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Abstract

The focus of this study was to develop the micromechanical model associated
with proper damage model to predict the overall mechanical behavior of glass
fiber/epoxy cross-ply laminates as well as the damage initiation and propagation
inside the laminates. The micromechanical models involved modeling a [0,90]xs
laminate that has the periodicity in all directions, and a [0,903,0]y laminate that has no
periodicity in thickness direction. The analysis of two different models was all carried
out through the finite element method. The epoxy matrix is represented by a nonlinear
viscoelastic model. The prediction of overall stress-strain response and the damage
initiation and propagation of the [0,905,0}r laminate was conducted through the
micromechanical model. The thermal residual stress evolution in the [0,90],s laminate
and the free edge effects on the damage initiation of the [0,90], laminate were also

investigated through the micromechanical model.
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Chapter 1

Introduction

There has been a considerable increase in the use of advanced composite materials
in various industries in recent years. The reason for this increase can be attributed to the
great improvement of the stiffness-to-weight ratio and strength-to-weight ratio in
composite materials [1]. The development of composite materials with reduced weight
and increased strength relative to the conventional metals or alloys, has played a critical
role in achieving higher operating performance, long-life and reduced costs. One such
compusiies system is fiber reinforced composite laminates.

These properties of composites, e.g. strength and stiffness, are dependent on the
volume fraction of the fibers, and the individual properties of the constituent materials,
i.e., the fiber and matrix. In addition, the variation of lay-up configurations of composite
laminates allows the designer greater flexibility when incorporating composites into a
structure. With this flexibility, however, comes complexity in analysis of composite
structures. Particularly, the damage and failure progression in laminated composites is
very complicated compared to that of conventional metallic materials. The stiffness and
strength in composite structures may vary due to the damage initiation and propagation.
The damage modes are matrix cracking, interface debonding and delamination during
the loading history of the composite life. Consequently, the modeling of composite

materials is more complex than that of traditional engineering materials.
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1.1 Macromechanical Approach

Generally, the modeling of composite laminates can be investigated from two
distinct levels: macromechanical and micromechanical scales. The macromechanical
approach is concerned with the contributions of each ply to the overall properties. It
treats each layer as a homogenous, orthotropic, elastic or elastic-plastic continuum [2-
3], in which the properties of the fiber and matrix are averaged to produce a set of
homogenous, orthotropic properties. Based on the known properties of the individual
layers, the macromechanical modeling involves investigation of the interaction of the
individual layers of the laminate and their effect on the overall response of the laminate.
For a given stacking sequence, the stress-strain relations of a composite laminate can be
derived, and the various coupling mechanisms between in-plane and out of plane
deformation modes of a composite laminate can be explored.

Classical laminate theory (CLT) [4] is a widely accepted macromechanical
approach for the determination of the mechanical behavior of composite laminates. The
CLT can be used to predict the overall response of a laminate if the individual plies are
linear-elastic. For laminates where individual plies exhibit inelastic response, additional
terms are required in the CLT formulation [5], which incorporate inelastic strains into
the formulation.

In macromechanical modeling, prediction of failure of a unidirectional fiber-
reinforced composite is usually accomplished by comparing some functions of the
overall stresses or strains to material strength limits. In the case of composite laminates,
however, there is an additional level of complication which arises as a result of stacking

several layers of composites with different orientation and properties. In some industrial
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applications, the first failure of any layer is not allowed because it degrades the strength
and stiffness of the laminate. A prediction based on the first ply failure is commonly
referred to as the first-ply failure criterion [6]. Several failure criteria such as maximum
stress, maximum strain, Tsai-Hill, Tsai-Wu criteria have been suggested to predict the
first-ply failure. These criteria, however, are based on the averaged composite
stress/strain states. Macromechanical modeling does not consider the distinctive
behavior of the fiber and matrix materials.

Although the macromechanical approach has the advantage of simplicity, it is not
possible to identify the stress/strain states in the fiber, matrix and their interface. In
contrast, in the micromechanical approach, the constituents, i.e. the fiber, matrix and
their interface, are distinctively considered to predict the overall response of the
composite as well as the damage initiation and propagation in the composite. This
approach provides more physical information at the fiber and matrix level. This is
important for the understanding of damage mechanisms and in predicting damage
progression inside the composite laminates. Moreover, the micromechanical approach
can predict the effective properties of composite material from the knowledge of the
individual constituents. This allows the designers to computationally combine different
material properties to determine a particular combination that best meets the specific

needs. Consequently, more and more contributions are being presented dealing with the

micromechanical modeling.
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1.2 Micromechanical Approach

Micromechanical methods have been used in analyzing fiber reinforced composite
for more than 20 years. With the ever increasing computing capabilities, more and more
detailed micromechanical analyses are being preformed. This approach assumes that the
complex microstructure of the composite can be replaced by a representative volume
element (RVE) or unit cell. The RVE has a regularly spaced array of parallel cylindrical
fibers embedded in the homogeneous matrix material of infinite dimensions so that it
can be isolated from the whole structure of the composite. The RVE has the same fiber
volume fraction as the composite laminate and the respective properties of the fiber and
matrix can be characterized individually. The individual constituents can then be used
together in the RVE model such that the overall response of the composite can be
predicted.

Previous micromechanical modeling concerned with continuous fiber reinforced
composites could be classified into two major groups. One is the analytical method and
the other is finite element method. The purpose of this chapter is to review the
application of finite element micromechanical modeling to fiber-reinforced composites.
For completeness, some representative analytical models are also briefly summarized.

One of the early and simplest analytical models is the vanishing fiber diameter
(VFD) model, developed by Dovorak and Bahei-El-Din [7-8]. The model consists of a
continuum matrix reinforced by cylindrical fibers of vanishingly small diameter. It is
closely aligned with the rule of mixtures but with the additional assumption that the
diameter of the fiber is vanishingly small, while still maintaining the finite volume

fraction. Consequently, the fiber does not interfere with matrix deformation in the
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transverse direction, and only the longitudinal constraint between the fiber and matrix is
considered.

A second popular analytical model which has been applied to inelastic matrix
composite micromechanics is the self-consistent method [9], which is based on the
Eshelby solution of an ellipsoidal inclusion embedded in an infinite matrix subjected to
uniform boundary conditions. This method is widely applied in the particle-reinforced
composites, however, inelastic analysis has also been performed for the evaluation of
the effective properties of fiber-reinforced composites. [10].

Aboudi [11-13] developed a micromechanical analytical model to compute
effective moduli of a composite made of nonlinear constituents, and extended the model
to predict the strength and fatigue failure of composites. This model was based on a
representative unit cell of rectangular shape. The unit cell consisted of four subcells and
the fiber cross-section also had a rectangular shape, which was assumed in order to
reduce the complexity of the analysis. His model included a variety of effects such as
viscoplasticity, residual stress, debonding and creep. The development of this
micromechanical model was very elaborate, and involved advanced mathematics.

After the development of unit cell method, great effort has been expanded to
study the damage and failure of fiber reinforced composites based on the modified
Aboudi model [14-16]. An advantage of this analytical model is that it yields explicit
expressions for the overall composite behavior as functions of the constituent properties
and a full-field stress/strain solution. However, most analytical models are usually
restricted to idealized geometry and stress/strain relations to achieve closed-form

solutions. It is therefore, difficult to introduce damage analysis and predict damage



Chapter 1 Introduction 6

progression in these types of models. In contrast, the finite element micromechanical
modeling, surmounts most of the shortcomings associated with analytical models.
Therefore, a large number of finite element micromechanical solutions have been
developed for various fibrous reinforced composite problems.

The early use of the unit cell in the finite element method to predict the
mechanical properties of unidirectional composites was undertaken by Adams and
coworkers [17-18]. In his generalized plane strain finite element analysis, he used a
square array of fibers as the RVE model to perform a non-linear analysis of
boron/aluminum subject to transverse tension including the effect of matrix plasticity. A
perfect fiber/matrix interface bond was assumed in this model and the effect of residual
stresses was not taken into account. Dvorak and coworkers [19-20] developed another
RVE model called the periodic hexagonal array (PHA) model, where the fibers are
assumed to be periodically distributed throughout the matrix in a topologically
hexagonal configuration. However, since Adams suggested that the assumption of a
square packing array provides good correlation with experimental data [21], most of
finite element micromechanical models are based on the square array RVE model.

The finite element micromechanical modeling appears to be an effective
computational procedure to determine residual stresses in the composite. Many
researchers [22-25] have applied Adam’s model to study the process-induced residual
stress in unidirectional metal matrix composites. In these investigations, high residual
stresses were shown to exist around the interface region, hence, the effect of residual
stresses became a major concern in the finite element micromechanical modeling of

metal matrix composites. It was Bigelow [26] who first extended the micromechanical
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analysis to a cross-ply laminate. He developed a three-dimensional finite element RVE
model to represent the structure of the cross-ply laminate and study the thermal residual
stress in the Silicon-Carbide/Titanium [0/90] laminate. Since this work, the finite
element micromechanical modeling has been applied to study cross-ply laminates by
other researchers [27-29]. The use of RVE in finite element method has now become an
effective method in determining the residual stresses in the composite laminates.

With the increasing computing capabilities, the use of the RVE or unit cell, in the
finite element method has become a common numerical tool to investigate damage
progression in composites on the microscale. Unlike the macromechanical approach, in
which the damage and failure of composites are examined based on the average
composite stresses and strains, the damage analysis in micromechanical approach is
based on the detailed distribution of stress and strain in the matrix and fiber. With a
proper damage criterion, the location where damage is initiates can be easily determined
by finite element modeling. Furthermore, the damage evolution process as the applied
load increases can also be modeled by the finite element analysis.

