
 

 

 

 

Understanding host-microbiome interactions and influence on STEC colonization in cattle 

using integrated omics 

 

by 

 

Zhe Pan 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

in 

Animal Science 

 

 

 

 

 

Department of Agricultural, Food and Nutritional Science 

University of Alberta 

 

 

 

 

 

 

 

 

 

 

© Zhe Pan, 2023 

 



 

 

ii 

Abstract 

Shiga toxin producing Escherichia coli (STEC) is the major foodborne pathogen in humans 

with Shiga toxin 1 (stx1) and 2 (stx2) being the main virulence factors. Cattle are the major 

reservoir of STEC with those shedding >104 CFU/g STEC being defined as super shedders (SS). 

The rectal anal junction (RAJ) is the primary colonization site of STEC and previous studies 

have revealed that both fecal and rectal mucosal microbiota impact STEC colonization at the 

RAJ. To date, the extent to which stx in STEC affects host-microbial interactions remains 

unidenfined. This thesis aimed to identify how host and fecal/mucosal microbiota respond to 

stxs and STEC colonization. Study 1 (Chapter 2) consisted of an epidemiological survey to 

reveal the abundance (DNA) and expression (RNA) of stx1 and stx2 in STEC as it was affected 

by sampling type (fecal vs. rectal mucosa) and breed (Angus, Charolais, Kinsella Composite 

Expression of stx2 was influenced by the expressions of host immune genes previously reported 

to be downregulated in SS including MS4A1, CCL21, CD19, and LTB. The random forest model 

and Boruta method further revealed that MS4A1 was the most predictive of stx2 expression, a 

response that appeared to be linked to host immunity. Study 2 (Chapter 3) performed amplicon 

sequencing to characterize differences in rectal digesta microbial profiles and interactions using 

samples collected from steers in which stx2 was not expressed (Stx2- group) and those with 

stx2 expressed (Stx2+ group). Although microbial diversities and similarities did not differ 

between the two groups, microbial networks were remarkably different, with group-specific 

microbes being the most connected taxa within the network. These results suggested that the 

expression of stx2 in bacteria altered microbial community structures even when their diversity 
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and composition were comparable to the Stx2- group. Study 3 (Chapter 4) identified the 

variation in host transcriptomes in veal calves challenged with STEC O157 that lacked stx2a 

(WT group) or possessed stx2a (RE group) using rectal mucosa samples collected at pre- (T1), 

7 days (T2), and 26 days post-challenge (T5). The stx2a is a subtype of stx2 and is critical for 

STEC pathogenicity. A total of 214 downregulated differentially expressed genes (DEGs) were 

identified in WT-T2 compared to RE-T2. No upregulated DEGs were identified in WT and RE 

at T2. At T5, a total of 152 upregulated DEGs and 45 GO terms were shared between WT and 

RE, while no downregulated DEGs were identified for WT and RE. Functional analysis 

revealed that WT inhibited responses at extracellular regions and impaired tissue barrier 

integrity at T2, while those responses were enhanced at T5. For RE, no functional variations 

were found at T2, with the aforementioned functions enhanced at T5. In study 4 (Chapter 5), 

cDNA amplicon sequencing was performed to characterize the activity of the rectal mucosa 

microbial profiles, interactions, and assembly as well as host-microbial interactions related to 

the expression of stx2a gene in RAJ mucosa colonized STEC O157. The rectal mucosa 

microbial diversities were not affected by the presence of stx2a in STEC. Instead, the dynamics 

of microbial interactions and assembly patterns differed in response to strain-specific STEC 

O157 colonization. The relative abundance of Paeniclostridium and Gallibacterium were 

identified as connectors in microbial networks and specialists in microbial assembly. Host 

immune responses varied after challenge with B-cell and T-cell signaling receptor pathways, 

antigen processing and presentations being upregulated regardless of stx2a production. The 

beneficial microbes (e.g. Prevotella) dominated interactions with host immune genes, while the 
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opportunistic pathogen Paeniclostridium dominated interactions with expressions of host 

immune genes post challenge and such relationship depended on the production of stx2a. In 

summary, this thesis provides knowledge of host-microbial interactions in response to stx gene 

expression and STEC colonization. Our findings suggest that STEC colonization and stx gene 

expression could be systematically attributed to differences in genetic variations, host responses, 

and fecal/mucosal microbiota.  
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Chapter 1. Literature Review 

 

1.1 Introduction 

Shiga toxin-producing Escherichia coli (STEC) is an important foodborne bacterium that can 

cause many severe human illnesses such as bloody diarrhea, hemolytic uremic syndrome (HUS), 

and death (Croxen et al., 2013). STEC infections are frequently reported in the United States, 

Canada, Japan, and the European Union (Chase-Topping et al., 2008), among which Scotland 

(Dundas et al., 2001), Canada (Waters et al., 1994), USA (Griffin and Tauxe, 1991) exhibit the 

higest prevalence of STEC. In Canada, the incidence of STEC infection from 1990 to 1999 has 

remained stable at 4.1 to 7.1 per 100,000 persons with an average of 1,407 cases reported 

annually (Lisboa et al., 2019). From 2006 to 2015, approximately 730 annual STEC cases were 

reported in Canada, however, for each reported STEC case, it is estimated 10-47 cases 

unreported each year, suggesting the annual incidence of STEC cases maybe ten times higher 

(Kate et al., 2006; Reynolds et al., 2020). Of the Canadian provinces, Alberta has one of the 

highest rates of STEC infection (Galanis et al., 2003).  From 2006 to 2016, 1,526 cases of STEC 

were reported in Alberta, with an average of 139 reported cases per 100,000 people (Galanis et 

al., 2003). Outbreaks of STEC not only cause health issues but also result in remarkable 

economic losses. A 2003-2006 epidemiological study in Australia estimated the annual cost of 

reported STEC cases AUD$ 2,633,181 per year (McPherson et al., 2011), even with the low 

incidence of STEC infection (0.4 per 100,000 in 2006) (Group, 2018). 
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Ruminants, especially cattle, are regarded as the primary asymptomatic carriers of 

STEC and the major source of STEC infections in humans (Chapman et al., 1993). STEC 

contamination of the environment can occur on farms as a result of defecation by carrier cattle 

(Rangel et al., 2005; Heiman et al., 2015). Therefore, preharvest controls are desirable for 

lowering STEC contamination and cattle-human STEC transmission. Consequently, the focus 

on exploring cattle-STEC interactions and their potential in the development of on-farm STEC 

mitigation technologies is important as STEC remains one of the leading threats to human 

health. 

 

1.2 Stx positive Shiga toxin-producing Escherichia coli 

Escherichia coli (E.coli) are gram-negative facultative anaerobic bacilli. These bacteria are 

commensals that are normally found in the intestine of mammals but are also found in the gut 

microbiome of birds, and fish as well as associated with soil, water, plants, and food (Hartl and 

Dykhuizen, 1984; Leimbach et al., 2013). E.coli can be classified into three groups based on its 

pathogenicity: commensal, potentially pathogenic as well as pathogenic E.coli (Figure 1.1A) 

(Proença et al., 2017). Commensal E.coli is one of the most common bacteria inhabiting the 

lower intestine of mammals (Blount, 2015), while only accounting for approximately 0.1-5% 

of the total bacterial flora within the gut (Eckburg et al., 2005; Blount, 2015). They play a 

beneficial role to their hosts such as they can exclude pathogenic bacteria (e.g. Salmonella 

typhimurium) (Schierack et al., 2011) as well as produce vitamins (e.g. K2, B12)(Blount, 2015). 

However, pathogenic E.coli can possess virulence factors that contribute to a number of human 
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diseases including urinary tract infections, diarrhea, and meningitis (Nataro and Kaper, 1998; 

Gomes et al., 2016). Some E.coli can be considered to be potentially pathogenic. Based on 

mechanisms by which pathogenic E.coli causes disease, pathogenic E.coli can be typically 

classified into the following four pathotypes including  Shiga toxin producing Escherichia coli 

(STEC), Enterotoxigenic Escherichia coli (ETEC), Extraintestinal Escherichia coli (ExPEC) 

and Enteropathogenic Escherichia coli (EPEC, Table 1.1, Figure 1.1B).  E.coli pathotypes can 

cause various animal diseases (Table 1.2), among which STEC is the major pathotype that 

causes severe disease in humans, including hemolytic uremic syndrome, bloody diarrhea, and 

even death (Croxen et al., 2013). The clinical outcomes caused by STEC were typically due to 

the production of Shiga toxins in STEC infected humans.  

 

1.3 Virulence factors in STEC  

1.3.1 Shiga toxins (Stxs) 

1.3.1.1 Stxs classification and structure  

Shiga toxin is the main virulence factor in STEC and can be classified into two prototypes, stx1, 

and stx2 (Scheutz et al., 2012).  Stx1 and stx2 share only 56% amino acid sequence similarity 

and are immunologically distinct (Jackson et al., 1987). Based on the phylogenetic analysis 

of stx sequences, several subtypes of stx1 and stx2 were identified which play a differential role 

in the severity of human illnesses (Table 1.3, Melton-Celsa, 2014a). The stx2 is the main 

attribute causing human severe infections (i.e. HUS) (Cimolai et al., 1994). The stx2-producing 

STEC has been reported to be found in 71 % (34 out of 48) of children with HUS while only 

40% (4 out of 10) of patients were associated with stx1-producing STEC strains (Ludwig et al., 
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2001). Furthermore, stx2 is 400 times more toxic (as quantified by LD50 in mice) than stx1 

(Tesh et al., 1993).  

Stx1 and stx2 share the same AB5 protein structure composed of a single A subunit (32 

kDa) and five binding B subunits (7.7kDa) (Figure 1.2A, B) (Croxen et al., 2013). The trypsin-

sensitive region enables stx1 to be asymmetrically cleaved into the A1 subunit and A2 peptide 

connected by a disulphide bridge (Figure 1.2C, Melton-Celsa, 2014a). The enzymatic activity 

of stx is related to the subunit A1, while the A2 peptide is linked to A1 to the binding moiety 

and connected to the B pentamer (Figure 1.2C, Melton-Celsa, 2014a). The identical B subunits 

are responsible for binding to the cellular receptor globotriaosylceramide (Gb3 or CD77) in 

humans that is present in several organs such as the intestinal tract and kidney (Etcheverría and 

Padola, 2013).  In addition to binding affinity to the Gb3 receptor of stx, one exceptional variant 

toxin stx2e preferentially recognizes Gb4 (Gb4 is derived from Gb3 and is composed of tetra-

saccharide) over Gb3 (Gb3 is composed of tri- saccharide.) (DeGrandis et al., 1989; Samuel et 

al., 1990).  

1.3.1.2 Pathogenesis of stx in human 

The hemolytic uremic syndrome is the typical clinical outcome of tissue damage induced by 

stxs in humans (Nataro and Kaper, 1998). The HUS can be classified as typical and atypical 

HUS (Sheerin and Glover, 2019). The typical HUS was induced by the binding affinity of stx 

to the Gb3 receptor on the vessels of the kidney followed by the endothelial injury (Andreoli et 

al., 2002), while atypical HUS can be attributed to the acquired defect in the control of 

complement activation and such atypical HUS also predominantly affect the kidney (Sheerin 
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and Glover, 2019). In this review, the molecular pathogenesis of stx inducing the typical HUS 

is illustrated.  

In STEC, the stx1 and stx2 genes are encoded in the genome of lambdoid prophages 

(Łoś et al., 2020). Without prophage induction, the expression of stx genes is frequently 

suppressed (Łoś et al., 2020). Hence, in most cases, the prerequisite for effective production of 

Shiga toxin requires prophage induction and its further lytic development including replication 

of the phage genome as an extrachromosomal element (Schmidt, 2001; Krause et al., 2018) 

(Figure 1.3). The specific location between the genes encoding the late anti-terminator Q and 

the lysis enzymes in the phage genome allows stx to be co-transcribed with the late phage genes 

(Wagner et al., 2002) (Figure 1.4), with the translation of the stx gene occurring when the 

prophages are induced. Prophage induction is associated with the bacterial SOS response, 

which mediates one of the main regulation pathways for stx production (Serra-Moreno et al., 

2008). Particularly, the production of stx1 can be induced by lower iron levels in the gut 

(Weinstein et al., 1988). Nonetheless, stx1 cannot be transported outside the cell without 

prophage induction and host cell lysis as E. coli lacks an appropriate secretion system for stx1 

(Weinstein et al., 1988). The production of stx2 is dependent on transcriptional activity of the 

late region of phage which is expressed at later stages of induction. In addition to phage 

induction and bacterial lysis affecting stx production, environmental factors including 

temperature, oxidative stress, quorum sensing, and antibiotics also impact stx production 

(Mühldorfer et al., 1996; Krause et al., 2018).  
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After bacterial lysis and phage induction, stx binds to the Gb3 receptor present on gut 

epithelial cells in humans, which further initiates the retrograde pathway of stx (Figure 1.5) and 

results in host cell death (Melton-Celsa, 2014a). The outline of the retrograde pathway is 

summarized as follows. After stx binds to the Gb3 receptor, the stx-Gb3 complex then enters 

into the early endosome through the lipid raft and moves to the Golgi apparatus where it can 

reach the endoplasmic reticulum (ER) (Sandvig et al., 2010). It is noticeable that the Gb3 

receptor is necessary for the stx-receptor complex to move through the retrograde pathway since 

a non-receptor mediated mechanism prohibits stx from reaching the Golgi apparatus (Philpott 

et al., 1997; Raa et al., 2009). The disulphide bond connecting A1 and A2 subunits (Figure 

1.2C) is reduced once the toxin enters the endoplasmic reticulum with only the A1 toxin subunit 

entering the cytosol (Melton-Celsa, 2014a). The unfolded A1 subunit exits ER through the ER-

associated protein degradation (ERAD) pathway to reach the target ribosome (Spooner and 

Lord, 2011). The A1 subunit further removes an adenine from the 28S ribosomal subunit, 

inhibiting protein synthesis and causing a disconnection with elongation factor 1 (Melton-Celsa, 

2014a). Furthermore, the ribosome induces a pro-inflammatory and pro-apoptotic ‘ribotoxic 

stress response’ in cells as a result of stx-mediated damage (Spooner and Lord, 2011). At the 

same time, macrophages can induce innate immunity by upregulating cytokine and chemokine 

expression through the stx-regulated signalling pathway (Lee and Tesh, 2019). The 

pathophysiological consequences of stx-induced innate immunity include changes in cell 

morphology and intracellular tight junctions to facilitate stxs crossing into the lamina propria 

where they damage colonic blood vessels and initiate hematogenous spread which can result in 
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watery or bloody diarrhea. The toxins can facilitate the infiltration of inflammatory cells into 

the gut lamina propria and kidneys and can up-regulate the expression of Gb3 on microvascular 

endothelial cells, deconstructing red blood cells and damaging the blood clotting functions of 

the kidney in the infected people (Wang et al., 2014; Brandelli et al., 2015; Legros et al., 2018).  

Overall, stx can destroy the host cell structure and alter their morphology in a manner that 

enables the toxins to circulate throughout the body.  

1.3.2 Other virulence factors  

It is noticeable that STEC colonized on the epitheliums and the ability of extracellular 

appendages fimbriae to adhere to host surfaces is important for successful colonization by such 

pathogen (Antão et al., 2009). The protein associated with the fimbriae called adhesins, which 

directs high-affinity binding to specific cell surface components (Antão et al., 2009). There are 

different types of fimbriaes including Type 1 fimbriae (fim), P fimbriae (pap), S fimbriae (sfa), 

etc and these fimbriaes are host cell- specific (Antão et al., 2009).  For instance, Type 1 fimbriae 

can adhere to human balder epithelium, chicken tracheal and gut explants, while S fimbriae can 

bind to human brain endothelium (Antão et al., 2009). The type 1 fimbriae plays a significant 

role as mediators of attachments by E.coli infections in the pathogenesis of Gram negative 

bacteria. And the presence of such fimbriae system could likely ensure successful bacteria 

colonization and the host cell-specific receptor production will then determine the site of action 

for a given fimbriae during STEC colonization and infection (Ahmed et al., 2008, Antão et al., 

2009). 
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Most disease-related STEC serogroups contain a chromosomal pathogenicity island 

termed the locus of enterocyte effacement (LEE) (Perna et al., 1998). The LEE enables STEC 

to attach to the host intestinal mucosa and initiate the destruction of the microvillus brush border 

(Frankel et al., 1998). The attachment is enhanced by the interactions between intimin, a 

receptor expressed on the cell membrane of STEC, and the nucleolin of host cells (Puente and 

Finlay, 2001; Croxen et al., 2013). Once attached, STEC injects various effector proteins into 

the host cell as mediated by Type III secretion system (T3SS) (Figure 1.6), which enhances the 

attachment of STEC and induces cytoskeletal rearrangements (Deng et al., 2017). The 

translocated intimin receptor (Tir), a receptor encoded by STEC can be translocated into host 

cells via T3SS (Gaytán et al., 2016). The T3SS also dysregulates actin polymerization within 

host cells, resulting in the formation of an actin-rich pedestal structure that facilitates the 

adherence of STEC to the host intestinal epithelium (Gaytán et al., 2016). Formation of actin-

rich pedestal structure and STEC colonization further alter host cell morphology including the 

removal of microvilli on the surface of epithelium resulting in the formation of attaching and 

effacing lesions (A/E lesions) (Ji and Dong, 2015).  

In addition, effector proteins have anti-phagocytosis functions that halt host immunities. 

For instance, Escherichia coli secretes protein B (EspB) which interacts with actin-binding 

domains of myosin proteins to prevent phagocytosis (Ji and Dong, 2015). The nuclear factor-

κB (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway in host cells can 

also be interrupted through non-Lee effectors injections (NLeE, B, C, D, H) produced by T3SS, 

leading to the potential inhibition of host innate and adaptive immunity (Newton et al., 2009; 
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Bliska et al., 2013; Deng et al., 2017). The T3SS components together with secreted effector 

proteins, intimin, and its receptor Tir, as well as attaching and effacing (eae) genes are encoded 

within a genomic pathogenicity island termed as the aforementioned Lotus of Enterocyte 

Effacement (LEE) (Gaytán et al., 2016). A previous epidemiological study characterized 60 

STEC isolates from bovine feces, among which 56 (93%) isolates were LEE- and stx-positive 

(Mainil et al., 1993). The LEE-positive STEC is commonly detected in cattle which is regarded 

as the natural reservoir for STEC and is responsible for most human STEC infections (Mainil 

et al., 1993; Newton et al., 2009). In addition to Shiga toxins, other virulence factors (e.g. T3SS) 

that participate in human STEC pathogenesis and cattle colonization warrant further 

explorations.  

 

1.4 STEC Epidemiology 

1.4.1 Cattle as the major reservoir of STEC and super-shedders 

Most human STEC infections are attributed to the consumption of contaminated beef products, 

as indicated by survey data across 27 countries from 1998 to 2017, where beef products were 

linked to about 22% (210 out of 957) of STEC outbreaks. What’s more, fecal shedding of STEC 

varies among cattle, ranging from 10 to 107 CFU per gram of feces. The frequency of STEC in 

cattle also varies across different studies. Venegas-Vargas et al. (2016) surveyed fecal samples 

from 378 beef cattle and found 80 (21%) were positive for STEC, while  Onyeka et al. (2021) 

observed that 147 out of 419 (35.1%) fecal samples from beef cattle were positive for STEC in 

South Africa.  
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Cattle that shed fecal STEC > 104 CFU per gram of feces are designated as super-

shedders (SS, Wang et al., 2016). SS usually account for approximately 10% of cattle in a herd, 

from which these individuals are responsible for more than 90% of STEC that enters the 

ambient environment. Shedding of STEC is often intermittent and the level of shedding often 

varies substantially. Baines et al. (2008) suggested that SS can be classified into three types 

based on the fecal shedding duration, including non-persistent (shed less than 14 days), 

moderately persistent (shed about 30 days), and persistent SS (shed for several months) (Baines 

et al., 2008). STEC can colonize the intestinal tract of cattle without causing hemorrhagic 

diseases since Gb3 receptors are not expressed on the surface of bovine epithelium (Paton and 

Paton, 1998; Menge, 2020). Among the digestive tract, the lower gastrointestinal tract is an 

ideal niche for STEC colonization and proliferation (Stein and Katz, 2017). Researchers have 

suggested that the rectal-anal junction (RAJ) is the major colonization site for STEC, and that 

colonization of the RAJ  is often associated with a high level of STEC shedding (Wang et al., 

2016). 

E.coli O157:H7/HM (STEC O157), is a key pathogenic STEC that colonizes beef cattle 

and can cause contaminations of food products and human illness (Lim et al., 2010).  

Particularly, the O represents the O-polysaccharide, a part of the lipopolysaccharide (LPS) on 

the cell membrane of Gram-negative bacteria. The H refers to the flagellar antigens and 

combinations of O and H factors define the serotypes of isolated STEC.  In addition to STEC 

O157, recent studies suggest that the ‘big six’ including STEC O26, O45, O103, O111, O121, 

O145 represent the emerging foodborne STEC that colonize beef cattle and threaten human 
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health (Alharbi et al., 2022). Identifying STEC O157 and non-O157 strains and super-shedders 

in cattle is important as SS can continuously spread STEC into the surrounding environment 

and be inadvertently transmitted to farm workers and increase cattle-cattle and cattle-human 

transmission (Paton and Paton, 1998; Menge, 2020).  

1.4.2 Cattle-human STEC transmission and STEC serotypes 

The fecal-oral route is the major transmission route for human STEC infection (Fairbrother and 

Nadeau, 2006; Maluta et al., 2014; Browne et al., 2021). Zoonotic STEC can be ingested by 

cattle and other ruminants and then colonize the intestinal tract without causing disease in these 

hosts. As STEC is shed in the feces, it can contaminate the environment including water used 

for drinking and recreation. The contamination of fruits, vegetables, sprouts, and lettuce via 

run-off water, manure, or slurry can all act as a source of transmission. Milk and meat can also 

be a source of transmission of STEC if they become adulterated. People working on farms or 

in slaughterhouses or visiting farms or petting zoos may also acquire STEC through direct 

contact with the host. The direct person to person transmission can also occur (Figure 1.7).  

The STEC genome can also contain different stx prophages and non-stx prophages 

(Rodríguez-Rubio et al., 2021), among them STEC O157 phage types 21/28 (PT 21/28) were 

most prevalent in SS and frequently detected in patients with STEC infections in Scotland 

(Corbishley et al., 2014; Fitzgerald et al., 2019). In Scotland between 1997 and 2001, 61 % of 

HUS cases in children were caused by PT21/28 (Lynn et al., 2005). In one study of 88 Scottish 

farms in 2006, approximately half of STEC O157 isolated were PT 21/28 (Halliday et al., 2006). 

Furthermore, the PT21/28 was also more likely to be associated with high levels of shedding in 
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cattle, increased prevalence of super-shedders and cattle-human transmission (Halliday et al., 

2006).  

In addition to STEC O157 which causes human illnesses, more than 200 non-O157 

serotypes of STEC have been identified from HC and HUS patients. The Center for Disease 

Control (CDC) in the US estimated that approximately 64 % (169,600 out of 265,000 cases) of 

STEC infections were attributed to non-O157 infections each year (Scallan et al., 2011). Among 

non-O157 serotypes, O26 (22%), O111 (16%), O103 (12%), O121 (8%), O45 (7%), and O145 

(5%) were the most common serotypes isolated from infected people and were designated as 

the ‘Big Six’(Yoon et al., 2013). The Food Safety and Inspection Service (FSIS) of the U.S. 

Department of Agriculture (USDA) further declared the ‘Big Six’ as food adulterants. The 

Hazard Analysis and Critical Control Points (HACCP) program was implemented to prevent 

the sale of raw beef and its products contaminated by these STEC serotypes (Yoon et al., 2013). 

Therefore, identifying and developing mitigation strategies for STEC O157 and non-O157 in 

beef cattle could be critical to preventing cattle-human STEC transmission. 

 

1.5 Host-STEC interaction affects STEC colonization in cattle 

1.5.1 Host factors affecting STEC colonization 

1.5.1.1 Host genetics 

A study found that STEC O157 isolates were more likely to cause human clinical disease when 

human had polymorphisms in the 255th nucleotide of the Tir gene (T>A T allele), an 

observation often observed with isolates acquired from SS vs. NS (Peroutka-Bigus et al., 2022). 
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This study also confirmed that the host genetic mutation was associated with E.coli O157’s 

colonization of the bovine epithelium, which increased the occurrence of  SS. Wang et al. (2017) 

evaluated the differential expression of genes in rectal tissues between SS and NS and found 

33 single nucleotide polymorphisms (SNPs) in seven DE genes associated with host immunities 

and cholesterol transport which potentially contributed to STEC colonization. The same study 

also revealed that these SNPs could lead to higher level of B-cell signaling, T-cell responses, 

and cholesterol absorption in the gastrointestinal tract in SS compared to NS, resulting in 

different host responses.  

Mir et al. (2016) conducted a cohort study for assessing the prevalence of STEC from a 

multi-breed beef calf population derived from Brahman and Angus, and collected fecal samples 

from March (n = 259), June (n = 263), August (n = 261) and December (n = 193).There was 

no significant difference in STEC prevalence across each hybrid breed group, suggesting 

between-breed variation plays a limited role in STEC colonization and possibly super-shedding. 

However, presumably STEC colonization is affected through various mechanisms such as 

immune responses and gut microbiota. Therefore, further epidemiological studies together with 

genotypes and/or SNPs analysis are needed to define the role of breed/cattle genetics in STEC 

epithelium colonization and super-shedding.    

1.5.1.2 Host physiological stages 

The host physiological stages can be manifested by host ages, which together with diets and 

environmental factors collectively influence fecal shedding. A previous study collected fecal 

samples in March, June, August, and December from calves that were 1–3, 4–6, 7–9, and 10–
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12 months of age, respectively (Mir et al., 2016). There was a significantly higher prevalence 

of STEC in young calves (1–3 months old, 60.3%) compared to older calves (39.5% at 4–6 

months age, 20.3% at 7–9 months age, 20.7% at 12 months old, P < 0.00, Mir et al., 2016). 

While Jeong et al. (2015) observed that the prevalence of STEC in cows was not age dependent 

as the prevalence was comparable between older (15 months old, 26 out of 42, 61.9%) and 

younger cows (3 months old, 30 out of 42, 71.4%, P=0.32). These results contrasted with those 

of Mir et al. (2016), suggesting host physiological stages together with diet, environmental 

factors influence STEC colonization and super-shedding.  

1.5.1.3 Dietary factors 

Diet is known to impact the ruminal and intestinal microbiota in ruminants and is suggested to 

be associated with STEC shedding in cattle. A previous study explored the effect of diet 

cofounded with physiological changes on E.coli O157 shedding and found that changes in diet 

from pre-weaning to weaning could increase STEC colonization and E.coli O157 shedding 

(Venegas-Vargas et al., 2016). Thirty calves were weaned and fed a corn silage–based diet 

(High Moisture, HM) during the weaning and preconditioning period. The author reported that 

E.coli O157 increased from 16.6% before weaning to 38.3% at 14 days after weaning (p<0.05) 

and stayed at a higher level during the preconditioning period (56 days after weaning). One 

possible reason for this is that weaning stress (physiological changes) might decrease host 

immune functions (Kim et al.,2012), increasing  O157 colonization (Naylor et al.,2003). Diez-

Gonzalez et al. (1998) and Herriott et al. (1998) also reported that a low-grain diet resulted in 

lower O157 shedding, and that feeding corn silage significantly increased the risk of 

https://www.liebertpub.com/doi/full/10.1089/fpd.2013.1587?casa_token=pZuNgOZ9l5YAAAAA%3A6U4vKhqzs9BskW5XvnOSC_xxvKJwXJZPP5dPhaRTtMj_1T85S2H1RIvAAWRZLZR-hdljO39oiQeM#B16
https://www.liebertpub.com/doi/full/10.1089/fpd.2013.1587?casa_token=pZuNgOZ9l5YAAAAA%3A6U4vKhqzs9BskW5XvnOSC_xxvKJwXJZPP5dPhaRTtMj_1T85S2H1RIvAAWRZLZR-hdljO39oiQeM#B23
https://www.liebertpub.com/doi/full/10.1089/fpd.2013.1587?casa_token=pZuNgOZ9l5YAAAAA%3A6U4vKhqzs9BskW5XvnOSC_xxvKJwXJZPP5dPhaRTtMj_1T85S2H1RIvAAWRZLZR-hdljO39oiQeM#B4
https://www.liebertpub.com/doi/full/10.1089/fpd.2013.1587?casa_token=pZuNgOZ9l5YAAAAA%3A6U4vKhqzs9BskW5XvnOSC_xxvKJwXJZPP5dPhaRTtMj_1T85S2H1RIvAAWRZLZR-hdljO39oiQeM#B13
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enterohemorrhagic E.coli shedding among heifers. Inconsistencies in the impact of diet on the 

shedding of E. coli O157 in cattle have also been reported that dry grain-fed cattle had reduced 

E. coli shedding levels. Callaway et al. (2009) suggested that this inconstancy may arise from 

intrinsic factors of forages such as the forage quality, and the presence of antimicrobials may 

also account for the variability observed across different studies. What’s more, the 

concentrations of metabolizable substrates available for fermentation in the lower bovine 

intestinal tract might be a contributing factor to the higher level of O157 shedding (Callaway et 

al.,2009). Buchko et al. (2000) reported that feeding forage 48h after fasting increased E. coli 

O157 abundance in the intestinal tract and shedding duration, resulting in greater colonization 

and higher prevalence of E. coli O157 in cattle. It is reasonable to assume that fasting which 

decreases violate fatty acids (VFAs) concentrations in the rumen and intestinal contents, may 

reduce the extent to which they inhibit the growth of E. coli O157. These studies highlight the 

complicated role of dietary factors in STEC colonization and shedding in cattle generated by 

internal diet factors, diet composition, as well as host physiology.  

1.5.2 STEC colonization affects host immunity 

1.5.2.1 Host innate response 

The activation of the innate immune system is the frontline of the host defence against bacterial 

invasion. The effective stimulation of the ruminant innate response occurs since STEC closely 

interacts with intestinal epithelial cells. Previous studies observed activated host innate 

immunity in cattle challenged with E.coli O157. For example, E. coli O157 challenge via 

stomach tube can cause neutrophil infiltration in the colon, ileum, and rectum of neonatal calves 

https://www.liebertpub.com/doi/full/10.1089/fpd.2013.1587?casa_token=pZuNgOZ9l5YAAAAA%3A6U4vKhqzs9BskW5XvnOSC_xxvKJwXJZPP5dPhaRTtMj_1T85S2H1RIvAAWRZLZR-hdljO39oiQeM#B1
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(Dean-Nystrom et al., 1997). Calves challenged with E. coli O157 have also exhibited 

infiltration of neutrophils and eosinophils in the mucosa of the gallbladder (Reinstein et al., 

2007).  

As aforementioned STEC could colonize the bovine epithelium via T3SS, which 

translocates effector proteins (i.e. Tir, EspA encoded within the LEE and non-LEE genomic 

regions) into infected cells (Deng et al., 2017). Simultaneously, H7 flagella can initiate 

interactions with the bovine epitheliums that can be recognized by Toll-like receptors 5 (TLR5, 

(Deng et al., 2017). A signaling cascade mediated by the myeloid differentiation factor 88 

(MyD88) adaptor molecule is initiated, leading to the activation of MAP kinases and  IκB 

kinase (IKK)   (Hayashi et al., 2001). The proteasomal degradation of IκB liberates the IκB-

bound NF-κB transcription factors, which translocates to the nucleus to drive the expression of 

pro-inflammatory cytokines such as IL-8, IL-1β and TNF-α (Häcker and Karin, 

2006, Miyamoto et al., 2006). The host develops an immune response when STEC injects the 

non-LEE encoded NleB, NleC, NleE, and NleH effectors into host cells to disrupt the host NF-

κB pathway (Newton et al., 2009; Nadler et al., 2010). Overall, the balance between the pro-

inflammatory bacterial extracellular components such as H7 flagellin, and the anti-

inflammatory effector proteins such as the Nle family shapes the outcome of host immune 

response.  

In addition to the H7 flagellin recognized by the bovine innate immune system, STEC 

LPS is also recognized by bovine monocyte-derived macrophages (Bono et al., 2004)  as well 

as bovine colonic cells expressing TLR1, TLR3, TLR4 and TLR5 (Walle et al., 2013). The 

https://www.sciencedirect.com/science/article/pii/S0165242712003583#bib0170
https://www.sciencedirect.com/science/article/pii/S0165242712003583#bib0165
https://www.sciencedirect.com/science/article/pii/S0165242712003583#bib0165
https://www.sciencedirect.com/science/article/pii/S0165242712003583#bib0305
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signaling pathway induced by LPS has not been elucidated to date, but TLR4-mediated 

signaling could be the target as the binding of LPS to TLR4 has been demonstrated for E.coli 

O111:B4 in bovine monocyte-derived macrophages (Magee et al., 2012). In summary, STEC 

colonization in beef cattle could trigger varied host innate responses, leading to a number of 

host-STEC interactions. 

1.5.2.2 Host cellular response 

Studies on host cellular immune response in cattle to STEC are limited and therefore the role 

of host cellular immunity and pathways involved in STEC colonization is unclear. Corbishley 

et al. (2014) suggested that T-cell responses were induced in calves challenged with two 

different STEC O157 strains (a PT32 and a PT21/28 STEC O157 strain), resulting in the 

enhanced expressions of IFN-γ within the rectal mucosa of calves. In vitro stimulation of rectal 

lymph node cells from the same calves with T3SS proteins led to the proliferation of CD4, CD8, 

and γδ T cells in PT21/28 challenged calves, while the proliferation of NK, CD8, γδ T cells 

occurred in calves challenged with PT32 (Corbishley et al., 2014; Fitzgerald et al., 2019). Hence, 

these results suggest that cattle can develop strain-dependent cellular responses during STEC 

colonization but further clarification of the cellular immunity responses in cattle colonized with 

STEC is needed.  

1.5.2.3 Host mucosa and humoral antibody response 

Since STEC are able to colonize the epithelium, mucosal antibody responses are considered to 

be the front line of the host defense against STEC colonization. Significant rectal mucosal IgA 

antibody responses have been characterized in response to EspA, EspD, EspD, Tir, H7, OmpC, 
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and O157:H7 LPS in calves experimentally challenged with an stx-negatived E.coli O157 strain 

(Nart et al., 2008). Whereas rectal mucosal IgA antibody responses were also detected in calves 

following challenge with a stx-positive STEC O157 strain (Nart et al., 2008). However, the 

titers of IgA antibodies were inconsistent across different individuals, suggesting variation in 

host protective responses. To date, the extent and mechanisms whereby mucosal antibodies 

protect against STEC colonization are largely unknown.  

STEC-specific humoral antibody responses were demonstrated to develop in cattle 

following oral challenge. A significant increase in serum IgG specific to STEC O157 inimin, 

Tir, EspA, EspB, and O157 LPS was observed in cattle orally challenged with a stx-positive 

STEC O157 strain (Bretschneider et al., 2007), suggesting the host can serologically respond 

to STEC O157 T3SS proteins and LPS. Bretschneider et al (2007) also highlighted Tir-, 

intimin-, and EspB- specific serum IgA were decreased following oral challenge with a STEC 

O157 stx-positive strain due to the downregulation of mucosal IgA. Antibody responses 

specific to stx1 and stx2 have also been found in sera in calves orally challenged with STEC 

O157 but the development of these antibody responses is delayed (Bretschneider et al., 2007).       

Researchers have also demonstrated that serum IgG levels (i.e. Tir-, intimin- and O157 

LPS- specific) are highly correlated with fecal shedding of STEC O157 (Bretschneider et al., 

2007). However, systemic antibody responses against STEC antigens are not always associated 

with bacterial shedding or clearance.  Wray et al. (2007) demonstrated no serological response 

to STEC O157 LPS antigen following oral challenge with STEC O157 in adult cattle. Nalyor 

et al (2007) showed that increased serum IgG and IgA for O157 LPS and H7 antigen production 



 

 

19 

were observed in calves orally challenged with a stx-positive STEC O157 strain, but these 

antibody responses were not correlated with bacterial shedding. Since the shedding of STEC is 

a complex process that is affected by multiple factors (i.e. microbial communities, 

environments) (Williams et al., 2015), further studies about STEC shedding and host immune 

response interactions are needed.  

