, SI units are used as a ger<ral rule.

et
For convenience, a summary of units commonly enCounte -ed i

given in Tables 18 and 19. These tables include conversio \

factors relating SI units to unrationalized c.g.s. elec. —o-

!
magnetic units. More complete s

afies are to be iound
in many standard texts. (Cee, [ffor example, Stratton, 18941,
\

pp. 601-603; Allen, 1963, pp.-\(21-29; Land, 1972, pp. 3-4.)

It should be pnoted that in Tables 1-6, magnetic flux
, L X , i £ .
densities are quoted in gauss to facilitate comparison with

‘values given in th¢ literature on astrophysical magnetic
. / .
~fields. As may be seen from Table 19, the copnversion
s i “*

factor which must be used to convert these flux densities

to SI units is

1" gauss (G) 10'4 Weber/m . Wb/m ) ' _(Al,l)i

i

A = 107" testa (m " 0 (AL.1%)

i
‘A.li?‘ Magnetic dipole moments :
) ~ L4 - \ ) , A n. ’
\' In the llterature oh astrophy51cal magnetlc flelds,

Aagnetlc dlpole moments are frequently given in gausa cm3

(see, for ex&mple, Warwick, 1971; @%arp, Russell and

N

—
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A
AN

. o . . i . . 3.-1 . -1.
Gilonrn, JHTAT . This unit llas the dimensions MLOT "¢ ;
~ ’
. . . - 3 . 2[ ’“1 _ e e :
L Incontrast to the dimensions LT Q  quoted for magqnetic

\OuwnL 1n ‘/’u/‘:"»-v‘z‘!n The discrepancy lies. in t,h*éfiftion

of "magnetic dipole moment ", Tn'v.q;s. el®ctromagnetic |

uﬁits, }Iuev“dipolu’momvnt” measured in yauns».vnj has

exactly the same magnitude ashthq Ldipoln moment mcas&rcd‘
!

in oeratod-em (or erg/gauns), provided that R

Since this condition is satisfied in =t astrophysical

» .

o i z , ) i
given in ghwuse-em’ on the same footine as those «given in

situations, we may treat astrophystcal dipole moment s

i

[

RN .
cry/gawss (oconoted-em”) . The conversion factor to be used
is ' '

1 exrg/gauss = 10 ampéré~ﬁz (7jm ) (Al.2)

. . ! i

. as indicated in Table 19.

. [It should be noted that 75&1";11 detatled disaussions
s 7\ e : '

: P .
of the problem of units iniéleégromagnéfic theory have

appeared in the last few vearsT' A particularly useful “

account is given by F, Primdﬁkl, in Analysis of unites in
) 7 N - 4 i . o 7
ezectramaghafism, Publications of the Earth Physics Branch,

]

‘Department of Energy, Mines and Resources, Ottawa, Canada,

vol. 42, no.’'1, 1971.71 . o -
. | g
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APPENDIX 2

MULTIPOLE MOMENTS OF CURRENTS IN A SPHERE

I\
. ~
A.2.1 IES”?ElfIP‘Ie expanblon of the external maqnetl(
field
e Consider the magnetic flux densityu B  due to a

current distribution Jj ipn a volume V whose exterior,

V , is insulating. The magnetic vector potential at the

point r is (Stratton, 1841, p. 234\

ACe) =JL[&A§ (A2.1)
4% J, v fl ~

~

For points.in V , the quantity ]rF€[~1 in the .integrand

of (A2.1) may uséfull& be expanded in a Taylor series to

give
= 24 (—-t) -
;ﬁ(,’.') B 2‘, m' {axda:xd dxq r‘} N
(A2.2)
[f r Y, 6D af
= 4,, A:L [{(}' v) -—} J(?\ d¥ (A2.3)

The integrand in equation (A2.3) may be'expgndea

as follows



where we have

'§t - m.—.& "

~

used the notation

=

(A2.5)

am

IXa,- -

i

1‘ ¥k fq. rai j“‘titr“‘\’ﬂ o r‘»\

I xa,,
From (A2.4) we

see that

taomry) =

]}

[}

(m+1)i[v (JFM)-(V J)}"‘ﬂ] v % +

/

+mqp;mrwwﬂz¢}

= 1 mei (o 2 ] .
(mu){[ f ) ~(¥-PE™ ] v *} + (B2.6)
m m-i ]
* (mu){(: v (E‘:’.)x !T}
where
v = 1 -:T (A2.7)
. 4, 0 o ,
v = 19 — 1, 2 5 v
i ™ ~¢ aV‘; = sl A (A2.7")

Substituting (A2.6) into (A2.3), and applyianﬁauss’

theorem, we obtain

- (_0”‘ ' . mel
é(r) 13 ngo m! {(m+|)[ IS iz a3 + (A2.8)
.&:‘ s (V'- » W'd . vm_‘.
fdy™ar ] em
+ —= [(r-v)"‘“‘(}xj)x vi d¥ }/

el GO« Eljgom - 1g o ers )
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~
where % is the surface bounding the volume V . on S
» -~
the boundary conditioh (1.59) applies - i.e.
n.j =0 on S (A2.9)
—~ P 4

Also, in the quasi-steady approximation equatiorr (1.15)

implies that

1 ?

