INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely .event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
31377614700 800/521-0600

NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct, light, broken, and/or slanted print. Pages were
microfilmed as received.

This reproduction is the best copy available

UMI

University of Alberta

Aerodynamic Parameter Classification and Estimation
by Neural Networks
By

Tak Keung (Simon) Wong @

A thesis submitted to the Faculty of Graduate Studies and Research in

partial fulfillment of the requirements for the degree of Master of Science
In
Applied Mathematics

Department of Mathematical Science

Edmonton, Alberta

Fall 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre référence

Our file Notre rélérence
The author has granted a non- L’auteur 2 2ccordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci1 ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-34436-3

Canadi

University of Alberta

Library Release Form

Name of Author: Tak Keung (Simon) Wong

Title of Thesis: Aerodynamic Parameter Classification
and Estimation by Neural Networks

Degree: Master of Science

Year this degree Granted: 1998

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material

form whatever without the author’s prior written permission.

~—
;

, .
. P

Signature: /_, o 4 -/’\\-/I‘ ;'(’,f;‘ _/:77—
— =
Permanent Address: 4/F, 28 Junction Road,
/
Kowloon, Hong Kong.

(852)-2716-2288

/ 35
Date: 5°/ F / 7:

University of Alberta

Faculty of Graduate Studied and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studied and Research for acceptance, a thesis entitled Aerodynamic
Parameter Classification and Estimation by Neural Networks submitted by Tak
Keung (Simon) Wong in partial fulfillment of the requirements for the degree of

Master of Science in Applied Mathematics.

Gtes

Dr.Y.S. Wong

Aﬁﬁ\&ﬁ/ﬁ[}

Dr. J. So

QM SC (,([0(,0 yaea

Dr. P. Schiavone

7

Date: %/7 /?‘P

Abstract

In this study, applications of neural networks to the modern flight flutter test
are considered. These applications are using neural networks to classify and to extract
parameters for a given data. Several suggestions involving wavelet transformation are
given to improve the performance of these neural networks. The wavelet
transformation tool is discussed. The ability to use the parallel computer system with
neural networks is shown. Some basic neural network architectures are summarized

and the training algorithms are discussed.

Acknowledgments

I am deeply grateful for encouragement and financial support for this thesis
from my supervisor, Dr. Y. S. Wong, and the Mathematical Science Department of the
University of Alberta.

I would like to thank Dr. Y. S. Wong for suggesting the topic for this thesis
and for helping me all through these years.

I am especially indebted to Dr. B. H. K. Lee of the National Research Council
of Canada for his financial support and for his interest in this research work.

Finally, I wish to thank God and my family for giving me this chance to study

at the University of Alberta.

Table of Content

Abstract
Acknowledgements
List of Tables
List of Figures
Table of Content
Chapter 1: Introduction
Chapter2: Neural Networks
2.1 Neuron Model
2.2 Network Architectures
2.3 Learning rules
2.4 Backpropagation
Chapter3: = Wavelets and the Multi-resolution Method
3.1 Wavelets
3.2 Multi-resolution Analysis
Chapter 4: Software Programs
4.1 Sinon
4.2 MATLAB toolbox
Chapter 5: Computer Simulations
5.1 Classification problem
5.2 Parameter Extraction Problem I
5.3 Parameter Extraction Problem II
54 Comparison of two Simulating Programs
Chapter 6: Conclusion

References

W K

18
28
28
30
42
42
46
48
48
58
66
78
83
87

List of tables

Table 2.1
Table 3.1

Table 3.2

Table 3.3

Table 5.1.1
Table 5.1.2
Table 5.1.3
Table 5.1.4
Table 5.1.5

Iterations of training

Maximum error of the reconstruction with different
numbers of coefficients

Minimum Af for t = 0 to 2 with different sampling rates
Minimum Af for t =0 to 0.5 with different sampling rates
Result of the classification problem

Result of the classification problem

Successful rate (in %) for 1000 testing samples
Successful rate (in %) for 1000 testing samples
Successful rate (in %) for 1000 testing samples

14

33
41
41
33
54
55
56
57

List of figures:

Figure 2.1 Linear function f(n) =n

Figure 2.2 Hard limit function f(n)=0ifn<0,f(n)=1ifn=>0
Figure 2.3 Log-sigmoid function f (n) = 1/ (1 + exp (-n))
Figure 2.4 Single-input neuron

Figure 2.51 Multiple-input neuron

Figure 2.52 Multiple-input neuron

Figure 2.6 Single-layer neural network with S neurons
Figure 2.7 Single-layer neural network with 3 neurons and 2 inputs
Figure 2.8 Three-layer feedforward network

Figure 2.9 Decision boundary

Figure 2.10 Relation of vectors and their visual patterns
Figure 2.11 Neural network for approximating function g (x)
Figure 3.1 Time-frequency plane

Figure 3.2 Example of an input signal using 128 points
Figure 3.3 Output of multi-resolution

Figure 3.4 Example of a signal using 512 points

Figure 3.5 Reconstruction using 45 wavelet coefficients
Figure 3.6 Reconstruction using 12 wavelet coefficients
Figure 3.7 Reconstruction using 25 wavelet coefficients
Figure 3.8 Noisy signal of the signal in figure 3.4

Figure 3.9 Signal reconstructed by 10 wavelet coefficients
Figure 3.10 Signal reconstructed by 20 wavelet coefficients
Figure 3.11 Signal reconstructed by 30 wavelet coefficients
Figure 3.12 Signal reconstructed by 40 wavelet coefficients
Figure 3.13 Signal reconstructed by 50 wavelet coefficients
Figure 3.14 Multi-resolution result of x (t)

Figure 3.15 First 50 coefficients in figure 3.12

Figure 3.16 Reconstruction using the first 25 coefficients and the error
Figure 3.17 Reconstruction using the next 25 coefficients and the error

Figure 3.18 Example signal using 512 points

Figure 3.19 Wavelet coefficients of the signal in figure 3.18
Figure 3.20 First 50 coefficients of the signal x;(t) when Af=0.4
Figure 3.21 First 100 coefficients of the signal x,(t) when Af=5
Figure 4.1 Notation of file calling

Figure 4.2 System of sinon.exe

Figure 5.1.1 Example of the function in C; for problem I

Figure 5.1.2 Example of the function in C, for problem I

Figure 5.1.3 Example of the function in C; with 10% noise level
Figure 5.1.4 Example of the function in Co with 10% noise level
Figure 5.1.5 Example of the function in C; with 20% noise level
Figure 5.1.6 Example of the function in Co with 20% noise level
Figure 5.1.7 Example of the function in C; with 30% noise level
Figure 5.1.8 Example of the function in Co with 30% noise level
Figure 5.1.9 Example of the function in C; with 40% noise level

Figure 5.1.10 Example of the function in Co with 40% noise level
Figure 5.1.11 Example of the function in C; with 50% noise level
Figure 5.1.12 Example of the function in Co with 50% noise level
Figure 5.1.13 Example of the function in C,

Figure 5.1.14 Example of the function in Co

Figure 5.2.1 Method 5.2.1

Figure 5.2.2 Example of the input of the neural network using 512 points
Figure 5.2.3 Relative error (in %) of the first output (i.e. a)
Figure 5.2.4 Relative error (in %) of the second output (i.e. b)
Figure 5.2.5 Method 5.2.2

Figure 5.2.6 Example of the input of the neural network

Figure 5.2.7 Relative error (in %) of the first output (i.e. a)
Figure 5.2.8 Relative error (in %) of the second output (i.e. b)
Figure 5.2.9 Method 5.2.3

Figure 5.2.10 First 30 points of wavecoeff

Figure 5.2.11 Next 30 points of wavecoeff

Figure 5.2.12 256 wavelet coefficients of y (t)

Figure 5.2.13 Relative error (in %) of the first output (i.e. a)
Figure 5.2.14 Sample input of network 2

Figure 5.2.15 Relative error (in %) of the second output (i.e. b)
Figure 5.3.1 System of method 5.3.1

Figure 5.3.2 Sample input of the neural network

Figure 5.3.3 Relative error (in %) of the first output (i.e. a;)
Figure 5.3.4 Relative error (in %) of the second output (i.e. b;)
Figure 5.3.5 Relative error (in %) of the third output (i.e. a;)
Figure 5.3.6 Relative error (in %) of the fourth output (i.e. b,)
Figure 5.3.7 System of improving performance, as mention in remarks 2
Figure 5.3.8 System of method 5.3.2

Figure 5.3.9 Relative error (in %) of the first output (ie. a;)
Figure 5.3.10 Relative error (in %) of the second output (i.e. b;)
Figure 5.3.11 Relative error (in %) of the third output (i.e. a;)
Figure 5.3.12 Relative error (in %) of the fourth output (i.e. b,)
Figure 5.3.13 Relative error (in %) of the first output (i.e. a;)
Figure 5.3.14 Relative error (in %) of the second output (i.e. b;)
Figure 5.3.15 Relative error (in %) of the third output (i.e. a;)
Figure 5.3.16 Relative error (in %) of the fourth output (i.e. b;)
Figure 5.3.17 Relative error (in %) of the first output (ie. a;)
Figure 5.3.18 Relative error (in %) of the second output (i.e. b;)
Figure 5.3.19 Relative error (in %) of the third output (i.e. az)
Figure 5.3.20 Relative error (in %) of the fourth output (i.e. by)
Figure 5.3.21 System of method 5.3.3

Figure 5.3.22 Relative error (in %) of the first output (ie. a;)
Figure 5.3.23 Relative error (in %) of the second output (i.e. b;)
Figure 5.3.24 Relative error (in %) of the third output (i.e. a;)
Figure 5.3.25 Relative error (in %) of the fourth output (i.e. by)

52
52
33
57
57
58
59
59
60
60
61
61
61
62
63
63
63

65
66
67
67
68
68
68
69
70
71
71
71
72
72
73
73
73
74
74
74
75
76
76
77
77
77

Figure 5.4.1 Sample input of the neural networks

Figure 5.4.2 Result using only 4 discrete points

Figure 5.4.3 Relative error of the output after 500 loops
Figure 5.4.4 Relative error of the output after 1000 loops
Figure 5.4.5 Relative error of the output after 2000 loops
Figure 5.4.6 Relative error of the output after 3500 loops
Figure 5.4.7 Relative error of the output after 1 loop
Figure 5.4.8 Relative error of the output after 10 loops
Figure 5.4.9 Relative error of the output after 20 loops
Figure 5.4.10 Relative error of the output after 40 loops

78
78
79
79
80
80
81
81
81
82

CHAPTER 1

Introduction

The neural networks discussed in this thesis are related to their biological
counterparts. They consist of a finite number of highly connected elements called
neurons. Neuron consists of weights, biases and transfer functions. A neural network is
a way to connect every neuron to perform a useful task.

Neural networks have been trained to perform complex functions in various
fields of application including aerospace, automotive, medicine, speech, securities and
telecommunications. Researchers found that neural networks can be considered as
potential tools for providing solutions to many practical problems. The focus upon this
area has been substantial and subsequently so has the amount of investment in this field.

In engineering, Chu and Sze [1] discuss the potential applications of neural
network to the Nava Theater Ballistic Missile Defense System. Barton and
Himmelblau [2] discuss how internally recurrent neural networks can predict a key
polymer product quality variable from an industrial polymerization reactor. An
adaptive decision feedback recurrent neural equalizer for high-speed channel
equalization has been introduced by Shin et al.[3]. In Medicine and Biology, an
article [4] on the ALOPEX process relates the neural network approach to studies of
animal and human visual systems and discusses applications in image processing and
pattern recognition. Iwate et al. [4] describe a method of data compression for
electrocardiograms for Holter monitors that could find applications in réplacing a24-h
cassette recording with a memory card. Cios et al. [5] report on efforts to detect cardiac

diseases from two-dimensional echocardiographic images. Holdaway et al. [6] report

on the classification of evoked somatosensory potentials from patients with severe head
injuries. Hiraiwa et al. [7] report the case of neural networks for prearticulation in EEG
signals. Kauffman et al. [8] use neural network tools for the analysis of bone fracture
healing. In Mathematics and Statistics, Pao [12] shows that ordinary multiple
regression could be viewed as a neural network. Specht [13] proposes that a
probabilistic neural network could be used as a powerful statistical technique. Without
neural network, the statistical technique [14] was not utilized because its memory and
processing requirements are large [10]. More applications can be found in the
Handbook of Neural Computing Applications [15], [EEE Transactions on Neural
Networks and the IEEE International Conference on Neural Networks, etc.

In the modern flight flutter test, the aircraft is equipped with excitation systems.
Using computers, the value of frequency and damping coefficients can be estimated
from the data obtained from the systems. It should be pointed out that the success of a
flight flutter test depends on accurately determining the frequency and damping from
the given data [9]. In this thesis, a simple neural network is developed that will be used
for classification and parameter extraction from the simulated flutter data. First, in
order to determine the correct property for a given signal, we must classify whether the
signal is increasing or decreasing. Secondly, we want to extract the frequency and
damping coefficients from a class of simple signals. Thirdly, we w;.nt to extract the
same coefficients from a complex signal (i.e. sum of two or more simple signals).
Details for defining these signals and the neural network will be discussed later.