1.5.3 Rectum microbiota affects STEC colonization 

1.5.3.1 Cattle gut microbiota and microbial community assembly 

Bovine gut microbiota play a critical role in affecting STEC shedding and has been proposed 

to regulate the host immune system, and nutrient metabolism (Nicholson et al., 2012). Gut 

commensals are capable of inhibiting the growth of pathogenic microbes through direct (i.e. 

releasing antimicrobials) and indirect effects (i.e. host immunity activation, Buffie and Pamer, 

2013). Gut microbial communities were gradually established with two theories for explaining 

microbiome assembly: the niche theory and neutral theory (Zhou and Ning, 2017). The 

deterministic process is a key feature of the niche theory that proposes microbial community 

assembly is structured by environmental heterogeneity and biotic (inter taxa interactions) 

factors (Zhou and Ning, 2017; Liu et al., 2019). Unlike the niche theory which assumes that 

taxa are functionally different, the neutral theory assumes that all individuals are ecologically 

equivalent and microbial interactions and abiotic factors-microbial interactions are ignored 

(Hubbell and Borda-de-Água, 2004). Under the niche theory, microbial diversity is controlled 

by stochastic processes (also termed historical contingency) such as ecological drift (change in 

the relative abundance of taxa in a location due to chance demographic fluctuations) and 
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dispersal (movement of taxa across spaces, Chave, 2004; Hanson et al., 2012; Herbert et al., 

2014). Previous studies explored how stochastic and deterministic factors contribute to 

microbial community assembly (Table 1.4). For instance, a recent study revealed that 

stochasticity is the major force driving the rumen microbiome assembly from birth to maturity, 

a process that is affected by both external (i.e. diet) and host factors (i.e. age), suggesting that 

neutral theory based microbial community assembly occurs in beef cattle (Furman et al., 2020).  

Since STEC colonizes the hindgut of beef cattle along with other gut microbiota, they could 

influence the assembly of gut microbial communities, but the nature of this interaction remains 

unclear. Therefore, integration of the microbial community assembly approach and community 

analysis could provide a useful framework for understanding the dynamics of gut microbiota in 

response to STEC colonization in beef cattle. 

1.5.3.2 Rectum microbiota and its functions 

The rectal-anal junction (RAJ) is the major colonization site of STEC, and the RAJ is known 

to be colonized by commensal microbiota. Previous studies identified that the rectal mucosa 

and fecal microbiota differ in terms of their composition and function and were both related 

with cattle STEC colonization (Xu et al., 2014; Wang et al., 2016; Zaheer et al., 2017). 

Therefore, the following section mainly focuses on the differed composition and functions of 

hindgut mucosa microbiota and fecal microbiota in beef cattle.  

A study examined the microbial communities collected from rectal mucosa and feces 

from Holstein dairy calves aged five years old and found a remarkably higher Chao1 and 

Shannon index (refer to microbial richness and evenness, respectively) in rectal mucosa-
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attached microbial communities compared to fecal microbiota (Mucosa: Chao1=2346, 

Shannon=5.63; Fecal: Chao1=1526, Shannon=3.49) (Mao et al., 2015). The unweighted 

UniFrac distance-based principal coordinate analysis (PCoA) further revealed distinct 

microbial cluster profiles between mucosa and fecal microbiota (Mao et al., 2015). Further 

analysis from the same study revealed varied microbial community composition at the phylum 

and genera levels between rectal mucosa- and fecal microbiota. Particularly, Firmicutes 

(91.26%) was the dominant phyla with Turicibacter (14.23%) and Clostridium (14.72%) being 

the predominant genera in fecal microbial communities. While Firmicutes (46.57%) and 

Bacteroidetes (30.94%) were the predominant phyla with Ruminococcaceae (18.16%) and 

Treponema from Spirochaetae (9.13%) being the predominant genera in rectal mucosa 

microbial communities. However, functional analysis revealed that both rectal mucosa and 

fecal microbiota shared similar functions related to membrane transport, carbohydrate 

metabolism, replication and repair, amino acid metabolism, and energy metabolism (Mao et al., 

2015). 

1.5.3.3 Rectum microbiota and its role in STEC shedding and colonization 

Some bacteria (i.e. Lactobacillus) have been reported to reduce E.coli O157 shedding in cattle 

due to their ability to stimulate the development of host immunity and lower intestinal pH 

(Sherman et al., 2005). Further studies proved that rectum mucosa-attached microbial 

communities interacted with host immunity in a manner that could affect E.coli O157 fecal 

shedding (Wang et al., 2017). This suggested that there could be a potential role of rectum 

mucosa-attached microbiota in regulating STEC colonization and E.coli O157 fecal shedding. 
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Wang et al 2018 reported significant variations in the microbial composition and function of 

the rectal mucosal microbiota between SS and NS. For example, two taxa were unique to SS 

which were members of Bacteroides and Clostridium, while seven taxa were unique to NS 

which were members of Coprococcus, Provetella, Clostridium, and Paludibacter (Wang et al., 

2018). These unique microbes in the NS group, for example,  Coprococcus spp.,  play a role in 

butyrate production, possibly contributing to a lower gut pH and an environment unfavorable 

for E.coli O157 colonization (Holdeman and Morre, 1974).  

Comparisons of bacterial diversity and microbial composition in fecal microbiota 

between SS and NS have been controversial. A previous study revealed that microbial 

community structures were affected by shedding status and were different in terms of bacterial 

compositions in the first 21 days in postpartum dairy cattle, i.e. persistent shedders were seen 

to have lower average fecal microbial richness compared to NS (Stenkamp‐Strahm et al., 2018).  

In contrast, another study using beef steers suggested that fecal bacterial structures were not 

associated with shedding status but differed in terms of microbial composition between SS and 

NS (Zaheer et al., 2017). Given different outcomes of fecal microbiota variations in SS 

compared to NS, host factors (i.e. breed, age, sex) could also affect STEC colonization, 

suggesting that supper shedding could be driven by host-microbe interactions. Further studies 

considering host factors (i.e. age, genetics, host immunity) for exploring fecal microbiota- super 

shedding are warranted.  
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1.5.3.4 Host-microbial interactions at rectum mucosa and relations with STEC shedding 

 Host- gut microbiome interactions play a critical role in maintaining host gut homeostasis and 

during host gut dysbiosis  (Zhou et al., 2022). Specifically, the gut microbes in the gut exert 

control at the epithelial barrier. During homeostasis, commensal microbiota can produce 

metabolites through the fermentation of dietary polysaccharides and the microbial molecular 

ligands (such as LPS) and therefore impact intestinal barrier cells (Zhou et al., 2022). The host 

produces IgA in plasma cells in the lamina propria which are then transferred across the 

epithelium as secretory IgA (Zhou et al., 2022). Induced IgA can bind to commensals, forming 

a reciprocal feedback circle between host-symbiont during homeostasis. During host gut 

dysbiosis, the commensal microbial community can become unbalanced with unwanted 

outgrowth of gut microbes and invasion of pathogens (i.e. Salmonella spp. is an invasive 

flagellated pathogen that can evade commensal resistance.), promoting host immune cell 

recruitments to the epithelium to combat these gut microbes (Kaiko and Stappenbeck, 2014). 

The knowledge of gut microbes exerting effects on host gut health provides us the biological 

basis for furthering our understanding on host-microbial interactions in beef cattle.  

However, the interaction of microbes with the hindgut epitlhelim in cattle has been 

rarely studied. A previous study found that host-hindgut microbial interactions affect bovine 

growth and immunity, and host genetics in turn exert lifelong effects on hindgut microbiota 

(Fan et al., 2021b). A total of 278 Angus-Brahman beef cattle were designated to six subgroups 

based on their breed composition (percentage of Angus and Brahman). Fecal samples were 

collected from calves at preweaning, postweaning, and fattening stages. The study revealed that 
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the hindgut microbiota structure was affected by host growth stage and cofounded with diet 

transactions and breeds throughout life. Butyrate-producing bacteria, Roseburia and 

Oscillospira, were related to nine SNPs located in the genes involved in host immunity and 

metabolism regulation in the hindgut, suggesting host-microbial interactions in the hindgut are 

critical for host functional variation and the establishment of microbial communities. A 

previous study in our research group revealed that hindgut mucosa-attached microbiota were 

associated with host immunity in response to STEC O157 colonization in SS, and that host-

microbial interactions regulated E.coli O157:H7 fecal shedding in beef cattle (Wang 2018). 

However, the nature of host-microbe interactions in the hindgut of beef cattle in response to 

strain-specific STEC O157 is largely unknown.  

 

1.6 Approaches to study host-microbial interactions in response to STEC colonization  

1.6.1 Molecular techniques for Shiga toxin gene quantification  

1.6.1.1 Real-time quantitative PCR (qPCR) and real-time quantitative reverse 

transcription PCR (qRT-PCR) 

The polymerase chain reaction (PCR) is a fast and reliable technique used to detect DNA, and 

real-time quantitative PCR (qPCR) can be used to measure the abundance of amplified DNA 

(Bustin et al., 2009). While real-time quantitative reverse transcription PCR (qRT-PCR) was 

developed to measure targeted expressed genes (mRNA) based on the reverse transcription of 

DNA and q-PCR. The q-PCR and qRT-PCR are techniques that enable reliable detection and 

measurements of gene expression generated during each cycle of the PCR process (Bustin et 
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al., 2009). These procedures are also capable of detecting genes at low abundance more 

effectively than other molecular techniques (i.e. microarrays). As a result, they are considered 

the gold standard for measuring gene expression (Bustin, 2005). However, the selection of 

suitable primers is the key to generating reliable results since primers can target specific 

sequences and the optimization of reaction conditions can also be time-consuming. SYBR 

Green is the major economical DNA-binding dye used for q-PCR and qRT-PCR (Bulcke et al., 

2010), however, it can interact with all double-stranded DNA, including non-specific amplicons 

which can cause errors. Using fluorescent reporter probes, such as Taqman (Ponchel et al., 

2003), can improve specificity and accuracy because fluorescence can only be detected in 

amplicons that contain complementary sequences to the reporter probe. However, qPCR and 

qRT-PCR are not suitable to detect the abundance or expressions of a large number of genes, 

or to detect unknown genes/transcripts.  

1.6.2 Studying host gene expression and microbial communities using high-throughput 

sequencing  

1.6.2.1 RNA-seq for host gene expressions  

RNA-seq refers to the analysis of gene expression profiles using next-generation sequencing 

techniques (Stark et al., 2019). It is an in-depth genome sequencing technique that investigates 

all genes expressed within a biological system and uncovers novel and rare transcripts. 

However, there are some challenges for RNA-seq including a lack of quantification of absolute 

gene expression as well-annotated reference genomes are acquired to obtain accurate 

information from RNA-seq data (Stark et al., 2019). For instance, most of RNA-seq analysis 
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require that sequenced gene fragments are mapped to genomic data and therefore a complete 

and up to date reference genome is needed to acquire precise results.  

RNA-seq has been wildly adopted in many research areas including the understanding 

of disease etiology and characterization of host-microbial interaction, and host-pathogen 

interaction. Wang et al. (2016) identified 58 differentially expressed genes including 11 up-

regulated and 47 down-regulated genes in super-shedders vs. non-shedders using RNA-seq, and 

further revealed that host innate and adaptive immune functions (e.g. Immigration of immune 

cells) were inhibited based on the functional annotation of down-regulated differential 

expressed genes (Wang et al., 2016). Casey et al. (2015) revealed altered signaling pathways in 

bovine macrophages including CD40 and IL-15 signaling in cattle infected by Mycobacterium 

avium subspecies paratuberculosis (Casey et al., 2015). Overall, these studies indicate that 

RNA-seq derived transcriptomic analysis informs our understanding of host-microbial 

interactions, and therefore can be used as a practical technique to study host-microbial 

interactions contributing to STEC colonization and super-shedding in cattle.  

1.6.2.2 Amplicon seq for microbial community analysis  

Conventional culture methods for identifying bacteria in human or animal samples enable the 

classification of bacteria at the species or strain level (Dowd et al., 2008). However, it has the 

disadvantages in that it can only identify bacteria that readily grow under laboratory conditions  

(Dowd et al., 2008) which represents only a small fraction of the total microbial populations 

(Rhoads et al., 2012). 
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Compared to culture methods, molecular techniques such as 16S rRNA gene amplicon 

seq, are sensitive and cost-effective (Deurenberg et al., 2017).  For 16S rRNA gene amplicon 

seq, DNA is first extracted and a particular region of 16S rRNA gene is amplified, sequenced 

and the generated sequences are identified based on the similarity to a reference microbial 

genome. The 16S amplicon seq does not require that bacteria within the sample be culturable, 

and it can detect many different types of bacteria simultaneously (Poretsky et al., 2014). A 

cohort study collected fecal samples from children and compared the effectiveness of bacteria 

identification using 16S amplicon seq and culture methods (Gupta et al., 2019). The study 

revealed that culture methods identified a maximum of 8 bacterial species per sample while 

16S amplicon seq identified up to 140 unique species per sample, making amplicon seq more 

suitable for characterizing microbial communities as compared to culture methods (Gupta et al., 

2019).  

Amplicon seq has been widely used in STEC research, i.e. a study collected fecal 

samples from beef cattle in a commercial feedlot and used 16S rRNA gene amplicon seq to 

identify that fecal samples from cattle that were positive for STEC and had lower bacterial 

diversity (Chopyk et al., 2016). Another study performed amplicon seq of fecal samples 

collected from 11 SS and 11 NS and revealed higher bacterial richness in SS compared to NS 

and 72 differentially abundant microbes in SS (Xu et al., 2014). These studies provide new 

insight into the variation in host microbial populations in response to STEC colonization of 

beef cattle. By adopting amplicon seq, differential abundant microbes can be determined which 

could be potential markers for STEC colonization.   
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 1.6.3 Machine learning-based approaches to explore host-microbial interactions and 

keystone markers  

Machine learning refers to the application of artificial intelligence (AI) that provides systems 

the ability to automatically learn and improve from previous experience without intensive 

programming (Rebala et al., 2019). It was first developed for pattern recognition in the 1960s 

and to date, the term machine learning summarizes two major objectives: classification of data 

based on models which have been developed and making predictions for future outcomes based 

on established models (Kotsiantis et al., 2006). Supervised machine learning approaches use 

labeled datasets and these datasets are designed to train algorithms for data classification or 

outcome prediction (Kotsiantis et al., 2006). While unsupervised machine learning is used for 

clustering unlabeled data sets and these algorithms can discover the hidden patterns in the 

datasets without human intervention (Lee et al., 2022). Unsupervised machine learning is used 

for clustering (that is grouping unlabeled data into different clusters based on their similarities 

or differences) and dimensionality reduction (that is reducing the number of input data to a 

manageable size while keeping the data integrity) (Glielmo et al., 2021).  

Microbiome studies that have adopted machine learning approaches focus mainly on 

the classification and prediction of microbial taxa, predictions of host phenotypes by linking 

microbiome, and uncovering disease mechanisms through markers identified within microbial 

communities (Marcos-Zambrano et al., 2021). For instance, a previous study using the 

minimum redundancy-maximum relevance (mRMR) feature selection method identified a set 

of 20 microbial genes from the fecal microbiome that can be predictive of colorectal cancer (Yu 



 

 

29 

et al., 2017). This suggests that there maybe value in adopting machine learning approaches to 

investigate networks within microbiomes. Integrating machine learning methods into STEC 

studies is promising since it can effectively combine multi-omics data and host phenotypes in 

support of the possible identification of signature markers (i.e. host genetic markers, gut 

microbial markers) that could predict STEC colonization in beef cattle. 

1.6.3.1 Supervised machine learning approaches for STEC research 

1.6.3.1.1 Regression models 

The regression model is a classic method for studying relationships between interested 

dependent and independent variables (Harrell et al., 1985). It can predict an outcome from a 

binary variable (that is Y), from one or more response categorical or continuous variable (that 

is X) (Harrell et al., 1985). Therefore, this approach can predict potential host and microbial 

factors from STEC abundance and prevalence. For example, a generalized linear regression 

model predicted that increased age was a potential risk factor that was positively related to 

E.coli O157 prevalence in feces on farm, while farm size and introduction of new beef cattle 

did not affect  E.coli O157 prevalence (Cobbaut et al., 2009). Another linear regression model-

based analysis revealed that multiple antimicrobial resistance (MAR) in bovine E.coli isolates 

was age-specific, being the highest in E.coli isolates from calves and progressively lower in 

isolates from adult cattle (Berge et al., 2010). The regression models are easy to understand and 

build on from known packages and can include all interested variables for prediction. However, 

it requires a high-quality dataset and is susceptible to colinear problems (that is there exists a 

strong linear correlation between independent variables).  



 

 

30 

 1.6.3.1.2 Decision tree and random forest 

The decision tree classifies a population into branch-like segments that construct an inverted 

tree with a root node, internal nodes (that denote a test on an attribute), and leaf nodes (that 

hold a class label) (Kingsford and Salzberg, 2008). The dataset can be split into subsets based 

on the chosen attribute to construct the decision tree and the Gini index is used to evaluate how 

accurate a split is among the classified groups (Kingsford and Salzberg, 2008). The random 

forest is developed from the decision tree, consisting of a large number of individual decision 

trees that are regarded as an ensemble (Couronné et al., 2018). Each individual tree in the 

random forest generates a class prediction and the class with the most votes becomes the 

model’s prediction. Since the decision tree and random forest can handle large non-linear 

datasets efficiently and produce relatively robust predictions, it has been widely adopted for 

microbiome research. For instance, Han et al 2021 suggested that the survival of E.coli 

O157:H7 can be determined by soil salinity, pH, and bacterial community interactions based 

on a random forest analysis (Han et al., 2021). Bakshy et al. (2021) adopted decision tree and 

random forest models for selection of genetic markers for prediction of bovine tuberculosis 

(bTB) and revealed that 124 SNPs were predictable for bTB phenotyping identification. These 

studies suggested the feasibility of adopting random forest models for resolving biological 

questions, with the potential method to study factors associated with STEC colonization in beef 

cattle.   
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1.6.3.2 Unsupervised machine learning approaches 

1.6.3.2.1 Principal component analysis  

Principal component analysis (PCA) is a dimensionality reduction method that is used to reduce 

the dimensionality of a large dataset by transforming a large set of variables into smaller ones 

but still maintaining most of the information associated with the large set (David and Jacobs, 

2013; Jolliffe and Cadima, 2016). Principal components (PCs) can be identified from 

eigenvectors and eigenvalues defined by the large set of an initial variable matrix. These PCs 

are uncorrelated and most of the information is squeezed into the first PC that represents the 

initial variables. This approach is not affected by variable collinearity and can reduce overfitting 

while being highly applicable for large datasets. Wang et al (2016) revealed a significant 

separation of host transcriptome between SS and NS in mucosa samples collected from the 

duodenum, jejunum, cecum, and colon using PCA analysis (Wang et al., 2016). This suggestd 

that applying PCA to uncover the substructure of genome data could be a useful tool for 

studying host transcriptome and amplicon sequencing data substructures.  

1.6.3.2.2 Self-organizing map 

The self-organizing map (SOM) is a dimensionality reduction method that reduces high 

dimension data to a lower dimensional while preserving the topological structure of the data 

(Kohonen, 1990).  The SOM first trains an input dataset (that is the input space) to generate a 

lower-dimensional representation of the input data (that is the map space) and it then classifies 

the rest of the input data for mapping the generated map space (Kohonen, 1990). This neutral 

network-based algorithm, similar to PCA, plays a critical role in dimensionality reduction for 
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large datasets. While SOM is superior in terms of its ability to identify distinct patterns (PCA 

leads to overlapping of patterns), and it is more accurate for clustering large scale data compared 

to other dimensionality reduction methods and is prior assumption- free (PCA requires the 

normality of data) (Reusch et al., 2005; Astel et al., 2007). This approach can perform an 

unsupervised clustering process that the patterns are organized considering only their homology, 

without knowing the class to which they belong (Delgado et al., 2015). Therefore, it is suitable 

for clustering genomic data and for exploration of potential genetic markers. For instance, 

previous studied signature genes associated with immune responses using SOM in 3-month-old 

Tau22 (a pathological hallmark of Alzheimer’s disease) mutated mice, confirmed the 

involvement of immunological processes in the onset of at Alzheimers (Ising et al., 2019). This 

approach is superior at sorting out genes with similar expression patterns that have a critical 

impact on host phenotypes. Considering the fact that STEC colonization in beef cattle triggers 

host gene and gut microbiome responses (Xu et al., 2014; Wang et al., 2021), certain 

genetic/microbial markers could in turn affect STEC colonization. Self-organizing maps could 

reveal genetic/microbial markers that affect host homeostasis. Therefore, the SOM could be the 

potential approach for identifying markers for host-microbiome interactions and to identify 

genetic/microbial markers that affect STEC O157 colonization in beef cattle. 

1.6.4 Network-based approaches for understanding microbial community interactions 

and variations in responses to STEC O157 colonization  

1.6.4.1 Microbial networks definition  

Microbial taxa within the ecological niches could interact with each other and form ‘micro-



 

 

33 

communities’ that affect microbial abundance and community structures (Faust and Raes, 

2012). Interactions between microbial taxa could have either positive (win), negative (loss), or 

no impact (neutral) on microbial abundance and community structure (Lidicker, 1979; Faust 

and Raes, 2012). The potential outcomes of two or more interaction partners could result in 

various types of interaction (Figure 1.8). For instance, bacteria (of different taxonomic groups) 

may cooperate to build a biofilm, which confers antibiotic resistance to its members — a win–

win relationship that is known as mutualism (Høiby et al., 2010).  Predator-prey relationships 

and host-parasite relationships are classical loss-win interactions (Faust and Raes, 2012). 

Amensalism refers to if one partner is detrimental without any advantage to others, e.g., 

lactobacilli can lower the pH of the surrounding environment which can be harmful for other 

microorganisms (Faust and Raes, 2012).  With commensalism one partner can be beneficial 

without helping or damaging the other, while the competition (loss-loss relationship) represents 

two species that occupy the same niche with the potential to exclude each other (Faust and Raes, 

2012). Microbial interactions are vital for a successful establishment and maintenance of 

microbial populations in different environments. However, predicting microbial relationships 

can be complex since many ecological factors (i.e. physiochemical changes, metabolite 

exchanges, signaling, genetic exchanges resulting in genotype selections) can affect microbial 

interactions.  

1.6.4.2 Microbial interaction predictions and methods for microbial network construction 

Microbial interaction patterns can be predicted based on the microbial abundance under the 

premise that strongly non-random distribution patterns exist among microbial communities 
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(Faust and Raes, 2012). Predicting relationships from this principle is straightforward: when 

two species (or any taxonomically relevant units) co-occur or show a similar abundance pattern 

as, a positive relationship is assumed when they show mutual exclusion, anticorrelation, or a 

negative correlation (Faust and Raes, 2012). The prediction of microbial interactions from 

presence-absence or abundance data can be a problem known as network inference (Smet and 

Marchal, 2010). A few algorithms have been developed to predict microbial interaction 

networks such as similarity-based models, mainly using Pearson or Spearman correlation for 

abundance data. For example, Roehe et al. (2020) identified microbial taxa and interactions that 

could affect bovine methane emissions based on 63 rumen samples using Pearson correlation 

(Martínez-Álvaro et al., 2020).  Another popular similarity-based network inference 

methodology is local similarity analysis (LSA), which can detect similarity between shifted 

abundance profiles and is therefore frequently used to build association networks from time 

series data (Ruan et al., 2006).  

However, the selection of network construction methods can present complications. 

Relative abundance is usually used for correlations, while computing correlations between 

relative abundance can significantly distort results, a response known as the compositional bias 

which can yield artefactual correlations (Aitchison and Egozcue, 2005; Faust and Raes, 2012). 

In particular, these artefactual correlations can occur among non-correlated low abundance taxa. 

The distance-based method such as Bray-Curtis distance as well as normalization methods for 

compositional data could be applicable to assessing relative abundance-based microbial 

networks (Aitchison and Egozcue, 2005; Faust and Raes, 2012). ‘Rare biosphere’ termed as the 
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presence of a large percentage of zero abundant members within microbial taxa is also 

problematic because of its ambiguous interpretation as it is not possible to differentiate between 

absence vs below detectable levels (Sogin et al., 2006). This problem can be alleviated by data 

filtering or dedicated selections of distance measures.  

What’s more, the popular similarity-based methods (Pearson or Spearman correlation), 

and maximal information coefficient (MIC) have been proven to be less applicable for inferring 

microbial ecological networks as assessed by area under the precision-recall curves (AUPR) 

(Hirano and Takemoto, 2019). These metrics (i.e., correlation-based approaches, MIC) are less 

applicable to microbial compositional data as the assumption of independent variables cannot 

be satisfied, leading to the generation of spurious correlations (Hirano and Takemoto, 2019), 

making it less suitable for inferring real microbial interactions. The random matrix theory-based 

approach could be adopted for inferring accurate microbial networks (Deng et al., 2012). This 

method is robust to noise and zero biosphere due to its nature of identifying transition points 

from Gaussian orthogonal ensemble (that is the non-random true relations) to Poisson 

distribution (false correlation) (Deng et al., 2012). The dedicated selection of network 

construction approaches and interpretation is warranted for uncovering microbial mechanisms 

for beef cattle microbiome research.  

Furthermore, the structure of microbial networks also provides insight into the 

organization of microbial communities. For example, most microbial networks are scale-free, 

suggesting the presence of many taxa with only a few links and a few highly connected hub 

taxa (Chaffron et al., 2010; Faust and Raes, 2012). Networks can be partitioned into 
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clusters/modules, which are the densely interconnected nodes among networks. Clusters in the 

network have specific and different functions that enable microbes to respond to different 

environmental conditions (Chaffron et al., 2010; Jiao et al., 2016). For instance, microbial 

communities extracted from soil contaminated with oil identified three major clusters along 

with their diverse functions (electron-transfer, biogeochemical C- and N- cycles, organic 

contaminant degradation, respectively, Jiao et al., 2016). These clusters were shown to be 

crucial components of microbial communities in the network. 

1.6.4.3 Microbial networks relate to host-microbial interactions 

Understanding microbial interactions in host-associated communities is critical for the in-depth 

understanding of mechanisms of host health maintenance. For example, Bacteroides was the 

key genera identified from microbial interactions in the feces from autism spectrum disorder 

(ASD) children which can produce propionic acid and other short-chain fatty acids (Wan et al., 

2021). The production of propionic acid showed increased restrictive behaviors and impaired 

social behavior in rat models (MacFabe et al., 2011). The other key taxa Porphyromonas 

identified from microbial interactions in ASD could induce cognitive dysfunction mediated by 

neuronal inflammation in mice models (MacFabe et al., 2011). Our previous studies indicated 

that rectal mucosa and fecal microbiota were remarkably different in terms of microbial 

diversity and composition (Xu et al., 2014; Wang et al., 2018). However, how microbial 

interactions can be driven by STEC colonization and therefore alter the microbial community 

structures and functions is unclear. Therefore, approaches towards the construction of microbial 

networks and selection of key taxa driven network differences can open the way towards the 
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understanding of STEC O157 colonization mechanisms from a microbial perspective. In the 

long run, this may enable microbial communities to be engineered in manner that mitigates 

STEC O157 in the digestive tract of cattle. 

 

1.7 Knowledge Gaps, hypothesis, and objectives 

On-farm STEC detection is one of the most critical steps during pre-harvest interventions, as it 

would further ensure that raw beef products safely enter the processing plant and are suitable 

to enter the food production chain for consumption by humans. However, current identification 

methods largely rely on bacterial culture, which is time-consuming and can only detect the 

O157 strain. It is known that expressions of stx combined with other virulence factors promote 

STEC colonization in cattle. Also, the abundance of stx1 and stx2 genes in cattle is important 

as they can be used as indicators of potential STEC. However, information on the abundance 

and expression of stx1 and stx2 genes in vivo (e.g. in RAJ) of feedlot cattle is lacking. Although 

immune responses in cattle have been proven to be altered in cattle colonized with STEC O157, 

the relationship between host immune genes and Shiga toxin gene remains unexplored and the 

potential of host immune genes to be used as markers of STEC colonization is unclear. The gut 

microbial community could be affected by STEC colonization, while how fecal microbial 

community structures and interactions vary in response to stxs gene expression is unknown. 

I first hypothesize that the expression and abundance of stx genes at the RAJ are 

influenced by cattle breed and the expression of host immune genes. Secondly, host immune 

gene expression can be utilized as potential genetic markers for the identification of stx 
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expression. Furthermore, the stx gene expressions in STEC could drive the variations of fecal 

and mucosa microbial community structures and interactions with keystone microbes being 

identified as markers for stx gene expression.  

Since microbial communities were previously reported to be related to STEC O157 

colonization, whether the mucosa microbial community assembly and interactions could affect 

O157 strain-specific challenge in calves is also unknown. Previous studies identified differed 

host immune responses in calves challenged with STEC O157 PT 21/28 (producing functional 

stx2a) in comparison to calves following RE21/28 (producing functional stx2a and stx2c) 

challenge. I further hypothesized that different magnitudes of host immune responses will be 

identified upon strain-specific STEC O157 colonization. Secondly, mucosa microbial 

community structures, assembly, and interactions will be significantly different in terms of 

specific STEC O157 challenges in calves. At last, varied host-microbial interactions driven by 

strain-specific STEC O157 colonization will be identified, and signature host genetic/microbial 

markers will be identified to assess expression of differed stx2 subtypes.  

The specific objectives are: (1) to investigate factors affecting the abundance and 

expression of stx at the RAJ from feedlot cattle and their associations with the expression of 

host immune genes previously reported to be altered in SS using machine learning-derived 

models (Chapter 2); and (2) to investigate variations of fecal microbial community structures 

and interactions in response to stx gene expression in STEC at the RAJ from feedlot cattle and 

identification of keystone microbes that could be utilized as potential microbial markers for stx 

gene expression (Chapter 3); (3) to investigate the transcriptome of RAJ and to identify 
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differentially expressed genes and their functions in calves challenged with different strains of 

STEC O157 (Chapter 4); (4) to investigate mucosa microbial community variations in response 

to the O157 strain-specific challenge (Chapter 5), and (5) to investigate variation in host-

microbial interactions in calves challenged with STEC O157 differed in terms of the production 

of stx2a and to preliminary identify genes/microbes among host-microbial interactions that can 

be employed as genetic/microbes markers to differentiate strain-dependent STEC O157 

colonization in cattle (Chapter 5).  

The long-term goal of this project is to further understand host-STEC interactions in 

cattle from a perspective of host genomics and gut microbiome as well as to gain insights into 

the development of strategies that can rapidly identify potential SS and differentiate STEC 

O157 strains based on differences in gene expressions and gut microbes.  
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Perna, N. T., Mayhew, G. F., Pósfai, G., Elliott, S., Donnenberg, M. S., Kaper, J. B., et al. 

(1998). Molecular Evolution of a Pathogenicity Island from Enterohemorrhagic Escherichia 

coli O157:H7. Infect Immun 66, 3810–3817. doi: 10.1128/iai.66.8.3810-3817.1998. 

Peroutka-Bigus, N., Nielsen, D. W., Trachsel, J., Mou, K. T., Sharma, V. K., Kudva, I. T., et 

al. (2022). Phenotypic and genomic comparison of human outbreak and cattle-associated Shiga 

toxin-producing Escherichia coli O157:H7. Biorxiv, 2022.09.30.510420. doi: 

10.1101/2022.09.30.510420. 

Persson, S., Olsen, K. E. P., Ethelberg, S., and Scheutz, F. (2007). Subtyping Method for 

Escherichia coli Shiga Toxin (Verocytotoxin) 2 Variants and Correlations to Clinical 

Manifestations▿. J Clin Microbiol 45, 2020–2024. doi: 10.1128/jcm.02591-06. 

Philpott, D. J., Ackerley, C. A., Kiliaan, A. J., Karmali, M. A., Perdue, M. H., and Sherman, P. 

M. (1997). Translocation of verotoxin-1 across T84 monolayers: mechanism of bacterial toxin 

penetration of epithelium. Am J Physiol-gastr L 273, G1349–G1358. doi: 

10.1152/ajpgi.1997.273.6.g1349. 

Piérard, D., Muyldermans, G., Moriau, L., Stevens, D., and Lauwers, S. (1998). Identification 

of new verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli 

isolates. J Clin Microbiol 36, 3317–22. 

Ponchel, F., Toomes, C., Bransfield, K., Leong, F. T., Douglas, S. H., Field, S. L., et al. (2003). 

Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for 



 

 

62 

a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. 

Bmc Biotechnol 3, 18. doi: 10.1186/1472-6750-3-18. 

Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D., and Konstantinidis, K. T. (2014). 

Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal 

Microbial Community Dynamics. Plos One 9, e93827. doi: 10.1371/journal.pone.0093827. 

Proença, J. T., Barral, D. C., and Gordo, I. (2017). Commensal-to-pathogen transition: One-

single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage 

interaction. Sci Rep-uk 7, 4504. doi: 10.1038/s41598-017-04081-1. 

Puente, J. L., and Finlay, B. B. (2001). Principles of Bacterial Pathogenesis. 387–456. doi: 

10.1016/b978-012304220-0/50010-8. 

Raa, H., Grimmer, S., Schwudke, D., Bergan, J., Wälchli, S., Skotland, T., et al. (2009). 

Glycosphingolipid Requirements for Endosome‐to‐Golgi Transport of Shiga Toxin. Traffic 10, 

868–882. doi: 10.1111/j.1600-0854.2009.00919.x. 

Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., and Swerdlow, D. L. (2005). 

Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982–2002 - Volume 11, 

Number 4—April 2005 - Emerging Infectious Diseases journal - CDC. Emerg Infect Dis 11, 

603–609. doi: 10.3201/eid1104.040739. 

Rebala, G., Ravi, A., and Churiwala, S. (2019). An Introduction to Machine Learning. 1–17. 

doi: 10.1007/978-3-030-15729-6_1. 



 

 

63 

Reinstein, S., Fox, J. T., Shi, X., and Nagaraja, T. G. (2007). Prevalence of Escherichia coli 

O157:H7 in Gallbladders of Beef Cattle. Appl Environ Microb 73, 1002–1004. doi: 

10.1128/aem.02037-06. 

Reusch, D. B., Alley, R. B., and Hewitson, B. C. (2005). Relative Performance of Self-

Organizing Maps and Principal Component Analysis in Pattern Extraction from Synthetic 

Climatological Data. Polar Geogr 29, 188–212. doi: 10.1080/789610199. 

Reynolds, C., Checkley, S., Chui, L., Otto, S., and Neumann, N. F. (2020). Evaluating the risks 

associated with Shiga-toxin-producing Escherichia coli (STEC) in private well waters in 

Canada. Can J Microbiol 66, 337–350. doi: 10.1139/cjm-2019-0329. 

Rhoads, D. D., Cox, S. B., Rees, E. J., Sun, Y., and Wolcott, R. D. (2012). Clinical identification 

of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. 

Bmc Infect Dis 12, 321. doi: 10.1186/1471-2334-12-321. 

Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., et al. 

(1983). Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype. New Engl J 

Medicine 308, 681–685. doi: 10.1056/nejm198303243081203. 

Rodríguez-Rubio, L., Haarmann, N., Schwidder, M., Muniesa, M., and Schmidt, H. (2021). 

Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to 

Pathogenicity. Pathogens 10, 404. doi: 10.3390/pathogens10040404. 



 

 

64 

Roussel, C., Cordonnier, C., Livrelli, V., de Wiele, T. V., and Blanquet‐Diot, S. (2017). 

Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological 

Applications. doi: 10.5772/intechopen.68309. 

Ruan, Q., Dutta, D., Schwalbach, M. S., Steele, J. A., Fuhrman, J. A., and Sun, F. (2006). Local 

similarity analysis reveals unique associations among marine bacterioplankton species and 

environmental factors. Bioinformatics 22, 2532–2538. doi: 10.1093/bioinformatics/btl417. 

Samuel, J. E., Perera, L. P., Ward, S., O’Brien, A. D., Ginsburg, V., and Krivan, H. C. (1990). 

Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like 

toxin type II variants. Infect Immun 58, 611–618. doi: 10.1128/iai.58.3.611-618.1990. 

Sandvig, K., Bergan, J., Dyve, A.-B., Skotland, T., and Torgersen, M. L. (2010). Endocytosis 

and retrograde transport of Shiga toxin. Toxicon 56, 1181–1185. doi: 

10.1016/j.toxicon.2009.11.021. 

Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., et al. 

(2011). Foodborne Illness Acquired in the United States—Major Pathogens. Emerg Infect Dis 

17, 7–15. doi: 10.3201/eid1701.p11101. 

Scheutz, F., Teel, L. D., Beutin, L., Piérard, D., Buvens, G., Karch, H., et al. (2012). Multicenter 

Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx 

Nomenclature. J Clin Microbiol 50, 2951–2963. doi: 10.1128/jcm.00860-12. 



