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Abstract

The presence of control-flow divergence in loops can either hinder or impede

auto-vectorization as a compiler transformation to exploit parallelism enabled

by Single-Instruction Multiple-Data (SIMD) instructions. A solution is to

linearize control flow through the use of predicated execution. However, compu-

tation resources are wasted when predicated instructions are executed but not

committed because of a false predicate. Alternative approaches optimistically

avoid predicated instructions when all conditions in a vectorized loop iteration

evaluate to the same value. However, dynamic uniformity is less frequent in

long vectors. Active-Lane-Consolidation (ALC) was proposed to form uniform

vectors dynamically by merging active elements from different iterations. In

its seminal presentation, ALC was only evaluated in a simulated environment

through hand-modified programs. This thesis presents the first performance

evaluation of ALC on real hardware which reveals that the original design of

ALC indeed reduces the number of executed instructions, but it fails to provide

speedup over auto-vectorized code. It then presents a change to the design of

ALC that results in it outperforming auto-vectorized code and describes the

first compiler-enabled transformation that applies ALC as a compiler optimiza-

tion pass. The experimental results show that compiler-generated ALC code

outperforms auto-vectorized code, produced by state-of-the-art compilers, by

up to 79%.
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Preface

An early version of the content in Chapter 2-5 of this thesis was submitted

as R. Paktinatkeleshteri, J. P. L. De Carvalho, E. Amiri and J. N. Amaral

”Efficient Auto-Vectorization for Control-flow Dependent Loops through Data

Permutation” to CASCON 2023. The original idea of ALC was proposed by

Praharenka et al . My role was to develop ALC as a compiler pass to apply it

automatically to programs, to evaluate its performance on real hardware, and

to propose transformations that were necessary in order for ALC to deliver

performance in actual hardware. J. P. L. Carvalho made valuable contributions

by offering recommendations in technical discussions and guiding the direction

of the project. E. Amiri contributed by providing essential infrastructure

support and engaging in technical discussions. J.N. Amaral supervised all

aspects of the project, guiding the experimental methodology and enhancing

the resulting manuscript.

This thesis extends the submitted paper with an in-depth discussion of

ALC and the improvements proposed in this work (Section 3.3 and Section 3.4).

Moreover, the evaluation in this thesis provides evidence of the broad appli-

cability of ALC, which was not part of the paper submitted to CASCON

2023.
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Chapter 1

Introduction

Compilers have been successful in performing auto-vectorization for exploiting

data-parallelism using Single-Instruction Multiple-Data (SIMD) instructions for

decades [11], [13], [18], [22]. However, control-flow divergence in loops, found

in scientific and high-performance applications, can hinder or stop compilers

from generating SIMD instructions [1], [15].

Compilers address this issue by using predicated instructions that have an

extra operand, a predicate register or predicate, that holds the value of the

condition that needs to be true for the instruction to commit [1], [9], [15], [19],

[20]. When a predicate is false, the corresponding data element is inactive with

respect to predicate instructions. Vector predicates are bit vectors, where each

lane of the predicate vectors indicates if the corresponding lane in the associated

data vector registers is active. An entire basic block may be guarded by the

same predicate register. Although control-flow linearization (CFL) enables

vectorization, the linearized code executes computations on vector registers

with inactive lanes, wasting computational resources.

Some techniques that address CFL limitations in vectorized code require the

predicate vector to be dynamically uniform: all lanes for a given vector operation

must be either active or inactive [12], [14]. With the emergence of modern vector

extensions that provide longer vector registers such as Intel’s AVX512 and ARM

SVE, the great interest in utilizing SIMD instructions and leveraging its full

capabilities has returned to both industry and academia. These architectures

expand the processor’s vector units to perform parallel operations on a much
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larger set of data, resulting in higher degrees of parallelism. Although it will

allow the processor to process more data simultaneously, dynamic uniformity

becomes less likely to occur. Thus, a naive use of control-flow linearization and

other proposed techniques that rely on the uniformity of the vectors will face

considerable performance degradation.

Praharenka et al . proposed Active-lane Consolidation (ALC) to address

these issues [17]. The idea of ALC is to form uniform vectors dynamically

by merging active lanes from different iterations. ARM SVE offers a set

of specific predicated vector instructions that efficiently move data between

vector and predicate registers. Wyatt et al . utilized these instructions in their

proposed approach to effectively form uniform vectors by moving data between

vector lanes. However, the seminal presentation of ALC only evaluated it in

a simulation environment using hand-modified programs, as no commercial

hardware supporting SVE was available at the time.

This work presents the first evaluation of ALC on hardware — this evaluation

is performed in the Fujitsu A64FX processor, the first processor to implement

ARMv8.2-A SVE instruction — and the first automated code generation for

ALC in the LLVM open-source compiler.

Our evaluations reveal that the assumptions made in the original ALC

design about the latency of gather and scatter instructions are far from the

actual latency that happens in real hardware. In practice, these instructions

introduce a significant overhead that outweighs the benefits that come from

executing non-predicated uniform code. Thus, the work also presents a re-

design of ALC that leads to performance improvements over LLVM’s existing

vectorization technique for some cases.

Moreover, we show that when ALC is applied to the loops that contain

only a single control-flow-divergent path (e.g. single if statement) there are

fewer opportunities for improvements and the original design of ALC would

fail to generate efficient code. As a result, we propose a specialized version of

ALC to benefit from both ALC and if-conversion techniques.

As such, the main contributions of this thesis are:
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• The first in-depth performance analysis of different implementations

of ALC executing in a processor that implements SVE that reveals

limitations in the original ALC design (Chapter 3);

• A design improvement to ALC that uses data-permutation instructions

instead of gather instructions and leads to the generation of code that is

up to 4× faster than the original design ( Section 3.3);

• The first automated generation of ALC code via a compiler transformation

that generates code that is up to 79% faster than if-converted code

produced by ARMClang, a production-ready compiler (Chapter 4);

• An ALC code-generation algorithm, specialized for the case where there is

only a single control-flow-divergent path in the target loop, that combines

the best of ALC and if-conversion (Section 3.4 ); and

• A discussion of remaining challenges in the path toward applying ALC

to broader loop patterns (Section 5.7).

