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Abstract

A cyber-physical system (CPS) is composed of interacting physical and com-

putational components. CPS research addresses the combined sensing and

actuating to monitor and control a CPS. Simulation techniques are used in

advance of costly CPS deployments to provide sufficient understanding of the

complex interactions within a CPS, but such simulations involve the simula-

tion across multiple domains. High fidelity simulators for specific domains

already exist, but are not built to interact with other simulators. To address

this issue we adopt a co-simulation approach. Co-simulation requires a means

of interaction and coordination among multiple simulators, guaranteeing that

each simulator is informed of changes in the state of the other simulators that

could influence its own state, and that events across multiple simulators do

not violate causality. We adopt MOSAIK as the co-simulation framework and

we illustrate how existing simulators are adapted to interface with the frame-

work. We produce examples of co-simulation scenarios to capture a class of

CPS problems, namely, smart-grid applications. The legacy simulators used,

and partly modified, to interface with MOSAIK are OpenDSS, a power flow

simulator for electrical grids, and ns-3, a data networking simulator. We ad-

dress the problem of the joint configuration of the simulators using a com-

bined ontology expressing the union of the simulated domains. We evaluate

the performance of our co-simulation by simulating large scale smart-grid ap-

plications. The results demonstrate that with some additional programming

effort, refinements in the handling of events within each individual simulator

can improve the overall co-simulation efficiency.
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Chapter 1

Introduction

We define as cyber-physical system (CPS) any system in which an environ-

ment composed of physical components, is sensed and, often, actuated upon,

by a computational and data communication infrastructure (the cyber part).

Here physical components stand for anything that exhibits dynamics and be-

haviors that are understood not to be the result of mechanistic computation.

Examples of physical components that exhibit dynamics are, e.g., the heat

transfer phenomena in buildings, the human preferences in picking routes

when driving, etc. In the heat transfer phenomena, the dynamics are gov-

erned by heat flow physics. In the case of route selection, the dynamics are

driven by human behavior. In both examples, the dynamics typically hap-

pen outside a computational infrastructure, and hence are independent from

whether a computational infrastructure exists or not. The computational as-

pect may include any type of processes, such as e.g., controllers in the sense of

legacy control systems, and computation may involve interaction with users

via user interfaces, or be completely distributed, autonomous, and with no

humans in the loop.

1.1 CPS Simulation

Developing and deploying the sensing, actuating, computational, and commu-

nication elements of a CPS requires that we correctly capture the interaction

between the physical and the cyber parts. The complexity of understanding

those interactions is often handled by running, possibly long, simulations. The

need to run many, efficient, and accurate simulations of a CPS has received
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attention also because of the interest in machine learning techniques. When

interacting with a physical environment, it is both economical, efficient, and

often safer, if a learning system is interacting with a simulated physical envi-

ronment.

Simulations are calculations imitating real-world operations performed

using well-defined models for real-world objects [1]. Simulations were first

carried out during World War II by John Von Neumann and Stanislaw Ulam

[2], to avoid exorbitant costs of studying neutron behaviour with real-world

experiments. The success of the experiments made simulations widespread

in industry and business [3]. With the advent of computers, more detailed

simulations became possible, which led to the emergence of putting together

simulations using multiple simulators, namely co-simulation.

1.2 Co-Simulation Challenges

The challenge with simulating a CPS, is that each particular CPS may in-

volve a different set of simulators, as its constituent parts depend on what

kinds of physical systems the CPS includes. This is true of co-simulation in

general. Ordinarily, the simulators available are developed by groups of re-

searchers and practitioners with special interest in a particular domain, e.g.,

heat flow dynamics. While they devote a lot of detail and time for the specific

domain, they have been traditionally uninterested in the integration of their

simulator with other simulators. The focused development of a simulator for

a specific domain has some notable benefits. Notably, community developed

and supported simulators, have received the scrutiny and the continuous use

by a user community that is very likely to have resolved most critical bugs

and added a rich set of features.

Observation 1: It is preferable to develop co-simulations using as much

as possible existing (“legacy”) simulators which a large community of users

and developers have debugged, evolved and used, rather than develop co-

simulators “from scratch.”

Since simulators are developed in isolation from other simulators, inte-
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grating them in a co-simulation environment involves the task of identifying

how their implementations can be modified to allow for such integration. In

short, the simulator internal logic has to be “opened” to external control and

to, equally, be able to cause external events which were not part of their origi-

nal design. The need to modify the logic, assumes access to the source code of

the simulators.

Observation 2: Open source simulators facilitate their integration into

co-simulations because their software is readily available and modifiable.

Interfacing of the simulators with each other, even if facilitated by all of

them being open source, is not necessarily a trivial matter. For example, each

of the simulators may be authored in a different programming language. The

integration of the various simulators may also be impossible to form a single

executable process. Strategies for transforming the communication between

simulators to language independent inter-process communication is needed.

By virtue of the separation of each constituent simulator into a different pro-

cess, co-simulation incorporates aspects of distributed simulation. As we will

see the existence of co-simulation frameworks provides (some) of the answers

to the task of integration. An ideal framework provides adequate flexibility to

integrate disparate and drastically different simulators, providing the “glue”

necessary among them. Yet, to interface and work as expected by a given

framework, each constituent simulator needs to be modified.

Observation 3: Co-simulation frameworks offer, to various degree of flex-

ibility, assistance in building co-simulators, but do not necessarily elimi-

nate the effort of modifying existing simulators.

Regardless whether a framework is used, an additional issue is the joint

configuration of the constituent simulators. Each simulator needs its own

specific configuration. It is usual practice for simulators to read a configu-

ration file when they start their execution. Configuration files are conceived

around the definition of objects and their relationships that make sense for
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the specific domain simulated by the simulator. For example, a simulator for

heat transfer phenomena may need to know the thermal resistance and the

geometry of walls, and it is this information that is included in the particu-

lar simulator configuration file. However, when viewed abstractly, the joint

configuration of the co-simulator can result in the same object appearing in

more than one constituent simulators, having a different role to accomplish

in each of them. For example the simulation of an actuator may appear to a

power grid simulation as a switch while in the data communication side it is a

communication endpoint receiving packets encoding commands. To avoid du-

plication of information which can be causes of errors, the joint configuration

should include a single description of each object, even if it is participating

in more than one simulator. Additionally, there may be objects that have a

correspondence only in one of the simulators.

To address the issue of a single joint configuration, there may be a need

to invent a new configuration language that allows us to express relation

using an ontology that spans all the domains simulated by the constituent

simulators. From the joint configuration, individual simulator configuration

should be produced. The existence of the joint configuration and its compila-

tion to individual per-simulator configurations also assists in adopting nam-

ing schemes for the various objects across all simulators that is coherent and

consistent across all simulators, thus helping with tasks such as debugging

the simulation across the multiple simulators.

Observation 4: A useful element of a co-simulation environment is a joint

configuration from which all constituent simulators should be configured

in a consistent and coherent manner.

Note that the co-simulator framework choice and the joint configura-

tion choice are, in principle, orthogonal issues. One can imagine that a co-

simulator framework upon starting, invokes a tool to extract the individual

configurations from the joint configuration and then, upon instantiating each

constituent simulator, it passes to them the particular configuration each

needs. That is, the framework’s involvement can be as little as passing a

specific (compiled) configuration to each simulator it starts.
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Finally, there is scant information about the performance of co-simulators

and co-simulation frameworks. There are understandable reasons for this

phenomenon. First, the concrete performance depends on what is being simu-

lated, e.g., the number of objects, how frequently they interact, etc. There are

no standardized benchmarks across multiple domains that would allow a sys-

tematic comparison of how different co-simulators across the same combina-

tion of domains perform. To this end, the thesis approaches the performance

evaluation from the point of view of the percentage of time and the kinds of

interactions happening among the constituent simulators and the framework,

as a relative view of performance. Because one of the simulation domains (the

power grid) is often configured using certain standard power grid topologies,

we adopt the same topologies as a first point of standardizing the performance

evaluation of the co-simulation environment for future studies.

Observation 5: There is a lack of performance results for co-simulations

and co-simulation frameworks involving combinations of simulators that

capture specific simulated domains.

1.3 Application: Smart Grid Co-Simulation

The purpose of this thesis is to describe the integration of a co-simulation en-

vironment for a specific CPS application, namely for smart grids. The choice

of smart grid simulation is due to the project needs of the University of Al-

berta Future Energy Systems (FES) which funded most of the research car-

ried out in this thesis. Smart grids are an excellent testing ground for CPS

co-simulation because they include at least three simulators: (a) a power grid

simulator capturing the physics of electrical current flowing through the in-

terconnected electrical components of the grid (i.e., the physical aspect of the

CPS), (b) a simulator for the sensors installed at various points on the power

grid, and (c) a simulator of the communication network and processing re-

quired to process the sensed data. Since seldom is the interest on smart grids

restricted to just observing the power grid dynamics, a fourth simulator is also

present, (d) a simulator for the actuation performed on the smart grid, e.g.,
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changing the tap positions of transformers, opening and closing switches, etc.

The smart grid examples (co-)simulated in the thesis involve two well-known

simulators, OpenDSS and ns-3, corresponding to (a) and (b) respectively.

Observation 6: The co-simulation of smart grids is a good testing ground

for CPS co-simulation because of the availability of good legacy simulators

for power flow and data networking.

1.4 Thesis Structure and Contributions

We organize the remainder of this thesis as follows. The next chapter intro-

duces the concepts related to co-simulation and details the current literature

on co-simulation frameworks. We mention examples of notable frameworks

and platforms, introduce our platform of choice and its literature, and the con-

stituent simulators used in our research. In chapter 3 we define and detail the

working principles of the constituent simulators, their internal components,

and the connections formed between these components for the purpose of co-

simulation. Furthermore, we describe the temporal event management of the

co-simulation and the various refinement techniques we propose to improve

said management. In chapter 4 we describe the various simulator configura-

tions, define an ontology to manage the configurations and to facilitate a cen-

tral configuration control. We then describe how to initiate the co-simulation

and present the interfacing within the simulators to facilitate control by the

co-simulation platform. We develop two CPS scenarios to evaluate the per-

formance of our platform and we present the results of their simulations in

chapter 5. Chapter 6 concludes the thesis while mentioning the notable limi-

tations of the framework and its possible future enhancements.

In summary, the contributions of this thesis are:

• the development of a novel high-fidelity co-simulation platform utilizing

standard open-source simulators and a flexible co-simulation framework

to simulate smart-grid applications,

• the introduction of techniques to improve the efficiency of complex sim-

ulations of cyber-physical systems and co-simulations in general while
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maintaining accuracy of causal order,

• the production of benchmark runs from the co-simulation of applica-

tions of smart-grid technology on large scale well-known power network

topologies, and,

• the contribution towards an ontology to facilitate centralized, flexible,

and consistent management of simulator configurations. The ontology

part is joint work with Jihoon Og, at the University of Alberta.
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Chapter 2

Related Work

Simulation is a vast topic that contributed in many research, technological,

and commercial fields. The reviewed related work focuses on the topic of co-

simulation as it has evolved over recent decades, and also to the systems that

have been proposed or built as frameworks to enable co-simulation. We focus

on one of the frameworks which is of a more recent vintage and has been

claimed to properly address smart grid simulations. In the related work we

also present the constituent simulators that were used in the developed co-

simulation environment, as their structure and features influenced the way

by which they were integrated into the co-simulation.

2.1 Introduction to Co-Simulation

Co-simulation is achieved by integrating multiple constituent simulators,

each capable of simulating a restricted domain of the overall simulated sys-

tem. Co-simulation, as a technical discipline, is interested in how the simula-

tors communicate and how they progress together through simulated time, in

a consistent manner, to produce correct results.

2.1.1 The Necessity for Co-simulation

A collection of discrete event simulators, each proceeding independently by

generating and processing internally events along a timeline, may simulate

the various facets of one phenomenon. For example, a simulator for the vehic-

ular mobility and one for the computer communication network. A tempting,

but naïve, solution is to use one simulator to produce the outputs that can be
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ingested by the other simulator(s). That is, one simulator runs in its entirety,

produces output and its output becomes input for the other simulator(s). For

example, the mobility simulator may produce the locations of vehicles across

time, and then their locations may be ingested by the network simulator to

simulate, e.g., the communication network congestion caused by the different

degrees of density of vehicles, depending on the vehicular traffic dynamics (pe-

riod of traffic lights, speeds, etc.). While a number of studies are well served

by the above synthesis of simulators, there are plenty of examples where the

approach is insufficient.

Consider, for example, the case of a system where we wish to study a smart

transportation network where a communication network delivers messages

to/from vehicles about how they should re-calculate the paths they are driv-

ing on. A circular dependency exists between a vehicular traffic and the com-

munication network simulators. Imagine for example the state of the vehic-

ular traffic simulator where the simulated vehicles follow the least congested

roads, and at some point during the simulation, congestion develops in cer-

tain road segments. Then, let’s assume, a communication network simulator

simulates the wireless transmissions and reception of messages among vehi-

cles. A transmitted message is considered received by nearby receivers. The

communication simulation may be introducing factors such as message deliv-

ery delay, degree of successful deliver of the message, etc. Given the received

messages and what they contain as information, the vehicles in the vehicular

simulator may recalculate the paths they are travelling on. This change of

paths followed by the vehicles, will, in turn, change the adjacency of the vehi-

cles and hence of which receivers can receive which transmissions. One simu-

lator feeds back to the other(s), and the naïve interaction between simulators

described in the previous paragraph is no longer expressive enough to capture

this use case. A related concept to this point is that of federations of simula-

tors, i.e., collaborating simulators, each of them simulating a different domain

of the system under study. Generally we are not concerned with how the in-

dividual simulators operate. For example they can be executing sequentially

or in parallel. The most important factor to address is how to synchronize

the simulators, in that each one of them is no longer exclusively depending on
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its own internal event generation but also events caused by other simulators.

The global view of the progress of events being simulated across all simula-

tors must not violate causality, i.e., the calculated total system state at any

point in time is only dependent on the previous state in temporal order. Each

simulator is holding part of the total system state, e.g., the locations of each

simulated vehicle, how many packets are being transmitted on which links

in a communication network simulator etc. The union of the state across all

constituent simulators is the total system state.

2.1.2 Simulator Synchronization

Assume a common representation of the simulated time by the constituent

simulators and that at simulated time t0, the next event in temporal sequence

to be processed by simulator A is at time tA
next > t0 and the next event to be

processed by simulator B is at time tB
next > t0. To clarify: both simulators may

also have other events to process in the future but later in time than their

ti
next. That is ti

next denotes the earliest of their future events. Also note that

simulator B does not know tA
next, neither does simulator A know tB

next.

Let us consider the case where tA
next is later than tB

next. Consistency re-

quires that we first simulate tB
next i.e., in temporal order of simulated time.

However, the simulation of the event related to tB
next by simulator B could

cause other events in simulator B in the future (i.e., > tB
next) and also could

cause events (since the two simulators interact with each other) in simulator

A. Those events caused by the event that executed at tB
next in B could occur in

A earlier than tA
next. This is not just a case where the events that are caused

by B to A are just “inserted” in the event list of simulator A. The nature of

those events could drastically alter even events that are already in A’s event

list. For example the event that was supposed to execute at tA
next in A could

be a timeout. The timeout logic could be reset if an event, as the ones caused

by B to A, happens earlier than tA
next. That is, all events in the event list of

interacting simulators could be tenuous at best. The one that certainly will

be, and should be, simulated, earlier than all of them, across all simulators is

the one with the earliest possible timestamp, i.e., the one at mini ti
next across

all i simulators.
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The above form of synchronization is called conservative [4] as it never

allows the constituent simulators to execute events that could violate the

causality order. Technically speaking, it is not the events that violate the

causality order, but rather their execution that causes state changes which

run contrary to causality. That is, we enforce an order that ensures that the

state at time t is never derived from state at a future time t′ > t1. A con-

sequence of this approach is that only one of the simulators is executing at

any point in time - the one handling the earliest, across all simulators’ future

events. Namely “A conservative simulator executes an event only when it has

a nontrivial lower bound on the timestamps on all event messages that will

arrive in the future.” The nature of the “nontrivial“ lower bound is explained

in Section 2.1.3.