 

 

65 

Schierack, P., Kleta, S., Tedin, K., Babila, J. T., Oswald, S., Oelschlaeger, T. A., et al. (2011). 

E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells. Plos 

One 6, e14712. doi: 10.1371/journal.pone.0014712. 

Schmidt, H. (2001). Shiga-toxin-converting bacteriophages. Res Microbiol 152, 687–695. doi: 

10.1016/s0923-2508(01)01249-9. 

Schmidt, H., Scheef, J., Morabito, S., Caprioli, A., Wieler, L. H., and Karch, H. (2000). A New 

Shiga Toxin 2 Variant (Stx2f) fromEscherichia coli Isolated from Pigeons. Appl Environ 

Microb 66, 1205–1208. doi: 10.1128/aem.66.3.1205-1208.2000. 

Serra-Moreno, R., Jofre, J., and Muniesa, M. (2008). The CI Repressors of Shiga Toxin-

Converting Prophages Are Involved in Coinfection of Escherichia coli Strains, Which Causes 

a Down Regulation in the Production of Shiga Toxin 2▿. J Bacteriol 190, 4722–4735. doi: 

10.1128/jb.00069-08. 

Sheerin, N. S., and Glover, E. (2019). Haemolytic uremic syndrome: diagnosis and 

management. F1000Research 8, F1000 Faculty Rev-1690. doi: 

10.12688/f1000research.19957.1. 

Sherman, P. M., Johnson-Henry, K. C., Yeung, H. P., Ngo, P. S. C., Goulet, J., and Tompkins, 

T. A. (2005). Probiotics Reduce Enterohemorrhagic Escherichia coli O157:H7- and 

Enteropathogenic E. coli O127:H6-Induced Changes in Polarized T84 Epithelial Cell 



 

 

66 

Monolayers by Reducing Bacterial Adhesion and Cytoskeletal Rearrangements. Infect Immun 

73, 5183–5188. doi: 10.1128/iai.73.8.5183-5188.2005. 

Smet, R. D., and Marchal, K. (2010). Advantages and limitations of current network inference 

methods. Nat Rev Microbiol 8, 717–729. doi: 10.1038/nrmicro2419. 

Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., et al. 

(2006). Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc 

National Acad Sci 103, 12115–12120. doi: 10.1073/pnas.0605127103. 

Spooner, R. A., and Lord, J. M. (2011). Ricin and Shiga Toxins, Pathogenesis, Immunity, 

Vaccines and Therapeutics. Curr Top Microbiol 357, 19–40. doi: 10.1007/82_2011_154. 

Stark, R., Grzelak, M., and Hadfield, J. (2019). RNA sequencing: the teenage years. Nat Rev 

Genet 20, 631–656. doi: 10.1038/s41576-019-0150-2. 

Stein, R. A., and Katz, D. E. (2017). Escherichia coli, cattle and the propagation of disease. 

Fems Microbiol Lett 364, fnx050. doi: 10.1093/femsle/fnx050. 

Stenkamp‐Strahm, C., McConnel, C., Magzamen, S., Abdo, Z., and Reynolds, S. (2018). 

Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows. 

J Appl Microbiol 124, 881–898. doi: 10.1111/jam.13679. 



 

 

67 

Tesh, V. L., Burris, J. A., Owens, J. W., Gordon, V. M., Wadolkowski, E. A., O’Brien, A. D., 

et al. (1993). Comparison of the relative toxicities of Shiga-like toxins type I and type II for 

mice. Infect Immun 61, 3392–402. 

Venegas-Vargas, C., Henderson, S., Khare, A., Mosci, R. E., Lehnert, J. D., Singh, P., et al. 

(2016). Factors Associated with Shiga Toxin-Producing Escherichia coli Shedding by Dairy 

and Beef Cattle. Appl Environ Microb 82, 5049–5056. doi: 10.1128/aem.00829-16. 

Wagner, P. L., Livny, J., Neely, M. N., Acheson, D. W. K., Friedman, D. I., and Waldor, M. K. 

(2002). Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol 

Microbiol 44, 957–970. doi: 10.1046/j.1365-2958.2002.02950.x. 

Walle, K. V., Vanrompay, D., and Cox, E. (2013). Bovine innate and adaptive immune 

responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal 

shedding in ruminants. Vet Immunol Immunop 152, 109–120. doi: 

10.1016/j.vetimm.2012.09.028. 

Wan, Y., Zuo, T., Xu, Z., Zhang, F., Zhan, H., CHAN, D., et al. (2021). Underdevelopment of 

the gut microbiota and bacteria species as non-invasive markers of prediction in children with 

autism spectrum disorder. Gut, gutjnl-2020-324015. doi: 10.1136/gutjnl-2020-324015. 

Wang, H., Rogers, T. J., Paton, J. C., and Paton, A. W. (2014). Differential Effects of 

Escherichia coli Subtilase Cytotoxin and Shiga Toxin 2 on Chemokine and Proinflammatory 



 

 

68 

Cytokine Expression in Human Macrophage, Colonic Epithelial, and Brain Microvascular 

Endothelial Cell Lines. Infect Immun 82, 3567–3579. doi: 10.1128/iai.02120-14. 

Wang, O., Liang, G., McAllister, T. A., Plastow, G., Stanford, K., Selinger, B., et al. (2016). 

Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced 

Host Immunity in Escherichia coli O157:H7 Super-Shedders. Plos One 11, e0151284. doi: 

10.1371/journal.pone.0151284. 

Wang, O., McAllister, T. A., Plastow, G., Stanford, K., Selinger, B., and Guan, L. L. (2017). 

Host mechanisms involved in cattle Escherichia coli O157 shedding: a fundamental 

understanding for reducing foodborne pathogen in food animal production. Sci Rep-uk 7, 7630. 

doi: 10.1038/s41598-017-06737-4. 

Wang, O., McAllister, T. A., Plastow, G., Stanford, K., Selinger, B., and Guan, L. L. (2018). 

Interactions of the Hindgut Mucosa-Associated Microbiome with Its Host Regulate Shedding 

of Escherichia coli O157:H7 by Cattle. Appl Environ Microb 84, e01738-17. doi: 

10.1128/aem.01738-17. 

Wang, O., Zhou, M., Chen, Y., McAllister, T. A., Plastow, G., Stanford, K., et al. (2021). 

MicroRNAomes of Cattle Intestinal Tissues Revealed Possible miRNA Regulated Mechanisms 

Involved in Escherichia coli O157 Fecal Shedding. Front Cell Infect Mi 11, 634505. doi: 

10.3389/fcimb.2021.634505. 



 

 

69 

Waters, J. R., Sharp, J. C. M., and Dev, V. J. (1994). Infection Caused by Escherichia coli 

O157:H7 in Alberta, Canada, and in Scotland: A Five-Year Review, 1987-1991. Clin Infect Dis 

19, 834–843. doi: 10.1093/clinids/19.5.834. 

Weinstein, D. L., Jackson, M. P., Samuel, J. E., Holmes, R. K., and O’Brien, A. D. (1988). 

Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain 

responsible for edema disease of swine. J Bacteriol 170, 4223–4230. doi: 

10.1128/jb.170.9.4223-4230.1988. 

Wells, J. G., Davis, B. R., Wachsmuth, I. K., Riley, L. W., Remis, R. S., Sokolow, R., et al. 

(1983). Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare 

Escherichia coli serotype. J Clin Microbiol 18, 512–520. doi: 10.1128/jcm.18.3.512-520.1983. 

WILLIAMS, K. J., WARD, M. P., DHUNGYEL, O. P., and HALL, E. J. S. (2015). Risk factors 

for Escherichia coli O157 shedding and super-shedding by dairy heifers at pasture. Epidemiol 

Infect 143, 1004–1015. doi: 10.1017/s0950268814001630. 

Xu, Y., Dugat-Bony, E., Zaheer, R., Selinger, L., Barbieri, R., Munns, K., et al. (2014). 

Escherichia coli O157:H7 Super-Shedder and Non-Shedder Feedlot Steers Harbour Distinct 

Fecal Bacterial Communities. Plos One 9, e98115. doi: 10.1371/journal.pone.0098115. 

Yoon, S. C., Windham, W. R., Ladely, S., Heitschmidt, G. W., Lawrence, K. C., Park, B., et al. 

(2013). Differentiation of big-six non-O157 Shiga-toxin producing Escherichia coli (STEC) on 



 

 

70 

spread plates of mixed cultures using hyperspectral imaging. J Food Meas Charact 7, 47–59. 

doi: 10.1007/s11694-013-9137-4. 

Zaheer, R., Dugat-Bony, E., Holman, D., Cousteix, E., Xu, Y., Munns, K., et al. (2017). 

Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle 

occur in the lower intestine. Plos One 12, e0170050. doi: 10.1371/journal.pone.0170050. 

Zhou, H., Beltrán, J. F., and Brito, I. L. (2022). Host-microbiome protein-protein interactions 

capture disease-relevant pathways. Genome Biol 23, 72. doi: 10.1186/s13059-022-02643-9. 

Zhou, J., and Ning, D. (2017). Stochastic Community Assembly: Does It Matter in Microbial 

Ecology? Microbiol Mol Biol R 81, e00002-17. doi: 10.1128/mmbr.00002-17. 

  

  



 

 

71 

1.9 Tables and figures 

Table 1.1. Major pathotypes and their subset of pathogenic Escherichia coli 

Type Pathotypes Subset 

ETEC Enterotoxigenic Escherichia coli N/A 

STEC 

Shiga toxin-producing Escherichia 

coli 

EDEC: Edema disease Escherichia coli 

EPEC Enteropathogenic Escherichia coli N/A 

ExPEC Extraintestinal Escherichia coli 

APEC: Avian pathogenic Escherichia coli 

SEPEC: Septicemic Escherichia coli 

UPEC: Uropathogenic Escherichia coli 
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Table 1.2. Animal disease caused by pathogenic E.coli 

Species Disease Pathotype Localization Age 

Poultry Embryonic mortality - Egg - 

Colisepticemia ExPEC (APEC) Upperrespiratory tract, air 

sacs, systemic 

5-10 weeks 

Swollen head, dermatitis, 

cellulitis 

 

- Localized infections adult 

Diarrhea - Intestine - 

Cattle Newborn diarrhea 

 

ETEC Small intestine 0-1 week 

Hemorrhagic dysentery 

 

EPEC, STEC Colon 1-6 weeks 

Septicemia 

 

ExPEC Systemic 0-1 week 

Mastitis 

 

- Mammary gland adult 

Diarrhea ETEC, EPEC Small and large intestines young animal 

Urinary tract infection ExPEC, UPEC Kidney, urinary tract  

Pig Newborn diarrhea ETEC  

Small intestine 

0-1 week 

Young pig diarrhea ETEC 2-4 weeks 

Postweaning diarrhea ETEC, EPEC Post-weaning 

Edema disease STEC, EDEC 4-8 weeks 

Hemorrhagic gastroenteritis ETEC 1-8 weeks 

Septicemia ExPEC (SEPEC), 

ETEC 

Systemic 0-4 weeks 

Rabbit Newborn and Weaning diarrhea EPEC Small and large intestines - 
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Table 1.3. Prototype toxins and strains that produce those toxins 

Toxin type(s) Linked with serious human 

disease; difference(s) from prototype toxina 

Reference(s) 

Stx Yes (Hale and Formal, 1980) 

Stx1a Yes (Riley et al., 1983) 

Stx1c No; immunologically distinct (Paton et al., 1995; Koch et al., 2001) 

Stx1d No; immunologically distinct, less potent (Bürk et al., 2003) 

Stx2a Yes (Riley et al., 1983) 

Stx2b (originally 

named VT-2d or 

Stx2d) 

No; the B subunit gene was not 

detected by methods used to detect other 

stx2 B subunit genes 

(Piérard et al., 1998) 

Stx2c Yes, less toxic to Vero cells  

and mice 

(Paton et al., 1993) 

Stx2d 

(Stx2dact) 

Yes; more toxic after incubation with 

elastase,  

less toxic to Vero cells 

(Persson et al., 2007) 

Stx2e No; binds to Gb4, associated with disease in 

pigs 

(Weinstein et al., 1988) 

Stx2f No; originally isolated in STEC from 

pigeons; immunologically distinct 

(Schmidt et al., 2000) 

Stx2g No; the stx2g gene is not amplified by 

primers specific for stx2a 

(Leung et al., 2003) 

aPrototype toxin indicated in bold. This table is cited and modified from (Melton-Celsa, 2014a) 
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Table 1.4. Examples of studies examining the relative role of deterministic and stochastic 

processes in structured bacterial communities 

Ecosystem  

Stochasticity 

measurement  

Relative importance 

References 

Determinism Stochasticity 

Freshwater lakes Neutral model - ✔ 

Roguet et al. 

(2015) 

Soil spanning 105 

years succession 

Newly designed 

model 

Community when 

succession proceeded 

Community at 

initial stage  

Dini-Andreote 

et al. (2015) 

Coastal water Stegen’s framework High eutrophication Low eutrophication 

Dai et al. 

(2017) 

Coastal water 

Neutral model and 

variation partitioning 

- 

Both abundant and 

rare communities 

Mo et al. 

(2018) 
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Figure 1.1.  E.coli (A) and Pathogenic E.coli (B) classification  

STEC: Shiga toxin-producing Escherichia coli; ETEC: Enterotoxigenic Escherichia coli; 

ExPEC: Extraintestinal Escherichia coli; EPEC: Enteropathogenic Escherichia coli 
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Figure 1.2. Structure of stx and subunit molecules 

A. A ribbon diagram of stx2 adapted from (Fraser et al., 2004).  The A-subunit is red, whereas 

the B-subunits are orange, cyan, green, yellow, and blue. The active site in the A-subunit is 

marked by the magenta letter A. The side chains of the cysteine residues that link A1 and A2 

are depicted in yellow. The sites equivalent to the Gb3-binding sites on the B-pentamer of Stx1 

are shown by magenta numbers that distinguish the type of binding site.  

B. A schematic diagram of a generic stx molecule adapted from (Fraser et al., 2004), the A 

subunit is blue, the B subunit is red. 

C. A schematic diagram of subunit A revised from (Melton-Celsa, 2014a). The active site 

glutamic acid is indicated as a vertical grey line, the ribosome interaction region is shown in 

purple, the protease (furin) sensitive site is depicted in green, and the B pentamer is a red block. 

The disulfide bridge that connects the A1 subunit and the A2 peptide is shown above the 

protease sensitive site. Not to scale. 
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Figure 1.3. The lytic and lysogenic cycle of phages in STEC 

i) In lytic phage infection, the phage particle injects its genetic material into a bacterium and ii) 

directs the cell to produce phage components, iii) which are released upon cell lysis to continued 

infection. iv) Temperate phages can also participate in the lysogenic life cycle where they 

integrate their DNA into the bacterial genome and v) remain as a prophage during bacterial 

proliferation with the possibility of entering lytic replication in the future adopted from (Hsu et 

al., 2019).  
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Figure 1.4. The late region of Shiga toxin converting lambdoid phage 

Genes coding for replication proteins (O and P), a gene for anti-terminator Q, the Shiga toxin 

genes (stxA, stxB), and genes coding for proteins causing cell lysis (S and R), are marked. 

Promoters are shown by ovals, terminators by rectangles, and arrows indicate the directionality 

of transcription. Revised based on (Łoś et al., 2020). 
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Figure 1.5. Pathogenesis of shiga toxin in human gastrointestinal tract and kidney 

The figure is revised based on (Kaper et al., 2004; Melton-Celsa, 2014b; Castro et al., 2017; 

Hall et al., 2017; Roussel et al., 2017; Lee and Tesh, 2019).  

Mechanisms of action of Shiga toxin (Refers to retrograde pathway) are marked by numbers : 

(1) Binding of stx to the Gb3 receptor within lipid raft on the surface of intestinal epithelial 

cells; (2) stx-Gb3 complex internalizes within an endosome (3) stx traffics to the Golgi 

complex (4) stx transports to ER, and the disulfide bridge that keeps the A1 tethered to A2B5 

is reduced (5) Action of the A1 portion on the rRNA in the 28S portion,  replacing an Adenine 

moiety (6) inhibition of protein synthesis and cell death.  

Shiga toxin may also translocate through i) macrophage uptake. Once in the submucosa, the 

toxins may directly ii) damage the intestinal microvasculature and iii) elicit cytokine and 

chemokine production by resident macrophages. Macrophage activation results in the 
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infiltration of neutrophils and monocytes which may further exacerbate tissue damage. 

Neutrophils and monocytes may also act as “carrier” cells to iv) transport toxins in the 

bloodstream. Once in microvessels that are rich in the toxin receptor, Gb3, the toxins may be 

transferred from the carrier cells to v) damage endothelial cells. Toxins will be further vi) 

transported to kidney where tubular epithelial cells express a higher level of Gb3 through blood 

circulation. The localized epithelial cells in the kidney will be vii) damaged and promote the 

pathogenesis of HUS in humans.  
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Figure 1.6. Schematic diagram of T3SS architectures of STEC- epithelium interactions 

The basal body of the T3SS spans the bacterial inner membrane (IM) and outer membrane 

(OM), and comprises ring structures that are connected by a periplasmic rod (P‐rod) across the 

periplasm. The basal body associates with an extracellular needle (needle filament, E.coli 

secreted proteins A, EspA) and forms a channel‐like translocon (EspB and EspD) that inserts 

into the host cell membrane. The energy for the docking and unfolding of T3SS substrates, 

including effector proteins and T3SS‐accessory extracellular proteins, is provided by a 

cytoplasmic ATPase associated with the T3SS. The figure is revised based on (Ji and Dong, 

2015; Gaytán et al., 2016; Deng et al., 2017). 
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Figure 1.7. Zoonotic STEC transmission 

(1) Cattle can ingest STEC through oral routes and then (2) secrete STEC through feces and 

contaminate environments. (3) The secreted STEC can survive in the environments and then 

contaminate food and water nearby. (4) The STEC transmission can occur directly from 

infected cattle to humans on farms or abattoirs or directly from contaminated food and water. 

(5) Once human ingest STEC, it can spread through human-human transmission as well. This 

figure is modified based on (Fairbrother and Nadeau, 2006). 
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Figure 1.8. Summary of ecological interactions between members of different species 

For each interaction partner, there are three possible outcomes: positive (+), negative (–), and 

neutral (0). For instance, in parasitism, the parasite benefits from the relationship (+), whereas 

the host is harmed (–); this relationship is thus represented by the symbol pair+–. Figure is 

adopted from Faust and Raes (2012). 
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Chapter 2. Abundance and expression of Shiga toxin genes in Escherichia coli at the 

recto-anal junction relates to host immune genes1 

 

2.1 Introduction 

Shiga toxin-producing Escherichia coli (STEC) cause foodborne disease that can lead to 

hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC)(Karmali et al., 1983). 

Approximately, 2.8 million acute illnesses around the world are attributed to STEC (Majowicz 

et al., 2014), with 60,000 of these occurring in the US annually (Scallan et al., 2011). Many 

infections in humans are attributed to direct or indirect contact with food or water contaminated 

with cattle feces (Mir et al., 2016). Ruminants, especially cattle are the main reservoir who are 

asymptomatic carriers of O157 and non-O157 STEC strains with the recto-anal junction (RAJ) 

as the main colonization site (Wang et al., 2016). Most E.coli strains are commensals within 

the gut of cattle (Mir et al., 2016; Wang et al., 2016), and are shed into the environment through 

feces. Cattle that shed more than 104 CFU STEC per gram of feces are defined as "super-

shedders" (SS), which are considered the primary source of STEC transmission on farms  

(Matthews et al., 2005). Although the incidence of E. coli O157:H7 causing disease in cattle is 

low, the prevalence of STEC including both E. coli O157:H7 and non-O157:H7 serotypes is 

not low in cattle ranging from 38.5%-75.0% (Cho et al., 2007). Both E. coli O157:H7 and non-

O157:H7 serotypes can cause human disease and among non-O157 infections, up to 70% of 

                                                 
1 Chapter 2 was published as a part of a paper: Pan Z, Chen Y, McAllister TA, Gänzle M, Plastow G, Guan LL. Abundance 

and Expression of Shiga Toxin Genes in Escherichia coli at the Recto-Anal Junction Relates to Host Immune Genes. Front 

Cell Infect Mi. 2021;11:633573. 
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human infections are attributed to six non-O157 STEC serogroups (O26, O45, O103, O111, 

O121, and O145) (Bosilevac and Koohmaraie, 2012). 

 Shiga toxins are the main virulence factors in STEC and other pathogenic bacterial 

species with the prototype toxins being designated as Shiga toxin 1a (stx1a) and Shiga toxin 2a 

(stx2a, Melton-Celsa, 2014). These toxins differ in their virulence and host specificity  (Fuller 

et al., 2011; Lee and Tesh, 2019; Petro et al., 2019) with stx2 being most commonly associated 

with severe illness (HUS, hospitalization, and bloody diarrhea) in humans (Karmali et al., 1983; 

Panel et al., 2020). For example, 40% HUS, 41% hospitalization, and 43% bloody diarrhea 

cases reported in humans can be attributed to detectable stx2 (Panel et al., 2020). Therefore, 

identifying the abundance of stx1 and stx2 genes in cattle is important as they could harbour 

and shed STEC. However, information on the abundance and expression of stx1 and stx2 genes 

in vivo (e.g. in RAJ) of feedlot cattle is lacking. We hypothesize that the expression and 

abundance of stx genes at the RAJ is influenced by cattle breed and expression of host immune 

genes. Genetic variation in the host has previously been linked to the level of expression of 

immune genes in SS, which also affected the attachment and the colonization of the mucosa by 

STEC (Wang et al., 2018). The understanding of abundance and expression of stx genes in 

STEC at the main colonization site and its linkage with host immune gene expression will 

provide insight into the host-STEC interactions at the RAJ of feedlot cattle.   

 

2.2 Materials and methods  

2.2.1 Animal populations and sample collection 



 

 

86 

In total, rectal tissue and contents were collected over two consecutive years (2014 and 2015) 

from 143 cattle representing Angus (AN, n=47), Charolais  (CH, n=48), and a crossbreed named 

Kinsella Composite (KC, n=48) breed that were reared at the University of Alberta Roy Berg 

Kinsella Research Station. Sampling was performed when animals were slaughtered at a 

comparable age (Year 2014: 492d ± 30d; Year 2015: 496d ± 22d; P=0.11) in each year. Ten 

cm2 of rectal tissue was collected from RAJ and 10 mL rectum contents were squeezed from 

each steer within 30 min after slaughter at a federally approved abattoir. The samples were 

deep-frozen immediately in liquid nitrogen and stored at -80 °C until use.  

2.2.2 DNA and RNA extraction 

Tissue and content samples of RAJ were ground into fine powder in liquid nitrogen and mixed 

homogeneously before DNA and RNA extraction. DNA was isolated from 0.1g powdered 

tissue using repeated bead beating and a column (RBBC) method (Yu and Morrison, 2004) and 

purified using the QIAmp Stool Mini Kit (Qiagen, Germany). The quantity and quality of DNA 

were assessed based on absorbance at 260 and 280 nm using the ND-1000 spectrophotometer 

(NanoDropTechnologies, Wilmington, USA). Trizol reagent (Invitrogen Corporation, Carlsbad, 

CA, USA) was used to isolate total RNA from 0.1 g powdered tissue following the 

manufacturer's protocol. RNA was purified using the RNeasy MinElute Cleanup kit (Qiagen, 

Valencia, CA, USA). Quality and quantity of RNA were assessed using Agilent 2200 

TapeStation (Agilent Technologies, Santa Clara, CA, USA) and Qubit 3.0 Fluorometer 

(Invitrogen, Carlsbad, CA, USA), respectively. DNA was extracted from 0.5g of the RAJ 
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contents from each steer using the same bead beating method described above. DNA was 

obtained from contents of 131 steers and was used for downstream analysis.  

2.2.3 Assessment of Shiga toxin gene abundance using qPCR 

The DNA extracted from contents and tissues was used to evaluate the abundance of Stx genes 

using quantitative PCR (qPCR) with primers for the detection of all subtypes of stx1 and stx2 

(Table 1) and SYBR Green I reagent (Fast SYBR green master mix; Applied Biosystems, 

Foster City, CA, USA). The qPCR was conducted in triplicates for each sample on a 

StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with 

the program of one cycle at 95°C for 20 s followed by 40 cycles of 3 s at 95°C, 30 s at 60°C. 

Melting curve analysis with a temperature gradient of 0.1°C/s from 60 to 95°C with 

fluorescence signal measurement at 0.1°C intervals was performed to make sure targeted 

products were amplified specifically. The standard curve method was used to quantify stx1 

and stx2 copy numbers. The standard curve was constructed by genomic DNAs isolated from 

strain E.coli FUA 1403 and E.coli FUA 1400, which contain stx1 and stx2, respectively. The 

formula to calculate the absolute copy number of standard curves is described as follows (Li 

et al., 2009): 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 (
#

𝑔 𝑆𝑎𝑚𝑝𝑙𝑒
) =

𝐴𝑚𝑜𝑢𝑛𝑡 (
𝑔 𝐷𝑁𝐴

𝑔 𝑆𝑎𝑚𝑝𝑙𝑒
) ∗ 6.022 ∗ 1023(

#
𝑚𝑜𝑙

)

𝐿𝑒𝑛𝑔𝑡ℎ (𝑏𝑝) ∗ 660 (
𝑔 𝐷𝑁𝐴

𝑚𝑜𝑙 ∗ 𝑏𝑝
)

 

  where 6.022 * 1023 represents the Avogadro's constant (# / mol); Length (bp) is the length 

of template DNA; 660 represents the average mass of 1bp double-strand DNA. The copy 

number of stx1 or stx2 was determined by relating threshold cycle (CT) values to standard 
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curves based on the following regression formula (Li et al., 2009): Y = -3.193 * log X + 35.003 

(Y, CT value; X, copy number of 16S rRNA gene) (r2 = 0.996). The qPCR amplification 

efficiency was 88-98%.  

2.2.4 Detection of expression of stx and host immune genes using qRT-PCR 

Total RNA (0.1 µg) was further subjected to reverse transcription to synthesize cDNA using a 

cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Single-stranded cDNA was amplified 

using Oligo(dT)12-18 (Life Technologies, Carlsbad, CA, USA) and SuperScriptTM II RT (Life 

Technologies, Carlsbad, CA, USA) was used to synthesize double-strand cDNA. Primers for 

the detection of eae expression are shown in Table 1.1. Quantitative RT-PCR of stx1, stx2 and 

eae was then performed using the double-strand cDNA and primers (Table 1.1) with the same 

thermal cycling program described above in triplicates for each sample. The expression of stx1, 

stx2 and eae was quantified by standard curve method described above.  

 In addition, four genes reported to be differentially expressed between SS and non-

shedding (NS) cattle (Wang et al., 2016); chemokine (C-C motif) ligand 21 (CCL21), 

lymphotoxin beta (LTB), CD19 molecule (CD19) and 4-domains, subfamily A, member 1 

(MS4A1) were selected to study their relationship with stx gene abundance and expression. The 

same qPCR amplification conditions were used for the four genes with their respective primers 

(Table 2.1). Four commonly used housekeeping genes, including bovine GAPDH, 18S rRNA 

genes, RPLP0, and the β-actin gene, were also quantified by qPCR (Wang et al., 2016). As β-

actin exhibited the most consistent Cq value it was used as the house-keeping gene for 
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evaluating relative gene expression. The relative expression of each gene (stx1, stx2, and 

immune genes) was measured by ΔCq value, which was calculated as (Wang et al., 2016): 

𝛥𝐶𝑞  = 𝐶𝑞𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒𝑠 − 𝐶𝑞𝑟𝑒𝑓𝑒𝑟𝑒𝑐𝑒 𝑔𝑒𝑛𝑒 

 with a higher ΔCq representing the lower expression while a lower ΔCq indicating higher 

expression. The qPCR amplification efficiency was 88-98%. 

2.2.5 Statistical analysis 

The PROC MIXED model in SAS (ver. 9.13; SAS Institute Inc., Cary, NC, USA) was used to 

analyze the stx1 and stx2 abundance as well as host gene expressions together with all potential 

2- and 3-way interactions among breeds, years, and sample types. In this statistical model, breed, 

sample type and year were analyzed as fixed effects with steers as the random effect. 

Interactions were removed from the model if they were not significant (P > 0.05). Least square 

means were compared using the Bonferroni mean separation method after the removal of 

insignificant interactions and the significance was considered at P <0.05. The difference of 

prevalence of stx1 and stx2 was analyzed using Fisher's exact tests. Non-parametric Mann-

Whitney U test in R was used to assess differences in host gene expression between Stx2+ 

(expressed) and Stx2- (not expressed) groups, with differences considered significant at P<0.05. 

Correlation analysis was performed based on Spearman's rank correlation coefficient (R) to 

identify relationships between expression of stx2 and host genes using the "ggcorrplot" package 

in R with significance at P<0.05.  

 Isomap, a novel method for nonlinear dimensional reduction (Tenenbaum et al., 2000), 

was applied to determine the effect of breed, and sampling year on the expression of immune 
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genes and stx2 using the "RDRToolbox" package in R. In addition, Davis-Bouldin-Index 

(DBIndex) was used to compute Euclidean metrics to validate the clustering patterns of the 

expression of immune genes and stx2, with the value ≤ 1 indicating a well-separated cluster  

(Davies and Bouldin, 1979). Correspondence analysis (CA) was used to identify relationships 

among expression patterns using the "FactoMineR" package (Tekaia, 2016). 

2.2.6 Identification of potential gene markers for stx gene expression using mathematic 

models 

The random forest model was used to identify predictive indicators for stx2 expression with the 

"RandomForest" package in R. The host gene expression data were divided into two groups: 

stx2+ (expressed) and stx2- (not expressed). Two-thirds of each group was used as training data, 

and the rest (one-third) was used for validation. The accuracy rate (number of samples 

recognized correctly / total number of samples) was calculated to determine the model 

classification performance. The mean decrease in accuracy was used to assess the importance 

of host genes as predictive indicators of stx2 expression. Variables with high mean decrease in 

accuracy indicate the higher contribution as compared to variables with low mean decrease 

accuracy (Han et al., 2016). The area under the ROC curve (AUC) was calculated to assess the 

robustness of the prediction model with the criteria being excellent (0.9-1.0), good (0.8-0.9), 

fair (0.7-0.8), weak (0.6-0.7) or fail (0.5-0.6) (Zhang et al., 2016). Moreover, the Boruta method, 

a random forest-based feature selection with the ability to remove less informative features, 

was used as a supportive approach to perform this prediction using the "Boruta" package in R 

(Kursa and Rudnicki, 2010). 
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2.3 Results 

2.3.1 Factors affecting the abundance and prevalence of stx1 and stx2 

The sampling year significantly impacted the abundance and prevalence of stx genes identified 

in RAJ samples (P<0.01), therefore, the effect of breed on the prevalence and abundance of 

stx1 and stx2 was analyzed separately for each year. The prevalence of stx1 and stx2 in tissue 

samples was not affected by breed in either year (Table 2.2). In year 1, the prevalence of stx1 

in contents was higher (P = 0.001, Table 2.2) in AN (n=18; 78%) compared to CH (n=7; 35%) 

and KC (n=6; 27%), and the prevalence of stx2 was higher (P < 0.001, Table 2.2) in AN (n=22; 

96%) and CH (n=20; 100%) than in KC (n=4; 18%). However, the prevalence of stx1 and stx2 

in content samples collected in year 2 was not affected by breed (Pstx1=0.069, Pstx2=0.272, Table 

2.2) with a tendency for breed to affect the prevalence of stx1.  

The abundance of stx1 and stx2 was affected (P < 0.001) by sample type (tissue vs. 

contents) for both years (Table 2.3). An interaction effect between breed and sample type for 

the abundance of stx1 and stx2 was detected in year 1 (Pstx1<0.001, Pstx2<0.001, Table 2.3), but 

not in year 2 (Pstx1=0.28, Pstx2=0.12, Table 2.3). In year 1, the abundance of stx1 in contents was 

affected by breed with its abundance higher in AN> CH> KC (P<0.001, Table 2.3), while its 

abundance in rectal tissue was under the detection limit (Table 2.3). For stx2, it was detected in 

both tissue and content samples in year 1 with no difference in the abundance of stx2 in tissue 

samples (Table 2.3), but with the higher abundance in rectal contents of AN and CH as 

compared to KC steers (P<0.0001, Table 2.3). For year 2, the abundance of stx1 or stx2 did not 
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differ among breeds for either tissue or contents (Table 2.3), with the abundance of stx1 and 

stx2 in tissue being higher compared to that in contents (Pstx1<0.001, Pstx2<0.001, Table 2.3), 

respectively.    

2.3.2 Expression of stx1 and stx2 associated with the rectal tissue of beef steers  

Expression of bacterial stx1 was not detected, and bacterial stx2 (defined as stx2+) was only 

detected in mucosal tissue from 13 cattle (2014: n=6, 2015: n=7, Table 2.4). The expression of 

stx2 was more common in KC (n=9; 70%) than in AN (n=2; 15%) and CH (n=2; 15%). The 

non-parametric Kruskal-Wallis test showed that stx2 expression did not differ among breeds 

(ΔCq AN=5.04; ΔCq CH=5.11; ΔCq KC=5.04; P= 0.31), but there was a trend for difference 

between sampling years (ΔCq Year 2014=4.94; ΔCq Year 2015=5.15; P = 0.06).  

2.3.3 Expression of selected immune genes in RAJ tissue from beef steers 

In year 1, the expression of four selected immune genes was not affected by breed. In year 2, 

only expression of CD19 and CCL21 differed among breeds (PCD19=0.02, PCCL21=0.0035, Table 

2.5). There was no difference (PMS4A1=0.36, PCD19=0.62, PCCL21=0.94, PLTB=0.54, Table 2.6) in 

the expression of the four genes between stx2+ and stx2- steers. Visually, host gene expression 

patterns from tissue samples were affected by year among all samples (ValueYear =0.81, Figure 

2.1A) as well as among stx2+ samples (ValueYear =0.75, Figure 2.1B). However, host gene 

expression patterns did not differ among breeds based on DBIndex clustering value among all 

samples (Valuebreed=9.30, Figure 2.2A) or among stx2+ samples (Valuebreed=1.64, Figure 2.2B). 

2.3.4 Association between expressions of stx2 and host immune genes  
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Expression of stx2 was negatively correlated with the expression of MS4A1 (R=-0.56, P=0.05, 

Table 2.7) and positively correlated with the expression of LTB (R=0.60, P=0.05, Table 2.7). 

Neither CD19 nor LTB clustered with Stx 2+ samples but CD19 and LTB were positively 

correlated (R=0.98, P=0.00, Table 2.7). Correspondence analysis revealed that most of the 

samples (12 out of 13, outlier: KC14.105) grouped together in the CA plot with MS4A1 and 

CCL21 (Figure 2.3). In the correspondence analysis (CA), Dimension 1 (Dim1) represented up 

to 94% of the importance with CD19 and LTB contributing the most to Dim1, with Dim2 only 

representing 4.14% of the variation (Figure 2.3).   

2.3.5 Prediction model to discover potential gene markers for stx2 mRNA abundance  

Further analysis using a random forest model classifier based on expressions of four host 

immune genes MS4A1, LTB, CCL21, CD19 revealed the accuracy for predicting stx2 mRNA 

abundance was 96.5% for the training data and 93.6% for the validation data. The AUC value 

of 0.908 for the ROC curve also revealed a high accuracy and a robust prediction (Figure 2.4A). 

As an indicator of stx2 expression, the prediction accuracy of MS4A1, LTB, CCL21, CD19 was 

47.55%, 45.35%, 41.44%, 36.80%, respectively. Further Boruta analysis also revealed that all 

four immune genes were attributes for stx2 expression, with the ranking MS4A1 > LTB = CD19 > 

CCL21 (Figure 2.4B).  