g’-j = O (A2.10)

in V . Equatijon (A2.8) thus reduces to

Ay = prym 2‘ (—:! T"")IV"" x Y%: (A2.11)
where l
- | T = (m+ )I (t‘x.ﬂf""' (A2:12)
and we have usqd the notation |
Ty Wy L & | (2.3
“':"1 1 €an -t " :

ﬂ?auém axﬂ OXCIf‘* axﬂm '(‘

The maqnetié flux density B in V , the exterior
of volume V , is given by the curl of equation (A2.11). -

B() = ~& F W yrem gmior 2
B¢y = -4 B ey o

*Since B is cdntinuous:across S , by equations (1 56) and

(1.57), equatlon (A2. 14) 1s also valid on 8..
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Al .
A.2.2 Thgfmagneticimultipole moments of

~

a sgggfical current distribution

. From €quation (1.15) we have that
[ ] .
i= = v'x B : ” . (A2.15)

in Vv . Therefore

(ExP ¥ =

"

]

1oy

(B- ) VI '+ (a2.16)
=) +

(me) BE™ }

<
where we have made use of the 1denf1ty

v {rs;"“} | (i21)

= (me2) FUBYE™ + F(REBYFT (A2.17)

éubstituting (A2.16)‘ into (A2.12), we obtain
(me1) _(my’
£ 3) pom [ {9(B-F™) - (FBE™) +
+ (m+nag"f' =83y ™ }ay

=‘L{Q§A¥"‘fg-'§§§""'}ds +r " (az.18)



L
{
£

b
When V 1s a spherical volume,

n = { z/l}.l}s - S (A2..l9)
and |
nB-¥" = g-§§"“ on S . (A2.20)
Also, |
Q’!‘E’!m:. = | v, § g"“J on S (A2.21)
where we have defined ;
vo = ¥l on S — (A2.22)

Substitdting (A2.20) and (A2.21) into equation (A2.18), we-

obtain

L

]

]

-
-

m "

_ro"'-I Bn™'das 7‘4- Iﬂ-arfwka a8 +
s ~’~ . “~ ~ ~
+ [ {menyBY™ — (8- 1) 9/ F™' } 4F
e v ~ n ~ -~ o~ ~
. :
. m-J ' ‘o g mi -
0 L?n 45+ J,7 81" ag ¢

i ]

?

+ [ famen BE™ - (8-}

t gm-14 '
8§ ¥ }ag

kfﬂoi)!ég"k‘..( .

+ L{ B-Y'I™+
/

S " gg | R
Yo L Bn ‘{.43 + (A2.23)

[ imeBET + 1B Y E —@ DY ™ | ay
Ty =R AR R B

‘
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4]
H «
=
9]
[N

v.B-= O > (A2.24)
- ( ) R '
" " \7‘(

by equation (]. 3) . \

A.2.3 Surface® term?, and’theorems on spherical harmonics

Q Since the expansion (r2.14) is valid on S , we may
substitute it into the surface integrals in equation (A2.23)."
Carrying out this substitution, and making use of the

notation (5.93'-(5.95), we obtain

~

L Bn™'dS = S (A2.25)

& ® e
= .___.__ : [ m—1 -
PP R nh K NN 20y

! s , :

In order to evalumuate the integrals on the right hand side
of (A2.25), we must consider the properties of spherical

~

harmonics.
3/334; -

Since the differential operators 9a; =
and V are commutative,
2 | 20 - . ‘
v 3«"'34.? = ~3¢....3a~v-;_— = O (A2.26)

-

Thus a,,.._‘.a%.;‘. is a spherigaé harmonic. .In general,
for any polynomial homogeneous function fn(x,y,z) of

‘degree’ n , f (3.2

n ,32)%- is a spheragal harmonie of

Y

Py



f

dogrec ~-(n+l), or el

s

€

1s zero (Hoboson

Yhe expression vanishesuiﬁgand only

multiple of ,{xz t oy

2

cTs a spherical harmoni

+

" u’f~ rlé‘i’/l‘l’f’ -'(

ties of spherical harmonics, we have

n.v aa,"'aak "‘lf

on S , as pointed out

by
-
.

1931, [

if td(x,y,z) is a

z }v_, It follows that an,“'aa..?g

Ft1). " From the proper-

that ’g;
= 2 aa‘_'.,.aqn% )
__(n::) da,.. ay L (52Lz7)
in equation'(5.96;, |

It may also be shown (Hobson,

1961, pp. 147-148)

that the components {ni} of the unit vector.normal to S

satisfy .
Ay Ny = '&'xh Fa 3P
($/2]
% Y*—z“(" e, 45)
S i

equal to q/2 , -and Yn(f76,¢) is
L4 .

harmonlc of degree

n-

It fOliowé

appearlng on the rlght hand side of

of the form |

f 3¢, 7-..- ", ...