Currently, this technique has been widely used in the fiber-reinforced metal
matrix composites. In metal matrix composites, the fiber/matrix interfacial damage is a
dominant contributor to the inelastic response of the composites. Wisnom [30] has
developed an interface element to simulate the interface debonding process in his
micromechanical model of a unidirectional composite. A quadratic interaction criterion

was assumed between tensile and shear stress for this kind of element:

&
O T
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where o and 7 are the normal and tangential stresses across the interface element and o
and ¢ are the failure stresses of interface under tension and shear alone. This criterion
has been found to predict reasonably well the failure of composites at the
macromechanical level [31]. However, it is very difficult to measure interface strengths
experimentally. The failure values selected in his investigation were based on his
previous numerical research. Different interface failure criteria as well as different
methods to model the interface debonding effect have also been developed by the others
[32-33], and include the rate dependent viscoplasticity model for the matrix. Sherwood
and Quimby [34] extended the damage analysis of micromechanical modeling in the
cross-ply laminate. The effects of perfect and imperfect fiber-matrix interfaces and the
rate-dependent matrix behavior on the response of overall properties were investigated
through the RVE model representing [0/90]2s metal matrix composites. The weak bond
interface was modeled using contact elements in the finite element analysis.

Although matrix cracking is a common damage type in a fiber reinforced
composite, only a few investigations [35-37] have been reported with respect to the
transverse cracking in the fiber-reinforced composites using the finite element
micromechanical model. Talreja and his coworkers [37] have developed three different
RVE models (square, hexagonal and square-diagonal) to predict the transverse matrix-
initiated failure in unidirectional polymer composites. Two different failure criteria
have been induced in the model to predict failure initiation in the matrix. Compared to
numerous micromechanical models of interface effects in composites, their models

focused on the failure of matrix in composites. However, in this study, both the matrix
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and fiber are assumed to be linearly elastic and damage propagation within the
composite was not considered in the analysis.

In the past ten years, a considerable amount of work has been done on the
micromechanical analysis of elastic and elastic-plastic behavior of composites. The use
of micromechanics in the study of mechanical behavior of viscoelastic polymer
composites has not been so widespread. The limited applications of micromechanical
model in this area have been concerned only with the creep response of unidirectional
composites [38-39]. Little work has been reported on the modeling of the matrix
cracking in the presence of the viscoelastic matrix for glass fiber/epoxy cross-ply
laminates. In addition, in the previous micromechanical models the RVE or unit cell is
representative of a typical internal section of the composite that is not influenced by
edge effects. To the best of our knowledge, no micromechanical modeling has been
carried out on the free edge effects in glass fiber/epoxy cross-ply laminates. Therefore,
the main objective of this study is to develop a micromechanical model for the glass
fiber/epoxy cross-ply l’aminates that account for damage evolution and matrix
viscoelasticity. The free edge effects and evolution of residual stresses in the cross-ply

laminates will also be investigated through micromechanical modeling.

1.3 Overview of the Current Study

In the present work, the finite element micromechanical analysis incorporating the
damage criteria is conducted to investigate the behavior of glass fiber/epoxy cross-ply
laminates under thermal and mechanical loadings. An important consideration in the

current study is to develop a comprehensive RVE model that can provide an accurate
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stress/strain state in the fiber and matrix level as well as to allow for a damage analysis
in the RVE model of the cross-ply laminate. The micromechanical analysis is conducted
as follows:

First, A three-dimensional multi-cell meso/micro-mechanical finite element model
has been developed to predict the overall mechanical behavior of a [0,905,0]r glass
fiber/epoxy laminate. This model assumes periodic structure in the laminate plane but
there is no periodicity in the thickness direction. A damage criterion for the epoxy
matrix is introduced into the finite element model. Numerical results from the finite
element analysis are compared with the experimental data. It is found that not only the
predicted overall stress-strain response but also the prediction of initiation and
propagation of the damage are in good agreement with the experimental resuits.

Second, the free edge effects in a [0/90], glass fiber/epoxy cross-ply laminate
subjected to mechanical loads are investigated using the finite element micromechanical
model. Here, the periodic structure is assumed to extend in all three directions for the
interior RVE, but not for that of free edge. Two different damage criteria, one for the
matrix cracking and the other for the interface debonding have been introduced into the
model and were incorporated into the finite element analysis program, ADINA, through
the user-defined subroutine. Based on these two criteria, damage initiation as well as
damage propagation in the cross-ply laminate is predicted by the present model. The
effect of the free edge on damage initiation and propagation in the cross-ply laminate is
compared with that of an interior cell model (periodic structure). It is found that the
edge effect is dominant in the damage initiation process, however, its influence on the

overall properties of the cross-ply laminate is not significant.
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Finally, the effect of viscoelasticity of matrix material on the evolution of
processing-induced thermal residual stresses in a [0/90]. glass fiber/epoxy cross-ply
laminate is investigated by the same micromechanical model as in the second part. The
finite element thermal stress analysis indicates that a higher cooling rate results in a
higher initial residual stress in the laminate. However, the residual stresses do relax with
time and tend to an asymptotic small value independent of the cooling rate. The effect
of the free edge surface on the generation of residual stresses is also investigated and

compared to those of the interior region.
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Chkapter 2
A Meso/Micro-mechanical Modeling and Damage Progression of Glass

Fiber/Epoxy Cross-Ply Laminates by Finite Element Analysis

2.1 Introduction

Continuous fiber-reinforced polymeric composites have been successfully used in
many structural applications due to their lightweight, high specific stiffness and
strength. Consequently, it is important to understand as well as to predict the overall
mechanical behavior of fiber-reinforced polymeric laminates from their constituent
properties.

Generally, two approaches are taken in obtaining the global properties of
composites: (a) a macro-mechanical modeling and (b) a micro-mechanical
representation. The former utilizes the experimental data from standard coupon
specimens to build a constitutive equation [1]; while the latter typically uses the unit
cell technique combined with the known material properties of fiber and matrix to
determine the overall behavior of composites [2-3]. The macro-mechanical approach
treats the composite as a homogeneous orthotropic continuum. The required
experimental program to evaluate various material constants and functions in the
macroscopic constitutive equation is relatively costly and time-consuming [4].
Furthermore, local damage cannot be predicted by these models. The micro-mechanical

method is based on the known properties of the constituents and the assumption that the
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composite possesses a periodic structure. Thus, a representative volume element (RVE)
or unit cell model is first constructed depending on the geometry and loading condition
of the composite. The properties of the composite are then obtained through an analysis
of the RVE or unit cell model either by analytical or numerical methods. The overall
properties of composites can be predicted quite accurately by a micro-mechanical
model as long as the properties of ‘the constituents (fiber and matrix) are properly
represented in the model [5-6]. Moreover, it is convenient to carry out parametric
studies using the micro-mechanical model. Various mechanisms including damage
initiation and propagation, and their influence on the global performance of the
composites can also be studied through the micro-mechanical analyses.

Therefore, using a micro-mechanical model to predict the overall composite
behavior by means of the constituent properties has distinct advantages. Most analyses
[7-10] have used the unit cell micro-mechanical model to study the mechanical
properties of unidirectional fiber reinforced composites. A few investigators have also
applied the micromechanical analysis to the cross-ply metal matrix laminates [11-12].
The current work extends the micro-mechanical analysis to a cross-ply viscoelastic
polymer laminate. In this model, the periodic condition is assumed only in in-plane
directions, while in thickness direction no periodicity exists. The lay-up structure of a
cross-ply laminate is simulated through a multi-layer unit cell model. Hence, the word
“meso” is used to distinguish this feature from a fully periodic structure in all three
directions.

In this study, the epoxy matrix is represented by a nonlinear viscoelastic

constitutive model [13], which was implemented into the finite element analysis code,
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ADINA, through a user-defined subroutine. Experiments [14] on the coupon specimen
indicate that transverse cracking in the epoxy matrix could start at a relatively low
applied load. In order to investigate this mechanism, a damage criterion for the epoxy
matrix is introduced. A three-dimensional finite element analysis is conducted on the
multi-layer cell model. The numerical results from finite element analysis are compared

with the experiment data.

2.2  Development of Representative Volume Element

The micro-mechanical model is set up based on the representative volume element
(RVE) technique. It is assumed that fibers are uniformly distributed in matrix and have
the same radii. Therefore, each unidirectional layer could be represented by a unit cube
with a single fiber having the same fiber volume fraction as the ply. For a cross-ply
laminate, if the number of layers in each direction is not the same, then a proper
combination of the unit cells can be used to reflect the proportion and the lay-up
sequence. It is to be noted that in an actual unidirectional lamina, there might be many
fibers randomly dispersed across its thickness. The use of a single unit cube to represent
such non-monofilament layer may neglect fiber interaction within a lamina. Thus, in
such a case the representation is strictly a “meso” homogenization process for each
lamina.