 

2.4 Discussion 

This study characterized the abundance, prevalence, and expression of the stx1 and stx2 at the 

recto-anal junction in feedlot steers of three breeds over two consecutive years. Several studies 
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have quantified the copy number of stx1 and stx2 in cattle feces using qPCR, with estimates 

ranged from 0 to 5.6 log10(gene copies/g) (Imamovic and Muniesa, 2011; Verstraete et al., 

2014). Our estimates of the copy number of stx1 and stx2 in contents are within these ranges, 

with 1.24 to 4.13 log10(gene copies/g) (year 1, stx1), 0 to 0.45 log10(gene copies/g) (year 2, stx1), 

0.86 to 5.38 log10(gene copies/g) (year 1, stx2), and 4.51 to 5.09 log10(gene copies/g) (year 2, 

stx2). However, there was a markable difference in the copy number of stx in tissue samples 

when compared to RAJ contents. The stx genes associated with RAJ tissue samples ranged from 

5.62 to 6.07 log10(gene copies/g) (year 1, stx2), 6.71 to 6.85 log10(gene copies/g) (year 2, stx1) 

and 5.61 to 5.76 log10(gene copies/g) (year 2, stx2). We speculate that the high stx copy numbers 

detected from tissues likely represent the higher possibility of the STEC colonization on RAJ 

mucosa. Indeed, a previous study has reported that the abundance of E.coli O157 strain was 

inconsistent between RAJ tissues and content samples (Keen et al., 2010), suggesting that stx- 

carrying bacteria were associated with the epithelium of RAJ in the steers in addition to their 

presence in digesta. Based on our results, digesta samples only present a proportion of the actual 

STEC that inhabit in the RAJ of cattle, with the higher population directly colonizing epithelial 

tissue. These results suggest that fecal samples together with rectal mucosa swabs or biopsies 

would result in a more accurate estimation of stx gene abundance in cattle. 

 Our study further revealed that the abundance and prevalence of the stx genes were 

affected by breed and sampling year, and such effects were stx type dependent. However, a 

previous study found no relationship between cattle breeds and the presence of stx at the RAJ 

(Mir et al., 2016). The inconsistency between our and previous findings may be due to 
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differences in breed, age (calf (Mir et al., 2016) vs. steer), and diets of the cattle. In this study, 

Angus, Charolais, and Kinsella Composite breeds were used to examine the abundance and 

prevalence of stx genes, while previous studies collected samples from hybrid Angus-Brahman 

beef calves (Mir et al., 2016). Steers in our study were fed a high grain diet and slaughtered at 

similar body weight, but still differed in stx1 and stx2 prevalence across breeds, suggesting the 

highly individualized response to STEC colonization. Therefore, host genetics may alter the 

gut environment through influences on immunity and the microbiome (Wang et al., 2018), 

which may influence the prevalence of STEC and the prevalence and abundance of stx genes 

in the samples. The observed differences between sampling years suggest that environmental 

factors together with host genetics impact the prevalence of stx genes in the RAJ of steers. 

Higher ambient temperatures have been shown to be associated with increased prevalence of 

both stx1 and stx2 in the rectal mucosa of both dairy and beef cattle (Tahamtan et al., 2010; 

Arumugam et al., 2011). For our study, the average ambient temperatures were similar between 

the two years (3.25℃ for 2014 vs 5.63℃ for 2015) and as a result it is unlikely to account for 

the difference in detection of stx1 and stx2 between years. Other ecological factors such as 

seasonality, water and soil sources, and factors associated with farm management may also 

contribute to varied STEC colonization. Future long term monitoring studies are needed to 

determine to what extent these environmental factors contribute to the prevalence of both stx1 

and stx2 in the RAJ of cattle.  

 Although the presence of both stx1 and stx2 genes were detected, only expression of 

stx2 was found in the RAJ tissue of beef steers. Severe STEC infections that result in HUS are 
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mostly associated with stx2 as its product is 400 times more toxic (as quantified by LD50 in 

mice) than the product of stx1 (Riley et al., 1983; Wells et al., 1983). Stx2-producing E.coli 

strains were reported to be in 71 % (34 out of 48) of children with HUS, while only 40% (4 out 

of 10) of patients were associated with stx1-producing E.coli strains (Ludwig et al., 2001). It is 

noticeable that the prevalence of stx2 gene expression in steers (8.5% for year 1, 9.7% for year 

2) is similar to the reported super shedder rate (~10% (Mattews et al., 2005)), suggesting the 

expression of stx2 might be highly correlated with super shedding (SS) and cattle with stx2 

expression might potentially be SS. Interestingly, all stx2+ samples were from KC steers in 

2014, suggesting KC might be more prominent carriers of STEC and further highlighting the 

role of breed.  

 We further speculate that the stx2+ cattle may have higher colonization of STEC. As the 

adherence factor intimin encoded by eae gene enables STEC colonization (Farfan and Torres, 

2012) and the presence of eae is correlated with the formation of attaching and effacing (A/E) 

lesions (Wieler et al., 1996) by E. coli O157:H7 at the RAJ (Sheng et al., 2006), we also 

assessed the expression of it in this study. The expression of eae was detected in 9 out of 131 

RAJ tissue samples (Data not shown). Of these, only two samples were stx2 positive. A 

previous study isolated 326 E.coli strains from 304 fecal samples of clinically healthy wild 

boars, and found that 10 samples were eae positive (Alonso et al., 2017). Presently, only one 

stx2+ eae+ E.coli strain (E.coli O145:H28) associated with HUS in humans has been 

characterized (Alonso et al., 2017). Although the occurrence of eae, alone or in combination 

with stx2 is sporadic, diverse E.coli serotypes exist in beef cattle and among them certain 
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serotypes could be potential human pathogens. Compared to previous studies that only reported 

expressions of eae and stx from fecal samples, our study is the first to report expressions of 

these two genes in RAJ mucosa. The detection of stx+, eae+, and stx2+eae+ cattle suggests 

the importance of including all serotypes instead of only E.coli O157:H7 for future SS research 

in practice to the prevention of SS transmission and the mitigation of potential human infections. 

Future study is needed to isolate E. coli serotypes who carry stx+, eae+, and stx2+eae+ genes 

and evaluate their abundances in RAJ and feces of beef steers to verify whether they are SS. 

Although the abundance of O157 strains was not quantified in this study, our study highlights 

the importance to use marker genes to assess all STEC populations as opposed to only E. coli 

O157:H7. In addition to eae genes, Enterohemorrhagic E. coli autotransporters (Eha) A and B 

autotransporters that can colonize bovine epithelia are vital adhesin factors in STEC and are 

more prevalent among STEC strains (97% and 93%, respectively) (Easton et al., 2011). 

Particularly, EhaA promoted adhesion to primary epithelial cells of bovine RAJ and should be 

explored to identify relationships between EhaA and host immunity to gain a fundamental 

understanding of host-STEC interactions and STEC colonization. Other adhesin factors that 

play a role in STEC colonization of bovine epithelia such as hemorrhagic coli pili (HCP), EspP 

rope-like fibers (Farfan and Torres, 2012) should also be explored to identify relationships 

between STEC adhesin factors and host immune gene expressions.  

 Previous studies have identified differences in the expression of MS4A1, CD19, CCL21, 

LTB genes at the RAJ of super-shedder vs non-shedders (Corbishley et al., 2014; Wang et al., 

2016). These genes are involved in B cell proliferation (Uchida et al., 2004), B cell receptor 
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signaling pathway (Karnell et al., 2014), and the migration of B cells from bone narrow to 

lymphoid tissues (Bowman et al., 2000), as well as the induction of the inflammatory response 

system, respectively (Browning et al., 1995). The observed higher relative expression of CD19 

(a membrane co-receptor found on all B cells) in KC steers and the higher relative expression 

of CCL21 in AN and KC than CH in 2015, suggests that expression of this gene in cattle is 

influenced by breed. Breed-driven gene expression against infections and biological processes 

have been explored in bovine tissues and cells. Examples include, the reduced expression of 

the ALDOA (Fructose-bisphosphate aldolase A) in the longissimus muscle of Wagyu- as 

compared to Piedmontese-sired offsprings (Lehnert et al., 2007), and the up-regulation of CD9 

(CD9 antigen) and BoLA-DQB (BoLa Class II histocompatibility antigen, DQB*101 beta chain) 

in the macrophage of Sahiwalas compared to Holstein cattle in response to Theileria annulate 

infection (Glass and Jensen, 2007). In our previous study, the variation in expression of immune 

genes between SS and NS, could be due to genetic variation (Wang et al., 2016), suggesting 

future genome-wide association studies (GWAS) are needed to identify the genotypes and/or 

SNPs responsible for expression of immune genes that could directly or indirectly affect STEC 

colonization and expression of virulence genes. 

   Lymphotoxin beta (LTB) induces an immune response and is crucial for the initiation of 

Lymphoid follicle (ILF) development (McDonald et al., 2005). Lymphoid follicles (ILFs) in 

the bovine rectum are regarded as the reservoir of secretory antibodies in the gut, serving as a 

frontline defensive system in the gastrointestinal (GI) tract (Tsuji et al., 2008). The positive 

correlation between stx2 expression and relative expression of LTB suggests that cattle with 
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higher stx2 expression have lower LTB expression, which may lead to decreased production of 

lymphotoxin and reduced ILF development in the RAJ. Impaired ILF has been associated with 

a 10 to 100-fold increase in the colonization of Enterobacteriaceae in the ileum of mice 

(Bouskra et al., 2008), and 100-fold increase in anaerobic bacteria in the small intestine of mice 

(Fagarasan et al., 2002). Also, a previous study indicated that super-shedders harbor a distinct 

fecal microbiota compared to non-shedders (Xu et al., 2014). These data suggest that changes 

in LTB expression could lead to impaired ILF function and altered microbiota, which could 

promote STEC colonization in cattle. Expression of MS4A1 was negatively correlated with stx2 

expression and MS4A1 was in the dominant position of stx2+ samples from the correspondence 

analysis, suggesting the vital role of MS4A1 in regulating stx2 expression and partially 

reflecting a strengthened adaptive immunity in stx2+ cattle. MS4A1 encodes CD20 which is 

expressed from late pro-B cells through memory cells, with its function to enable optimal B 

cell immune responses against T-independent antigens (Kuijpers et al., 2010). Hence, these data 

suggest that MS4A1 is the key gene in connecting stx2 expression to host adaptive immunity, 

and their negative correlation suggests the establishment of host recognition mechanisms for 

stx2 expression.  

 To our knowledge, this study is the first to explore whether host gene markers were 

related to stx expression and potential STEC colonization using artificial intelligence-based 

approaches (Random Forest model and Boruta method). Based on results of mean decrease 

accuracy in the Random Forest Model and Boruta method and the biological functions of these 

four immune genes, our results highlight the relationship between host immune genes and stx2 
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expression. Of the genes studied, MS4A1 was the best predictor of the stx2 expression and it 

was in the stx2+ sample cluster in the CA map. We used the non-parametric dimensionality 

reduction method, Isomap, to assess the relationship between the expression of host genes and 

stx2, and results supported the stx2 expression is closely associated with host gene expression 

patterns. Isomap was initially developed for computational visual perception (Tenenbaum et al., 

2000) and then used to investigate ecosystem crosstalk (Mahecha et al., 2007), human disease 

phenotypes and gene expression (Dawson et al., 2005). Compared to principal component 

analysis (PCA), this approach is less restrictive since it does not require any specific distribution 

(i.e. normal distribution) of data (Dawson et al., 2005). The clustering patterns generated by 

PCA were similar to Isomap results, which could be due to the limited number of genes 

analyzed. But the Isomap approach is suitable for mammalian studies since interactions among 

genetics, environment, and microbes are by nature, nonlinear (Nicholson et al., 2004). 

Regardless, our previous studies have reported 57 differential expressed genes between SS and 

NS (Wang et al., 2018) and many genes interplay in cattle to affect their immunity and 

microbiota, and as a consequence the complexity of gene-gene interactions should be taken into 

account for future studies. Further explorations to investigate more DE genes and their 

interactions either at the individual or whole transcriptome level could identify and verify the 

predictiveness of host genes as markers of stx2 expression. In addition to the genetic 

background that alters the predictiveness of random forest model, mucosa attached microbes 

(bacteria and viruses) can also impact host immune gene expressions which should also be 

considered for the future construction of the prediction model. Our previous study identified 
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relationships between RAJ mucosa-associated bacteria and expression of 19 out of 57 DE 

immune genes identified from SS compared to NS (Wang et al., 2018). Although four immune 

genes were not part of these 19 DE genes, future studies to include the expression of these genes 

are needed to better understand STEC colonization and its relationship with host immune genes 

and model construction.  

 

2.5 Conclusion  

 Taken together, our results revealed that cattle genetic background (breed) and sampling 

year could affect the abundance and prevalence of STEC stx1 and stx2 genes in the RAJ of 

feedlot cattle. We identified the relationships between stx2 expression and the expression of 

host immune genes, and found that stx2 expression could be driven by expression of particular 

host immune genes (e.g., MS4A1). Our study established a model to correlate host gene 

expression to stx2 expression, suggesting that its expression can be driven by the host. Although 

Stx detection from feces is a more direct method, the findings from this study revealed that it 

may not represent the true population of STEC colonizing the RAJ, which could be influenced 

by epithelial immunity. Future studies are needed to elucidate mechanisms behind host-STEC 

interactions by applying methods including genome wide association studies (GWAS) that 

determine potential genetic variations related to host-STEC interactions and also explore 

digesta and mucosal attached microbiota variations to develop methods for the potential 

identification of true STEC in cattle.   
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2.7 Tables and Figures 

Table 2.1. Primer sequences, amplicon sizes, and annealing temperature for qPCR assays 

Genes Oligo sequence (5' to 3') Amplicon 

size, bp 

Reference AnnealingTemp, °C 

stx1 F: GTCACAGTAACAAACCGTAACA 

R: TCGTTGACTACTTCTTATCTGGA 

95 Jothikumar 

& 

Griffiths, 

2002 

60 

stx2 F: ACTCTGACACCATCCTCT 

R: CACTGTCTGAAACTGCTC 

118 He et al, 

2020 

60 

eae F: TGCTGGCATTTGGTCAGGTC 

R: 

CGCTGA(AG)CCCGCACCTAAATTTGC 

175 Delmas et 

al, 2009 

60 

CCL21 F: GCTATCCTGTTCTCGCCTCG 

R: ACTGGGCTATGGCCCTTTTG 

222 Wang et al, 

2016 

60 

LTB F: TGGGAAGAGGAGGTCAGTCC 

R: TAGCTTGCCATAAGTCGGGC 

215 Wang et al, 

2016 

62 

CD19 F: CTCCCATACCTCCCTGGTCA 

R: GCCCATGACCCACATCTCTC 

127 Wang et al, 

2016 

64 

MS4A1 F: GCGGAGAAGAACTCCACACA 

R: GGGTTAGCTCGCTCACAGTT 

206 Wang et al, 

2016 

 

 

 

64 

β-actin F: CTAGGCACCAGGGCGTAATG 

R: CCACACGGAGCTCGTTGTAG 

177 Malmuthuge 

et al, 2012 

 

60 
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Table 2.2. The prevalence analysis of stx1 and stx2 for samples collected from the rectal 

tissue and content in 2014 and 2015. 

  Year 1 (2014) Year 2 (2015) 

Sample 

type 
Breed 

No. 

(%)Stx1-

positive 

P value 
No.(%)Stx2-

positive 
P value 

No.(%)Stx1-

positive 
P value 

No.(%)Stx2-

positive 
P value 

Tissue 

AN 0 (0) a 

1 

23 (100) 

1 

24 (100) 

1 

24 (100) 

1 CH 0 (0) 24 (100) 23 (100) 23 (100) 

KC 0 (0) 24 (100) 24 (100) 24 (100) 

AN 
18 

(78) 

0.001*** 

22 (96) 

<0.001*** 

1 (6) 

0.069 

17 (94) 

0.272 

Content CH 7 (35) 20 (100) 0 (0) 24 (100) 

KC 6 (27) 4 (18) 4 (17) 24 (100) 

a Values presented here were numbers and percentages of Stx-positive samples. Fisher’s exact 

test was used to examine the differential prevalence of stx1 and stx2 among three breeds within 

each sample type. For comparisons, P-values were included along with the level of statistical 

significance (P≤0.001***). 
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Table 2.3. Abundance of stx1 and stx2 using q-PCR for samples collected from the rectal 

tissue and content in 2014 and 2015.  

Year  Breed AN CH KC P-Value 

 Type T C T C T C Breed Type Breed*Type 

2014 

stx1   N/D a  

 4.09 

(5.20)  N/D  

 1.73 

(5.79)  N/D  

 1.40 

(5.47) 

 <0.0001 

*** 

 <0.0001 

*** 

 <0.0001 

*** 

stx2  

6.02 

(0.08) 

4.92 

(1.01) 

5.31 

(0.05) 

5.91 

(0.22) 

5.70 

(0.05) 

1.00 

(4.65) 

 <0.0001 

*** 

 <0.0001 

*** 

 <0.0001 

*** 

2015 

stx1  

6.78 

(0.02) 

0.25 

(1.11) 

6.82 

(0.03) N/D  

6.76 

(0.03) N/D  0.31 

 <0.0001 

*** 0.28 

stx2  

5.70 

(0.02) 

4.58 

(1.58) 

5.73 

(0.03) 

4.91 

(0.20) 

5.67 

(0.03) 

5.06 

(0.31) 0.17 

 <0.0001 

*** 0.12 

 

a The value was presented as Mean (SE) after log10 transformation (gene copy numbers / g 

sample). T represents tissue samples, C represents contents. For content and tissue samples, 

the lowest abundance that can be detected corresponds to 200 (2.3 after log10 transformation) 

gene copies/g and 40 (1.5 after log10 transformation) gene copies/g, respectively. Therefore, 

stx gene abundance that lower than 2.3 log10(gene copies/g) and 1.5 log10(gene copies/g) for 

content and tissue samples was defined as ‘underdetermined’ (‘N/D’) which is assumed to be 

‘0’ in our analysis, respectively. For comparisons among different factors and among 

interaction effects, P-values were included along with the level of statistical significance 

(P≤0.001***). 
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Table 2.4. Profiles of positive stx2 expression samples including sample ID, year, and 

breed.  
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Table 2.5. Quantification for relative expressions of four host gene among breeds using 

qRT-PCR for rectal tissue samples collected in 2014 and 2015. 

Year Immune genes AN CH KC P-Value 

 

 

2014 

MS4A1  2.80 (0.36) a 3.42 (0.29) 3.76 (0.44) 0.13 

CD19  -0.14 (0.38) -0.32 (0.52) -0.06 (0.35) 0.91 

CCL21 3.88 (0.45) 4.64 (0.35) 4.82 (0.46) 0.26 

LTB  -0.96 (0.48) -0.97 (0.60) -1.30 (0.44) 0.86 

 

 

2015 

MS4A1  3.76 (0.27) 3.65 (0.25) 4.26 (0.30) 0.26 

CD19  3.61 (0.28) 3.50 (0.29) 4.51 (0.24) 0.02* 

CCL21  5.94 (0.25) 4.90 (0.21) 5.87 (0.23) 0.0035*** 

LTB  4.31 (0.44) 4.36 (0.40) 5.47 (0.36) 0.07 

a The value was presented as Mean (SE) of ΔCq value that was calculated from each tissue 

sample under different year and breeds. For comparisons among different factors and 

interaction effects, P-values were included with the level of statistical significance (P<0.05*, 

P≤0.001***). 
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Table 2.6. Expression differences for four host genes between Stx2+ and Stx2- samples 

using non-parametric Mann-Whitney U test. 

Immune genes 
Mean 

Z-score P-Value 
Stx2- Stx2+ 

MS4A1 3.65 3.44 0.92 0.36 

CD19 1.90 1.54 0.49 0.62 

CCL21 5.02 5.04 0.08 0.94 

LTB 1.90 1.30 0.61 0.54 

For comparisons between Stx2+ and Stx2- group, P-values were included with the level of 

statistical significance (P<0.05*, P≤0.001***). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 
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Table 2.7. Correlation analysis among relative expressions of host genes and stx2 

expression among Stx2+ samples. 

R-value was defined as the correlation coefficient ranged from -1 to 1. For correlations with 

different genes, P-values were included along with the level of statistical significance (P<0.05*, 

P<0.01**, P≤0.001***). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Stx2RNA MS4A1 CD19 CCL21 LTB 

Stx2RNA 
R-Value 1.00 -0.56 0.51 -0.44 0.60 

P-Value 0.00 0.05* 0.08 0.13 0.03* 

MS4A1 
R-Value  1.00 -0.55 0.39 -0.56 

P-Value  0.00 0.05* 0.19 0.05* 

CD19 
R-Value   1.00 0.19 0.98 

P-Value   0.00 0.53 0.00*** 

CCL21 
R-Value    1.00 0.09 

P-Value    0.00 0.78 

LTB 
R-Value     1.00 

P-Value     0.00 
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Figure 2.1. Comparisons of host gene expression patterns using non-parametric method 

Isomap and DBIndex value for sampling year effect. 

Comparisons were performed among all samples (A) as well as among Stx2+ samples (B). 

Black dots and red dots refer to samples collected in 2014 and 2015, respectively. DBIndex 

value was shown on the right corner of each figure. The lower DBIndex value, the well-

separated cluster pattern.  
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Figure 2.2. Comparisons of host gene expression patterns using non-parametric method 

Isomap and DBIndex value for breed effect.  

Comparisons were performed among all samples (A) as well as among Stx2+ samples (B). 

Each dot represents a samples with black, red, and blue dots representing Angus, Charolais, 

Kinsella Composite breed. DBIndex value was shown on the right corner of each figure. The 

lower DBIndex value, the well-separated cluster pattern.  
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Figure 2.3. Assessment of associations between host immune gene expressions and Stx2+ 

samples using correspondence analysis.  

Red triangles and blue dots refer to host genes and Stx2+ samples, respectively. For example, 

“AN14.105” means the number of this sample is 105, breed is Angus and the sample was 

collected in 2014.  
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Figure 2.4. Assessment of Random Forest model using ROC curve and Burota method. 

(A) Assessment of classification performance of random forest model using area under ROC 

(AUC). Sensitivity (y-axis) represents the fraction of samples with positive Stx2 expression that 

the test correctly identifies as positive. Specificity (x-axis) represents the fraction of samples 

without Stx2 expression that the test correctly identifies as negative.  

(B) Rank of host immune genes as markers for Stx2 expression prediction using Boruta method. 
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Chapter 3. Microbial interaction-driven community differences as revealed by network 

analysis2 

 

3.1 Introduction 

Assessing microbial profiles using diversity, composition, and abundance measurements are 

broadly adopted approaches that have been widely applied to determine the role of the 

microbiome in host health. For example, the lower richness of human fecal microbiota is 

associated with dyslipidemia and insulin resistance leading to obesity (Chatelier et al., 2013), 

and higher evenness of milk/teat microbiota is associated with dairy cow mastitis (Derakhshani 

et al., 2020). In addition to these quantitative measures, microbial taxa interact within ecological 

niches, forming “micro-communities” that may function collectively (Hirano and Takemoto, 

2019). Such microbial interactions can be influenced by the host, which in turn affects the host’s 

physiological activities. Hence, microbial interactions, together with microbial-host 

interactions, are critical for the establishment, maintenance, and function of microbiota (Zhou 

et al., 2010).  

The traditional and commonly used approach to identify microbial interactions is the 

construction of microbial co-occurrence networks using correlation-based methods (Pearson’s 

or Spearman’s correlation coefficient) (Zhang and Horvath, 2005; Hirano and Takemoto, 2019; 

Derakhshani et al., 2020; Guo et al., 2020). These methods are prone to detecting spurious 

correlations among low abundance taxa (Xia, 2020) and can lead to an ill-defined understanding 

                                                 
2 Chapter 3 was published as a part of a paper: Pan Z, Chen Y, Zhou M, McAllister TA, Guan LL. Microbial interaction-

driven community differences as revealed by network analysis. Comput Struct Biotechnology J. 2021;19:6000–8. 
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of microbial interactions. These conventional methods also adopt subjective thresholds to 

define significant microbial interactions largely based on known biological information, while 

appropriate thresholds are hard to select, particularly for less studied and low abundant 

microorganisms (Zhou et al., 2010; Deng et al., 2012). Hence, effective ways to construct 

microbial co-occurrence networks are needed to enable an in-depth understanding of structural 

differences in microbial communities and how these could affect host-microbial interactions. 

Shiga toxin-producing Escherichia coli (STEC) causes foodborne diseases that can lead 

to severe human infections (i.e. bloody diarrhea, hemolytic uremic syndrome) (Karmali et al., 

1983). Cattle are the main asymptomatic carriers of STEC with the rectal-anal junction (RAJ) 

being the main colonization site (Sheng et al., 2006). As a result, Cattle can shed STEC to the 

surrounding environment and therefore promote cattle-cattle/human transmission 

(Donkersgoed et al., 2001; Munns et al., 2015). Our recent research has reported that host (i.e. 

host genetics, immunity, microRNAs (Wang et al., 2016, 2017, 2018, 2021)) and microbial 

interactions may play a role in affecting STEC colonization in cattle. In addition, Shiga toxins 

(stx) are major virulence factors in STEC with prototype toxins being designated as Shiga toxin 

1 (stx1) and Shiga toxin 2 (stx2) (Fraser et al., 2004). Our recent study revealed that stx2 

expression was associated with host immune gene expression and potential STEC colonization 

(Pan et al., 2021). Although distinctive fecal microbial communities have been reported in 

super-shedder (cattle shed > 104 STEC in feces per gram, SS) compared to non-shedders (Xu 

et al., 2014), little knowledge is derived from stx2 in STEC and its relationships with RAJ 

microbiota and microbial interactions. We speculated that microbial interactions together with 
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the diversity and composition of RAJ microbiota are associated with stx2 expression and STEC 

colonization in cattle. Hence, this study aimed to assess the rectal microbial communities and 

interactions in response to stx2 expression in STEC at the RAJ, and the role of microbiota 

divergence in abundance among microbial interactions using the (Zhou et al., 2011) (RMT)-

based method and within-/among- module connectivity (Guimerà and Amaral, 2005). We 

aimed to identify keystone taxa and low abundant taxa contributing to microbial interaction 

networks and structural stability to better understand the role of rectal microbiota in stx2 

expression and potential STEC colonization in beef cattle. 

 

3.2 Materials and methods 

3.2.1 Animal study and sample collection  

The animal trial and identification of stx2 gene abundance and expression were described in 

Chapter 2. Briefly, ten cm2 recto-anal junction (RAJ) tissue and 10 mL rectal contents were 

collected from a total of 143 feedlot cattle (585.84 ± 64.99 kg) within 30 min after slaughter at 

a federally approved abattoir.  

Extraction of DNA and RNA from powdered tissue, and the assessment of DNA and RNA 

quality were described in Chapter 2. The detection of copy numbers of stx2 gene from DNA 

using PCR and stx2 transcript from RNA using RT-qPCR are also described in Chapter 2. Both 

PCR and RT-qPCR were conducted in triplicate for each sample and  followed the same thermal 

program on a StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City, CA, 

USA): one cycle at 95°C for 20 s followed by 40 cycles of 3 s at 95°C, and 30 s at 60°C. Twelve 



 

125 

 

rectal digesta samples collected from steers whose mucosal samples were confirmed to possess 

stx2 gene without expression (defined as Stx2- group, n=6) in the bacteria, and those with stx2 

that was expressed (defined as Stx2+ group, n=6) in STEC were selected with minimized 

differences in body weight and age at slaughter between two groups based on one-way ANOVA 

(Pbody weight =0.07, Pslaughter age =0.30, Table 3.1). 

3.2.2 Amplicon sequencing and microbial community analysis  

Total genomic DNA was extracted from frozen rectal digesta samples using repeated bead 

beating and a column (RBBC) method, and purified using the QIAmp Stool Mini Kit (Qiagen, 

Germany) following the manufacturer’s protocols. The concentration and quality of DNA were 

further determined using the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, 

USA). 

To generate the rectum bacterial compositional profiles, the bacterial V1-V3 region of the 

16S rRNA gene was amplified using bacterial primers Bac9F (5'-

GAGTTTGATCMTGGCTCAG-3') and Ba515Rmod1 (5'-CCGCGGCKGCTGGCAC-3') 

(Wang et al., 2018). The PCR amplification products were verified using agarose gel (2%) 

electrophoresis. Two-step PCR was performed for PCR amplicon generation and barcoding. In 

detail, the PCR was conducted with the following thermal program of an initial denaturation at 

94°C for 2 mins, followed by 33 cycles of 94°C for 30s, annealing at 58°C for 30s, elongation 

at 72°C for 30s, and at last a final elongation at 72°C for 7 mins. Furthermore, the second PCR 

was performed using amplicons produced in the first step for barcoding with the following 
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program: initial denaturation at 95°C for 10 mins, followed by 15 cycles of 95°C for 30s, 60°C 

for 30s, 72°C for 60s, and a final elongation at 72°C for 3 mins.  

All amplicon libraries were sequenced using an Illumina MiSeq pair-end 300 bp platform 

at Centre d’expertise et de services Génome Québec (Quebec, Canada). The raw sequence data 

were assigned to each sample according to the corresponding barcode and were processed using 

QIIME2 (Version 2019.10) (Bolyen et al., 2019). Quality control, denoising, removal of 

chimeric sequences, and generation of amplicon sequencing variants (ASVs) were performed 

using the QIIME2 plugin DADA2 (Callahan et al., 2016). Taxonomic classification was 

performed in QIIME2 using a taxonomic classifier with the SILVA database (version 132) as 

the reference. The Good’s coverage index was used to evaluate the adequacy of sequencing 

depth to generate bacterial profiles in each sample. For diversity analyses, alpha diversity was 

estimated using Shannon (evenness) and Chao1 (richness) indices. Beta diversity was evaluated 

based on Weighted Unifrac distance using phylogenetic distances across identified taxa in a 

phylogenetic tree and the abundance of each feature to determine the similarity between Stx2- 

vs. Stx2+ groups. All diversity metrics were calculated using scripts implemented in QIIME2. 

The visualization of alpha- and beta- diversity was performed using the ggplot2 package in R. 

Differentially abundant (DA) genera between Stx2- vs. Stx2+ groups were identified using the 

DESeq2 package in R. The cut-off of DA genera and group-specific taxa is a relative 

abundance >0.1% and presence in at least two out of six animals in each group.  

3.2.3 Construction of microbial co-occurrence networks  
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Random matrix theory (RMT)-based method was employed to construct the microbial co-

occurrence network to identify microbial interactions using molecular ecological network 

analysis (MENA) (http://ieg4.rccc.ou.edu/mena) (Deng et al., 2012). Briefly, the absolute 

abundance of microbial genera data was uploaded. The absolute abundance microbial genera 

dataset was appropriately standardized and the pairwise Pearson correlation suggested by the 

author’s manual was employed to generate correlation coefficients and a similarity matrix 

(Deng et al., 2012). The similarity matrix was subsequently transformed into an adjacency 

matrix by applying the automatic generated threshold to the correlation values based on the 

RMT approach (Deng et al., 2012). In this study, a connection stands for a strong (Pearson’s r > 

0.85) and significant (P < 0.01) correlation. The visualization of the co-occurrence network was 

performed using gephi (0.9.2).  

3.2.4 Characterization of topological properties of co-occurrence networks  

The modularity of each network was estimated using MENA along with the evaluation of other 

topological properties, including the clustering coefficient (Watts and Strogatz, 1998; Ravasz 

et al., 2002), average path length (Albert and Barabási, 2002), graph density (Wolfe, 1997), and 

average degree (Albert and Barabási, 2002). Random networks and power-law distribution 

assessments were generated to evaluate whether empirical networks were prone to error and to 

identify microbiota interactions that were due to non-random patterns that represent the 

empirical structure of microbial communities (Horner-Devine et al., 2007; Barberán et al., 

2012). Random networks were constructed based on the Maslov-Sneppen method (Maslov and 

http://ieg4.rccc.ou.edu/mena
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Sneppen, 2002) using MENA, which kept number of nodes (microbial taxa) and edges 

(connections) unchanged, but rewired positions of all links in the network.  

From the network modularity perspective, taxa could be classified into network hubs, 

module hubs, connectors that represent generalists in the community, and peripherals that 

represent specialists in the community. Generalists refer to taxa that are highly connected with 

others both within and among modules (network hubs), within a module (module hubs), and 

among different modules within a network (connectors). Specialists represent peripheral taxa 

that interact less with other taxa (including a node that is only connected within a module or at 

least 60% links within the module) (Guimerà and Amaral, 2005). Within-module connectivity 

(Zi) and among-module connectivity (Pi) were computed based on the following algorithm 

(Guimerà and Amaral, 2005): 

𝑍𝑖 =
𝑘𝑖 − �̅�𝑆𝑖

𝜎𝑘𝑠𝑖
 

where 𝑘𝑖 is the number of links of node 𝑖 to other nodes in its module; 𝑠𝑖, �̅�𝑆𝑖 is the average 

of 𝑘 across all nodes in 𝑠𝑖 ; and 𝜎𝑘𝑠𝑖  represents the standard deviation of 𝑘 in 𝑠𝑖 . Hence, Zi 

(Within-module connectivity) characterizes to what extent node 𝑖 is connected to others in its 

module.  

𝑃𝑖 = 1 − ∑ (
𝑘𝑖𝑠

𝑘𝑖
)

2
𝑁𝑀

𝑠=1

 

where 𝑘𝑖𝑠 is the number of links of nodes 𝑖 to nodes in module 𝑠; and 𝑘𝑖 is the total degree 

of node 𝑖 within a network. Therefore, Pi (among-module connectivity) of a node stands for 

evenly distribution of links among all modules if its value is close to 1, and 0 if all of its links 

are within its own module.  
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Zi and Pi were characterized using MENA with the classification as follows: network hubs 

(Zi>2.5; Pi>0.62), module hubs (Zi >2.5; Pi<0.62), connectors (Zi<2.5; Pi>0.62) and 

peripherals (Zi<2.5; Pi<0.62) (Guimerà and Amaral, 2005). The thresholds for classifying 

nodes into the aforementioned four roles in the network were determined by both heuristic 

determinations and the concept of ‘basin of attraction’ (Guimerà and Amaral, 2005). Briefly, 

Zi and Pi were both computed for each node in the network, and density plots were adopted to 

visualize the gradient of the value of Zi and Pi that can ‘flow’ to the local minimum (termed as 

‘basin of attraction’). In other words, the region of the space that ‘flow’ toward a certain 

minimum value is therefore regarded as the optimal threshold for Zi and Pi, being 2.5 and 0.62, 

respectively (Guimerà and Amaral, 2005).  

 Network stability is a critical component that tests if a network is resilient to 

perturbations sourced from external factors other than interactions (Hicklin, 2004; Csermely, 

2009). Here, natural connectivity (Jun et al., 2010) was introduced to describe network stability 

differences in response to stx2 expression in STEC. The estimation of natural connectivity was 

based on the following algorithm:  

ave(λ) = ln (
1

N
∑ eλi)

N

i=1

 

where ave(λ) is the natural connectivity, N is the number of nodes in the network, λ𝑖 is the 

eigenvalue of the adjacency matrix. A total of 137 nodes representing 80% of total nodes were 

randomly removed from the adjacency matrix and λi and ave(λ) were re-calculated after each 

removal. The visualization of the natural connectivity was performed using the ggplot2 package 

in R.  
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 The identification of potential hub microbial taxa in the network was validated using 

Lasso regression in R package ‘glmnet’. Twelve samples were regarded as the training data 

with 9 samples (6 Stx2+; 3 Stx2-) as the external test data. The accuracy rate (the number of 

samples recognized correctly / total number of samples) was estimated to determine the model 

classification performance. 

3.2.5 Data availability 

All the sequencing data used in the current study have been submitted to NCBI Sequence Read 

Archive (SRA) under the accession numbers from SRR14769039 to SRR14769050 (BioProject 

ID PRJNA736180).  

 

3.3 Results  

3.3.1 Taxonomic assessment of the RAJ content-associated microbiota  

A total of 179,917 filtered pair-end reads were generated with 14,993 ± 437 (mean ± SE) 

sequences per sample, and a total of 2,798 amplicon sequence variants (ASVs) were identified 

ranging from 174 to 275 (Table 3.2). The Good’s coverage was > 99.9 % for all samples, 

indicating adequate sequencing depth.  

 From all samples, more than 99% of reads were classified into 13 phyla, with Firmicutes 

(72.7 ± 2.0 %) and Bacteroidetes (24.6 ± 1.9 %) being the most predominant (relative 

abundance > 10%, Table 3.3). At the family level, 59 families were identified with 7 

unclassified and 52 classified, of which Ruminococcaceae (47.2 ± 1.5 %), Lachnospiraceae 

(9.2 ± 1.2%), and Prevotellaceae (8.8 ± 1.1%) were the most predominant families. At the 
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genus level, 154 taxa were identified (20 unclassified; 134 classified), of which 

Ruminococcaceae UCG-005 (23.1 ± 2.1 %) and coprostanoligenes group (9.1 ± 0.7%) from 

Ruminococcaceae family and Christensenellaceae R-7 group (7.3 ± 0.7%) from 

Christensenellaceae family were the most abundant genera. The most frequently detected 

genera (average relative abundance >0.5%) belonged to Firmicutes (19 out of 27, 4 unclassified, 

15 classified) and Bacteroidetes (8 out of 27, 1 unclassified, 8 classified), respectively.  