P '
where . Y and. Y

k q-2

i

are spherical

n and q;Zi Ee%pect1ve1y¥

R V'u’)hcrc (P+P2+P) = %

(52.28)

where [q/2] denqtés the Jdardest intedger less than or

a solid spherical
that the integrals .
equation;(AZ.ZS) are

> . )
- S

. dS | . (A2.29)

harmonics of degrees

s -
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oy

. ¥ '
In general (Hobson, 1931, p. 144), if Ym and Yn
W )

are ' spherical harmonics of degrees m and n  Tespectively,

H

' ]
fs Yoo Yoo A4S O , mzn (AZ.30).
- ’*

Combining (A2.29) and (A2.30), and Sﬁbstiguriﬂq the

resulting expression into equation (A2.25), we find that
. /

’
NI

[ Bomtas = ’
. ,
(m-1) |
[m Iz] ‘)M‘O\

= — AL ____w (m-2k) = X
IZ;I ~(m~2Rr)} Ay Ry 20 (A2.31)
i \
N [}
. faa,n.aam‘a{‘ab = nb:”‘nb 1‘," 15-1

S ) m
In order to obtain explicit expressions for the
integrals on the right hand side of (A2.31) we must épply

the theorems

i Y/2 N A
. - o 2 2 (%/2)! X -
f"" ¢§ 41!,:;;, Wpaurs %%, ﬁbrfc’r >
K o ?(c’b‘.?eveﬂ) . (R2.32)
j;n;“-;nhidg =+ O \ (%:oc:id) o (A2.32')
3 3. "L o (—c"' [glzz] e - (Qm-20)) S
Q.“‘ Qm ? - C‘O( 2"’!:{('"_,&)! * (A2-33)

-

. Z n1'11'..‘ilm_;2i“ 5" “he 8

€@y B) %2 ¥2i-¥2i

Cori ) @y
Y
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4
A ‘
wAurc
denotes a vummation over all dictinct
Z . partitions of the welt (al,rl.,, C ,um)
(a,...a,,) "

C Tuto one subset of 20 elements and
GM' 'ln\az;) .
another of m-21 elements

and

denotes a swummation cover all dictinct

Z \ groupings of the elements of the
Pairs . :
' set (( o ye, ) Anto pairs y
(€.-..020 comet (oo ye, ) dnto pairg
: - % f o
(7172;" TV Yo )T

. o i ; t

R N - e

Equations (A2532) and (R2.32") Lan Be verified from the

formula given on p. 166 of HOZ)BOH (1931). Equation (A2.33)

N can be* verified by induction. ' ,,
bubbtltutlng (Az 3;2), (AZ. 33) into é(’*uatiii (A2.31),

we obtain the expression

[]]

n-t s
;Y‘:IB?} as

7 kn-9/2] z“r’“‘ ,
B LI RS
%“ Rﬂia (n-2m)! d'”‘dn_zhus ~b, by

[2-w] (2n-4k -2i + 2)! (n-te-i)!

(Zn-2R ~2i + 1)V (n- 2k -i + 1)}

+=0
’ ‘ ' (A2.34)
. Z Z 5., ... 8 .
@@ 2, b)) S37 T¥anak-2io Tan-2m-2i

€2l nn 204-20) "b-*- "ln-ztu 1-2i. By - by)

pg'rs ?‘-72' : ¥2i~1 V20
i~ €€,---€2) : S
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A.2.4 Expressions for the magnetic multipole moment s. .

Equation' (A2.34) may now be substituted into
(
equation (A2.23) to give the following expression for the
magnetic multipole mopents of a current distribution in

a sphere.
() _ m
T =
m(ms+1)

[m~l ’
2"‘ ‘ i 2"’02)&

—

(me1) gar (m-20) !
[ -n | |
. 22 ﬁ('f (2Zm—~4k —2{ 4+ 2D (m-~-k-)!

' 2m -2k~ 20 44) ' (m-2k ~i + 1)}

i=0
- Z T 3. .8 , | )
. (ﬂln;dm_“i b') pairs r‘rl r?’“aﬂh—ziai r—b‘__mﬁ“
c 0 (€2 | me2kr 1 -2 ) (R m_2k41~28,b,y - bon ) —
T A e Y (A2.35)
(€. €27)

This expression is written out in full for m =1,2,3

S in equatiensa(5.77)~(5.79).

"It may be seen from equation (A2.35) that the

T (m)

. m ‘ . : v
expression for the 2 -pole moment tensor a8, . -Gm

involves terms of two different types. The first type

i

of term, represe@ﬂgdwbyffﬁéj§olume integrals in (A2.35),
i (M)

relates to the (m~1)-order integral moménts of the

N
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magnetic flux density B in the spherical volume V . The
second type of term, represented by the. summation terms in

m)

(Ai.?S), relates T( to the magnetic multipole ‘tensors

_ , . m
of order {[m-2], (m-4] ey [2 OF 11} . Thus T'( ) has
explicit relationships only with the lower-order magnetic
multipole moments of the same parity (i.e. W even or odd) .

Relationships with multipole moments of the opposite parity

will arise from the integral terms in ¢quation WAZ.BS)g 

A.2.5 Electric multipole moments

T
The multipole expansion of the electric field 'is
obtained in much the sape way as that for the magnetic
’ \

field. 1In qeﬁeral, the electric field E satisfies

E = =v$ 1-—, 36/31; : / (A2.36)
in the exterior region %%'i the vector p@tentiafﬁ A s
L gi<len by the expanéion {A2.11) , while the scalarvpotential
¢ is given by A
L\ 1 o) e
B(x) = 5 B4y
ne Iy 'r—-fl ~N
" | -
-4
= 9(?‘ f v L CL
4"!2520 I ) { } v N

{

a5 “"miIVB‘f'"oL‘E}.g"‘-‘; . (A2.37)
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The electric multipole moment tensors, Q(m) , may therefore
be defined as
n( Y B
QM = [ OCY) I™ o ¥ (A2.38)
v -~ ~