In Chapter 2, neural models, network architectures, learning rules and

optimization methods in training are discussed. In Chapter 3, basic wavelet

transformation and some of its properties are shown. In Chapter 4, computer software
programs developed and used in this project are reported. In Chapter 5, applications
and results using neural networks are shown. Finally, the conclusion will be given in

Chapter 6.

CHAPTER 2

Neural Networks

In this Chapter, we will first introduce several basic components of neural networks.
Secondly, transfer functions, neurons, and single-layer and muitiple-layer feedforward
neural networks will be discussed. Lastly, learning rules, along with some examples
will be given.
2.1 Neuron Model

A neuron is a basic unit of a neural network. It consists of input(s), weight(s), bias,
transfer function and output. Weight w is a real number, which is multiplied by the
input p. In a neuron, if the input p is a vector, then the weight w is also a vector. Bias b
in a neuron is a real number. A transfer function is a function mapping the real numbers
to the real numbers. As examples of transfer functions, we will list three of the most
commonly used transfer functions. Let n be the input value, output = f(n) = n, is called

the linear function.

-2 -1 3] 1 2

T

Figure 2.1 Linear function f{n) =n.

Output = f(n) =0 if n <0, Output =f(n) =1 if n 2 0, which is called the hard limit

function.

o8}
0.6+
Fin} 1

0.4+

02}

]
2 -1 o 1 2

rn

s,

Figure 2.2 Hard limit function f(n)=0ifn<0, f(n)=1ifn>0.

Output = f{n) = 1/(1+exp(-n)), which is called the log-sigmoid function.

0.8}

0.6+
Fin) |
0.4}

4
p

02}

ol
-10 -5 o) 10

n

Figure 2.3 Log-sigmoid function f{n) = 1/(1+exp(-n)).

Single-Input Neuron

The output of the single-input neuron consists of the scalar input p, the scalar
weight w, the bias b and the transfer function f. The scalar input p is multiplied by the
scalar weight w and the product is then added to the bias b, the result of which » is put
into the transfer function £. So, the neuron output is calculated as a =f (wp +b). Ina
particular problem, p is given, and the appropriate transfer function must be chosen;
moreover, w and b must be adjusted by some learning rules so that the relation between

input and output meets our specific goal.

Figure 2.4 Single-input neuron.

Multiple-Input Neuron

The output of the R-input neuron consists of inputs p,, p2, ps, .. , Pr, Weights wy,
Ws, .. , WR, the bias b and the transfer function £ The individual inputs pi, p2, p3, -. , PR
are multiplied by the corresponding weights and are then added to the bias b, and the
sum n is put into the transfer functionf. So, the neuron output is calculated as a = f
(piwi+ powa +..+ prwr + b). As in the case of the single-input neuron, weights and bias
will be adjusted by some learning rules. The appropriate transfer function must be

chosen.

Figure 2.5.1 Multiple-input neuron.

To simplify the notation, let p be the input vector and w be the weight matrix; then the

above diagram can be simplified as:
P— W
n
N N\
sum f
1— b _/
11
1t - a={(Wp+b)

Figure 2.5.2 Multiple-input neuron

Since one neuron may not be sufficient for a particular problem, we will need
two or more neurons operating in parallel to reach our goal. This arrangement is called

a “layer”.

2.2 Network Architectures
Single-Layer Network

A single-layer network of S neurons and R inputs consists of inputs pi, p,, p3.-.,
Pr, weights wii, wia, .., Wir, Wa1, W22, .. , WaR, .. , Ws1, Ws2, -- , WsR, biases by, by, .. , bs
and transfer functions f}, 5, .. ,fs. We can use the matrix notation such that the input
vector p=[p1p2p3 .- pr]’, bias vector b=[b, b2 b5 .. bs]’, transfer function vector

S=If1f2fs.-fs] and weight matrix W, where:

W, Wp Wig
w, Ww w
21 » 2R
W= :
Wa Wiy Wsr

Multiply the weight matrix W by the input vector p, add the product to the bias
vector b, then take the result n to the transfer function fto get the output vector a. So,
the output vectora =f (Wp + b) is the output of the S-neuron, R-input, and one-layer

network.

P— W
n
Rt sxa_\ Sx1 $x1
sum f
_/ y
1— b
xt e

Figure 2.6 Single layer neural network with S neurons.

Let S=3 and R=2, which means that this network has two inputs and three neurons.

W,
1" 1 o1 f, a,
Py 12 .'
=, [1 2,
wol *2
b,
P 1 =] .
wy %3 T s
b,

Figure 2.7 Single-layer neural network with 3 neurons and 2 inputs.

Muitiple Layer of Neurons

A multiple layer of neurons is a neural network with several layers. Each layer
has its own weight matrix W, bias vector b, input vector p, transfer function f and
output vector a. Let W/ be the weight matrix of the j-th layer, b be the bias vector of the
j-th layer, p be the input vector of the j-th layer, f” be the transfer function of the j-th
layer and & be the output vector of the j-th layer. Note that the input of the second layer
is the output of the first layer.

As in the single-layer case, @’ =f (W’p + b’) for the first layer, but for the
second layer, &° =2 (W?a' + b%) and so on. So, for the three-layer network

@ =W +F)ord =f* WY (W' (Wip+b)+5)+b).

p— W' ! o w 2
Rxt 5 1 . 1 n
® Losxt g xS "
1 4— ot

't 831

Figure 2.8 Three-layer feedforward network.

A layer whose output is the network output is called an output layer. The other layers
are called hidden layers. In this output equation, the only given information is p (input
vector), so we have to choose the weight matrices and bias vectors. To determine W
and b, we need to use some training rules. Note that the network presented in figure 2.8
is called a feedforward network. Another type of neural network is the recurrent
network, which will not be discussed in this chapter. The term “feedforward” means
that information flows in one direction only. A recurrent network [17] is a network
with feedback; some of its outputs are connected to its inputs. Recurrent networks are
potentially more powerful than feedforward networks and they can exhibit temporal
behavior [16].
2.3 Learning rules

A learning rule (training algorithm) [16] is a procedure for 1}10dif}dng the
weights and biases for a network. The purpose of the learning rule is to train the
network to perform certain tasks. There are three categories of neural network learning

rules, namely supervised learning, unsupervised learning and reinforcement learning.

10

Supervised Learning

In this category, the learning rule is provided with a set of examples of proper
network behavior; we call it a training set. Let {py, ti}, {P2, t2}, .- , {Po» to} be Q
examples of proper network behavior. Note that p;is an input to the network and ¢; is
the corresponding correct output. We apply the input to the network to get the network
output and adjust the weights and biases after comparing the network output with the
correct output. The perceptron learning rule and the supervised Hebbian rule are

examples of supervised learning rules.

Unsupervised learning

In this category of learning rules, the weights and biases are modified in
response to network inputs only. Normally this method is used when the correct
outputs are not available, or in other words, when t; is not available in the training set.
One example is the unsupervised Hebbian rule that is used for pattern recognition

problems.

Reinforcement learning

Reinforcement learning [20] is similar to supervised learning. The algorithm is
given a grade, which is a measure of the network performance over\some sequence of
inputs. This kind of learning method is frequently applied to control system

applications.

11

Examples of supervised learning

First we will introduce the perception learning rule [19]. Let f(n) be the hard
limit transfer function. The general perceptron network output is equal to f(Wp +b),
where W is the weight matrix, p is the inpuf vector and b is the bias vector. Consider
the single-neuron perceptron with two inputs and one output. We have output = f (Wp
+b) =f (w1 p1 + Wizp; + b). From the behavior of function f, the boundary (decision
boundary) is determined by wy;p;1 + Wi2p2 +b=0. Asan example, let wi; =2, w;z=3
and b =4. We then have a line 2 p, +3 p2 + 4 = 0 in the input space. Output =0 when
2 p1 +3 p2 +4 <0, and output = 1 otherwise.
Ifp; = 1 and p; =1, then output = f 2+3+4) =f(9) = 1.
If p = 0 and p; = -3, then output = £ (2(0)+3(-3)+4) = £ (-5) =0.

The grey area in figure 2.9 is provided for output =1.

Figure 2.9 Decision boundary.

For the multiple-neuron perceptron, we will consider the S-neuron perceptron with R
inputs, in which case the output = f(Wp + b); however, now the weight matrix W is

SxR, the input vector is Rx1, the bias vector is Sx1 and the output vector is Sx1. Note

12

that we can classify 2° possible categories in this case. The perceptron learning rule is
given by

W™* =W +epTand ™" =b" +e,
where e = target output - network output [16]. Suppose we have a training set
{{pr,t1}.{pP2.t2}, .- » {Po.to}} With Q elements, where p; is the input vector and t; is the
corresponding target output. Apply the learning rule for each p; repeatedly until all the
inputs provide the correct output. The OR gate is an example to which we can apply the
learning rule. Here {p1=[00]",t;=0}, {pz={10]", =1}, {ps=[0 1]",ts =1}, {
P«=1[1 I]T, t; = 1}. In this case, two inputs are given and one output should be
produced. We can use the single neuron perceptron. The output = {Wp +b) =
flwiip1 + wizp2 + b) where f{n) = 1 if n>0 and f{n) = 0 if n<0.

We apply a learning rule with the initial guess, say w1, w2, and b are first set to zero.

13

Iteration | input | Target | Network output Error wi w2 | b | mod
output
0 . 0 0 0 |on
1 [001" |t,=0 | f0(0)+0(0)+0)=1 [0-1=-1 {0 [0 |-1|on
1 [10]" [tz=1 | RO(1)+0(0)-1)=0 [1-0=1 |1 |0 |0 [on
1 (011" [ts=1 | R1(0)+0(1)+0)=1 |1-1=0 |1 0 [0 [on
1 (11} [te=1 | RIQ)+O(1)H0)=1 |1-1=0 |1 0 [0 |on
2 [00]" [t; =0 | R1(0)+0(0)+0)=t [0-1=1 |1 |0 |[-1|on
2 [10]" [t,=1 | R1(1)+0(0)-1)=1 |1-1=0 |1 0 |-1]|on
2 011 [ts=1 | fR1(0)+0(1)-1)=0 | 1-0=1 |1 1 0 |on
2 [11]° [te=1 | R1()+1Q1)+0)=1 | 1-1=0 |1 1 0 |on
3 001" [t;=0 | R1(0)+1(0)+0)=1 |0O-1=-1 |1 1 -1 | on
3 (ol [t.=1 [RI()+1(0)-1)=1 |[1-1=0 |1 1 -1 |on
3 01 [6=1 [R1©O)+10)-D=1 [1-1=0 |1 1 -1 |on
3 (1] [te=1 | RIQ)+1(1)-1)=1 |1-1=0 |1 1 -1 | on
4 001" [t;=0 | R1(0)+1(0)-1)=0 |[0+0=0 |1 1 -1 | off
4 [1o]" (=1 [RI(1)+10)-1)=1 |[1-1=0 |1 1 -1 | off
4 o1 [t=1 [R10)+1(1)-1)=1 [1-1=0 |1 1 -1 | off
4 1 [te=1 [RO+1(1)-D=1 [1-1=0 |1 1 -1 | off

Table 2.1 Iterations of the training
We can stop here, since there is no further modification in the fourth iteration, and the

final result is wy; =1, w2 =1 and b=-1.

14

Another example of the supervised learning rule is the Hebbian learning rule [16]. Now
consider the case in which the neural network output is equal to Wp, that is, when the
bias is equal to zero, the transfer function of this network is a linear function. This
network is called a linear associator, which is a type of associative memory. The task of
an associative memory is to learn Q pairs of prototype input/output vectors. The
Hebbian learning rule is given by W*™ = W°" + t.p.T. Note that if the input prototype
vectors are orthonormal, the Hebbian learning rule will produce the correct output for
any input (see below). If the input prototype vectors are not orthonormal, then an error
is introduced. Let p; be the input vectors and t; be the target vectors, where i =1 to Q.
Also, let the initial weight matrix be a zero matrix. Applying each data pair to the rule,
then Wi =0+ t;p, T, W= W' + top,T = t;p; T + tzp2T, W =W+ t3ps"=t,p, " + t2p,"
+tspsT, .., WI=W +egpg” =tips” + tapa” +.+ tope” = W.

So, for any input py,

output = (ZO: ..)i = fjt. (2. Ps) (2.1)

=1 =1

Assume the norm of input p; is 1, then,
T T T r_.
0"’1’“’=i',(}7. D) =t.(D; Pt)'*‘zti(P, Pi) =t +Z’.(Pi Pi) 2.2)
=1 ek ek

Note that if (pi"pw) = 0 for i # k (orthonormal), then output = t;.