There were 52 to 75 genera identified from each sample with 15 core genera shared by all 

12 samples (Figure 3.1A, Table 3.4). Specifically, 30.7% (4 out of 13 phyla, Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria), 18.6% (11 out of 59 families, 6 out of 11 

belonged to Firmicutes; 5 out of 11 belonged to Bacteroidetes;1) and 9.7% (15 out of 154 genera, 

9 out of 15 belonged to Firmicutes; 6 out of 15 genera belonged to Bacteroidetes; Figure 3.1A, 

Table 3.4) were present in all samples. In addition, twenty-four genera were Stx2- specific and 

13 genera were Stx2+ specific with 66 genera shared by both groups (Figure 3.1B). Genera 

belonging to Firmicutes were the most predominant taxa in Stx2- (10 out of 24) and Stx2+ (4 

out of 13) groups (Table 3.5).  

3.3.2 Comparable diversity and composition of RAJ content-associated microbiota 

between Stx2- and Stx2+ groups 

Neither Shannon nor Chao1 indices differed (Kruskal Wallis test, P > 0.05, Figure 3.2A) 

between the bacterial communities from Stx2- and Stx2+ groups. Further comparison of the 

similarity of microbial communities between the two groups using ANOSIM (Analysis of 

similarities) revealed no clustering patterns (P = 0.52, Figure 3.2B) at the phylum (P > 0.5, 
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Figure 3.3), family, or genus (Both P > 0.1) levels. No differentially abundant taxa at the 

phylum, family, or genus level were identified between Stx2- and Stx2+ groups.  

3.3.3 General co-occurrence patterns in each co-occurrence network  

The non-random co-occurrence patterns were observed based on the significant power-law 

distribution in each group (R2
Stx2+ = 0.98, P<0.05; R2

Stx2- = 0.97, P < 0.01) as well as the greater 

value of structural properties in the empirical as compared to the random networks (Table 3.6). 

Hence, non-random empirical co-occurrence networks were established to uncover real-world 

microbial interactions. The empirical network consisted of 86 nodes (genera) with 322 edges 

(a mean of 7.49 edges per node) for Stx2- (Table 3.6, Figure 3.4A), and 77 nodes with 243 

edges for Stx2+ (Table 3.6, Figure 3.4B). The average network distance between all paired 

nodes (average path length, APL) was 2.84 edges with a diameter (longest distance) of 8 edges 

in the Stx2- network and 2.86 edges with a diameter of 7 edges in the Stx2+ network (Table 

3.6). The clustering coefficient (the degree to which nodes tend to cluster together) was 0.32 

for the Stx2- network and 0.33 for the Stx2+ network (Table 3.6). The modularity index was 

0.44 for the Stx2- network and 0.46 for the Stx2+ network (values >0.4 suggest that the network 

has a modular structure (Newman, 2006)) (Table 3.6). 

3.3.4 Identification of keystone taxa and their associations with different co-occurrence 

patterns 

High modularity was observed for both networks with 7 and 6 observed modules in the Stx2- 

and Stx2+ co-occurrence networks, respectively (Figure 3.4A,B) with no network hubs being 

identified. More than 80% of nodes (Stx2-: 74 out of 86, 86.0%; Stx2+: 62 out of 77, 80.6%) 
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with an abundance > 0.2% were classified as peripherals (Figure 3.5A). Only 14 % (connectors: 

11 out of 86; module hubs: 1 out of 86; Stx2- group) and 19.4% (connectors: 14 out of 77; 

module hubs: 1 out of 77; Stx2+ group) of taxa from Stx2- and Stx2+, respectively, were 

designated as specialists (Figure 3.5A). Specifically, more than 85% (23 out of 27) of 

connectors had a lower abundance (< 0.2%) with a high Pi value (0.62 ~ 0.77) (Figure 3.5B).  

Furthermore, generalists formed differential clustering patterns between Stx2- and Stx2+ 

networks. Generalists were evenly distributed across identified ecological clusters in the Stx2- 

network. Four out of fourteen generalists belonged to module 3, whereas other generalists were 

in module 1 (3 out of 11), module 2 (2 out of 11), module 4 (1 out of 11), module 5 (1 out of 

11) and module 6 (1 out of 11). However, in the Stx2+ network, generalists were not evenly 

distributed with 7, 4, 3, and 1 out of 14 belonging to modules 1, 3, 2, and 4, respectively.  

Moreover, decreased stability of the network was evidenced by reduced natural 

connectivity in the Stx2+ network in comparison to the Stx2- network (Figure 3.6). The natural 

connectivity that supported network stability in each group gradually decreased with increasing 

removal of nodes, while natural connectivity in the Stx2+ network always being lower than that 

in the Stx2- network, regardless of the number of nodes removed from each network (Figure 

3.6).  

3.3.5 Group-specific taxa as keystone taxa in microbial interactions 

More than 50% of the group-specific genera (8 out of 12 in Stx2-; 6 out of 12 in Stx2+, Table 

3.7) belonged to generalists with a lower abundance (relative abundance < 0.2%). Among 

generalists in the Stx2- network included; Parvibacter, Candidatus saccharimonas, 



 

134 

 

Acetitomaculum, as well as unknown genera within the Bacteroidetes, Proteobacteria, 

Tenericutes, Cyanobacteria, and Veillonellaceae. Among generalists in the Stx2+ network, 

Prevotellaceae Ga6A1 group, Flexilinea, Ruminiclostridium 9, Ruminococcus 1, Acetobacter, 

and Streptomyces were group-specific genera in microbial communities in the Stx2+ group. All 

the core microbes shared by two groups were regarded as specialists that were poorly connected 

with other taxa within networks.  

 

3.4 Discussion 

This study assessed microbial interactions in response to stx2 expression in STEC at RAJ in 

beef steers, shedding light on microbial mechanisms regulating STEC colonization as well as 

providing novel approaches to understanding differences in microbial communities. The 

compositional profiles of microbial communities identified in our study were comparable to 

those identified from the rectum content of dairy cattle (Mao et al., 2015), and fecal microbiota 

of beef cattle (Shanks et al., 2011; Xu et al., 2014) with the most dominant phyla being 

Firmicutes and Bacteroidetes with an accumulative relative abundance of up to 94.1%, 89.5%, 

and 80.6%, respectively. The proportion of three main families (Ruminococcaceae (47.2 ± 

1.5 %), Lachnospiraceae (9.2 ± 1.2%), and Prevotellaceae (8.8 ± 1.1%)) were also similar to 

the bacterial taxa identified in a study where cattle were shedding > 104 cfu/g of E. coli O157 

in that 31.8%, 10.5%, 9.0% of total reads from fecal microbiota were assigned to 

Ruminococcaceae, Prevotellaceae, and Lachnospiraceae, respectively (Xu et al., 2014). 

Although all cattle were raised under the same high-grain diet and management conditions and 
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were similar in age and body weight, individual variations among microbial communities were 

still observed including the relative abundance of each microbial community and the proportion 

of predominant taxa shared by each microbial community. Variation in the microbial fecal 

profile of individual cattle has been previously reported  (Xu et al., 2014), a finding that has 

been attributed to differences in age, weight, and diet. As these variables were relatively 

consistent in our study, other host factors along with microbial crosstalk within the microbiota 

might be the main drivers of individualized microbial composition.   

Despite highly similar microbial profiles including comparable alpha and beta diversity 

between Stx2- and Stx2+ groups, microbial interactions within the microbiota varied. Microbes 

can interact with each other for the purpose of co-evolution (Braga et al., 2016), leading to 

adaptation and specialization (Braga et al., 2016) of certain microbial taxa, which promote 

future alterations in the microbial community. To date, the widely used approaches to study the 

microbial interactions are based on network construction mainly using correlation-based 

(Pearson’s and Spearman correlation coefficient) and maximal information coefficient (MIC) 

methods that have proven to be less useful in inferring microbial ecological networks assessed 

by area under the precision-recall curves (AUPR) (Hirano and Takemoto, 2019). These metrics 

(i.e., correlation-based approaches, MIC) are less applicable to microbial compositional data as 

the assumption of independent variables can be satisfied, leading to the generation of spurious 

correlations (Aitchison, 1981; Hirano and Takemoto, 2019), and therefore are less powerful for 

inferring real microbial interactions. To overcome such limitations in this study, the similarity 

matrix was first established using Pearson’s correlations and then the RMT- based approach 
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was employed to determine the reference point which enabled automatic threshold selection 

and minimized noise. The RMT-based approach was established based on two universal roles 

of random matrix theory: the distribution of two nearest eigenvalues which follow Gaussian 

orthogonal ensemble (GOE) statistics if correlations exist (a true correlation will follow GOE 

distribution in RMT theory), while it follows Poisson distribution if there is no correlation (Luo 

et al., 2007). Particularly the transition between GOE and Poisson distribution serves as the 

reference point to distinguish non-random relationships (that is true correlations) in the data 

matrix from background noise (Luo et al., 2007). In other words, a correlation refers to the GOE 

distribution while non-correlation represents the Poisson distribution. The transition point from 

GOE to Poisson distribution is the reference point for the automatic generated threshold used 

for the construction of the microbial network and the identification of meaningful correlations 

from the noise  (i.e. certain correlations might not follow GOE and therefore could be noise or 

spurious correlations). Hence, compared to studies that only adopt correlations (Pearson’s and 

Spearman correlation coefficient) for constructing microbial networks, the RMT-based 

approach is more effective at identifying true interactions within the response networks to stx2 

expression.  

Comparisons of random and empirical networks based on topological properties, 

confirmed constructed networks were effective for investigating interactions between stx2 

expression and microbial communities. Particularly, modules (clusters) were powerful 

topological features to reflect network differences, referring to the fundamental units whose 

constituent elements (nodes) are functionally similar in terms of specific chemical, and 
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biological processes (Lecca and Re, 2015). Previous explorations in soil-microbial interactions 

revealed that clusters in the network have specific and different functions that enable microbes 

to respond to different soil conditions (Jiao et al., 2016; Shi et al., 2020). For instance, three 

major modules with diverse functions (electron-transfer, biogeochemical C- and N- cycles, 

organic contaminant degradation) were characterized for microbial communities from soil 

contaminated with oil (Jiao et al., 2016), Clusters were shown to be crucial components of 

microbial communities in the network and necessary to develop an understanding of modularity 

in networks and microbial interactions. The Stx2- and Stx2+ groups formed comparable 

numbers of clusters while clusters in each group included different taxa, suggesting functions 

of clusters in each group differed in their interactions in response to stx2 expression in STEC 

at the RAJ. Regardless, the highly connected genera among densely connected clusters of nodes 

(that is, modules) were observed in both Stx2- and Stx2+ groups resulting in the formation of 

‘small world’ topologies, indicative of empirical networks that are more clustered than random 

networks.  

Identifications of generalists also furthered the understanding of microbial community 

structure and differential microbial interactions, which play an empirical rather than theoretical 

role among microbial interactions. Particularly, identified generalists in our study are group-

specific taxa, which are at low relative abundance but might play unique roles such as regulating 

microbial interactions within each network through nutritional supplementation or competition. 

E. coli O157:H7 can utilize ethanolamine as the free nitrogen source in the bovine small 

intestine, thus the presence or absence of ethanolamine utilizing bacteria could be a contributing 
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factor to diverse microbial communities (Bertin et al., 2011; Xu et al., 2014). In our study, 

Streptomyces identified as Stx2+ specific genera were capable of metabolizing ethanolamine 

(Krysenko et al., 2019), which might generate a niche for the survival of bacteria that express 

Stx2. However, not all group-specific generalists in microbial communities play a role in 

nutrient supplementation for STEC. For instance, Acetobacter (a group-specific generalist from 

the Stx2+ group) is capable of converting ethanol to acetic acid which can inhibit STEC (Han 

et al., 1992). A similar case is also observed in Stx2- group that Acetitomaculum (a group-

specific generalist from Stx2- group), an acetogenic bacteria (Van et al., 1998), may also 

suppress STEC. It is noticeable that more than 85% (23 out of 27) of generalists were low 

abundant taxa with an average abundance <0.2%, highlighting the irreplaceable role of rare taxa 

in microbial interactions. For example, rare Methanotrophs (i.e. Methylocaldum) act as 

‘primary producers’ in methane-driven food webs (Lu et al., 2021) and rare symbionts (i.e. 

Symbiodinium) increase coral-algal assemblies in the face of environmental alterations (Ziegler 

et al., 2018). Hence, these results raise the possibility that less abundant group-specific 

generalists contribute to the differential degradation of organic matter and play a practical role 

in microbial interactions by mediating nutrient availability in a manner that may positively or 

negatively affect STEC colonization. The lack of well-defined approaches for determining 

keystone taxa in networks impedes our understanding of microbial interactions. Previous 

studies adopted global topological properties (i.e. betweenness centrality) for inferring keystone 

taxa (Poudel et al., 2016), which neglects the fact that networks tend to be modular. 

Identification of generalists (or keystone taxa) following the concept of among/within- module 
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connectivity provides the added advantage of further understanding microbial interactions. 

Thus, the approach in our study of using the concept of modularity to compute the role of each 

node is more representative of network modularity and the role of each node with/among the 

overall structure.  

As a supportive approach, lasso regression revealed group-specific microbes that 

contributed to mucosa-associated stx2 expression. Among the 7 selected genera based on lasso 

regression, 2 out of 7 (Eubacterium and Alistipes) were core and 3 out of 7 (Prevotella 7, the 

genera from family Paludibacteraceae, Sutterella) were group-specific genera. However, all of 

the core microbes were identified as peripherals that were poorly connected with other taxa and 

were not expected to affect the robustness of the network (Memmott et al., 2004). Compared to 

studies that emphasize the value of core microbiota in the maintenance of microbial 

communities, group-specific genera exhibiting diverse functions could potentially interact with 

the host and Stx2-carrying/Stx2-expressed bacteria, leading to the establishment of a different 

co-occurrence network. Hence, our study highlights the valuable role of group-specific taxa in 

microbial co-occurrence networks which advance the understanding of microbial interactions 

in terms of stx2 expression and potential STEC colonization. It is noticeable that the identified 

microbial networks should be validated in the future. In addition to the mathematical algorithm 

that reduces spurious correlations, adding stable isotope probes in the DNA-derived microbial 

community and analyzing heavy-isotope enriched DNA could be a complementary approach, 

which could differentiate inactive microbial interactions from ecological meaningful microbial 

crosstalk (Kaupper et al., 2021a, 2021b). For instance, a DNA-based stable isotope probing 
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(SIP) approach using [13C]CH4 has been employed to identify real microbial interactions by co-

occurrence analysis in ombrotrophic peatlands (Kaupper et al., 2021a). However, using heavy 

isotope probes to examine true microbial interactions within the dense microbial communities 

of the gut needs further evaluation.   

 

3.5 Conclusions  

Overall, our results revealed comparable diversity and composition of RAJ microbiota were 

observed between Stx2- and Stx2+ cattle with more than 60% genera recognized as members 

of the core microbiome. However, RMT-based network analysis revealed varied microbial 

interactions, keystone taxa, and stability of microbial communities in response to stx2 

expression. Group-specific taxa play an important role in the network which might drive 

microbiota-stx2 interactions. This study also constitutes an in-depth understanding of host-

STEC interactions and highlights the possibility of altering the gut environment to mitigate stx2 

expression through modifying the gut microbiota. However, future validations using a larger 

sample size are needed to verify the proposed methods for deciphering microbial community 

differences as well as the principles of microbe coexistence that determine microbial 

interactions. Regardless, our findings highlight the critical role of group-specific genera among 

microbial interactions related to the expression of stx2 in bacteria and shed light on using an 

approach that integrates group-specific genera with network analysis to identify and 

characterize differences in microbial communities with comparable microbial profiles.  
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3.7 Tables and figures 

Table 3.1. Sample demographics 

 

 

  

Group ID Body Weight (kg) Mean Value(SD)  Kill Age (days) Mean 

Value(SD)  

Stx2- 14-101 566  

 

539 (41.70) 

463  

 

461(18.38) 
14-103 584 451 

14-112 479 429 

14-205 557 474 

14-206 496 476 

14-207 552 474 

Stx2+ 14-104 698  

 

597 (54.61) 

460  

 

451 (9.82) 

14-105 555 455 

14-106 616 465 

14-107 555 448 

15-104 569 440 

15-106 591 443 

One Way ANOVA F-Value= 4.32; 

P-Value= 0.07 

F-Value= 1.22;  

P-Value= 0.30 
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Table 3.2. Summary of amplicon sequencing results  

  

Group ID No. of raw 

reads  

No. of filtered 

reads  

No. of 

features 

No. of 

ASVs 

Good’s  

Coverage  

 

 

Stx2- 

14-101 30482 13612 5438 275 >99% 

14-103 33013 14809 4758 215 >99% 

14-112 31604 14390 7269 261 >99% 

14-205 34445 15846 5731 234 >99% 

14-206 31578 14100 4858 238 >99% 

14-207 32687 15111 5039 174 >99% 

 

 

Stx2+ 

14-104 38798 17486 6142 256 >99% 

14-105 33962 15584 5381 228 >99% 

14-106 31882 14301 5927 250 >99% 

14-107 31248 12693 6067 214 >99% 

15-104 39153 17863 6142 253 >99% 

15-106 31328 14122 4288 200 >99% 
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Table 3.3. Taxonomic profiles at phylum level between Stx2- and Stx2+ group 

 

α value was computed by the power analysis with P<0.21 considered as a significant when 

power=0.8. 

 

  

Phylum/Group Stx2- Stx2+ P-Value 

(FDR adjusted) Mean SD Mean SD 

Actinobacteria 0.0096 0.0101 0.0120 0.0072 0.66  

Bacteroidetes 0.2720 0.0533 0.2207 0.0714 0.47  

Cyanobacteria 0.0030 0.0024 0.0036 0.0045 0.74  

Firmicutes 0.6977 0.0595 0.7562 0.0685 0.47  

Proteobacteria 0.0122 0.0114 0.0043 0.0023 0.47  

Tenericutes 0.0010 0.0007 0.0008 0.0007 0.87  

Others 0.0046 0.0060 0.0024 0.0023 0.73  
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Table 3.4. Summary of core bacterial genera shared by all samples and phylum and family 

to which these taxa belong 

 

  

Phylum Family Genus 

 

 

 

 

Firmicutes 

 

 
Ruminococcaceae 

Ruminococcaceae UCG-004 

Ruminococcaceae UCG-005 
Ruminococcaceae UCG-010 

Ruminococcaceae UCG-013 
[Eubacterium] coprostanoligenes group 

Candidatus Soleaferrea 

Christensenellaceae Christensenellaceae R-7 group 
Family XIII Family XIII AD3011 group 

Lachnospiraceae __ 

 

 

Bacteroidetes 

Bacteroidaceae Bacteroides 

Muribaculaceae uncultured bacterium 

Prevotellaceae Prevotellaceae UCG-003 

Rikenellaceae Alistipes 

Rikenellaceae RC9 gut group 

Uncultured uncultured Bacteroidales bacterium 
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Table 3.5. Summary of Stx2- specific and Stx2+ specific microbial genera, and phylum 

and family to which these taxa belong.  

  

Phylum Family Genus 

Stx2- specific      

Actinobacteria Eggerthellaceae DNF00809 

Parvibacter 

 

 

 

Bacteroidetes 

 

Prevotellaceae 

 

 

O_Bacteroidales 

uncultured 

Prevotella 1 

Prevotella 7 

Prevotella 9 

uncultured 

__ 

__ 

Cyanobacteria uncultured rumen bacterium uncultured rumen bacterium 

Firmicutes Erysipelotrichaceae __ 

Lachnospiraceae [Eubacterium] hallii group 

Acetitomaculum 

Family XIII [Eubacterium] nodatum 

group 

Ruminococcaceae Ruminococcaceae UCG-011 

Ruminiclostridium 1 

Erysipelotrichaceae Candidatus Stoquefichus 

Erysipelotrichaceae UCG-

004 

Veillonellaceae __ 

Selenomonas 1 

Patescibacteria Saccharimonadaceae Candidatus Saccharimonas 

Proteobacteria Uncultured unidentified rumen 

bacterium RF32 

Uncultured gut metagenome 

Tenericutes uncultured bacterium uncultured bacterium 

gut metagenome gut metagenome 

Stx2+ specific      

Actinobacteria Streptomycetaceae Streptomyces 

Bacteroidetes Paludibacteraceae uncultured 

Muribaculaceae __ 

Bacteroidales RF16 group uncultured Parabacteroides 

Chloroflexi Anaerolineaceae Flexilinea 

Cyanobacteria O_Gastranaerophilales __ 

Firmicutes Ruminococcaceae Ruminococcus 1 

Ruminiclostridium 9 

Lachnospiraceae Tyzzerella 

Tyzzerella 4 

Proteobacteria Burkholderiaceae Sutterella 

Acetobacteraceae Acetobacter 

Tenericutes O_Mollicutes RF39 __ 
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Table 3.6. Topological properties of empirical and random network between Stx2- and 

Stx2+ groups. 

      Empirical network Random network 

Group  Stx2- Stx2+ Stx2- Stx2+  

Nodes 86 77 86 77 

Edges  322 243 322 243 

Modularity (MD) 0.44 0.46 0.29 (± 0.011) 0.31 (± 0.012) 

Clustering coefficient (CC) 0.32 0.30 0.12 (± 0.014) 0.12 (± 0.016) 

Average path length (APL) 2.84 2.86 2.47 (± 0.030) 2.58 (± 0.033) 

Graph density (GD) 0.088 0.083 0.09 0.08 

Average degree (AD) 7.49 6.31 7.49 6.31 
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Table 3.7. Stx2- and Stx2+ generalist genera and their associated  bacterial phyla. 

Phylum Genus Group-specific  

Stx2- group   

Actinobacteria Parvibacter Stx2- specific 

Bacteroidetes f_Bacteroidales RF16 group 

f_ Prevotellaceae 

 

 

Stx2- specific 

Cyanobacteria o_ Gastranaerophilales Stx2- specific 

 

Firmicutes 

f_ Veillonellaceae 

f_ Veillonellaceae 

Acetitomaculum 

Stx2- specific 

 

Stx2- specific 

Patescibacteria Candidatus saccharimonas Stx2- specific 

Planctomycetes p-1088-a5 gut group 
 

Proteobacteria Parasutterella 

o_ Rhodospirillales 

 

Stx2- specific 

Tenericutes o_ Izimaplasmatales Stx2- specific 

Stx2+ group   

Actinobacteria Saccharopolyspora rectivirgula 

Streptomyces 

 

Stx2+ specific 

Bacteroidetes Prevotellaceae Ga6A1 group 

Prevotellaceae UCG-001 

Parabacteroides 

Stx2+ specific 

Chloroflexi Flexilinea Stx2+ specific 

 

 

Firmicutes 

Oscillibacter 

Ruminiclostridium 9 

Ruminococcus 1 

f_ Erysipelotrichaceae 

Cellulosilyticum 

 

Stx2+ specific 

Stx2+ specific 

Planctomycetes p-1088-a5 gut group 
 

Proteobacteria Acetobacter 

Parasutterella 

Stx2+ specific 
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Figure 3.1. Shared and specific genera between Stx2- and Stx2+ groups.   

A. A flower plot  visualization of the number of core genera shared by each sample (in the 

center) and the number of specific genera found in each sample (in the petals). B. Genera 

detected in Stx2+ and Stx2- group. Detected genera, total relative abundance of 0.1% within at 

least two samples in each group. 
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Figure 3.2. Comparison of diversity metrics between Stx2- and Stx2+ groups.   

A. Shannon and Chao1 indices were used to estimate the evenness and richness between Stx2- 

and Stx2+ groups, respectively. The horizontal bars within boxes represent medians. The top 

and bottom of each box represent the 75th and 25th percentiles, respectively. The upper and 

lower whiskers extend to data no more than 1.5x the interquartile range from the upper edge 

and lower edge of the box, respectively. The Kruskal-Wallis test was used to determine whether 

indices between the two groups were significant. (P≤0.05).  B. Principal coordinate analysis 

(PCoA) was used for visualization of Weighted Unifrac distance. The PERMANOVA was used 

to test for the similarity of clustering patterns between Stx2- and Stx2+ groups. Differences 

were considered  significant at P≤0.05.  
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Figure 3.3. Comparison of average relative abundance of phyla between Stx2- and Stx2+ 

groups.   

Circos plots were used for visualization of average relative abundance of phyla between Stx2- 

and Stx2+ groups. Phyla in each group with a total relative abundance of  >0.1% in at least 

three samples were included. The Kruskal-Willas test showed that  the average relative 

abundance of phyla was comparable (P>0.05) between Stx2- and Stx2+ groups. P-values were 

false discovery rate (FDR, q=0.05) adjusted.   
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Figure 3.4. Co-occurrence networks of bacterial genera in (A) Stx2- and (B) Stx2+ groups  

The size of each node is proportional to the number of connections (that is, degree); the color 

of connections between two nodes represents a positive (red) or a negative correlation (blue). 

Each module is presented as a specific color.  
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Figure 3.5. Distribution and average relative abundance of genera based on their network 

roles. 

A. Distribution of bacterial genera based on their network roles. Nodes in the network were 

classified as peripherals, modular hubs, or connectors. No network hubs were identified in 

networks from both groups. B. Average relative abundance of connectors. 
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Figure 3.6. The natural connectivity representing the stability of co-occurrence networks 

in both Stx2- and Stx2+ groups. 
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Chapter 4. Assessment of host transcriptome variation in response to strain-specific 

Shiga toxin-Escherichia coli O157 colonization at the rectal-anal junction in veal calves  

 

4.1 Introduction 

Shiga toxin-Escherichia coli (STEC) possesses Shiga toxins as the major virulence factors, with 

prophages being designated to Shiga toxin 1 (stx1) and Shiga toxin 2 (stx2). The stx2 is 400 

times more toxic than stx1 and is associated with human illnesses such as bloody diarrhea and, 

hemolytic uremic syndrome (HUS) (Chase-Topping et al., 2008). The stx2 gene has a number 

of variants including stx2 a, b, c, d, e, f, and g. Although the acquisition of stx2a prophage has 

been reported to be most often associated with STEC O157 pathogenicity (Fraser et al., 2004; 

Melton-Celsa, 2014; Castro et al., 2017; Ryu et al., 2020), a recent study revealed that phage 

type 21/28 which contains both stx2a and stx2c encoding prophages but does not express 

functional stx2a was also commonly linked to STEC disease in humans (Chase-Topping et al., 

2008). For instance, 61% of HUS cases in children were caused by PT 21/28stx2a-stx2c+ in 

Scotland from 1997 to 2001 (Chase-Topping et al., 2008).  

Ruminants, especially cattle are the major reservoir for STEC O157 with the rectal-anal 

junction (RAJ) being the major colonization site (Cobbold and Desmarchelier, 2000; Wang et 

al., 2017, 2018; McCabe et al., 2019). Cattle who shed more than 104 CFU STEC per gram of 

feces are defined as ‘super shedders’ (SS), which are considered the primary source of STEC 

transmission on farms (Chase-Topping et al., 2008; Xu et al., 2014; Munns et al., 2015; Wang 

et al., 2016). Downregulated differentially expressed genes (DEGs) identified in SS compared 
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to non-shedders have been shown to be related to host immunity (both humoral and cell-

mediated immune responses) and metabolism (i.e., cholesterol absorption) (Wang et al., 2016, 

2017). Another study revealed that the production of stx2a in STEC O157 in veal calves could 

induce increased levels of local (rectal lymph node) and systemic (serum) H7- (flagella antigen 

7) specific antibodies (Fitzgerald et al., 2019), suggesting stx2a production in STEC could 

affect host responses to STEC. However, STEC O157 colonization is likely a complicated 

process that is influenced by multi-biological pathways whose interrelationships are largely 

undefined. 

Using transcript abundance to characterize host functional variation is a common 

approach in both human and animal studies, particularly, studies focused on the function of 

high-and low-abundance mRNAs and their roles in host physiology and health. For instance, 

high abundance transcripts in 21-24 year olds were involved in glucose metabolism and 

electron transport, while these transcripts were 30% less abundant in the vastus lateralis muscles 

of 66-77 year olds.  This suggests that high abundance transcripts are related to host phenotypic 

changes in senescent muscles (Welle et al., 2000). Previous studies suggested that low 

abundance transcripts with the most fold changes serve as important regulators in various 

biological processes (Araki et al., 2006; Lomana et al., 2020). For example, the low abundant 

transcripts Laminin Subunit Alpha 3 (LAMA3) and Titin (TTN) were identified as novel 

biomarkers for the detection of human gastric cancer (Bizama et al., 2014). However, the 

function of high- and low-abundant transcripts in the mucosa RAJ and their functional shifts in 

repones to STEC O157 colonization has not been investigated. As the major site of STEC O157 
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colonization, the knowledge of the fundamental function of RAJ mucosa in controlling bacterial 

colonization in young ruminants is limited. Furthermore, the extent to which mucosal function 

varies in terms of stx2 subtype-specific STEC O157 colonization is unclear. Therefore, we 

hypothesize that the rectal mucosal transcriptome and its function are altered as a result of 

STEC O157 colonization in veal calves and such variation depends on the production of stx2a.  

We also speculate that abundance and diversity of transcripts is influenced by STEC O157 

colonization. We aimed to adopt high-throughput RNA sequencing to explore gene expression 

in RAJ mucosa as it responds to a strain-specific STEC O157 challenge of young calves.  

 

4.2 Materials and methods 

4.2.1 Animal study and sample collection  

The bacterial strains (PT 21/28 stx2a-stx2c+ and RE 21/28 stx2a+stx2c+ STEC O157) and challenge 

trials with young calves have previously been by Fitzgerald et al (Fitzgerald et al., 2019). All 

animal work was carried out at the Moredun Research Institute (MRI) following the Animal 

Care Protocol approved by the MRI animal experiments committee and ethical review 

committee.  Briefly, male Holstein-Friesian dairy calves were purchased by MRI at three weeks 

of age. Prior to the oral challenge, calves were pre-screened five times per week using both 

plate culture and RT-qPCR tof fecal samples to ensure that calves were STEC O157 negative. 

Calves were randomly assigned into three groups: PT 21/28 stx2a-stx2c+ (WT group, n=6), RE 

21/28 stx2a+ stx2c+ (RE group, n=6) and control (CT group, n=11). Calves were orally challenged 

by orogastric intubation with ~109 CFU of each strain in 10 mL of Lysogeny broth. Fecal 
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samples and STEC were enumerated as described by Fitzgerald et al (., 2019). Briefly, fecal 

samples were collected from the rectum daily for the first 18 days post oral challenge and 

subsequently every other day until the completion of the experiment after 26 days.  For sentinel 

animals, fecal samples were taken every other day. Ten grams of feces were placed into 90 ml 

of sterile PBS and 10-fold serial dilutions of the feces samples were then prepared in PBS and 

100 μl from three dilutions were plated across a 1,000-fold range of dilutions onsorbitol 

MacConkey agar containing 15 μg nalidixic acid (NAL-SMAC). Plates were incubated at 37 °C 

overnight and colonies were counted in plates that contained 30 to 300 colonies. Randomly 

selected colonies from each plate were confirmed as O157 positive by latex agglutination 

(Oxoid, Basingstoke, United Kingdom) following the manufacturer’s instructions. Samples 

from the control animals were plated directly onto cefixime –tellurite (CT)-SMAC plates 

containing 0.05 mg/L cefixime, 2.5 mg/L tellurite. Plates were incubated overnight at 37 °C 

and then enumerated the next day. 

The recto-anal junction (RAJ) tissue was biopsied using non-evasive tools at week 1 

(before challenge, T1), week 2 (the highest fecal shedding level for challenge groups, T2) and 

week 5 (recovered from STEC O157 colonization, T5) of the trial. Tissue samples were stored 

at -80 °C before use. 

4.2.2 RNA extraction and sequencing  

RNA was isolated from 0.1 g biopsy tissue using trizol reagent (Invitrogen Corporation, 

Carlsbad, CA, USA), and purified using a RNeasy MinElute Cleanup kit (Qiagen, Valencia, 

CA, USA), and assessed using Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, 
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CA, USA) and Qubit 3.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). RNA with an integrity 

number (RIN) greater than 7.0 and ratio of A260/A280 from 1.7 to 2.4 was used for RNA-

sequencing.  

Extracted total RNA (1ug) was used for library construction using the Truseq Stranded 

total RNA sample preparation kit (Illumina, San Diego, CA, USA) following the 

manufacturer’s manual. The rRNAs were first depleted using biotinylated, target-specific 

oligos combined rRNA removal beads. The remaining RNA was fragmented and then subject 

to first-strand cDNA synthesis with reverse transcription using random primers. The DNA 

polymerase I and Rnase H were used for the second strand cDNA synthesis followed by ligation 

of the indexed-adapters and PCR enrichment (98°C for 30 sec, followed by 15 cycles of: 98°C 

for 10 sec, 60°C for 30 sec, 72°C for 30 sec, and 72°C for 5 min). The quality of constructed 

libraries was assessed using Agilent 2200 TapeStation and a Qubit 2.0 Fluorometer. RNA 

sequencing was performed using a HiSeq 4000 sequencing system (Illumina, San Diego, CA, 

USA), with paired-end (100 bp) sequencing at Genome Quebec Innovation Centre, Montreal, 

Quebec, Canada. 

4.2.3 Transcriptome profiling for calf rectum  

Sequencing reads were first subjected to the quality filter and adapter trimming using FastQC 

and bbDuk. The filter high-quality reads were then mapped against the reference bovine 

reference assembly ARS-UCD 1.2 using STAR (Version 2.7.1a). Feature counts of each 

ensembl ID were then generated using subread (Version 2.0.0) and were then normalized into 

TPM (transcripts per million) using the formula: (exon reads in genes) / (total exon reads) x 1 
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million. Transcripts with an average TPM>0.2 were considered as detected transcripts that 

could be used in further analysis (Sriram et al., 2019).  Host gene expression patterns were 

identified using principal component analysis (PCA). The similarities of gene expression 

patterns from pre- (T1) to post-challenge (T5) in CT, WT, and RE groups were identified using 

pairwise principal coordinate analysis (PCoA) with ANOSIM (analysis of similarities) testing 

the significance of similarities (P<0.05 was considered significant, P ≥ 0.05 & <0.1 as a trend 

of being significant). 

4.2.4 Identification of abundance-specific genes and their functional annotations  

The core transcriptome was defined as genes expressed in all samples in one group at a certain 

time point (e.g. genes expressed in all samples collected from the CT-T1 group). About 90% of 

reads from the expressed genes were designated as highly abundant transcripts in each group. 

The identified core transcripts with accumulated expression of about 1% of reads were 

considered to be low abundance transcripts. Since the expression of low abundant genes can be 

individual effects or random expression (Chess, 2013), the unsupervised self-organizing map 

(SOM) in R (‘Kohonen’ package) was further adopted to organize low abundant genes into 

biological meaningful clusters and select feature low abundant transcripts for functional 

annotation. The SOM is a non-parametric unsupervised machine learning approach, which 

enables the transformation of high to low dimension transcriptomic data, while preserving the 

topological structure of the data (Reusch et al., 2005; Astel et al., 2007; Das et al., 2015). The 

major pathways of identified high- and flow-abundant transcripts were annotated using 
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Ingenuity pathway analysis (IPA, QIAGEN, Redwood City, CA, United States 

www.qiagen.com/ingenuity). 

4.2.5 Identification of differentially expressed genes in response to STEC O157 challenge 

and its functional annotations 

Differentially expressed genes (DEGs) were identified using pairwise comparisons: WT vs. CT, 

RE vs. CT, and WT vs. RE post-challenge (T2 and T5) using the DeSeq2 package in R. The 

package DESeq2 tests differential expression of genes using negative binomial generalized 

linear models and estimates the dispersion and logarithmic fold changes of genes. Log2 fold 

change of each DEG was calculated using the equation: for comparisons between WT vs. CT 

or RE vs. CT: log2 fold change = log2 (average TPM in challenged calves / average TPM in 

sentinel calves); for the comparison between WT vs. RE: log2 fold change = log2(average TPM 

in the WT group / average TPM in the RE group). The log2 fold change for DEGs was set to ≤ 

-1 or ≥ 1 with negative values indicating down regulation and positive values indicating up 

regulation. The DEGs were defined as genes with Benjamini-Hochberg adjusted P<0.05 and 

absolute log2 fold change >1. The functions of DEGs were enriched using the Gene Ontology 

(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (P<0.05 as the cut-off). 