Figure 2.1 shows a meso/micro-mechanical representation of a [0,90:,0]r
laminate. A feature of this laminate is that no periodical structure exists in the thickness
direction. The lay-up structure of the laminate has been represented by stacking the unit

cube cells in a proper sequence. Due to the periodicity in the XZ-plane, a representative
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volume element thus consists of two cells with 0° fiber and three cells with 90° fiber
orientation. This representative structure could be envisaged as a building block of the
laminate, as depicted in Fig.2.1. The periodic boundary conditions are imposed only in
the XZ plane for the above mentioned representative volume element. It is to be noted
that the same RVE can be used if the number of each layer in the laminate is doubled,
i.e., [02,906,02]1=[02,90;]s, provided the original volume fraction for each layer holds. If
the applied in-plane load is symmetric with respect to the mid-plane, then symmetry of
the boundary conditions and the geometry would allow 1/8 of the multi-cell model to be
analyzed as a RVE. In the analysis to follow, the fiber volume fraction was taken to be
52.5%, which is the same for each layer in the laminate.

If the in-plane dimensions of the laminate are much larger than that in the
thickness direction, the stress and strain fields in the laminate will be periodic in nature
(represented by the RVE model), except near the free edges and near the area where the
external load is applied. Therefore, we restrict our attention to the interior domain, i.e.
the edge effect is not included. Consequently, the macro-stress and macro-strain of the

composite can be represented by averaged stress and averaged strain in the RVE:

[¢]

of =op (2.1)
€5 = eg‘ (2.2)

In this study, we will consider a [0,905,0]r laminate under strain-controlled
loading. The load is applied along the 0° fiber direction with a constant strain-rate of
107, A residual stress field might be introduced during the manufacturing process of

the laminate due to the difference in thermal coefficients of the fiber and the epoxy
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matrix. However, a major part of the residual stress in the epoxy matrix material may
relax with the passage of time (see the section on material properties, Fig.2.5b). Thus,
the effect of residual stress is neglected in the present analysis. Instead of deriving the
complex mathematical expression for the averaged stress and strain of the RVE, as
demonstrated by e.g. Aboudi [2], and Roberston [15], among others, the finite element

analysis will be used to obtain the averaged stress and strain of the RVE.

2.2.1 Finite Element Modeling and Boundary Conditions

The RVE model is meshed with three-dimensional, eight-node hexahedral
elements. The finite element mesh is constructed with 3974 nodes and 3204 brick
elements, as shown in Fig 2.2. Sufficiently fine elements were used for the matrix part,
especially near the fiber/matrix interface, where a significant stress gradient may occur.
The viscoelastic numerical results were also obtained through a finer meshed model
(about 70% more nodes were used). In comparison with the mesh in Fig.2.2, the finer
meshed model results in no appreciable changes in the stress/strain contours and the
damage propagation path. Therefore, the model shown in Fig.2.2 is sufficient to obtain

convergent results.

Symmetric conditions were applied to the boundary surfaces X=0, Y=0 and

Z=0:
u(0,Y,Z)=0 (2.3)
v(X,0,Z)=0 (2.9)
w(X,Y,0)=0 2.5)

The boundary conditions applied to the surfaces X=1 and Z=1 should enforce
periodicity along the X- and Z-directions:
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u(l,Y,Z) =u(1,0,0) (2.6)
w(X,Y,l) = w(0,0,1) 2.7

It is to be noted that, in this investigation, the external load (uniaxial loading case)
was applied by prescribing the displacement u(1,0,0). The nodes on plane X=1, were
free to displace in the plane but were all constrained to have the same normal
displacement u during the deformation in order to maintain a flat surface (see equation
(6)). Therefore, the resultant traction on this plane would contain only a normal
component. The normal displacement w for all nodes on plane Z=1, is the same, but it is
not prescribed. Thus, this surface is allowed to move in the normal direction freely but
remains plane (see equation (7)), and therefore, the resultant normal and shear forces in
this plane will be equal to zero. Finally, the nodes on the top surface, Y=5, were left
free to simulate the free surface condition of the laminate.

Sun [16] has shown that, under the above boundary conditions, the average stress

and strain in the RVE can be obtained from:

& _u(1,0,0)
11 L

m

(2.8)

R
1

Q

P
- 2.9

A 29)
where L is the length of model in X direction, P is the sum of reactions at nodes on the

surface X=1 and A is the area of that surface, and subscript 1 refers to X-direction.

2.2.2 Material Models for the Fiber and Epoxy Matrix
The E-glass fiber was assumed to remain linearly elastic, and thus was modeled

through a generalized Hooke’s law with E=72.5 GPa, v=0.22. The epoxy matrix was
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modeled by a nonlinear viscoelastic constitutive relation developed recently [13]. The
reason for using a viscoelastic material description is that while the global strain rate
during loading is constant, each matrix element in the RVE model would have different
strains and strain rates. Hence, a rate-dependent model for the matrix would be more
appropriate. A complete version of the viscoelastic constitutive model is provided in
Ref. [13] and here, for the sake of completeness, only a brief description will be given.
For the uniaxial stress state, the model can be represented by a finite number of
nonlinear Kelvin elements and a spring element, connected in series as shown in
Fig.2.3. The constitutive equations generalized to the multiaxial stress state can be

summarized as:

e =) (2.10)

k)= Zalakby™o)-vikea)) @1

l=ElAT" €.} 2.12)
in the above, {&,}, {&.}, {é.}, {0} are the total strain-rate, elastic strain-rate, creep

strain-rate and stress-rate vectors (six components), respectively, and the matrix [A] is

given by:
(1 -v -v 0 0 0 |
-v 1 -v 0 0 0
-v -v 1 0 0 0
Al= 2.13
[ ] 0 O 0 1+v O 0 ( )
0O 0 O 0 1+v O
0 0 0 0 0 I1+v]

which is related to the value of Poisson’s ratio. It is to be noted that instead of a linear

relation between {¢.} and {o}, a power function relation is introduced through the
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-1 1/2

. . 3 . .
stress factor o~ in equation (11), where o, = (=s;;5;;) is the von Mises
eq eq = 5 0%

. 1 . .
equivalent stress and s;; =0 — 35,-1-0',& is the deviatoric stress tensor.

Although theoretically any number of Kelvin elements can be chosen, it is
unnecessary or too complicated to take more than two such elements. Based on test
results, the material constants defined in equations (11) and (12) for the epoxy matrix

were determined as follows:

a, =5x10%(MPa)?, a,=2, b, =001,
a, =1x10°8(MPa)?, a,=1 b, =1x107°,
E =2600MPa and v=04

Examples of the model predictions based on the above material constants and
the comparison with the experimental results are shown in Figs.2.4 and 2.5. The effect
of loading rates (constant stress rates) on the stress-strain response of the epoxy material
is depicted in Fig.2.4. A stress relaxation test result can be seen in Fig.2.5. In this test
the specimen was first loaded with a constant strain rate of 10> s™ to reach a strain
value of 0.74% (Fig.2.5a). Then the strain was held constant and it is seen that the stress
gradually relaxes with the passing time (Fig.2.5b). This essentially confirms that the
effect of residual stresses could be neglected in the present analysis.

The above viscoelastic material model has been implemented into the ADINA

program through a user-supplied material model! subroutine [17].
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2.3 Damage Criterion for Epoxy Matrix and Implementation of Damage
process in FEM Analysis

In general, damage mechanisms in laminate include four types of failure modes
[18], i.e., matrix cracking, fiber-matrix interface debonding, delamination, and fiber
rupture. Usually, matrix cracking (transverse cracking) is the first damage process to
take place since the matrix has the lowest stress to failure of all the composite
constituents [19-22]. Delaminations are often observed in the free edges. Delaminations
are matrix cracks between plies that appear in certain type of laminates near the final
failure stage. It is shown from the experiments of [0;,90s]s cross-ply laminates [23] that
the transverse matrix cracking in the matrix of 90° plies could occur at an applied global
strain of about 0.5-0.6%. In contrast, the onset of delamination in this cross-ply
laminate was observed at an applied global strain greater than 2%. Therefore, for this
laminate structure the dominant damage mode is the matrix transverse cracking. A
matrix damage criterion must be introduced into the finite element analysis of the RVE
model in order to simulate the damage initiation and evolution in the laminate.

Although the RVE model discussed here is subjected to a uniaxial loading, the
stress in individual elements of the model is in a tri-axial stress state. Hence, a
multiaxial damage criterion is required. Development of a proper multiaxial damage
criterion for both polymer matrix and composite is a challenging topic. However, in this
study, the maximum principal strain was used for predicting the matrix cracking, i.e., if
& > g, the matrix would crack, where ¢ and & are the maximum principal strain and
failure strain of matrix, respectively. The failure strain of matrix is the threshold strain

below which no damage would occur and is assumed to be a material constant. From
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the experimental results on the epoxy specimens [13], it was found that in most tests the
failure strains were less than 3%. Therefore, the failure strain in this study is taken to be
equal to 0.03. In the finite element analysis, each matrix element is represented by the
viscoelastic model, Eqs. (10)-(13) until the maximum principal strain of that matrix
element is equal to, or exceeded the failure strain. It has been a common practice in
simulating material damage by reducing the stiffness (or stiffness in a particular
direction) to a near zero value. This is appropriate only for the analysis based on the
deformation theories, in which the constitutive models are expressed in terms of the
total stress and total strain vectors. For the current epoxy matrix, which is a time- and
path-dependent material, an incremental relation between the stress and strain vectors
must be adopted. If the stiffness reduction method is used after the principle strain
exceeds the critical value, the stress will keep constant upon increase of the
deformation. To simulate the matrix failure more accurately, the matrix element is

governed by the following constitutive relation beyond the failure strain:

{o}=BE[A]" §}-alo} (2.14)
where B is a small number (=10) and « is a constant (=0.01). The above constitutive
relation could reduce the stress vector to a very small value in a short duration of time
({0'}= 0 is the limit case), and thus, the matrix element would not carry further load.
Figure 2.6 shows the response of the pure matrix material under a monotonic loading
after the above failure criterion was introduced in the material model (only one matrix
element was used). It could be seen that before reaching the failure strain, the element

response is viscoelastic, whereas upon exceeding the failure strain, the stress drops
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drastically to zero, thus simulating the damage process. For the sake of comparison, the
response to the reduction in the stiffness only (B=10", a=0) is also provided in Fig.2.6

(dashed line).