If (piTpw) # O for i # k, then the error = target output - network output. So,

15

error =3 1,(p," p:) (23)

=k

In this case, we need to find a method to minimize the error. One of the
methods is the pseudoinverse method. Recall that output a, =Wpg, in which case we
have (error rq)2 = ”tq-quH2 for each q=1,2,..,Q. Hence, we want to minimize the sum

of (error ry)* for all q. Let

FWw)= ﬁ:ll t,—Wp, I’ (24)
g=1

The pseudoinverse method suggests picking W=TP* [16], where T =[t; t; t3 ... tq] ,
P=[p1 p2P3s --- Po] and P*=(PTP)'PT . For simplicity, assume that the input patterns
are orthonormal. Using the Hebbian rule to find the weight matrix will produce no
error. For example, suppose we want to recognize two patterns,

P1=sqrt(6)/6 [1-1-111-1]1T,t;=1andp,=sqrt(6)/6 [1 1-11-11]7,t,=-1.

"= "

p1=-v6/6[1-1-111-1]F p2 =v6/6[11-11-11]

Figure 2.10 Relation of vectors and their visual patterns.
These two patterns are orthonormal since p;'pz =0, p1'p1 = 1 and p2"p; = 1. The

Hebbian rule gives:

16

1 -1 -111 -1
W=TP*=TP=—1—[1 -1] :
J6 11 -11-11

=_‘/%[o -2 00 2 -2 2.5)

Testing the network with p; we have:

Wp1=TPpl=-;-[0 -2 0 0 2 -2] =%(0+2+0+0+2+2)=1=z, (2.6)

Testing the network with p, we have:

Wp2=TPp2=%[0 -2 00 2 -2]

=%(0-2+0+0—2—2)=—1=t2 2.7) .

Now the network recognizes these two patterns.

17

2.4 Backpropagation

Backpropagation [18] is one of the supervised training methods commonly used
for multiple-layer networks. We consider the M-layer network. Let M be the number
of layers, W' be the weighted matrix for the ith layer, a' be the output vector of the ith
layer, b’ be the bias vector of the ith layer and f ! be the transfer function of the ith layer.
Then the network output a = a™*! = £ ™'(W ™!a ™+ b ™) for m = 0,1,2,..,M-1, and 2’
is equal to the input vector p. To determine the performance of the network, we have to
find a quantitative measure of network performance; we call it the performance index.
Consider the function F(W)=X, || t; — Wpy|| that was used in the pseudoinverse method.
This is an example of a performance index, which is the sum of squares of the errors for
all inputs. When the performance index is large, then the network performs poorly;
similarly, when the performance index is small, then the network performs well. Now,
let’s denote the performance index by F(x), which is assumed to be an analytic function,
that is to say, all of its derivatives exist and it can be expressed as a convergent power
series. To make it easier to handle, we will use a finite number from terms of the
Taylor series expansion to approximate the performance index. In this case, the neural
network performance index will be a function of all the network parameters (weights
and biases). Recall that the Taylor series expansion for functions of n variables in

~

matrix form at the point x’ is given by:
F(x)=F(x')+ VF(®) |0 (x=x) +%(x—X’)TV2F(x) beee (X =X) -0 (29)

T
where VF(x)= |};—F (x) &%F x) --- ; F (x)] is called the gradient

1 n

18

B aZ aZ az]
5 F(x) F(x) - F(x)
&l &l;&z axlaxn
o? 0 a?
and V*F(x)=| ar,ax, F®) Fa) - L0, FX)\ is the Hessian Marrix.
5 : E , -
_65:,,6::‘ F(x) o o, F(x) ,.2 F(x)

Since we want to find the minimum (optimum) point of the per;’ormance index, let’s
define the strong minimum, weak minimum and the global minimum as follows.
Definition 1: X’ is a strong minimum of F(x) if 3 >0, such that F(x) <F(x + Ax) V Ax
with 3>{|Ax]|[>0.

Definition 2: X’ is a weak minimum of F(x) if X’ is not a strong minimum and 3 3>0,
such that F(x) < F(x + Ax) V Ax with §>||Ax||>0.

Definition 3: x’ is a global minimum of F(x) (unique) if F(x) <F(x + Ax) V¥ Ax #0.
Note that the first order necessary condition for X’ to be a minimum point is that the

gradient must equal to zero, that is:

=0 (2.10)

x=x'

i
VF() IF,=[axiF(x) g—F(x) axiF(x)]

Points that satisfy this condition are called stationary points. If we have a stationary

point x’ of F(x), then VF(X)|x=r =0 and

F(x) = F(x'+Ax) = F(x') +%(x—x')TV2F(x) e (x=x")+--- (2.1
Taking the first two terms to approximate F(x), we have: '

F(x) = F(x'+Ax) = F(x') +-;-Ax’v2F(x) L. A (2.12)

19

So, X’ is a strong minimum if:

AXVAF(x)|,.. Ax>0 VAx#0 (2.13)
This means that V2F(X)|z=y is positive definite. Similarly, if x* is a weak minimum then
AV F(x)]|,. Ax20 VAx#0 (2.19)

According to linear algebra, a real symmetric matrix A is positive definite if all its
eigenvalues are positive, and A is a positive semi-definite if all its eigenvalues are
nonnegative. To summarize these results, the necessary conditions for X’ to be a strong
minimum point of F(x) are VF(X)|x=y =0 and V2F(X)|x= is positive semi-definite. The
sufficient conditions for x’ to be a strong minimum point of F(x) are VF(X)|g=r =0 and
V?F(x)|g=x is positive definite. To optimize F(x), a number of methods are commonly
used. First, consider the steepest descent method. Let x be the vector that includes all
the parameters in the network (weights and biases). So, x=[Wj; W12 ..WR....Ws| Wsa..
wsr by ba..bg] T, where wj; is the entry of the weight matrix W at ith row and jth column
and b; is the entry of the bias vector b at ith row. The steepest descent algorithm gives
Xie1 = Xi - 0k VF(X)|r=xx , the gradient of F at xi can be calculated from F(x), but we have
to choose a suitable learning rate o such that the algorithm is stable. The maximum
learning rate is, in general, not possible to predict for arbitrary functions. However, for
some special functions such as quadratic functions, we can set an uppef limit. The

quadratic function is a function F of vector x such that it can be expressed in the form

20

F(x) = % x"Ax + d"x + ¢, where A is symmetric. For example, let F(x) = 7x,’-

X1 xz+7x22+5x[+5xz, then

F(x)=%x,[14 ;f]u[s Sk where x=[x, x,] (2.15)

VF(x)=[14 —8]x+[§] and V2F(x) =[i‘; ;:] (2.16)

This kind of function has a number of special properties. First, the gradient VF(x)=
Ax+d; second, the Hessian matrix VZF(x)= A; and third, the directional derivatives are
between the minimum eigenvalue of A and the maximum eigenvalue of A. With these
properties, the constant stable learning rate o is given by o < 2/Amax, Where Amax is the
maximum eigenvalue of A. Using the constant stable learning rate is easy and it is
guaranteed to converge. If there is a great difference in magnitude between the largest
and smallest eigenvalue, the constant stable learning rate results in a slow convergent
rate of the algorithm. Select the learning rate to minimize F(x) with respect to ax such

that F(xy + o, p) is minimized. For a quadratic function F(x),

0
—Flx +a,p) =VF| pe+ep VF)|_ pe (217
k t =X

Because of the first derivative condition, we have to set it equal to zero. Hence

21

VF)|_, P

== (2.18)
p VI F(x)|_ P

a,

Note that for quadratic functions, the Hessian matrix is independent of k. The second
optimization method commonly used is the Newton’s method; as in the case of the
steepest descent algorithm, Newton’s method is based on Taylor series expansion. But

this time F(x) is approximated by the first three terms of the series, that is

F(Xpa) = F(x, +8x) = F(x,)+ VF()T|__ ax, + —;-Ax,‘TVZF(x)Lﬂ‘ Ax, (219)

Newton’s method suggests Xy+1= Xk - V2F(x)"|x=xx VF(X) |t=0.. From basic numerical
analysis or calculus, we know that Newton’s method usually produces faster
convergence (quadratic rate) than the steepest descent method (linear rate). However,
with Newton’s method, the method is not guaranteed to converge. Recall that
convergence in Newton’s method depends on the function and the initial guess. To
compute and store the Hessian matrix and its inverse requires significant computing
time and memory. Note that if F(x) is a quadratic function, then Newton’s method uses
a finite number of iterations to get to the minimum point exactly. This property is
called quadratic termination. To handle the divergence problem, we can use steepest
descent steps when divergence begins to occur. A powerful method, which bas the
quadratic termination property but does not require use of the second derivative is the
method of conjugate gradient. As before, let F(x) be a quadratic ﬁ1ncti6n. We have
F(x) =¥ x"Ax +d"x + ¢, VF(x)= Ax+d and V°F(x)= A.

Note that VE(X) |x=me: = VE(X) lr=n = AXj1+d — (AxHd) = A(Xps1- Xa).

Let py be the search direction and let o be the learning rate that will be chosen to
minimize F(x) in direction px, so that Xus;- Xx = otk P Let { p« } be a set of vectors.
We say that {py} is mutually conjugate with respect to a positive definite Hessian
matrix A if and only if pyT A p;=0 for kj. Then 0=oi Px" A pj= (w1~ Xk) A Pj=
[A (Xt Xk)] T Pj = (VE(X) lxmpues - VE(X) [) T Pj = 0. If we let xo be the initial guess,

then the conjugate gradient method suggests:

90 =VF(x)L=,°9PO ==qo>

VF®)|__ p

X=X,

P VF(x)|_ P

a, = Xeot =X, YO Py
VF(x)Tlm VFE)|_,

CVFR)|_ VFG),,.
For a general F(x), the Hessian matrix is not required for the conjugate gradient method.

. Pe=—VFO)|_, +Bipin (220)

B.

Since computing a requires the Hessian matrix, we use the golden section search
method [24] to find .. Consider the function F(x). Let the stepsize be k, which is a

small number, says 0.075, and let x, be the initial guess and po be the direction vector.

23

Calculate
Fo=F(xo), F1 = F(xo+kpo), F2 = F(xo+2kpo), F3 = F(xo+4kpo),
F. = F(xo+8kpo), .., F(xo+2"kpo)= F1+m,.., until Fj.; > F; and Fj.1 > F;. Let the constant
in the golden section search be c=0.618; fixa; = xo+2j'lkpo and by =x¢+ 2*'p,;
calculate ¢; = a; +(1-c) *(b -a;), Fe = F(¢1),d; = a; -(1-c) *(by -a;) and Fg = F(d)).
Set =1;
Repeat
IfF. <Fg4, then
Set aj+; = aj, b1 = dj, dj+1 = ¢, Cje1 = 8je1 +(1-¢) (bjsr —8j1), Fa=F¢,
F. =F(cj+1)
else set ajq = ¢j, byt = b, ¢je1 = djer, djo1 = bjer -(1-¢) (bje1 -2j11), Fe = Fo,
Fq=F(d;+1)
end;
until (bj+1 —aj+1) < a fixed small number. Choose x; = aj; to be the next point and
calculate a by x;= x¢ +a po. Next, let consider a multi-layer network. Let M be the
number of layers in the network, n be the vector just before passing through the transfer
function and t be the target output vector. We want to find the output a, for each layer.
The initial output a° is equal to p the input vector; the first layer output
a' = f(W! a% b"). In general, a™' = (W™ a®+ b™") for m=0,1,2,...M-1, and a™
is the network output. Then propagate the sensitivities backward through the network.
Initial sensitivity s™ = -2F™ (aM)(t-a™), s =F™ @™)(W™") Ts™ form=M-1, ..

2,1, where

24

-f'"(n{") 0 eee .- 0o |
0 freI 0 0 -
Fr(n™)=] 0 .0 2 f"'(n,")=—afa,§—:’)
: : 0 - 0 J
0 0 e 0 f™(n7)

and n” is the net input at m-th layer. This recurrence relation for the sensitivity could
be written out by using the chain rule in a matrix form. Update Ws and bs as
W=(k+1) = W= (k) -as® (a®*) T and b™(k+1) = b™(k) -as™, where o is the chosen
learning rate (for example golden section search).
Example

Suppose that we want to approximate the function g(x) = cos(mx/2), -1=<x<I.
We have to pick some values of x to obtain the training set and choose some small
random values to be the initial guess for the weights and biases. Note that this initial

guess can be done by a number of intelligent methods. Use the network as below:

Huruml Lt e
11
2
1 n
% 7
X 1 . a’ I b
2 2 2
sum wn%)
b,
14

Figure 2.11 Neural network for approximating function g(x).
Here, f' is the log-sigmoid transfer function, and 2 is the linear transfer function.
Initial guesses are W'(0) = [-0.12 -0.37] , b'(0) = [-0.25 -.007], W*(0) = [0.19 -0.23]

and b?(0) = [0.35]; also for simplicity, set the learning rate at a = 0.1. Choose x=0.5 as

25

an example for the training set. Therefore, a’ =x=0.5. Note that the performance index
is the mean squared error, F(x) = [(t-a)’(t-a)]. Calculate a' and a? as follows:

a' = £([-0.12 -0.37] T [0.5] + [-0.25 -0.07] "= £([-0.31 —0.255] T) =[0.423 0.437] T

a? =£([0.19 —0.23] [0.423 0.437] ™+ [0.35]) = £%(0.32986) = 0.32986.

t-a = cos(r(0.5)/2)- 0.32986 =0.707106-0.32986 = 0.37725.