 

4.3 Results 

4.3.1 Transcriptome profiling of bovine rectal mucosal biopsies 

In total, an average of 33.7 ± 0.88 M high-quality mapped reads were generated from 49 ± 12 

M pair-ended reads with 68.6 ± 0.06% mapping rates. A range of 18,574 to 20,445 transcripts 

http://www.qiagen.com/ingenuity
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was identified (at least one read mapped to the gene in at least one sample). There were no 

remarkable differences in the quantity of identified genes from pre- to post-challenge in CT, 

WT, or RE groups (All P>0.05, Figure 4.1).  

Rectal transcriptome profiling patterns varied from pre- to post-challenge in the WT 

group, while profiling patterns were similar from pre- to post-challenge in both control and RE 

groups (Figure 4.2). The PCoA analysis revealed that similarities of transcript patterns in the 

CT group were not affected by calf age from T1 to T2 (T2 vs. T1, P=0.66, Figure 4.3A), 

although there was a trend for significance from T2 to T5 (T5 vs. T2, P=0.06, Figure 4.3A) and 

it was  affected by calf age from T1 to T5 (T5 vs. T1, P=0.05, Figure 4.3E). Individual responses 

could be a significant factor affecting the similarity in gene expression patterns in the CT group 

in comparison of T1 and T2 (T2 vs. T1, P=0.01, Figure 4.3B), T2 and T5 (T5 vs. T2, P=0.05, 

Figure 4.3D), while it did not affect transcript patterns between T1 and T5 (T1 vs. T5, P=0.18, 

Figure 4.3E). For the WT group, transcript patterns were remarkably different between T1 and 

T2 (T2 vs. T1, P=0.05, Figure 4.4A), and T2 and T5 (T5 vs. T2, P=0.03, Figure 4.4C), while 

they did not differ in T5 compared to T1 (T5 vs. T1, P=0.25, Figure 4.4E). The similarities of 

transcript patterns from pre- to post-challenge was not affected by individual responses in the 

WT group (All P>0.1, Figure 4.4B, D, F). For the RE group, similarities of transcript patterns 

were not affected by calf age from pre- to post-challenge (All P>0.1, Figure 4.5A, C, E).  

Transcript patterns at T1 compared to T2 (T1 vs. T2, P=0.02, Figure 4.5B) and T5 (T1 vs. T5, 

P=0.01, Figure 4.5F) were affected, while this response was not observed between T2 and T5 

(T2 vs. T5, P=0.23, Figure 4.5D). 



 

171 

 

4.3.2 Transcripts divergent in abundance were associated with different functions   

The pan-transcriptome analysis revealed 17,082 to 18,110 core transcripts, with 247 to 363 

unique transcripts identified among all groups from pre- to post- challenge (Table 4.1). A range 

of 5,360 to 5,634, 5,049 to 5,577, and 5,055 to 5,354 highly abundant transcripts were identified 

from pre- to post-challenge in the CT, WT, and RE groups, respectively (Table 4.1). The 

identified highly abundant transcripts shared similar functions revealed by IPA with the top 5 

being designated to the BAG2 signaling pathway, EIF2 signaling pathway, Inhibition of ARE-

Mediated mRNA Degradation Pathway, Mitochondrial Dysfunction, and Oxidative 

Phosphorylation.  

Moreover, an average of 5,947 ± 377 low abundant transcripts were identified (low 

abundant transcripts refer to core transcripts that accounted for up to 1% of total reads, Table 

4.2). The self-organizing map further revealed that an average of 2,166 ± 162 ranging from 

1,952 to 2,502 were considered as featured low abundant transcripts (Table 4.2, Figure 4.6). 

The IPA enrichment analysis using featured low abundant transcripts revealed that 37 canonical 

pathways were shared in the CT group from T1 to T5 (Figure 4.7A). Among the top 10 enriched 

pathways from T1 to T5 in the CT group, three out of ten pathways including axonal guidance 

signaling, CREB signaling in neurons, and cardiac hypertrophy signaling (enhanced) 

overlapped from T1 to T5 (Figure 4.7B). For the WT group, 36 canonical pathways were shared 

from pre- to post-challenge (Figure 4.8A). Among the top 10 enriched pathways from pre- to 

post-challenge in the WT group, four out of ten pathways including CREB signaling in neurons, 

cardiac hypertrophy signaling, axonal guidance signaling, and histidine degradation III shared 
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from T1 to T5 (Figure 4.8B). Similarly, for the RE group, 36 canonical pathways were shared 

from pre- to post-challenge (Figure 4.9A). And five out of ten pathways including cardiac 

hypertrophy signaling (enhanced), G protein signaling mediated by tubby, CREB signaling in 

neurons, apelin muscle signaling pathway, and axonal guidance signaling were shared from 

pre- to post-challenge among the top 10 enriched pathways in the RE group (Figure 4.9B). It 

was noted that three pathways including Axonal Guidance Signaling, CREB Signaling in 

Neurons, and Cardiac Hypertrophy Signaling (Enhanced) overlapped from T1 to T5 in all CT, 

WT, and RE groups.  

4.3.3 STEC O157 stxa2-stx2c+ challenge inhibited host responses at the peak O157 fecal 

shedding stage compared to STEC O157 stxa2+stx2c+ challenge 

Compared to genes identified in the CT-T2 group, a total of 302 DEGs comprising 26 GO terms 

were downregulated in the WT-T2 group, while no DEGs were downregulated in the RE-T2 

group (Table 4.3). No GO terms were enriched for upregulated DEGs identified in calves from 

both WT (n=39) and RE (n=1) groups compared to unchallenged calves at T2 (Table 4.3). A 

total of 214 downregulated DEGs comprising 45 GO terms were identified in the WT-T2 group 

compared to the RE-T2 group (Table 4.3). Particularly, 150 out of 411 (36.5%) downregulated 

DEGs and 24 GO terms were shared between WT vs. CT at T2 and WT vs. RE at T2 (Figure 

4.10A). Twenty-three GO terms were WT-T2 specific, among which 21 terms were observed 

in comparison of WT vs. RE at T2 and 2 terms (protein-glutamine gamma-glutamyltransferase 

activity and detoxification) were observed for WT vs. CT at T2 (Figure 4.10B). Among these 

WT-T2 group-specific GO terms, response to bacterium, humoral immune response, and 
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antimicrobial humoral response were directly related to host immunity. In detail, 18 

downregulated DEGs were involved in these host immune-related functions: 

ENSBTAG00000046482, TMEM229B, ENSBTAG00000054561, ENSBTAG00000052579, 

UPK1B, IL36G, S100A8, IL36A, LPO in the functional response to the bacterium; KRT1 in the 

functional humoral immune response; S100A12 in the functional antimicrobial humoral 

response and humoral immune response; PGLYRP4, IL36RN, ENSBTAG00000014329, 

S100A9, SPINK5, PGLYRP3, WFDC5 in functional responses to the bacterium, antimicrobial 

humoral responses, and humoral immune responses (Table 4.4). Six DEGs were upregulated in 

the WT-T2 group compared to the RE-T2 group, while no GO terms were enriched (Table 4.3). 

4.3.4 Comparable but enhanced host responses were induced in both STEC O157 stx2a-stx2c+ 

and O157 stx2a+stx2c+ challenged calves when STEC O157 fecal shedding levels returned to 

normal  

Compared to the CT-T5 group, a total of 195 upregulated DEGs comprising 51 GO terms were 

identified in the WT-T5 group, and 200 upregulated DEGs comprising 54 GO terms were 

identified in the RE-T5 group (Table 4.3). The Venn plot further revealed 152 upregulated 

DEGs (Fig 11A) and 45 GO terms (Figure 4.11B) were shared between comparisons of WT vs. 

CT and RE vs. CT at T5. No GO terms were enriched using either upregulated (n=2) or 

downregulated (n=1) DEGs in the WT-T5 group compared to the RE-T5 group (Table 4.3). A 

total of 123 DEGs (Figure 4.12A) and 28 GO terms (Figure 4.12B) overlapped among 

downregulated DEGs at WT-T2 and upregulated DEGs at WT-T5 groups. Two GO terms were 
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WT-T2 specific (protein-glutamine gamma-glutamyltransferase activity and detoxification) 

and 28 GO terms were WT-T5 specific. 

 

4.4 Discussion 

A higher number of core transcripts (17,082 to 18,110) were identified compared to our prior 

study using mucosa samples from adult beef cattle (an average of 11,773 core transcripts). This 

difference may be due to the different physiological stages in calves and adult beef cattle, as 

young calves may express more genes involved in the development of organs and tissues 

(Werner et al., 2018). Also, this difference could be due to different experimental models; our 

study used a challenge model with STEC O157 strains, while the previous study collected 

mucosal samples from adult beef cattle that were naturally exposed to STEC. We noticed that 

calf age could be one of co-founding factors that influenced transcription patterns. The animal-

to-animal variation in gene expression has been studied in mice (Vedell et al., 2011) and veal 

calves (He et al., 2018). Both studies suggested that environmental and host factors were 

responsible for differences in gene expression among individuals. Although we did not assess 

the genotypes of calves in this study, it is possible that environmental perturbations together 

with genetic differences (e.g. Single Nucleotide Polymorphisms, SNPs) affect transcriptome 

profiles. Taken together, our study is the first to explore the mucosal rectal transcriptome 

profiling, shedding light on the fundamental knowledge of factors potentially affecting the 

rectal mucosal transcriptome.  
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Furthermore, we found that rectal changes in the transcriptome profile were influenced 

by the production of stx2a. The wild type STEC O157 (stx2a-) which has an insertion sequence 

in the stx2a prophage has been reported to result in lower rectal antibody responses to E. coli 

O157 antigens (i.e., H7, Tir, Intimin) as compared to challenge with a stx2a+ strain of E. coli 

O157 (Fitzgerald et al., 2019). However, we found that stxa2- E. coli O157 colonization 

inhibited host responses at the transcriptome level when calves become SS and these decreased 

responses were then elevated when shedding levels returned to prechallenge levels. This shift 

in host responses in relation to shedding phenotype, suggests that the host transcriptome varies 

with the fecal shedding of stxa2- E. coli O157. Among these pathways, we found serine activity-

related functions were inhibited at peak fecal shedding of STEC in stx2a- O157 challenged 

calves (i.e. serine-type endopeptidase inhibitor activity). Serine biosynthesis is a major 

metabolic pathway in E.coli, which  can be used for protein synthesis and as a precursor for the 

biosynthesis of glycine (Stover et al., 1992). However, the inhibitor activity of serine-type 

endopeptidase was inhibited based on functional annotations in the host, suggesting that serine 

production should be elevated and therefore could be beneficial for bacterial survival and 

proliferation.  

Additionally, only one KEGG pathway (based on downregulated DEGs), the IL-17 

signaling pathway, was enriched in WT at T2. The IL-17 (the interleukin 17 family) is a family 

of pro-inflammatory cystine knot cytokines, that can promote chemokine production so as to 

recruit monocytes and neutrophils to the site of inflammation (Korn et al., 2009; Cua and Tato, 

2010). As this pathway was downregulated in WT-T2, it suggests that stx2a- STEC O157 
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colonization in RAJ epithelium could inhibit the host anti-inflammatory effect. However, this 

pathway was not enriched in RE-T2, suggesting that the production of stx2a could inhibit host 

IL-17 signaling. Summarization of the network of overlapping GO terms in the WT- T2 group 

revealed that functions were clustered into two major modules, one related to the extracellular 

surface of host epithelium where E.coli O157 can colonize and interact with host cells (Figure 

4.13). The other cluster is related to tissue integrity. Previous findings revealed that the integrity 

of tissue barrier and epithelial regeneration were impacted by E.coli O157 colonization in calves 

and mice  (Roxas et al., 2010; Fitzgerald et al., 2019). E.coli O157 can induce localized 

effacement of microvilli causing attach/effacement lesions (A/E lesion), which are detrimental 

to the epithelium and cause a negative effect on tissue barrier integrity (Roxas et al., 2010).  

This finding suggests that tissue damage is necessary for stx2a- E.coli O157 colonization of the 

epithelium. 

 The S100 protein family (S100A8, S100A9) was downregulated in the IL-17 signaling 

pathway and influenced tissue barrier integrity in WT-T2. The S100 protein family is a family 

of calcium-binding cytosolic proteins serving as important regulators of host immunity in 

mammals (Xia et al., 2018). It interacts with membrane proteins to enable transcriptional 

regulation and DNA repair and can also serve as a signal for regulating immune homeostasis 

and inflammation (Xia et al., 2018). Previous research revealed that S100A8 and S100A9 

involved in the IL-17 signaling pathway responded to the relative abundance of hindgut mucosa 

microbiota in SS.  That is, S100A8 was positively related to Pseudomonadaceae, and S100A9 

was negatively related to Ruminococcaceae (Wang et al., 2018). In addition to these two genes, 
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S100A12 which has also been shown to be influenced by hindgut mucosa microbiota in SS 

(positive interaction with Lachnospiraceae) (Wang et al., 2018), was downregulated with 

regard to its role in RAGE receptor binding, extracellular region, and antimicrobial humoral 

response in WT-T2. In addition to the antimicrobial functions of S100 family genes, these genes 

are also involved in tissue repair (Xia et al., 2018). A mouse model of angiotensin-induced 

cardiac damage revealed that S100A8/A9 released by granulocytes could upregulate pro-

inflammatory genes and induce the release of cytokines and chemokines, resulting in 

myocardial tissue inflammation and barrier damage (Wu et al., 2014). Therefore, S100 family 

genes (i.e., S100A8/9/12) are vital genes for stx2a- E.coli O157 colonization and host responses, 

which contribute to both inflammatory responses and barrier integrity, with the potential to act 

as biomarkers of E.coli O157 colonization and host immunity. 

The tug of war between stx2a-E.coli O157 and the host exists, where the host defends 

stx2a-E.coli O157 colonization and attempts to eliminate this bacterium. Particularly, the 

expression of peptidase inhibitor was downregulated in WT-T2, resulting in increased 

production of peptidase. Peptidases are enzymes capable of cleaving proteins and are widely 

distributed on the cell surface and function in immune responses such as peptide‐mediated 

inflammation and T‐cell activation (Velden and Hulsmann 1999). The inhibition of peptidase 

inhibitors suggests the host may proactively produce peptidase in an effort to kill stx2a- E.coli 

O157.  It was noticeable that the tug between the host and E.coli O157 continued until the calves 

returned to NS from SS. We found that at WT-T2, most of the inhibited functions were 

subsequently upregulated, suggesting that host functions were enhanced that led to a reduction 
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in stx2a-E.coli O157 shedding. The functions enriched by upregulated DEGs clustered into two 

major modules, similar to the clustering results at T2: an extracellular region and barrier 

integrity (Figure 4.14). While one KEGG pathway, the Wnt signaling pathway and one 

Reactome pathway, the IL-36 signaling pathway were enriched as a result of upregulated DEGs 

in WT-T5. The Wnt signaling pathway has been shown to  have anti-inflammatory activity that 

can limit the survival of bacteria (Ma and Hottiger, 2016). While the IL-36 signaling pathway 

is critical for integrating host innate and adaptive immune responses for host protection of 

enteropathogenic bacteria colonization (Ngo et al., 2020). A study challenged mice deficient in 

IL-36R (receptor for IL-36) with Citrobacter rodentium (C. rodentium, a good in vivo model 

for A/E lesion causing bacteria) and found that expression of IL-22 and other antimicrobial 

proteins (AMPs) was decreased, while intestinal barrier integrity and resistance to bacterial 

colonization were impaired (Ngo et al., 2020). These responses did not negatively impact the 

health of mice.  These findings suggest that the host protective role of IL-36R provides barrier 

protection from intestinal damage and enteric bacterial colonization as a result of the induction 

of IL-22 and AMPs.  

Unlike responses to stx2a- E.coli O157 challenged calves at T2, stx2a+ E.coli O157 

challenged calves (RE) did not respond to bacterial colonization during the peak fecal shedding 

stage, rather host responses were not altered and were similar to unchallenged calves. However, 

transcriptional responses elicited by stx2a- and stx2a+ E.coli O157 infection were similar at T5. 

Although the molecular mechanisms as to how the production of stx2a alters host responses are 

unclear, several studies suggest that stx2a plays a critical role in regulating host immunities  
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(Hoffman et al., 2006; Fitzgerald et al., 2019). A previous study in calves challenged with stx2+ 

or stx2- O157 for the first time and stx2+ O157 in a second inoculation, found that calves 

initially inoculated with stx2- O157 developed a higher magnitude of lymphoproliferative 

responses, suggesting that stx2 may suppress RAJ epithelial immune responses in cattle 

(Hoffman et al., 2006). However, the role of stx2 in host immune responses has not been 

consistent, as another study suggested that it did not suppress host immune responses in calves 

(Fitzgerald et al., 2019). The researchers tested antibody responses to stx2a+ O157 colonization 

in calves and found increased antibody levels of H7, Tir, EspA, and intimin-specific IgA 

compared to stx2a- O157 challenged calves (Fitzgerald et al., 2019). The role of stx2a 

production in O157 on host responses remains unclear but based on our results we developed a 

model of host defensive responses after inoculation with STEC O157 (Figure 4.15). For calves 

challenged with stx2a- O157, host responses were extensively inhibited at T2 and then 

enhanced at T5. While for calves challenged with stx2a+ O157, host responses remained 

unchanged at T2, subsequently decreased and then increased before reaching a similar level 

compared to stx2a+ O157 calves at T5.  

In addition, we observed transcripts divergent in abundance (high and low) are 

functionally different. The types of highly abundant transcripts were both calf age- and 

challenge-independent. These functions were closely related to the maintenance of host 

homeostasis and host housekeeping functions. For instance, functions were related to stress 

(BAG2 signaling pathway, (Qin et al., 2016)), mRNA translation (EIF2 signaling pathway, 

(Kimball, 1999; Shrestha et al., 2012)) and anti-mRNA Degradation (Inhibition of ARE-
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Mediated mRNA Degradation Pathway, (Toeuf et al., 2018)) and cell metabolism 

(Mitochondrial Dysfunction and Oxidative Phosphorylation (Wilson, 2017; Zhunina et al., 

2021)). Since our challenge trial occurred over 29 days from pre- to post-challenge, such short-

term time differences may not significantly affect host RAJ function. However, the function of 

highly abundant transcripts reflected the active metabolism of the RAJ mucosa in young calves 

and that challenge of strain-specific O157 did not alter host housekeeping functions. 

Interestingly, these functions were not identified as the top physiological functions at the RAJ 

mucosa of adult cattle (Wang et al., 2016), suggesting that expression of genes at the RAJ 

maybe age dependent.  

Furthermore, our study revealed that transcripts with low abundance in all CT, WT, RE 

from T1 to T5 shared similar functions associated with neuronal processes and were challenge 

independent. Both Axonal Guidance signaling and CREB signaling in neurons were found to 

be in common from pre- to post-challenge in CT, WT, and RE groups, which are functionally 

related to complex neuronal development and synaptogenesis (Morris et al., 2006; Sakamoto et 

al., 2011; Russell and Bashaw, 2018). The rectum supports bowel movements that can eliminate 

stool from the host body (termed as defecation), a process that is controlled by parasympathetic 

activities (Shafik et al., 2002, 2003; Browning and Travagli, 2021; Nakata et al., 2022). The 

function of synaptogenesis ensures the formation of synapses, which anecessary component for 

defecation (Shafik et al., 2003; Russell and Bashaw, 2018), highlighting that low abundant 

transcripts are related to host housekeeping functions. Interestingly, we found that Cardiac 

Hypertrophy Signaling (Enhanced) is also associated with CT, WT, and RE groups and was 
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enriched by featured low abundant transcripts from pre to post challenge. This function relates 

to cardiac disease and is presumably not related to rectal function. While a recent study 

suggested the occurrence of a potential gut-heart axis, where products produced by intestinal 

microbiota (i.e., trimethylamine N-oxide, short-chain fatty acids) could be resorbed in the 

intestine and distributed via the circulation and influence cardiovascular disease (Kamo et al., 

2017; Bartolomaeus et al., 2020). Through such a process, intestinal microbiota and host 

expression in the intestinal tract could play an important role in heart function (Kamo et al., 

2017; Bartolomaeus et al., 2020). Further studies are needed to identify how host rectum-

hindgut microbiota interactions may influence the gut-heart axis. Through the functional 

analysis of high- and low-abundant transcripts in the calf rectum, we found that these functions 

are not sensitive to STEC O157 colonization, but rather related to fundamental biochemistry 

processes and housekeeping functions.  

The current definition of “lower” abundance of transcripts may largely reflect our ability 

for transcript detection rather than the biological significance of the detected genes. However, 

we adopted an advanced machine learning based approach through a self-organizing map (SOM) 

to select important low abundance genes in our study. A common computational approach for 

clustering is hierarchical clustering, where data are forced into a strict hierarchy of nested 

subsets and the closest pair of points is grouped. However, strict phylogenetic trees used in 

hierarchical clustering are not suitable for similar expression levels and can cluster data points 

based on local decisions with no means to evaluate clustering patterns (Tamayo et al., 1999). 

The SOM provides a thorough summary of a massive data set by extracting the most prominent 
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patterns while retaining structural information and therefore is more efficient at selecting 

functionally important genes that are similar in terms of their expression levels (Kohonen, 1990; 

Tamayo et al., 1999; Reusch et al., 2005; Astel et al., 2007). For example, by using SOM, 

researchers were able to group more than 6,000 yeast genes into several clusters, involved in a 

diversity of functions, providing a fundamental understanding of yeast functional genomes  

(Törönen et al., 1999). Although our research did not identify different functions of low-

abundant transcripts, we still highlighted the possibility of adopting SOM to filter out 

biological-importance transcripts from high-throughput RNA-seq reads.  

In the current study, we did not observe host responses directly related to innate and 

adaptive immunities. Possibly, the approach we used for pathway identification limited our 

understanding of variations in the host transcriptome. Identification of DEGs and functional 

annotation using DEGs belong to the overall representation analysis, which determines whether 

genes from pre-defined gene sets (DEGs) are present more than expected (Maleki et al., 2020; 

Karp et al., 2021). However, such an approach has several drawbacks: the choice of thresholds 

for significant pathways is artificial and might affect the result of downstream analysis (Maleki 

et al., 2020) and it is incapable of detecting biologically important but low expression signals 

(Maleki et al., 2020). While another method, gene set enrichment analysis (GSEA) considers 

all genes, not only those that are DEGs (Subramanian et al., 2005; Reimand et al., 2019). For 

instance, by using GSEA, researchers found that LINC00263 (one of the most dysregulated 

lncRNAs in lung adenocarcinomas) was closely related to the NF-κB signaling pathway, while 

such relations were not directly observed in GO and KEGG enrichments (Liu et al., 2020). 
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Regardless, our study suggested that the dynamic interactions between host and STEC O157 

colonization, of which host functions involved the ability to combat O157 colonization and 

maintenance of tissue barrier integrity were altered.  

 

4.5 Conclusion 

Taken together, our study identified that rectal mucosal transcriptomic and functional responses 

vary in terms of the production of stx2a in STEC. We also identified functional shifts of 

transcripts in terms of their abundance. We found that high- and low-abundant transcripts 

functioned in the host’s biochemical processes and its metabolism with little relation to calf age 

or challenge with O157. Calves challenged with stx2a- O157 exhibited inhibited responses 7 

days post challenge, while these functions were enhanced 26 days post challenge when calves 

recovered from SS. Varied functions were grouped into two clusters: the extracellular region 

where host cells combat O157 colonization and alter host signaling pathways, and tissue barrier 

integrity. We also identified that genes involved in the S100A family were significantly related 

to variation in host responses and may serve as biomarkers of host responses. For calves 

challenged with stx2a+ O157, we did not observe any host responses 7 days post challenge 

while they exhibited enhanced responses 26 days post challenge in a manner similar to that in 

stx2a- challenged calves. Future studies are needed to elucidate host-STEC interactions by 

analyzing host transcriptomes in samples collected from T3 and T4 and by applying methods 

of including genome wide association studies (GWAS) that determine potential genetic 

variations related to host-STEC interactions. By doing so, we could determine the mechanisms 
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of STEC O157 colonization and stx2a expression on host responses from a comprehensive 

perspective.  
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4.7 Tables and figures 

Table 4.1. Number of transcripts identified in CT, WT1, and RE2 group from pre- (T1) to 

post- (T5) challenge.  

1 WT refers to calves challenged with STEC O157stx2a-stx2c+ strain pre-challenge.  

2 RE refers to calves challenged with STEC O157stx2a+stx2c+ strain pre-challenge.  

3 Total represents total transcripts identified in each group.  

4 Core represents genes that were universally expressed in all samples in CT, or WT or RE 

group at certain time points   

5 Highly abundant represents genes that accumulated to >90% total reads.  

  

 

CT WT RE 

 T1 T2 T5 T1 T2 T5 T1 T2 T5 

Total3 21819 21835 21732 21695 21515 21577 21628 21837 21783 

Core4 17853 17906 17742 18229 17804 17613 17082 17482 18110 

Unique 304 316 275 362 307 286 247 343 317 

Highly 

abundant5 
5360 5634 5534 5049 5577 5417 5125 5354 5055 
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Table 4.2. Number of low abundant and featured low abundant transcripts1 identified in 

CT, WT, and RE group from pre- (T1) to post- (T5) challenge.  

 

1 Featured low abundant transcripts were identified using the self-organising map approach.   

Group Time No. low abundant transcripts No. featured low abundant   transcripts 

CT T1 5911 2236 

T2 5934 2024 

T5 5476 1952 

WT T1 6598 2502 

T2 6014 2101 

T5 5821 2114 

RE T1 5504 2079 

T2 5717 2134 

T5 6548 2355 



 

198 

 

Table 4.3. The number of up- and down- regulated DEGs and GO terms enriched by 

DEGs in comparison of WT and CT, RE and CT, WT and RE groups at T2 and T5. 

1 The value before semicolon and after semicolon represent up-regulated DEGs and GO terms 

enriched by up-regulated DEGs, respectively.  

2 The value before semicolon and after semicolon represent down-regulated DEGs and GO 

terms enriched by down-regulated DEGs, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Group Time 
Up-regulated  DEGs ;  

No. of GO terms 1 

Down-regulated  DEGs;  

No. of GO terms 2 
Total DEGs 

WT vs. CT 
T2 39; 0 302; 26 341 

T5 195; 51 5; 0 200 

RE vs. CT 
T2 1; 0 0; 0 1 

T5 200; 54 6; 0 206 

WT vs. RE 
T2 6; 0 214; 45 220 

T5 2; 0 1; 0 3 
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Table 4.4.  Downregulated DEGs involved in host-immune related functions 

 

 

  

Genes  Log2 fold change  P-value Terms  

ENSBTAG00000046482 -1.6 0.04 

response to bacterium 

TMEM229B -2.0 <0.01 

ENSBTAG00000054561 -2.1 <0.01 

ENSBTAG00000052579 -2.7 0.01 

UPK1B -2.8 <0.01 

IL36G -5.3 0.02 

S100A8 -6.2 <0.01 

IL36A -6.5 <0.01 

LPO -7.3 <0.01 

PGLYRP4 -2.7 0.01 

response to bacterium 

antimicrobial humoral response 

humoral immune response 

IL36RN -2.9 0.04 

ENSBTAG00000014329 -2.9 <0.01 

S100A9 -5.6 <0.01 

SPINK5 -6.7 <0.01 

PGLYRP3 -6.7 0.01 

WFDC5 -7.0 <0.01 

S100A12 
-3.5 <0.01 antimicrobial humoral response & 

humoral immune response 

KRT1 -6.8 <0.01 humoral immune response 



 

200 

 

Figure 4.1. Number of paiedr-end RNA-seq reads for WT, CT, and RE groups from pre- 

(T1) to post- (T5) challenge.  
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Figure 4.2. Principal component analysis (PCA) of host transcripts for CT, WT, and RE 

groups from pre- (T1) to post- (T5) challenge.  
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Figure 4.3. Principal coordinate analyses (PCoA) of Bray-Curtis distances of host 

transcript similarities to the CT group.  

The distance was calculated between T1 and T2 (A), T2 and T5 (C), T1 and T5 (E) in the CT 

group. Each dot represents a sample and the dashed lines (B, D, F) indicate the shift of host 

transcripts representing individual responses in a sample from T1 to T2 (B), T2 to T5 (D), T1 

to T5 (F). The PERMANOVA analysis assessed the significance of time-to time differnces 

(A,C,E) and pairwise individual variations (B,D,F) on microbial structural similarities with 

P<0.05 as a significance and P ≥ 0.05 & <0.1 as a tendceny being significance. 

 

  

Comparison P-value

A. T1 vs. T2 0.66

B. Samples from T1 
and T2

0.01 **

C. T2 vs. T5 0.06 +

D. Samples from C 0.05 +

E. T1 vs. T5 0.05 *

F. Samples from E 0.18
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Figure 4.4. Principal coordinate analyses (PCoA) of Bray-Curtis distances of host 

transcript similarities to the WT group. 

The distance was calculated between T1 and T2 (A), T2 and T5 (C), T1 and T5 (E) in the WT 

group. Each dot represents a sample and the dashed lines (B, D, F) indicate that the shift of host 

transcripts representing individual responses in a sample from T1 to T2 (B), T2 to T5 (D), T1 

to T5 (F). The PERMANOVA analysis assessed the significance of time-to time differences 

(A,C,E) and pairwise individual variations (B,D,F) on microbial structural similarities with 

P<0.05 as a significance and P ≥ 0.05 & <0.1 as a tendceny being significance. 

 

  

Comparison P-value

A. T1 vs. T2 0.05 +

B. Samples from A 0.29

C. T2 vs. T5 0.03 **

D. Samples from C 0.96

E. T1 vs. T5 0.25 

F. Samples from E 0.41
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Figure 4.5. Principal coordinate analyses (PCoA) of Bray-Curtis distances of host 

transcript similarities to the RE group. 

The distance was calculated between T1 and T2 (A), T2 and T5 (C), T1 and T5 (E) in the RE 

group. Each dot represents a sample and the dashed lines (B, D, F) indicate that the shift of host 

transcripts representing individual responses in a sample from T1 to T2 (B), T2 to T5 (D), T1 

to T5 (F) (P<0.05 as a significance and P ≥ 0.05 & <0.1 as a tend being significance). The 

PERMANOVA analysis assessed the significance of time-to time differences (A,C,E) and 

pairwise individual variations (B,D,F) on microbial structural similarities with P<0.05 as a 

significance and P ≥ 0.05 & <0.1 as a tendceny being significance. 

  

Comparison P-value

A. T1 vs. T2 0.92

B. Samples from A 0.02 **

C. T2 vs. T5 0.23

D. Samples from C 0.61

E. T1 vs. T5 0.13

F. Samples from E 0.01 **
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Figure 4.6. The self-organizing map-based  clustering of low abundant transcripts.  

The self-organizing map was performed for CT-T1 (A), CT-T2 (B), CT-T5 (C), WT-T1 (D), 

WT-T2 (E), WT-T5 (F), RE-T1 (G), RE-T2 (H), RE-T5 (I)  with featured low-abundant 

transcripts being clusters I to IX. 

  

A B C

D E F

H I J
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Figure 4.7. The functional analysis of featured low abundant transcripts idenfied from the 

self-organizing map in the CT group. 

A. The upset plot showing overlapped GO functions enriched using featured low abundant 

transcripts idenfied from self-organizing map in the CT group from T1 to T5. 

B. The top 10 most enriched GO functions enriched using featured low abundant transcripts 

idenfied from self-organizing map in the CT group at T1, T2, and T5, respectively.  

  

BA
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Figure 4.8. The functional analysis of featured low abundant transcripts idenfied from the 

self-organizing map in the WT group. 

A. The upset plot showing overlapped GO functions enriched using featured low abundant 

transcripts idenfied from self-organizing map in the WT group from T1 to T5. 

B. The top 10 most enriched GO functions enriched using featured low abundant transcripts 

idenfied from self-organizing map in the WT group at T1, T2, and T5, respectively.  

  

BA
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Figure 4.9. The functional analysis of featured low abundant transcripts idenfied from the 

self-organizing map in the RE group. 

A. The upset plot showing overlapped GO functions enriched using featured low abundant 

transcripts idenfied from self-organizing map in the CT group from T1 to T5. 

B. The top 10 most enriched GO functions enriched using featured low abundant transcripts 

idenfied from self-organizing map in the CT group at T1, T2, and T5, respectively.  

  

BA
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Figure 4.10. The overview of downregulated DEGs with enriched GO functions in the 

WT- T2 group.  

A. The Venn plot showing overlapped downregulated DEGs in the WT- T2 group compared to 

CT-T2 and RE-T2 groups, respectively.  

B. The circus plot showing overlapped GO functions enriched by downregulated DEGs in the 

WT- T2 group compared to CT-T2 and RE-T2 groups. No. 1 to 10 and 13 to 23 represent GO 

functions that were specific to the WT- T2 group compared to the RE-T2 group. No. 11 to 12 

represent GO functions that were specific to the WT- T2 group compared to the CT-T2 group. 

No. 24 to 47 represent overlapped GO functions in the WT- T2 group compared to both CT-T2 

and RE-T2 groups. 

  

BA
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Figure 4.11. The Venn plot showing overlapped upregulated DEGs (A) with enriched GO 

functions (B) in comparison of WT-T5 and RE-T5.   

BA
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Figure 4.12. The upregulated DEGs with enriched GO functions at WT- T5.   

A. The venn plot showing overlapped DEGs between the WT- T5 group (upregulated) and the 

WT-T2 (downregulated) group. 

B. The circus plot showing overlapped GO functions enriched by upregulated DEGs in the WT- 

T5 group and downregulated DEGs in the WT-T2 group. No. 13 to 23 and 48 to 63 represent 

GO functions that were specific to the WT- T5 group enriched by upregulated DEGs. No. 11 

to 12 represent GO functions that were specific to the WT- T2 group enriched by downregulated 

DEGs. No. 24 to 47 represent overlapped GO functions between the WT- T2 group and the 

WT-T5 group. 

  

BA

13 calcium ion binding

14 DNA-binding transcription activator activity, RNA polymerase II-specific

15 DNA-binding transcription activator activity

16 serine-type endopeptidase activity

17 serine-type peptidase activity

18 serine hydrolase activity

19 DNA-binding transcription factor activity, RNA polymerase II-specific

20 tissue development

21 embryonic morphogenesis

22 water homeostasis

23 regulation of hydrolase activity

48 epithelium development

49 antimicrobial humoral response

50 establishment of skin barrier

51 regulation of water loss via skin

52 embryo development

53 regulation of animal organ morphogenesis

54 skin development

55 embryonic forelimb morphogenesis

56 epithelial cell differentiation

57 epithelial cell proliferation

58 forelimb morphogenesis

59 animal organ morphogenesis

60 negative regulation of nitrogen compound metabolic process

61 epidermal cell differentiation

62 polymeric cytoskeletal fiber

63 keratin filament
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Figure 4.13. A proposed network summarizing GO terms in the WT-T2 group.  

Two pathways (nodes) are connected if they share 20% or more genes. Darker nodes are more 

significantly enriched gene sets. Bigger nodes represent larger gene sets. Thicker edges 

represent a higher proportion of transcripts were shared among each term. 
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Figure 4.14. A proposed network summarizing GO terms in the WT-T5 group.  

Two pathways (nodes) are connected if they share 20% or more genes. Darker nodes are more 

significantly enriched gene sets. Bigger nodes represent larger gene sets. Thicker edges 

represent a higher proportion of transcripts were shared among each term. 
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Figure 4.15. Proposed dynamic  pattern of host responses to strain-specific STEC O157 

colonization. 
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Chapter 5. Strain-specific Shiga toxins producing Escherichia coli O157 colonization 

affected microbial interactions and assembly of the active rectal mucosa-attached 

microbiome and its interactions with host immune function in calves3 

 

5.1 Introduction 

Shiga toxins producing Escherichia coli (STEC) is a critical foodborne pathogen for humans 

and accounts for more than two million acute illnesses annually worldwide (Majowicz et al., 

2014). Among STEC, STEC O157:H7 is the major serotype responsible for severe sequala in 

humans including hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC) (Kim and 

Song, 2022). Shiga toxins are the main virulence factors in STEC O157 and can be broadly 

classified into Shiga toxin 1 (stx1) and Shiga toxin 2 (stx2)  (Melton-Celsa, 2014). Shiga toxin 

2 is more often associated with human illness as it is present in 40%, 41%, and 43% of isolates 

responsible for HUS, hospitalization, and HC cases, respectively (Panel et al., 2020). Shiga 

toxin 2 occurs as several variants including stx2 a, b, c, d, e, f, and g (Melton-Celsa, 2014). 