2.4  Numerical Results and Comparison with Experiments

The model prediction for [0,903,0}r laminate under uniaxial loading with a
constant strain rate of 10” s is shown in Fig.2.7. It is seen that the numerical result is
in good agreement with the experimental data. The finite element prediction without the
introduction of damage mechanism is also shown in Fig.2.7. It is obvious that the later
can only predict the initial linear response but is unable to predict the observed stiffness
loss of the laminate caused by the matrix damage.

Figures 2.8 and 2.9 show the distributions of the stress and principal strain in the
RVE when the global strain value is 0.58%. The o, stress component values range
from a tensile value of 426MPa to a compressive value of -8 MPa, while the principal
strain varies from 0.0294 to 0.0007!7. The maximum value of ox stress component
occurs in the 0° fiber and the maximum value of o stress component in the epoxy
matrix is about 75MPa. From Fig. 2.9, it is seen that the maximum principal strain
appears in the matrix zone above the 90° fibers. The direction of the maximum principal
strain in this zone is almost parallel to the loading direction (X-direction). The most
important observation in these two figures is that while the applied global strain is about
0.6%, the maximum local principal strain in the epoxy matrix has almost reached 3%,
i.e. the failure threshold value. Thus, any further increase in loading would cause the

matrix to crack. Figure 2.10 shows the damage growth in the composite with the
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increasing applied global strain. Because the strains in the matrix of 90° layers are
almost uniformly distributed along the transverse direction (Fig.2.9, Z-direction),
damage bands are first formed across the transverse direction when the global strain
reaches a value of 0.6% (Fig.2.10a). Thereafter, the bands extend in Y-direction
(Fig.2.10b), across the thickness of the laminate. At the global strain of 1.21%, the
damage bands are connected in the 90° layers but are blocked by the 0° layer
(Fig.2.10c). The above damage growth mode is in agreement with the experimental
observation of the coupon specimens, where transverse cracks began to appear at a
global strain value of about 0.6%. The cracks were formed immediately across the full
width of the specimens. (Z-direction) Therefore, both experimental and numerical
results confirmed that the dominant damage mechanism is the transverse matrix cracks
in the 90° layers of the laminate.

In terms of prediction of the global stress-strain response for this cross-ply
laminate, an elastic solution with a damage criterion or even the classical laminate
theory with fully discounted plies at failure, may also be able to simulate the bilinear
response. As an illustrative example, the results of a purely elastic matrix model
incorporating the same damage criterion (i.e. the material constants aj, a;, by and b in
equation (11) are set to zero.) are presented. It can be seen from Fig.2.7 that with
respect to the overall response, the prediction of the elastic solution is not much
different from that of the viscoelastic matrix model. However, there are some
differences concerning with the predicted damage initiation and propagation, see Fig.
2.11. The elastic solution predicts a delayed initiation of the transverse cracking (at a

global strain of 0.64%, i.e. increase of over 10%). Moreover, in the elastic solution the
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propagation of the transverse crack is slower, and it does not propagate across the full
thickness of the 90° layers until the global strain level reaches a value of 1.68% versus
1.21% for the viscoelastic matrix. Therefore, the viscoelastic solution appears to

provide a more accurate prediction of damage initiation and propagation than the elastic

solution.

2.5  Conclusions
A meso/micro-mechanical analysis of a [0,90;,0]r laminate has been reported. The
approach was based on a finite element analysis of a multi-layer unit cell model. The
model prediction was in good agreement with the experiment observation not only in
global stress-strain response but also in the initiation and propagation of the transverse
matrix damage. The success of the analysis can be attributed to the following key points
in the current meso/micro-mechanical model:
1. The muilti-layer unit cell model provides a more accurate representation of the
laminate lay-up structure.
2. The nonlinear viscoelastic constitutive model describes more accurately the multi-
axial stress-strain relation of the epoxy matrix material.
3. The damage criterion introduced for the epoxy matrix enables one to simulate the

damage initiation and growth observed in the experimental investigations.
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Figure 2.3. A viscoelastic model represented by a finite series of Kelvin elements
coupled with an elastic spring
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Figure 2.4 Stress-strain curves of epoxy under uniaxial tests with different stress rates
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Figure 2.8 Stress distribution of 6« component at the applied global strain value of
0.58%

Figure 2.9 Maximum principal strain distribution at the applied global strain value of
0.58%
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Chapter 3
Finite Element Mircromechanical Modeling of Free Edge Effects in
Glass Fiber/Epoxy Cross-ply Laminates

3.1 Introduction

The increasing usage of continuous fiber-reinforced polymeric composites in load
bearing applications requires the methods to predict the mechanical properties and
damage mechanisms of these materials accurately, in order to design more damage
tolerant structures. Consequently, the objective of designing composite structures with
optimized damage characteristics has led to the development of mechanical theories for
the modeling of composite at macromechanical and micromechanical levels. Classical
laminate theory (CLT) is a widely accepted macromechanical method for many aspects
of the mechanical behavior of composite laminates. In classical laminate theory, the
material properties of each ply are averaged or smeared to produce a global orthotropic
material, which is used to calculate the stresses and strains in each ply [1]. One of its
limitations, however, is the description of damage initiation and propagation in the
laminates. The often adopted first ply failure criterion [1] can approximately predict the
transverse matrix cracking based on the averaged or smeared composite stresses and
strains, but can not predict the crack initiation site and propagation path in the laminates
[2]. In particular, the CLT has difficulties in predicting the free edge effects in

laminated composites because damage may occur early in the life of the composites due
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to the free edge effects but may have only a small effect on the overall stiffness and
strength properties.

Therefore, to predict the damage initiation and propagation in composites
accurately, the fibrous composites must be modeled at the fiber and matrix levels [3].
The use of finite element micromechanics provides a powerful tool to investigate the
stress/strain state of composites on the microscale in terms of their constituent material
properties. The micromechanical modeling has the advantage of providing more
physical information of the constituent fiber and matrix so as to numerically simulate
the failure of fiber and matrix as well as interface debonding between the two.
Considerable research efforts have been undertaken to investigate damage and failure of
unidirectional fiber-reinforced composite by using finite element micromechanical
modeling [4-8], but only few researchers [9] have extended this methodology to study
the free edge effects. It is the goal of this study to investigate the role of free edge
surface on the damage initiation and progression in the cross-ply laminates by a
micromechanical modeling.

The aim of the present contribution is to determine the micromechanical
stress/strain field at the free edge surface in [0/90],, glass fiber/epoxy cross-ply laminate
subjected to a uniaxial loading. A three-dimensional micromechanical model including
the free edge surface of the cross ply laminate has been developed to carry out a finite
element analysis. The analysis incorporates a nonlinear viscoelastic constitutive relation
[10] particularly suited for the epoxy matrix. In order to simulate the damage
progression in the cross-ply laminate, the maximum principle strain and the maximum

normal traction are used as the failure criteria for the matrix element and interface
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element, respectively. These criteria have been incorporated into the finite element
analysis program, so as to predict the damage initiation as well as damage propagation
near the free edge surface in the cross-ply laminates. For the comparative purpose, the
damage evolution of the interior region of the composite, which is not influenced by the
edge effects, is studied through a representative volume element (RVE). In addition, the
predicted globe stress-strain response obtained by the RVE is also compared to the

experimental results.

3.2 Micromechanical Modeling Approach

In the micromechanical model, it is assumed that fibers are uniformly dispersed
within the homogeneous matrix, and packed in a square array. Figure 3.1 shows a
representation of a thick cross-ply [0/90].s laminate from the micromechanical point of
view. The following assumptions dealing with this model are made in this type of
representation:

a. The model is fully periodic in all three directions.

b. Fibers are circular and evenly spaced in the cross-ply laminate.

c. Each unidirectional layer could be represented by one row of fibers
imbedded within the matrix.

d. The cell model has a constant fiber volume fraction of 52.5% as the full
cross-ply laminate.

e. The model surfaces remain plane after deformation.
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These assumptions allow for the analysis of the cross-ply [0/90].s laminate to be

performed on one identical representative volume element (RVE) as shown in Fig.3.1.

3.2.1 Finite Element Modeling of Free Edge Surface

The free edge effect of composite laminates has been investigated for sometime.
A common numerical approach to this problem has been to model the entire laminate
geometry using a three-dimensional finite element analysis [11-14], among others. This
macromechanical approach treats each layer of composite laminates as a homogenous,
orthotropic continuum and models the whole structure of laminates by layered finite
elements. Although the fully three dimensional model has the advantage of representing
the laminate at all locations, however there are limitations to this method related to
computational restrictions imposed by a computer memory. Thus, in this type of model,
only a few elements are placed along the free edge surface of the laminate, and this may
results in an inaccurate representation of the stress and strain fields at the free edge
surface. In addition, it is not possible to identify the stress/strain states in and between
the fiber and matrix.