Substituting (A2.11), (A2.37), and (A2.138) into

equation (A2.36), we obtain the expansion i
et Laa)
4 (&) ' ' ’ '
E- amZ w7t 0 (A2.39)
- "9y . !
~ M > DT Ty gt o
41 22,-n! T 4 X YF%

There is no contribution from the zero-order electric
i

) ) 0 ‘ . .
multipole moment tensor Q( ) in (A2.39) since, as shown

in equation (5.75);

Q‘°’:—€Iv&x§}«tz o
= ﬁGI n.{uxB }dg,f (A2.40)

inithe qdasi—steady approximation. When the no-slip

condition (1.62) applies on 8 , equation (A2.40) reduces

to /
Q® = o ) - (A2.40')

~

Equatiog (A2.39) is the expansion used for E in V in

sectioh 5.4.2.. ; ' \'



APPENDIX 3 .
>

EVALUATION OF INTEGRALS ASSOCIATED WITH INITIAL,

CONDITION I 1IN CHAPTER 3

Fa
o

s

-

A.3.1 Intqgrais of section 3.7.4

. Many of the integrals assoclated Q}th‘tﬁg mean field

dispersion relation studied in Chapler must be evaluateqr
¢

-

numerically. 1In this appendix we shall dgél'with the

integrals associated with initial conditionkl. n

[ -

’f In section 3.7.4 the dispersion relation for Gaussian

I3

5 i Q 5
isotropic turbulence and non-~oscillatory mean fields is -

considered. An &pproximate form of. the relation is obtained: ,
by assuming equality on the right hand #ide of condition

(3.105) ~ i.e. assufiyq that
£

I

2

Dr. K.D. Aldridge bhave developed a program which evaluates

- dm %, -1 = (RWVT, | (A3.1)
where J is défined in'(3.107). The present author énd

the integral in (A3.1), thus giving R' as an approximate
function of 1Im Q/nK2 v 9 ACK , and T/qTC

' The required inputs to the program-are:

.

Q = g L : | ' (A3.2)

YNOT = Im 9/nK’ (A3.3)
AR = AL = AKram (A3.4)
XUL = T/q1, (A3.5)
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‘
a

i

NX = half the number of integration steps (A3.6)

The integration is carried out using a Simpson's Kule

ﬁechnique. The program outputs are:
. SN
ALE = ) /L / ‘
Al = Jz(qJACK;T), defined in (3.107) (A3.7)
A2 = [R&/q]z, defined by (A3.1) (A3.8)
A3 = R'/q | (A3.9)

|
1

The integral in (3.107) is denoted by ~VOLR .

N

PI=3.1041592653"

1
2 2 WRITE(6.,750) '
3 750 FORMAT(*NEED Q,YNOT®) !
a . READ(S5+250,ERD=40) Q,YNOT
5 250 FORMAT(2F10.7) S
5.1 7T WRITE(E,930)
S5+5 READ(S ;94 0+END=2) AL P
& .3 WRITE(6.,850)
7 B850 FORMAT(*NEED XUL.NX"*)
8 READ(S5+350,END=7) XULa NX
9 350 FORMAT(1IF10.7.13) \
13 » 930 FORMAT(*NEED ALP*) ; (A3.10) =
- 940 FORMAT(F10.7) ; - '
20 VOLR=SIMRE(ALP s Qs YNOT . XUL o NX)
20.25 Al=VOLR/3. ‘
20.5 . A2=(YNOT=-1.)7(A1%Q%Q)
20.51 A3=SQRT(A2) " i
22 - 21 WRITE(6,920) ALP.Al+A2,A3
23 WRITE(6.970)
24 970 FORMAT(//)
2s . 920 FORMAT(F7.4,3E18.8) e
26 GO TO 3 . "
27 a0 stoP ;

28 " END

B,

3



40
60
100

200
300

GO T0. 60 e

FUNCTION ENV(ALP . Qs YNOT . X))
P1=3.141592653
GX=4.*P 2P &ALPSALPEX
T=le/(1at2.%X)
EX=-X*X$Q2Q/2 ., +GXE(YNOT-T)
IF(EX.GTL.170) GO TO 40

ENV=0 N
GO TO 100

ENV=EXP(EX)&T242,.5

GO TO 300

WRITE(6.,200) £ X

FORMAT (*EXPONENT=*,F10+2)
RETURN

END

FUNCTION SIMREAALP, Q. YNOT o XUL N )
EXTERNAL ENV [

PI=3.14159265%3

H=XUL/ (2. %N)

SUME v=0 . ;

SUMOD=0 , )

D0 49 JI=1,.N
HOD=H*(2 . % }—1)
HEV=HR(2 . %20-~2,)

" SUMEV=SUMEVeENV(ALP: Q. YNOT,HEV) .

SUMOD=SUMOD+ENV (ALP .+ Q.+ YNOT , HOD)
CONT [NUE

FST=ENV(ALP Q. YNOT,0)
FFN=ENV(ALP +Q+ YNOT, XUL)

SUM=4 . ASUMPD42 . sSUMEV-FST+FFN

 SIMRE=H%*SUM/ 3.