The rest of the thesis is organized as follows: Chapter 2 provides backgrounds

on vectorization and predication mechanism, Chapter 3 explains Active-Lane-

Consolidation as proposed by Praharenka et al ., demonstrates the overhead of

gather/scatter operations and presents Data Permutation as a technique to

eliminate gather instructions. The chapter also presents a novel approach to

combine ALC and if-conversion for a specific case. Chapter 4 explains in detail

how ALC and Data Permutation are implemented and finally Chapter 5 assesses

Data Permutation performance and applicability on a set of micro-benchmarks

and TSVC benchmark suite.
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Chapter 2

Background

Single-Instruction Multiple-Data (SIMD) parallelism is available on mod-

ern processors through vector units. The vector instructions executed in these

units encode operations to be performed on vector registers. Each data item in

a vector register occupies a vector lane, or lane. The length of vector (VL) is

the number of bits in a vector register, while the number of data items in a vec-

tor register is the vector factor (VF). Traditionally, VL was a constant known

at compilation time, however novel Instruction-Set Architecture (ISAs)

have vector-length agnostic vector instructions where the VL is not known at

compilation time — and can even be changed at runtime by the hypervisor.

An example of such a design is the ARM Scalable Vector Extensions (SVE)

available on ARM v8.3 & v9 processors and Fujitsu’s A64FX1.

2.1 Predication

Modern processors use predication as a means to convert control-flow depen-

dence into data dependence. A predicated instruction is an instruction guarded

by a one-bit predicate which determines whether it should be committed or

not.

Vector units may also have predicate vectors, which are bit-vector registers

where each bit indicates if a corresponding lane of the vector register is active.

Instructions that accept predicate registers are known as predicated instructions,

and they only operate on active lanes — inactive lanes are left unchanged.

1At the time of writing, A64FX is the only available processor that supports SVE.
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Predicated instructions can be used to enable the vectorization of loops that

contain control-flow instructions.

1 for (i = 0; i < n; i++) {

2 if (a[i] < b[i]) {

3 a[i] = b[i] * c[i];

4 } else{

5 b[i] = a[i] + c[i];

6 }

7 }

Listing 2.1: A control-flow divergent loop.

2.2 If-Conversion

In a loop with divergent control flow, different iterations of the loop may

execute instructions from different paths in the loop’s Control-Flow Graph

(CFG). Divergent control flow may be an obstacle to the vectorization of a

loop. Common programming-language constructs, such as if-then-else and

switch-case statements may introduce divergence. Modern compilers are

able to vectorize some control-flow divergent loops after applying a Control-

Flow Linearization (CFL) technique known as If-Conversion. If-Conversion

transforms control-flow dependencies into data dependencies [1], [15]. For

instance, consider the for-loop in Listing 2.1 and its CFG in Figure 2.1a. The

statements on Line 3 and Line 5 are control-flow dependent on the condition in

Line 2. CFL eliminates control flow by first computing a predicate register for

each possible path. Then the instructions on each basic block are guarded with

the predicate registers that correspond to the condition that needs to be true for

that block to be executed. For example, instructions in block B1 are predicated

with a predicate register pt, where pt = (a[i] < b[i]). B2 are predicated with
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mask vector, half of the computation power is always lost due to predication

(gray elements). This is particularly true when the number of instructions in

both the then and the else blocks is approximately the same, which is often

the case. Furthermore, the problem is even further intensified when we face

unbalanced conditions, where we have to execute one of the two paths more

than the other one. In such cases, the effect of predication could become more

significant, as we might end up losing more computation power due to a large

number of inactive lanes.

2.3 Branch-On-Superword-Condition-Codes

Generating Branch-On-Superword-Condition-Codes (BOSCCs) is a com-

mon technique to avoid executing instructions from paths where vector lanes

would be inactive [9], [19], [20]. BOSCCs are instructions, or a sequence of

instructions, that dynamically checks the uniformity of predicate registers. In a

uniform predicate register the condition evaluates to the same value — all true

or all false — for all lanes. In such cases, only the instructions corresponding

uniform path, true path or false path, need to be executed. For example, after

vectorization, in Figure 2.1b if pt is a uniform true vector, then only instructions

in B1 need to be executed and instructions in B2 can be skipped. Figure 2.1c

shows the CFG in Figure 2.1b after BOSCCs are inserted by the compiler. As

Figure 2.1c shows, an all true guard condition is generated to check if pt is a

uniform true vector. In such a case, the control flow is directed to a uniform

block uB1, that only contains instructions from block B1. When pt is a uniform

true vector, the instructions in block B2 can be skipped because pf = ¬pt, and

thus all lanes would be inactive.

2.4 Active-Lane-Consolidation

The insertion of BOSCCs can improve SIMD utilization and reduce the number

of wasted cycles by avoiding executing vector instructions with all lanes inactive.

However, the benefits of BOSCCs can only be observed if uniform vectors occur

frequently. If uniformity is rare, then the use of BOSCCs does not increase
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SIMD utilization [17]. Moreover, the likelihood of uniformity decreases with

increased VL, thus uniform predicate vectors are less likely to be found for

architecture with long vectors — e.g. AVX512 and Fujitsu A64Fx. Active-

Lane Consolidation (ACL) is an algorithm proposed to increase SIMD

utilization even in the presence of infrequent uniform vectors and architectures

with long vectors [17]. At the core, ACL is a permutation algorithm that creates

uniform vectors by merging active lanes from two, or more, non-uniform vectors

into a merged vector. Permutation enables ALC to only execute non-predicated

blocks with the constructed uniform vector and effectively avoid executing

linearized code.

Praharenka et al . propose ALC as an algorithm and manually apply it

to each evaluated benchmark. This work presents the first compiler-only

optimization pass that automatically applies ALC to a loop that contains

divergent control flow. Furthermore, during the seminal work of Praharenka

et al . they had no access to a processor that implements SVE. Therefore,

all their experimental results are based on simulations conducted with the

ARM Instruction Emulator (ArmIE) and Praharenka et al .’s work only shows

improvements in terms of the reduction in the number of executed instructions.

Our performance study on a hardware implementation of SVE revealed that

some of the estimates for the latency of instructions used by Praharenka et

al . were significantly off. This work shows that accounting for the actual

instruction latencies in a hardware implementation of ALC requires a redesign

of aspects of ALC. To the best of our knowledge, this thesis is the first to show

ALC’s performance on real hardware. Moreover, it identified limitations on

the original algorithm that will be discussed in the following chapter.
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Chapter 3

Efficient Active-Lane
Consolidation

This chapter presents an ALC design that addresses key limitations in Pra-

harenka et al .’s initial design[17]. After a review of the original ALC design

(Section 3.1), Section 3.2 presents evidence that the higher-than-anticipated cost

of the gather/scatter instructions renders Praharenka et al .’s ALC ineffective.