Wod 1] 1
f =2 G =,

)=01-a"), fz(n)=:1d—(n) =1
n
s? = =2F*(n*)(t — a) = —2(0.37725) = -0.7545.

1 _ plg ! 2y.2 _ (l‘axl)all 0 0.19 . _ —0.34443
s =FE)# s -[0 (1—a§)a§j|[—0.23:|[0'7545]—[0.042695}

W2(1) = W3(0)-as? (')’ =[0.19 -0.23] - 0.1[-0.7545][0.423 0.437]
=[0.222 -0.197].
b%(1) = b*(0)-as? = [0.35] — 0.1[-0.7545] =[0.52545]
wi(1) = Wi(0)-as' (8% =[-0.12 -0.37] T - 0.1[-0.34443 0.042695] " [0.5]
=[-0.10278 -0.37214]".
bl(1) = b'(0)-as' = [-0.25 —0.07] T - 0.1[-0.34443 0.042695]"
=[-0.215557 -0.0742695].
This is the end of the first iteration; pick another value of x to perform another iteration
of the algorithm until the error is acceptable. Many people modify this basic
backpropagation to get a faster algorithm to train the network. Some of .the methods

include backpropagation with momentum, variable learning rate backpropagation and

26

Leverberg-Marquardt backpropagation [23]. Some of methods pick a better learning
rate [21], and others use a faster method to minimize the performance index [22].
Remarks:

1.The Leverberg-Marquardt backpropagation learning rule is given by:

VW =J"J+a DN7'JTe

where J is the Jacobian matrix of derivatives of each error for each weight, a is a scalar,
and e is an error vector defined by e = (target output — network output) . Ifthe scalar
a is small, the above expression becomes the Gauss-Newton method. Near an error
minimum, the Gauss-Newton method is faster than the gradient descent method. This
method performs a faster learning rate than the gradient descent, but it requires more
memory (storage of the approximation of Hessian Matrix JJ).

2. The gradient descent is a technique where the weights and biases are moved in the
opposite direction to the error gradient.

3. A two-layer feedforward neural network with R inputs, S neurons in the first layer
and T outputs requires storing two weight matrices W', W? and two bias vectors b', b%.
W! is a SxR matrix, W 2 is a TxS matrix, b! is a Sx1 vector and b? is a Tx1 vector. The

total storage requirement for this network is S(R+1)+T(S+1).

27

CHAPTER 3

Wavelets and the Multi-resolution Method

In this chapter, we will discuss the basic idea of the wavelet transformation, examples
of multi-resolution and some properties of wavelets will be presented.
3.1 Wavelets

The wavelet transformation is a tool that divides a given data into different frequency
components, and each component is then studied with a resolution method to its scale.
In the last ten years, interest in wavelets has grown at an explosive rate, partly because,
wavelets are a mathematical tool with a great variety of possible applications [25, 26,
27, 28]. One of the reasons why we switched from traditional transformation to wavelet
transformation is that a wavelet transformation provides a time-frequency description.
In Figure 3.1, every box corresponds to a value of the wavelet transform in the time-
frequency plane. Boxes have a constant area, although the widths and heights change.
Each box represents an equal portion of the time-frequency plane, but gives different
proportions to time and frequency. When the heights of the boxes are shorter and the
widths are longer, a better frequency but a poorer time resolution is expected. On the
other hand, when the widths of these boxes decrease and the heights increase, a better
time but a poorer frequency resolution will be given. This explains how wavelets match

longer time with lower frequencies and shorter time with higher frequencies.

28

A

frequency

>

time
Figure 3.1 Time-frequency plane.

Several useful properties associated with wavelets, such as data compression, signal
decomposition and de-noising, will be discussed. Wavelets, which are basis functions
in continuous time, satisfy certain properties and cooperate with the scaling function
&(t). The way to construct the scaling function will not be discussed here, as they are
described in detail in reference [11]. A basis is a set of linearly independent functions in
which all admissible functions can be written as a combination of basis functions.
Wavelet basis functions wik(t) are constructed from a mother wavelet w(t), which is a
pulse that starts at time t = 0 and ends at t =N. A typical wavelet wj(t) is equal to

w(2t-k). Wavelet basis functions wy and wi, are orthogonal if

j'w & (Ow,, (@)dt =0 (3.1

If, in addition, the inner product of orthogonal wavelet basis functions wjx and wjx equal

wl,

T em @ =1 32)

29

then it is called orthonormal.

Given a basis wy(t) and a real function f{t), then f{t) can be expressed in the form

f(t)=zb,‘-w,t(t) (33)
1.k

where by are constants.

3.2 Multi-resolution Analysis

The main tool in wavelets is called a multi-resolution analysis. Let the scaling

functions §(2t-k) be the basis for a set of signals at level j in which time steps are 27,
The new details can then be represented by the wavelet w(2't-k). The information y
obtained from the scaling functions and the new details z combine into a multi-
resolution of a signal. For example, suppose the input vector is x = (1,2,3,4,5,6,7,8), |x|
= 8 = 2 therefore it has three levels. Suppose the scaling basis is (1/2)"®{(1, 1, 0, ..
0),(0,1,1,0, ..,0),(,0,1,1,0,..,0),..,(0, ., 0, 1, 1), 0, .., 0, 1)} and the wavelet
basis is (1/2)"?{(-1, 1, 0, .. ,0), (0, -1, 1, 0, .., 0),(0,0,-1, 1,0, ..,0), .., (0, .., 0, -1, 1),

©, .., 0,-1)}. Atlevel J=3, input vector x}= (1,2,3,4,5,6,7,8)

- - — —r— -

3 110000 0 Of1
5 0110000 0|2
7 0011000 0|3
, 1|9| 1looo1100o0f4
YEAI|TZlo oo o011 0 ofs
13 0000011 0]6
15 000000T1 1|7
8] |oooo oo o0 1]8]

30

1 11 0 0 0 0 0 o1
1 0 -1 1 0 0 0 0 02
1 0 0 -1 1 0 0 0 03
, 1|1| 1]0o 0 0o -1 1 0 0 of4
PRI Zlo o 0o 0 -1 1 0 ofs
1 0 0 0 0 0 -1 1 06
1 0 0 0 0 0 0 -1 1|7
5] |0 0 0o 0o o o o -1j8]

For k=0 to [x*}/2 — 1, by picking y* (1+2k) and 2 (1+2Kk) as the first part of the output

and the input of the next level, the first part of the output is given by
(1/2)"(3, 7, 11, 15) and the next input is given by (1/2)*2X(1, 1, 1, 1).

At level J =2, input vector £ =1/2"1, 1,1, 1.

1 1100 1
y2=1=_1_0110_1_1
1| 4210 0 1 1{{2]1
1/2 0 0 01 1
[0 -1 1 0 0 1
22___°=_1_°‘11°L1
0| J210 0 -1 1 [J2]1
(-1 0 0 0 -1 1

For k=0 to [X%|/2 — 1, by picking y?(1+2k) and Z2(1+2k) as the second part of the output

and the input of the next level, the second part of the output is given by (1, 1) and the

next input is given by (0, 0). At level J = 1, the input vector x' = (0, 0) and the results y!

and z' are given by (0, 0). So, the third part of the output is (0) and the last part of the

output is (0). Hence,

31

3 7

11

15

output = [

)

Note

2 2 2

llOO:l

This is a simple example with complete calculation for the multi-resolution. One more

example, without details, is shown below: consider input x = 128 points of

exp(-0.3t)sin(10xt), when t =0 to 1.

x(t)

0.5

-0.5

Input signal
N_N_ N N
UYWAY AWYAN
WARWARWARWAR
\/ \VJ \VJ

128 points

Figure 3.2 Example of an input signal using 128 points.

wavelet
coefficlents

hhdborna

resuit after muliti-resolution

128 points

Figure 3.3 Output of multi-resolution.

Note that most of the wavelet coefficients are close to zero.

Remarks

1. Since most of the coefficients of the output are close to zero, it is sufficient to use k

number of non-zero coefficients to reconstruct the approximation of the signal, where

32

k<<128. Using different numbers of coefficients in figure 3.3, the maximum absolute

error of the reconstruction of the signal is shown below:

of coefficients k | 10 15 20 25
Maximum error 0.0713 0.0381 0.0333 0.0157

of coefficients k | 30 35 40 45
Maximum error 0.0081 0.0013 0.00078315 0.00035618

Table3.1 Maximum error of the reconstruction with different numbers of coefficients.

The results show that by using more coefficients, a better approximation can be

constructed. Consider another example in data compression. Let the input vector x(t)

with a length of 512 points which results from exp(-0.5t)sin(8xt)+ exp(-0.7t)sin(12xt),

and t = 0 to 2, as shown in figure 3.4. In figure 3.5, the reconstruction signal using 45

coefficients is displayed, and it clearly indicated a good approximation of the signal.

Sample signal

N\

™\

N\

x(t)
o

NV

a)
S AN ANBWAN -~
\WEAVANVAAYAERAVEL-d

—

512 points

Figure 3.4 Example of a signal using 512 points.

33

Signal from reconstruction and the error

2.00
P A WA N A
.:"' o-m - S\ /\ N 7\ P~ £
B WA W A VAR VA~ A
2,00 ~ |

512 points
The solid line is the signal and the dotted line is the error

Figure 3.5 Reconstruction using 45 wavelet coefficients.
The performance depends on the number of points, the frequency and the number of
coefficients that we are using. Figure 3.6 shows the effect when the number of discrete
points of the given signal in figure 3.4 decreases (i.e. the input vector x(t) has a length

of 128 and the function is the same as figure 3.4.). Using 12 wavelet coefficients, the

result is
signal from reconstruction
2
PTAN A
=X 0 -~--°-.—.----.....[\ vy \ Lo [-\ SRR PR ot SOy /\ S TIN5
x 1 \/ \ /| X7 \/ el N\ N \J/
-2
128 points
The solid line is the reconstruction and the dotted line is the error

Figure 3.6 Reconstruction using 12 wavelet coefficients.

Using 25 coefficients, the result is:

34

signal from reconstruction

2
PR 0 W0 WY A N =]
* 17X AV A VA &
2

128 points
The solid line is the reconstruction and the dotted line is the error

Figure 3.7 Reconstruction using 25 wavelet coefficients.
2. In de-noising, when we have a noisy signal, the selection of the wavelet coefficients
also plays an important role. For a noisy signal x;(t) = 512 points of (1 + 0.2noise)x(t),
where the noise is a random number from 0 to 1 and x(t) is the function in figure 3.4,

the reconstruction is shown below, using different numbers of coefficients.

noisy signal
2 M |
SO L AN A N AN A N
SR VASLYIYARLY LGNV
-2
512 points
Figure 3.8 Noisy signal of the signal in figure 3.4.
signal reconstruction (10 wavelet coefficients)
A ,\ .
Y A AN AN AN N
) A VA W LV VA4 VA
-2
512 points

Figure 3.9 Signal reconstructed by 10 wavelet coefficients.

35

signal reconstruction (20 wavelet coefficients)

i

2
N A
1
e I\ NI\ A~ I\ A~ D~
* 1\ X\IF \VARRVALYAN VAL
2
512 points
Figure 3.10 Signal reconstructed by 20 wavelet coefficients.
signal reconstruction (30 wavelet coefficients)
2
1 [\ 0\ o~
S A WA AN AN A N
0 I /AN W A VA VA A VS~
-2

512 points

Figure 3.11 Signal reconstructed by 30 wavelet coefficients.

o =N

x'(t)

-2

signal reconstruction (40 wavelet coefficients)

N N
\ N\ I\ A\~
\V ARV A i

VASLYEAVA

512 points

Figure 3.12 Signal reconstructed by 40 wavelet coefficients.

36

signal reconstruction (50 wavelet coefficients)

o -~ N

a " -
AN AN AN A W
o0 VA W V74 /A0 - W/~

-2

x'(t)

512 points

Figure 3.13 Signal reconstructed by 50 wavelet coefficients.
Using 10 to 40 wavelet coefficients, some of the signal’s power is removed from the
noisy signal. Using 50 coefficients, the noise effect re-occurs. It is generally
impossible to filter out all the noise without affecting the signal. To improve the result,
people may use a different basis and a different number of coefficients to de-noise the
signal [29].
3. Given a complex signal x(t)= exp(-at)sin(2bnt)+ exp(-ct)sin(2dnrt), use wavelet
coefficients can be used to separate x(t) and get approximations of exp(-at)sin(2bnt) and

exp(-ct)sin(2dnt). The next example uses x(t)= exp(-0.4t)sin(6xt)+ exp(-0.7t)sin(16xt).

wavelet coefficients

10

o O

WT(x(t))

512 points

Figure 3.14 Multi-resolution result of x(t).