RETURN
END

w1

(A3.10")

(A3.10")

478
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\

A.3.2 lnthralb of nt(flUN S5.8.4

A

Section $.8.5 deals wWith conditions on the turbulence
for stable decay to be established before significant
energy is lost from the mean field. It is shown that the
stabilization time T, must be less than T*,, Qhere
T is defined by (3.132). Combining (3-g32} and (3.133),

.
we see that T may also be determined from the equation

{4.,,;1[ i‘i"*‘l&'l"["" ~am)x _dx

i

DELT ( T/Tc}

(MZX)S/’V
T oar oot L
= O (A3.11)

The program given below finds approximate zeroes of DELT .

‘The required inputs are:

Q = g
ALP = AC/L
YNOT = +trial value%af Im Q/nK2
# (A3.12)
XuL = T/qT
NX = half number of integration steps
TOL = wupper limit on DELT for acceptable

solution of (A3.11) _

Outputs from the program are

i

Q S

ALP = AC/L



/

/

7

Ny

YNOT - value of Im Q/nK2 for which f//
\\ (A3.11) is approximately satisfiied

T1

Al

DELT

= value of T/t for which (A3.141) is
approximately satisfied

(A3.13)
= value of Rg/q defined by T1 and
(3.134)
= final value of DELT

It should be noted that (A3.11) is in fact a

A
generalization of (3.132), since the upper 1limit%f inte-

q}ation in (3.132) has been allowed to go tpr o ,

-

1

2
3
a
S
&
&
&
o3
&

750
250

25

311

PI=3.141592653
WRITE(6,750)
FORMAT(*NEED Qo ALP.YNOT o XUL o NXs TOL® )
READ(5+290+END=40) QuALP+YNOT s XUL s NX o . TOL.
FORMAT(4F10.7,13, F10.7) -

TPA=2 . %P #ALP .
YP=YNOT+TOL®(YNOT~1.) . R
YM=YNOT~TOL*(Y¥NOT~1,) ' .

VOLB=S IMRE (ALP+ Qs YP 4 XUL 4N X ) Y SN
votnasiNRE(ALp.o.vu.qu.nx; A A S

VOLR=SIMRE(ALP + Qe YNOT o XUL » NX ) I

DELT=TPA®TPAXYNOT*VOLR~1., LT i'&ﬁ?-“
IF (ABS(DELT) LT .TOL) GO TO 311 S

DOEL= TpAtTPA:(VOLR—VNUTt(v0Lp~v0LM)/(2quoLa
(YNOT~1.))) N

IF (DDEL.EQ.0) GO TO 2 L F

YNOT=YNOT~DELT/DDEL oo T e

IF(YNOT.LT.1.) GO TO a0 . (A3 . 14)

GG TO 25

T1=Q/(TPAXTPA%XYNOT ) .
Al=TPA®SQRT (3.5 YNOT*(YNOT-1.) )/Q

- WRITE(6,920) QsALPYNOT,T1,AY.DELT

920

40

FORMAT(ZF?.4.F7.S.3€18.8.//)

‘GO YO 2

i

sSTOP

+ END



249
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
a1
a2
43
44
45
46
a7
48
49
50

53
54
58
56

51
52

40

60

100

200
300

49

FUNCTION ENV(ALP+ Qs YNOT . X)
PI=3.1415920653
GA=4.3P [ %P [ sAL PEALP *X
T=1e/(1e42.%X)
EX=-X®X®Q8Q/2+ +GX®{ YNOT-T)
IF(EX .GT .170) GO TQ 40

GO TO 60

ENV=0 {
GO TU 100
ENV=EXP(EX)2T*22,.5

GO TO 300 :
WRITE(6,200) EX
FORMAT(®EXPONENT="*,F10.2)
RE TURN

EFND ' r

FUNCTION SIMRE(ALP, Qe YNOT . XUL «N)
EXTERNAL ENV
PI=3.141592653

THEXUL /(2 5N)

SUMEV=0 i
SUMOD=0

DO 49 J=1,N

HOD=H&(2 .#J-1)

HEV=H#(2 .#J-2.)

SUME V=SUME V4ENV(ALP Q. YNOT,HEV)
SUMOD= SUMOOD4ENV(ALP+Q, YNOT,.HOD)
CONTINUE

FST=ENV(ALP ;Q,YNOT,0) N
FEN=ENV(ALP ;Q+ YNOT, XUL)

SUM=4 . $SUMOD+2 . * SUMEV-F ST +FFN
SIMRE=H&SUM/3. ,

RETURN

END

s

(A3.l4i)

(A3.14")



f
A.3.3 Integrals of section 35.9.2

'

u -
¢

Whenfthe dispersion relation for Gaussian isotropic
turbulengg[and oscillatory mean fields is considered, the
integraléyto be evaluated are those defined in sectfon
3.9.2. The techniques of the last two sections can be
used in}the case whén sge aﬁproxihate dispersion relation
(35143;¢is to be solved. The subroutines given below
evaluate the integrals in (3.144a) and (3.144b) by a
Simpson’s FKule technique similar to fhat used in (A3.10").

The required inputs are:

ALP = ) /L
| a 2,
v BEP = T.NK /2n 7
o 2 ¢ (A3.15)
.~ ZNOT = Re Q/nK
I 2 :
YNOT = Im R/nK .
N = half number of integration points
and the'o&tputs are:
‘ . . R
SIMRE = 3J2R', defined in (3,144a) \.
! 1 (a3.16)
SIMIM = 3J » defined in (3.144Db)

L 21

»

The spbf'ouytine “ENV. is @ncluded for c"ompléteness..
No 6utline is given here of the ﬁethdds used in
 searching fo; solutlons to (3 143a) andd;3’l43b) ‘See

eectzon 3 8. 4 and Appendtx 4.