The approach proposed in this work to eliminate gather/scatter instructions is

presented in Section 3.3. Lastly, Section 3.4 describes a novel algorithm that

extracts the best of both ALC and control-flow linearization in a common case

when loops have only a single control-flow-divergent path (CFDP).

3.1 Original ALC Design

Praharenka et al . propose two variations of ALC: Unroll-ALC and Iterative-

ALC. In both versions, ALC is applied after if-conversion. In the Unroll-ALC,

the if-converted and vectorized loop is unrolled once and two index vectors are

formed, one for each iteration of the loop before unrolling. Each index vector

is initialized such that each lane contains the value of the loop’s induction

variable of each scalar iteration.

At the heart of ALC is the Permutation algorithm which tries to create a

uniform vector with minimal overhead from two vectors and their corresponding

predicates. Figure 3.1 shows how active elements of two index vectors are

merged together to form a uniform vector.
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gather-load instruction loads data from (potentially) non-consecutive addresses

calculated by adding a base-pointer operand to each index in the index-vector

operand.

Similarly, any write-back to memory needs to be performed via scatter-store

instructions, which also can write into non-consecutive memory addresses. By

design, the use of gather/scatter instructions is unavoidable in Praharenka

et al .’s ALC. In Section 3.2, experimental results show that gather/scatter

instructions can render ALC ineffective on real hardware with SVE.

Listing 3.1 shows the loop in Listing 2.1 after a version of iterative ALC

is applied to it. The two paths inside the loop are consolidated. Once the

permutation is done in each iteration of the loop. there will always be either a

uniform active vector (vM) or a uniform inactive vector (vR). As a result, one

of then or else blocks will be executed in each iteration with no predication.

As discussed, every load and store operation inside then and else blocks is

done through gather and scatter instructions.

12



1 /*Initialization*/

2 idxM = index(0, VL);

3 a_0 = vld(a[0]);

4 b_0 = vld(b[0]);

5 pred_M = a_0 < b_0;

6 /*VL is Vector Length and N

7 is the total number of loop iterations*/

8 for (int i = VL; i < N; i += VL) {

9 idxR = index(i, VL);

10 a_i = vld(a[i]);

11 b_i = vld(b[i]);

12 pred_R = a_i < b_i;

13 vM, vR, cond_M, cond_R =

14 Permute(idx_M, idx_R, pred_M, pred_R);

15 if(cntp(cond_M) == VL){

16 /* execute if block without predication */

17 b_v = gather(&b, vM);

18 c_v = gather(&c, vM);

19 mul_v = b_v * c_v;

20 scatter(&a, vM, mul_v);

21 idxM = vR;

22 pred_M = cond_R;

23 }else{

24 /* execute else block without predication */

25 a_v = gather(&a, remaining_vec);

26 c_v = gather(&c, remaining_vec);

27 add_v = a_v + c_v;

28 scatter(&b, remaining_vec, add_v);

29 idxM = vM;

30 pred_M = cond_M;

31 }

32 }

33 }

Listing 3.1: ALC applied to the loop in Listing 2.1.
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3.2 How Gather/Scatter Instructions Hurt ALC

1 for (int i = 0; i < n; i++) {

2 if (cond[i]) {

3 b[i] = a[i];

4 }

5 }

Listing 3.2: Simple conditional copy loop.

In order to understand the prohibitive overhead of gather/scatter instruc-

tions in ALC’s performance, consider the simple loop in Listing 3.2. The

loop conditionally copies elements from array a to array b, both are 32-bit

integers. An element a[i] is copied to b[i] if, and only if, the value in cond[i] is

true. Table 3.1 shows performance metrics for different versions of the loop

in Listing 3.2. For the results in Table 3.1, the cond array was initialized

such that every other element has a true value (50% sparsity). The results

were obtained following the methodology in Section 5.2. Both ALC and ALC+DP

versions are generated by the compiler pass described in Chapter 4.

Unsurprisingly, all vectorized versions of the loop — if-conv, ALC, ALC+DP—

execute fewer instructions than the Scalar code. Each vector instruction in

the loop operates on 16 32-bit integers at a time (V L = 512 bits). However,

ALC is more than 66% slower than Scalar, even while it executes 14× fewer

instructions, because ALC causes 10× more stalls than the Scalar code. More

than half of the stalls are due to waiting for data from memory. The main

culprits are the gather/scatter instructions because they require multiple load-

/store ports instead of a single port as regular vector loads [4]. In addition, in

the current ARM vector-unit design, the address calculations for gather/scatter

instructions are executed in the floating-point vector units [4], which have

higher latency than the integer operations used for regular vector loads/stores.

Figure 3.2 depicts micro-operations done to execute a single gather load
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Table 3.1: Performance metrics when executing different versions of the loop
in Listing 3.2: number of cycles to execute the loop (Total Cycles), number
of executed instructions (Num. Exec. Instructions), cycles with no instruc-
tion completed (Stalled Cycles), and cycles stalled due to memory operations
(Memory Ops. Stalled Cycles). Versions of the code: non-vectorized (Scalar),
if-converted & vectorized (if-conv), Iterative-ALC with gather/scatter in-
structions (ALC), and Iterative-ALC with data permutation and without gather
instructions (ALC+DP).

Version/Metric

Loop
Cycles Num. Exec.

Instructions

Stalled
Cycles

Memory Ops.
Stalled Cycles

Scalar 132M 224M 21M 1.6M

if-conv 14M 14M 9M 1.2M

ALC 220M 16M 210M 110M

ALC+DP 58M 63M 38M 1.3M

instruction. The processor first divides the array’s memory space into equally

sized chunks that fit into a cache line. Chunks that contain elements that are

the target of the gather instruction are then moved to the cache. This requires

calculating the memory address of each single element to be accessed. Address

calculations are done in floating point operation pipeline [4] which increases

the latency. Once a cache line is brought into the cache, desired elements are

extracted and moved to the result vector.

All these operations are done for executing a single gather load instruc-

tion. There are two sources of performance degradation upon executing these

operations: 1. latency of accessing different locations in the memory and bring-

ing them into the cache and 2. keeping floating point unit busy for address

calculations.