37

WT(x(t))

10

o o
)

)

)

1

»

N

4

wavelet coefficients

50 coefficients

Figure 3.15 First 50 coefficients in figure 3.12.

Using the first 25 coefficients to reconstruct the signal, we will have:

x'(t)

approximation of the exp(-0.4t)sin(6pit) and the

efrror
1.00 A~ N —
bop o AN A NOY/A WA N A0 N N
. A4 N4 < 1
-1.00 g

512 points
The olid line is the signaf and the dotted line is the error

Figure 3.16 Reconstruction using the first 25 coefficients and the error.

Using the next 25 coefficients to reconstruct the signal, we will have:

x'(t)

approximation of the exp(-0.7t)sin(16pit) and the error

1.00

0.50’\AAAA4A

e A AN AN AN AW AN AW AW AW AN S oSN
oso b\ T\ YNV VVVVVV VY
qeol M NV V T

512 points
The solid line is the signal and the dotted line is the error

This method may also apply to more complex signals, such as x(t)=2x(t) for signals

Figure 3.17 Reconstruction using the next 25 coefficients and the

X1(1), X2(t), -., Xa(t), where xi(t) = exp(-a;t)sin(bit).

38

€rTor.

Remarks

When the difference between the two frequencies of the signal is small, it may cause
difficulty in applying a wavelet analysis. Consider an example,

X(t) = exp(-0.4t)sin(20mt)+ exp(-0.7t)sin(20.1xt), 2 > t >0.

sample signal

f AAAANAAA A o .
2 o lﬂ7\\7l \ \AANANAN

[ANNN
4 VVVVVVVVVVV
gy vvveyw

512 points

Figure 3.18 Example signal using 512 points.

Then the wavelet coefficients are:

wavelet coefficients

20
10

[

WT(x(t))

512 points

Figure 3.19 Wavelet coefficients of the signal in 3.18.
In figure 3.19, the two ‘pulses’ are joined together. We cannot easily choose the
coefficients to reconstruct the two signals. So, we need to know the minimum
difference between the two frequencies for the signal. Consider the signal x;(t) =
exp(-0.4t)sin(2(10)mt)+ exp(-0.7t)sin((2(10+Af)xt), 0 <t <2; we need Af=0.4 to

separate these signals. If Af < 0.4, then in light of figure 3.19, the signal X1 (t) is very

39

hard to separate into two components. Figure 3.20 shows the first 70 coefficients of the

signal x;(t) when Af = 0.4.

First 70 wavelet coefficients
10

2
§ § 5 ’.(\I‘
29 \
; % 0 A AL N\ A,

© 5

70 points

Figure 3.20 First 70 coefficients of the signal x;(t) when Af=0.4.
Consider the signal x2(t) = exp(-0.4t)sin(2(100)mt)+ exp(-0.7t)sin(2(100+Af)rt), 0<t
<0.5, we need Af= 2.5 to separate these signals. So, in general, given x(t) =
exp(-at)sin(2bnt)+ exp(-ct)sin(2(b+Af)rt); the minimum value of Af depends on the
variable t. Note that figure 3.21 is similar to figure 3.20. We use different sampling rate
(i.e. for example 1000 samples per second.) for different signals (i.e. x1(t) and xx(1)).

The result of Af is shown in table 3.2 fort =0 to 2 and in table 3.3 fort =0to 0.5.

First 100 wavelet coefficients
15
-2 10 A
< § 5 l\"!
> Q aanadrl .'\;\AAA
0 "‘A"'v v v e
; E) V]’ 'I
2 2
100 points

Figure 3.21 First 100 coefficients of the signal x»(t) when Af=S5.

40

Time t is from 0 to 2.

Base frequency x2(t) xi(t)
Sampling rate (N/sec) Af Af
500 04 0.4

1000 04 0.4

2000 04 0.4

Table 3.2 Minimum Af for t=0 to 2 with different sampling rates.

Time t is from 0 to 0.5.

Base frequency x2(t) x1(t)
Sampling rate (N/sec) Af Af
500 2.5 25

1000 2.5 25

2000 2.5 25

Table 3.3 Minimum Af for t=0 to 0.5 with different sampling rates.

41

CHAPTER 4

Software Programs

In this chapter, we will briefly describe the two neural networks, namely Sinon and the
MATLAB Neural Network toolbox. Sinon. is an in-house developed software based on
a two-layer feedforward neural network, and it is implemented in C++. The MATLAB
Neural Network toolbox is a family of application-specific solutions based on the
MATLAB environment. Several types of neural networks can be developed from this
toolbox, for example a feedforward multi-layer neural network and a recurrent neural
network. Moreover, many training methods are available for this toolbox. In section
5.4 we will compare the performance of these two programs.

4.1 Sinon

Sinon is an in-house software development using C++. This software is a simple tool
for creating, training and executing a two-layer neural network. To use this tool,
several files are required. First, the training file, which contains the training sets and the
corresponding targets, is created. Second, the testing file, containing the data sets as an
input to the neural network, is generated. Third, there is the executable file, which is
called sinon.exe. Last, sinon.cfg contains all the necessary information including the
number of neurons in the hidden layer and some names of data ﬁles: After setting up
these files, type “sinon start” to initialize the parameters (weights) in the neural
network. Type “sinon continue” to train the neural network using backpropagation with
the conjugate gradients method to optimize the performance index. After training, type
“sinon run” to get the output file. In this section, I will list all the files involved in

producing sinon.exe and the relation of these files.

42

These files include: actfun.c, actfun.h, anneal.c, conigrad.c, direcmin.c, execute.c,
layer.c, layer.h, mem.c, mem.h, misc.c, misc.h, network.c, network.h, save.c, sinon.c,
svd.c, svd.h, tset.c, tset.h, sinon.cfg, makefile, const.h.

The file sinon.c calls most of the files above. In figure 4.1, we illustrate when misc.c is

called by sinon.c.

Sil.l-c+— misc.c

Figure 4.1 Notation of file calling.

sinon.c

;

layer.c

:

mem.c Tset.c netweork.c

save.c execwte.c

Actfum.c Misc.c

svd.c Direcmin.c

Figure 4.2 System of sinon.exe.
A feedforward two-layer network is used in Sinon. Let R be the number of inputs, n be
the number of outputs, k be the number of neurons in the hidden layer, p be the Rx1
input vector, a be the nx1 output vector, W; be the weighted matrix of the first layer
and W, be the weighted matrix of the second layer. The transfer function in the first
layer is the logsig function and the transfer function in the second layer is the purelin

function. So, network output is a = W,*logsig(W*p). The training method in Sinon is

43

backpropagation with conjugate gradient (discussed in chapter 2), and the performance
index is the sum-squared error, which is the sum of squared differences between
network outputs and target outputs. Let m be the number of training cases, let netout;
be the network output at the i-th training case and j-th output and let target;; be the target

output at the i-th training case and j-th output. Notethat m>i>1,n2j21

Performance index = ZZ(netouty —target,)z
=1 y=l
File sinon.cfg:
This sets the number of neurons in the hidden layer, the number of inputs, the names of
the files that store the training set, testing set, weighted matrices and the output and also

sets the stop condition. The stop condition uses the target error, which is defined by:

J Performance index

mn

The target error is the square root of the performance index divided by product of the
number of training cases and the number of outputs.

File actfun.c :

This computes the transfer function (activation function) and the corresponding
functions. -

File anneal.c:

Uses simulated annealing to optirnize weights in the network.

Note that simulated annealing can be performed to optimization by randomly perturbing
the independent variables (weights in the case of a neural network) and keeping track of

the best (lowest error) function value for each randomized set of variables. It is very

usefiil to initialize the weights and thus help the conjugate gradient method to find the
global minimum.

File conigrad.c:

Conjugate gradient optimization.

File direcmin.c:

Minimize along a direction; for the normal process, return a real value from 0 to 1; for
any error that occurs, it will return a negative real number.

File execute.c:

Read and write the input and output files (for example read training file and write the

output file).

File layernet.c: Include all principal routines for neural network processing.
File mem.c: Supervised memory allocation

File misc.c: Include some message functions and random number generator.
File network.c: Network routines specific to the Network parent class.

File save.c: Save and restore learned weights to/from disk files.

File sinon.c: Main program for Simplified Neural Network.

File svd.c:

SingularValueDecomp - Singular value decomposition of matrices: object routines for
performing singular value decomposition on a matrix and using back substitution to find
least squares solutions to simultaneous equations.

File tset.c: Including all routines related to training.

45

4.2 MATLAB toolbox.

The name MATLAB stands for matrix laboratory. It is a technical computing
environment for high-performance numeric computation and visualization. MATLAB
integrates numerical analysis, matrix computation, signal processing, and graphics in an
easy-to-use environment. It also features a family of application-specific solutions that
are called toolboxes. Areas in which toolboxes are available include signal processing,
control systems design and the neural network. This thesis uses the neural network
toolbox. Many different network architectures are available. In this thesis, I focus only
on the two-layer network. Let R be the number of input, n be the number of outputs, k
be the number of neurons in the hidden layer, p be the Rx1 input vector, a be the nx1
output vector, W be the weighted matrix of the first layer, W be the weighted matrix
of the second layer, b; be the bias vector of the first layer and b, be the bias vector of
the second layer. The transfer function in the first layer is the logsig function, and the
transfer function in the second layer is the purelin function. So, network output is a =
W,*logsig(W*p+ bi)+ by, which is called a feedforward two-layer network. Many
training methods are available. In this thesis, training using backpropagation with
Momentum and Adaptive Learning Rate (see chapter 5) will be used. The performance
index is the sum-squared error. For different networks and different training methods,
the neural network toolbox provides many functions to do the job. l}unctions such as
initff, trainbpx and simuff are used in this thesis. To call up these functions in
MATLAB: Let W, , W, , b; , b; be the weight matrices and bias vectors, P be a matrix
of input vectors [p1, P2,..], let the number of neurons in the hidden layer be num, f;, f;

be the transfer functions and T be the corresponding target output. Call [W;, Wz ,b;,

46

b;] = initfP , num, f; , T, f3) will produce the weight matrices and bias vectors of the
neural network with output equals to HL(W.fi(W; p1 +b;)+ b;). Let
display_frequence=100, max_loop=1000, error_goal= 0.01, starting_learning_rate =
0.01, tv = set display_frequence max_loop error_goal starting_learning_rate]. Then
calling [W;, W2, by, b;, number_loop, training_error] = trainbpx (W1, by, fi, Wy, by, £,
P, T, tv) produces the weight matrices, bias vectors of the neural network, the number
of loops trained and a record of training errors. Let py be the input vector. Then calling

out = simuff (px, Wy, by, f;, Wy, by, £) produces the output of the neural network

47

CHAPTER S

Computer Simulations

To demonstrate the performance of the developed two-layer network, the Sinon
program and the MATL AB neural network ioolbox, the neural network programs are
applied to classification and parameter extraction problems. A comparison of these two
network programs will also be presented. All simulation results reported here were

obtained from running the neural networks on a PC (Pentium 133MHz with 48 MB

RAM).

5.1 Classification problem

In the modern flight flutter test, accurate determination of the frequency and damping
coefficients is an important task [30]. Before extracting the frequency and damping
coefficients, we first want to use the neural network to classify the correct type of
signal, namely a signal with exponential decaying sine waves.

Problem I :

In this problem, we want to classify two sets of functions.

Let Co = {y(t) : y(t) = Ae™'sin(bt+c), where tmin< t <tmax, amin< @ < 3max, bmin< b < bmax,
0<c<2m}be class 0, C; = {y(t) : y(t) = Ae"sin(bt+c), where tmin< t <tmax, 8min<a < amax,
bmin< b < bmax, 0<c<2m}be class 1.

The neural network is applied to solve this problem, and when the network output
(netout) is between 0.9 and 1, (i.e. 0.9<netout<l), we consider the input function is in
class 1(C,); similarly, when O<netout<0.1, the input function is considered to be in class
0(Co). Let the training set be generated from 400 random samples from Co, where

0<t<4, 0.2<a<l, 2<b<10, A=1 and from 400 random samples from C,, where 0<t<4,

48

0.2<a<l, 2<b<10, A=1, and let the testing set be generated from 500 random samples

from C; and 500 random samples from C;.

sample for C1
& 2
£
i
4 ~—
g -0
t (O<t<4)

Figure 5.1.1 Example of the function in C, for problem I.

sample for CO

8 1

=

® 05

8 + / N
§ 05

g -1

t (0<t<4)

Figure 5.1.2 Example of the function in C for problem I.