“ [ANY]
L'
Pt

482



35
36
37
38
39
%0
al
42
43
a2 45
5%
a6
a7
a8
a9
50
51
‘52
S3
5S4
55

56
57
58
59
60
61
" 62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

- A9

49

483

FUNCTION SIMRE(ALP, BE P, INOT , YNOT o XU s No K )

EXTE RNAL ENV Q

PI=3,141592653

H=XUL/ (2. %N) :

SUME v=0 I:
SumMQO0O=0

DO 49 J=1.N
HOD=H2(2.%J-1)

MEV=H2(2.%)-2.)

COSE V=ECOS(2. 4P *BEPSZNGT 4 HE V) :
SUMEV:SUMEV#ENV(ALP.BEP.ZNOT.YNUT,LEV.K)*COSEV
COS0D=COS (2. %P1 *BEP & ZNCT #HOO )

SUMOD =SUMOD+ENV ( ALP,BEP .+ ZNOT . YNOT sHOQ . K } 4 COSOD
CONT INUE

FST=ENV(ALP.BEP . ZNOT « YNOT .0 oK ) .
COSLST=COS(2. %P | 4BEPAZNOT X UL J -
FENSENVIALP , BEP s ZNOT o YNOT o XUL » K ) #COSL ST

SUM=4, *SUMOD+ 2% SUME V—~FST4FF N

SIMRE=HM&SUM/ 3.

RE TURN

END

.

(A3.17)

3

FUNCTION SIMIM(ALP.BEP, ZNGT s YNOT+ XUL sN )
EXTERNAL ENV '
PI=3,141592653

H=XUL /(2 . %N)

SUME v=0

SUMOD=0 -

DO 49 J=leN -
HOD=H*(2.%J~1) . /

CHEVE=H®*(2.%9-2.) /
SINEV=SIN(2.*PI*BEP $ZNOTXHE V)

‘SUMEVISUME V4ENV( ALP .BEP.ZNQOT, vnor.ﬁfv»:sxnsv’”
SINOOSSIN(2.+#PI *BEP*ZNOT®HOD )

SUMOD=SUMOD+ENV (ALP 4BEP, ZNOT,, YNOT . HOD ) S INQD.
CONTENUE

FST=0. ’ .
SINUST=SIN(2,*PI*BEP*ZNOT &XUL ) o
FEN=ENV(ALP +BEP +ZNOT, YNOT o XUL ) #SINLST

SUM=4 , £#SUMOD + 24 SUME Y~ FsroFFN /
SIMIM=H®ESUM/ 3, "

RETURN 7

END b

K 0 Jmsary



19
20
21
22
23
24
25
26
27

28®
28.25

29
30
31
32
33
34

60

100
200
300

FUNCTION ENV(ALP}bFP‘INUT.YNOT.K.N)
BEPX=BEP %X

PI=3.1415%92653

PALPSQ=P | *ALP*ALP

T=PALPSQ/ (PALPSQ+BEPX)
EXZ—XEX/2.¢2, P [sBEPXE(YNOT~T)
IF(EXGT.170) GO YO a0

GO 1O 60

ENV=0

GO TO 100

IF(N.EQ.0) ENV=EXP(EX)I®TA%2.5
IFI(N.GT.0) ENV=EXP(EX AT 82 .S eax%aN

GO TO 300 / .
WRITE(6,200) €X /

FURMAT (* £ XPONENT=* ,F10.2)

RE TURN ; b

€nd /

7

/ , - (R3.17")
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. % . APPENDIX 4

EVALUATION OF INTEGRALS ASSOCIATED WITH INITIAL
CONDITION II IN CHAPTER 3

A 4.1 ZEE9g151E92}31{57<>f S(WT{{(UI 3.10.

=)
N N
"'}I’V"” A . : . A
H%*'% In this appendix we shall consider the pumerical
solution -of equations (3.165a) and (3.165b). The Pprogram
described here was developed by the present author and
s
!c' Dre. K.D. Aldreidge to obtaln the results plotted in
C Figures 16-2 ., : \
i The integrals .in equations (3;165a b) , corresponding
to,the case of Gaussian turbulence in an 1nLUmpIES€1b18
. 5 . I -
fluid, are pot in the most- co *nlent,form fox nunérical
évaluatiani ‘We shall first obtain an explicit expression
for -0 , Combining equatluns {3. 4:) and (3. 43), and
) /
cqrrylnq out tHe integration, Wé féve
A .
- . ‘5|ﬂ B de -
@ = 2| ——
7 o (1*}""_& P+ 2?(‘939) + n7
]
- Ei (1-x?) dx
X +x
. -t n -
- X=1 ] = .
: = 2}3{X + (x ~—l) In } , (A4.1)
g o ,”,¥4X44 .
/',
R ) ' ,’ .
where . ! ; 3
(r4.2)
(A4.3)
Lv L]
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Defining
F= 14+% - p (4.4)
50 that
= . '
X = 2f{F+ v} (Ad.5)

real and imaginary parts of (A4.1) to obtain

(F-2F)+v? }
(F+2P) 492

wer may take

Re® = FE'+ LY(F-v'-4F") Lnf

4
|

: 4¥v ' ’
_/r 1 |
7 FIV taa {F2—4r‘+v*} Q(N&.Ga)‘
dm @ = VE 4 LF ‘F‘”)l“’z} '
B o (A4 61
+‘%‘§(F2ﬁ?“§rﬁ ﬁuf'{ Al 4 } ~
i F2_4:rl*vl

Further simplification of the integrals in (3.165a,l)
- can be obtained by making use of the fact that Re -6 is

even in v, , while Im © is odd. in . v . Thus Aif

T qEes) Id\"I d‘f e z{(lciﬂ‘)" +(nK ‘“c)i(v"f"“nn)i} .