Other aspects of the integration are related to the simulated time across

the various constituent simulators. For example, one simulator may track

time as floating point and another one as integers. To the extent that the units

of simulated time for the simulators are in a linear relation to each other, they

can be assumed to be the same, when in reality what this means is that the

timestamps of one simulator can be easily transformed to the timestamps of

another simulator through multiplication by a constant factor (different for

each pair of simulators), plus the addition of a constant, offset value (if the

timestamps do not have the same time zero point of reference). Finally, we dis-

tinguish two kinds of time: simulated time, i.e., the time whose flow describes

the simulated system, and wall-clock time, i.e., the time taken for executing

the simulator. The two are not in any specific relation. The wall-clock time

tells us how long the simulation is taking to execute. The simulation time

tells us how long was the period of time of the system being simulated. To

avoid repetition, in the rest of the paper “time” will refer to simulated time,

and we will only qualify wall-clock time if we are referring specifically to the

time it takes to execute simulations.
1The case of equality t′ = t is a special one and is discussed in Section 3.6.1.
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2.1.3 Simulation Termination

The statement about nontriviality covers instances where ti
next =∞ for some

simulator i, to capture the cases of simulators that, if they were executing

alone, they would have to terminate, since there would no longer be events in

their event list. However, because they are interacting with other simulators,

they cannot terminate pending possible externally caused events from other

simulators. Only when ti
next =∞ for all i can the simulation across all sim-

ulators be considered as terminated for lack of further events. Normally, the

termination of the combined co-simulation occurs when all components have

no events in their event list, i.e., ti
next =∞. There are however more varieties

for termination criterion than just event list exhaustion across all simulators.

One termination criterion can be that of reaching a specific simulation time,

i.e., if the concerned simulator advances past the termination time, or it can

be a logical condition, e.g., X number of things of a certain type have been

processed. Assuming that one simulator of the federation of simulators “hits”

the termination criterion before the other simulators, we have to:

(a) Terminate the simulation of the other simulators at exactly the same

time point, i.e., not terminating them at different points of simulated

time.

(b) Deal with the events pending at the other simulators so that the statis-

tics we derive from them are “stopped” at the time point of termination.

For scenario (a), if the simulators are not terminated at the same time, they

might keep producing events indefinitely on their own and keep executing

them. In scenario (b), while we do not execute the events of the other simula-

tors as that would again lead to indefinite event production (i.e., some events

would produce other events), we would need a way to account for the partial

state of the simulators, to the statistics we collect. For example, a simulator

might be terminated externally in a “forced” manner because another simu-

lator has terminated. This would require sorting of dependencies, such that

only dependent simulators are “forced” terminated by independent simula-

tors. A simulator is said to be dependent on another simulator, if the former

requires input from the latter. Terminating dependent simulators before the
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simulators they are dependent on - might be causally impossible as the latter

generates events for the former.

2.2 Co-simulation Frameworks

Several frameworks have been developed in order to achieve co-simulation

using simulators of different domains. However, our focus is on the field

of cyber-physical systems (CPS) with smart-grids as one of its more well-

known specializations [5]. Even before CPS, simulations requiring complex

and co-operating integration of simulators due to their interdisciplinary na-

ture, led to the emergence of co-simulation frameworks. One of the integral

parts of these frameworks is a middle-ware that is responsible for data ex-

change among the constituent simulators and the temporal synchronization

of the different simulation models. The de-facto standard which defines the

specification of this middle-ware is the High Level Architecture (HLA) [6]–[8].

2.2.1 High Level Architecture (HLA)

The High Level Architecture (HLA) provides a specification for a common

technical architecture for use across all classes of simulations developed by

the US Department of Defence [9]. Although initially developed with the in-

tention to have wide applicability across the full range of defense simulations,

it is now an open project and is used for research purposes across all domains.

The HLA is not a set of programs in any programming language but rather

provides the basic rule-set for simulator interoperability. Therefore, as tech-

nological advancements became available, new and different implementations

were possible within the framework of the HLA.

Functional Components

There are three major functional components of HLA that interact with each

other as shown in Figure 2.1.

1. Federates: A federate is a comprehensive term for a simulator as

it may include a computer simulation, a manned simulator, analytical

data collectors or viewers, etc. Athough the definition of a federate is
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Figure 2.1: Functional Overview of HLA components as it appears in [9].

not restrictive, all federates must incorporate specified capabilities to

allow objects in the simulation to interact with objects of other simula-

tors through the Runtime Infrastructure (RTI).

2. Runtime Infrastructure (RTI): The RTI is a distributed operating

system which manages the interactions between the simulators while

maintaining the time synchronization required for chronological order-

ing of events.

3. Runtime Interface: The Runtime interface provides a standard in-

terface that all federates need to follow when interacting with the RTI.

This helps the RTI understand what to expect from the federates and

how to command certain aspects of their simulation.

The RTI provides various services like creating and managing federate in-

stances and object instances of each federate, time management of the feder-

ates, and efficient data collection and distribution among the federates. For

our purposes, we describe the time management of HLA in greater detail.

Time Management

Time management of HLA is concerned with the mechanisms for controlling

the advancement of each federate in simulation time. This is done in co-
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ordination with object management of HLA to ensure timely delivery of data

to federates i.e., synchronization to maintain causality. There are different

kinds of advancements based on how simulation time paces with respect to

wall-clock time. However, HLA uses unpaced, coordination time advances,

which simulates the federates as fast as possible without any regard for wall-

clock time, while maintaining time synchronization. The key components of

the time management services of HLA are:

1. Logical time: This is the simulation time of the federates, which can

also be referred to as federate time. Therefore, at any given time of

execution, different federates may be at different logical times.

2. Advancing logical time: Each federate can only advance their time with

the permission of the RTI time management service. Therefore, there

must be mechanisms which allow the HLA to control the advancing of

the logical time of the federates.

3. Message synchronization: Any federate can only advance its logical

time when it has received all possible messages from other federates

within the mentioned time. This ensures that the federates can proceed

without any concern for incoming messages as there will be no addi-

tional ones, at least until the time to which it must proceed.

The time value during which a federate is guaranteed to not receive any mes-

sages from other simulators is called the lookahead value. This constraint

allows the federates to advance their time efficiently without much inter-

federate interaction. In order to calculate the lookahead value, the RTI must

internally compute a lower bound on the time stamp (LBTS) of future mes-

sages that will be later received by the federate in question.

2.2.2 Co-simulation Platforms

Following the standardization of HLA in 2000 by IEEE for modeling and sim-

ulation [10], the HLA capabilities have expanded with many co-simulation

platforms developed following the standard. One of the domains in recent

years, which require such intricate co-simulation is the CPS simulation [5].
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Real-time experimentation with large scale smart grids has proven to be chal-

lenging due to lab tests being too costly in terms of needed equipment and

painstaking to set up. Furthermore, the complex nature of CPS simulations,

of which smart grid simulation is an example, requires well-defined platforms

and interfaces to allow for the gradual integration of more simulators that

capture increasingly more facets of the cyber-physical environments. There-

fore, platforms implemented based on the HLA framework have become a

viable candidate for CPS research.

Early work in relevant co-simulation platforms focused primarily on the

analysis of the interaction between power systems and communication net-

works [11]–[13]. Gradually, more generic co-simulation approaches called co-

simulation frameworks became available.

Notable Frameworks

Besides the High-Level Architecture (HLA), other frameworks have been pro-

posed throughout the years. A notable example is the Ptolemy project [14],

which started as a framework focusing on hierarchical heterogeneity, as op-

posed to amorphous heterogeneity, to solve the problem of modeling interac-

tion between heterogeneous sub-systems [15]. Amorphous heterogeneity, as

they called it, is used by other frameworks (e.g., HLA) to provide an abstract

and generalized definition for models to allow for fitting of ever-changing com-

ponent simulators. The project evolved over time to address the design, study,

and simulation of complex systems and the interaction between concurrent

internal components. The framework became known as the Ptolemy Classic,

with the focus of the project being shifted towards developing a Java-based

platform following the proposed framework, known as PTOLEMY II [16]. The

major challenge addressed by Ptolemy II is the mixture of heterogeneous mod-

els with hierarchy, to allow for specific modelling and interactions as well as

reuse of components.

Another notable and more recent framework is the Functional Mock-Up

Interface (FMI) [17], which provides a common interface by defining abstract

functions to be implemented by every component simulator. FMI defines a

standard container and interface to exchange dynamic models. The models
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are a combination of XML files, binaries and C code, called the Functional

Mock-Up Unit (FMU). The common application programming interface (API)

is used by a simulation environment to generate one or more instances of an

FMU and simulate them with other models. FMI allows flexibility to integrate

simulation models in a distributed and parallel way [18], [19], thus providing

speed-up over conventionally single-threaded simulation approaches.

Notable Co-simulation Approaches

Several co-simulation approaches have been developed in the last few decades

(refer to Table 2.1). We focus on the approaches for smart-grids. A few of the

notable smart-grid co-simulation approaches are as shown on Table 2.1.

Power Flow
Simulator

Network
Simulator

Simulation
Framework

Time
Management

GECO
[20], [21]

PSLF NS-2 Ad-hoc
(TCL linking)

Global
event-driven

INSPIRE
[12], [22]

DIgSILENT
PowerFactory

OPNET
Modeler

IEEE 1516-2010
(HLA evolved)

Dynamic
time stepped

EPOCHS
[23]

PSCAD/
EMTDC PSLF

NS-2 IEEE 1516-2010
(HLA evolved)

Fixed
time stepped

ADEVS
[24]

ADEVS NS-2 Ad-hoc
(ns-2 integration)

DEVS

VPNET
[25]

VTB OPNET
Modeler

Ad-hoc
(sockets)

Time stepped

GridSim
[26]

Powertech
TSAT

GridStat Ad-hoc Fixed
time stepped

PowerNet
[27]

Modelica NS-2 Ad-hoc
(named pipes)

Time stepped

[28] NETOMAC NS-2 Ad-hoc (JNI) Time stepped
[29], [30] OPAL-RT OPNET

SITL
Ad-hoc,
emulated, sockets

Real-time

Greenbench
[31]

PSCAD OMNeT++ Ad-hoc (IPC) Global
event-driven

Table 2.1: State-of-the-art co-simulation approaches adapted from [32].

EPOCHS [33]: One of the first known simulators which combined power

and communication systems is the Electrical Power and Communication Syn-

chronization Simulator (EPOCHS). The concept of federated dynamic simu-

lation utilized by EPOCHS integrates three component simulators namely,

PSCAD/EMTDC, PSLF, and NS-2. PSLF performs large-scale power system

stability simulations (RMS), NS-2 simulates the communication network, and
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PSCAD/EMTDC simulate transient protection with short term time domain

responses (EMT). A Run Time Interface (RTI) exchanges data periodically by

interfacing and synchronizing the simulators. However, the synchronization

points are fixed and pre-programmed. Increasing the number of synchroniza-

tion points increases precision at the cost of efficiency.

ADEVS [24]: A Discrete EVent System simulator (ADEVS) is a C++ library

for hybrid dynamic systems which uses the Zeigler’s Discrete Event System

Specification (DEVS) [25] as its base. The time management and interaction

between the constituent simulators are handled following the specifications of

DEVS. A Toolkit for Hybrid Modeling of Electrical power systems (THYME)

within ADEVS is used to simulate the power systems, which is coupled with

control algorithms and communication networks. Examples of co-simulation

with communication networks are using NS-2 [24] and OMNeT++ [34]. The

interaction between discrete event and continuous time sub-systems are mod-

elled by encapsulating the continuous time dynamics within a discrete event

model.

GECO [20], [21]: The Global Event-Driven Co-Simulation Framework

(GECO) performs co-simulation using PSLF as the power system simulator,

and NS-2 as the communication network simulator. As the name suggests,

the co-simulation is done using a global event-driven framework. The global

event scheduler maintains a global event queue, where the time-tagged dis-

crete events of both simulators are combined.

INSPIRE [12], [22]: The Integrated co-Simulation of Power and ICT systems

for Real-time Evaluation (INSPIRE) performs an HLA 2010 based simula-

tion using the commercial simulators DIgSILENT PowerFactory and OPNET

Modeler. An IEC 61850 based Object Model Template (OMT) is used to sim-

ulate object models, attributes, and interaction. Time synchronization is per-

formed using a time-stepped synchronization which is based on the HLA time

management services.

The remaining platforms have similar shortcomings - some are global

event driven like GECO, some having fixed synchronization points like

EPOCHS, while others have granular time steps executing every time unit

instead of ones with events.
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2.3 MOSAIK

The MOSAIK framework [35] targets CPS/smart grid research with a focus

on large-scale system simulated system configurations, e.g., to study control

strategies [36]. MOSAIK was developed capturing a concise set of functionali-

ties aimed at CPS simulation studies [37]. The MOSAIK core is light-weight,

translating to relatively small computational needs for the sake of the frame-

work itself. Its core components are a simulator management module (sim-

manager) and a scheduler, following the HLA standards. Accordingly, the

simulator manager handles the federates (model creation, message passing,

etc.) and the scheduler maintains the time synchronization of the simulation.

The MOSAIK API handles the interfacing between the simulator manager and

the component federates of the simulation.

2.3.1 Simulator Classification

HLA treats federates as either time-stepped or discrete event simulators [38].

Time-stepped simulators are not event-responsive and they update their vari-

ables based on the most recently received messages during synchronization.

By contrast, a discrete event simulator is event-responsive and blocks during

simulation awaiting messages intended for it. Furthermore, HLA allows the

simulators to choose their simulator type at every time step. MOSAIK clas-

sifies simulators in a similar manner with minor differences in naming and

operation, as described next.

Time-based Simulators

The simulators that have a notion of time are called time-based simulators.

The states and events of such simulators can be mapped to certain points

in time called timestamps, where time flows continuously. The execution of

events always follow their chronological order of occurrence. Examples of

such simulators are usually related to the physical world, e.g., the periodic

generation of data from a simulated temperature sensor. In principle, such

simulators can produce observational values for any arbitrary point in time.
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Event-based Simulators

Event-based simulators “jump” from event to event in temporal order. There-

fore, these simulators can be terminated due to lack of events. Events are

related via timestamps with specific points in time. An example of such sim-

ulation is one simulating sending and receiving of messages in a communica-

tion simulator. Reception happens a fixed amount of time after the transmis-

sion event. Given the timestamp of the sending event, one can determine the

timestamp of the corresponding receiving event.

Hybrid Simulators

Hybrid simulators are a combination of both the aforementioned simulators.

They have a notion of time and can also jump from event to event. They can

be used to represent any kind of combined system with both time-based and

event-based components.

A co-simulation environment may contain one or more of different types

of simulators. A simple example with three components would be a sensor-

based voltage controller. The first component is the sensor, which simulates

the voltage reading of a circuit periodically. The second component is a com-

municator that simulates message transfers from one place to another. The

third component is the controller, which simulates the voltage regulation of

the circuit based on the sensor reading received through the communicator.

Each of the components can be classified based on dependency and paradigm

as follows:

1. Sensor: The sensor is independent of any other component as it gen-

erates sensor readings regardless of what the other simulators are exe-

cuting. As the readings need a timestamp indicating when the reading

was taken, the sensor has a notion of time and can therefore be labeled

as a time-based component.

2. Communicator: The communicator is dependent on the sensor for

input and executes message transfer events if there is a message to

deliver. Therefore, this component is an event-based component, where

the events are triggered externally and periodically by the sensor.
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3. Controller: The controller receives sensor data from the communi-

cator (not directly from the sensor) and is therefore dependent on the

communicator. This is also an event-based component.

Assume the termination criterion is to have the sensor stop sending simu-

lated values at some point. If the sensor reaches a termination condition, i.e.,

a simulation end time, it will not generate further sensor data. The commu-

nicator being dependent on the sensor data, will not be triggered anymore.

However, it will need to deliver the last sensor data, if the message is still

being carried. Similarly, when the communicator delivers the last sensor data

and no further events are scheduled, the communicator can terminate and let

the controller know that it has terminated. The controller can then terminate

after it has performed regulation based on the last sensor reading. This is

one example termination condition that runs to exhaustion the complete pro-

cessing of all that is dependent on sensor values. The last sensor value needs

to be completely transferred, processed, and acted upon for the simulation to

terminate.

Alternative designs also exist, e.g., if the controller performs periodic reg-

ulation, it becomes a time-based component as well. It is still dependent on

the communicator as the sensor readings determine the nature of regulation.

However, a different termination condition, e.g., a simulation end time of its

own, may be necessary. Termination conditions can be described in arbitrary

ways, and regardless of what they are, the co-simulator needs to gracefully

handle it without impacting simulation correctness.