The significant number of stalled cycles shown in Table 3.1 is a direct

result of the first issue. Moreover, processors typically try to execute other

non-memory-access instructions that do not depend on the result of the load

instruction to avoid stalls while waiting for the memory operations to finish.

However, for the gather load instruction, keeping floating point unit busy

due to address calculations would disable the processor to do so, resulting in
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we iterate the vector loop, we find the indices we need to load. This can be

seen in the figure where in each iteration, Desired Indices is filled gradually.

1 Initially, the first four elements are loaded into L1 cache and 2 then

transferred to a vector register, knowing that only the first element is desired.

3 , 4 Next iteration loads the next four elements into another vector register,

which now contains two desired elements. 5 These two loaded vectors are then

permuted. The resulting register has three elements of those we are looking

for. 5 , 6 , 7 The third iteration loads a vector that none of whose elements

are desired so after the permutation, 8 we obtain the same resulting vector.

Finally, 9 , 10 the last four elements are loaded and undergo permutation, 11

resulting in a vector filled with desired elements.

Replacing gather loads with data permutation could improve performance

in several ways: (i) All load instructions now load from consecutive memory

addresses, thus removing the need to compute an address for each element and

allowing the processor to execute other instructions while waiting for the data

to be transferred from memory because the floating-point unit is no longer

busy with address computations. (ii) The latency of each load is significantly

smaller because it is served from a single cache line. (iii) The processor can

effectively utilize prefetching and take advantage of spatial locality because it

loads from consecutive addresses.

Figure 3.4 contrasts the differences in the code generated by the compiler

from the example code in Listing 2.1. In Figure 3.4b the data for both

consolidated paths are loaded with gather instructions by using the permuted

index vector vM. In contrast, ALC+DP eliminates gather instructions by also

permuting the data vectors (v1, v2, and v3), as Lines 6-8 in Figure 3.4c

shows. As a result, ALC+DP benefits from the same spatial locality and data

prefetching as the if-converted code (Figure 3.4a). When vM is not uniformly

true, then it is guaranteed that vR is uniformly false because there are only two

CFDPs. This observation allows the compiler to generate an optimized version

of Iterative-ALC where loads for the first iteration of the loop are peeled. In

Figure 3.4b and Figure 3.4c vM is initialized with the index vector of from

the peeled iteration. Similarly, vectors v1M, v2M, and v3M are initialized with

18



1 vload v1, r1 −−−−−>>

2 vload v2, r2 −−−−−>>

3 vload v3, r3 −−−−−>>

4 vcmp lt pT, v1, v2 −−>>

5 vcmp ge pF, v1, v2

6
7
8
9

10
11
12
13
14
15
16
17
18
19 vadd v1, v1, v3, pF

20 vstore v1, r1, pF

21
22
23
24
25 vmul v2, v2, v3, pT

26 vstore v2, r1, pT

27 br LATCH

(a) if-conv.

1 // −−−−−−−−−−−−−−−>>

2 // −−−−−−−−−−−−−−−>>

3 // −−−−−−−−−−−−−−−>>

4 // −−−−−−−−−−−−−−−>>

5
6
7
8
9 # Index vector permutation.

10 permute vI, vM, vR, pT, pF −>

11 if all true vM, U THEN −−>>

12 # if vM is not uniform true,

13 # then vR is uniform false.

14 swap vM, vR −−−−−−−>>

15 U ELSE:

16 gather v1, r1, vM

17 gather v3, r3, vM

18 vadd v1, v1, v3

19 scatter v1, r2, vM −−−−−−>>

20 br LATCH

21 U THEN:

22 gather v1, r1, vM

23 gather v3, r3, vM

24 vmul v2, v2, v3

25 scatter v2, r1, vM −−−−−−>>

26 br LATCH

(b) ALC.

1 //

2 //

3 //

4 //

5 # Data vector permutation.

6 permute v1, v1M, v1R, pT, pF

7 permute v2, v2M, v2R, pT, pF

8 permute v3, v3M, v3R, pT, pF

9 //

10 //

11 //

12 //

13 //

14 //

15 U ELSE:

16 # No need to gather a or

17 # c as data is permuted.

18 vadd v1, v1R, v3R

19 //

20 br LATCH

21 U THEN:

22 # No need to gather b or

23 # c as data is permuted.

24 vmul v2, v2M, v3M

25 //

26 br LATCH

(c) ALC+DP.

Figure 3.4: Main loop blocks generated when compiling Listing 2.1 vectorization
approach. In all three versions, r1, r2, and r3 are pointer registers, advanced
on each iteration in the loop’s LATCH block (not shown), to array a, b, and
c respectively. In both (b) and (c), vI is the index vector, vM is the merge
vector, and vR is the remainder vector. Registers vXM and vXR are the merge
and remainder vectors after permutation of vector register X. Instructions that
are the same on different versions of the code are omitted — indicated with
“//”.
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the data loaded from a, b, and c as in the first iteration of the if-converted

& vectorized loop (Figure 3.4a). With the above optimization, most loop

iterations operate with fully uniform vectors leading to better utilization of

the SIMD units.

Table 3.1 shows that eliminating gather instructions via data permutation

(ALC+DP) significantly improves the performance of ALC. In particular, ALC+DP

has over 5× less stalled cycles and executes in 3.8× fewer cycles than ALC, even

though it executes almost 4× more instructions. This result indicates that

reducing the number of executed instructions does not necessarily translate into

better performance. Moreover, ALC+DP has over 84× fewer stalls due to waiting

for memory operations, as Table 3.1 shows. Memory stalls are significantly

reduced because data vectors are loaded from consecutive memory locations,

which benefit from the higher spatial locality and more accurate prefetching.

On the other hand, gather instructions suffer from higher latencies in the

address calculation and poor spatial locality of data elements. Therefore, the

results in Table 3.1 indicate that trading off the execution of more instructions

with avoiding gather instructions pays off. Data permutation adds vector-vector

instructions, which have significantly lower latency than sophisticated memory

instructions, such as gather/scatter instructions [4].

Table 3.1 shows that ALC+DP does not perform better than if-conv for the

code in Listing 3.2. There is little room for ALC to save cycles by not executing

vector instructions with inactive lanes because the simple loop does not perform

enough work. ALC can only outperform if-conversion and vectorization on

loops that have a sufficient number of instructions to hide the permutation

overhead. In addition, a greater number of instructions on CFDPs translates

to more saved cycles, and fewer executed instructions, for loops with mutually

exclusive paths.