In order to alleviate the difficulties encountered by the macromechanical model,
the representation of a cross-ply laminate based on the micromechanical modeling (see
Fig.3.1) was selected to analyze the cross-ply laminate. Due to the periodic
characteristic of this representation, a representative micromechanical element could be
cut near the free surface as shown in Fig.3.2. This micromechanical model could be

replicated in X-Y plane (Fig.3.2) to construct the entire free edge surface.
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Numerical tests on this micromechanical model have shown that the free edge
effect is localized near the free surface with a maximum length less than half of the
fiber diameter (see in Fig.3.6). Consequently, all surfaces in Fig.3.2 follow the
assumptions stated earlier, i.e. plane surfaces remain plane, except the free edge surface
which could distort. Due to the symmetry and loading conditions, only 1/4 of this
micromechanical model needs to be analyzed by the finite element method.

The model was meshed using three-dimensional, eight-node hexahedral elements.
Figure 3.3 shows the finite element mesh and dimensions for the cross-ply [0/90] model
near the free edge surface. This mesh density was determined in a previous study [15] to
be suitable for the use in a three-dimensional cross-ply laminate analysis. Note that a
very thin layer of interface element is introduced around each fiber for the treatment of
interface debonding, which have the same material properties as the matrix. Moreover,
the same micromechanical model that is not influenced by the edge effects, i.e. a fully
periodic structure with no free edge surface (an interior RVE, Fig.3.1), has also been
investigated for the sake of comparison. The only difference between these two models
is the different boundary conditions applied on the free surface. In the analysis to
follow, the micromechanical model with the free edge surface is called free edge model,

whereas the one without the free edge surface is called interior model.

3.2.2 Applied Boundary Conditions

Symmetric conditions were applied to the two boundary surfaces X=0 and Y=0 of

the finite element model in Fig.3.3, i.e.

u(0,Y,Z)=0 G.1)
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v(X,0,Z) =0 (3.2)
In general, the free edge surface may not remain plane and it could have a slope

discontinuity or distortion during the loading. For this case, the free surface (Z=2) in
Fig.3.3 was modeled as a traction free surface (that is, no constraints were imposed).
Hence, periodic boundary conditions were only applied on the surfaces X=1, Y=2 and

Z=0 of the finite element model shown in Fig.3.3, i.e.

u(l,Y,Z) = u(1,0,0) (3.3)
v(X,2,Z) = v(0,2,0) (3.4)
w(X, Y,0) = w(1,2,0) (3.5)

However, for the interior model, the surface (Z=2) is not a free surface, hence the
periodic boundary conditions were applied on this surface, i.e.

w(X,Y,2) = w(0,0,2) (3.6)

The applied uniaxial mechanical loading was simulated by applying the

prescribed displacements on X=1 surface in X direction. The effect of residual thermal

stresses on the cross-ply laminate has also been studied in a previous study [15]. It has

been shown that the effect of residual stresses could be neglected for the viscoelastic

composites.

3.3 Materials Model for the Fiber and Epoxy Matrix

In this study, the glass fiber is assumed to remain linear elastic, and is thus
modeled by the generalized Hooke’s law, with E=72.5 GPa, and v=0.22. The epoxy

matrix is modeled by a nonlinear viscoelastic constitutive relation recently developed
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by Xia and Ellyin [10]. A complete version of the viscoelastic constitutive model is
provided in Ref. [10] and here, for the sake of completeness, only a brief description
will be given.

For the uniaxial stress state, the model can be represented by a finite number of
nonlinear Kelvin elements and a spring element, connected in series as shown in
Fig.3.4. The constitutive equations, generalized to the multiaxial stress state, are

summarized below:
E=k)+ 3.7
)= i‘i::l(ai [Abg-l {o}-bifea }) (3.8)

{6)=ElAl" .} (3.9)
In the above, {5}, {&.}. {£.}. {0} are the total strain-rate, elastic strain-rate, creep

strain-rate and stress-rate vectors (six components), respectively. The matrix [A] is

given by:
1 -y =v 0 0 0]
-v 1 -v 0 0 0
-v -v 1 0 0 O
[A]= Y (3.10)
0 0 0 l+v 0 O
0 0 0 0 1l+v O
(0 0 0 0 0 Il+v]

which is related to the value of Poisson’s ratio. It is to be noted that instead of a linear

relation between {é.} and {c}, a power function relation is introduced through the

-1 1/2

a; . '
stress factor og4 is the von Mises

. . 3
in equation (8), where o4 = (Es,-js,-j)

. 1 . .
equivalent stress and s;; = gy -Eaijakk is the deviatoric stress tensor.
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Although any number of Kelvin elements can be chosen, it is shown in Ref. [10]
that two elements are sufficient. Based on test results, the material constants defined in

equations (8) and (9) for the epoxy matrix were determined as follows:

a, =5x10"*(MPa)?, «,=2, b, =001,
a, =1x10°(MPa)?, a,=1,b,=1x10",
E=2600MPa , v=04

The above viscoelastic material model has been implemented into the ADINA

finite element program through a user-supplied material model subroutine [16].

3.4 Modeling Damage Initiation and Propagation in Finite Element
Analysis

Typical damage mechanisms in the micromechanical analysis of composites
include matrix cracking, fiber-matrix interface debonding, and fiber fracture [4]. Matrix
cracking is a common damage type in a fibrous composite. It is found experimentally
[17-19] that the transverse matrix cracking in the cross-ply laminates may occur in the
early stage of loading, a fraction of the ultimate strain of composite. Consequently,
matrix cracking (transverse cracking) is usually considered to be the first damage
process taking place in the cross-ply laminate. A damage criterion needs to be
incorporated into the finite element micromechanical model in order to simulate the
damage initiation and its evolution in the laminate. In addition, it is shown in Ref. [20]
that the free edge surface of a laminate is a favored site for the interfacial debonding
because of the presence of high tensile stresses in this area. Therefore, another damage

criterion must be specified to simulate the interface-debonding process.
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Hence, the damage mechanisms used in the finite element micromechanical
model studied herein are the matrix cracking and interface debonding. The maximum
principal strain was used as the damage criterion for matrix cracking, i.e., when & > ¢,
the matrix would crack, where ¢ and & are the maximum principal strain and failure
strain of matrix, respectively. The failure strain of the matrix is the threshold strain
below which no damage would occur and is assumed to be a material constant. From
the experimental results on the epoxy specimens [10], it was found that in most tests the
failure strains were less than 3%. Therefore, the failure strain in this study is taken to be
equal to 0.03. In the finite element analysis, for a given macroscopic stress/strain state,
the damage criterion was checked for each matrix element in the micromechanical
model. Each matrix element is initially represented by the viscoelastic model, Egs. (7)-
(9), until the maximum principal strain in the matrix element becomes equal to, or
exceeded the failure strain. Beyond this failure strain, the matrix element property is

governed by the following constitutive relation:

{o}=BE[A]' €}~ afo} (3.11)
where B is a small number (=10™) and a is a constant (=0.01). The above constitutive
relation reduces the stress vector to a very small value in a short duration of time
({c}z 0 is the limit case), and thus, the matrix element could not carry any further load.
Figure 3.5 shows the response of the pure matrix material under a monotonic loading,

and the post failure response with the above relation introduced in the material model

(only one matrix element was used). It could be seen that before reaching the failure
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strain, the element response is viscoelastic, whereas upon exceeding the failure strain,
the stress drops drastically to zero, thus simulating the damage process.

Tt was mentioned earlier that a very thin layer of interface elements, with the same
material property as the matrix, was introduced around each fiber in the
micromechanical model. This group of elements is used to simulate an interface
debonding. The maximum radial stress (normal to the interface) is used as the damage
criterion for the interfacial debonding, i.e. once the normal traction (tensile) in an
interface element reaches the interface failure stress, T,>T., then that element is
assumed to undergo damage and can not carry any load. The damage simulation process
for the interface debonding in the finite element analysis is the same as that of the
matrix cracking, except that a different damage initiation criterion is used for interface
element (critical normal stress criterion). There is a lack of the experimental data
regarding to the value of critical stress, Tc, hence based on the available information the
normal traction (tensile) strength of the interface, was taken to be 101 MPa.

The above criteria for the initiation of damage along with the post-damage
constitutive relation have been implemented into the ADINA finite element program
through the user-supplied material model subroutine [16]. Thus, with the incrementally
applied global stress/strain, the damage initiation site and its evolution could be

obtained from the above described micromechanical model.
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3.5 Results and Discussion

Figure 3.6 shows the distribution of the maximum principle strain near the free
edge surface obtained from the free edge model when the applied uniaxial strain has
reached 0.52%. For the sake of comparison, the distribution of the maximum principle
strain obtained from the interior model at the same overall strain level is also shown in
the same figure (note that the local strain values for the same color are different for each
model). It is seen that the maximum value of the principle strain on the interior model
takes place in the matrix zone on the top of 90° fiber, whereas the maximum value on
the free edge model occurs in the matrix zone near the interface. While the maximum
value of principle strain on the interior surface is 2.55%, that value on the free edge
surface is 2.91%, almost equal to the failure strain of the matrix. Thus, for a given far
field strain state, the maximum principle strain occurs on the free edge surface of the
cross-ply laminate. In addition, it can been seen that the free edge effect is localized
near the free edge surface. The strain distribution half fiber diameter away from the free
edge surface is almost the same as the strain distribution of the interior RVE model.