2.3.2 The MOSAIK API

The application programming interface (API) of MOSAIK is Python-based and

handles the communication between MOSAIK and (1) Python-based simula-

tors using the high-level API, (2) non-Python simulators using the low-level

API. The primary difference between the API’s is that the low-level API as-

sumes the communication is done using JSON messages through a network

socket and that the coupling simulator will follow a specific message format

(refer to Figure 2.2). The high level API performs the same operation using a

specified programming language, i.e., Python. MOSAIK treats each simulator
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as a SimPy process and executes/blocks them as required to maintain synchro-

nization. MOSAIK generates dependency graphs based on the user-supplied

interconnections among the simulators and uses it to perform causally accu-

rate co-simulation, lower bound computations (LBTS), etc.

Figure 2.2: Low-level and high-level MOSAIK Application Programming Inter-
face (API) variations as it appears in [39].

There are certain API functions specified by MOSAIK to allow management

of the constituent simulators. The majority of these functions have their de-

fault implementation and need to be overloaded by the simulator for any fur-

ther modification. Furthermore, MOSAIK allows addition of new functions as

the simulator requires. There are two kinds of API functions - synchronous

and asynchronous. Synchronous functions are used by MOSAIK to manage the

simulators and they are called at specific stages of simulation. Asynchronous

functions are used by the simulator to perform certain actions like add surplus

data or change the data provided to MOSAIK before its scheduled expiry. How-

ever, they are not executed unless the user calls them during a synchronous

function execution. The Table 2.2 lists the synchronous functions and Figure

2.3 shows the sequence of their calling during a co-simulation.
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Function Description Output
init initializes the simulator metadata

create creates simulator models model dictionary
setup_done called when simulation setup is

done
no output

step executes a simulator for a specified
period

next event time

get_data collect data for most recent step ex-
ecution

simulator output

configure allow simulator configuration with
command line

no output

finalize called after simulator terminates no output

Table 2.2: Synchronous API functions of MOSAIK.

Figure 2.3: MOSAIK API synchronous functions call sequence (from [40]).
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2.3.3 Model Instances

MOSAIK identifies each simulator with certain configurations - both manda-

tory and optional. Some of these configurations specify the type of simulator,

their inputs and outputs, while others specify the connections and commu-

nication among them. The primary configurations for the latest version of

MOSAIK (3.0.0 at the time of writing) are:

Simulator Configurations

A set of configurations need to be specified before initialization of the simu-

lators. These include the name of the Python file and command for Python-

based simulators. For other languages, the executable needs to be created

and the command for invoking the executable has to be mapped to a user

generated name for further reference. The command should also include the

current location of the executable and other arguments if necessary. These are

used to instantiate the simulators as SimPy processes along with some other

MOSAIK-specific configurations like - the start and end time of simulation, the

dependency graph activation flag, etc.

Metadata

The metadata of each simulator describes the type of simulator - time-based,

event-based, or hybrid, the MOSAIK version, the names of simulator models,

the number and names of attributes of those models, the type of attributes,

etc. Models are components of the simulators which communicate with other

models, instead of a direct simulator-simulator communication. These at-

tributes are returned by the simulators after initialization and are used by

MOSAIK for simulator specific handling. For instance, if the attributes are

defined as persistent, MOSAIK assumes that the data provided by the simula-

tor “persists” in time until the next set of data are provided. On the contrary,

non-persistent data are not valid for the following time steps and need to be re-

newed if necessary. A time step is the unit of time by which MOSAIK advances

each simulator. It can be 1 millisecond, or even several minutes, depending

on the specified configurations and how each simulator perceives time. Simi-

larly, an attribute defined as trigger is used to step a simulator when the listed
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attributes are provided to the simulator as input (from other simulators). At-

tributes of event-based simulators are trigger’s by default as they are stepped

using events. An event can also be the availability of input data from other

simulators.

Connections

When a simulator can pass data to another simulator, or vice-versa, they are

said to be connected to each other. As connections in the MOSAIK dependency

graph are unidirectional, the direction of data needs to be specified when con-

nections are formed. A simulator taking input from other simulators is called

a dependent simulator (refer to Section 2.3.1). The nature of these inputs

can be triggering or non-triggering, persistent in time or non-persistent. There

can also be cyclic dependencies, however, one of the two connections need to

be prioritized over the other. Consequently, if two simulators in a cyclic con-

nection have a step at the same point in time, the simulator with prioritized

output in the connection is executed first. If the connections are not specified,

the simulators will not be able to communicate with each other. However, the

co-simulation will still be valid and only warnings will be given about discon-

nected simulators.

Every simulator can have multiple instances of multiple models with vari-

ous attributes and parameters. For example, a power grid simulator may have

sensor models, actuator models, smart-meter models, etc. The model parame-

ters are defined in the metadata when the simulator models are specified and

they are initialized when the simulator instances are created. The attributes

are used to pass data among models of different simulators. Although, MO-

SAIK can distinguish among multiple instances of the same model, the user

cannot. Therefore, we introduce a unique instance identifier, or an entity-id

(EID) to mark every model instance. This ensures that inputs received or

outputs generated by an instance, are always tagged with, correspondingly,

the generating instance EID and the receiving instance EID. This allows for

easy multiplexing and de-multiplexing of messages passed from simulator in-

stances to other simulator instances. The naming convention used for gener-

ating the unique IDs is discussed at length in chapter 4.
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2.4 Simulator Selection

For the purposes of this work and because we simulate cyber-physical systems

with the capability of sensing residential and grid power, estimating and reg-

ulating voltages, and experimenting with various communication infrastruc-

tures connecting the different devices in the circuit, we chose the following

constituent simulators.

2.4.1 OpenDSS

We simulate the power elements of the system using the well-known electric

power distribution system simulator (DSS) - OpenDSS [41]. OpenDSS is de-

signed to support distributed energy resource (DER) grid integration and grid

modernization. We use OpenDSS as it is a Python-based simulator and can

therefore be integrated with MOSAIK easily. Furthermore, it is customizable,

flexible, and easy to use even for large-scale electrical networks.

Background

The OpenDSS program initially began as “DSS” for Distributed System Sim-

ulator, after which it was acquired by EPRI Solutions [42]. Eventually, EPRI

released the software under an open source license which allowed researchers

to utilize and improve OpenDSS. Co-operating with other grid modernization

efforts in the Smart Grid area, OpenDSS became able to express most electri-

cal systems. Over the course of time, as object oriented programming became

more popular, OpenDSS integrated the object oriented design into its core

components. Most recent versions of OpenDSS allow programming in C++,

MATLAB, Python, etc.

Motivation

OpenDSS has its roots in power system harmonics analysis and is therefore

more powerful than a regular power flow program. However, the scripting

concept of OpenDSS allows users to use specific modules and avoid the ma-

jority of the simulator tools that are not required. MOSAIK being a Python-

based co-simulation platform, allows OpenDSS to be integrated with it and to
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perform efficient power flow analysis. Furthermore, the interfacing require-

ments of MOSAIK can be facilitated by the scripting capabilities of OpenDSS.

The static state system assumed by OpenDSS means the simulated circuit

can be modified on-the-fly, instantly, and as needed, without any temporal

constraints. Therefore, it can be used to handle the power flow analysis of

large scale smart-grids at arbitrary time points and circuit configurations.

Configuration

Most of the sensors and electrical components of the circuit are modelled by

OpenDSS Python scripts using the OpenDSS internal system as the circuit

base. The scripts implement models which allow fetching of certain values

and executing certain operations matching the device definition. For exam-

ple, a smart-meter would be able to read the voltage and power of different

phases at its assigned location. The circuit state variables are known us-

ing the OpenDSS system and then filtered using the scripted device models.

These models are then used by the MOSAIK interface to generate simulations,

change states according to input from other simulators, and provide output

data when requested. Although OpenDSS does not have a notion of time,

the interfacing generates timestamps and performs state changes, message

passing, etc. at specified time steps.

2.4.2 Network Simulator 3 (ns-3)

Network Simulator 3 [43] or ns-3 is a discrete-event network simulator for

Internet systems, targeted primarily for research and educational use. NS-

3 is free, open-source software, licensed under the GNU GPLv2 license, and

maintained by a worldwide community.

Background and Motivation

The ns-3 project started in 2006 as an open-source project which develops

and continues to improve on the ns-3 simulator. It provides models of data

packet networks and a simulation engine for conducting simulation experi-

ments. The models are designed based on real world network devices and

protocols. and are developed using well-known standards and mathematical
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models. While these simulations are not as accurate as real-world experi-

ments, they can greatly reduce the costs of employing a physical network.

The object oriented design of ns-3 is well suited to the layered structure of

the Internet protocols and for experimental tweaking of certain components

of the layered devices. This reduces the overall complexity of simultaneous

implementation of multiple protocols, frequent switching between protocols,

expressing the addition/removal of infrastructure in large communication net-

works, etc. Furthermore, the customizable nature of the internal components

allow user-developed modules required for smart-grid networks. Therefore,

ns-3 is a good match for our co-simulation experiments.

Internal Components

The programming of ns-3 is done in two separate languages - C++ and Python,

and the user can install and use either of the two. We use C++ as it is the

language in which the simulation core and models were implemented initially,

and is therefore allowing access to its internal logic. However, most of its API

can be imported to Python programs as modules. The various components of

the simulator can be divided into multiple tiers based on their dependencies

as shown in Figure 2.4.

Figure 2.4: Internal software components of ns-3 (adapted from [44]).

1. The inner-most tier consists of the core which implements the time

management i.e., the events, schedulers, lower bound calculations, etc.,
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the memory management, random number generations, debugging and

software specifics like callbacks, tracing, logging, etc. These modules are

generally independent of one another and are used by all other compo-

nents built on top of them.

2. The second tier consists of the network modules like devices, addresses,

queues, sockets, etc. The different protocols which are required in any

network are implemented in this tier. The implementations of this tier

are all abstract base classes and are used by other models for specific

implementation. These protocols are only dependent on the core compo-

nents of ns-3.

3. The third tier contains the internet modules and the mobility modules.

The internet modules implement the protocols required to connect and

manage one or more networks. The mobility module handles the lo-

cation information of the various devices during simulation like static

location assignment, random movement, etc. This tier is dependent on

the network tier which indicates that base models need to be created

first before assigning them locations using the mobility modules or con-

necting them to other models using the internet modules.

4. The fourth tier consists of the specific implementations of protocols, de-

vices, applications, propagation models, etc. The abstract classes of the

network tier are inherited and specialized to generate specific usable

model classes. The third tier models have implementations using the

base classes and can therefore be fitted to the specific model implemen-

tations as well. To put in another way, the specific models use the in-

ternet and mobility models to define their attributes and characteristics

like location data and communication link specifics.

5. The fifth tier houses the helper classes which are helpful wrappers for

convenient and user-friendly implementation.

6. The sixth tier is the test tier which is basically test and example scripts

using the helper classes.
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2.4.3 Python-based Simulators

Besides OpenDSS and ns-3, other Python-based simulators are used in the

current study to perform operations like controlling a certain simulator model

or collecting simulation data for analysis.

Controller

The Controller simulator performs processing tasks like regulating the volt-

age of a certain portion of the circuit. This simulation is outside the domain

of both OpenDSS and ns-3. The behavior associated with this simulator is in

reference to particular locations in the circuit, and is assumed to receive data

from several other devices. An example model is the RangeControl which pro-

vides tap control data based on the sensor device readings. Each Controller

model may be associated with a certain operational function and may “control”

one or more devices in the circuit. The Controller simulators are implemented

as Python code obeying the MOSAIK interface and interaction requirements.

Estimator

The Estimator is similar to the Controller in that there is no underlying place

to define it in the ns-3 or OpenDSS, and it is also implemented as separate

Python code obeying the MOSAIK interface. An example model is the DSESim,

which reads data from various devices in the circuit and estimate the current

state of the power flow system. Any state of the system may include several

system variables, the values of which may or may not be known. The known

values are used by DSESim to generate the unknown values, determining the

system state in the process. The values produced by the Estimator are then

passed as input to other simulators. Note that in contrast to the Controller,

the Estimator does not necessarily have a direct influence on the state of the

power network. One can perform state estimation only for the sake of record-

ing it.

Collector

The primary functionality of the Collector simulator, which is also writen in

Python and obeying the MOSAIK interface, is to collect the data generated
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by other simulators and store it in a data store. Currently, the only model

of this simulator is Monitor, which is a single instance that connects to all

model instances of the other simulators, and therefore “taps“ on all messages

exchanged among simulators. The stored data is used for analysis after the

simulation ends. However, in the future the Collector may be extended to

allow interaction the user to interact with the simulators, i.e., by injecting

messages that alter the behavior of the simulator instances.
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Chapter 3

The Co-simulation Architecture

Our proposed co-simulation project allows the simulation of the networked

monitoring and control of components in cyber-physical systems. The differ-

ent simulators/federates are glued together using MOSAIK interfaces as shown

in Figure 3.1. The power grid simulated using OpenDSS describes the place-

ment of electrical components, circuit interconnections, and simulates any

changes to the electrical system during simulation. The communication net-

work simulated using ns-3 allows transfer of messages among the simula-

tor models, as they would occur in a smart-grid. Additional, purpose-built,

Python-based simulators simulate the control/regulation of certain electrical

components, estimate the current system state of the smart-grid, and collect

simulator statistics for further analysis. These five simulators, their intercon-

nections, and the example applications they co-simulate, are detailed in the

following sections.

3.1 Power Flow Simulator

A power grid is an amalgamation of multiple devices and electrical compo-

nents. OpenDSS describes the most basic components of the circuit (e.g.,

capacitors, transformers, etc.), while other components (e.g., smart-meters,

phasors, probers, etc.) are simulated outside of OpenDSS.

3.1.1 Circuit Structure

OpenDSS initializes the circuit and its parameters like - the name of the

newly formed circuit, the default voltage and phases of the circuit, placement
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Figure 3.1: High-level view of a MOSAIK co-simulation instance.

of the voltage source, etc. Once the circuit is formed, basic electrical equip-

ment are placed at the intended locations while specifying the parameters of

the equipment. For example, placing a new transformer would require deter-

mining the buses where it would be attached, the number of phases it can

handle, the number of windings it has, etc. If the transformer allows voltage

regulation, further parameters like the number of taps or the max and min

tap would be specified. These circuit specifics are fed to the simulator using

certain configuration files, which will be discussed in Section 4.1.1. Although

the loads of the equipment are initialized using these files, they are changed

during the simulation using random load generation or by assigning set loads

collected from empirical studies. The circuit may be divided into two parts

based on the proximity of the circuit elements to the location of residential

loads. The several parts of the network connected to the residential loads

are called residential networks or secondary networks, while the central dis-

tribution grid connecting all the residential networks is called the primary

network. The primary network carries high voltage electricity to minimizes

loss of electrical power in the form of heat when when heavy current through

electrical wires. Step-down transformers connect the primary network to the

secondary networks and reduce the high-voltage to usable ranges.
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3.1.2 Devices

Besides the basic components defined by OpenDSS, we simulate more complex

electrical components which we will refer to as devices. These devices utilize

the basic functionalities provided by OpenDSS to simulate certain actions like

sensing, actuating, probing, etc. They are placed at various points in the

circuit and can be of the following types:

Sensor

The Sensor is a generic device assumed to be able to generate readings of

a certain circuit component at periodic intervals. It can be located at both

the primary and/or secondary network. The simulation model for this de-

vice updates the readings periodically based of the current state of the power

grid. Sensor readings need to be carried by the communication network to

other locations. Sensor sub-classes provide specific forms of sensing, e.g.,

Smartmeters and Phasors. According to our model definitions, Smartmeters

provide the voltage magnitudes and load readings of different phases and are

located in the secondary network. One smart-meter typically reads data from

2-3 residences. The Phasors provide voltage and current readings (i.e., both

magnitude and angle) and are situated in the primary network.

Actuator

The Actuator is a device that changes the state of the power network. As an

example it can be used to change the voltage of the circuit on the fly based

on received control data. Step-up/down actuators are located near variable

transformers to allow remote voltage regulation. The voltage regulation is

done in the form of tap ups or downs, which respectively increase or decrease

the coil ratio in a transformer to change the voltage. The Actuators perform

actuation based on external commands, and therefore the regulation decisions

are taken by a separate but associated RangeControl instance.

Probers

The Probers provide any and all types of periodic sensor data collection. How-

ever, they do not need to transfer data through the communication network
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and can be located at any point in the grid. They are used to log a certain

device or circuit component for debugging or statistical purposes.

3.2 Network Simulator

The packet network simulated by ns-3 simulates transfer of messages from

any required source (generation) location to the intended recipient location

(destination). The topology of the generated communication network is a

super-set of the electrical network. Hence the network simulator can sim-

ulate co-located as well as non co-located, to the grid, networking equipment.