3.4 Single Control-Flow-Dependent Path Case

Loops with a single CFDP, as the example in Listing 3.2, are a special case

where the ALC design can be modified to extract the best of both if-conversion
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than VF — an ALC path is executed where vectors are permuted and the

consolidated-uniform path is executed when the predicate vector is uniform.

Figure 3.5 shows a diagram which illustrates the approach.

Another benefit of combining ALC with if-conversion is a considerable

reduction in permutation overhead. In the original algorithm for permutation,

we needed to compute two vectors vM and vR and their corresponding predicate

vectors. However, in this case vR will be fully inactive because the vector

permutation only happens when fewer than VF lanes are active. Therefore,

there is no need for the compiler to emit instructions to produce vR and its

predicate vector.

Figure 3.6 presents the new permutation algorithm. The inputs to the

algorithm are two vectors with their corresponding predicate vector, where we

know that the total number of active elements in both vectors are less than

the VF. After Permutation, there will be a Merge vector (vM) containing the

consolidated active elements and its corresponding predicate vector (pM). The

new Permutation algorithm results in reduction in instruction overhead of the

permutation logic by 50%.
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1 # v0: first index vector

2 # v1: second index vector

3 # p0: first predicate vector

4 # p1: second predicate vector

5 # vM: resulting index vector

6 # pM: resulting predicate vector

7

8

9 compact v2, v0, p0

10 compact v3, v1, p1

11 cntp x0, p1, p1

12 cntp x1, p2, p2

13 add x2, x0, x1

14 whilelt p3, wzr, x0

15 splice vM, v2, v3, p3

16 whilelt pM, wzr, x2

Figure 3.6: Permutation algorithm for Single Control-Flow-Dependent Path
case using SVE vector instructions.
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Chapter 4

ALC as a Compiler
Transformation

Like most optimizations in modern compilers, the ALC transformation is

designed with two components: (i) an analysis that identifies candidate loops

to apply ALC based on loop features, such as the number of instructions on

each CFDP and the CFG complexity (Section 4.1); and (ii) a transformation

that applies active-lane consolidation to candidate loops that have enough

instructions in each CFDP and low memory-to-compute instruction ratio to

amortize vector-permutation costs (Section 4.2).

4.1 ALC Analysis

The main goals of the analysis are two-fold: 1. to identify candidate loops

to apply ALC by checking for the legality of applying ALC; and 2. decide

if a given candidate would benefit from the ALC transformation. It is legal

to apply ALC to a loop L with control-flow divergence if L does not have

loop-carried dependencies and only contains calls to vectorizable functions

without side effects (e.g. square-root and sine & cosine). Similar to other

forms of vectorization such as loop vectorization and SLP vectorization, ALC

cannot be applied to loops with loop-carried dependencies because instructions

from different iterations that depend on each other, usually, cannot execute

in parallel in a SIMD fashion. The ALC analysis relies on existing data-

dependency analysis available on modern compilers to identify loops without
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loop-carried dependencies. A data-dependency analysis may return a may

depend answer because of unresolved alias relationships and, in that case, the

compiler must conservatively not apply the transformation [7], [10].

The cost portion of the profitability analysis for ALC uses the estimated

cost of executing the new instructions required to perform index and data-

vector permutations for ALC minus the instructions that are eliminated by

ALC. The estimated execution latency of instructions is generally available in a

modern compiler because the same information is used in other transformations,

such as the creation of an efficient instruction schedule. The benefit of ALC

results from the increased utilization of SIMD units due to the consolidation of

loop iterations with the same predicate on the same vector. Thus the benefit

depends on the number of instructions and on the latency of the instructions

executed in each of the control-flow paths in the loop. The distribution of true

and false predicates in the iterations of the loop also affects the benefit of ALC.

However, this information can usually only be obtained from profiling, thus it

is not used in the profitability analysis for static compilation.

Empirically, and as the results in Chapter 5 support, the following factors

are key when making the decision of whether or not to apply ALC: 1. Number

of instructions on each CFDP; 2. Number of store operations in the loop (See

Section 5.4); 3. Complexity of Loop’s CFG (See Section 5.5). ALC should

be applied to loops that have enough instructions in each CFDP so that the

overhead of index and data-vector permutation can be amortized. As the results

in Section 3.2 indicate, gather/scatter instructions can significantly hurt ALC’s

performance. Although gather instructions can be eliminated through data

permutation, it is not possible to avoid all scatter instructions. Therefore, a

loop that has a high ratio of memory-access instructions to compute instructions

is not likely to benefit from ALC. In the current prototype, a conservative

approach is used due to the absence of accurate branch probability information:

ALC is only applied to loops with two, or fewer, CFDPs. Future development

may seek to integrate branch probability information in the profitability analysis

of ALC or may explore a more aggressive application of ALC even in the absence

of such information. If the compiler does not know which path is more likely
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to be taken, then active-lane consolidation needs to be applied for each CFDP.

Such unbounded application of ALC is not likely to achieve better performance

than if-converted code because of the permutation costs for all paths. Except

for the branch probabilities, all other information can be obtained statically by

a compiler, avoiding any need for profiling, in contrast to Wyatt et al .’s work

[17].

In some loops with more than two CFDPs, it may be legal to apply loop

fission to generate multiple loops in such a way that at least some of the

resulting loops have two or fewer CFDPs. The condition to apply loop fission

to a loop is that no loop-independent dependency may cross the point where

the loop is split. Profitability analysis for loop fission has to take into account

that after fission some loops may exhibit worse cache locality, for instance when

different paths use/load the same data. The study of combining loop fission

with ALC is not investigated in this thesis.

4.2 ALC Transformation

The actual loop transformation to perform ALC is quite straightforward. First,

scalar instructions that compute the conditions that control each CFDP are

replaced with their vector equivalents, forming predicate vectors. After that, if

the loop being transformed has only a single CFDP, then the transformation

produces the code that chooses between the if-converted path and ALC path,

as discussed in Section 3.4. For loops with two CFDPs, the code produced

chooses between one of the two consolidated uniform paths (see Section 3.3).