Problem I1:

As a modification of problem I, problem II adds a noise level ranging from 10% to 50%

to the clean signal in problem I.
Let Co = {y(t) : y(t) = (1+0.1¢) e*'sin(bt+c), where 0<t<4, 0.2<a<I, 2<b<10,0<c<2n} be
class 0, and C; = {y(t) : y(t) = (1+0.1¢) e*sin(bt+c), where 0<t<4, 0.2<a<l, 2<b<10,

0<c<2n} be class 1. Here ¢ is generated from a random number with coefficients in

49

[0,1], and 0.1€ represents a 10% noise level. The setting of the training set of the neural

network is the same as problem I.

sample for C1
40
20
> I ~—" \
-20 N
40
t (0<t<4)

Figure 5.1.3 Example of the function in C, with 10% noise level.

sample for CO

t (O<t<4)

Figure 5.1.4 Example of the function in Co with 10% noise level.

sample for C1

/
0 pd
w

t (O<t<4)

Figure 5.1.5 Example of the function in C, with 20% noise level.

50

sample for CO

501\ /\ 7\ P
= \/ A\ <

t (O<t<4)

Figure 5.1.6 Example of the function in Co with 20% noise level.

sample for C1

40 i
ﬂ
20 4
0 AW
40 d
t (0<t<4)

Figure 5.1.7 Example of the function in C; with 30% noise level.

sample for CO

O/v\/\/"\i
AR !

y(t)

t (0<t<4)

Figure 5.1.8 Example of the function in Co with 30% noise level.

51

sample for C1
20 A
10
= e —
s 0 \\-\-—J‘//
-10
-20
t (O<t<4)

Figure 5.1.9 Example of the function in C; with 40% noise level.

sample for CO

1 i

0 \ TN e
N

y(t)

\pv/'

-1

t (O<t<4)

Figure 5.1.10 Example of the function in Co with 40% noise level.

sample for C1

100 :

|

. 50 o
-50

t (0<t<4)

Figure 5.1.11 Example of the function in C; with 50% noise level.

52

y(t)

sample for CO

2
1 M
-1
t(O<t<4)

Figure 5.1.12 Example of the function in Co with 50% noise level.

Overall result for the classification problem:

Let Co = {y(t) : y(t) = (1+noise €) e™'sin(bt+c), where 0<t<4, 0.2<a<l, 2<b<10,

0<c<2m} be class 0, and let C; = {y(t) : y(t) = (1+ noise €) e'sin(bt+c), where 0<t<4,

0.2<a<l, 2<b<10, 0<c<2m} be class 1, noisee{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. Table 5.1.1

presents the results of using the neural network to classify the signals with noise levels

ranging from 0% (clean signal) to 50%. This table shows the percentage for 1000

testing samples.

noise Correct results Reject cases Incorrect results
0.0 99.4% 0.6% 0%

0.1 99.1% 0.9% 0%

0.2 98.7% 1.2% 0.1%

0.3 98.5% 1.2% 0.3%

0.4 99.4% 0.3% 0.3%

0.5 98.9% 1.1% 0%

Table 5.1.1 Result of the classification problem.

Next we change the conditions for determining the correct classification, such that if

(0.8<netout<1) then the input is in C;, and if (O<netout<0.2) then the input is in Co.

53

The percentage for 1000 testing samples is displayed in table 5.1.2.

Noise Correct results Reject cases Incorrect results
0.0 99.6% 0.4% 0%

0.1 99.3% 0.7% 0%

0.2 98.9% 1.0% 0.1%

0.3 99.2% |1 0.5% 0.3%

0.4 99.6% 0.1% 0.3%

0.5 99.6% 0.4% 0%

Table 5.1.2 Result of the classification problem.

Conclusion: From the above results, it is clear that the neural network performs well,

with more than 95% correct results and with less than 1% incorrect results.

Remarks

1. The neural networks to solve these problems are based on two-layer feedforward
neural networks with 12 hidden neurons. Define the result as (netout) =
f,(W,(f;(W,(input)+b,))+b;), where input is a 128x1 vector, W is a 12x128
matrix, by is a 12x1 vector, W3 is a 1x12 matrix, b is a 1x1 vector and
fi(n)=f;(n)=logsig(n)=1/(1+exp(-n)).

2. The training method to solve this problem is based on the backpropagation (steepest
descent) momentum and adaptive learning rate. The initial values are taken from a
random number generator, update weight matrices and bias vectors by AW (k) =
YAW u(k-1) — (l-y)as.,(s_-l)r, Abg(K) = YAbg(k-1) — (1-y)asm, here, k represents the
k-th iteration, m is the identifier to identify the layer, a is the learning rate, sS4 is the
sensitivity for the m-th layer, which is calculated using the same method as in

backpropagation, 2,1 is the output for the (m-1)th layer, which is calculated from

54

the network, and y is the momentum coefficient. Note that 0<y<l. In this case, set
y=0.95. The learning rate a is changed according to the following rules. If the new
error exceeds the old error by more than a certain ratio (set at 1.04) then the result is
not used and o is multiplied by 0.7. If the new error is less than the old error, then

keep the result and a is multiplied by 1.05.

. First apply a wavelet transform to the input data. After sorting the coefficients by
descending order, we use the wavelet multi-resolution tool to pick the first three
largest coefficients and their corresponding level information as inputs to the neural
network. The number of parameters in the neural network is reduced. The number
of inputs is 6 and the number of hidden neurons is 8. So, the sizes of weight
matrices and bias vectors are 8x6, 1x8, 8x1 and 1x1. The percentage for 1000

testing samples is displayed in table 5.1.3.

Noise Correct results Reject cases Incorrect results
0.0 100% 0% 0%
0.3 100% 0% 0%
0.5 100% 0% 0%

Table 5.1.3 Successful rate (in %) for 1000 testing samples.

Note that, without using wavelet coefficients, the number of parameters needed to store

is 1537, whereas the number of parameters needed to store using wavelet coefficients is

only 65.

4. Pick the first five largest coefficients and their corresponding level information from

the sorted coefficients. Train the neural network using the clean signal in problem I.

Use this resulting matrix to test the cases in problem II. The de-noising property of

wavelet multi-resolution can reduce the training time when we have to deal with signals

55

that are in the same class as noise. The percentage for 1000 testing samples is displayed

in table 5.1.4
Noise Correct results Reject cases Incorrect results
0.0 100% 0% 0%
0.3 100% 0% 0%
0.5 99.9% 0.1% 0%
Table 5.1.4 Successful rate (in %) of 1000 testing samples.
Problem III

In this problem, we want to classify two sets of functions.

Let Co = {y(t) : y(t) = Ajexp(-ait)sin(bt+c))+ Azexp(-azt)sin(byt+c;), where tmin< t
<tmax, 3min< a1, 32 < Bmax, bmin< b1, b2< bmax, 0<C1, c2>2m}be class 0,

Ci = {y(t) : y(t) = Arexp(at) sin(bit+ci)+ Azexp(azt)sin(bat+cz), where tmin< t <tmax,
Amin< a1, 32 < Amax, Pmin< D1, D2< bmax, 0<C1, 2 >21}be class 1. Picking the first five
largest wavelet coefficients and their corresponding level information from the sorted
coefficients. Let the training set be generated from 1000 random samples from Co,
where 0<t<4, 0.2<a; a; <1, 2<b,; ,b;<10,, A;, A, =1 and 1000 random samples from
C,, where 0<t<4, 0.2<a, a; <I, 2<b; ,b<10,, A, A, =1, and let the testing set be
generated from 500 random samples from Co and 500 random samples from C,. In
figure 5.1.13, a sample input from class 1 is shown, and in figure 5.1.14, a sample input

from class O is shown. The result is shown in table 5.1.5.

56

Sample of C1
5.00
2.50 AN
s gl >~ —— [N\ [_ /
> 250 NS/ N\ \/
S -
-5.00
t(0<t<4)
Figure 5.1.13 Example of the function in C;.
Sampie of CO
2.00
1.00 —
-1.00 \,/ \V/
-2.00
t(0<t<4)

Figure 5.1.14 Example of the function in Co.

The following result is obtained:

Correct results Reject cases Incorrect results

99.7% 0.2% 0.1%

Table 5.1.5 Successful rate (in %) for 1000 testing samples.

57

5.2 Parameters Extraction Problem I

This problem is to extract the frequency and damping coefficients from a simulated
flutter signal. This problem has also been studied by Lee and Wong [9].

Problem IV :

In this problem, we want to use a neural network to extract two parameters, a and b,
from a given function y(t) = Aexp(-at)sin(2rbt), where tmin< t <tmax, amin< a< amax, bmin<
b< bmax- Here, a and b denote the value of damping and frequency, respectively.

Method 5.2.1: Use one neural network to find two parameters, see figure 5.2.1.

y(t)o——eneural network T

Figure 5.2.1 Method 5.2.1.

The input p is a vector of 512 discrete points of y(t), where A=1, 0<t <2, 0.3<a<0.8,
3<b<8. The output out is a vector with two entries. The first entry out; gives the
approximation of a, and the second entry out; gives the approximation of b. This
method uses a two-layer feedforward neural network with 35 neurons in the hidden
layer.

(Note that W, is a 35x512 matrix, W; is a 2x35 matrix, by is a 35x1 vectorand bz isa
2x1 vector.) The backpropagation (steepest descent) momentum and adaptive learning
rate method is used to train the network. The training set is a set of input vectors (i.e. p)
and the corresponding target output vectors tout. The testing set is a set of input
vectors. To construct the training set, we start with 200 random samples, and, after

some training, construct a testing set of 500 for each testing case; if the relative error is

S8

more than € (say 10%), then increase the training data until the testing set gives an
acceptable error. In figure 5.2.2, the sample input (512 discrete points of y(t) =
exp(-0.45t) sin(2n6t)) is given. In figure 5.2.3 and figure 5.2.4, the relative error (in %)
is given using 1000 randomly generated samples. This relative error is defined by
relative error =100abs(out - exact solution)/exact solution. We used about 4 to 5 weeks
to train this network. If the training time increases, then the accuracy can be improved.
The total size of all weight matrices and bias vectors is 18,027, and this is the storage

requirement of method 5.2.1.

sample input

1.00

NAAAAAAAAAAA
INALNARAR

t=0to 2

y(t)

-1.00

Figure 5.2.2 Input of the neural network using 512 points.

The errors of 1000 test samples

12.00

SO PN T T ey et ey

relative error of a (%)

Figure 5.2.3 Relative error (in %) of the first output (i.e. a).

59

The errors of 1000 test samples

0.80
0.60
0.40
0.20 A
0.00

U SR AT

relative error of b (%)

Figure 5.2.4 Relative error (in %) of the second output (i.e. b).

Method 5.2.2: Use two neural networks to find two parameters, see figure 5.2.5.

neursl networiy—°8
y(t)<

neursl network,—ehb

Figure 5.2.5 Method 5.2.2.
The input vector p is a vector of 256 discrete points of y(t) where A=1, 0.5<t < 1.5,
0.3<a<0.8, 3<b<8. The outputs out; and out; are two real numbers that give the
approximation of a and b, respectively. Two two-layer feedforward neural networks
with 18 neurons in the hidden layer are used. (Note that W, is a 18x256 matrix and W»
is a 1x18 matrix; also, for both networks, by is a 18x1 vector and b is a 1x1 vector
networks.) The training method, the way to construct the training set and the testing set
are the same as in method 5.2.1. In figure 5.2.6, the sample input (256 discrete points
of y(t) = exp(-0.45t) sin(2n6t)) is given. In figure 5.2.7 and figure 5.2.8, the relative
error (in %) is given using 1000 random generated samples. We used 2 to 3 weeks to
train the first network and about 3 days to train the second network. Tl';e storage
requirement of the neural networks in method 5.2.2 is 9,290. Since the number of both

inputs and neurons in these neural networks decrease, the time to train these networks

60

decreases. The accuracy of the result in figure 5.2.7 is also better than that of the result

in figure 5.2.3. In this method parallel computation can be easily applied.

Sample input

1.00

m/\/\/\/\/\A
vV V V

t=0.5t0 1.5

y(t)

-1.00

Figure 5.2.6 Example of the input of the neural network.

The errors of 1000 test samples

relative error of a (%)

Figure 5.2.7 Relative error (in %) of the first output (i.e. a).

The errors of 1000 test samples

(R A e A IR AT L]

relative error of b (%)

Figure 5.2.8 Relative error (in %) of the second output (i.e. b).

61

Methad 5.2.3: Use two neural networks to find two parameters. One of the networks

uses wavelet compression and the other reduces the number of discrete points to 64.

See figure 5.2.9.

wavelet compression \
meural networic|—*8

weural network,—eh

Figure 5.2.9 Method 5.2.3.