The network model associated with carrying messages i.e., the Transporter

is instantiated for every source-destination pair. Although these models may

have common internal architecture in ns-3, MOSAIK assumes each model in-

stance to be different from the other. The communication network devices are

divided into certain logical layers to allow division of functionality [45]. The

protocols implemented in the different layers of the network devices and the

procedure for sending and receiving data (sensory and control) are explained

in the following sections.

3.2.1 The Underlying Network

The communication network at the physical level is an interconnected set

of network devices with network layer routing capabilities. The devices

with application layer capabilities form the data sources and sinks of the

Transporters. They are simulated as being placed in a 3D Cartesian co-

ordinate space using the ns-3 mobility module. Currently, we specify the co-

ordinates as static i.e., we place the devices along the horizontal plane with

very little variation along the vertical axis.

Implemented Protocols

The physical layer connections between the different network devices are de-

termined using certain configuration files (refer to Section 4.1.3). The current

architecture allows changing network-wide configuration settings during sim-

ulator initialization. For example, the user can specify the link transmission
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delay, rate, and error, which will be applied to all existing links in the net-

work. The network mode can be set to P2P, P2Pv6, CSMA, and CSMAv6. P2P and

P2Pv6 implement IPv4 and IPv6 over the network, where all device to device

connection protocols are Point-to-Point. Similarly, the CSMA and CSMAv6 imple-

mentations apply the corresponding Internet Protocols (IP) over connections

with Carrier-Sense Multiple Access (CSMA). All connections in the P2P and

CSMA modes, and the primary network connections in the P2Pv6 and CSMAv6

modes, are wired and thus have very little delay and data loss during packet

delivery, as set by the user. The P2Pv6 and CSMAv6 modes apply IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPAN) at the secondary

networks. The data link layer of 6LoWPAN in ns-3 simulates the Low-Rate

Wireless Personal Area Network (LR-WPAN) which has a completely different

model for determining transmission loss and delays, and are therefore unaf-

fected by the user-specified link parameters. The medium access sub-layer of

LR-WPAN implements the collision avoidance version of CSMA (CSMA/CA).

Future work may allow setting different protocols to every link in the network

through the use of appropriate configuration files.

The Rationale for 6LoWPAN

In practical scenarios, there is little change in the distribution topology of the

primary network, and therefore the corresponding communication network

consists of wired connections to allow loss-less long distance data delivery. On

the contrary, secondary networks tend to have wireless technology to allow for

flexible topology adjusting to the dynamics of the environment. To this end,

the wireless network standard to prefer for simulations of wireless secondary

networks was chosen to be 6LoWPAN, as it is already included in the current

ns-3 distribution.

3.2.2 Traffic Generation and Reception

When a sensor reading needs to be delivered to a controller or a control action

needs to be conveyed to an actuator, the data is transferred through transport

layer applications. The client-server applications of two well-known protocols

- Transport Control Protocol (TCP) and User Datagram Protocol (UDP) have
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been implemented for this purpose. For example - in a TCP scenario, when

a sensor is placed in the network and the location of the receiver is known -

a TCP client is installed at the sensor location and a TCP server is installed

at the receiving sink. Following the establishment of source-destination con-

nections, the routing tables of the network devices are populated using static

routing. The routing algorithm used is Breath First Search (BFS) and the

routing metric used is hop-count. The data generation and reception proce-

dure is as follows:

1. The client generates data when the sensor does.

2. The data is simulated as being forwarded along the route determined

through static routing.

3. When the data reaches the server, it is passed to the recipient model (of

another simulator) through MOSAIK.

3.3 Controller

The Controller simulates control of the distribution grid. There are various

controllers but we emphasize the example of controllers to regulate voltage.

Other controllers deal with power storage, reactive power control, etc. We

focus on on-load tap changers (OLTCs) with their appropriate control algo-

rithms [46]. In our co-simulation evaluation, one set of examples demonstrate

simulation of a grid with OLTC.

3.3.1 Constraints

Power systems with renewables in the distribution grids tend to have in-

creased variability in the generated voltage. The resultant need to have fre-

quent tap changes may accelerate wear-and-tear of OLTC devices. This is

because, voltages need to be kept within the permitted range to avoid de-

vice damage and to ensure proper usage. Therefore, the OLTC devices need

to maximize their lifetime by minimizing the total number of tap operations

while ensuring a smooth voltage profile.
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3.3.2 Basic Principles

The basic principle of OLTC voltage regulation is to compare the current

voltage to a previously set voltage point Vset. If the comparison difference

is within the specified bandwidth BW , no tap change is required. A tap

change in a transformer increases/decreases the coil turn ratio, which in re-

turn changes the voltage level of the transformer output current. Instead of

changing the coil turns manually every time a tap change is required, the

number of coils remain the same, but the circuit taps in between coil contacts

to effectively change the turn counts on one side of the transformer. This

changes the turn ratio i.e., it changes the voltage and current in the resultant

electricity flow. An intentional delay tdelay, is included in the algorithms to

avoid frequent tap change operations. A tap change only occurs if the voltage

level is outside the specified range for a duration of more than tdelay.

3.3.3 Control Algorithm

The control algorithm we simulate in our Controller uses the periodic sen-

sor data readings to calculate the time delay and perform tap changes. The

algorithm starts executing when a new sensor data is received as follows.

• Compare the received voltage value Vmeas with the specified voltage set

point Vset for this control model.

• If the difference ∆v < BW
2 , do nothing and wait for the next sensor read-

ing. Otherwise, proceed to the next step.

• If the current reading time is Tmeas, compare it with the previously re-

ceived reading. Let the difference be ∆t. If ∆t > tdelay, it is assumed that

the voltage reading is same for the last ∆v time. Therefore, proceed to

the next step. Otherwise, wait for the next sensor reading.

• If ∆v < 0, decrease tap i.e., increase the voltage as it is below the set

point. If ∆v > 0, increase tap i.e., decrease the voltage as it is above the

set point.

38



We name the models executing this control algorithm - RangeControl. Ev-

ery RangeControl model instance has its own set voltage and delay values.

However, all of them operate using the same control algorithm.

3.4 Estimator

The Estimator is a component that simulates distributed state estimation

(DSE) using smart-meters and distribution level phasor measurement units

(D-PMUs) [47]. D-PMUs are installed at a small number of buses in the pri-

mary network, and their measurements are available after a certain delay

with added noise. The model of the Estimator which performs the estima-

tion is called DSESim. In our co-simulation evaluation, one set of examples

demonstrate simulation of DSESim on a power grid.

3.4.1 State Estimation Principles

State Estimation (SE) is the technique of estimating the system variables us-

ing redundant data from multiple sources. The state variables are usually

the voltage phasors of the nodes, which includes the voltage and phase angles

at the various nodes in the electrical system. The required data for the esti-

mation are the distribution system network model, real-time measurements

from the placed D-PMUs, and the load demands at the end-devices.

Network Model

The network model represents the network configuration and line parameters

i.e., the impedance/admittance values. Although in practice, the entirety of

the network model may not be known to the state estimator due to various

reasons. In our experiments, we assume that the network model is known

and available to the DSESim.

Real-time Measurements

Real-time voltage and phasor measurements can be obtained through devices

located at various points in the circuit. In our simulations, the network of

D-PMUs, each one of them being a sensor, provide synchronized voltage and

current phasor readings of three phases.
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Load Demands

Smart-meters are placed at end devices i.e., the households in the secondary

network which provide sample data periodically. Due to the slow sampling

rate of smart-meters, and thus the unavailability of online load data for state

estimation, pseudo-measurements are used. These measurements are pre-

dicted load values based on historical data. DSESim instances may make use

of such load value estimates.

3.4.2 State Estimation Methodology

The state estimation technique used in our simulations is the Weighted Least

Squares (WLS) method [48]. The stages of state estimation performed at ev-

ery step of the simulator can be described briefly as follows:

• Collect the required data: (a) nodal admittance matrix (b) D-PMU mea-

surements, and (c) pseudo-measurements of (predicted) real and reac-

tive power consumption. Here, the nodal admittance matrix is collected

only once during the creation of the DSESim model instances. However,

the D-PMU and smart-meter readings are collected at every step of the

simulation.

• The error function is used to introduce measurement errors into the

readings - measurements with less error are given higher weights. The

WLS method is then used to reduce the difference between the collected

measurements and the estimated state variables.

3.5 Collector

The Collector is a simulator containing a single model called Monitor. The

Monitor is stepped every time any other simulator steps with outputs. The

output data generated by the models of the respective simulators are taken as

input by the Monitor, which locally stores the collected data. At the end of the

simulation, the stored data is written to a Hierarchical Data Format (HDF)

Store using the pandas module of Python. The stored data is then used by
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a separate program to perform analysis and for graphical rendering of the

results.

3.6 MOSAIK Interconnections

The simulator models communicate with each other through predefined

MOSAIK connections. These connections are unidirectional and time-

synchronized. The sim-manager of MOSAIK controls the passing of data

through these connections and the duration of validity of the passed data.

The scheduler advances the simulators based on their dependencies to main-

tain chronological order of messages and thus, the order of event execution.

Cyclic dependencies are permitted only if one of the two formed connections

is marked as weak or time-shifted.

3.6.1 Connection Parameters

The connection parameters define the sender and recipient of the data, the

content of the passed message, and the type of connection in cyclic dependen-

cies i.e., weak or time-shifted.

Time-shifted

The time-shifted parameter is used to resolve cyclic dependencies between

time-based simulators. The dependent simulators of time-shifted connections

are stepped first i.e., a forceful stepping priority is established to avoid a dead-

lock formed by the simulators associated in the cyclic dependency. For exam-

ple, let us assume that simulator A and B are connected to each other with

some parameter x ∈ A −→ B and some parameter y ∈ B −→ A. Let us resolve the

deadlock by marking the latter connection as time-shifted. Therefore, when

both simulators have a step at the same timestamp, A is stepped first and x is

generated. Consequently, B steps using the input from A and generates the

output y. However, this output is only passed to A in its next time step. The

question arises - what will be the input of A for its first time step? i.e., when

B has not generated yet the first set of values for y. This is resolved by the

user providing a separate connection parameter called the initial value which

is used only for the first time step.
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Weak

Event-based simulators use a different parameter to resolve cyclic deadlocks -

namely, weak. Similar to the time-based counterpart, a non-weak connection

is prioritized over a weak connection. However, simulators may be stepped at

the same timestamp multiple times to establish stability. For better under-

standing - let us utilize the previous example, except the connection y ∈ B −→ A

is now weak. When A and B both have a step at the same timestamp, A gen-

erates x first and then B steps and generates y. A is stepped again at the

same timestamp to receive the updated y parameter from B. If A generates a

novel x value for B, B is also stepped again. This carries on until both A and

B have stepped using the latest input parameters, i.e., they have ‘stabilized’.

The loops formed in this manner are called same-time (algebraic) loops and

are permitted in MOSAIK as long as there are finite number of such loops. The

initial data i.e., the input data for the first step needs to specified by the user

as done for time-shifted connections.

3.6.2 Inter-model Connections

We define the connections between the different simulator models using con-

figuration files generated by our ontology generators (refer to chapter 4). The

connections between the models (Figure 3.2) are determined based on the type

of the simulators to which the models belong, and the priority of the message

being carried by a connection. We define the Power Flow simulator, Controller,

and Estimator, as hybrid, and the remaining simulators as event-based. The

cyclic dependencies are therefore resolved using weak connections.

1. The Sensors, Smartmeters, and Phasors, of the Power Flow simulator

are connected to the Transporter model of the Network Simulator. The

data generated by these devices are carried to their intended destina-

tions by the Transporter model. Once a sensor reading is generated,

it becomes invalid for the next time steps, so as not to trigger dupli-

cate input data for Transporters. Accordingly, the simulator is defined

as hybrid so that the outputs of the Sensor models can be marked as

non-persistent (refer to Section 3.7.2).
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Figure 3.2: MOSAIK inter-connections between the different simulator models

2. The Transporters are connected to the respective RangeControl model

instances of the sensor devices. When the sensor readings reach their

destination through the Transporters, ns-3 passes the forwarded data

to MOSAIK, which passes it on to the RangeControls for processing. For

state estimation examples, the Transporters are connected to a single

DSESim model. The data carry loop ends here for state estimation appli-

cations unless the estimation result is used for control operations.

3. The RangeControl model instances are again connected to their dedi-

cated Transporters which carry the control data to their place of exe-

cution. For example, a tap control application will have RangeControls

sending control data to Actuators for voltage regulation. This connec-

tion is weak as the RangeControls need sensor data before taking any

control decision.

4. The Transporters are connected to the Power Flow Actuators as they

carry the data to the Actuator locations and forward the control data to

them through MOSAIK. This completes the control loop for certain appli-

cations like the tap control application which have a sense-process-act

cycle. The connection is specified as weak as the Power Flow simulator

needs to run in order to generate (new) sensor data before actuation is
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possible.

5. Finally, all models are directly connected to the Monitor model of the

Collector. Every set of data generated by any model is passed to the

Monitor which writes the data to a common HDF data store.

3.7 Time Synchronization and Stepping

The MOSAIK scheduler maintains the chronological order of simulator events

given that the simulators -

• maintain the order of their internal events,

• generate messages only for future timestamps,

• step when requested and up to the required time,

• provide a time when the next step might be performed and,

• avoid executing beyond the provided max advance time.

The max advance time is the maximum any simulator can execute without

disrupting the chronological order of co-simulation events and is analogous to

the LookAhead of HLA. The performance of any co-simulation depends greatly

on the refinement of the time-steps and fine-tuning the generation of the max

advance time. We provide several scenarios in the following sections which

represent our various stages of performance improvements while providing a

gradual understanding of the different time synchronization techniques.

3.7.1 Stage 1: Granular Time Steps in MOSAIK 2

The previous version of MOSAIK (MOSAIK 2) did not have the ability to dif-

ferentiate between time-based and event-based simulators. The constituent

simulators were similar in all aspects and were unable to access the LookA-

head for future events. The initial approach, for the sake of simplicity, was

to perform co-simulation with granular time steps. The characteristics of the

simulators were as follows:
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• All simulators start from time 0 and advance in time steps of variable

units.

• The simulators must return their next time step, which is used to cal-

culate the LookAhead internally. The simulators were not aware of the

next step time except their own. Therefore, we specify the next time

step as 1 unit.

• The time unit of all simulators are uniform and can be represented as

any real-time unit. We assume each time unit to be 1 millisecond.

• As the simulators are stepped at every time unit, any data generated

by a simulator is forwarded to MOSAIK immediately i.e., at the current

time step.

• All simulators keep advancing their time with the permission of MOSAIK

until the designated simulation END TIME set by MOSAIK.

The passing of data immediately after generation helps avoid triggering

events that might break causality. However, the granularity of the time steps

requires all simulators to be stepped at every time step. Consequently, the

co-simulation is inefficient as a significant portion of the time steps are un-

eventful and the overall execution time is greatly increased.

3.7.2 Stage 2: MOSAIK 3 with max advance

MOSAIK versions 3.0.0 and later have classified the simulators into time-

based, event-based, and hybrid, with the simulators having access to max ad-

vance time during every time step. The availability of this look ahead allows

simulators to process internal events without concern for break of causality.

In order to calculate the max advance time, MOSAIK needs to know the next

time step of all the simulators participating in co-simulation. The simulator

management changes can be summarized as follows:

• The output of time-based and hybrid simulator models are persistent by

default. The input of event-based simulators are trigger’s by default.

Hybrid simulators can have non-persistent outputs and triggering in-

puts as well.
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• Time-based simulators must return their next step time at every step.

Event-based and hybrid simulators may or may not provide their next

time step as they can be triggered by external events.

• Time-based simulators and hybrid simulators without triggering inputs

have their max advance time set to the simulation END TIME. This

is because they can only be stepped by themselves and are therefore

unaffected by external events.

Power Flow Simulator

We define the Power Flow simulator as a hybrid simulator. The sensor devices

generate readings periodically and the Actuator operates based on external

inputs. The simulator steps every time a sensor data is generated and when

there is an Actuator input data to be processed. Following practical scenarios,

the rate of actuation is typically less than the rate of sensor data generation.

The data generated is non-persistent in time i.e., the data is only valid for

the timestamp of the step. This is because if the same data is persistent

for more than one timestamp, ns-3 will generate duplicate sensor data for as

long as the data is persistent. Any time a sensor data is generated, the next

generation timestamp is inserted into a priority queue and all events with

earlier timestamps are removed from the queue at every time step. The next

step which is the lower bound of all generated events, is calculated as the

event with minimum timestamp in the queue.