The advantage of the current micromechanical model is that it could give a
detailed stress/strain distribution in and between the fiber and matrix in a micro-level
scale. It provides physical information for the determination of the damage initiation in
the laminate. With the proper damage criterion and simulation of damage propagation,
the damage evolution in the laminate could be predicted from the model. Figures 3.7
and 3.8 depict the damage initiation and growth in the laminate with the increasing

value of the global strain. It is found that, at a global strain of 0.52%, a crack begins to
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form in the matrix zone near the interface on the free edge surface. This damage,
however, is confined to the interface region on the free edge surface. No damage is
initiated on the other surface (interior surface) of this model. With the increased global
strain to 0.56%, more damage is initiated on the top of 90° fiber, but it is still localized
near the free edge surface. When the global strain reaches about 0.6%, the matrix crack
on the top of 90° fiber propagates in the transverse directions (Fig.3.7¢c, Z-direction),
whereas the interfacial damage is confined to the free edge surface, and has propagated
around the interface on the free surface but has not evolved in the transverse direction.

Thereafter, the transverse matrix cracking extend in the Y-direction (Fig.3.8b),
across the thickness of the laminate, in the meantime, the crack near the interface begins
to propagate in the transverse direction (Fig.3.8b, Z-direction). It should be noted from
Fig.3.8 that the cracks in the matrix or the interface always tend to propagate near the
free edge surface first, then expand into the interior.

In order to demonstrate the unique feature of the damage growth near the free
edge surface, the prediction of damage obtained from the interior model is shown in
Fig.3.9. In this case, the damage initiation occurs at a global strain of about 0.64%,
much higher than that of free edge model (see Fig.3.7a and Fig.3.9a). In addition, once
the crack has formed, it propagates in the transverse direction (Fig.3.9, Z-direction)
immediately. Furthermore, the interfacial crack initiates after transverse matrix
cracking.

The above damage growth model for the free edge surface is also in agreement
with the experimental observation [21-22]. References [21] and [22] also confirmed that

the crack tends to grow initially along the free edge, propagate into the interior of the
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laminate. Thus, the micromechanical model near the free edge provides reliable
prediction of the damage growth in the laminate when compared with the experimental
results.

It was mentioned earlier that the free edge effects are localized near the free
surface. In terms of predicting the global stress-stain response of this cross-ply laminate,
this narrow zone will have little effect on the overall properties of the laminates. The
prediction of interior model including the damage analysis, which is not influenced by
the edge effects, is compared with our experimental results for this cross-ply laminate in
Fig.3.10. For a comparative purpose, the same RVE model without damage analysis is
also shown in Fig.3.10. It is obvious that the RVE model without the edge effects but
with the damage analysis can predict the linear and nonlinear parts quite accurately,
while the same model, but without the edge effects and the damage analysis, can only
predict the initial linear response, and is incapable of predicting the observed stiffness
loss of the laminate. This figure shows that the damage analysis is the most important
feature when attempting to predict the global stress-strain response of the cross-ply
laminates. The free edge effects, however, have insignificant effect on the global stress-
strain response of the cross-ply laminate despite their significant influence on the

damage initiation and propagation in the cross-ply laminate.

3.6 Conclusions
A micromechanical model and two damage criteria were incorporated into the
finite element analysis to study the free edge effects on the damage initiation and

propagation in cross-ply laminates. The micromechanical mode! provides useful micro-
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level stress/strain state near the free edge surface. This stress/strain state was used in
conjunction with the damage criteria to investigate damage progress in the cross-ply
laminate. The implementation of the damage process in the present numerical study was
computationally efficient in investigating the free edge effects. This method provided
reliable predictions of the damage process in the cross-ply laminates. The following
conclusions are drawn from the present study:

1. The magnitude of stress/strain state near the free edge surface is higher that one
in the interior surface.

2. Due to the free edge effects, damage initiates at the free surface, and propagates
into the interior of the cross-ply laminate. The crack initiates at lower a global
strain on free edge surface compared with that at the interior model.

3. Although damage initiation occurs early near the interface on the free edge
surface, the transverse matrix cracking which initiates later on, propagates first
into the interior of the cross-ply laminate.

4. The early damage initiation on the free edge surface, however, has negligible

effect on the global mechanical properties of the cross-ply laminate.
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Chapter 4
A Viscoelastic Micro-mechanical Analysis of Thermal Residual Stress

Evolution in Glass Fiber/Epoxy Cross-ply Laminates

4.1 introduction

When polymer composites are cooled from their fabrication temperature to room
temperature, thermal residual stresses are generated inside the composites due to the
mismatch in the coefficient of thermal expansion (CTE) of the fiber and matrix
constituents. Because of the viscoelastic nature of the epoxy matrix, however, these
residual stresses will decrease through a process of stress relaxation. In general,
experimental methods in measuring the evolution of these residual stresses are
complicated and the results rather difficult to interpret [1]. Consequently, to understand
the features of these processing-induced residual stresses, one has to rely primarily on
analytical and/or numerical methods.

The use of micromechanical modeling of composites in terms of their constituent
properties is a common numerical tool for investigating thermal stress state on the
micro-scale. This method provides detailed stress and deformation fields on the
microscopic scale as well as the prediction of effective mechanical properties,
especially when viscoelastic mechanisms are involved [2]. Generally, the build-up of
residual stresses in micromechanical models involves two processes: generation and

relaxation. The generation of residual stresses depends on the difference between the
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Young’s moduli and CTE of the fiber and matrix materials, and on the consolidation
temperature. The relaxation, on the other hand, is a function of the time-dependent
inelastic properties of the matrix. A number of investigations [3-7] have used a
micromechanical model to study the generation of residual stresses in metal matrix
composites but, only a few researchers [8-9] have extended this methodology to
polymer-based composites. To the best of our knowledge, a micromechanical model,
including both generation and relaxation, has not been used to study the evolution of
residual stresses in glass fiber/epoxy laminates. It is the goal of this work to address
these issues.

In this study, a three-dimensional micromechanical model is used in a viscoelastic
finite element analysis to investigate the evolution of thermal residual stresses in a thick
[0/90] glass fiber/epoxy cross-ply laminate. The model, with the appropriate boundary
condition, predicts thermal stresses and displacements both near and away from the free
edge surface. The effect of the free edge surface on the generation of residual stresses is
contrasted with that of the interior. Three different cooling rates have been selected to
examine the role of matrix viscoelasticity in the generation of residual stresses, the
dimensional changes and the subsequent relaxation behavior. The analysis incorporates
a nonlinear viscoelastic constitutive relation [10] particularly suited for the epoxy
matrix. This constitutive model has been implemented into the finite element analysis
code, ADINA [11], through the user-defined subroutine. In addition, the effective
thermal expansion coefficient of the cross-ply laminate is shown to be generally time-
dependent. For the sake of comparison, the results for a unidirectional laminate of the

same material with the same volume fraction are also presented.
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4.2 Micromechanical modeling

The accuracy of a micromechanical model depends on the choice of model, which
usually incorporates various geometrical and material assumptions. Typically, in a
micromechanical model, it is assumed that the fibers are uniformly dispersed with the
same cross section in composite and packed in a square array. Consequently, only one
identical representative volume element (RVE), much smaller than the whole composite

laminate, is required to be analyzed by the finite element method.

4.2.1 Finite element representation

Figure 4.1 shows a micromechanical representation of a thick cross-ply [0/90]
laminate. The lay-up structure of the laminate in Fig.4.1 is fully periodic in all three
directions. Each unidirectional layer could be represented by a unit cube with a single
fiber having the same fiber volume fraction as the ply. The RVE is representative of a
typical internal array of the composite that is not influenced by edge effects. Due to the
symmetry conditions, only 1/8 of the RVE needs to be analyzed by the finite element
method. In the analysis to follow, the fiber volume fraction was taken to be 52.5%, and
is the same for each layer in the laminate.

The effect of the free edge surface for the cross-ply laminate is also studied by
selecting a RVE near the free edge surface of laminate as shown in Fig.4.2. Numerical
tests by micromechanical model have shown that the free edge effect is localized near
the edge surface with a maximum length less than half of the fiber diameter. Therefore,

the edge effect on the interior surface, one fiber diameter away from the free edge
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surface, is negligible. Consequently, symmetry conditions would still apply to the
interior surface and here also only 1/8 of this RVE needs to be analyzed.

Moreover, in the present study, a unidirectional laminate, similar to the one used
in Ref 7, with the same volume fraction has been modeled. All RVE models were
meshed using a three-dimensional, eight-node hexahedral element. Figure 4.3 shows the
finite element mesh and dimensions for the unidirectional model (Fig.4.3a), cross-ply
[0/90] model (Fig.4.3b) and free edge model (Fig.4.3c). A very thin, finely meshed
layer was used in the vicinity of the interface, where significant stress gradients may
occur. A convergence study was carried out based on the assumption that further
refinement in mesh resolution did not result in appreciable changes in the contours of
thermal stress and displacement fields. The current mesh substantially reduced the
computation time during the relaxation analysis and yet remained relatively accurate in

comparison to a further refined mesh.

4.2.2 Applied boundary conditions

Symmetric conditions were applied to the three finite element models on boundary
surfaces X=0, Y=0 and Z=0, i.e.:

u(0,Y,Z)=0 (4.1)
v(X,0,Z) =0 4.2)
w(X,Y,0)=0 (4.3)

The boundary conditions applied on surfaces X=1, Y=1 and Z=0.25 of the finite
element model (Fig.4.2a) will enforce periodicity along all directions, i.e.

u(l,Y,Z) =u(1,0,0) 4.4)

v(X,1,Z) =v(0,1,0) 4.5)
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w(X,Y,0.25) = w(0,0,0.25) (4.6)
Identical periodic boundary conditions are also applied on surfaces X=1, Y=2 and

Z=1 of the finite element model shown in Fig.4.2b, i.e.

u(l, Y, Z) = u(1,0,0) 4.7)
v(X,2,Z) =v(0,2,0) (4.8)
w(X, Y1) = w(0,0,1) (4.9)

Under these boundary conditions, each plane surface remains plane during
deformation, but is free to displace in its own plane. A perfect bond between the fiber
and matrix is assumed in the analysis.