Networkl: The input wavecoeff is a vector of 60 entries; the first 30 entries are the first
30 largest squared-wavelet coefficients, and the next 30 entries are their corresponding
positions. These coefficients are the wavelet coefficients of y(t) where A=1, 0.5<t <
1.5, 0.3<a<0.8, 3<b<8. The network provides the approximation ofa. A two-layer
feedforward neural network with 18 neurons in the hidden layer is used. (Note that W,
is a 18x60 matrix, W, is a 1x18 matrix, b; is a 18x1 vector and bz is a 1x1 vector.
Applying the same training method in method 5.2.1 the result is shown in figure 5.2.13.
Figure 5.2.10 shows the first 30 entries of wavecoeff, and figure 5.2.11 shows the next
30 entries. The data from the coefficients in figure 5.2.12 are the wavelet coefficients
of 256 discrete points of y(t) = exp(-0.45t)sin(2r6t). It took about 10 days to train this

network. The number of parameters in the network was reduced to 1,117.

62

20.00
15.00
10.00
5.00
0.00

top 30 points of
squared wavelet

coefficlents

First 30 points of the sample

input

o
S
1%

L %0000000000000000000000000 —————

Figure 5.2.10 First 30 points of wavecoeff.

0.15

Next 30 points of input

o
-t
o

positions

Information of

o
(o]
n
!

0.00

Figure 5.2.11 Next 30 points of wavecoeff.

Sample of wavelet coefficients

-]
e 400 —
& 200
€ o 0.00 Pee s
§ > 2.00
3 400 {~—
[
2 6.00
3
Figure 5.2.12 256 wavelet coefficients of y(t).

63

The errors of 1000 test samples

10.00
8.00

4.00 - |
2.00
0.00

relative error of a (%)

Figure 5.2.13 Relative error (in %) of the first output (i.e. a).
Network 2: The input p is a vector of 64 discrete points of y(t), where A=1, 0.5<t <
1.5, 0.3<a<0.8, 3<b<8. The network gives the approximation of b. Fourteen hidden
neurons are used for a two-layer feedforward in the network. (Note that W, is a 14x64
matrix, W3 is a 1x14 matrix, b; is a 14x! vector and b, is a 1x1 vector.) In figure
5.2.14, the sample input is given and the relative error is shown in figure 5.2.15. Only
one day was used to train this network and the number of parameters was reduced to

925.

Sample input

1.00

N AWAWAWANWANAN
JVVV VYV

t=0.5t0 1.5

y(t)

-1.00

Figure 5.2.14 Sample input of network 2.

The errors of 1000 test samples
£
F -
S
8 |
° Hr I N, p = - } : Sy | W i
s TR A LU R WL S
®
Figure 5.2.15 Relative error (in %) of the second output (i.e. b).
Remarks:

1. Method 5.2.1 needs to store 18,027 real numbers, but method 5.2.3 only needs 2042.

2. For each loop of training, the CPU time for method 5.2.1 takes longer than method
5.2.3.

3. In method 5.2.3, using the wavelet transformation could decrease the convergent
rate of the training. The number of wavelet coefficients could be changed. Start
from 10 coefficients and add 5 coefficients if the inverse transformation cannot
provide a good approximation of the function, until it does provide a good
approximation.

4. Using the same method of training with sufficient time and a sufficient number of

neurons, the neural network could provide an accurate approximation (relative error

within 5%).

65

5.3 Parameters Extraction problem II

When flutter signals are complicated and more parameters need to be determined, direct
application of the neural network not only requires significant time for the training
process, but may also fail to provide an acceptable result. The difficulties are illustrated
in the following example. In this problem, we want to extract four parameters, a,, a,,
by, by, from a given function y(t) = Ajexp(-a;t)sin(2nb;t) + Azexp(-a;t)sin(2nbst),
where A; and A; are constant, tnin< t <tmax, amin< a1, 32 < 3max, bmin< b1 ,02< bmax and b;-
b>0.

Method 5.3.1: Use one neural network to find all four parameters. See figure 5.3.1.

»

y(t) ¢ neunal metweork

Figure 5.3.1 System of method 5.3.1.
The input p is a vector of 512 discrete points of y(t), where A, =A;=1,0<t<2,
0.3<a;,a;<0.8, 3<b;,b,<8, b;-b,>0.5. The output out is a vector with four entries. The
first entry out,; gives the approximation of a,, the second entry out; gives the
approximation of by, the third entry out; gives the approximation of a, and the forth
entry outy gives the approximation of b,. There are 50 neurons in the hidden layer of
the two-layer feedforward neural network. (Note that W, is a 50x512 matnx, W,isa
4x50 matrix, by is a 50x1 vector and b; is a 4x1 vector.) The training method, the way

to construct the training set and the testing set use the same method as in method 5.21.

66

The condition b;-b,>0 is a means of ordering these four parameters. Without ordering
these four parameters, the neural network will never work. Consider the example given
by y(t) = exp(-0.3t)sin(276t) + exp(-0.5t)sin(2n4t). Both vectors [0.3,6.0,0.5,4.0] and
[0.5,4.0,0.3,6.0] are acceptable solutions for [ai, by, a2, b,], where a; and b; denote the
value of damping and frequency, i =1, 2. For a given signal, two acceptable solutions
cause difficulty in convergence. One way to overcome this problem is to re-order these
four parameters by fixing bi-b>0. In figure 5.3.2, the sample input (512 discrete points
of y(t) = exp(-0.45t)sin(2n3.5t) + exp(0.54t) sin(2r6.5t)) is given. In figure 5.3.3 to
figure 5.3.6, the results are plotted. These results took more than one month to train,

and the number of parameters in the network is 25,854.

Sample input

2.00

N a\ R
el B A N AN AN - N
byt BCAV ELVAVARVASR VAL VARV ¥/

y(t)

-2.00
t=0to 2
Figure 5.3.2 Sample input of the neural network.
The errors of 1000 test samples
E 80.00
© 6000
° -
E é 40.00 I . M PN | l 1 1
2 2000
s
® 0.00

Figure 5.3.3 Relative error (in %) for the first output (i.e. a;).

67

relative error of b1

The errors of 1000 test samples

3.00

2.00 i

(%)

1.00 1l-l||

0.00

Figure 5.3.4 Relative error (in %) for the second output (i.e. by).

relative error of a2

The errors of 1000 test samples

100.00
80.00

60.00

40.00 1 | L, l [l | l I

20.00 A 1
0.00

(%)

Figure 5.3.5 Relative error (in %) for the third output (i.e. a;).

relative error of b2

The errors of 1000 test samples

Fll |1 IIIIT’ ﬂ||r1‘." I H'.'rvqln'l iy Tl‘r”—w'.[n”,. 'T!'R T

Figure 5.3.6 Relative error (in %) for the forth output (i.e. by).

68

Remarks

1. The frequency values b; and b, are estimated within 3% error, but the relative errors
of a, and a, are still very large. However, as a greater amount of training time and
more neurons are provided in the network, the relative errors in a; and a; are
continuously reduced. Note that most of the relative errors are less than 20%.

2. To improve the performance, we suggest the use of four networks to extract these
parameters, as shown in figure 5.3.7. This method will increase the number of
weights and biases to store, but it will decrease the training time. Let networka;,
networky,; network,, and networks, be the networks that produce ay, by, a; and b,.
Note that the training time to train networks,; and networks, are much less than for

network,; and networkaz, which required a long time to train.

output
Imput Nearsl letwom+ at
Neural letwork} bt
Y

Neursal utwork} a2

"$Neurul letwork}— b2

Figure 5.3.7 System for improving performance, as mentioned in remarks 2.

Method 5.3.2: Using wavelet transformation, a further improvement of the method in

figure 5.3.7 can be developed, as shown in figure 5.3.8.

69

eutput
inpat v1 _~tNesaral letwork}— ai

A4 |
Nearsl utwont}—— b1

¥2 |Neanal utwork}— a2
Y2
Neural letwork}— b2

Figure 5.3.8 System for method 5.3.2.

Y ¢—¢ wavelet

The input Y to the wavelet tool is a vector of 512 discrete points of y(t) = y1 ()+y2 (1) =
exp(-ait)sin(2nbt)+ exp(-a;t)sin(2nb,t), where 0<t<2, 0.3<a;,a;<0.8, 3<b;,b,<8,b;-b2
> 0.5}. Note that the condition b;-b; > 0 changes to bi-b, > 0.5 because of the limitation
in the separation of two signals (chapter 3). The outputs of the wavelet tool are Y, and
Y>, which are 512 discrete points of the wavelet approximation of y; (t) and y, (t). Pick
only 256 discrete points from Y and Y for the neural networks. Since Y; and Y>
approximate y; (t) and y» (t) very well in the middle parts, we pick the middle parts (i.e.
0.5 <t<1.5) of Y and Y; for the neural networks in method 5.2.2 to improve the
accuracy of the overall result. In addition, the neural networks are well trained; no
further training is required. In figure 5.3.9 to figure 5.3.12, the graphs show the results

of this method.

70

30 testing samples

relative error of a1
(%)
O N A O @

Figure 5.3.9 Relative error (in %) of the first output (i.e. a;).

30 testing samples

relative error of b1

Figure 5.3.10 Relative error (in %) of the second output (i.e. by).

30 testing samples

relative error of a2

Figure 5.3.11 Relative error (in %) of the third output (i.e. ay).

71

30 testing samples

relative error of b2
(%)
F-S

Figure 5.3.12 Relative error (in %) of the forth output (i.e. by).
Remarks:

1. Using this method could reduce the training time for neural networks as well as the
storage requirements of the neural network.

2. For noisy signals, it is not necessary to train new neural networks, given the de-
noising property of wavelets. Let C be a set of functions {y(t) : y(t) = (1+0.2e)(exp(-
ait)sin(2nb;t) + exp(-a;t)sin(2nbt)), where 0< t < 2, 0.3<a,,a,<0.8, 3<b;,b;<8,b;-b; >

0.5, 0.2¢ represents 20% noise level. The following result is obtaind:

30 test samples

relative error of a1

Figure 5.3.13 Relative error (in %) of the first output (i.e. a;).

72

30 test samples

O = NMNWwWw a O
[EN

rolative error of b1
(%)

Figure 5.3.14 Relative error (in %) of the second output (i.e. b).

30 test samples

relative error of a2

Figure 5.3.15 Relative error (in %) of the third output (i.e. a;).

30 test samples

rolative error of b2
(%)
O A NWLARO

Figure 5.3.16 Relative error (in %) of the forth output (i.e. by).

Let the level of noise increase from 20% to 40%. The following result is obtained:

73

30 test samples

IR

O W W ¥ N O
-

(%)
18 JO JOLI® SARR|G)

Figure 5.3.17 Relative error (in %) of the first output (i.e. a;).

30 test samples

O YT ON O

(%)
19 3O JOLI® BA|JE|E)

Figure 5.3.18 Relative error (in %) of the second output (i.e. by).

30 test samples

(%)
Z® JO JOLIO QAR

Figure 5.3.19 Relative error (in %) of the third output (i.e. az).

74

30 test samples

relative error of b2

Figure 5.3.20 Relative error (in %) of the fourth output (i.e. by).

3. The accuracy of these results depends on the wavelet decomposition and the
reconstruction. In this application, relatively more error occurs at the front (t from 0 to
0.5) and the end (t from 1.5 to 2) of the signal approximations. So, using the middle
part of the signal (t=0.5 to 1.5) will improve the results.

4. To reduce the number of inputs for the neural networks, we can use the wavelet
compression as the input. If the signal has N discrete points and assuming N/10 wavelet
coefficients will be enough to approximate this signal, then the input of the neural
networks could be reduced by 90%.

Method 5.3.3: Use properties of wavelet transformation and two neural networks to

find these parameters. See figure 5.3.21.

75

wavelet
separation

Y1

Y2

Y1’

wavelet
compression

Yzl

Neursl IQ‘W‘I‘R+— b1

Nearal networkcy-{ a2

——

Figure 5.3.21 System of method 5.3.3.

The setting in this method is similar to the setting in method 5.3.2; the only difference is

in using the wavelet compression property to reduce the number of inputs to the neural

networks. We use 30 wavelet coefficients to find a, and a,, and use 45 wavelet

coefficients to find b; and b,. Using this method, the results (including the de-noising

effect) were similar to those produced by method 5.3.2. In figure 5.3.22 to figure

5.3.25, the results from the clean signal are given, but the result from the noisy signal

are not shown.

8.00
6.00
4.00

relative error (%)

0.00

2.00 §H

30 test samples

! 1

Figure 5.3.22 Relative error (in %) of the

76

first output (i.e. a;).

30 test samples

—~ 8.00

3

= 6.00

£ oo I
: |
fon Tl
® 000 NilaBli

Figure 5.3.23 Relative error (in %) of the second output (Le. by).

30 test samples
.. 8.00
g
= 6.00
<]
5 4.00 !
g m{ 1}:
= 2.00
s ;

Figure 5.3.24 Relative error (in %) of the third output (i.e. a;).

30 test samples

relative error (%)

Figure 5.3.25 Relative error (in %) of the forth output (Le. by).

77

5.4 Comparison of two Simulating Programs. (Sinon and MATLAB toolbox)

Let C be a set of functions {y(t) : y(t) = e™'sin(bt), where 0.5< t < 1.5, 0.3<a<0.8,
3<b<8 }and the training set be 800 random samples from C and let the testing set be
500 random samples from C and the nurﬁber of neurons in the hidden layer be 14.