Network Simulator

The network simulator is an event-based simulator as the timestamps of

events in a packet network is irrelevant except when calculating delays i.e.,

difference between two timestamps is more important than the timestamp

of a specific event. However, ns-3 has its own time management mechanism

which inserts events into its internal queue and processes them as time pro-

gresses. For the second stage of refinement, we calculate the next step of ns-3

by checking the next earliest event in its own internal event queue. As we do

not have a way of understanding which events are of interest to MOSAIK, ns-3

usually has the most number of steps in any co-simulation test run.
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Controller

The Controller models may have their own operation interval, given that the

interval is greater than the data generation interval of their sensor counter-

parts. However, they may be stepped when sensor readings are available,

only to process the input without generating output data. If control data is

generated as soon as they are processed, the provided lower bound computa-

tion may be inaccurate. The Controller simulator is therefore classified as a

hybrid simulator, where the simulator steps based on the control operation

rates of the RangeControl models and the data delivered by ns-3. The lower

bound computation of its internal events is done similar to the Power Flow

simulator, where the next control step of a model is inserted into a priority

queue. The next time step is the control event with the minimum timestamp

in the queue.

Estimator

The Estimator models collect data from all sensors to generate an estimated

system state. As there are no current recipients of the estimated data, except

the Monitor, the state estimation simulator is defined as a hybrid simulator

as it generates estimation data periodically for recording purposes, even if

adequate event-driven data is not received. Besides stepping periodically, it

is also stepped whenever there is sensor data. A lower bound computation is

not necessary as its only recipient does not generate external events for other

simulators.

Collector

The Collector simulator is an event-based simulator and is always stepped

when any other simulator model generates data. The input parameters of the

simulator model - Monitor, are not explicitly defined so that it can accept

any and all types of data.

3.7.3 Stage 3: Relevance Filtering in ns-3

Most of the internal events generated by ns-3, such as those describing the

arrival and departures of packets as they are routed from one endpoint to an-
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other, are irrelevant to the rest of the simulators, The internal ns-3 events

that are relevant to other simulators are those describing when specific data

are received by specific nodes in the network. Hence, the lower bound com-

putation of ns-3 is very inefficient as it often reflects the next upcoming, but

very likely irrelevant event. Efficient co-simulation greatly depends on the

accurate calculation of lower bounds of the internal events in the constituent

simulators. However, access to the internal event queue of ns-3 is restricted

and the relevance of an event cannot usually be determined until it has al-

ready been executed. In order to ascertain the relevance of an internal event,

let us study the process of extracting relevant event data.

Extraction of Relevant Data

The generation and reception of co-simulation data that require passing

through the communication network, are done in the form of client-server

application traffic. Clients are installed at data generation locations, which

schedule data packets when there is new data. The communication network

passes the data through the simulated route, which generates several irrele-

vant events. Once the data reaches the intended destination, the server re-

ceives the data and calls a callback function to process the received data from

the application side. We modify the server to call a custom callback function

that stores the received data in a queue to be forwarded to MOSAIK when

required. Although, this allows extraction of the received data at the exact

timestamp, the irrelevant events generated throughout the process demands

frequent stepping of ns-3.

Filtering of Relevant Data

The availability of max advance through the new version of MOSAIK provides

a safe look ahead for processing the internal events of ns-3. Utilizing this

look ahead, every time there is a step for ns-3, instead of only processing the

events up to the designated step time, we advance ns-3 until there is a rel-

evant event or until the max advance time is reached. A relevant event in

this case would be the reception of data by a destination node in the network.

If a relevant event is processed, the received data is inserted into the queue,
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and the timestamp of this event is returned to MOSAIK as the next time step.

On the contrary, if the max advance time is reached, no data is returned to

MOSAIK and the procedure repeats itself. As ns-3 cannot roll back time to

process past events, if any external events are generated with a timestamp

earlier than the processed relevant event - the simulation would become in-

valid. However, if the max advance time is accurate, no such external events

will be generated and thus ns-3 can jump to either the relevant event or the

max advance time without stopping to process every irrelevant event.
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Chapter 4

Simulation Configuration

Generation of simulator models and formation of connections among the gen-

erated models become tedious for large-scale simulations. Moreover, the

unique EID generation of the models require prior knowledge of all gener-

ated models. We automate this process using an ontology definition over all

the simulator models, connections, and their properties.

4.1 Configuration Requirements

There are several configuration data required by MOSAIK and the constituent

simulators to perform organized co-simulation. Some determine the connec-

tions between the different nodes in the communication network while others

specify the placement of devices in the electrical network. Each configuration

file has its own format which allows systematic parsing and editing by users

or the separate simulator programs.

4.1.1 OpenDSS Circuit Generator

The electrical system part of the smart-grid co-simulation is generated by

OpenDSS using certain configuration files. The configuration files describe

the formation of the circuit and the placement of devices in the circuit are

text files with “.dss" extensions. Multiple such files might be used depending

on the system scale. The contents of the circuit generator file are the location

and properties of electrical lines, loads, transformers, etc. Part of an example

OpenDSS configuration file is presented in Figure 4.1, showing the configura-

tion of a new circuit and of the transformers used in a tap control simulation.
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...
!–– Generated Circuit/generator
new circuit.IEEE13Nodeckt

basekv=115 pu=1.0001 phases=3 bus1=SourceBus
Angle=30
MVAsc3=20000 MVAsc1=21000

!–– Generated Transformer
New Transformer.Sub Phases=3 Windings=2 XHL=(8 1000 /)

wdg=1 bus=SourceBus conn=Delta kv=115 kva=5000 %r=(.5 1000 /)
wdg=2 bus=650 conn=Wye kv=4.16 kva=5000 %r=(.5 1000 /)

New Transformer.XFM1 Phases=3 Windings=2 XHL=2
wdg=1 bus=633 conn=Wye kv=4.16 kva=500 %r=0.55 XHT=1
wdg=2 bus=634 conn=Wye kv=0.480 kva=500 %r=0.55 XLT=1

...

Figure 4.1: Example snippet from an OpenDSS configuration file.

4.1.2 Device List

The device list is used to place our devices of interest like sensors, smart-

meters, phasors, and actuators, which are listed in a separate configuration

file in a comma-separated values (CSV) format. This is the configuration for

the remaining constituent simulators outside of OpenDSS and ns-3. The most

significant table headers of the device list are:

1. type - This is the type of device - sensors and actuator types.

2. src - This is the location of the device, i.e., the source location from

where the device data will generate for sensors, or from where the con-

trol data will generate for actuators.

3. dst - This variable stores the intended destination for the device data.

The destination is usually controllers or estimators for sensor devices,

and actuators for actuator devices.

4. cidx - The devices are usually part of a control loop, the ID of which is

specified by the control index or cidx parameter.

5. nidx - The nidx is used to separate between two or more devices with

the same source, destination, and control loop ID.
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6. period - The period specifies the step size or rate of data generation of

the device.

7. error - The error rate of the generated data.

8. cktElement - The circuit element to which the device is mapped. This

is used to refer to the OpenDSS Circuit Generator when required.

9. cktTerminal - The location of attachment of the device, i.e., the bus or

line in the electrical circuit to which the device is connected.

The concatenated type, src, dst, cidx, and nidx values are used as the EIDs

of the generated model instances of the various simulators. Part of an example

of the Device List configuration file as given in Figure 4.2. The EID of the de-

vices in the given example would be Sensor_611-632.0.0, Prober_611.2.0,

and Prober_650.3.2, respectively.

type, src, dst, cidx, nidx, period, error, cktElement, ...
Sensor, 611, 632, 0, 0, 100, 0.0001667, Line.684611, ...
...
...
Prober, 611, None, 2, 0, 100, 0, Load.611.3, ...
Prober, 650, None, 3, 2, 100, 0, 650, ...

Figure 4.2: Sample snippet from a Device List CSV configuration file.

4.1.3 Network Topology

As OpenDSS requires a configuration file to generate the circuit of the elec-

trical system, so does ns-3 to generate the network of communication devices.

One of the most well-known representations of connectivity in a communica-

tion network is the adjacency matrix of the generated graph. Although adja-

cency matrices are easy to process, they consume more memory than required

to store connectivity information. The joint configuration file developed fol-

lowing the defined ontology is formatted in JSON. The JSON file is passed

to ns-3 during initialization, which is then used to generate the necessary

configuration data for ns-3. Specifically, the list of node names to create the

network nodes and map their indices to their appropriate names, the location
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data used to place the nodes in the 3D space using ns-3 mobility modules,

and the adjacency matrix used to form network devices and interfaces, and

connect the nodes through these interfaces. The connections in the JSON file,

however, are maintained in the form of adjacency lists to reduce the neces-

sary file size. The generation process can handle any topology as long as it

is reflected accurately through the JSON file. Although, the current imple-

mentation uses ns-3 protocol helpers to install similar protocols throughout

the network, future developments may include custom protocol assignment to

specific connections based on the modified JSON file. A sample snippet from

a generated JSON file is presented in Figure 4.3. The snippet lists the proper-

ties of the the nodes 650, RG60, and 611. The properties include their names,

co-ordinates, and a list of their connections to other nodes.

4.1.4 Load Data

In order to configure realistic electric load scenarios for the power flow simula-

tor we also produce load configurations. The loads of the various households

in the secondary network, or the overall load of the primary nodes, may be

generated in two ways - (a) random load generated using standard distribu-

tions and realistic load ranges (b) real-time data collected from households in

an electrical distribution system. Our applications have access to both types

of loads, the latter being stored as load data. These load values are stored as

time series data in MAT files, which are processed by the Power Flow simula-

tor to get non-randomized load data.

4.1.5 Nodal Admittance

The nodal admittance matrix is required for the distributed state estimation

component and specifically used in our examples by the DSESim model. The

matrix is stored as a NumPy binary file and is passed directly to the DSESim

model instances during model creation.
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{
"nodes": {

"650": {
"x": 200,
"y": 350,
"connections": [

"SourceBus",
"RG60"

]
},
"RG60": {

"x": 200,
"y": 300,
"connections": [

"650",
"632"

]
},
"611": {

"x": 0,
"y": 100,
"connections": [

"684"
]

},
...

...
}

}

Figure 4.3: Generated JSON snippet for network topology configuration.
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4.2 Ontology

The Ontology definition establishes the objects of the ontology with their ap-

propriate properties, which are then used to form connections between the

different objects. There are four core classes that define the different objects

of the ontology, and then there are several properties associated with each

object which also contains the connection attributes.

4.2.1 Equipment Class

The entities which have a physical presence in the smart-grid world are de-

fined as the Equipment class. There are two different kinds of equipment

depending on whether they are in the communication network, or in the elec-

trical system.

Electrical Equipment

The Electrical Equipment class has various sub-classes like Bus, Capacitor,

Transformer, etc., relevant to the power grid network and each with their own

set of constraints to allow proper and realistic functioning of the simulator.

For example, Generator classes and Load classes can only attach themselves

to one Bus object, while the remaining classes like Line, Switch, Capacitor,

etc., can attach themselves to two Bus objects.

Network Devices

The Network Devices class has two sub-classes expressing data communica-

tion and processing, respectively. The first sub-class is called Communication

Node, while the latter is called Processor. Processor nodes may represent ac-

tuators, controllers, estimators, or sensors, in the communication network.

4.2.2 Characteristics Class

The Characteristics class defines the various properties of the Equipment

class objects.
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Circuit

The properties of the primary circuit used in the power grid power flow simu-

lator is specified in this sub-class. There is usually only one circuit active at

a time as OpenDSS cannot simulate more than one active circuits simultane-

ously.

LineCode

Objects of Line, which is a sub-class of Equipment, have their own set of prop-

erties. These properties specify the impedance values that are used to gen-

erate the nodal admittance matrix for state estimation. These properties are

known as LineCodes.

Transporter

The Transporter sub-class defines the specifications of the communication

technologies associated with Equipment objects of the Network Devices class.

4.2.3 Location and Measurable Class

The Location class contains the geographical location of the object it is at-

tached to. The location description can be co-ordinates, or coarser location

identifiers, like cities, neighborhoods, etc. The Measurable class allows mea-

surement of the attached object and specifies the properties of measurement,

like the phenomenon being measured, the units of measurement, the equip-

ment doing the measuring, etc.

4.2.4 Object Properties

Besides specifying the attributes of objects, the Object Properties also deter-

mine the relation between classes. Table 4.1 summarizes the different object

properties, their domains, and ranges. The domains and range of the ob-

ject properties are also objects. For example, the objects of the class Sensor

may have the property measures to calculate or take the measurements of

a Measurable object. Whether the measurement is of a voltage level of the

power grid or the power consumed by a certain household, is determined by

the user-defined object of the Measurable class. Certain properties may have

56



an inverse property e.g., the isMeasuredBy is the inverse of the measures prop-

erty and can be used to get the sensor which is doing the measuring, through

the Measurable object. Similarly, the Sensor object can get its sensor readings

using its measures property to fetch the Measurable object.

Object
Property

Inverse Domain Range

measures isMeasuredBy Sensor Measurable
isMeasuredBy measures Measurable Sensor

monitor isMonitorBy Sensor Equipment
isMonitorBy monitor Equipment Sensor

locatedAt isLocationOf Equipment Location
isLocationOf hasLocation Location Equipment

controls isControlledBy Actuator Equipment
isControlledBy controls Equipment Actuator

feeds isFedBy Equipment Equipment
isFedBy feeds Equipment Equipment

connectsTo connectsTo Network/Control
Equipment

Network/Control
Equipment

attachesTo Electrical
Equipment

Bus

primaryAt-
tachesTo

Electrical
Equipment/Circuit

Bus

Table 4.1: Object properties.

4.2.5 Example Scenario

Figure 4.4 shows the ontology of the smart-grid tap control application. The

dashed lines indicate inheritance and the filled lines indicate object relations

through their properties. The Generator, Load, Bus, etc. objects and the Net-

work Devices sub-class are inherited from the Equipment class. Therefore,

dashed lines connect them to the Equipment class. Similarly, most electrical

equipment like the Generator, RegControl, Load, Line, etc. are connected to

the Bus equipment. The Bus class forms the connection between the other

electrical equipment classes and the Circuit class. The filled line connect-

ing the classes like RegControl and Line to the Bus is the property (pri-

mary)attachesTo, which indicates that there is both an attachesTo property
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and a primaryAttachesTo property associated with it. The locatedAt property

connects the Equipment class objects to the Location class objects, while the

feeds property connects to itself, as Equipment class objects feed their data to

the other objects of the same class. The connectsTo property is more direct

as it does not require any medium object in between the connected objects,

compared to the feeds property which usually transfers the data through the

communication network. The Sensor objects monitor other Equipment objects

and measures the Measurable object related to the monitored object. The Con-

troller objects feed the Actuator objects, and the Actuator objects control other

Equipment objects, e.g., a RegControl object attached to a Transformer.

ControllerSensor Actuator

Equipment

Measurable

Network Device

Generator

RegControl

Line

Transformer

Capacitor

Load

Bus

Location

Circuit

feeds feeds

monitors

connectsTo
connectsTo

connectsTo

controls

measures

primaryAttachesTo

primaryAttachesTo

primaryAttachesTo
(primary)attachesTo

(primary)attachesTo

(primary)attachesTo

connectsTo

locatedAt
feeds

primaryAttachesTo

Figure 4.4: Class relations in the Smart grid ontology.
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4.3 Co-simulation Execution

The co-simulation is started using the Linux shell script smartgrid_run.sh,

which is responsible for the set up of the environment for execution, import-

ing required Python libraries and executing a master script and an analysis

script. As the application domain is smart grid simulation, the OpenDSS

libraries are typically imported. The simulator calling configurations are

initialized in the variable SIM_CONFIG in the MOSAIK master script (as pre-

sented in Figure 4.5). The simulator classes, such as, PFlowSim, PktNetSim,

ControlSim, etc., are defined in their respective interface codes. We use a

convention of appending to the interface the version number of MOSAIK used.

For example, the MOSAIK 2 interfacing codes for the Power Flow simulator

are in file simulator_pflow_2.py, while for MOSAIK 3, interfacing is done

in simulator_pflow_3.py. For non-Python simulators like ns-3, execution

files are referenced with appropriate libraries instead of the Python interface

scripts. The execution file is generated by compiling multiple C++ class files

before executing the master MOSAIK script.

4.3.1 Simulator Initialization

MOSAIK initializes the simulators after configuration, using the init API

function. The simulators implement their version of the interface functions

which are called from the master script for initialization. The Controller and

Estimator simulators take the name of the simulators, model prefixes, and the

verbose level of information printed during execution, as input during initial-

ization (Figures 4.6 and 4.7). The Collector simulator has added parameters

for storing the collected data into a data store (Python HDF5 dataset). The

Power Flow simulator takes the topology file (Section 4.1.1), which specifies

the different electrical equipment in the circuit, the initial load data of the

nodes (Section 4.1.4), the rate of load data generation throughout the simu-

lation, and the verbose level of printing information. Notice that the MOSAIK

2 version also takes the step size as input as it was stepped periodically only.