Although the acquisition of stx2a prophage has been reported to be integral to STEC O157 

pathogenicity, a recent study revealed that a phage type (PT) 21/28 associated with STEC 

diseases in humans contained both stx2a and stx2c encoding prophages but only expressed 

stx2c(Chase-Topping et al., 2008). For instance, 61% of HUS cases in children were caused by 

PT 21/28stx2a-stx2c+ in Scotland from 1997 to 2001 (Chase-Topping et al., 2008).  

                                                 
3 Chapter 5 is a part of a manuscript submitted to Microbiome, and currently under review. 
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Cattle are the main reservoir for STEC O157 with rectal-anal junction (RAJ) being the 

major colonization site (Xu et al., 2014; Wang et al., 2017). Cattle shed STEC O157 through 

feces into the environment with those that shed more than 104 CFU STEC per gram of feces 

being defined as ‘super shedders’ (SS).  Super shedders are considered to be the primary source 

of STEC transmission on farms and to the food production chain (Chase-Topping et al., 2008; 

Xu et al., 2014; Munns et al., 2015; Wang et al., 2016). A previous study also found that PT 

21/28stx2a-stx2c+ was likely to be associated with SS, accounting for 50% of the cattle isolates in 

Scotland (Chase-Topping et al., 2008). These findings suggest that this phage type could play 

a key role in cattle-human transmission. Commensal bacteria have been reported to inhibit 

STEC O157 colonization in the ruminant digestive tract through direct (i.e. competitive 

exclusion) and indirect (i.e. activation of host immune protection) mechanisms (Buffie and 

Pamer, 2013). Recent studies have highlighted that RAJ mucosal-attached microbiota were 

functionally and compositionally influenced by STEC O157 (Wang et al., 2016, 2018).  

Furthermore, microbial interactions differed among rectal mucosal microbial communities in 

beef cattle that harbored STEC O157 with varied stx2 expression (Pan et al., 2021b). However, 

most previous STEC O157 studies in beef cattle used fecal and/or rectal lumen samples as 

opposed to epithelial RAJ mucosa.   

It is known that STEC O157 colonizes the RAJ tissue of young calves, where it has been 

reported to cause lesions and gut immune dysfunction  (Dean-Nystrom et al., 1997; Sandhu and 

Gyles, 2002; Menge, 2020). We speculate that varied host-microbiome interactions during early 

life could be one of the factors that influence the development of SS and the persistence of 
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STEC in cattle. The gut microbial community is gradually established after birth, a period 

critical for shaping the composition and structure of the gut microbiome that influences host 

health (Zhou et al., 2013; Malmuthuge and Guan, 2017; Malmuthuge et al., 2019; O’Hara et al., 

2020). Both deterministic factors (i.e. interspecies interactions, species traits, host) and 

stochastic factors (i.e. birth, death, colonization of microbes) can simultaneously occur and 

affect the assembly of microbial communities (Zhou and Ning, 2017). For instance, a recent 

study of the rumen of adult dairy cows revealed that stochasticity played a role in shaping long-

term rumen microbiome development and stability in cattle (Furman et al., 2020). Within gut 

microbial communities, microbes interact within ecological niches that are crucial for the 

successful establishment and maintenance of microbial populations (Braga et al., 2016).  We 

further speculate that the interaction within the early life microbiome during the pathogen 

infection can be affected by both deterministic and stochastic factors.  

Additionally, STEC O157 colonization has been shown to alter intestinal immunity in beef 

cattle. For instance, immune genes including chemokine (C-C motif) ligand 21 (CCL21), CD19 

molecule (CD19), and 4-domains, subfamily A, and member 1 (MS4A1) were reported to be 

downregulated in SS compared to NS (Wang et al., 2017; Pan et al., 2021a). Although 

differentially expressed genes in rectal tissues were found to be associated with predicted 

hindgut mucosa microbial functions in SS, i.e. the expression of Ficolin 2 (FCN2) was 

negatively correlated with the relative abundance of microbial metabolic pathways, including 

amino acid-related enzymes (Wang et al., 2016). However, the mechanisms whereby STEC 

O157 influences the composition, interactions, and assembly of hindgut microbiota, as well as 
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host immune responses are unknown. Also, current microbial studies focused on DNA-based 

amplicon sequencing, which fails to represent how active microbes respond to gut environment 

alterations.  Therefore, in this study, we aimed to assess the microbial compositional and 

structural dynamics, microbial interactions, assembly shifts, and stability of the active mucosa-

attached microbiome using tissue samples collected from calves orally challenged with STEC 

O157 strains that lacked (PT 21/28stx2a-stx2c+) or possessed stx2a (RE 21/28stx2a+stx2c+) using RNA 

based sequencing. Additionally, we assessed the shift of host immune responses and host-

microbial interactions to strain-specific O157 colonization.  

 

5.2 Materials and methods 

5.2.1 Animal study and sample collection  

The animal study, sample collection, and fecal STEC O157 enumeration are described in 

Chapter 4.  

5.2.2 RNA extraction and sequencing  

RNA extraction and quantification are described in Chapter 4. Total RNA (0.1 µg) was further 

subjected to reverse transcription to synthesize cDNA using a cDNA Synthesis Kit (Bio-Rad, 

Hercules, CA, USA). Single-stranded cDNA was amplified using Oligo(dT)12-18 (Life 

Technologies, Carlsbad, CA, USA) and SuperScript™ II RT (Life Technologies, Carlsbad, CA, 

USA) was used to synthesize double-strand cDNA.  

To generate the mucosa-attached active bacterial compositional profiles, the bacterial V1-

V3 region of the 16S rRNA gene was amplified from generated cDNA using bacterial primers 
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Ba9F (5'-GAGTTTGATCMTGGCTCAG-3') and Ba515Rmod1 (5'-

CCGCGGCKGCTGGCAC-3'). The PCR amplification products were verified using agarose 

gel (2%) electrophoresis and purified with a Qiagen Gel Extraction Kit (Qiagen, Germany). All 

amplicon libraries were sequenced using an Illumina MiSeq PE 300 platform (2 × 300 pair-end) 

at Génome Québec, McGill University (Quebec, Canada). 

Extracted total RNA (1ug) was used for library construction using the Truseq Stranded 

Total RNA Sample Preparation kit (Illumina, San Diego, CA, USA) following the 

manufacturer’s instructions. The quality of constructed libraries was assessed using an Agilent 

2200 TapeStation and a Qubit 2.0 Fluorometer. RNA sequencing was performed using a HiSeq 

4000 sequencing system (Illumina, San Diego, CA, USA), with paired-end (100 bp) sequencing 

at Genome Quebec Innovation Centre. One sample from WT-T1, two samples from CT-T2, 

two samples from CT-T2, one sample from WT-T5, and one sample from RE-T5 were omitted 

due to the low quality of RNA-sequencing reads.  

5.2.3 Mucosal attached microbial community analysis  

The raw sequence data were assigned to each sample according to the corresponding barcode 

and were processed using QIIME2 (Version 2019.10) (Bolyen et al., 2019). Quality control, 

denoising, removal of chimeric sequences, and generation of amplicon sequencing variants 

(ASVs) were performed using the QIIME2 plugin DADA2 (Callahan et al., 2016). Taxonomic 

classification was performed in QIIME2 using a taxonomic classifier with the SILVA database 

(version 132) as the reference. The Good’s coverage index was used to evaluate the adequacy 

of sequencing depth to generate bacterial profiles in each sample.  



 

220 

 

Alpha diversity was estimated using Shannon (evenness) and Chao1 (richness) indices. The 

Kolmogorov-Smirnov (KS) test was used to assess if the shifts of alpha diversities from pre- to 

post-challenge differed (P0.01 as a significance) or shared a similar trend of changing patterns 

(P>0.01). This nonparametric test assessed whether empirical distributions of variables between 

two different groups were significantly different (Karson, 1968). Beta diversity was evaluated 

based on Bray-Curtis distance to determine the similarities of active microbial profiles across 

times among the three groups with ANOSIM (analysis of similarities) determining the effects 

of age and challenge on microbial similarities. Linear regression models were constructed to 

assess the relationship between alpha diversities and STEC O157 fecal shedding levels at T2 

and T5 with Shannon/Chao1 indices as independent variables and log10 fecal shedding levels 

as dependent variables (P<0.05 as significant). The PROC MIXED model in SAS (ver. 9.13; 

SAS Institute Inc., Cary, NC, United States) was used to analyze the effects of challenge and 

age on the relative abundance of taxa at the phylum level. 

5.2.4 Microbial interactions within the active mucosa microbial community using network 

analysis 

Microbial networks were constructed using Spearman’s coefficient (absolute Spearman’s R > 

0.6, P < 0.05) and topological properties, including modularity (value > 0.4, suggesting that the 

network has a modular structure) (Newman, 2006), average degree (the average number of 

connections per node) (Wolfe, 1997) and clustering coefficient (also termed transitivity, the 

degree to which nodes tend to cluster together) (Ravasz et al., 2002) were computed for each 

network. Then, two topological properties (average degree, clustering coefficient) representing 
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node distributions were compared pairwise across time in microbial communities associated 

with CT, WT, and RE groups using the Kolmogorov-Smirnov (KS) test in R (Karson, 1968).  

Within-module connectivity (Zi) and among-module connectivity (Pi) were computed to 

characterize the topological role of nodes with the classification as follows: network hubs 

(Zi>2.5; Pi>0.62), module hubs (Zi >2.5; Pi<0.62), connectors (Zi<2.5; Pi>0.62) and 

peripherals (Zi<2.5; Pi<0.62) (Guimerà and Amaral, 2005). Network generalists refer to taxa 

that are highly connected with others both within and among modules (network hubs), within a 

module (module hubs), and among different modules within a network (connectors). Network 

specialists represent peripheral taxa that interact less with other taxa (i.e., nodes were 

considered connected within a module if at least 60% of the links were within the module) 

(Guimerà and Amaral, 2005). 

 Natural connectivity measures the network stability based on the following algorithm:  

ave(λ) = ln (
1

N
∑ eλi)

N

i=1

 

where ave(λ) is the natural connectivity, N is the number of nodes in the network, and λ𝑖 is the 

eigenvalue of the adjacency matrix. Up to 80% of total nodes in each group were randomly 

removed from the adjacency matrix and λi and ave(λ) were re-calculated after each removal. 

The visualization of the natural connectivity was performed using the ggplot2 package in R.  

To assess if the microbial taxa abundance affected microbial interactions, the microbial 

taxa were stratified into three groups based on their relative abundance: high abundance 

(relative abundance>1%), moderate abundance (0.01%< relative abundance<1%), and low 

abundance (relative abundance<0.01%) (Zhang et al., 2018; Tian et al., 2023). Then, the 
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relationships between abundant-specific microbial generalists/specialists and network 

properties (i.e. nodes, edges, modularity, average degree, clustering coefficient, natural 

connectivity) were determined using Spearman’s coefficient (absolute R>0.8 and P<0.05 as a 

significance) across each group. Significant relationships were further examined using linear 

regression models (R2 >0.8, P<0.05 as a significance).  

5.2.5 Assessment of microbial community assembly patterns in response to STEC O157 

challenge 

Determinism highlights strong selections imposed by environments and species interactions, 

while stochasticity focuses on the random and unpredictable events affecting assembly (Stegen 

et al., 2012). The Raup-Crick distance (𝛽𝑅𝐶) was used to assess the relative importance of 

stochastic/deterministic processes in the microbial assemblage. The 𝛽𝑅𝐶 measures the extent to 

which the deterministic-driven assembly deviates from the assemblies based on null (stochastic) 

expectations: a value approaching -1 or 1 (𝛽𝑅𝐶>0.95 or 𝛽𝑅𝐶<-0.95) refers to the deterministic 

factors that drive microbial community assembly (Anderson et al., 2011; Chase et al., 2011). 

Whereas if 𝛽𝑅𝐶  does not significantly deviate from 0 (-0.95<𝛽𝑅𝐶 <0.95), the community is 

considered a stochastic-driven assembly.   

5.2.6 Microbial specialization patterns in response to STEC O157 colonization and fecal 

shedding  

Microbial specialization is a general biological process that shapes the assembly of microbial 

communities (Johnson et al., 2012), which can be measured  using the niche breadth index:   

𝐵𝑗 =
1

∑ 𝑃𝑖𝑗
2𝑁

𝑖=1
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Here, 𝐵𝑗 stands for niche breadth, 𝑃𝑖𝑗 refers to the proportion of any species 𝑖 in a given sample, 

𝑗 and 𝑁 is the total number of samples (Levins, n.d.). Niche breadth refers to the diversity of 

recourses used by an individual (or species) within a certain environment (Carscadden et al., 

2020). When available recourses are limited, niche breadth is usually increased for species to 

gain more resources for survival and such taxa can occupy a broader niche and are defined as 

generalists. In contrast, species that selectively use specific resources and have a narrower niche 

breadth are defined as specialists (Carscadden et al., 2020). Based on the 1000-time simulations 

(quasiswap permutation algorithms, EcolUtils R package), the empirical niche breadth value of 

certain taxa that exceeded the 95% confidence interval of the null distribution was designated 

as a generalist, whereas those that were below the 95% confidence interval were defined as a 

specialist. Taxa that were within the 95% confidence interval were defined as neutralists (Wu 

et al., 2017). The Chi-square test was used to test the equality of numbers of specialized 

microbes across CT, WT, and RE groups pre- and post-challenge (P<0.01 as significant). 

Specialized microbes among microbial assemblage that play a role in microbial interactions 

were identified (that is a taxon involved in both microbial networks and microbial assemblage). 

The relations between the relative abundance of identified dual role microbes and both 𝛽𝑅𝐶 and 

log10 STEC fecal shedding were assessed using linear regression models (P<0.05 as a 

significance). 

5.2.7 Identification of host immune-related pathways and host-microbial interactions  

RNA-sequencing reads were first subjected to the quality filter and adapter trimming using 

FastQC and bbDuk. Filtered reads were then mapped against the reference bovine reference 
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assembly ARS-UCD 1.2 using STAR (Version 2.7.1a). Feature counts of each ensemble ID 

were then generated using subread (Version 2.0.0) and were then normalized into TPM 

(transcripts per million).  The gene set enrichment analysis (GSEA), which considers all genes 

instead of only differentially abundant genes was adopted to identify the altered pathways 

(Mootha et al., 2003; Subramanian et al., 2005). This approach does not need the preselection 

of genes of interest and is capable of identifying whether a pathway is up-/down- regulated 

(Subramanian et al., 2005; Reimand et al., 2019). Particularly, the GSEA analysis was used to 

identify pathways that were altered in response to the STEC O157 challenge in both WT and 

RE groups using R (altered pathways: absolute normalized enrichment score >1, nominal P 

value <0.05, FDR q-value <0.1). Among altered pathways, host immune pathways were then 

selected, and only expressed genes among these selected pathways were considered for further 

analysis. Host genes from identified host immune-related pathways were correlated with the 

relative abundance of identified key microbes using the Spearman correlation (Absolute R>0.8 

and P<0.01 as a significance) among CT, WT, and RE groups at pre- and post-challenge.  

5.2.8 Data availability  

All sequence data have been deposited to NCBI Sequence Read Archive (SRA) under accession 

numbers PRJNA991158 (RNA sequencing) and PRJNA988112 (Amplicon sequencing).  

 

5.3 Results  

5.3.1 Strain-specific STEC O157 challenge resulted in a similar active rectal mucosa 

microbial community structure  
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One sample from the RE-T5 group was excluded due to low-quality sequence data. An average 

of 37,449 ±10,711 paired-end raw reads were generated for 71 mucosa samples. After quality 

control, a total of 11,375 amplicon sequence variants (ASVs) were identified with an average 

of 160 ± 5 ASVs per sample from an average of 15,774 ± 3,747 filtered pair-end reads. The 

Good’s coverage was > 99.9 % for all samples. A total of 13 phyla were identified across all 

groups, among which Actinobacteria, Bacteroidota, Firmicutes, and Proteobacteria were the 

most abundant (accumulated relative abundance accounting >90% for each group, Table 5.1). 

Among identified phyla, the relative abundance of Bacteroidota, and Actinobacteria were 

affected by interactions between challenge and age (P Bacteroidota= 0.02, P Actinobacteria= 0.04, Table 

5.1). 

Both Shannon and Chao1 indices (alpha diversity) of rectal mucosal microbiota in WT and 

RE calves exhibited similar change patterns: increasing from pre-challenge (T1) to peak 

shedding periods (T2), and then decreasing from T2 to T5 (All KS test P>0.01, P>0.01 stands 

for a similar trend of changing patterns, Figure 5.1A, B). However, the shift in alpha diversity 

of the CT group differed from WT and RE groups as both indices were the lowest at T2 (Figure 

5.1A, B). Furthermore, all three groups differed (PShannon<0.01, P Chao1 =0.09) in Shannon and 

Chao1 indices at T2. Similarly, the Bray-Curtis distance (beta diversity) of microbial similarity 

showed a separation of rectal bacteria between T1 and T5, and the cluster of rectal bacteria at 

T2 overlapped with T1 and T5 in both WT and RE groups, while this pattern was not apparent 

in the CT group (Figure 5.1C). The ANOSIM analysis identified several interactions between 

age and STEC O157 challenge regarding the similarity of microbial communities 
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(PAge*Challenge=0.01, PAge =0.21, PChallenge =0.36). Although microbial richness and evenness were 

altered similarly in both WT and RE groups, the relationship between alpha diversities and log10 

fecal shedding levels varied (Figure 5.2). In particular, the Shannon index was negatively 

correlated to log10 fecal shedding at T2 in the WT group (P=0.041, Figure 5.2), while no 

correlation was observed with the RE group.   

5.3.2 Differential microbial interactions in active mucosal attached microbiota in response 

to strain-specific O157 challenges 

Varied dynamic patterns of microbial networks and their properties were identified among three 

groups. The pattern of network stability in calves challenged with different O157 strains was 

similar with the greatest microbial network stability occurring during peak shedding (T2) and 

the lowest at T5 (Figure 5.3A-C). It is noted that PT 21/28stx2a-stx2c+ colonization in calves led to 

greater variability in microbial network stability as compared to those inoculated with RE 

21/28stx2+stx2c+ (Figure 5.3B, C). In contrast, a continuous increase in microbial network stability 

was identified in the CT group from T1 to T5 (Figure 5.3A).  

The number of nodes (microbial taxa) exhibited similar change patterns in all three groups 

during the experimental period, in that the number of nodes increased from T1 to T2 and 

decreased from T2 to T5 (Figure 5.3D, Table 5.2). However, the number of edges peaked at T2 

for the two challenge groups (WT and RE), while it increased from T2 to T5 in the CT group 

(Figure 5.3E).  The modularity [(the index measures the strength of division of a network into 

modules with its value >0.4 suggesting the network has a modular structure (Newman, 2006)]) 

was greater than 0.4 for CT, WT, and RE groups (Figure 5.3F). The average degree (an index 



 

227 

 

that measures the number of edges connected to a node) was the highest at T2 for WT and RE, 

while it was the highest at T5 in the CT group (Figure 5.3G). For clustering coefficients, the 

highest value was observed at T2 for all three groups (Figure 5.3H), while the Kolmogorov-

Smirnov tests showed differences (P<0.01) in the average degrees and clustering coefficients 

among the three groups during the experimental period. 

From the network modularity perspective, taxa were classified into network hubs, module 

hubs, connectors that represent generalists, and peripherals that represent specialists in the 

community. In our study, network hubs and module hubs were not identified in CT, WT, or RE 

groups. An average of 2% (ranging from 0 to 3.8%) of total nodes were designated as 

connectors while an average of 98 % ± 0.4 % of total nodes were classified as peripherals for 

CT, WT, and RE groups (Table 5.3).  

5.3.3 Moderate abundant genera featured as network specialists relate to network 

stability  

According to the aforementioned stratification criteria, 78%-90% of total genera (from 98 to 

164) belonged to the moderate abundant taxa among CT, WT, and RE groups, while 7%-18% 

and 0-1% of total genera (from 98 to 164) were designated as high- and low- abundant taxa, 

respectively (Table 5.4). Out of the 23 classified connectors, 17 (74%) were members of the 

moderate-abundant taxa among three groups (Figure 5.5A), and none of the network connectors 

was related to network stability (Figure 5.5).  Among the 1,073 classified peripherals, 912 (85%) 

belonged to the moderate-abundant taxa among the three groups (Figure 5.4B). The number of 

peripherals (R2
adj=0.82, P<0.01), particularly moderately (R2

adj=0.86, P<0.01) abundant 
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peripherals were positively correlated to network stability, whereas low- abundant peripherals 

tended to be significant (R2
adj=0.47, P=0.025, Figure 5.4C-E).  

5.3.4 STEC O157 challenge affected the dynamics of mucosa microbial assembly patterns  

The Raup-Crick distance revealed that microbial community assembly patterns in the CT group 

were consistently stochastic-driven (Figure 5.6A), while it transitioned from deterministic-

driven (T1 and T2) to a stochastic-driven (T5) assembly in the WT group (Figure 5.6A). For 

the RE group, the assembly of the microbial community was stochastic-driven at T2, while a 

deterministic process made the major contribution to assemblies at T1 and T5 (Figure 5.6A). In 

addition, the Raup-Crick distance was negatively correlated with log10 STEC O157 fecal 

shedding in the WT group, with the 𝛽𝑅𝐶 being increased for more stochastic-driven mucosal 

attached microbiota of calves with lower O157 fecal shedding (R2
adj=0.67, P<0.01, Figure 5.6B). 

However, the Raup-Crick distance measured for mucosal-attached microbiota of the RE group 

was not related to log10 STEC O157 fecal shedding (Figure 5.6C). 

5.3.5 STEC O157 challenge affected microbes participating in both microbial interactions 

and assembly  

Microbial specialization quantifies the role of each microbe within the microbial community 

by estimating the availability of resources/nutrients to individuals (Carscadden et al., 2020). A 

range of 6 to 29 (6% -18%) assembly generalists and 5 to 19 (5% -14%) assembly specialists 

were identified for all three groups from T1 to T5 (All P>0.1, Table 5.5, Figure 5.7). Among 

identified specialized microbes, two bacterial taxa (Paeniclostridium and Gallibacterium) were 

the only ones (assembly specialists) designated as network connectors. Particularly, the relative 
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abundance of both Paeniclostridium and Gallibacterium were similar among CT, WT, and RE 

groups pre-challenge (Figure 5.8A, B). However, the relative abundance of Paeniclostridium 

was increased in WT as compared to CT at T2 (P<0.01), while CT and RE have a similar 

relative abundance to Paeniclostridium at this timepoint (P=0.25, Figure 5.8A). At T5, the 

relative abundance of Paeniclostridium showed a tendency of being higher in both WT and RE 

as compared to CT (PWT vs. CT =0.081, PRE vs. CT=0.011, Figure 5.8A). At T2, the relative 

abundance of Gallibacterium showed an increasing trend in CT as compared to the WT, while 

it did not differ between CT and RE (Figure 5.8B). Furthermore, the relative abundance of 

Gallibacterium showed an increasing trend in both WT and RE compared to the CT at T5 (PWT 

vs. CT =0.05, PRE vs. CT=0.011, Figure 5.8B). The relative abundance of Paeniclostridium was 

positively correlated with 𝛽𝑅𝐶 (R2
adj =0.68, P=0.028) at T2 and negatively correlated with 𝛽𝑅𝐶 

at T5 (R2
adj =0.66, P=0.058) in the WT group (Figure 5.9A top left and top right). For the relative 

abundance of Gallibacterium, only samples at T2 tended to be positively correlated with 𝛽𝑅𝐶 

(R2
adj =0.36, P=0.091, Figure 5.9B bottom left).  

5.3.6 Strain-dependent host immune responses and host-microbial interactions in calves 

after STEC O157 challenge 

The GSEA analysis revealed varied host responses to the STEC O157 challenge between WT 

and RE, among them altered pathways related to host immunities were selected (defined as host 

immune-related pathways). The percentage of expressed genes within each pathway (that is the 

number of genes expressed within each pathway among all samples/number of genes belonging 

to each pathway) were assessed including antigen processing and presentation (43 out of 88 
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expressed genes), chemokine signaling pathway (171 out of 189 expressed genes), the intestinal 

immune network for IgA production (32 out of 48 expressed genes),  natural killer cell-

mediated cytotoxicity (95 out of 137 expressed genes), MAPK signaling pathway (259 out of 

267 expressed genes), T cell receptor signaling pathway (107 out of 108 expressed genes), B 

cell receptor pathway (73 out of 75 expressed genes). Three host immune-related pathways 

including the MAPK signaling pathway, antigen processing and presentation, and the T-cell 

receptor signaling pathway were upregulated at T2 compared to both T1 and T5 in WT, with 

the B-cell receptor signaling pathway being the only pathway upregulated at T2 as compared 

to T1 in WT (Figure 5.10A). For RE, both T-cell and B-cell receptor signaling pathways were 

upregulated at T5 and T2 as compared to T1. Four pathways, including antigen processing and 

presentation, the chemokine signaling pathway, intestinal immune network for IgA production, 

and the natural killer cell mediated cytotoxicity were upregulated at T5 compared to T1 (Figure 

5.10B). 

There were no significant interactions between the relative abundance of active mucosal-

attached microbes and expressions of host immune related genes (defined as host-microbial 

interactions in our study) for CT from T1 to T5, except for MAPT from the MAPK signaling 

pathway being negatively correlated to UCG.010 at T2 (Table 5.6). For WT, a range of 10 to 

49, 0 to 6, and 9 to 59 positive host-microbial interactions were identified at T1, T2, and T5, 

respectively (Table 5.6). A range of 6 to 35, 3 to 22, and 4 to 82 negative host-microbial 

interactions were identified in WT at T1, T2, and T5, respectively (Table 5.6). For RE, only 

positive host-microbial interactions were identified at T1. Two positive (NCR3 from cell 
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mediated cytotoxicity interacted with Odoribacter; MAP3K12 from MAPK signaling pathway 

interacted with Rikenellaceae RC9 gut group) and 1 negative (MAP2K3 from MAPK signaling 

pathway interacted with Oscillospiraceae) host-microbial interactions were identified at T2 in 

RE (Table 5.6). A range of 1 to 6 positive and 1 to 29 negative host-microbial interactions were 

identified in RE at T5 (Table 5.6). 

5.3.7 Observed varied host-microbial interactions for beneficial and pathogenic microbes 

in response to the STEC O157 challenge 

We further assessed interactions between mucosal active microbes and expressions of host 

genes involved in host-immune related pathways (Figure 5.11-5.13). The commensal bacteria, 

Prevotella (Larsen, 2017; Iljazovic et al., 2021), Rikenellaceae RC9 gut group (Sun et al., 2019; 

Huang et al., 2021), Fecalibacterium (Ferreira-Halder et al., 2017), and Dorea (Shahi et al., 

2017) were detected in the active mucosal attached microbiota with their relative abundance ( % 

± SD) being 0.5 ± 0.008, 1.6 ± 0.013, 0.8 ± 0.021, 0.1 ± 0.004 in all samples. Their potential 

interactions with genes involved in host immune-related pathways revealed that in the WT-T1, 

the relative abundance of Prevotella (0.2 ± 0.001) exhibited the greatest interaction with host 

immune genes, being negatively correlated with CALR, HSP90AA1, and PDIA3 involved in 

antigen processing and presentation as well as PLA2G12A and CACNA2D2 involved in the 

MAPK signaling pathway (All P<0.01, Figure 5.14A). The relative abundance of Dorea (0.2 ± 

0.002) was negatively correlated with BLNK from B-cell receptor signaling pathway and 

ADCY2 involved in Chemokine signaling pathway, while it was positively correlated with 

GADD45A involved in MAPK signaling pathway and IFNGR1 from natural killer cell mediated 
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cytotoxicity in WT-T1 (All P<0.01, Figure 5.14A). Before the challenge of WT, the relative 

abundance of Escherichia- Shigella (1.1 ± 0.01) was negatively correlated with the expression 

of genes involved in the MAPK signaling pathway, chemokine signaling pathway, and antigen 

processing and presentation pathway (Figure 5.14A). At peak fecal shedding, in WT, only the 

relative abundance of Paeniclostridium (0.7 ± 0.008) was negatively correlated with the 

expression of genes involved in antigen processing and presentation, intestinal immune network 

for IgA production, T cell receptor signaling pathway, MAPK signaling pathway, B cell 

receptor signaling pathway and natural killer cell mediated cytotoxicity (Figure 5.14B). At T5 

in WT, only the relative abundance of Rikenellaceae RC9 gut group (0.7 ± 0.003) and 

Escherichia- Shigella (7.8 ± 0.17) showed the most interactions with host immune-related gene 

expressions (Figure 5.14C). For RE, only the relative abundance of Faecelibacterium (4.7 ± 

0.04) was positively correlated with expression of genes involved in antigen processing and 

presentation, MAPK signaling pathway, and natural killer cell mediated cytotoxicity at T1, and 

only relative abundance of Rikenellaceae RC9 gut group (1.7 ± 0.009) was positively correlated 

with MAP3K12 expression in the MAPK signaling pathway at T2 (Figure 5.15A, B). The 

relative abundance of Paeniclostridium (1.0 ± 0.01) showed varied interactions with expression 

of genes involved in antigen processing and presentation, intestinal immune network for IgA 

production, T cell receptor signaling pathway, MAPK signaling pathway, B cell receptor 

signaling pathway, natural killer cell mediated cytotoxicity and the chemokine signaling 

pathway in RE-T5 (Figure 5.15C). 
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5.4 Discussion 

Previous studies suggested that E. coli O157 supper-shedders had significantly different 

microbial profiles associated with the rectal mucosa and feces in beef cattle (Pan et al., 2021b). 

However, studies that have examined the active mucosal microbiome and its relationship with 

host gene expression are limited (RNA level). Different from previous studies using DNA-

based amplicon sequencing (Wang et al., 2017), the current study is the first to reveal the active 

mucosal attached microbiota associated with the rectal anal junction and its shift in response to 

STEC challenge. Firstly, we found that the mucosal attached microbial community in the rectal 

tissue of veal calves was dominated by Firmicutes, Bacteroidetes, Proteobacteria, and 

Actinobacteria, phyla which are similar to that found in adult cattle using DNA-based amplicon 

sequencing (Xu et al., 2014; Mao et al., 2015; Wang et al., 2017). Compared to DNA-based 

amplicon sequencing which suggested Treponema was the most abundant classified genus 

(9.13%) associated with the rectal mucosa of beef cattle (Mao et al., 2015), we found that 

Treponema was only a highly abundant taxon (1.6%) with UCG.005 (30%), UCG.010 (15%), 

and Christensenellaceae R7 group (9%) being the most abundant genus for all three treatment 

groups.  These results suggest that microbial compositions are different at DNA and RNA levels 

and further microbiome studies using RNA-based amplicon sequencing should be encouraged 

to uncover ‘true’ microbial compositions.  

Secondly, we found that the profiles and diversity of this community can be affected by   

STEC O157 challenge. Similar to other super shedder studies (Mir et al., 2019; Vasco et al., 

2021), we found that higher fecal shedding levels increased alpha diversity. This likely reflects 
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the ability of STEC O157 to be a successful competitor within gut lumen bacterial communities 

(Kaper et al., 2004), which could also be the case for the mucosal-attached community. At peak 

shedding times (T2), STEC O157 may deprive commensal bacteria of nutrients, enabling it to 

reach peak population levels. As a result, rectal mucosal attached microbial communities can 

become more diverse to regain the space and resources to maintain their homeostasis to repel 

pathogens, as reflected by the increase in alpha diversity at peak shedding in both groups 

challenged with STEC O157. Once STEC O157 colonization is limited, the microbiota can shift 

back to the relatively simple community as reflected by the reduced alpha diversity at T5. 

Similarly, this same pattern was observed in the beta diversity of bacterial communities in 

calves challenged with STEC O157 as compared to calves that were not. These suggest that 

active mucosal microbial communities could respond to rectal mucosal STEC O157 

colonization, highlighting the importance of examining active mucosal microbiota for O157 

colonization in beef cattle. 

Although stx2a was more toxic than stx2c which causes a higher degree of host responses 

(Fraser et al., 2004; Melton-Celsa, 2014), the expression of stx2a genes in STEC did not affect 

RAJ active mucosal microbial profiles. This finding complied with our previous research, 

supports the concept that microbial diversities and similarities are not driven by the expression 

of stx2 in beef cattle (Pan et al., 2021b). The similar changing patterns of microbial profiles 

may be due to the nature of Shiga toxins. The Shiga toxins attach to epithelium through the 

glycosphingolipid receptor (Gb3 receptor), which was not expressed on the surface of epithelial 

cells in beef cattle (Menge et al., 2001; Raa et al., 2009; Melton-Celsa, 2014). Instead, STEC 
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O157 colonizes the gut epithelium through attachments and adhesions by proteins such as the 

type III secretion system (T3SS) and intimin in beef cattle (Wu et al., 2010; Sheng et al., 2011; 

Ji and Dong, 2015; Gaytán et al., 2016; Deng et al., 2017; Xue et al., 2017). Future studies 

should focus on STEC possessing attachments and adhesions genes and their effects on the 

structures of the mucosal attached microbiome.  

Additionally, we found that colonization of STEC O157 induced dynamic shifts of 

microbial interactions, and as results crosstalk between mucosal microbes may impact the 

nature of the metabolites generated. For instance, Prevotellaceae UCG.003, a member of the 

Bacteroidota, was more abundant in the PT 21/28 stx2a-stx2c+ group (0.003 ± 0.003) compared to 

RE 21/28 stx2a+stx2c+ group (0.001 ± 0.001) at T2. Members of the Bacteroidota are known to 

produce butyrate which can inhibit the growth and colonization of E.coli and is critical among 

microbial interactions (Pryde et al., 2002; Faust et al., 2012; Wang et al., 2019; Silva et al., 

2020; Clark et al., 2021; Iljazovic et al., 2021). Hence the higher abundance of Prevotellaceae 

in WT at peak shedding level may infer the higher level of butyrate produced in the gut against 

STEC O157 colonization and potential alterations of microbial interactions. Whereas butyrate 

production and STEC O157 colonization may not be the case for RE. The production of stx2a 

in STEC could affect host gut homeostasis, therefore, augmenting its survival and inhibiting 

functions of gut commensals, leading to a low abundance of Prevotellaceae. Network analysis 

often highlighted the importance of generalists in driving and stabilizing microbial interactions. 

For instance, a previous study used ocean bacterial data set to construct microbial networks and 

revealed that highly connected keystone taxa (that is generalists) were responsible for microbial 
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compositional changes and their presence promotes microbial stabilities (Herren and McMahon, 

2018). However, our study found that peripherals (network specialists), the often-neglected 

ecotype in microbial interactions, contributed more to the maintenance of network stability. 

This result suggests that the role of different ecotypes within microbial interactions is dynamic, 

which may be due to the combined effect of the host and the gut environment. Microbial 

network stability represents the ability of the microbiota to respond to environmental change 

(Liu et al., 2022), with the shift to different ecotypes reflecting a response in network stability 

as a result of pathogen challenge altering the ambient gut environment. Particularly, moderately 

abundant peripherals made the greatest contribution to network stability with 74% being 

network generalists (17 out of 23) and 85% (912 out of 1071) belonging to moderate abundant 

taxa. While other studies focus on rare and high abundant taxa and their effects on microbial 

communities as was the case for rare taxa serving as keystone taxa for the restoration of 

multifunctionality of the soil microbiome (Xu et al., 2021), or highly abundant taxa dominating 

the succession of microbial communities during microbiome establishment under a well-

controlled environment (Zhu et al., 2023). However, little is known about the ecological role of 

moderately abundant taxa within microbial communities. From our research, it is suggested that 

moderate abundant taxa have a multifunctional role within microbial communities from an 

ecological perspective, as they serve as keystone taxa within clusters in microbial networks or 

as peripherals contributing to network stability.  

The microbial community assembly is vital since this process affects microbial profiles and 

their ability to respond to external environmental changes (Liu et al., 2019). However, there is 
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a lack of such research for the bovine mucosal microbial community. We found that STEC 

O157 colonization together with stx2 subtype differences affect patterns and the dynamics of 

rectal mucosal microbial community assembly. Particularly, the production of stx2a but not 

stx2c shifted assembly patterns from deterministic-driven to stochastic-driven at T2. During the 

community assembly process, microbes are affected by both stochastic and deterministic 

factors and can interact with each other leading to the specialization of certain microbial taxa 

within the niche (Pandit et al., 2009; Braga et al., 2016; Browne et al., 2021). As a result, the 

production of stx2a in RE may minimize the effect of microbial interactions and responses to 

gut environmental changes. The fact that the microbial community assembly was driven by the 

stochastic process in unchallenged calves during the experimental period, suggests that as 

previously reported, age was a deterministic factor that plays an important role in the assembly 

of  (Furman et al., 2020)  the hindgut mucosa microbiome. We found that assembly patterns 

differed in challenge groups compared to the control group at T1 when all calves were weaned 

and fed in the same environment. This illustrates that individualized responses play a critical 

role in gut microbiome assemblage. These results can also facilitate the development of 

strategies to promote communities that limit the colonization and persistence of STEC O157 at 

the RAJ.  