The input p is a vector of 64 discrete points of y(t) in C. The output is the
approximation of the parameter b. The sample input (64 discrete points of y(t) = exp(-

0.77251t)sin(6.71061)) is given in figure 5.4.1.

sample input of the neural
networks
1.00
= /\
-1.00
64 points

Figure 5.4.1 Sample input of the neural networks.

If 4 discrete points are used in this range of data, the result is shown in figure 5.4.2.

relative error (in %) from 500 random sample

3.00
2.00

1.00
0.00

relative error
(%)

500 samples

Figure 5.4.2 Result using only 4 discrete points
Using the MATLAB toolbox, the results after 500 to 3,500 loops are given in figure
5.4.3 10 5.4.6. Using Sinon, the results after 1 to 40 loops are given in figure 5.4.7 to

54.10.

78

relative error (in %) from 500 random samples

10.00

relative error
(%)
8 8

500 samples

Figure 5.4.3 Relative error of the output after S00 loops.

Note that maximum error is 7.97%.

relative error (in %) from 500 random samples

8.00
6.00
&£ 4.00

2.00 1 ry L 3
0.00 danadadlsciaid gl Ll DL (ld kaliin Ld

500 samples

relative error

Figure 5.4.4 Relative error of the output after 1000 loops.

Note that maximum error is 6.4%.

79

relative error (in %) from 500 random samples

6.00
4.00

o" 2-00 I + 4
0.00 MMMMM

500 samples

relative error
%)

Figure 5.4.5 Relative error of the output after 2000 loops.

Note that maximum error is 4.96%.

relative error (in %) from 500 random samples

= 4.00

o

= 3.00

e R 2.

>

E 1.00 " [l PR TIN | |
2 o000

500 samples

Figure 5.4.6 Relative error of the output after 3500 loops.

Note that maximum error is 3.86%.

80

Using Sinon:

relative error (in %) from 500 random samples

18.00

12.00 I

6.00
0.00

relative error (%)

500 samples

Figure 5.4.7 Relative error of the output after | loop.

Note that maximum erroris 17.1%.

relative error (in%) from 500 random samples

10.00

relative error (%)

500 samples

Figure 5.4.8 Relative error of the output after 10 loops.

Note that maximum error is 8.98%.

relative error (in%) from 500 random samples

8.00

6.00 =

4.00 |
2.00 tr+
0.00

relative error (%)

500 samples

Figure 5.4.9 the relative error of the output after 20 loops.

Note that maximum error is 7.4%.

81

relative error (in%) from 500 random samples

4.00

2.00

0.00

relative error (%)

500 samples

Figure 5.4.10 Relative error of the output after 40 loops.
Note that maximum error is 3.96%.
Remark:
The total time for computation for this particular application is 84 minutes using Sinon
and the total time using the MATLAB toolbox is 35 minutes. Since Sinon is an in-
house development, there is room for further improvement in the training time for
each loop. For example, in the present version of Sinon, the weight matrices are saved
for each loop, which requires a significant /O time. On the other hand, the weight
matrix coefficients are saved only at the end of the computation in MATLAB. In terms

of relative error, the final results for both programs are about the same.

CHAPTER 6

CONCLUSION

A neural network has the capability to model highly complex nonlinear systems with only
limited information. A neural network consists of many simple computing units known
as neurons, which are connected to other units by a weighting function and operate in

parallel.

In this thesis, we developed a two-layer neural network model, and the network was
then applied to study the classification and extraction of aerodynamic parameters from
simulated flight flutter data. The flutter data analysis can be regarded as an aircraft
parameter estimation problem in which, given data from a flight test, we want to
accurately estimate the value of the frequency and damping coefficients. The success of

flutter analysis plays a significant role in the design of aircraft.

In the classification problems, when applying the neural network to a clean signal and to
those corrupted with up to 50% noise, we were able to classify more than 95% of the
correct type. Moreover, when it is used in conjunction with a wavelet multi-resolution
method, we could achieve 100% correct classification for both clean and noisy signals.
The wavelet multi-resolution method was introduced to perform data compression and
de-noising of a noisy signal. Furthermore, as a direct consequence of reducing the
complexity of the neural network architecture, not only the storage requirement of the

neural network is reduced, but the associated training time is also significantly decreased.

83

For the parameter extraction problem, we first considered a simple case in which the
signal contains only one frequency and one damping coefficient, and this will be referred
to as Problem IV. It has been demonstrated that the two-layer network that has been
developed can be trained to extract the two parameters within 5% error. However,
when the signal consists of multiple signals each of which has its own damping and
frequency, the problem becomes much more complex than when dealing with only one
signal, as in Problem I'V. To illustrate the problem, consider the case in which the signal
consists of two exponential decaying sine waves, which will be referred to as Problem V.
First, by direct application of the neural network, the performance index (i.e. the sum of
squares of the error) fails to converge in the training process because, for a given input,
more than one output is expected. To achieve convergence, the training data must be
reordered so that the first output set corresponds to the damping and the associated
largest frequency, and the second output set to the damping and the associated smallest
frequency. Although this measure reduces the performance index in the right direction,
the training time that is required becomes enormous. The training time required for
Problem IV is about ten days on a pentium PC with 133 MHz. However, even after
more than one month of training time, the training process for Problem V was not yet
completed. To overcome the difficulty of slow convergence, it is suggested that the
multiple signals first be decomposed using a wavelet transform. Each decomposed signal
then contains only one damping and frequency coefficient, and the pa@etem can be
extracted by a neural network, as in Problem IV. To improve the performance of the

neural network, we also apply the wavelet multi-resolution technique to each

decomposed signal, and use the wavelet coefficients as input to the neural network.
Instead of using a neural network to deal with each decomposed signal, it is suggested
that two neural networks be applied for each signal so that only one output neuron,
namely one for damping and one for frequency, is needed. Hence, for multiple n signals,
the network architecture consists of 2n neural networks. However, they are operating in
parallel, and thus the training time required can be significantly reduced. The parallel
implementation is also very attractive when considering applying the network for

parameter extraction in a real time environment.

Finally, based on our experience of the development and application of neural networks,
the following comments are offered:

1. The success of the present neural network depends on, first, the ability to decompose
multiple signals using a wavelet transformation. Secondly, sufficient training data sets
are provided to train the neural network using a supervised learning algorithm. In many
real applications, only limited training data may be available, and the use of unsupervised
learning algorithms or recurrent neural networks may offer better results than the

network presented in this thesis.

2. Only one hidden layer is used in this thesis. It may be of interest to investigate the

performance of the neural network by introducing additional hidden layers.

3. The number of neurons used in the hidden layer could affect the training process in the

neural network. In this thesis, the number of neurons is taken as approximately equal to

85

the square root of (I0), where I and O denote the number of neurons at the input and
output, respectively. Depending on the problem and the size of the input data, too many
or too few neurons for the hidden layer may cause difficulty in the convergence of the

performance index.

86

REFERENCE

[1]. T.-C. Chu, Harold Sze. An Artificial Neural Network for Naval Theater
Ballistic Missile Defense Program, [EEE International Conference on Neural
Networks, Volume 1,1997.

[2]. R. Barton, D. Himmelblau. On-line Prediction of Polymer Product Quality in
an Industrial Reactor Using Recurrent Neural Networks, [EEE International
Conference on Neural Networks, Volume 1,1997.

[3]. Y. Shin, K.-S. Jin, B.-M. Yoon. A complex Pi-Sigma Network and Its
Application to Equalization of Nonlinear Satellite Channels, IEEE International
Conference on Neural Networks, Volume 1,1997.

[4]. A.lIwate, Y.Nagasaka, N. Suzumura. Data Compression of the ECG Using
Neural Network for Digital Holter Monitor, [EEE Engineering in Medicine and
Biology Magazine, September, 1990.

[5]. Krzysztof J. Cios, Keqing Chen, Robert A. Langenderfer. Use of Neural
Networks in Detecting Cardiac Diseases from Echocardiogramphic, [EEE
Engineering in Medicine and Biology Magazine, September, 1990.

[6]. R.M. Holdaway, M.W. White, A. Marmaron. Classification of Somatosensory
Evoked Potentials Recorded from Patients with Severe, [IEEE Engineering in
Medicine and Biology Magazine, September, 1990.

[{7]. A.Hiraiwa, K. Shimohara, Y. Tokunaga. EEG Topography Recognition by
Neural Networks, [EEE Engineering in Medicine and Biology Magazine,

September, 1990.

87

[8]. J.J. Kaufman, A. Chiabera, M. Hatem, N. Z. Hakim, M. Figueiredo, P.
Nasser, S. Lattuga, A. A. Pilla, R. S. Siffert. A Neural Network Approach for Bone
Fracture, [EEE Engineering in Medicine and Biology Magazine, September, 1990.
[9]. B.H.K.Leeand Y. S. Wong. Neural Network Parameter Extraction with
Application to Flutter Signals, Journal of Aircraft, volume 35, number 1997.

[10]. Timothy Masters. Practical Neural Network Recipes in C++. Academic
Press, 1993, chapter 12.

[11]. Gilbert Strang, Truong Nguyen. Wavelets and Filter Banks. Wellesley-
Cambridge Press, 1996, chapter 6.

[12]. Pao, Yoh-Han. Adaptive Pattern Recognition and Neural Networks.
Addison-Wesley Publishing Co., Reading, M. A_, 1989.

[13]. Specht, Donald. Enhancements to Probabilistic Neural Networks,
International Joint Conference on Neural Networks, Baltimore, M. D. 1992.

[14]. Meisel, W. Computer-Oriented Approaches to Pattern Recognition.
Academic Press, New York, 1972.

[15]. J. Alianna, Maren et al. HandBook of Neural Computing Applications,
Academic Press, Toronto, Ont., 1990

[16]. Martin T. Hagan, Howard B. Demuth, Mark Beale. Neural Network Design.
PWS Publishing Company, 1995.

[17]. J.Li, A. N. Michel, W. Porod. Analysis and Synthesis of a Class of Neural
Networks: Linear system operating on a closed hypercube, [EEE Transactions on

Circuits and Systems, volume 36, November, 1989.

88

[18]. D. Rumelhart and J. McClelland, editors. Parallel Data Processing, volume
1, Chapter 8, M. L. T. Press, Cambridge, MA 1986.

[19]. F. Rosenblatt. Principles of Neurodynamics, Spartan Press, Washington
D.C, 1961.

[20]. D. White and D. Sofge, eds. Handbook of Intelligent Control, Van Nostrand
Reinhold, New York, 1992.

[21]. T. Tollenaere. SuperSAB: Fast Adaptive Back Propagation with Good
Scaling Properties, Neural Networks, volume 3, number 5, 1990.

[22]. C. Charalambous. Conjugate Gradient Algorithm for Efficient Training of
Artificial Neural Networks, [EEE Proceedings, volume 139, number 3, 1992.

[23]. M. T. Hagan and M. Menhaj. Training Feedforward Networks with the
Marquardt algorithm, [EEE transactions on Neural Networks, volume 5, number 6,
1994.

[24]. L. E. Scales. Introduction to Non-Linear Optimization, Springer-Verlag,
New York, 1985.

[25]. Recommendation H.262, ISO/IEC 13818, Generic Coding of Moving Picture
and associated audio, Draft international standard.

[26]. D.Estaban and C. Galand. Application of Quadrature Mirror Filters to Split-
band Voice Coding Schemes, Proc. [EEE International Conference ASSP, 1977.
[27]. Q.Jin, K. M. Wong, and Z. Q. Luo, Design of an Optimum Wavelet for
Cancellation of Long Echoes in Telehony, Proc. [EEE SP Int. Symp. On Time-

Freq., 1992.

89

[28]. G.Kaiser. Quantum Physics, Relativity and Comples Spacetime: Towards a
New Synthesis, Amsterdam, North-Holland, 1990.

[29]. D. Donoho. De-noising by soft thresholding, [EEE Trans. Inf. Th. 41,1995.
[30]. B. H. K. Lee and Laichai, F. Development of Post-Flight and Real Time
Flutter Analysis Methodologies, Proceedings Froum International Aéroélasticité et
Dynamique de structures (Strasbourg), Association Aéronautique et Astronautique

de France, 1993.

90

,Qe %ﬂ%@ﬂ\\
LA .
Oé,,,\w«,sw,.v% 7, \\/\\///
W////.\\ . q N4 I \A/\&, // o
Y L PRA
4 & «
>
oL
=S EEEE £
< ddgas i
mm F433000 ! NN m_mmw .
i olll =l wom WL ¢
2 ofl =) 2 g |
= = 2 :
- X
A
N 7 N\

P &%V\/V\ h\./v /\\\N@%
@V > 3 No// vl \\W \\
%&W%,v \\//// q,\% \\\W/ N -

"
Q/// \\ \\\W\\%/% »