Then, for each CFDP, a consolidated uniform path is generated by traversing

each scalar instruction in the path and generating its vector equivalent. After

that, and only if the loop has a single CFDP, the transformation generates the

if-converted path. For loops with a number of iterations that is not a multiple

of VF, the transformation generates a remainder scalar loop to process the

remaining elements. Loops with fewer than VF elements are left untouched by

the ALC transformation.
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4.3 Implementation in LLVM

A prototype implementation developed in LLVM is used to evaluate both ALC

analysis and transformation passes in this work. LLVM is a de-facto standard

compiler framework widely used by both industry and academia. The ALC

analysis reuses the memory dependency and alias analysis used by LLVM’s loop

vectorized pass to determine if loops are loop-carried dependency free. Both

analysis & transformation are passes in LLVM’s intermediate representation

(IR) level. For now, the transformation pass only generates code for ARM SVE

architecture, and it accomplishes this by using SVE intrinsics available at IR

level in LLVM. However, all architecture-specific intrinsic calls are generated

through an interface that, with minimum effort, can be extended to generate

code for other architectures that also support SVE.
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Chapter 5

Evaluation

This section evaluates ALC as a compiler transformation by applying data

permutation to a set of control-divergent loops and comparing its effectiveness to

previous implementations of ALC and to code generated by existing production

compilers. This evaluation aims to answer the following questions:

1 Can Data Permutation improve ALC performance by reducing memory

stalls?

2 Do scatter instructions impact ALC’s performance?

3 Should ALC be applied on loops with a single CFDP?

The results indicate that data permutation leads to a significant speedup of

up to 79% over if-converted code and outperforms state-of-the-art compiler-

based approaches.

5.1 Setup

The experiments run on a machine equipped with a Fujitsu A64FX locked at

the frequency of 1.8GHz that has access to 32GiB of RAM and runs Rocky

Linux (release 8.4). A64FX is the first processor that implements ARMv8.2-A

SVE instruction and it operates with 512-bit vector registers. The evaluation

micro-benchmarks were developed in-house and are written in the C language.

Each micro-benchmark is designed to be representative of application code

and to ease the identification and measurement of factors that impact the

performance of both if-converted code and ALC-transformed code. The

seminal work of Wyatt et al . predicted the performance of ALC using hand-
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modified versions of applications in the SPEC CPU2017 benchmark suite

running on a functional simulator [21]. Those modifications included removing

control-flow dependent paths that execute I/O operations — a transformation

that cannot be safely implemented in a compiler because it alters the behavior

of the program. This thesis aims to evaluate the automated generation of

ALC code by a compiler transformation pass and thus can only be applied to

programs to which the compiler can safely apply ALC without user intervention.

The micro-benchmarks used in this evaluation are comprehensive and share

characteristics with loops found in the SPEC CPU2017 benchmark Suite. The

limitations and challenges of the current ALC implementation are discussed in

Section 5.7.

The evaluation micro-benchmarks consist of loops that contain either an

if-then-else or a single if statement. Two micro-benchmarks help under-

stand the impact of the factors discussed in Section 4.1: 1. if-then-else

contains a loop that executes N times with two CFDPs in its body. Each

CFDP has: 20 arithmetic, 2 load, and 3 store instructions; 2. if-then also

contains a loop that executes N times but with a single CFDP, which has:

20 arithmetic, 2 load, and 3 store instructions. N is set to five million for all

experiments. Complete source code of ALC’s LLVM IR pass and evaluation

micro-benchmarks is available as part of this thesis ARTIFACT1. All source

code is compiled with Clang/LLVM version 15.0.02 and highest optimization

level enabled (-O3).

5.2 Experimental Methodology

Results presented in the following sections are the average of one hundred

executions of each program. Very little variation was observed between measure-

ments. In most cases, the confidence interval was below 2%. For the memory

stalls and idle cycles, the variations were up to 8% in some cases, but the

difference between bars in the figures are still meaningful. Performance metrics

1e8700cb320f3942eb3dfc9a585587167243a086d
261baf2ffa7071944c00a0642fdb9ff77d9cff0da
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report the success and failure of different transformations.

Among all functions in the benchmark, there are 29 functions that contain

loops with 2 control-flow paths. We evaluate the applicability of our approach

to them. For each function, we try to apply ALC and compare it with 2 state-

of-the-art compilers. We compare against GCC version 13.1.0 and ARMClang

version 22.1. For each compiler, we pass all flags that enable vectorization and

those that enable the compiler to utilize SVE instructions.

Results are summarized in Table 5.1. ALC can be applied to most cases

that commercial compilers can vectorize. For most cases in which all compilers

fail to vectorize — and where it is not possible to apply ALC as well, the

loops contain loop-carried dependencies. While gcc showed the highest level

of efficiency by vectorizing 14 functions out of 29, it failed to vectorize micro-

benchmarks that we used for analyzing the performance of generated codes

in Section 5.1. It was also not able to vectorize some of the masked memory

operations and thus, the whole loop was not vectorized.

There are three functions that both gcc and armclang are able to vectorize

but ALC fails. The reason why ALC is not applied in s124 is because of the loop

induction variable. Although there is a single loop, it contains two different

induction variables, which are both incremented in each iteration of the loop.

Although it is not a problematic case for ALC algorithm to handle, the current

implementation considers that all memory accesses are only dependent on the

canonical induction variable of the loop.
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Function GCC ARMClang ALC+DP

s123 × × ×

s124 ✓ ✓ ×

s161 ✓ × ×

s1161 × × ×

s253 ✓ ✓ ✓

s258 × × ×

s271 ✓ ✓ ✓

s272 ✓ ✓ ✓

s273 ✓ ✓ ✓

s274 ✓ ✓ ✓

s278 ✓ ✓ ×

s2710 × ✓ ✓

s2711 ✓ ✓ ✓

s2712 ✓ ✓ ✓

s314 × × ×

s315 × × ×

s316 × × ×

s318 × × ×

s3110 × × ×

s13110 × × ×

s3111 ✓ × ×

s3113 × × ×

s331 ✓ × ×

s341 × × ×

s342 × × ×

s343 × × ×

s443 ✓ ✓ ×

vif ✓ ✓ ✓

Total Vectorized 14 12 9

Table 5.1: Comparison between ALC and state-of-the-art compilers on their
ability to vectorize functions of TSVC benchmark
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1 for (int i = 0; i < n; i++) {

2 if (...) {

3 b[i] = ....

4 }else{

5 c[i] = ....

6 }

7 ... = b[i] + c[i] * ....