The Network Simulator takes two configuration files as input - the JSON file

containing the number, location, connections, properties, etc., of nodes in the
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SIM_CONFIG = {
’Collector’: {

’python’: ’simulator_collector_3:Collector’,
},
’ControlSim’: {

’python’: ’simulator_controltap_3:ControlSim’,
},
’PFlowSim’: {

’python’: ’simulator_pflow_3:PFlowSim’,
},
’PktNetSim’: {

’cmd’: NS3_EXE_PATH + ’/NS3MosaikSim %(addr)s’,
’cwd’: Path( os.path.abspath(os.path.dirname(NS3_EXE_PATH))),
’env’: {

’LD_LIBRARY_PATH’: NS3_LIB_PATH,
’NS_LOG’: "SmartgridNs3Main=all",

}
},
’Estimator’: {

’python’: ’simulator_dse:Estimator’,
},

}

Figure 4.5: Example simulator configuration in the MOSAIK master script.
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network (Figure 4.3), and the devices file containing the location and proper-

ties of devices (Section 4.1.2). The JSON file is parsed within ns-3 to gener-

ate the node adjacency matrix and the node co-ordinates (Section 4.1.3). The

notable of the remaining parameters (as exhibited in Figurea 4.6 and 4.7)

specify the link parameters, simulation start and end times, transport con-

trol protocol used, network and data link layer protocol specifications, and the

user specified name of the circuit to be used for simulation. Other parame-

ters are the verbose level which works similar to other simulator parameters,

and the random seed value used to generate random values within ns-3. The

parameters passed through the MOSAIK API functions are received by the

simulator-specific implementations of these functions. We detail a Python-

based implementation and a non-Python based implementation of the init

function in the following sections.

Python-based: Power Flow

The Power Flow simulator interface contain the implementation of the API

functions required by MOSAIK to control the simulator. The mandatory func-

tions to be implemented by a simulator are the step, and get_data. There

are five more API functions which have default implementations and are not

required to be implemented. Furthermore, extra API functions can be added

with prior notification to MOSAIK. Therefore, the init function needs to be

overwritten if there are user-defined simulation parameters to be passed to

the simulator during initialization as shown in Figure 4.8. The default pa-

rameters are the simulation identification or sid, and the time resolution for

specifying the relation between MOSAIK time and simulator-specific time (only

present in MOSAIK 3). Besides these two, the remaining simulator parame-

ters require an overwritten implementation of the init function.

The init function implementation stores the input parameters and ini-

tializes other modules, except the simulator models, which are generated by

the MOSAIK API function create. However, the init function needs to notify

MOSAIK of the simulator models and extra API functions beforehand in the

form of a metadata returned to MOSAIK as in the example of Figure 4.9. The

metadata contains the version of MOSAIK in use, the type of simulator, the
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if Mosaik_2:
pflowsim = world.start(’PFlowSim’,

topofile = DSS_EXE_PATH + TOPO_RPATH_FILE,
nwlfile = DSS_EXE_PATH + NWL_RPATH_FILE,
ilpqfile = DSS_EXE_PATH + ILPQ_RPATH_FILE,
step_size = 1,
loadgen_interval = 80,
verbose = 0)

else:
pflowsim = world.start(’PFlowSim’,

topofile = DSS_EXE_PATH + TOPO_RPATH_FILE,
nwlfile = DSS_EXE_PATH + NWL_RPATH_FILE,
ilpqfile = DSS_EXE_PATH + ILPQ_RPATH_FILE,
loadgen_interval = 80, # IEEE13

# loadgen_interval = 1000, # IEEE33
verbose = 0)

if Scenario == 1:
controlsim = world.start(’ControlSim’, verbose = 0)

pktnetsim = world.start( ’PktNetSim’,
model_name = ’TransporterModel’,
json_file = JSON_RPATH_FILE,
devs_file = DEVS_RPATH_FILE,
linkRate = "512Kbps",
linkDelay = "15ms",
linkErrorRate = "0.0001",
start_time = 0,
stop_time = END_TIME,
random_seed = args.random_seed,
verbose = 0,
tcpOrUdp = "tcp",
network = "P2P",
topology = "IEEE13" # For now only IEEE13 and IEEE33

)
else:

estimator = world.start(’Estimator’,
eid_prefix = ’DSESim_’,
verbose = 0)

Figure 4.6: Simulator Initialization: Part 1
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else:
estimator = world.start(’Estimator’,

eid_prefix = ’DSESim_’,
verbose = 0)

pktnetsim = world.start( ’PktNetSim’,
model_name = ’TransporterModel’,
json_file = JSON_RPATH_FILE,
devs_file = DEVS_RPATH_FILE,
linkRate = "1024Kbps",
linkDelay = "1ms",
linkErrorRate = "0.0001",
start_time = 0,
stop_time = END_TIME,
random_seed = args.random_seed,
verbose = 0,
tcpOrUdp = "tcp",
network = "P2Pv6",
topology = "IEEE33"

)

collector = world.start(’Collector’,
eid_prefix = ’Collector_’,
verbose = 0,
out_list = False,
h5_save = True,
h5_panelname = ’Collector’,
h5_storename =’CollectorStore.hd5’)

Figure 4.7: Simulator Initialization: Part 2
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def init(self, sid, time_resolution, topofile, nwlfile,\
loadgen_interval, ilpqfile="", verbose=0):

self.sid = sid
self.verbose = verbose
self.loadgen_interval = loadgen_interval

self.swpos = 0
self.swcycle = 35
self.total_exec_time = 0.0
self.step_count = 0

if (self.verbose > 0): print(’simulator_pflow::init’, self.sid)
if (self.verbose > 1): print(’simulator_pflow::init’, topofile,\

nwlfile, ilpqfile, verbose)

#--- start opendss
self.dssObj = SimDSS(topofile, nwlfile, ilpqfile)
if (self.verbose > 2):

self.dssObj.showLoads()
self.dssObj.showVNodes()
self.dssObj.showIinout()
self.dssObj.showVMagAnglePu()
dss.run_command("Show Buses")
dss.run_command("Show Voltages LN nodes")
dss.run_command("Show Taps")

#--- create instance of LoadGenerator
#--- IEEE13
self.objLoadGen = LoadGenerator(nwlfile,

PFLimInf = 0.95,
PFLimSup = 0.99,
LoadLimInf = -1.65,
LoadLimSup = 0.70,
AmpGain = 0.30,
# Freq = 1./8640,
Freq = 1./100,
PhaseShift = math.pi)

sys.stdout.flush()
return self.meta

Figure 4.8: Power Flow implementation of MOSAIK API function init
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model names, parameters, attributes and attribute properties, and the name

of the extra API functions, formatted as a Python dictionary. This dictionary

is returned to the caller after execution of the function. The metadata of the

Power Flow simulator currently lists five simulator models with similar pa-

rameters and attributes. The parameters include the unique ID of the model

instances, i.e., the Entity IDentification or eid, the periodic interval of per-

forming sensing or actuating or step_size, the rate of error when performing

said action, the verbose level of information printing, and the circuit prop-

erties required to map them to the electrical circuit generated by OpenDSS.

The mapping is done during model instance creation through the create API

function, using the EIDs generated from the device list configuration files as

explained in section 4.1.2. These models and their parameters are set to be

publicly accessible by MOSAIK to allow access of their eid’s during formation

of interconnections between the different model instances. The init function

initializes the encapsulating interface to the Python OpenDSS libraries us-

ing the module SimDSS, and the load generator module LoadGenerator which

generates new load data when called upon in the step function.

Non-Python: Packet Network

The network simulator simulates the packet network while communicating

with MOSAIK through a TCP socket. We use two classes - MosaikSim and

NS3Netsim to simulate the interface for MOSAIK and the packet network, re-

spectively. Another class ns3-helper is used to aid in performing various

tasks by the other two classes. The MosaikSim class takes the address for the

TCP socket and an object of the NS3Netsim class as input. There is a separate

driver C++ file containing the main function, which calls the constructor of the

MosaikSim class (Figure 4.10). These four files are compiled as a group to gen-

erate the execution file used by MOSAIK to simulate the packet network. The

constructor opens the TCP socket using the passed address, maps the MOSAIK

API function names to functions of MosaikSim, initializes the data structure

to store input parameters of the init function, and starts the Main Loop of

the interface. The Main Loop, as shown in Figure 4.11, executes throughout

the duration of the simulation to receive JSON messages from MOSAIK con-
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META = {
’api-version’: ’3.0’,
’type’: ’hybrid’,
’models’: {

’Sensor’: {
’public’: True,
’params’: [’eid’, ’cktTerminal’, ’cktPhase’, ’cktProperty’,\

’step_size’, ’cktElement’, ’error’, ’verbose’],
’attrs’: [’v’, ’t’],
’non-persistent’: [’v’, ’t’],

},
’Actuator’: {

’public’: True,
’params’: [’eid’, ’cktTerminal’, ’cktPhase’, ’cktProperty’,\

’step_size’, ’cktElement’, ’error’, ’verbose’],
’attrs’: [’v’, ’t’],
’trigger’: [’v’, ’t’],
’non-persistent’: [’v’, ’t’],

},
’Prober’: {

’public’: True,
’params’: [’eid’, ’cktTerminal’, ’cktPhase’, ’cktProperty’,\

’step_size’, ’cktElement’, ’error’, ’verbose’],
’attrs’: [’v’, ’t’],
’non-persistent’: [’v’, ’t’],

},
’Phasor’: {

’public’: True,
’params’: [’eid’, ’cktTerminal’, ’cktPhase’, ’cktProperty’,\

’step_size’, ’cktElement’, ’error’, ’verbose’],
’attrs’: [’v’, ’t’],
’non-persistent’: [’v’, ’t’],

},
’Smartmeter’: {

’public’: True,
’params’: [’eid’, ’cktTerminal’, ’cktPhase’, ’cktProperty’,\

’step_size’, ’cktElement’, ’error’, ’verbose’],
’attrs’: [’v’, ’t’],
’non-persistent’: [’v’, ’t’],

},
},
’extra_methods’: [

’set_next’
],

}

Figure 4.9: Power Flow simulator metadata returned at the end of init.
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taining the API function calls. The messages are parsed and the API functions

are executed using the mapping generated beforehand. The results generated

by the functions are formatted as JSON messages and sent back through the

socket. Consequently, the Python-based API is imitated using back-and-forth

JSON messages and appropriate API function executions.

MosaikSim::MosaikSim(std::string varargin, NS3Netsim *obj)
{

std::cout << "Starting MosaikSim class with varargin: ";
std::cout << varargin << std::endl;

//--- Gets server from mosaik and verify if it has two parts
assert(!varargin.empty() and varargin.find(’:’));

//--- get NS3 object
objNetsim = obj;

//--- initialize Mosaik commands map
initMosaikCommands();

//--- initialize NS-3 Properties map
initNetsimProps();

//--- split host and port
AddrPort srvAP = parseAddress(varargin);
host = srvAP.host;
port = srvAP.port;

//--- Initial verbose setting (0 = no message)
verbose = 0;

//--- Initialize step counter
step_count = 0;

//--- create socket
openSocket();

//--- start the mainLoop
stopServer = false;
startMainLoop();

}

Figure 4.10: Constructor of MosaikSim class.

The init function stores the input arguments received from MOSAIK,
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void MosaikSim::mainLoop(void)
{

if (verbose > 1)
std::cout << "MosaikSim::mainLoop" << std::endl;

std::string result;
int currentMsgId;
std::string messages;
Json::Value jsonMessage;
total_exec_time = 0.0;

while (!stopServer)
{

try
{

mosaikLastMsgOp = SUCCESS;
messages = readSocket();
auto start = std::chrono::system_clock::now();
jsonMessage = deserialize(messages, currentMsgId);
result = simSocketReceivedRequest(jsonMessage);
result = serialize(result, mosaikLastMsgOp, currentMsgId);
send(sock, result.c_str(), result.size(), 0);

if (verbose > 1)
std::cout << "MosaikSim::mainLoop ***** MSG SENT !! *****"

<< std::endl;

if (jsonMessage[0].asString() == "step" ||
jsonMessage[0].asString() == "get_data")

{
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> diff = end - start;
total_exec_time += diff.count();

}
}
catch (std::exception &e)
{

std::cout << e.what() << std::endl;
}

}
}

Figure 4.11: Main Loop function of the MosaikSim class
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std::string
MosaikSim::init(Json::Value args, Json::Value kwargs)
{

std::string result;
std::string param;
std::string value;

mosaikSid = args[0].asString();

//--- process each parameter
for (Json::Value::const_iterator item = kwargs.begin();

item != kwargs.end(); item++)
{

param = (item.key()).asString();
value = (*item).asString();

if (netsimProp.count(param)) netsimProp[param] = value;
else
{

std::cout << "Unknown init parameter"
<< item.key() << std::endl;

mosaikLastMsgOp = FAILURE;
}

}

vecNetSimConn = readDevicesFile(netsimProp["devs_file"]);
verbose = stoi(netsimProp["verbose"]);

//--- Initialize NS3 class
objNetsim->init(netsimProp["json_file"],

netsimProp["devs_file"],
netsimProp["linkRate"],
netsimProp["linkDelay"],
netsimProp["linkErrorRate"],
netsimProp["start_time"],
netsimProp["stop_time"],
netsimProp["verbose"],
netsimProp["tcpOrUdp"],
netsimProp["network"],
netsimProp["topology"]);

...
}

Figure 4.12: Partial snippet of init function of the MosaikSim class
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calls the init function of NS3Netsim to initialize the ns-3 network configu-

rations, and returns the metadata similar to the Power Flow simulator. The

ns3-helper class function ReadAdjListJson is used to generate the required

node and link properties by parsing the JSON file (Figure 4.13), which are

then used to create network devices or nodes, place the nodes at the spec-

ified co-ordinates, install protocol stacks and attach the required network

device interfaces at the nodes, and connect the interfaces according to the

parsed adjacency data. Nodes located at the gateways connecting multiple

networks may have multiple, possibly different, types of network devices.

When Transporter models are created by MOSAIK through the API function

create, ns-3 places source and sink applications on required nodes. The route

from the source to the sink is then determined through static routing (Figure

4.14), where the routing metric is hop count and the routing algorithm used

is Breadth First Search (BFS). Note that the static routes are generated only

for a source-destination pair “connected" through a Transporter.

4.3.2 Simulator Stepping and Message Passing

Following the initialization of the simulators, their timestamped execution is

managed by MOSAIK using the API function step. While the step function

only returns the next time step if any, the results of the execution are fetched

using a different API function get_data. Therefore, multiple fetch commands

may be executed for a single step, depending on the input requirements of

the participating simulators. The system state (refer to Section 2.1.1) repre-

sentation of all simulators except ns-3, is static which allows stepping and

storing data to be returned without temporal and causal reordering. For ex-

ample, the simulation of the Power Flow is performed as one-shot executions

of OpenDSS executables. Any change done to the system state of the Power

Flow requires re-executing OpenDSS and therefore there is no saved step re-

tained over steps. The required system variables are stored and re-used until

the system needs to be changed. Consequently, the Power Flow simulator

generates load for the appropriate time stamp and updates the state of the

circuit i.e., perform actuation and get new sensor data generated from the

applied load and actuation, during the said step. The state remains constant
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vector<vector<bool»
ReadNodeAdjListJson(string jsonFileName)
{

NS_LOG_INFO("ReadNodeAdjListJson");
memset(parent, -1, sizeof(parent));
ifstream adjListFile;
adjListFile.open(jsonFileName.c_str(), std::ios::in);
if (adjListFile.fail())

NS_FATAL_ERROR("File " « jsonFileName.c_str()
« " not found");

json config;
adjListFile » config;
unsigned int num_nodes = config["nodes"].size();
vector<vector<bool» array;
unordered_map<string, unsigned int> node_to_idx;
array.resize(num_nodes, vector<bool>(num_nodes));

// This will map the node to a numerical index
unsigned idx = 0;
for (auto &node : config["nodes"].items())
{

node_to_idx.emplace(node.key(), idx);
++idx;

}
// This will create the adjacency matrix

for (auto &node : config["nodes"].items())
{

unsigned int curr_idx = node_to_idx[node.key()];
for (auto &neighbour : node.value()["connections"])

array[curr_idx][node_to_idx[neighbour]] = true;
}
adjListFile.close();
return array;

}

Figure 4.13: ns3-helper class function ReadAdjListJson, which parses
JSON files to generate the adjacency matrix.
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...
while(nextHop != srv)
{

nextHop = FindNextHop(clt, srv, nodeAdjMatrix);
Ptr<Node> nextHopNode = Names::Find<Node>(nextHop);
Ptr<Node> cltNode = Names::Find<Node>(clt);
Ptr<Ipv4> nextHopIpv4 = nextHopNode->GetObject<Ipv4> ();
Ptr<Ipv4> cltIpv4 = cltNode->GetObject<Ipv4> ();
uint32_t hostIfIndex, hopIfIndex;
// The interfaces are in reverse order
if(DeviceMap.find(make_pair(clt, nextHop)) == DeviceMap.end())
{

NetDeviceContainer link_dev =
DeviceMap[make_pair(nextHop, clt)];

hostIfIndex = link_dev.Get(1)->GetIfIndex() + 1;
hopIfIndex = link_dev.Get(0)->GetIfIndex() + 1;

}
else // The interfaces are in correct order
{

NetDeviceContainer link_dev =
DeviceMap[make_pair(clt, nextHop)];

hostIfIndex = link_dev.Get(0)->GetIfIndex() + 1;
hopIfIndex = lin_dev.Get(1)->GetIfIndex() + 1;

}
Ipv4Address nextHopAddress =

nextHopIpv4->GetAddress(hopIfIndex, 0).GetLocal();
staticRouting = ipv4StaticRouter.GetStaticRouting (cltIpv4);
staticRouting->AddHostRouteTo(

destAddress, nextHopAddress, hostIfIndex);
Ipv4Address cltAddress =

cltIpv4->GetAddress(hostIfIndex, 0).GetLocal();
staticRouting =

ipv4StaticRouter.GetStaticRouting (nextHopIpv4);
staticRouting->AddHostRouteTo(

srcAddress, cltAddress, hopIfIndex);
clt = nextHop;

}
...