In general, the free edge surface may not remain flat and it could have a slope
discontinuity or distortion during the loading. For this case, the free surface (X=2) in
Fig.4.3c was modeled as a traction free surface (that is, no constraints were imposed).
Hence, periodic boundary conditions were only applied on the surfaces Y=2 and Z=1 of
the finite element model shown in Fig.4.3c, i.e.

v(X,2,Z) = v(0,2,0) (4.10)

w(X,Y,1) = w(0,0,)) (.11

4.2.3 Material models for the fiber and epoxy matrix
In this study, the matrix is assumed to be a viscoelastic property determined by a
given set of material parameters. These material constants are assumed to be

independent of temperature.
The glass fiber is assumed to remain linear elastic, and is thus modeled by the

generalized Hooke’s law, with E=72.5 GPa, v=0.22 and CTE=5x10"%°C. The epoxy



Chapter 4 Thermal Residual Stress Analysis 67

matrix is modeled by a nonlinear viscoelastic constitutive relation recently developed
by Xia and Ellyin. A complete version of the viscoelastic constitutive model is provided
in Ref [10] and here, for the sake of completeness, only a brief description will be
given.

For the uniaxial stress state, the model can be represented by a finite number of
nonlinear Kelvin elements and a spring element, connected in series as shown in
Fig.4.4. The constitutive equations, generalized to the multiaxial stress state, are

summarized below:

E.)=fe.}+E) (4.12)
k)= 2labs )ik (4.13)

{6}=E[a]"E.} (4.14)
In the above, {5}, {€.}. {&.}, {6} are the total strain-rate, elastic strain-rate, creep

strain-rate and stress-rate vectors (six components), respectively. The matrix [A] is

given by:

(1 -v -v 0 0 0 ]

-v 1 -v 0 0 0

-v - 1 0 0 0

[Al= Y (4.15)

0 0 0O l+v O 0
0 0 0 0 1+v O

(0 0 0 0 0 1+v]

which is related to the value of Poisson’s ratio. It is to be noted that instead of a linear

relation between {¢.} and {c}, a power function relation is introduced through the
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1
)/2

-1 . . 3 . .
stress factor agq' Lin equation (13), where o, =(Es'js'7 is the von Mises

equivalent stress and s;; = gy —%6,-1-07,,( is the deviatoric stress tensor.
Although any number of Kelvin elements can be chosen, it is shown in Ref. [10]
that two elements are sufficient. Based on test results, the material constants defined in

equations (13) and (14) for the epoxy matrix were determined as follows:

a, =5x108(MPa)?, a,=2,b,=00l,
a, =1x10 (MPa)?, a,=1 by=1x107,
E=2600MPa , v=0.4 and CTE=63x107/°C

The above viscoelastic material model has been implemented into the ADINA

program through a user-supplied material model subroutine [11].

4.2.4 Implementation of thermal analysis in the model

In the present study, the thermal stresses induced during cooling from the
fabrication temperature, T=149°C [12] to room temperature, T,=23°C, are investigated.
The fabrication temperature is regarded as a reference temperature at which the
laminate is taken to be stress free in both the matrix and the fiber. A uniform spatial
temperature throughout the model is assumed, i.e., the temperature of each node is
specified to be identical at any time and to be varied at the same change rate of
temperature. To show the effect of cooling rates on the residual stresses in the cross-ply
laminate, the cooling process is simulated by applying incremental temperature drops at
three different cooling rates of 126°C/min, 1.4°C/min, 0.15°C/min, respectively. The

relaxation is simulated by dropping the laminate temperature from the fabrication
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temperature to room temperature and then holding the laminate at room temperature for

a long period.

4.3 Results and Discussion

The results of the finite element analysis for the generation and relaxation of
residual stresses are presented in the form of stress contour plots for fiber and matrix
materials in the following section. Stress components shown in this section are

longitudinal and transverse stresses, respectively.

4.3.1 Residual stresses in fiber/epoxy laminates

The residual stresses induced by cooling from the stress free temperature of 149°C
to 23°C at a rate of 1.4°C/min are shown for both the unidirectional and cross-ply
laminates in Figs.4.5 and 4.6. The difference in the residual stress states between the
unidirectional and the cross-ply are clearly demonstrated in both the longitudinal (cz)
and transverse (Ox) directions. For the unidirectional model, the longitudinal stress
values range from a tensile value of 26.64 MPa in the matrix near the interface to a
compressive value of 19.13 MPa in the fiber. These stresses are distributed
symmetrically along the diagonal line of the model. The transverse stress, however, has
no such symmetrical distribution. The maximum tensile stress occurs in the matrix with
a value of 20.84 MPa near the interface and the maximum compressive stress occurred

in the fiber near the interface zone on the top of the fiber with a value of 19.08 MPa.
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In the case of cross-ply laminate (Fig.4.6), the longitudinal and the transverse
stresses are very similar in distribution and magnitude. The stress values range from a
tensile value of 42.27 MPa in the matrix near the interface to a compressive value of
76.49 MPa in the fiber.

As seen in these figures, while the longitudinal and transverse stresses show
similar trends in magnitude and distribution for the cross-ply laminate, these stresses are
different in the unidirectional laminate. Furthermore, the maximum tensile stress and
compressive stresses in the cross-ply laminate are much higher than those in the
unidirectional laminate. These differences between the two-laminate lay-ups indicate
that the residual stresses in any ply of laminate are influenced significantly by the
adjacent ply with different configurations. Different angle-ply laminates would have

different residual stresses in both magnitudes and distributions.

4.3.2 Free Surface effect on residual stress of cross-ply laminate

To quantify the effect of the free edge surface, the residual stresses generated at a
cooling rate of 126°C/min for the cross-ply laminate at and away from the free edge
surface are compared in Figure 4.7. The deformation of the RVE model near the free
surface is also shown in Fig.4.7. The transverse stresses are similar to those of the
longitudinal stresses in both the magnitude and distribution for cross-ply laminates, as
mentioned before. Therefore, in the analysis to follow, only the longitudinal stress (cz)
contours are given for the cross-ply laminate. It is seen from the figure that the tensile
stresses in the free edge model are significantly different from those in the interior.

Higher maximum tensile stresses occur in the 90° fiber at the free surface (61.33Mpa).
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These stresses are much higher than the ones in the interior of laminate, which occur
near the interface in the 0° fibers (48.13Mpa). However, the compressive stresses of the
free edge were less different from those in the interior in both the magnitude and
distribution. In addition, due to the free surface boundary condition used in the free
edge model, the free edge surface does not remain plane after cooling to the room

temperature. A residual distortion occurs on the free surface.

4.3.3 Stress relaxation of the cross-ply laminate

It was mentioned in section 2 that the generation of residual stresses in the current
cross-ply model is governed by the viscoelastic nature of the epoxy matrix. Relaxation
and creep may occur simultaneously during the cooling process. Hence, three different
cooling rates were selected to study the time-dependent effect on the evolution of
residual stresses in the cross-ply laminate. To illustrate the effect of viscous behavior of
the matrix on the evolution of residual stresses in the cross-ply laminate, the result of a
purely elastic matrix material representation with the same RVE model, is also
presented. The residual stress contours in the longitudinal direction for a cooling rate of
0.15°C/min, along with the purely elastic solution, are shown in Figure 4.8. The elastic
solution is obtained by assuming {éc}=0 in equation (12) and (13). A comparison of
Figs.4.6, 4.7 and 4.8 shows that the elastic solution predicts the highest tensile and
compressive residual thermal stress than that obtained by a viscoelastic solution. The
magnitudes of the maximum tensile and compressive stresses in the cross-ply laminate

under a faster cooling rate are greater than those under a slower cooling rate (Fig.4.10).
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These suggest a strong effect of the matrix viscous behavior on the evolution of thermal
residual stress. An elastic matrix model induced higher residual stresses in the cross-ply
laminate than a viscoelastic matrix model irrespective of the rate of cooling.

The stress relaxation behaviors of the cross-ply laminate at three different cooling
rates are numerically simulated herein. Once the laminate reaches room temperature, it
is held at that temperature for a long period. Figure 4.9 depicts the residual stress
contour in the longitudinal direction (cz) for the cross-ply laminate cooled at a rate of
1.4°C/min and held at room temperature for 2133 minutes. When contrasting this figure
with Fig.4.6, it can be clearly seen that the tensile and compressive residual stresses
have decreased significantly in both the fiber and matrix zones. It should be noted that
the results shown here exhibit a strictly mechanical effect due to viscous behavior of the
epoxy and thermal mismatch between fiber and matrix. This point is illustrated more
clearly in Fig.4.10. For the purpose of comparison, the relaxation evolution of the
maximum tensile and compressive stresses for the cross-ply laminate at three different
cooling rates as well as the elastic solution is shown in Fig.4.10.