8 }

Listing 5.1: Simpilifed version of the loop in s278 function

The loop in s278 is a more challenging case for ALC. Listing 5.1 shows the

dependency that exists in the loop on arrays b and c: in each iteration, there

is a write to either b or c array (lines 3 and 5), but then there is always a

read from each one (line 7). Thus, whenever execution reaches line 7, it must

have updated the value that is stored in the corresponding index for array a or

b. After vectorization by If-Conversion, this pattern is kept and the order of

the instructions does not change. However, ALC does not guarantee that all

stores to b or c are completed before reaching line 7 because ALC only executes

the then or else blocks after it forms a fully uniform vector. Based on the

algorithm, in each iteration only one of these two blocks will be executed

and one of those two arrays will not be updated by the time that the load

instructions of line 7 get executed.
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1 for (int i = 0, j = 0; i < n; i++) {

2 if (...) {

3 a[i] += b[i] * c[i];

4 }else{

5 a[i] += b[i] * b[i];

6 }

7 }

Listing 5.2: Simpilifed version of the loop in s443 function

Clang uses sink optimization to avoid copies of similar instructions on paths

with a common post-dominator. In the loop with an if-then-else statement in

Listing 5.2 each of those two blocks contains a write instruction to array a.

The loop is optimized by calculating values (a[i]+ b[i] * c[i]) and (a[i] +

b[i] * b[i]) in their corresponding blocks, but the actual store to a happens

after the else block, using a PHI node to determine the right value.

A PHI node is a special function in the Static Single Assignment represen-

tation [3] and is used to determine the value of a variable that is computed

in two or more divergent control flow paths at the point where those paths

are converged.ALC cannot be applied in this case because the current imple-

mentation relies on PHI nodes to identify divergent values to generate the

permutation logic. A future implementation could address the problem by

undoing the sink of stores or by having a more robust mechanism to distinguish

data from control divergence.
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1 for (int i = 0, j = 0; i < n; i++) {

2 if (...) {

3 c[i+1] = ....

4 }else{

5 .... = c[i] + ...

6 }

7 }

Listing 5.3: Loop-carried dependency in s161 function

s161 is a very interesting case. Only gcc is able to vectorize the code and

both armclang and ALC fail. The reason is loop-carried dependency. Listing 5.3

shows a simplified version of the code. As demonstrated, there is a write-after-

read dependency on array c. In the then block, c[i+1] is being written to,

and in the else block c[i] it is being read. When vectorizing this kind of

dependency, if we can make sure that write operations are done before read

operations, vectorization will be legal.

In this case, the write and read operations are placed in two different blocks,

and since conditions are mutually exclusive, they can be safely reordered during

vectorization and as a result, vectorization is allowed.

gcc detected the legality of vectorizing s161 under this condition however,

armclang failed to find the opportunity. ALC cannot be applied in this case

because, as discussed before, it cannot guarantee the order in which the then

and the else blocks are executed.

s2710 is the case where armclang and ALC outperform gcc. While the

function is vectorized by armclang and ALC is also applied, gcc fails to vectorize

the code due to the presence of complex control flow inside the loop. The

control flow consists of two-level nested if-then-else statements: there is another

if-then-else inside both then and else blocks. ARMClang finds that the loop can

be broken into two simpler loops each having only one if-then-else (a common
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compiler optimization called loop fission) and by doing so, it can vectorize both

loops. Having these two simpler loops, ALC is also able to transform both of

them but gcc fails to find the opportunity to simplify and vectorize the code.

The loops in s314, s315, s316, s318, s3110, s13110, s311, s3113

functions contain code structures that require employing a Reduction tech-

nique for vectorization. Examples of reduction operations include: computing

the sum, the product, the maximum value, or the minimum value of all the

elements of a loop. In all these cases there is a scalar value that creates a loop-

carried dependence in the scalar code. This dependence prevents vectorization.

However, using the reduction technique, the compiler is able to vectorize such

loops. As shown in Table 5.1 gcc, armclang and ALC fail on most reduction

cases. In fact, only gcc is able to vectorize s311 which is a simple summation

of elements of an array.

331 contains a search loop where the goal is to find the index of the last

element which is smaller than zero. gcc vectorizes the code using techniques

similar to reduction but armclang and ALC are not able to transform the code.

In summary, although gcc vectorizes a few more functions, both compilers

perform close to each other. ALC can be applied in the majority of cases where

vectorization is allowed and possible, which indicates that there are many use

cases where different programs can benefit from it.

5.7 Conditionally Incremented Array Indexes

The ALC analysis pass found many loops in existing benchmarks (e.g. SPEC

CPU 2017 [21] and MiBench [5]) that could be legally transformed by ALC

transformation. However, the cost/benefit analysis indicated that those loops

would not benefit from ALC because they contained not enough instructions

to amortize the cost of index and data permutation (see Section 4.1).

Another challenge discovered when trying to apply ALC to existing bench-

marks that contain loops with conditional statements, such as the ones in

MiBench [5], is related to efficient mappings of conditional computations to

vector code.
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1 for (int i = 0, j = 0; i < n; i++) {

2 if (cond[i]) {

3 b[i] = a[j];

4 j++;

5 }

6 }

Listing 5.4: Conditional increment of array indexing variable.

For example, Listing 5.4 shows a simplified example of a loop pattern that

is widely found in the jpeg benchmark in MiBench. The loop index into array

a with variable j, which is conditionally incremented when (Line 4) cond[i]

is true (Line 2). To the best of our knowledge, there is no single instruction

in modern vector ISAs that can efficiently compute an index vector with the

values of j in this case. Therefore, multiple instructions are required, which

might make it unprofitable to vectorize such loops. Neither Clang, GCC, nor

ARMClang vectorized the loops in SPEC CPU 2017 with the pattern shown

in Listing 5.4. These non-trivially vectorizable patterns led this work to not

find opportunities to apply ALC as a compiler-enabled transformation to these

benchmark suites. If future versions of vector ISAs include instructions to create

conditionally-strided index vectors then more loops could become candidates

for if-conversion and ALC. A potential workaround would be to compute the

values of j on a separate loop, storing such values in a temporary array, and

then using the computed array to index a. However, hoisting the computation

might not always be possible because of intra-iteration dependencies.
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Chapter 6

Related Work

Vectorization is widely employed by compilers to generate optimized code by

leveraging SIMD instructions. Although the idea of utilizing SIMD instructions

can be applied to a wide range of applications and workloads, compilers face

various challenges when it comes to implementing vectorization. Maleki et

al . investigated the ability of compilers to vectorize different code patterns

[13]. Their work demonstrates that there are many cases where compilers fail

to apply vectorization only due to the lack of appropriate techniques. They

manually transform those cases, illustrating that the vectorization technique

itself is broadly applicable However, further developments in compilers are still

required to exploit the full capabilities of vectorization.