‘ - @(E, v ; I 1«‘) (A4.7)
we may“writéf ﬁ , #
£ - ;f - '
Re IG',.“’ = 2[ dv rdf e @ msh{ﬁ’tc&() .v}
’ © © =_ a :z Q
/ e i{o.‘o(r) +(qK tc)'(oh[#;l?]’)}
(n4.8)

Jo T2 L 2 ]49 [ d¥ 4... @ smﬂ{“nﬂeo v}.
. oD I [ReSh]D)



YA ]

c\2 L a
REY'+ (v %,)] +

A a
+ e HlOxD +(v-nz%.)’]}

3.w5) .
dm 1% 4 (Ad. 9b)

a a 2
- r:v rdf don @ie.;fo\cxr) +(va &%.) 1,
° ° e—-‘;* [()ckf)‘+ (v- "R(.%a)q] i
Equations (A4.9a,b) show the form of the integrals in

‘(3.165a,b) used in the program.

A.4.2 The pature of the program

A brief outline of the numerical search.procedure
used is given iﬁ section 3.10.2. The integrations in
(A4.9a,b) are carried out using an n-point Gaussianité¢h=
nique. The first input required by the program is a

listing of the Gaussian points and weights to ' be used.

A convenient form for the storage of this data is shown in

gection A.4.4.
'The next set of inputs required is listed on line

370 of the program (see section A.4.3). Forvexample,

-

EPYl = fraction of the peak value of the inteérand
in (A4.9a,b) below which contributions from
the region near &£ = 0 can be ighored “

Similar definitions apply to- EPY4 + EPGl , and EPG2 .
- *

BT (A4.9a)

487



These quantities refer to the regions £ » o', vy

’

488

+. 0 , and

v o+ respectively. 1In most cases it was dssumed*that

EPG2 = 0.0001

i

EPY]l = EPY4 = EPG1

(A4.10)

The last input requested in [ine 370 - the “"number of steps,

K" - is a measure of the "fineness” of the search for the!

point at which the value of the integrand drops to a frac-

i

tion EPY({) or. EPG(1) of its peak value. In general/ it

was assumed that

K = 80

The remaining ipputs are as follows:

ZNOT = Re /nK°
o . s
YNOT = 1Im §2/nK
STALF = initial value of AC/L
ALFSTP = 4increment in XC/L
~
- r T
IALF = npumber of steps-in ZC/L
§ STBET = initial value of T K/ 2m
’
I 2' *
BETSTP = increment in T.NK"/2m
IBET = number of steps in TCnK2/2w

. . . Co 2
- For convenience in calculation, AC/L and Tcnx /21 values

/

(A4710')

/
{

(A4.11)

-

£

are multiplied by a factor vZ-m in lines 480-520. The

'program thenaworks with the quantities

: &
ALFA = AL = ACK//f

(A4.12)



BETA = BE = TCnxz//E (Ad4.12")
)

The program carries out the necessary integrations in

lines 530-2080, with the integrand of (3.165a) being split

up into three parts, as described in séctiwn 3.10.2. The
!

values of the integrals are then combined in Iines 2090-2150

to give
RATIO = D , as defined %p (3.166) (R4.13)

. \
RNLDS = R y (A4.14)

In lines 2160-2610, the program searches for zero crossings

in D . 1If a zero crossing is found, a linear interpolation

is performed to locate the zero approximatélyQ: The interxr-

polation is carried out between the value of D at (ALFA,

BETA) and the value at (ALFA+ALFSTP, BETA), for a given pair

of values (ZNOT,YNOT): Finally, the position of the inter-—
polated zero in D is used to give an approximate inter-

polation between the values of ALFA and RNLDS on either
! A
side of the zero crossing (see lines 2460-2540 and 2320-

2340). 7

The output of the program is a tabular display of
the form shown overleaf.: If a zero crossing has been found
in D, tﬁe values of D on either side of the zero are:

and (R') are

dai ‘ -
spléyed‘as D, and D qinterp - m’ interp .

1 2
then the approximaté interpolated values of ALFA and

! a <
RNLDS at the zero in D .  If no zero crossing is found,

Pt

I4
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the values of D ahd RNLDS at the last pair of ALFA

values considered are displayed as [Dl' D2] and

1

[(Rm)l, (Rm)Z] , while [ainterp’ (Rm)interp] are set

equal to zero.
. Le]

Form of output
| " BETA
61 82 -
ALFA al ..
nterp
%, |
(A4.15)
RNLDS (R%)l -
(Rm?interp
(R%)Z
D VALUES Dl ’ = e
P,
(s

The program then asks if iteration is requlred

(line 2870). If an 1nteger N(;§s rea? in at this point,

a successive iteration of the interpolation will be carried

-

out. The values of D, and RNLDS corresponding to

ALFA = a1nterp are calculated, and the new value of D
(say Dnew) is used to determlne whether the Eﬁro in D ’
—~— hv) . :
. 1 |
lies between D1 and Dnew or between Dnew and D2 .