Figure 4.14: Code snippet of class NS3Netsim that performs static routing in
IPv4 networks to form a connection between the specified source-destination
pair. The best path is calculated by the function FindNextHop which uses BFS
as the search algorithm and hop count as the metric.
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regardless of further steps if the applied load is unchanged and no actuation

is performed.

Network simulators typically have several events in the system queue at a

time, some of which could be unrelated to the other simulators e.g., simulated

extra traffic to create artificially high loads, while others require data to be

returned to MOSAIK, such the messages that arrived at end points that will

operate actuators. Therefore, when the step function of ns-3 is called, we

perform the following actions while maintaining temporal event order,

1. Parse the JSON message from MOSAIK and map it to the appropriate

function of MosaikSim class. In this case, the function is the implemen-

tation of the API function step.

2. Parse the input arguments from the JSON message to generate the data

collected from participating simulators.

3. If there is data generated by a sensor or controller model, schedule

an event for generating traffic from the appropriate application source.

Note that the event to be scheduled must have a timestamp that is

greater than the current time in ns-3 (refer to Section 3.7).

4. Once all events are scheduled, execute the events in the queue until the

required time provided by MOSAIK. To optimize this process, we may ex-

ecute future events while maintaining causal and temporal consistency

as explained in Section 3.7.3.

5. Collect the data received by any application sink during the executed

time step and store it for further processing (when get_data is called).

The events in the ns-3 system queue are executed in multiple ways using the

function runUntil to compare between the three stages of simulation refine-

ment (refer to Section 3.7) as shown in Figures 4.15 and 4.16. The relevance

filtering flag determines whether all events will be treated as relevant, or only

the events which cause application sinks to receive data through the packet

network. Furthermore, the max advance time is only available when MOSAIK

3 is being used.
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std::string
NS3Netsim::runUntil(uint64_t time, string nextStop)
{

if (verbose > 1)
{

std::cout << "NS3Netsim::runUntil(time=" << time
<< " + 1)" << std::endl;

#if PERFORMANCE_TEST < 2
std::cout << "NS3Netsim::Max Advance time = "

<< nextStop << std::endl;
#endif

}
sim = DynamicCast<SmartgridDefaultSimulatorImpl>(

Simulator::GetImplementation());
#if PERFORMANCE_TEST < 2

uint64_t max_advance = stoul(nextStop);
#endif
currentTime = time;
uint64_t next_step;
bool relevance = false;
uint64_t runUntil_time = time;
while(!relevance)
{

#ifdef PERFORMANCE_TEST
if (PERFORMANCE_TEST == 1 || PERFORMANCE_TEST == 3)

relevance = true;
#endif
if (runUntil_time < (uint64_t)stopTime-1)

sim->RunUntil(MilliSeconds(runUntil_time + 1));
else

sim->RunUntil(MilliSeconds((uint64_t)stopTime-1));

if (verbose > 3)
{

DataXCHG dataSnt;
for (auto it = 0; it != dataXchgOutput.size(); ++it)
{

dataSnt = dataXchgOutput.front();
cout << "NS3Netsim::runUntil NS3 OUTPUT Buffer Src: "

<< dataSnt.src
<< " Dst: " << dataSnt.dst
<< " Val: " << dataSnt.val
<< " Time: " << dataSnt.time
<< endl;

dataXchgOutput.pop();

Figure 4.15: runUntil function of the NS3Netsim class: Part 1
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dataXchgOutput.pop();
dataXchgOutput.push(dataSnt);

}
}

//--- Get the next new event
next_step = (uint64_t)sim->Next().GetMilliSeconds();
#if PERFORMANCE_TEST < 2

//--- If next step exceeds max advance time
if (next_step > max_advance || next_step >= (stopTime-1))

relevance = true;
//--- OR If there is a message received by a server,
//--- a relevant event has been processed
else if (!dataXchgOutput.empty())

relevance = true;
#endif
runUntil_time = next_step;

if (verbose > 1)
{

std::cout << "NS3Netsim::runUntil After_run NS3 time: "
<< Simulator::Now().GetMilliSeconds() << std::endl;

std::cout << "NS3Netsim::runUntil next event: "
<< next_step << std::endl;

}
}
//--- Return a step time so that Mosaik has to give "stop" command
if (next_step == (uint64_t)stopTime-1)

return std::to_string(next_step+1);
else if (next_step > (uint64_t)stopTime-1)
{

if (time == (uint64_t)stopTime-1)
return std::to_string((uint64_t)stopTime);

else
return std::to_string((uint64_t)stopTime-1);

}
//--- If there is data in buffer, a relevent event has been processed
//--- return the current time of NS3 as the next event time for Mosaik
if (!dataXchgOutput.empty() && time < Simulator::Now().GetMilliSeconds())

return std::to_string(Simulator::Now().GetMilliSeconds());
return std::to_string(next_step);

}

Figure 4.16: runUntil function of the NS3Netsim class: Part 2
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void sendMessageToUpperLayer(string message, Ptr<Node> sourceNode,
Ptr<Node> destinationNode)

{
std::size_t current;
//--- get val and val_time
current = message.find("&");
string id = message.substr(0, current);
message = message.substr(current+1);
current = message.find("&");
string val = message.substr(0, current);
string val_time = message.substr(current+1);
//--- insert data on dataXchgOutput / give to upper layer
DataXCHG dataRcv = {id,

Names::FindName(sourceNode),
Names::FindName(destinationNode),
val,
stoll(val_time)};

dataXchgOutput.push(dataRcv);
dataXchgTime.push((uint64_t)Simulator::Now().GetMilliSeconds());

}

void ExtractInformationFromPacketAndSendToUpperLayer(Ptr<Socket> socket)
{

Address from;
Ptr<Packet> packet = socket->RecvFrom(from);
uint32_t srcNodeId;
if (v4)
{

Ipv4Address srcIpv4Address =
InetSocketAddress::ConvertFrom(from).GetIpv4();
srcNodeId = mapIpv4NodeId[srcIpv4Address];

}
else
{

Ipv6Address srcIpv6Address =
Inet6SocketAddress::ConvertFrom(from).GetIpv6();
srcNodeId = mapIpv6NodeId[srcIpv6Address];

}
Ptr<Node> srcNode = NodeList::GetNode(srcNodeId);

packet->RemoveAllPacketTags();

Figure 4.17: Code snippet of the relevant data reception and processing func-
tions of the NS3Netsim class: Part 1
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packet->RemoveAllPacketTags();
packet->RemoveAllByteTags();

uint32_t packetSize = packet->GetSize();
uint8_t *buffer = new uint8_t[packetSize];
packet->CopyData(buffer, packetSize);
string recMessage = string((char *)buffer);
recMessage = recMessage.substr(0, packetSize);

PacketMetadata::ItemIterator i = packet->BeginItem();
//A packet can contain fragments, complete payloads or
//a combination of both.
while (i.HasNext())
{

PacketMetadata::Item item = i.Next();
if (item.isFragment)
{

if (item.type == PacketMetadata::Item::PAYLOAD)
{

//We check if the sender node has an entry in the fragment
//buffers hash table
if (fragmentBuffers.find(srcNodeId) == fragmentBuffers.end())
{

//If there is no entry, insert an entry with an empty string
fragmentBuffers[srcNodeId] = "";

}
//This packet is a fragment in its entirety, it can
//correspond to one of the middle or end fragments of
//a fragmented package
if (item.currentSize == packetSize)
{

fragmentBuffers[srcNodeId] =
fragmentBuffers[srcNodeId] + recMessage;

}
else if (item.currentSize < packetSize)
{

if (item.currentTrimedFromStart == 0)
{

string fragmentMessage =
recMessage.substr(recMessage.size() -
item.currentSize, item.currentSize);
fragmentBuffers[srcNodeId] =
fragmentBuffers[srcNodeId] + fragmentMessage;

Figure 4.18: Code snippet of the relevant data reception and processing func-
tions of the NS3Netsim class: Part 2
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fragmentBuffers[srcNodeId] =
fragmentBuffers[srcNodeId] + fragmentMessage;
//Remove the fragment from the received message string
//so that we can process that fragment
recMessage = recMessage.substr(0, recMessage.size()

- item.currentSize);
}
else if (item.currentTrimedFromStart > 0)
{

string fragmentMessage = recMessage.substr(0, item.currentSize);
fragmentBuffers[srcNodeId] =

fragmentBuffers[srcNodeId] + fragmentMessage;
//Remove the fragment from the received message string
recMessage = recMessage.substr(item.currentSize);

}
}

}
}
else
{

unordered_map<uint32_t, std::string>::iterator
fragmentBufferIterator = fragmentBuffers.find(srcNodeId);

if (fragmentBufferIterator != fragmentBuffers.end())
{

string assembledFragments =
fragmentBufferIterator->second;
sendMessageToUpperLayer(

assembledFragments, srcNode, socket->GetNode());
fragmentBuffers.erase(fragmentBufferIterator);

}

//send the message received in the unfragmented payload
string partMessage = recMessage.substr(0, item.currentSize);
sendMessageToUpperLayer(partMessage, srcNode, socket->GetNode());
recMessage = recMessage.substr(item.currentSize);

}
}

}

Figure 4.19: Code snippet of the relevant data reception and processing func-
tions of the NS3Netsim class: Part 3
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The application layer of ns-3 performs its own processing of the data re-

ceived at any node. This is done in the form a callback function that is called

when a new packet is received an application sink. We replace the default ap-

plication layer of ns-3 with our custom implementation of the TCP and UDP

source and sink. The custom sink calls a different function to extract the re-

quired information from the received data (Figures 4.17, 4.18, and 4.19). The

extraction may require parsing the message or forming a complete message

from packets fragmented by the sender. Once the extraction is complete, the

collected message is reformatted and inserted into a local queue for fetching

by the get_data function as shown in Figure 4.17. The get_data function

returns the contents of the queue to MOSAIK upon request, and removes them

from the queue to avoid duplication.
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Chapter 5

Experimental Results

In this chapter, we generate two scenarios for co-simulation, perform accu-

rate simulation of the scenarios with changing parameters, and evaluate the

performance of our platform in terms of efficiency and scalability.

5.1 Simulation Examples

For our experiments, we develop two example simulation scenarios which

demonstrate the application of our simulation platform in the CPS domain.

The first scenario simulates a tap control application in a small-scale smart-

grid. The second scenario simulates distributed state estimation in a large-

scale smart-grid environment with residential loads attached to secondary

networks.

5.1.1 Tap Control

The tap control application environment is the well-known IEEE 13 node test

feeder circuit [49]. This topology has a generator attached to the end of the

circuit, a single transformer, and a voltage regulator to allow implementation

of tap control algorithms (Figure 5.1). The black dots represent the places

where electrical equipment may be attached, and we refer to them as nodes.

For example, the node to which the generator is attached, is called the SR-

CBUS (source bus).
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Figure 5.1: IEEE 13 node test feeder [50].
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Figure 5.2: Tap Control data flow among simulation models.

Power Flow

For our simulation, we place a Sensor at node 611 and an Actuator at node

650. The data generation period of the Sensor is 100 ms and the rate of actu-

ation depends on the generation of control data by the Controller simulator.

Generated sensory data contains the voltage value at the placed location and

the timestamp of the generated data. The intended recipient of all sensory

data is the Controller instance located at node 632. The placement of the

Sensor is done at an edge of the circuit to allow for maximum data travel,

while the location of the Actuator requires a nearby variable transformer on

which the actuation is executed. The loads of the nodes are generated with

uniform random distribution at an interval of 80 ms. The base voltage of the

circuit is set to 115 kV with three phases. The base frequency is 60 Hz and

the voltage angle is 30 degrees.

Communication Network

The communication network places network devices on all 16 node locations

of the electrical circuit. The co-ordinates of the network devices are calculated

approximately following their locations in Figure 5.1, with node 646 and node

611 as the left-most co-ordinates (x = 0) and node 680 as the bottom-most
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co-ordinate (y = 0). These co-ordinates were calculated manually and then

included in the ontology using the locatedAt property. The links between the

nodes follow the power system topology, each having data rates of 512 Kbps,

delays of 15 ms, and error rates of 0.0001. The error rate may be set to bit,

byte, or packet error rates, as per user requirement and is dependent on the

underlying protocol of the link. However, the current ns-3 implementation

can only simulate packet error rates and thus the default type of error rate

(i.e., packet) is used. The links are wired and may follow IPv4 or IPv6, coupled

with P2P or CSMA (i.e., Ethernet-like) protocols.

Controller Settings

The Controller simulator generates tap control values with their associated

timestamp of generation. The set of control values C = {−1,0,1} represent

tap up, no action, and tap down respectively. The set voltage point is Vset =
2178 V , the specified bandwidth is BW = 13.6125, the intentional delay is

tdelay = 60 ms, and the interval between control data generation is 200 ms.

5.1.2 Distributed State Estimation

For the state estimation example, we utilize a modified version of the IEEE

33 node test feeder circuit [51] as the primary network and we attach to each

of the 32 primary nodes (except the first one) the IEEE European low voltage

test feeder [52]. The first node of the primary network is the source of elec-

tricity and has a generator attached to it. The remaining primary nodes are

connected to their respective secondary networks through a step-down trans-

former as shown in Figure 5.3. Therefore, the total number of nodes in the

network is 33+32×55= 1793.

Power Flow

State estimation requires data to be collected from many nodes in a large

network. Therefore, for testing the performance limits of our simulation plat-

form, we place Phasors at every primary node, and we place Smartmeters at

every secondary node. The data generation of Supervisory control and data

acquisition (SCADA) Phasor Measurement Units (PMUs) is typically 2 to 4
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Figure 5.3: IEEE 33 node test feeder modified with added European test feed-
ers [47]. Only one of the secondary networks is shown in the figure.

.
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Figure 5.4: State Estimation data flow among simulation models.

seconds [53]. Therefore, we set the Phasor measurement rates as 2 seconds.

Real-world smart-meter sampling rates are typically equal to, or longer than,

15 minutes [47]. However, we set the data generation rate of Smartmeters to

15 seconds for stress testing of our platform. A total of 8030 sets of sensory

data are generated per minute of simulation time, all of which are intended for

the Estimator. The base circuit voltage is 12.66 kV and the default frequency

is 60 Hz. The loads set for the secondary network are generated by linearly

interpolating data-sets of residential loads and adding noise to the data as

done in [47]. The primary network loads are set according to the power con-

sumption data provided in [51]. The residential loads set at the secondary

network have been added randomly i.e., the houses have been connected to

the secondary nodes, until the sum of the loads match the data given in the

33-bus system data. The loads are fetched from load sets and assigned to the

devices at an interval of 1000 ms.