Pohl et al . investigated these challenges, focusing on ARM NEON vector

extension and conducting a comparison with Intel AVX2 [16]. Their findings

indicated that a significant barrier for compilers in vectorizing a code is the

presence of Control-Flow-Divergence inside the loop. They also indicate that

ISAs have significant impacts on the effectiveness of vectorization. Additionally,

they suggested several techniques to address the challenges that compilers

encounter while vectorizing for an ARM-NEON target however, ARM SVE, the

new vector extension for ARM targets, eliminates the need for such techniques as

it offers various new vector instructions that can be effectively used by compilers

to tackle with the challenges they encounter while doing vectorization.

The seminal work by Allen et al . introduced the idea of converting control-

flow dependencies into data dependencies [1]. Allen et al .’s technique, commonly
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known as control-flow linearization or if-conversion [15], was introduced in

the context of parallelizing FORTRAN compilers. Such compilers excelled in

exploiting data-parallel loops by identifying data dependencies.

if-conversion is used in SLP vectorization as well as loop vectorization.

SLP is a vectorization technique that tries to find the same operations in

a basic block and replace them with an SIMD instruction. Shin et al . [9]

studied the impact of control flow divergence on SLP vectorization and showed

that if-conversion can be employed to tackle with the problem. Chen et al .

[2] took a step further by introducing their own intermediate representation,

Predicated SSA, which converts all control dependencies into data dependency.

Chen et al .’s work exposes more opportunities for SLP vectorization, however

control-flow divergence problems are not addressed. Although if-conversion

can increase the opportunities for vectorization, it can significantly waste

computational resources. if-converted code keeps units busy with computations

on vectors with inactive lanes, which correspond to non-taken paths in the

original program’s CFG. As the results in this work show, ALC outperforms

if-converted code because it maximizes SIMD utilization by constructing

uniform vectors and avoiding the execution of linearized code.

Due to the significant computation overhead associated with if-conversion,

many attempts have been made to minimize the need for predication. To

address this, Sun et al . proposed IF-Select transformation [23] to reshape

the loop control flow in such a way that minimum if-statements remains in

the loop and if-conversion is only applied to those cases. Although they

successfully move loop-independent if statements outside the loop body, they

still require applying if-conversion to loop-dependent conditional statement.

In contrast, ALC can effectively handle loop-dependent control flow divergence

by rearranging vector elements and forming uniform vectors, eliminating the

need for predication.

Branch-on-superword-condition-codes (BOSCCs) is a common approach

that avoids executing vector instructions with inactive lanes [19]. Originally

introduced for multimedia extensions, BOSCCs are instructions, or sequences

of instructions, that guard the execution of uniform paths. Such paths only
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contain instructions that would be executed when all lanes are active (or

inactive) with respect to the guard condition. BOSCCs can improve on if-

converted code [20], however, BOSCCs degenerate into if-converted code when

uniform vectors are infrequent [17]. ALC overcomes this by actively merging

non-uniform vectors until a uniform vector is formed, thus effectively avoiding

if-converted code. Moreover, BOSCCs can lead to code explosion on loops

with many CFDPs. Moll et al .’s work addresses code explosion by selectively

using BOSCCs and if-conversion [14]. Nevertheless, Moll et al .’s solution

still degenerates into if-converted code when uniformity is infrequent or not

contiguous (w.r.t. loop iterations).

Praharenka et al . made a step forward by actively constructing uniform

vectors instead of expecting dynamic uniformity [17]. ALC makes use of SVE

instructions to merge active lanes and execute uniform paths. However, in

Praharenka et al .’s seminal work, there was no in-silicon implementation of

SVE, thus all the evaluation was conducted on ARM’s instruction emulator

(ARMIE). As a result, only a decrease in the number of dynamic instructions

was reported in Praharenka et al .’s paper. In contrast, this work evaluates

ALC on real hardware with SVE. Besides identifying a major problem in its

original design (Section 3.2), this work re-designs ALC as a compiler-enabled

transformation.

ALC as proposed by Praharenka et al . can not avoid using gather and

scatter instructions. The challenges associated with these instructions have

been studied in recent works. Habich et al . analyzed the performance of gather

instructions on AVX512 architecture [6], revealing that employing these instruc-

tions requires special considerations, as they can lead to significant performance

degradation. ALC uses gather instructions to load from non-consecutive ad-

dresses without a known pattern. Such access pattern significantly amplifies the

latency of gather load operation. Our experimental results show that avoiding

gather instructions via data permutation improves on ALC prior design up

to 4× (Section 5.3). Results also indicate that factors used in the proposed

cost/benefit analysis (Section 4.1) directly impact ALC’s performance. Finally,

the new ALC design outperforms if-converted code produced by state-of-the-
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art compilers. Despite these significant advancements, there are still challenges

that can limit ALC effectiveness as a compiler pass (Section 5.7).
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Chapter 7

Conclusion

This thesis presents ALC+DP, a redesign of ALC as a compiler-enabled transfor-

mation. An in-depth experimental evaluation of ALC on SVE hardware reveals

a key design issue of the original ALC design: a high number of memory and

resource-busy stalls is caused by gather instructions. ALC+DP is a redesign of

ALC that eliminates gather instructions through the combination of regular

vector loads and data permutation. The thesis contributes an implementation

of ALC in the production-ready LLVM compiler framework that includes a

cost/benefit analysis to decide when and how to apply ALC. This analysis

considers the number of instructions on each control-divergent path, the ratio

of compute and memory operations, and the complexity of the loops CFG,

which are key factors that have been shown to impact ALC’s effectiveness

and efficiency. Experimental results indicate that ALC+DP outperforms ALC’s

previous design by up to 4×. ALC+DP also outperforms if-converted code

produced by state-of-the-art compilers such as ARMClang by up to 79%. Al-

though ALC is implemented in LLVM, its re-design can be integrated into any

modern compiler to automatically increase SIMD utilization of if-converted

& vectorized loops.
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