L . » .
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A new interpolation is then carried out between the appro~
priate pair of values. The interpolation is itegated N
times, and a new set of output values is generated.

If further interpolation is not required,/a blank
read in at line 2880 will send the program back to ask for
a new set of ALFA and BEfA values.

It should be noted that the values of ALFA and

BETA presented in the output have been re-cdnverted to the

~ input form, so that

3

ALFA = A _/L
¢ (A4.16)

BETA = TCnK /2%

[

The factor 27  is included in the definition of BETA so0
that

[t _nk’/2n)" [Re  $2/nK’]

I

BETA* ZNOT

Il

TC-Re Q/Zﬁ

= /T  (A4.17)

T
A.4.3 The program

The program described in the last section and in.

section 3.10.2 is listed on the next few pages.

2Y :
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. s e ® .
Gau;ikylgﬁﬁnts and weights

N : . , ,
The Gaussian integration points and weights required

by the program listed in the last section can be stored in a

particularly convenient fdrm, as shown below.

is kept in a file "PTSWTS", thé instruction

CONTINUE WITH PTSWTS (800,804) RETURN

I1f the data

(R4.18)

will prov.de the program with the information required for

an n-point.integration with n = 8 . Similarly, if PTSWTS

(1600,1608)

\

is used in place of PTSWTS (800,804)', the program

will be_given the information’ required for an integration
. N \

with n

3\ - A

16 . The points and weights listed are taken from

é&ramﬁwifz and Stegumn (1964).

T200

Ai

401 0.339981043584856,0.6521451354%8 2546‘
402 0.861136311594053.0.3n7asasasﬂ§qasa, i
800 8. N R
BO1 0.183434642495650,0.362683783378362.
802 0.525532409916329,0.313706645877887+ * '
803 0.796666477413627,0.222381034453374, \
80A 0.960289856497536,0. 101228536290378»
1200 12, Y
1201 0.125233408541469,0.289147045813403,
1202 0.367831498998160,0.233492536538355,
1203 0.587317954286617.0.203167426723066,
1204 0.769902674194305.0.1600 }78328543346,
1205 0.90411725637087540.106939325995318, )
1206 0.981560634246719+0.097175336386512+ ¢

v ‘ ‘ : v -

511



3216

1600 16, , .

1601 0.095012509€37637440185,0.169450610455068496285,
1602 0.281603550779258913230,0.1€2603415044923588867,
1603 0.458016777657227386342,0.169156519395002538189,
1604 0;617876244‘026437‘84‘700.149595988816576732081o
1605 O.755404408355003033895.0»12062897l255533872052’
1606 0.865631202387831743880,0-095158511632092784810-
1607 04944575023073232576078,0.062253523938647892863,
1608 O e 9894009369916‘9932596.0 027]52“594][75‘09‘852.
2000 20,

2001 0.C76526521133497333755,0.152753387130725850698,
2002 0022778585‘l‘l64507808090.149172986472603746738-
2003 0.3737000837[541956067340-l42096l09318382051329‘
200a 0.5{086700[95082709800‘,0.131688638449176626896;
200s 0-636053680726516025‘53-0‘l1819§53l9615184]7312\
2006 0.746331906460150792614,0.1C1930119817240435037,
2007 0.839]‘697]8222‘6823195;0.0832707Ql5767C4748725\7
.2008 0.912234428251325905868,0.062672048334109063570,
2009 0.96397192727.7913791268.0.040601429800386941331
2010 0993128599185094924786,0.017614007139152118312,
2400 24,

2401 0. 064056892862005626085 0.127938195346752156974 .
2402 0.191118867473616309159,0.125837456346828296121 .
2403 0.3150426796961633743€7,0.121670472927803391204,
2404 0.433793507626045138487,0.115505668053725601353,
2405 0.545421471388839535658,0.107444270115965634783,
2406 0.648093651936975569252,0.097618652104113888270,
2407 ) 0-740124191578554364244.0-08619016!531953275#]70
2408 0.820001985973902921954,0.073346481411080305734,
2409 0.886415527C04401034213,0.05929685849154367680746,
2410 0.938274552002732758524,0.044277438817419806169
2411 0-§74728555971309498198.0;028531388628933663181f
2412 0.995187219997021360180.,0.012341229799987199547»
3200 32, ~ h "

3201 0. 0083076656877383162@5‘0.096540088%5%727800567o
3202 0.14447196156279649346%,0.095638720879274859419.
3203 0.239287362252137074545-0.093844399080 %‘

3204 0.331868602282127649780,0. 0911728786951

3205 0.421351276130635345364,0. 0&76520930044038553%3.
3206 10.506899908932229390024,0.063311924226946758802,
3207 - 0sS8T7T71575:7240762329041,0. 078193895787070306‘72. )
3208 0.663044266930215200975,0.07234579410884850622
3209 De 73218-&137«0239680387 0. 065822222776351845838.
3210

3211

3212

3213

3214

3215

]
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