It is seen that irrespective of the cooling rates, the residual stress tends to an
asymptotic value with the passage of time. The cooling rate affects the initial
(maximum) residual stress value. Hence, it is advisable to reduce the cooling rate as
much as is practically possible so as to avoid matrix cracking when first reaching the
ambient temperature. The residual stress within a purely elastic matrix, however, could
not relax with the passage of time and remains constant. In order to illustrate time-
dependent effect on the cross-ply dimensions, the evolution of the average shrinkage

strain in the longitudinal direction is shown in Fig.4.11. Here, the average shrinkage
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strain in the longitudinal direction is obtained from the following equation [13] based
on the finite element model developed in section 2:

s -W(0,0,l)
& =—
L

(4.16)
where L is the length of the RVE model in the Z direction. Again, it is noted that higher
cooling rates results in a higher shrinkage strain when the laminate is cooled to the
ambient temperature. The thermal shrinkage strain, however, tends to a small value over
a long period when held at room temperature. It is seen that the time at which the
change in slope becomes insignificant, is about 1800 minutes, see Fig.4.10 and 4.11.
After this period, thermal residual stress and shrinkage strain tend toward a limiting
value. The above results indicate that, as long as no damage was initiated in the cross-
ply laminate during the cooling process, there would be negligible difference in the final

thermal residual stress and deformation for a cross-ply laminate when cooled at

different rates and held at the ambient temperature for a long time.

4.3.4 Time effect on thermal expansion coefficient of viscoelastic composites

Unlike the CTE of elastic composites and time-independent elastic-plastic
composites discussed in Ref. [14], the viscoelastic matrix characteristic to creep and to
relax implies that the CTE of the viscoelastic composite will, in general, not remain
constant but will be a function of time for a certain period. In this section, the time
effect on the thermal expansion coefficient of viscoelastic composites will be examined
for both unidirectional and cross-ply laminates.

In the present study, the CTE of the viscoelastic composite is defined as:
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€
a=—= 4.17
AT (4.17)

where g is the average shrinkage strain in a given direction and AT is the uniform
temperature change from the fabrication temperature to room temperature. As stated
earlier, because of the relaxation, the shrinkage strain changes with time after the
laminate is cooled to the room temperature. Therefore, although the CTE values of the
constituents are specified material parameters, it is apparent that the composite CTE as
defined above becomes a derived quantity and varies with time, due to the mechanical
constraint imposed on the viscous matrix.

Since the average shrinkage strains for the cross-ply laminate in the longitudinal
and transverse directions are equal, there is only one CTE for the cross-ply laminate,

defined as a.c . The longitudinal and transverse CTE for the unidirectional laminate are

labelled al, o, respectively. Figures 4.12 and 4.13 show the change of CTE as a

function of time for unidirectional and cross-ply laminates, separately. The CTE values
calculated by the elastic solution are also shown in these figures. The average shrinkage
strain is measured after the laminate is cooled to room temperature at a cooling rate of
1.4°C/min. The time-dependence of CTE due to the viscoelastic composite is clearly
seen to be quite pronounced in these figures. Over a long period (~2000 minutes), the
CTE of composite tends to reach a constant value.

The CTE of the composite predicted by the current model can be compared with

analytical solutions. For isotropic elastic composites, the CTE can be expressed as [15]:
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G.L = Bmamvm +Et’at'vf
4 E V. +EfV;

(4.18)

where a® is the CTE of the composite in the longitudinal direction, En and Ec are the

elastic moduli, o, and o, are the CTE, and Vy, and V¢ are volume fraction of the
matrix and fibers, respectively. This equation, proposed by Schapery, is widely used to
predict the longitudinal composite CTE from the properties of the constituents.

Schapery [15] has also presented the solution for the transverse CTE of unidirectional

composite as:

af =a, V (1+v,)+aVe(1+ve) —ague (4.19)
where Vg, Vg, and V. are the Poisson’s ratio of the matrix, fibre and composite,
respectively. The longitudinal and the transverse CTE of unidirectional composite
calculated by equations (18) and (19) are 6.825x 10%°C and 42.11x10°°C,
respectively. The asymptotic values obtained from viscoelastic solution in Fig.4.12 are
5.21x10%/°C and 39.46x10°/°C, respectively. It is noted that the analytically predicted
values are higher than the limiting viscoelastic values. Those predicted by eqgs. (18) and
(19) result in an overestimation by 31% and 7%, respectively. On the other hand, the
analytically predicted values are in good agreement with the elastic solution shown in

Fig.4.12. This is because both the analytical solution and elastic solution do not account

for the time effect on the CTE of viscoelastic composites.
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4.4

Conclusions

A nonlinear viscoelastic micromechanical analysis of the evolution of the thermal

residual stresses in unidirectional and cross-ply laminates has been presented. The 3-D

micromechanical model is capable of analyzing the variation of the stress/deformation

states in the interior of the composite as well as near the free edge surface. This

investigation shows that the viscous behavior of the matrix plays an important role in

the evaluation of the residual stresses in composites. The following conclusion are

drawn from the present study:

L.

Different ply orientations generate different residual stresses in both magnitude
and distribution.

Due to the effect of the free edge surface, there is a significant difference in the
residual stresses both in the magnitude and in distribution between the interior
surface and free surface of cross-ply laminates. Residual distortion also occurs
near the free surface of cross-ply laminate.

A higher cooling rate results in higher initial residual stresses than a lower
cooling rate. Hence, a higher cooling rate may lead to cracking of the epoxy
matrix.

In the absence of damage initiation during the cooling process, the residual
thermal stresses in the composite reduce to a small value over a long time

irrespective of the effects of the different cooling rates.

. The CTE value of the viscoelastic composite is significantly influenced by the

viscous behavior of the matrix. It changes as a time function and tends to reach a

limiting value over a long period (~2000 minutes).
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a) Three-dimensional finite element mesh of unidirectional laminate
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b) Three-dimensional finite element mesh of [0/90] laminate
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¢) Three-dimensional finite element mesh of [0/90] laminate near free edge surface

Figure 4.3 The 3-D models and FEM meshing
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Figure 4.4. A viscoelastic model represented by a finite series of Kelvin elements
coupled with an elastic spring



80

Chapter 4 Thermal Residual Stress Analysis

20.84
18.34
15.85
13.35
10.86
8.363
5.868
3.373
0.878
-1.617
4112
-8.607
-9.102
-11.6
-14.09
-16.59
-19.08

Transverse Stress (6, distribution (MPa) Longitudinal Stress (o,,) distribution (MPa)

x_JZ

Figure 4.5 Residual stress distribution for unidirectional laminate at cooling rate of 1.4° C/min
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Figure 4.6 Residual stress distribution for cross-ply laminate at cooling rate of 1.4° C/min
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Figure 4.7 Thermal residual stresses distributions in longitudinal direction (c..) for cross-ply laminate near and away from

free edge surface at cooling rate of 126°

C/min
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Figure 4.8 Thermal residual stresses distributions in longitudinal direction (o) for cross-ply laminate with two different matrix

materials.
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Figure 4.10 Residual stress relaxation in cross-ply model for different cooling rates
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Figure 4.11 Strain recovery in cross-ply laminate for different cooling rates
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Figure 4.12 Calculated average CTE of unidirectional composite
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Figure 4.13 Calculated average CTE of cross-ply laminate as a function of time
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Chapter §

Conclusions

The primary goal of this study was to model the mechanical behavior and damage
process of glass fiber/epoxy cross-ply laminates under uniaxial loads using a three-
dimensional finite element analysis. The comprehensive micromechanical model
includes the effect of viscoelasticity of the matrix and the consideration of thermal
residual stress in cross-ply laminates, as well as incorporating appropriate damage
criteria to predict the damage initiation and propagation inside the composite. The
results presented here have led to the following conclusions:

1. This investigation has shown that to perform an effective micro-mechanical
analysis and to obtain reliable predictive results, the following three prerequisite
conditions must be fulfilled:

a) The RVE model must correctly represent the lay-up geometry of the
laminates as well as the original volume fraction for each layer and the
proportion of layers with different fiber orientations.

b) The constitutive models must be able to accurately represent the
constituents’ behaviors. A generalized Hookes’ law is usually sufficient for
the fibers. But for the polymer matrix materials, a nonlinear viscoelastic

constitutive models is required
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c) A proper damage criterion and a post-damage constitutive relation to
simulate the damage process should also be introduced in the model. The
values of damage parameters must be based on realistic experimental
observations

2. The multi-layer unit cell models developed in this study provide a accurate
representation of the laminate lay-up structure of cross-ply laminates. These models
enable the finite element analysis to generate detailed distribution of stress/strain in the
matrix and fiber, which are essential for understanding the damage mechanisms. With
proper damage criteria introduced for the matrix and interface, the damage initiation
and propagation observed in the experimental investigations are predicted by the
micromechanical model. In addition, the model predicted global stress-strain response
was in good agreement with the experiment observation of the cross-ply laminates

3. In laminates, damage generally initiates at the free surface, and propagates into
the interior of the cross-ply laminate. The crack initiates at a lower global strain on the
free edge surface compared with that at the interior zone. Although early damage
initiation occurs near the fiber/matrix interface near the free edge surface, the transverse
matrix cracking, which initiates later on, first propagates into the interior of the cross-
ply laminate. The early damage initiation on the free edge surface, however, has
negligible effect on the global mechanical properties of the cross-ply laminate.

4. The nonlinear viscoelastic constitutive model introduced in the
micromechanical analysis plays an important role in the evaluation of the residual
stresses in composites. A high cooling rate results in the higher initial residual stresses

than that of a low cooling rate. Hence, it is feasible that a higher cooling rate may lead
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to cracking of the epoxy matrix. However, in the absence of damage initiation during
the cooling process, the residual thermal stresses in the composite reduce to a small
value with passage of time, irrespective of the different cooling rates. The thermal

residual stress also causes a distortion in the free edge area of the laminates.