In our study, the STEC O157 challenge was identified as the deterministic factor affecting 

microbial assembly, with two assembly specialists being identified that were theoretically 

related to STEC O157 colonization and rectal mucosal microbial interactions. Two bacterial 

taxa Paeclostridium and Gallibacterium were network connectors dominating microbial 
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interactions and simultaneously being assembly specialists for both WT and RE groups. 

Assembly specialists harbor narrow ecological niches and are more affected by deterministic 

processes due to their preferences and sensitivities to external environmental conditions 

(Logares et al., 2013; Liao et al., 2016; Xun et al., 2019; Xu et al., 2022). Our results confirmed 

that the relative abundance of pathogenic Paeclostridium and opportunistic pathogenic 

Gallibacterium increased after STEC O157 colonization. And such variations can be STEC 

strain dependent as reflected by their relative abundance increased at 7 days post challenge in 

the WT group but increased at 26 days post challenge in RE calves. Correspondingly, the 

expression of SEMA6A, the gene encoding for the receptor of exotoxin TcsL in 

Paeniclostridium (Tian et al., 2020), was higher in WT compared to unchallenged calves 7 days 

post-challenge, while this increase was not observed for RE at T2. Our study is the first to reveal 

the expression of SEMA6A as the receptor of Paeniclostridium was affected by the production 

of stx2a and STEC O157 colonization. Further evidence is that the Paeclostridium exhibited 

varied interactions with community assembly patterns in WT post-challenge, with no effects in 

the RE pre- and post-challenge. As a bacterial pathogen, Paeclostridium can produce 

hemorrhagic toxins causing acute infectious disease in humans and animals (Vidor et al., 2019; 

Li et al., 2022). The increased relative abundance of this bacterial taxon after STEC O157 

colonization in WT may suggest a potential mutualism between Paeclostridium and STEC, and 

such mutualism could augment the survival and proliferation of these two bacteria. However, 

the expression of stx2a did not affect interactions between the relative abundance of 

Paeclostridium and microbial assembly in RE at T2, suggesting that stx2a expression may be a 
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negative signal that inhibits interactions for other microbes, causing no interactions observed 

for the RE challenge at T2. Gallibacterium is the other network connector that is designated to 

assembly specialists, which is an opportunistic pathogen in animals (Driessche et al., 2020). 

Whereas no significant relationships with community assembly were found for Gallibacterium, 

suggesting this microbial taxon could play a trivial role in affecting RAJ mucosal microbial 

assembly. Taken together, our results highlighted that although opportunistic pathogens are in 

low abundance in the rectal mucosa, pathogen colonization can still affect its abundance and its 

roles in rectal mucosal microbial interactions and assembly. We also highlighted the approach 

used for the selection of microbes is novel that we consider the role of microbes in both 

interactions and assembly, instead of only one process, to fully identify how microbes serve a 

function within the community. 

Previous studies reported cellular and humoral immune responses in calves challenged with 

stx2-positive STEC O157 (Hoffman et al., 2006). For instance, the serum IgG specific to STEC 

O157 intimin was significantly increased following oral challenge with a STEC O157 stx2 

positive strain in adult cattle (Bretschneider et al., 2007a, 2007b). However, such a study failed 

to assess how different stx2 subtypes in STEC alter host responses. Another study revealed that 

the level of systemic H7-specific IgA antibody was increased in calves challenged with PT 

21/28stx2a-stx2c+   compared to RE 21/28stx2-stx2c+ (Fitzgerald et al., 2019). Our study revealed a 

higher magnitude of host immune responses in calves after STEC O157 challenge from the 

transcriptomic perspective, but host immune responses were affected by stx2 subtype 

differences. Particularly, wild-type O157 challenge induced intensive but inhibited host 
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immune responses at peak fecal shedding, with responses then enhanced when shedding 

returned to normal. While the production of stx2a did not affect host responses at T2 and similar 

host responses were induced at T5. Our analysis showed how the host responds to strain-

specific STEC O157 colonization from the transcriptomic perspective, which extends our 

knowledge of host-O157 interactions. However, further research using samples collected from 

other time points (T3, T4) is needed for deciphering the nature of host responses as a result of 

challenge with strain-specific STEC O157.  

In addition to the pathogen-driven immune responses, gut microbiota also plays a key role 

in regulating host immune function, which is capable of producing metabolites that influence 

host homeostasis (Nicholson et al., 2012; Jansma and Aidy, 2021). Among the gut microbiota, 

commensal organisms such as Prevotella (Larsen, 2017; Iljazovic et al., 2021), Rikenellaceae 

RC9 gut group (Sun et al., 2019; Huang et al., 2021), Fecalibacterium (Ferreira-Halder et al., 

2017), and Dorea (Shahi et al., 2017) were reported to be beneficial to the host. For instance, 

Dorea has been reported to be one of the most abundant genera in non-shedders (Wang et al., 

2017), which is a beneficial butyrate-producing bacteria in the gut that enhances tight junctions 

of the epithelium (Louis and Flint, 2017). Indeed, we found that interactions between beneficial 

microbes and host immunities were dominant before the challenge in both WT and RE groups. 

For example, Prevotella a mucosa-attached commensal that is positively associated with high 

fiber consumption can distinctively modulate host immune responses and gut barrier functions 

in human epithelial cells (Ilhan et al., 2020). In accordance with our findings that host immune-

related pathways showed intense positive interactions with Prevotella pre-challenge, 
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suggesting that beneficial microbes are positively related to host immunities when the host 

remains in its homeostasis. However, STEC O157 colonization shifted such beneficial 

microbes- host immune genes interactions for both WT and RE groups. The aforementioned 

Paeniclostridium, the identified microbes involved in both microbial interactions and assembly 

showed significant negative interactions with host immune genes at T2 in PT 21/28 stx2a-stx2c+ 

challenged calves, suggesting that Paeniclostridium is a critical microbe involved in both host 

immune responses and STEC O157 colonization. Hence, we proposed a pathogen-gut 

commensals-host model in that the pathogen colonization initiated the shift of interactions and 

assembly of microbial communities, which further affect host responses and differentiate host-

microbial interactions. In our study, the colonization of STEC O157 first induced active rectal 

mucosal microbial interactions and assembly variations (Figure 5.16). Through such processes, 

keystone opportunistic pathogens were identified to be associated with host immunity 

alterations and differed host-microbial interactions (Figure 5.16). We also noticed that the 

expression of stx2a in STEC can be a factor affecting the pathogen-gut commensals-host model 

in our study. It can delay the occurrence of host- Paeniclostridium interactions and limit 

interactions between gut commensals and host immune genes, highlighting the role of stx2a in 

shifting host-microbial interactions instead of affecting rectal mucosal microbial profiles. The 

proposed model can be useful to further our understanding of STEC O157 colonization 

mechanisms and can apply to other similar studies. 

Lastly, before challenge when calves were confirmed STEC O157 negative and shared a 

similar health condition, the quantity of host-microbial interactions was not similar among three 
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groups, indicating there are specific differences among hosts and possibly individual responses 

that could affect such host-microbial interactions. Besides, we found that calf growth (age 

changes) plays a trivial role in affecting interactions between host immune-related pathways 

and the relative abundance of microbial genera from T1 to T5 since a limited number of host-

microbial interactions was identified in unchallenged calves across ages.   

 

5.5 Conclusions 

Our research comprehensively revealed the RAJ mucosa attached active microbial profiles and 

its interactions and assembly patterns shifts in response to strain-specific STEC O157 

colonization in calves. Different from studies using fecal samples and DNA-based amplicon 

sequencing, we collected RAJ mucosa samples and used cDNA-based amplicon sequencing to 

reflect active microbial communities. Our results revealed that STEC O157 colonization 

affected RAJ active microbial profiling, however, the changing patterns of microbial structures 

were not strain-dependent. Instead, both microbial interactions and assembly patterns were 

strain-dependent. Furthermore, our study suggested STEC O157 colonization can be the 

deterministic factor affecting RAJ microbial assembly patterns. This study is the first to identify 

how opportunistic pathogenic taxa (Paeniclostridium and Gallibacterium) could be the 

keystone members to affect microbial assembly and microbial interactions during STEC 

colonization, revealing potential interactions between pathogen and commensal organisms. 

Further RNA-seq identified how host immunities and host-microbial interactions varied during 

colonization with responses being strain specific. Our findings identified the dynamic 
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interactions between active mucosal-attached microbes and host immune genes, suggesting that 

beneficial microbes dominate interactions with host immunities under homeostasis, while 

pathogenic microbes bear such responsibility with host immunities once homeostasis is 

disrupted. Therefore, we speculate that STEC O157 indirectly relates to the host through RAJ 

mucosal microbial interactions and assembly, particularly by regulating the relative abundance 

of Paeniclostridium and its interactions with host immunities. Our findings and speculations 

require further in vivo and in vitro models to validate the interaction mechanism between 

Paeniclostridium and STEC O157 as well as the role of Paeniclostridium on the hindgut 

mucosa microbiome and host. Regardless, our findings provide fundamental knowledge of 

STEC O157 colonization mechanisms and how microbial communities and the host 

participated in response to the production of different Shiga toxin subtypes, the main virulence 

factors involved in pathogenesis.  
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5.7 Tables and figures 

Table 5.1. The average relative abundance of bacterial phylum across each group 

The PROC MIXED models was used to determine factors affecting the differences of bacterial 

phylum across each group (P<0.05 as significant).  

Group CT WT RE P 
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up 
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Table 5.2. The network topological properties of microbial interactions among rectal 

mucosa microbial communities among three groups. 

 

  

Group Week Nodes Edges Modularity 
Average 

degree 

Clustering 

coefficient 

CT 

T1 132 775 0.46  11.74  0.56  

T2 163 906 0.55  11.12  0.72  

T5 144 1173 0.49  16.29  0.66  

WT 

T1 105 300 0.73  5.71  0.80  

T2 117 494 0.75  8.44  0.83  

T5 97 261 0.72  5.38  0.63  

RE 

T1 116 550 0.52  9.48  0.67  

T2 122 642 0.54  10.52  0.73  

T5 95 353 0.69  7.43  0.70  
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Table 5.3. The attributions of microbial genera based on their network roles.  

 

 

 

  

 

 
Group 

Week χ2 test 

T1 T2 T5 χ2  p 

Connectors 

CT 0 4 3 

N/A 0.45 WT 4 3 3 

RE 2 3 1 

Peripherals 

CT 132 160 142 

2.1 0.71 WT 101 114 94 

RE 114 120 94 
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Table 5.4. The stratification of abundant-specific genera across each group.  

Fisher’s exact test was used as the count of one cell was below 5. 

Abundant Group 

Week χ2 test 

T1 T2 T5 χ2  p 

High 

CT 0.08 (n=11) 0.070 (n=12) 0.081 (n=12) 

1.1 0.9 WT 0.10 (n=11) 0.092 (n=11) 0.18 (n=18) 

RE 0.094 (n=11) 0.097 (n=12) 0.13 (n=13) 

Moderate 

CT 0.78 (n=104) 0.82 (n=134) 0.82 (n=122) 

4.1 0.4 WT 0.89 (n=93) 0.90 (n=106) 0.82 (n=80) 

RE 0.89 (n=104) 0.90 (n=111) 0.87 (n=85) 

Low 

CT 0.14 (n=18) 0.11 (n=18) 0.01 (n=14) 

N/A 0.8 
WT 0.010 (n=1) 0.017 (n=2) 0 (n=0) 

RE 0.016 (n=2) 0.0080 (n=1) 0 (n=0) 
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Table 5.5. The quantity of specialized microbes among microbial community assembly in 

CT, WT and RE groups from T1 to T5.  

 Chi-square test was used to test the equality of numbers of specialized microbes. 

 

 

 

 

 

 

 

 

 

 

 

 

Attributes Group 

Week χ2 test 

T1 T2 T5 χ2  p 

Generalists 

CT 19 29 22 

2.2 0.7 WT 9 12 13 

RE 10 10 6 

Non-significant 

CT 95 126 112 

3.7 0.4 WT 91 101 76 

RE 100 108 85 

Specialists 

CT 19 9 14 

2.6 0.6 WT 5 6 9 

RE 7 6 7 
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Table 5.6. The quantity of host-microbial interactions in CT, WT, and RE groups from 

T1 to T5.  

Group 

Antigen B cell Chemo IgA Killer MAPK T cell 

P N P N P N P N P N P N P N 

CT-T1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT-T2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

CT-T5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WT-T1 11 10 11 10 43 24 10 6 22 8 49 35 22 15 

WT-T2 3 3 3 14 6 18 0 6 4 11 6 17 2 22 

WT-T5 9 9 29 14 44 45 10 4 28 22 59 82 27 25 

RE-T1 1 0 1 0 2 0 1 0 2 0 3 0 1 0 

RE-T2 0 0 0 0 0 0 0 0 1 0 1 1 0 0 

RE-T5 1 5 6 11 13 22 4 1 3 17 4 29 3 16 

 

The value in each cell represents the quantify of interactions between genes involved in host 

immune pathways and microbes. Absolute R>0.8 and P<0.01 as the cut off for significant 

interactions. P and N stand for the positive and negative interactions, respectively. Antigen, B 

cell, Chemo, IgA, Killer, MAPK, T cell refer to antigen processing and presentation, B cell 

receptor signaling pathway, chemokine signaling pathway, intestinal immune network for IgA 

production, natural killer cell mediated cytotoxicity, MAPK signaling pathway, T cell receptor 

signaling pathway, respectively. 

  



 

265 

 

Figure 5.1. Comparison of diversity metrics among three groups from pre- (T1) to post- 

(T5) challenge. 

Shannon (A) and Chao1 (B) indices were used to estimate the evenness and richness across 

three groups with three different colors of bars representing samples collected from T1, T2, and 

T5. The horizontal bars within boxes represent medians. The Kruskal-Wallis test was used to 

determine whether indices between any two groups were significant. (P ≤ 0.05).  

C. Principal coordinate analysis (PCoA) was used for the visualization of the Bray-Curtis 

distance. The PERMANOVA was used to test for the similarity of clustering patterns among 

different ages within each group. Differences were considered significant at P ≤ 0.05. 
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Figure 5.2. Relations between microbial diversities and log10 STEC O157 fecal shedding 

in calves in WT and RE groups from T1 to T5, respectively.  
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Figure 5.3. Dynamic microbial interactions were revealed by network analysis in the CT, 

RE, and WT groups at different ages.  

A, B, and C represents networks constructed in CT, RE, and WT groups, respectively. The line 

represents network stability changes with values near the line and microbial interactions were 

plotted below each line. The changing patterns of network properties including nodes (D), edges 

(E), modularity (F), average degree (G), and clustering coefficient (H) were visualized from 

within each group. 
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Figure 5.4. Attributes of network connectors and peripherals to the abundant-specific 

genera and significant relations between network stabilities. 

Attributes of network connectors (A) and peripherals (B) to the abundant-specific genera and 

significant relations between network stabilities and network peripherals (C), low abundant (D), 

and moderate abundant (E) peripherals using linear regression models. 
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Figure 5.5. Spearman rank-based correlations between network stabilities and network 

properties and abundant-specific connectors and peripherals. 

The absolute R> 0.6 and P<0.05 were considered as significant. Only significant correlations 

were shown in the plot. 
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Figure 5.6. Microbial assembly patterns determined by Raup-Crick distance and its 

relations with log 10 STEC O157 fecal shedding level.  

The dynamics of microbial community assembly patterns in three groups from T1 to T5 (A). 

The dotted horizontal line represents the boundary line that separates assembly patterns being 

more stochastic- (above) or deterministic- (below) driven. The linear regression model shows 

the relations between Raup-Crick distance and log10 STEC O157 fecal shedding in the WT (B) 

and RE (C) groups. 
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Figure 5.7. The specialization patterns of mucosa-attached microbes during microbiome 

assembly from T1 to T5 for CT, WT, and RE. The proportion of microbes belonging to 

specialists (on the top of each column) and generalists (on the bottom of each column) 

were assessed and microbes without specializations were considered as non-significant in 

the plot.  
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Figure 5.8. The comparison of the relative abundance of Paeniclostridium and 

Gallibacterium across each group from T1 to T5.  

(A) and (B) refer to the comparison for the relative abundance Paeniclostridium and 

Gallibacterium. P< 0.01 as significance (marked as a triangle) and P<0.05 as a trend being 

significant (marked as a star). 
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Figure 5.9. The linear regression models showing the relative abundance of 

Paeniclostridium and Gallibacterium and their relationships with Raup-Crick distance in 

WT and RE groups at T2 and T5. 

The linear regression models showing the relative abundance of Paeniclostridium (A) and 

Gallibacterium (B) and their relationships with Raup-Crick distance in WT (first and third row) 

and RE (second and fourth row) groups at T2 (left column) and T5 (right column). 

  

A
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Figure 5.10. The upset plot shows intersections of host pathways response to STEC O157 

colonization in WT and RE groups.  

The Venn plots showed the interaction for WT (A) and RE (B) groups, and below refers to 

intersections of host immune-related pathways. For example, T2>T1 refers to the host immune 

pathways that are upregulated in T2 compared to T1. Values on top of each column in the upset 

plot refer to the number of enriched pathways. 
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Figure 5.11. Significant interactions between host-immune related pathways and the 

relative abundance of rectal mucosal microbes.  

Host genes involved in T cell receptor signaling pathway (A) and B-cell receptor signaling 

pathway (B). 
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Figure 5.12. Significant interactions between host-immune related pathways and the 

relative abundance of rectal mucosal microbes.  

Host genes involved in antigen processing and presentation (A) and intestinal immune network 

for IgA production (B), and natural killer cell mediated cytotoxicity (C). 
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Figure 5.13. Significant interactions between host-immune related pathways and the 

relative abundance of rectal mucosal microbes.  

Host genes involved in chemokine signaling pathway (A) and MAPK signaling pathway (B). 
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Figure 5.14. Interactions between selected microbes and host immune genes in the WT 

group across T1, T2, and T5.  

The plots A, B, C refer to T1, T2, and T5, respectively. The solid line and dotted line refer to 

positive and negative interactions, respectively. The rod shape represents mucosal microbes 

and the circle refers to host immune-related genes with divergent colors representing different 

host immune-related pathways. For certain genes that were involved in more than one pathway, 

all pathways were marked. Antigen, Bcell, Chemo, MAPK, Killer, IgA, Tcell refer to antigen 

processing and presentation, B-cell receptor signaling pathway, chemokine signaling pathway, 

MAPK signaling pathway, natural killer cell mediated cytotoxicity, intestinal immune network 

for IgA production, T-cell receptor signaling pathway, respectively. 
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Figure 5.15. Interactions between selected microbes and host immune genes in the RE 

group across T1, T2, and T5.  

The plots A, B, C refer to T1, T2, and T5, respectively. The solid line and dotted line refer to 

positive and negative interactions, respectively. The rod shape represents mucosal microbes 

and the circle refers to host immune-related genes with divergent colors representing different 

host immune-related pathways. For certain genes that were involved in more than one pathway, 

all pathways were marked. Antigen, Bcell, Chemo, MAPK, Killer, IgA, Tcell refer to antigen 

processing and presentation, B-cell receptor signaling pathway, chemokine signaling pathway, 

MAPK signaling pathway, natural killer cell mediated cytotoxicity, intestinal immune network 

for IgA production, T-cell receptor signaling pathway, respectively.  
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Figure 5.16. The proposed pathogen-gut commensals-host model for host-microbial 

interactions upon STEC O157 colonization in veal calves.  

The diagram is created using Biorender (www. biorender.com).  
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Chapter 6. General discussion 

 

Shiga toxin producing E.coli (STEC) colonization in beef cattle is a complex process, of which 

super-shedders (shedding more than 104 CFU/g E.coli O157 ) are associated with cattle-human 

transmission (Xu et al., 2014; Cote et al., 2015; Munns et al., 2015; McCabe et al., 2019). 

Identification of the prevalence of Shiga toxins in STEC and how their expression affects 

hindgut fecal and mucosal-attached microbiota at rectal-anal junction (RAJ), and host responses 

could provide fundamental knowledge on STEC colonization in beef cattle and to the 

development of on-farm intervention strategies. In this thesis, I performed research using 

integrated omics and molecular approaches to reveal how STEC colonization and expression 

of stx gene affect host-microbial interactions at the RAJ. The epidemiological surveys 

suggested that abundance (DNA) and expressions (RNA) of stx1 and stx2 were not evenly 

identified from fecal and RAJ mucosa samples (Chapter 2). Particularly, the stx2 gene 

expression in bacteria could affect fecal microbial interactions as compared to those that lacked 

expression (Chapter 3). Furthermore, we revealed that STEC O157 colonization and stx2a 

expression influences host responses using the veal calf challenge model with strain-specific 

STEC O157 (stx2a+ vs. stx2a- ) (Chapters 4 and 5). In addition, the STEC O157 challenge also 

affected gut homeostasis through the regulation of RAJ mucosal attached microbial community,  

its interactions and assembly (Chapter 5). Additionally, stx2a expression could be a factor that 

contributes to the varied interactions between rectal mucosa microbes and expression of host 

immune genes.   
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6.1 Varied abundance and expressions of stx1 and stx2 in STEC from feces and RAJ 

mucosa  

In Chapter 2, the abundance (DNA) of stx1 and stx2 were compared between fecal and RAJ 

mucosal samples. The findings indicate that the abundance of stx1 and stx2 differed between 

fecal and RAJ mucosal samples and stx in STEC from mucosal samples were more abundant, 

suggesting that  STEC were colonizing the RAJ. This finding is in accordance with previous 

report that copy numbers of E.coli O157 were inconsistent between the RAJ epithelium and 

feces (Durso et al., 2010). In addition, stx abundance was found to be affected by beef cattle 

breeds (Angus, Charolais, Kinsella Composite) and sampling year. Different breeds of beef 

cattle have remarkably different genetic backgrounds, and such variation may alter the host gut 

environment, which could be the reason for varied copy numbers of stx. Taken together, for 

most current studies, researchers tend to use fecal samples to quantify STEC copy numbers and 

stx, but such an approach can fail to reveal the ‘true’ abundance of STEC and Shiga toxin genes 

and neglects other factors that may affect these observations. Therefore, in Chapter 2, we 

suggested using both fecal and mucosal swabs or biopsies for accurate estimation of stx gene 

abundance in beef cattle. 

        In Chapter 2, we demonstrated that the expression of stx2 was identified only in mucosal 

samples, while the stx1 expression was not identified in STEC from either fecal or mucosal 

samples. As the stx2 toxin is 400 times more toxic than stx1 and its expression is commonly 

associated with human diseases (Schmidt et al., 2000; Fraser et al., 2004). When STEC 
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colonizes the RAJ epithelium, the adherence factor intimin, encoded by eae enables STEC 

colonization (Farfan and Torres, 2012). Our study identified that expressions of eae and stx2 

genes were simultaneously detected in STEC from mucosal samples, suggesting that the 

expression of stx2 may act as a cofactor with eae to contribute to higher mucosal colonization 

of STEC in beef cattle.  

 

6.2 The stx2 expression relates to fecal and RAJ mucosal microbiome 

As mentioned above, we realized that the expression of stx2 is vital for STEC colonization, and 

previous studies highlighted that fecal microbial communities were altered during STEC 

colonization compared to healthy beef steers (Xu et al., 2014). Therefore, we assessed if the 

expression of stx2 affects fecal microbial community profiles (Chapter 3). Our findings indicate 

that the expression of stx2 did not affect the structure or profile of fecal microbial communities 

rather, fecal microbial interactions were altered, and microbial community stability was 

decreased in response to stx2 expression. Several microbes were only present in the stx2 

expression group and were found to be the keystone taxa connecting other microbes within 

microbial interactions. This is the first research to reveal the ecological role of stx2 on the fecal 

microbiome. Our work highlighted that expression of stx2 could change fecal microbial 

community interactions and decrease the stability of fecal microbial communities.  

      In Chapter 3 we did not identify whether production of stx2 subtypes altered the profile of 

microbial communities at the rectal mucosa. Therefore, we assessed the shift of RAJ mucosal 

attached microbiome responses to the production of stx2 subtypes (stx2a, the most commonly 

https://www.frontiersin.org/articles/10.3389/fcimb.2021.633573/full?utm_source=dlvr.it&utm_medium=twitter#B12
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associated with human disease and found in SS (Fitzgerald et al., 2019)) using an in vivo 

challenge model (Chapter 5). Our results first indicate that the challenge of STEC O157 

significantly shifted mucosal microbial diversities and similarities, whereas the production of 

stx2a did not alter microbial structures. Instead, microbial interactions and network properties 

(i.e. nodes, edges, average degree, clustering coefficients) were significantly changed upon 

stx2a+ STEC colonization as compared to unchallenged calves. Secondly, the production of 

stx2a in STEC was considered as a deterministic factor that shaped the rectal mucosa microbial 

assembly, which in turn affected microbial responses to STEC O157 colonization. Taken 

together, we explored the role of  stx2, particularly stx2a in STEC on hindgut lumen and 

mucosal microbiota from multiple ecological perspectives, contributing to the fundamental 

knowledge of STEC O157-microbiota interactions. 

 

6.3 The expression of stx2 in STEC relates to host responses and host-microbial 

interactions 

Previous studies identified alterations in host gene expression in SS compared to NS, indicating 

that host immune functions may inhibit STEC shedding in SS (Wang et al., 2016, 2017). 

However, how host genes relate to expressions of stx in STEC has not been studied. Hence, in 

Chapter 2, we selected four host immune genes previously reported to be downregulated in SS 

including chemokine (C-C motif) ligand 21 (CCL21), lymphotoxin beta (LTB), CD19 molecule 

(CD19), and 4-domains, subfamily A, member 1 (MS4A1) and investigated their relationship 

with the expression of stx2. We found that the expression of stx2 could be predicted by the 
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expression of four host immune genes, with MS4A1 being the most predictive. These results 

highlighted that stx2+ STEC colonization in beef cattle could affect host immune gene 

expressions. However, considering the fact that stx2 possesses several subtypes with stx2a 

being the most prevalent toxin associated with SS and human infections (Lisboa et al., 2019). 

And previous SS studies neglect the effect of subtype stx2 on host responses and how host 

responses vary in addition to host immune responses. In Chapter 4, we assessed host 

transcriptomic response variations in terms of stx2a+/stx2a- STEC O157 (different in terms of 

the ability of the stx2a production) colonization using a veal calf challenge model. This study 

monitored fecal shedding of STEC O157 from pre- to 26 days post-challenge and found that 

challenged calves (regardless of stx2a+/ stx2a- STEC) shed most STEC O157 7 days post-

challenge (Fitzgerald et al., 2019). The previous study also found that host rectal and systemic 

STEC-specific antibody responses changed significantly 7 days post challenge (Fitzgerald et 

al., 2019). This suggests that the dynamics of O157 fecal shedding was influenced by host 

responses. Therefore, we examined that changing patterns of host transcriptomic expression 

from pre- (T1) to 7 days (T2) and 26 days (T5) post-challenge.  

We revealed that the production of stx2a in STEC affected the kinetics of host responses 

post-challenge. In particular, stx2a- STEC O157 colonization resulted in the down regulation 

of host functions involved in two major clusters at T2: host extracellular region and gut barrier 

integrity (Chapter 4), with upregulation of host immune-related pathways (Chapter 5). Whereas 

stx2a+ STEC O157 challenge did not induce any host responses as compared to unchallenged 

calves at T2 (Chapter 4) and only induced increased host immune functions at T2 (Chapter 5). 
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At T5, both stx2a- and stx2a+ STEC O157 induced similar host responses with enhanced 

functions from host extracellular region and gut barrier integrity clusters (Chapter 4) and 

upregulated host immune-related pathways (Chapter 5). The extracellular region refers to the 

outermost structure of the cell where E.coli O157 can colonize and interact with host cells, of 

which we found the IL-17 signaling pathway (T-cell related host response) was involved with 

its functions related to protection against bacterial infection at mucosal sites (Mills, 2023). 

Although previous studies rarely explored the T-cell mediated host adaptive immunities in 

STEC colonization, our results suggest that  pathogenic STEC O157 colonization in calves 

affecst host T-cell mediated responses. In addition, the integrity of tissue barrier and epithelial 

regeneration has been found to be impacted by E.coli O157 colonization in calves and mice 

models (Roxas et al., 2010; Fitzgerald et al., 2019). E.coli O157 can induce localized 

effacement of microvilli causing attach/effacement lesions (A/E lesion) as a result of 

colonization, which is detrimental to the epithelium and causes a negative effect on tissue 

barrier integrity (Roxas et al., 2010). However, host-pathogen interactions were dynamic, of 

which hosts also defend itself to combat stxa2-/stx2a+ STEC O157 colonization on the rectal 

mucosa site as revealed by the increased host immune related pathways including B-cell and T-

cell signaling pathway at T2 and T5. These two pathways were elevated in both stx2a- and 

stx2a+ STEC challenged calves, suggesting that changing host systemic antibody and cellular 

responses were not specific to the production of stx2a.  

Our previous study revealed that hindgut mucosa-attached microbiota related to host 

immune responses in SS, constituting the basis for studying host-microbial interactions in terms 
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of stx2a-/stx2a+ STEC O157 colonization in veal calves. We found that beneficial microbes 

(i.e. Prevotella) dominate interactions with host immune gene expressions pre-challenge in both 

stx2a- and stx2a+ STEC O157 challenged calves, suggesting that they play a critical role in 

regulating host immune functions when host gut environment remains stable. While the 

opportunistic pathogen, Paeniclostridium bears such responsibility in stx2a- O157 challenged 

calves at T2, highlighting that the pathogen colonization could be a factor driven different host-

microbial interactions. Therefore, in Chapter 5, we proposed a pathogen-gut commensal-host 

model, of which the pathogen colonization can initiate the alterations of gut microbial 

community profiles and such variations can further affect host responses and differentiate host-

microbial interactions.  Specifically, we found that the production of stx2a can be a factor 

affecting the proposed model, which can delay the occurrence of host- Paeniclostridium 

interactions and inhibit interactions between gut commensals and host immune genes, 

highlighting that stx2a production could shift host-microbial interactions instead of directly 

affecting host responses and gut microbial community structures. 

 

6.4 Translational knowledge of advanced machine learning and statistical approach to 

STEC studies 

Our studies adopted advanced approaches in machine learning and statistics to uncover how 

STEC colonization and expressions of stx interact with host and fecal-/mucosal microbiomes. 

Firstly, we used Isomap to differentiate host immune gene patterns in response to the expression 

of stx2 (Chapter 2). Isomap is a dimensional reduction approach. As compared to principal 
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component analysis (PCA), it is less restrictive since it does not require any specific distribution 

(i.e. normal distribution) of data (Wang, 2012). It is also suitable for animal studies, since 

interactions among genetics, environment, and microbes are by nature nonlinear (Nicholson et 

al., 2004). Secondly, through the usage of random forest and Boruta methods, we determined 

the predictive accuracy of host immune gene expression on stx2 expression (Chapter 2). The 

random forest and Boruta methods are machine-learning based methods that enable the robust 

classification of predictive genes/microbial markers from the dataset. Our study showed that 

the feasibility of adopting this approach to determine host immune gene markers for the 

prediction of stx2 expression, which can be a potential method for other animal research 

programs to identify biomarkers for prediction of host phenotypes. Lastly, we constructed 

microbial interaction networks using Random matrix theory (RMT)-based method to reflect 

how microbial interaction varied in response to stx2 gene expression in STEC (Chapter 3). This 

approach is different from correlation-based networks and can represent the true interaction 

within microbes and neglect spurious interactions due to the low abundant taxa or noise since 

it sets up a threshold to differentiate true interactions. Most of advanced statistical and machine 

learning methods have been developed in theory and our studies showed the feasibility of 

adopting such approaches to uncover biological questions. These novel approaches can solve 

problems that previous methods cannot effectively resolve, i.e. selections of potential 

microbial/genetic markers from high throughput dataset. This suggests that future research 

using advanced machine learning and statistical methods should be prompted to fully uncover 

biological questions.  
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6.5 Future directions  

This is the first study showing how Shiga toxin 2 and its subtype in STEC affect host responses, 

fecal/rectal mucosal microbiome variations, and host-microbial interactions using high 

throughput sequencing. Although our studies shed light on the mechanisms of STEC 

colonization affecting host-microbial interactions, there are still some limitations.  

First, we performed the epidemiological survey on DNA and RNA levels, no stx 

expression at the protein level was assessed. Therefore, information on how Shiga toxin 

proteins could affect host-microbial interactions is missing. Also, STEC is not the only bacteria 

that carries the stx gene, other bacteria such as Enterobacter have also been reported to produce 

Shiga toxins (Paton and Paton, 1996). Our study did not quantify STEC in Chapter 2 and 3, 

therefore, it is possible that the detection of stx gene expression may be due to other stx-carrying 

bacteria. Future studies are needed to quantify stx proteins and STEC to ensure stx gene 

expressions are functionally valid in STEC. Secondly, we only examined the effect of stx on 

host-microbial interactions. Previous studies reported that virulence factors such as T3SS could 

alter host immune responses and alter microbiomes (Bliska et al., 2013; Gaytán et al., 2016; 

Caballero-Flores et al., 2021). However, our study did not characterize virulence factors in 

addition to stx and how other virulence factors in STEC could potentially affect host-microbial 

interactions. Future studies on the effect of colonization of different STEC O157 serotypes on 

host-microbial interactions are needed. Thirdly, our challenge trial only observed STEC O157 

fecal shedding from pre- to 26 days post-challenge. A previous study monitored E. coli O157 
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shedding patterns of beef steers for 77 days and found three shedding patterns including non-

persistent (last ~7 days), moderately persistent (last ~30 days), and persistent shedders (last > 

30 days)(Baines et al., 2008). However, samples collected from other time points post challenge 

were not assessed. Therefore, the challenged calves in my study may belong to different types 

of SS, and the differences in transcriptome profiles in the challenged calves may be due to the 

combined effect of different STEC O157 strains (stx2a+ vs. stx2a-) and different shedding types. 

Therefore, it is not possible to completely understand how hosts respond to strain-specific 

STEC O157 colonization. Also, the proposed effect of stx2a production on host responses 

cannot be confirmed, future studies using samples from other time points are needed to illustrate 

the complete dynamic changing patterns of host and microbial responses. Also, for future SS 

research, it is recommended to observe STEC O157 fecal shedding over a longer term, thus 

minimizing the effects of shedding types on host responses. Fourthly, although DEGs were 

identified between SS and NS, the genetic variations related to DEGs and potential linkage to 

Single Nucleotide Polymorphisms (SNPs) were not assessed. A previous study highlighted that 

SNPs play a role in the differential expression of genes between SS and NS (Wang et al., 2017., 

However, how the production of stx2a could interact with SNPs in DEGs requires further study. 

Lastly, our studies focused on host-microbial interactions using omics approaches and most 

conclusions are based on the bioinformatic analyses. Both in vivo (i.e. intestinal loop model 

(Vlisidou et al., 2004)) and in vitro models (i.e. bovine intestinal epithelial cell model 

(Miyazawa et al., 2010)) need to be employed  to verify or refute our assumptions. Also, 

proteomic and metabolomic analysis should be performed to further define potential 
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metabolites and proteins related to host-microbial interactions upon strain-specific STEC O157 

colonization. A previous study identified microRNAs (miRNAs) play a regulatory role in 

regulating host responses in SS compared to NS (Wang et al., 2021). Further studies using 

miRNAomes are needed to examine if miRNAs play such role in regulating host-microbial 

interactions upon strain-specific STEC O157 colonization.  

 

6.6 Implications   

The goal of my research is to reveal mechanisms of STEC O157 colonization and stx2 in 

affecting host-microbial interactions, to identify potential microbial/genetic markers that could 

be useful for on farm identification of SS and to identify potential direct fed microbials that 

may reduce mucosal STEC colonization in beef cattle. Learning the mechanisms of STEC O157 

colonization and expression of stx2 could facilitate development of effective preharvest 

interventions, such as probiotics and direct fed microbials. Also, diagnostic tools using potential 

candidate genes could allow early and quick identification of SS and stx2 positive O157 strain, 

allowing real time treatments to minimize E. coli O157 colonization and fecal shedding prior 

to slaughter. By investigating E.coli O157-host-microial interaction, our ultimate goal is to 

develop methods that can effectively reduce fecal E. coli O157 and limit its cattle-human 

transmission, leading to reduced risk of beef recalls and human illness. 
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