Communication Network

The number of network devices is 1793, each placed at the location of the re-

spective nodes in the electrical network. The co-ordinates are specified in a

similar way to the tap control example, following the placement of devices in

the electrical network as shown in Figure 5.3. The communication links have
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a delay of 1 ms, transmission rates of 1024 Kbps, and error rates of 0.0001,

when the links are wired and follow the same protocol combination as the tap

control application. When the protocol applied is 6LoWP AN, the underlying

links become wireless and follow LR −WP AN protocols [54] instead of the

parameters mentioned above. The delay is simulated using a constant speed

propagation delay model and the loss of data is simulated using a log distance

propagation loss model. The error rates depend on the loss model and the

collisions simulated by the implemented Medium Access Control (MAC) pro-

tocol - CSMA/CA. The current ns-3 LR-WPAN physical layer is implemented

following various IEEE standards and the ATMEL’s AT86RF233 device, and

thus the transmission rate depends on the power spectral density of the sim-

ulated medium and the transmission capabilities of the modelled transceiver

antenna [55]. The default data rate of the corresponding standard i.e., IEEE

802.15.4-2006, is 250 Kbps [56].

There are different stages of refinement that are triggered using the

#define variable PERFORMANCE_TEST to perform conditional compilation,

where the value 0 indicates the highest level of refinement or stage 3, the

value 1 indicates stage 2, and the value 3 indicates stage 1 (refer to Figures

4.15 and 4.16). The relevance filtering can be turned on for MOSAIK 2 with

the value 2, however this does not affect the simulation as the steps are ex-

haustive with no room for refinement.

Estimator

The Estimator maintains two periods - the accounting period and the estima-

tion period. The accounting period is the interval between message recordings

to indicate how many messages were received by the estimator during the in-

terval. The estimation period is the interval between each state estimation,

which is typically longer than the accounting interval. We set the accounting

period to 200 ms, and the estimation period to 1000 ms.

5.2 Simulation Results

We evaluate the performance of the different stages of refinement for both

scenarios. For all our experiments, we utilize the same Ubuntu host (Ubuntu
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20.04.4 LTS, Linux Kernel: 5.13.0-51-generic) running on an Intel™ Pen-

tium™ G3220 (clocked at 3 GHz). G3220 is a 2-core Central Processing Unit

(CPU). The physical memory of the host is 4 GB DDR3, which, as we ob-

served, was adequate to accommodate the working set for the co-simulation

processes. Note that the co-simulation is single-threaded with physical mem-

ory usage below 700 MB for all test runs. Apart from the simulations, the

host was executing no other resource–intensive task, but it was running back-

ground maintenance tasks typically found in Ubuntu 20.04 installations. As

there were two cores, and the background tasks were light, the impact of the

background tasks on the (single-threaded) execution of the co-simulator was

insignificant. The G3220 processor is an older vintage processor, and hence

the results presented here capture a worse case scenario compared to the per-

formance one expects from current CPUs.

Initially, we compare the execution time of the different refinement stages

of the scenarios with varying sensor devices. We run 40 second simulations

of the tap control application with 4 Probers, 1 Actuator with its correspond-

ing RangeControl instance, and varying Sensors located throughout the net-

work. All sensors have data generation rates of one per 100 ms, and control

actions are generated once every 200 ms. We perform 10 test runs for every

test case and present the average of all runs with maximum and minimum

execution times represented as error bars in Figure 5.5. For all stages of re-

finement, the average execution time increases with the number of Sensors

due to the increase in relevant event generation. If the overall execution time

of the simulation is less than 40 seconds, then the simulation is faster than

the duration simulated. For the lowest stage of refinement, the execution time

exceeds the simulated time in certain cases (with 3 and 4 Sensors). Stage 2

refinement drastically improves the execution time due to significant decrease

in stepping of simulators compared to the exhaustive lock steps of stage 1.

Relevance filtering of ns-3 events (stage 3) improves the execution time fur-

ther. For all stages, the increase of events generated due to the increasing

number of Sensors, increases execution time linearly.

Applying the same simulation time for state estimation, we generate two

test cases for execution time comparison of two stages of refinement. Due to
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Figure 5.5: Execution time of the overall simulation of the tap control scenario
for different stages of refinement.

the larger scale of the distribution network, we do not simulate stage 1 for

state estimation, as the execution time of the latter stages already exceed sig-

nificantly the simulated time. For the first test case we place 4 Phasors at

the primary network, namely at nodes 1, 31, 32, and 33. Note that the es-

timator is located at node 1, and therefore the Phasor at that location does

not require passing messages through the communication network. We set

the data generation rate of the Phasors to 1 per 100 ms. We perform 10 test

runs and present the average execution times along with the maximum and

minimum times in Figure 5.6. The improvement of relevance filtering is neg-

ligible in this case as the number of events generated in ns-3 are small in

number. However, for the second test case, we place Phasors at all primary

nodes and Smartmeters at all secondary nodes. We set the data generation

rates of Smartmeters and Phasors to one per 15 seconds and 2 seconds, re-

spectively. The DSESim model performs accounting every 200 ms and the state

of the system is estimated once every 1000 ms. Consequently, the execution

time increases significantly due to the large number of events generated at the

power flow and communication network - 33 Phasor readings per 2 seconds

and 1760 Smartmeter readings per 15 seconds. Therefore, the relevance filter-

ing of stage 3 reduces the execution time by approximately 59.4%. We further
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study the simulation specific execution times to understand the remarkable

improvement due to the fine-tuning of a single simulator.
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Figure 5.6: Execution time of the overall simulation of the state estimation
scenario for two stages of refinement.

We calculate the execution time of the network simulator as the time dura-

tion between the reception of a JSON message from mosaik to the returning

of the result generated by the appropriate API function. MOSAIK does not

consider the initialization of simulators and their respective models when cal-

culating simulation execution time. Therefore, we only include the step and

get_data API functions in our calculation, however, the parsing and forming

of JSON messages before and after applying the API function is included as

well. For other simulators, the execution time is calculated as the time dura-

tion of the steps and fetching of data after every step. MOSAIK may fetch data

multiple times from a simulator after a step is executed. The execution time

of MOSAIK is calculated by subtracting the times of the participating simu-

lators from the total execution time. The average simulator execution times

represented in Figure 5.7 are for the first of the two test cases of the State

Estimation scenario mentioned previously. The execution times are averaged,

and the maximum and minimum values are collected, from the same 10 test

runs as in Figure 5.6. The results indicate that the Power Flow simulator and

Estimator consume the majority of the computational time due to the pres-
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ence of a large number of devices in the circuit. The network simulator has

comparatively faster execution due to fewer messages being generated from

the devices. Being responsible for only the collection of data and with little

processing, the Collector is faster than all other simulators. MOSAIK execution

time is average compared to the other simulators as its execution is dependent

on all the simulators. The refinement of ns-3 in stage 3 leads to improvement

of execution times of MOSAIK and ns-3. The remaining simulators have simi-

lar execution times indicating a lack of any effect. This is because the fetching

of data from a simulator is relatively less heavy on resources, and thus reduc-

tion of the number of data fetching actions (due to reduction of stepping of

the Network Simulator) does not affect the Power Simulator. Furthermore,

the generation of relevant data by ns-3 is unchanged as well. This results in

the same number of external events being generated for the Estimator, which

explains its unchanged execution time. The Collector does not collect data

from ns-3 and so its performance is also unchanged. We present the average

percentage of the overall simulation time taken by the constituent simulators

in Figure 5.8. Power Flow contributes the most in terms of execution times -

41.1% and 45% for stages 2 and 3 respectively. The Estimator follows in sec-

ond with 39% and 42.7, respectively. Therefore, for case 1 of state estimation,

less than 20% of the overall simulation time is attributed to the remaining

simulators.

For the second test case, we are able to better verify the effect of refine-

ment on ns-3 due to the increase in the number of messages generated in the

packet network. We collected the execution times as represented in Figure

5.9, from the same 10 test runs as Figure 5.6. The average execution times

of the Power Flow simulator has increased compared to the first test case as

more data is generated and fetched by ns-3. The Estimator execution time

is slightly reduced due to the large size of the measurement vector when cal-

culating the state variables using the weighted least squares method (WLS).

The large size of the measurement vector is a result of more devices provid-

ing readings to the Estimator. Consequently, fewer values are required to be

estimated. The Collector is the fastest among the simulators similar to the

previous test case, with a slight increase in execution times. The majority
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Figure 5.7: Execution time of participating simulators and co-simulation plat-
form for test case 1 of state estimation. The total execution time for stage 2
refinement is 70 seconds and for stage 3 refinement is 63.9 seconds.
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simulation platform for test case 1 of state estimation.
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of the overall execution time is attributed to ns-3 and MOSAIK. For stages 2

and 3, ns-3 execution times are approximately 61.8% and 56.3% of the overall

execution time, respectively, being the slowest of the participating simulators

(refer to Figure 5.10). The Collector execution time is negligible (almost 0.0%)

compared to other simulators in case 2 (0.1% in case 1). mosaik contributes

by 31.9% and 28.4% having the second greatest execution time. This is be-

cause - higher number of steps for ns-3 means more processing for MOSAIK.

Therefore, the relevance filtering of ns-3 events reduces its execution time

by a remarkable 63%, and that of MOSAIK by 63.8%, resulting in an overall

reduction of 59.4%.

Test Case Refinement P-Flow NS-3 Controller Collector

1
stage 1 40000 40000 40000 40000
stage 2 592 6262 579 592
stage 3 592 1682 579 592

2
stage 1 40000 40000 40000 40000
stage 2 599 6651 963 599
stage 3 599 2337 963 599

Table 5.1: Steps taken by the simulators in the tap control example.

Test Case Refinement P-Flow NS-3 Estimator Collector

1
stage 2 400 16417 1600 400
stage 3 400 2818 1600 400

2
stage 2 21 31034 6021 21
stage 3 21 11133 6021 21

Table 5.2: Steps taken by the simulators in the state estimation example.

We study the change in the total number of steps executed by the simula-

tors in the Tables 5.1 and 5.2. For the tap control scenario, we compare the

step counts for all stages of refinement of case 1 and 2 (Table 5.1). Note that

the number of steps for all simulators in stage 1 is 40000, which is the total

number of time units for a 40 second simulation. The step counts are signifi-

cantly reduced for all simulators in stage 2. For stage 3, the step count of ns-3

is reduced while the remaining simulators have the same number of steps.

Higher number of steps taken does not necessarily mean greater execution

times. For example, let us consider the step counts of cases 2 and 3 of state
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form for test case 2 of state estimation. The total execution time for stage 2
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simulation platform for test case 2 of state estimation.
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estimation. The Power Flow simulator execution time is greater in test case 2

of state estimation (as shown in Figure 5.9) compared to test case 1 (as shown

in Figure 5.7) due to the larger number of devices generating data. However,

the frequent rate of data generation in test case 1 yields a higher number of

steps. The step count of the Estimator is affected by its own periodic account-

ing and estimation cycles, and by the reception of data from ns-3. Therefore,

for a test case with large amount of generated data, the Estimator requires

more frequent stepping compared to the one with fewer data. The step count

of ns-3 is reduced greatly as irrelevant data are processed without notifying

MOSAIK, thus reducing the execution times of both MOSAIK and ns-3.
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Chapter 6

Conclusion

Our co-simulation platform facilitates high fidelity simulation - improving ex-

ecution without compromising the accuracy of the simulation. The logical

time lower bound computation within the simulators allow for an efficient ap-

proach to processing internal events without breaking the causal order. The

filtering of irrelevant events in the packet network simulator further improves

execution by reducing redundant time management and execution. The sim-

ulation of large networks with several electrical equipment, generating mes-

sages in the communication network, benefit greatly from the mentioned re-

finement. However, the execution time or wall-clock time of co-simulation

exceeds the simulated time for larger networks. Therefore, the processing of

the overall simulation is demanding in terms of processing.

Communication networks associated with city-wide electrical networks

of smart-grids having innumerable electrical devices generate frequent and

large number of packets. In such cases, our refinement techniques can greatly

reduce the simulation times of these networks. This allows the efficient use

of more complex algorithms, machine learning techniques, enhanced cyber-

security applications, and rigorous testing before deployment of a smart-grid

network.

6.1 Limitations

There are certain limitations associated with our co-simulation platform. The

first limitation is related to the distribution of events within the duration of

simulation. The second limitation is the requirement of transparency among
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participating simulators.

6.1.1 Limitation 1: Event Count

Although, the lower logical time bound computation (LBTS) reduces the num-

ber of times a simulator needs to be interrupted during the simulation, this

reduction depends on the number of events and their timestamps. For exam-

ple, consider the following two cases where we consider as “step" of a simu-

lator the continuous execution between two successive points of blocking the

corresponding simulator process:

1. There are two simulators A and B, where both simulators provide input

to each other, and A has 10 events at timestamp 1, for a 10 time unit

simulation. In this case, A can execute all the events at the beginning

and provide the processed data to B. Considering that A has a higher

priority and can execute first, B can then execute after receiving data

from A. If B has no events output for A after processing all inputs, B can

execute 10 time units of simulation without interrupting A. Similarly

A can execute the remaining 9 time units of simulation without inter-

rupting B. Therefore, simulator A requires two steps and B requires

one step, to complete this simulation.

2. In the second case, consider that A has the same number of total events,

i.e., 10. However, each event has a different timestamp, starting from

1 and ending at 10. In this case, A needs to simulate the first event

with timestamp 1 and provide data to B. B executes time step 1 with

the collected input, however, it cannot proceed further as A has another

event at time 2. A simulates the event at time 2 with the input from

B (if any) and repeats the process. This continues with both simulators

being interrupted at every time unit to execute one event. The total

number of steps for each simulator is 10.

Typical simulations do not have all events at any particular time unit, rather

events are scattered throughout the duration of the simulation. However,

co-simulation with simulators containing several model instances generat-

ing multiple events at different timestamps may have events at many times-
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tamps. In such cases, lower bound computation or relevant event filtering

may not be enough to significantly reduce execution time or it reduces it only

modestly. In the worst case, if events are present at every single timestamp,

refinements 2 and 3, may result in a greater execution time compared to an

exhaustive simulation as done in stage 1.

6.1.2 Limitation 2: Inter-simulator Transparency

For refinement stages 2 and 3, the next event timestamp of the simulators

need to be known beforehand. The max_advance time required by MOSAIK is

used by simulators and MOSAIK to execute simulator events while maintain-

ing causal order. However, this transparency may not be present in certain

simulators, or may be inaccurate in others. For example, in the Tap Control

scenario, if the Controllers models take immediate control decisions instead

of periodic ones, the next time step is not known to the Controller, and thus

unknown to the other simulators and MOSAIK. A new event may be generated

as soon as a RangeControl model instance receives data from a Transporter

model instance. This may be solved if all future events of the packet network

is known and provided to the Controller to generate its next event timestamp.

However, this level of transparency is typically absent in simulators. In fact,

for this reason, stage 3 executes future events to determine the timestamp

of the next relevant event as the internal event queue of ns-3 needs to be

accessed to do the same without executing irrelevant events.

6.2 Future Work

Future enhancements of the our co-simulation platform may include convert-

ing the single-threaded simulation into a multi-threaded one. This may be

done by assigning separate threads to participating simulators or by parallel

execution of the simulators themselves. The first approach requires multi-

threaded capabilities provided by the co-simulation platform. However, if the

overall execution time of the co-simulation is dominated by a single simu-

lator as we saw in a number of instances, assigning a single thread to the

mentioned simulator may hardly reduce overall execution time. The sec-
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ond approach may be more appropriate in such cases and would require the

simulators to have parallel computing capabilities as well. Certain simula-

tors like ns-3 already have experimental modules which allow multi-threaded

simulation. Incorporating that into the co-simulation platform and other

computation-intensive simulators is a future endeavour.

With the advent of electric vehicles (EVs) and unmanned aerial vehicles

(UAVs), network devices and consumers of electricity have attained high mo-

bility. Simulating a modern smart-grid requires taking into consideration the

unpredictable nature of their movements and the load put on the power sys-

tem to charge these vehicles. In future work, mobility of the devices in the

communication network through the mobility module of ns-3 could be incor-

porated. The vehicles would also consume energy at charging stations, thus

requiring data to be collected from these vehicles to better prepare the sta-

tions with necessary power beforehand. Storing energy in large amounts at

such stations may alleviate the unpredictable load requirements, however, the

limited generation and distribution of power coupled with its low storage effi-

ciency makes this an unfeasible and expensive solution. Therefore, planning

and prediction of load requirements is a more feasible solution, one that re-

quires a communication network spanning the entire network of mobile and

static nodes. The mobility simulation of these nodes may be achieved through

addition of well-known vehicle simulators into the list of simulators partici-

pating in co-simulation.
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